
Chapter 1 

Derivatives and 
Limits 

Differentiation is one of the two fundamental operations of calculus. 

Differential calculus describes and analyzes change. The position of a moving 
object, the population of a city or a bacterial colony, the height of the sun in 
the sky, and the price of cheese all change with time. Altitude can change with 
position along a road; the pressure inside a balloon changes with temperature. 
To measure the rate of change in all these situations, we introduce in this 
chapter the operation of differentiation. 

1 ."0,lntrodiaaetlon to the 
Derivative 
Velocities and slopes are both derivatives. 

This section introduces the basic idea of the derivative by studying two 
problems. The first is the problem of finding the velocity of a moving object, 
and the second is the problem of finding the slope of the line tangent to a 
graph. 

To analyze velocity, imagine a bus which moves due east on a straight 
highway. Let x designate the time in seconds that has passed since we first 
observed the bus. (Using "x" for time rather than the more common "t" will 
make it easier to compare velocities with slopes.) Suppose that after x seconds 
the bus has gone a distance y meters to the east (Fig. 1.1.1). Since the distance 
y depends on the time x, we have a distance function y = f (x) .  For example, if 

Figure 1.1.1. What is the .r = time in seconds 

velocity of the bus in terms 
of its position? 

40 20 40 20 

b- y m r t e r s A  
Starting position 
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50 Chapter 1 Derivatives and Limits 

f(x) happens to be f(x) = 2x2 for 0 < x ,< 5, then the bus has gone 2 - (3)* 
= 18 meters after 3 seconds and 2 . (512 = 50 meters after 5 seconds. 

The velocity of the bus at any given moment, measured in meters per 
second, is a definite physical quantity; it can be measured by a speedometer 
on the bus or by a stationary radar device. Since this velocity refers to a single 
instant, it is called the instantaneous velocity. Given a distance function such as 
y = f(x) = 2x2, how can we calculate the instantaneous velocity at a specific 
time x,, such as x, = 3 seconds? To answer this question, we will relate the 
instantaneous velocity to the average velocity during short time intervals. 

Suppose that the distance covered is measured at time x, and again at a 
later time x; these distances are yo = f(x,) and y = f(x). Let Ax = x - x, 
designate the time elapsed between our two measurements.' Then the extra 
distance covered is y -yo, which we designate by Ay = y -yo.  The aver- 
age velocity during the time interval Ax is defined simply as the distance 
travelled divided by the elapsed time; that is, average velocity = Ay/Ax = 

[ f(x) - f(xo)]/Ax. Since x = x, + Ax, we can also write 

average velocity = 
f(x0 + Ax) - f(x0) 

Ax 

Example I A bus travels 2x2 meters in x seconds. Find Ax, Ay and the average velocity 
during the time interval Ax for the following situations: (a) x, = 3, x = 4; 
(b )x0=3 ,  x =3.1; (c)x,= 3, x =3.01. 

Soiiletlon (a) Ax = x - x, = 4 - 3 = 1 second, Ay = f(x, + Ax) - f(x,) = f(4) - f(3) 
= 2 .4' - 2 - 3' = 14 meters, average velocity = Ay/Ax = 14 meters per sec- 
ond; (b) Ax = 0.1, Ay = 1.22, average velocity = 12.2; (c) Ax = 0.01, Ay = 
.1202, average velocity = 12.02 meters per second. A 

If we specify the accuracy to which we want to determine the instantaneous 
velocity, we can expect to get this accuracy by calculating the average velocity 
Ay/Ax for Ax sufficiently small. As the desired accuracy increases, Ax may 
need to be made even smaller; the exact velocity may then be described as the 
number v which Ay/Ax approximates as Ax becomes very small. For in- 
stance, in Example 1, you might guess that the instantaneous velocity at 
xo = 3 seconds is v = 12 meters per second; this guess is correct, as we will see 
shortly. 

Our description of v as the number which Ay/Ax approximates for Ax 
very small is a bit vague, because of the ambiguity in what is meant by 
"approximates" and "very small." Indeed, these ideas were the subject of 
controversy during the early development of calculus around 1700. It was 
thought that Ax ultimately becomes '6infinitesimal," and for centuries people 
argued about what, if anything, "infinitesimal" might mean. Using the notion 
of "limit," a topic taken up in the next section, one can resolve these 
difficulties. However, if we work on an intuitive basis with such notions as 
"approximates," "gets close to," "small," "very small," "nearly zero," etc., we 
can solve problems and arrive at answers that will be fully justified later. 

Example 2 The bus has gone f(x) = 2x2 meters at time x (in seconds). Calculate its 
instantaneous velocity at x, = 3. 

' A is the capital Greek letter "delta," which corresponds to the Roman D and stands for 
difference. The combination "Ax", read "delta-x", is not the product of A and x but rather a 
single quantity: the difference between two values of x. 
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Solution We choose Ax arbitrarily and calculate the average velocity for a time interval 
Ax starting at time x ,  = 3:  

aY f (3  + Ax)  - f ( 3 )  2(3 +  AX)^ - 2  .3' - - -  - - 
Ax Ax Ax 

If we let Ax become very small in this last expression, 2 A x  becomes small as 
well, and so A y / A x  = 12 -k 2 A x  approximates 12. Thus the required instanta- 
neous velocity at x,  = 3  is 12 meters per second. Note how nicely the 18's 
cancelled. This allowed us to divide through by Ax and avoid ending up with 
a zero in the denominator. A 

Warning In calculating what A y / A x  approximates for Ax nearly zero, it usually does 
no good to set Ax = 0  directly, for then we merely get 0 / 0 ,  which gives us no 
information. 

The following more general procedure is suggested by Example 2. 

To calculate the instantaneous velocity at x ,  when the position at time x  

1. Form the average velocity over the interval from x ,  to x,  + Ax:  

--  

2. Simplify your expression for A y / A x  as much as possible, cancelling 
Ax from numerator and denominator wherever you can. 

3.  Find the number v that is approximated by A y / A x  for Ax small. 

Example 3 The position of a bus at time x  is y = 3 x 2  + 8 x  for x  > 0 .  (a) Find the 
instantaneous velocity at an arbitrary positive time x,. (b) At what time is the 
instantaneous velocity 1 1  meters per second? 

Solution (a) The calculation is similar to that of Example 2, except that x ,  no longer 
has the specific value x ,  = 3.  The average velocity for a time interval Ax 
starting at x ,  is 

Ay - f ( xo  + Ax> - f (xo)  - - 
Ax Ax 

where f ( x )  = 3 x 2  + 8 x .  Thus 

As Ax gets close zero, the term 3  Ax gets close to zero as well, so A y / A x  gets 
close to (that is, approximates) 6xo  + 8.  Thus our instantaneous velocity is 
v = 6x0  + 8 meters per second at the positive time x,. 
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Figure 1.1.2. AylAx is the 
slope of the secant line. 

Figure 1.1.3. The secant 
line comes close to the 
tangent line as the second 
point moves close to xo. 

(b) We set the velocity equal to 11: 6x0 + 8 = 11. Solving for xo gives 
x, = 4 second. A 

The second problem we study is a geometric one-to find the slope of the line 
tangent to the graph of a given function. We shall see that this problem is 
closely related to the problem of finding instantaneous velocities. 

To solve the slope problem for the function y = f(x), we begin by 
drawing the straight line which passes through the points (x,, f(x,)) and 
(x, + Ax, f(xo + Ax)), where Ax is a positive number; see Fig. 1.1.2. This 
straight Iine is called a secant line, and Ay/Ax = [ f(xo + Ax) - f(xo)]/Ax is 
its slope. 

As Ax becomes small, x, being fixed, it appears that the secant line comes 
close to the tangent line, so that the slope Ay/Ax of the secant line comes 
close to the slope of the tangent line. See Fig. 1.1.3. 

Given a functiony = f(x), the slope rn of the line tangent to its graph at 
(x,, yo) is calculated as follows: 

1. Form the slope of the secant line: 

f (xo + Ax) - f (xo) 

Example 4 Calculate the slope of the tangent line to the graph of f(x) = x2 + 1 at 
x, = - 1. Indicate your result on a sketch. 

Solullon We form the slope of the secant line: 

For Ax small, this approximates - 2, so the required slope is - 2. Figure 1.1.4 
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Figure 1.1.4. The tangent 
line toy = x2 + 1 at Y = x ~ +  1 

x, = - 1 has slope - 2. 

shows the graph of the parabola y = x2  + 1. We have sketched the tangent 
line through the point (- 1,2). A 

We define the slope of the graph of the function f at (x,, f(xo)) to be the slope 
of the tangent line there. 

Up to this point, we have drawn all the pictures with Ax positive. 
However, the manipulations in Examples 2, 3, and 4 are valid if Ax has any 
sign, as long as Ax f 0. From now on we will allow Ax to be either positive or 
negative. 

Comparing the two previous boxes, we see that the procedures for 
calculating instantaneous velocities and for calculating slopes are actually 
identical; for example, the velocity calculation of Example 2 also tells us the 
slope m of y = 2x2  at (3,181, namely m = 12. We will later find that the same 
procedure applies to many other situations. It is thus convenient and economi- 
cal to introduce terms which apply to all the different situations: instead of 
calling Ay/Ax  an average velocity or the slope of a secant, we call it a 
dvference quotient; we call the final number obtained a derivative rather than 
an instantaneous velocity or a slope. We use the notation f'(xo) to designate 
the derivative off at x,. 

The Derivative 
To calculate the derivative f '(xo) of a function y = f (x> at x,: 

1. Form the difference quotient 

Ay - f (xo + Ax)  - f ( x o )  --  
Ax Ax 

2. Simplify Ay/Ax ,  cancelling Ax if possible. 
3. The derivative is the number f'(x,) that Ay/Ax approximates for Ax 

small. 

This operation of finding a derivative is called dqferentiation. 
The reader should be aware that the precise version of Step 3 involves the 

notion of a limit, which is discussed in the next section. 

Example 5 Suppose that m is a constant. Differentiate f ( x )  = mx + 2 at x, = 10. 

Solution Here the function is linear, so the derivative should be equal to the slope: 
f'(10) = rn. To see this algebraically, calculate 
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This approximates (in fact equals) m for Ax small, so f'(10) = m. A 

Glancing back over our examples, we notice that all the functions have been 
either linear or quadratic. By treating a general quadratic function, we can 
check our previous results and point the way to the goal of developing general 
rules for finding derivatives. 

Let f(x) = ax2 + bx + c, where a ,  b, and c are constants, and let x, be 
any real number. Then f'(x,) = 2ax0 + b. 

To justify the quadratic function rule, we form the difference quotient 

a(x, + 4x12 + b(xo + Ax) + c - ax: - bx, - c - - 
Ax 

- 
2sx, Ax + a ( 4 ~ ) ~  + b Ax 

- 
Ax 

= 2ax0 + b + a Ax. 

As Ax approaches zero, a Ax approaches zero, too, so Ay/Ax approximates 
2ax, + b. Therefore 2a.xo + h is the derivative of ax2 + hx + c at x = x,. 

Example 6 Find the derivative of f(x) = 3x2 + 8x at (a) x, = - 2  and (b) x, = 

Solution (a) Applying the quadratic function rule with a = 3, b = 8, c = 0, and x, = 

-2, we find f'(-2) = 2(3)(-2) + 8 = -4. 
(b) Taking a = 3, b = 8, c = 0 and x, = 5, we get f '(4) = 2 - 3 . (4) + 8 = 11, 

which agrees with our answer in Example 3(b). A 

If we set a = 0 in the quadratic function rule, we find that the derivative of 
any linear function bx + c is the constant b, independent of x,: the slope of a 
linear function is constant. For a general quadratic function, though, the 
derivative f'(x,) does depend upon the point x, at which the derivative is 
taken. In fact, we can considerf' as a new function; writing the letter x instead 
of x,, we have f'(x) = 2ax + b. We can rephrase the quadratic function rule 
with x, replaced by x as in the following box, which also summarizes the 
special cases a = 0 and a = 0 = b. 

The derivative of the linear function f(x) = bx + c is the constant 

The derivative of the constant function f (x )  = c is the zero function 
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The next example illustrates the use of thinking of the derivative as a function. 

Example 7 There is one point on the graph of the parabola y = f(x) = x2 - 4x + 5 where 
the slope is zero, so that the tangent line is horizontal (Fig. 1.1.5). Find that 
point using: (a) derivatives; and (b) algebra. 

Solution (a) By the quadratic function rule with a = 1, b = -4, c = 5, the derivative 
function is f'(x) = 2x - 4. For zero slope we have 0 = f'(x) = 2x - 4, i.e., 
x = 2. Then y = I ,  so our point is (2,l). This point is called the vertex of 

" = x *  - 4 x + 5  the parabola. 

(b) Completing the square gives f(x) = x2 - 4x + 4 + 1 = (x - 2)2 + 1. Now 
(x - 212 is zero for x = 2 and positive othemise, so the parabola has its 
lowest point at x = 2. It is plausible from the figure, and true, that this low 
point is the point where the slope is zero. A 

I We conclude this section with some examples of standard terms and nota- ' 
tions. When we are dealing with functions given by specific formulas, we often 

Figure 1.1.5. The vertex of omit the function names. Thus in Example 7(a) we can say "the derivative of 

the is the point x2 - 4x + 5 is 2x - 4." Another point is that we can use letters different from 
where its slope is zero. x, y ,  and f. For example, the area A of a circle depends on its radius r ;  we can 

write A = g(r) = ar2. The quadratic function rule with a = a ,  b = 0 = c, with f 
replaced by g and with x replaced by r, tells us that g'(r) = 2ar. Thus for a 
circle the derivative of the area function is the circumference function-a fact 
whose geometric interpretation will be discussed in Section 2.2. Similarly, the 
time is often denoted by t in velocity problems. 

Example 8 A stunt woman is on a moving passenger train. Her distance function is 
3t2 + t. On the adjacent track is a long moving freight train. The distance 
function for the center of this freight train is t2 + 72. She must jump to the 
freight train. What time is best? 

Solution The safest time to jump is when the stunt woman has the same velocity as the 
freight train (see Fig. 1.1.6). Her instantaneous velocity u is the derivative of 

Figure 1.1.4. The stunt 
woman should jump when 
she has the same velocity as 
the freight train. 

3t2 + t .  By the quadratic function rule, v = 6t + 1; similarly the instantaneous 
velocity of the freight train is 2t + 7. The velocities are equal when 21 + 7 
= 6t + 1, i.e., t = 2 .  That is the safest time. A 

In this section, we have discussed the derivative, one of the two most basic 
concepts of calculus. We showed how to find derivatives in some cases and 
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indicated a few of their applications. Before we can usefully discuss other 
applications of derivatives, we need to develop efficient techniques for calcu- 
lating them. The next section begins that task. 

Exercises for Section 1 .I 
In Exercises 1-4, y represents the distance a bus has 
travelled after x seconds. Find Ay and the average 
velocity during the time interval Ax for the following 
situations. 
(a) x,  = 2, Ax = 0.5 (b) xo = 2, Ax = 0.01 
(c) xo = 4,  Ax = 0.1 (d) x,  = 4, Ax = 0.01 

1 .  y = x 2 +  3x  2. y = 3 x 2 +  x 
3. y = x 2  + l o x  4. y = 2 x  

In Exercises 5-8, f ( x )  is the number of meters a bus has 
gone at a time x (in seconds). Find the instantaneous 
velocity at the given time xo. 

5. x2  + 3 x ;  xo = 2 6.  x2  + 3x ;  xo = 4 
7.  3x2  + x ;  x0 = 2 8. 3x2  + x ;  x0 = 4 

In Exercises 9-12, y is the position (measured in me- 
ters) of a bus at time x (in seconds). (a) Find the 
instantaneous velocity at an arbitrary (positive) time x,. 
(b) At what time is the instantaneous velocity 10 meters 
per second? 

9. y = x 2  + 3 x  10. y = 3x1 + x 
1 1 .  y = ~ 2 +  lox  12. y = 2x  

In Exercises 13-16, use the Ay /Ax  method of Example 
4 to find the slope of the tangent line to the graph of 
the given function at the given point. Sketch. 

13. y = x2 ;  xo = 1 
14. y =  - x 2 ;  x o = 2  
15. y = 5x2 - 3x  + 1 ;  xo = O 
16. y  = x + 1 - x2 ;  x ,  = 2 

In Exercises 17-20 use the Ay/Ax  method of Example 
5 to compute the derivative of f ( x )  at x,; a is a constant 
in each case. 

17. f ( x ) =  ax  + 2; xo=O 
18. f ( x )  = 2x + a ;  xo = 0 
19. f ( x )  = ax2; x ,  = 1 
20. f ( x )  = 8x2 + a ;  x ,  = 2 

In Exercises 21-24, use the quadratic function rule to 
find the derivative of the given function at the indicated 
point. 

21. f ( x )  = x 2  + X - 1 ;  X o  = 1 
22. f ( x )  = x2  - x ;  x ,  = 2 
23. f ( x )  = 3x2  + x - 2; x ,  = -2  
24. f ( x ) =  - 3 x 2 - x + l ; x o =  - 1  

In Exercises 25-28, find the vertex of the given parab- 
ola using (a) derivatives and (b) algebra. 

25. y  = x 2  - 16x + 2 
26. y  = x 2  + 8x  + 2 
27. y  = -2x2  - 8x  - 1 
28. y =  - 2 x 2 - 3 x + 5  

Gifferentiate the functions in Exercises 29-36 using the 
quadratic function rule. 

2 9 . f ( x ) = x 2 + 3 x - 1  30. f ( x ) = - 3 x + 4  
31. f ( x )  = ( x  - l)(x + 1) 32. f ( x )  = (9 - x)( l  - x )  
33. g(r)  = -4t2 + 3t + 6 34. g(r)  = ?rr2 + 3 
35. g(s) = 1 - s2 36. h( t )=3t2- .S t  + 9  

37. Inspector Clumseaux is on a moving passenger 
train. His distance function is 2t2 + 31. On the 
adjacent track is a long moving freight train; the 
distance function for the center of the freight 
train is 3t2 + t .  What is the best time for him to 
jump to the freight train? 

38. Two trains, A and B, are moving on adjacent 
tracks with positions given by the functions A ( t )  
= t 2  + t + 5 and B ( t )  = 3t + 4. What is the best 
time for a hobo on train B to make a moving 
transfer to train A? 

39. An apple falls from a tall tree toward the earth. 
After t seconds, it has fallen 4.9t2 meters. What 
is the velocity of the apple when t = 3? 

40. A rock thrown down from a bridge has fallen 
4t + 4.9t2 meters after t seconds. Find its veloc- 
ity at t = 3. 

41. f ( x )  = x 2  - 2; find f'(3) 
42. f ( x )  = - 13x2 - 9 x  + 5; find f'(1) 
43. f ( x )  = 1 ; find f'(7) 
44. g(s )  = 0;  find g'(3) 
45. k ( y )  = ( y  + 4) ( y  - 7);  find k ' ( -  1) 
46. x (  f )  = 1 - f 2 ;  find xl(0) 
47. f ( x )  = - x + 2; find f'(3.752764) 
48. g(a) = 10a - 8; find g'(3.1415) 

In Exercises 49-54, find the derivative of each of the 
given functions by finding the value approximated by 
Ay/Ax  for Ax small: 

49. 4 x 2  + 3 x  + 2 50. ( x  - 3)(x + I )  
51. 1 - x2  52. - x 2  
53. - 2x2+  5 x  54. 1 - x 
55. Let f ( x )  = 2x2 + 3x  + 1 .  (a) For which values of 

x is f ' (x)  negative, positive, and zero? (b) Iden- 
tify these points on a graph off. 

56. Show that two quadratic functions which have 
the same derivative must differ by a constant. 

57. Let A ( x )  be the area of a square of side length x .  
Show that A'(x)  is half the perimeter of the 
square. 

58. Let A ( r )  be the area of a circle of radius r. Show 
that Af ( r )  is the circumference. 

59. Where does the line tangent to the graph of 
y = x2  at x,  = 2 intersect the x axis? 

60. Where does the line tangent to the graph of 
y = 2x2  - 8x + 1 at x,  = 1 intersect they axis? 

61. Find the equation of the line tangent to the 
graph of f ( x )  = 3x2 + 4 x  + 2 at the point where 
xo = 1 .  Sketch. 

62. Find the tangent line to the parabola y = x 2  - 
3x  + 1 when x,  = 2. Sketch. 

*63. Find the lines through the point (4,7)  which are 
tangent to the graph of y = x2. Sketch. (Hint: 
Find and solve an equation for the x coordinate 
of the point of tangency.) 

Copyright 1985 Springer-Verlag. All rights reserved.



1.2 Limits 57 

s64. Given a point (x, y),  find a general rule for 
determining how many lines through the point 
are tangent to the parabola y = x2. 

r65. Let R be any point on the parabola y = x2. 
Draw the horizontal line through R and draw the 
perpendicular to the tangent line at R. Show that 
the distance between the points where these lines 
cross the y axis is equal to 4, regardless of the 
value of x. (Assume, however, that x + 0.) 

r66. If j(x) = ax2 + bx + c = a(x - r)(x - s) ( r  and 
s are the roots off), show that the values of f'(x) 
at r and s are negatives of one another. Explain 
this by appeal to the symmetry of the graph. 

s67. Using your knowledge of circles, sketch the 
graph of f(x) = JGf. Use this to guess the 
values of f'(0) and f'(Q). 

*68. A trained flea crawls along the parabola y = x2 
in such a way that its x coordinate at time t is 
2t + 1. The sun is shining from the east (positive 
x axis) so that a shadow of the flea is projected 

on a wall built along the y axis. m a t  is the 
velocity of this shadow when t = 3? 

r69. A ball is thrown upward at r = 0; its height in 
meters until it strikes the ground is 24.5t - 4.9t2 
when the time is t seconds. Find: 
(a) The velocity at t = 0,1,2,3,4,5. 
(b) The time when the ball is at its highest 

point. 
(c) The time when the velocity is zero. 
(d) The time when the ball strikes the ground. 

*70. A toolbox falls from a building, its height y in 
feet from the ground after t seconds being given 
by y q 100 - 16t2. 
(a) Find the impact time t*,  i.e., the positive 

time for which y = 0. 
(b) Find the impact velocity, i.e., the velocity 

at t* .  
(c) The momentum p is defined by p = Wu/32, 

where W is the weight in pounds, and u is 
the velocity in feet per second. Find the 
impact momentum for a 20-lb toolbox. 

The limit of a function f ( t )  at a point x = x ,  is the value which f ( x )  approxi- 
mates fir x close to x,,. 

In this section, we introduce limits and study their properties. In the following 
sections, we will use limits to clarify statements such as "Ay/Ax  approximates 
f'(x,) for Ax small," and to systematize the computing of derivatives. Some 
technical points in the theory of limits have been deferred to Chapter 11, 
where limits are needed again for other purposes. Readers who wish to see 
more of the theory now can read Section 11.1 together with the present 
section. 

We illustrate the idea of a limit by looking at  the function 

which is defined for all real numbers except 3. Computing values of f ( x )  for 
some values of x near 3, we obtain the following tables: 

It appears that, as x gets closer and closer to x ,  = 3 , f ( x )  gets closer and closer 
to 5, i.e., f ( x )  approximates 5 for x close to 3. As in our discussion of the 
derivative, it does no good to set x = 3, because f (3 )  is not defined. In the 
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special case we are considering, there is another way to see that f ( x )  approxi- 
mates 5:  

The cancellation of ( x  - 3 )  is valid for x  # 3. Now for x  close to 3 ,  2 x  - 1 
approximates 2 .  3 - 1 = 5. Note that after cancelling x  - 3 ,  the function 
becomes defined at x, = 3. 

In general, suppose that we have a function f ( x )  and are interested in its 
behavior near some value x,. Assume that f ( x )  is defined for all x  near x,, bui 
not necessarily at x  = x ,  itself. If the value f ( x )  off approximates a number I 
as x  gets close to a number xo, we say that " I  is the limit of f ( x )  as x  

Figure 1.2.1. The notion of 
limit: as x approaches x,, 
f(x) gets near to I. 

approaches x," or " f ( x )  approaches 1 as x  approaches x,." See Fig. 1.2.1. Two 
usual notations for this are 

f(x)-+I as x + x ,  

lim f ( x )  = I. 
X--SXi ,  

For example, the discussion above suggests that 

2 x 2 - 7 x + 3 + 5  as x + 3 ;  
x - 3  

that is 

lim 2 x 2  - 7 x  + 3 = 5. 
x-3 x  - 3 

Example 1 Using numerical computations, guess the value of l imx,,[ l /(4x - 2)] .  

Solullon We make a table using a calculator and round off to three significant figures: 

It appears that the limit is a number which, when rounded to three decimal 
places, is 0.071. In addition, we may notice that as x  + 4 ,  the expression 
4 x  - 2  in the denominator of our fraction approaches 14. The decimal 
expansion of & is 0.071428 . . . , so we may guess that 

We summarize the idea of limit in the following display. 
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If the value of f(x) approximates the number I for x close to x,, then we 
say that f approaches the limit I as x approaches x,, and we write 

f ( x ) + l  as x+x,,  or l imf (x )=I .  
X--fX', 

The following points should be noted. 

1. The quantity limx,,o f(x) depends upon the values of f(x) for x near x,, 
but not for x equal to x,. Indeed, even if f(x,) is defined, it can be changed 
arbitrarily without affecting the value of the limit. 

2. As x gets nearer and nearer to x,, the values of f(x) might not approach 
any fixed number. In this case, we say that f(x) has no limit as x + x,, or 
that lim,,xo f(x) does not exist. 

3. In determining limx,xo f(x), we must consider values of x on both sides of 
xo. 

4. Just as in our discussion of the derivative, one can still legitimately 
complain that the definition of limit given in the preceding display is too 
vague. Readers who wish to see an air-tight definition should now read the 
first few pages of Section 11.1. (Section 11.1 is needed for other theoretical 
points in Chapter 11 and for proofs, but not for what follows here.) 

Example 2 Reading the graph in Fig. 1.2.2, find lim,,,g(t) if it exists, for b = 1, 2, 3, 4, 
and 5. 

Figure 1.2.2. Find the 
limits of g at the indicated 
points. A small circle 
means that the indicated 
point does not belong to 
the graph. 

Solution Notice first of all that we have introduced new letters; lim,+,g(t) means the 
value approached by g(t) as t approaches b. 

b = 1: lim,+, g(t) = 0.5. In this case, g(b) is defined and happens to be 
equal to the limit. 

b = 2: lim,,,g(t) = 1. In this case, g(b) is defined and equals 1.5, which 
is not the same as the limit. 

b = 3: lim,,,g(t) does not exist. For t near 3, g(t) has values near 0.5 
(for t < 3) and near 1 (for t > 3). There is no single number 
approached by g(t) as t approaches 3. 

b = 4: lim,+,g(t) = 1. In this case, g(b) is not defined. 
b = 5: lim,,,g(t) does not exist. As t approaches 5, g(t) grows larger and 

larger and does not approach any limit. A 

The computation of limits is aided by certain properties, which we list in the 
following display. We will make no attempt to prove them until Chapter 11. 
Instead, we will present some remarks and graphs which suggest that they are 
reasonable. 
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80 Chapter I Derivatives and Limits 

Assume that limx,xo f(x) and limx,xog(x) exist: 

Constant function rule: 

Identity function rule: 

Replacement rule: If the functions f and g have the same values for all x 
near x,, but not necessarily including x = x,, then 

The sum and product rules are based on the following observation: If we 
replace the numbers y ,  and y2 by numbers z ,  and z2 which are close toy,  and 
y,, then z ,  + 2, and z ,z, will be close to y ,  + y2 and y ,  y2, respectively. 
Similarly, the reciprocal rule comes from such common sense statements as 
"1/14.001 is close to 1/14." 

The constant function rule says that if f(x) is identically equal to c, then 
f(x) is near c for all x near x,. This is true because c is near c. 

The identity function rule is true since it merely says that x is near x, if x 
is near x,. Illustrations of the constant function rule and the identity function 
rule are presented in Fig. 1.2.3. 

Fiyre 1.23. In (a) 
lirn,,,nc = c and in (b) 

Finally, the replacement rule folIows from the fact that Iim,,,of(x) 
depends only on the values of f(x) for x near x,, and not at x, nor on values 
of x far away from x,. The situation is illustrated in Fig. 1.2.4. 

Example 3 Use the basic properties of limits: (a) to find lim,,,(x2 + 2x + 5); (b) to show 
lim,-,[(2x2 - 7x + 3)/(x - 3)J = 5 as we guessed in the introductory calcula- 
tion at the start of this section, and (c) to find lim,+,[(8u2 + 2)/(u - I)]. 
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Figure 1.2.4. If the graphs Y 

off and g are identical near 
x,, except possibly at the 
single point where x = xo, 
then lirn,,,o f(x) 
= lirnx-+xo g(x). 

Solution (a) Common sense suggests that the answer should be 32 + 2 . 3  + 5 = 20. In 
fact this is correct. 

By the product and identity function rules, 

lim x2 = lim (x . x) = 
x+3 x-3 

By the product, constant function, and identity function rules, 

By the sum rule, 

Finally, by the sum and constant function rules, 

(b) We cannot use common sense or the quotient rule, since 

l im(x-3)=  limx- l i m 3 = 3 - 3 = 0 .  
x-3 x+3 x+3 

Since substituting x = 3 into the numerator yields zero, x - 3 must be a 
factor; in fact, 2x2 - 7x + 3 = (2x - l)(x - 3), and we have 

For x # 3, we can divide numerator and denominator by x - 3 to obtain 
2x - 1 .  Now we apply the replacement rule, with 

f (x )  = 2x2 - 7x + and g(x) = 2x - 1 
x - 3  

since these two functions agree for x # 3. Therefore 

lim 2 x 2 - 7 x f  = lim(2x- 1 ) = 2  - I  = 2 . 3 -  1 = 5 .  
x+3 x - 3 x-3 

(c) Here the letter "24" is used in place of "x," but we do not need to change 
our procedures. By the sum, identity, and constant function rules, we get 
lim,,,(u - 1) = limU,,u - lim,,,l = 2 - 1 = 1. Similarly, 

lim (8u2 + 2) 
u-2 

= lim8u2+ lim2 (sum rule) 
u-2 u-2 

(product and constant function rules) 

(product and constant function rules) 

= 8 . 2 - 2 + 2 = 3 4  (identity function rule). 
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62 Chapter 1 Derivatives and Limits 

Thus, by the product and reciprocal rules, 

lim 8uifZ = lim (8u2+ 2) - -- 
u+2 u - 1 u-t2 ( U  - 1) I 

= lirn (8 u2 + 2) . 1 = 3 4 . 1  = 34. 
~ + 2  lim (u - 1) 1 

u-+2 

This agrees with the common sense rule obtained by substituting u = 2. g 

As you gain experience with limits, you can eliminate some of the steps used 
in the solution of Example 3. Moreover, you can use some further rules which 
can be derived from the basic properties. 

Assume that the limits on the right-hand sides below exist. Then we 

Extended sum rule: 

Extended product rule: 

Constant mubiple rule: 

(n = 0, + I ,  + 2, + 3, . . . and x, .f 0 if n is not positive). 

We outline how these derived properties can be obtained from the basic 
properties. To prove the extended sum rule with three summands from the 
basic properties of limits, we must work out lim,,,o( f,(x) + f2(x) +f3(x)) 
when lim,,xoj(x) is known to exist. The idea is to use the basic sum rule for 
two summands. In fact fl(x) + f2(x) + f3(x) = f 1 ( ~ )  + g(x), where g(x) 
= f2(x) + f3(x). Note that lim,,,og(x) = limx-txo f2(x) + limx,,o f,(x) by the 
basic sum rule. Moreover lim,,x~f,(x) + g(x)) = lirnx,,o f,(x) + limx,,og(x) 
by the same rule. Putting these results together, we have 

= lirn fl(x) + hlo g(x) 
x 3 x o  

= lirn f,(x) + lim f2(x) + lirn f3(x), 
x 9 x o  x-X,, X-JX,, 

as we set out to show. The extended sum rule with more than three terms is 
now plausible; it can be proved by induction (see Exercise 65). The extended 
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product rule can be proved by very similar arguments. To get the constant 
multiple rule, we may start with the basic product rule lim,,,Jf(x)g(x)] 
= [lim,+,o f(~)][lim,,,~g(x)]. Let g(x) be the constant function g(x) = c; 
the constant function rule gives lim,,,Jcf(x)] = [lim,,,,c][lim,+,J(x)] = 

c lim,,,o f(x), as we wanted to show. Similarly, the quotient rule follows from 
the basic product rule and the reciprocal rule by writing f /g  = f - I/g. The 
power rule follows from the extended product rule with f,(x) = x, . . . , 
f,(x) = x and the identity function rule. The next example illustrates the use 
of the derived properties. 

Example 4 Find lim x3  - 3x2 + 14x 
+ I  x 6 +  x3  + 2 

Solution Common sense correctly suggests that the answer is (13 - 3 . l2 + 14 - 1)/ 
(16  + l 3  + 2) = 3. To get this answer systematically, we shall write f(x) = x3 - 
3x2 + 14x, g(x) = x6 + x3 + 2, and use the quotient rule. First of all, 
lim,,,x6 = l6 = 1 and limx,,x3 = 1 by the power rule; lim,,,2 = 2 by the 
constant function rule; since all three limits exist, lim,,, g(x) = 1 + 1 + 2 = 4 
by the extended sum rule. Similarly, lim,,, f(x) = 12. Since limx,, g(x) # 0, 
the quotient rule applies and so lim,,,[f(x)/g(x)] = 9 = 3, as we antici- 
pated. A 

Clearly the common sense method of just setting x = 1 is far simpler when it 
works. A general term to describe those situations where it does work is 
"continuity." 

Deflrritron of Continuity 
A function f(x) is said to be continuous at x = x, if lim,,,o f(x) = f(xo). 

Thus if f(x) is continuous at x,, two things are true: (1) limx+,o f(x) exists and 
(2) this limit can be calculated by merely setting x = x, in f(x), much as in 
Example 4. The geometric meaning of continuity will be analyzed extensively 
in Section 3.1. 

We now discuss certain functions which are continuous at many or all 
values of x,. Instead of the specific function (x3 - 3x2 + 14x)/(x6 + x3 + 2), 
we consider more generally a ratio r(x) = f(x)/g(x) of two polynomials. Such 
a ratio is called a rational function, just as a ratio of integers is called a rational 
number. Note that a polynomial f(x) is itself a rational function--we can 
simply choose the denominator g(x) in the ratio r(x) to be g(x) = 1. Suppose 
that we are interested in the rational function r(x) = f(x)/g(x) for values of x 
near x,. Moreover, suppose that g(x,) # 0 so that r(x,) is defined; for 
instance, in Example 4 we had g(x,) = 4 + 0 at x, = I .  Using the limit rules in 
almost exactly the same way as we did in Example 4 leads to the conclusion 
that the common sense approach works for the rational function r(x). We 
summarize in the following box. 

Continuity of Rational Functions 
If f(x) is a polynomial or a ratio of polynomials and f(x,) is defined, 
then 

lim f(x)  = f(x0). 
x j x o  
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As an example of the use of the continuity of rational functions, note that 
to calculate limX,,[l/(4x - 2) ] ,  we can now just set x = 4 to get &, as we 
guessed in Example 1 above. Indeed, students seduced by the simplicity of this 
rule often believe that a limit is nothing more than a value. The next example 
should help you avoid this trap. 

Example 5 Find 

and 

+ 2 Ax 
(b) lim 

Ax-+o   AX)^ + Ax ' 

where Ax is a variable. 

Solution (a) The denominator vanishes when x = 2, so we cannot use the continuity of 
rational functions as yet. Instead we factor. When the denominator is not zero 
we have 

Thus 

lim x + 3  x2 + x - 6 = (by the replacement rule) 
x-2 x 2  + 2 X  - g x-2 X + 4 

- ---- + - (by the continuity of rational functions). 
2 + 4  6 

(b) The denominator vanishes when Ax = 0, so again we use the replacement 
rule: 

+ 2 Ax 
lim = lim -- AX + (replacement rule) 

A x 4 0  + Ax Ax-0 AX + 1 

= 2  (continuity of rational functions). A 

There are many limits that cannot be dealt with by the laws of limits we have 
so far. For example, we claim that if x ,  is positive, then 

lim G=&, 
x+x0 

i.e., the function f(x) = & is continuous at x,. To make this result plausible, 
assume that l i m X j x o ~  = I exists. Then by the product rule, 

Now I must be positive since & > 0 for all x which are positive, and all x 
which are close enough to x ,  are positive. Hence, I =&. This limit is 
consistent with the appearance of the graph of y = 6. (See Fig. 1.2.5.) 

In Section 11.1, we give a careful proof of the continuity of 6. 
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Figure 1.2.5. The graph of 
J. 

y = 6 suggests that 
lirnx++,6 = 6. 

Example 6 Find 

8x2 lim ----- . 
x-93 1 +6 

Solution By using the properties of limits and the continuity of &, we get 
lim,,,(l i-6) = lim,,,l + lim,,,& = 1 +& # 0. Thus 

lim 8x2 
8x2 = x+3 - - =  8 . 3 *  72 lim ---- . A  

x-3 1 + 6  l i m ( l + & )  1i-\15 I+-\15 
x-3 

Sometimes limits can fail to exist even when a function is given by a simple 
formula; the following is a case in point. 

Example 7 Does lim,,,(l x l/x) exist? 

Solullon The function in question has the value 1 for x > 0 and - 1 for x < 0. For 
x = 0, it is undefined. (See Fig. 1.2.6.)-There is no number 1 which is 

Figure 1.2.6. The graph of 
the function Ixl/x. 

approximated by Ixl/x as x +O, since Ixl/x is sometimes 1 and sometimes 
- 1, according to the sign of x. We conclude that lim,,,(lx)/x) does not exist. 

A 

It is possible to define a notion of one-sided limit so that a function like Ixl/x 
has limits from the left and right (see Section 11.1 for details). Since the 
one-sided limits are different, the lirnit per se does not exist. The reader might 
wonder if any function of interest in applications actually shows a jump 
similar to that in Fig. 1.2.6. The answer is "yes." For example, suppose that a 
ball is dropped and, at t = 0, bounces off a hard floor. Its velocity will change 
very rapidly from negative (that is, downward) to positive (that is, upward). It 
is often convenient to idealize this situation by saying that the velocity 
function jumps from a negative to a positive value exactly at t = 0, much as in 
Fig. 1.2.6. 

We conclude this section with some limits involving + oo. We shall be 
quite informal and emphasize examples, again leaving a more careful discus- 
sion to Chapter 1 1 .  First, it is often useful to consider limits of the form 
lim,,, j(x). This symbol refers to the value approached by j(x) as x becomes 
arbitrarily large. Likewise, lim,,-, f(x) is the value approached by f(x) as x 
gets large in the negative sense. Limits as x -+ + oo obey similar rules to those 
with x -+ x,. 
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Example 8 Find 

1 lim - ; (") x i m  X 

2 x + 1 .  (b) lim ---- 
x+m 3x + 1 ' 

and 

Solution As x gets very large, 1/x gets very small. Thus 

1 lim - = 0. (a) x + m X  

We shall do (b) and (c) by writing the given expression in terms of l / x .  

2 x + '  = lim --- (b) Iim --- 
x+m 3~ + 1 X-)m 3 + I/x 3 +O 3 ' 

Example 9 Find lim,-,, f(x) and Iim,, _ , f(x) for the function f in Figure I .2.7. 

Figure 1.2.7. Find 
lim,,, f ( x )  and 
lim,+ - , f ( x ) .  

Solution Assuming that the ends of the graph continue as they appear to be going, we 
conclude that lim,,, f(x) = 2 and limx,_, f(x) = 0. A 

Another kind of limit occurs when the value of f(x) becomes arbitrarily large 
and positive as x approaches x,. We then write lim,,xo f(x) = oo. In this case 
limx+xo f(x) does not, strictiy speaking, exist (infinity is not a real number). 
SimilarIy lim,,,of(x) = - w is read "the limit of f(x) as x approaches x, is 
minus infinity," which means that while lim,,,,, f (x)  does not exist, as x 
approaches x, from either side f(x) becomes arbitrarily large in the negative 
sense. 

Example 10 Find 

lim - 3x 
(a) x+2 x2 - 4x + 4 

and 

3 x + 2  (b) 1im - . 
x+o X 

Solution (a) The denominator vanishes when x = 2, so the quotient rule does not apply. 
We may factor the denominator to get - 3x/(x2 - 4x + 4) = - 3x/(x - 212. 
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For x near 2, the numerator is near - 6 ,  while the denominator is small and 
positive, so the quotient is large and negative. Thus, 

lim - 3 x  =-m.  
x-2 (x  - 212 

(See Fig. 1.2.8(a).) 
(b) We write (3x + 2)/x = 3 + 2/x. When x is near 0, 2/x is either large and 
positive or large and negative, according to the sign of x (Fig. 1.2.8(b)). Hence 
limx,0[(3x + 2)/x] does not have any value, finite or infinite. (To get + oo or 
- oo, one-sided limits must be used.) A 

Figure 1.2.8. In (a) the limit 
is - oo and in (b) it does 
not exist. 

lim - 3x 3 x  + is infinitely schizophrenic near x = 0 
x-2 x 2  - 4 x  + 4 =-co y = x  

Exercises for Section 1.2 
1. Guess l im,+,[(x3 - 3x2  + 5x  - 3 ) / ( x  - I ) ]  by 

doing numerical calculations. Verify your guess 
by using the properties of limits. 

2. Find limx,_ , [ 2 x / ( 4x2  + 5)],  first by numerical 
calculation and guesswork, then by the basic 
properties of limits, and finally by the continuity 
of rational functions. 

Refer to Fig. 1.2.9 for Exercises 3 and 4. 
3. Find lim,,-3 f ( x )  and lim, +, f ( x )  if they exist. 
4. Find lim,,-, f ( x )  and lim,,, f ( x )  if they exist. 

Figure 1.2.9. Find the limits a t  x = -3,  - 1, 1, and 3 if 
they exist. A small circle means that the indicated point 
does not belong to the graph. 

Use the basic properties of limits to find the limits in 
Exercises 5-8. 

5. lim (17 + x )  6. lim x 2  
x+3 x+3 

u +  l s2 -  1 7. lirn - 8. lirn - 
u + - 1  u - 1 s + 2  S 

Use the basic and derived properties of limits to find 
the limits in Exercises 9-12. 

x 2  - 9 9. lirn - 
x+3 x2  + 3 

( x 2  + 3x - 10) 
10. lirn 

x 2 ( x  + 2 )  

11 .  lim xI0 + 8x3  - 7 x 2  - 2 
x + I  x + !  

( x 2  + 3x - 9 )  
12. lim 

x-2 x + 2 
Use the continuity of rational functions and the re- 
placement rule, if necessary, to evaluate the limits in 
Exercises 13-22. 

u - - 0  t - J s  
13. lirn - 14. lirn - 

.+A u2 - 3 ,+& t 2  - 5 

x - 2 15. lirn - 
x+2 X - 2 

x 2 - 3  16. lirn - 
x+3 x 2  - 3 

17. lirn x 2  - 4x  + 3 lim x2  + x - 20 
x+3 x 2  - 2x - 3 x + - 5  x 2 + 6 x +  5 

+ 3(Ax)  (AX)' +  AX)^ 
19. lim 20. lim 

Ax+0 AX Ax-0 AX 
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 AX)' +  AX) 
21. lirn 

Ax+O Ax 
  AX)^ +  AX)' +  A AX) 

22. lirn 
Ax-0 AX 

Find the limits in Exercises 23-26 using the continuity 
of 6 .  

2x 23. lim - 
x+4 1 - 6  

2x2 - X 24. lirn - 
x-9 6 

25. limx,3(1 - &)(2 + 6 )  26. limx,2(x2 + 2 x ) a  
Find the limits in Exercises 27-30 if they exist. Justify 
your answer. 

Ix - 11 29. lirn - Ix - 21 30. lirn - 
x-tl X - 1 x+2 x - 2 

Find the limits in Exercises 3 1-36 as x + -t oo. 
x - 1  31. lirn - 2x2 + 1 32. lim - 

x+m 2x + 1 x+m 3x2 + 2 

2x - 34. lim 3x3 + 2x2 + 1 
33. x!jmm X+ - m 4x3 - x2  + X + 2 

1x1 X 35. lim - 36. lim - 
x-+m x x - t - m  1x1 

37. For the function in Fig. 1.2.10, find lim,,,f(x) 
for a = 0, 1,2,3,4 if it exists. In each case, tell 
whether lim,,, f(x) = f(a). 

Refer to Fig. 1.2.12 for Exercises 39 and 40 (assume 
that the functions keep going as they appear to). 

39. Find lim,,, f(x) and limx,_, f(x). 
40. Find lim,,, g(x) and lim,,-, g(x). 

Figure 1.2.12. Find the 
limits at t oo. 

Find the limits in Exercises 41-44. If the limit is + oo, 
give that as your answer. 

42. lim Y - 4  
Y-3 y 2  - 6y + 9 

2 43. lim - 44. lim - x2  + 5x 
x+6 x2  - 5 x-to x 2  

Find the limits in Exercises 45-58 if they exist. 

45. lim u3 + 2u2 + U 
u-to u 

x 3 + 2  46. lim - 
X+m 3x3 + X 

2x 47. lirn - 
x+2 (x  - 2)2 

49. lim x2  - 5x + 6 
x+2 x2  - 6x + 8 

50. lim x 2  - 5x + 6 
x+4 x2  - 6x + 8 

F iwe  1.2.10. Find the 
limits at  0, 1,2,3,4. 

38. Find lim,,,f(x), where a = -2, 0, and 1 for f 
sketched in Fig. 1.2.1 1. 

Figure 1.2.11. Find 
limx,,f(x) at  the indicated 
points. 

t2  + 2 4  
51. lim - 

t+4 I t (  

(Ax14 + 2  AX)^ + 2 Ax 
54. lirn 

dx+O AX 
3(x3 - 1) 

55. lim 
x+l  X - 1  

56. lirn 
q+3 

57. lirn 3s2 - 2s - 21 
s-3 ( s  - 3)2 

fi 58. lim - 
x+-00 x 2 +  1 

59. How should f(x) = (xS - I)/(x - I )  be defined 
at  x = 1 in order that lim,,, f(x) = f(l)? 
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60. I-Iow should g ( t )  = (t2 + 4t)/(t2 - 4t) be defined 
at  t = 0 to make lim,,,g(t) = g(O)? 

a61. A block of ice melts in a room held at 75OF. Let 
f(t) be the base area of the block and g(t) the 
height of the block, measured with a ruler at 
time t .  
(a) Assume that the block of ice melts com- 

pletely at time T. What values would you 
assign to f (T)  and g(T)? 

(b) Give physical reasons why lim,,,f(t) = 
f (T)  and lim,,,g(t) = g(T)  need not both 
hold. What are the limits? 

(c) The limiting volume of the ice block at time 
T is zero. Write this statement as a limit 
formula. 

(d) Using (b) and (c), illustrate the product rule 
for limits. 

s62.  A thermometer is stationed at x centimeters from 
a candle flame. Let f(x) be the Celsius scale 
reading on the thermometer. Assume that the 
glass in the thermometer will crack upon contact 
with the flame. 
(a) Explain physically why f(O) doesn't make 

any sense. 
(b) Describe in terms of the thermometer scale 

the meaning of lim,,o+ f(x) (i.e., the limit 
of f(x) as x approaches zero through posi- 
tive values). 

(c) Draw a realistic graph of f ( x )  for a scale 
with maximum value 200°C. (Assume that 
the flame temperature is 400°C.) 

(d) Repeat (c) for a maximum scale value of 
500°C. 

s63. Suppose that f(x) # 0 for all x # xo and that 
lim,,,o f (x)  = oo. Can you conclude that  
lim,,,O[l / f(x)] = O? Explain. 

k64. Draw a figure, similar to Figs. 1.2.3 and 1.2.4, 
which illustrates the sum rule in our box on basic 
properties of limits. 

+65. (a) Prove the extended sum rule in the box on 
derived properties of limits for the case 
n = 4 by using the basic sum rule and using 
the extended sum rule for the case n = 3 
proved in the text. 

(b) Assume that the extended sum rule holds 
when n = 16; prove from your assumption 
that it holds when n = 17. 

(c) Assume that the extended sum rule holds for 
some given integer n > 2; prove that it holds 
for the integer n + 1. 

(d) According to the principle of induction, if a 
statement is true for n + 1 whenever it is 
true for n, and is true for some specific 
integer, m, then the statement is also true for 
rn + 1, m + 2,m + 3, . . . , i.e., it is true for 
aii integers larger than m. Use induction and 
the basic sum rule to prove the extended 
sum rule. 

*66. Prove the extended product rule for limits by 
induction (see Exercise 65) and the basic proper- 
ties of limits. 

1.3 The Derivative as a Limit 
and the Leibnlz Notation 
The derivative is the limit o j  a difSerence quotienl 

We are now ready to tie together the discussion of the derivative in Section 1.1 
with the discussion of limits in Section 1.2. 

Let f ( x )  be a function such as the one graphed in Fig. 1.3.1. Recall the 
following items from Section 11.1: If (x , ,  f (xo) )  and ( x ,  + Ax, f (xo  + Ax) )  are 
two points on the graph, we write Ay = f (xo  + Ax)  - f (x , )  and call A y / A x  the 

t Slope = f"(xo)  
/ 

Figure 1.3.1. The limit of 
Ay/Ax as Ax -+ 0 isf(xo). 
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difference quotient. This difference quotient is the slope of a secant line, as 
shown in the figure; moreover, if f(x) is distance as a function of time, then 
Ay/Ax is an average velocity. If Ax is small, then Ay/Ax approximates the 
derivative f'(xo). Using these ideas, we were led to conclude that f'(xo) is the 
slope of the tangent line; moreover if f(x) represents distance as a function of 
time, f'(x,) is the instantaneous velocity at time x,. We can now make our 
discussion of f'(x,) more precise using the language of limits. 

Suppose that the domain of a function f(x) contains an open interval 
about a given number x,. (For example, we might have x, = 3, and f(x) might 
be defined for all x which obey I < x < 4.) Consider the difference quotient 

as a function of the variable Ax. The domain of the difference quotient then 
consists of those Ax, positive or negative, which are near enough to zero so 
that f(x, + Ax) is defined. Since Ax appears in the denominator, Ax = O is not 
in the domain of the difference quotient. (For instance, in the example just 
mentioned with x, = 3 and 1 < x < 4, Ay/Ax would be defined for -2  < Ax 
< 0 and O < Ax < I.) As the examples in Section 1.1 indicated, we should 
look at the limit of Ay/Ax as Ax + O .  This leads to the following definition of 
the derivative in terms of limits. 

Let f(x) be a function whose domain contains an open interval about x,. 
We say that f is differentiable at x, when the following limit exists: 

f'(x,) is then called the derivative of f(x) at x,. 

Example 1 Suppose that f(x) = x2. Then f'(3) = 6 by the quadratic function rule with 
a = 1, b = O = c and x, -. 3. Justify that f'(3) = 6 directly from the formal 
definition of the derivative and the rules for limits. 

Solullon We write the difference quotient and simplify: 

f(x, + Ax) - f(x,) - (3 + Ax)' - 3' 6Ax + 
- =  - - - 
Ax Ax Ax Ax 

The independent variable is now Ax, but, of course, we can still use the rules 
for limits given in the previous section. By the replacement rule, we can 
cancel: 

6 Ax + 
lim = lim (6 + Ax), 

Ax+O AX Ax+O 

provided the latter limit exists. However, 6 + Ax is a polynomial in the 
variable Ax and is defined at Ax = 0, so by the continuity of rational 
functions, limA,,,(6 + Ax) = 6 + O = 6. A 

Example 2 Use the formal definition of the derivative and the rules for limits to differenti- 
ate x3. 
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Solution Lettingf(x) = x3, we have 

~ ( X O  + Ax) - f(xo) (x, +  AX)^ - xi  
Y(xo) = ~~~, = lim Ax Ax+, Ax 

xi  + 3x02 AX + 3x0 (AX)* +  AX)^ - xi  (expanding the cube) 
= lim 

Ax+O Ax 

3x:Ax + 3x,(Ax)* + 
= lim 

Ax+, Ax 

= lim (3x02 + 3x,Ax +   AX)^) (by the replacement rule) 
Ax+, 

(using the continuity of rational functions and setting Ax = 0). 

The derivative of x3 at x, is therefore 3x;. A 

As the next example shows, we can write x instead of x, when differentiating 
by the limit method, as long as we remember that x is to be held constant 
when we let Ax + 0. 

Example 3 If f(x) = I/x, find f (x)  for x # 0. 

Solullon The difference quotient is 

ay a/(x + AX) - I / X  x - (X + AX) 
- - -  - - = - Ax 

Ax Ax x (x + Ax) Ax x(x + AX) AX 

Here x is being held constant at some nonzero value, and Ay/Ax is 
considered as a function of Ax. Note that Ax is in the domain of the 
difference quotient provided that Ax # 0 and Ax # -x. 

For Ax # 0, A y/Ax equals - l /x(x + Ax), so, by the replacement rule, 

- 1 - - -  (by the continuity of rational functions). 
x 

Thus, f'(x) = - 1/x2. A 

If we look back over the examples we have done, we may see a pattern. The 
derivative of x3 is 3x2 by Example 2. The derivative of x2 is given by the 
quadratic function rule as 2x' = 2x. The derivative of x - x '  is 1 . xo = 1 ,  
and the derivative of 1 / x  = x -  ' is ( -  1 ) ~ - ~  by Example 3. In each case, 
when we differentiate xn,  we get nxn- ' .  This general rule makes it unneces- 
sary to memorize individual cases. In the next section, we will prove the rule 
for n a positive integer, and eventually we will prove it for all numbers n. For 
now, let us see how to prove the rule for x'12 = fi. We should get + x ( ' / ~ ) - '  
= i x - ' / 2  = 1 / 2 6 .  

Example 4 Differentiate 6 (x > 0). 

Solullon The difference quotient is 
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In order to cancel Ax, we perform a trick: rationalize by multiplying numera- 
tor and denominator by I/= + 6 : 

(x  + Ax) - x - - - - 1 

~ x ( J x a x + G )  J X + 6  
Notice that this trick enabled us to cancel Ax in the numerator and 

denominator. 
Now recall from the previous section that limx,xofi =&. Thus, 

l i m , , , , { ~  = 6. Hence, by the quotient rule for limits, 

AY lim - = 
1 

AX-0 Ax lim ({= + 6) 
Ax+O 

- - 1 (sum rule) 

lim + lim 6 
Ax-0 Ax+O 

- - 1 1 =-  (continuity of 6 ) .  
6+6 2 6  

Thus, the derivative is indeed 1 / 2 6 .  A 

Next, let us establish a general relationship between differentiability and 
continuity. 

Proof We first note that lim,,xo f(x) = f(xO) is the same as lim,,,n( f(x) - f(xo)) = 0 
(by the sum rule and then the constant function rule applied to the constant 
f(xo)). With Ax = x - xo, and Ay = f(xo + Ax) - f(xo), this is, in turn, the 
same as limA,,oAy = 0. Now we use again the trick of multiplying numerator 
and denominator by an appropriate factor: 

lim ~ y =  lim ( & . a x )  (replacement rule) 
Ax+O Ax-0 AX ' 

= ( )!mo g)(dirqo Ax) 
(product rule) 

since lim Ax = 0 ( Ax-+, 

= 0. 
This proves our claim. adll 

The converse theorem is not true; the following is a counterexample. 

Example 5 Show that f(x) = 1x1 has no derivative at x, = 0, yet is continuous. (See 
Section R.2 for a review of absolute values.) 
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Solullon The difference quotient at x, = 0 is (10 + Ax1 - lQl)/Ax = lAxl/Bx, which is 1 
for Ax > 0 and - 1 for Ax < 0. As we saw in Example 7 of Section 1.2, the 
function lbxl/Ax has no limit at Ax = 0, so the derivative of 1x1 at x, = 0 does 
not exist. 

F i p e  13.2. As x 3 0 from (x, I x i )  = -- 

either direction, 1x1 + 0, so 
f(x) = 1x1 is continuous at 0. 

On the other hand, as x+O, f(x) =: lxl-+0 as well (see Fig. 1.3.21, so 
lim,,,lxl = 101 ; 1x1 is continuous at 0. A 

We have seen that the derivative f'(x,) of y = f(x) at x, is approximated by 
the difference quotient Ay/Ax, where Ax = x - x,. 

In the view of Gottfried WilheIm von Leibniz (1646-17161, one of the 
founders of calculus, one could think of Ax as becoming "infinitesimal." The 
resulting quantity he denoted as dx, the letters d and A being the Roman and 
Greek equivalents of one another. When Ax became the infinitesimal dx, Ay 
simultaneously became the infinitesimal dy and the ratio Ay/Ax became 
dy/dx, which was no longer an approximation to the derivative but exactly 
equal to it. The notation dy/dx has proved to be extremely convenient-not 
as a ratio of infinitesimal quantities but as a synonym for f ' ( ~ ) . ~  

If y = f(x), the derivative f'(x) may be written 

This is just a notation and does not represent division. If we wish to 
denote the value f'(x,) off' at a specific point x,, we may write 

dy/dx is read "the derivative of y with respect to x" or "dy by dx." 

Of course, we can use this notation if the variables are named other than x 
and y. For instance, the area A of a square of side 1 is A = l 2  SO we can write 
dA/d1= 21. 

In the f' notation, if f(x) = 3x2 + 2x, then f'(x) = 6x + 2. 'Using the 
Leibniz notation we may write: 

d~ if y = 3x2 + 2x, then - = 6x + 2. 
dx 

Modern developments in mathematics have made it possible to give rigorous definitions of dx 
and dy. The earlier objections to infinitesimals as quantities which were supposed to be smaller 
than any real number but still nonzero have been circumvented through the work of the logician 
Abraham Robinson (1918-1974). A calculus textbook based upon this approach is H. J. Keisler, 
Elementary Calculus, Prindle, Weber, and Schmidt, Boston (1976). 
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We can also use the even more compact notation 

Here the d/dx may be thought of as a symbol for the operation of differenti- 
ation. It takes the place of the prime (') in the functional notation. 

Example 6 (a) Find the slope rn of the graph y = 6 at x = 4. (b) Find the velocity v of a 
bus whose distance function is t3. 

Solution (a) The slope is a derivative. The derivative of 6 is dy/dx = d(&)/dx 
= 1/(2\/;r) by Example 4. Evaluating at x = 4 gives rn = 1 /(2@) = a. 
(b) v = (d/dt)(t3) = 3t2. A 

Supplement to Section 1.3 
Filling a Pond 

We conclude this section with a harder and perhaps more interesting applica- 
tion that previews some important topics to be considered in detail later: rates 
of change (Section 2.1) and integration (Chapter 4). 

Suppose that a mountain brook swells from a trickle to a torrent each 
year as the snows melt. At the time t (days after midnight on March 31), the 
flow rate is known to be 3t2 thousand liters per day. We wish to build a large 
pond which holds the runoff for the entire month of April. How big must the 
pond be? 

The main difficulty here is that a flow rate of, say 3 . (5)' at midnight of 
April 5 does not tell us directly how much water will be in the pond on April 
5, but merely how fast water will be pouring in at that moment. Let's see if we 
can somehow handle that difficulty. 

Designate the unknown amount of water in the pond at time t by 
A = f(t). During a short time interval At starting at t, the amount of water 
entering the pond will be at least 3t2At and no more than 3(t + A E ) ~ A ~ .  Thus, 
AA = A(t + At) - A(t) is slightly larger than 3t2 At. For At very small, we 
can presumably take AA w3t2At, i.e., AA/At w3t2.  However, for At very 
small, AA /At approximates the derivative dA / dt. Thus our problem becomes 
the following. Find the "amount" function f(t), given that the derivative obeys 
f ( t )  = 3t2. 

Now, turning Example 2 around, we know one function which obeys 
f ( t )  = 3t2, namely f(t) = t3. This solution is reasonable in the sense that 
f(0) = 0, i.e., the pond is empty at midnight of March 31. Could there also be 
a different amount function that works? Not really. If a capacity of t 3  
thousand liters is exactly right to accommodate all the influx up to time t ,  no 
other capacity will be exactly right. We thus have our answer: at midnight on 
April 30, A = f(30) = (30)3; our pond must hold 27,000 thousand liters. 

Exercises for Section 1.3 
Use the formal definition of the derivative and the rules 
for limits to find the derivatives of the functions in 
Exercises 1- 12. 

1 .  f ( x ) = x 2 + x  
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Show that the functions in Exercises 13 and 14 have no 
derivative at xo, yet are continuous. 

13. f ( x )  = 1 + 1x1; x0 = 0 
14. g (x )  = Ix + 11; xo = - 1. 

Find dy/dx in the Exercises 15-18. 
15. y = x 2 -  x 16. y = x - 5x2 
17. y = 3x3 + x 18. y = x2 - x3 

In Exercises 19 and 20, find the slope o f  the line 
tangent to the given graph at the given point. 

19. y = 8 & ;  x o = 9  
20. y = 2 x 2 - J ; ;  + l / x ;  xo= 1 

In Exercises 21 and 22, f ( t )  is the position o f  a car on a 
straight road at time t. Find its velocity at the given 
time. 

21. f ( t )  = 5t3; t = 1 22. f ( t )  = t2  - t3;  t = 4 
In Exercises 23-26, evaluate the derivatives. 

27. Using the'-hii t  method, find the derivative of  
2 ~ 3  + ~ 2 -  3 at xo= I .  I 

28. (a) Expand (a  + b14. (b )  Use the limit method to 
differentiate x4. 

Use limits to find the derivatives o f  the functions in 
Exercises 29-32. 

29. f ( x )  = 1 / x 2  30. 3fi 
31. f ( x )  = ( x 2  + x ) / ~ x  32. f ( x )  = x / ( l  + x2) 

*33. Find an example o f  a function which is continu- 
ous everywhere and which is differentiable every- 
where except at two points. 

+34. (a) Show by the quadratic function rule that i f  
f ( x )  = ax2 + bx + c ,  g ( x )  = dx2 + ex + f ,  
and h ( x )  = f ( x )  + g ( x ) ,  then h f ( x )  = 

f ' ( x )  + g r ( x ) ;  i.e., ( d / d x )  [ f ( x )  + g(x) l  
= ( d / d x )  f ( x )  + ( d / d x )  g(x).  

(b )  Show from the rules for limits that i f  f ( x )  
and g (x )  are differentiable functions, then 

and 

( c )  Argue geometrically, using graphs and 
slopes, that a function C ( x )  for which C ' (x )  
= 0 must be a constant function. 

(d )  Combining (b) and (c), show that i f  f'(x) 
= g l ( x ) ,  then there is some constant C such 
that f ( x )  = g ( x )  + C. Illustrate your result 
graphically. 

(e)  In (d) show that i f  f(0) = 0 = g(O), then f ( x )  
= g ( x )  for all x. 

( f )  Use (e)  to argue that in the pond example 
discussed in the Supplement, A ( t )  = r3 is the 
only appropriate solution o f  A1(t)  = 3t2. 

*35. (a) Do some calculator experiments to guess 
limx,o(sin x / x )  and limx,o[(l - cos x ) / x ] ,  
where the angle x is measured in radians. 

(b )  Given the facts that limx,o(sinx/x) = 1 and 
lim,,o[(l - cosx ) / x ]  = 0, use trigonometric 
identities to show: 

d(sin x )  
= cos X, 

dx 

*36. Suppose that the mountain brook in the Supple- 
ment has a flow rate o f  t2/12 + 2t thousand 
liters per day t days after midnight on March 3 1 .  
What is the runoff for the first 15 days o f  April? 
The entire month? 

1.4 Differentiating 
Polynomials 
Polynomials can be dflerentiated using the power rule, the sum rule, and the 
constant multiple rule. 

In Section 1.3, we learned how to compute derivatives of some simple 
functions using limits. Now we shall use the limit method to find a general 
rule for differentiating polynomials like f(x) = 3x5 - 8x4 + 4x + 2. To do this 
systematically, we shall break apart a polynomial using two basic operations. 

First, we recognize that a polynomial is a sum of monomials: for 
example, f(x) = 3x5 - 8x4 + 4 x  + 2 is the sum of 3x5, - 8x4, 4 x  and 2. 
Second, a monomial is a product of a constant and a power of x. For 
example, 3x5 is the product of 3 and x5. 
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Let us work backward, starting with powers of x. Thus our first goal is to 
differentiate x", where n is a positive integer. We have already seen that for 
n = 1,2, or 3 (as well as n = - 1 or +), the derivative of x" is nxn-'. 

We can establish this rule for any positive integer n by using limits. Let 
f(x) = x". To compute f'(x), we must find the limit 

lim 
f (X + Ax) - f (x) 

Ax+O AX 
Now f(x) = (x + Ax)" = (X + Ax)(x + Ax) . . . (x + Ax), n times. To expand 
a product like this, we select one term from each factor, multiply these n 
terms, and then add all such products. For example, 

(X + Ax)(x + Ax) = x2 + x AX + (Ax)x + 

(X + Ax)(x + Ax)(x + Ax) = x3 + X ~ A X  + x (Ax)x -t ( A X ) X ~  + ( 8 x 1 ~ ~  

+ x + (Ax) x (Ax) +  AX)^ 

For (x + Ax)", notice that the coefficient of Ax will be nxn-' since there will 
be exactly n terms which contain n - 1 factors of x and one of Ax. Thus 

(x + AX)"= x" + n x n '  Ax + (terms involving (AX)',   AX)^, . . . , (Ax)"). 

If you are familiar with the binomial theorem, you will know the remaining 
terms; however, their exact form is not needed here. For Ax f 0, dividing out 
Ax now gives 

nxn-' Ax + (terms involving   AX)^, . . . , (Ax)") 
- - 

Ax 

= nx "- ' + (terms involving (Ax), . . . , (Ax)"- I ) .  

The terms involving Ax, . . . , (Ax)"-' add up to a polynomial in Ax, so the 
limit as Ax -+O is obtained by setting Ax = 0 and by using the 'continuity of 
rational functions (Section 1.2). Therefore, 

To differentiate a power x", bring down the exponent as a factor and 
then reduce the exponent by 1. 

If f(x) = x", then f'(x) = nxn- '; that is 

- (x") = nxn-I, n = 1,2,3, . . . . 

Example I Compute the derivatives of x8, xk2, and x99. 

Solutlon (d/dx)x8 = 8x7, (d/dx)xt2 = 12x", and ( d / d ~ ) x ~ ~  = 9 9 ~ ~ ~ .  A 

Next, we consider the constant multiple rule, stated in the following box. 
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T o  differentiate the product of a number k with f (x) ,  multiply the 
number k by the derivative j"'(x): 

(kS) ' (x)  = kS'(x), 

Proof of the Let h ( x )  = k f (x ) .  By the definition of the derivative and the basic properties 
Constant of limits, we get 

Multiple Rule h ( x  + AX)  - h ( x )  
h l ( x )  = lim 

Ax+O AX 

= lim 
kf ( x  + A x )  - kf ( x )  = lim k ( f ( ~  + A X )  f ( x )  

A.x-0 A x Ax-0 AX 

Example 2 Differentiate 

8 (a) -3x7 ( b )  5 6  (c) - and (d) -6ax2. 
X 

Solution (a) By the constant multiple and power rules, 

d d - ( - 3 x 7 )  = ( - 3 ) - x 7  = ( -3)(7)x6 = -21x6 
dx dx 

( b )  From Example 4, Section 1.3, (d /dx )& = 1 /2&. Thus, by the constant 
multiple rule, 

(c) By Example 3, Section 1.3, ( d / d x )  ( I  / x )  = - 1 / x 2 .  Thus 

(d) Although it is not explicitly stated, we assume that a is constant (letters 
from the beginning of the alphabet are often used for constants). Thus, by 
the constant multiple rule 

The final basic technique we need is the sum rule. 
If f and g are two functions, the sum f + g is defined by the formula 

( f  + g>(x) = f ( x )  + g(x).  

Example 3 Let f ( x )  = 3x2 + 5x + 9 and g ( x )  = 2x2 + 5x. Use the quadratic function rule 
to verify that ( f  + g)' = f '  + g'. 

Solution By the quadratic function rule, f ' (x )  = 6x + 5 and g'(x)  = 4 x  + 5 ,  thus 
f ' ( x )  + g'(x) = 10x + 10. On the other hand, f ( x )  + g(x )  = 5x2 + lox + 9,  so 
(f + g)'(x) = lox + 10 = f ' (x )  + gl(x). A 
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To differentiate a sum, take the sum of the derivatives: 

To be convinced that a mathematical statement such as the sum rule is true, 
one should ideally do three things: 

I.  Check some simple examples directly. 
2. Have a mathematical justification (proof). 
3. Have a simple physical model, application, or diagram that makes the 

result plausible. 

In Example 3 we checked the sum rule in a simple case. In the next paragraph 
we give a mathematical justification for the sum rule. In the Supplement at the 
end of the section, we give a simple physical model. 

Proof of the By the definition of the derivative as a limit, ( f  + g)'(xo) is equal to 
Sum Rule 

lim 
( f  + gX.0 + Ax> - ( f  + g)(xo) 

A x 4 0  Ax 
(if this limit exists). We can rewrite the limit as 

lim 
f(x0 + Ax) + g(x0 + ax> -f(xo> - g(xo> 

Ax-0 AX 

= lim 
f(x0 + Ax) - f(x0) g(xo + Ax) - g(xo> 

- + 
Ax+O Ax 

By the sum rule for limits, this is 

lim 
f(x0 + Ax) - f(x0) + g(xo + Ax) - g(x0) 

Ax+O AX Ax-0 AX 

I f f  and g are differentiable at x,, these two limits are just f'(x,) and gf(x0). 
Thus f + g is differentiable at xo, and (f + g)'(xo) = j-'(xo) + g1(x0). 

The sum rule extends to several summands. For example, to find a formula 
for the derivative of f ( x )  + g(x )  + h(x),  we apply the sum rule twice: 

Example 4 Find the formula for the derivative 8f (x )  - lOg(x). 

Solution We use the sum and constant multiple rules: 
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d " [8f(x) - ~ o g ( x ) ]  = -& [$f(xll + ;r; [ - lOg(xl1 dx 
d d 

= 8- f(x) - lo- g(x). A dx dx 

Now we can differentiate any polynomial. 

Example 5 Differentiate (a) (x95 + x~~ + 2x2 + 4x + 1); (b) 4x9 - 6xS + 3x. 

d 95 d 23 d d d = -(x ) +  -(x ) +  -(2x2)+ -(4x)+ - ( I )  
dx dx .dx dx dx 

(sum rule) 

= 9 5 ~ ~ ~  + 2 3 ~ ~ ~  + 4x + 4 
(power rule and constant multiple rule). 

d 
(b) - (4x9 - 6x5 + 3x) = 36x8 - 30x4 + 3. 

dx 

Here, for reference, is a general rule, but you need not memorize.it, since you 
can readily do any example by using the sum, power, and constant multiple 
rules. 

If f(x)= cnxn + . - .  + c2x2+ C,X + c0, then 

f'(x) = nc,,xn-' + (n - ~)c , , - ,x" -~  + . . - + 2c2x + c,. 

Example 6 Find the derivative of x3 + 5x2 - 9x + 2. 

d 3  2 d 3  d d d Soiutlan - (x  + 5 x  - 9 x + 2 ) =  - x  + -(5x2)-  - (9x)+ - 2  
dx dx dx dx dx 

= 3x2+ l o x -  9. A 

Example 9 (a) Compute f'(s) if f(s) = (s2 + 3)(s3 + 2s + 1). 

(b) Find (lox3 - 8/x + 5 5 ) .  
dx 

Solution (a) First we expand the product 

( s2+  3)(s3 + 2 s  + 1) = ( s 5 + 2 s 3 +  s2) + (3s3+6s+  3) 

= s5 + 5s3 + s2 + 6s + 3. 
Now we differentiate this polynomial: 

f'(s) = 5s4 + 15s2 + 2s + 6. 
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The differentiation rules we have learned can be applied to the problems of 
finding slopes and velocities. 

Example 8 (a) Find the slope of the tangent line to the graph of 

(b) A train has position x = 3t2 + 2 - fi at time t .  Find the velocity of the 
train at t = 2. 

Solution (a) The slope is the derivative at x = 1. The derivative is 

dy d - = - (x4 - 2x3 + 1) = 4x3 - 6x2. 
dx dx 

At x = 1, this is 4 . l 3  - 6 - l2  = -2, the required slope. 

(b) The velocity is 

At t = 2, we get 

Supplement ts Section 1.41 
A Physical Model lor the Sum Rule 

Imagine a train, on a straight track, whose distance at time x from a fixed 
reference point on the ground is f(x). There is a runner on the train whose 
distance from a reference point on the train is g(x). Then the distance of the 
runner from the fixed reference point on the ground is f(x) + g(x). (See Fig. 
1.4.1.) Suppose that, at a certain time x,, the runner is going at 20 kilometers 

Figure 1.4.1. The sum rule 
illustrated in terms of 
velocities. 

per hour with respect to the train while the train is going at 140 kilometers per 
hour-that is, f'(x,) = 140 and g'(x,) = 20. What is the velocity of the runner 
as seen from an observer on the ground? It is the sum of 140 and 20-that is, 
160 kilometers per hour. Considered as the sum of two velocities, the number 
160 is f'(x,) + gt(x0); considered as the velocity of the runner with respect to 
the ground, the number 160 is (f + g)'(x,). Thus we have f'(x,) + gf(x0) 
= (f + g > ' ( ~ o > . ~  

The fact that one does not add velocities this way in the theory of special relativity does not 
violate the sum rule. In classical mechanics, velocities are derivatives, but in relativity, velocities 
are not simply derivatives, so the formula for their combination is more complicated. 
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Exercises for Seelion 1.4 
Differentiate the functions in Exercises 1- 12. 

1 .  xI0 2. x14 
3. ~3~ 4. x S  
5. -5x4 6. -53x20 
7.  3x1° 8. 8x'O0 
9. 3 6  10. 2 / x  

1 1 .  - 8 6  12. - 6 / x  
In Exercises 13-16, verify the sum rule for the given 
pair of functions. 

13. f ( x )  = 3x2  + 6,  g ( x )  = x + 7 
14. f ( x )  = 8x  + 9, g ( x )  = x 2  - 1 
15, f ( x )  = x 2  + x + 1 ,  g ( x )  = - 1 
16. f ( x ) = 2 ~ ~ - 3 ~ + 6 , ~ ( x ) =  - x 2 + 8 x - 9  

17. Find a formula for the derivative of f ( x )  - 
2g(x) .  

18. Find a formula for the derivative of 3 f ( x )  + 
2g(x). 

Differentiate the functions in Exercises 19-22. 
19. x 5  + 8x  20. 5x3  
21. t5  + 6t2 + 8t + 2 22. sI0 + 8s9 + 5s8 + 2 

Differentiate the functions in Exercises 23-34. 
23. f ( x )  = x4 - 7 x 2  - 3x  + 1 
24. h ( x )  = 3x" + 8x5 - 9x3  - x 
25. g(s )  = sI3 + 12s' - as7 + s4 + 0s' 
26. f ( y )  = -y3 - gY2 - 14y - 4 
27. f ( x )  = x4 - 3x3 + 2x2 
28. f ( t )  = t4 + 4t3 
29. g(h)  = 8hI0 + h9 - 56.5h2 
30. h ( y ) =  ~ y ' O + ~ y ~ - f l y ~  
31. p ( x )  = ( x 2  + 
32. r ( t )  = ( t4  + 2t2)' 
33. f ( t )  = ( t 3  - 17t + 9)(3t5 - t 2  - 1 )  
34. h ( x )  = ( x 4  - 1)(x2 + x + 2) 

35. Find f'(r) if f (r)  = -5r6 + 5r4 - 13r2 + 15. 
36. Find g'(s) if g(s)  = s7 + 13s6 - 18s3 + +s2. 
37. Find hl ( t )  if h ( t )  = ( t4  + 9)(t3 - t). 
38. Differentiate x 5  + 2x4 + 7.  
39. Differentiate (u4  + 5)(u3 + 7u2 + 19). 
40. Differentiate (3t5 + 9t3 + 5t)(t + 1). 

Differentiate the functions in Exercises 41-46. 
41. f ( x ) = x 2 - &  

45. f ( x )  = ( 1  - 6 ) ( 1  + 6 )  
46. f ( x )  = ( 1  +&)& 
47. A particle moves on a line with position f ( t )  

= 16t2 + (0.03)t4 at time t .  Find the velocity at 
t = 8. 

48. Suppose that the position x of a car at time t is 
( t  - 213. 
(a) What is the velocity at t = - 1,0, l ?  
(b) Show that the average velocity over every 

interval of time is positive. 
(c) There is a stop sign at x = 0. A police officer 

gives the driver a ticket because there was 
no period of time during which the car was 
stopped. The driver argues that, since his 
velocity was zero at t = 2, he obeyed the 
stop sign. Who is right? 

49. Find the slope of the tangent line to the graph of 
x4 - x 2  + 3x  at x = 1. 

50. Find the slope of the line tangent to the graph of 
f ( x )  = x 8  + 2x2 + 1 at (1,4). 

For each of the functions in Exercises 51-54, find a 
function whose derivative is f (x ) .  (Do not find f'(x).) 

51. f ( x )  = x 2  
52. f ( x )  = x 2  + 2x  + 3 
53. f ( x )  = x n  ( n  any positive integer) 
54. f ( x )  = ( x  + 3)(x2 + 1 )  

55. Verify the constant multiple rule for general qua- 
dratic functions, i.e., show that ( k f ) ' ( x )  = k f ' (x )  
if f ( x )  = ax2 + bx + c. 

56. Verify the sum rule for general cubic functions 
using the formula for the derivative of a polyno- 
mial. 

57. Let V ( r )  be the volume V of a sphere as a 
function of the radius r. Show that V f ( r )  is the 
surface area. 

58. Let V(1) be the volume of a cube as a function 
of I, where 21 is length of one of its edges. Show 
that V'(1) is the surface area. 

*59. Explain the constant multiple rule in terms of a 
change of units in distance from miles to ki- 
lometers. 

*60. Show that if two polynomials have the same 
derivative, they must differ by a constant. 
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1.5 Products and Quotients 
To dqferentiate a product, difSerenliate each factor in turn and sum the results. 

We have given general rules for the derivative of a sum and a constant 
multiple. We now turn to products and quotients. 

The product fg and quotient f / g  of two functions are defined by 
( fg ) (x )  = f (x)g(x)  and ( f / g ) ( x )  = f ( x ) /g (x ) ,  the latter being defined only 
when g ( x )  # 0. The formulas for (fg)' and ( f / g ) '  are more complicated than 
those for ( f  + g)' and (kfi', but they are just as straightforward to apply. 
Before developing the correct formulas, let us convince ourselves that (fg)' is 
not f'g'. 

Example 1 Let f ( x )  = x2  and g ( x )  = x3. Is (fg)' equal to f'g'? 

SolutEon Notice that the product function is obtained simply by multiplying the 
formulas for f and g: ( fg ) (x )  = (x2)(x3)  = x5. Thus, (fg)'(x) = 5x4. On the 
other hand, f ' ( x )  = 2x and gr(x)  = 3x2, so ( f 'gl)(x)  = f ' (x )g f (x)  = 6x3. Since 
5x4 and 6x3  are not the same function, (fg)' is not equal to f'g'. A 

Example 1 shows that the derivative of the product of two functions is not the 
product of their derivatives. We state the correct rule for products now and 
discuss below why it is true. 

To differentiate a product f (x)g(x) ,  differentiate each factor and multi- 
ply it by the other one, then add the two products: 

( fg I f ( x>  = f ( x )  g '(x)  + f ' ( x )  g(x> 

Example 2 (a) Verify the product rule for f  and g in Example 1 .  
(b) Verify the product rule for f ( x )  = x m  and g(x )  = x n ,  where m and n are 

natural numbers. 

SoluPiss~ (a) We know that (fg>'(x) = 5x4. On the other hand, f (x)gl(x)  C f ' (x )g(x)  
= (x2)(3x2) + (2x)(x3) = 5x4, SO the product rule gives the right answer. 

(b) By the power rule in Section 1.4, f ' ( x )  = mx " - I  and g f ( x )  = nx "-I ,  
so that ( fg ) ' ( x )  = f ( x )g ' ( x )  + f ' ( x ) g ( x )  = x " (nx  " - I )  + ( m x  " - ' ) x  "  = 

( n  + m)xm+"-' . On the other hand, ( fg) (x)  = xmxn = xm+" , so again by 
the power rule (fg)'(x) = ( m  + n)xm+"-' , which checks. A 

The form of the product rule may be a surprise to you. Why should that 
strange combination off, g, and their derivatives be the derivative of fg? The 
following mathematical justification should convince you that the product rule 
is correct. 
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Proof of the To find ( fg)'(xn), we take the limit - -  - 
Product Rule 

lim (fg)(xo + Ax) - (fg)(xo) 

Figure 1.5.1 The geometry 
behind the proof of the 
product rule. 

= lim 
f(x0 + Ax)g(xo + Ax) - f(xo)g(xo) 

Ax-0 Ax 
Simplifying this expression is not as straightforward as for the sum rule. We 
may make use of a geometric device: think of f(x) and g(x) as the lengths of 
the sides of a rectangle; then f(x)g(x) is its area. The rectangles for x = xo 
and x = xo + Ax are shown in Fig. 1.5.1. The area of the large rectangle is 

f(xo + Ax)g(xo + Ax); that of the darker rectangle is f(xo)g(xo). The differ- 
ence f(xo + Ax)g(xo + Ax) - f(xo)g(xo) is the area of the lighter region, which 
can be decomposed into three rectangles having areas 

and 

Thus we have the identity: 

= [ f(xo + Ax) - f(xo)] g(x0) + f(xo)[ g(xo + Ax) - 

(If you do not like geometric arguments, you can verify this identity algebra- 
ically .) 

Substituting (2) into ( I ) ,  we obtain 

By the sum and constant multiple rules for limits, (3) equals 

We recognize the first two limits in (4) as f'(xo) and g'(xo), so the first two 
terms give f'(xo)g(xo) + f(xo)gf(xo)-precisely the product rule. To show that 
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the third limit, represented geometrically by the small rectangle in the upper 
right-hand corner of Fig. 1.5.1, is zero, we use continuity of g (see Section 
1.3). The product rule for limits yields 

Example 3 Using the product rule, differentiate ( x 2  + 2x - 1)(x3 - 4x2). Check your 
answer by multiplying out first. 

= ( 2 ~  + 2 ) ( ~ 3  - 4 ~ 2 )  + ( ~ 2  + 2~ - 1 ) ( 3 ~ 2  - 8 ~ )  

= (2x4 - 6x3 - 8x2) + (3x4 - 2x3 - 19x2 + 8x)  

= 5x4 - 8x3 - 27x2 + 8x. 
Multiplying out first, 

( ~ 2  + 2~ - 1 ) ( ~ 3  - 4 ~ 2 )  = x5 - 4 ~ 4  + 2~~ - g x 3  - ~3 + 4 ~ 2  

= x5 - 2 ~ 4  - 9 ~ 3  + 4 ~ 2 .  
The derivative of this is 5x4 - 8x3 - 27x2 + 8x,  so our answer cheeks. A 

Example 4 Differentiate x3/2  by writing x3/' = x .fi and using the product rule. 

Solution We know that ( d / d x ) x  = 1 and ( d / d x ) G  = 1 / ( 2 6 ) .  Thus, the roduct rule 
gives 

This result may be written (d /dx)x3/ '  = $XI/ ' ,  which is another instance of 
the rule ( d / d x )  ( x  " )  = nxn- ' for noninteger n. A 

We now come to quotients. Let h ( x )  = f ( x ) / g ( x ) ,  where f and g are differen- 
tiable at x,, and suppose g(x,) Z 0 so that the quotient is defined at x,. If we 
assume the existence of hf(x0), it is easy to compute its value from the product 
rule. 

Since h ( x )  = f ( x ) /g (x ) ,  we have f ( x )  = g(x)h(x) .  Apply the product rule 
to obtain 

S'(x0) = gl(xo)h(xo) + g(xo)hf(xo). 

Solving for h'(x,), we get 
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- - f'(xo)&!(xo) - f (xo)g'(xo) 
[ g(xo)12 

This is the quotient rule. 

To differentiate a quotient f(x)/g(x) (where g(x) $; 0), take the deriva- 
tive of the numerator times the denominator, subtract the numerator 
times the derivative of the denominator, and divide the result by the 
square of the denominator: 

When you use the quotient rule, it is important to remember which term in the 
numerator comes first. (In the product rule, both terms occur with a plus sign, 
so the order does not matter.) One memory aid is the following: Write your 
guess for the right formula and set g = 1 and g' = 0. Your formula should 
reduce to f'. If it comes out as -f' instead, you have the terms in the wrong 
order. 

x Example 5 Differentiate ----- . 
x3 + 5 

Solution By the quotient rule, with f(x) = x2 and g(x) = x3 + 5, 

Example 6 Find the derivative of (a) h(x) = (2x + 1)/(x2 - 2) and (b) &/(I + 3x2). 

Solution (a) By the quotient rule with f(x) = 2x + 1 and g(x) = x2 - 2, 
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In the argument given for the quotient rule, we assumed that h1(x0) exists; 
however, we can prove the quotient rule more carefully by the method of 
limits. 

Proof of the The derivative of h ( x )  = f ( ~ ) / ~ ( x )  at xo is given by the following limit: 
Quotient Rule h(x0 + AX)  - h(xo) 

h1(x0) = lim 
AX+O AX 

= lim 
f(x0 + Ax)/g(xo + Ax) - f (xo)/g(xo) 

Ax-0 Ax 

= lim 
f(x0 + Ax)g(xo) - f(xo)g(xo + Ax) 

Ax+O g(xo)g(xo + Ax) Ax 

A look at the calculations in the limit derivation of the product rule suggests 
that we add - f(xo)g(xo) + f(xo)g(xo) = O to the numerator. We get 

h'(xo) = lim 
f(x0 + Ax)g(xo) - f(xo)g(xo) + f(xo)g(xo) - f(xo)g(xo + Ax) 

Ax+O g(xo)g(xo + Ax)Ax 

= lim 
f (xo + Ax) - f (xo) [ Ax g(xo)g(xo + Ax> 

g(x0) 

- - 1 - 1 [S'(xo)g(xo) - f(xo>gl(xo) I- 
lim g(xo + Ax) g(xo) 

(5)  
Ax+O 

Since g is differentiable at xo, it is continuous there (see Section 1.3), and so 

lim g(xo + Ax) = g(xo). 
Ax-0 

(6)  

Substituting (6) into (5) gives the quotient rule. B1 

Certain special cases of the quotient rule are particularly useful. If f ( x )  = 1, 
then h ( x )  = l / g ( x )  and we get the reciprocal rule: 

To differentiate the reciprocal l / g ( x )  of a function (where g ( x )  # 0), 
take the negative of the derivative of the function and divide by the 
square of the function: 

Example 7 Differentiate (a) l / ( x 3  + 3x2) and (b) I/(& + 2). 

Solutlon (a) - - - - 1 d - ( x 3  + 3x2) 
( x 3  + 3x2) 2 dx 
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Combining the reciprocal rule with the power rule from Section 1.4 enables us 
to differentiate negative  power^.^ If k is a positive integer, then 

= - l ( k x k - l )  = -kx-k-l. 
xZk 

Writing n for the negative integer - k, we have (d/dx)(xn) = nxn-', just as 
for positive n. Recalling that (d/dx)(xO) = (d/dx)(l) = 0, we have established 
the following general rule. 

If n is any (positive, negative or zero) integer, (d/dx)xn = nx "- I .  (When 

Example 8 Differentiate 1 /x6 

Solution (d/dx)(l/x6) = (d/dx)(xP6) = - 6 ~ - ~ - '  = -6x-'. A 

We conclude this section with a summary of the differentiation rules obtained 
so far. Some of these rules are special cases of the others. For instance, the 
linear and quadratic function rules are special cases of the polynomial rule, 
and the reciprocal rule is the quotient rule for f(x) = 1. Remember that the 
basic idea for differentiating a complicated function is to break it into its 
component parts and combine the derivatives of the parts according to the 
rules. 

2 5 Example 9 Differentiate (a) 3x4 + - - - and (b) 1 
x x3 (x2 + 3)(x2 + 4) ' 

Solution (a) By the sum, power, and constant multiple rules, 

(b) Let f(x) = (x2 + 3)(x2 + 4). By the product rule, Y(x) = 2x(x2 + 4) + 
(x2 + 3)2x = 4x3 + 14x. By the reciprocal rule, the derivative of l/f(x) is 

Students requiring a review of negative exponents should read Section R.3. 
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Example "1 We derived the reciprocal rule from the quotient rule. By writing f ( x ) / g ( x )  
= f ( x )  . [ l / g ( x ) ] ,  show that the quotient rule also follows from the product 
rule and the reciprocal rule. 

(This calculation gives another way to reconstruct the quotient rule if you 
forget it-assuming, of course, that you remembered the reciprocal rule.) A 

/ The derivative o f  
Linear bx + 

function 

Quadratic 
a x 2 +  bx  + c 

function 

Sum I f ( x )  + g ( x )  

Constant 
multiple 

Power I x n  { n  any integer) 

Differentiation Rules 

In Leibniz notation 

Polynomial c n x n + . - . + c 2 x 2  n c n x n - I + - . .  - (cnxn  d + . . . + c,x2 + c I x  + c0) 
dx 

+ c , x  + c, +2c2x + c ,  = ncnxn-I+ - - .  +2c2x + c ,  

Product f ( x ) g  ( x )  d du dv 
f ' ( x )g (x )  + f ( x )g f ( x )  - (uv)  = - v + u - 

dx dx dx 
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Exercises for Section "1.5 
Compute the derivatives of the functions in Exercises 
1-12 by using the product rule. Verify your answer by 
multiplying out and differentiating the resulting polyno- 
mials. 

1 .  ( x 2  + 2)(x + 8) 
2. ( x  + l ) ( x  - 1 )  
3. ( x 4 +  x ) ( x 3 - 2 )  
4. ( x 2  + 3x)(2x - 1) 
5. ( x 2  + 2x + 1)(x - 1 )  
6. ( x 3  + 3x2 + 3x  + l ) ( x  - I) 
7.  ( x 2 + 2 x  + 2 ) ( x 2 +  3 x )  
8. ( x 2  + 4 x  + 8)(x2 + 2x  - 1 )  
9. ( x  - 1)(x2 + x  + 1 )  

10. ( x  - 2)(x2 + 2x  + 1 )  
1 1 .  ( X  - 1 ) ( ~ 3  + x2 + + I )  
12. ( x 3  + 2)(x2 + 2x + 1 )  

In Exercises 13-16, differentiate the given function by 
writing it as indicated and using the product rule. 

13. x ~ / ~  = x 2  .& 14. x = & . G  

15. x7/* = x3  . & 16. x 2  = 5 . x ~ / ~  
Differentiate the functions in Exercises 17-30. 

Find the indicated derivatives in Exercises 31-38. 

Differentiate the functions in Exercises 39-46. 

47. Use the reciprocal rule twice to differentiate 
I / [ l / g ( x ) ]  and show that the result is gl(x) .  

48. Differentiate x m / x n  by the quotient rule and 
compare your answer with the derivative of 
xm-" obtained by the power rule. 

49. Find the slope of the line tangent to the graph of 
f ( x )  = I / &  at x  = 2. 

50. Find the slope of the line tangent to the graph of 
f ( x )  = (2x  + 1)/(3x + 1 )  a t  x  = 1. 

Let f ( x )  = 4x5  - 13x and g ( x )  = x3  + 2x  - 1 .  Find the 
derivatives of the functions in Exercises 51-56. 

51. f ( x ) g ( x )  

52. [ f ( x )  + x3  - 7xI[g(x) l  
53. x f ( x )  + g ( x )  

*57. Let P ( x )  be a quadratic polynomial. Show that 
( d / d x ) ( l / P ( x ) )  is zero for at most one value of 
x  in its domain. Find an example of P ( x )  for 
which ( d / d x ) ( l /  P(x) )  is never zero on its do- 
main. 

*58. Calculate the following limits by expressing each 
one as the derivative of some function: 

(a) lim x8 - x7 + 3x2 - 3 
x-t l x - 1  

1 / x 3  - 1/23 
(b) lim 

x+2 x  - 2  ' 

(c) lim x 2 + x  
, + - I  ( x  + 2 ) ( x  + 1 ) '  
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1.6 The Linear Approximation 
and Tangent Lines 
A good approximation to f (xo  + Ax) is f (xo )  + f ' (xo)Ax.  

Section 1.1, we saw that the derivative f'(x,) is the slope of the tangent line 
the graph y = f (x) .  This section explores the relationship between the graph 
f and its tangent line a little further. 

Recall from Section R.4 that the equation of the straight line through 
(x , ,  yo) with slope m is 

y  = y o  + m ( x  - x,). 

In particular we get the following formula for the tangent line toy  = f ( x )  (see 
Figure 1.6.1). 

The equation of the line tangent toy = f ( x )  at (x , ,  f(xo))  is 

Y = f (x0)  + f '(xo)(x - xo). 

line to the graphy = f(x) at 
(xo, f(x0)). 

Example 1 (a) Find the equation of the line tangent to the graph y = 6 + 1 / ( 2 ( x  + 1)) at 
x =  I .  
(b) Find the equation of the line tangent to the graph of the function 
f ( x )  = (2x  + 1) / (3x  + 1 )  at x  = 1. 

I 
I P 

x 0 X 

Solution (a) Here xo = 1 and f ( x )  = 6 + 1 / 2 ( x  + 1). We compute 

Since f ( l )  = 1 + 4 = $, the tangent line has equation y = 2 + $ ( x  - I), i.e., 
8y = 3 x  + 7 .  
(b) By the quotient rule, f ' ( x )  equals [2(3x + 1) - (2x  + 1 ) 3 ] / ( 3 x  + 1)2 
= - 1 / (3x  + I ) ~ .  The equation of the tangent line is 

y  = f ( 1 )  + f ' ( l ) ( x  - 1 )  = 2 - $ ( x  - 1 )  

o r y =  - $ x + # .  .+& 
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Example 2 Where does the line tangent toy  = 6 at x = 2 cross the x axis? 

Solution Here dy/dx = 1 / 2 6 ,  which equals 1 / 2 n  at x = 2. Since y = 6 at x = 2, 
the equation of the tangent line is 

This line crosses the x axis when y = 0 or 0 =a + (1/2n)(x - 2). 
Solving for x, we get x = -2. Thus the tangent line crosses the x axis at 
x =  -2. A 

We have used the idea of limit to pass from difference quotients to derivatives. 
We can also go in the other direction: given f(x,) and f'(x,), we can use the 
derivative to get an approximate value for f(x) when x is near x,. 

According to the definition of the derivative, the difference quotient 
Ay/Ax = [ f(x, + Ax) - f(xo)]/Ax is close to f'(xo) when Ax is small. That is, 
the difference 

is small when Ax is small. Multiplying the preceding equation by Ax and 
rearranging gives 

Suppose now that we know f(xo) and f'(x,) and that we wish to evaluate f at 
the nearby point x = x, + Ax. Formula ( 1 )  expresses f(x) as a sum of three 
terms, the third of which becomes small-even compared to Ax-as Ax -+ 0. 
By dropping this term, we obtain the approximation 

In terms of x = x, + Ax, we have 

The right-hand side of (3) is a linear function of x, called the linear approxima- 
tion to f at x,. Notice that its graph is just the tangent line to the graph off at 
(x,, f(x,)). (See Fig. 1.6.2.) 

Linear approximation 

Fiwe 1.6.2. AS AX Difference between 

approaches zero, the I linear approximation 

difference between f(x) and 
the approximation 
f(xo) + f'(xo)(x - xo) 
becomes arbitrarily small 
compared to Ax = x - x,. 
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The linear approximation is also called the first-order approximation. 
Second-order and higher-order approximations are introduced in Section 12.5. 

Example 3 (a) Show that the linear approximation to (x, + is x i  + 2xoAx. (b) 
Calculate an approximate value for (1.03)~. Compare with the actual value. 
Do the same for (1.0003)~ and (1.00000~3)~. 

Solullon (a) Let f(x) = x2, so f'(x) = 2x. Thus the linear approximation to f(xo + Ax) 
is f (xo) + f'(xo) Ax = x i  + 2xo Ax. 
(b) Let x, = 1 and Ax = 0.03; from (a), the approximate value is 1 + 2 Ax = 

1.06. The exact value is 1.0609. If Ax = 0.0003, the approximate value is 
1 .MI06 (very easy to compute), while the exact value is 1.00060009 (slightly 
harder to compute). If Ax = 0.0000003, the approximate value is 1.0000006, 
while the exact value is 1.00000060000009. Notice that the error decreases 
even faster than Ax. A 

For x near x,, f(xo) + f'(xo)(x - xo) is a good approximation for f(x). 

f (xo + Ax) = f (x,) + f'(xo) Ax or Ay wfl(xo) Ax 

8 Example 4 Calculate an approximate value for the following quantities using the linear 
approximation around x, = 9. Compare with the values on your calculator. 

Solullon Let f(x) = 6 and recall that f'(x) = 1 / 2 6 .  Thus the linear approximation is 

f(x0 + Ax)=f(xo) +f'(xo>Ax, 

I.e., 

J ~ F z & + ~ A x .  
2J;rd 

(a) Let x, = 9 and Ax = 0.02, so xo + Ax = 9.02. Thus 

On our calculator we get 3.00333 15. 
(b) Let xo = 9 and Ax = 1 ;  then 

On our calculator we get 3.1622777. 
(c) Let xo = 9 and Ax = - 0.18; then 

On our calculator we get 2.9698485. 
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(d) Let x, = 9 and Ax = - 1 ;  then 

On our calculator, we get 2.828427 1. 

Notice that the linear approximation gives the best answers in (a) and (c), 
where Ax is smallest. A 

Example 5 Calculate the linear approximation to the area of a square whose side is 2.01. 
Draw a geometric figure, obtained from a square of side 2, whose area is 
exactly that given by the linear approximation. 

Solution A = f(r) = r2. The linear approximation near r, = 2 is given by f(r,) + f'(r,) 
2 (r  - r,) = r, + 2ro(r - r,) = 4 + 4(r - r,). When r - r, = 0.01, this is 4.04. 

t----- 2.01-4 
Total area: 
square + two strips = 
4 + 2(0.02) = 4.04 

Figure 1.63. The linear 
approximation to the 
change in area with respect 
to a side has error equal to 
the shaded area. (Diagram Area of each strip: 

2(0.01) = 0.02 not to scale.) 

The required figure is shown in Fig. 1.6.3. It differs from the square of side 
2.01 only by the small shaded square in the corner, whose area is (0.01)~ = 

0.0001. A 

D Example 6 Calculate an approximate value for 

2 

and compare with the numerical value on your calculator. 

Solution We let f(x) = 2 / ( 6  + x2) and note that we are asked to calculate f( l  - 0.01). 
By the linear approximation, 

f ( l  - 0.01) w f(1) - f'(1)(0.01). 

Note that f ( l )  = 1. We calculate f'(x) by the quotient rule: 

On our calculator we find f(0.99) = 1.0 126 134, in rather good agreement. A 
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Exercises lor Section 1.6 
In Exercises 1-4, find the equation of the line tangent 
to the graph of the given function at the indicated point 
and sketch: 

1 .  y = 1 - x 2 ; x 0 = 1  
2. y = x2  - x ;  x,= 0 
3. y = x 2  -- 2x  + 1 ;  xo = 2 
4. y = 3x2 + I - x ;  X o  = 5 

Find the equation of the tangent line to the graph of 
f ( x )  at (x,, f (xo) )  in Exercises 5-8. 

5. f ( x ) = ( x 2 - 7 ) -  3 X  ; x o = O  
x + 2  

In Exercises 9-12, find where the tangent line to the 
graph of the given function at the given point crosses 
the x axis. 

9 . y = -  ; x 0 = I  
x + l  

11.  y = -  ; X 0 = 4  
1 +,G 

12. y=x(\l;; + 1 ) ;  x o=  1 
8 Calculate an approximate value for each of the 
squares in Exercises 13-16 and compare with the exact 
value: 

13. (2.02)~ 14. (199)2 
15. (4.999)2 16. (- 1.002)' 

B In Exercises 17-20, calculate an approximate value 
for the square root using the linear approximation at 
xo = 16. Compare with the value on your calculator. 

17. { =  18. 

19. ,KE 20. ,In- 
Using the linear approximation, find an approximate 
value for the quantities in Exercises 21-24. 

21. (2.94)4 22. (1.031~ 
23. (3.991~ 24. (101)8 

25. The radius of a circle is increased from 3 to 3.04. 
Using the linear approximation, what do you 
find to be the increase in the area of the circle? 

26. The radius r of the base of a right circular 
cylinder of fixed height h is changed from 4 to 
3.96. Using the linear approximation, approxi- 
mate the change in volume V. 

27. A sphere is increased in radius from 5 to 5.01. 
Using the linear approximation, estimate the in- 
crease in surface area (the surface area of a 
sphere of radius r is 4sr2). 

28. Redo Exercise 27 replacing surface area by vol- 
ume (the volume inside a sphere of radius r is 
$ sr3). 

Calculate approximate values in Exercises 29-32. 
29. ( x 2  + 3)(x  + 2) if x = 3.023 

33. Find the equation of the line tangent to the 
graph of f ( x )  = x 8  + 2x2  + 1 at (1,4). 

34. Find the equation of the tangent line to the 
graph of x4  - x 2  + 3 x  at x = 1 .  

35. Find the linear approximation for 1/0.98. 
36. Find the linear approximation for 1 / 1.98. 

Calculate approximate values for each of the quantities 
in Exercises 37-40. 

37. s4 - 5s3 + 3s - 4;  s = 0.9997 

41. Let h ( t )  = -4t2 + 7 t  + a. Use the linear approx- 
imation to approximate values for h(3.001), 
h(1.97), and h (4.03). 

42. Let f ( x )  = 3x2  - 4 x  + 7. Using the linear ap- 
proximation, find approximate values for f(2.02), 
f(1.98), and f(2.004). Compute the actual values 
without using a calculator and compare with the 
approximations. Compare the amount of time 
you spend in computing the approximations with 
the time spent in obtaining the actual values. 

43. Let g ( x )  = -4x2  + 8 x  + 13. Find g1(3). Show 
that the linear approximation to g(3 + Ax)  al- 
ways gives an answer which is too large, regard- 
less of whether Ax is positive or negative. Inter- 
pret your answer geometrically by drawing a 
graph of g and its tangent line when x ,  = 3. 

44. Let f ( x )  = 3x2  - 4 x  + 7. Show that the linear 
approximation to f(2 + Ax) always gives an an- 
swer which is too small, regardless of whether Ax 
is positive or negative. Interpret your answer 
geometrically by drawing a graph of f and its 
tangent line at x ,  = 2. 

a45. Let f ( x )  = x4. 
(a) Find the linear approximation to f(x) near 

x = 2. 
(b) Is the linear approximation larger or smaller 

than the actual value of the function? 
(c) Find the largest interval containing x = 2 

such that the linear approximattion is accu- 
rate within 10% when x is in the interval. 

a46. (a) Give numerical examples to show that linear 
approximations to f ( x )  = x 3  may be either 
too large or too small. 
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(b) Illustrate your examples by sketching a 
graph of y = x3 ,  using calculated values of 
the function. 

47. Show that a good approximation to 1/(1 + x )  
when x is small is I - x.  

+48. If you travel 1 mile in 60 + x seconds, show that 
a good approximation to your average speed, for 
x small, is 60 - x miles per hour. (This works 
quite well on roads which have mileposts.) Find 

the error in this approximation if x = 1, - 1,5, 
- 5,  10, - 10. 

&! 49. Return to Exercise 47. Show experimentally that 
a better approximation to 1/(1 + x )  is 1 - x + 
x2. Use this result to refine the speedometer 
checking rule in Exercise 48. 

n50. Devise a speedometer checking rule for metric 
units which works for speeds in the vicinity of 
about 90 or 100 kilometers per hour. 

Review Exercises for Chapter 1 
Differentiate the functions in Exercises 1-20. 

1 .  f ( x )  = x 2  - 1 
2. f ( x )  = 3x2 + 2x  - 10 
3. f ( x )  = x3  + 1 
4. f ( x )  = x4  - 8 
5. f ( x )  = 2x  - 1 
6. f ( x )  = 8x  + 1 
7 .  f ( s )  = s2 + 2s 
8. f ( r )  = r4+ 10r + 2 
9. f ( x )  = - lox5  + 8x3 

10. f ( x )  = 12x3 + 2x2  + 2 x  - 8 
1 1 .  f ( x )  = ( x 2  - 1)(x2 + 1) 
12. f ( x )  = ( x 3  + 2x + 3)(x2 + 2) 
13. f ( x )  = 3x3 - 2 6  
14. f ( x )  = x4  + 9 6  

Find the derivatives indicated in Exercises 2 1-30. 

Find the limits in Exercises 31-46. 

x-l 
x 3 -  1 33. lirn - 

x+ l  X - 1  

x 3 +  1 32. lirn --- 
x+ l  X + 1 

x 5 -  1 34. lirn -- 
x+ l  X - 1 

( h  - 2)6 - 64 ( h  - 216 + 64 
35. lim 

h 
36. lim 

h-0 h+O h 

37. lirn 3x2 + 2x 38. lirn 3x2 + 2x  
x-3 x x+o x 

x 2 - 9  ( s  + 319 - 39 
39. lim - 40. lim 

x-t3 X - 3 s - t o  S 

41. lirn f ( x  + Ax> - f ( x >  
A x + O  AX 
where f ( x )  = x4 + 3x2  + 2 

42. lirn 
f ( x  + Ax> - f ( x >  

A x 4 0  AX 
where f ( x )  = 3xs  - 8x7 + 10. 

3&+2  
43. lirn - 5x2 + 4 44. lirn - 

"jrn 5&+ 1 X+rn  3x2 + 9 
5x2  + 4 45. lim - 5x' + 4 46. lim - 

"jrn 5x3 + 9 X+rn  5x2 + 9 

47. For the function in Fig. l.R.l, find lim ,,xo f ( x )  
for x ,  = - 3, - 2, - l , O ,  1,2,3. If the limit is not 
defined or does not exist, say so. 

Figure 1.R.1. Find 
limx+xo f ( x )  at the 
indicated points. 
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48. Do as in Exercise 47 for the function in Fig. 
1 .R.2. 

Figwre 1.R.2. Find the limit 
a t  the indicated points. 

49. Use the limit method directly to find f ' ( l ) ,  where 
f ( x )  = 3x3 + 8x .  

50. Use the limit method directly to compute 
( d / d x ) ( x 3 -  8x2 )  at  x =  - 1. 

5 1 .  Use the limit method directly to compute 

( d / d x ) ( x  - 6). 
52. Use the limit method directly to compute the 

derivative of f ( x )  = x3 - f .  
Find the slope of the tangent line to the graphs of the 
functions in Exercises 53-58 at the indicated points. 

53. y = x3  - 8x2;  xo = 1 
54. y = x4 + 2 x ;  x ,  = - 1 
55. = ( x ~  + I ) ( x ~  - 1); xo = o 
56. y = x4 + l ox  + 2; x ,  = 2 
57. = 3 ~ 4  - lox9;  xo = o 
58. y = 3 x +  1 ;  x o = 5  

59. Two long trains, A and B, are moving on adja- 
cent tracks with positions given by the functions 
A ( t )  = t3  + 2t and B ( t )  = 7 t 2 / 2  + 8. What are 
the best times for a hobo on train B to make a 
moving transfer to train A? 

60. A backpack is thrown down from a cliff a t  t = 0. 
It  has fallen 2t + 4.9t2 meters after t seconds. 
Find its velocity at  t = 3. 

61. A bus moving along a straight road has moved 
f(t) = ( t 2  + f i ) / ( l  + fi) meters after time t (in 
seconds). What is its velocity at  t = I ?  

62. A car has position x = ( f i  - 1) / (2 f i  + 1) at  
time t .  What is its velocity at  t = 4? 

Calculate approximate values for the quantities in Exer- 
cises 63-70 using the linear approximation. 

63. (l.009)s 
64. ( - 1 .008)4 - 3( - 1.008)3 + 2 
65. d m  
66. 

67. f(2.003) where f ( x )  = 
3x3 - lox2  + 8x + 2 

X 

68. g(1.0005) where g ( x )  = x4  - 10x3. 
69. h(2.95), where h(s)  = 4s' - s4. 

Find the equation of the line tangent to the graph of the 
function at  the indicated point in Exercises 71-74. 

71. f (x )  = x3  - 6 x ;  (0,O) 

75. A sphere is increased in radius from 2 meters to 
2.01 meters. Find the increase in volume using 
the linear approximation. Compare with the ex- 
act value. 

76. A rope is stretched around the earth's equator. If 
it is to be raised 10 feet off the ground, approxi- 
mately how much longer must it be? (The earth 
is 7,927 miles in diameter.) 

In Exercises 77-80, let f ( x )  = 2x2 - 5x  + 2, g(x) = 

+ x 2  + 2x  and h ( x )  = -3x2  + x + 3. 
77. Find the derivative of f ( x )  + g ( x )  at  x = 1. 
78. Find the derivative of 3 f ( x )  - 2h(x )  at  x = 0. 
79. Find the equation of the tangent line to the 

graph of f(x) at x = 1 .  
80. Find the equation of the tangent line to the 

graph of g ( x )  at  x = - 1. 

81. Let B be a rectangular box with a square end of 
side length r.  Suppose B is three times as long as 
it is wide. Let V be the volume of B. Compute 
dV/dr.  What fraction of the surface area of B is 
your answer? 

82. Calculate lim ,_,, ( x  - J-) and interpret 
your answer geometrically by drawing a right 
triangle with hypotenuse of length x and short 
leg of length a. 

83. Suppose that z = 2y2 + 3y and y = 5 x  i- 1 .  
(a) Find dz /dy  and dy/dx .  
(b) Express z in terms of x and find dz /dx .  
(c) Compare d z / d x  with ( d z / d y )  . ( d y / d x ) .  

(Write everything in terms of x . )  
(d) Solve for x in terms of y and find dx/dy .  
(e) Compare dx/dy  with dy/dx .  
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84. Differentiate both sides of the equation 

and show that you get the same result on each 
side. 

*85. Find the equation of a line through the origin, 
with positive slope, which is tangent to the parab- 
ola y = x2  - 2x + 2. 

*86. Prove that the parabola y = x2  has the optical 
focusing property mentioned in Section R.5. (This 
problem requires trigonometry; consult Section 
5.1 for a review.) Hint: Refer to Fig. 1.R.3 and 
carry out the following program: 
(a) Express tan @ and tan 0 in terms of x. 
(b) Prove that 90" - 8 = 8 - @ by using the trig- 

onometric identities: 

tan 28 = 2 tan 0 
1 - tan28 

and 

1 - 
tan @ 

dicular to the paper and rotate it until the graph 
and its reflection together form a differentiable 
curve through P. Draw a line I along the edge of 
the mirror. Then the line through P perpendicular 
to I is the tangent line. (See Fig. 1.R.4.) Justify 
this procedure. 

Wrong 

Figure 1.R.3. The geometry needed to prove that the 
parabola has the optical focusing property. 

*87. Prove that the parabola y = ax2 has the optical 
focusing property. (You should start by figuring 
out where the focal point will be.) 

*88. The following is a useful technique for drawing 
the tangent line at a point P on a curve on paper 
(not given by a formula). Hold a mirror perpen- 

Figure 1.R.4. Wow to draw a tangent line with a mirror. 

*89. The polynomial anxn + an- ,x  "- ' + . . . + a, is 
said to have degree n if an =+ 0. For example: 
deg(x3 - 2x + 3) = 3, deg(x4 + 5) = 4, deg(0x2 + 
3x + 1) = 1 .  The degree of the rational function 
f(x)/g(x), where f(x) and g(x) are polynomials, 
is defined to be the degree off  minus the degree 
of g. 
(a) Prove that, if f(x) and g(x) are polynomials, 

then deg f(x)g(x) = deg f(x) + deg g(x). 
(b) Prove the result in part (a) when f(x) and 

g(x) are rational functions. 
(c) Prove that, if f(x) is a rational function with 

nonzero degree, then deg f'(x) = deg f(x) - 
1. What if deg f(x) = O? 

*90. Show that f(x) = x and g(x) = 1/(1 - x) obey 
? 

the "false product rule" (fg)'(x) = f'(x)gf(x). 
*91. (a) Prove that if f / g  is a rational function (i.e., a 

quotient of polynomials) with derivative zero, 
then f /g  is a constant. 

(b) Conclude that if the rational functions F and 
G are both antiderivatives for a function h, 
then F and G differ by a constant. 
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