MEMORANDUM

RM-5136-PR
DECEMBER 1966

SOVIET CYBERNETICS TECHNOLOGY: VIII.
Report on the Algorithmic Language ALGEC
(Final Version)

Translated by Wade B. Holland

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

e DN Do

SANTA MONICA *» CALIFORNIA

MEMORANDUM

RM-5136-PR
DECEMBER 1966

SOVIET CYBERNETICS TECHNOLOGY: VIII.
Report on the Algorithmic Language ALGEC

(Final Version)
Translated by Wade B. Holland

This rescarch is supported by the United States Air Force under Project RAND—Con-
tract No. AF 19(6381-1700—monitored by the Directorate of Operational Requirements
and Development Plans. Deputy Chief of Staff, Research and Development. Hg USAF.
Views or conclusions contained in this Memorandum should not he interpreted as
representing the ofhicial opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

The Q-ﬂ ﬂ D&wm

1700 MAIN ST « 5ANTA MONICA « CALIFORNIA + 90404

Published by The RAND Corporation

-iii-

PREFACE and SUMMARY

This Memorandum is a translation of the finmal,
official version of the new Soviet ALGorithmic language
for EConomics problems, ALGEC. An earlier, preliminary
version of the language description was translated in
Part VII in this series of RAND Memorahda;* a summary,
analysis, and evaluation of both versions will appear as
Part IX (RM-5157-PR).

The development of ALGEC and other general-purpose
programming 1anguages* represents a shift away from the
traditional Soviet practice of coding in machine language
or in special-purpose, machine- or institution-oriented
languages. ALGEC in particular reflects the growing
concern for an orderly transition to automated, computer-
based systems for accounting, national economic control,
and centralized planning. As the authors state in their
Introduction (see p. 1), ALGEC is an attempt 'to better
accommodate the specifics of economics problems" and is
intended for writing "programs for a number of typical
problems involving the processing of economics infor-
mation..."; ALGEC was designed to facilitate the imple-
mentation of translators that wiil convert programs
written in ALGEC to the language of the particular machine

being used.

“RM-5135-PR; for a listing of all items in the series
and a bibliography of RAND publications on Soviet cyber-
netics and computer technology, see pp. 133-137.

T1pbid., pp. v-vi.

-{v-

The ALGEC description, authored by a group consisting
of M. A. Korolev, K. S. Kuz'min, S. S. Lavrov, A. A.
Letichevskii, G. K. Stoliarov, and M. R. Shura-Bura, and
under the direction of V. M., Glushkov, appeared in the

March~April 1966 issue of the journal Kibernetika, pub-

als
"

lished in Kiev. ALGEC is based on ALGOL 60, designed as
an international language for handling numerical processing.
The Introduction summarizes the intended ALGEC changes to
ALGOL 60; an evaluation of the success of the authors in
executing their plans is contained in the above~mentioned
Memorandum, Part IX in this series, by Dr. Niklaus Wirth
of the Computer Science Department at Stanford University,

The translator has added a Russian-English glossary
of ALGEC terminology and generated an Index of Definitions
of Concepts and Syntactic Units (patterned after the
ALGOL 60 index); the Index includes an English-Russian
terminology glossary.

This translation will be published in the journal

Cybernetics, a cover-to-cover translation of Kibernetika,

issued by The Faraday Press, Inc., New York (Vol. 2, No. 2).
Reproduction of the translation of the language description
for any purpose is explicitly permitted; reference should
be made to the translation having been undertaken by The
RAND Corporation under U.S, Air Force Project RAND and to

the initial open-literature publication in Cybernetics as

the source,.

“"Soobshchenie ob Algoritmicheskom Iazyke ALGEK"
[''Report on the Algorithmic Language ALGEC"], Kibernetika
[Cybernetics], No. 2, March-April 1966, pp. 57-102.

TSee Ref. 1, p. 115.

THE AUTHORS

KOROLEV, Mikhail Antonovich -- Department Head at the
Moscow Economic-Statistics Institute, Candidate
in the Economic Sciences (the author of the pre-
liminary version of ALGEC).

KUZ 'MIN, Kirill Sergeevich -- Laboratory Head at the
Central Economic-Mathematics Institute of the
Academy of Sciences of the USSR, Moscow.

LAVROV, Sviatoslav Sergeevich -- Professor at Moscow
State University, Doctor of Technical Sciences.

LETICHEVSKII, Aleksandr Adol'fovich -- Senior Scientist
at the Institute of Cybernetics of the Academy of
Sciences of the Ukrainian SSR, Candidate in the
Physical-Mathematical Sciences.

STOLIAROV, Gennadii Konstantinovich -- Director of a
Section of the Special Design Bureau at the Minsk
Radio Factory.

SHURA-BURA, Mikhail Romanovich -- Section Head in the
Department of Applied Mathematics at the Steklov
Mathematics Institute of the Academy of Sciences
of the USSR, Doctor of Physical-Mathematical
Sciences.

Although not listed as one of the authors, the design
group was under the chairmanship of Academician Viktor
Mikhailovich GLUSHKOV, Director of the Institute of Cyber-
netics of the Academy of Sciences of the Ukrainian SSR.
Glushkov is one of the world's leading cyberneticists,
and his Kiev Institute of Cybernetics is one of the most

prestigious in its field. Glushkov is the Executive

Editor of the journal Kibernetika in which the ALGEC

report was published; although nominally the official
organ of the Ukrainian Academy of Sciences' Department
of Mathematics, Mechanics, and Cybernetics, it is usually

associated quite closely with the Institute of Cybernetics.

-vii-

TRANSLATOR'S FOREWORD

Reserved words (underscored) and metalinguistic
variables (enclosed in angular brackets, () have been
translated consistently throughout the text. ALGEC can
use either the Latin or the Cyrillic alphabet and Russian
or English reserved words. A footnote in the original
ﬁussian text listed a few of the English equivalents of
reserved words; we have used these English equivalents
as given (although in some cases we felt the choices were
poor). The translations adopted here for reserved words
not listed with their English counterparts and for all
metalinguistic variables are the personal.choices of the
translator (although in most cases they are the same as
the equivalent ALGOL 60 terms). It is our understanding
that an offiéial Russian-English-German terminology
dictionary is being planned; if so, it would probably
result in many differences in translation from the present
version.

We are grateful to Dr. Niklaus Wirth of Stanford
University for closely reviewing the translation in the
course of preparing his critique of ALGEC. His comments

and suggestions resulted in many improvements.

-ixX=-

CONTENTS
PREFACE and SUMMARY .. vvvovnnnnnonnn. e e iii
THE AUTHORS .« v v vveeeeas e eeeeeeeeaaneenns, .. v
TRANSLATOR'S FOREWORD i vii
THE DEVELOPMENT OF ALGEC U : e xi

- INTRODUCTION ... ivinnerensnsonas e ceseaes 1
1. STRUCTURE OF THE LANGUAGEc00e.. . 4
1.1 Formalism for Syntactic Description ... 6

2., BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND

STRINGS ..ttt iiiittsnsaecscaenosenacnnaas 8
2.1 Letters et ieieret ettt 8
2.2 Digits, Logical Values, Special

Characters, and Quotation Marks 9

2.3 Delimiters e edec e : 9
2.4 TIdentifierscvvivievunnneenns ceee 11
2.5 Numbers e e ceen 12
2.6 QuUOtations ...viievenrinennnn e 13
2,7 Formatseveevuesnonncas e eea e 14
2,8 Quantities, Kinds and Scopes 17
2.9 Values and Typesveeuen. e 18
3 EXPRESSIONS ittt it inaronnsosasonsonsansas 19
3.1 Variables e ceas 19
3.2 Function Designatorsceveevens 24
3.3 Arithmetic Expressionsc.ven0v... 27
3.4 String Expressionscveccevanan. 32
3.5 Boolean Expressions e 41
3.6 Designational Expressions 44
3.7 Subarray Designatorseecoececccenns 45
3.8 Constituent Designators Ceeen 48
3.9 Multicomponent Expressions 54
4, STATEMENTS ...t iiiteneeseeeeneeaaacaonannns 58
4,1 Compound Statements and Blocks 58
4.2 Assignment StatementsSoceeneannn 61

-X-

4.3 Go To Statements Cteeees e r e 66
4.4 Dummy Statements O, 67
4.5 Conditional Statements 68
4.6 TFor StatementS ..,............oo...... oo 70
4.7 Procedure Statements e con 73
5. DECLARATIONS ...''vovevenrmnnnnnnn.. Ceeeeean 80
5.1 Type Declarations cieenan Ceecsaas 81
5.2 Array Declarations 83
5.3 Compound Declarations e 88
5.4 Switch Declarations 96
5.5 Procedure Declarations 97
EXAMPLES ceeseann et e 102
REFERENCES e e et 115
RUSSTAN-ENGLISH GLOSSARY et 117

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS
AND SYNTACTIC UNITS ettt eenieann 124

BIBLIOGRAPHY OF RAND CORPORATION PUBLICATIONS
IN SOVIET CYBERNETICS AND COMPUTER TECHNOLOGY 133

-xi-

THE DEVELOPMENT OF ALGEC

(Translation of an Article Entitled, "Report on
the Working Sessions of the Group on Algorithmic
Languages for Processing Economics Information
(GATAPEI)"™)

[TRANSLATOR'S NOTE: This article, appearing in the issue

of Kibernetika immediately preceding that in which the

ALGEC Report was published, provides some background to
the development of ALGEC and to the concern among
countries of the Soviet block for a unified approach to
the design and implementation of programming languages
and translators. It is interesting to note that the
article pays little attention to the antecedents of ALGEC
or to the fact that ALGEC's development had been under-
way for nearly a year at the time of the first GAIAPEI
meeting; on the other hand, the ALGEC Report makes no
mention of subsequent GAIAPEI sponsorship of ALGEC,
other than to say that GAIAPEI has approved publication

of the present version.--WH]

GAIAPEI is a working group under the Commission on
Multilateral Cooperation [Komissiia mnogostoronnego
sotrudnichestva] in the Area of '"Scientific Problems of

Computer Technology' of the Academies of Sciences of the

“"Soobshchenie o Rabochikh Soveshchaniiakh Gruppy
Algoritmicheskikh Iazykov po Pererabotke Ekonomicheskoi
Informatsii (GAIAPEI)," M. Korolev, Kibernetika (Cyber-
netics), No. 1, January-February 1966, pp. 101-102;
translated by Wade B. Holland.

-xii-

Socialist Countries. Working in pafallel with the Group

on Automatic Programming for Intermediate-Size Machines
(GAMS), GAIAPEI working sessions have included the par-
ticipation of delegations from the Academies of Sciences

of the People's Republic of Bulgaria, the Hungarian
People's Republic, the GDR [German Democratic Republic],

the PNR [Polish People's Republic], the Rumanian Socialist
Republic, the USSR, and the Czechoslovak Socialist Republic.

The first working session of GAIAPEI took place in
Warsaw, October 19-24, 1964, The basic tasks and oper-
ational approaches of the group were discussed there; re-
ports by participants on work in designing algorithmic
languages for data processing were heard. The feasi-
bilities of using the ALGOL 60 language (proposed by
the Soviet delegation) or the COBOL 61 language (proposed
by the Polish delegation) as a basis for developing a
standard algorithmic data processing language were ex-
amined. After hearing all sides, the necessity for
development at the present time of both approaches was
recognized., The working session requested that the
Academies of Sciences of the USSR and the PNR [Poland]
prepare plans for the following session for their re-
spective algorithmic languages.

At GATAPEI's second working session (held in Berlin,
March 22-27, 1965), plans for COBOL-GAIAPEI and ALGEC-
GATAPEI languages were discussed and accepted as the
basis for further work. To the authors of these proposals
was assigned responsibility for the preparation by the
next. meeting of final plans for their reference languages,
taking into consideration conclusions reached during the

discussions.

-xiii-

The major focus of the meeting was on questions of
unifying concepts and constructs of the languages under
- consideration. The participants heard and accepted a
plan for a GAIAPEI alphabet for the working group, pre-
pared by a commission created at the meeting. This
document specifies both the composition of the alphabet
and the ordering of its symbols. GOST [State Standard]
10859-64, "Machines, computing. Alphanumeric codes for
punchcards and paper tape' (USSR), was used as a basis
in developing the reference alphabet. A session decision
stipulated that all working materials of GAIAPEI must
use the reference alphabet exclusively, and that the
descriptions of the hardware representations of COBOL-
GATAPEI and ALGEC-GAIAPEI be accompanied by rules for
establishing uniformity between the symbols of their
languages and the reference alphabet symbols and by
provisions for the adopted alphabetical ordering.*

The delegation of the GDR [German] Academy of
Sciences was assigned the preparation for the next meet-
ing of a plan for terminological, syntactic, and semantic
unification of the basic concepts and constructs of the
ALGEC-GAIAPEI and the COBOL-GAIAPEI languages. Between
the second and third working sessions of GAIAPEI, repre-
sentatives of the GDR delegation met with representatives
of the Polish delegation (in Warsaw, June 24-27, 1965)
and the Soviet delegation (in Moscow, June 27-July 5, 1965)

and discussed with them problems connected with defining

“See fn., pp. 8, 42.--Trans.

-xiv-

some of the concepts of the languages under examination.
Agreement was reached on a number of basic points,aand
a plan was prepared for a terminology dictionary in
Russian, English, and German.

Representatives of the Institute of Cybernetics of
the Academy of Sciences of the Ukrainian SSR and of the
Central Economic-Mathematics Institute of the Academy of
Sciences of the USSR, in addition to the members of the
delegations, took part in the work of the third working
session (in Tashkent, October 24-31, 1965). The plans
for the ALGEC-GAIAPEI and the COBOL-GAIAPEI languages
were discussed, and were accepted and forwarded to the
Commission on Multilateral Cooperation in the Area of
"Scientific Problems of Computer Technology' of the
Academies of Sciences of the Socialist Countries, with
a request that these languages be recommended for algo-
rithmic description of economics problems and that trans-
lators be devised for their use in the cooperating
countries, It was recommended that the COBOL-GAIAPEIL
language be published in early 1966 in the [Polish]
journal Algoritmy, and the ALGEC-GAIAPEI language in one
of the publications of the Academy of Sciences of the
USSR. Comments from the meeting relating to, among other
things, a unified description of the formats for both
languages must be considered in preparing them for
publication.

A plan for the development in the cooperating
countries during the 1965-68 period of translators for
both languages for small, intermediate, and large com-

puters was recommended to the Commission on Multilateral

Cooperation of the Academies of Sciences of the Socialist
Countries. The working session recommended also that the
Commission take charge of the material developed by the
session on specifying requirements for the COBOL-GATAPEIL
and ALGEC-GAIAPEI tramslators.

The description of the translators must be done with
the help of a special symbolic language, a plan for which
is being prepared by the Polish delegation and will be
discussed at the next meeting. .

Since ALGEC-GAIAPEI was accepted by the session
without input/output procedures, the development of these
procedures must be completed by the Academy of Sciences
of the USSR by the next meeting. The approaéh to this
work was specified at the session's third meeting.

The session approved material on a terminology
dictionary for COBOL-GAIAPEI, prepared by the GDR dele-
tation, and recommended its acceptance as the basis for
further work on a joint GAIAPEI terminology dictionary.

A preliminary plan for the DAIA-2 language (a subset
of ALGEC-GAIAPEI), prepared by the delegation of the
Czechoslovak SSR, was also considered at the working
session.

The next (fourth) working session of GAIAPEI must

be convened in April 1966 in Budapest.

--M. Korolev

INTRODUCTION

A design group charged with the development of an
algorithmic language for describing economics problems
(including problems in planning, accounting, and statistics)
was created in November 1963 under the chairmanship of
Academician V. M. Glushkov, in accordance with a resolution
of a meeting called by the Main Administration on the '
Introduction of Computer Technology under the USSR State
Committee on the Coordination of Scientific Research Work.

At its sessions, the design group resolved to base
the language on the ALGOL 60 international algorithmic
language, eliminating some parts of it that were lacking
in precise interpretation or which created significant '
difficulty in designing effective translators. 1In order
to better accommodate the specifics of economics problems,
it was decided to introduce into the language a number of

additional features permitting:

1) description of documents and sets of documents
of comparatively complex structure with large and usually
variable quantities of data (various tables, records, orders,

indices, etc.);

2) description of means for selecting and processing

different items of information contained in such documents;

3) facility for handling textual information with

access to any textual element.

The present report is a description of such a language,
called ALGEC (ALGorithmic language for EConomics problems).

Wide use has been made throughout the report of material on

the ALGOL 60 language,1 its derivative SUBSET ALGOL 60
(IFIP),2 and the input/output procedures developed for
ALGOL.3 Sections wholly or partially derived from these
sources (i.e., all sections except 2.7, 3.4, 3.7, 3.8,
3.9, and 5.3) constitute the larger part of this report;
specific references are not given in the text. In addi-
tion, ideas from the COBOL-61 1anguage4 and its supple-
ment on input/output procedures5 have been used in this
work.

The proposed language can be used to write programs
for a number of typical problems involving the processing
of economics information and is in a form suitable for the
design of translators. The authors are aware that in the
course of this work shortcomings in the language will be-
come apparent and may necessitate some refining of the
language.

The first versions of the language were considered at
several meetings and seminars. The projected language was
distributed among a number of organizations. Their comments
helped the authors in selecting the final version. The
authors convey their appreciation to all the individuals
and organizations who submitted reviews and to those who
participated in the discussions.

Great assistance to the work of the designers was
rendered by Comrades Iu. Ia. Basilevskii, M. N. Yefimova,
and A. S. Frolov, to whom the authors express gratitude.

The present publication has been approved by the
Group on Algorithmic Languages for Processing Economics
Information (GAIAPEI) under the Commission of the Academies

of Sciences of the Socialist Countries on Multilateral

Cooperation in the Area of the Scientific Problems of
Computer Technology and is recommended at the present time
in the cooperating countries for describing economics
problems and for the design of translators.

GAIAPEI recommends that the authors of the language
proceed to the work of creating an input/output apparatus
and delegates to them authority to introduce into the
language corrections which become apparent in cbnnection
with designing the indicated apparatus, with developing
translators for the language, and with an accumulation of
experience in handling the algorithmic description of
economics problems. All indicated corrections to the

language must be approved by GAIAPEI.

1. STRUCTURE OF THE LANGUAGE

The ALGEC algorithmic language has two levels: a
reference language, and various hardware representations.
The reference language is the working language for all
AIGEC users, it serves as the model for all hardware repre-
sentations, and is also the basis and the guide for design-
ing translators. As far as possible, it has been adapted
to the publication of algorithms, inasmuch as its symbols
are defined so as to facilitate mutual understanding and
are not machine-limited or derived from some programmer
or pure mathematical notation. Publications on ALGEC must
use only the reference representation.

Each hardware representation is thus a condensation
of the reference language as dictated by the limited number
of characters on the particular computer's input eqﬁipment.
Each uses the existing set of characters and is the input
language of the translator for that computer. Each hard-
ware representation must be accompanied by a special set
of rules for translation from the reference language and
back.

The present description is given in terms of the
reference representation. This means that all objects
defined within the language are represented by a specified
set of so-called basic symbols. Any hardware representa-
tion can differ from the reference representation only in
its choice of symbols. Structure and content must be the
same for all representations.

The purpose of the ALGEC algorithmic language is to

describe the processing of data characteristic to economics

problems. In this regard, in addition to a fully-developed
system for describing wholly computational processes, means
are included in the language for describing, retrieving,

and transferring data organized in arbitrary hierarchical
structures consisting of string values (sequences of symbols),
in addition to numerical and logical values.

The basic concept used to describe the data processing
is that of an expression containing as constituent parts
constants, variables, and functions, joined together by
operator signs. The values of expressions can be assigned
to other quantities by means of explicit formulae called
assignment statements.

To show the flow of the data processing, certain other
statements have been added, in addition to statement selec-
tion conditions; these latter can describe, for example,
alternatives for or iterative repetitions of statements.

In order that these statements can function, there arises
the necessity for referencing statements; in this regard,
statements can be provided with labels. To join a sequence
of statements into one compound statement, it can be en-
closed in the statement brackets begin and end.

Statements are supported by declarations which are not
themselves computing instructions, but inform the trans-
lator of the existence and certain properties of objects
appearing in statements. These properties can be, for
example, the class of permitted values of variables, the
dimension of an array of numbers, the hierarchical struc-
ture of quantities, or even the set of rules defining some
function. A sequence of declarations followed by a sequence

of statements and enclosed between begin and end constitute

.1

-6-

a block. Every declaration appears in a block in this way
and is valid only for that block.

A program is a block or compound statement not con-
tained within another statement and which makes no use of
other statements not contained within it.

The syntactic rules and the semantics of the language

ots

are given below.

1.1 FORMALISM FOR SYNTACTIC DESCRIPTION

Syntax is described with the aid of metalinguistic
formulae.6 Their interpretation is best explained by an

example:
(ab) ::= (|[]<ab) (]| (ab)<d>

Sequences of characters enclosed in the brackets () repre-
sent metalinguistic variables whose values are sequences
of symbols. The marks ::= (with the meaning "is defined
as'") and | (with the meaning '"or") are metalinguistic con-
nectives. Any mark in a formula, which is not a variable
or a connective, denotes itself (or the class of marks
similar to it). Juxtaposition of marks and/or variables
in a formula signifies juxtaposition of the sequences

denoted. Thus, the formula above gives a recursive rule

o

“Whenever the precision of arithmetic is stated as
being in general not specified, or the outcome of a cer-
tain process is left undefined or said to be undefined,
this is to be interpreted in the sense that a program
only fully defines a computational process if the accom-
panying information specifies the precision assumed and
the kind of arithmetic assumed, as well as the course of
action to be taken in all such cases as may occur during
the execution of the computation.

for the formation of values of the variable (ab). It
indicates that <(ab) can have the value (or [, or that
given some permissible value of (ab), another value, can
be formed by following it with the character (or with
some value of the variable (d). If the values of (d) are
the decimal digits, some values of (ab) are: |

LCC(L(37¢(
(122345¢(

(((
(86

In order to facilitate the study, the symbols used
for distinguishing the metalinguistic variables (i.e., the
sequences of characters appearing within the brackets (),
such as ab in the above example) have been chosen to be
words describing approximately the nature of the corres-
ponding variable. Where words that have appeared in this
manner are used elsewhere in the text, they always refer
to the corresponding syntactic definition. In addition,
some formulae are given several times.

Definition:

(empty) ::= '
(i.e., the null string of symbols).

1.

1

-8-

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS.
BASTIC CONCEPTS

The reference language is built up from the following

ala

w

basic symbols:

(basic symbol) ::= {(quotation symbol) .| (quotation mark)
(quotation symbol) ::= (letter) | (digit) | (logical value) |
(special character) | (delimiter)

2.1 LETTERS

(letter) ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N[O|P|Q[R|S|T|U]|V]
wiX|Y|z|slr|o|x|3|ulf|aln]eju|uju|Llu]b|3]0]d]D

This alphabet in a hardware representation can be
restricted, or can be extended by the addition of any other
distinctive symbols (i.e., symbols not coinciding with any
digit, logical value, special character, delimiter, or
quotation mark).

Letters do not have individual meaning. They are used
for forming identifiers and quotat:ions‘r (see sections 2.4

and 2.6).

"Based on the alphabet adopted in GOST [USSR State
Standard] 10859-64. Machines, computing. Alphanumeric
codes for punchcards and papertape.

The ALGEC alphabet is a subset of the GAIAPEIL ref-
erence alphabet, which includes the capital letters of the
Russian alphabet, the lower-case letters of the Latin
alphabet, and all the remaining symbols of GOST 10859-64.

TIt should be particularly noted that throughout the
reference language underlining is used for defining inde-
pendent basic symbols (see sections 2.2.2 and 2.3). It
is understood that these symbols have no relation to the
individual letters of which they are composed. Within
the present report underlining will be used for no other
purpose [except in section headings].

2.3

2.2 DIGITS, LOGICAL VALUES, SPECIAL CHARACTERS, AND
QUOTATION MARKS

2.2.1 Digits

(Gigit) r:= 0]1]2]3]4(516171819

Digits are used for forming numbers, identifiers,

and quotations.

2.2.2 Logical Values

(logical value) ::= true | false

The logical values have a fixed obvious meaning.

2.2.3 Special Characters

(special character) ::= |%Zlolt =1t >17 17

ol KARRLEI N

The special characters are used only in quotations.

2.2.4 Quotation Marks

(quotation mark) ::= ‘|’

Quotation marks are used only for delimiting quotations.

2.3 DELIMITERS

(delimiter) ::= (operator) | (separator) | (bracket) \
(declarator)

(operator) ::= (arithmetic operator) | {(relational operator) |
(logical operator | (string operator) | (sequential operator)

(arithmetic operator) +]=1x|/ 1+t
<lzl=l2]> 4

(logical operator) ::= =|o|viAl-

(relational operator)

-10-

(string operator) ::= text | sense | quotation | «~

(sequential operator| ::= to | if | then | elserl for | do

(separator) ::= ,|.|w|:|;|_|*] step | until | while l
comment element

(bracket) ::= ([)|[]]| begin | end

(declarator) ::= Boolean | real | integer | string |

format | array | compound | switch | procedure | as |

label | value

Delimiters have a fixed meaning which for the most
part is obvious, or else will be given at the appropriate
place below.i

Such typographical features as a blank space or change
to a new line have no significance in the reference lan-
guage. They may, however, be used to facilitate reading.

For the purpose of including text among the symbols

of a program, the following rules for comments hold:

The sequence of basic symbols: is equivalent to

; comment (any sequence not
containing ;) ;

begin comment (any sequence
not containing ;) ; begin

end {(any sequence containing
neither end nor ; nor else) end

wf.

"For the underlined words representing the basic
symbols, changes in gender and number are permissible.
For example, noruueckoe, noruueckuli, soruueckas and
Jorvueckue [Boolean in neuter, masculine, feminine, and
plural nominative forms, respectively] represent the same
basic reserved word. 1In actual representations, the use
of the equivalent English words is also permitted....

-11-

By equivalence is here meant that any of the three

structures shown in the left-hand column can, in any

occurrence outside a quotation, be replaced by the symbol

shown in the right-hand column; this replacement has no
effect on the action of the program. It is further under-
stood that the comment structure encountered first in a
text when reading from left to right must take precedence
in being replaced over later structures contained in that
sequence.

Symbols other than the basic symbol reserved words

can be used in the texts of comments.

2.4 IDENTIFIERS

2.4.1 Syntax

(identifier) ::= (letter) | (identifier)(letter) |
{(identifier) (digit)

2.4.2 Examples

A

Al2

A2

TIME CARD

PAYROLL ACCOUNT FOR THE PERIOD FROM 26 THROUGH 31

2.4.3 Semantics

Identifiers have no inherent meaning, but serve to
denote simple variables, arrays, compounds, labels,
switches, and procedures. They can be chosen arbitrarily

(see, however, sections 3.2.4 and 4.7.7).

ey

2.

5

-12-

The same identifier cannot be used to denote two
different quantities except when these quantities have
disjoint scopes as defined by the declaration of the pro-
gram (see section 2.8) or are elements of a list structure

(see section 5.3.5).

2.5 NUMBERS

2.5.1 Syntax

(unsigned integer) ::= (digit) | (unsigned integer)(digit)

(integer) ::= (unsigned integer) | + (unsigned integer) |
- (unsigned integer)

(proper fraction) ::= . (unsigned integer)

(exponent) ::= y (integer)

(decimal number) ::= (proper fraction) | (unsigned integer)
(proper fraction)

(unsigned number) ::= (unsigned integer) | (decimal number) |
(exponent) | (decimal number) (exponent)

(number) ::= (unsigned number) | + (unsigned number) |

- (unsigned number)

2.5.2 Examples

0 -200.084 -.083,,-02
177 +07.43108 =10/
.5384 9.346+10 w4

+0.7300 2104 +10+5

-13-

2.5.3 Semantics

Decimal numbers have their conventional meaning.
The exponent is a scale factor expressed as an integral

power of 10.

2.5.4 Types

Integers are of type integer. All other numbers are

of type real (see section 5.1, Type Declarations).

2.6 QUOTATIONS

2.6.1 Syntax

(blank quotation) ::= (quotation symbol) | (blank quotation)
(quotation symbol) | (empty)

(quotation element) ::= (quotation symbol) | (quotation)

(open quotation) ::= {(quotation element) | {(open quotation)

(quotation element) | (empty)

(quotation) ::= ‘ (open quotation) ’

2.6.2 Examples

‘SK: ,_“[[[;‘A = l 2TV??
‘..THIS_IS_A_ ‘QUOTATION’’
‘LOAD_, *. .. ORGANIZATION ‘...’ AT_ADDRESS ‘...°*°

2.6.3 Semantics

In order to provide facility to handle an arbitrary
sequence of quotation symbols as a single integer, the
quotation marks and ’ have been introduced. The symbol

. denotes a one-character space (blank). It has no

2.

6.

3

.7

-14-

significance outside quotations. The two ‘ ’ symbols,
one following directly after the other, denote an empty
quotation.

Open quotations can be used as values of variables
having a string type declaration, as values of string ex-
pressions, and as values of functions (see section 3.4,
String Expressions). The value of a string expression,
represented by a quotation, is obtained by eliminating
the pair of outer quotes. Each open quotafion element
occupies a separate position., The positions are considered

as being numbered from left to right.

2.7 FORMATS

2.7.1 Syntax

(repeat) ::= ((subscript expression))

(space) ::= _, (repeat)

o

(P positions) ::= P | P {repeat)

(P part) ::= (P positions) | (P part)(P positions) |
(P part)(space)

(* positions) ::= % | * (repeat)

(* part) ::= (% positions) | (¥ part)(* positions) |
(* part)(space)

(suppressed part) ::= (P part) | (* part)

(9 positions) ::= 9 | 9 (repeat)

(9 part) ::= (9 positions) | (9 part)(9 positions) |
(9 part) (space)

(integer part) ::= (suppressed part) | (9 part) |
{(suppressed part) (9 part)

(space series) ::= (empty) | (space series)(space)

(unsigned integer format) ::= (space series)(integer part)

-15-

(M series) ::=M | (M series) M
(scale) ::= (M series)(space series) | M (repeat)(space series)
(+ positions) ::= + | + (repeat)
(+ part) ::= (+ positions) | (+ part){space series)(+ positions)
‘z— posifions) 1:= - | - (repeat) '
(- part) ::= (- positions) | (- part)(space series)(- positions)
(sign part) ::= (empty) | (space series)(+ part) |

(space series) (- part)

(integer format) ::= (unsigned integer format)

+ (space series) | (unsigned integer format)
- (space series) | (sign part)(unsigned integer format)
(point designator) ::= . (space series) | T (space series)

(roundoff designator) ::= {(empty) | U (space series)
(proper fraction format) ::= (point designator)(9 part)
(roundoff designator)
(prOper fraction scaled format) ::= (scale) (9 part)
(roundoff designator)
(scale designator) ::= (roundoff designator) | (scale)
(roundoff designator)
(decimal number format) ::= (unsigned integer format)
(scale designator) | (space series) (proper fraction format) |
{unsigned integer format)(proper fraction format) |
(space series) (proper fraction scaled format)
(mantissa format) ::= (space series)(9 part) |
(space series)(9 part)(roundoff designator) | (space series)
(proper fraction formét)(space series) (9 part)
(proper fraction format)
(mantissa sign) ::= (space series) + | (space series) -
(signed mantissa format) ::= (mantissa format) |

(mantissa sign){(mantissa format)

7.

2

-16-

(exponent format) ::= + (space series)(9 part) |

- (space series)(9 part)
(real format) ::= (sign part)(decimal number format) |

(decimal number format) + (space series) |

(decimal number format) - (space series) |

(signed mantissa format) i (space series) (exponent format)
(number format) ::= (integer format) | (real format)

(insert) ::= (space) | {quotation)

(S positions) S | S (repeat)

E | E (repeat)

(E positions)

(string format) ::= (S positions) | (E positions)
(insert)(string format) | (string format)(insert) |
(string format)(S positions) | (string format)

(E positions)

(format) ::= (number format) | (string format)

2.7.2 Examples

PPPP 0099,999

P (&) R ek,

wR <999M(3) o

*9 LM(G)9(8)u,,,

PP9 +(6)9.9(3)U

9(6) S (4)-(6)9T9(3)U_(3)
9 (N+M) L(4)-9.9(5)1-99,
+++99 ES(3), E(2)

--PP9 S(PxQ)

F*0- USSSU‘DOL’USSu‘CT81J

*9U _SS ‘=TH JANUARY’

-17-

2.7.3 Semanﬁics

A format imposes certain restrictions on the structure
of the string values with which it is associated (see sec-
tions 3.4, 5.1, and 5.2).

Formats are open quotations (see section 2.6, Quota-
tions) representing permissible values of format expressions.

A subscript expression (see section 3.1.4.2) con-
tained in a repeat must have a positive value; where this
value is n, the symbol preceding the repeat is repeated
n times; e.g., _(4) in a format (outside an insert quota-

tion) is equivalent to This means that any con-

(ST AR
struction of the form S (repeat), where S is a symbol that,
according to the syntax, can precede a repeat, is the same

as the sequence

where n is the value of the subscript expression in the

repeat.

2.8 QUANTITIES, KINDS AND SCOPES ' -

The following kinds of quaﬁtities are distinguished:
simple variables, arrays, compounds, labels, switches, and
procedures.

The scope of a quantity is the set of statements and
expressions within which the declaration of the first-level
identifier associated with that quantity is valid (see
section 5, Declarations). The scope of a label is de-

termined in accordance with section 4.1.3.

-18-

2.9 VALUES AND TYPES

A value is some ordered set, the elements of which
can be numbers, open quotations, and logical wvalues
(special cases: an ordered set of numbers or an individual
number, an ordered set of open quotations or an individual
open quotation, an ordered set of logical values or a single
logical value), or some label.

Certain of the syntactic units are said to possess
values. 1In general, these values change during the exe-
cution of the program. The values of expressions and
their constituents are defined in section 3. The value
of a subarray designator and an array identifier is the
ordered set of values of the corresponding array of sub-
scripted variables (see section 3.1.4.1), while the value
of a constituent designator is the ordered set of values
of its corresponding variable-constituents (see section
3.1.5).

The various types (integer, real, Boolean, string)

basically denote properties of values. Values declared
as compounds can consist of components with differing
value properties. The types associated with syntactic

units refer to the values of these units.

-19-

3. EXPRESSIONS

In the language the primary constituents of the pro-
grams describing algorithmic processes are arithmetic,
string, Boolean, designational, and multicomponent ex-
pressions. The constituents of these expressions are
numbers, quotations, logical values, variables, function
designators, subarray indicators, and constituent indi-
cators; arithmetic, logical, and string operators; rela-
tional operators, sequential operators, and parentheses.
Since the syntactic definition of both wvariables and
function designators contains expressions, the definition

of expressions, and of their constituents, is necessarily

recursive.
(expression) ::= (arithmetic expression) | (string expression)
(Boolean expression) | (designational expression) |

(multicomponent expression)

3.1 VARIABLES

3.1.1 Syntax

(variable identifier) ::= {(identifier)
(array identifier) ::= (identifier)

(simple compound identifier) ::= (identifier)

{(compound-array identifier) ::= (identifier)
(subscript expression) ::= (arithmetic expression)
(position list element) ::= (subscript expression) |

(subscript expression) : (subscript expression)

1.2

-20-

(position list) ::= (position list element) |
(position list) , (position list element)
(simple variable) ::= (variable identifier) |
(variable identifier) [element {(position list)]
(subscript list) ::= (subscript expression) |
(subscript list) , (subscript expression)
(subscripted variable) ::= (array identifier) [(subscript list)] |
(array identifier) [(subscript list) element (position list)]
(variable-constituent tail) ::= (variable identifier) |
(variable identifier) [element (position list)] |
(array identifier) [(subscript list)] |
(array identifier) [(subscript list) element (position list)] |
(simple compound identifier) . (variable-constituent tail) |
(compound-array identifier) [(subscript list)] .
(variable~constituent tail)
(variable-constituent) ::= (variable-constituent tail)
(variable) ::= (simple variable) | (subscripted variable) |

{(variable~constituent)

3.1.2 Examples

SHOP

TABLE NUMBER [element I]

PART [elements I : K+1]

A1l2, E[6, B, 31]

RATE [T, S x N/M, D elements 1, 3, 4, 6 : 9]

Al1]. B[K]

A2. R. L

TABLE [NUMBER]. SECTOR [S1, S2]. ZONE [P elements 4 : 8]

-21-

3.1.3 Semantics

A variable is a designation given to a single value.
This value can be used in expressions for forming other
values and can be changed at will by means of assignment
statements (see section 4.2).

The type of the value of a given variable is defined
by the declaration for the variable itself (see section
5.1, Type Declarations) or for the corresPOhding array
identifier (see section 5.2, Array Declarations); these
declarations can be elements of the declaration of a list

structure (see section 5.3, Compound Declarations).

3.1.4 Subscripts

3.1.4.1 Subscripted variables designate values which
are components of multidimensional arrays (see section 5.2,
Array Declarations). Each arithmetic expression of the
subscript list occupies one subscript position of the sub-
scripted variable, and is called a subscript. The complete
list of subscripts is enclosed in the subscript brackets
[J. The array component referred to by a subscripted
variable is specified by the actual numerical values of its
subscripts (see section 3.3, Arithmetic Expressions).
3.1.4.2 Each subscript position acts like a variable
of type integer and the evaluation of the subscript expres-
sion on the position list is understood to be equivalent
to assigning the value to this fictitious variable (see
section 4.2.7.2). The value of the subscripted variable
is defined only if the value of the subscript expression
is within the subscript bounds of the array (see section

5.2, Array Declarations).

3.1.4.2

3.1.4.3

-22=

3.1.4.3 A position list can be included only in a
string type variable or in a variable with the proper

format as specified by its declaration (see sections 5.1

and 5.2). The individual positions of the elements of

the string value (see section 5.1.3.2) of the corresponding
variable without a position list are ehumerated in this
list. The sequence of these elements makes up the value

of the given variable., If the position list consists of
only one subscript expression, and the corresponding element
is a quotation, then an open quotation obtained from this
quotation by removing its pair of outer quotation marks
serves as the value of the variable.

A colon in a position list element denotes a sequential
enumeration of positions, starting from the subscript ex-
pression immediately to its left and finishing with the
subscript expression at its right. If the value of the
second expression is less than the value of the first ex-
pression, then that element of the position list distin-
guishes the null set positions.

As an example, for the string variable A, the value
of which is defined by the expression, "“fSyX ‘ANTOK®’,
conversion to specified position values is handled in the

following manner:

Variable Value
Alelement 1] f
Alelements 3 : 2, 4] K
Alelement 6] ATIT3K
Alelements 1 : 1, 2, 6] 3 ‘ANT3K’
Alelements 1 : 6] ALK ‘ANII3K?

-23-

The value of variable Alelement 7] is not defined for
the given example.
A position list must provide the sequence of elements

in the strictly ascending order of their position numbers.

3.1.5 Variable-Constituents

A variable-constituent serves to name an individual
value that is a primary component of a list.(see section
5.3, Compound Declarations). Simple compound identifiers
and the names of compound-array components (in the form
of subscripted variables in which the given primary com-
ponent is included) are sequentially enumerated in this
name for all levels beginning with the first. The last
level indicates the identifier of the variable itself or,
possibly, an individual array component with the indicated
list of element positions. The names of the different
levels are separated by periods.

A variable-constituent of the form
N. Il. I2..... IK. VCT

(where N is some sequence of names; I1, I2,...,IK are
simple compound identifiers; and VCT is a variable-con-

stituent tail) can be abbreviated as
N. VCT

The abbreviated notation is equivalent to the complete
notation if there is no possibility of ambiguity arising
as a result of the abbreviation, and if and only if a

variable~constituent notation of the form

N. VCTI

3.

1.

5

.2

-24-

(where N is the same sequence of names, and VCTI is a
variable-constituent tail with the same initial identifier
as VCT) can arise only when the full notation of the

variable-constituent N. I1. I2..... IK. VCTI is abbreviated.

3.2 FUNCTION DESIGNATORS

3.2.1 Syntax

(procedure‘identifier> :i= (identifier)

(actual parameter) ::= (expression) | (array identifier) |
(procedure identifier) | (switch identifier}

(letter quotation) ::= (letter) | {(letter quotation)(letter)

(parameter delimiter) ::= , |) (letter quotation) : (

(actual parameter list) ::= (actual parameter) |
(actual parameter list)(parameter delimiter)

(actual parameter)

(actual parameter part) ::= ((actual parameter list)) |
(empty)
(function designator) ::= (procedure identifier)

{(actual parameter part)

3.2.2 Examples

LENGTH (ADDRESS)

MULTIPLY (‘,—%X—’, 20)

CALCULATE LAST INTERVALS (PART CODE [I])
LIBRARY (‘SHIFT’, PART CODE [I]) DIRECTION:

(‘RIGHT’) SIZE: (CALCULATE LAST INTERVALS)
AVERAGE (PROCESS, N)

-25«

3.2.3 Semantics

Function designators define single numerical, logical,
or string values, obtained as the result of the application
of given sets of rules defined by a procedure declaration
(see section 5.5, Procedure Declarations) to fixed sets of
actual parameters. The rules governing specification of
actual parameters are given in section 4.7. Not every
procedure declaration defines the wvalue of a function

designator.

3.2.4 Standard Functions

Certain identifiers should be reserved for the stan-
dard functions of analysis, which are expressed as pro-
cedures. It is recommended that this reserved list should
contain:

ABS (E) for the modulus (absolute value) of the

value of the expression E

SIGN(E) for the sign of the value of E (+1 for
' E>0, 0 for E=0, -1 for E < 0)

ENTIER(E) for the largest integer not greater than
the value of E

SQRT (E) for the square root of the wvalue of E

SIN(E) for the sine of the value of E

COS(E) ~ for the cosine of the value of E

ARCT (E) for the principal value of the arctangent
of the value of E

LN(E) for the natural logarithm of the value of E

EXP(E) for the exponential function of the value
 of E (eb).

3.

2.4

‘2.4

26—

These functions are all understood to operate in-
differently on arguments both of type real and integer.
They will all yield values of type real, except for SIGN(E)
and ENTIER(E) which have values of type integer. 1In par-
ticular representations these functions can be used without
explicit declarations (see section 5, Declarations).

Additionally, it is recommended that the reserved
list include the functions LENGTH(T) and SIZE(T), defined
for string expressions and variables, and also for vari-

ables of type real or integer if in the appropriate

declaration a format expression is given. The value of
the function designator LENGTH(T) is equal to the number
of basic symbols in the current string value of the argu-
ment. The value of the function designator SIZE(T) is
equal to the number of quotation elements in the current
string value of the argument. 1If the string value of
expression T is a blank quotation, then the values of both
function indicators are the same.

The effect of a function is clear from the following

examples:
T Length(T) Size(T)

o 0 0

‘o’ 3

I« 5 DECEMBER, 1964’ 17 17
M4+.,.,01.99-2" 11 11

lipa‘p?e 4 2

MN LENGTH(M) + LENGTH(N) |SIZE(M) + SIZE(N)

3.

-27-

Accessing a LIBRARY standard procedure (see section
4.7.7) is permitted as a use for a function designator

only if the appropriate library subroutine specifies a

separate value as the result of its operation.

3.2.5 Transfer Functions

The existence of functions for transferring values
of functions of one type into appropriate values of an-
other type is understood. The operation of these functions

is described in section 4.2.7.

3.3 ARITHMETIC EXPRESSIONS

3.3.1 Syntax

(adding operator) ::= + | -

(multiplying operator) ::= x | / | =

(primary arithmetic expression) ::= (unsigned number) |
(variable) | (function designator) |
(secondary string expression) sense (format expression) |
({arithmetic expression)) .

(factor) ::= (primary arithmetic expression) |
(factor) t (primary arithmetic expression)

(term) ::= (factor) | (term)(multiplying operator)(factor)

(simple arithmetic expression) ::= (term) | (adding operator)
(term) | (simple arithmetic expression)(adding operator)
(term)

(if clause) si= i1f (Boolean expression) then

(arithmetic expression) ::= (simple arithmetic expression) |
(1f clause)(arithmetic expression) else

(arithmetic expression)

3.

1

3.

3.

3

-28-

3.3.2 Examples

25.6

7.394,~8

WAGE

TARIFF TABLE [POSITION]. RATE

MAX (PROCESS, N)

(BALANCE + INCOME - EXPENDITURE)

T sense ‘4+99.99°

X12 + Y12

if DEDUCTION then if D > 100 then 0.97 else 1 else if
D < 50 then 1.05 else 1.025

if TAX SUM < 60 then 0 else if TAX SUM = 70 then 0.41
x (TAX SUM - 60) else 0.06 x TAX SUM

3.3.3 Semantics

An arithmetic expression is a rule for computing a
numerical value. 1In the case of simple arithmetic expres-
sions, this value is obtained by executing the indicated
arithmetic operations on the actual numerical values of the
primary arithmetic expressions included in the given ex-
pression, as explained in detail in section 3.3.4 below.

The actual numerical value of a primary arithmetic
expression is obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the computing rules defining the procedure (see section
5.4.4, Values of Function Designators). These rules are
applied to the current values of the procedure parameters
given in the expression.

The sense operator in a primary arithmetic expression

is defined if and only if the value of its right-hand

3.

-29-

operand is numerical in format (see section 2.7) and the
value of its left-hand operand is the notation of a number
appropriate to that format (see section 3.4.6). The re-
sult of the operation is the numerical value defined by
that notation. More precisely, the value of the left-hand
operand must be a feasible value for a string expression of

the type
(primary arithmetic expression) text (format expression’

with the same right-hand operand value as in the original
sense operator. The sense operator is defined such that the

value of the expression
PSE sense FEl text FE2 ,

wherein format expressions FEl and FE2 have the same value,
matches the value of the PSE secondary string expression.

Finally, the values of arithmetic expressions enclosed
in parentheses are obtained recursively from the values of
the other three kinds of primary expressions.

The value of an arithmetic expression of the form

if BE then AEl else AE2 ,

where BE is a Boolean expression (see section 3.5, Boolean
Expression), and AEl and AE2 are arithmetic expressions, is
recursively defined. If the value of BE is true, the value
of the entire arithmetic expression is the value of arith-
metic expression AEl; if the value of BE is false, the
value of the entire arithmetic expression matches the

value of arithmetic expression AE2. According to the
syntax, the symbols then and else in an arithmetic ex-

pression are used analogously to opening and closing brackets.

3.

3

3

.3.4

-30-

3.3.4 Operators and Types

The constituents of simple arithmetic expressions
(excluding Boolean expressions used in if clauses and
operands of the sense operator) must be of types real or
integer (see section 5.1, Type Declarations). The sense
of the basic operators and the types of their results are
given by the following rules:

3.3.4.1 The operators +, -, and x have the conven-
tional meaning (addition, subtraction, and multiplication).
The type of the result is integer if both operands are of
type integer, otherwise real.

3.3.4.2 The / and + operators denote division, carried
out with due’regard for the rules of precedence (see section

3.3.5). Thus, for example,
A/B x 7/(R - S) x D/E
means
(C((A/B) x 7)/(R - 8)) x D)/E ,

The operator / is defined for all four combinations of

types real and integer and will yield results of type real

in any case,.
The operator + is defined only for two operands, both
of type integer. The result is also of type integer,

mathematically defined as follows:
A + B = SIGN(A/B) x ENTIER(ABS(A/B)) .

3.3.4.2 The operator t in the construction {(factor)
t (primary arithmetic expression) denotes exponentiation,
where the factor is the base and the primary arithmetic

expression is the exponent. Thus, for example,

3.3.5.1

-31-

2+ Nt K means (ZN)K

2

while

ath

2+ (Nt M) means 2

Writing I for a number of type integer, R for a number of

type real, and A for a number of either integer or real

type, the result is given by the following rules:

At I If 1 >0, then A x A x ... x A (I times), of
the same type as A.

If I =0 and A # 0, then 1, of the same type
as A.

If T = 0 and A = 0, then undefined.

If T< 0 and A # 0, then 1/(A x A x ... X A)
(the denominator has (-I) factors), of type
real.

If T < 0 and A = 0, then undefined.

At R If A>0, then EXP(R x LN(A)), of type real.
If A
If A
If A < 0, then always undefined.

0 and R > 0, then 0.0, of type real.

0 and R = 0, then undefined.

3.3.5 Precedence of Operators

Operators within one expression are generally executed
from left to right, with the following additional rules:

3.3.5.1 According to the syntax given in section
3.3.1, the following rules of precedence hold:

first: operators in string expressions, according

to section 3.4

second: sense

third: t

fourth: x / +

fifth: + -

3.3.5.2

-32-

3.3.5.2 The expression between a left parenthesis
and the matching right parenthesis is evaluated by itself
and this value is used in subsequent calculations. Con=-
sequently, the desired order of execution of operations
within an expression can always be arranged by appropriate

positioning of parentheses.

3.3.6 Arithmetic of Real Quantities

Numbers and variables of type real must be interpreted
in the sense of numerical analysis--i.e., as entities de-
fined inherently with only a finite accuracy. Similarly,
the possibility of the occurrence of a finite deviation
from the mathematically defined result in any arithmetic
expression is explicitly understood. Nevertheless, no
exact arithmetic is specified, and it is indeed understood
that different hardware representations may evaluate arith-
metic expressions differently. The control of the possible
consequences of such differences must be carried out by the
methods of numerical analysis. This control must be con-
sidered a part of the process being described, and is, there-

fore, expressed in terms of the language itself.

3.4 STRING EXPRESSIONS

3.4.1 Syntax

(primitive string expression) ::= (quotation) | (variable) |
(function designator) | ((string expression))
(format expression) ::= ‘(format)’ | (variable) |

(function designator) | ({(string expression})

3.4,

-33-

(primary string expression) ::= (primitive string expression) |
quotation (primitive string expression)

(secondary string expression) ::= (primary string expression) |
(primary arithmetic expression) text (format expression) |
(secondary string expression) text (format expression) |
(secondary string expression) sense (format expression)

(simple string expression) ::= (secondéry string expression) |
(simple string expression) « (secondary string expression)

(string expression) ::= (simple string expression) | (if clause)

(string expression) else (string expression’

3.4.2 Fxamples

“QUOTATION’
9.9(5)199°

4,888, “DOL’_SS_ ‘CTS’.’
DATE

MATERIAL [N - 1]
Alelements 1 : 4]
quotation M[element K]
TEXT (A, ‘S(N)’)

if L then ‘I’ else ‘0’
(Af I <5 then ‘9(4)+’ else F)
T text Fl sense F2+T1

3.4.3 Semantics

A string expression is a rule for evaluating a string.
A string value is an open quotation (see sectionf2.6,
Quotations). Any string operator is undefined if the se-

quence of symbols generated by it is not an open quotation.

3

3.4.4

-34-

The principles of evaluating string expressions are
completely analogous to the rules given in section 3.3.3
for arithmetic expressions.

Variables and function designators used as primitive
string expressions or format expressions must be declared
as type string. Such variables can have format expressions

in their declaration (see sections 5.1 and 5.2).

3.4.4 Quotation Operator

The quotation operator involves converting an open
quotation with an operand value into a quotation by means

of including the open quotation within quotation marks.

3.4.5 Text Operator

The type of the left-hand operand must agree with the

value of the right-hand operand, as shown below.

Right-hand
Left-hand operand type operand value
integer or real numerical format
string string format

The result of a text operation is a string representa-
tion of the value of its left-hand operand. 1If the right-
hand operand has a numerical format, then the string value
obtained is a blank quotation consisting of as many symbols
as there are symbols in the format, excepting the symbols
M, T, and U. TIf the right-hand operand has a string format,

then the string value obtained is an open quotation. The

3.4.6.1

-35-

number of elements of that quotation is equal to the number

of S, E, and . symbols encountered in the value of the
right-hand operand outside quotations that are inserts, plus
the number of elements of such quotations (see section 2.7,
Formats). The affected elements are considered to be numbered
from left to right; this enumeration scheme defines the
correspondence of the format elements (of individual symbols
in particular) to the elements of the value of the obtained

string.

3.4.6 Text Operator with a Numerical Format

The result of a text operator with a numerical format
is obtained from the value of the first operand by means
of removing from it the unaffected symbols (M, T, and U),
and substituting symbols representing (roughly speaking)
the numerical value of the left-hand operand in decimal
notation for symbols other than space symbols; thus, space
in a format indicates a required dispersal of the resulting
string representation of a numerical value by the appro-
priate quantity of space symbols. For a numerical format
with an exponent, the representation of the decimal number
is maintained in normalized form with the exponent indicated.

Depending on the value of the right-hand operand, a
decimal representation in a left-hand operand can be noted
by inserting the symbols _ and * , adding the + and - signs,
and removing the decimal point. This is more accurately
described by the following rules. ;

3.4.6.1 The absolute value of a numerical quantity can
be represented, as is well known, in the form of a sequence

infinite at both ends and consisting of digits and a decimal

3.4.6.2

-36-

~point. TIf two sequences have the same numerical value, then

the sequence containing only a finite number of digits other

than zeros is maintained. The left-most nonzero digit is
called the highest-order digit. Zeros to the left of the
highest-order digit are regarded as nonsignificant. A
numerical value equaling zero is represented by a sequence
in which all digits are zeros; they are all considered non-
significant.

3.4.6.2 Congruence of Operand Positions. In the case
of a numerical format without an exponent, the decimal
representation of the value of the left-hand operand is
equalized with the value of the right-hand operand accord-
ing to the position of the decimal point, and then is
rounded off or truncated (see sections 3.4.6.4 and 3.4.6.5).
The sign of the number can be added in either at the be-
ginning (see section 3.4.6.3) or at the end of the string
representation of the numerical value,

In the case of a numerical format with an exponent,
the decimal representation of the nonzero value of the left-
hand operand is equalized with the value of the right-hand
operand according to the highest-order digit--i.e., this
digit is placed in the left-most digit position of the
mantissa (see section 3.4.6.3); the representation of the
mantissa is rounded off (which may require a new equaliza-
tion) or truncated; the corresponding value of the exponent
represented in the resulting string value positions match-
ing the exponent format according to the integer representa-
tion rules is found. The symbol ;; is placed in the result-
ing string value position corresponding to itself in the

format. If the value of the left-hand operand is equal to

-37-

zero, all digit positions of the mantissa and the exponent
are filled with zeros.

It should be kept in mind that spaces should not be
used in the value of a right-hand operaﬁd during equalization.

3.4.6.3 Suppressing Zeros, Suppressing and Positioning
Signs. Each symbol P, * , or 9 in a format represents a
separate digit position of the obtained string value; the
symbols + and - in the sign part, except for the one at the
far left, also represent separate digit positions of the
obtained string value. The letter P denotes suppression of
‘a nonsignificant zero and substitution by the space symbol;
the symbol * denotes suppression of a nonsignificant zero
and substitution by space symbols, except for the right-most
zero, for which the symbol + or - , or the _ (see below), is
substituted. The digit 9 means that suppression can occur
at no time in that'position. |

The sign of a number is placed in the resulting string
value in accordance with the following rules:

If there is a + sign in the format (regardless of the
format of the exponent), then in the appropriate position
of the obtained string value is placed a + symbol when the
value of the left-hand operand is non-negative, and a -
symbol when the wvalue is negative.

If there is a - sign in the format (regardless of the
format of the exponent), then in the appropriate position of
the obtained string value is placed the space symbol when the
value of the left-hand operand is non-negative, and a -
symbol when the value is negative.

If the sign is missing in the format (regardless of

the format of the exponent), then the value of the left-hand

J.4.0.4

-38-

operand must be non-negative, or else the text operator
is undefined. .

3.4.6.4 Decimal Point. The position of the decimal
point is shown in the format by the symbol . , the letter
T, or the construction (scale).

In the first case, the decimal point is actually
inserted in the corresponding charactef—position of the
obtained string value.

In the second, the decimal point is implied in the
string value--i.e., there is nothing designating it and
its existence and location are defined only by the format.

The (scale) construction in a scale indicator points
to the implied location of the decimal point as being to
the right of the right-most digit position by as many
positions as there are M symbols in the (scale) construc-
tion. 1In the case of a proper fraction scaled format, the
construction (scale) points to the implied location of
the decimal point as being to the left of the left-most
digit position in the (9 part) construction by as many
positions as there are M symbols in the (scale) construc-
tion. If in the latter case a sign part precedes the
proper fraction scaled format, then all + or - signs,
except the right-most one, are considered to be the same
as the _ symbol.

If a numerical format contains neither the symbol . ,
the letter T, nor the (scale) construction, then the
decimal point position is implied as being directly to the
right of the right-most digit position, not counting the
digit positions of the exponent,

3.4.6.5 Rounding off and Truncating. 1In transfers

to a string value, a noninteger number is usually rounded

-39-

off; i.e., the nearest number to it that can be precisely
represented in accordance with the given format is sub-
stituted (see, however, section 3.4.6.6). If though, there
is a letter U in the format, "truncation" (elimination of
the low~order character-positions) occurs, with the last-
stored character being the right-most position, not count-
ing the digit positions of the exponent.

3.4.6.6 Overflow. If the value of a left-hand operand
according to its absolute value is too great to be repre-
sented in the form indicated by the right-hand operand, then
the result of the text operator is undefined. If the value
of an -exponent is negative and too great according to its
absolute value to be represented in the form indicated by
the given exponent format, then the text operator is exe-

cuted as if the value of the left-hand operand were zero.

3.4.7. Text Operator with a String Format

The execution of a text operator with a string format
begins by ascertaining the correspondence, from left to
right, of the E and S symbols, not belonging to inserts,
of a right-hand operand value to elements of the left-hand
operand value in an exponent. Where necessary, the value
of the left-hand operand is supplemented on the righﬁ with
a sufficient quantity of space symbols. The result of a
text operator is obtained from the value of the right-hand

'Bberand by substituting in it for the symbols E and S, not
belonging to inserts, the corresponding elements of the
left-hand operand value and removing the outer quotation
marks which are the insert elements. Each symbol S can be
exchanged for an element consisting only of one quotation

symbol.

-40-

3.4.8 Sense Operator in a String Expression

The execution of the sense operator with a string
format begins by ascertaining the correspondence, from
left to right, of all elements under consideration of a
right-hand operand value (see section 3.4.5) to the elements
of the value of the left-hand operand in an exponent. Where
necessary, the value of the left-hand 6perand is supplemented
on the right by a sufficient quantity of space symbols. The
result of the sense operator is obtained from the value of
the right-hand operand by substituting in it for the symbols
E and S, not belonging to inserts, the corresponding elements
of the value of the left-hand operand and removing the in-
serts. Each symbol S can be exchanged for an element con-

sisting only of one quotation symbol.

3.4.9 Concatenation Operator

The result of the concatenation operator (<) is a sequence
of symbols of the value of a left-hand operand followed by a

sequence of symbols of the value of a right-hand operand.

3.4.10 Precedence of Operators

Operators within an expression are usually executed from
left to right in accordance with the following additional
rules,

3.4.10.1 According to the syntax given in section

3.4.1, the following precedence order is maintained:

first; quotation

second: text and sense

third: -

-41-

3.4.10.2 The use of parentheses is interpreted in

the sense given in section 3.3.5.2.

3.5 BOOLEAN EXPRESSIONS

3.5.1 Syntax

(relational operator) ::=< | = | =] 2 | > | #
(arithmetic relation) ::= {(simple arithmetié expression)

(relational operator)(simple arithmetic expression)
(string relation) ::= (simple string expression)

(relational operator)(simple string expression)

(relation) ::= (arithmetic relation) | (string relation)
(Boolean primary) ::= (logical value) | (variable) |
(function designator) | (relation) | ((Boolean expression))

(Boolean secondary) ::= (Boolean primary) | — (Boolean primary)
(Boolean monomial) ::= (Boolean secondary) | (Boolean monomial}
A (Boolean secondary)
(Boolean term) ::= (Boolean monomial) | (Boolean term)
vV (Boolean monomial)
(implication) ::= (Boolean term) | (implication)
> (Boolean term)
(simple Boolean) ::= (implication) | (simple Boolean)
= (implication)
(Boolean expression) ::= (simple Boolean) | (if clause)

(Boolean expression) else (Boolean expression)

3.5.2 Examples

PRICE = 15.5
A-B = ‘SECTION_5’
CHECK (K)

“42-

BALANCE + INCOME - EXPENDITURE > O A BALANCE - NATURAL
BALANCE = INVENTORY RESULT

FAMILY NAME = ‘LEBEDEV’

SHOP # ‘FORGE’ V SHOP CODE # ‘15’

DATE [M] > ‘18-05—64°

A < ‘27.108° A B [element I] > ‘D’

if K< 1 then S >M else N <R

if if if A then B else C then D else E then F else G # 1

3.5.3 Semantics

A Boolean expression is a rule for computing a logical
value. The principles of evaluation are entirely analogous

to those given for arithmetic expressions in section 3.3.3.

3.5.4 Types

Variables and function designators entered as Boolean

primaries must be declared Boolean (see sections 5.1, 5.2,

and 5.5.4),

3.5.5 Operators

3.5.5.1 Arithmetic relations have the value true in
the case where the corresponding relation is satisfied for
the arithmetic expressions appearing in it; in the reverse
case, they have the value false,

Checking the correctness of a string relation is based
on lexicographic ordering of string values as produced by

ala

the following ordering of basic symbols (in ascending order):

“This ordering is distinguished from the ordering of
symbols of the GAIAPEI reference alphabet in that in the
latter the letter b follows the letter I , and then comes
the complete set of upper-case Latin-alphabet letters,

-43=

0123456789 +-/,._ 10t ()x=35101*
¢> 4 <> ABBTIEXSURKIMEONDPCTVY
X UUYNUHDAIWADFGIJIJLNQRSUVWZ

° ,

T<=2VASAar=%0l=-_121% =719

x Vv

basic symbols, expressed as underscored words, in

alphabetical order.*'

In executing a relational operator on string values
of different lengths, the shorter of them is regarded as
being filled out on the right with enough space symbols
to equalize the lengths.

3.5.5.2 The values of the logical operators -, A,
v, o, and = are given by the following function table,

in which T denqtes true and F false:

Bl F F T T

B2 F T F T
- Bl T T F F
Bl A B2 F F. F T
Bl Vv B2 F T T T
Bl o B2 T T F T
Bl = B2 T F F T

“The symbol represented here as ’’ appears to‘be

equivalent to the » symbol in section 2.2.3.--Trans.

.5,

.

3.5.6 Precedence of Operators

The operators within one expression are generally
executed from left to right, with the following additional
rules:

3.5.6.1 According to the syntax given in section
3.5.1, the following rules of precedence hold:

first: simple arithmetic expressions according to
section 3.3.5, simple string expressions
according to section 3.4.5,

second: < = = = > #

third: =
fourth: A
fifth: %
sixth: -
seventh: =

3.5.6.2 The use of parentheses is interpreted in

the sense given in section 3.3.5.2.

3.6 DESIGNATIONAL EXPRESSIONS

3.6.1 Syntax

(label) ::= (identifier)

(switch identifier) ::= (identifier)

(switch designator) ::= (switch identifier)
[(subscript expression)]

(designational expression) ::= (label) | (switch designator)

3.6.2 Examples

PO
CHOOSE [N - 1]
SM [if Y < O then H else H + 1]

“45-

3.6.3 Semantics

A designational expression is a rule for obtaining a
label of a statement (see section 4, Statements). Again,
the principles of evaluation are entirely analogous to the
rules given for arithmetic expressions (section 3.3.3). A
switch designator refers to the corresponding switch declara-
tion (see section 5.4, Switch Declarations), and by the
actual numerical value of its subscript expfession selects
one of the labels comprising the switch list in the switch
declaration. This value serves as the number of a label

on the switch list, reading from left to right.

3.6.4 The Subscript Expression

The evaluation of the subscript expression is analogous
to. that of subscripted variables (see section 3.1.4.2). The
value of a switch designator is defined only if the sub-
script expression assumes one of the positive values 1, 2,
3,...,n, where n is the number of entries in the switch

"list.

3.7 SUBARRAY DESIGNATORS

3.7.1 Syntax

(subscript scale element) ::= (subscript expressioh)]
(subscript expression) : (subscript expression)
(subscript scale catalog) ::= (subscript scale element) \

(subscript scale catalog) , (subscript scale element)
(subscript scale) ::= (subscript scale element) |

((subscript scale catalog))

7.2

-46-

(subscript scale list) ::= (subscript scale) |
(subscript scale list) , (subscript scale)
(subarray designator) ::= (array identifier)
[(subscript scale list)] | (array identifier)

[(subscript scale list) element (position list)]

3.7.2 Examples

A[K, 10 : N]
PL(1, 3, 6 : 15), (S : T+ 1, U)]
TM[1 : 10 elements 2, 4, 6, 8]

3.7.3 Semantics

The subarray designator defines some ordered subset
of array components (subscripted variables). This subset
consists of all components, each subscript of which has a
value permissible according to the subscript scale. The
subarray designator can be used outside a compound desig-
nator (see section 3.8) only if the array identifier is a

first-level identifier (see section 5).

3.7.4 Subscript Scale

The number of subscript scales in a scale list must
equal the array dimension. Each subscript scale element
either is a subscript expression and defines a permissible

value equal to an integral value of that expression (see

section 3.1.4.2), or consists of two subscript expressions
separated by a colon; in the latter case, sequential inte-
gral values, beginning with the value of the first subscript

expression and ending with the value of the second subscript

3.

~47-

expression in the pair, are permissible. If the value of
the second subscript expression is less than the value of
the first, then that subscript scale element defines an
empty set of permissible values. TIf the subscript scale
catalog consists of more than one element, then it is
obligatory that it be enclosed in parentheses. The sub-
script scale is defined only if it defines at least one
permissible value, if all permissible values are within
the appropriate bound pair according to the array declara-
tion, and if all permissible values defined by the scale
catalog in the order of the sequence of the elements from
left to right reflect a strictly increasing sequence. The
subarray designator is undefined if just one of the sub-

script scales is undefined.

3.7.5 Subarray Length

The total number of permissible subscript values,
determined by the appropriate subscript scale, is termed the
length of the subarray's individual measurement. As in the
case of an array, the product of the lengths of all measure-

ments is called the subarray length.

3.7.6 Ordering of Subarray Components

The order of subarray components is determined by the
ordering of the components of the array from which the given

subarray 1s extracted (see section 5.2.7).

3.7.7 Position List

A position list can occur in a subarray designator only

if the array is declared as string or the format of the array

7.

7

.7.

8

-48-

components is indicated in the array declaration. Thus, as
in the case of a variable, the position list indicates which
elements of the string value of an array component without

a position list produce the values of the appropriate com-

ponent of the given subarray.

3.7.8 Complete Subarray Designator

A subarray designator is considered complete if every
value that the subscript can take on from among the current
values of the subscript bounds (see sections 3.1.4.2 and
5.2.3.1) is allowable acéording to the appropriate subscript

scale.

3.8 CONSTITUENT DESIGNATORS

3.8.1 Syntax

(compound name) ::= (simple compound identifier) |
(compound-array identifier) | (compound-array identifier)
[(subscript scale list)]
(composition element) ::= (variable-constituent tail) |
(array identifier) | (subarray designator) |
(compound designator)
(composition list) ::= (composition element) |
(composition list) , {(composition element)
(composition) ::= (composition element) | ({composition list))
(compound designator) ::= {compound name) |
(compound name) . {composition)

(constituent designator) ::= (compound designator)

-49-

3.8.2 Examples

A

X[I]

BI.(B, C, D)

M. (Blelements 1 : 157, C[H,(l, &4 : 6)], D. T)

H(1 : 4]. (F, G, R[L : NR], H[R elements 3 : 8, 117)

3.8.3 Semantics

The constituent designator defines some ordered subset
of primary components (variable-constituents) of a compound
(see section 5.3, Compound Declarations). The constituent
. designator begins with that compound's identifier, which must
also be the identifier of the first level in the corres-
ponding declaration. Compound designators, in contrast to
constituent designators, can begin with higher-level
identifiers; in such a case, the level of the initial
identifier is considered also as the level of the compound
designator. A compound designator having a level higher
than the first cannot have a defined sense if it is ex-
amined separately from a compound designator of a level
lower than that at which it is located as a composition
element. This accounts for why, at levels higher than the
first, different elements of the same or of several compounds
can be designated by identical identifiers. The remaining
syntax and semantics for the compound designator and the

constituent designator are the same.

3.8.4 Compound Designator Value

eV eTe L

~-50-

3.8.4.1 1If the compound designator consists only of
a simple compound identifier, then the set of values of
all elements of the compound structure specified by that
identifier serves as its value (see section 5.3).

3.8.4.2 1If the compound designator has the form of a
compound~subarray identifier--that is, if it consists of a
compound-array identifier accompanied by a subscript scale
list enclosed in square brackets--then the subset of values
of the compound-array components separated out according to
the same rules as for defining the value of a subarray
designator (see section 3.7, Subarray Designators) serves as
its value. The set of values of all elements of the struc-
ture of the given compound array, enumerated in its declara-
tion, constitutes the values of each component of the
compound-array. A compound name consisting only of a com-
pound-array identifier denotes the same thing as a compound
name written in the form of a complete compound-array desig-
nator (see section 3.7.8) with the same identifier.

3.8.4.3 A composition included within a compound
designator explicitly enumerates the structure elements
(variable-constituents, subarrays, arrays, and compounds) of
the appropriate compound whose values form the values of the
given compound designator (if it is a simple compound) or

the values of each component of a compound array.

3.8.5 Compound Designator Component Ordering

Composition elements in a composition list must be
arranged so that their initial identifiers occur in the
same order in which they are found in the declaration of

the structure of the corresponding compound (see section,

-51-

5.3, Compound Declarations). Thus, the ordering of the
primary components of a compound designator must fully

coincide with their ordering within the compound as a whole,

3.8.6 Compound Designator Abbreviation

A compound designator of the form
N. IL. I2..... IK. CD

or

(where N is a compound name; Il, I2,...,IK are simple
compound or compound-array identifiers; CD is a compound
designator; and CE is a composition element) can be written

in short form as
N. CD

or, correspondingly,
N. CE .

The abbreviated notation is equivalent to the complete
notation if there is no possibility of ambiguity arising
as a result of the abbreviation, and if and only if a com-

pound designator of the form
N. CD1

or
N. CEL

(with the same compound name N and having an initial com-
pound designator identifier CDl or composition element

identifier CEl matching the initial identifier CD or CE)

.8.7
-52-

can arise only when the full notations of the compound

designators

N. I1. 12..... IK. CD1
or

N. I1. I2..... ID. CEl

are abbreviated,

Using the same notation, the composition element

or

N. (eo., I1. 12..... IK. CD,...)
or, respectively,
N. (..., I1. 1I2..... IK. CE,...)
can be abbreviated in analogous situations as
CDh
or, correspondingly,

CE .

3.8.7 Examples

Given are compounds with the following declarations:
compound A. (string B; integer C; compound D. (integers
E, C, G)); compound array M[1 : 5]. (string B;rcbmpound C.
integer E; compound D. (integers E, F); integer array
G[1 : 27).

-53-

Let the current values of these compounds be defined by

the following tables:

A M
D C .D G
B|C B
E |C |G E| E F 1 2
M|2] 1020 30 1 T 4 | 21 14 | 40 | 16
2 E 3 22 13 30 17
3 K 2 23 12| 20 18
4 S 5 24 | 15| 50 19
5 T 1} 25 11| 10 | 29

Then, some poséible

following sets of values:

constituent designators define the

3.

Constituent Ordered Set of

Designator Values Remarks
A. M, 2, 10, 20, 30
A.B M

A.C 2

A.(C, B) not defined see section
A.D _ 10, 20, 30 3.8.5
A.(C, D. C) 2, 20 :

A.(B, C, D.(E, G)) M, 2, 10, 30
M.[1] T, 4, 21, 14, 40, 16
M.C 4, 3, 2, 5,1
M.C.E 4, 3, 2, 5, 1
M.D 21, 14, 22, 13, 23

12, 24, 15, 25, 11

M.E ‘not defined see section
M[3].B K 3.8.6
M[51].G 10, 29
m{2 : 3].(8, F, Ggl(2]) E, 13, 17, X, 12, 18

M[(1, 4)].(D. E, G)

21, 40, 16, 24, 50, 19

8.

7

3.

9

-5~

3.9 MULTICOMPONENT EXPRESSIONS

3.9.1 Syntax

(primary multicomponent expression) ::= (array identifier) |
(subarray designator) | (constituent designator) |
({multicomponent expression))

(nondesignational expression) ::= (arithmetic expression) |
(Boolean expression) | (string expression)

(secondary multicomponent expression) ::=
(primary multicomponent expression) | (operator) |
(primary multicomponent expression) |
(nondesignational expression)

(simple multicomponent expression) ;::=
(secondary multicomponent expression) |
(simple multicomponent expression) | (operator)]
(secondary multicomponent expression)

(multicomponent if clause) ::= if (multicomponent expression)
then

(multicomponent expression) ::=
(simple multicomponent expression) | (if clause)
(multicomponent expression) else (multicomponent expression) |
(multicomponent if clause) (multicomponent expression}

else (multicomponent expression)

3.9.2 Examples

A xX[I :NJ+B xY[I :N]

MLI : P).(C, D) - K[I : P,(2, 6)]
clI : 201 <0

P =-Q[-K : K] A= KSI[0 : 2 x K]

-55-

if X > Y then AX[I : 200 elements 1 : 15] else AY
T[1 : 5] « TI[2 : 6] « *.° '
if AT : T]. L then A[I : T], B else A[I : T]. C

3.9.3 Semantics

The multicomponent expression is a rule for computing
an ordered set of numbers, logical values, or strings.

If the multicomponent expression is a constituent desig-
nator, then its components can be of different types; in
all other cases, they must be of the same type.

An array identifier in the role of a primary multi-
component expression means the same as a complete subarray
indicator with that identifier (see section 3.7.8).

An operator can be used in a secondary multicomponent
expression only when the given operator can be applied to
the value of every primary component of the operand--i.e.,
of the primary multicomponent expression in front of which
the operator stands. (It follows that this operator can
be only - or = , or guotation.) Such a secondary multi-
component expression 1s evaluated as a result of the actual
execution of this operator over each primary component of
the operand.

In a simple multicomponent expression, the only operands
that can be-associated with the operator are those between
any primary component of the first operand and the corres-

ponding component of the second operand for which the given

-56-

operator can be executed. The constituent designator can
be an operand of a multicomponent expression (either simple
or secondary) if all of its primary components have pre-
cisely the same type.

A simple multicomponent expression containing an
operator is undefined if the operands do not contain the
same quantity of primary components. However, if one of
the operands is a nondesignational expression, then it is
regarded as a multicomponent expression in which the wvalue
of the nondesignational expression is repeated as many
times as there are primary components containing the other
operand. Operators specified in a simple multicomponent
expression are executed over each pair of appropriate
primary components of both operands. The resulting value
forms the values of the simple multicomponent expression.

The rules for evaluating a multicomponent expression
that includes within itself an ordinary if clause are
completely analogous to the rules for evaluating arithmetic
expressions (see section 3.3.3). All primary components
of a multicomponent expression in a multicomponent if clause
must be of type Boolean, and their number must be the same
as the number of primary components of the multicomponent
expressions following the else symbol and up to the multi-
component if clause. A true value of a primary component
of a multicomponent expression in a multicomponent if clause
causes the value of the primary component of the expression
following the multicomponent if clause to be selected as
the value of the corresponding component of the entire

multicomponent expression containing the multicomponent

-57-

if clause; in the case of a false value, the primary com-
ponent of the expression standing after the else delimiter
is selected.

Precedence of operators and the use of parentheses
in multicomponent expressions conforms to the same rules
as for arithmetic, string, and Boolean expressions (see
sections 3.3.5, 3.4.5, and 3.5.6).

-58-

4. STATEMENTS

The units of operation within the language are called
statements. They are normally executed consecutively as
written. However, this sequence of operations can be
broken by go to statements which define their successor
explicitly, and shortened by conditional statements which
can cause certain statements to be skipped.

In order to make it possible to define a specific
dynamic succession, statements can be provided with
labels.,

Since sequences of statements can be grouped together
into compound statements and blocks, the definition of
statement must necessarily be recursive. Also, since
declarations, considered in section 5, enter fundamentally
into the syntactic structure, the syntactic definition of

statements must suppose declarations to be already defined.

4.1 COMPOUND STATEMENTS AND BLOCKS

4.1,1 Syntax

(unlabeled basic statement) ::= (assignment statement) |
{(go to statement) | (dummy statement) |
{(procedure statement)

(basic statement) ::= (unlabeled basic statement) |
{(label) : (basic statement)

(unconditional statement) ::= (basic statement) |
{compound statement) | (block}

(statement) ::= (unconditional statement) |

(conditional statement) | (for statement)

-59-

(compound statement tail) ::= (statement) end | (statement)
(compound statement tail)

(block head) ::= begin (declaration) | (block head) ;
(declaration)

{(unlabeled compound statement) ::= begin
{compound étatement tail)

{(unlabeled block) ::= (block head) ;

(compound statement tail)

(compound statement) ::= (unlabeled compound statement) |
(label) : {(compound statement)
(block) ::= (unlabeled block) | (label) : (block)

(program) ::= (block) | (compound statement)

If arbitrary statements, declarations, and labels are
denoted by the letters S, D, and L, respectively, the

basic syntactic units can be illustrated as follows:

Compound statement:

L+Lz: ... L : begin'S; S; ...; S end

L:Lz: ... L: beginD; D; ...; D; S; S; ...; S end

It should be kept in mind that each of the statements S

can again be a compound statement or block.

4.1.2 Examples

Basic statements:
A:=P+K
to LABEL M
START: CONTINUE: L := 7.993

.
b

.1.3

~-60~-

Compound statement:
begin X = 0; for Y :=1 : N
do X := X + AlY]; if X > K then
to STOP else if X > B - 2 then to C;
AB : ST : B := X + B4

end

Block:
K : begin integer I, K; real B;

for I :=1 : Mdo

for XK :=I+1 :Mdo

begin B := A[I,K]; AlI,K] := A[K,I];
A[K,I] :=B

end FOR I, K.

end BLOCK K.

4,1.3 Semantics

Every block automatically introduces a new level of
nomenclature. This is realized as follows: Any identifier
occurring within the block can, through a suitable declara-
tion (see section 5, Declarations), be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the given block has
no existence outside the block; and (b) that any entity
represented by this identifier outside the given block is
completely inaccessible inside the block.

Identifiers (except those representing labels) occur-
ring within a block and not being declared to this block
are non-local to it--i.e., they represent the same entity

both inside the block and in the level immediately outside

-61-

it. A label separated by a colon from a statement--i.e.,
labeling that statement--behaves as though declared in the
head of the smallest embracing block; i.e., the smallest
block whose brackets begin and end enclose that statement.
In this context, a procedure body must be considered as
if it were enclosed by begin and end and treated as a block.
Since a statement in a block can also itself become a
block, the concepts local and non-local to a block must be
understood recursively. Thus, an identifier that is non-
local to a block A can be local or non-local to the block

B for which A is one of its statements.

4,2 ASSIGNMENT STATEMENTS

4,2.1 Syntax

(left part) ::= (variable) := | (procedure identifier) :=
(left part list) ::= (left part) | (left part list)(left part)
(multicomponent left part) ::= (array identifier) := |

(subarray designator) := | (constituent designator) :=
{(assignment statement)>::= (left part list)

(nondesignational expression) |

{(multicomponent left part) (multicomponent expression) |

{(multicomponent left part)(nondesignational expression)

4.2.2 Examples

1
d
—
o
)

S : == N:=N+1+S

S{Y, R+ 2] := 3 - ARCTG(P x ZETA)
Vi=Q>YAZ

DATE := ‘l9_MAY 1964’

2.

3

-62-

SA[1] := ‘FOUNDRY’
A. B.[I] :=C :=D+ E - F(R)/K. X[M]
NI, 1 :I-17 :=0N[1 :1I-1, 1]

DL1 : 4]. (K, Llelements 1 : 5]) :=G[1 : 2, 1 : 27.
(I, Llelements 2 : 6])

SLI, 1 ¢ N] ¢=8S[I, 1 : N]+ B[J, 1 : N] x A[I, J]
If1 ¢+ s, 1 :T]. G :=1 '
All : 20]. (B. pl6], C[1l : 2]) :
SUMMARY. (WEIGHT, SUM) := SUMMARY. (WEIGHT, SUM) + (if
ACCOUNT [I]. SHOP = SA[1] A ACCOUNT [I].
SECTION = SA[2] then ACCOUNT I. (WEIGHT, SUM) else 0)

4,2.3 Semantics

Assignment statements serve for assigning the wvalue
of some expression to one or several variables or procedure
identifiers or to a multicomponent value. Assignment to
a procedure identifier can only occur within the body of a
procedure defining the value of a function designator (see

section 5.5.4).

4,2.4 Assignment to Single-Component Quantities

If the quantities in left parts are single components,
execution of the assignment statement must in the general
case take place in three steps as follows:

4,2,4,1 All subscript expressions occurring in the
left part variables are evaluated in sequence from left to
right.

4.2.4.2 The nondesignational expression producing the
right part of the statement is evaluated. Where necessary,
the corresponding transfer function is applied (see section

4.2.7).

E[1 : 5, (3, 6, 9), 0 :

3]

-63-

4.2.4.3 The value of thé nondesignational expression
is assigned to all left part variables with subscript

values evaluated in step 4.2.4.1.

4.2.5 Assignment to a Multicomponent Quantity

If the quantity in the left part of a statement is
multicomponent, the assignment statement is executed in
the general case in three steps:

4.2.5.1 All subscript expressions of the left part
are evaluated sequentially, thereby separating out an
ordered set of primary array components or a list.

4.2.5.2 The multicomponent or nondesignational ex-
pression in the right part of the statement is evaluated.

4.2.5.3 1If the expression in the right part is multi-
component, Fhe value of each primary component is assigned
to the appropriate component of the left part. The corres-
pondence of primary components is established solely in
terms of their ordering (see sections 5.2.7 and 5.3.6).
Where necessary, in each separate assignment process the
corresponding transfer function is applied (see section
4.2.7).

If the right part of the statement defines a single
value, it is possible for that value to be assigned to all
primary components of the left part after applying the re-

quired transfer function.

4.2.6 Size and Composition Agreement

If both parts of an assignment statement are multi-
component quantities, agreement of array sizes and com-

pound compositions must be observed.

4.2.6.1

-6l=

4.2.6.1 Under agreement of array sizes (including
5.2.3.2). 1Individual measurement lengths, as with the
dimensions of an array, may not coincide.

4.2.6.2 Agreement of compound compositions is estab-
lished recursively beginning with the first level. Com-
positions are considered identical if the number of com-
pound elements coincide and if the composition elements
located at the same places in composition lists correspond
to each other according to size and make-up.

4.2.6.3 A constituent designator in one part of an
assignment statement can be combined with a subarray
designator in another part only in the case where the total
number of primary designator components matches the sub=-
array length.

4.2.6.4 An array identifier in an assignment state-
ment left part is understood as a complete subarray desig-

nator with that identifier (see section 3.7.8).

4.2.7 Types and Formats

The same type must apply to all variables and pro-
cedure identifiers in a left part list. The type assigned
to a procedure identifier is given by the declaration
appearing as the first symbol of the corresponding pro-
cedure declaration (see section 5.5.4). The type of a
variable (or of a primary component of a multicomponent
quantity) in a left part must agree with the type of the
expression or component value assigned to it from the

right part. This means:

-65-

4.2.7.1 1If the left part variable is of type Boolean,
the value determined by the right part must be of E;pe

Boolean or string. 1In the latter case, the symbol 0, set-

ting the assigned value false, or the symbol 1, setting
the value true, must serve as this value; otherwise, the
assignment statement is undefined.

4.2.7.2 1If the left part variable type is real or
integer, the value defined by the right part can be one of
the types real, integer, or string. If the types of the

left and right parts are not the same, the appropriate
transfer function is automatically applied. For a transfer
from type real to type integer, the transfer function is

considered to produce a result equivalent to
ENTIER(A + 0.5) ,

where A is the value of an arithmetic expression or of a
multicomponent expression primary component.

Transfer from type string to one of the numerical types,
if the left part variable has a format expression F in its
declaration, is accomplished using a transfer function

giving a result equivalent to
T sense F ,

where T is the value of a string expression or of a multi-
component expression primary component. If, though, the
format of the left part variable is not declared, the value
of the string expression is free of the editing symbols (_
and *). The obtained text must be a number in the sense of
section 2.5, and, in addition, a transfer from type integer
to real or vice versa can be required only according to the

rules of the preceding paragraph.

e Lo

/

-66-

4.2.7.3 1f a left part variable has type string,
the corresponding component of the right part must also
define a value of type string; i.e., it must be either,
on the one hand, a string or a Boolean expression or, on
the other, a variable in whose declaration a format ex-
pression is given (see section 5.1.3.2).

If, in addition, a format expression F is contained
in the declaration of a left part variable, the transfer

function must produce a result equivalent to
S text F ,

where S is a string value of a nondesignational expression

or of a multicomponent expression primary component.

4.,2.8 The Role of the Position List

If a left part variable is equipped with a position
list, assignment of new values is limited to those elements
defined by that list. The values of the remaining elements
of such a variable do not change as the result of the exe-

cution of an assignment statement.

4.3 GO TO STATEMENTS

4,3.1 Syntax

(go to statement) s:= to (designational expression)

4,3.2 Examples

Lo M8
to EXIT [N + I]
to SM [if Y < 0 then N else N + I]

-67-

4.3.3 Semantics

A go to statement interrupts the normal sequence of
operations, defined by the write-up of statements, by de-
”Eining its successor explicitly by the wvalue of a desig-
national expression. Thus, the next statement executed

will be the one having this value as its label.

4,3.4 Restriction

Since labels are inherently local, no go to statement
can lead from outside into a block. A go to statement can,

however, lead from outside into a compound statement.

4.3.5 Go To with an Undefined Switch Designator

A go to statement is undefined if the designational

expression is a switch designator whose value is undefined.

4.4 DUMMY STATEMENTS

4.4.1 Syntax

(dummy statement) ::= (empty)

4.4.2 Examples

B:
begin ...; FINISH: end

4.4.3 Semantics

A dummy statement executes no operation. It may

serve to place a label.

-68-~

4.5 CONDITIONAL STATEMENTS

4.5.1 Syntax

(if clause) ::= if (Boolean expression) then
(unconditional statement) ::= (basic statement) |
(compound statement) | (block)
(if statement) ::= (if clause) (unconditional statement)
(conditional statement) ::= (if statement) |
(if statement) else (statement) | (if clause)

(for statement) | (label) : (conditional statement)

4.5.2 Examples

X>0then N := N+ 1
B>Y then M := N + D else to R
S < 0 V R then AA :

o=
[y B R B A

begin if X < B then A := B/C
else 1= 2 X A

end

else if B > C then A := B - X

else if < C - 1 then to CI

4.5.3 Semantics

Conditional statements cause certain statements to be
executed or skipped depending on the running values of
specified Boolean expressions.

4.,5.3.1 1If Statement. An unconditional statement
appearing in an if statement is executed if the Boolean
expression appearing in the if clause is true., Otherwise,
it is skipped and the operation continues with the next

statement.

-69-

4.5.3.2 Conditional Statement. According to the
syntax, two different forms of conditional statements are
possible. These can be illustrated as follows:

if Bl then S1 else if B2 then S2 else S3 ; S4

if Bl then S1 else if B2 then S2 else if B3 then S3

3 S4

Here Bl, B2, B3 are Boolean expressions, while S1, S2, S3
are unconditional statements. S4 is the statement follow-
ing the complete conditional statement.

The execution of a conditional statement can be de-
scribed as follows: The Boolean expressions of the if
clauses are evaluated in sequence from left to right. The
evaluation continues until one yielding the value true is
found. Then the unconditional statement immediately
following this Boolean expression is executed. If this
statement does not define its successor explicitly, the
next statement executed will be the statement following
the complete conditional statement (S4 in the examples
above). Thus, the effect of the delimiter else can be
described by saying that it defines the successor of the
statement it (the delimiter) follows to be the statement
following the ;omplete conditional statement,

In accordance with the sense of the preceding para-
graph, the construction

else (unconditional statement)

is equivalent to

else if true then (unconditional statement) .

If none of the Boolean expressions appearing in the
if clauses is true, the effect of the entire conditional

statement is equivalent to that of a dummy statement.

4.5.4
-70-

For further explanation, the following picture may

be useful:

if Bl then S1 else if B2 then 52 else S3 ; S&

Voo 1 S|

Bl false B2 false

4.5.4 Go To into a Conditional Statement

The effect of a go to statement leading into a con-
ditional statement follows directly from the above explana-

tion of the effect of the else delimiter.

4.6 FOR STATEMENTS

4.6.1 Syntax

(for list element) ::= (arithmetic expression) |
(arithmetic expression) step (arithmetic expression)
until (arithmetic expression) |
(arithmetic expression) : (arithmetic expression) |
(arithmetic expression) while (Boolean expression)

{(for list) ::= {(for list element) | (for list) ,

(for list element)
(for clause) ::= for (variable identifier) := (for list) do

(for statement) ::= (for clause)(statement) |

(lLabel) : {(for statement)

4.6,2 Examples

for Q := 1 step P until N do A[Q] := B[Q]
for K := 1, V1 x 2 while VI < N do

for J :=1+4+G, L, 1 : M, C+ D do E[K, J] := F[K, J]

-71~

4.6.3 Semantics

A for clause causes the statement S following it to
be repeatedly executed several times or not at all. 1In
addition, it performs a sequence of assignments of a value
to a simple variable, the identifier of which is indicated
in the given clause. Ultimately, this variable will be
designated the '"for parameter." The process can be ex-

plicated by the following picture:

Initialize ; test ; statement S ; advance ; successor

DT

for list exhausted

In this picture, the word "initialize" means: perform the
first assignment of the for clause. 'Advance' means: per-
form the next éssignment of the for clause. '"Test'" means:
if the for clause permits another assignment, go to the
execution of the S following the for clause; if it doesn't,
continue program execution with the statement following

" the for statement.

4,6,.4 The For List Elements

The for 1list gives a rule for obtaining the values
which are consecutively assigned to the for parameter.
This sequence of values is obtained from the for list
elements by taking them sequentially in thé order in which
they are written. The sequence of Qalues generated by each
of the four kinds of for list elements and the corresponding

execution of the statement are given by the following rules.

4.6.4.1

-72-

4.6.4.1 Arithmetic Expression. This element gives
rise to one value, namely the value of the given arith-
metic expression as calculated immediately before the
corresponding execution of the statement §.

4.6.4.2 Arithmetic Progression Element. An element
of the form A step B until C, where A, B, and C are arith-

metic expressions, gives rise to an execution which can be
described most concisely in terms of additional statements

as follows:

V := A
L1 : if (V - C) x SIGN(B) > 0 then to ELEMENT EXHAUSTED;
S
V=V +3B;
to Ll ;

where V is the for parameter and "ELEMENT EXHAUSTED" points

to the evaluation according to the next element in the for

list, or if the given arithmetic progression element is

the last on the list, to the next statement in the program.
4.6.4.3 Arithmetic Progression Element at the One

Step. An element of the form A : C, where A and C are

arithmetic expressions, is treated as an element of the form

A step 1 until C. Here, the for parameter must have an

integer type declaration.

4.6.4.4 Tteration Element. The execution governed
by a for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely

described in terms of additional statements as follows:

-73-

L3 : V :=E ;
if - F then to ELEMENT EXHAUSTED;
S 3
to L3 ;

where the notation is the same as in 4.6,4.2.

4.6.5 The Value of the For Parameter After Exit

After exit from the statement S (Supposed‘to be
compound) via some go to statement, the value of the for
parameter will be the same as it was immediately prior to
execution of the go to statement.

I1f, on the other hand, the exit is due to exhaustion
of the for list, the value of the for parameter is un-.

defined after the exit.

4.6.6 Go To Statement Leading into a For Statement

The effect of a go to statement outside a for state-
ment and referring to a label inside the for statement is

undefined.

4.7 PROCEDURE STATEMENTS

4.7.1 Syntax

(procedure statement) ::= (procedure identifier)

(actual parameter part)

4.7.2 Examplés

SPUR (A) ORDER: (7) RESULT TO: (V)
TRANSPOSE (W, V + 1)

7.

3

-7~

ABSMAX (A, N, M, Y, I, K)

INNERPRODUCT (A[LT, P, UJ, B[P], 10, P, Y)

SELECT (M[I]. (B, F), 5, KINK]. (E, F[1 : 2], NK,

I, M[1]. B = ‘T’)

These examples correspond to the examples given in section
5.5.2. If a compound array M is declared as in section
3.8.7 and with the component values indicated there, and
a list K has the declaration compound array K[1 :‘integer NK].
(integer D; integer array F[1 : 2]), then the effect of

execution of the above-presented SELECT procedure statement
is for the variable NK to assume the value 2 and the array

components of K the values shown in the following table:

K
F
D
1 2
1| 4 |40 16
2 1 10 | 29

4.7.3 Semantics

A procedure statement serves to invoke (call for) the
execution of a procedure body (see section 5.5, Procedure
Declarations). The effect of this execution should be
equivalent to the effect of the following operations on the
program at the time of execution of the procedure statement.

4.7.3.1 Value Assignment (Call by Value). All formal
parameters included in the value list on the procedure
declaration heading are assigned the values of the corres-

ponding actual parameters; these assignments are considered

-75=-

as being performed explicitly before entering the procedure
body. The effect is as though an additional block embracing
the procedure body were created in which these assignments
were made to variables local to this fictitious block with
types as given in the corresponding specifications (see
section 5.5.5). As a consequence, variables called by
value should be considered as non-local to the body of the
procedure, but local to the fictitious block (see section
5.5.3).

4.7.3.2 Name Replacement (Call by Name). Any formal
parameter not included in the value list is replaced,
throughout the procedure body, by the corresponding actual
parameter, after enclosing this latter in parentheses
wherever syntactically possible. Possible conflicts be-
tween identifiers inserted through this process and other
identifiers already present within the procedure body are
avoided by suitable systematic changes of the formal or
local identifiers involved.

4.7.3.3 Body Replacement and Execution. Finally, the
procedure body, modified as above, is inserted in place of |
~ the procedure statement and executed. If the procedure is
called from a place outside the scope of any non-local
quantity of the procedure body, the conflicts between the
identifiers inserted through this process of body replace-
ment aﬁd the identifiers whose declarations are valid at
the place of the procedure statement or function desig-
nator are avoided through suitable systematic changes of

the latter identifiers.

-76-

4.7.4 Actual-Formal Parameter Correspondence

Correspondence between the actual parameters of the
procedure statement and the formal parameters of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of
the procedure declaration heading. Correspondence is
obtained by taking the entries of these two lists in the

same order.,

4.7.5 Restrictions

For a procedure statement to be defined, it is evi-
dently necessary that the operations on the procedure body
defined in sections 4.7.3.1 and 4.7.3.2 lead to a correct
ALGEC statement.

This poses the restriction on any procedure statement
that the kind, structure, type, and format of each actual
parameter be compatible with the kind, structure, type,
and format of the corresponding formal parameter. Some
important particular cases of this general rule are the
following:

4.7.5.1 Only a variable, a subarray designator, or
a constituent designator (the particular occurrences of
an expression), in addition to an array identifier that is
understood to be a complete subarray designator (see section
4.2.6.4), can correspond as an actual parameter to a formal
parameter occurring in the form of a left part value of an
assignment statement within a procedure body and not called

by value.

-77-

4.7.5.2 1If a formal parameter called by name is used
in a procedure body as an array identifier of specified
dimension, then to it must correspond as the actual param-
eter either an array identifier of the same dimension, or

a constituent designator of the form

where the I1, I2,...,IK are explicit or implied (see sec-
tion 3.8.6) simple compound identifiers, and IA is an array
identifier of the same dimension as the array established
by the formal parameter.

4.7.5.3 1If a formal parameter used in a procedure body
as an array identifier of specified.dimension is called by
value, and the corresponding actual parameter satisfies the
requirements of the preceding section, then the local array
produced in the course of the execution takes on the same
subscript bounds as the actual array. But if the array
established in the procedure body by the formal parameter
is one-dimensional, then an arbitrary multicomponent expres-
sion (specifically, a constituent designator), all primary
components of which have the same type, is also allowable
as the corresponding actual parameter. Then, the local
array produced in the course of the call by value takes on,
if the if clause of section 4.7.5.2 has not been executed,
a lower subscript bound equaling 1, and an upper bound
equaling the number of primary components of the multi-
component expression.

4.7.5.4 A procedure identifier or a switch identifier,
because these latter do not possess values, cannot in gen-
eral correspond to a formal parameter called by value.

(The exception is the procedure identifier of a procedure

4.7.5.5

-78-

declaration which has an empty formal parameter part (see

section 5.5.1) and which defines the value of a function

I

designator (see section 5.5.4). Such a procedure identifier
is in itself a complete expression.)

4.7.5.5 Any formal parameter can place restrictions
on the type and format of both the corresponding actual
parameter associated with it and its pfimary components
(these restrictions can be completely or partially given
through specifications in the procedure heading, and also
derive from the nature of the use of a formal parameter
in a procedure body). 1In the procedure statement such
restrictions must evidently be observed.

4.7.5.6 A procedure can refer to itself neither
during execution of the procedure body statements, nor
during evaluation of the actual parameters to which the
formal parameters called by name correspond, nor during
evaluation of the statements occurring in the declarations

within the procedure body.

4,7.6 Parameter Delimiters

All parameter delimiters are understood to be equiv-
alent. ©No correspondence between the parameter delimiters
used in a procedure statement and those used in the pro-
cedure heading is expected, beyond their number being the
same. Thus, the information conveyed by using parameter

delimiters is entirely optional.

4.7.7 Standard Procedure Statements

Among the fixed identifiers, it is recommended that

there be a LIBRARY identifier, serving to fetch library

-79-

subroutines. The procedure operator for this purpose has

the following form:
LIBRARY ({(quotation) , (actual parameter list)) ,

where the value of the actual parameter {(quotation) is the
name of the library procedure, and the actual paraméter list
consists of actual parameters for the processing of this pro-
cedure, All delimiters placed on this list are defined only
by the nature of the library concerned and can be outside

the scope of the ALGEC reference language.

-80-

5. DECLARATIONS

Declarations serve to define certain properties of
the quantities used in the program, and to associate them
jwith identifiers. A declaration of an identifier is
valid only for one block. ©Outside this block, the given
identifier can be used for other purpoées (see section
4.1.3).

Dynamically, this implies the following: at the time
of an entry into a block (through the begin, since the
labels inside are local and, therefore, inaccessible from
outside), all identifiers declared for the block assume
the significance implied by the nature of the declarations
given. If these identifiers have already been defined by
other declarations outside the block, they are for the
time being given a new significance. On the other hand,
identifiers not declared for the block retain their old
meaning.

At the time of an exit from a block (through end or
by a go to statement) all identifiers declared for the
block lose their local significance.

Apart from labels, formal parameters of procedures,
and, possibly, identifiers of standard functions (see
section 3.2.4) and standard procedures (see section 4.7.7),
all identifiers of a program must be declared. No iden-
tifier should be declared more than once in a block, except
in the case where it is the identifier of a list structure
element (see section 5.3.5).

Identifiers introduced by any declaration that is not
an element of a declaration of a structure (see section 5.3)

are considered first-level identifiers.

5.1.
-81-
Syntax
(declaration) ::= {(type declaration) | (array declaration)
(compound declaration) | (switch declaration) |

(procedure declaration)

5.1 TYPE DECLARATIONS

5.1.1 Svyntax

(type list element) ::= (variable identifier) |
(variable identifier) format (format expression)

(type list) ::= {(type list element) | (type list element) ,
(type list)

(type) ::= real | integer | string | Boolean

(variable identifier designator) ::= (variable identifier) |
(compound identifier) ., (variable identifier designator)

(variable prototype designator) ::=
(variable identifier designator)

{(variable identifier list) ::= (variable identifier)]
(variable identifier list) , (variable identifier)

(type declaration) ::= (type)(type list) | as

(variable prototype designator) : (variable identifier 1list)

5.1.2 Examples

integers A, B, C format ‘9(4)+’
Booleans OVERFLOW, B, END

strings ORDER, DATE, ADDRESS format ‘C(A)’, PART format
‘C(B)’, CODE format °‘CCE’, SHOP format ¥cc’

- as SHOP: FORM OF PAYMENT, OPERATION, WAREHOUSE

2

l

-82-

5.1.3 Semantics

5.1.3.1 Type declarations serve to declare certain
identifiers to represent simple variables of a given type.
Variables declared as real can only assume positive or
negative values, including zero. Variables declared as
integer can only assume positive and negative integral
values, including zero. Variables declared as string can
assume only the values of open quotations. Variables

declared as Boolean can assume only the values true and false.

In arithmetic expressions, any position that can be
occupied by a variable declared as real can be occupied
by a variable declared as integer.

5.1.3.2 When a format expression is explicitly
declared, it refers only to that quantity with whose
identifier it is associated by the format declaration.
It is treated in accordance with the rules of sections 2.7
and 3.4,

Assignment of a numerical format for integer and real
type variables means that such a variable in addition to
its principal value, has also a string value that is a blank
quotation of the indicated format. A string value con-
sisting of one of the symbols 0 (corresponding to the value
false) or 1 (corresponding to the value true) is always
associated with a Boolean type variable. The format ex-
pression does not apply to declarations of Boolean type
quantities,

Only a string format can be directed to string quantities.

Any string value (open quotation) is regarded as having
é conditional additional measurement, each position of which

corresponds to a specified element of that quotation. The

-83-

size of this measurement (the number of elements) is de-
termined by the given format, while for string type vari-
ables without a given format it is found, using the SIZE
function (see section 3.2.4), according to the current
value of the variable.

Format expressions are evaluated once at each entrance
into the block. These expressions can depend only on vari-
ables and procedures non-local to the block for which the
given type declaration is valid. Subscript expressions in
repeats are evaluated according to the rules of section
3.1.4.2. _

5.1.3.3 A declaration beginning with the declarator
as is understood as an extension of a previous variable
declaration, the identifier designator of which is placed
behind the as declarator, to the variables whose identifiers
are carried on the variable identifier list following a
semicolon. Thus, if for the following example the variable
SHOP has a declaration string SHOP format ‘CC’, then the
cited declaration is understood as the declaration:

string FORM OF PAYMENT format °‘CC’, OPERATION format

‘CC’, WAREHOUSE format ‘CC’
The semantics of the identifier designator are given

in section 5.3.7.2.

5.2 ARRAY DECLARATIONS

5.2.1 Syntax

(format array identifier) ::= (array identifier) |

(array identifier) format (format expression)

2.1

5.

2.

2

-84-

(Lower bound) ::= (arithmetic expression)
(upper bound) ::= (arithmetic expression)
(bound pair) ::= (lower bound) : (upper bound)
(bound pair list) ::= <(bound pair) |
(lower bound) : integer (variable identifier) |
(bound pair list) , (bound pair)
(array segment) ::= (format array identifier)
[(bound pair list)] | (format array identifier) ,
(array segment)
(array list) ::= (array segment) |
(array list) , {(array segment)

(array identifier designator) ::= {(array identifier) |
(compound identifier) . (array identifier designator)
(arfay prototype designator) ::= (array identifier designator)

(array identifier list) ::= (array identifier) |
(array identifier list) , (array identifier)

(array declaration) ::= array (array list) |
(type) array (array list) | as (array prototype designator)
array (array identifier list)

5.2.2 Examples

array A, B, ¢[17 : H, 2 : MB], P[-2 : 10]

integer array A[if C < O then 2 else 1 : 20]
real array D[-7 : -17, E format ‘-T9(9)99° [1 : integer C]
Boolean array P, R, S,[1 : integer T, 1 : 2]

string array A format ‘C(4)’ [1 : 4031, B format ~‘C(K)’,

C, D format ‘E’, F, G format ‘C_C_C(T)’ [1 : X]

as A arrays B, C, D, E

5.2.3.3

-85-

5.2.3 Semantics

An array declaration declares one or several iden-
tifiers to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the bounds
of the subscripts, and the types and possibly the formats
of the wvariables. _

5.2.3.1 Subscript Bounds. The subscript bounds for
any array are given in the first subscript bracket follow-
ing the identifier of this array in the form of a bound
pair list. Each item of this list gives the lower and
upper bound of a subsecript, usually in the form of two
arithmetic expressions separated by a semicolon. The bound
pair belonging to the high-order measurement (the left-most
member of the bound-pair list) can have an upper bound with

the following construction:
integer (variable identifier)

The bound pair list gives the bounds of all subscripts
taken in order from left to right.

5.2.3.2 Measurements, Dimensions, and Lengths. Each
array measurement has a bound pair. ' The bound pair's
sequence number on the bound pair list, counting from left
to right, is‘known as its measurement number. The dimension
of an array is defined as the quantity of its measurements.
The difference between the value of the upper bound and
the value of the lower bound plus 1 is known as the length
of each measurement. Array length is understood to be the
product of the lengths of all measurements.

5.2.3.3 Types. All arrays declared in one declara-
tion are of the same quoted type. If no type declarator

is given, the type real is understood.

Jd.L.D.4

-86-

5.2.3.4 Format Expression. A format expression,
when it is explicitly declared, relates to all components
of the given array having the identifier associated with
the declarator format. The semantics of the format expres-

sion are presented in section 5.1.3.2.

5.2.4 Lower and Upper Bound Expressiohs

5.2.4.1 These expressions are evaluated in the same
way as subscript expressions (see section 3.1.4.2).

5.2.4.2 These expressions can only depend on variables
and procedures which are non-local to the block for which
the array declaration is valid. Consequently, in the outer-
most block of a program only arrays with constant bounds
can be declared (see, however, section 5.2.5).

5.2.4.3 Bound expressions should be evaluated once

at each entrance into the block.

5.2.5 Special Upper Bound

In the first bound pair, the upper bound can be given
in the form of an integer type variable declaration. This
means ;

5.2.5.1 The identifier of the variable is localized
in the same block as the array identifiers connected with
the upper bound.

5.2.5.2 The value of the corresponding upper bound is
undefined at the time of entrance into the block. It can
be given and, if necessary, changed either by an assignment
statement or as a result of the execution of an input pro-

cedure statement for one of the arrays associated with that

-87-

bound. In both cases, the change in the value of the upper

bound is extended to all arrays associated with it.

5.2.6 The Identity of Subscripted Variables

The identity of subscripted variables is not related
to the subscript bounds given in the array declaration.
However, the values of subscripted variables are defined,
at any time, only for those variables whose subscripts at
the time of the most recent evaluation of variables re-
mained within the given subscript bounds.

Any array is defined only if all its measurement

lengths are positive.

5.2:7 Ordering of Subscripted Variables

Array components, even if the array dimension is
greater than 1, are ordered linearly according to the

lexicographic principle--i.e., component

a[kl,kz,...,km]
precedes component
a[jl’jz’ e ’jm]
if
ki =35, 1= 1,2,...,p-1
l <sps=m
k <
P p

-88-

5.2.8 Declaration According to Prototype

If an array declaration begins with the declarator as,
it means that the arrays whose identifiers are enumerated
on the list included in that declaration have component
values with the same dimension, subscript bounds, type, and
format (if such is given for the prototype) as the prototype
array whose identifier designator follows the as declarator.

The semantics of the identifier designator are given
in section 5.3.7.2,

If an array declaration serving as a prototype contains
a special upper bound, then the upper bound of the arrays
declared by the prototype are defined according to the cur-
rent value of the prototype bound. If this value is un-
defined, then the array declared by the prototype is also

undefined.

5.3 COMPOUND DECLARATIONS

5.3.1 Syntax

|l

(simple compound identifier list) ::= (simple compound

identifier) | (simple compound identifier list) ,
(simple compound identifier)

(structure element declaration) ::= {(type declaration}) l
{array declaration) | {compound declaration)

(structure declaration list) ::= (structure element
declaration) | (structure declaration list) ;
(structure element declaration)

(structure declaration) ::= (structure element declaration) |

({structure declaration list))

-89-

(simple compound segment) ::= (simple compound identifier
list) . (structure declaration)

(simple compound list) ::= (simple compound segment) |
(simple compound list) , (simple compound segment)

(compound-array identifier list) ::= (compound-array
identifier) | (compound-array identifier list) ,
(compoﬁnd-array identifier)

(compound-array segment) ::= (compound-array identifier list)
[(bound pair list)] . {(structure declaration)

(compound-array list) ::= (compound-array segment) |
(compound=-array list) , (compound-array segment)

(compound identifier) ::= (simple compound identifier) |
(compound~array identifier)

(simple compound identifier designator) ::= (simple
compound identifier) | (compound identifier)

(simple compound identifier designator)

(simple compound prototype) ::= (simple compound identifier
designator) | (compound-array identifier designator)
[(subscript list)]

(compound-array identifier designator) ::% (compound-array
identifier) | (compound identifier) . (compotnd-array
identifier designator) |

(compound-array prototype) ::= (compound-array identifier
designator)

(compound declaration) ::= compound (simple compound list) |

compound array (compound-array list) | as (simple

compound prototype) compound (simple compound
identifier list) | as (compound-array prototype)

compound array {compound-array identifier list)

-90-

5.3.2 Examples

compound arrays A[l : M].

(compound B.

(string array BL[l : F];
strings B2, B3);

compound array C[1 : R].

(strings Cl, C2 format ‘S(4)’;
compound array C3[1 : Y].

(reals J1, J2, J3, J4, J5);
integer C4)),

A2[1 : M2].

compounds B.

(strings B2, B3 format ‘SSS’;
string array B1[1l : F]),

(strings Cl, C2;

compound C3.
(zeal Jl:
integer J2;

real J3);

real C4;

integer C5);
integer D);

2s A compound arrays D1, D2, D3

In the first example, a declaration is made for two
compound arrays consisting of similar elements not iden-

tically distributed in their structures in some cases and

sometimes with different declarations.

the compounds A and A2 are depicted below scheﬁatically.

-91-

For this example,

5.3.

All : M]
B » Cc[1 : R]

BL[L : Fll— B2 B3 c1 c2 C3[1 : Y)—a 4
’
Ji J2 J3 J4 J5

A2[1 : M2]

B C D

B2 p—» B3 {B1[1 : F] Cl —» C2 (>~ q3 — - C4 c5

J; —,) J3

5.3.3

-92-

According to the second example, compounds D1, D2,
and D3 have the same element structure and declaration as

compound A.

5.3.3 Semantics

A compound declaration introduces into the program a
series of identifiers representing one or several compounds
and structure elements of such compounds. A compound can
be either simple--i.e,, consisting of one set of structure
elements--or a compound-array, in which case it consists of
many such sets, identical in structure. Each such set is
considered a compound-array component. Variables--con-
stituents, arrays, and compounds--can be structure elements.
A compound declaration assigns a structure, dimension, and
subscript bounds to a compound if it is a compound-array,
and also declares its structure elements,

5.3.3.1 Levels. A compound that is not a structure
element of a different compound is considered a first-level
quantity. Structure elements of a K-th level compound are
considered to be quantities of the (K + 1)-th level. The
higher the level, the greater its number. Variables (con-
stituents, arrays, and compounds) belonging to a level
higher than the first cannot be considered separately from
the compound of which they are the structure elements.

The level of an identifier declared in a compound
matches the level of the quantity designated by that
identifier.

5.3.3.2 Lengths. The length of a variable-constituent
whose identifier is included in the type declaration in the
corresponding structure declaration equals 1. The length

of an array that is not a compound-array is defined as in

-93-

section 5.2.3.2, regardless of its level. The length of

a simple compound, and also of each component of a com-
pound-array, is equal to the sum of the lengths of all
elements of its structure. The length of a cémpdund-array
is equal to the product of the array length in the sense

of section 5.2.3.2 for the length of its components,

5.3.4 Primary Components of a Compound

Variable-constituents (see section 3.1.5) of a given
compound that have no format indication are called primary
components of that compound. Obviously, the number of dif-
ferent primary components equals the length of the compound.
If given, types and formats for primary components are
defined individually according to the type declarations
and the declarations of highést-level arrays. These types

and formats can be different within a single compound,

5.3.5 Structure Element Identifiers

These identifiers must be different within a single
structure declaration. However, they can be the same as
identifiers of lower-level compounds, even if these com-
pounds are convoluted for the given structure element, and
the same as identifiers of composition elements‘of such

compounds.

53.3.6 Ordering of Primary Components

All primary components of compounds are ordered

linearly according to the following rules.

5.3.6.1

-94-

5.3.6.1 Compound-array components are ordered de-
pending on the subscript values, in the same way as for
array components (see section 5.2.7). If in this sense
component A of a compound-array precedes component B of
the same compound, then each primary component of A pre-
cedes each primary component of B.

5.3.6.2 Simple compound structuré elements or struc-
ture elements of one component of a compound-array are
arranged in the order in which their identifiers occur in
the structure declaration. If structure element A pre-
cedes structure element B in this sense, then any primary
component of element A, or that element itself if it is a
variable-constituent, precedes any primary component of
element B, or element B itself.

5.3.6.3 The components of any array that is a struc-
ture element of a compound are ordered according to the rule

of section 5.2.7.

5.3.7 Declaration According to Prototype

5.3.7.1 1f a compound declaration begins with the
declarator as, it means that the compounds whose identifiers
are enumerated in the corresponding identifier list com-
pletely duplicate the compound-prototype structure whose
identifier designator follows the as declarator. 1In these
'compounds in particular, all higher-level compound-prototype
identifiers for designating corresponding structure elements
are repeated. If a simple compound prototype is given in
the form of a compound-array identifier designator with a
subscript list, it means that one of the components (any

one) of that compound array is a prototype.

5.3.7.3

-95-

5.3.7.2 An identifier designator sequentially arranged
according to increasing levels enumerates the_Ebmpound
identifier into which the quantity designated by é ginite
identifier of that designator enters. A compound prototype
designator must begin with a first-level identifier. Higher-
level compound identifiers can in some cases be omitted.

Specifically, the identifier designator
I.1I1.12..... IK. ID

(where I, I1, I2,...,IK are compound identifiers, and ID is

an identifier designator) can be shortened to
I. ID.

if any identifier designator
I.»IDl

(where I is the same identifier and ID1 is an identifier
designator with the same initial identifier as ID) can arise

only in abbreviating the full identifier designator
I.I1.12..... IK. ID1

5.3.7.3 1If, in the declaration of a compound serving

as a prototype, there occurs an array declaration with a
special upper bound, then the corresponding arrays, entering
the compound declared by that prototype, receive as an upper
bound of the first subscript the current values of the upper
bound of the first array-prototype subscript. 1If any of
these values is undefined, then the array entering according
to the declaration of the prototype is also undefined. Other
list structure elements declared according to prototype can

be defined thusly.

5.

4

-96-

5.4 SWITCH DECLARATIONS

5.4.1 Syntax

(switch list) ::= (label) | (switch list)(label)
(switch declaration) ::= switch (switch identifier)

:= (switch list)

5.4.2 Examples

switch S := S1, S2, S3, S4
switch K := R1, L

5.4,3 Semantics

A switch declaration defines the set of values of the
corresponding switch designators. These values are given
one by one in the form of labels entered in the switch
list. With each of these labels there is associated a
positive integer, 1, 2,..., obtained by counting the items
in the list from left to right. A label with a subscript
expression value given by its sequence number on the switch
list is the value of the switch designator corresponding
to the given value of the subscript expression (see section

3.6, Designational Expressions).

5.4.4 Influence of Scopes

If a switch designator occurs outside the scope of a
label entering into a switch list, and an evaluation of
this switch designator selects this precise label, then the
conflicts between the identifier designating it and the

identifiers whose declarations are valid at the place of

-97-

the switch designator are avoided through suitable sys-

tematic changes of the latter identifiers.

5.5 PROCEDURE DECLARATIONS

5.5.1 Svntax

(formal parameter) ::= (identifier)
(formal parameter list) ::= (formal parameter) |
(formal parameter list)(parameter delimiter)
(formal parameter)
(formal parameter part) ::= ((formal parameter list)) | (empty)
(identifier list) ::= (identifier) | (identifier list) ,
(identifier) |

(value part) ::= value (identifier list) ; | (empty)

(specificator) ::= (type) | array | (type) array | compound |
compound array | label | switch | procedure | (type)

procedure
(specifier) ::= (specificator)(identifier list) ;

(specification part) ::= (empty) | (specifier) |
(specification part) (specifier)

(procedure heading) ::= (procedure identifier)
(formal parameter part)(value part)(specification part)

(procedure body) ::= (statement)

(procedure declaration) ::= procedure (procedure heading)
(proéedure body) | (type) procedure (procedure heading)
(procedure body)

-98-

5.5.2 Examples (see also the examples at the end of the
report)

procedure SPUR (A) ORDER: (N) RESULT TO: (S); value N;
array A; integer N; real S;

begin integer K;

procedure TRANSPOSE (A) ORDER: (N); value N;
array A; integer N;

begin real W; integers I, K;

for I (=1 : N do

for K:=1+ 1 : N do

begin W := A[I, KIJ;
ALI, K] := A[K, I];
AlK, I] :=W

end

end TRANSPOSE

integer procedure STEP (U); real U;
STEP := if 0 < U AU =<1 then 1 else 0

procedure ABSMAX (A) SIZES: (N, M) RESULT TO: (Y)
SUBSCRIPTS: (I, K);

comment The absolute greatest element of the matrix
A, of size N by M is transferred to Y, and the
subscripts of this element to I and K;
array A; integers N, M, I, K; real Y;

begin integers P, Q; Y := -1;
for P := 1 : N do

for Q :=1 : M do

=99~

if ABS(AlP, Q]) > Y then

begin Y := ABS(A[P, Q1);
I :=P; K :=24Q

end

end ABSMAX

procedure INNERPRODUCT (A, B) ORDER: (K, P) RESULT TO: (Y);
value K; integers K, P; reals Y, A, B;

begin real C; C := 0O;
for P :=1 : KdoC :=C+ A X B;
Y :=C

end INNERPRODUCT

procedure SELECT (A, NA, B, NB, I, L); value NA;
compounds A, B; integers NA, NB, I; Boolean L;

begin NB := 0;
for I :=1 : NA do if L then
begin NB : NB + 1;

B := A
end
end SELECT

integer procedure NUMBER OF SYMBOLS (S) IN TEXT: (T);
value S; strings S, T}

‘begin integers D, I, K;
D := SIZE (T); I := 0;
for X := 1 step 1 until D do
1f T (element K) = S then I :=1 + 1;
NUMBER OF SYMBOLS := I

end

——

-100-

5.5.3 Semantics

A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal con-
stituent of a procedure declaration is a statement, the
procedure body, which through the use of a procedure state-
ment or a function designator can be activated from other
parts of the block in whose head the procedure declaration
appears. Associated with the body is a heading, which
specifies certain identifiers occurring within the body to
represent formal parameters. Formal parameters in the pro-
cedure body should, whenever the procedure is activated
(see section 3.2, Function Designators, and section 4.7,
Procedure Statements), be assigned the values of or replaced
by actual parameters. Identifiers in the procedure body
which are not formal should be either local or non-local
to the body depending on whether they are declared within
the body or not. Those of them which are non-local to the
body may well be local to the block in the head of which
the procedure declaration appears. The procedure body
always acts like a block, whether it has the form of one
or not. Consequently, the scope of any label labeling a
statement within the body or the body itself can never
extend beyond the procedure body. 1In addition, if the
identifier of a formal parameter is declared anew within
the procedure body (including the case of its use as a label,
as in section 4.1.3), it is thereby given a local signifi-
cance and actual parameters which correspond to it are in-
accessible throughout the scope of this inner local quan-
tity. No identifier can occur more than once in a formal

parameter list,

L I Iy

-101-

5.5.4 Values of Function Designators

For a procedure declaration to define the value of a
function designator there must, within the procedure body,
occur one Oor more explicit assignment statements with the
procedure identifier in a left part; at least one of these
must be executed. The last value so assigned is used to
continue the evaluation of the expression in which the
function designator occurs. The type associated with the
procedure identifier must be declared through the inclusion
of a type declarator as the very first symbol of the pro-
cedure declaration.

A function designator and the procedure declaration
defining its value must be such that any possible use of
the function designator as a procedure statement will be

equivalent to an empty statement.

5.5.5 Specifications

A sPecification part, giving information about the
kinds and types of the formal parameters by means of an
obvious notation, can be included in a heading. 1In this
part, each formal parameter, if the procedure has any,

can occur once.

Example 1

-102-

EXAMPLES

PROGRAM 12345600:

begin

Comment.

Declarations are submitted in the following
format for ease of visualization:

Declarations Identifiers format | Format Bound Pairs
compound WORK-CARD [1 : integer T].
2=ar NEW-WORK~CARD
strings NAME format | ‘S(15)’,
DEPT format | ‘S(5)’;
array TIME format | ‘99T99° |[[1 : 53;
reals TOTAL-TIME format | ‘99T99°,
AVERAGE-TIME | format { ‘99T99°;
real Vs
integers H, N;
Comment. At this point in the program there must be a punch-

card input

: T do

for N :=1

begin V := 0;

statement for the WORK-CARD compound-array;

for N :=1 : 5 do

Vo=

V + WORK-CARD [H]. TIME [N];

WORK-CARD [H]. TOTAL-TIME := V;

WORK-CARD [H]. AVERAGE-TIME

:= V/5;

NEW-WORK-CARD [H] := WORK-CARD [H];

Comment.

(on the following page] written in

-103-

At this point in the
statement for outputting the

to the printer;
end DO H.
end PROGRAM 12345600.

For comparison purposes, this

Example 2

Problem Statement:

Laallples

program there must be a
values of NEW-WORK-CARD [H]

same program 1s presented
COBOL. ~

The initial data are represented on a Work-Card in

the following manner:

WORK-CARD [1

: T]

Dept

Employee Time Worked
Work=-Card (per day)
Number 2 3 ... | 31

needed for accounting purposes:

Background Data, given in the following form, are

BACKGROUND DATA [1 : S]
Dept Employee Last Name, Job Employee | Hourly
Work-Card | First, Middle Category Rate
Number

*Ref. 7, pp. 151-153.

Examples

-104-

"AWIL-TVIOL 0L (N) AWIL aav % 060

‘N4 dOLS ATTA-AI0M-MAN ANV dTIA-d0M HSOTID "¢ 080

. ‘Z 0L 0D @¥VO-Md0M WOdd TEVO-AdOM-MAN HITIM dHANNOY 0.0
HWIL-IOVIHAV ODNIAID HWIL-TVLOL OINI ¢ HAIAIA ¢ ddLVAYD N TIL =090
NO T A9 T WOdd N ONIXYIVA # WI0Addd AWIL-TVIOL OL SO¥EZ HAOW 060

"¢ OL 0D ONE LV @d0Dd¥ dTITA-AI0M avdad 7 0%0
"HTIA-AH0M-MAN LO4LNO HTTA-AH0M LOINI NdIdO "T 0¢0
‘NOTISIAIQ HINAIO0dd 070
"LIDIA OIYHMWAN TVNOIIVLNAWOD T SI HZIS N [LZ 010020
"NOIIJES HOVIOLS-ONINUOM 067
"(08)X SI FTUNALDIA QIAVO-XIOM-MAN TO O%C
*qQEVI-E0M -0¢¢
-MAN ST d§0Ddd VIVA JALLIWO H¥V STI0DdY THIVT ATIA-AJOM-MAN dd 0¢7¢

*(Z€)X A¥NIDId ¥ATIIA 20 01¢

'66A66 TUNIOId AWIL-TOVIAAY Z0 00¢

"66A66 TMNLOId AWIL-TVIOL Z0 061

"SEWIL G S¥NJD0 66466 FTINIDId AWIL ZO 081
"(¢)X MINILOId Id4d 2o 0L1

*(CT)X FUNIDIA AWVN ZO 091

@IVO-Y¥0M 10 06T

‘@IVO-YEOM SI QI0DTY VIVd 071

QIIIIHO IV SAIODHAY TAIV'T 0¢1

ATIA-MI0M dd 0771
"NOLILOHS dTIL OTT
‘NOISTAIQ VIVd 00T
""TOY4ILNOD=-0-I 060
"TOYINOD-ATIA 080
"NOILDES INdINO-LNANI 0.0
“YHLAIWOD =103 40 090
“YILNIWOD-ADIN0S 060
"NOLILDHS NOILVIAOIANOD 0%0
"NOISIAIQ INJWNOYIANA 0€0
"0094PECT "AI-WVEO0dd 070
*NOISTAIQ NOILVOIJAIINAQI 0F00T0

Program of Example 1 Written in COBOL

nXamp Les

-105-

It is required that a Payroll Account by employee per

pay period be maintained, with the following format:

ACCOUNT [1 : T]

Dept Name Employee Time (per month) Wages Remarks
Work-~Card -
Number Hrs Days
TOTAL:

The names of employees are entered to the Account from
the Background Data; they are entered there at the same time
as Work-Card Numbers (together with Department Numbers) are
copied from the Work-Cards to the Account. Only the last
name and first letters of the first‘and middle names (the
initials) are entered to the Account (all names are given
in full in the Background Data)

Monthly time in hours is determined for the Account by
totaling the data on the Work-Card, while monthly time in
days is the number of days on the Work-Card for which hour
entries have been made.

The total wage charge on the Account is defermined by
‘multiplying the.employee's time worked during the month in
hours by his hourly rate (obtained from the Background
Data).

% .
Subsequently in this example, '"Name' means last
name and first initials; "Full Name'" means last, first,
and middle names.--Trans.

Examples

-106-

In the event of absence of Background Data on an
employee, his Work-Card Number and department number are
placed on a list of nonformulated employees, and a nota-

tion is made in the Account to this effect. Wages for

~any such employee are not computed.

Column totals are produced on the Account for Hours,
Days, and Wages. -

Based on these data, it is also required to produce
a resume of the Distribution in Man-Days of employee time

by Job and Category:

Distribution in Man-Days (%)

Job by Category [man-days] by
Job [%]
1 2 3 4 5
Assembly 15.0 {25.0 [30.0 {10.0 |20.0 5.0

worker, etc.

TOTAL [%]: 10.0 [20.0 |30.0 |35.0 | 5.0 | 100

In distributing man-days according to Category, the
total hours expended in man-days (the "days'" column on the
Account) for the given Job is used. The total by Job is
based in the Distribution on percentage. These time totals
are determined from data in the Account (Work-Card Number
and Days columns) and in the Background Data (Work-Card
Number, Job, and Employee Category columns).

In distributing man-days by Job (last column of the
resume), the 100% figure is of the overall time totals in

man-days.

-107-

Pefcentage data in the resume must be given in the
alphabetical order of Job titles.

Additionally, it is required that a new Wo;&:Card be
prepared for subsequent recording of employee_ggurs. The
form of the new Work-Card, in which only the first two
columns are filled in, is the same as the one shown above.

Data editing requirements are indicated in their
declarations in the program.

It is assumed that there is a SORT procedure declara-
tion in the library that orders the values of a one-
dimensional string array lexicographically. The form of

the statement for this procedure is as follows:

LIBRARY (‘SORT’, <(array identifier), (lower bound),
(upper bound))

It is also assumed that the variables S and P and
procedures with identifiers SEARCH, MULTIPLY, and WAGE are
declared for the external block. Declarations for these

procedures are presented below.

procedure SEARCH (I, N, Vv, L1, L2) values N, V;
integers I, N, V; Booleans L1, L12;

begin L2 := true;
for I := N : V do

if L1 then

begin L2 := false;
to M

end;

M:

end

Examples

-108-

string procedure MULTIPLY (T, A); values T, A;

integer A; string T;

begin integer I; string X;

: A do

1
X =X « Ty
MULTIPLY := X

real procedure WAGE (M, I1, I2); values I1, I2;

integers I1, I2; array M;
begin integer I; WAGE := 0;

for I :=T1I1 : 12 gg
WAGE := WAGE + M[1]

end

Problem Solution:

PAYROLL OVER TIME:

begin

Comment. Declarations are submitted in the following
form for ease of visualization:

Declarations | Identifiers format | Format Bound Pairs
compound BACKGROUND (1 : s73.
arrays
(strings DEPT format | ‘SS’,
W-C NO format | ‘S(4)°,
FULL NAME format | ‘S(70)°,
JOB format | ‘S(30)’,
CATEGORY format | ‘S’;
real RATE format | ‘9.99°),

-109-

WORK-CARD [1 : integer T].
(strings DEPT format | ‘Ss’,
W-C NO format “SSSS’;
real array HOURS format | ‘99T99° (1 :31]),
ACCOUNT (1 : integer T1].
(strings DEPT format | ‘SS’,
NAME format ‘S(45)’,
W-C NO format | ‘S(4)’;
real HOURS format | ‘PPP.9U’;
integer DAYS format | ‘PP’;
real WAGE format | ‘PPPT99’;
string REMARKS format { ‘S(30)’),
SV (1:pr].
(string JOB format | ‘S(30)’;
integer CATEGORY format | ‘P(4)° (1 :57;
array
integer TOTAL format | ‘P(6)’),
RESUME (1 :P+17.
(string JOB format | ‘S(30)°’;
compound DISTRIBUTION
IN MAN DAYS.
(string FOR (1 : 57;
array CATEGORIES
string FOR JOBS)),
NONFORMULATED (1 : integer NJ.
(strings DEPT format | ‘SS’,
W-C NO format | ‘S(4)°’);

LA CHLE & O

-110-

compounds TOTALS V.

(real HOURS format | ‘P(7).9°;

integer DAYS format | ‘P(6)’;

real WAGE format | “*%(6).99°),

TOTALS SV.

(integer CATEGORY format | ‘P(6)° (L :5];
array

integer TOTAL format | ‘P(6)’);

string PROF format | ‘S(30)’ (1 : P];
array

integers IT, IS, IR, IC, IP, I, R; Booleans ABSENT;
strings BLANKS, F;

Preparation:

Comment. At this point in the program there must be input
statements for the BACKGROUND and WORK~CARD compound arrays;

ACCOUNT. DAYS := 0; ACCOUNT. WAGE := 0;

BLANKS := MULTIPLY (‘_°, 30);

ACCOUNT. REMARKS := ‘’; ACCOUNTI. NAME := “’;

SV. JOB := “’;

SV. (CATEGORY, TOTAL) := 0;

TOTALS SV := 03

TOTALS V. (HOURS, WAGE) := 0; TOTALS V. DAYS :

N := 0;

F := ‘S(5) ‘,’%°;

begin as WORK-CARD compound array NEW-WORK-CARD;
NEW-WORK-CARD. HOURS := 0;

0;

Examples

-111-

begin ACCOUNT [IT]. (DEPT, W-C NO) :=
WORK-CARD [IT]. (DEPT, W-C NO);

NEW-WORK-CARD [IT]. (DEPT, W-C NO) :=
WORK-CARD [IT] . (DEPT, W-C NO);

ACCOUNT [IT]. HOURS := WAGE (WORK-CARD [IT].
HOURS, 1, 31);

for IC :=1 :: 31 do

ACCOUNT [IT]. DAYS := ACCOUNT [IT]. DAYS +
(if WORK-CARD [IT]. HOURS [IC] > O then 1 else 0);

SEARCH (IS, 1, S, BACKGROUND [1IS].
W-C NO = ACCOUNT [IT]. W-C NO, ABSENT);

A : if ABSENT then

begin N := N + 1;
NONFORMULATED [N] := WORK-CARD [IT]. (DEPT, W-C NO);
ACCOUNT [IT]. REMARKS := ‘NOHBACKGROUNDUDATA’

end

else

begin FAM: _
procedure DO (M1, MO); labels M1, MO;

begin IR := IR + 1;
LIf IR > 70 then to M9;
if BACKGROUND [IS]. FULL NAME [element IR] = ¢’
then to ML else to MO

ML : DO (M1, M2);

M2 : FAM := FAM ~ BACKGROUND [IS].
FULL NAME [element IR]; DO (M3, M2);

M3 : FAM := FAM ~ ‘_°;
M4 : DO (M4, M5);

M5 : FAM := FAM -~ BACKGROUND [IS].
FULL NAME [element IR] « ‘. ’;

Examples

~112-

M6 : DO (M7, M6);
M7 : DO (M7, M8);

M8 : FAM := FAM « BACKGROUND [IS].
FULL NAME [element IR] « ¢.°;

M9 : ACCOUNT [IT]. NAME := FAM;

ACCOUNT [IT] . WAGE := ACCOUNT -[IT].
HOURS X BACKGROUND [IS]. RATE;

SEARCH (IP, 1, P, SV [IP]. JOB = BACKGROUND [IS].

JOB, ABSENT);
if ABSENT then

begin SEARCH (IP, 1, P, SV [IP].
JOB = BLANKS, ABSENT);

if ABSENT then to ERROR 1 else
begin SV [IP]. JOB := BACKGROUND [IS]. JOB;

SV [IP]. CATEGORY [BACKGROUND [IS].
CATEGORY sense ‘9’7 := ACCOUNT [IT]. DAYS

end

end

else SV [IP]. CATEGORY [BACKGROUND [IS].
CATEGORY sense ‘9°] :=

SV [IP]. CATEGORY [BACKGROUND [IS].
CATEGORY sense ‘9’7 + ACCOUNT [IT]. DAYS

end A;

TOTALS V. HOURS := TOTALS V. HOURS + ACCOUNT [IT].

HOURS;

TOTALS V. DAYS := TOTALS V. DAYS + ACCOUNT [IT].

DAYS;

TOTALS V. WAGE := TOTALS V. WAGE + ACCOUNT [IT].

WAGE

end IT.

-113-

Comment. ACCOUNT, TOTALS V, NEW-WORK-CARD, and
NONFORMULATED are obtained and output to the printer;

end NEW-WORK-CARD;

for R :=1: 5 do

begin SV. TOTAL := SV. TOTAL + SV. CATEGORY [R];
for IP := 1 : P do
TOTALS SV. CATEGORY [R] := A
TOTALS SV. CATEGORY [R] + SV [IP].‘CATEGORY [R];

TOTALS SV. TOTAL := TOTALS SV. TOTAL + TOTALS SV.
CATEGORY [R]

end

PROF := SV. JOB;

LIBRARY (‘SORT’, PROF, 1, P);
BACKGROUND. JOB := PROF;

for I :=1:P do

begin SEARCH (IP, 1, P, BACKGROUND [I]. JOB = SV [IP].
JOB, ABSENT);

BACKGROUND [I]. FOR CATEGORIES := (sv [IP].
CATEGORY x 100/Sv [IP]. TOTAL) text ‘PPP.9’ text F;

BACKGROUND [I]. FOR JOBS := (SV [IP].
TOTAL x 100/TOTALS SV. TOTAL) text “PPP.9’ text F

end I;

BACKGROUND [P + 1]. FOR CATEGORIES := (TOTALS SV.
CATEGORY x 100/TOTALS SV. TOTAL) text ‘PPP.9’ text F;

BACKGROUND [P + 1]. FOR JOBS := ‘100.0° text F;
BACKGROUND [P + 1]. JOB := ‘,__ _TOTAL :’;

Comment. At this point the BACKGROUND compound array
must be output to the printer;

end PROGRAM.

-115-

REFERENCES

J. W. Backus, F. L. Bauer, J. Green, C. Katz,
J. McCarthy, P. Naur, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, and M. Woodger, '"Revised Report on the
Algorithmic Language ALGOL 60," Peter Naur (ed.),
IFIP, 1962 [Commun. ACM, Vol. 6, No. 1, January
1963, pp. 1-17; Comp. J., Vol. 5, No. 4, January
1963, pp. 349-367; Numer. Math., Vol. 4, No. 5,
1963, pp. 420-453].

"Report on SUBSET ALGOL 60 (IFIP)," IFIP Working Group
2.1 on ALGOL, Princeton, New Jersey, 1964 [Commun.
ACM, Vol. 7, No. 10, October 1964, pp. 626-6287.

"Report on Input-Output Procedures for ALGOL 60,"
IFIP Working Group 2.1 on ALGOL, Princeton, New
Jersey, 1964, -

Report to Conference on Data Systems Languages In-
cluding Revised Specifications for a Common Business
Oriented Language (COBOL) for Programming Electronic
Digital Computers, Department of Defense, 1961.

D. E. Knuth, L. L. Bumgarner, P. Z. Ingerman, J. H.
Merner, D. E. Hamilton, M. P. Lietzke, and D. T.
Ross, "A Proposal for Input-Qutput Conventions in
ALGOL 60 (A Report of the Subcommittee on ALGOL
of the ACM Programming Languages Committee),"
Commun. ACM, Vol. 7, No. 5, May 1964 [pp. 273-283].

J. W. Backus, "The Syntax and Semantics of the
Proposed International Algebraic Language of the
Zurich ACM-GAMM Conference,'" ICIP, Paris, June 1959,

IBM, General Information Manual COBOL, Form F28-8053-1.

-117-

RUSSIAN-ENGLISH GLOSSARY

%505 s _s=s1sPy 3 472, 4,8,%,7 , oM. (crmenranbHHi 3HaH!

»
-

’ , CM. K&BHUYKV MLANA CTPOK
Cie IINRC
Ke MUHYC
Cli. yMHOXEHLE
, CM. LeJienue
. BO3BELSHYE B CTelleH:
y=432,>,# , cv. (BHE¥® oNepalrl OTHOWEHUA)
s VieNym , cu. (3HAK NOTKUECKO: Oonepauuun)
ClM. ONnevpallsa NPUCOeIVHEHUdA
CM. 3amAaTas
CM. LecATyYEaR TOUKE
CM. IEeCATH
CM. LBOETOUME
CM. TOYKZ C 3anATou
cM. npofen
CM. 3BE3LOUKa
s CM, CKOOKU
y CM. UHIEKCHHE CKOOKIU
, CM. IOBOETOYWE DE&BEHCTEBO

.+.

diw o

O

WA =N |
U

T

-

—
(=]

as M/~){-C e
- ~ -, - ~» - - -

0o~

+

[IO3ULLUL) (+ positions)
YacThb) &+ part)
No3ULUY) (- positions)
yacTts) . (- part)
OO3ULUKY (* positions)
YacTh) (* part)
MO3NILKY) (9 positions)
YACTh) (9 part)

+

NN AN SN AN AN N A

OO % i

(apuiMeTnyecKkoe BupaxeHnue) (arithmetic eeression)
(apudeTHUECKOe OTHOUIGEHKE) (arithmetic relation)

(GeaycnosHuuj omepartop’) (unconditional statement)
(6nox) (block)

(6ykBa) (letter)

(BepxHAA rpaHuua) (upper bound)

BelieC TBEHHAA CM. BEIWSCTBEHHCE
BElEeCTBEHHOE real

BEeLSCTBEHHE Cli. BelleCTBEHHOE

BEWEC TBEHKHbIL CM. BelleCTBEHHOE

BUA format

BOSBeL€H¥e B CTelehb ' exponentiation

(BCcTarxa) {insert)
(BTOpUUHOE JOruuecKoe shpaxeHue). (Boolean secondary)
(BTOpPMUHOE MHOTOKOMIOHEHTHOE BHpaxaHKe) (secondary

multicomponent expression

Glossary

-118-

(BTODVUHOE TEKCTOBOE BHDAXEHUES) (secondary string
expression)
(BHpaxKeHVE) (expression})

(rpaevuynas napa’ (bound pair)

IBOETOuXE colon

IEOETOUXE D2BEHCTEC := colon equal
nenenve /, divide

DECETHUHEES TOUKE . decimal point
{(mecHaTVUECe YKCIO) {decimal number)
LECATDh 10 ten

L5 for

4o until

deiF e

ecny if

(3aTOJIOBOK MNPOLELYDPH) {procedure heading)

(3arocJ0BCK UUKIA, (for clause)

sanfaras , comma

aBesnouyka * asterisk

(3nak apuimeTrueckoi onepauwu, (arithmetic operator)

(3HaQK JIOTMUECKO Omepaunn) (logical operator)

{(3HaK ManTHUCCH) (mantissa sign)

(3HaK onepauuu’ (operator)

(3HaK omepaury OTHOUWEHUA) {relational operator)

(3H&K onepauuy CICHOB&HUA) (sequential operator)

(3Hak onepaury TUNA CJOXEHMUA) (adding operator)

(3H&K Omnepaunuy Tuna yMHOXEBRMWA) {(multiplying operator)

(3EEK TEKCTOBOM ONmepauun) (string operator)

(3HAKOBa® UYaCTh) (sign part)

3HAUEeHUE value

(MOEeHTNIUKETOD) (identifier)

(MEEHTUDIHKATOD MECCKBA) (array identifier)

(umenTuULrxatTop Maccuea ¢ HopmMaTOoMm) (format array
identifier)

(UEeHTEIVKaTOD NepexawuaTens) {(switch identifier)

(MmerTuIVKaTOD NepeMeHEHO) {(variable identifier)

(UOeHTHIVKETOP NPOCTO¥ COCTaBHOIL) (simple compound
identifier)

(MODEeHTUVKATOD NPOLUenypPh) (procedure identifier)

(MILEeHTUIUKATOD COCTABHOMN) (compound identifier)

(uzZeHTUIKKATOP COCT&BHOU-Maccrea) (compound-array

. identifier)

(uvenywomee Bmpaxeure) (designational expression)

(ULTINKauua (implication)

nuraue else

(MHIEKCHOE BHDEKEHUE) {subscript expression)

uniekcune cxoGku [] subscript brackets
UCTUHE true

Glossary

-119-

KaBHUYKK L719 CTPOK * quotation marks

kax as

KoHel end -~

(korel nepemeHHoﬁ—COCTaBnﬁmmei> {(variable-constituent
tail) T

{KoHEell COCTAEKOIO OmeTaTOD&) (compound statement tail?

(nesas uacTh) (left part)

NOTKUEeCKad CM. JIOTHMUYECKOE

JCTIIUSCKMS CM. JICTWYECKCE

JIOTVUECKUT Cii. JOTIIYECKOe ‘

(FOTHUCCKY,: OLHOUTNEH) (Boolean monomial?)

{NoTHuUECKKA Tepu’ (Boolean term)

JOTHUYECKOE Boolean

(IOTHUECKOE BipaxEHuEe) (Boolean expression)

(norrueckoe sxzauenxe) (logical value)

JIOXKE false

MaCCUE array

(macurtad) (scale)

(macuTa6upoBaHHuA POLMAT NPaBUJbHOL Ipocu) {proper
fraction scaled format)

(meTKa) (label)

METKE label

MUHYC = minus

(MHOTOKOMIIOHEHTHaR Jiebaf UacTh) (multicomponent left
part)

(MHOTOKOMIIOHEETHOE BHDAaXeHMe) (multicomponent expression)

(MHOTOKOMIICHEHTHOE YCIOBHUE) (multicomponent if clause)

(MHOKUTEDb) (factor)

Ha to

(RavueHOBaHKe COCTaBHOK) (compound name)

Hayamno begin

(Hauano 6n0K&) {(block head)

(HeuMeHyKLEs BhHpaXeHue) (nondesignational expression)

{HenomeyeHHbN 6IOK) (unlabeled block)

(nenomeuexHs) OCHOBHON ONepaTor’ {unlabeled basic
statement)

(HemOMeueHHN) coCcTaBxoit omepatop? (unlabeled compound
statement) . '

(Hy¥HAA [DOHKLA) {lower bound}

(OrpaHKu¥Tens) (delimiter)

(orpanuuXTEnb napamerpar (parameter delimiter)
(onzratop’ (statement)

(onmcparon <€ecnu®) (if statement)

(onepatTo] mnepexons’ (go to statement)
(onepaTop MPUCBAUBREAA’ (assignment statement)
(omepaTop npouenyps) (procedure statement)
(omeraTop LUUKIE) (for statement)

onepaluua MNpUCOelUMHEeHUA = concatenation operator
(onucaHue) (declaration)

Glossary

-120-

{(onuvcasre MaCCUBOBR) (array declaration)

- {(onvceasie NepeKJIKYaTens) (switch declaration)
(onucanne npouenypt) (procedure declaration)
(OTI#CEaEVE COCTAaBHBX) (compound declaration)

CTOYKTYPH) (structure declaration)

T (type declaration)

(onwcanze sneMenTs CTOVKTYLL) {structure element

declaration)

(omvcarenn) (declarator)

(ocHOBHOY. onepaTop) (basic statement}) .

(OCHOEHGCY CHLBOM) (basic symbol}

(OTKDHTZS CTpPOKa) (open quotation)

{(oTHOmEHKE) (relation)

(Il mosuuvw) (P positions)
(T uacTn) (P part)

(NepBrUEOE apriveTVyeCcKoe BhHDAXEHUE) {(primary arithmetic
expression)

(nepBuuHOe noruueckoe supaxezve) (Boolean primary)

(MepBUYKOE MHOTOKOMIOHEHTHOE BHpAaXeHNE) (primary
multicomponent expression)

(MePBUUHOE TEKCTORBOE EBHpsREHLE (primary string
expression)

NEVEKARYETENE switch
nriwc + plus
nposen ., space
(mpoTOTHN NpOCTOR cocTaBHOi) (simple compound prototype}
(NIPOTOTHII COCTEBHON~MECCUBA) (compound-array prototype}
npouenyra procedure
(IycTO)y (empty)
(nycToli omepatop) {(dummy statement)
(nepexnwuarensnmit cnucox) (switch list)
(nepemenHas) (variable)
(nepemMenHaa ¢ MHIEKCAMU) (subscripted variable)
(mepemenraa-cocTabnaAwvuana) (variable-constituent)
(mepeuens WKaXy ULEIEKCA) (subscript scale catalog)
(HOBTODPUTEND) (repeat)
(noraensenaa uacts) (suppressed part)
NOKa while
(ncoanox) {exponent)
(npaeunwEas LpO6b) (proper fraction)
OpuliedaHye comment
(MpruVTrNBHOE TEKCTOBOE BHDAaXEHUE) (primitive string
expression)
(nporpawmua) (program)
(rMpocTana MepeMeHHas) {simple variable}
(npocToe SPUEIMEeTHUECKOE BHPAXCHNE) (simple arithmetic
B expression)
(MpocToe JOTHUECKOE BHpaxkeHNe) (simple Boolean)
(IpOCTOE MHOTOKOMIOHEHTHOE BHDAXEHNE) (simple
mul ticomponent expression)
(NpocToe TEeKCTOBOE EBHpAKEHLE) (simple string expression}

-121-

535enuTens) (separator)
an M) (M series)
AL mnanwi) (space series)

-
= (r
(

Lo Rimiio]

(C noaunuu) ositions)
(cerueHT maccvso g (array segment)
(cermMeHT NPOCTHX COCTZBENX) (simple compound segment)
{CerusHT COCT&BHNX=8CCHUBOB) (compound-array segment)
(cKoSxa) (bracket)
ckobru () parentheses
CMBC T sense
(COBOKyNnHOCTH crneuunjukauuit) (specification part)
(COBOKYMEOCTL PAKTUUECKUX NapaMeTpoB) ~ {actual parameter
part®
(COBOKYNHOCTSL HOPMANBHHX narameTpoB) (formal parameter
part)
(cocTasr) (composition)
cocTeBHEaS CM. COCTZ2BEOEC
COCTERBHOE compound
COCTaBHOH CM. COCTaBHOE

(COCTAaBHOL ONEDpaTop? (compound statement)
COCTa&BHLE cM, COCTAaBHOE

(crienuanpuuil 3HEK) {special character)
(CneuuduUKaTop) (specificator)

(cneuuduxanus) (specifier)

{(CTIMCOK TPaHuuHHX N8y, (bound pair list)

(cnucok sHaueru¥) <(value part)

(CTIUCOK MﬂeHTM\VﬂaTopoa> (identifier list)

(CNUCOK UIEHTWIUKATOPOE MSCCLBOB) (array identifier

list)

(cniuMCOK MIEHTUIUKATOPOB MepeMeHHHX) (variable identifier
list)

(CNUCOK ULEHTUPUKATOPOB NPOCTHX COCTABHEX) (simple
compound identifier list)

(CTINCOK UIEHTUDUKATODOBR COCTEBHEHY-MACCIIEOE) {compound-array

identifier list)
(CcnucoOK MHOEKCOB) (subscript list)
(cnucox nesoii uactu) (left part list)
(cnzcox maccusoe) {array list)
(cn#coKk onucaH®s CTPYyKTyph,) (structure declaration list)
(criucox nosuuui) (position list)
(cnucoK mpocTHxX cocTaBHuX) (simple compound list)
(cr#cox cocTasa) (composition list)
{(cmucoK cocTaBHHX-M&CCUBOER) (compound-array list)
(crnzcox Tuna) (type list)
{(crnxcok PaKTrUIECKKX NapaveTpOB) (actual parameter list}
{(Cnicox HOpMaNbHbHX N&DPaMeTDOB) (formal parameter list)
{(Cmucox LUMKTa) (for list)

{(CrnucoK WKaja MHLEKCOB) (subscript scale list)
{(cTpoka’ (quotation)
CTDOKE quotation

(cTpoka OyKB) (letter quotation)

PR

(cTpouHEH KaBHuKa)
CUMBOJI)

(cTpOuHH
TEKCT

TEXCTCBOC

-122~

(quotation mark)
(quotation symbol)

text
ENCTOBESH

CHM. TEKCTORBOE
string

{(Texcroroe
{(TEeXCTOEOE

Elrexcromo®

{(TEXCTOBOL

TCKCTOBLEIC
(Teno npouendyps)

BHDAECHNE {string expression)
oTHomWenue) {string relation)
CM. TEKCTOBOS
sopuaT) (string format)
Cli. TEKCTCBOE
(procedure body)

{(Tepw) {(term)
{run’ {type)
I0 then

TOUK& C 3andgToi

H semicolon

(yxaszaTens MNEHTUIHMKATODZ MACCHBA) (array identifier
designator)
(yxasaTenb ULEETUINKATOPE NEepeMeHHOHR) {(variable

identifier designator)

(yxaszaTens

UIEHTUJVKaTOpa NpocToil cocraBroiy (simple

compound identifier designator)
(yrasarenb UHEHTKLVKATODE COCTaBHOWH-Maccrsa)

{compound-array identifier designator)
(yxesatesns umecwrada) (scale designator)
(yrezaTesib OKPYIJeBud) (roundoff designator)
(yrasaTesib NEepeKJNUaTeNs) (switch designator)
(yxasaTens NOAMACCKEBR) (subarray designator)
(yxasaTenb NpOTOTHIE ME&CCHBE) (array prototype

designator)

(yxasaTenb NpoOTOTUINA NEeDEeMEHHON) {(variable prototype
designator)

(yrasaterns cocTaBnaviell) (constituent designator)

(yrasaTens
(yrasaTrelb
(yxasaTens
YMHO%eHve
(yenozve)

{(ycnosuuY onspatop’

LECTBEHHOTO)

cocTaBHON) {compound designator)
TOUKY) (point designator)
QYHKILLN) (function designator)
X multiply

(if clause)
{conditional statement)

(actual parameter)
IapemMeTD) (formal parameter)

{(format)

BE {(real format)

LEeCATWYHOTO uMcra) {(decimal number format)
MEHTUCCH) (mantissa format)

MEHTUCCH CO SHAKOM) (signed mantissa format)
nopALKa) (exponent format)

NDaBUIIBHON IpoGu) (proper fraction format)
(Hopmar 1enoro) {integer format)

(HopmaTt uenoro 6e3 3HAaKa) {(unsigned integer format)
$OpMaTHOE BHDaXeHue) (format expression)

(popmar
(HopuaT

-123-

Henas CM. LeJoe
B (uenzs uacTb) (integer part)

(uenoe? (integer)

Lenoe integer

(uence 6e3 3HakKa) {(unsigned integer)

Hesne cM. Lenoe

1€ JIhii CM. LeJioe

yuxr do
(uuspad (digit)

{umecno’ {number)

(umcno Ges3 3HaKa) (unsigned number)
(uncnoBo¥ HopmarT) {(number format)
(uMcTas CTPOKE) (blank quotation)

mar step

(WKana WMHEAEKCA) {(subscript scale)
{umauusa) {(space)

(3 nmosuuuu) (E positions)

SACMEHT element

(97eMEeHT cocTaBa) {(composition element)

(sjeMeHT COUCKa Mo3uLuii) (position list element)
(971eMeHT Chnucka Tuma) (type list element)
(371eMEeHT CHOUCKAa LUKIa) {(for list element)
(371eMEeHT CTDPOKU) {(quotation element)

(3IeMEeHT WKasH UHIexca) (subscript scale element)

- 124~

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS
AND SYNTACTIC UNITS
(Including the English-Russian Glossary)

The Index, not included in the Kibernetika article,

is patterned after the Index to the "Revised ALGOL 60
Report," adjusted for ALGEC by the translator. The Index
does not, however, provide references to text definitions
and discussions. Following each entry is the original
Russian term.

Index references are to section numbers, and are
given in two groups:

def References following the abbreviation "def"

are to the syntactic definition (if any);

synt References following the abbreviation '"synt"
are to occurrences in metalinguistic formulae
(section numbers in the 'def'" group are not
repeated in the "synt" group).
Basic symbols represented by signs other than underscored
words have been collected at the beginning.
The Example sections were ignored in compiling the

Index.

-125-

T % 0s bt s®s s (=2, 4,0,£,V , see: (special character)
k> , see: quotation marks
+ see: plus
see: minus
see: multiply

see: divide
ee: exponentiation

,2,>,# , see: (relational operator)
,A,— 5, see: {(logical operator)

see: concatenation operator

see: comma

see: decimal point

see: ten

see: colon

see: semicolon

see: space

see: asterisk
) , see: parentheses

] , see: subscript brackets
= see: colon equal

dew v ow

U e
<“(ﬂv

T HA—>~xt
-
“w v

-

v W VW Y W W v v

(+ positions), def 2.7.1 (+ nosuumu)
(+ part), def 2.7.1 (+ uyacrTs)
(- positions), def 2.7.1 (- moauuuu)
(- part), def 2,7.1 (- yacTw)
(* positions), def 2.7.1 (* nmoaunuu)
(* part), def 2,7.1 (* yacTs)
(9 positions), def 2.7.1 (9 nosuuum
(9 part), def 2.7.1 (9 yacTw?

(actual parameter), def 3,2.1 (pakTUuecKull napaMertp)
(actual parameter list), def 3.2, (CUCOK GAKTUUSCKUX
napaMeTDOB)

(actual parameter part), def 3.2.1 synt 4.7.1 (COBOKymHOCTBH
HaKTUUECKUX [18PaMeTPOB)

(adding operator), def 3.3.1 (3HaK onepauKy TUIS.
CICKEHUA)

(arithmetic expression), def 3.3.1 synt 3, 3,1.1, 3.9.1,
4.6,1, 5.2,1 (apudpMmeTUUeCKOe BHDAXEHHUE)

- (arithmetic operator), def 2.3 (3Hak apuiMeTUUeCKON
onepauunu)
(arithmetic relation), def 3.5.1 (aprdMeTnueckoe
OTHOWEHUE

array, synt 2,3, 5.2.1, 5.3.1, 5.5.1 MaCCUB
(array declaration), def 5,2.1 synt 5, 5.3.1 (onucanue
MACCUBOB)

Lriuen

-126-

(array identifier), def 3.1.1 synt 3.2.1, 3.7.1, 3.8.1,
3.9.1, 4.2.1, 5.2.1 (MLEeHTVDUKATOD MaccuBa,

(array identifier designator), def 5,2.1 (ykasaTens
}IHGHTIC;J}IH&TOE."a MaCCMBa)
(array identifier list), def 5.2.1 (cricor mmeHTUFrKaTopos

MaCCHURBOR)
(array list), def 5.2.1 {(CIIUCOK M2CCKEBOR)

(array prototype designator), def 5.2.1 (yrasaterns
IPOTOTUIIA MaCCHEA)

(array segment), def 5.2.1 (cermeHT Maccuson)

as, synt 2,3, 5.1.1, 5.2.1, 5.3.1 Kax

(assignment statement), def 4.2.1 synt 4,1,1 {oneparop
NPUC BAUBAHNA)

asterisk *, synt 2.3, 2.7.1 3Be3nOuUKa

(basic statement), def 4.1.1 synt 4.5.1 {ocHOBHOH omepartop)

(basic symbol), def 2 (0OCHOBHOR cumsomn)

begin, synt 2.3, 4.1.1 =wmauano

(blank quotation’, def 2.6.1 {uucras cTpoKa)

(block), def 4.1.1 synt 4.5.1 (6710K)

(block head), def 4,1.1 (ygyaro Snoxa)

Boolean, synt 2.3, 5.1,1 soriucckce, -as8, -ui, -ue

(Boolean expression', def 3.5.1 synt 3, 3.3.1, 3.9.1, 4.5.1,
4.6.1 (roruueckoe Bupaxenned

(Boolean monomiall, def 3.5.1 (noruvecku onnounend

(Boolean primary), def 3.5.,1 (nepBuunOe NoTruMueckoe
BHpaxeHre)

(Boolean secondary), def 3.5.1 {(BTOpDUUHOE noTuueckce
BHDaKCHYE)

(Boolean term), def 3.5.1 (noruueckuii Tepm

(bound pair), def 5.2.1 (rpanuusas napad

(bound gﬁir list), def 5.2.1 synt 5.3.1 (CNUCOK Tpaurumux
nap

(bracket), def 2.3 (cxobGka)l

colon :, synt 2.3, 4,1.1, 4.5.1, 4.6.1, 5.1.1, 5.2.1
IBOETOUNE

colon equal :=, synt 4.2.1, 4.6.1, 5.4,1 LEOETOYue
PAREHCTEO

comma ,, synt 2.3, 3.1.1, 3.2.1, 3,7.1, 3.8.1, 4.6.1,
5.1.1, 5.2.1, 5.3.1, 5,5.1 3anarasa

comment, synt 2.3 npumeuzuue

(composition), def 3.8.1 {cocTas}

(composition element), def 3.8.,1 (3xemMeET coctasa)

(composition list}, def 3.8.1 (cnucox cocrarpa)

compound, synt 2.3, 5.3.1, 5.5.1 COoCTaBHOE, =a8f, =-Oif, —-he

(compound-array identifier’}, def 3.17T synt 3.8, 1,7 5.371 —
(UNEeHTUPUKETOD COCTaBHOR-MaccuEa)

(compound-array identifier designator), def 5.3.1 (ykasasTens
ULEeHTNEUKATOPa COCTaBHOW=-MaCCyBa)

(compound-array identifier list), def 5,3.1 (cnncox
ULEeHTUPUKETCPOB COCTABHHX-MACCUBOEB)

ilnaex

-127-
= (compound-array list), def 5.3.1 (cnucox

COCTaBHHX~-MACCUBOB)

(compound-array prototype), def 5.3.1 (mpoToTUm
cocTaBHO-Maccusa)

(compound-array segment), def 5.3.1 (CEerMeHT
COCTaBHHX~MaCCUBOB)

(compound declaration), def 5.3.1 synt 5 {(onucanue
COCT&BHHX) ‘

(compound designator), def 3.8.1 (ykasaTenb COCTaBHOM)

(compound identifier), def 5.3.1 synt 5.1.1, 5.2.1
(yIeHTUPVKATOP COCTEBHO)

(compound name), def 3,8.1 (HauMeHOBaHMEe COCTaBHON)

(compound statement), def 4.1.1 synt 4.5.1 (cocTaEHOY
onepartop)

(compound statement tail), def 4,1.1 (KOHEeL COCT&BHOTO
omepaTopa)

concatenation operator -, synt 2.3, 3.4.1 onepauud
NPUCOSLUHEHUA)

(conditional statement), def 4.5.1 synt 4.1.1 (yCnOBHER
crnepaTop)

(constituent designator), def 3.8.1 synt 3.9.1, 4.2.1
(yxazaTens cocTasngwmeii)

(decimal number), def 2.5.1 (IecATHUHOE UYKCIO)

(decimal number format), def 2.7.1 (popmMaT IHEeCATUUHOLO
uucsa) _

decimal point .; synt 2.3, 3.1.1, 3.8.1, 5.1.1, 5.2.1, 5.3.1
LecATUYHAA TOUYKa

(declaration), def 5 synt 4.1.1 (onucanue)

(declarator), def 2.3 {(onucaTtens)

(delimiter), def 2.3 synt 2 (OTPaHUUNTE L)

(designational expression), def 3.6.1 synt 3, 4.3.1
(uMeHywllee BHDaXEHUE)

(digit), def 2.2.1 synt 2, 2.4,1, 2.5.1 (uugpa)r

divide /,+, synt 2.3, 3.3.1 neneHue

do, synt 2.3, 4.6.1 uuxxn

{(dummy statement), def 4,401 {nycTo#f omepaTop’

(E positions), def 2.7.1 (3 mosuuun)

element, synt 2.3, 3.1.1, 3.7.1 DJENEHT

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1,3.9.1, 4.5.

(empty), def 1.1 synt 2.6.1, 2.7.1, 3.2.1, 4.4.1, 5.5.1
nycTo)

end, synt 2.3, 4.1.1 KOHel

(exponent), def 2.5.1 {rIOPALOK)

(exponent format), def 2.7.1 (Jopmar nopanka)

exponentiation t, synt 2.3, 3.3.1 BO3BELEHUE B CTENeHb

(expression), def 3 synt 3.2.1 (Bhpaxenue) __ ——

(factor), def 3.3.1 {(MEOXUTeNns)

false, synt 2.2.2 joxb

for, synt 2.3, 4.6.1 1anna

(for clause), def 4.6.1 <{3aronoBOK LUWKIZ)

Index

-128-

m (for list), def 4.6.1 (crnincok umkna)

(for list element), def 4.6.1 (3IeMeHET CnucKa LuUKIa)

(for statement), def 4.6.1 synt 4.1.1, 4.5.1 (omepatop
LHUKIa)

(formal parameter), def 5.5.1 (fopManbHui mapameTp)

(formal parameter list), def 5.5.1 {(crucok HOpManbHHX
napaMeTpos)

(formal parameter part), def 5.5.1 (COBOKYIHOCTE

HOpMANBHLX NapaMeTpOoE)

(format), def 2.7.1 synt 3.4.1 (Gopuar)

format, synt 2.3, 5.1.1, 5.2.1 Bun

(format array identifier), def 5.2.1 (ULCHTUDUKATOD
MaccuBa ¢ GopmMaTcu)

(format expression), def 3.4.1 synt 3.3.1, 5.1.1, 5.2.1
(popmaTHOE BHpaxeHue)

(function designator), def 3.2.1 synt 3.3.1, 3.4.1, 3.5.1
(yKasaTens QYHKLLUU)

(go to statement), def 4,3.1 synt 4.1.1 (onepaTop
nepexona

(identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.6.1, 5.5.1
(UOSHTUDVIKATOD)

(identifier list), def 5.5.1 (CTINCOK MAEHTUIUKATODCB)

rif, synt 2.3, 3.3.1, 3.9.1, 4.5.1 ecnu

(if clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1, 3.9.1, 4.5.1
(ycnorue)

(if statement), def 4.5.1 (oneparop <ecnu?>)

(implication), def 3.5.1 (MMIANKAL YA)

(insert), dev 2.7.1 (BCcTarBKa)

(integer), def 2.5.1 (nenoe)

integer, synt 2.3, 5.1.1, 5.2.1 nenoe, —am, =—bil, =—ie

(integer format), def 2.7.1 (¢popmMaT ULenoTO)

(integer part), def 2.7.1 (uenas uacThb)

(label), def 3.6.1 synt 4.1.1, 4.5.1, 4.6.1, 5.4.1 (verre)
label, synt 2.3, 5.5.1 METKE

(left part), def 4.2.1 (JleBasg 4yacTh)

(left part list), def 4.2.1 (cnucox nesoll uvacTu)
(letter), def 2.1 synt 2, 2.4.1, 3.2.1 (6yxea)

(letter quotation), def 3.2.1 (cTpora 6yKB)

(logical operator), def 2.3 (3Hak JIOTUUECKOH Onepauxr)

(logical value), def 2.2.2 synt 2, 3.5.1 (orrueckKoe
sHayeHue)

(lower bound}, def 5.2.1 (HHXHASA TpaHuLa)

(M series), def 2.7.1 (pan M>

{mantissa format), def 2.7.1 (popMaT MEHTUCCH)

(mantissa sign), def 2.7.1 (3HEK MaHTUCCH)

minus -, synt 2.3, 2.5.1, 2.7.1, 3.3.1 wMuuyc

(multicomponent expression), def 3.9.1 synt 3, 4.2.1
(MHOTOKOMIIOHEHTHOE BipaXeHue)

-129-

- (multicomponent if clause), def 3.9.1 (MHOTOKOMIIOHEHETHO®
yclnoBue»
(multicomponent left part), def 4.2.1 (MHOTOKOMIIOHEHTHAaH

_ neBas UY&CTH)

Boultiply x, synt 2.3, 3.3.1 YMHOXeHuUe

(multiplying operator), def 3.3.1 (3graxk omepauuu TUIla
YMHOXEHUSA)

(nondesignational expression), def 3.9.1 synt 4.2.1
(HeuMeHyWlLee BHDAXEHUE)

(number), def 2.5.1 (uncno}

(number format), def 2.7.1 (umcnosoii popmar)

(open quotation), def 2.6.1 (OTKpHTAA CTPOKAa)
(operator), def 2.3 synt 3.9.1 (3HaK omepauuu)

(P part), def 2.7.1 (I1 yacTse)

(P positions), def 2.7.1 (Il nosuuuu)

(parameter delimiter), def 3.2.1 synt 5.5.1 (OTpPE&HUUYUTENE
napameTrpa)

parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1,
3.7.1, 3.8.1, 3.9.1, 5.3.1, 5.5.1 CKOGKU

plus +, synt 2.3, 2.5.1, 2.7.1, 3.3.1 nwe

(point designator), def 2.7.1 (yrkasarend TOUKU)

(position list), def 3.1.1 synt 3.7.1 (CTIMCOK MNO3ULNA)
(position list element), def 3.1.1 (3JIeMeHT CHOUCKE
no3uunit)

(primary arithmetic expression), def 3.3.1 synt 3.4.1
(nepBrYHOE apUPMETUYECKOE BHDpAXEHUE)

(primary multicomponent expression), def 3.9.1 <(mepsnuHOe
MHOTOKOMNOHEHTHOE BHDAXeHNE)

(primary string expression), def 3.4.1 (NepBLYHOE
TEKCTOBOE BHDPAXEHUE)
(primitive string expression), def 3.4.1 (MIPUMUTUBHOE

TEKCTOBOE BHDAXEHUE)
procedure, synt 2.3, 5.5.1 npouenypa
(procedure body), def 5.5.1 {Teno mnpouenyph)

(procedure declaration), def 5.5.1 synt 5 (onucanue
[IpOUEenyPs)
(procedure heading), def 5.5.1 (3aro0JCBOK NOpPOLEIYPEH)

(procedure identifier), def 3.2.1 synt 4.2.1, 4.7.1, 5.5.1
(UEEHTUIUKATOD MNPOLUELYDH)
. (procedure statement), def 4.,7.1 synt 4.1.1 {onepatToyp
npouenyps
(program), def 4.1.1 (nporpauma’

(proper fraction), def 2.5.1 (ipaBuJbHa® OpO0h)
(proper fraction format), def 2.7.1 (popmar NOPaBUIBHGC]
oIpoGu) o o

(proper fraction scaled format), def 2.7.1
(MacuTabypoBaHHN QopMaT NpaBUIBHON IpoGu)

Index

-130-

@ (quotation), def 2.6.1 synt 2.7.1, 3.4.1 <{crtpoka)

quotation, synt 2.3, 3.4.1 CTpOKs
(quotation element), def 2.6.1 (sremenT CcTpOKH)

(quotation mark), def 2.2.4 synt 2 {(cTpOuUHaA KaBHUYKA)

quotation marks ‘’>, synt 2.2.4, 2.6.1, 3.4.1 KaBbUKY
nnf CTDPOK

(quotation symbol), def 2 synt 2.6.1 {cTpounuii cumron)

real, synt 2.3, 5.1.1 BElleCTBEHHOE, =-3f, —hii, =he
(real format), def 2.7.1 (HopMaT BELEeCTEEHHOTO)
(relation), def 3.5.1 (oTHOWEEHNE)

(relational operator), def 2.3, 3.5.1 (3Hax omepauunu
OTHOLEHUs)

(repeat), def 2.7.1 (HOBTOPUTEND)

(roundoff designator), def 2.7.1 {yKasaTenb OKPYTLJEHUR)

(S positions), def 2,7.1 (C mosuunu)

(scale), def 2.7.1 {macmTad)

(scale designator), def 2.7.1 (yxasaTens MacuTada)

(secondary multicomponent expression), def 3.9.1
(BTOPUUKOE MHEOTOKOMIIOHEHTHOE BHpaXeHUe)

(secondary string expression), def 3.4.1 synt 3.3.1
(BTOPUUHOE TEKCTOBOE BHDAXEHVE)

‘ semicolon ;, synt 2.3, 4.1.1, 5.3.1, 5.5.1 TOuUKa C

BENATOR
sense, synt 2.3, 3.3.1, 3.4.1 cwmucn:
(separator), def 2.3 (pa3nennuTensy
(sequential operator), def 2.3 (3HAK onepailuyu CHELOBGHUA)

(sign part), def 2.7.1 (3HAKOBaA Y&CTh)
(signed mantissa format), def 2.7.1 {PopMaT MBHETHCCH CO
3HAKOM)

(simple arithmetic expression), def 3.3.1 synt 3.5.1
(npocToe arulMeTUUECKOE BHDAKEHUE)

(simple Boolean})}, def 3.5.1 (mnpocrToe noruueckoe
BHDpaXEHUE)

(simple compound identifier), def 3.1.1 synt 3.8.1, 5.3.1
(MOEeHTUPUKaTOD NPOCTO} COCTaBHOIl)

(simple compound identifier designator), def 5.3.1
(yrasaTend LLEHTUHUKATODA MPOCTOU COCTaABHON)

(simple compound identifier list), def 5.3.1 {(cnucox
UOEHTUDNKETODOB MPOCTHX COCTE&BHHX)

(simple compound list), def 5.3.1 {cnucoK NpPOCTHX
COCTaBHHX)

(simple compound prototype), def 5.3.1 (NpoOTOTVN MNPCCTOU
COCTEBHO)

(simple compound segment), def 5.3.1 (CerMeHET OpOCTHX
COCTaBHHX)

(simple multicomponent expression), def 3.9.1 {npocToe
MHOTOKOMIIOHEHTHO®E BHDAaXeHUE)

(simple string expression), def 3.4.1 synt 3.5.1 (npocToe
TEKCTOBOE BHDAXCHUE)

P WL

-131-

B (simple variable), def 3.1.1 (mpocTan nepemessHad)
(space), def 2.7.1 {mnmaund)
space w, synt 2.3, 2.7.1 npoGen

{space series), def 2.7.1 (pan wnanxi)

(special character), def 2.2.3 synt 2 (CrieUuanbHENy 3HZH)

(specification part), def 5.5.1 (COEBOKymHOCTSH
cneuuGAKallnii)

(specificator), def 5.5.1 {(crieundukaTop)

(cneundurauug)

synt 4.5.1, 4.6.1, 5.5.1

(specifiery, def 5.5.1

(statement), def 4.1.1
{omepaTop)

step, synt 2.3, 4.6.1 mar :

string, synt 2.3, 5.1.1 ~ TexcTosoe, -asm, ~0il, =He

(string expre551on), def 3.4.1 synt 3, 3.9 9 1 <TenCTOBoe
BHDaXEHUuE)

(string format), def 2.7.1 (TEKCTOBOH gopmaT)
(string operator), def 2.3 (3HAK TeKCTOB0# omepannu)
(string relation), def 3.5.1 (TEKCTOBOE OTHOLEHXE)

(structure declaration), def 5.3.1 (onucaHue CTLYKTYDH)

(structure declaration list), def 5.3.1 (cnuzcow
ONUCEHEUA CTDYKTYDH)

(structure element declaration), def 5.3.1 {onucanre
3zneMeHTa CTPYKTYDH)

(subarray designator), def 3.7.1 synt 3.8.1, 3.9.1, 4.2.1
{(ykazaTenb nNomMaccusa)

subscript brackets [], synt 2.3, 3.1.1, 3.6.1, 3.7.1, 3.8.1,
5.2.1, 5.3.1 NHIESKCHLE CKO5KM

(subscrlpt expression), def 3.1.1 synt 2.7.1, 3.6.1, 3.7.1
(MEIEKCHOE BHDAXeEue).

(subscript list), def 3.1.1 synt 5.3.1 (cnucox uunexcos)

(subscript scale), def 3.7.1 {(mKana uHOeKCa)

(subscript scale catalog), def 3.7.1 (nepeueHb MKaJb
nHIeKca)

(subscript scale element), def 3.7.1 (9MeMeHT WKamIn
MHISKCAa)

(subscript scale list), def 3.7.1 synt 3.8.1 <(cnucox
WKaJ MHIEKCOB)

(subscripted variable), def 3.1.1 (mepemeHHana C
MHIOEKCaMu)
(suppressed part), def 2.7.1 (nonaensgemas 4acTh)

- switch, synt 2.3, 5.4.1, 5.5.1 NePeKIYaTeNkb
(switch declaratlon>, def 5.4.1 synt 5 ({onucasnue
nepeKnnuYaTess)
- (switch designatory, def 3.6.1 (yKazaTendb TNEDEKIKYETERE)
(switch identifier), def 3.6.1 synt 3.2.1, 5.4.1
(MOEHTUDHUKATOD IeDeKInUaTens)
(switch 1list), def 5.4.1 (IepernnyaTeNnbHHll CIUCOK)

ten y, synt 2.3, 2.5.1, 2.7.1 = pnpecsars
(term), def 3.3 {(Tepm)

text, synt 2.3, 3.4.1 TEKCT

then, synt 2.3, 3.3.1, 3.9.7, 4.5.1 TO

lnaex

-132-

A to, synt 2.3, 4.3.1 =Ha

true, synt 2.2.2 UCTUHE

(type), def 5.1.1 synt 5.2.1, 5.5.1 (Twmn)

(type declaration), def 5.1.1 synt 5, 5.3.1 (onucanuye Ttuna)d
(type list), def 5.1.1 (cnrcokK Tuna)

(type list element), def 5.1.1 (372eMEeHT CHucCKa Tuoa)

(unconditional statement), def 4.1.1, 4.5.1 (Ge3ycnoBHLI
OnepaTop”
(unlabeled basic statement), def 4.1.1 (HenCKeuUeHHNR

OCHOBHO# OIIELaTOop) _
(unlabeled blocky, def 4.1.1 (HemoMEeUeHHNT 6IJ0K)
(unlabeled compound statement), def 4.1.1 (HETIOMEUEeHHHIA
COCT2BHO ONEDPaTOD)
{(unsigned integer), def 2.5.1 (uenoe Ges 3HaKa)

(unsigned integer format), def 2.7.1 (ZopmaT Uenoro Gea
3raKa)
(unsigned number), def 2,5.1 synt 3.3.1 (uucrnc 6e3 3HAKZ)

until, synt 2.3, 4.6.1 1o
(upper bound), def 5.2.1 =~ (zepxXEAm rpauuna)

value, synt 2.3, 5.5.1 3mauenue

(value part), def 5.5.1 <V{cnucox sHauenuf)

(variable), def 3.1.1 synt 3.4.1, 3.5.1, 4.2.1 (nepemenuas)

(variable-constituent), def 3.1.1 (mepeMesHaa—-COC TARNADILEHA

(variable-constituent taily, def 3.1.1 synt 3.8.1 (KOHel
nepeMenHoli-coc TaBiasme:)

(variable identifier), def 3.1.1 synt 4.6.1, 5.1.1, 5.2.1
(nnenTudMKaTOP NEPEeMEeHEOLn)

(variable identifier designatory, def 5.1.1 (yrazaTensb
NIEHTUINKATOPE MNEepeMeHHON)

(variable identifier list), def 5.1.1 {(cnucox
UIEeHTUIKKETOPOB MepeMeHHbX

(variable prototype designator), def 5.1.1 (yxazaTens
NpOTOTUNE TEPEMEHHOR)

while, synt 2.3, 4.6.1 r1noxa

-133-

BIBLIOGRAPHY OF RAND CORPORATION PUBLICATIONS IN
SOVIET CYBERNETICS AND COMPUTER TECHNOLOGY

1. Ware, W, H, (ed.), Soviet Computer Technology--1959
RM-2541, March 1, 1960. Reprinted in IRE Transac-
tions on Electronic Computers, Vol. EC-9, No. 1,
March 1960.

An account of a trip taken by two RAND computer
specialists to the Soviet Union as part of an eight-
man delegation representing the U.S. National Joint
Computer Committee and its member societies. The
genesis of the delegation and its itinerary in the
Soviet Union are traced. The state of the art in
Soviet computer technology as observed by the dele-
gates is examined, showing the development, con-
structions, applications, routines, and components
of the major Soviet computing machines. Impressions
are included on Soviet education, the role of the
Academy of Sciences, and Chinese developments in com-
puter technology. Many photographs of Soviet machines,
components, people, and places are included. First-
hand information is also given on the BESM-I, BESM-II,
Strela, Ural, and Kiev computers, plus several other
machines. Machine specifications are presented in
chart form, facilitating comparisons; op codes are
given for the Ural-1 and Ural-2. 205 pp. Illus.

2., Feigenbaum, E. A., Soviet Cybernetics and Computer
Sciences, 1960, RM-2799-PR, October 1961. Reprinted
in IRE Transactions on Electronic Computers, Vol.
EC-10, No. 4, December 1961,

A description of the author's experiences as a
delegate to the International Congress on Automatic
Control, held in Moscow, June 27-July 7, 1960. The
Memorandum discusses: (1) certain aspects of the
conference; (2) some Soviet research projects in
artificial intelligence and biocybernetics; and (3)
general Soviet attitudes, techniques, and directions
in the cybernetic and computer-related sciences. It
is concluded that Soviet research in the computer
sciences lags behind Western developments, but that

~134-

the gap is neither large nor based on a lack of under-
standing of fundamental principles. The Soviets will
progress rapidly if and when priority, in terms of
accessibility to computing machines, is given to their
research. 77 pp. Illus,.

3, Krieger, F. J.,, Soviet Philosophy, Science, and Cyber-
netics, RM-3619-PR, April 1963.

A discussion of how all aspects of science--i.e.,
knowledge--are made to conform to the ideological mold
of Marxism-Leninism in the Soviet Union. The larger
part of the Memorandum consists of a thematic plan from
the Soviet journal Questions of Philosophy [Voprosy
filosofii], which lists over 300 topics suggested for
discussion and study in the Soviet-planned society.

27 pp.

4. Ware, Willis H., and Wade B. Holland (eds.), Soviet
Cybernetics Technology: I. Soviet Cybernetics,
1959-1962, RM-3675-PR, June 1963,

Seven sets of translations in the area of Soviet
cybernetics, together with commentary and analyses
on the status of cybernetics in the Soviet Union and
the direction of Soviet cybernetics research. This
volume is concerned with general computer technology
and cybernetics applications, rather than with
specific machines. Particular emphasis was placed
on selecting items for translation that survey the
activities of organizations and conferences, and the
current literature. 104 pp. Illus.

5. Ware, Willis H., and Wade B. Holland (eds.), Soviet
Cybernetics Technology: II, General Characteristics
of Several Soviet Computers, RM-3797-PR, August 1963.

Several sets of translations detailing specifi-
cations for the Ural-2, Ural-4, BESM-II, Razdan-2,
MN-10 and MN-14, Luch, and EPOS computers. The level
of detail varies widely among the several articles,
which were taken from such diverse sources as speci-
fication brochures, items in the popular press,
technical journals, etc. 1Included is a set of in-
structions for the BESM-II which is quite dissimilar
to that presented in Elements of Programming (see
Vol. III in this series). 67 pp. Illus.

-135-

6. Ware, Willis H., and Wade B. Holland (eds.), Soviet
Cybernetics Technology: III1. Programming Elements
of the BESM, Strela, Ural, M-3, and Kiev Computers,
Translated by A. S. Kozak, RM-3804-PR, September 1963.

A translation from the Russian book Elements of
Programming, detailing the instruction formats for
five of the better known Soviet digital computers.
Some notes are included to help place the machines
in perspective. Specially-prepared charts give the
operation codes for the five machines, along with
the original Russian terminology and its English
translation. 91 pp. Illus.

7. Levien, Roger, and M. E. Maron, Cybernetics and Its
Development in the Soviet Union, RM-4156-PR, July
1964,

An introduction to the subject of cybernetics
with special reference to its origins and ramifica-
tions in the United States and its subsequent de-
velopment in the Soviet Union. Intended for non-
experts in the field, it attempts to provide a
sufficient non-technical background to facilitate
appreciation of the potential impact of cybernetics
on science and society. The survey of Soviet cyber-
netics reveals the intense interest and activity in
the Soviet Union, pointing out how scientific re-
search, military applications, economic planning,
education, industry, etc., are affected by develop-
ments in cybernetics. 35 pp.

8. Holland, Wade B., (ed. & trans.), Soviet Cybernetics
Technology: IV, Descriptions of the MN-11, MN-M
and MN-7 Analog Computers and of Three Miscellaneous
Electronic Devices, RM-4461-PR, February 1965.

A collection of translations detailing technical
specifications of the three indicated Soviet analog
computers, and of the BPZ-1 fixed-delay unit, the
I-5 CRT indicator, and the VPRR-2 electronic device
for controlling tooling modes. The translations have
been made from equipment specification brochures
prepared for use by the Soviet technical and scientific
community and for use at exhibits and trade fairs.

22 pp. Illus.

-137-

have been indexed. Russian-English and English-
Russian glossaries of all ALGOL and ALGEC terms
are appended. (The version of ALGEC translated

in this Memorandum is superseded by that contained
in Part VIII, RM-5136-PR.) 158 pp.

12, Wirth, Niklaus, Soviet Cybermetics TechnologyE 1X.
ALGEC--Summary and Critique, RM-5157-PR (in
preparation). -

A summary, evaluation, and critique of the
preliminary and final versions of the ALGEC pro-
gramming language.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

