
Comprehending Ringads

for Phil Wadler, on the occasion of his 60th birthday

Jeremy Gibbons

Department of Computer Science, University of Oxford
http://www.cs.ox.ac.uk/jeremy.gibbons/

Abstract. List comprehensions are a widely used programming con-
struct, in languages such as Haskell and Python and in technologies such
as Microsoft’s Language Integrated Query. They generalize from lists to
arbitrary monads, yielding a lightweight idiom of imperative program-
ming in a pure functional language. When the monad has the additional
structure of a so-called ringad, corresponding to ‘empty’ and ‘union’ op-
erations, then it can be seen as some kind of collection type, and the
comprehension notation can also be extended to incorporate aggrega-
tions. Ringad comprehensions represent a convenient notation for ex-
pressing database queries. The ringad structure alone does not provide
a good explanation or an efficient implementation of relational joins;
but by allowing heterogeneous comprehensions, involving both bag and
indexed table ringads, we show how to accommodate these too.

1 Introduction

We owe a lot to Phil Wadler, not least for his work over the years on monads
and comprehensions. Wadler was an early proponent of list comprehensions as
a syntactic feature of functional programming languages, literally writing the
book (Peyton Jones, 1987, Chapter 7) on them. Together with his student Phil
Trinder, he argued (Trinder and Wadler, 1989; Trinder, 1991) for the use of com-
prehensions as a notation for database queries; this prompted a flourishing line
of work within database programming languages, including the Kleisli language
from Penn (Wong, 2000) and LINQ from Microsoft (Meijer, 2011), not to men-
tion Wadler’s own work on XQuery (Fernandez et al., 2001) and Links (Cooper
et al., 2006).

Wadler was also the main driving force in explaining monads to functional
programmers (Wadler, 1992b), popularizing the earlier foundational work of
Moggi (1991). He showed that the notions of list comprehensions and mon-
ads were related (Wadler, 1992a), generalizing list comprehensions to arbitrary
monads—of particular interest to us, to sets and bags, but also to monads like
state and I/O. More recently, with Peyton Jones (Wadler and Peyton Jones,
2007) he has extended the list comprehension syntax to support ‘SQL-like’ or-
dering and grouping constructs, and this extended comprehension syntax has
subsequently been generalized to other monads too (Giorgidze et al., 2011).

2 J. Gibbons

In this paper, we look a little more closely at the use of comprehensions as a
notation for queries. The monadic structure explains most of standard relational
algebra, allowing for an elegant mathematical foundation for those aspects of
database query language design. Unfortunately, monads per se offer no good
explanation of relational joins, a crucial aspect of relational algebra: expressed
as a comprehension, a typical equijoin [(a, b) | a ← x , b ← y , f a g b] is
very inefficient to execute. But the ingredients we need in order to do better
are all there, in Wadler’s work, as usual. The novel contribution of this paper
is to bring together those ingredients: the generalizations of comprehensions
to different monads and to incorporate grouping are sufficient for capturing a
reasonable implementation of equijoins.

2 Comprehensions

The idea of comprehensions can be seen as one half of the adjunction between
extension and intension in set theory—one can define a set by its extension, that
is by listing its elements:

{1, 9, 25, 49, 81}

or by its intension, that is by characterizing those elements:

{n2 | 0< n < 10 ∧ n ≡ 1 (mod 2)}

Expressions in the latter form are called set comprehensions. They inspired
the “set former” programming notation in the SETL language (Schwartz, 1975;
Schwartz et al., 1986), dating back to the late 1960s, and have become widely
known through list comprehensions in languages like Haskell and Python.

2.1 List comprehensions

Just as a warm-up, here is a reminder about Haskell’s list comprehensions:

[2× a + b | a ← [1, 2, 3], b ← [4, 5, 6], b ‘mod ‘ a 0]

This (rather concocted) example yields the list [6, 7, 8, 8, 10, 12] of all values of
the expression 2×a + b, as a is drawn from [1, 2, 3] and b from [4, 5, 6] and such
that b is divisible by a.

To the left of the vertical bar is the term (an expression). To the right is a
comma-separated sequence of qualifiers, each of which is either a generator (of
the form a ← x , with a variable a and a list expression x) or a filter (a boolean
expression). The scope of a variable introduced by a generator extends to all
subsequent generators and to the term.

Note that, in contrast to the naive set-theoretic inspiration, bound vari-
ables in list comprehensions need to be explicitly generated from some exist-
ing list, rather than being implicitly quantified. Without such a condition, the
set-theoretic axiom of unrestricted comprehension (“for any predicate P , there
exists a set B whose elements are precisely those that satisfy P”) leads directly

Comprehending Ringads 3

to Russell’s Paradox; with the condition, we get the axiom of specification (“for
any set A and predicate P , there exists a set B whose elements are precisely the
elements of A that satisfy P”), which avoids the paradox.

The semantics of list comprehensions is defined by translation; see for exam-
ple Wadler’s chapter of Peyton Jones’s book (1987, Chapter 7). The translation
can be expressed equationally as follows:

[e |] = [e]
[e | b] = if b then [e] else []
[e | a ← x] = map (λa → e) x
[e | q , q ′] = concat [[e | q ′] | q]

(Here, the first clause involves the empty sequence of qualifiers. This is not
allowed in Haskell, but it is helpful in simplifying the translation.)

Applying this translation to the example at the start of the section gives

[2× a + b | a ← [1, 2, 3], b ← [4, 5, 6], b ‘mod ‘ a 0]
= concat (map (λa → concat (map (λb →

if b ‘mod ‘ a 0 then [2× a + b] else []) [4, 5, 6])) [1, 2, 3])
= [6, 7, 8, 8, 10, 12]

More generally, a generator may match against a pattern rather than just a
variable. In that case, it may bind multiple (or indeed no) variables at once;
moreover, the match may fail, in which case it is discarded. This is handled by
modifying the translation for generators to use a function defined by pattern-
matching, rather than a straight lambda-abstraction:

[e | p ← x] = concat (map (λa → case a of p → [e]; → []) x)

or, perhaps more perspicuously,

[e | p ← x] = let h p = [e]
h = []

in concat (map h x)

2.2 Monad comprehensions

It is clear from the above translation that the necessary ingredients for list
comprehensions are map, singletons, concat , and the empty list. The first three
are the operations arising from lists as a functor and a monad, which suggests
that the same translation might be applicable to other monads too.

class Functor m where
fmap :: (a → b)→ m a → m b

class Functor m ⇒ Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
mult :: m (m a)→ m a
mult = (>>=id)

4 J. Gibbons

(we write mult for the multiplication of the monad, rather than join as in Haskell,
to avoid confusion with the relational joins discussed later). But the fourth in-
gredient, the empty list, does not come from the functor and monad structures;
that requires an extra assumption:

class Monad m ⇒ MonadZero m where
mzero :: m a

Given this extra assumption, the translation for list comprehensions can be gen-
eralized to other monads:

[e |] = return e
[e | b] = if b then return e else mzero
[e | p ← x] = let h p = return e; h = mzero in mult (fmap h x)
[e | q , q ′] = mult [[e | q ′] | q]

Note that [e |] = [e | True], so the empty case is not really needed; and that
we could have written mult (fmap h x) as x >>= h, but this would not be so
obviously a generalization of the list instance. The actual monad to be used is
implicit in the notation, possibly determined by any input value m on the right-
hand side of a generator; if we want to be explicit, we could write a subscript,
as in “[e | q]List”.

This translation is different from the one used in the Haskell language spec-
ification for do notation (Haskell 2010, §3.14) and in the GHC documentation
for monad comprehensions (GHC 7.10, §7.3.15), which are arguably a little awk-
ward: the empty list crops up in two different ways in the translation of list
comprehensions—for filters, and for generators with patterns—and these are
generalized in two different ways to other monads: to the mzero method of the
MonadPlus class in the first case, and the fail method of the Monad class in the
second. It is perhaps neater to have a monad subclass MonadZero with a single
method subsuming both these operators. (The fail method of Haskell’s Monad
class is generally unpopular. There is a current proposal (Luposchainsky, 2015)
to remove fail to a MonadFail subclass, but the proposal would still retain both
fail and mzero, and their applications in do notation and monad comprehen-
sions.) Of course, this change does mean that the translation forces a monad
comprehension with filters to be interpreted in an instance of the MonadZero
subclass rather than just of Monad—the type class constraints that are gener-
ated depend on the features used in the comprehension (as already happens in
Haskell for generators with patterns).

Taking this approach gives basically Wadler’s monad comprehension notation
(Wadler, 1992a); it loosely corresponds to Haskell’s do notation, except that the
term is a value to the left of a vertical bar rather than a computation at the
end, and that filters are just boolean expressions rather than introduced using
guard .

We might impose the law that mult distributes over mzero, in the sense

mult mzero = mzero

or, in terms of comprehensions,

Comprehending Ringads 5

[e | a ← mzero] = mzero

Informally, this means that any failing steps of the computation cleanly cut off
subsequent branches. Another way of saying it is that mzero is a ‘left’ zero of
composition:

mzero >>= k = mzero

Conversely, we do not require that mzero is a ‘right’ zero of composition:

m >>= λa → mzero 6= mzero (in general)

Imposing this law would have the consequence that a failing step also cleanly
erases any effects from earlier parts of the computation, which is too strong a
requirement for many monads—particularly those of the “launch missiles now”
variety.

2.3 Heterogeneous comprehensions

We have seen that comprehensions can be interpreted in an arbitrary monad;
for example, [a2 | a ← x , odd a]Set denotes the set of the squares of the odd
elements of the set x , whereas [a2 | a ← y , odd a]Bag denotes the bag of squares
of odd elements of bag y . These are both ‘homogeneous comprehensions’, each
involving just one monad; can we make sense of ‘heterogeneous comprehensions’,
involving several different monads?

For monads M and N , a monad morphism ϕ : M → N is a natural transfor-
mation M

.→ N —that is, a family ϕα :: M α → N α of arrows, coherent in the
sense that ϕβ · fmapM f = fmapN f · ϕα for f :: α → β—that also preserves the
monad structure:

ϕ · returnM = returnN

ϕ ·multM = multN · ϕ · fmapM ϕ = multN · fmapN ϕ · ϕ

A monad morphism behaves nicely with respect to monad comprehensions—
a comprehension interpreted in monad M , using inputs of type M , with the
result coerced via a monad morphism ϕ : M

.→ N to monad N , is equivalent to
the comprehension interpreted in monad N in the first place, with the inputs
having been coerced to type N . Informally, there will be no surprises arising
from when coercions take place, because the results are the same whatever stage
this happens. This property is straightforward to show by induction over the
structure of the comprehension.

For example, if bag2set : Bag
.→ Set is the obvious monad morphism from

bags to sets, discarding information about the multiplicity of repeated elements,
and x a bag of numbers, then

bag2set [a2 | a ← x , odd a]Bag = [a2 | a ← bag2set x , odd a]Set

and both yield the set of squares of the odd members of bag x . As a notational
convenience, we might elide use of the monad morphism when it is ‘obvious
from context’—we might write just [a2 | a ← x , odd a]Set even when x is a

6 J. Gibbons

bag, relying on the ‘obvious’ morphism bag2set . This would allow us to write
heterogeneous comprehensions such as

[a + b | a ← [1, 2, 3], b ← *4, 4, 5+]Set = {5, 6, 7, 8}

(writing * ... + for the extension of a bag), instead of the more pedantic

[a + b | a ← list2set [1, 2, 3], b ← bag2set * 4, 4, 5+]Set

Sets, bags, and lists are all members of the so-called Boom Hierarchy of types
(Backhouse, 1988), consisting of types whose values are constructed from ‘empty’
and ‘singleton’s using a binary ‘union’ operator; ‘empty’ is the unit of ‘union’,
and the hierarchy pertains to which properties out of associativity, commutativ-
ity, and idempotence the ‘union’ operator enjoys. The name ‘Boom hierarchy’
seems to have been coined at an IFIP WG2.1 meeting by Stephen Spackman, for
an idea due to Hendrik Boom, who by happy coincidence is named in his native
language after another member of the hierarchy, namely (externally labelled,
possibly empty, binary) trees:

data Tree a = Empty | Tip a | Bin (Tree a) (Tree a)

for which ‘union’ is defined as a smart Bin constructor, ensuring that the empty
tree is a unit:

bin Empty u = u
bin t Empty = t
bin t u = Bin t u

but with no other properties of bin. It is merely a historical accident that the
familiar members of the Boom Hierarchy are linearly ordered by their properties;
one can perfectly well imagine other more exotic combinations of the laws—such
as ‘mobiles’, in which the union operator is commutative but not associative or
idempotent (Uustalu, 2015).

There is a forgetful function from any poorer member of the Boom Hierarchy
to a richer one, flattening some distinctions by imposing additional laws—for
example, from bags to sets, flattening distinctions concerning multiplicity—and
one could class these forgetful functions as ‘obvious’ morphisms. On the other
hand, any morphisms in the opposite direction—such as sorting, from bags to
lists, and one-of-each, from sets to bags—are not ‘obvious’ (and in particular,
contradicting Wong (1994, p114–115), they are not monad morphisms), and so
should not be elided; and similarly, it would be hard to justify as ‘obvious’ any
morphisms involving non-members of the Boom Hierarchy, such as probability
distributions.

3 Ringads and collections

One more ingredient is needed in order to characterize monads that correspond
to ‘collection’ types such as sets and lists, as opposed to other monads such as
State and IO ; that ingredient is an analogue of set union or list append. It’s not

Comprehending Ringads 7

difficult to see that this is inexpressible in terms of the operations introduced so
far: given only collections x of at most one element, any comprehension using
generators of the form a ← x will only yield another such collection, whereas
the union of two one-element collections will in general have two elements.

To allow any finite collection to be expressed, it suffices to introduce a binary
union operator mplus:

class Monad m ⇒ MonadPlus m where
mplus :: m a → m a → m a

We require mult to distribute over union, in the following sense:

mult (x ‘mplus‘ y) = mult x ‘mplus‘ mult y

or, in terms of comprehensions,

[e | a ← x ‘mplus‘ y , q] = [e | a ← x , q] ‘mplus‘ [e | a ← y , q]

or of monadic bind:

(x ‘mplus‘ y)>>= k = (x >>= k) ‘mplus‘ (y >>= k)

Note that, in contrast to the Haskell libraries, we have identified separate type
classes MonadZero,MonadPlus for the two methods mzero,mplus. We have al-
ready seen that there are uses of mzero that do not require mplus; and conversely,
there is no a priori reason to insist that all uses of mplus have to be associated
with an mzero.

But for our model of collection types, we will insist on a monad in both
MonadZero and MonadPlus. We will call this combination a ringad, a name
coined by Wadler (1990):

class (MonadZero m,MonadPlus m)⇒ Ringad m

There are no additional methods; the class Ringad is the intersection of the
two parent classes MonadZero and MonadPlus, thereby denoting the union of
the two interfaces. Haskell gives us no good way to state the laws that should
be required of instances of a type class such as Ringad , but they are the three
monad laws, distribution of mult over mzero and mplus:

mult mzero = mzero
mult (x ‘mplus‘ y) = mult x ‘mplus‘ mult y

and mzero being the unit of mplus:

mzero ‘mplus‘ x = x = x ‘mplus‘ mzero

(There seems to be no particular reason to insist also that mplus be associative;
we discuss the laws further in Section 3.2.) To emphasize the additional con-
straints, we will write “∅” for “mzero” and “]” for “mplus” when discussing
a ringad. All members of the Boom hierarchy—sets, bags, lists, trees, and ex-
otica too—are ringad instances. Another ringad instance, but one that is not a
member of the Boom Hierarchy, is the type of probability distributions—either
normalized, with a weight-indexed family of union operators, or unnormalized,
with an additional scaling operator.

8 J. Gibbons

3.1 Aggregation

The well-behaved operations over monadic values are called the algebras for
that monad—functions k such that k · return = id and k · mult = k · fmap k .
In particular, mult is itself a monad algebra. When the monad is also a ringad,
k necessarily distributes also over]—it is a nice exercise to verify that defining
a ⊕ b = k (return a] return b) establishes that k (x] y) = k x ⊕ k y . Without
loss of generality, we write reduce(⊕) for k ; these are the ‘reductions’ of the
Bird–Meertens Formalism (Backhouse, 1988). In that case, mult = reduce(]) is
a ringad algebra.

The algebras for a ringad amount to aggregation functions for a collection:
the sum of a bag of integers, the maximum of a set of naturals, and so on. We
could extend the comprehension notation to encompass aggregations too, for ex-
ample by adding an optional annotation, writing say “[e | q]⊕”; but this doesn’t
add much, because we could just have written “reduce(⊕) [e | q]” instead.
We could generalize from reductions reduce(⊕) to collection homomorphisms
reduce(⊕) · fmap f ; but this doesn’t add much either, because the map is easily
combined with the comprehension—it’s easy to show the ‘map over comprehen-
sion’ property

fmap f [e | q] = [f e | q]

Fegaras and Maier (2000) develop a monoid comprehension calculus around such
aggregations; but their name is arguably inappropriate, because it adds nothing
essential to insist on associativity of the binary aggregating operator—‘ringad
comprehension calculus’ might be a better term.

Note that, for reduce(⊕) to be well-defined, ⊕ must satisfy all the laws that
] does—⊕ must be associative if] is associative, and so on. It is not hard to
show, for instance, that there is no ⊕ on sets of numbers for which sum (x ∪y) =
sum x ⊕ sum y ; such an ⊕ would have to be idempotent, which is inconsistent
with its relationship with sum. (So, although [a2 | a ← y , odd a]+Bag denotes

the sum of the squares of the odd elements of bag y , the expression [a2 | a ←
x , odd a]+Set (with x a set) is not defined, because + is not idempotent.) In
particular, reduce(⊕) ∅ must be the unit of ⊕, which we write 1⊕.

We can calculate from the definition

[e | q]⊕ = reduce(⊕) [e | q]

the following translation rules for aggregations:

[e |]⊕ = e
[e | b]⊕ = if b then e else 1⊕
[e | p ← x]⊕ = let h p = e; h = 1⊕ in reduce(⊕) (fmap h x)
[e | q , q ′]⊕ = [[e | q ′]⊕ | q]⊕

Multiple aggregations can be performed in parallel: the so-called banana split
theorem (Fokkinga, 1990) shows how to lift two binary operators ⊕ and ⊗ into
a single binary operator ~ on pairs, such that

(reduce(⊕) x , reduce(⊗) x) = reduce(~) x

Comprehending Ringads 9

(UnionUnit) ∅] x = x = x]∅
(UnionAssoc) x] (y] z) = (x] y)] z

(EmptyBind) ∅>>= k = ∅
(BindEmpty) x >>= λa → ∅ = ∅
(UnionBind) (x] y)>>= k = (x >>= k)] (y >>= k)
(BindUnion) x >>= λa → k a] k ′ a = (x >>= k)] (x >>= k ′)

Fig. 1. Six possible laws for ringads (not all of them required)

for every m.
If we are to allow aggregations over heterogeneous ringad comprehensions

with automatic coercions, then we had better insist that the monad morphisms
ϕ : M

.→ N concerned are also ringad morphisms, that is, homomorphisms over
the empty and union structure:

ϕ (∅M) = ∅N

ϕ (x]M y) = ϕ x]N ϕ y

3.2 Notes on “Notes on Monads and Ringads”

As observed above, Wadler introduced the term ‘ringad’ a quarter of a century
ago in an unpublished document Notes on Monads and Ringads (Wadler, 1990).
He requires both distributivities for “monads with zero” (the EmptyBind and
BindEmpty laws in Figure 1); for ringads, he additionally requires that] is
associative (UnionAssoc), with ∅ as its unit (UnionUnit), and that bind
distributes from the right through] (UnionBind). He does not require that
bind also distributes from the left through] (BindUnion).

The name ‘ringad’ presumably was chosen because, just as monads are monoids
in a category of endofunctors, considered as a monoidal category under com-
position, ringads are ‘right near-semirings’ in such a category, considered as
what Uustalu (2015) calls a ‘right near-semiring category’ under composition
and product. A right near-semiring is an algebraic structure (R,+,×, 0, 1) in
which (R,+, 0) and (R,×, 1) are monoids, × distributes rightwards over + (that
is, (a+ b)× c = (a× c) + (b× c)) and is absorbed on the right by zero (that is,
0× a = a). It is called ‘semi-’ because there is no additive inverse (a semiring is
sometimes called a ‘rig’), ‘near-’ because addition need not be commutative, and
‘right-’ because we require distributivity and absorption only from the right, not
from the left too. This structure doesn’t quite fit our circumstances, because we
haven’t insisted on associativity of the additive operation]; but Wadler does
in his note (and there seems to be no standard name for the structure when
associativity of addition is dropped).

Wadler’s note was cited in a few papers from the 1990s (Trinder, 1991; Watt
and Trinder, 1991; Boiten and Hoogendijk, 1995, 1996; Suciu, 1993a,b), of which

10 J. Gibbons

only Trinder’s DBPL paper (Trinder, 1991) seems to have been formally pub-
lished. Some other works (Wong, 1994; Grust, 1999) describe ringads, but cite
Trinder’s published paper (Trinder, 1991) instead of Wadler’s unpublished note
(Wadler, 1990).

Somewhat frustratingly, despite all citing a common source, the various pa-
pers differ on the laws they require for a ringad. For the monoidal aspects,
everyone agrees that ∅ should be a unit of] (UnionUnit), but opinions vary
on whether] should at least be associative (UnionAssoc). Trinder (1991) does
not require (UnionAssoc); Boiten and Hoogendijk (1995, 1996) do, as does
Uustalu (2015), and Wadler (1997) in a mailing list message about monads with
zero and plus but not explicitly mentioning ringads; Grust requires it for his own
constructions (Grust, 1999, §72), but implies (Grust, 1999, §73) that ringads need
not satisfy it; Kiselyov (2015) argues that one should not insist on associativity
without also insisting on commutativity, which not everyone wants.

For the distributivity aspects, everyone agrees that monadic bind should dis-
tribute from the right over] (UnionBind). Moreover, everyone agrees that bind
need not distribute from the left over] (BindUnion); such a law would at least
suggest that] should be commutative—in particular, it does not hold for the list
monad. Nearly everyone agrees that bind should also distribute from the right
over ∅ (EmptyBind)—the exception being Boiten and Hoogendijk (1995, 1996),
who appear not to require it. Opinions vary as to whether bind should also dis-
tribute from the left over ∅ (BindEmpty); such a law does not hold for a monad
that combines a ‘global’ log with the possibility of failure (such as Haskell’s
MaybeT (Writer w) a, which is equivalent to (w ,Maybe a)), although it does
hold when the log is ‘local’ (as with Haskell’s WriterT w Maybe a, which is
equivalent to Maybe (w , a)). Trinder (1991) does require (BindEmpty), in addi-
tion to (EmptyBind). Boiten and Hoogendijk (1995, 1996) require (BindEmpty),
instead of (EmptyBind). Grust (1999, §58) requires both directions (EmptyBind)
and (BindEmpty) for “monads with zero”, following Wadler (1992a), but im-
poses only distributivity from the right (EmptyBind) for ringads (Grust, 1999,
§73). Wadler himself “would usually insist on” only (EmptyBind) and not
(BindEmpty), writing later (Wadler, 1997) about “monads with zero and plus”.
Buneman et al. (1995) attribute to ringads distributivity from the right over
both ∅ (EmptyBind) and] (UnionBind), saying that “they seem to ex-
press fundamental properties”, but say of the two distributivities from the left
(BindEmpty,BindUnion) that their “status [. . .] is unclear”. (Whether one
thinks of a particular property of bind as ‘distributing from the left’ or ‘dis-
tributing from the right’ depends of course on which way round one writes bind’s
arguments, and this varies from author to author.)

4 Comprehending joins

Comprehensions form a convenient syntax for database queries, explaining the
selection and projection operations of relational algebra. For example, consider
a table of invoices

Comprehending Ringads 11

invoices(name, address, amount, due)

The SQL query

SELECT name, address, amount

FROM invoices

WHERE due < today

which selects the overdue invoices and projects out the corresponding customer
names and addresses and the outstanding amounts, can be expressed as the
following comprehension:

[(name, address, amount)
| (name, address, amount , due)← invoices,

due < today]

This is a reasonable approximation to how database systems implement selection
and projection. However, the comprehension notation does not explain the third
leg of relational algebra, namely join operations. For example, if the invoice
database is normalized so that customer names and addresses are in a separate
table from the invoices,

customers(cid, name, address)

invoices(cust, amount, due)

then the query becomes

SELECT name, address, amount

FROM customers, invoices

WHERE cid = cust AND due < today

and the obvious comprehension version

[(name, address, amount)
| (cid ,name, address)← customers, (cust , amount , due)← invoices,

cid cust , due < today]

entails a traversal over the entire cartesian product of the customers and invoices
tables, only subsequently to discard the great majority of pairs of tuples. This
is an extremely naive approximation to how database systems implement joins.

In this section, we sketch out how to achieve a more reasonable implemen-
tation for joins too, while still preserving the convenient comprehension syntax.
We do this only for equijoins, that is, for joins where the matching condition
on tuples is equality under two functions. The techniques we use are two ex-
tensions to comprehension syntax: parallel comprehensions (Plasmeijer and van
Eekelen, 1995), which introduce a kind of ‘zip’ operation, and comprehensive
comprehensions (Wadler and Peyton Jones, 2007), which introduce a ‘group by’.
Both were introduced originally just for list comprehensions, but have recently
(Giorgidze et al., 2011) been generalized to other monads. The result will be a
way of writing database queries using joins that can be executed in time linear
in the number of input tuples, instead of quadratic.

12 J. Gibbons

4.1 Parallel comprehensions

Parallel list comprehensions were introduced in Clean 1.0 in 1995 (Plasmeijer and
van Eekelen, 1995), and subsequently as a Haskell extension in GHC around 2001
(GHC 5.0), desugaring to applications of the zip function:

zip :: [a]→ [b]→ [(a, b)]
zip (a : x) (b : y) = (a, b) : zip x y
zip = []

For example,

[a + b | a ← [1, 2, 3] | b ← [4, 5]]
= zip [1, 2, 3] [4, 5]>>= λ(a, b)→ return (a + b)
= [5, 7]

Essentially the same translation can be used for an arbitrary monad (Giorgidze
et al., 2011):

[e | (q | r), s] = mzip [vq | q] [vr | r]>>= λ(vq , vr)→ [e | s]

(where vq denotes the tuple of variables bound by qualifiers q), provided that
the monad supports an appropriate ‘zip’ function. In the GHC implementation,
the appropriate choice of mzip function is type-directed: mzip is a method of a
type class MonadZip, a subclass of Monad :

class Monad m ⇒ MonadZip m where
mzip :: m a → m b → m (a, b)

of which the monad in question should be an instance.
There is some uncertainty about what laws one should require of instances of

mzip, beyond naturality. The GHC documentation specifies only an information
preservation requirement: that if two computations x , y have the same ‘shape’

fmapM (const ()) x = fmapM (const ()) y

then zipping them can be undone:

(x , y) = let z = mzip x y in (fmapM fst z , fmapM snd z)

Petricek (2011) observes that one probably also wants associativity:

fmapM (λ(a, (b, c))→ ((a, b), c)) (mzip x (mzip y z)) = mzip (mzip x y) z

so that it doesn’t matter how one brackets a comprehension [(a, b, c) | a ← x |
b ← y | c ← z] with three parallel generators. One might also consider unit and
commutativity properties.

4.2 Grouping comprehensions

Grouping list comprehensions were introduced (along with ‘ordering’) by Wadler
and Peyton Jones (2007), specifically motivated by trying to “make it easy to
express the kind of queries one would write in SQL”. Here is a simple example:

Comprehending Ringads 13

[(the a, b) | (a, b)← [(1, ’p’), (2, ’q’), (1, ’r’)],
then group by a using groupWith]

= [(1, "pr"), (2, "q")]

Here, the :: [a] → a returns the common value of a non-empty list of equal
elements, and groupWith :: Ord b ⇒ (a → b) → [a] → [[a]] groups a list into
sublists by some ordered key. The comprehension desugars to

groupWith (λ(a, b)→ a) [(1, ’p’), (2, ’q’), (1, ’r’)]>>= λabs →
case (map fst abs,map snd abs) of (a, b)→ return (the a, b)

The full translation is given below, but in a nutshell, the input list of a, b pairs
[(1, ’p’), (2, ’q’), (1, ’r’)] is grouped according to their a component, and then
for each group we return the common a component and the list b of correspond-
ing characters. Note in particular the ingenious trick, that the group qualifier
rebinds the previously bound variables a :: Int and b :: Char as lists a :: [Int]
and b :: [Char]—so of different types. (Suzuki et al. (2016) point out that this
ingenious trick can backfire: it would be a runtime error to try to compute the b
in the above query, because the b collection generally will not have all elements
equal. They present a more sophisticated embedding of queries that turns this
mistake into a type error.)

As with parallel comprehensions, grouping too generalizes to other monads,
provided that they support an appropriate ‘group’ function. In Giorgidze et al.’s
formulation (2011), this is again specified via a subclass of Monad :

class Monad m ⇒ MonadGroup m b where
mgroupWith :: (a → b)→ m a → m (m a)

(so any given mgroupWith method is polymorphic in the a, but for fixed m and
b). However, this type turns out to be unnecessarily restricted: there’s no reason
why the inner type constructor of the result, the type of each group, needs to
coincide with the outer type constructor, the type of the collection of groups; in
fact, all that the translation seems to require is

mgroupWith :: (a → b)→ m a → m (n a)

with n some Functor . One could add n as another type class parameter; but the
current GHC implementation (GHC 7.10) instead dispenses with the MonadGroup
type class altogether, and requires the grouping function to be explicitly speci-
fied. Let us call this variant “heterogeneous grouping”. The translation is then:

[e | q , then group by b using f , r]
= f (λvq → b) [vq | q]>>= λys →

case (fmap vq1 ys, ..., fmap vqn ys) of vq → [e | r]

where, as before, vq denotes the tuple of variables bound by qualifiers q , and
in addition vqi projects out the ith component from this tuple. We make crucial
use below of this extra generality. (GHC also provides a simpler variant omitting
the “by b” clause, but we don’t need it for this paper.)

It is not clear what laws we might expect of the grouping function f , at
least partly because of its rather general type; moreover, because it is no longer

14 J. Gibbons

associated with a type class, it is not clear where one ought morally to attach
those laws. But for Giorgidze et al.’s homogeneous formulation, it is tempting
to think of mgroupWith f as a partitioning function, which suggests

mult ·mgroupWith f = id

(which doesn’t hold of the function groupWith on lists, since this reorders el-
ements; that would be appropriate behaviour for bags, and Haskell’s groupBy
function, a pre-inverse of concat , more appropriate for lists). One might also want
it to partition as finely as possible, so that subsequent grouping is redundant:

fmapM (mgroupWith f) ·mgroupWith f = fmapM return ·mgroupWith f

which would exclude size-based partitions, such as splitting a list of length n2

into n lists of length n.

4.3 Relational tables

The implementation that we will present of relational joins using comprehensions
will depend crucially on the interplay between two different monads; that’s why
we need the extra generality of heterogeneous grouping described above. One of
these is the Bag monad—that is, a ringad in which] is also commutative. The
other is the Table monad, which to a first approximation (not yet accommodating
aggregation—we turn to that question in Section 4.4) is simply a combination
of the Reader and Bag monads:

type Table k v = Reader k (Bag v)

Readers are essentially just functions; in Haskell, there are a few type wrappers
involved too, but we can hide these via the following isomorphism:

apply :: Reader k v → (k → v)
tabulate :: (k → v)→ Reader k v

Consider the canonical equijoin of two bags x , y by the two functions f , g , spec-
ified by

equijoin f g x y = [(a, b) | a ← x , b ← y , f a g b]

We can read this straightforwardly in the list monad; but as we have already
observed, this leads to a very inefficient implementation. Instead, we want to
be able to index the two input collections by their keys, and zip the two in-
dices together. What else can we zip, apart from lists? Readers are the obvious
instance:

instance MonadZip (Reader k) where
mzip x y = tabulate (λk → (apply x k , apply y k))

Plain Readers aren’t ringads; but Tables are, inheriting the ringad structure of
Bags:

Comprehending Ringads 15

∅ = tabulate (λk → ∅)
x] y = tabulate (λk → apply x k] apply y k)

Note that Bags alone won’t do, because they don’t support zip, only cartesian
product.

For grouping, we will use a function

indexBy :: Eq k ⇒ (v → k)→ Bag v → Table k v

that partitions a bag of values by some key, collecting together subbags with a
common key; with a careful choice of representation of the equality condition,
this can be computed in linear time (Henglein and Larsen, 2010). We will also
use its postinverse

flatten :: Table k v → Bag v

that flattens the partitioning. We need bags rather than lists, because indexBy
reorders elements; the equation

flatten · indexBy f = id

holds for bags, but would be hard to satisfy had we used lists instead.
With these ingredients, we can capture the equijoin using comprehensions:

equijoin f g x y
= flatten [cp (a, b) | a ← x , then group by f a using indexBy

| b ← y , then group by g b using indexBy]

which desugars to

flatten (fmap cp (mzip (indexBy f x) (indexBy g y)))

Informally, this indexes the two bags as tables by the key on which they will
be joined, zips the two tables, computes small cartesian products for subbags
with matching keys, then discards the index. In the common case that one of
the two functions f , g extracts a primary key, the corresponding subbags will be
singletons and so the cartesian products are trivial. Better still, one need not
necessarily perform the cps and flatten immediately; stopping with

[(a, b) | a ← x , then group by f a using indexBy
| b ← y , then group by g b using indexBy]

yields a table of pairs of subbags, and with care the cartesian products may
never need actually to be expanded (Henglein and Larsen, 2010).

4.4 Finite maps

If we want to retain the ability to compute aggregations over tables—and we
do, not least in order to define flatten—then we must restrict attention to finite
maps, disallowing infinite ones. Then we can equip tables also with a mechanism
to support traversal over the keys in the domain; so they should not simply be

16 J. Gibbons

Readers, they should also be paired with some traversal mechanism. (This is the
‘refinement’ mentioned earlier.) However, there is a catch: if we limit ourselves
to finite maps, we can no longer define return for Tables or Readers—return a
yields an infinite map, when the key type itself is infinite.

Two possible solutions present themselves. One is to live without the return
for Table, leaving what is sometimes called a semi-monad (but not obviously
in the same sense as Fernandez et al. (2001)) or non-unital monad, that is, a
monad with a mult but no unit. This seems to be feasible, while still retaining
“semi-monad comprehensions”; we only really use return in the common base
case [e |] of comprehensions with an empty sequence of qualifiers, and this
is mostly only for convenience of definition anyway (as noted already, it’s not
actually valid Haskell syntax). We instead have to provide separate base cases
for each singleton sequence of qualifiers; we can’t use a bare guard [e | b], and
we have to define comprehensions with guards and other qualifiers by

[e | b, q] = if b then [e | q] else ∅

A second solution is to generalize from plain monads to what have variously
been called indexed monads (Orchard et al., 2014), parametric monads (Kat-
sumata, 2014), or graded monads (Milius et al., 2015; Orchard and Yoshida, 2016;
Fujii et al., 2016); we use the latter term. In a graded monad (M , return, >>=)
over a monoid (I , ε,⊗), the functor M has a type index drawn from the monoid
I as well as the usual polymorphic type parameter; return yields a result at the
unit index ε, and >>= combines indices using ⊗:

return :: a → M ε a
(>>=) :: M i a → (a → M j b)→ M (i ⊗ j) b

A familiar example is given by vectors. Vectors of a fixed length—say, vectors
of length 3—form a monad, in which return replicates its argument and mult
takes the diagonal of a square matrix. Vectors of different lengths, however, form
not a simple monad but a graded monad, over the monoid (Nat , 1,×) of natural
numbers with multiplication: return yields a singleton vector, and mult flattens
an i -vector of j -vectors into a single (i×j)-vector. Technically, a graded monad is
no longer simply a monad; but it is still essentially a monad—it has the same kind
of categorical structure (Fujii et al., 2016), supports the same operations, and
can even still be used with monad comprehensions and do notation in Haskell,
by using GHC’s RebindableSyntax extension (Williams, 2014). For our purposes,
we want the monoid of finite sequences of finite types, using concatenation ++
and the empty sequence 〈〉, so that we can define

return :: a → Table 〈〉 a
(>>=) :: Table k a → (a → Table k ′ b)→ Table (k ++ k ′) b

Now return yields a singleton table, which is a finite map.

Comprehending Ringads 17

5 Conclusions

We have explored the list comprehension notation from languages like Haskell,
its generalization to arbitrary monads, and the special case of collection monads
or ‘ringads’ that support aggregation; and we have shown how to use GHC’s
parallel and grouping constructs for monad comprehensions to express relational
join accurately and efficiently. All of these ingredients owe their genesis or their
popularization to Phil Wadler’s work; we have merely drawn them together.

Having said all that, writing this paper was still a voyage of discovery. The
laws that one should require for MonadPlus and MonadZero are a subject of
great debate; arguably, one expects different laws for backtracking search, for
nondeterministic enumeration, and for collections of results—despite all con-
forming to the same interface. The matter is not settled definitely here (and
perhaps the waters have been muddied a bit further—should we insist on asso-
ciativity of], as some other authors do?).

Wadler’s unpublished note (Wadler, 1990) on ringads is not currently widely
available; it is apparently not online anywhere, and even Phil himself does not
have a copy (Wadler, 2011)—for a long time I thought it had been lost entirely to
history, despite being relatively widely cited. However, I am happy to report that
Eerke Boiten had preserved a copy, and the document has now been secured.

Trinder’s work with Wadler (Trinder and Wadler, 1989; Trinder, 1991) on
using list comprehensions for database queries had quite an impact at the time,
but they weren’t the first to make the connection: Nikhil (1990), Poulovassilis
(1988), and Breuer (1989) at least had already done so.

Wadler and Peyton Jones (2007, §3.8) mention parallel list comprehensions,
but don’t connect them to grouping or to relational join; they write that “be-
cause of the generality of these new constructs, we wonder whether they might
also constructively feed back into the design of new database programming lan-
guages”. We hope that we have provided here more evidence that they could.

Acknowledgements

I am very grateful to Ralf Hinze, Nicolas Wu, Fritz Henglein, Tarmo Uustalu,
and Oleg Kiselyov for their helpful discussions, to Eerke Boiten for finding a copy
of Wadler’s note (Wadler, 1990), to Shin-ya Katsumata for sharing unpublished
work (Fujii et al., 2016) on graded monads, and to the anonymous reviewers
for constructive criticism. This work was partially supported by EPSRC grants
Unifying Theories of Generic Programming (EP/J010995/1) and A Theory of
Least Change for Bidirectional Transformations (EP/K020919/1).

Bibliography

Roland Backhouse. An exploration of the Bird-Meertens formalism. Techni-
cal Report CS 8810, Department of Computer Science, Groningen Univer-
sity, 1988. http://www.cs.nott.ac.uk/~psarb2/papers/abstract.html#

exploration.

18 J. Gibbons

Eerke Boiten and Paul Hoogendijk. A database calculus based on strong monads
and partial functions. Submitted to DBPL, March 1995.

Eerke Boiten and Paul Hoogendijk. Nested collections and polytypism. Technical
Report 96/17, Eindhoven, 1996.

Peter T. Breuer. Applicative query languages. University Computing, the Uni-
versities and Colleges Information Systems Association of the UK (UCISA)
Bulletin of Academic Computing and Information Systems, 1989. https:

//www.academia.edu/2499641/Applicative_Query_Languages.

Peter Buneman, Shamim Navqi, Val Tannen, and Limsoon Wong. Principles of
programming with collections and complex object types. Theoretical Com-
puter Science, 149(1):3–48, 1995.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In Formal Methods for Components and Objects
(FMCO), volume 4709 of LNCS. Springer, 2006.

Leonidas Fegaras and David Maier. Optimizing object queries using an effective
calculus. ACM Transactions on Database Systems, 25(4):457–516, December
2000. doi: 10.1145/377674.377676.

Mary Fernandez, Jérôme Simeon, and Philip Wadler. A semi-monad for semi-
structured data. In International Conference on Database Theory, pages 263–
300, 2001.

Maarten M. Fokkinga. Tupling and mutumorphisms. The Squiggolist, 1(4):
81–82, June 1990.

Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a formal
theory of graded monads. In Foundations of Software Science and Computa-
tion Structures, Lecture Notes in Computer Science. Springer-Verlag, 2016.

GHC 5.0. Glasgow Haskell Compiler Users’ Guide, Version 5.00,
April 2001. https://downloads.haskell.org/~ghc/5.00/docs/set/

book-users-guide.html.

GHC 7.10. Glasgow Haskell Compiler Users’ Guide, Version 7.10, July
2015. https://downloads.haskell.org/~ghc/latest/docs/html/users_

guide/.

George Giorgidze, Torsten Grust, Nils Schweinsberg, and Jeroen Weijers. Bring-
ing back monad comprehensions. In Haskell Symposium, pages 13–22, 2011.

Torsten Grust. Comprehending Queries. PhD thesis, Universität Konstanz,
1999.

Haskell 2010. Haskell 2010 Language Report, April 2010. https://www.

haskell.org/onlinereport/haskell2010/.

Fritz Henglein and Ken Friis Larsen. Generic multiset programming with
discrimination-based joins and symbolic Cartesian products. Higher-
Order and Symbolic Computation, 23(3):337–370, 2010. doi: 10.1007/
s10990-011-9078-8.

Shin-ya Katsumata. Parametric effect monads and semantics of effect systems.
In Principles of Programming Languages, pages 633–645, 2014.

Oleg Kiselyov. Laws of MonadPlus. http://okmij.org/ftp/Computation/

monads.html#monadplus, January 2015.

Comprehending Ringads 19

David Luposchainsky. MonadFail proposal. https://github.com/quchen/

articles/blob/master/monad_fail.md, June 2015.
Erik Meijer. The world according to LINQ. Communications of the ACM, 54

(10):45–51, 2011.
Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics

and graded monads. In Larry Moss and Pawel Sobocinski, editors, 6th
International Conference on Algebra and Coalgebra in Computer Science
(CALCO’15), pages 251–266, 2015.

Eugenio Moggi. Notions of computation and monads. Information and Compu-
tation, 93(1):55–92, 1991.

Rishiyur S. Nikhil. The semantics of update in a functional database program-
ming language. In François Bancilhon and Peter Buneman, editors, Advances
in Database Programming Languages (DBPL-1, 1987), pages 403–421. ACM
Press / Addison-Wesley, 1990.

Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects.
In Principles of Programming Languages, 2016.

Dominic Orchard, Tomas Petricek, and Alan Mycroft. The semantic marriage
of monads and effects. arXiv:1401.5391, 2014.

Tomas Petricek. Fun with parallel monad comprehensions. The Monad Reader,
(18), July 2011. https://themonadreader.wordpress.com/2011/07/05/

issue-18/.
Simon Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, 1987.
Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean language report

(version 1.0). Technical report, University of Nijmegen, 1995. ftp://ftp.

science.ru.nl/pub/Clean/old/Clean10/doc/refman.ps.gz.
Alexandra Poulovassilis. FDL: an integration of the functional data model

and the functional computational model. In British National Conference on
Databases, pages 215–236, 1988.

Jack T. Schwartz, Robert B.K. Dewar, Edward Dubinsky, and Edmond Schon-
berg. Programming with Sets: An Introduction to SETL. Springer, New York,
1986.

Jacob T. Schwartz. On programming: An interim report on the SETL project.
Technical report, Courant Institute of Mathematical Sciences, New York Uni-
versity, June 1975.

Dan Suciu. Fixpoints and bounded fixpoints for complex objects. Technical
Report MS-CIS-93-32, University of Pennsylvania, 1993a.

Dan Suciu. Queries on databases with user-defined functions. Technical Report
MS-CIS-93-62, University of Pennsylvania, 1993b.

Kenichi Suzuki, Oleg Kiselyov, and Yukiyoshi Kameyama. Finally, safely-
extensible and efficient language-integrated query. In Partial Evaluation and
Program Manipulation, 2016.

Phil Trinder. Comprehensions: A query notation for DBPLs. In Database Pro-
gramming Languages, 1991.

Phil Trinder and Philip Wadler. Improving list comprehension database queries.
In TENCON’89: Fourth IEEE Region 10 International Conference. IEEE,
1989.

20 J. Gibbons

Tarmo Uustalu. A divertimento on MonadPlus and nondeterminism. Journal of
Logical and Algebraic Methods in Programming, to appear 2015. Special issue
in honour of José Nuno Oliveira’s 60th birthday. Extended abstract in HOPE
2015.

Philip Wadler. Notes on monads and ringads. Internal document, CS Depart-
ment, University of Glasgow, September 1990.

Philip Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2:461–493, 1992a.

Philip Wadler. Monads for functional programming. In Manfred Broy, edi-
tor, Marktoberdorf Summer School on Program Design Calculi, volume 118 of
NATO ASI Series F: Computer and Systems Sciences. Springer Verlag, Au-
gust 1992b. Also in J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, Springer Verlag, LNCS 925, 1995.

Philip Wadler. Laws for monads with zero and plus. Post to Haskell Mailing
List, May 1997.

Philip Wadler. Monads and ringads. Personal communication, August 2011.
Philip Wadler and Simon Peyton Jones. Comprehensive comprehensions: Com-

prehensions with ‘order by’ and ‘group by’. In Haskell Symposium, pages
61–72, 2007.

David Watt and Phil Trinder. Towards a theory of bulk types. FIDE technical
report 91/26, Glasgow University, July 1991.

Tim Williams. Map comprehensions. http://www.timphilipwilliams.com/

posts/2014-06-05-map-comprehensions.html, June 2014.
Limsoon Wong. Querying Nested Collections. PhD thesis, University of Penn-

sylvania, 1994.
Limsoon Wong. Kleisli, a functional query system. Journal of Functional Pro-

gramming, 10(1):19–56, 2000.

