
5ESS® Switch
Software Analysis Guide

5E13 and Later Software Releases

235-600-510
Issue 5.00B

June 2001

Copyright © 2001 Lucent Technologies. All Rights Reserved.

This electronic information product is protected by the copyright and trade secret laws of the United States and other countries. The complete
information product may not be reproduced, distributed, or altered in any fashion. Selected sections may be copied or printed with the utilities
provided by the viewer software as set forth in the contract between the copyright owner and the licensee to facilitate use by the licensee, but
further distribution of the data is prohibited.

For permission to reproduce or distribute, please contact the Product Development Manager as follows:

1-800-645-6759 (from inside the continental United States)

+1-317-322-6847 (from outside the continental United States).

Notice

Every effort was made to ensure that the information in this information product was complete and accurate at the time of publication.
However, information is subject to change.

This information product describes certain hardware, software, features, and capabilities of Lucent Technologies products. This information
product is for information purposes; therefore, caution is advised that this information product may differ from any configuration currently
installed.

Mandatory Customer Information

Interference Information: Part 15 of FCC Rules- Refer to the5ESS® Switch Product Specification information product.

Trademarks

5ESS is a registered trademark of Lucent Technologies in the United States and other countries
AnyMedia is a registered trademark of Lucent Technologies in the United States and other countries
Common Language is a registered trademark, and CLEI, CLLI, CLCI, and CLFI are trademarks of Bell Communications Research, Inc.
DATAKIT is a registered trademark of Lucent Technologies in the United States and other countries
INTEL is a registered trademark of Intel Corporation
Motorola is a registered trademark of Motorola, Inc.
OneLink Manager is a trademark of Lucent Technologies in the United States and other countries
PowerPC is a trademark of International Business Machines Corporation
SLC is a registered trademark of Lucent Technologies in the United States and other countries
UNIX is a registered trademark of The Open Group in the United States and other countries.

Limited Warranty

Warranty information applicable to the5ESS® switch may be obtained from the Lucent Technologies Account Management organization.
Customer-modified hardware and/or software is not covered by this warranty.

Ordering Information

This information product is distributed by the Lucent Technologies Customer Information Center in Indianapolis, Indiana.

The order number for this information product is 235-600-510. To order, call the following:

1-888-LUCENT8 (1-888-582-3688) or fax to 1-800-566-9568 (from inside the continental United States)

+1-317-322-6847 or fax to +1-317-322-6699 (from outside the continental United States).

Support Telephone Numbers

Information Product Support Telephone Number:To report errors or ask nontechnical questions about this or other information products
produced by Lucent Technologies, call 1-800-645-6759.

Technical Support Telephone Numbers:For initial technical assistance, call the North American Regional Technical Assistance Center
(NARTAC) at 1-800-225-RTAC (1-800-225-7822). For further assistance, call the Customer Technical Assistance Management (CTAM) center
as follows:

1-800-225-4672 (from inside the continental United States)

+1-630-224-4672 (from outside the continental United States).

Both centers are staffed 24 hours a day, 7 days a week.

Acknowledgment

Developed by Lucent Technologies Customer Training and Information Products.

Lucent Technologies welcomes your comments on this information product. Your opinion is of great value and helps us to
improve.

1. Was the information product:
Yes No Not

applicable

In the language of your choice?
In the desired media (paper, CD-ROM, etc.)?
Available when you needed it?

Please provide any additional comments:

__

__

2. Please rate the effectiveness of this information product:
Excellent More than Satisfactory Less than Unsatisfactory Not

satisfactory satisfactory applicable

Ease of use
Level of detail
Readability and clarity
Organization
Completeness
Technical accuracy
Quality of translation
Appearance

If your response to any of the above questions is “Less than satisfactory” or “Unsatisfactory,” please explain your rating.

__

__

3. If you could change one thing about this information product, what would it be?

__

__

4. Please write any other comments about this information product:

__

__

Please complete the following if we may contact you for clarification or to address your concerns:

Name: __ Date: ________________________________

Company/organization: ______________________________ Telephone number: ________________________________

Address: __

Email address: ______________________________ Job function: __

Lucent Technologies
values your comments!

If you choose to complete this form online, go to http://www.lucent-info.com/comments
Otherwise fax to 407 767 2760 (U.S.) or +1 407 767 2760 (outside the U.S.) or email comments to ctiphotline@lucent.com

5ESS® Switch Software Analysis Guide 5E13 and Later Software
Releases

235-600-510 5.00B June 2001

Lucent Technologies welcomes your comments on this information product. Your opinion is of great value and helps us to
improve.

1. Was the information product:
Yes No Not

applicable

In the language of your choice?
In the desired media (paper, CD-ROM, etc.)?
Available when you needed it?

Please provide any additional comments:

__

__

2. Please rate the effectiveness of this information product:
Excellent More than Satisfactory Less than Unsatisfactory Not

satisfactory satisfactory applicable

Ease of use
Level of detail
Readability and clarity
Organization
Completeness
Technical accuracy
Quality of translation
Appearance

If your response to any of the above questions is “Less than satisfactory” or “Unsatisfactory,” please explain your rating.

__

__

3. If you could change one thing about this information product, what would it be?

__

__

4. Please write any other comments about this information product:

__

__

Please complete the following if we may contact you for clarification or to address your concerns:

Name: __ Date: ________________________________

Company/organization: ______________________________ Telephone number: ________________________________

Address: __

Email address: ______________________________ Job function: __

Lucent Technologies
values your comments!

If you choose to complete this form online, go to http://www.lucent-info.com/comments
Otherwise fax to 407 767 2760 (U.S.) or +1 407 767 2760 (outside the U.S.) or email comments to ctiphotline@lucent.com

5ESS® Switch Software Analysis Guide 5E13 and Later Software
Releases

235-600-510 5.00B June 2001

5ESS ®Switch

Software Analysis Guide
5E13 and Later Software Releases

CONTENTS PAGE

1. INTRODUCTION . 1-1

2. USING THE PROGRAM LISTINGS 2-1

3. C PROGRAMMING LANGUAGE 3-1

4. DISASSEMBLY/ASSEMBLY LANGUAGE 4-1

5. ASSERT ANALYSIS . 5-1

6. GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 6-1

7. GENERIC UTILITIES. 7-1

8. INTERRUPT ANALYSIS 8-1

9. SINGLE PROCESS PURGE (SPP) 9-1

10. AUDIT ANALYSIS . 10-1

11. DATA COLLECTION AND ANALYSIS 11-1

12. OSDS MONITOR . 12-1

13. OSDS OVERLOAD MONITOR 13-1

A1. ENVIRONMENT TO PATHNAME CROSS REFERENCE A1-1

A2. IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC) . A2-1

A3. Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET A3-1

A4. Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET. A4-1

A5. PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY
MNEMONIC) . A5-1

A6. SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL . A6-1

GLOSSARY . G-1

INDEX. I-1

235-600-510
June 2001

TABLE OF CONTENTS

Issue 5.00B Page i

Software Analysis Guide

CONTENTS PAGE

1. INTRODUCTION . 1-1
1.1 PURPOSE . 1-1
1.2 UPDATE INFORMATION 1-1

1.2.1 General . 1-1
1.2.2 Supported Software Releases 1-1
1.2.3 Terminology 1-1

1.3 ORGANIZATION . 1-3
1.4 USER FEEDBACK 1-4
1.5 DISTRIBUTION . 1-5
1.6 TECHNICAL ASSISTANCE 1-5
1.7 REFERENCES . 1-5

235-600-510
November 2000

INTRODUCTION

Issue 5.00 Page 1-i

1. INTRODUCTION

1.1 PURPOSE

This document contains information and directions for using tools to analyze
software-related problems within the 5ESS® switch. It deals with administrative
module (AM), communications module (CM) and switching module (SM) software
problems, such as asserts, audits and interrupts, as well as program language usage
and program code documentation.

The content assumes the user can read and understand assembly and C programming
languages pertaining to the 5ESS switch. The Software Analysis Guide should be used
as a problem solving tool. Each component can be used independently to research or
investigate a point of interest, or the document can be read from beginning to end as
one might read a book. The intention is to facilitate the identification and resolution of
problems within the 5ESS switch.

Use of this guide will help the user become familiar with the structure and content of
the program code, the organization, and use of error messages as well as understand
the interactive languages which permit the human interface with the switch.

1.2 UPDATE INFORMATION

1.2.1 General

As the 5ESS switch evolves with new capabilities and features, this document will be
updated. This issue includes an updated procedure for accessing the online program
listings, Section 2.2.

1.2.2 Supported Software Releases

In accordance with the 5ESS Switch Software Support Plan, the 5E12 software
release is rated Discontinued Availability (DA) as of September, 2000. The information
supporting 5E12 and earlier is being removed over time, instead of concurrently, from
all documentation.

If you are supporting offices that use a software release prior to 5E13 and you have a
need for the information that is being removed, retain the associated pages as they
are removed from the paper documents, or retain the earlier copy of the CD-ROM.

1.2.3 Terminology

1.2.3.1 Lucent Electronic Delivery

The Lucent Electronic Delivery system is replacing the Software Change
Administration and Notification System (SCANS) as the system used to download
software changes to Lucent products. During the transition, both systems will be
supported. When products no longer require SCANS, Lucent Technologies will notify
any customers still using SCANS of the plans for completing the migration to Lucent
Electronic Delivery. The OneLink Manager™ ASM User’s Guide, 235-200-145,
describes the Lucent Electronic Delivery system. Documentation currently referencing
SCANS will be changed over time, as other technical changes are required.

1.2.3.2 Communication Module Name Change

The term Communication Module (CM) has been changed to the Global Messaging
Server (GMS), representing the new portfolio name of this particular module. The
current names of the specific types of the GMS (the CM2 and CM3) have not been
changed. Where the CM name has been used in a generic way within this information
product, the name will be changed to GMS. Where the specific version of GMS (CM2

235-600-510
November 2000

INTRODUCTION

Issue 5.00 Page 1-1

or CM3) is being described or mentioned, the name will not be changed. However, the
GMS name may be added to the description in certain places as a reminder of the
change, and that the particular version is a part of the overall portfolio. The following
list provides some examples of how you may see these names used together:

• Global Messaging Server (formerly Communication Module)

• GMS (formerly CM) Global Messaging Server-CM2

• GMS-CM2

• Global Messaging Server-CM3

• GMS-CM3.

These name changes will be made over time as other technical changes are required.
Also these changes may not be reflected in all software interfaces (input and output
messages, master control center screens, and recent change and verify screens). Where
the information product references these areas, the names are used as they are within
the software interface.

1.2.3.3 Bellcore/Telcordia Name Change

As of March 18, 1999, Bellcore officially changed its name to Telcordia Technologies.
Not all pages of this document are being reissued to reflect this change; instead, the
pages will be reissued over time, as technical and other changes are required.
Customers on standing order for this document may see that, on previous-issue pages,
the Bellcore name is still exclusively used.

Customers receiving new orders for this document will see the Telcordia Technologies
name used as appropriate throughout the document, and the Bellcore name used only
to identify items that were produced under the Bellcore name. Exceptions may exist in
software-influenced elements such as input/output messages, master control center
screens, and recent change/verify screens. These elements will not be changed in this
document until such time as they are changed in the software code. Document updates
will not be made specifically to remove historical references to Bellcore.

1.2.3.4 5ESS-2000 Switch Name Change

This 5ESS switch document may contain references to the 5ESS switch, the
5ESS-2000 switch, and the 5ESS AnyMedia® Switch. The official name of the product
has been changed back to the 5ESS switch. In the interim, assume that any reference
to the 5ESS-2000 switch or the 5ESS AnyMedia Switch is also applicable to the 5ESS
switch. It should be noted that this name change may not have been carried forward
into software-influenced items such as input and output messages, master control
center screens, and recent change/verify screens.

1.2.3.5 National ISDN

National ISDN is an evolving platform in which new features will continue to be
introduced for new revenue opportunities, improved operational efficiencies, and for
support of specific applications. NI 1, NI 2, and NI 3 represent specific features as
documented in Bellcore SRs 1937, 2120, and 2457. The industry is migrating to an
additional terminology to more specifically denote the availability of National ISDN
features: NI 95, NI 96, etc. A feature is included in a specific version (such as, NI 96)
if it is available by the switch vendors by the first quarter of the year.

INTRODUCTION 235-600-510
November 2000

Page 1-2 Issue 5.00

1.3 ORGANIZATION

The content and organization of the Software Analysis Guide is as follows:

• Introduction

Section 1 describes the content and organization of this document. It also
describes the reasons for updates and how to obtain assistance.

• Using the Program Listings

Section 2 explains the structure and use of on-line program listings.

• C Programming Language

Section 3 reviews the C programming language and its use in the 5ESS switch.

• Disassembly/Assembly Language

Section 4 reviews the disassembly/assembly language for the 3B20D and 3B21D
computers, MOTOROLA1 MC68000 microprocessor family, and the Intel2 80186
microprocessor and discusses their use in the 5ESS switch.

• Assert Analysis

Section 5 explains the function of asserts, the key parts of the printout associated
with them, and how to analyze them.

• Generic Access Package (GRASP)/Enhanced Generic Access Package
(EGRASP)

Section 6 discusses the use of the interactive language used in the AM.

• Generic Utilities

Section 7 explains the use of the interactive language used in the SMs, the CM,
and the peripherals.

• Interrupt Analysis

Section 8 examines the function of an interrupt and discusses the output sent to
the receive only printer (ROP).

• Single Process Purge Analysis

Section 9 analyzes the function of a single process purge (SPP) and discusses the
output received on the ROP.

• Audit Analysis

Section 10 discusses audits and the messages received on the ROP.

• Data Collection and Analysis

Section 11 discusses the types of data and the manner of data collection
necessary to analyze a trouble event so that a complete picture is compiled,
particularly an event history.

• OSDS Monitor

1. Registered trademark of Motorola Inc.
2. Registered trademark of Intel Corporation.

235-600-510
November 2000

INTRODUCTION

Issue 5.00 Page 1-3

Section 12 explains how the operating system for distributed switching (OSDS)
monitor tool is used for gathering performance data and investigating
performance problems.

• OSDS Overload Monitor

Section 13 explains how the OSDS overload monitor tool is used for investigating
OSDS resource overload problems.

• Supplementary Information

The supplementary sections contain various reference materials, including:

• Appendix 1: Environment to Pathname Cross Reference

Appendix A1 is provided for use with upd:ftrc to find a failing function.

• Appendix 2: IS25, 3B20D, 3B21D Computer Instruction Set

Appendix A2 is a list of the IS25, 3B20D, and 3B21D Computer opcodes and
their functions.

• Appendix 3: MOTOROLA MC68XXX Microprocessor Family Instruction Set

Appendix A3 is a list of the MOTOROLA MC68XXX microprocessor family
opcodes and their functions.

• Appendix 4: Intel 8086 and 80186 Processor Instruction Set

Appendix A4 is a list of the Intel 8086 and 80186 processor opcodes and their
functions.

• Appendix 5: PowerPC 3 Processor Family Instruction List (By Mnemonic)

Appendix A5 includes an instruction field summary, a list of split-field notation
and conventions, and the entire PowerPC instruction set sorted by mnemonic.

• Appendix 6: SM Assert Analysis Example Audit Trail

Appendix A6 is the contents of the header files needed to construct the data
organization for the Assert Analysis Example - SM, Section 5.2.2.

• Glossary

The Glossary defines terms and expands acronyms used in this document.

1.4 USER FEEDBACK

We are constantly striving to improve the quality and usability of this information
product. Please use one of the following options to provide us with your comments:

• You may use the on-line comment form at http://www.lucent-info.com/comments

• You may email your comments to ctiphotline@lucent.com

• You may print the comment form (located at the beginning of this information
product after the Legal Notice) to send us your comments either by fax or mail as
follows:

— Fax to 1-407-767-2760

— Mail to the following address:

3. Trademark of International Business Machines Corporation.

INTRODUCTION 235-600-510
November 2000

Page 1-4 Issue 5.00

Lucent Technologies
Documentation Services Coordinator
240 E. Central Parkway
Altamonte Springs, FL 32701-9928

• You may call the hot line with your comments. The telephone number is
1-800-645-6759. The hot line is staffed Monday through Friday from 8:00 a.m. to
5:00 p.m. Eastern time.

Please include with your comments the title, ordering number, issue number, and
issue date of the information product, your complete mailing address, and your
telephone number.

If you have questions or comments about the distribution of our information products,
see Section 1.5, Distribution.

1.5 DISTRIBUTION

For distribution comments or questions, either contact your local Lucent Technologies
Account Representative or send them directly to the Lucent Technologies Customer
Information Center (CIC) in Indianapolis, Indiana.

A documentation coordinator has authorization from Lucent Technologies to purchase
our information products at discounted prices. To find out whether your company has
this authorization through a documentation coordinator, call 1-888-LUCENT8
(1-888-582-3688).

Customers who are not represented by a documentation coordinator and employees of
Lucent Technologies should order 5ESS switch information products directly from
CIC.

To order, call the following telephone number:

• 1-888-LUCENT8 (1-888-582-3688) or fax to 1-800-566-9568 (from inside the
continental United States)

• +1-317-322-6847 or fax to +1-317-322-6699 (from outside the continental United
States).

1.6 TECHNICAL ASSISTANCE

For initial technical assistance, call the North American Regional Technical Assistance
Center (NARTAC) at 1-800-225-RTAC (1-800-225-7822).

For further assistance, call the Customer Technical Assistance Management (CTAM)
center at the following number:

• 1-800-225-4672 (from inside the continental United States)

• +1-630-224-4672 (from outside the continental United States).

Both centers are staffed 24 hours a day, 7 days a week.

1.7 REFERENCES

More information is found in the following Lucent Technologies documents:

• 235-105-110 - System Maintenance Requirements and Tools

• 235-105-210 - Routine Operations and Maintenance Procedures

• 235-105-220 - Corrective Maintenance Procedures

235-600-510
November 2000

INTRODUCTION

Issue 5.00 Page 1-5

• 235-600-400 - Audits Manual

• 235-600-500 - Asserts Manual

• 235-600-700 - Input Messages Manual

• 235-600-750 - Output Messages Manual

Note: An "x" or "x"s in the last three positions of a release specific document
number indicate the digits that change from release to release. Refer to 235-001-001,
Documentation Description and Ordering Guide for the document number associated
with each software release.

INTRODUCTION 235-600-510
November 2000

Page 1-6 Issue 5.00

Software Analysis Guide

CONTENTS PAGE

2. USING THE PROGRAM LISTINGS 2-1
2.1 INTRODUCTION TO ONLINE PROGRAM LISTINGS 2-1
2.2 ONLINE ACCESS PROCEDURE 2-1
2.3 THE LISTINGS MENU 2-2
2.4 THE LISTINGS MENU 2-2
2.5 LISTINGS MENU OPTIONS 2-3
2.6 EXAMPLE — USING THE PROGRAM LISTINGS 2-4

2.6.1 Example Introduction 2-4
2.6.2 Determine the Function Name 2-5
2.6.3 Locate the Function 2-6

LIST OF EXHIBITS

Exhibit 2-1 — AM Assert Printout 2-4

Exhibit 2-2 — Breakpoint Listing for Function INptcomp() 2-7

Exhibit 2-3 — Disassembly Listing for Function INptcomp() 2-8

235-600-510
November 2000

USING THE PROGRAM LISTINGS

Issue 5.00 Page 2-i

2. USING THE PROGRAM LISTINGS

2.1 INTRODUCTION TO ONLINE PROGRAM LISTINGS

Program listings consist of C language source code, its corresponding assembly code,
and a set of indices for locating code. Online listings are available through a processor
at Lucent Technologies, and can be accessed by using the dial-up service provided by
Lucent Technologies Web and Media Management (WMM).

Web and Media Management contains various documentation products, including this
document and the 5ESS® switch program listings and source code.

Understanding the organization and use of online program listings is fundamental to
the process of analyzing and resolving problems in the 5ESS switch. This section of
the Software Analysis Guide describes the organization of the online listings. The
listings support the CNI, RTR, and most of the modular subsystems.

Upon completion of this section, the user should be able to locate the desired
documentation in the online listings.

Note: Users have access to the officially sanctioned 5ESS switch source files. These
files are updated periodically to reflect changes made by the software update
mechanism. A message of the day (MOTD) is displayed each time the user accesses
the online listings environment. Because the MOTD provides information on the
status of the online listings environment (such as stable, unstable, etc.), it is
important that users read the MOTD at the start of each login session.

2.2 ONLINE ACCESS PROCEDURE

Use the following procedure to access the online listings.

1. If using a modem, dial 1-630-224-6640 to reach the Lucent Technologies Web and
Media Management (WMM) 5ESS Switch Online Switch Program Listings.

Lucent employees can access the Listing environment via a telnet session to
135.185.130.28.

2. The system will prompt you to: Enter your login and password. (If you do not
have a login and password you should contact 1-888-LUCENT-8. Lucent
employees should call 1-800-228-6763.)

3. From the Lucent Technologies Document Menu, select 5ESS Switch Program
Listings.

4. From the next menu, 5ESS Switch Listings Program select …… Execute
Listings.

a. The following instructions are displayed:
Remember "exit" or "CTRL-D" will take you back to IDS
ENTER "LIST" It Will Put You Into The LISTING Menu
Please remove your files when you are finished.
ENTER RETURN TO CONTINUE...

b. Press <Return>.

5. The Listings Environment menu is displayed; select the desired software release.
After the message "Now entering the 5EX(x) and later listings environment," a
submenu is presented; again, specify the desired software release.

Enter your choice from the menu and press <return>.

235-600-510
November 2000

USING THE PROGRAM LISTINGS

Issue 5.00 Page 2-1

The following message is displayed:
Enter editor desired (less or more)
Enter desired choice (less or more) and <return>.

a. The system will then reply:
THE ENVIRONMENT SETUP COMPLETE FOR LISTINGS.
Enter RETURN to CONTINUE

b. You will then be prompted to make a choice of setting up your environment
to use Stackmap and Other Tools. Make your selection. To select Stackmap
simply type in y (yes) at the prompt.

The system will then prompt you to select a subsystem from the list that is
displayed on the screen.

2.3 THE LISTINGS MENU

The Listings Menu provides options for accessing the online program listings. It uses
several environment variables that were set when the "Execute Listings" option was
selected.

The menu display looks like:
5EX(X)XX.XX (SU LEVEL XX-XXXX) LISTINGS MENU
1) SYMBOL/FUNCTION DEFINITION
2) SOURCE FILE NAME
3) SYMBOL/FUNCTION REFERENCES
4) RTR NAMELIST
5) DGN SOURCE CODE CROSS-REFERENCE
6) POPRULES FILE
7) GENERATE BREAKPOINT/DISASSEMBLY LISTINGS
8) CDB INTERACTIVE MENU (FOR EXPERIENCED USERS)
9) EXIT

Enter Choice (RETURN will exit)-=>

To use this menu and its options,

• When prompted for a selection, type its associated number followed by
<Return>.

• When prompted for a name, type the name of the product followed by <Return>.

• Press <Return> to display the previous screen. Entering <Return> from the
Listings Menu will exit the program.

2.4 THE LISTINGS MENU

The Listings Menu provides options for accessing the online program listings. It uses
several environment variables that were set when the "Execute Listings" option was
selected.

The menu display looks like:
5EX(X)XX.XX (SU LEVEL XX-XXXX) LISTINGS MENU
1) SYMBOL/FUNCTION DEFINITION
2) SOURCE FILE NAME
3) SYMBOL/FUNCTION REFERENCES
4) RTR NAMELIST
5) DGN SOURCE CODE CROSS-REFERENCE
6) POPRULES FILE
7) GENERATE BREAKPOINT/DISASSEMBLY LISTINGS
8) CDB INTERACTIVE MENU (FOR EXPERIENCED USERS)
9) EXIT

USING THE PROGRAM LISTINGS 235-600-510
November 2000

Page 2-2 Issue 5.00

Enter Choice (RETURN will exit)-=>

To use this menu and its options,

• When prompted for a selection, type its associated number followed by
<Return>.

• When prompted for a name, type the name of the product followed by <Return>.

• Press <Return> to display the previous screen. Entering <Return> from the
Listings Menu will exit the program.

2.5 LISTINGS MENU OPTIONS

Several menu options display a list of valid processor types and prompt the user to
choose from the list. Select ASM to specify the traditional switching module (SM), and
ASM2K to specify the SM-2000.

A brief description of each menu item follows.

• Symbol/Function Definition

This option prompts for a symbol name. This can be a function, macro, or C
variable defined as an extern (that is, a global variable).

If the symbol or function is found, the system prompts the user to select from a
list of path names to read the appropriate file.

• Source File Name

This option prompts for a file name. If the specified file is located, the system
displays a list of file locations and prompts the user to select one for viewing.

• Symbol/Function References

This option prompts for a symbol name. This can be a function, macro, or C
variable defined as an extern (that is, a global variable).

If the symbol is found, the system prompts the user to select from a list of path
names.

• RTR Namelist

This option provides symbol and address information for the RTR environment.
It can also be used to list the RTR Namelist files.

• DGN Source Code Cross-Reference

This option provides a way to identify the function associated with a specific
hardware diagnostic phase.

This option initiates a series of interactive sub-menus. For 5ESS switch
application hardware, the path name to the diagnostic source code is provided.
For RTR diagnostics (such as CU, MHD, etc.) the path name to the breakpoint
file is given.

• Population Rules File

The Automated Static Office Dependent Data (SODD) Audit is a feature that
uses the source files of Population Rule Language, Version 5.0 (PRL 5.0) to

235-600-510
November 2000

USING THE PROGRAM LISTINGS

Issue 5.00 Page 2-3

perform integrity checks on the office dependent data. Use this option to examine
the checks section of the PRL 5.0 source code when analyzing SODD audit
errors. At the prompt:

Please enter Poprule File -=>

enter the name of a relation, in lower case, preceded by RL, and appended with a
.R. For example, enter RLfc_line.R to display the population rules for relation
FC_LINE.

The online PRL 5.0 source code files include the latest software updates to the
population rules.

• Generate Breakpoint/Disassembly Listings

This option prompts the user for additional input, via a sub-menu. The sub-menu
enables the user to generate either a breakpoint or disassembly listing, or both.
The user is prompted for the subsystem name and the subsystem module name,
information that is part of the path name information output in response to a
function name query from the Symbol/Function Definition of the Listings Menu.
Note that the online listings environment does not support the creation of CNI
breakpoint or disassembly listings.

//XS845/inteam1z/si_app/5e11_1z/si/INcmpictl/INrecovery.c
^ ^
| |

subsystem |
name |

subsystem
module
name

• CDB Interactive Menu (For Experienced Users)

Use this option to gain access to the CDB tool. For information about its use,
please refer to Item 5 (CDB1 - Manual Pages) under the 5ESS Switch On-Line
Field Grade LISTINGS sub-menu.

• Exit

Use this option to exit the Listings Menu.

2.6 EXAMPLE — USING THE PROGRAM LISTINGS

2.6.1 Example Introduction

This section presents an example of how one might use the online program listings to
locate and analyze the source code associated with a failing function. While it is
beyond the scope of this example to detail all aspects of assert analysis, it does provide
an explanation of the steps needed to locate the source code associated with a specific
function. See "Assert Analysis," Section 5 for more detail.

Assert messages contain a failing address, one or more stack trace addresses and, as
in the case of this AM example, the environment in which the assert fired. This
information will be used to identify the failing function. See Exhibit 2-1 for a sample
of the AM Assert printout.

Exhibit 2-1 — AM Assert Printout
S570-262181 88-09-28 06:03:55 000640
INIT AM LVL=RPI FPUMP DEF-CHK-FAIL= 1275 EVENT=373 COMPLETED
SW-ERR FAIL-ADDR=H’19b2 AM-MODE NORMAL CU 1 TIME 3:52:3

PROCESS: OSDS=0,0 CALL-INTJ NONE DMERT 262254 EVENT-FLAGS=O’0
FCODE=0

USING THE PROGRAM LISTINGS 235-600-510
November 2000

Page 2-4 Issue 5.00

REQ-PROC 0 HDW-LVL 0 SPP-COUNTS=0,0 NO-AUD-SCHED

S570-262181 88-09-28 06:03:55 000641
REPT AM STACK TRACE ENV=FPUMP SRC=DCF EVENT=373

USER: 000019b2 00000C14 00002844 0000292C 000026F8 0000D66
00000D42 0000289F

S570-262181 88-09-28 06:03:55 000642
REPT AM STACK FRAME ENV FPUMP SRC DCF EVENT=373

FUNC ADDR: H’19b2
PARAMETERS: 000004FB 00000C14 00040160 00040190 00040190

00000000 00040000 00200000 00000001 00000000
LOCAL DATA: 000004FB 00001A26 00040190 000401D4 00000001

00060014 010002A6 00000001 00000000 00040000
00200000 00000001 20000000 00000000 00040200
000401D4 00040208 00000454 00000002 04FB0000
003CC70B 00040100 00040200 00001A26 000401D4
00040200 00040214 000022C2 000401D4 00040200
00040208 00040240 00000000 000000FA 00040208
00040240 00000001 00000000 00040000 00200000
00000000 00000000 00000000 00000000 00000000

S570-262181 88-09-28 06:03:55 000643
REPT AM STACK FRAME ENV FPUMP SRC DCF EVENT=373

FUNC ADDR: H’c14
PARAMETERS: 00040110 40000000 00002844 000400D4 00040110

00040000 00200000 00000001 00000001 00000000
LOCAL DATA: 000004FB 00000C14 00040160 00040190 00040190

00000000 00040000 00200000 00000001 00000000
00040000 00200000 00000001 40000000 000004FB
00001A26 0004019C 000401D4 00000001 00060014
010002A6 00000001 00000000 00040000 00200000
00000001 20000000 00000000 00040200 000401D4
00040208 00000454 00000002 04FB0000 003CC70E
00040100 0004020C 00001A26 000401D4 0004020C
00000000 00000000 00000000 00000000 00000000

Note the failing address and environment in the printout and use this information to
generate breakpoint and disassembly listings for the failing function.

• Failing address — 0x000019b2

• Environment — FPUMP

2.6.2 Determine the Function Name

The first step is to identify the path name of the environment. Use "Environment to
Pathname Cross Reference," Appendix A1 to accomplish this step. Next, the upd:ftrc
input message is used to identify the failing function:

upd:ftrc:fn="/no5text/prc/fpump",addr=h’19b2;

The format of the upd:ftrc output is:
UPD FTRC REPT
OBJECT_FILE=/no5text/prc/fpump
ADDRESS FUNCTION START SIZE OFFSET TV FILE SYMINDEX
––––––- –––––––– ––––––- –––––––– –––––– ––––- –––––––––––––– ––––––––

19b2 INptcomp 18dc 138 d6 16 INfpump_c.c [32]

The offset into the function is calculated by the switch and is included in the UPD
FTRC REPT output message. The offset is needed so that the user will know the exact
point of failure in the function.

235-600-510
November 2000

USING THE PROGRAM LISTINGS

Issue 5.00 Page 2-5

2.6.3 Locate the Function

Use the "On-Line Access Procedure," Section 2.2 to access Web and Media
Management and examine the source code.

Select option 1 (SYMBOL/FUNCTION DEFINITION) and, when prompted, enter the
name of the failing function INptcomp.

When prompted, select from the list of valid processor types. Choosing the default
(<Return>) will cause the data tables for all processor types to be searched,
significantly increasing the search time. For a more efficient search specify the
processor type when known. In this example, AM was specified. The system will now
display the name of the file that contains the failing function.

Note the relative path of the source file, in particular the subsystem and subsystem
module names. This information will be needed to generate breakpoint and/or
disassembly listings. View the file to verify that it contains the function definition.

In this example, the relative path is .../si/INampump/INfastpump.c. The
function exists in subsystem si, subsystem module INampump. Note that the
subsystem and subsystem module names are case sensitive; this becomes important
when breakpoint or disassembly listings are to be created.

Return to the main Listings menu by pressing <Return>, then select option 7
(GENERATE BREAKPOINT/DISASSEMBLY LISTINGS).

When prompted, specify the type of listings to generate. For this example, both
breakpoint and disassembly listings are requested.

Next, enter a processor type. Since there is no default on this menu, a valid processor
type must be specified.

Enter the subsystem and, when prompted, the subsystem module name. Recall that
these names are case sensitive and must be entered exactly as displayed by the
SYMBOL/FUNCTION DEFINITION search.

The system now displays a list of the files that were generated for the specified
subsystem. Depending on the subsystem module, several module product files may
have been created. Select the disassembly file for the module product desired. In this
example, the file of interest is .../INfpump.dis.

Use standard vi commands to search the file for the function name; in this instance,
the function is INptcomp(). (See Exhibit 2-3.)

Once the start of the function has been located, take note of the relative start address.
The relative start address of this function is h’1948. To determine the exact point at
which the assert fired, the previously calculated offset (h’d6) must be added to this
start address: h’1948 + h’d6 = h’1a1e. Thus, h’1a1e marks the relative address of the
instruction immediately following the assert macro call (though this doesn’t ALWAYS
hold true).

An examination of the assembly code reveals that the failure occurred in the
instruction set associated with breakpoint [37]. The next step is to locate this
breakpoint line in the breakpoint listing for function INptcomp() and determine the
reason for the assert. (See Exhibit 2-2).

Quit the disassembly file, INfpump.dis, and the list of generated files for the
subsystem module will be displayed again.

USING THE PROGRAM LISTINGS 235-600-510
November 2000

Page 2-6 Issue 5.00

Select the breakpoint file for the module product desired. For this example, the file is
.../INfpump.bp.

Search the file for the definition of the function INptcomp(). Since this file contains
code for numerous functions, the first occurrence of function INptcomp() may not be
its definition, but rather a call to it from another function. Use standard vi commands
to step beyond these references. Note that the full name of the desired function is
INptcompmsg(); by convention, only the first eight characters of a function name are
used for software releases prior to 5E11(1). As of the 5E11(1) software release, C
function/variable names can be longer than eight characters. The INptcomp()
example is still valid in the 5E11(1) online listing environment; however, the
upd:ftrc output would have listed the function’s name as INptcompmsg() and all
references to the eight-character name in the example would be replaced with the full
function name.

Once the source code of the failing function has been located, search for the desired
breakpoint line. In this example the breakpoint line is [37]. The C-language source
code can now be analyzed to determine why the assert fired.

Repeat this procedure to locate variables or functions referenced by function
INptcomp().

Exhibit 2-2 — Breakpoint Listing for Function INptcomp()
AM:INFPUMP
@FUNCTION: INptcomp (INfpump_c.o)
/*
* Function: INptcompmsg()
*
* Description: This function will format and send the PARTIALLY COMPLETE
* message to the SM and then clear the control structure that
* the information was taken out of.
*
* Parameters: None.
*
* Returns: None
*
* Calls: INeventno() - get an event number
* INfosmsg() - format OSDS message
* INperror() - pump error handler
* sendport() - send a message
*
* Externals: INpartinfo[] - section start addresses for sections pumped
* msgbuf - FPUMP message buffer
* ctrl - FPUMP misc. information area
*/
void
INptcompmsg()
{

INBCASTMSG bcastmsg; /* message to broadcast pump */
INCNTRLTBL *partinfo_ptr; /* pointer to control structure */
unsigned short i; /* useful index */

[6] partinfo_ptr = &INpartinfo[INcurrent ^ 1];
[8] if (INlinkname == 0) {
[9] msgbuf.btmsg.osds_hdr.realhdr.type &= ~LINKMASK;

}else{
[11] msgbuf.btmsg.osds_hdr.realhdr.type |= LINKMASK;

}
[13] INlinkname ^= 1;

/* send the message provided that this is NOT an offline pump */
[16] if (! INISOFFLINEPUMP(ctrl.ptype)) {

/* Fill in the header that the SMs will see. */
[18] bcastmsg.msghead.type = MGPUFPMP;
[19] bcastmsg.msghead.priority = INMSGPRIOR;

235-600-510
November 2000

USING THE PROGRAM LISTINGS

Issue 5.00 Page 2-7

[20] bcastmsg.msghead.length = sizeof(struct mgPUFPMP);

/* Fill in the body that the SMs will see. */

[23] bcastmsg.msgs.pufpmp.ccode = INPARTSUCC;
[24] bcastmsg.msgs.pufpmp.nblocks = partinfo_ptr->no_blocks;
[25] bcastmsg.msgs.pufpmp.lastbyte = partinfo_ptr->lstbytpmp;

AP# 88/INptcomp /INptcomp
FPUMP Handling Process Control Functions 5ESS PR-5D12010-71

AM:INFPUMP ISSUE 01 PAGE 88
SEE PROPRIETARY NOTICE ON COVER PAGE

AM:INFPUMP

[26] bcastmsg.msgs.pufpmp.linknum = INlinkname;
/* load section start addresses in message */

[29] for (i = 0; i < partinfo_ptr->tot_sect; i++) {
[30] bcastmsg.msgs.pufpmp.strtaddr[i+1] == partinfo_ptr->sect_add
r[i];
[31] }

/* store total number of sections in the message */
[33] bcastmsg.msgs.pufpmp.strtaddr[0] = (unsigned long)partinfo_ptr->tot
_sect;

/* Broadcast the Partial Complete message to the SMs. */
[36] if (INfhbcastsend(&bcastmsg,ctrl.pumping_sms,ctrl.bootpid.procno)!=
SUCCESS) {
[37] INperror(INPUSDPT);

}
}
/* clear the control structure that was just used */

[43] partinfo_ptr->lstbytpmp = 0L;
[44] partinfo_ptr$>no_blocks = 0;
[45] partinfo_ptr->tot_sect = 0;

/* Indicate that we are making progress for fast pump */
[48] if ((ctrl.ptype == INFP) || (ctrl.ptype == INBCP)) {
[49] SIpprog[INFP].event_no = INeventno();

/* save the time that progress is updated */
[52] INprog_time = getime();

}
[54] }

AP# 89/INptcomp /INptcomp

FPUMP Handling Process Control Functions 5ESS PR-5D12010-71
AM:INFPUMP ISSUE 01 PAGE 89

SEE PROPRIETARY NOTICE ON COVER PAGE
11/ 6/91

Exhibit 2-3 — Disassembly Listing for Function INptcomp()
AM:INFPUMP

@DISASSEMBLY: INptcomp (INfpump_c.o)

**** 3b DISASSEMBLER ****

disassembly for INfpump_c.o

section .text
INptcomp()

1948: 7a20 save &0x2,&0x0
194a: 346a 06cb addw2 &0x6c,%sp

[6] 194e: 4448 0004 1f80 movzbw $0x41f8,%r0
1954: 3221 0000 xorw2 &0x1,%r0

USING THE PROGRAM LISTINGS 235-600-510
November 2000

Page 2-8 Issue 5.00

1958: 349a 0540 umulw2 &0x54,%r0
195c: 346c 0000 414c 0000 addw2 &0x0414c,%r0
1964: 1408 movw %r0,%r8

[8] 1966: 2bf8 0004 1f60 cmph $0x41f6,&0x0
196c: 8106 bne +0x6 <197a>

[9] 196e: 2d0c 7fff 0008 0004 5940 andh2 &0x7fff,$0x4594
1978: 8005 br +0x5 <1984>

[11] 197a: 2d1c 8000 0008 0004 5940 orh2 &-0x8000,$0x4594
[13] 1984: 2b28 0004 1f61 xorh2 &0x1,$0x41f6
[16] 198a: 23f8 0004 7763 cmpb $0x4776,&0x3

1990: 8246 be +0x46 <1a1e>
1992: 23f8 0004 7766 cmpb $0x4776,&0x6
1998: 8242 be +0x42 <1a1e>

[18] 199a: 4d0a 5220 a040 movh &0x522,0x4(%fp)
[19] 19a0: 4300 a060 movb &0x0,0x6(%fp)
[20] 19a4: 450a 05c0 a070 movb &0x5c,0x7(%fp)
[23] 19aa: 4b00 a085 movh &0x5,0x8(%fp)
[24] 19ae: 1480 movw %r8,%r0

19b0: 4d00 04e0 a0a0 movh 0x4e(%r0),0xa(%fp)
[25] 19b6: 1480 movw %r8,%r0

19b8: 5500 0480 a5c0 movw 0x48(%r0),0x5c(%fp)
[26] 19be: 4d08 0004 1f60 a600 movh $0x41f6,0x60(%fp)
[29] 19c6: 4a00 0007 movh &0x0,%r7

19ca: 8011 br +0x11 <19ee>
[30] 19cc: 3870 movzhw %r7,%r0

19ce: 5620 llsw2 &0x2,%r0
19d0: 1080 addw2 %r8,%r0
19d2: 14a1 movw %fp,%r1
19d4: 346a 0101 addw2 &0x10,%r1
19d8: 693a 001e 7002 addh3 &0x1,%r7,%r2
19de: 3822 movzhw %r2,%r2
19e0: 5622 llsw2 *0x2,%r2
19e2: 1021 addw2 %r2,%r1
19e4: 5500 0000 1000 movw 0x0(%r0),0x0(%r1)

AP# 90/INptcomp /INptcomp

FPUMP Handling Process Control Functions 5ESS PR-5D12010-71
AM:INFPUMP ISSUE 01 PAGE 90

SEE PROPRIETARY NOTICE ON COVER PAGE
11/ 6/91

AM:INFPUMP

[31] 19ea: 2a61 0007 addh2 &0x1,%r7
19ee: 1480 movw %r8,%r0
19f0: 29e0 04c7 cmph %r7,0x4c(%r0)
19f4: 9515 blu -0x15 <19cc>

[33] 19f6: 1480 movw %r8,%r0
19f8: 4d30 04c0 a100 movzhw 0x4c(%r0),0x10(%fp)

[36] 19fe: 600a pushw %fp
1a00: 620c 0000 4784 0000 pushw &0x04784
1a08: 6248 0004 7080 pushbh $0x4708
1a0e: 7600 0003 call &0x3,*$0x760000
1a12: 1a10 cmpw %r0,&0x1
1a14: 8204 be +0x4 <1a1e>

[37] 1a16: 620a 4e60 pushw &0x4e6
1a1a: 7600 0001 call &0x1,*$0x760000

[43] 1a1e: 1480 movw %r8,%r0
1a20: 5300 0480 movw &0x0,0x48(%r0)

[44] 1a24: 1480 movw %r8,%r0
1a26: 4b00 04e0 movh &0x0,0x4e(%r0)

[45] 1a2a: 1480 movw %r8,%r0
1a2c: 4b00 04c0 movh &0x0,0x4c(%r0)

[48] 1a30: 23f8 0004 7761 cmpb $0x4776,&0x1
1a36: 8204 be +0x4 <1a40>
1a38: 23f8 0004 7765 cmpb $0x4776,&0x5
1a3e: 810a bne +0xa <1a54>

[49] 1a40: 7600 0000 call &0x0,*$0x760000
1a44: 5178 0000 0060 movtwh %r0,$0x6

235-600-510
November 2000

USING THE PROGRAM LISTINGS

Issue 5.00 Page 2-9

[52] 1a4a: 7600 0000 call &0x0,*$0x760000
1a4e: 5108 0004 9040 movw %r0,$0x4904

[54] 1a54: a100 7b20 ret &0x2

AP# 91/INptcomp /INptcomp

FPUMP Handling Process Control Functions 5ESS PR-5D12010-71
AM:INFPUMP ISSUE 01 PAGE 90

SEE PROPRIETARY NOTICE ON COVER PAGE
11/ 6/91

USING THE PROGRAM LISTINGS 235-600-510
November 2000

Page 2-10 Issue 5.00

Software Analysis Guide

CONTENTS PAGE

3. C PROGRAMMING LANGUAGE 3-1

3.1 DATA TYPES . 3.1-1
3.1.1 Data Types - General 3.1-1
3.1.2 Bitfields . 3.1-3
3.1.3 Arithmetic Operators 3.1-4
3.1.4 Relational Operators 3.1-5
3.1.5 Logical Operators 3.1-5
3.1.6 Operator Precedence 3.1-6
3.1.7 Variables (Local and Global) 3.1-10
3.1.8 Structures 3.1-11

3.1.8.1 Struct 3.1-11
3.1.8.2 Unions 3.1-12

3.1.9 Storage Class Specifiers 3.1-12
3.1.10 Preprocessor 3.1-14
3.1.11 Pointers and Arrays 3.1-15
3.1.12 Membership Operator 3.1-19
3.1.13 Casting . 3.1-20
3.1.14 Functions 3.1-21
3.1.15 Control Statements 3.1-22

3.2 5ESS® SWITCH DIFFERENCES FROM K AND R
REFERENCE . 3.2-1
3.2.1 Introduction to Section 3.2-1
3.2.2 Sizeof . 3.2-1
3.2.3 Array Size Limitations 3.2-1
3.2.4 Multiple Structure Assignments 3.2-1
3.2.5 Unsigned Data Types 3.2-1
3.2.6 Float/Double Floating Point Data Types 3.2-2
3.2.7 Bitfields . 3.2-2
3.2.8 Zero-Length Bitfields and Their Alignment 3.2-2
3.2.9 Integer Bitfields and Their Alignment 3.2-2
3.2.10 The Value of An Assignment 3.2-2
3.2.11 Enumeration Comparisons 3.2-2
3.2.12 Function Templates 3.2-2
3.2.13 Flexnames 3.2-3
3.2.14 Integer Size 3.2-3

LIST OF FIGURES

Figure 3.1-1 — Bitfield Layout for the Structure i_bits 3.1-3

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3-i

Figure 3.1-2 — Array A. 3.1-17

Figure 3.1-3 — Array B. 3.1-18

Figure 3.1-4 — Array C. 3.1-18

Figure 3.1-5 — Array D. 3.1-19

Figure 3.1-6 — Array E. 3.1-19

LIST OF TABLES

Table 3.1-1 — Arithmetic Operators 3.1-4

Table 3.1-2 — Assignment Operators 3.1-4

Table 3.1-3 — Relational Operators 3.1-5

Table 3.1-4 — Logical OR (||) Operator 3.1-5

Table 3.1-5 — Logical AND (&&) Operator 3.1-6

Table 3.1-6 — Operator Precedence and Direction 3.1-7

Table 3.1-7 — Preprocessor Commands 3.1-15

LIST OF EXHIBITS

Exhibit 3.1-1 — Enumeration Example AMMDR_RECS 3.1-2

Exhibit 3.1-2 — Enumeration Example AMLOSTREASON 3.1-2

Exhibit 3.1-3 — Structure Example amINPRIV 3.1-11

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3-ii Issue 5.00

3. C PROGRAMMING LANGUAGE

The purpose of this section is to review aspects of the C language and to enhance the
user’s overall understanding of how the language is used in the 5ESS® switch. This
section is designed for the experienced C user and is not intended as a teaching tool.
The first half of this section is the language review and the second half is an
explanation of the language variations that are to be found in the C language of the
5ESS switch.

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3-1

3.1 DATA TYPES

3.1.1 Data Types - General

The C language is composed of only a few fundamental data types. Data types are the
way the C language represents the storage requirements of a particular type of
variable or constant; they are the building blocks of more elaborated data structure
definitions. The data type establishes what class of data values can be held by a
variable and what variety of operations can be performed on that variable. The C
language data types include the following:

int a value of type integer

char a value of type character

float a floating point value (float values are not supported in the 5ESS®

switch)

double double-precision floating point value (float values are not supported in
the 5ESS switch).

There are also a number of qualifiers that can be used in conjunction with these data
types.

short a short integer

long long integer

signed signed char values between −128 and 127, but an int is −32,768 to
32767 or −2,148,483,648 to 2,148,483,647 (the signed qualifier is not
supported by the 5ESS switch).

unsigned unsigned char values between 0 and 255, but an int is 0 to 65,585 or (in
the AM) 4,294,967,295.

The qualifiers short and long refer to integer values only. The use of int in the
declaration of short or long is optional:

short int var1;
long int var2;

or
short var1;
long var2;

Each data type has its own storage requirements and capabilities. In addition, the
type of processor used (3B20D or MC68000) will also affect the storage requirements
of any particular type. Unsigned numbers are always positive or zero.

The data types and their qualifiers can be grouped under the two general headings of
integral types and floating types, based on the way they are stored in the computer.

Integral types:
int, char, short, long, signed, unsigned

Floating types:
float, double

Since the type char is actually an integral type, variables and constants of this type
can be manipulated just as you would manipulate an integer because characters have
an underlying integer value which is their ASCII representation. For example, the
expression ’b’ + 1 has the value ’c’, just as the expression ’A’ + 2 would have the
value ’C’.

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-1

In addition to these data types, there are also derived data types such as array,
function, pointer, structure, and union. Each of these is discussed elsewhere in this
document. There is also an enumeration type. An enumeration or enum is a data type
whose possible values are limited to a list of constant values. These constants are
assigned when the type is defined. It also allows names to be used in lieu of integer
values when a choice must be made from a collection of items. For example:
enum tally {yea, nay, abstain};

.

.

.
enum tally vote= abstain;

or
enum {yea, nay, abstain} vote = abstain;

All enum variables and constants perform just like type int. The compiler of the 5ESS
switch stores an enum in the smallest possible data size that can retain all possible
enumeration values, 1 byte, 2 bytes, or 4 bytes. Exhibits 3.1-1 and 3.1-2 are examples
of enumerations taken from the code of the 5ESS switch.

Exhibit 3.1-1 — Enumeration Example AMMDR_RECS
typedef enum {

AMNOMDR = 0, /* No MDR record */
AMORIGPRIV = 1, /* Originating Private MDR Record */
AMINPRIV = 2, /* Incoming Private MDR Record */
AMPUBLIC = 3, /* Public MDR Record */
AMSTA_STA = 4, /* Station -to- Station MDR Record */
AMCOUNTS = 5 /* MDR Counts Record */

} AMMDR_RECS;

Exhibit 3.1-2 — Enumeration Example AMLOSTREASON
typedef enum amLOSTREASON {

AMSAMEMFULL = 0, /* Stand-alone memory full */
AMLANSINH = 1, /* Local Answer recording Inhibited */
AMNOCR = 2, /* Could not get Call Record */
AMTERMINH = 3, /* Terminating recording inhibited */
AMBADCTYPE = 4, /* Invalid Call Type */
AMBADSCODE = 5, /* Invalid Structure Code */
AMBADCOND = 6, /* Invalid Condition */
AMNOOPACT = 7, /* Couldn’t format Operator Action */
AMNOTERMDN = 8, /* couldn’t format Terminating DN */
AMNOCARTIME = 9, /* Couldn’t format Carrier Connect Time */
AMSDSFULL = 10, /* SDS Full */
AMSDSPTR = 11, /* Bad SDS Pointer */
AMBADMGLENGTH = 12, /* Bad Message Length */
AMSMBUFF = 13, /* Couldn’t load SM buffer */
AMBADSFAM = 14, /* Bad Structure Code Family */
AMSP2LREASON = 15, /* Spare 2 */
AMBADEBAFTYPE = 16, /* Invalid EBAF Type */
AMODBINH = 17, /* On Demand B-channel recording inhibited */
AMSP3LREASON = 18, /* Spare 3 */
AMSP4LREASON = 19, /* Spare 4 */
AMSP5LREASON = 20, /* Spare 5 */
AMSP6LREASON = 21, /* Spare 6 */
AMSP7LREASON = 22, /* Spare 7 */
AMSP8LREASON = 23, /* Spare 8 /
AMSP9LREASON = 24, /* Spare 9 */
AMSP10LREASON = 25, /* Spare 10 */
AMSP11LREASON = 26, /* Spare 11 */
AMSP12LREASON = 27, /* Spare 12 */
AMSP13LREASON = 28, /* Spare 13 */
AMSP14LREASON = 29, /* Spare 14 */

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-2 Issue 5.00

AMSP15LREASON = 30, /* Spare 15 */
AMSP16LREASON = 31, /* Spare 16 */

} AMLOSTREASON;

3.1.2 Bitfields

Bitfields are a special form of declaration that allows for the addressing and
manipulation of individual bits in a field. The 5ESS switch compiler supports char,
short, int and long bitfields. Bitfields in the 5ESS switch are always unsigned, the
unsigned qualifier is ignored. These fields are created through a struct declaration.
Bitfields are packed into machine words, one after the other, in the order in which
they were declared.

The maximum size of a bitfield is the number of bits in a machine word. A machine
word is usually the size of int. Bitfields cannot cross a machine word boundary. If a
field would overlap a word boundary, the compiler will move it to the start of the next
machine word at compile time. A bitfield of value 0 forces the next bitfield declaration
to align itself at the next word boundary. In the 5ESS switch, the least significant bit
is on the right and the most significant on the left. When bitfields are used it is
critical to remember that the bits are loaded from left to right.

An example of the declaration for a bitfield is:
struct {

unsigned field1 : 2 ;
unsigned field2 : 4 ;
unsigned field3 : 6 ;

} fields ;

A detailed knowledge of the hardware specifics used by the compiler is required when
bitfields are used. An example of a bitfield declaration in the 5ESS switch is:

struct {
unsigned short : 8;
unsigned short frmtype : 1;
unsigned short ns : 3;
unsigned short p : 1;
unsigned short nr : 3;

} i_bits;

The i_bits structure consists of 16 bits. The bitfield construction in the memory would
look like the layout in Figure 3.1-1.

unsigned short ns pfrm-
type

nr

16 bits

Figure 3.1-1 — Bitfield Layout for the Structure i_bits

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-3

3.1.3 Arithmetic Operators

To perform mathematical computations, C uses arithmetic and assignment operators.
The arithmetic operators can be classified by the number of operands they require,
that is unary (one) and binary (two). The mathematical operations used in the C
language are detailed in Table 3.1-1.

Table 3.1-1 — Arithmetic Operators

Symbol Description
+ Adds value at its right to the value at its left
− Subtracts value at its right from the value at its left

− + Unary operators, change the sign of the value at their right (+ not
supported)

* Multiplies value at its right by the value at its left
/ Divides value at its left by the value at its right. Integer values are

truncated
% Returns the remainder when the value at its left is divided by the

value to its right (integers only)
++ Increments by 1 the value of the variable to its right or left (prefix

mode or postfix mode ++i or i++)
−− Decrements by 1 the value of the variable to its right or left (prefix

mode or postfix mode −−i or i−−)

In addition to the arithmetic operators, there are also assignment operators that
complete the statements in which arithmetic operators are used (see Table 3.1-2).

The assignment operators are used to transfer the value of an expression into a
storage location. In the C language the equivalence operator’s functions have been
divided into two separate operators. There is a difference between the = assignment
operator and the == relational operator. The first assigns a value to a variable, and
the second only checks for equivalence and does not transform the variables in any
way.

Table 3.1-2 — Assignment Operators

Symbol Description/Example
= Assigns the value of the expression on the right to the variable on

the left.
+= x += 2 is equivalent to x = x + 2

−= x −= 2 is equivalent to x = x − 2

*= x *= 2 is equivalent to x = x * 2

/= x /= 2 is equivalent to x = x / 2

%= x %= 2 is equivalent to x = x % 2

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-4 Issue 5.00

3.1.4 Relational Operators

A relational operator compares two operands to determine their association. The
relational operators are used most frequently with if, while, for and ?: conditional
statements to determine when an action will start or if it will take place at all. The
relational operators are shown in Table 3.1-3.

Table 3.1-3 — Relational Operators

Symbol Description
== Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than

<= Less than or equal to

3.1.5 Logical Operators

Various relations can be combined by the logical connectives (&& and ||) the logical
AND and OR operators. Expressions related by && or || are evaluated from left to
right. In the case of the || operator, if the first operand is true, then the second
operand is not evaluated because the value of the expression must be true since the
first operand is true. As shown in Table 3.1-4, it is not necessary for the system to
evaluate the second operand when the first is true; the outcome is the same in either
case.

Table 3.1-4 — Logical OR (||) Operator

EVALUATION TABLE (||)
First Operand Second Operand Expression Value

T ? T
F T T
F F F

In the case of the && operator, however, if the first operand is false, then the second
operand is not evaluated. The && operator requires that both elements must be
evaluated as true or the entire statement must be evaluated as false. As shown in
Table 3.1-5 it is not necessary for the system to evaluate the second operand when the
first is false; the outcome is the same in either case.

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-5

Table 3.1-5 — Logical AND (&&) Operator

EVALUATION TABLE (&&)
First Operand Second Operand Expression Value

T T T
T F F
F ? F

3.1.6 Operator Precedence

The C language has a built in precedence structure that determines when a particular
arithmetic, assignment, logical, or relational operator will be evaluated. Table 3.1-6
explains the direction of association for each type of operator and also explains the
order of precedence. The highest precedence is at the top of the table, the lowest at the
bottom. The precedence can be altered in statements and expressions by using
parentheses. Parentheses force the operator inside of the () to be evaluated before
those outside, regardless of precedence.

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-6 Issue 5.00

Table 3.1-6 — Operator Precedence and Direction

Operator
Type

Symbol Direction

Primary () [] → . L to R
Unary ! ~ ++ −− + − * & (type) sizeof R to L

Arithmetic
* / % L to R

+ −
Shift << >> L to R

Relational
< <= > >= L to R

== !=

Bitwise
Logical

& L to R
|
^

Logical
&& L to R
||

Conditional ? : R to L
Assignment = += −= /= %= &= ^= |= <<= >>= R to L

Comma , L to R

Primary Operators
Primary operators are the strongest operators. Of the primary operators,
the parentheses are the strongest. The other operators serve to describe
the access to data and are stronger than any other operators upon that
data.

() The function operator. Example: main(). Also used for
grouping.

[] Array brackets. Example: arrayname[].

→ The indirect membership operator is used with a pointer to a
structure or union to identify a member of that structure or
union. (See "Membership Operator," Section 3.1.12.)

. The membership operator is used with a structure or union
name to specify a member of that structure or union. (See
"Membership Operator," Section 3.1.12.)

Unary Unary operators change the value at their right.

! This is the logical negation operator. Its operand must be an
arithmetic type or be a pointer.

~ The one’s complement, or bitwise negation, changes each 1 to
a 0 and each 0 to a 1. Example: ~(10011011) ==
(01100100).

++ The increment operator increases the value of its operand by
one. The operator can be used either before or after the
variable, prefix or postfix mode. Example:

x=10
y=++x

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-7

a=10
b=a++

The value of y is 11 because x is incremented before the
statement is evaluated and the value of b is 10 because the
statement is evaluated and then the value of a is
incremented.

−− The decrement operator decreases the value of its operand
by one. The operator can be used either before or after the
variable, prefix or postfix mode. Example:

x=10
y=−−x

a=10
b=a−−

The value of y is 9 because x is decremented before the
statement is evaluated and the value of b is 10 because the
statement is evaluated and then the value of a is
decremented.

+ As a unary operator, the plus sign means to take the value of
its operand. (Not supported by the 5ESS switch compilers.)

− As a unary operator, the minus sign means to take the
negative of its operand.

* The indirection operator is used with pointers. When
followed by the name of the pointer, it gives the value stored
at the pointed-to address.

& The address operator gives the address of the variable to
which it is attached.

(type) The cast operator converts the value to its right to the type
specified by the enclosed keyword. Example: (float) 4
changes the integer 4 into a float value.

sizeof The sizeof operator gives the size in bytes of the operand to
its right.

Arithmetic Operators
Arithmetic operators perform mathematical computations such as
addition and multiplication.

* The multiplication operator multiplies the two values on
either side of it. Example: printf("%d",3*7). The value
that prints is 21.

/ The division operator divides the value on its left by the
value on its right. Example: printf("%d",21/3). The
value that prints is 7. For integer division, results are
truncated.

% The modulus operator gives the remainder that results from
integer division. Example: printf("%d",22%3). The value
that prints is 1.

+ The addition operator adds the two values on either side of it
together. Example: printf("%d",3+7). The value that
prints is 10.

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-8 Issue 5.00

− The subtraction operator subtracts the value on its right
from the value on its left. Example: printf("%d",10-7).
The value that prints is 3.

Shift Operators
Shift operators are bitwise operations.

<< The left shift operand shifts the bits of the left operand to
the left by the number of positions given by the right
operand. The right most positions left vacant by the shift are
filled with 0s. Example: (11110011)<<2==(11001100).

>> The right shift operand shifts the bits of the left operand to
the right by the number of positions given by the right
operand. The left most positions left vacant by the shift are
filled with 0s for unsigned types, for signed types the result
is machine dependent. Example:
(11110011)>>2==(00111100).

The 5ESS switch does signed shifts by propagating the sign
bit (the most significant bit).

Relational Operators
Relational operators compare two operands to determine their
association.

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

== Equal to. This does not affect the value of the variables.

!= Not equal to.

Bitwise Logical Operators
Bitwise logical operators are logical connectives that operate on one or
more bits.

& The bitwise AND (&) makes a bit-by-bit comparison. For each
bit, the resulting bit position is 1 only if both corresponding
bits in the operands are 1. Example:
(11100011)&(10010010)==(10000010).

| The bitwise OR (||) makes a bit-by-bit comparison. For each
bit, the resulting bit is 1 if either of the corresponding bits in
the operands is 1. Example:
(10010011)|(00111101)==(10111111).

^ The bitwise EXCLUSIVE OR (^) makes a bit-by-bit
comparison. For each bit, the resulting bit is 1 if either, but
not both, corresponding bits in the operands are 1. Example:
(10010011)^(00111101)==(10101110).

Logical Operators
Logical operators are logical connectors such as OR which are used to
evaluate the validity of an argument or set of arguments.

&& The logical AND operator (see Table 3.1-5).

|| The logical OR operator (see Table 3.1-4).

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-9

Conditional Operator

? : The conditional operator uses a logical value as an operand.
It is the only ternary operator and is also considered a
statement. See "Control Statements," Section 3.1.15. If the
first operand is nonzero, it is interpreted as TRUE and the
second operand is evaluated, if it is evaluated as FALSE the
third operand is evaluated. Example:
x = 3D (a > 1) ? 4 : 5; The value of x in this example
would be 4.

Assignment Operators
Assignment operators store the value computed on their right into the
variable on their left. The shorthand used for the operators, which follow
the value assignment operator in this list, update the variables at their
left by the value at their right.

= This is the value assignment operator. It stores the value on
its right in the memory location represented by the variable
on its left. Example: abc = 100.

+= Add the right hand quantity to the left hand quantity.

−= Subtract the right hand quantity from the left hand
quantity.

/= Divide the left hand quantity by the right hand quantity.

%= Stores the remainder from the division of the left hand
quantity by the right hand quantity in the left hand
quantity.

&= Perform a bitwise AND operation storing the result in the left
operand.

|= Perform a bitwise OR operation storing the result in the left
operand.

^= Perform a bitwise EXCLUSIVE OR operation storing the
result in the left operand.

<<= Perform a bitwise left shift operation storing the result in
the left operand.

>>= Perform a bitwise right shift operation storing the result in
the left operand.

Comma The comma separates expressions that are grouped together. The
expressions are evaluated left to right, with the result being the
right-most expression.

, Example: f(x,(y=4,y+2),z) has three arguments, the
second argument is equal to 6.

3.1.7 Variables (Local and Global)

A variable is the name for a memory location, that is, a particular byte address.
Variables consist of letters and digits and the first character must always be a letter.
Variable names are lowercase and symbolic constants are uppercase. Variables are
either local or global in scope depending on how they are defined. (See "Storage Class
Specifiers," Section 3.1.9, for details on the scope of declarations.)

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-10 Issue 5.00

Local Variables
Variables declared within a function are local to that function and will
not be recognized by any others. Local variables come into existence when
their function is called and disappear when the function is exited.

Global Variables
Global variables are declared outside any function and can be accessed by
all functions subsequent to its declaration. Most global variables are
defined at the beginning of the program to make them available to all
functions.

3.1.8 Structures

3.1.8.1 Struct

The structure or struct is a collection of data types that are combined to form an
organized record that can be manipulated as a whole or in part(s). To create a
structure, simply declare each of the elements after the structures tag (name):

struct example
{
int i ;
char c ;
float f ;

};

This declaration creates a new data type using existing data types. Remember that a
declaration of this type does not create storage. To create an actual storage location,
you would have to specify the following after creating the structure:

struct example first;

where first is the actual name of the variable (storage location). This is the type of
declaration found in the 5ESS switch. Structures are usually defined in the Global
Header Files or Local Header Files but they may also be declared in other places in
the source code of the 5ESS switch.

It is also possible to declare the structure’s name at the same time that the data
structure is created:

struct example
{
int i ;
char c ;
float f ;

} first, second, third;

Exhibit 3.1-3 is an example of a structure used in the 5ESS switch.

Exhibit 3.1-3 — Structure Example amINPRIV
struct amINPRIV { /* start field */

/* byte * */
CMAPHDR ap_hdr; /* 0 * Session ID. */

/* 4 * Business Customer ID. */
/* 6 * Application ID. */
/* 7 * Length */

AMMDR_RECS msg_type : 8; /* 8 * Message Type */
AMMDREVTCD event_code : 8; /* 9 * Call Event Code */
AMMDRFIC fic : 8; /* 10 * Feature Interaction Code */
unsigned char ars_grp; /* 11 * ARS Pattern Group */
unsigned char frl; /* 12 * Facility Restriction Level */
AMMDRANSW answ_ind : 8; /* 13 * Answer Indicator */
AMMDRFTYPE in_type : 8; /* 14 * Incoming Facility Type */
AMMDRFTYPE out_type : 8; /* 15 * Outgoing Facility Type */
unsigned short in_group; /* 16 * Incoming Facility Group */

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-11

unsigned short in_member; /* 18 * Incoming Facility Member */
unsigned short out_group; /* 20 * Outgoing Facility Group */
unsigned short out_member; /* 22 * Outgoing Facility Member */
long ans_time; /* 24 * Answer Time */
long end_dtime; /* 28 * End of Dialing Time */
short date; /* 32 * Date of Call */
unsigned char called[16]; /* 34 * Called Number */
unsigned char fill1[2]; /* 50 * ––- FILL ––- */

/* –––– */
/* 52 * Total */

};

3.1.8.2 Unions

A union is a derived data type that allocates one storage location for various types
and sizes of data. Its declaration is similar to that of the struct. A union may contain
various data types, but unlike the struct, a union can only store one type at any given
time. When a union is declared, storage space is allocated for the largest data item
and the same storage space is used for all the union variables. During processing, the
storage space is continually overwritten whenever a new union member is to be stored
in it. Keep in mind that a union must be addressed in the mode of its present
contents. That is, an integer data type must be pointed to by an integer pointer. A
union declaration follows.

union union_label
{
int intval;
float flval;
char *stval;
} union1,union2;

3.1.9 Storage Class Specifiers

The storage class specifier in a declaration determines the scope of the declared object.
Only one storage class specifier may appear in a declaration. The storage class
specifiers are auto, register, static, extern, and typedef.

auto The auto storage specifier is permitted only in declarations of variables
within functions. It indicates that the variable has local (automatic)
extent.

• If an automatic is declared having the same name as a global, the
automatic is referenced by the function, not the global.

• Automatic variables are known only to the function that declared
them.

• Automatic variables are stored on the stack.

• Arguments to functions are automatic variables.

register The register specifier has the same basic meaning as auto, but in
addition tells the compiler that the local variable (or parameter) will be
heavily used and should be allocated in a way that minimizes access
time. (That is, placed in a register if possible.)

static The static specifier means that the object is permanently allocated
storage space for the duration of the program, unlike automatic which is
only temporary allocation. These variables may be declared either inside
or outside of the function. If declared inside the function, only the
function can reference it. If outside the function, only functions in the
same file can reference it. Static variables are initialized to zero before

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-12 Issue 5.00

program execution if no initialization is specified. Static storage class is
not known to the linker.

extern The extern storage class specifier may appear in declarations of external
functions and variables, either at the top level or at the heads of blocks.
It indicates that the object declared has static extent (permanent storage
space) and its name is known to the linker. The compiler is informed that
this variable does not need stack space because it has been defined
elsewhere.

typedef The typedef storage class specifier does not actually allocate storage
space. It is called a storage class for syntactic convenience. The typedef
allows for the creation of different and perhaps more informative names
for data types. In other words, typedef does not create a new type, but
rather a synonym for an existing type. The word REAL can be used
instead of float to define a floating point number because this term is
more familiar. The following statement would tell the compiler that
instead of float, the term REAL will be used.

typedef float REAL;

From that point on in the program floating point variables can be
defined:

REAL x, y, z[10], *ptr;

The typedef is most useful when a number of complicated types will be
used. Once the type is defined, it can be used whenever necessary.

An example of a typedef in the 5ESS switch is:
/*
* The EBAF AMA type. This value is put into the call record field
* "ebaftype" and is the index into the AMebafmod[].
*
* Each new EBAF type must have a corresponding row entered in the
* AMebafmod[] array which defines which modules are valid for that
* ebaf type.
*/
typedef enum {

AMNOTEBAF,
AMPVN_ETYPE,
AMICR_ETYPE

} AMEBAFTYPE;

/* number of ebaf AMA types in the AMEBAFTYPS enum */
#define AMNUMEBAFTYPES 3

In the 5ESS switch, typedef is also used to ensure data and coding consistency. The
5ESS switch uses a relational database, ODD, which resides in computer memory and
consists of the base relations, domains, and global parameters required to support a
specific software release. Relations are rectangular data tables (matrices) with rows
that are called tuples and columns that are called attributes. A domain is a specific set
of values that an attribute can have.

For example, the domain CIRCUIT is defined as:

CIRCUIT Internal names for hardware circuits
TYPE Unsigned Short
I/O TYPE HEX

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-13

CIRCUIT Internal names for hardware circuits
DOMAIN LENGTH n/a
UPPER BOUND 65535
LOWER BOUND 0

The domain CIRCUIT can be used in various subsystems of the switch. In this
example from the global header files, CIRCUIT is the domain and determines the
construction of the type DMCIRCUIT.
GH:GHDR2 5D00600

/* PTC:
DM: DMCIRCUIT TRUE TRUE FALSE
SB: DMCIRCUIT 0 65535

*/

/***
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* circuit Internal names for hardware circuits
*
***/

typedef unsigned short DMCIRCUIT; /* range = 0, 65535 */

The DM that precedes the domain name signifies that this is a domain. The domain
CIRCUIT is defined in the 235-600-2xx, Translations and Dynamic Data Domain
Descriptions Manual and can be used throughout the switch following the guidelines
given for the CIRCUIT domain.

3.1.10 Preprocessor

The C preprocessor expands the macro definition and conceptually processes the
source text of a C program. It allows for string substitution, conditional compilation,
and file substitution. The preprocessor looks at the program before it is sent to the
compiler and replaces any symbolic abbreviations in the program with the direction
they represent. It accesses called files, and the preprocessor decides how compilation
will take place based on the conditional commands given to it.

Table 3.1-7 contains preprocessor commands and their definitions. The 5ESS switch
macros use all capitals in the macro names to make them more distinguishable in the
code. Macro definitions are created with the #define statement and are used
extensively throughout the 5ESS switch system. The #define statement is a
preprocessor directive that instructs the preprocess to do global substitutions. The
#include statement, which is also used extensively in the switch, is used to make
local and global header files available for use during processing.

The preprocessor is designated by a special preprocessor command # at the beginning
of the line that distinguishes that line from the other code. The preprocessor examines
each line independently, it does not consider relationships between lines and it does
not perform any action on the C program itself.

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-14 Issue 5.00

Table 3.1-7 — Preprocessor Commands

Command Definition
#include include a source file
#define define a macro
#undef undefine a macro
#if conditionally include text based on the value of a constant

expression
#ifdef conditionally include text based on whether a macro is defined
#ifndef conditionally include text based on whether a macro is undefined
#else conditionally include text if the if or ifndef test fails
#elif like an else-if

#endif terminate the conditional text
#line reset the line number
#error force an error message
#pragma used for implementation-dependent control

null directive; no effect; used to bracket comments

3.1.11 Pointers and Arrays

A pointer is an object, the contents of which is the address of another object. A pointer
may point to any type, including another pointer. Since pointers are a symbolic way of
using an address, they can only point to the addresses of variables declared to be the
same type as themselves. It may also point to a function (the pointer contains the
starting address of the function) or to nowhere (a null pointer).

Pointers use three operators:

• the asterisk, * , the indirection operator

• the ampersand, & , the address operator

• the right arrow, →, the indirect membership operator.

Using the pointer ptr as an example, *ptr refers to the value stored at the pointed to
address, &ptr refers to the address of the pointer itself, and ptr alone refers to the
address of the object to which it points. The meaning of ptr→a is identical to
(*ptr).a.

Pointers are declared in the same manner as other variables. When declared, they
must include the indirection operator to inform the compiler that this variable is
indeed a pointer.
Given:

amount=1;
pti=&amount;

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-15

Variable Value
amount 1
&amount 16776260
pti 16776260
&pti 16776256
*pti 1

Pointers are frequently used when working with array structures. An array name can
be used as a substitute for the address of the 0th element of the array. The C
language uses arrays to describe a collection of variables with the same
characteristics. All of the members are addressed by the same name except for the
subscript number which identifies the individual element being considered.

This declaration allocates a storage location for an array of type integer. The values of
the members of the array are digits[0]=10, digits[1]=20, and digits[2]=30.

int digits[3]={10,20,30};

The storage allocations in memory are:

10 20 30

Arrays may be accessed by their subscript number, but this can be a slow and
resource-consuming process.

a=digits[1];

Store the value 20 in the variable a.

When an array must be accessed more than once, a pointer to the array is used since
this method of access will use less time and fewer resources. Since arrays are stored
in contiguous memory locations this method also allows for the use of pointer
arithmetic.

When a pointer is initialized, the value of the pointer becomes the address of the value
to which it points. If the pointer is initialized to the first element in an array, then the
pointer becomes the address of that first member. Incrementing the pointer will make
it point to the next element in the array. It adds the appropriate number of bytes to
the pointer. The amount added to the address is dependent upon the defined data type
of the pointer and its object.
Given:

int numbers[5] = {10,20,30,40,50};
int *ptr;
ptr = numbers;

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-16 Issue 5.00

Array Identifier Variable Value
A *ptr = 10 The address pointed to is 1048576.

ptr++ increment pointer
B *ptr = 20 The address pointed to is 1048580.

ptr++ increment pointer
C *ptr = 30 The address pointed to is 1048584.

ptr++ increment pointer
D *ptr = 40 The address pointed to is 1048588.

ptr++ increment pointer
E *ptr = 50 The address pointed to is 1048592.

&ptr - the address of the pointer itself
*ptr - the value stored at the pointed to address
ptr - the address of the object to which it points

In arrays A through E (Figures 3.1-2 through 3.1-6), the memory area containing the
array numbers and the area containing the pointer ptr are shown graphically. The
address 1048576 holds the value 10, 1048580 holds the value 20, etc. The value of
ptr is incremented (ptr++) by 4 each time because ptr points to an int assuming an
int is 4 bytes. In each example, the new values of *ptr, ptr, and &ptr are
represented.

..
..

..
..

.

A 10 20 30 40 50 1048576

1048596 1048592 1048588 1048584 1048580 1048576

*ptr

&ptr

ptr

ptr

numbers[5]

Figure 3.1-2 — Array A

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-17

*ptr

&ptr

ptr

ptr

numbers[5]
..

..
..

..
.

B 10 20 30 40 50 1048580

1048596 1048592 1048588 1048584 1048580 1048576

Figure 3.1-3 — Array B

*ptr

&ptr

ptr

ptr

numbers[5]
..

..
..

..
.

C 10 20 30 40 50

1048596 1048592 1048588

1048584

1048584 1048580 1048576

Figure 3.1-4 — Array C

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-18 Issue 5.00

3.1.12 Membership Operator

The membership operator, the period (.), is used with a structure or a union name to
specify one of its members. If one is the name of a structure and i is a member
specified by the structure’s template, then one.i identifies that member of the
structure.
struct example
{
int i;
char c;

*ptr

&ptr

ptr

ptr

numbers[5]
..

..
..

..
.

D 10 20 30 40 50

1048596 1048592

1048588

1048588 1048584 1048580 1048576

Figure 3.1-5 — Array D

ptr

numbers[5]
..

..
..

..
.

E 10 20 30 40 50

1048596

1048592

1048592 1048588 1048584 1048580 1048576
*ptr

&ptr

ptr

Figure 3.1-6 — Array E

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-19

float f;
}one, two, three;

The indirect membership operator, →, is used with a pointer to a structure or union to
identify one of the members. If ptr is a pointer to a structure and i is a member of
that structure, then ptr→i identifies that member of the pointed to structure. A
4-byte integer is assumed.
Given:
one.i=10;
one.c=’a’;
one.f=35.1234;
ptr=one;

Variable Value
one.i 10

ptr→i 10

&ptr→i 16776252

(*ptr).i 10

&ptr 16776248

one.c a

ptr→c a

&ptr→c 16776256

(*ptr).c a

&ptr 16776248

one.f 35.1234

ptr→f 35.1234

&ptr→f 16776260

(*ptr).f 35.1234

&ptr 16776248

3.1.13 Casting

It is sometimes necessary to convert a variable or an expression to another type. Type
conversion can be requested in the C language by using the cast operator. The
operator consists of the type name surrounded by parentheses before the object of
conversion. This conversion is only temporary and affects the variable or expression
only when specifically referenced. For example:

a = 3.9 ;
b = 4.7 ;
answer = a + b ;
cast_apart = (int)a + (int)b ;
cast_together = (int)(a + b) ;

The value of answer is 8.6, the value of cast_apart is 7 and the value of
cast_together is 8. Since the cast operator int changes the value of 3.9 to 3 and
the value of 4.7 to 4, the value of cast_apart is 7. When the expression is computed
and then the casting is performed, the value of the entire expression is cast.
Therefore, the value of cast_together is 8. The values of the variables a and b have
not changed. They remain the same numbers and type of numbers that they were
before the casting.

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-20 Issue 5.00

3.1.14 Functions

The C language is built on the use of the function. A function is an independent block
of program code organized to achieve a particular task. Functions can be equated to
the subroutines or procedures of other languages. Every C program must contain at
least one function. A function name consists of the word-identifier followed by
parentheses, such as function(). Any function can call another function, and a
function may even call itself.

The arguments of a function can be of any type (excluding arrays), no matter what the
type of the function itself. The data type of a function is determined by the data type
of the value that the function returns and not by the data type of the arguments
given, if any. Functions are assumed by the compiler to be of type int unless declared
otherwise. Functions have the following characteristics:

• Functions can be passed any number of arguments, and the arguments are
passed by value.

• Functions can only return one value.

• Functions cannot be defined inside of another function. The function definition
must be separate.

A function can be compiled and stored in a library or an archive from which it can be
called by the linker. This enables all programmers to use the same standard functions
without having to rewrite them every time. An example is printf(), the function
used for printing in C.

When a function is called, any arguments that are provided by the caller are simply
treated as expressions. The value of each expression is used to initialize the
corresponding formal parameters in the called function, which then behave in the
same way as any other local variables in the function. If a value is to be returned to
the calling function the value is sent via the return statement. This concept is
illustrated here.

main()
{
int i = 0;
while (++i < 10)
printf("%d squared is %d \n", i, square(i));

}
square(n)
int n;
{
return(n*n);

}

The function main() begins, as all functions do, with the left hand curly bracket. It is
followed by the initialization of the variable i to 0, which is a local automatic variable.
The while statement that follows is executed until the value of i is greater than or
equal to the number 10. The iterations that are performed print the squared values of
the integers 1 through 9.

Inside the printf statement is the call to the function square(). It is called as
square(i). This function call sends the value of the variable i to the function
square().

square(n)
int n;
{

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-21

return(n*n);
}

The square() function receives the value sent to it by the calling function. That
value becomes the argument to that function, in this instance the variable n. The
function then squares the value sent to it and returns one value to the calling
function, the square of the function’s argument.

The output from this program is:
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81

Notice that the first number to be squared is 1 even though i was initialized to zero.
The statement ++i causes i to become 1 before the loop is executed the first time. The
statement ++i means increment the value of i and then evaluate the expression
i<10. If the statement had read i++, that would have meant evaluate the expression
i<10 and then increment the value of i.

3.1.15 Control Statements

if-else The if section of this statement conditionally executes a statement or
group of statements. The else section of this statement is optional and is
only executed when the if portion of the statement is evaluated as false.
The syntax of the if statement is:

if (x < a + b)
statement;

else
statement;

Both the if and the else sections may consist of more than one actual
statement. For example:

if (x < a + b)
{
statement1;
statement2;
statement3;

}
else
{
statement4;
statement5;
statement6;

}

while The while statement is a looping structure. It performs an action or
group of actions while a condition remains true. As with the if
statement, the condition may be followed by one or more actions to be
taken when the condition is satisfied.

while (x < a + b)
{
statement1;
statement2;

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-22 Issue 5.00

statement3;
}

for The for conditional statement takes three arguments. The first is the
initialization, the second is the condition under which execution will
continue, and the third is the modification –– the change to be made that
eventually causes the loop to discontinue execution. For example:

for(x=1, x<100, x++)
{
statement1;
statement2;

}

This statement initializes the value of x to 1, states that the loop will
continue until x reaches 100, and states that x will be incremented at the
end of every loop.

do while The do conditional loop, unlike the while and the for, evaluates a
condition after the loop is executed. This guarantees that the loop will
execute at least once. An example is:

do
{
x++
y++

} while x<10;

switch The switch conditional statement is used when there are a number of
possible options available. The switch statement is followed by a
constant, a variable or an expression that evaluates to a numeric ASCII
value of type int, which is then used to determine from a list of cases
which case number (1, 2, 3 or a, b ,c) should be evaluated. The case
component of the switch statement lists the actual alternatives from
which to choose. It is also possible to have a default case that will
activate if no other case is valid. For example:

main()
{
int i = 2;

switch(i)
{
case 1:

printf("This is case number 1.\n");
break;

case 2:
printf("This is case number 2.\n");
break;

case 3:
printf("This is case number 3.\n");
break;

default:
printf("This is the default case.\n");
break;

}
}

break and continue
The break and continue statements are used to redirect the flow of
control inside loops and (for break only) in switch statements. The
break statement consists of just the word break followed by a semicolon.

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.1-23

Execution of a break statement causes execution of the closest enclosing
while, do, for, or switch statement to be terminated.

The continue statement consists of just the word continue followed by
a semicolon. Execution of a continue statement causes execution of the
body of the closest enclosing while, do, or for to be transferred to the
end of the body, and execution of the affected iterative statement
continues from that point with a re-evaluation of the loop test. In
addition, any required incrementing will also be performed.

while (x < a + b)
{
if x == 20
continue;

statement;
statement;
statement;

}

The continue statement will cause the compiler to skip the three
statements following the if and re-evaluate the while condition at the
beginning of the loop. This will occur any time the value of x is 20.

goto The goto statement forces a program’s execution to move to the point
marked by the stated label name. The goto statement cannot send
control beyond the function boundaries.

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.1-24 Issue 5.00

3.2 5ESS® SWITCH DIFFERENCES FROM K AND R REFERENCE

3.2.1 Introduction to Section

The C version used by the 5ESS switch is based on the first edition of The C
Programming Language, 1978 by Kernighan and Ritchie, it is not based on the ANSI1

C standard. This section will outline the distinctions between the text and the actual
5ESS switch compilers.

3.2.2 Sizeof

The first edition of Kernighan and Ritchie states that the sizeof operator yields an
integer. In the 5ESS switch, the MC68, 3B20D, 3B21D, and B16 compilers actually
return an unsigned integer. (The other compilers, IAPX and 3B2, return an int from
sizeof.) By definition, an unsigned integer can only be positive or zero, and since the
sizeof operator must return a positive or zero value (an object cannot have a
negative size), many compilers have been changed to reflect this fact.

3.2.3 Array Size Limitations

The Kernighan and Ritchie text states that the subscript type of an array is int. The
5ESS switch also uses long for subscripts. If type int is used, the size of the array is
limited to 32K on a 2-byte integer compiler. An array of 80,000 bytes could not be
accessed by an integer subscript, but the array could be fully accessed by a subscript
that is type long.

It should also be noted that using a subscript of type long requires long arithmetic, so
it takes more time and uses more space than a subscript of type int. Therefore,
whenever possible, type int is the preferred data type for subscription.

3.2.4 Multiple Structure Assignments

The MC68 short integer compiler does not support cascading structure assignments.
An example of a cascading structure assignment is:

struct maillist
{

char fname[11];
char lname[21];
char addr[31];
char city[16];
char state[3];
char zip[11];
char committee[31];
int years;

} bears, wolves, deer;
.
.
.

bears=wolves=deer;

Assignments of this type are not allowed in the MC68 compiler.

3.2.5 Unsigned Data Types

The first edition of Kernighan and Ritchie only supports the unsigned type int. The
MC68 compiler uses unsigned int, char, short, and long. The type signed char
is not supported.

1. Registered trademark of American National Standards Institute.

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.2-1

3.2.6 Float/Double Floating Point Data Types

The MC68 compilers do not support float or double. If these types are declared,
they are mapped to long and a warning message is generated.

3.2.7 Bitfields

The MC68 compilers support bitfields of the integral type. The 5ESS switch contains
bitfield definitions for int, char, short, and long.

3.2.8 Zero-Length Bitfields and Their Alignment

According to Kernighan and Ritchie, zero-length bitfields align on the next word
boundary or int boundary. Because the 5ESS switch allows bitfields to be of any
integral type and not just int, the MC68 compiler can align on char, short, or long
boundaries, as determined by the field’s definition. Since characters use one byte of
storage, aligning to the next char boundary saves space. This gives the programmer
additional data control and flexibility.

struct {
char field1 : 2 ;
char : 0 ;
char field2 : 4 ;
char : 0 ;
char field3 : 6 ;
char : 0 ;
char field4 : 4 ;

} fields ;

3.2.9 Integer Bitfields and Their Alignment

According to Kernighan and Ritchie, the zero-length integer bitfield is aligned to the
next integer or the next word boundary. This seeming contradiction is not a problem
unless the size of the integer and the size of the word are different. In the case of the
MC68 compiler series, the size of a word is two bytes and the size of the integer is two
bytes. The alignment for zero length bitfields is the next integer boundary.

3.2.10 The Value of An Assignment

According to Kernighan and Ritchie, the value of an assignment is the value stored in
the left operand after execution. To generate more efficient code, the MC68 compiler
uses the value of the right operand after an assignment to a bitfield. This is a problem
only if the value being assigned to the bitfield is too large. When the value is assigned,
it is masked. The right operand, however, still contains the unmasked value.

3.2.11 Enumeration Comparisons

Enumerations in the MC68 compilers are only allowed to be compared directly by
using the == and the != relational operators. To use the remaining relational
operators, the enumeration must first be cast to an integral type.

3.2.12 Function Templates

Function templates are function declarations that contain the function return type and
parameter types. When templates are included, the compiler verifies that the
arguments in any function that follow the definition match in type and number with
the template definition.

• A function template can start with a storage class of extern or static or none
at all (the equivalent to extern) and a function return type.

C PROGRAMMING LANGUAGE 235-600-510
November 2000

Page 3.2-2 Issue 5.00

• Its parameter list must contain either void, a list of declarations, or a list of
declarations followed by an ellipsis.

• Declarations do not include variable names.

• The declarations may include any previously-declared structure, union, or
enumeration tags or typedef names.

A parameter list of void indicates that function calls should include no arguments. An
empty parameter list cannot be used for this, an empty list is not considered a
function template at all.

Ellipses are used to indicate that zero or more arguments may follow. This is how
variable length parameter lists are specified. Arguments appearing at or after the
position of the ellipsis are not type checked.

3.2.13 Flexnames

For software releases 5E11 and later, the MC68, IAPX, and 3B compilers accept
variable names up to 256 characters in length.

The B16 and DSP32 compilers only distinguish the first 8 characters of a name. If the
first 8 characters of variable names are identical, the B16 and DSP32 compilers
interpret them as the same name. For example; somename and somenametoo are seen
as somename.

For software release 5E10, all the compilers are limited to 8 character names. Any
larger name is truncated.

3.2.14 Integer Size

Kernighan and Ritchie states that an int may be of any size. However, the examples
used give the impression that the size of an int is the same as the size of a long. In
the 2-byte integer compilers this is not true. The main problem occurs when a zero
value is assigned to a pointer. Since 0 is an integer, it only uses 2 bytes of stack space.
When a function looking for a pointer pops from the stack, it anticipates a 4-byte
pointer and takes 2 bytes of data and 2 bytes of garbage from the stack. In the 5ESS
switch this problem is avoided. When a null pointer is passed, the value is cast to the
type of the pointer and then passed.

235-600-510
November 2000

C PROGRAMMING LANGUAGE

Issue 5.00 Page 3.2-3

Software Analysis Guide

CONTENTS PAGE

4. DISASSEMBLY/ASSEMBLY LANGUAGE 4-1

4.1 3B20D/3B21D PROCESSOR ASSEMBLY LANGUAGE 4.1-1
4.1.1 Values . 4.1-1
4.1.2 Constants 4.1-1
4.1.3 Expressions 4.1-2
4.1.4 Machine Instruction Notation 4.1-2
4.1.5 Operands 4.1-4
4.1.6 Instruction Set 4.1-8

4.2 3B20D/3B21D PROCESSOR MACHINE DEPENDENCIES 4.2-1
4.2.1 Data Type Memory Boundaries 4.2-1
4.2.2 Arithmetic Types Supported 4.2-3
4.2.3 Data Conversion Rules 4.2-4
4.2.4 Memory Configuration 4.2-4
4.2.5 Register Notation 4.2-6
4.2.6 Stack Usage 4.2-7

4.3 MOTOROLA MC68000 PROCESSOR ASSEMBLY LANGUAGE . . 4.3-1
4.3.1 Values . 4.3-1
4.3.2 Constants 4.3-1
4.3.3 Expressions 4.3-2
4.3.4 Machine Instruction Notation 4.3-3
4.3.5 Operands 4.3-4
4.3.6 Instruction Set 4.3-8

4.4 MOTOROLA MC68000 PROCESSOR MACHINE
DEPENDENCIES . 4.4-1
4.4.1 Data Type Memory Boundaries 4.4-1
4.4.2 Arithmetic Types Supported 4.4-2
4.4.3 Data Conversion Rules 4.4-3
4.4.4 Memory Configuration 4.4-3

4.4.4.1 Overview MOTOROLA MC68XXX
Processor Memory Configuration 4.4-3

4.4.4.2 Optimization 4.4-4
4.4.5 Register Notation 4.4-6

4.4.5.1 Register Classes 4.4-6
4.4.5.2 General Purpose Registers 4.4-6
4.4.5.3 Special Registers 4.4-7

4.4.6 Stack Usage 4.4-7

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4-i

4.4.7 Unsupported MOTOROLA MC68XXX Processor
Instructions 4.4-14

4.5 INTEL 80186 PROCESSOR ASSEMBLY LANGUAGE 4.5-1
4.5.1 Values . 4.5-1
4.5.2 Constants 4.5-1
4.5.3 Expressions 4.5-2
4.5.4 Machine Instruction Notation 4.5-3
4.5.5 Operands 4.5-4
4.5.6 Instruction Set 4.5-6

4.6 INTEL 80186 PROCESSOR MACHINE DEPENDENCIES 4.6-1
4.6.1 Data Type Memory Boundaries 4.6-1
4.6.2 Arithmetic Types Supported 4.6-2
4.6.3 Data Conversion Rules 4.6-3
4.6.4 Memory Configuration 4.6-3
4.6.5 Register Notation 4.6-5
4.6.6 Stack Usage 4.6-7

LIST OF FIGURES

Figure 4.1-1 — 3B20D and 3B21D Processor Instruction — Memory
Layout . 4.1-8

Figure 4.1-2 — 3B20D and 3B21D Processor Example Instruction
Memory Layout 4.1-8

Figure 4.2-1 — 3B20D and 3B21D Processor Stack –– Memory
Boundaries . 4.2-3

Figure 4.2-2 — UNIX RTR Operating System Process Segments 4.2-5

Figure 4.2-3 — 3B20D and 3B21D Processor Stack Frame Organization . . 4.2-8

Figure 4.2-4 — 3B20D and 3B21D Processor Stack Function A Calls
Function B . 4.2-9

Figure 4.2-5 — 3B20D and 3B21D Processor Stack Function B Takes
Control . 4.2-10

Figure 4.3-1 — Effective Address — Memory Layout 4.3-5

Figure 4.3-2 — Motorola MC68000 Processor Instruction — Memory
Layout . 4.3-6

Figure 4.3-3 — Motorola MC68000 Processor Example Instruction
Memory Layout 4.3-9

Figure 4.4-1 — Motorola MC68000 Processor Stack –– Memory
Boundaries . 4.4-2

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4-ii Issue 5.00

Figure 4.4-2 — Stack Frame — One Function 4.4-8

Figure 4.4-3 — Stack Frame — Arguments Pushed Onto Stack 4.4-9

Figure 4.4-4 — Stack Frame — PC Pushed Onto Stack 4.4-10

Figure 4.4-5 — Stack Frame — After LINK Statement 4.4-11

Figure 4.4-6 — Stack Frame — Register Variables Pushed Onto Stack . . . 4.4-12

Figure 4.4-7 — Stack Frame — After The UNLK Statement 4.4-13

Figure 4.4-8 — Stack Frame — Return To Calling Function 4.4-14

Figure 4.5-1 — Intel 80186 Processor Instruction — Memory Layout 4.5-5

Figure 4.5-2 — Intel 80186 Processor Example Instruction Memory
Layout . 4.5-6

Figure 4.6-1 — Intel 80186 Processor Stack –– Memory Boundaries 4.6-2

Figure 4.6-2 — Memory Addressing in the Intel 80186 Processor 4.6-4

Figure 4.6-3 — Status Word or Flags 4.6-7

Figure 4.6-4 — iAPX-16 bit, Direct Linkage (No TV) 4.6-8

Figure 4.6-5 — iAPX-16 bit, Transfer Vector Linkage 4.6-9

Figure 4.6-6 — iAPX-20 bit, Transfer Vector and Direct Linkage 4.6-9

Figure 4.6-7 — iAPX Stack Frame after Function Call 4.6-11

Figure 4.6-8 — iAPX Stack Frame during Called Function (B)
Execution . 4.6-12

LIST OF TABLES

Table 4.1-1 — 3B20D and 3B21D Processor Register Notation 4.1-2

Table 4.1-2 — 3B20D and 3B21D Processor Hardware Registers 4.1-3

Table 4.1-3 — 3B20D and 3B21D Processor Memory Address Modes . . . 4.1-5

Table 4.1-4 — 3B20D and 3B21D Processor Immediate Address Modes . . 4.1-5

Table 4.1-5 — 3B20D and 3B21D Processor Register Address Modes . . . 4.1-5

Table 4.1-6 — 3B20D and 3B21D Processor Operand Encoding —
Displacement Mode 4.1-6

Table 4.1-7 — 3B20D and 3B21D Processor Operand Encoding —
Displacement Deferred Mode 4.1-6

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4-iii

Table 4.1-8 — 3B20D and 3B21D Processor Operand Encoding —
External Address Mode 4.1-6

Table 4.1-9 — 3B20D and 3B21D Processor Operand Encoding —
External Address Deferred Mode 4.1-7

Table 4.1-10 — 3B20D and 3B21D Processor Operand Encoding —
Absolute Address Mode 4.1-7

Table 4.1-11 — 3B20D and 3B21D Processor Operand Encoding —
Absolute Address Deferred Mode 4.1-7

Table 4.1-12 — 3B20D and 3B21D Processor Operand Encoding —
Immediate Address Mode 4.1-7

Table 4.1-13 — 3B20D and 3B21D Processor Operand Encoding —
Register Address Mode 4.1-7

Table 4.2-1 — 3B20D and 3B21D Processor Data Sizes and Alignment . . . 4.2-2

Table 4.2-2 — 3B20D and 3B21D Processor Data Conversions Rules . . . 4.2-4

Table 4.2-3 — 3B20D and 3B21D Processor Register Notation 4.2-7

Table 4.3-1 — Motorola MC68000 Processor General Purpose
Registers . 4.3-3

Table 4.3-2 — Motorola MC68000 Processor Control Registers 4.3-3

Table 4.3-3 — Motorola MC68000 Processor Addressing Mode —
Effective Address Contents 4.3-4

Table 4.3-4 — Motorola MC68000 Processor Operand Address Modes . . . 4.3-6

Table 4.4-1 — Motorola MC68000 Processor Data Sizes and Alignment . . . 4.4-1

Table 4.4-2 — Motorola MC68000 Processor Data Conversions Rules . . . 4.4-3

Table 4.4-3 — Motorola MC68000 Processor General Purpose
Registers . 4.4-6

Table 4.4-4 — Data Registers 4.4-7

Table 4.4-5 — Unsupported Motorola MC68020/MC68030 Processor
Instructions . 4.4-14

Table 4.5-1 — iAPX Word Registers 4.5-3

Table 4.5-2 — iAPX 8 Byte Registers 4.5-4

Table 4.5-3 — Intel 80186 Processor Effective Address — Mode Field . . . 4.5-5

Table 4.5-4 — Intel 80186 Processor Effective Address —
Register/Memory Field 4.5-6

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4-iv Issue 5.00

Table 4.6-1 — Intel 80186 Processor Data Sizes and Alignment 4.6-1

Table 4.6-2 — Intel 80186 Processor Data Conversions Rules 4.6-3

Table 4.6-3 — Intel 80186 Processor Data Registers 4.6-5

Table 4.6-4 — Intel 80186 Processor Pointer and Index Registers 4.6-5

Table 4.6-5 — Intel 80186 Processor Segment Registers 4.6-6

Table 4.6-6 — Intel 80186 Processor Status and Control Registers 4.6-6

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4-v

4. DISASSEMBLY/ASSEMBLY LANGUAGE

This section of the Software Analysis Guide is a review of the Assembly Language and
a guide to understanding the disassembly statements used in the system dumps and
assert messages. This section is divided into three parts. The first part is concerned
with the 3B20D and 3B21D processors, the second discusses the Motorola1 MC68000
processor family, and the third applies to the Intel2 80186 processor. The 3B20D and
3B21D processors are used in the administrative module (AM). The MC68000
processor family is used in the switching modules (SM), the communications module
processor (CMP) and the protocol handlers (PH) of the 5ESS® switch. The Intel 80186
processor is used in the packet interface (PI).

1. Registered trademark of Motorola Inc.
2. Registered trademark of Intel Corporation.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4-1

4.1 3B20D/3B21D PROCESSOR ASSEMBLY LANGUAGE

4.1.1 Values

Values, that is constants, expressions, and labels, are represented in the 3B20D and
3B21D processors by one of the following types:

UNDEFINED An UNDEFINED value is either a program label that has been encountered
or it is a variable that has been defined in another program which will be
linked to this program segment.

ABSOLUTE An ABSOLUTE value never changes. It can be either a constant or an
expression which is evaluated by the assembler.

TEXT Tells the position of a TEXT area variable in memory. When a segment of
TEXT program is moved, the value of each TEXT variable is changed to
reflect the new location.

DATA Gives the position of a DATA variable in memory. When a segment of
DATA program is moved, the value of each DATA variable is changed to
reflect the new location.

BSS Gives the position of a BSS area variable in memory. When a segment of
the BSS program is moved, the value of each BSS variable is changed to
reflect the new location.

4.1.2 Constants

Constants are fixed values. The values can be expressed in any of three different
number systems: decimal, octal, or hexadecimal.

Decimal The decimal number system is composed of the digits 0 through 9. Each
number must begin with a non-zero digit.

1234
325
43

Octal The octal number system is composed of the digits 0 through 7. Each
number must begin with a zero digit.

077
0123
0342

Hexadecimal
The hexadecimal number system is composed of the digits 0 through f.
Each number must begin with a 0x or 0X prefix. The digits a through f
can be represented by either upper or lower case letters.

0x3f
0x8ABC

0xFEA

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.1-1

4.1.3 Expressions

An expression is a group of operands separated by operators. Expressions are
evaluated from the left to the right, and all operators have equal precedence. If part of
the expression is to be evaluated before the rest, it should be enclosed in a set of
parentheses. Expressions will be calculated from the innermost parentheses out. After
all enclosed elements are evaluated, the remainder of the expression is evaluated from
left to right. The following operators are available.

+ Adds two operands. One operand must be absolute (independent of
location). The second can be any type. The sum is given the type of the
second operand.

− Subtracts the right from the left. If the right operand is absolute, the
answer is given the type of the left operand. If the right operand is not
absolute, both must be the same type (neither can be undefined) and the
answer will be absolute.

× Multiplies two operands. Both must be type absolute, and the answer will
also be type absolute.

/ Divides the left operand by the right operand. Both operands must be
absolute, and the answer will also be absolute.

4.1.4 Machine Instruction Notation

The machine instructions are mnemonic representations of 3B20D and 3B21D
processor machine language. Assembly language for the 3B20D and 3B21D computers
allows access to 12 32-bit general purpose registers (0 through 11). Registers 0
through 8 are general, register 9 is the argument pointer, register 10 is the frame
pointer and register 11 is the stack pointer. See Table 4.1-1.

Table 4.1-1 — 3B20D and 3B21D Processor Register Notation

Symbolic Name Description
%rn the [n] in %rn represents a number 0 through

8
%ap argument pointer
%fp frame pointer
%sp stack pointer

Stack Pointer
The stack pointer is the address of the next available word on the stack.

Frame Pointer
The frame pointer points to the first automatic variable in the stack
frame.

Argument Pointer
The argument pointer is the address of the first argument of the function.

There are also hardware registers in the Administrative Module which are also
referenced in the 5ESS® switch. See Table 4.1-2 for a complete listing.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.1-2 Issue 5.00

Table 4.1-2 — 3B20D and 3B21D Processor Hardware Registers

Hardware
Register

Description Hardware
Register

Description

%BGR Bidirectional Gating
Register

%HM Halfword Multiplexer

%PSW Program Status Word %CDR Channel Data Register
%PPR Pulse Point Register %IS Interrupt Set Register
%SAR Store Address Register %IM Interrupt Mask Register
%PA Program Address

Register
%SSR System Status Register

%SCR Store Control Register %ER Error Register
%SDR Store Data Register %RTC Real Time Clock
%SIR Store Instruction

Register
%HSR Hardware Status

Register
%IB Instruction Buffer %CAR Channel Address

Register

• The Program Status Word is used by the system software to set and maintain the
status of the currently executing program. The Program Status Word register is a
32-bit register used to control program function and record program status. The
program status word register is loaded from the destination bus under
microprogram control. The program status word register outputs are readable
and therefore testable by microcode.

• The Interrupts Set Register is a 32-bit register whose bits may be set by external
signals (interrupts) or by microprogram control. The bits are only cleared by the
microprogram. When a bit is set in the interrupt set register and recognized by
the processor, the section specified for that particular interrupt bit is taken. The
Interrupt Set Register logs interrupts from 32 sources. The interrupts in the
least significant bit of the IS have the highest priority.

• The Interrupt Mask Register allows the system to ignore specific interrupts. The
interrupt mask register is a 32-bit register whose bits are set or cleared by the
microprogram. Each bit in the interrupt mask corresponds to the same bit in the
interrupt set. Setting of any bit in the interrupt mask prevents the recognition of
that corresponding interrupt when it appears in the interrupt set.

• The System Status Register is a 32-bit register that contains processor status
information such as system configuration, maintenance and recovery information,
and inputs from certain manual switches. Some system status register bits are
loaded from the destination bus, while others are read-only. The System Status
Register controls the status of the system configuration.

• The Error Register is an error detecting device which is comprised of 32 bits. Bits
0 through 10 are used for stop-and-switch type errors and main store parity
errors. The Error Register logs errors from various points in the system. The
least significant bits of the ER have the highest priority and the most significant
bits the lowest priority.

• The Real Time Clock is a 32-bit synchronous counter normally incremented at
1-ms rate. The 1-ms time interval, which is derived from the real-time counter

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.1-3

prescaler, is loaded from the destination bus and accessed under microprogram
control. The real-time clock may be single stepped by forcing the appropriate
maintenance state (bits 26 through 31 of the hardware status register) and
toggling bit 25 of the pulse point register. A maintenance state bit can be used to
inhibit the counting of the real-time clock. The real-time clock is also used as a
system clock when time, day, or date is requested.

• Various timers are available to the system. These timers can be read or written
by manipulating the proper bits in the timer register.

• The Hardware Status Register is a 32-bit register that contains hardware and
control status information. It may be loaded from the destination bus under
microprogram control, except for bits 4 through 7 which are read-only. It controls
an assortment of hardware throughout the system. Firmware will manipulate
different bits in this register, depending on the desired results.

4.1.5 Operands

3B20D and 3B21D processor assembly language statements consist of opcodes and
operands. Opcodes define computer actions, operands tell a computer where to act.
Each operand can have a location in memory and a value. The value stored in the
memory location is used to execute the instruction. An assembly instruction may also
have the address of a memory location as an operand and an address may be provided
to store results in memory. Occasionally the value is provided by the operand itself. In
this case, no memory location is needed. In the 3B20D and 3B21D processors all 12
machine registers can be used as operands.

The 3B20D and 3B21D computers use three categories of address modes:

Memory mode
Memory mode operands give the memory location of data for the
instruction. The value used to execute the command is read from the
address given.

Register mode
Register mode operands specify the register in which the particular value
is located.

Immediate mode
Immediate mode operands provide the value used to execute an
instruction.

Both memory mode and register mode operands may specify destinations for finished
calculations as well as for sources of data. See Tables 4.1-3 through 4.1-5 for more
detail.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.1-4 Issue 5.00

Table 4.1-3 — 3B20D and 3B21D Processor Memory Address Modes

Address Mode Description
exp(reg) Displacement Mode: The value of exp is added

to the contents of the specified register. This
gives the location where the operand value is
stored.

*exp(reg) Displacement Deferred Mode: The value of exp
is added to the contents of the specified register
to determine the location where the address of
the required data is stored.

exp External Address Mode: The value of exp is
added to the pa (program address) to obtain a
new address.

*exp External Address Deferred Mode: The value of
(exp+pa) provides a location in memory that
contains the address of the required data. The
assembler interprets the operand to determine a
physical address.

$exp Absolute Address Mode: The value of exp is the
literal memory location.

*$exp Absolute Address Deferred Mode: The value of
exp provides a location in memory that contains
the address of the required data.

Table 4.1-4 — 3B20D and 3B21D Processor Immediate Address Modes

Address Mode Description
&exp The value of exp is the required data. There is

no address, so an assembly error will occur if the
operand is used as a destination or if an address
is requested. Immediate address mode should be
used when data is included for the program to
manipulate directly.

Table 4.1-5 — 3B20D and 3B21D Processor Register Address Modes

Address Mode Description
reg The register mode is used when it is necessary to

include data from a register for the program to
manipulate.

In addition to the address modes, the 3B20D and 3B21D processors also use operand
encoding. Each address mode also has a set of possible operand encodings. They are
listed in Tables 4.1-6 through 4.1-13.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.1-5

Table 4.1-6 — 3B20D and 3B21D Processor Operand Encoding — Displacement
Mode

Displacement Mode
exp(%r) 0 Indicates the 8-bit positive displacement mode (R+I8). This

encoding is an optimization. The 8-bit unsigned positive
quantity (9 bits with the sign bit stripped) is added to the
contents of the specified register R to determine the
address.

−exp(%r) 2 Indicates the 8-bit negative displacement mode (R−I8). This
encoding is an optimization. The 8-bit unsigned negative
number (9 bits with the sign bit stripped) is subtracted
from the contents of the specified register R to determine
the required address.

exp(%r) 4 Indicates the 26-bit displacement mode (R+I26). The 26-bit
signed quantity is added to the contents of the specified
register R to determine the required address.

Table 4.1-7 — 3B20D and 3B21D Processor Operand Encoding — Displacement
Deferred Mode

Displacement Deferred Mode
*exp(%r) 1 Indicates the 8-bit positive displacement deferred mode

(R+I8). This encoding is an optimization. The 8-bit
unsigned positive quantity (9 bits with the sign bit
stripped) is added to the contents of the specified register
R to determine the location of the required address.

−*exp(%r) 3 Indicates the 8-bit negative displacement deferred mode
(R−I8). This encoding is an optimization. The 8-bit
unsigned negative quantity (9 bits with the sign bit
stripped) is subtracted from the contents of the specified
register R to determine the location of the required
address.

*exp(%r) 5 Indicates the 26-bit displacement deferred mode (R+I26).
The 26-bit signed quantity is added to the contents of the
specified register R to determine the location of the
required address.

Table 4.1-8 — 3B20D and 3B21D Processor Operand Encoding — External Address
Mode

External Address Mode
exp 6 Indicates a 26-bit external address mode. The 26-bit signed

quantity is added to or subtracted from the contents of pa,
the program address register.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.1-6 Issue 5.00

Table 4.1-9 — 3B20D and 3B21D Processor Operand Encoding — External Address
Deferred Mode

External Address Deferred Mode
*exp 7 Indicates a 26-bit external deferred address mode. The

26-bit signed quantity is added to or subtracted from the
contents of pa, the program address register.

Table 4.1-10 — 3B20D and 3B21D Processor Operand Encoding — Absolute Address
Mode

Absolute Address Mode
$exp 8 Indicates a 26-bit absolute address.

Table 4.1-11 — 3B20D and 3B21D Processor Operand Encoding — Absolute Address
Deferred Mode

Absolute Address Deferred Mode
*$exp 9 Indicates a 26-bit absolute address.

Table 4.1-12 — 3B20D and 3B21D Processor Operand Encoding — Immediate
Address Mode

Immediate Address Mode
&exp 0xA Indicates an optimized encoding mode. The 12-bit unsigned

positive quantity (13 bits with the sign bit stripped)
represents the required quantity.

−&exp 0xB Indicates an optimized encoding mode. The 12-bit unsigned
negative quantity (13 bits with the sign bit stripped)
represents the required quantity.

&exp 0xC Indicates either a 16-bit or a 32-bit signed quantity.

Table 4.1-13 — 3B20D and 3B21D Processor Operand Encoding — Register Address
Mode

Register Address Mode
%r 0xE The register contains the actual data needed.

Opcode The opcode is the component of the instruction which tells the computer
what to do with the data or register information.

Opcode Subcode
The opcode subcode identifies a particular member of the opcode family.

Address Mode
This address mode will be a number between 0 and E, the explanation of
which can be found in Tables 4.1-6 through 4.1-13.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.1-7

Destination Operand
The operand that contains the address in which the result of the
operation will be located.

Source Operand
The operands (data or address) that will be used as a source for the
operation.

The 3B20D and 3B21D processors use a 32-bit instruction. The layout of that
instruction is shown in Figure 4.1-1.

Note: Depending on the type of the operand, either operand could be the source or
the destination. Instruction MOVW %r0,*x4(%fp) would have the opcode 51.
Instruction MOVW *x4(%fp),%r0 would have the opcode 54.

4.1.6 Instruction Set

The instruction set for the 3B20D and 3B21D processors is based on the IS25
instruction set. The operations are performed on bytes, words, and halfwords. The add
instruction is either: addb2 for one byte, addh2 for a halfword, or addw2 for a word.
All of these addition instructions use two operands.

Figure 4.1-1 — 3B20D and 3B21D Processor Instruction — Memory Layout

Hexadecimal: 5101 A040

5 1 0 1 A 0 4 0

Source
OperandDestination OperandAddress

Mode

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Opcode
SubcodeOpcode

0 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction: MOVW %r0,*0x4(%fp)

Figure 4.1-2 — 3B20D and 3B21D Processor Example Instruction Memory Layout

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.1-8 Issue 5.00

The right-most digit of the first halfword shown in Figure 4.1-2, (5101) is the address
mode. The move word (movw) instruction in the example places the contents of %r0
into a memory location. To determine where to put the contents of %r0, a 2-step
process occurs. An intermediate address is first calculated by adding hexadecimal 4 to
the contents of the %fp (frame pointer) register. The value found at the intermediate
address is used as the destination address. The contents of %r0 are placed in the
memory location at the destination address. When assembled into object code, the
8-bit positive displacement mode (optimization) was used as indicated by M=1, (5101
A040). This mode was selected by the assembler since hexadecimal 4 is positive and
does not exceed 8 bits in length.

For a complete listing of the instruction set for 3B20D and 3B21D computers see
Appendix A2 - 3B20 and 3B21 Computer Instruction List.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.1-9

4.2 3B20D/3B21D PROCESSOR MACHINE DEPENDENCIES

4.2.1 Data Type Memory Boundaries

The processors in the 5ESS® switch have specific memory and organizational
requirements, each processor having variations in size and functionality. The following
gives a brief explanation of the byte and word organization of the 3B20D and 3B21D
processors.

Byte-length data which contains 8-bits:

• can start in any memory location

• represents an 8-bit string or binary number between 0 and 255.

Halfword-length data which contains 16 bits:

• can start in any even-numbered memory location

• represents a 16-bit string or unsigned binary number between 0 and 65,535 or 2s
complement binary number between −32,768 and 32,767 (bit 15 is the sign bit).

Word-length data which contains 32-bits:

• can start at memory locations that are divisible by 4 only

• represents a 32-bit string or unsigned binary number between 0 and
4,294,968,295 or 2s complement binary number between −2,147,483,648 and
2,147,483,647 (bit 31 is the sign bit).

Table 4.2-1 details the data size and alignment of the 3B20D and 3B21D processors.
When analyzing output from this processor it is important to reference the data types
according to the contents of this table.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.2-1

Table 4.2-1 — 3B20D and 3B21D Processor Data Sizes and Alignment

Data Type Size Memory Alignment
char 1 byte no alignment
short 2 bytes 2 byte boundary
int 4 bytes 4 byte boundary
long 4 bytes 4 byte boundary
pointer 4 bytes 4 byte boundary
structure 4 byte multiple 4 byte boundary
union 4 byte multiple 4 byte boundary
array same as element type same as element type
bitfield up to the maximum of type

declared
same as declared type

data inside structures and unions:
long 4 bytes 4 byte offset
pointer 4 bytes 4 byte offset
structure 4 byte multiple 4 byte offset
union 4 byte multiple 4 byte boundary
bitfield up to the maximum of type

declared (inside structures only)
same as declared type

The visual examples in Figure 4.2-1 may help to explain the memory boundaries that
would be established by the 3B20D and 3B21D processors.
Given:
char a
short b
int c
long d
pointer e

The data would be placed on the stack as follows:

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.2-2 Issue 5.00

4.2.2 Arithmetic Types Supported

The 3B20D and 3B21D compilers support four arithmetic types. All four types can be
signed or unsigned.

• char

• short

• int

• long

The char and unsigned char are defined as 1 byte. The unsigned and signed
char are the same, since with a character-type conversion, sign extension is not
implemented. They can be located on any byte boundary.

The short int and unsigned short int have an implementation of 2 bytes. These
arithmetic types can only be located on a two-byte boundary or even-byte boundary.

The int, unsigned int, long, and unsigned long have an implementation of 4
bytes. These arithmetic types can be started at any location that is divisible by four.

Pointers are allocated 4 bytes of memory and must be located on a byte boundary that
is divisible by 4.

pointer e

long d

int c

short b pad char a

4 Bytes

Highest Address

Lowest Address

Figure 4.2-1 — 3B20D and 3B21D Processor Stack –– Memory Boundaries

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.2-3

4.2.3 Data Conversion Rules

Table 4.2-2 — 3B20D and 3B21D Processor Data Conversions Rules

Data Type
Conversion Char

Unsigned
Char Short

Unsigned
Short Int

Unsigned
Int Long

Unsigned
Long Pointer

Char –– NC PL PL PL PL PL PL PL

Unsigned
Char

NC –– PL PL PL PL PL PL PL

Short TL TL –– NC SE PL SE PL PL

Unsigned
Short

TL TL NC –– PL PL PL PL PL

Int TL TL TL TL –– NC NC NC NC

Unsigned Int TL TL TL TL NC –– NC NC NC

Long TL TL TL TL NC NC –– NC NC

Unsigned
Long

TL TL TL TL NC NC NC –– NC

Pointer TL TL TL TL NC NC NC NC ––

NC = Name Change, TL = Truncate on Left, SE = Sign Extend, PL = Pad on Left with zero(s)

4.2.4 Memory Configuration

Memory management is used for locking or unlocking, growing or shrinking, and
swapping the memory segment. Memory management allows several processes to
coexist, even though the sum of their memory requirement is larger than the physical
memory in the main store. The memory manager which resides in the kernel makes
this possible by swapping a process or part of a process between the main store and
disk, or swap space. Memory management also protects against misuse such as
writing into read-only memory, and unauthorized access by other processes.

Memory management centers around the segment. (See Figure 4.2-2.) A segment is a
contiguous piece of virtual memory from 1 to 128K bytes long. Segments are created
in main memory by the operating system on demand and disappear when they are no
longer needed. A segment is a set of logically related pages. A page is 2048 bytes of
contiguous main memory that always begins on an address that is a multiple of 2048.
Although the hardware allocates pages in complete units, the software allows a
segment to be as small as 1 byte or as large as 128K bytes or 64 pages. The pages
that belong to a segment do not have to be physically contiguous. A process is made up
of a collection of segments. A process can have up to 512 segments, that is, 512
logically related portions of main memory with consecutive virtual addresses. The
operating system supports five types of segments:

• Process control block

• Text

• Data

• Transfer vector

• Stack.

All processes must contain a process control block, text, and stack. The process control
block segment contains unique information that identifies the process to the operating
system. This information includes the process identification number, type of process,

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.2-4 Issue 5.00

priority and address space qualifiers that define the virtual address space for a
process. Text segments contain the actual executable programs. Data segments contain
the information necessary for the text segments to perform their functions. The
transfer vector segment supports function replacement by adding a level of indirection
to the function call. The stack segment is memory that supports dynamic allocation
and freeing of memory for subroutines.

Virtual memory is, for purposes of allocation, partitioned into configured and
unconfigured memory. The default condition is to treat all virtual memory as
configured. Unconfigured memory is treated as reserved or unusable by the link
editor. The link editor combines object files into one, performs relocation, resolves
external symbols and supports symbol table information for symbolic debugging. The
link editor considers the 3B20D and 3B21D computers to have an address range of
one million (hex) bytes, numbered from 0x0000000 to 0x0ffffff (0x3ffffff in VLMM -
Very Large Memory Management). This comprises the virtual address space into
which all input files are linked. Nothing can be linked into unconfigured memory.
Thus, specifying a certain memory range as unconfigured is one way of marking the
addresses in that range as illegal or nonexistent with respect to the linking process.
Unless otherwise specified, discussion of memory and addresses is, with respect to the
configured section of the 3B20D and 3B21D computers, virtual space.

MEMORY directives specify the total size of the virtual space of the 3B20D and 3B21D
computers and the configured and unconfigured areas of the virtual space. By means

1. Registered trademark of The Open Group.

Figure 4.2-2 — UNIX1 RTR Operating System Process Segments

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.2-5

of MEMORY directive, an arbitrary name of up to eight characters is assigned to a
virtual address range. Output sections can be bound to virtual addresses within
specific named memory areas.

When MEMORY directives are used, all virtual memory not described in a MEMORY
directive is considered to be unconfigured. Unconfigured memory cannot be used in
the link editor’s allocation process, and hence nothing can be link edited, bonded or
assigned to any address within unconfigured memory.

As an option of the MEMORY directive, attributes may be associated with a named
memory area. This permits restricting an output section as to where it can be bound.

The attributes that are currently accepted are:

R Readable memory

W Writable memory

X Executable memory

I Initializable memory

If no attributes are specified in a MEMORY directive, or if no MEMORY directives are
supplied, memory areas assume the attributes of W, R, I, and X.

To conserve memory space, the assembler may choose an optimized address mode or
an optimized instruction. In the optimized address mode, the assembler chooses an
address mode option that best uses memory space. The goals of the optimizer are to:

1. reduce the object’s text size

2. reduce the real time used by the object

3. reduce the stack space of the object

4. conserve host CPU time.

The following example contains an optimized address mode.
movw %r0,0x10(%fp)

The object code assigned by the assembler for this instruction is 5100 a100. The last
digit of the first halfword (0) is the address mode. Because hexadecimal 10 does not
exceed 8 bits in length, the optimized mode was selected.

A few instructions are optimized without address modes because their operands need
less memory space. The following is an optimized instruction.
movw %r3,%r7

Each register needs just 4 bits to be properly represented. Therefore, the instruction
uses 16 bits of memory instead of the usual 32 bits. The object code for this
instruction would be 1437.

The key purpose of optimization is to allow memory space to be used more efficiently.

4.2.5 Register Notation

Assembly language for the 3B20D and 3B21D computers allows access to twelve 32-bit
general purpose registers. The percent sign (%) is the symbol for a general purpose
register. The names of the available registers are given in Table 4.2-3.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.2-6 Issue 5.00

Table 4.2-3 — 3B20D and 3B21D Processor Register Notation

Symbolic Name Machine Register Number Description
%r0 0 Scratch
%r1 1 Scratch
%r2 2 Scratch
%r3 3 General
%r4 4 General
%r5 5 General
%r6 6 General
%r7 7 General
%r8 8 General
%ap 9 Argument pointer
%fp 10 Frame pointer
%sp 11 Stack pointer

Machine registers 12, 13, 14, and 15 are not available for assembly language
programming:

• %r15 — Program Counter

• %r14 — Interrupt Stack Pointer

• %r13 — Process Control Block Pointer

• %r12 — Processor Status Word

4.2.6 Stack Usage

A portion of memory is reserved for temporary data storage so that information may
be passed from a calling routine to a called function. This area of memory is called the
stack. Much like a stack of books, data is placed upon previously entered data (using
the push instruction) and is retrieved (using the pop instruction) starting with the
latest data first. In the 3B20D and 3B21D processors, the addresses move from lower
to higher.

The stack is manipulated by three registers, the stack pointer (%sp), frame pointer
(%fp), and the argument pointer (%ap). The stack also contains a program counter
that holds the address of the instruction that is to be executed next.

%sp The stack pointer designates the top or next available word on the stack.

%fp The frame pointer points just past the top of the save area. The save area
is a region on the stack for saving registers. The layout of the save area
is fixed and will contain meaningful data only if registers were actually
saved. Just past the save area is a region on the stack where a function
can store automatic and temporary variables. The frame pointer points to
the first automatic variable.

%ap Below the save area is an area where all function arguments are stored.
The argument pointer points to the first argument of each function.

%pa Program counter is set to the address of the first executable instruction of
the function.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.2-7

Function call instructions manipulate the environment for functions to save registers
and to provide for temporary storage. The environment is implemented as a stack
which is pointed to by the stack pointer. (See Figure 4.2-3.)

A run-time stack is used to provide an environment for C functions. The stack is used
for saving registers, passing arguments, and providing local variable storage. The
stack is pointed to by a stack pointer and grows in a positive direction, that is,
towards higher addresses. The stack pointer (sp) always points to the next free word
on top of the stack. A stack push increments the stack pointer. Stack pushes and
pops should be done in words to keep the stack pointer on an integral word boundary.

The frame pointer (fp) always points to the first local variable of the function. The
argument pointer (ap) always points to the first argument passed to the function. The
sequence of events of a function call is as follows:

The actions required of the calling function are to evaluate and push the arguments,
then execute a call to the called function. The push and call instructions in IS25
are used for these purposes. Since the stack grows in a positive direction, the
arguments are pushed in the order in which they would appear in a C function call.

Any argument smaller than a word will be converted and pushed to occupy a full
word on the stack. Also, multiple word arguments, such as structures, require multiple

%r0
.
.

%r8

Unused

Higher
Addresses

FREE SPACE

Lower
Addresses Argument Pointer

Frame Pointer

Stack Pointer

Old Frame Pointer

Old Argument Pointer

Old Program Address

Auto N
.
.

Auto 1

Local Variables

Arg N
.
.

Arg 1

Arguments
(Parameters)

Register Variables

Figure 4.2-3 — 3B20D and 3B21D Processor Stack Frame Organization

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.2-8 Issue 5.00

pushes. By convention, a call to a function that returns a structure also requires that
register %r2 be loaded with the address of the area where the returned structure is to
be stored by the called function.

In Figure 4.2-4 the call instruction pushed the %pa and %ap registers onto the stack
and sets up the new %ap. The %pa is set to the function address specified and control
is transferred to the B function. By convention, the register %r0 contains the value, if
any, returned by the called function. If the called function is returning a structure,
%r0 contains the address of the returned structure.

The called function, Function B, is responsible for completing the stack frame
initialization started by the caller. (See Figure 4.2-5.) This includes saving registers
and allocating space on the stack for local variables. The save instruction saves the
%fp register and the specified number of registers on the stack and sets the %sp and
%fp registers to point to the first word above the save area, which is where the local
variables are allocated. After the prologue, local variables are addressable relative to
%fp, and arguments are addressable relative to %ap. It should be pointed out that the
save area is fixed in size, thus allowing the stack tracing routines for debugging
utilities to access the saved %ap, %fp, and %pa registers using the %fp register.

%r0
.
.

%r8

Register Variables

Arguments
(Parameters)

Arguments
(Parameters)

Arg N
.
.

Arg 1

Arg N
.
.

Arg 1

Local Variables
Auto N

.

.
Auto 1

Unused

Old Program Address

Old Program Address

Old Argument Pointer

Old Argument Pointer

Old Frame Pointer

Stack Pointer

Frame Pointer

Argument Pointer

Lower
Addresses

Function
A

Function
B

Higher
Addresses

Figure 4.2-4 — 3B20D and 3B21D Processor Stack Function A Calls Function B

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.2-9

To return to the calling function, the called function executes ret &r where r is the
same number of registers specified in the save instruction of the prologue. This
causes the saved registers, including %ap, %fp, and %pa, to be restored and the entire
stack frame to be popped.

If the function is returning a value, the called function must load that value into %r0
before the return. For a function returning a structure, the called function must load
%r0 with the address of the structure and copy that structure to the address originally
passed to it in register %r2.

%r0
.
.

%r8

%r0
.
.

%r8

Register Variables

Register Variables

Arguments
(Parameters)

Arguments
(Parameters)

Arg N
.
.

Arg 1

Arg N
.
.

Arg 1

Local Variables

Local Variables

Auto N
.
.

Auto 1

Auto N
.
.

Auto 1

Unused

Unused

Old Program Address

Old Program Address

Old Argument Pointer

Old Argument Pointer

Old Frame Pointer

Old Frame Pointer

Stack Pointer

Frame Pointer

Argument Pointer

Lower
Addresses

Function
A

Function
B

Higher
Addresses

Figure 4.2-5 — 3B20D and 3B21D Processor Stack Function B Takes Control

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.2-10 Issue 5.00

4.3 MOTOROLA1 MC68000 PROCESSOR ASSEMBLY LANGUAGE

4.3.1 Values

In the MC68000 processor, assembler values are represented by 32-bit two’s
complement numbers. If a constant or the result of evaluating an expression requires
more than 32 bits to represent it, the least significant bits of the actual values are
used. If an expression generates more than 32 bits of data, the least significant 32 bits
are used. Values in the MC68000 processor would be of one of the following types:

UNDEFINED An UNDEFINED value is a value whose type is undetermined. Examples of
UNDEFINED values are references to symbols whose definitions have not
been encountered, such as forward references, and references to symbols
that are defined in programs other than the one currently being
assembled, such as external references.

ABSOLUTE An ABSOLUTE value is a value that never changes, even if sections of the
program assembled are relocated. Example of ABSOLUTE values are
numeric constants and arithmetic expressions with operands that are all
numeric constants.

TEXT A TEXT value is a value that is relative to the beginning of the .text
section. Whenever the .text section is relocated by N bytes, N should be
added to or subtracted from every value of the type TEXT.

DATA A DATA value is a value that is relative to the beginning of the .data
section. Whenever the .data section is relocated by N bytes, N should be
added to or subtracted from every value of type DATA.

BSS A BSS value is a value that is relative to the beginning of the .bss
section. Whenever the .bss section is relocated by N bytes, N should be
added to or subtracted from every value of type BSS.

In addition, these types can have the EXTERNAL attribute. Symbols with this attribute
can be referenced by separately compiled programs.

4.3.2 Constants

A constant is an object of fixed value and ABSOLUTE type. The MC68000 processor
assembler supports the following types of constants:

Decimal A string of digits (0-9) that begins with a non-zero digit.

1234
325
43

Octal A string of digits (0-7) that begins with a zero digit.

077
0123
0342

1. Registered trademark of Motorola Inc.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.3-1

Hexadecimal
A string of digits (0-f) that is prefixed with 0x or 0X. The digits "a"
through "f" can be represented by either upper or lower case letters.

0x3f
0x8ABC

0xFEA

4.3.3 Expressions

An expression is a sequence of operands separated by operators, where an operand
can be a constant, symbol, or an expression enclosed in brackets ([]). All operators are
binary in nature and have equal precedence. However, when an operator is used in a
unary context, the operation is performed as though an ABSOLUTE zero prefixed the
operator.

Expressions are evaluated from left to right, and if an evaluation other than left to
right is desired, square brackets must be used for grouping. The following operators
are available:

+ Performs addition. If one operand is of the ABSOLUTE type, the result has
the type of the other operand; otherwise, the operation is illegal.

− Performs subtraction. If the right operand is of the ABSOLUTE type, the
result has the type of the left operand. If both operands have the same
type, and that type is either TEXT, DATA, or BSS, the result is of the
ABSOLUTE type; otherwise the operation is illegal.

* Performs integer multiplication. This operation requires that both
operands be of the ABSOLUTE type and an ABSOLUTE result is produced.

/ Performs integer division. Both operands must be of the ABSOLUTE type
and the result will be of the ABSOLUTE type. To avoid confusion with the
single slash (/), which starts a comment, this operator must be preceded
by a backslash (\).

& Performs bit-by-bit logical AND comparisons between two 32-bit
quantities. Both operands must be of ABSOLUTE type, an ABSOLUTE result
is produced.

| Performs bit-by-bit logical OR comparisons between two 32-bit quantities.
Both operands must be of ABSOLUTE type, an ABSOLUTE result is
produced.

>> Shifts the left operand to the right by the number of bits specified by the
right operand. This operation requires that both operands be of the
ABSOLUTE type, an ABSOLUTE result is produced.

<< Shifts the left operand to the left by the number of bits specified by the
right operand. This operation requires that both operands be of the
ABSOLUTE type, an ABSOLUTE result is produced.

% Returns the remainder of the operation that divided the first operand by
the second operand. Both operands must be of the ABSOLUTE type and an
ABSOLUTE result is produced. To avoid confusion with register names,
this operator must be preceded by a backslash (\).

! Performs bit-by-bit logical AND comparisons between the first operand

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.3-2 Issue 5.00

and the bit-by-bit complement of the second operand. This operation
requires that both operands are of the ABSOLUTE type and an ABSOLUTE
result is produced.

^ Allows you to alter the effects of symbol requirements by allowing symbol
types which do not normally interact. The result has the value of the first
operand and the type of the second operand. The operands can be of any
type.

4.3.4 Machine Instruction Notation

The machine instructions are mnemonic representations of MC68000 processor
machine language. For the general purpose register the notation is shown in Table
4.3-1.

Table 4.3-1 — Motorola MC68000 Processor General Purpose Registers

General Register Description
%an Address Register (0 <= n <= 7)
%dn Data register (0 <= n <=7)
%sp Stack pointer (%a7 = %sp)
%fp Frame pointer (%a6 = %fp)

In addition, a number of control registers are available. These can be used only with
specific instructions or addressing modes. See Table 4.3-2.

Table 4.3-2 — Motorola MC68000 Processor Control Registers

Special Register Description
%caar Cache address register
%cacr Cache control register
%ccr Condition code section of status register
%dfc Destination function code register
%isp Interrupt stack pointer
%msp Master stack pointer
%pc Program counter
%sfc Source function code register
%sr Status register
%usp User stack pointer
%vbr Vector base register
%zpc Zero value taken for %pc (pseudo register)

The %zpc register is not a real register. It is a way of differentiating between address
register indexed/memory indirect modes and program counter indexed/memory
indirect modes.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.3-3

4.3.5 Operands

The opcode tells the computer what action to perform and the operand designates the
location. Instructions for the MC68000 processor family can take zero, one, or two
operands. The size of an operand may be a byte (8 bits), a word (16 bits), a long word
(32 bits) or a quad word (64 bits) depending on what is specified in the instruction
mnemonic. The location of an operand is indicated by an effective address. An effective
address may take on one of a number of forms called address modes. See Table 4.3-3
for additional details.

Table 4.3-3 — Motorola MC68000 Processor Addressing Mode — Effective Address
Contents

Address Mode Mode Bit No.

5 4 3

Register No.

2 1 0
Data Register Direct 0 0 0 r r r
Address Register Direct 0 0 1 r r r
Address Register Indirect 0 1 0 r r r
Address Register Indirect with
postincrement

0 1 1 r r r

Address Register Indirect with
Predecrement

1 0 0 r r r

Address Register Indirect with
Displacement

1 0 1 r r r

Address Register indirect with Index 1 1 0 r r r
Absolute Short 1 1 1 0 0 0
Absolute Long 1 1 1 0 0 1
Program Counter Relative with
Displacement

1 1 1 0 1 0

Program Counter Relative with Index and
Displacement

1 1 1 0 1 1

Immediate or Status Register 1 1 1 1 0 0

An effective address (EA) is specified by six bits in the instruction (usually the lowest
six bits). The bit values indicate how to find the data for the instruction. Bits 0, 1, and
2 usually signify the register and bits 3, 4, and 5 represent the mode. See Figure
4.3-1.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.3-4 Issue 5.00

When viewed as a whole, a general rule for the 16-bit instruction consists of the
opcode, the data register, the direction bit, the size, the mode, and the register. Not
every instruction has this layout, but this does represent the fields that will be found
in the layout. See Figure 4.3-2.

Opcode The opcode is the instruction component which tells the computer what to
do.

Data Register
The data register is either the source or destination register. It is
evaluated based on the DR bit or direction bit or an immediate value.

DR DR or direction bit specifies the instruction direction.

• 0 = The source is the effective address and the destination is the data
register.

• 1 = The source is the data register and the destination is the effective
address.

Size Specifies the data size used in the instruction.

• 00 = Byte

• 01 = Word

• 10 = Long

Mode The address mode tells the computer how to use the registers and data
that have been supplied. See Table 4.3-4.

Register The register is either the source or destination register. It is evaluated
based on the DR bit or direction bit.

4 5

RegisterMode

0 1 2 3

Figure 4.3-1 — Effective Address — Memory Layout

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.3-5

Table 4.3-4 — Motorola MC68000 Processor Operand Address Modes

Address Mode Description
%dn Data Register Direct: The data register contains the

operand.
Example: add %D3,%D7
Add the contents of data register 3 to the contents of data
register 7 and place the results in data register 7.

%an Address Register Direct: The address register indicated by
the register field contains the operand.
Example: ADD %A6, %D2
Add the contents of address register 6 to the contents of data
register 2 and place the results in data register 2.

(%an) Address Register Indirect: The address register indicated by
the register field is the address of a memory location that
contains the operand. The register is said to point to
(contain the address of) the operand. Address register
indirection is denoted by enclosing the address register name
in parentheses.
Example: ADD (%A6),%D2
Go to the address contained in address register 6 and add
the contents found there to the contents of data register 2
and place the result in data register 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mode SizeDRData Register

Effective Address

Opcode Register

Figure 4.3-2 — Motorola MC68000 Processor Instruction — Memory Layout

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.3-6 Issue 5.00

Table 4.3-4 — Motorola MC68000 Processor Operand Address Modes (Contd)

Address Mode Description
(%an)+ Address Register Indirect with Postincrement: The address

register indicated by the register field contains the address
of a memory location that contains the operand. The register
is said to point to the operand. The address register is
incremented after the data has been obtained from memory.
The increment is based on the length of the data item
referenced by thinstruction.
Example: ADD (%A6)+,%D2
Go to the address contained in address register 6. Take the
contents of that location and add it to the contents of data
register 2 and place the results in data register 2 then
increment the address in address register 6.

−(%an) Address Register Indirect with Predecrement: The address
register indicated by the register field contains the address
of a memory location that contains the operand. The register
is said to point to the operand. The address register is
decremented before the data has been obtained from
memory. The decrement is based on the length of the data
item referenced by the instruction.
Example: ADD −(%A6),%D2
Decrement the address contained in address register A6. Go
to the address contained in address register 6. Take value at
that location and add it to the contents of data register 2
and place the results in data register 2.

expr(%an) Address Register Indirect with Displacement: The address
register indicated by the register field is added to the
sign-extended 16-bit number (displacement) following the
instruction. The result is the address of a memory location
that contains the operand.
Example: ADD 0x60(%A6),%D2
Add 60 to the contents of address register 6, then go to that
address. Add the contents at that address to the contents of
data register 2 and place the result in data register 2.

expr(%an,%ri[.l]) Address Register Indirect with Index: The address register
indicated by the register field is added to the content of
another register, plus a sign extended 8-bit displacement.
The sum of these three quantities is the address of a
memory location that contains the operand.
Example: ADD 0x60(%A2,%A6),%D2
Add the contents of address registers 2 and 6 then add 60 to
the result. Go to the address which is the result of that
operation, take the contents at that address and add them to
the contents of data register 2 and place the result of this
operation in data register 2.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.3-7

Table 4.3-4 — Motorola MC68000 Processor Operand Address Modes (Contd)

Address Mode Description
expr Absolute Short: The word following the instruction is an

absolute 16-bit address. The 16-bit address is sign-extended
before it is used.
Example: add 0x13A,%D2
Go to the address given as the first operand, take the
contents of that address add them to the contents in data
register 2 and place the result in data register 2.

expr Absolute Long: The long word following the instruction is
an absolute 32-bit address.
Example: add 0x4A7138,%D2
Go to the address given as the first operand, take the
contents of that address add them to the contents in data
register 2 and place the result in data register 2.

expr(%PC) Program Counter Relative with Displacement: The 16-bit
sign-extended displacement following the instruction is a
displacement to be added to the program counter in order to
obtain a memory address.
Example: ADD 0x4(%pc),%D2
Add 4 to the program counter, go to the address given as a
result add the contents of that address to the contents of
data register 2 and place the result in data register 2.

expr(%PC,%ri[.l]) Program Counter Relative with Index and Displacement:
The memory address is to be constructed using the value of
the program counter, an index register and a sign-extended
8-bit displacement.
Example: ADD 0x4(%pc,%A5),%D2
Add the contents of address register 5 to the program
counter and then add 4 to the result. Add the result of that
operation to the contents of data register 2 and place the
result in data register 2.

$expr Immediate: The source data for an instruction is contained
in the word or longword that follows the instruction.
Example: ADD $0x60,%D3
Add 60 to the contents of data register 3 and place the result
in data register 3.

4.3.6 Instruction Set

The instruction set for the MC68000 processor is based on the Motorola MC68XXX
processor family instruction set. The operations are performed on bytes, words, and
long words. The add instruction is addb for one byte, add for a word, or addl for a
long word. See Figure 4.3-3 for an example.

For a complete listing of the instruction set, see Appendix A3 - Motorola MC680XX
Processor Family Instruction Set.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.3-8 Issue 5.00

0 1 1 0

Instruction: Add %D6, %D2

Hexadecimal: D446

Opcode Data
Register DR Size Mode Register

Effective Address

D 4 4 6

1 1 0 1 0 1 0 0 0 1 0 0

Figure 4.3-3 — Motorola MC68000 Processor Example Instruction Memory Layout

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.3-9

4.4 MOTOROLA1 MC68000 PROCESSOR MACHINE DEPENDENCIES

4.4.1 Data Type Memory Boundaries

The processors in the 5ESS® switch have specific memory and organizational
requirements, each processor having variations in size and functionality. The following
gives a brief explanation of the byte and word organization of the MC68000 processor.

Byte-length data which contains 8 bits:

• can start in any memory location

• represents an 8-bit string or binary number between 0 and 255.

Word-length data which contains 16 bits:

• can start in any even-numbered memory location

• represents a 16-bit string or unsigned binary number between 0 and 65,535 or 2s
complement binary number between −32,768 and 32,767 (bit 15 is the sign bit).

Long Word-length data which contains 32 bits:

• can start in any even-numbered memory location

• represents a 32-bit string or unsigned binary number between 0 and
4,294,968,295 or 2s complement binary number between −2,147,483,648 and
2,147,483,647 (bit 31 is the sign bit).

Table 4.4-1 details the data size and alignment of the MC68000 processor. When
analyzing output from this processor it is important to reference the data types
according to the contents of this table.

Table 4.4-1 — Motorola MC68000 Processor Data Sizes and Alignment

Data Type Size Memory Alignment
char 1 byte no alignment
short 2 bytes 2 byte boundary
int 2 bytes 2 byte boundary
long 4 bytes 2 byte boundary
pointer 4 bytes 2 byte boundary
structure 4 byte multiple 2 byte boundary
union 4 byte multiple 2 byte boundary
array same as element type same as element type
bitfield maximum of type same as declared type
data inside structures and unions

long 4 bytes 4 byte offset
pointer 4 bytes 4 byte offset
structure 4 byte multiple 4 byte offset
union 4 byte multiple 4 byte offset
bitfield maximum of type same as declared type

1. Registered trademark of Motorola Inc.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-1

Figure 4.4-1 will help to explain the memory boundaries that would be established by
the MC68000 processor.
Given:
char a
short b
int c
long d
pointer e

The data would be placed on the data stack as follows:

4.4.2 Arithmetic Types Supported

The MC68000 processor compiler supports four arithmetic types. All four types can be
signed or unsigned.

• char

• short

• int

• long

The char and unsigned char are defined to be 1 byte. The unsigned and signed
char are the same, since with a character-type conversion, sign extension is not
implemented. They can be located on any byte boundary.

The int and unsigned int (short and unsigned short) have an implementation
of 2 bytes. These arithmetic types can only be located on an even byte boundary. Two
bytes represent one word of memory.

The long and unsigned long have an implementation of 4 bytes. These two
arithmetic types can only be located on an even byte boundary. When these types are
members of a structure or a union, they are located on a 4-byte boundary. Four
bytes represents a long word of memory.

Pointers are allocated 4 bytes of memory; 24 bits are required to address the memory
spectrum [5E4(2) and earlier]. The highest byte of the four assigned bytes is set to
zero. Under VLLM, 25 bits are required to address the memory spectrum [5E5(1) and

Lowest Address

4 Bytes

Highest Address

int c

short b char apad

pointer e

pointer e

long d

long d

Figure 4.4-1 — Motorola MC68000 Processor Stack –– Memory Boundaries

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-2 Issue 5.00

later]. A pointer is aligned on an even byte boundary except when it is a member of a
structure. In this case, it is aligned on a 4-byte boundary from the beginning of the
structure.

Note: A pointer can contain a larger number than 25 bits can represent but the
codes will not execute if it tries to access that memory location. The compiler does not
restrict bits 26-31 from being set.

4.4.3 Data Conversion Rules

Table 4.4-2 — Motorola MC68000 Processor Data Conversions Rules

Data Type
Conversion Char

Unsigned
Char Int

Unsigned
Int Long

Unsigned
Long Pointer

Char –– NC PL PL PL PL PL

Unsigned Char NC –– PL PL PL PL PL

Int TL TL –– NC SE PL PL

Unsigned Int TL TL NC –– PL PL PL

Long TL TL TL TL –– NC NC

Unsigned Long TL TL TL TL NC –– NC

Pointer TL TL TL TL NC NC ––

NC = Name Change, TL = Truncate on Left, SE = Sign Extend, PL = Pad on Left with zero(s),

TL/PL = Truncate on left to 24 bits and pad on left with one byte of zero [5E4(2)]

5E5(1)= pointers use 25 bits and have 7 bits of zero padded on the left.

4.4.4 Memory Configuration

4.4.4.1 Overview MOTOROLA MC68XXX Processor Memory Configuration

The MC68000 processor has an address range of 16 megabytes, other members of the
MC68XXX processor series have larger address ranges. The physical memory is
divided into configured and unconfigured memory and is partitioned with the MEMORY
directive. The default condition (no MEMORY directive specified) treats all virtual
memory as configured.

MEMORY directives are used to specify:

1. The total size of the physical address space of the target machine.

2. The configured and unconfigured areas of the physical address space.

An arbitrary name consisting of up to eight characters is assigned to a physical
address range using MEMORY directives. Output sections can then be bound to physical
addresses within specifically named areas. When MEMORY directives are used, all
physical memory not described in MEMORY directive is considered to be unconfigured.
Unconfigured memory is not used in the link editor’s allocation process, and therefore,
no data can be link-edited, bound to, or assigned to an address within unconfigured
memory.

Attributes can be associated with a named memory area. This is an option of the
MEMORY directive, and it restricts which memory areas an output section can be bound
to (with specific attributes). When attributes are assigned to output sections in this
manner, they are recorded in the appropriate section headers in the output file to
provide for error checking.

The currently accepted attributes are:

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-3

R Readable memory

W Writable memory

X Executable memory

I Initializable memory

If no attributes are specified with a MEMORY directive, or if no MEMORY directives are
supplied, the memory areas will assume the attributes of W, R, I, and X.

4.4.4.2 Optimization

4.4.4.2.1 Overview of Optimization

Once the compiler has translated the C source code to the MC68000 processor
assembly language, the optimizer manipulates the assembly code to improve the text
space requirements and execution time of the resulting object code. The goals of the
optimizer are to:

• reduce the object’s text size

• reduce the real time used by the object

• reduce the stack space of the object

• use as little host CPU time as possible.

Optimization is done on a function-by-function basis. Functions containing assembler
escapes are not optimized, but other functions in the same file are. No optimizations
are done on global variables.

There are five types of optimization: peep-hole improvements, live-dead analysis, value
tracing, code reordering, and variable registerization. These optimizations used
together are more effective than the sum of their individual efforts. Improvements
made by a previous optimization can facilitate even more improvements by a later
optimization pass. Optimizations are done in the following order:

1. Registerization

2. Value Tracing

3. Code-Reordering

4. Live-Dead Analysis

5. Peep-Hole.

The last four optimizations are repeated until no more improvements can be made.

4.4.4.2.2 Registerization

Automatic register variable allocation saves both text space and execution time by
assigning local variables to registers. This optimization is actually done in part by the
compiler and partly by the optimizer. The compiler collects information to determine
which local variables are used most frequently. This data is passed to the optimizer by
comments in the assembly language file. The optimizer assigns variables to unused
registers based in part on the information collected by the compiler.

The optimizer tries to put local variables and parameters in registers. The optimizer
estimates how much time (execution time of the resulting code) and space (text space
of the resulting code) will be saved if that variable is put in a register. If gains would
be made (and neither quantity would degrade), the variable is registerized.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-4 Issue 5.00

Not all variables can be placed in registers automatically. Only variables having
simple C types declared in the outermost block can be put in registers; that is, only
chars, shorts, ints, longs, enumerations, and pointers.

4.4.4.2.3 Value Tracing

Value tracing locates and eliminates redundant and unnecessary instructions. This
type of optimization can delete part, and sometimes all, of the assembly code for a
particular C statement. The value of each local variable and register is traced. When a
value is assigned to a variable that value is substituted whenever that variable is
encountered. No optimizations are done on global variables.

4.4.4.2.4 Code Reordering

Code is reordered to reduce the number of jumps and to merge common sequences of
code. The merging and resequencing improves the object code. Code can be reordered
by:

Common Tail Optimization
A common tail is a piece of code that is duplicated one or more times in a
function at the end of basic blocks.

Loop Rotation
This optimization rearranges loop constructs.

Branch Merging
This optimization tries to minimize the number of branches in the code.
It does this by merging the branch with its destination whenever
possible.

Remove Unreachable Code
This option removes any piece of code that cannot be reached by an
execution path.

4.4.4.2.5 Live-Dead Analysis

Live-dead analysis is done in two parts. The first is an analysis of the code to see
which variables are used and the second is a small collection of peep-holes that use
the information collected in the analysis.

The analysis examines the flow of control in the code and determines where the local
variables and registers are set and where they’re used. Then, at each instruction, it
determines whether each variable and register is dead or live. A variable is dead if it
will be set before it is used again or its value will never be used again. A variable is
live if it will not be set before it is used again.

The peep-hole part of the live-dead analysis examines each instruction and the
live-dead information associated with it and decides whether to get rid of the
instruction or not.

4.4.4.2.6 Peep-Hole Optimizations

The peep-hole optimizations replace small instruction sequences with other, more
efficient instruction sequences and removes instructions that have no effect on the
results of the assembly language.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-5

4.4.5 Register Notation

4.4.5.1 Register Classes

The MC68000 processor provides two classes of registers: special registers and general
registers. The special registers contain or provide system or user information
concerning processor execution location and the resulting status of that execution. The
general registers come in two types: address registers and data registers.

4.4.5.2 General Purpose Registers

Address Register

There are eight address registers (A0-A7). Each address register is 32 bits. A7 and A6
are defined for addresses that are key to the execution of code. See Table 4.4-3.

Table 4.4-3 — Motorola MC68000 Processor General Purpose Registers

Register Usage
A7 Stack pointer (SP)
A6 Frame pointer (FP)
A5 .
A4 .
A3 .
A2 Scratch
A1 .
A0 .

Stack Pointer
A7 is the stack pointer (two distinct registers, one for the user mode and
the other for the supervisor mode). The SP register points to the top of
the stack. In the user mode or state, all stack pointer references are to
the user stack. In the supervisor state, all stack pointer references are to
the supervisor stack.

Frame Pointer
A6 is the frame pointer which is set to point at the base of the current
stack frame.

Transfer Vector Pointer

A transfer vector (TV) is an ordered list of entries, similar to an array of
pointers. In the 5ESS switch [for 5E4(2) and earlier], function calls are
made through a transfer vector table. The starting address of the table is
pointed to by A5, the transfer vector pointer. The slots in the transfer
vector table, which are 4 bytes in length, contain the actual function
addresses.

Beginning with the 5E5(1) software release, a TV slot in the 5ESS switch
became a 6-byte block of memory that contains a jump instruction to the
beginning of a particular function.

The link editor defines the transfer vector as a separate output section
known as .tv. Unlike other output sections, the link editor supplies the
entire contents for the transfer vector’s output section.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-6 Issue 5.00

Data Register

There are eight data registers (D0-D7). Each data register can be used to hold values
that are 8 bits, 16 bits, or 32 bits in size. Data registers cannot be used to address
memory in an instruction. Instead these registers are used as temporary locations
where data may be stored.

The D0 register is reserved for passing the called function results (scaler results) back
to the calling function and is named the function result register. See Table 4.4-4.

Table 4.4-4 — Data Registers

Register Usage
D7 Scratch
D6 .
D5 .
D4 .
D3 .
D2 .
D1 .
D0 Function result register

4.4.5.3 Special Registers

Program Counter
The program counter register is a 32-bit register used to control execution
of the program in memory. The program counter is always pointing to the
next instruction to be executed. When an instruction is executed, the
program counter is advanced to the next instruction.

Status The status register is a 16-bit register used to store information about the
status of the processor. This register is used by the conditional branch
instructions to retrieve information about the last instruction.

4.4.6 Stack Usage

Stacks are last-in-first-out (LIFO) data structures for storage. Placing data on the
stack is called a push. The push uses the address register indirect with predecrement
addressing mode. Removing data from the stack is called a pop. The pop uses the
address register indirect with post increment addressing mode. Stacks in the
MC68000 processor have the following characteristics:

• move from higher addresses to the lower addresses

• are divided into frames on a per-function basis

• are used to store automatic variables, temporary variables, and function
arguments.

Address registers A6 and A7 are used to denote a stack frame. A7 is the stack pointer
that points to the last element on the stack (lowest address). A6 is pointing to the
location that contains the old A6 of the calling function.

The order for the stack frame is (highest to lowest address):

1. Arguments

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-7

2. Return Address –– former program counter

3. Old Frame Pointer –– former A6

4. Local Variables –– temporaries and automatics

5. Register Variables –– placed on the stack when required.

Each function is allocated space on the stack using the following format. The
addresses move from highest to lowest. When one function calls another, the calling
function will appear as shown in Figure 4.4-2. The called function would be started on
the stack in the next available space after the stack pointer. The calling function
(Function A) will have a stack frame like the one shown below which contains
arguments, return address (old program counter), old frame pointer, local variables,
and register variables.

Function A will prepare to call another function (Function B) by pushing arguments
onto the stack. The arguments will be pushed onto the stack using the MOVE (MOVEB,
MOVE, and MOVEL) instruction. The move instruction transfers the contents of the
source to the destination location. Function B has not been called at this point, the
system is only preparing to call the function. At this point the stack will look like
Figure 4.4-3.

Lowest Address

Function A

Highest Address

Stack Pointer, Register A7

Frame Pointer, Register A6

Arguments
1
.
.
N

Program Counter (PC)

Old Frame Pointer

Register Variables
and

Local Variables

Temporary Variables

Figure 4.4-2 — Stack Frame — One Function

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-8 Issue 5.00

After all the arguments have been moved onto the stack, control will be transferred to
Function B by using the jump to subroutine (JSR) instruction. The JSR instruction
pushes the address of the instruction immediately following it onto the system stack.
Program execution continues at the address specified in the instruction. The present
program counter (PC) is pushed onto the stack. At this point the stack will appear as
represented in Figure 4.4-4.

Function B

Function A

Stack Pointer, Register A7

Frame Pointer, Register A6

Arguments

Arguments

1
.
.
N

1
.
.
N

Program Counter (PC)

Old Frame Pointer

Register Variables
and

Local Variables
Temporary Variables

Figure 4.4-3 — Stack Frame — Arguments Pushed Onto Stack

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-9

Each function begins with a LINK instruction to allocate space on the stack for the
stack frame. The LINK instruction pushes the current contents of the frame pointer
onto the stack. After the push, the frame pointer is loaded from the updated stack
pointer. Finally, the sign-extend displacement is added to the stack pointer to allocate
space for the local variables. Once the LINK instruction is executed, control is
transferred to the called function. After the execution of the LINK instruction, the
stack will appear as in Figure 4.4-5.

Stack Pointer, Register A7

Frame Pointer, Register A6

Arguments

Program Counter (PC)

Old Frame Pointer

Temporary Variables

Register Variables
and

Local Variables

Arguments

1
.
.
N

1
.
.
N

Program Counter (PC)

Function B

Function A

Figure 4.4-4 — Stack Frame — PC Pushed Onto Stack

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-10 Issue 5.00

If any registers are to be used as register variables, then the current content of those
registers will be moved onto the stack. This is accomplished by using the MOVE
instruction. The stack will appear as in Figure 4.4-6.

Temporary Variables

Register Variables
and

Local Variables

Old Frame Pointer

Frame Pointer, Register A6

Function
A

Program Counter (PC)

Program Counter (PC)

1
.
.
N

1
.
.
N

Arguments

Arguments

Function
B Old Frame Pointer

Local Variables
Stack Pointer, Register A7

Figure 4.4-5 — Stack Frame — After LINK Statement

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-11

After the called function (Function B) has completed its task, the program flow must
then return to its calling function, Function A. The first action is to reload the
registers that were saved on the stack. Next the unlink (UNLK) instruction is
performed. This instruction will deallocate the stack frame for the called function. The
UNLK instruction loads the stack pointer from the specified frame pointer. The frame
pointer is then loaded with the value from the top of the stack. The stack will look like
the Figure 4.4-7.

Register Variables
and

Local Variables

Stack Pointer, Register A7

Old Frame Pointer
Function

B

Arguments

Arguments

1
.
.
N

1
.
.
N

Program Counter (PC)

Program Counter (PC)

Function
A

Frame Pointer, Register A6

Old Frame Pointer

Register Variables
and

Local Variables

Temporary Variables

Figure 4.4-6 — Stack Frame — Register Variables Pushed Onto Stack

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-12 Issue 5.00

After the UNLK instruction, the called function (Function B) will execute the RTS
(return) instruction to return control back to the calling function.

The RTS instruction execution will pop PC off the stack. This is the program counter
for Function A. The stack frame will look like the Figure 4.4-8.

Stack Pointer, Register A7

Frame Pointer, Register A6

Arguments

Program Counter (PC)

Old Frame Pointer

Temporary Variables

Register Variables
and

Local Variables

Arguments

1
.
.
N

1
.
.
N

Program Counter (PC)

Function B

Function A

Figure 4.4-7 — Stack Frame — After The UNLK Statement

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-13

The final operation to complete this calling and returning of a function is to adjust the
stack pointer. The stack pointer must be moved below the passed arguments to the
called function. This adjustment is accomplished by using the LEA or ADDL instruction.
The LEA instruction loads the effective address into the specified address register. This
instruction afects only 32-bit address registers.

4.4.7 Unsupported MOTOROLA MC68XXX Processor Instructions

The following are not currently supported by the MC68XXX assembler family. All
MC68000 and MC68012 processor instructions are supported and, therefore, no table
is included for them. Those MC68020 and MC68030 processor specific instructions
which are unsupported are given in Table 4.4-5.

Table 4.4-5 — Unsupported Motorola MC68020/MC68030 Processor Instructions

Mnemonic Description
Bcc Branch Conditionally (32-bit version)
BRA Branch Always (32-bit version)
BSR Branch to Subroutine (32-bit version)
CALLM Call Module (MC68020 processor only)
cpXXX Coprocessor Instructions
RTM Return from Module (MC68020 processor

only)
TRAPcc Trap on Condition

Function B

Function A

Stack Pointer, Register A7

Frame Pointer, Register A6

Arguments

Arguments

1
.
.
N

1
.
.
N

Program Counter (PC)

Old Frame Pointer

Register Variables
and

Local Variables
Temporary Variables

Figure 4.4-8 — Stack Frame — Return To Calling Function

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.4-14 Issue 5.00

The MC68XXX processor family consists of several upward compatible Motorola
microprocessors.

MC68000 Processor
The earliest of the MC68XXX based processors. It has a 24-bit address
bus, 16-bit data bus, 8 data address registers each of which is 32 bits
wide.

MC68012 Processor
Based on the MC68000 chip, this processor differs in the following ways:
it has a 31-bit address bus and loop-mode caching, includes additional
instructions, and supports virtual memory through instruction
continuation.

MC68020 Processor
Based on the MC68000 chip, this processor differs in the following ways:
it has a 32-bit address bus, a 32-bit data bus, a 256-byte instruction
cache (direct-mapped), a microcoded coprocessor interface, fewer
alignment restrictions (only instructions must be word aligned),
additional control registers, additional addressing modes, extensions to
the instruction set, two more stack pointers and more status register bits,
and supports virtual memory through instruction continuation.

MC68030 Processor
Based on the MC68000 chip, this processor differs from the MC68000
processor in the following ways: it has a 32-bit address bus, a 32-bit data
bus, 256-byte instruction and data caches (direct-mapped), an on-chip
memory management unit, a microcoded coprocessor interface, fewer
alignment restrictions (only instructions must be word aligned),
additional control registers and addressing modes, extensions to the
instruction set, two more stack pointers and more status register bits and
supports virtual memory through continuation.

MC68040 Processor
Based on the MC68030 chip, this processor differs from the MC68030
processor in the following ways: it has 4-way set associative caches that
are 4K bytes for both instructions and data. It has on chip floating point
support (not used by the 5ESS switch), a new Memory Management Unit
(MMU), and several changes in the instruction set. There is no %carr
register on the MC68040 processor for accessing cache. There are five
new registers: transparent translation registers %dtt0, %dtt1, %itt0,
%itt1, and user root pointer register %urp.

MC68060 Processor
Based on the MC68040 chip, this processor differs from the MC68040
processor in the following ways: it has a deep pipeline, dual issue
superscalar execution, a branch cache, and a high floating point unit. It
also has a full internal Harvard architecture featuring separate 8-Kbyte
instruction and 8-Kbyte data cache. This processor allows simultaneous
execution of two integer instructions (or an integer and a float
instruction) and one branch instruction during each clock. In addition,
the MC68060 processor automatically powers down internal functional
blocks that are not needed.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.4-15

4.5 INTEL1 80186 PROCESSOR ASSEMBLY LANGUAGE

4.5.1 Values

Values are represented in the Intel 80186 processor assembler language by 16-bit 2’s
complement numbers. All arithmetic is performed using 16 bits of precision. If a
constant or the result of evaluating an express requires more than 16 bits to represent
it, the least significant 16 bits of the actual value are used.

Every value is an instance of one of the following types:

UNDEFINED An UNDEFINED value is one whose type has not yet been determined.
Examples of UNDEFINED values are references to symbols whose
definitions are not encountered yet (i.e. forward references) and
references to symbols that are defined in programs other than the one
currently being assembled (i.e., external references).

ABSOLUTE An ABSOLUTE value is one that never changes, regardless of relocation of
any of the sections of the program being assembled. Examples of
ABSOLUTE values are numeric constants and arithmetic expressions
whose operands are all numeric constants.

TEXT A TEXT value is a value that is relative to the beginning of the .text
section. Whenever the .text section is relocated by N bytes, N should be
added to or subtracted from every value of the type TEXT.

DATA A DATA value is a value that is relative to the beginning of the .data
section. Whenever the .data section is relocated by N bytes, N should be
added to or subtracted from every value of type DATA.

BSS A BSS value is a value that is relative to the beginning of the .bss
section. Whenever the .bss section is relocated by N bytes, N should be
added to or subtracted from every value of type BSS.

4.5.2 Constants

A constant is an element of ABSOLUTE type and fixed value. The values can be
expressed in any of three different number systems: decimal, octal, or hexadecimal.

Decimal A decimal constant is represented by a string of digits 0 through 9. Each
number must begin with a non-zero digit.

1234
325
43

Octal The octal is represented by a string of digits 0 through 7. Each number
must begin with a zero digit.

077
0123
0342

1. Registered trademark of Intel Corporation.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.5-1

Hexadecimal
The hexadecimal constant is represend by a string of digits 0 through f.
Each number must begin with 0x or 0X prefix. The digits a through f can
be represented by either upper or lower case letters.

0x3f
0x8ABC

0xFEA

4.5.3 Expressions

An expression is a sequence of operands separated by operators. An operand is either
a constant, a symbol, or an expression enclosed in square brackets ([]). Operands can
be omitted; an omitted operand is assumed to have ABSOLUTE type and a value of
zero.

The following operators are available:

+ Performs 2’s complement addition. If one operand is of the ABSOLUTE
type, the result has the type of the other operand; otherwise, the
operation is illegal.

− Performs 2’s complement subtraction. If the right operand is of the
ABSOLUTE type, the result has the type of the left operand. If both
operands have the same type, and that type is either TEXT, DATA, or BSS,
the result is of the ABSOLUTE type; otherwise the operation is illegal.

* Performs 2’s complement integer multiplication. This operation requires
that both operands be of the ABSOLUTE type and an ABSOLUTE result is
produced. The * must be preceded by a backslash (\) to avoid confusion
with the notation for indirection in jumps and calls.

/ Performs 2’s complement integer division. Both operands must be of the
ABSOLUTE type and the result will be of the ABSOLUTE type. To avoid
confusion with the single slash (/), which starts a comment, this operator
must be preceded by a backslash (\).

& Performs bit-by-bit logical AND between two 16-bit quantities. Both
operands must be of ABSOLUTE type, an ABSOLUTE result is produced.

| Performs bit-by-bit logical OR between two 16-bit quantities. Both
operands must be of ABSOLUTE type, an ABSOLUTE result is produced.

>> Shifts the left operand to the right by the number of bits specified by the
right operand. This operation requires that both operands be of the
ABSOLUTE type, an ABSOLUTE result is produced.

<< Shifts the left operand to the left by the number of bits specified by the
right operand. This operation requires that both operands be of the
ABSOLUTE type, an ABSOLUTE result is produced.

% Returns the remainder of the operation that divided the first operand by
the second operand. Both operands must be of the ABSOLUTE type and an
ABSOLUTE result is produced. To avoid confusion with register names,
this operator must be preceded by a backslash (\).

! Performs bit-by-bit logical AND between the first operand and the

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.5-2 Issue 5.00

bit-by-bit complement of the second operand. This operation requires that
both operands are of the ABSOLUTE type and an ABSOLUTE result is
produced.

^ This is the only operator that allows you to alter the usage requirements
for the types of symbols. It returns a quantity that has the value of the
first operand the type of the second. The operands can be of any type.

4.5.4 Machine Instruction Notation

The iAPX assembly language is not the same as Intel processor assembly language.
The order of operands is changed to reflect the overall usage in the 5ESS® switching
system. The iAPX assembler recognizes a large number of pseudo-ops for specifying
symbol attributes for symbolic testing.

There are several differences between iAPX assembly language and Intel processor
assembly language:

• All register names use percent sign (%) as a prefix to distinguish them from
symbol names. (See Tables 4.5-1 and 4.5-2.)

• Instructions with two operands use the left as the source and the right as the
destination. This follows the UNIX2 system’s assembler convention, and it is
reversed from Intel processor notation.

• Every w at the end of a word instruction has been dropped, and b has been added
as a suffix to byte operations.

• Two additional operators <o> and <s> have been added to handle 20-bit pointers.
They stand for offset and segment, respectively.

Table 4.5-1 — iAPX Word Registers

Symbolic Name Description
%ax Register A (Accumulator)
%bx Register B (Base)
%cx Register C (Count)
%dx Register D (Data)
%sp Stack pointer
%bp Base pointer
%si Source (or stack) index
%di Destination (or data) index
%cs Code segment register
%ds Data segment register
%es Extra segment register
%ss Stack segment register

2. Registered trademark of The Open Group.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.5-3

Table 4.5-2 — iAPX 8 Byte Registers

Symbolic Name Description
%ah High byte of %ax
%al Low byte of %ax
%bh High byte of %bx
%bl Low byte of %bx
%ch High byte of %cx
%cl Low byte of %cx
%dh High byte of %dx
%dl Low byte of %dx

4.5.5 Operands

Three kinds of operands are generally available to instructions: register operands,
memory operands, and immediate operands. Indirect operands are available to jump
and call instructions; but no other instructions can use indirect operands.

Register operands
Register operands are encoded in the instruction in just a few bits and
there operations are performed entirely within the central processor. They
may serve as source operands, destination operands, or both.

Immediate operands
The immediate operands are constant data contained in an instruction.
They can be either 8 or 16 bits in length, but they can only serve as
source operands.

Memory operands
The memory operands, unlike the register, must be transferred to and
from the processor.

Almost all Intel 80186 processor instructions can operate on either 8-bit (byte) or
16-bit (word) operands, though some references will require a double word or 32 bits.
Memory can be accessed as bytes or words, and words do not have to begin on an even
address. Each of the three kinds of operands can be either a byte or a word.

Operands in the current data segment of memory are addressable directly with a
16-bit offset address, or indirectly with base (bx or bp) and/or index (si or di)
registers added to a displacement constant of 8 or 16 bits, the displacement constant
is optional. Operands which reside in the memory are addressable in four ways:

Direct 16-bit offset
address

The effective address is taken directly from the
displacement field of the instruction.

Indirect base register The effective address is the sum of a displacement and the
contents of the BX register or the BP register.

Indirect index register The effective address is determined by adding the
displacement and the contents of an index register.

Indirect base register
and index register

The effective address is determined by adding a base
register BP or BX, and an index register, SI or DI, and a
displacement from the segment register.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.5-4 Issue 5.00

The operands location in a register or in the memory is denoted by three fields in the
instruction. These fields are the mode field, the register field, and the register/memory
field. (See Figure 4.5-1). The second byte of the instruction sequence will contain the
operands when they are used.

The two most significant bits of the byte contain the mode field and determine how
the register/memory field (bits 2,1,0) is used in locating the operand. The
register/memory field can name a register that holds the operand or can specify an
addressing mode that points to the location of the operand in memory. The register
field occupies bits 5, 4, and 3 following the mode field, and can specify that one
operand is either an 8-bit register or a 16-bit register.

The effective address (EA) is the offset that is calculated for a memory operand. The
effective address (EA) of the memory operand is determined according to the mode and
register/memory fields by summing a displacement, the contents of a base register and
the contents of an index register. See Tables 4.5-3 and 4.5-4.

Table 4.5-3 — Intel 80186 Processor Effective Address — Mode Field

Mode Displacement
00 0, disp-low and disp-high are absent
01 disp-low sign-extended to 16 bits, disp-high absent
10 disp-high

Figure 4.5-1 — Intel 80186 Processor Instruction — Memory Layout

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.5-5

Table 4.5-4 — Intel 80186 Processor Effective Address — Register/Memory Field

Register/Memory Effective Address
000 bx + si + disp

001 bx + di + disp

010 bp + si + disp

011 bp + di + disp

100 si + disp

101 di + disp

110 bp + disp

111 bx + disp

4.5.6 Instruction Set

The instructions set for the iAPX is based on the Intel 80186 processor family
instruction set. The operations are performed on bytes, words, and long words. See
Figure 4.5-2.

For a complete listing of the instruction set for iAPX see Appendix A4 - Intel 8086 and
80186 Processor Instruction Set.

Figure 4.5-2 — Intel 80186 Processor Example Instruction Memory Layout

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.5-6 Issue 5.00

4.6 INTEL1 80186 PROCESSOR MACHINE DEPENDENCIES

4.6.1 Data Type Memory Boundaries

The processors in the 5ESS® switch have specific memory organizational
requirements, each processor having variations in size and functionality. The following
gives a brief explanation of the byte and word organization of the Intel 80186
processor.

Byte-length data which contains 8-bits:

• can start in any memory location

• represents an 8-bit string or binary number between 0 and 255.

Word-length data which contains 16 bits:

• can start in any even-numbered memory location

• represents a 16-bit string or unsigned binary number between 0 and 65,535 or 2s
complement binary number between −32,768 and 32,767 (bit 15 is the sign bit).

Long Word-length data which contains 32-bits:

• can start in any even-numbered memory location

• represents a 32-bit string or unsigned binary number between 0 and
4,294,968,295 or 2s complement binary number between −2,147,483,648 and
2,147,483,647 (bit 31 is the sign bit).

Table 4.6-1 details the data size and alignment of the Intel 80186 processor. When
analyzing output from this processor it is important to reference the data types
according to the contents of this table.

Table 4.6-1 — Intel 80186 Processor Data Sizes and Alignment

Data type Size Memory Alignment
char 1 byte no alignment
short 2 bytes 2 byte boundary
int 2 bytes 2 byte boundary
long 4 bytes 2 byte boundary
pointer 4 bytes 2 byte boundary
structure 4 byte multiple 2 byte boundary
union 4 byte multiple 2 byte boundary
array same as element type same as element type
bitfield 2 bytes 2 byte boundary
Data inside structures and unions

long 4 bytes 4 byte offset
pointer 4 bytes 4 byte offset
structure 4 byte multiple 4 byte offset
union 4 byte multiple 4 byte offset

1. Registered trademark of Intel Corporation.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-1

Figure 4.6-1 outlines the memory boundaries that would be established by the Intel
80186 processor.
Given:
char a
short b
int c
long d
pointer e

The data would be placed on the data stack as follows:

4.6.2 Arithmetic Types Supported

The Intel 80186 compiler in the 5ESS switch supports four arithmetic types. All four
types can be signed or unsigned.

• char

• short

• int

• long

Lowest Address

4 Bytes

Highest Address

int c

short b char apad

pointer e

pointer e

long d

long d

Figure 4.6-1 — Intel 80186 Processor Stack –– Memory Boundaries

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.6-2 Issue 5.00

4.6.3 Data Conversion Rules

Table 4.6-2 — Intel 80186 Processor Data Conversions Rules

Data Type
Conversion

Char Unsigned
Char

Int Unsigned
Int

Long Unsigned
Long

Pointer

Char –– NC PL PL PL PL PL

Unsigned Char NC –– PL PL PL PL PL

Int TL TL –– NC SE PL PL

Unsigned Int TL TL NC –– PL PL PL

Long TL TL TL TL –– NC TL/PL

Unsigned Long TL TL TL TL NC –– TL/PL

Pointer TL TL TL TL NC NC ––

NC = Name Change, TL = Truncate on Left, SE = Sign Extend, PL = Pad on Left with zero(s), TL/PL =
Truncate on left to 24 bits and pad on left with one byte of zero

4.6.4 Memory Configuration

On the Intel 80186 processor an address has two components: segment number (a
segment register), and a 16-bit offset. For any memory reference, the content of the
four segment registers is added to the offset to form an address. Segment registers are
set to the base address of a region, and all references in the text are resolved with
respect to the virtual address. A region refers to a range of memory that begins with a
virtual address of zero.

There are three restrictions on regions:

• The first is that they must begin at an address aligned to a 16-byte boundary;
that is, the low four bits of the address must be zero. (For example, 0, 16, 32, etc.
are valid region origins, in hexadecimal the values would be 0, 10, 20.) This is
because the 20-bit physical address is stored in a segment register as a 16-bit
quantity and shifted left four bits before adding the offset.

• The second restriction is that regions may not exceed 64K in size, or else there
can be no direct references to addresses beyond 64K into the region.

• The third is that the physical memory assigned to user-specified regions may not
overlap.

A segment register will contain a 16-bit value that is used to point to the start or base
of a physical segment. The contents of that segment register will determine the upper
16 bits or a 20-bit address. The hexadecimal address 12340 is given as 1234. When a
segment register points to this location, it is loaded with the value 1234, which defines
a 64K byte segment starting at absolute address 12340. (See Figure 4.6-2.)

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-3

A section of an object file is the smallest unit of relocation and must be a contiguous
block of memory. A section is identified by a starting address and a size. Information
describing all the sections in a file is stored in "section headers" at the start of the file.

The physical address of a section or symbol is the relative offset from address zero of
the address space. The virtual address of a section or symbol refers to the 16-bit
relocatable address with respect to the beginning of its region.

The virtual memory for the Intel 80186 processor is partitioned into configured and
unconfigured memory. The default condition is to treat all memory as configured.
Unconfigured memory is treated as reserved or unusable by the link editor. Nothing
can be linked into unconfigured memory.

When MEMORY directives are used, all virtual memory not described in a MEMORY
directive is considered to be unconfigured. Unconfigured memory is not used in the
link editor’s allocation process, and hence nothing can be link edited, bound, or
assigned to any address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with a named
memory area. This restricts the area to which an output section can be sent. The
attributes assigned to output sections in this manner are recorded in the appropriate
section headers in the output file, to allow for possible error checking in the future.

The attributes that are currently accepted are:

R Readable memory

W Writable memory

X Executable memory

I Initializable memory.

By specifying MEMORY directives, the link editor can be told that memory is configured
in some manner other than the default.

Figure 4.6-2 — Memory Addressing in the Intel 80186 Processor

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.6-4 Issue 5.00

4.6.5 Register Notation

The Intel 80186 processor consists of a set of eight 16-bit general registers. These
general registers are divided into two sets: the first is the data registers and the
second set consists of the pointer and the index registers. In the data registers each
16-bit register is divided into two 8-bit registers which allow its upper (high) and
lower halves to be separately addressed. Therefore, each data register can be used
interchangeably as a 16 bit-register, or as two 8-bit registers, Table 4.6-3.

Table 4.6-3 — Intel 80186 Processor Data Registers

16-Bit Register 16-Bit Description 8-Bit Register 8-Bit Description
%ax Register A

(Accumulator)
%ah

%al

The high byte of %ax.
The low byte of %ax.

%bx Register B (Base) %bh

%bl

The high byte of %bx.
The low byte of %bx.

%cx Register C (Count) %ch

%cl

The high byte of %cx.
The low byte of %cx.

%dx Register D (Data) %dh

%dl

The high byte of %dx.
The low byte of %dx.

Pointer and index registers are usually for addressing data in memory (see Table
4.6-4).

Table 4.6-4 — Intel 80186 Processor Pointer and Index Registers

Register Description
%sp Stack pointer
%bp Base pointer
%si Source index
%di Destination index

In addition, four special word registers called segment registers are used in
addressing. They are not generally available as operands, but some instructions do
allow them. The Intel 80186 processor is divided into segments of 64K bytes. The four
segment registers give the base locations for these segments, Table 4.6-5.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-5

Table 4.6-5 — Intel 80186 Processor Segment Registers

Register Description
%cs Code segment register –– all references to the instruction space

use this register.
%ds Data segment register –– the default register for most

references to memory operands.
%es Extra segment register –– alternative segment register for data.
%ss Stack segment register –– the default segment register for

references to the function linkage stack.

The Intel 80186 processor also contains status and control registers, as shown in Table
4.6-6 and Figure 4.6-3.

Table 4.6-6 — Intel 80186 Processor Status and Control Registers

Register Description
%ip Instruction pointer register. This register is equivalent to

the program counter.
Status Word/Flags The Status word or flags consists of three control flags and

six status flags. The status flags record the results of logical
and arithmetic instructions and the control flags direct the
operation of the central processor within a particular
operating mode.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.6-6 Issue 5.00

4.6.6 Stack Usage

The Intel 80186 processor stack frames are accessed by the stack segment register,
%ss, the stack pointer register, %sp, or the base pointer register, %bp. A stack can be
up to 64K bytes long, which is the maximum length of a segment. The %ss register
contains the base address of the stack and the %sp register points to the top of the
stack. Stacks are 16 bits wide, meaning that an instruction that operates on stacks
removes stack items one word at a time.

Two function linkages are supported (transfer vector and direct) and two addressing
options (16 and 20 bit). As a result, there are three stack frames which are similar, yet
not identical. The three distinct stack frames are for:

1. 16 bit direct linkage,

2. 16 bit transfer vector linkage, and

3. 20 bit, both transfer vector and direct linkage.

A transfer vector (TV) is an ordered list of entries, similar to an array of pointers or
jump table. Each entry contains the physical address of an external or static identifier.
The address is one word long, and the address is right-justified within the word. The

Status Flags:

Carry
Parity

Auxiliary Carry
Zero
Sign

Overflow

Control Flags:

Trap Flag
Interrupt Enable
Direction Flag

OF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF PF AF ZF SF TF IF DF

Figure 4.6-3 — Status Word or Flags

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-7

entire transfer vector is a zero-origined, one-dimensional array of long integers. The
first slot in the transfer vector cannot be used because of a conflict with the null
pointer, whose value is zero.

The stack frame grows from high addresses in the stack segment that is pointed to in
memory by the segment register %ss. A stack frame is created for each instance of a
function call at runtime. It is destroyed at the time the function makes a return to the
calling function. Each stack frame contains the information needed to restore the
calling function to its state before it made the function call in the save area. It also
contains the arguments passed to it by the caller, space for its automatic variables,
and space for any temporaries needed during execution. The iAPX 20 bit stack also
contains the normalized frame pointer, i.e., the address %ss:%bp in normalized form.
Diagrams of samples of each of the three stack frames are shown in Figures 4.6-4,
4.6-5, and 4.6-6.

Previous Frame

Lowest Address

old %bp
%di
%cx

old %ip

last auto/temp
automatics/temporaries

(struct rtn address)

Arg 1
Arg 2

.

.
Arg n

Highest Address

Arguments

%sp

%bp

Save area

Figure 4.6-4 — iAPX-16 bit, Direct Linkage (No TV)

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.6-8 Issue 5.00

Two register variables are saved along with the old frame pointer %bp and the old
instruction pointer %ip. In iAPX 16 bit with TV and in iAPX 20 bit with and without

old %bp
%di
%cx

old %ip
old %cs

Lowest Address

Previous Frame

Save area

%bp

%sp

Arguments

Highest Address

Arg 1
Arg 2

.

.
Arg n

last auto/temp
automatics/temporaries

(struct rtn address)

Figure 4.6-5 — iAPX-16 bit, Transfer Vector Linkage

Arg 1
Arg 2

.

.
Arg n

Highest Address

Arguments

%sp

%bp

Save area

old %bp
n.f.p.off
n.f.p.seg

%di
%cx

old %ip
old %cs

Previous Frame

Lowest Address last auto/temp
automatics/temporaries

(struct rtn address)

Figure 4.6-6 — iAPX-20 bit, Transfer Vector and Direct Linkage

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-9

TV, the old code segment register (%cs) is also saved. Thus 4, 5, and 7 words are
required for the respective save areas. The frame pointer (%bp) always points to the
old frame pointer. The stack pointer (%sp) always points to the top word of the stack.
All accessing of data in the stack frame by a routine is done with an offset from the
frame pointer.

Automatic storage begins with the first byte following the old frame pointer in the
stack. The area for automatics contains an even number of bytes as will the area for
temporaries that follows it to ensure that the next stack frame begins on a word
boundary. For efficiency, integers and larger entities are aligned on word boundaries;
characters alone can have odd offsets from %bp. The first word of automatic storage is
address c(%bp)−2. Since push and pop operations always work with word operands,
the argument space is also an even number of bytes, giving all arguments an even
offset from %bp. Argument 1 is the first at location c(%bp)+8, c(%bp)+10, or
c(%bp)+14 for each of the respective cases. Again, beware that if the optimizer is
shortening the stack frame, the first argument may be at a lower offset.

The stack frame, as shown previously, is typical during the execution of a function.
When a function proceeds to make a subroutine call it must first place the arguments
on the stack in the reverse order that they appear in the function call. Every
argument must be pushed on the stack as an even number of bytes. Characters are
cast into integers, and structures of uneven length are filled out to a word boundary,
though the last byte is meaningless. If the call is to a function that returns a
structure, the address of the structure return area is placed in the register %si (and
%dx for 20 bit addressing) prior to the call. The calling function then executes a call to
the desired function. After the call has been executed, the stack frame appears as
shown in Figure 4.6-7.

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.6-10 Issue 5.00

The first responsibilities of the called function are to perform the context save, the
saving of the system conditions at the time of the call, for the caller, to set up the new
frame, and to allocate space on the stack for the automatics and temporaries of the
called function. If the function is one that returns a structure, the return address of
the structure must be moved from the register %si (and %dx) to the position on the
stack of the first automatic.

The first thing that the called function does is to call the appropriate system routine
to perform the context save for the caller. There are eight versions of the routine for
each of the combinations of 16 or 20 bit addressing, transfer vector, or direct linkage
for iAPX186. The call to this routine pushes another return address on the stack that
is immediately popped and placed into the %bx register [and %dx (16 TV) or %ds (20
bit)]. With the stack pointer now pointing at the original return address, the routine
pushes the two register variables %cx and %di into the save area.

The final responsibility of the called function, if it is to return a structure, is to move
the structure return address from the scratch registers, %si and (%dx) to the stack.
The result of the operation leaves the stack in the condition shown in Figure 4.6-8.
Only after this has been accomplished will the called function begin to execute.

Low Address

Function
B

last auto/temp
automatics/temporaries

(struct rtn address)

Arg 1
Arg 2

.

.
Arg n

Arg 1
Arg 2

.

.
Arg n

Function
A

Arguments

%sp

%bp

Save area

Previous Frame

High Address

Figure 4.6-7 — iAPX Stack Frame after Function Call

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-11

To return to the caller, a function executes a jump to the proper system routine which
first loads %sp with the contents of the frame pointer, destroying the space for all
automatics and pops %bp restoring it to its old value. Next for 20 bit addressing code,
4 is added to %sp destroying the space in the stack frame for the normalized frame
pointer. Then the next two words of the stack are popped into %di and %cs,
respectively, restoring the state of the calling function. Finally, a return is executed
popping the old %ip (and the old %cs) from the stack. The calling function has one
last responsibility; it must deallocate the space used by the arguments by adding an
appropriate constant to the stack pointer. After this, the stack frame for the called
function is completely destroyed.

A stack trace is very easy to perform since %sp always points to the last word in the
save area (the old frame pointer). The chain of frame pointers can be followed

Arguments

Function
A

Arg 1
Arg 2

.

.
Arg n

Arg 1
Arg 2

.

.
Arg n

last auto/temp
automatics/temporaries

(struct rtn address)

last auto/temp
automatics/temporaries

(struct rtn address)

Function
B

Low Address

High Address

Previous Frame

Save area

Save area

%bp

%sp

Arguments

Figure 4.6-8 — iAPX Stack Frame during Called Function (B) Execution

DISASSEMBLY/ASSEMBLY LANGUAGE 235-600-510
November 2000

Page 4.6-12 Issue 5.00

backward until a desired previous invocation of a function is found. By examing the
old %ip and comparing this address with the known beginning and ending addresses
of a function, the previous invocation of a function can be found.

235-600-510
November 2000

DISASSEMBLY/ASSEMBLY LANGUAGE

Issue 5.00 Page 4.6-13

Software Analysis Guide

CONTENTS PAGE

5. ASSERT ANALYSIS . 5-1

5.1 ASSERT ANALYSIS DESCRIPTION 5.1-1
5.1.1 ASSERT DEFINITION 5.1-1

5.1.1.1 Assert Messages 5.1-1
5.1.1.2 Assert Handler 5.1-1
5.1.1.3 Assert Macros 5.1-2

5.1.2 RECEIVE ONLY PRINTER OUTPUT (ROP) 5.1-5
5.1.2.1 ROP Messages 5.1-5
5.1.2.2 Defensive Check Failure (DCF) Asserts . . . 5.1-5
5.1.2.3 MANUAL ACTION Asserts 5.1-6
5.1.2.4 RTA Asserts 5.1-6

5.1.3 STACK TRACE DEBUGGING 5.1-7
5.1.3.1 Stack Formatting Overview 5.1-7
5.1.3.2 AM Stack Layout (3B2XD Processor) 5.1-8
5.1.3.3 SM/CMP Stack Layout (MC68XXX

Processor Family) 5.1-11
5.1.4 FAILING FUNCTION 5.1-15

5.2 ASSERT ANALYSIS EXAMPLES 5.2-1
5.2.1 ASSERT ANALYSIS EXAMPLE — AM 5.2-1
5.2.2 ASSERT ANALYSIS EXAMPLE — SM 5.2-1
5.2.3 ASSERT ANALYSIS EXAMPLE — CMP 5.2-9
5.2.4 ASSERT ANALYSIS EXAMPLE — RTA DCF 5.2-10

5.2.4.1 RTA DCF ROUTING Error 5.2-10
5.2.4.2 RTA DCF: RTDUMPDATA() 5.2-12

LIST OF FIGURES

Figure 5.1-1 — AM Assert Formatting 5.1-11

Figure 5.1-2 — SM Stack Frame Format 5.1-13

Figure 5.1-3 — SM Local Data Stack Frame 5.1-15

Figure 5.2-1 — Stack Grid . 5.2-8

LIST OF TABLES

Table 5.1-1 — 3B2xD Processor vs. MC68XXX Processor Stack
Variations . 5.1-8

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5-i

Table 5.1-2 — 3B2XD and MC68XXX Processor Family Data Sizes and
Alignments . 5.1-10

LIST OF EXHIBITS

Exhibit 5.1-1 — Example of CALLPLOG1 Output 5.1-7

Exhibit 5.2-1 — SM Assert Printout 5.2-1

Exhibit 5.2-2 — Disassembly Code for the Function SMiclvco 5.2-3

Exhibit 5.2-3 — C code for the Function SMiclvco 5.2-4

Exhibit 5.2-4 — CMP Assert Printout 5.2-10

Exhibit 5.2-5 — RTA RTRTGERR 5.2-10

Exhibit 5.2-6 — RTnw_conn.c RTRTGERR() Error Example 5.2-11

Exhibit 5.2-7 — Routing States 5.2-11

Exhibit 5.2-8 — Systems Integrity RTA DCF: Data Dump Report 5.2-12

Exhibit 5.2-9 — CALLPLOG1 File Output Example 5.2-13

ASSERT ANALYSIS 235-600-510
November 2000

Page 5-ii Issue 5.00

5. ASSERT ANALYSIS

This section discusses the analysis procedures to be used on assert components such
as stimulus message, stack trace, and stack frame for the AM, CMP, and the SM
processors. It presents methods that can be used to determine assert classifications
such as processor, environment, and recovery strategies. It also presents ways of
locating the asserting function and tracing the calling functions. The objective of this
section is to impart the necessary skills to analyze an assert.

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5-1

5.1 ASSERT ANALYSIS DESCRIPTION

5.1.1 ASSERT DEFINITION

5.1.1.1 Assert Messages

An assert is a report of a software error or inconsistency detected during program
execution. Asserts may simply report these events or initiate a range of corrective
actions. Three types of assert messages are generated by the 5ESS® switch:

1. Defensive Check Failure (DCF)

2. MANUAL ACTION (a.k.a. Craft asserts)

3. RTA ROUTING

DCF and MANUAL ACTION asserts report software-detected errors in all subsystems of
the switch. RTA ROUTING asserts report errors in the RTA subsystem.

DCF assert messages are the most common and are triggered for a variety of reasons,
including invalid, missing, or inconsistent data detected by data verification
statements. MANUAL ACTION asserts report problems that require documented
intervention by switch technicians. RTA ROUTING asserts report software errors
detected during the routing states of call processing.

The types of checks used with asserts include:

• Range checks on pointers, global data, and function arguments to ensure that
reads and writes occur only within restricted ranges

• Redundancy checks made on duplicate copies of data stored at different locations
to detect memory mutilation

• Point–to/point–back linkage checks, key checks

• Consistency checks between logically related blocks of data; for example, in one
data block a resource may be marked as idle while in another data block it may
be marked as in use

• Validity checks on return values from function calls.

Asserts may cause a number of messages to be printed. See "Receive Only Printer
Output," Section 5.1.2 for more detail.

5.1.1.2 Assert Handler

5.1.1.2.1 Assert Handler Definition

The assert handler is the software called to process an assert. The assert handler is
responsible for the reporting and the recovery of an assert. The assert handler does
not correct errors directly. Each of the three types of asserts has a different assert
handler capable of performing different actions.

5.1.1.2.2 DCF Assert Handler

The DCF assert handler can do one or more of the following:

• Dump data relevant to the error. This includes process-related data and data
specified by the assert macro, including stack traces and stack frames.

• Invoke audits

• Initiate single process purges

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-1

• Initiate selective initialization

• Escalate/de–escalate the requested recovery action.

5.1.1.2.3 MANUAL ACTION Assert Handler

The MANUAL ACTION assert handler outputs a concise message describing the error,
dumping relevant data and calling for manual action. See "Receive Only Printer
Output," Section 5.1.2 for more detail.

5.1.1.2.4 RTA Assert Handler

The RTA assert handler analyzes the assert and dumps data relevant to the reported
error. See "Receive Only Printer Output," Section 5.1.2 for more detail.

5.1.1.3 Assert Macros

5.1.1.3.1 Assert Macros Description

Asserts are invoked via macros which interface with the assert handlers. The different
assert types are invoked with different macros as described here.

5.1.1.3.2 DCF Assert Macros

The assert macros used to invoke DCF asserts are:

AUASRTA This macro is used to format the basic assert information. The
assert output includes a stimulus message, a stack trace, two
stack frames (one for each of the two functions that precede the
point of assertion), and a register dump message. This is the
most common type of assert. This macro can:

• Schedule an audit
• Purge the running processes
• Cause a selective init.

This macro is given two pieces of information:
1. The first is a condition that should be true (i.e,. an

assertion). The assert will fire only when the condition is
false.

2. The second is the actual assert mnemonic used to identify
the specific error that has been detected and specifies
what action should be taken.

The macro call would be of the form:
AUASRTA(CONDITION,MNEMONIC);

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-2 Issue 5.00

ASSERTB1
ASSERTB2
ASSERTB3

These macros provide the same information as the AUASRTA
macro but also provide additional data specified by a list of
pointers. ASSERTB[123] will be found within a failure leg of
code and will contain up to three pointers to data. This data will
print out in Report Data messages. See "Receive Only Printer
Output," Section 5.1.2 for more detail. The ASSERT B macros
are available only in the OSDS environment.

These macros are given two, three, or four pieces of information
respectively:

1. The first is the assert mnemonic that identifies a specific
error.

2. The second, third, and fourth are pointers to pertinent
data. The data pointed to by each pointer is output by a
separate REPT DATA message.

The macro calls would be of the form:
ASSERTB1(MNEMONIC,ptr1);

ASSERTB2(MNEMONIC,ptr1,ptr2);

ASSERTB3(MNEMONIC,ptr1,ptr2,ptr3);

AUASRTC This macro is identical to the AUASRTA macro except that it will
also purge a specified non–running process.

This macro is given three pieces of information:
1. The first is a condition that should be true. The assert will

only fire when the condition is false.
2. The second is the assert mnemonic used to identify the

specific error that was detected.
3. The third is the process number of the process to be

purged.
The macro call would be of the form:
AUASRTC(CONDITION,MNEMONIC,PROCESS_NUMBER);

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-3

ASSERTD1
ASSERTD2
ASSERTD3

These macros are a combination of an ASSERT B and an
ASSERT C. They provide the ability to dump additional data
specified by a set of pointers plus the ability to purge a specified
non-running process.

These macros are given three, four, or five pieces of information:
1. The first is the assert mnemonic which identifies a specific

error.
2. The second is the process number of the process to be

purged.
3. The third, fourth, and fifth are pointers to pertinent data.

The macro calls would be of the form:
ASSERTD1(MNEMONIC,PROCESS_NUMBER,ptr1);

ASSERTD2(MNEMONIC,PROCESS_NUMBER,ptr1,ptr2);

ASSERTD3(MNEMONIC, PROCESS_NUMBER,ptr1,ptr2,ptr3);

5.1.1.3.3 MANUAL ACTION Assert Macros

Two macros are used for manual action asserts:

AUCFTASRT This macro will format one assert output message containing pertinent
data only. See "Receive Only Printer Output," Section 5.1.2 for more
detail. The source of the assert is indicated via a source file name and
line number within that source file.

This macro is given up to eleven pieces of information:

1. The first is the assert mnemonic.

2. The second is the format string of the desired output message
written in double quotes or a pointer to a character string.

3. The remaining nine define values or character strings to be printed
according to the corresponding formatting instruction in the format
string. If the information pieces are unused, they are specified as 0.

The macro call would be of the form:
AUCFTASRT(ASRT_NO,FORMAT_STRING,DATA1,...,DATA9);

AUCFTREFASRT
This macro will format one assert output message containing pertinent
data only. See "Receive Only Printer Output," Section 5.1.2 for more
detail. The source of the assert is indicated via a source file name and a
reference number.

This macro is given up to twelve pieces of information:

1. The first is a reference number to identify the assert location within
the source file.

2. The second is the assert mnemonic.

3. The third is the format string of the desired output message written
in double quotes or a pointer to a character string.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-4 Issue 5.00

4. The remaining nine define values or character strings to be printed
according to the corresponding formatting instruction in the format
string. If the information pieces are unused, they are specified as 0.

The macro call would be of the form:
AUCFTREFASRT(REF_NO,ASRT_NO,FORMAT_STRING,DATA1,...,DATA9);

5.1.1.3.4 RTA Assert Macros

The following two macros are used with RTA asserts:

RTRTGERR This macro is used by the RTA subsystem. It reports software errors
detected during the routing states of call processing.

The RTRTGERR macro is given three pieces of information:

1. The first is an error type (RTERRTYPE).

2. The second is an error cause.

3. The third is an enumeration of the type of data to be printed via the
RTDUMPDATA macro.

The macro call would be of the form:
RTRTGERR(ERROR_TYPE,ERROR_CAUSE,DATA_TYPE);

RTDUMPDATA
This macro will print data to the /log/log/CALLPLOG1 file on the AM.
The data may reside on the asserting processor or may be retrieved from
a remote processor.

The RTDUMPDATA macro is given four pieces of information:

1. The first is an enumeration indicating the type of the data (a list of
possible values can be found in the RTdumpdata.h header file).

2. The second is a pointer to the data, if the data resides on the
originating processor (otherwise this parameter must be 0).

3. The third is the process ID of the owner of the data to be dumped.

4. The fourth is the processor number of the originating processor.

The macro call would be of the form:
RTDUMPDATA(DATA_TYPE,DATA_PTR,PROCESS_ID,ORIGINATING_PROCESSOR);

5.1.2 RECEIVE ONLY PRINTER OUTPUT (ROP)

5.1.2.1 ROP Messages

Asserts may print a number of messages on the ROP. Refer to the 235-600-500,
Asserts Manual and the 235-600-750, Output Messages Manual for more information
on these output messages.

5.1.2.2 Defensive Check Failure (DCF) Asserts

For DCF asserts, some (or all) of the following output messages may be included:

Stimulus Message —
INIT:AM-LVL,

INIT:SM-LVL-EVENT,

INIT:CMP-LVL

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-5

Stack Trace —
REPT:STACK-TRACE

Stack Frame —
REPT:STACK-FRAME

Data Dump —
REPT:DATA

Register Dump —
REPT:REGISTER

PMDB Dump —
REPT:SM-ENV-SRC

5.1.2.3 MANUAL ACTION Asserts

MANUAL ACTION asserts print one message to the ROP that contains all information
related to the assert (REPT:MANUAL).

5.1.2.4 RTA Asserts

RTA asserts will print a REPT:RTA-DCF-RE message to indicate the source of the
assert and data related to the assert. In addition, one or more REPT:DATA-DUMP
messages may be printed indicating that additional information has been printed in
the /log/log/CALLPLOG1 file on the AM.

The information printed in the CALLPLOG1 file will contain a header and a
hexadecimal dump of the data structure listed in the header. You will need to refer to
a header template to more easily identify the exact mapping of values to the data
structure. Refer to Exhibit 5.1-1 for the following description:

EVENT This is the event number of the data dump report that notified the
technical personnel that this dump would occur. Note that multiple
dumps can occur from the same event (and processor).

PCR This is the processor on which the data dump report was generated. This
field and the event number are used to map this dump to the information
printed on the ROP from the data dump report.

TYPE This is the type of dump and identifies the hexadecimal dump that
follows. Note that some of the dump types need more than 1 segment
since RTDUMPDATA can print only 228 bytes of data per segment. In this
example, the RT_MSG dump takes 2 segments. Multiple segment dumps
will always be contiguous. The following list shows a few examples of the
type of data that may be dumped. Check the RTdatadump.h header file
for a complete list.

• PCBLA (Process Control Block Linkage Area)

• PORTLA (Port Linkage Area)

• PCB (Process Control Block)

• CCBCOM (Channel Control Block)

• COUPLER (Port to Process Coupler)

• RDBLK (RTA Routing Data Block)

• CFBLK (RTA Call Flow Data Block)

• GPBLK (RTA Group Data Block)

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-6 Issue 5.00

• RT_MSG (MGRT_GEN message)

• LGMSG (any large message)

• MESSAGE (any message or data)

Each hexadecimal dump segment will always contain 228 bytes, even when the data
structure being dumped is not that large. In these cases, the remaining bytes do not
contain any useful data.

Exhibit 5.1-1 — Example of CALLPLOG1 Output
S570-68 93-08-28 13:53:22 000665 CAPR_LOG
RTDUMPDATA GENERATED

CALL PROCESSING ERROR DUMP EVENT=323 PCR=2 TYPE=RT_MSG
00181011 04070000 00214000 00480000 04000000 00000000 00000000 30393131
00000000 00000000 00000000 78010602 B5F30200 2775220E 00000000 00000000
00000000 00000000 00000000 03A50251 03FF03FF 00000000 02000000 00080000
00008800 8A000002 03A50251 00D00002 8D010000 20144102 4000000A 001F0012
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0B5F0033 30308000 00000000 00000060 00000007 FE000000 00000000 00000000
00000000 00000000 0EE00000 42100124 040000A0 42100124 040000A0 00000000
00000000

S570-68 93-08-28 13:53:29 000665 CAPR_LOG
RTDUMPDATA GENERATED

CALL PROCESSING ERROR DUMP EVENT=323 PCR=2 TYPE=RT_MSG
00000000 00000000 00000000 00000000 00000000 00000004 00000000 02000003
0005326B 01570000 00000000 07000000 00000000 00000000 4C000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 03A50251
010C0700 8A130000 00000000 00000000 00000000 00000000 00000000 00000101
000C0A39

S570-68 93-08-28 13:54:10 000665 CAPR_LOG
RTDUMPDATA GENERATED

CALL PROCESSING ERROR DUMP EVENT=323 PCR=2 TYPE=PCBLA
03A51800 01687804 00000000 00000000 00600000 00010000 00000000 00110000
00000000 FFFF0000 FFFF0000 8D013102 00D00002 FFFF0000 B4C5518A 00001068
01080010 008401F3 06000000 00000426 02AE0002 FFFF0000 FFFC8026 00020000
00000000 00000000 00000000 00000000 00000000 01EC0000 00620000 00000000
00FF00FF 00790079 00FF00FF 8D010000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 03A50251
010C0700 8A130000 00000000 00000000 00000000 00000000 00000000 00000101
000C0A39

5.1.3 STACK TRACE DEBUGGING

5.1.3.1 Stack Formatting Overview

To analyze a stack trace (e.g., an assert), the relationship between the printed stack
frame and the actual stack frame in the processor’s memory must be understood. Each
function that is running on the AM, SM, or CMP is allotted a section of memory to use
for the operation at hand. This allotted portion of memory is called a stack frame. The
stack frame messages that are printed on the ROP are formatted printouts of these
memory allocations.

The AM stores stack frames differently than the SM and CMP. (The CMP uses the
MC68030 processor, which is a member of the same processor family as the SM.)
Because of these distinctions, the data printed in a stack frame message must be
interpreted differently. The variations between the AM and SM/CMP stacks are shown
in Table 5.1-1.

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-7

Table 5.1-1 — 3B2xD Processor vs. MC68XXX Processor Stack Variations

AM Memory SM & CMP Memory
Stacks grow from lower to higher
addresses

Stacks grows from higher to lower
addresses

Registers are saved in the stack frame
between the arguments and the local
variables

Registers are saved at the "top" of the
stack frame (toward the lower addresses)
if they are needed

Processor uses an argument pointer
indicating the first argument in the stack
frame

Processor does not use an argument
pointer

Since the AM/SM/CMP processors/compilers have built in minimum sizes of data that
may be pushed on to the stack, some arguments are "type converted" to meet this
requirement when they are pushed. Specifically, arguments that are smaller in size
than an integer become the size of an integer (e.g., arguments that are declared to be
of type char are padded to take the space of an integer). In the AM an integer is 4
bytes and in the SM/CMP it is 2.

5.1.3.2 AM Stack Layout (3B2XD Processor)

The stack frame output message has three sections. The function address section
contains the address of the function. The parameters and local data sections contain
the arguments passed to the function and the function’s local variables. The contents
of these two sections are discussed here in more detail.

The data in the parameters section is mapped onto the stack in 4-byte segments
starting with the first argument. Since the 3B2XD processor memory stack, Figure
5.1-1, is populated from lower to higher addresses, the first argument is at a lower
address than the last argument. If the C program statement is

FUNCTION(ARG1,ARG2,ARG3,ARGn)

then ARG1 would be mapped onto the 3B2XD processor memory stack followed
sequentially by ARG2, ARG3, and ARGn.

The 3B2XD processor architecture has a register dedicated for a pointer to the first
argument in the stack frame. This is known as the argument pointer.

When the assert handler prints the information for the parameters section of the stack
frame printout, it uses the argument pointer as a reference and prints toward higher
addresses for 40 bytes. Since the 3B2XD processor stack is populated from lower to
higher address, the first 4 bytes in the parameters section are the first argument
passed to the function. The next 4 bytes is the second argument and so on for 40
bytes. The stack frame may of course have more than 40 bytes worth of arguments,
but the stack frame printout is limited to 40 bytes by the assert handler.

The local data section of the stack frame printout contains the function’s local
variables. This data can be any allowable C declaration type (array, structure,
enumeration, long, short, etc.). Because the 3B2XD processor stack is populated
from lower to higher addresses, the local variables in the stack frame message
printout will appear in the same order as they appear at the beginning of each source
function listing. The 3B2XD processor architecture places a few requirements on the
population of the 3B2XD processor memory stack; these are that structures and
unions are aligned on 4-byte boundaries, and shorts are aligned on even-byte

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-8 Issue 5.00

boundaries. Longs, pointers, and integers are aligned on 4-byte boundaries. For a
complete listing of data types and sizes, see Table 5.1-2.

For example, the source function listing is:
FUNCTIONB (ARG1,ARG2,ARG3)
char ARG1;
short ARG2;
long ARG3;
{
short a;
long b;
struct ctag {

char d;
long e;

}c;
}

The assert handler prints the data from the 3B2XD processor stack by using another
register called the frame pointer as a reference. The frame pointer points to the first
local variable. The assert handler will print for 160 bytes, even though there may be
more than that amount of data. Since the assert handler uses the frame pointer as a
reference, and knowing that the 3B2XD processor memory stack is populated from low
to high, the first 2 bytes of the local data printed will contain the variable a from the
previous example. Following the variable a will be 2 bytes of zero followed by the
variable b using 4 bytes and starting on a 4-byte alignment since it is defined as a
long. The structure ctag follows and will contain 1 byte for the variable d a
character followed by 3 bytes of zero, to force alignment, followed by 4 bytes
containing the variable e. For a comprehensive view of the stack, see Figure 5.1-1.

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-9

Table 5.1-2 — 3B2XD and MC68XXX Processor Family Data Sizes and Alignments

3B2XD Processor Family
Data Type Size Memory Alignment

char 1 byte no alignment
short 2 bytes 2 byte boundary
int 4 bytes 4 byte boundary
long 4 bytes 4 byte boundary
pointer 4 bytes 4 byte boundary
structure 4 byte multiple 4 byte boundary
union 4 byte multiple 4 byte boundary
array same as element type same as element type
bitfield up to the maximum of type declared same as declared type
Data inside structures and unions:
long 4 bytes 4 byte offset
pointer 4 bytes 4 byte offset
structure 4 byte multiple 4 byte offset
union 4 byte multiple 4 byte boundary
bitfield up to the maximum of type declared same as declared type

MC68XXX Processor Family
Data type Size Memory Alignment

char 1 byte no alignment
short 2 bytes 2 byte boundary
int 2 bytes 2 byte boundary
long 4 bytes 2 byte boundary
pointer 4 bytes 2 byte boundary
structure 4 byte multiple 2 byte boundary
union 4 byte multiple 2 byte boundary
array same as element type same as element type
bitfield 2 bytes 2 byte boundary
Data inside structures and unions:
long 4 bytes 4 byte offset
pointer 4 bytes 4 byte offset
structure 4 byte multiple 4 byte offset
union 4 byte multiple 4 byte offset
bitfield 2 bytes 2 byte boundary

Fill or padding is generated by the compiler to align the variables on these
boundaries.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-10 Issue 5.00

5.1.3.3 SM/CMP Stack Layout (MC68XXX Processor Family)

The SM and CMP stacks (MC68XXX processor family) grow from the higher addresses
toward the lower addresses. This difference between the AM and SM/CMP memory
stacks can make understanding the SM stacks more difficult. The SM assert stack
frame message printout will still contain a parameter and local data section, but the
data therein must be interpreted differently.

The MC68XXX processor family frame pointer, Figure 5.1-2, is used to access both the
local data (negative offset) and the parameters (positive offset). To support functions

FunctionB (ARG1,...,ARGn)
char ARG1;
short ARG2;
long ARG3;
{

short a;
long b;
struct ctag {

char d;
long e;

}c;
}

Local Variables
(Local Data)

c

Old Frame Pointer

Old Argument Pointer

Old Program Address

ARGn

3B20D MEMORY
STACK

Growth

Function B

Function C

Called by function B

Low
Address

High
Address

4 BYTES

Arguments
(Parameters)

.

.

.

ARG3

High
Address

4 BYTES

Unused

%R8

.

. Register
Variables

.

%R0

%Argument
Pointer

Low
Address

ARG1

ARG2

3B20D STACK
FRAME

%FP - 40

%Frame
Pointer (%FP)

%FP - 52

%FP - 4

%FP + 4

%Stack
Pointer

a

b

4 Bytes

LOCAL DATA: 00000000 00000000 00000000 00000000 . . . 00000000

(ARGn) (ARG3) (ARG2) (ARG1)
PARAMETERS: 00000000 00000000 00000000. . . 00000000
FUNC ADDR: H’1234

REPT AM STACK FRAME ENV ETWAS SRC DCF EVENT=1234

(short a) (long b) (long e)(char d)

(structure c)

Figure 5.1-1 — AM Assert Formatting

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-11

with a variable number of arguments, the arguments are pushed onto the stack from
right to left. This ensures that the first argument is always at a fixed offset (%FP+8)
from the frame pointer.

Unlike the 3B2XD processor stack frame, arguments are mapped onto the SM stack
frame in reverse order. For example:
FUNCTION (ARG1,ARG2,ARG3,ARGn)

ARGn would be placed in the SM stack frame at the highest address followed by ARG3
and so on towards the lower addresses. This difference does not affect how the
arguments will appear in the parameters section of the stack frame printout because
of the way they are extracted from the SM stack frame. (See Figure 5.1-2.) The assert
handler uses the frame pointer plus 8 bytes and takes the data out of SM stack frame
towards higher addresses for 40 bytes. This results in the arguments being printed in
the same order that they appear in the source function listing, (e.g., ARG1, ARG2,
ARG3, ARG4).

The SM stack, like the 3B2XD processor memory stack, has certain rules for the
alignment of the local data variables.

• All structures and unions must be aligned on 2-byte boundaries and be a
multiple of 4 bytes in size

• All long (4-byte) variables must be aligned on even-byte boundaries

• All longs, pointers, unions, and structures within structures or unions
must be aligned on 4-byte offsets.

Enumerations usually have less than 256 values, which could be stored in 1 byte. So
in the 5ESS switch, the size of an enumeration is controlled by the range of internal
values. A range of 0-255 is stored in a char, values from −32768 to +32768 are stored
in a short, and larger values are stored in a long. For a complete listing of data
types and memory alignment, consult Table 5.1-2.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-12 Issue 5.00

When the assert handler extracts the data from the SM stack frame to be printed, it
starts with the frame pointer and extracts toward lower addresses for a total of 180
bytes, one byte at a time. This causes the data in the printed stack frame message to
be formatted in a way that must be deciphered differently from the local data in the
AM stack frame printout. This situation can be best understood by reviewing the
following example. (See Figure 5.1-3.)

In Figure 5.1-3 the local data section of the example function is represented as it
would appear on the stack and as it would appear on the ROP printout of the stack

4 bytes

REPT SM STACK FRAME ENV ETWAS SRC DCF EVENT=1234
FUNC ADDR: H’1234

PARAMETERS: 0000 0000 0000 0000 0000 0000. . . 0000 0000

(short a) (long b) (long e) (char d)

(structure c)

LOCAL DATA: 0000 0000 0000 0000 0000 0000 0000 0000 00000000

(ARG3) (ARGn)(ARG1) (ARG2)

{

} c;
long e;
char d;

struct ctag {
long b;
short a;

}

Function (ARG1, . . . , ARGn)

long ARG3;
short ARG2;
char ARG1;

TEMP 1

.

.TEMP n

4 BYTES

Stack
Pointer
(%A7)

%FP + 8

%FP - 4

Frame
Pointer (%FP)

.

Local Variables
(Local Data)

a

b

c

Register
Variables

%D6
.
.
.

%A4

Old Program Counter

Old Frame Pointer

Arguments
(Parameters)

ARG1

..

.

ARG2
ARG3

ARGn

Low
Address

High
Address

MC68000 Processor
Family Stack Frame

Function C

Called by Function B

Function B

Function A

Low
Address

High
Address

4 BYTES

MC68000 Processor
Family Stack

Growth

Figure 5.1-2 — SM Stack Frame Format

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-13

frame. The stack is 4 bytes across and the data section is filled by using negative
displacement from the frame pointer.

For the sake of discussion the value of the frame pointer will be 1000.

• The first variable, short a (which is 2 bytes in length), begins at the frame
pointer minus 2 bytes or at memory address 998. The size of the variable is
calculated by the switch and then the data are placed in the space allowed.

• The second variable, long b (which is 4 bytes in length), begins at the frame
pointer minus 6 bytes or at memory address 994.

• The third variable is a structure. The size of the structure is calculated and
then the values are placed on the stack from lower to the higher addresses. It is
important to keep in mind that data inside a structure will actually be placed
in memory from lowest to highest address though variables are allocated space
from higher to lower.

The structure requires a total of 8 bytes though the actual contents of the
structure contains 5 bytes. One byte for the char d and 4 bytes for the long
e. (Every structure must be a multiple of 4 bytes.) The beginning address of
the structure c from our example would be 986. The char d would be at 986.
The long e would begin at 990, which is a 4-byte offset from the beginning of
the structure. The addresses 987, 988, and 989 would be padded with zeros.

The stack frame is built one byte at a time starting at one byte from the frame
pointer. The first byte from the frame pointer would be 999, the least significant bits
of the variable short a. The contents of that first byte according to our example
would be the numbers 34. The second byte contains the numbers 12. The third byte
contains the fourth byte of the variable long b. The fourth byte is placed onto the
stack first, then the third byte, then the second, and finally the first.

The output at the bottom of Figure 5.1-3 prints as 3412. To properly analyze this data
you must "swab" the bytes so that the proper content of the stack is ascertained. The
actual value would be 1234 when swabbing is completed.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-14 Issue 5.00

5.1.4 FAILING FUNCTION

To determine the function where the failure occurred, look at some of the information
that the stimulus message provides.

Search through the ROP printout until you find all the information that is related to
this assert. The EVENT number is the key to this search and is the same for all
messages associated with this assert.

To get a rough idea of the failure, find the DEF-CHK-FAIL number in the 235-600-500,
Asserts Manual.

long e;
} c;

long b;
short a;

struct ctag {
char d;

long ARG3;

structure c long e

LOCAL VARIABLES

5 6 7 8 1 2 3 4

low
address

high
address

Frame Pointer -16

Frame Pointer -12

Frame Pointer -8

Frame Pointer -4

Frame Pointer

...

OLD FRAME POINTER

4 BYTES

5 6 7 8 1 2 3 4

0 0 0 0 1 2 3 4

4 bytes

long e

SM STACK FRAME PRINTOUT

LOCAL DATA: 3412 7856 3412 7856 3412 0000 0012

char d

structure c

short a long b

1 2 0 0

short a

..

...

long b

long bstructure c long e

structure c
char d

{

}

Function (ARG1, . . . , ARGn)
char ARG1;
short ARG2;

Figure 5.1-3 — SM Local Data Stack Frame

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.1-15

To delve deeper into the problem, analyze the C code and the disassembly code for this
failure. Look up the failing function using the FAILING-ADDR and the on-line listings.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.1-16 Issue 5.00

5.2 ASSERT ANALYSIS EXAMPLES

5.2.1 ASSERT ANALYSIS EXAMPLE — AM

For an example of a AM assert analysis see "EXAMPLE - Using the Program
Listings," Section 2.6.

5.2.2 ASSERT ANALYSIS EXAMPLE — SM

This example describes the method used to analyze an SM assert. It is not intended to
reflect the current 5ESS® switch code, assert descriptions or data layout.

1. From the stimulus message we need to get the failing address, the processor
(SM), and the defensive check failure. The assert printout, Exhibit 5.2-1, shows
this information as follows:

• INIT SM=96,1: An SM assert, the SM number is 96 and the active side is
side 1.

• Environment: This is a loaded SM. To find the SM type, see OP:SYSSTAT in
the 235-600-700, Input Messages Manual and 235-600-750, Output Messages
Manual.

• FAIL-ADDR: This is used to find the failing function. The value from the
sample assert is h’4e46d8. Note that this information is also found in the
STACK TRACE message as the first address in the stack trace.

• Defensive check fail (DCF) number is 26204. Use the 235-600-500, Asserts
Manual to find the associated assert mnemonic and description. In this
example the mnemonic is SMC_DBCDFI_MAP and the assert description says
SMrsmcdfh process unable to read a tuple from the relation
RLCDFI_MAP.

Exhibit 5.2-1 — SM Assert Printout
S570-66 90-01-11 10:54:16 000630 LSWRPIN E U.BWM89-0063
INIT SM=96,1 LVL=RPI EVENT=25 COMPLETED

DEF-CHK-FAIL=26204 NO-AUD-SCHED
SW-ERR FAILING-ADDR=H’4e46d8 SM-MODE=NORMAL TIME=53:34:9
PROCESS: BG=80,0,H’4e3a14,RPI CM=NONE, FG=NONE,,

S570-66 90-01-11 10:54:40 000646 LSWRPIN E U.BWM89-0063
REPT SM=96 STACK TRACE ENV=OSDSM SRC=DCF EVENT=25

USER: 004E46D8 004E3E38 004E3CA6 004E3A2E

S570-66 90-01-11 10:54:48 000650 LSWRPIN E U.BWM89-0063
REPT SM=96 STACK FRAME ENV=OSDSM SRC=DCF EVENT=25

FUNC ADDR: H’4e46d8
PARAMETERS: 0010A026 00000001 000A1FC8 00020000 00000005

0001CB01 000A004E 60000094 0610A026 001EEAC2
LOCAL DATA: C0006000 18003000 00303030 80210033 30204554

4953202D 20454241 4C030000 00007E1F 0A004502
BE3E4E00 AA1F0A00 38BC5A00 00000000 26050000
60A030A0 30000000 000000C0 00030000 00000000
0000002F 02000800 00000000 0000531F 0A001400
2F00D6F2 5100761F 0A000000 00000000 00000000
00000000 000080A0 00000000 0000005C 26051CFB
5A007E1F 0A0084E5 61000C37 29006C1F 0A00D0CA
00000100 010124E0 7500FFFF 03000000 0000DA24

S570-66 90-01-11 10:54:57 000654 LSWRPIN E U.BWM89-0063
REPT SM=96 STACK FRAME ENV=OSDSM SRC=DCF EVENT=25

FUNC ADDR: H’4e3e38
PARAMETERS: 000A1FEE 004E3A2E 00000000 000A1FFC 001E89C2

FFFD0000 0000000A 1FFC0000 00000000 00000000

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-1

LOCAL DATA: 00014544 FFFF8352 6F021100 2F00C2EA 1E0026A0
10069400 00604E00 0A0001CB 01000500 00000000
0200C81F 0A000100 000026A0 1000383E 4E00DA1F
0A00C000 60001800 30000030 30308021 00333020
45544953 202D2045 42414C03 00000000 7E1F0A00
4502BE3E 4E00AA1F 0A0038BC 5A000000 00002605
000060A0 30A03000 00000000 00C00003 00000000
00000000 002F0200 08000000 00000000 531F0A00
14002F00 D6F25100 761F0A00 00000000 00000000

S570-66 90-01-11 10:55:05 000658 LSWRPIN E U.BWM89-0063
REPT SM=96 REGISTER DUMP ENV=OSDSM SRC=DCF EVENT=25

REGISTER DATA= 000A1E96 000A1DE2 00000000 00000000
00000000 00000000 000A1E74 000A1E2A
0000FF9B 00000002 00000001 0002BF20
00000000 00000001 0000A080 00000000

S570-66 90-01-11 10:55:13 000662 LSWRPIN E U.BWM89-0063
REPT SM=96 DATA=DCF-DATA,0 ADDR=H’a1f1c ENV=OSDSM SRC=DCF EVENT=25

A0800000 00000000 00000000 00000000 0000000A 1F760051 F2D6002F 0014000A
1F530000 00000000 00080002 2F000000 00000000 00000300 C0000000 00000030
A030A060 00000526 00000000 005ABC38 000A1FAA 004E3EBE 0245000A 1F7E0000
0000034C 41424520 2D205349 54452030 33002180 30303000 00300018 006000C0
000A1FDA 004E3E38 0010A026 00000001 000A1FC8 00020000 00000005 0001CB01

2. With this information we should be able to find the failing function using the
UPD:FTRC method.

See the 235-600-700, Input Messages Manual and 235-600-750, Output Messages
Manual for a description of UPD:FTRC. For this example,
upd:ftrc:sm=96,addr=h’4e46d8 was used to obtain the following output:
UPD FTRC REPT

SM=96, CONFIG=LOADED
OBJECT_FILE=/no5text/im/smtxt/IM.out

ADDRESS FUNCTION START SIZE OFFSET TV FILE SYMINDEX
––––––- –––––––– ––––––- –––––––– –––––– ––––- –––––––––––––– ––––––––
4e46d8 SMiclvco 4e4630 11a 54 8862 SMrsmcdfh_c.c [24038]

The offset added to the starting address of the disassembly code (Exhibit 5.2-2)
will provide the location of the failure.

h’34e6 Starting address of disassembly code.
+ h’54 Offset.
–––––––
h’353a Location in disassembly code.

3. Use the on-line listings as described in "EXAMPLE - Using the Program
Listings," Section 2.6 to get the disassembly and C listings for the function.

(See Exhibit 5.2-2 and Exhibit 5.2-3 for breakpoint line numbers, the
disassembly and the program code for this example.)

The failing address is normally the address of the instruction following the
assert which fired. The failing address under these circumstances will be one
instruction less than the failing address. This rule of thumb may not hold true
when register variables are present or when optimization has occurred. See
"Memory Configuration," Section 4.2.4, for more detail on optimization. In this
case, when we look into the disassembly code we find that line [32] is the line
number of the failing address. The C code shows that the error detected was
caused by a data base read error. Since it is a type ASSERTB1 assert, the second
element is a pointer to the address where the data dump will begin.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.2-2 Issue 5.00

Exhibit 5.2-2 — Disassembly Code for the Function SMiclvco
34e6: 4e56 ffae link %fp,$–0x52
34ea: 48e7 1020 moveml <%d3,%a2>,–(%sp)

[18] 34ee: 202e 0008 movel 0x8(%fp),%d0
34f2: 5980 subl $0x4,%d0
34f4: 2440 moveal %d0,%a2

[21] 34f6: 302e 000c move 0xc(%fp),%d0
34fa: 0240 ff01 and $–0xff,%d0
34fe: 0040 0080 or $0x80,%d0
3502: 3d40 ffb2 move %d0,–0x4e(%fp)

[26] 3506: 3d6e ffb2 ffe0 move –0x4e(%fp),–0x20(%fp)
[27] 350c: 41ee ffd8 lea –0x28(%fp),%a0

3510: 2f08 movel %a0,–(%sp)
3512: 3f3c 0041 move $0x41,–(%sp)
3516: 4eb9 0000 0000 jsr 0x0
351c: 5c8f addl $0x6,%sp
351e: 4a40 tst %d0
3520: 6738 beq 0x38 <355a>

[32] 3522: 41ee ffd8 lea –0x28(%fp),%a0
3526: 2d48 ffae movel %a0,–0x52(%fp)
352a: 41ee ffae lea –0x52(%fp),%a0
352e: 2f08 movel %a0,–(%sp)
3530: 3f3c 665d move $0x665d,–(%sp)
3534: 4eb9 0000 0000 jsr 0x0
353a: 5c8f addl $0x6,%sp
353c: 6078 bra 0x78 <35b6>

[67] 353e: 3f2e 000c move 0xc(%fp),–(%sp)
3542: 2f2e 0008 movel 0x8(%fp),–(%sp)
3546: 4eb9 0000 0000 jsr 0x0
354c: 5c8f addl $0x6,%sp

[68] 354e: 422e fffa clrb –0x6(%fp)
[69] 3552: 3d7c 00ca fff8 move $0xca,–0x8(%fp)

3558: 606c bra 0x6c <35c6>
[36] 355a: 4240 clr %d0

355c: 102e ffe6 moveb –0x1a(%fp),%d0
3560: ec48 lsr $0x6,%d0
3562: 4a40 tst %d0
3564: 6712 beq 0x12 <3578>

[41] 3566: 4243 clr %d3
3568: 0c43 001e cmp $0x1e,%d3
356c: 6c2e bge 0x2e <359c>

[43] 356e: 1d92 30b7 moveb (%a2),–0x49(%fp,%d3)
[44] 3572: 528a addl $0x1,%a2
[45] 3574: 5243 add $0x1,%d3

3576: 60f0 bra –0x10 <3568>
[53] 3578: 206e 0008 moveal 0x8(%fp),%a0

357c: 4240 clr %d0
357e: 1028 000d moveb 0xd(%a0),%d0
3582: 4a40 tst %d0
3584: 6738 beq 0x38 <35be>
3586: 0c40 0001 cmp $0x1,%d0
358a: 67b2 beq –0x4e <353e>

[77] 358c: 4243 clr %d3
358e: 6006 bra 0x6 <3596>

[79] 3590: 1d92 30b7 moveb (%a2),–0x49(%fp,%d3)
[80] 3594: 5243 add $0x1,%d3

3596: 0c43 001e cmp $0x1e,%d3
359a: 6df4 blt –0xc <3590>
359c: 3d6e ffb2 ffb4 move –0x4e(%fp),–0x4c(%fp)
35a2: 1d7c 001e ffb6 moveb $0x1e,–0x4a(%fp)
35a8: 41ee ffb4 lea –0x4c(%fp),%a0
35ac: 2f08 movel %a0,–(%sp)
35ae: 4eb9 0000 0000 jsr 0x0
35b4: 588f addl $0x4,%sp

[97] 35b6: 4cdf 0408 moveml (%sp)+,<%d3,%a2>
35ba: 4e5e unlk %fp
35bc: 4e75 rts

[58] 35be: 422e fffa clrb –0x6(%fp)

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-3

[59] 35c2: 426e fff8 clr –0x8(%fp)
[87] 35c6: 3d6e ffb2 fff4 move –0x4e(%fp),–0xc(%fp)
[88] 35cc: 1d7c 000b fff6 moveb $0xb,–0xa(%fp)
[89] 35d2: 206e 0008 moveal 0x8(%fp),%a0

35d6: 1d68 000f fffc moveb 0xf(%a0),–0x4(%fp)
[91] 35dc: 3d7c 0801 fff0 move $0x801,–0x10(%fp)
[92] 35e2: 422e fff2 clrb –0xe(%fp)
[93] 35e6: 1d7c 000c fff3 moveb $0xc,–0xd(%fp)
[95] 35ec: 41ee ffec lea –0x14(%fp),%a0

35f0: 2f08 movel %a0,–(%sp)
35f2: 41ee ffdc lea –0x24(%fp),%a0
35f6: 2f10 movel (%a0),–(%sp)
35f8: 4eb9 0000 0000 jsr 0x0
35fe: 508f addl $0x8,%sp
3600: 60b4 bra –0x4c <35b6>

Exhibit 5.2-3 — C code for the Function SMiclvco
@FUNCTION: SMiclvco

/*
* Name: SMiclvconex()
*
* Abstract: Handles verification of the connectivity exercise
* acknowledgement message received over an RCL.
*
* Usage: void
* SMiclvconex(msg_ptr, rclname)
* SMCDFHMSG *msg_ptr;
* DMCIRCUIT rclname;
*
* Parameters: *msg_ptr – pointer to message buffer
* rclname – RCL name that message was received on
*
* Externals: none
*
* Returns: void
*
* Description: Handles the reception of the connectivity exercise ack
* message over an RCL. It verifies that the test is valid
* and forwards the results to the MRA terminal process
* currently working on the RCL. If errors are detected,
* appropriate error routines are called.
*
* Calls: SMllaerrchk() – print ROP message concerning
* connectivity failure
* DBfrdtup() – read a data base tuple
* SMbad_ddl() – sends a "bad ddl" msg to PERFR
*
* Macros: ASSERTB1() – assert
* OSSENDMSG() – send an osds message to another process
* SMRCL2FAC() – translate RCL name to CFAC name.
*/

void
SMiclvconex(msg_ptr, rclname)
SMCDFHMSG *msg_ptr;
DMCIRCUIT rclname;
{

struct {
OSMSGHEAD msghead;
struct mgCDFH2MRA text;

} mramsg; /* outgoing message buffer */
struct rlSMEST smest; /* local SMEST tuple buffer */
struct mgDFIHMSG outmsg; /* buffer for PERFR msg*/
DMCIRCUIT cfac_name; /* CFAC internal name */

register char *ddlptr; /* DDL message pointer*/
register short i;
/* msg_ptr is a pointer to x bytes (x = CMSZDDLDATA) of */

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.2-4 Issue 5.00

/* text sent by CMdfimsg. There are 4 bytes of header info */
/* prior to this, thus we set the pointer back 4 bytes. */

[18] ddlptr = (char *)msg_ptr – 4;

/* derive the internal CFAC circuit name */
[21] cfac_name = SMRCL2FAC(rclname);

/* verify that MRA has an active terminal */
/* process waiting for this message */

[26] smest.unit_id = cfac_name ;

[27] if (DBfrdtup(RLSMEST, &smest) != GLSUCCESS) {

/* data base read error – assert */
/* can’t do anything else here */

[32] ASSERTB1(SMC_DBSMEST, &smest);
return;

}

[36] if (smest.stat_act != DBBUSY) {

/* if circuit isn’t busy, no TP active on */
/* it - format and send bad ddl msg to PERFR */

[41] for (i = 0; i < DDL_MSG_SIZE; i++) {

[43] outmsg.ddl_msg[i] = *ddlptr;
[44] ddlptr++;
[45] }

outmsg.unit_id = cfac_name;
outmsg.num_bytes = sizeof(outmsg.ddl_msg);
SMbad_ddl(&outmsg);
return;

}
/* so far so good - look at message to see if test passed */

[53] switch (msg_ptr->errcode) {
case SMLLANOERR:

/* no errors found */

[58] mramsg.text.result.resp = SMCMPL;
[59] mramsg.text.result.info = SMNUL;

break;

case SMLLACONERR:
/* we have a connection failure - */
/* call function to print ROP message */

[67] (void) SMllaerrchk(msg_ptr, rclname);
[68] mramsg.text.result.resp = SMCMPL; /* COMPLETED */
[69] mramsg.text.result.info = SMRSM23; /* TST OF FAC FAILED */

break;
default:

/* should be no other results coming here */
/* - format and send bad ddl msg to PERFR */

[77] for (i = 0; i < DDL_MSG_SIZE; i++) {

[79] outmsg.ddl_msg[i] = *ddlptr;
[80] }

outmsg.unit_id = cfac_name;
outmsg.num_bytes = sizeof(outmsg.ddl_msg);
SMbad_ddl(&outmsg);
return;

}

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-5

[87] mramsg.text.cfac_name = cfac_name;
[88] mramsg.text.verb = SMTEST;
[89] mramsg.text.serial = msg_ptr->serial;
[91] mramsg.msghead.type = MGCDFH2MRA;
[92] mramsg.msghead.priority = 0;
[93] mramsg.msghead.length = sizeof(mramsg.text);

[95] OSSENDMSG(smest.tp_pid, &mramsg);
return;

[97] }

4. Line [32] in the source code is an assert macro that is passed two
arguments. Line [32] in the source code is as follows:
[27] if (DBfrdtup(RLSMEST, &smest) != GLSUCCESS) {

/* data base read error - assert */
/* can’t do anything else here */

[32] ASSERTB1(SMC_DBSMEST, &smest);
return;

}

The first argument is SMC_DBSMEST and the second is &smest (the
address of the structure smest).

The assert code with mnemonic SMC_DBCDFI_MAP, in this example, says
SMrsmcdfh process unable to read a tuple from the relation
RLCDFI_MAP. Given the assert message and the second element of the
assert itself, it can be determined that the structure smest contains
erroneous data (i.e. the key, smest.unit_id or cfac_name, used to read
the desired tuple is not valid). The data can be analyzed by determining
how the data is laid out on the stack.

5. The stack builds from higher to lower addresses unless it is a structure.
In a structure the size of the structure is determined first, next the
amount of space needed for the structure is allocated, and then the
contents of the structure are pushed onto the stack from lower to higher
addresses.

This list shows an example of the construction of the first two local
variables, the structure mramsg and the structure smest. This is not
necessarily how these structures are currently laid out.

mramsg: msghead: from: procno short 2
[OSMSGHEAD] [OSPID] pcrid uchar 1

uniq uchar 1

type ushort 2
priority uchar 1
length uchar 1

text: cfac_name ushort 2
[MGCDFH2MRA] verb enum 1

padding 1

result: info enum 2
[DMMRARTVAL] resp enum 1
serial uchar 1

mramsg = 15 bytes + 1 byte of padding

Note: To follow the header trail used in this example to construct the structure
layout, see Appendix A6.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.2-6 Issue 5.00

smest: orig_pid: procno short 2
[OSPID] pcrid uchar 1

uniq uchar 1

tp_pid: procno short 2
[OSPID] pcrid uchar 1

uniq uchar 1

unit_id ushort 2
msgtype ushort 2
atpcount uchar 1
errorblk uchar 1
stat_act enum 2 bits
bas_stat enum 6 bits
qual enum 2 bits
qual_2 enum 6 bits
transient enum 1 bit
dgstat enum 3 bits
qual_1 enum 4 bits
mccupd enum 1 bit
rexinh enum 1 bit
progflag enum 1 bit
state enum 2 bits
quarstate enum 3 bits
pinhtype enum 2 bits
ais_alm enum 1 bit
ylw_alm enum 1 bit
red_alm enum 1 bit
iatouch enum 1 bit

smest = 18 bytes and 6 bits + 10 bits of padding

Note: To follow the header trail used in this example to construct the structure
layout, see Appendix A6.

The variable rlSMEST is a relation. To determine the data structure of the relation,
look at the definition for this relation in the 235-600-2xx, Dynamic Data Manual. The
types DMMRAVERB, DMMRARTVAL, and DMMRAINFO are enumerations. The number of
bits used for these types can be located in the 235-600-2xx, Translations & Dynamic
Data Domain Descriptions.

Given this data construction, the stack would be organized as follows. Remember that
in the MC68XXX processor, data is placed onto the stack from higher to lower address.
(See Figure 5.2-1.)

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-7

When the data is taken from the stack and dumped onto the stack frame, it is taken
one byte at a time. At this point, you must swab the bytes to make the data useful.
Given this stack frame:
S570–66 90–01–11 10:54:48 000650 LSWRPIN E U.BWM89–0063
REPT SM=96 STACK FRAME ENV=OSDSM SRC=DCF EVENT=25
FUNC ADDR: H’4e46d8
PARAMETERS: 0010A026 00000001 000A1FC8 00020000 00000005

0001CB01 000A004E 60000094 0610A026 001EEAC2
LOCAL DATA: C0006000 18003000 00303030 80210033 30204554

4953202D 20454241 4C030000 00007E1F 0A004502
BE3E4E00 AA1F0A00 38BC5A00 00000000 26050000
60A030A0 30000000 000000C0 00030000 00000000
0000002F 02000800 00000000 0000531F 0A001400
2F00D6F2 5100761F 0A000000 00000000 00000000
00000000 000080A0 00000000 0000005C 26051CFB

mramsg

qual_1 - 4

mccupd - 1
rexinh - 1
progflag

stat - 2
quarstate - 3

cfac_name verb padding

info

smest

Higher Addresses

Lower Addresses

resp serial

procno pcrid uniq

type priority length

procno pcrid uniq

procno pcrid uniq

unit_id msgtype

errorblk atpcount
stat_act - 2
bas_stat - 6

qual - 2
qual_2 - 6

transient - 1
dgstat - 3

pinhtype - 2
ais_alm - 1
ylw_alm - 1

red_alm - 1
iatouch - 1

padding - 10

Program Counter (PC)

Frame Pointer (FP)

Continuation of Stack

Figure 5.2-1 — Stack Grid

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.2-8 Issue 5.00

5A007E1F 0A0084E5 61000C37 29006C1F 0A00D0CA
00000100 010124E0 7500FFFF 03000000 0000DA24

This is an example of how the data would be analyzed:

Variable Size of variable Hexadecimal Swabbed Value
serial 1 byte C0 C0
resp 1 byte 00 00
info 2 bytes 6000 0060
padding 1 byte 18 18
verb 1 byte 00 00
cfac_name 2 bytes 3000 0030
length 1 byte 00 00
priority 1 byte 30 30
type 2 bytes 3030 3030
uniq 1 byte 80 80
pcrid 1 byte 21 21
procno 2 bytes 0033 3300

The assert analysis for the switching module is more complex due to the swabbing
that is necessary and therefore will require more time and patience to perform than
an administrative module assert analysis.

Apparently a smest tuple with key h’0030 does not exist. At this point, the switch
database should be checked to verify that the indicated tuple really does not exist and
then an investigation into whether the tuple should exist would follow. It is also
possible that the SMiclvconex() function passed erroneous data, or included wrong
options. Further study of the database and related functions using the above method
should lead to a root cause.

5.2.3 ASSERT ANALYSIS EXAMPLE — CMP

This analysis example is for a CMP assert. It does not necessarily reflect the current
CMP code, assert meaning, or data layout.

1. From the stimulus message we need to get the processor, the failing address,
and the defensive check failure (DCF). From the example, Exhibit 5.2-4, this
information is:

• INIT CMP=1–0: A CMP assert on PRIMARY processor.

• FAILING-ADDR=H’bceba7c: This value is used to find the failing function.
Note that this information is also found in the stack trace message as the first
address in the stack trace.

• DEF-CHK-FAIL=21412: The assert code with the mnemonic DBAC0012 which
says The Database Manager ran out of open relation blocks
(dbopndict). The opndc audit is scheduled to run.

2. With this information, we should be able to find the function using the
UPD:FTRC method. From this point on, the analysis of a CMP and SM assert are
the same (since both processors are from the MC68XXX processor family). See
the "Asserts Analysis Example — SM," Section 5.2.2.

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-9

Exhibit 5.2-4 — CMP Assert Printout
S570–262273 90–10–18 10:23:27 020328 ASRT FIVE1
INIT CMP=1–0 PRIM LVL=RPI EVENT=52 COMPLETED

DEF–CHK–FAIL=21412 AUD–SCHED=OPNDC ELEV–MODE
FAILING–ADDR=H’bceba7c CMP–MODE=NORMAL TIME=22:57.8
PROCESS: BG=70,27,H’bcbc6c6,RPI INTJ=NONE FG=NONE

S570–262273 90–10–18 10:23:35 020329 ASRTMON FIVE1
REPT CMP=1–0 PRIM STACK TRACE ENV=CMP–AP SRC=DCF EVENT=52

USER: 0BCEBA7C 343BD70E 0BCBC9B4 0BC6C5DA

S570–262273 90–10–18 10:23:43 020330 ASRTMON FIVE1
REPT CMP=1–0 PRIM STACK FRAME ENV=CMP–AP SRC=DCF EVENT=52

FUNC ADDR: H’bceba7c
PARAMETERS: 00000082 0BEDFCF4 0BEDFED6 00129DA0 00129DA0

00110082 03B00466 04CF0469 02F901EE 04C80382
LOCAL DATA: 205AE10B 6015E10B 27006600 4AFF2B01 F8053C34

0000C100 00000000 0500000B 405BE10B 0600ED0B
805AE10B A4537CBA CE0BD4FC ED0B9EFC ED0B0100
00000200 00008000 00000000 FFFF1100 00001109
00001109 00000000 00005AFC ED0B9EFC ED0B0000
00002A76 E20B2A76 E20B6015 E10B303C 001C3CD2
E20B9EFC ED0B9EFC ED0B0000 0000A453 54F9C70B
9EFCED0B 06000C00 2A76070B 4E06D70B 0500A453
9EFCED0B 9EFCED0B 00000000 E40B5E00 CF0B4EFC

S570–262273 90–10–18 10:23:51 020331 ASRTMON FIVE1
REPT CMP=1–0 PRIM STACK FRAME ENV=CMP–AP SRC=DCF EVENT=52

FUNC ADDR: H’343bd70e
PARAMETERS: 00050001 0BEDFEFA 0BEDFED6 0000C350 00000000

0BEDFFEE 00000001 BC950000 FF9B0BE1 5B400BEE
LOCAL DATA: 0100B645 D60BFE87 120060AA E60B01FF 9400ED0B

2A76E20B 805AE10B 00001300 7CDECE0B 92FEED0B
00000000 0059E10B 00C21100 727EE60B 100000C2
1100F6E1 CE0BCE0B 62FEED0B 7C001C00 B7001301
3A5AE00B 405BE10B E10BC653 E00B905B 465AE00B
905BE10B 13011600 1301286C 1C001301 D069C40B
42FEED0B 1C000000 800A1100 00000000 00007601
02CFCD0B 4EFE4203 6603A803 61006503 6C046703
1C051B05 34051A05 19053303 C7009302 38008C03

S570–262273 90–10–18 10:23:59 020332 ASRTMON FIVE1
REPT CMP=1–0 PRIM REGISTER DUMP ENV=CMP–AP SRC=DCF EVENT=52

REGISTER DATA= 0BE2D23C 1C003C30 0BE11560 0BE2762A
0BE2762A 00000000 0BEDFC9E 0BEDFC5A
00000000 00000911 00000911 00000011
FFFF0000 00000080 00000002 00000001

5.2.4 ASSERT ANALYSIS EXAMPLE — RTA DCF

5.2.4.1 RTA DCF ROUTING Error

The following examples illustrate the method used to investigate an RTA assert, but do
not necessarily reflect the current state of the 5ESS switch code. The RTA DCF
ROUTING error message contains the file name which allows the technical personnel to
use the program listings to analyze problems that occur during call processing.

Exhibit 5.2-5 — RTA RTRTGERR
S0-26504 93-03-13 11:43:01 22
REPT RTA DCF ROUTING ERROR EVENT=24 HSM 1 FILE RTnw_conn.c LINE 429

ERRTYPE INTERNAL CAUSE FAIL STATE NW_CONN SEQ RT_GENREQ
MSGTYPE RT_GEN REQTYPE 0 RETURN 3 RIC 0 RETRY 1
DN 2200570 NOC 1 SI 1 DI 10 PI 1 ROUTETYPE NULL RI 0
ORIGPORT H’b000 1 OPARTY 0 TERMPORT H’0 194 TPARTY 0
GRP 0 GRPTYPE LINE SIZE 0 HUNT NONE LPCR 1 LPID 167 LUNQ 1

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.2-10 Issue 5.00

RTGSTS 1 24 5 18 5 7 0

The routing error in Exhibit 5.2-5 is an internal error caused by a failure. The event
number is 24 and the error occurred in the host switching module (HSM) number 1.
The source file from which the RTRTGERR() macro was called is RTnw_conn.c at line
429. Line 429 of the RTnw_conn.c file is given in Exhibit 5.2-6. Note that the first
argument of the function is RT_INTERNAL, which matches the ERRTYPE given in
Exhibit 5.2-5 and the second argument is RTG_FAIL, which matches the CAUSE field.

Exhibit 5.2-6 — RTnw_conn.c RTRTGERR() Error Example
/*
* Name: RTnw_conn
*
* Module: RTrtgsts
*
* Package: RTnw_conn will be part of the base.
*
* Function: RTnw_conn checks the terminating path type
* to determine if this required path is digital
* or metallic in nature. When valid route types and
* terminating classes have been found, RTtmmsg
* is invoked, and then the routing state is updated
* to RT_FSMDONE.

. . .

. . .

. . .
default:

RTRTGERR(RT_INTERNAL, RTG_FAIL, DUDANULL);
break ;

. . .

. . .

The LPCR field (next to last line in Exhibit 5.2-5) gives the number of the processor of
the sending message which is 1, the LPID gives the process ID of the sender of the
message, 167, and the LUNQ specifies the uniqueness value of the process of the sender
of this message. The RTGSTS field (last line in Exhibit 5.2-5) represents the decimal
values of the routing states that were hit during this routing attempt through the RTA
finite state machine (FSM). State numbers are printed in the order that the states
were entered, reading from left to right. In Exhibit 5.2-5 the first state was 1, which
maps to RT_SCRNING in the RTA local header, RTstates.h. See Exhibit 5.2-7. The
second state was 24, which maps to RT_PRE_DNTRAN; the third state is 5, which maps
to RT_INTEGRITY; and so on. The state that the FSM was in when the exception
occurred is the state before the 0 (used as a delimiter) which is 7 and maps to
RTNW_CONN, which is (and should be) the same state as listed under the STATE field
(third line in Exhibit 5.2-5).

Exhibit 5.2-7 — Routing States
typedef enum rtRTGSTATES {

RT_NULLSTATE = 0,
RT_SCRNING,
RT_RTING,
RT_DN_TRAN,
RT_ERROR,
RT_INTEGRITY,
RT_FSMDONE,
RT_NW_CONN,
RT_NW_DISC,
RT_TMMSU,
RT_MLGSPREHUNT,

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-11

RT_MLGHUNT,
RT_MLGBUSY,
RT_TRKSPREHUNT,
RT_TRKHUNT,
RT_TRKBUSY,
RT_COALTRTE,
RT_FIXEDRT,
RT_SWITCH,
RT_STANDALONE,
RT_POSTSCRN,
RT_TRKDPREHUNT,
RT_DEUQUE,
RT_ADDQUE,
RT_PRE_DNTRAN,
RT_MCRTING,
RT_SFG,
RT_SFGDN,
RT_TKESSX,
RT_LNESSX,
RT_PPSCRN,
RT_LNQHUNT,
RT_LN_DQUE,
RT_POST_DNTRAN,
RT_MLGDPREHUNT,
RTTERMSFG,
RT_CCS_REST,
RT_POLYGRID,
RT_TKQMS,
RT_TKDEQUE,
RT_TKPOSTDQ,
RT_TKQUPSTAT,
RT_TKENQUE,
RT_DTRTING,
RT_RMSD3,
RT_ICIDET,
RT_TKMEM,
RT_APTLRT,
RT_HNTICI,
RT_WBRTING

} RTRTGSTATES;

5.2.4.2 RTA DCF: RTDUMPDATA()

The RTDUMPDATA() capability logs additional information for call processing errors.
The Data Dump Report Event=25057 messages given in Exhibit 5.2-8 inform the
technical personnel that pertinent data has been dump for these asserts in the
CALLPLOG1 log file. These messages indicates that an exception has occurred in call
processing software and that in order to provide additional information to debug this
problem, data is being directed to the /log/log/CALLPLOG1 file accessible on the 3B
UNIX1 terminal in the office. Note that the event number of this data dump report
will map to the same event number (for the given SM) that will be part of the relevant
data being dumped in the CALLPLOG1 file.

Exhibit 5.2-8 — Systems Integrity RTA DCF: Data Dump Report
S570-131130 93-08-28 13:53:02 000660 ASRTMON
REPT DATA DUMP REPORT PCR=2 EVENT=123

CALL PROCESSING ERROR OCCURRED AT FUNCTION MCbad_msg.c LINE 113
A DATA DUMP WAS SENT TO /log/log/CALLPLOG1

S570-131130 93-08-28 13:53:04 000661 ASRTMON
REPT DATA DUMP REPORT PCR=2 EVENT=124

1. Registered trademark of The Open Group.

ASSERT ANALYSIS 235-600-510
November 2000

Page 5.2-12 Issue 5.00

CALL PROCESSING ERROR OCCURRED AT FUNCTION MCbad_msg.c LINE 113
A DATA DUMP WAS SENT TO /log/log/CALLPLOG1

S570–131130 93–08–28 13:53:06 000662 ASRTMON
REPT DATA DUMP REPORT PCR=2 EVENT=125

CALL PROCESSING ERROR OCCURRED AT FUNCTION MCbad_msg.c LINE 113
A DATA DUMP WAS SENT TO /log/log/CALLPLOG1

The RTDUMPDATA() output for these RTA DCF assert messages can be found in
Exhibit 5.2-9. The data comes from the file MCbad_msg.c line 113. The structure of
the dump can be determined by looking at the construction of the message in the file
that caused the assert to fire.

Exhibit 5.2-9 — CALLPLOG1 File Output Example
S570-68 93-08-28 13:53:22 000665 CAPR_LOG
RTDUMPDATA GENERATED

CALL PROCESSING ERROR DUMP EVENT=123 PCR=2 TYPE=MESSAGE
77770039 00020037 77770039 0003001F 7777215C 00010006 7777215C 00030006
7777215C 00080002 77770096 00020023 77770096 00080002 77770096 00030006
77772135 00020022 77772146 00030002 7777214E 00080000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00088518 010BD2AE 0165CC40 0163F940 00390000 00390165 CC400163 F9400008
8672010D 68DA0039 0165CC40 0163F940 00000039 00000001 0165CC40 0163F940
00010000

S570–68 93–08–28 13:53:29 000667 CAPR_LOG
RTDUMPDATA GENERATED

CALL PROCESSING ERROR DUMP EVENT=124 PCR=2 TYPE=MESSAGE
77770039 00020037 77770039 0003001F 7777215C 00010006 7777215C 00030006
7777215C 00080002 77770096 00020023 77770096 00080002 77770096 00030006
77772135 00020022 77772146 00030002 7777214E 00080000 7777213E 00030028
7777213E 0002002F 7777213E 00010026 7777217D 0003001F 77770039 00020037
77770039 0003001F 7777215C 00010006 7777215C 00030006 7777215C 00080002
00086518 010BD2AE 0165D880 0163FB40 00390000 00390165 D8800163 FB400008
6672010D 68DA0039 0165D880 0163FB40 00000039 00000001 0165D880 0163FB40
00010000

S570–68 93–08–28 13:54:10 000668 CAPR_LOG
RTDUMPDATA GENERATED

CALL PROCESSING ERROR DUMP EVENT=125 PCR=2 TYPE=MESSAGE
77770039 00020037 77770039 0003001F 7777215C 00010006 7777215C 00030006
7777215C 00080002 77770096 00020023 77770096 00080002 77770096 00030006
77772135 00020022 77772146 00030002 7777214E 00080000 7777213E 00030028
7777213E 0002002F 7777213E 00010026 7777217D 0003001F 77770039 00020037
77770039 0003001F 7777215C 00010006 7777215C 00030006 7777215C 00080002
00081518 010BD2AE 0165EB00 01640000 00390000 00390165 EB000164 00000008
1672010D 68DA0039 0165EB00 01640000 00000039 00000001 0165EB00 01640000
00010000

235-600-510
November 2000

ASSERT ANALYSIS

Issue 5.00 Page 5.2-13

Software Analysis Guide

CONTENTS PAGE

6. GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 6-1
6.1 PURPOSE . 6-1
6.2 GRASP/EGRASP OVERVIEW 6-1
6.3 GRASP/EGRASP CAPABILITIES 6-1

6.3.1 Data Transfer Functions 6-1
6.3.2 Breakpoints 6-6
6.3.3 Overriding A Default Time Limit 6-10
6.3.4 Transfer Trace Function 6-10
6.3.5 Trace And Matching Messages 6-11

6.4 LAYOUTS . 6-14
6.4.1 Input Message Acknowledgements 6-14
6.4.2 Register Mnemonics 6-14
6.4.3 GRASP/EGRASP Output Message Layout 6-15

6.5 GRASP/EGRASP EXAMPLE 6-16

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-i

6. GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

6.1 PURPOSE

This section on the Generic Access Package (GRASP)/Enhanced Generic Access
Package provides the user with a sense of GRASP/EGRASP capabilities as used in the
5ESS® switch application, and explains how GRASP/EGRASP may effectively support
overall trouble analysis procedures.

6.2 GRASP/EGRASP OVERVIEW

The Generic Access Package (GRASP)/Enhanced Generic Access Package (EGRASP) is
a subsystem of the software release of UNIX1 RTR operating system software. It is
designed to be a single-user utility system that facilitates the analysis of software
faults and the investigation of the flow of program execution. GRASP/EGRASP allows
the behavior of UNIX RTR operating system software to be observed in an operational
environment. It is intended to be used to gather information on a known problem.

Caution: Although GRASP can be used by maintenance personnel, it should
be used in consultation with your next level of technical support. Improper use
of GRASP can result in program mutilation or excessive utilization of system
resources.

6.3 GRASP/EGRASP CAPABILITIES

6.3.1 Data Transfer Functions

6.3.1.1 Data Transfer, Memory-to-Memory (COPY)

A COPY function is provided to transfer data from one storage medium or memory
location to another. The data at the specified origin remains unaltered after the
function is complete.

Main Memory
Immediate

This message causes data resident in main memory to be
transferred to a utility variable. Execution of this function is
immediate. It copies data from virtual addresses in main
memory to utility variables as an immediate action. Indirect
addressing may be specified. The first listed offset is added
to the value of the source address and the result is used as a
virtual address of a location in main memory. The number of
offsets specified defines the length of the chain of virtual
addresses to be accessed in this way before accessing the
desired range of source locations.

COPY:UID=a,ADDR=b[,OFF=c][,L=d|NL=d]:UVAR=e[:WORD];
COPY:PID=a,ADDR=b[,OFF=c][,L=d|NL=d]:UVAR=e[:WORD];

1. Registered trademark of The Open Group.

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-1

Main Memory On
Breakpoint

This message causes data resident in main memory to be
transferred to a utility variable, register, or elsewhere in
main memory when conditions in an associated WHEN
statement are satisfied. Execution of this function occurs on
breakpoint. It copies data from virtual addresses in main
memory to other virtual addresses, registers, or utility
variables as a response to a breakpoint. Indirect addressing
may be specified. The first listed offset is added to the value
of the source address and the result is used as a virtual
address of a location in main memory. The number of offsets
specified defines the length of the chain of virtual addresses
to be accessed in this way before accessing the desired range
of source locations.

COPY:ADDR=a[,OFF=b][,L=c|,NL=c]{:ADDR=d|:UVAR=e|:REG=f}[;WORD]!

Utility Variable
Immediate

This message causes data resident in a utility variable to be
transferred to another utility variable. Execution of this
function is immediate. It copies data from another utility
variable as an immediate action or as an action triggered by
a breakpoint.

COPY:UVAR=a[,OFF=b][,L=c|,NL=c]:UVAR=e[:WORD]{|;}

Utility Variable On
Breakpoint

This message causes data resident in a utility variable to be
transferred to main memory or a register when conditions
specified in an associated WHEN statement are satisfied.
Execution of this function occurs on breakpoint. It copies
data from a utility variable to virtual addresses in main
memory and in registers as an action associated with a
breakpoint.

COPY:UVAR=a[,OFF=b][,L=c|,NL=c]{:ADDR=d|:REG=f}[:WORD]!

Register Immediate This message causes data contained in a register to be
transferred to a utility variable. Execution of this function is
immediate.

COPY:REG=a[,OFF=b][,L=c|,NL=c]:UVAR=r[:WORD]{!|;}

Register On
Breakpoint

This message causes data contained in a register to be
transferred to main memory or another register when
conditions specified in an associated WHEN statement are
satisfied. Execution of this function occurs on breakpoint.

COPY:REG=a[,OFF=b][,L=c|,NL=c]{:ADDR=d|:REG=f}[:WORD]!

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-2 Issue 5.00

6.3.1.2 Data Transfer, Memory-to-ROP (DUMP)

A DUMP function is provided to send data to the maintenance terminal and to print
system data on the ROP. In general, up to 128 bytes may be printed.

Main Memory
Immediate

This message causes data resident in main memory to be
displayed at the maintenance terminal and printed at the
ROP. Execution of this function is immediate. It dumps the
contents of a specified range of virtual addresses in main
memory in the address space of the process with the
specified utility identifier. If only one address is given,
indirect addressing may be specified. In this case, the first
offset listed is added to the content of the given address
and the result is interpreted as a virtual address.

DUMP:UID=a,ADDR={b&&c|b[,OFF=d][,{L|NL}=e]}[:WORD];

Dumps the contents of the specified range of virtual
addresses in main memory in the address space of the
process with the specified process identifier. If only one
address is given, indirect addressing may be specified. In
this case, the first offset listed is added to the content of
the given address and the result is interpreted as a virtual
address.

DUMP:PID=a,ADDR={b&&c|b[,OFF=d][,{L|NL}=e]}[:WORD];

Main Memory On
Breakpoint

This message causes memory within the process identified
by the WHEN command to be displayed at the maintenance
terminal and printed at the ROP. Execution of this
function occurs on breakpoint. It dumps the contents of a
specified range of virtual addresses in main memory as an
action associated with a breakpoint.

DUMP:ADDR=a&&b|a[,OFF=c][,{L|NL}=d][:WORD]!

Kernel Memory
Immediate

Dumps the contents of a specified range of virtual
addresses in the administrative module kernel as an
immediate action. The range is specified by two addresses
or an address and a length. The length defaults to a value
of 1. If only one address is given, indirect addressing may
be specified. In this case, the first offset listed is added to
the content of the given address and the result is
interpreted as a virtual address.

DUMP:KERN={a&&b|a[,OFF=c][,{L|NL}=d]};

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-3

Physical Memory
Immediate

Dumps the contents of a specified range of physical
addresses in main memory. The range is specified by two
addresses or by one address and an optional byte length
count. The default length is 4 bytes.

DUMP:PMEM={a&&b|a{L|NL}=c]}{!|;}

Physical Memory On
Breakpoint

Dumps the contents of a specified range of physical
addresses in main memory. The range is specified by two
addresses or by one address and an optional byte length
count. The default length is 4 bytes.

DUMP:PMEM={a&&b|a{L|NL}=c]}{!|;}

Utility Variable
Immediate

This message causes data resident in a utility variable to
be displayed at the maintenance terminal and printed at
the ROP. Execution of this function is immediate. It dumps
the contents of one or more utility variables as an
immediate message.

DUMP:UVAR=a[,OFF=b][,L|NL}=c][:WORD]!

Utility Variable On
Breakpoint

This message causes data resident in a utility variable to
be displayed at the maintenance terminal and printed at
the ROP when conditions specified in an associated WHEN
statement are satisfied. Execution of this function occurs
on breakpoint.

DUMP:UVAR=a[,OFF=b][,L|NL}=c][:WORD]!

Register Immediate This message causes data resident in a readable register(s)
to be displayed at the maintenance terminal and printed at
the ROP.

DUMP:REG=a!

Register On Breakpoint This message causes data resident in a readable register(s)
to be displayed at the maintenance terminal and printed at
the ROP when conditions specified in an associated WHEN
statement are satisfied. In addition to dumping the
registers themselves on breakpoint, the DUMP:REG
command can be used with INDIR to dump the breakpoint
process’s memory.

DUMP:REG=a[,OFF=b][,{L|NL}=c][:WORD][!|;}

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-4 Issue 5.00

6.3.1.3 Data Transfer, MCC-to-Memory (LOAD)

The LOAD command alters the content of a register, utility variable, or location in
main memory. The new value for the location is supplied as part of the command. If
the destination is a register or utility variable, the data is treated as an unsigned
number (sign extension is not done) and the least significant (rightmost) bytes are
changed. The number of bytes changed depends on the length specified. For a main
memory destination, the data is located byte by byte starting at the address and
continuing for the given length. Only a utility variable load may be executed
immediately.

Caution: LOAD can cause switch downtime if used improperly.

Main Memory On
Breakpoint

This message only affects the process that fired at the
breakpoint. It loads a virtual address with specified data
as an action associated with a breakpoint. For a software
breakpoint that fires on execution of an instruction, exactly
one process is effected. However, every time the breakpoint
fires the load is performed. For hardware breakpoints that
fire on data access, the load is made into the address space
of the process performing the access each time the
breakpoint fires.

LOAD:ADDR=a[,OFF=b][,L=c][:WORD]DATA,D=d!

Utility Variable
Immediate

This message causes data to be loaded into the utility
variable specified on the command line. If a length smaller
than four is specified, the data is moved into the least
significant bytes and the most significant bytes are zeroed.
Execution of this function is immediate. Loads AM utility
variables with specified data an immediate operation.

LOAD:UVAR=a[,L=b]{:WORD}:DATA,D=c{!|:}

Utility Variable On
Breakpoint

This message causes data to be loaded into the utility
variable specified on the command line when conditions
specified in an associated WHEN statement are satisfied.
Execution of this function occurs on breakpoint.

LOAD:UVAR=a[,L=b]{:WORD}:DATA,D=c{!|:}

Register On Breakpoint This message causes data to be loaded into a writable
register specified on the command line when conditions
specified in an associated WHEN statement are satisfied.
Execution of this function occurs on breakpoint.

LOAD:REG=a[,OFF=b][,L=c][:WORD]:DATA,D=d!

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-5

6.3.2 Breakpoints

6.3.2.1 Breakpoint Definition

Breakpoints detect the existence of some set of conditions on the machine. The
definition of a breakpoint has two parts.

1. First, the conditions that are to be matched have to be described.

2. Second, the actions that are to occur when there is a match are listed.

The described conditions might include the execution of a particular leg of code or the
reading of a particular data address by a particular process. Other actions might be
changing the value of some register or dumping the stack.

The WHEN command starts a list of GRASP commands that are performed when a
specified breakpoint condition exists. After a WHEN command with its conditions and
action list is entered successfully, the breakpoint is assigned a number by GRASP. The
breakpoint is then referred to exclusively by its number. Up to twenty different
breakpoints can be defined in the system at any point. The numbers assigned to
breakpoints during a debugging session will not be reused.

WHEN:UID=h’120,ADDR=h’22034;W!
DUMP:REG=PSW!
DUMP:ADDR=h’20160!
END:WHEN

GRASP prints two output messages in response to a breakpoint after the PF is given.
The first message assigns a number to the breakpoint. This message should appear
soon after the PF. The second message confirms that the breakpoint was set up
successfully, or, that the breakpoint was aborted, and gives the reason why.

Breakpoints that fire on the execution of a specific instruction are called software
breakpoints because of the way they are implemented. The breakpoint itself is a
special instruction that transfers control to GRASP when it is executed.

Software breakpoints are set up at the location specified by the UID or PID and ADDR
keywords of the WHEN commands as soon as possible after the breakpoint is defined.
The opcode itself is not changed until the breakpoint is allowed. Processes are
described by the UID or PID and, in some cases, a user process name. However, more
than one process can be active with the same UID and process name. When this
happens, GRASP sets up the first breakpoint in one of the matching processes at
random. If another breakpoint is defined for the same UID or process name, GRASP
sets up the breakpoint in the same process as the first.

Hardware breakpoints, because of their distinctive implementation, have some very
different characteristics from software breakpoints. Breakpoints which fire on accesses
of data are implemented with the hardware of the utility circuit. The hardware on the
utility circuit has "matchers" for utility IDs, addresses, access modes, etc. To set up a
hardware breakpoint, GRASP configures the matchers that are needed and supplies
the values that are to be matched. The circuitry continually compares the values that
GRASP told it to match with what is taking place on the machine. The breakpoint will
fire when all the matchers specified during set up match, but only if the breakpoint is
enabled. If a hardware breakpoint is disabled, the hardware still passively tries to
match; but it will not interrupt the processing on the machine. Disabled hardware
breakpoints do not use any resources of the machine. If the condition matcher is
already being used for a trace, a trigger allocation error results if an attempt is made
to define a condition breakpoint.

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-6 Issue 5.00

6.3.2.2 Breakpoint Conditional Command

The WHEN command is the conditional statement and can be used to break on a
condition or break on a specific process or utility.

Break on Condition A WHEN statement starts a list of commands that are to be
performed when an external event breakpoint condition exists.
An external event condition exists when the external event
backplane signal becomes active.

WHEN:COND=E;

Break On Specific
Process or Utility

Requests that a list of messages be executed when a specified
breakpoint condition exists. Two types of breakpoint conditions
are recognized:

1. instruction-execution, and
2. conditions and data-access conditions.

Instruction execution is detected by specifying a virtual address
within a process. When the instruction at that address is
executed, the action listed is executed. The first byte of the
instruction opcode expected to be found at that address must be
specified in the message. The breakpoint definition is rejected if
this opcode does not agree with the opcode found at the virtual
address.

For process identification:
WHEN:PID=a,ADDR=b,OPC=e:EXC[,WORD]!
For utility identification:
WHEN:UID=a,ADDR=b,OPC=e:EXC[,WORD]!

Data access is indicated by specifying both the virtual address
within the process and the type of access to be detected: read,
write, and read/write. A data access breakpoint will fire if the
location specified contains addresses with the correct access
type. A data access breakpoint that covers a range of data
locations will fire if any location within the range is addressed
by the correct access type.

For process identification:
WHEN:PID=a,ADDR{b[&&c][,L=d]}:{R|W|RW}[,WORD]!
For utility identification:
WHEN:UID=a,ADDR{b[&&c][,L=d]}:{R|W|RW}[,WORD]!

6.3.2.3 Breakpoint Manipulation Commands

Breakpoints can be allowed or inhibited from firing, their definition can be cleared,
and a summary of all breakpoints can be printed. The commands to manipulate
breakpoints are given in the following sections.

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-7

Enabling Individual
Breakpoints

A breakpoint will not fire when it is first defined. It has to be
enabled. This is done with the ALW command:

ALW:UTILFLAG a {!|/}

where UTILFLAG a is the breakpoint number assigned at the
time the breakpoint was defined. This command can be used
either in the action list of a WHEN or an immediate command.
The message

ALW UTILFLAG a COMPLETED

is printed confirming that the breakpoint was enabled.

Enabling All
Breakpoints

For convenience, the following command is provided to enable
all breakpoints at once:

ALW:UTIL {!|/}

This can be used either as an immediate command or as an
action for a breakpoint. After all the breakpoints have been
enabled, the confirmation message

ALW UTIL COMPLETED

is printed.

Disabling Individual
Breakpoints

To disable a breakpoint, the INH command is used

INH:UTILFLAG a {!|/}

where UTILFLAG a is the breakpoint number assigned at the
time the breakpoint was defined. This can be used either in
the action list for a breakpoint or as an immediate action. The
output message

INH UTILFLAG a COMPLETED

confirms the completion of the command.

Disabling All
Breakpoints

All breakpoints can be disabled at once with the message:

INH: UTIL {!|/}

which can be used either as an immediate action or in an
action list. The confirmation message

INH UTIL COMPLETED

will be printed after all the breakpoints have been inhibited.

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-8 Issue 5.00

Disabling
Breakpoints
(Self-referential)

The following special command can only be used in an action
list of a breakpoint to disable the breakpoint itself:

INH: UTILFLAG ME {!|/}

The special command is needed because a number has not yet
been assigned to the breakpoint at the time its action list is
being defined. The use of this command in an action list will
cause the breakpoint to fire exactly once. Any time it is
enabled again, it will fire once more and disable itself. The
INH: UTILFLAG ME command can occur anywhere in the
work list and will not affect the rest of the work list processing
for that firing of the breakpoint.

Clearing Individual
Breakpoints

To clear an individual breakpoint the following message is
used:

CLR: UTILFLAG a!

where the UTILFLAG a is the breakpoint number assigned at
the time the breakpoint was defined. This command can never
be used in the action list of a breakpoint. The message

CLR UTILFLAG a COMPLETED

will be printed after the breakpoint has been successfully
cleared. The message

CLR UTILFLAG a NGINST

indicates that the input command was unsuccessful in
removing the planted breakpoint.

Clearing All
Breakpoints

All breakpoints can be cleared at one time with the

CLR: UTIL!

command. This is also only allowed as an immediate action.
The confirmation message

CLR UTIL COMPLETED

will be printed after all the breakpoints have been successfully
cleared.

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-9

Displaying
Breakpoint Status

To get a summary of all currently defined breakpoints,

OP: UTIL!

is used. For every breakpoint currently in the system, the
breakpoint number, utility ID (specified in octal), process ID
(specified in decimal), address (specified in hexadecimal),
length, mode (R, W, RW, or EXC), and state (ENABLED or
DISABLED) will be printed. The mode will be annotated with
(H) for hardware items.

6.3.3 Overriding A Default Time Limit

The IN:DTIME input message overrides the GRASP/EGRASP default dynamic
real-time limit with a specified limit until the specified clock time. The real-time limit
is a rough approximation of the percentage of processor time.

In GRASP, the limit is 100. With this limit, GRASP sometimes does not get 100
percent of processor time over long enough periods to perform all breakpoint actions.
In EGRASP, the parameter limit is increased to 10000 to allow EGRASP enough time
to complete breakpoint processing.
IN:DTIME=10000:UNTIL=2359;

If GRASP uses all of the time it is allowed according to the value of the dynamic
real-time limit, an output message is printed indicating that all GRASP breakpoints
were inhibited. The breakpoints must be selectively re-allowed.

6.3.4 Transfer Trace Function

The primary purpose of the transfer trace is to indicate the flow of execution around a
target event. It is particularly useful in debugging programs. Like breakpoints, the
trace must be set up in advance, describing exactly what is to be traced. The trace
must then be started in a separate step. It then can be stopped, restarted, restopped,
etc., until the decision to clear it. Each trace must be cleared before another can be
defined. Dumping the utility circuit’s trace memory is a relatively slow operation, as is
setting up the circuit for the trace. However, while the trace is running, it does not
use the resources of the main processor.

The trace can be used in either of two basic ways: to record the events leading to some
target event or to record the flow following some event. This is done by using a
breakpoint to detect the occurrence of the event and, in its action list, to either start
or stop the trace as desired.

• To record the flow of execution leading to an event, the trace is set up and
started as an immediate command. It then begins recording and maintains the
most recent 2048 or 8192 entries in memory. It does this by always overwriting
the oldest information with the new. The utility circuit, which has its own small
memory in which the flow of execution is recorded, is used for the trace feature.
It has room for 2048 entries for UN61 or 8192 for UN615. A breakpoint is also
defined with a description of the target event upon which the trace will be turned
off, and its action list must include the command to stop the trace (along with
other actions if desired). A message is printed when the breakpoint fires and the
trace is turned off. The trace memory can then be examined using the
appropriate message. Because the trace runs without using any time from the

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-10 Issue 5.00

main memory processor, a trace such as this can be allowed to run for long
periods without interfering with the machine’s tasks.

• To record the flow that follows a target event, the trace is set up, and a
breakpoint is defined for the target event with the command to start the trace in
the action list. With this type of trace, the tracing stops when its memory is filled
up resulting in a message being printed. The trace memory can then be
examined.

The trace records 2048 or 8192 entries of three types –– UIDs, "from" addresses, and
"to" addresses. The UID of the new process is recorded whenever control passes from
one process to another. Whenever a branch is taken within a process, the address of
the branch is recorded as a "from" address. The address that is branched to is
recorded as a "to" address.

Normally, the pattern of entries in the trace memory is alternating "from-to"
addresses, with an occasional UID. All addresses following a UID should be
interpreted as virtual addresses within a process identified by that UID. The
"from-to-from-to" pattern is sometimes altered without loss of any real information.
Sometimes, in code generated by a compiler, there are branch instructions that jump
to other branch instructions. A trace of this would have a "to-from" pair with the same
values; the address of the branch "jumped to." The utility circuit in such a case saves
room in its memory by collapsing the pair into a single "to" address. The sequence
that actually gets recorded is "from-to-to." Whenever "to" addresses are adjacent in the
trace, it is because a branch was taken to another branch.

Several options are available on the trace that effect the information recorded. These
are useful for getting a longer history of the flow. Due to the size of the trace, memory
is limited to get a longer picture, some information must be sacrificed.

The transfer trace function is controlled with the trace operations defined in "Trace
and Matching Messages," Section 6.3.5. Starting and stopping the trace is performed
separately from the definition giving more flexibility in control. The definition of the
trace consists of:

1. choosing the wrap or no-wrap mode,

2. choosing the information to be recorded,

3. specifying any additional conditions restricting the recording of information.

The trace can be started and/or stopped from breakpoints or by immediate commands.
Such a breakpoint must be implemented with hardware, therefore, knowledge of
hardware availability is required when setting up a trace of this type.

6.3.5 Trace And Matching Messages

Trace Initialize
Monitoring

This message specifies the definition of an AM trace set up.
The five operations available to the trace program flow and
the commands to implement these operations are given here.
The trace goes into the NEW state with successful completion of
this command.

INIT:UMEM[,{UID=a|PID=b}][,ADDR={c&&d|c[,L=e|NL=f]}]}][,STORE=g]
[,STKADD=h[,STKSZ=i]][,STOP=FULL][[,COND=j][,j][,j]][:WORD];

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-11

Trace Start
Monitoring

This message causes the 3B20D computer GRASP/EGRASP
transfer trace to start monitoring the flow of execution as
previously set up with an INIT:UMEM input command. This
command can be used either as an immediate action, or it can
be used in the action list of a WHEN command. The trace goes
into the RUNNING state with successful completion of this
command.

ALW:UMEM{!|;}

Trace Stop
Monitoring

This message causes the 3B20D computer GRASP/EGRASP
transfer trace to stop monitoring the flow of execution. The
transfer trace goes into the STOPPED state with successful
completion of the command. This command can be used either
as an immediate action, or it can be used in the action list of a
WHEN.

INH:UMEM{!|;}

Trace Definition
Clear

This message causes the definition of a 3B20D computer
GRASP/EGRASP transfer trace to be removed. The trace goes
in the UNDEF state with successful completion of the command.

CLR:UMEM[:UCL];

Trace Dump To File This message causes the contents of the 3B20D computer
GRASP/EGRASP trace to be dumped to a file. The trace goes
into the DUMPED state with the successful completion of the
command.

OP:UMEM[:UCL];
OP:UMEM[:UCL][MCH];

Any of these operations can be done as immediate operations. Only the commands to
start and stop the trace are allowed in breakpoint action lists. Each trace will be
"undefined," "new," "running," "stopped," or "dumped."

Before any trace command is executed, the trace state is checked and the command is
rejected if it is logically incorrect for the trace state. There are seven tracing types
available to gather the information that is recorded in the trace memory. These
options are described here.

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-12 Issue 5.00

UID Trace Because the trace memory is limited, the duration of the trace
is inversely proportional to the amount of detail recorded. One
way to get a long history of activity is to restrict the trace to
store only the UIDs of the processes that run. This gives a
good, long picture but little resolution. With this type of trace,
the output indicates every process switch including those to the
kernel and the special processes.

Transfer Trace An alternate method (which is the default) is to store the
addresses involved in every nonsequential change in execution
flow. That is, for every branch, jump, call, and return
instruction, the address of the instruction (or "from" address)
and the destination (or "to" address) are recorded. In addition,
whenever a change in process occurs, the new process UID is
recorded so the "to" and "from" address can be interpreted in
context. This gives more detail than the UID-only option.

Data History Trace The data history mode allows recording of program data
accesses. Each time a data access occurs, the trace memory
records the data, the data address, and the current program
address. All four trigger functions are capable of controlling the
recording activity. When an address range is specified on the
INIT input message, the block matcher is used and the trace
only records data when a memory location within the range is
accessed. By using a UID comparison, the trace can be limited
to a unique process.

Simultaneous
Transfer and Data
History Trace

A simultaneous transfer and data history trace records all data
associated with a data history trace and a transfer trace with
the exception of a load or store flag indicating data accesses.

Function Trace The function trace memory mode records software function
changes. The 3B20D computer native instructions SAVE and
RETURN are set up using opcode matchers and any other
conditions established by the INIT input message. When the
SAVE instruction is executed, the CALL address (the previous
program address), the SAVE address, and the current UID value
are recorded. Execution of RETURN instruction allows trace
memory to record the RETURN address (the current program
address), the following program address, and the current UID
value.

Function with
Parameters Trace

The trace of functions with parameters records the call
instruction address, the save instruction address, and the
parameters pushed on the stack. The stack address and stack
size may be specified with the INIT input message. If these
values are not supplied, default values will be used. Unlike the
function trace, return instructions will not be recorded.

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-13

Simultaneous Data
History and
Function with
Parameter Trace

A simultaneous trace of data functions with parameter trace
records data history trace information with the exception of a
load/store flag and function with parameter trace information.

6.4 LAYOUTS

6.4.1 Input Message Acknowledgements

The following is a list of the input message acknowledgements and definitions:

OK The message was received, the appropriate process was initiated, and
work was completed.

NG No Good. The message was received, the appropriate process was
initiated, but the process was unable to complete the work satisfactorily.
Before being re-entered, the message should be checked in the
235-600-700, Input Messages Manual to verify that it was typed correctly.
An incorrect number in the information field can cause this
acknowledgment, or equipment trouble may also cause this result.

NA No Acknowledgement. Normally, the system acknowledges an input
within 5 to 10 seconds. If control of the message processing has been lost,
NA is output to indicate an acknowledgement failure.

PF Printout Follows. A printout will follow sometime later to explain in
detail the results of the work initiated by the input message.

RL Request Later. Request cannot be executed now due to unavailable
system resources; for example, action was requested for a unit that is
being diagnosed.

?I Identification field (to the right of the first colon) contains an error. The
message should be checked in the 235-600-700, Input Messages Manual.

?T Time-out has occurred on the channel. Input has not been received in the
allotted time and processing of the message has been aborted.

IP In Progress. Request received and initiated. Further output will follow.

?A Action field (to the left of the first colon) contains an error.

?E Error exists in the message but cannot be resolved to the proper field.

6.4.2 Register Mnemonics

The registers that are readable in the administrative module are as follows:

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-14 Issue 5.00

R0 R1 R2 R3
R4 R5 R6 R7

R8 R9 R10 R11
RTC TIMERS SDR PSW

HSR T0 T1 T2
T3 T4 T5 T6

ATBSDR ATBSCR ATBQ ATBPSW
ATBBGR SBR0 SBR1 SBR2

SBR3 SBR4 SBR5 SBR6
SBR7 SYSBASE TOPIS UINTER

UINT0 UINT1 UINT2 UINT3
HG PPR BGR CDR

SP SAR SCR SIR
HM DSTBUS SRCBUS ER

ONES IB SCRATCH0 SCRATCH1
ATBSAR ATBQ

The registers to be written as the destination of the GRASP commands are as follows:

R0 R1 R2 R3
R4 R5 R6 R7

R8 R9 R10 R11
RTC TIMERS SDR PSW

HSR T0 T1 T2
T3 T4 T5 T6

ATBSDR ATBSCR ATBQ ATBPSW
ATBBGR SBR0 SBR1 SBR2

SBR3 SBR4 SBR5 SBR6
SBR7 SYSBASE TOPIS UINTER

UINT0 UINT1 UINT2 UINT3
HG PPR BGR CDR

IM ISC CAR SSR
ERC ISS SSRS HSRBGC

RNULL PA FP AP
SP

6.4.3 GRASP/EGRASP Output Message Layout

The purpose of the REPT GRASP message is to report on GRASP conditions of a
general or emergency nature. The REPT GRASP output message can indicate that a
GRASP real-time limit has expired, and has been reset to the normal installation
default value. The message that indicates the static real-time limit has expired is:
REPT GRASP STATIC RESET

and to indicate that the dynamic real-time limit has expired the message is:

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-15

REPT GRASP DYNAMIC RESET

The REPT GRASP message can also indicate that there are processes with which
GRASP cannot coexist and processing is being terminated:
REPT GRASP FLDOP ABORT

In addition, this message can also warn when data is being lost:
REPT GRASP DATA BUF OVFL

For complete detail on the GRASP output messages see the 235-600-750, Output
Messages Manual.

6.5 GRASP/EGRASP EXAMPLE

Scripting is a method that allows the user to group a number of input messages or
breakpoint definitions as a file and save the file in the user’s directory. An execute
statement reads this file one line at a time. The instruction in the file causes the
GRASP Package to respond according to the coding as it would to entering the same
commands at the MCC terminal.

Caution: Do not use the ALW statement in script files.

After a WHEN command, with its conditions and action list, is entered successfully, the
breakpoint is assigned a number by GRASP. The breakpoint is then referred to
exclusively by its number. Up to 20 different breakpoints can be defined in the system
at any time. The numbers assigned to breakpoints during a debugging session are not
reused.

There are three types of breakpoints:

Breakpoint on
Execution of an
Instruction

Breakpoints that fire on execution of an instruction are called
software breakpoints because of the way they are implemented.
The breakpoint itself is an instruction that transfers control to
GRASP when it is executed.

WHEN:PID=2468,ADDR=h’98b2,OPC=70:EXC!
DUMP:REG=PA!
END:WHEN!

Breakpoint on
Access of Data

Breakpoints that fire on accesses of data are implemented with
hardware using matchers on either the UN21 UC, UN61 DUC,
or UN615 DUC.

To set up a hardware breakpoint, GRASP configures the
matchers that are needed and supplies the values that are to be
matched. The circuitry continually compares the values with
what is taking place on the machine. If the breakpoint is
enabled, the breakpoint fires when all the matchers specified
during set up match. If hardware breakpoint is disabled, the
hardware passively tries to match but does not interrupt
processing on the machine.

Because the amount of hardware on the utility circuit is limited,
only four hardware breakpoints can be defined at one time.

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP 235-600-510
November 2000

Page 6-16 Issue 5.00

WHEN:PID=2468,ADDR=h’98b2;RW!
DUMP:REG=PA!
END:WHEN!

Breakpoint on
External Condition

A breakpoint can be defined to fire upon receiving an active
external event backplane signal. This is implemented using a
hardware trigger and the DUC matcher.

The condition breakpoint fires immediately upon receipt of the
external event regardless of an executing process. The processor
can in fact be idle when this occurs.

WHEN:COND=E!
DUMP:REG=PA!
END:WHEN!

235-600-510
November 2000

GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP

Issue 5.00 Page 6-17

Software Analysis Guide

CONTENTS PAGE

7. GENERIC UTILITIES . 7-1
7.1 GENERIC UTILITIES OVERVIEW 7-1
7.2 CREATE AND SAVE A BREAKPOINT FOR FUTURE USE -

GENERAL . 7-4

LIST OF EXHIBITS

Exhibit 7-1 — Breakpoint Example To Inhibit OSDS Monitor 7-2

Exhibit 7-2 — Breakpoint Example: Function RTsc_nscm 7-2

Exhibit 7-3 — Breakpoint Example: Structure mgLNT_REQ 7-3

Exhibit 7-4 — Breakpoint Example: Function SImoninh. 7-4

235-600-510
November 2000

GENERIC UTILITIES

Issue 5.00 Page 7-i

7. GENERIC UTILITIES

7.1 GENERIC UTILITIES OVERVIEW

Generic Utilities refers to a set of switch resident, real-time software debugging tools
available to maintenance personnel to localize and make temporary corrections to
application programs in various 5ESS® switch processors. They can also be used to
analyze program flow. Generic utilities allow a user to do any of the following:

• Dynamic display of memory

• Temporary memory overwrites

• DUMP, LOAD, and COPY memory

• Nested IF/ELSE commands

• Limited symbolic debugging

• Multiple line entry capability

• Utility variables for temporary storage of data and constants

• Function call and GOTO capabilities

• Disassembly capability.

Utility commands allow the user to read, move, and (with certain restrictions)
overwrite data contained in virtually any addressable location in the system.
Conditionals permit the performance of utility commands when specified events occur
in the designated processor. WHEN clauses allow for the temporary interruption of
program flow, the collecting of system or process information, and the resumption of
program flow. More detailed information about the generic utilities is found in
235-105-110, Maintenance Requirements and Tools.

The use of Generic Utilities requires detailed technical knowledge and sound
judgement. UT code will, for example, read or write (almost) any valid memory
address. This provides UT with its considerable power - along with its potential for
risk. Powerful and versatile though it may be, Generic Utilities cannot "look ahead" to
prevent degradation in system integrity or performance. It is the user’s responsibility
to decide where to place a breakpoint, define the commands that should be associated
with that breakpoint, and to validate its structural integrity. The 5ESS switch Input
Messages Manual, 235-600-700 cautions that these messages can cause problems if
they are misused. Some things to consider before placing a breakpoint:

• A breakpoint places special instructions in memory (also called a "trap").
Breakpoints must be cleared from memory before performing any program
update activity or hashsum errors will occur.

• Dumping memory-mapped I/O in the SM may cause interrupts.

• If a UT breakpoint is hit too often, it may impact certain timed operations. If a
utility is placed in a branch of code which is heavily executed, it may cause an
overload or possibly even an initialization.

• Automatic variables declared within a block of code are only accessible while that
block is being executed. This applies to automatic variables within a function,
and automatics within blocks within a function.

235-600-510
November 2000

GENERIC UTILITIES

Issue 5.00 Page 7-1

• Planting a breakpoint on a link (or unlink) instruction will probably not have the
desired results because these instructions allocate (or deallocate) stack space for
use by a function.

• Altering the contents of dynamic data structures by use of the UT LOAD or COPY
commands can disrupt call processing.

• Verify that a breakpoint is placed at the correct address. Computation and
typographical errors are a common source of problems and aggravation.

• Use care to pass valid parameters to functions that require them.

• Verify calculations of memory location to be dumped, loaded, copied, etc. to
protect system integrity. (The COPY command has a limit of 4 bytes per iteration.)

• Verify that the command to be used is supported by the processor in question.
For example, a local stack can only be accessed if the breakpoint or match WHEN
clause has been implemented for that processor type.

The breakpoint used in the following example shuts off the OSDS monitor in SM 2
when a specified event occurs in SM 8. The breakpoint for the 5E9(2) software release
is given in Exhibit 7-1.

Exhibit 7-1 — Breakpoint Example To Inhibit OSDS Monitor
WHEN:UT:SM=8,FUNC="RTsc_nscm",OFF=h’1a,OPC=h’3028,FOREVER,NOPRINT!
IF:UT:SM=8,REG1=A6,INDIR1=2,OFF1=8-64,L1=2,EQ,VAL2=H’771,L2=2!
EXC:UT:SM=8,CALL,FUNC="SImoninh",ARG=1,PARM=2!
END:UT:SM=8,WHEN;

The breakpoint uses a pointer passed to function RTsc_nscm() to access the
mgLNT_REQ structure. Function RTsc_nscm() determines how a call will be rerouted
to the next series completion member.1

Structure mgLNT_REQ contains a port value, DMGPORT (port), which is compared to
VAL2=H’771. If there is a match, a call is made to function SImoninh() to shut off
the OSDS monitor in SM 2. See Exhibit 7-2 for the structure of pointer lnterm_ptr
in function RTsc_nscm.

Exhibit 7-2 — Breakpoint Example: Function RTsc_nscm
@FUNCTION: RTsc_nscm

. . .

. . .

. . .
/*
* NAME: RTsc_nscm()
*
* ABSTRACT:
* This function determines whether a series completion(SC)
* call will be rerouted to the next SC member(NSCM) directly
* or by DN. If the SC call is routed directly, this function
* appropriately sets up the needed information in the RTRERTE
* message and sends it to the LRSP where the NSCM resides.
*

1. Series Completion (SC) is a feature that directs calls to another, customer specified Directory Number
(DN) when the originally called DN is busy. The SC feature is a form of hunting that starts with the
called DN [i.e., the Originally Dialed Member of the Series Completion group (ODMSC)], and searches a
linked list of DNs until one of the following conditions is met: (1) an idle line is found, (2) the end of the
linked list of DNs is reached (regular SC group), (3) the call is rerouted back to the ODMSC (circular SC
group), or (4) the call has been rerouted 16 times (exhausted SC attempts).

GENERIC UTILITIES 235-600-510
November 2000

Page 7-2 Issue 5.00

* ENVIRONMENT:
* processor: SM
* operating system: OSDS

. . .

. . .

. . .
RET_VAL
RTsc_nscm(lnterm_ptr, servclass)
struct{

OSMSGHEAD msghead;
struct mgLNT_REQ text;

}*lnterm_ptr;
{

. . .

. . .

. . .

Pointer lnterm_ptr points to a structure which contains the message header
msghead and structure text. The header (msghead) consists of 8 bytes. Structure
text is much larger, but only the first 60 bytes are of any interest. A partial layout of
structure mgLNT_REQ is given in Exhibit 7-3. In structure mgLNT_REQ, domain
DMPHPTHDSC (path_desc) is 24 bytes, domain DMRTG_DATA (rtg_data) is 28
bytes, domain DMOSPID (far_pid) is 4 bytes, and domain DMGPORT (port) is 4
bytes. The first two bytes of domain DMGPORT are the domain DMPORT. It is the value
of DMPORT (port) that is being compared for a possible match.

Exhibit 7-3 — Breakpoint Example: Structure mgLNT_REQ
struct mgLNT_REQ {

DMPHPTHDSC path_desc;
DMRTG_DATA rtg_data;
DMOSPID far_pid;
DMGPORT port;
DMGPORT pikport; /* Port that initiated the Pickup */
DMASCID cid;

. . .

. . .

. . .
};

The IF statement in the breakpoint uses indirection and offset to determine the
address where the value of the port is stored:
IF:UT:SM=8,REG1=A6,INDIR1=2,OFF1=8-64,L1=2,EQ,VAL2=H’771,L2=2!

An offset of 8 is added to the address contained in the frame pointer (A6). 64 bytes is
then added to the contents of this address to determine the address of the port itself.
In this example, the frame pointer (A6) contains the address h’138e0e.

1. Go to the address (h’138e0e) contained in the frame pointer.

2. Offset that address by 8 bytes (i.e., h’138e0e + 8 = h’138e16).

3. Go to the address found at address h’138e16, (in this case, h’9a2552). This is
the start address of structure mgLNT_REQ.

4. Offset this address by 64 bytes (i.e., h’9a2552 + h’40 = h’9a2592). The next 2
bytes of data is the value of the port.

235-600-510
November 2000

GENERIC UTILITIES

Issue 5.00 Page 7-3

When this breakpoint fires and the above condition is true, function SImoninh() is
called. The parameter passed by UT to the function is the switching module number
in which the OSDS monitor is to be inhibited. Exhibit 7-4 shows a partial listing of
function SImoninh().

Exhibit 7-4 — Breakpoint Example: Function SImoninh
/*
* Function: SImoninh(smnum)
*
* Parameters: smnum - SM Number where Monitor is to be inhibited
* 255 - use SImonainh array to inhibit far processors
*
* Description: This function is called by a breakpoint and will
* inhibit the OSDS Monitor in a selected SM or in a
* predefined set of SMs.

. . .

. . .

. . .

RET_VAL
SImoninh(smnum)
register char smnum;
{

struct {
OSMSGHEAD msghead;
struct mgMON2MICO micomsg; /* msg to send MICO */

} msg;
. . .
. . .
. . .

7.2 CREATE AND SAVE A BREAKPOINT FOR FUTURE USE - GENERAL

The following is an example on how to create and save a breakpoint for future use.

1. Enter UNIX2 Shell:
rcv:menu:sh;

2. Change to a directory with write permissions and create a file:
cd /tmp
ed scriptA

3. Append the file:
a
cd /cft/shl
/cft/bin/pdshl.app "WHEN:UT:SM=8,FUNC=\"RTsc_nscm\",OFF=h’1a,OPC=h’3028,FOREVER,NOPRINT!" 2> /dev/null
/cft/bin/pdshl.app "IF:UT:SM=8,REG1=A6,INDIR1=2,OFF1=8-64,L1=2,EQ,VAL2=H’771,L2=2!" 2> /dev/null
/cft/bin/pdshl.app "EXC:UT:SM=8,CALL,FUNC=\"SImoninh\",ARG=1,PARM=2!" 2> /dev/null
/cft/bin/pdshl.app "END:UT:SM=8,WHEN;" 2> /dev/null

Note: Each command line in the file cannot be split into more than one line.
The parameters shown are an example, all parameters are not valid for all SM
types.

4. Quit the append mode by entering a period:
.

5. Write the file:
w

2. Registered trademark of The Open Group.

GENERIC UTILITIES 235-600-510
November 2000

Page 7-4 Issue 5.00

6. Quit the editor:
q

7. Change the mode of the file to executable:
chmod 777 scriptA

8. Exit UNIX Shell:
<Control D>

9. The utility commands stored in the file scriptA can now be executed with the
command:
EXC:ENVIR:UPROC,FN="/tmp/scriptA";

This will read the generic utility statements in file scriptA one line at a time,
as if they were being input from a keyboard.

10. To allow the utility, input the message:
ALW:UT:SM=8,UTILFLAG=x;

where x is the identification number of a specific WHEN clause that is to be
enabled to an active state.

235-600-510
November 2000

GENERIC UTILITIES

Issue 5.00 Page 7-5

Software Analysis Guide

CONTENTS PAGE

8. INTERRUPT ANALYSIS . 8-1

8.1 3B20D PROCESSOR INTERRUPTS 8.1-1
8.1.1 Introduction to 3B20D Processor Interrupts 8.1-1
8.1.2 Interrupt Stack 8.1-1
8.1.3 Error Interrupt Handler 8.1-2
8.1.4 Execution Levels 8.1-3
8.1.5 Non-Operational Interrupt: Error 8.1-3

8.1.5.1 Introduction to Non-Operational
Interrupt Errors 8.1-3

8.1.5.2 Software Error Handling 8.1-4
8.1.5.3 Hardware Error Handling 8.1-5

8.1.6 Non-Operational Interrupt: Maintenance 8.1-6
8.1.7 Error Register 8.1-6
8.1.8 Interrupt Source Register 8.1-11
8.1.9 Interrupt Masking 8.1-12

8.2 MOTOROLA MC68000 PROCESSOR FAMILY INTERRUPTS . . . 8.2-1
8.2.1 Module Controller/Time Slot Interchange 8.2-1

8.2.1.1 MCTSI Functions 8.2-1
8.2.1.2 Network Control and Timing Links 8.2-2
8.2.1.3 Service Groups 8.2-2
8.2.1.4 Scan and Distribute Operations 8.2-2
8.2.1.5 MCTSI Subunits 8.2-3
8.2.1.6 MCTSI Interfaces 8.2-9
8.2.1.7 ISDN Peripheral Units 8.2-13

8.2.2 Categories Of Interrupts 8.2-14
8.2.2.1 Interrupt Categories 8.2-14
8.2.2.2 Service Requests 8.2-14
8.2.2.3 PICB Circuitry Related Errors 8.2-14
8.2.2.4 Control Interface Errors 8.2-14
8.2.2.5 Time Slot Interchange Errors 8.2-15
8.2.2.6 Signal Processor Errors 8.2-15
8.2.2.7 Dual Link Interface Errors 8.2-16
8.2.2.8 Switching Module Processor Errors 8.2-16

8.2.3 Interrupt Levels 8.2-17
8.2.3.1 Interrupt Priority Levels 8.2-17
8.2.3.2 SM Interrupt Levels 8.2-17
8.2.3.3 Vectored and Autovectored Interrupts . . . 8.2-17

8.2.4 MCTU Interrupt Registers 8.2-18

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8-i

8.2.5 Module Controller Interrupts (Level 7) 8.2-18
8.2.5.1 Module Controller Interrupt Registers 8.2-18
8.2.5.2 Reset Source Register 8.2-19
8.2.5.3 Software Error Source Register 8.2-21
8.2.5.4 Hardware Error Source Register 8.2-22
8.2.5.5 Memory Error Source Register 8.2-23
8.2.5.6 DLI Error Source Register 8.2-23

8.2.6 Subunit and Peripheral Hardware Interrupts (Level
4) . 8.2-24
8.2.6.1 Subunit and Peripheral Hardware

Interrupt Registers 8.2-24
8.2.6.2 PIC B Register 8.2-25
8.2.6.3 PIC C Register 8.2-26
8.2.6.4 PI Error Source Register 8.2-26
8.2.6.5 CI Error Source Register 8.2-27
8.2.6.6 SP Error Source Register 8.2-28
8.2.6.7 TSI Error Source Register 1 8.2-29
8.2.6.8 TSI Error Source Register 2 8.2-30
8.2.6.9 TSI Error Source Register 3 8.2-32
8.2.6.10 DLI Error Source Register 1 8.2-32
8.2.6.11 DLI Error Source Register 2 8.2-33

8.2.7 Motorola MC68XXX Processor Family Distinctions . . . 8.2-33
8.2.7.1 Family of Motorola MC68XXX

Processors 8.2-33
8.2.7.2 Motorola MC68000 Processor 8.2-34
8.2.7.3 Motorola MC68012 Processor 8.2-34
8.2.7.4 Motorola MC68020 Processor 8.2-34
8.2.7.5 Motorola MC68040 Processor 8.2-35
8.2.7.6 Motorola MC68060 Processor 8.2-47

8.2.8 Interrupt Masking 8.2-50
8.2.8.1 Interrupt Masking 8.2-50
8.2.8.2 Status Register 8.2-51

8.3 INTERRUPT RECEIVE ONLY PRINTER (ROP) OUTPUT 8.3-1
8.3.1 AM Interrupt ROP Output 8.3-1
8.3.2 SM Interrupt ROP Output 8.3-1

8.4 INTERRUPT ANALYSIS EXAMPLE — HARDWARE 8.4-1

8.5 INTERRUPT ANALYSIS EXAMPLE — SOFTWARE 8.5-1

LIST OF FIGURES

Figure 8.1-1 — 3B20D Processor Interrupt Stack 8.1-2

Figure 8.2-1 — MCTSI Subunits 8.2-4

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8-ii Issue 5.00

Figure 8.2-2 — MCTSI Subunits and Interfaces 8.2-10

Figure 8.2-3 — PIDB Data Time Slot Configuration 8.2-11

Figure 8.2-4 — PICB Bit Configuration and All Seems Well (ASW)
Code Definitions 8.2-12

Figure 8.2-5 — NCT Link — Control Time Slot Content 8.2-13

Figure 8.2-6 — MCTU Interrupt Registers 8.2-18

Figure 8.2-7 — Module Controller (Level 7) Interrupt Registers 8.2-19

Figure 8.2-8 — Subunit and Peripheral Hardware (Level 4) Interrupt
Registers . 8.2-24

Figure 8.2-9 — Interrupt Hierarchy 8.2-35

Figure 8.2-10 — SMP40 Non-maskable Interrupt Hierarchy 8.2-37

Figure 8.2-11 — PIC A Register 8.2-38

Figure 8.2-12 — PIC B Register 8.2-41

Figure 8.2-13 — PIC C Register 8.2-43

Figure 8.2-14 — Interrupt Enable Register 8.2-45

Figure 8.2-15 — Read Interrupt Status Register 8.2-46

Figure 8.2-16 — Auxiliary Status Register 8.2-47

Figure 8.2-17 — Test Utility Bus Status Register 8.2-47

Figure 8.2-18 — SMP60 Non-maskable Interrupt Hierarchy 8.2-49

Figure 8.2-19 — CORE60 Status and Control Register 8.2-50

Figure 8.2-20 — Status Register and Interrupt Masking Structure 8.2-51

Figure 8.4-1 — PERAD Register 8.4-2

LIST OF TABLES

Table 8.1-1 — Error Register 8.1-7

Table 8.1-2 — Interrupt Source (IS) Register 8.1-12

Table 8.2-1 — Reset Source Register 8.2-20

Table 8.2-2 — Software Error Source Register 8.2-21

Table 8.2-3 — Hardware Error Source Register 8.2-22

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8-iii

Table 8.2-4 — Memory Error Source Register 8.2-23

Table 8.2-5 — DLI Error Source Register 8.2-24

Table 8.2-6 — PIC B Register 8.2-25

Table 8.2-7 — PIC C Register 8.2-26

Table 8.2-8 — PI Error Source Register 8.2-27

Table 8.2-9 — CI Error Source Register 8.2-27

Table 8.2-10 — SP Error Source Register 8.2-29

Table 8.2-11 — TSI Error Source Register 1 8.2-29

Table 8.2-12 — TSI Error Source Register 2 8.2-31

Table 8.2-13 — TSI Error Source Register 3 8.2-32

Table 8.2-14 — DLI Error Source Register 1 8.2-32

Table 8.2-15 — DLI Error Source Register 2 8.2-33

LIST OF EXHIBITS

Exhibit 8.2-1 — PIC A Register: File SMmp_icldr.h 8.2-38

Exhibit 8.2-2 — PIC B Register: File SMmp_icmdr.h 8.2-41

Exhibit 8.2-3 — PIC C Register: File SMmp_ichdr.h 8.2-43

Exhibit 8.4-1 — Hardware Interrupt Example 8.4-2

Exhibit 8.5-1 — FCoo_ans() Function Example 8.5-2

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8-iv Issue 5.00

8. INTERRUPT ANALYSIS

Multitasking allows peripheral devices to perform much of their own processing,
independently of the main processor. Whenever a peripheral device requires the
attention of the main processor, the peripheral device issues a signal called an
interrupt.

In response to an interrupt, the main processor sets aside its current activity and
tends to the device. The main processor then returns to whatever it was doing when
the interrupt occurred. In this way, the main processor can carry out several
simultaneous, or concurrent, tasks. Program interrupts permit quick response to
events that occur at unpredictable times.

Two types of interrupt occur in the 5ESS® switch:

• Operational interrupt — normal to the system and implemented to trigger
planned operations. This section does not discuss operational interrupts.

• Maintenance interrupt — response by the switching system to a particular
trouble condition. The maintenance interrupt performs service protection,
localization, and fault isolation. Maintenance interrupts can be classified into a
hierarchy of interrupt levels related to the extent that service is affected by the
interrupt.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8-1

8.1 3B20D PROCESSOR INTERRUPTS

This 3B20D Processor Interrupts section includes the following topics:

• Interrupt stack

• Error interrupt handler (EIH)

• Execution levels

• Non-operational error interrupts

• Non-operational maintenance interrupts

• Error register

• Interrupt source (IS) register

• Interrupt masking.

8.1.1 Introduction to 3B20D Processor Interrupts

When a process causes an error in the administrative module (AM), an interrupt is
generated and the process data is placed on the interrupt stack; this is usually
referred to as the saved state.

The interrupt causes the suspension of running processes in favor of higher priority
jobs. Priority is the rank that one process has in relation to another. Priority
determines whether a process keeps running when an interrupt occurs, or whether it
is suspended while another process is allowed to run.

Interrupt masks, plus program interrupt requests (PIRs), control the interrupt
hierarchy.

8.1.2 Interrupt Stack

The machine state of a suspended process is saved on the interrupt stack. The
interrupt stack is currently in a separate segment of the operating system. The saved
state of a process is a 20-word structure, as shown in Figure 8.1-1. As a series of
interrupts occur, the interrupt state of running processes is pushed on and popped off
the interrupt stack.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.1-1

The interrupt stack saved-state information is useful in identifying which process was
running when the maintenance reset function (MRF) occurred. The program address
(PA), processor status word (PSW), and primary segment base register (PSBR) are the
first entries on the interrupt stack, along with the utility ID of the suspended process.
The utility ID and program address provide enough information to positively identify
a process.

PA The program address counter is the address where the process
encountered the error.

PSW The processor status word register describes the level, privileges, and
math result flags.

PSBR The primary segment base register is the base register used by the
process to allow it to employ virtual memory. The value in this register is
decoded by the hardware to the actual physical location in memory where
the process is located.

SSBR The secondary segment base register is used when a process needs to
access data which is not within its addressing space. To access another
address space, the secondary base register is loaded with the second
address space and assembler instructions are used for data transfer
between the two address spaces.

8.1.3 Error Interrupt Handler

The next process allowed to run is the error interrupt handler (EIH), which is the
principle hardware fault recovery controller. It receives all hardware error interrupts
and controls the recovery sequences that follow.

20
Words

High Address
Interrupt Stack

PA

PSW

PSBR

SSBR

Reg 0
.
.

Reg 15

Low Address

Figure 8.1-1 — 3B20D Processor Interrupt Stack

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.1-2 Issue 5.00

The EIH is responsible for collecting the saved-state data, determining the severity of
the error, and taking the appropriate recovery actions. The EIH places the information
in low physical memory, where it will later be found and output to the receive only
printer (ROP) and the error log file.

8.1.4 Execution Levels

The program interrupt request logic of UNIX1 RTR allows 16 individual execution
levels.

• Supervisor processes use levels 0 and 1.

• System processes, which are kernel processes, use level 2.

• All other kernel processes use levels 3 through 15.

Application kernel processes run in these 13 levels. The EIH uses level 15
exclusively to assure proper fielding of error conditions.

EXAMPLE:

This example shows how interrupts control the execution level of the computer.

Suppose a kernel process at execution level 5 is running. The 10-millisecond
hardware timer that runs at level 15 fires. The timer interrupt, which is at a
higher execution level than the currently running process, interrupts the kernel
process. The machine state of the kernel process is saved on the interrupt stack,
and the timer routine gains control of the computer. Because the timer routine is
at level 15, it cannot be interrupted.

If the timer routine sends timeout events to two other kernel processes at levels
3 and 6, the level 6 process gains control and runs. While this level 6 process is
running, the timer interrupt fires again, interrupts the level 6 process, and
regains control of the computer. Levels 3, 5, and 6 kernel processes are now on
the interrupt stack.

The timer finishes and the level 6 process is popped off the stack and continues
to execute. When the level 6 process terminates, the level 5 kernel process
regains control. Finally, when this process finishes, the level 3 process will pop
off the stack and start running.

The same priority strategy applies when one process sends an event or message
to another process. If a kernel process that is currently running at execution
level 4 sends a message to a kernel process at level 3, the current process
continues to run because it has a higher priority. However, if the level 4 process
sends a message or event to a level 8 kernel process, control is immediately given
to the level 8 process. Only when this new level 8 process is finished, and if no
higher priority jobs are pending, will the original level 4 process be popped off
the interrupt stack and allowed to run again.

8.1.5 Non-Operational Interrupt: Error

8.1.5.1 Introduction to Non-Operational Interrupt Errors

Two types of non-operational interrupts can occur in the 3B20D computer.

• error interrupts

1. Registered trademark of The Open Group.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.1-3

• maintenance interrupts

Error interrupts are non-fatal errors detected by the machine, occurring in either the
online or standby processor.

When an error interrupt occurs, the EIH takes the following steps:

1. The error is classified by analyzing the error register in the processor or
interrupting channel.

2. An error counter is incremented by calling a configuration management error
reporting function. This function determines if the threshold has been exceeded.

When error interrupts occur, the associated information is written in either the
memory history log file (MEMLOG) or the error interrupt handler log file (ERLOG).

MEMLOG The MEMLOG file contains additional information about memory errors. At
the time the error took place, a report message (REPT) associated with the
entries is produced.

The additional information consists of error registers collected from
memory controller hardware, which depict the state of the hardware
when the error occurred. The contents of these registers may provide an
indication of what happened.

ERLOG The ERLOG contains a history of all error interrupts handled by the error
interrupt handler (EIH) that are not associated with the main memory.
Among the errors handled are input/output errors, direct memory access
errors, other processor hardware errors, and software errors.

The first three bits in the interrupt source (IS) register are used to
determine fault classification.

IS Bit Fault Classification
0 Online hardware
1 Offline hardware
2 Online software

The errors may implicate either the active processor or its mate. Errors
for the mate are only handled if the mate is in the standby state. An
out-of-service processor will not have its error and interrupt leads
enabled in the active mate. This means that errors in an out-of-service
processor are not detected by the active processor.

The EIH gains control of the computer at a pre-determined error handling
routine, determined by which bit is set in the IS register. The locations of
the error handling routines are placed in the interrupt vector table
during system initialization or on completion of a processor restore.

8.1.5.2 Software Error Handling

In the 3B20D computer, software errors are of two basic types:

• Errors detected by the hardware that cause the EIH process to be dispatched.

• Errors detected by the microcode during the execution of a processor instruction.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.1-4 Issue 5.00

The software fault entry of the EIH process is attached to IS register bit 2. A software
error affects this bit and causes the software fault routine to gain control of the
computer. The microcode also sets IS register bit 2 when it detects an error.

When a process performs some action that causes a software error, its execution is
suspended and the EIH gains control. The state of the suspended process is placed on
the interrupt stack. When the error handler determines the error type, it also clears
out the error indications in the error register and temporary registers used to pass
data by microcode.

Error interrupts can escalate to a processor switch or an initialization if preset
thresholds are exceeded.

8.1.5.3 Hardware Error Handling

The online and offline hardware error handling capabilities of the EIH process can be
divided into two classes:

Online Offline
Memory errors Memory-related errors
All remaining online hardware-related
errors

Violation of maintenance channel protocol

The EIH process attached to offline interrupts and offline memory is placed in the
update mode. When the update circuit to the offline processor is enabled, every
memory read and write in the online processor’s memory is also performed via the
update circuit to the offline memory. This allows the hardware to check both the
offline and online memories for parity errors and read/write completion while at the
same time keeping both memories identical in content.

Memory update ensures that the offline memory controller and memory are
functional. Any remaining hardware not associated with memory update is not
checked by the self-check hardware, nor is it handled by the EIH process. The
remaining hardware is routinely tested by the audit process in the active processor, on
processor softswitch, and by automatic diagnostics.

Standby Processor Errors

The types of errors which can occur in the standby processor are:

• Invalid maintenance channel order

• Single-bit parity error

• Multiple-bit parity error

• Memory controller timeout.

These errors occur in the offline processor, but are detected by the online processor.

The other-store-out-of-range error signals a problem in the offline memory, but is
detected as an online error. This error may occur if the offline processor is equipped
with less memory than the amount the online processor is actively using. This error is
detected on a system access in the online processor, and the error is classified as a
software error.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.1-5

8.1.6 Non-Operational Interrupt: Maintenance

Maintenance interrupts are a higher level of interrupt than the error interrupt. They
are caused by hardware or software sources and involve initialization of the online
processor or a switch to the secondary processor.

The information associated with this type of interrupt is written to the postmortem
logfile (PMLOG). The AM postmortem dump is divided into the following sections:

• Heading

The PMLOG reports are either labeled MAINTENANCE INTERRUPTS or
POSTMORTEM DUMP. POSTMORTEM DUMP appears for a manually requested
initialization and sometimes when the initialization was started due to the
application software.

• Initialization message

This section indicates the source of initialization, the online processor at the time
of initialization, the processor actually involved in the initialization, and the
recovery action that took place. Also, the source of the request is indicated by the
SOURCE field (hardware, software, or manual request).

• Requested initialization parameters

• Emergency action interface (EIA) buffer

• Timer

• General registers

• Faulty processor registers

• Interrupt stack saved state

• Offline registers

• Real-time clock.

When the initialization is a hardware request, the faulty control unit registers, timers,
and the main store registers are of primary interest.

When the initialization is a software request, the requested initialization parameters
and the general registers are of interest. The initialization message should be
analyzed for both types of initialization.

An analysis of postmortem dump information requires the ability to interpret several
hardware registers. The most important of these are the error register and the IS
register.

8.1.7 Error Register

The error register is an error detecting device which is comprised of 32 bits.

• Bits 1 through 10 are used for stop-and-switch (SAS) type errors and main store
parity errors.

• Bits 11 through 26 are used for various classes of interrupt errors. These errors
are classified into four categories.

— Less serious hardware errors (I/O errors and main store refresh parity)

— Errors related to the offline processor

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.1-6 Issue 5.00

— Software related errors (privileged instruction error, address translation
buffer [ATB] protection violation, and accessing unequipped memory)

— Memory management related errors (ATB page fault)

• Bits 27 through 31 are used to capture the destination bus parity when the
bidirectional gating register is specified as the destination.

Table 8.1-1 describes the bit layout of the error register. Each bit is discussed in
greater detail following the table.

Table 8.1-1 — Error Register

Bit Error Class Active
0 Source bit parity Stop-and-switch 0
1 Microcontrol parity Stop-and-switch 0
2 Clock match error Stop-and-switch 0
3 IB parity error Stop-and-switch 0

4 ATB parity Stop-and-switch 0
5 Cache error Stop-and-switch 0
6 MYSERA Stop-and-switch 0
7 My store time-out Stop-and-switch 0

8 MYSERC Online error interrupt
9 Data manipulation unit (DMU)

error
Stop-and-switch 0

10 Store address controller (SAC)
error

Stop-and-switch 0

11 Invalid maintenance channel
(MCH)

Offline error interrupt 0

12 Other store error A Offline error interrupt 0
13 Other store refresh parity Offline error interrupt 0
14 Other store data parity Offline error interrupt 0
15 Other store time-out Offline error interrupt 0

16 Channel error Online error interrupt 0
17 I/O response error Online error interrupt 0
18 I/O addressing error Online error interrupt 0
19 Parity divert error Online error interrupt 0

20 MYSERD Online error interrupt 0
21 Protection violation Software error interrupt 0
22 Virtual address out-of-range

(VORA)
Software error interrupt 0

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.1-7

Table 8.1-1 — Error Register (Contd)

Bit Error Class Active
23 Out-of-range address (MYSERB) Software error interrupt 0

24 Out-of-range reference (other
store)

Software error interrupt 0

25 Privileged instruction Software error interrupt 0
26 Bad alignment on memory

reference
Software error interrupt 0

27 Unused

28 Source bus parity bits — 1
29 Source bus parity bits — 1
30 Source bus parity bits — 1
31 Source bus parity bits — 1

This section describes each bit in the error register.

Bit 0 Source Bus Parity: When this bit is set, there is a source bus bit rotate
parity error. The source bus is an internal bus of the 3B20D computer. It
is one of the primary internal buses used in data manipulation and
computation.

This error causes an immediate stop-and-switch (SAS) of the currently
processing processor to the mate processor. The error is detected by the
hardware that initiates the SAS sequence. Due to certain recovery actions
taken during a system initialization, this bit should be ignored if other
bits of the error register (bits 4 through 31) are set.

Bit 1 Microcontrol Parity: This bit indicates bad parity in the micro-instruction
register (MIR). The MIR controls the sequencing circuitry of the
microprogram unit (MPU). It is also the buffer register for instruction
read from the microstore.

This error results in an immediate SAS of the currently processing
processor to the mate processor. The error is detected by the hardware
that initiates the SAS sequence. Due to certain recovery actions taken
during a system initialization, this bit should be ignored if other bits of
the error register (bits 4 through 31) are set.

Bit 2 Clock: This bit indicates mismatches of the auxiliary and primary result
clocks of the MPU. As with bits 0 and 1, this bit monitors hardware
internal to the MPU and results in an immediate SAS with no microcode
involvement. Due to certain recovery actions taken during a system
initialization, this bit should be ignored if other bits of the error register
(bits 4 through 31) are set.

Bit 3 Instruction Buffer (IB) Parity: This error occurs when the main IB
register contains bad parity, and results in an immediate SAS sequence.

Bit 4 Address Translation Buffer (ATB): This bit checks parity over the address
leads of the ATB. The ATB is a small memory used by the memory

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.1-8 Issue 5.00

management logic in the translation of a virtual address. The error is
detected by the microcode which eventually initiates a processor SAS.

Bit 5 Cache Parity: When this bit is set, a parity error in the cache is present.
The cache is a high-speed memory used to store frequently accessed main
memory data. This error generates an SAS without microcode
involvement.

Bit 6 My Store Error A (MYSERA): This bit indicates that a hardware error is
present in the memory controller. A MYSERA can occur on either a refresh
cycle or a system access. It is a logical OR of several hardware check
circuits of the memory controller. The MYSERA is an SAS error that does
not involve the microcode.

Bit 7 My Store Time-Out (MS Time-Out): This bit indicates whether or not the
memory controller responded to a memory request within a period of time
determined by the microcode. When the microcode detects an MS
time-out, it initiates an SAS of the currently running processor. The
contents of the error register are also copied to the microinterrupt error
register (UER).

Bit 8 My Store Error C (MYSERC): When this bit is set, a non-correctable parity
error occurred as the currently running processor attempted to read a
location in memory.

Bit 9 Data Manipulation Unit (DMU): This error results in an SAS. It is detected
by low-level hardware circuits and does not involve the microcode in the
decision to SAS. The only recourse is to run diagnostics on the faulty
processor once the system has recovered from the error.

Bit 10 My Store Address Controller (SAC): This error results in an SAS. It is
detected by low-level hardware circuits and does not involve the
microcode in the decision to SAS. The only recourse is to run diagnostics
on the faulty processor once the system has recovered from the error.

Bit 11 Maintenance Channel Order (MCH Order): This error can occur under
two circumstances:

1. The mate processor tries to communicate across the maintenance
channel to the active processor. Such communication is not allowed.
A processor that has its central control (CC) bit set will reject most
commands across the maintenance channel. The CC bit is used to
determine which processor has the right to execute as the active
processor. A processor that is not active, in most instances, will be
stopped and will not send MCH orders to the active processor.

2. The mate processor attempts to SAS to the active processor. When
the active processor’s maintenance channel receives the SAS request,
it will not honor it but will instead set bit 11 of the error register. An
SAS can be initiated by either hardware circuits or 3B computer
microcode. In most instances, however, the hardware errors are
inhibited in the mate processor and the mate is stopped.

Bit 12 Other Store Error A (OTHSERA): This error is in principle the same error
as the MYSERA (bit 6), except that an OTHSERA occurs in a standby
processor. For the system to detect the error, the EIH process must be
attached to IS register bit 1 (offline hardware error).

Bit 13 Other Store Error D (OTHSERD): This error is similar to the MYSERD (bit
20). The major difference is that an OTHSERD occurs in the standby

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.1-9

processor while a MYSERD occurs in the active processor. Assuming that
interrupts are not blocked and the currently executing process is below
level 15, the EIH will be dispatched to clear up the error. If this is not the
case, the EIH will be dispatched once interrupts are enabled and the
process level drops below 15.

Bit 14 Other Store Error C (OTHSERC): This error is similar to the MYSERC (bit
8) error. The major difference is that an OTHSERC occurs in the standby
processor while a MYSERC occurs in the active processor. Unlike a
MYSERC, an OTHSERC does not present the possibility of a process getting
bad data. The error is in the mate processor’s memory; the online
processor’s memory is not effected.

Bit 15 Other Store Time-Out (OS Time-Out): This error is similar to an MS
time-out (bit 7) in that the memory controller does not respond within a
specified time interval on a memory access. Because an OS time-out is
in the standby processor, the error is transparent to all system processes
except those directly involved in clearing and reporting the error.

Bit 16 Channel Error: This bit is a logical OR of the error leads from all
channels. When this bit is set, IS register bit 0 (online hardware error) is
set as well.

Bit 17 I/O Response: This error is detected on the leading edge of a pulse point
and indicates that a 3-out-of-6 (3/6) acknowledgment of a pulse point is
active. At this point there should be no activity and the response is
deemed to be invalid. The only error information collected is the
hardware status register.

Bit 18 I/O Address/Pulse Point (I/O addr/pp): This error is detected on the
trailing edge of the pulse point and indicates either an illegal 3-out-of-6
(3/6) code on the central control input output (CCIO) bus or that multiple
pulse points are active. The only data that is collected on this error is the
hardware status register.

Bit 19 Parity Divert (pardiv): The normal mode of channel operation assumes
the channels respond with good parity. Where bad parity is expected,
parity checks can be inhibited. When a channel response returns bad
parity and good parity was expected, the result is a parity divert error.
This error usually indicates a device problem since the channel does not
regenerate parity over the data it receives.

Bit 20 My Store Error D (MYSERD): This bit indicates that a correctable
(single-bit) error occurred on a memory read or refresh cycle.

Bit 21 Protection Violation: This error indicates that a process attempted to
access a segment in which access was not allowed; for example, an
attempt to write into a text segment. The error is detected by microcode
which then dispatches the EIH by setting IS register bit 2 (online
software error).

Bit 22 Virtual Address Out-of-Range (VORA): This error is detected by microcode
and it can occur only under very large main memory (VLMM). The
VLMM system can address up to 64 megabytes of memory. Therefore, the
valid address values are limited to bits 25-0. If any of the remaining high
order bits (31-26) are set during a memory fetch, the VLMM microcode
will generate an interrupt and the EIH will be dispatched.

Bit 23 My Store Error B (MYSERB): This error indicates that a process attempted
to access a location in memory that is not physically equipped. The most
likely reason for an error of this type is mutilation of system segment and

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.1-10 Issue 5.00

page tables. However, incorrect memory equipage or bad hardware can
also cause this error. In most cases, incorrect memory equipage problems
are detected before the system ever achieves kernel processing capability
on initialization.

The assumption is that the error is associated with a virtual memory
access. It is also possible, however, for this error to occur on a physical
memory access. This usually is due to a process using a bad address or
pointer.

Bit 24 Other Store Error B (OTHSERB): This bit indicates that there is a problem
with the offline memory equipment, the memory hardware, or a process
accessing offline physical memory using a bad address.

Bit 25 Instruction Privilege Violation: This bit indicates that a process
attempted to execute an instruction and did not have appropriate
processor status word (PSW) privileges. This error is detected by
microcode which attempts to dispatch the EIH by setting IS register bit 2
(online software error).

A system error counter is incremented on each instance of this error. If a
sufficient number of errors occur within a specified time interval,
recovery will be attempted. The recovery may include a processor switch
and various levels of initialization.

Bit 26 Address Violation: This bit indicates that a process attempted to access a
location in memory using a byte address. All 3B20D computer
instructions that access memory are restricted to a full-word boundary.
When this error occurs, the EIH is dispatched via IS register bit 2 (online
software error).

Bits 27-31 Source Bus Parity Bits: These bits are used to trap the destination bus
parity when the bidirectional gating register is specified as the
destination. These bits are not error bits, but provide a means for
examining the parity bits in the processor.

8.1.8 Interrupt Source Register

The interrupt source (IS) register is a 32-bit register whose bits may be set by
external signals (interrupts) or by microprogram control. The bits are only cleared by
microprogram control. When a bit is set in the IS register and recognized by the
processor, the action specified for that particular interrupt bit is taken.

Table 8.1-2 describes each bit in the IS register.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.1-11

Table 8.1-2 — Interrupt Source (IS) Register

Bit Meaning
0 Online hardware error interrupt
1 Other CC error interrupt
2 Software error interrupt
3 Not connected

4 5-millisecond timer
5 10-millisecond timer
6 1A processor simulation
7 Flash interrupt (R6.4 and later, not

connected)

8 Utility circuit interrupt
9 Stop the world interrupt
10 DMA channel interrupts
11 DMA channel interrupts

12 Not connected
13 Not connected
14 Not connected
15 Not connected

16 Not connected
17-31 Programmed Interrupt Request (PIR) 15

through 1

8.1.9 Interrupt Masking

The priority of a given process specifies which interrupt mask is to be associated with
the process. The mask allows or inhibits interrupts, allowing the process to continue
when an asynchronous interrupt occurs or is suspended. Currently, 32 interrupts can
be masked or inhibited.

The interrupt mask register is a 32-bit register whose bits are set or cleared by the
microprogram. Each bit in the interrupt mask corresponds to the same bit in the
interrupt source (IS) register. Setting of any bit in the interrupt mask prevents the
recognition of that corresponding interrupt when it appears in the IS register.

Of these 32 interrupt sources, 15 are software interrupts called program interrupt
requests (PIRs), PIR 1 through PIR 15; they correspond to execution levels 1 through
15. The remaining interrupts are generated by hardware such as the 3B20D computer
itself or external devices. Because these hardware interrupts are maskable, they allow
the execution flow to be controlled.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.1-12 Issue 5.00

8.2 MOTOROLA1 MC68000 PROCESSOR FAMILY INTERRUPTS

The Motorola MC68000 Processor Family Interrupts section includes the following
topics:

• Introduction to maintenance interrupts in the SM

• The module controller/time slot interchange (MCTSI), its subunits, and its
interfaces

• Categories of interrupts and related error sources

• Interrupt levels

• Description of each interrupt register

• Motorola MC68000 processor family distinctions.

Maintenance interrupts in the switching module (SM) are used to report errors that
could have an effect on system performance and subscriber service. An interrupt in the
SM forces the switching module processor (SMP) to execute the instruction at a
memory location specific to that interrupt.

Peripheral units employ interrupts to inform the processor of bad parity or other error
conditions. The processor can also be interrupted by any of the following subunits:
control interface (CI), time slot interchange (TSI), signal processor (SP), and dual link
interface (DLI). If the active processor receives a reset signal, it will interrupt the
mate (standby) processor.

There are three key information items in an SM interrupt.

• the MCTSI reporting the error

• the hardware subunit implicated by the error

• the type of interrupt

This information can be used to determine the cause of the interrupt. The specific
error itself may suggest a course of action to resolve the problem.

8.2.1 Module Controller/Time Slot Interchange

8.2.1.1 MCTSI Functions

The module controller/time slot interchange (MCTSI) performs the following functions:

• Interfaces with other units within the SM to transmit control information from
the SMP to its peripherals.

• Interfaces with units within the SM for pulse code modulation (PCM) data.

• Provides call processing, call supervision, and maintenance functions.

• Provides time division switching under control of the SMP.

• Pre-processes the signaling and control bits of time slot data, and provides the
SMP with access to these bits.

1. Registered trademark of Motorola Inc.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-1

8.2.1.2 Network Control and Timing Links

Four network control and timing (NCT) link pairs provide the transmission medium
from the MCTSI to the time multiplexed switch (TMS).

The NCT link is the source of the office timing information for the SM. The dual link
interface (DLI) extracts this timing information to keep the SM synchronized with the
rest of the system. The MCTSI selects one of the NCT link pairs as the "master"
reference timing source. The TMS, on the other hand, acts as a circuit switch for
passing voice and data between the SMs.

8.2.1.3 Service Groups

In general, a peripheral unit is made up of duplicated service groups (SGs) controlling
a periphery. A service group is a complete set of resources which can be affected by a
single hardware fault.

Most peripheral units are comprised of two service groups (0 and 1); each receives
orders from the active SMP but sends its response to both the active and standby
processors. Each service group has its own common control (CC) board which
distributes control and data information to the circuits within the service group.

The SMP has access to each service group by means of a peripheral interface control
bus (PICB). This two-way bus carries scan and distribute orders from the SMP to each
peripheral unit (via the control interface [CI]), and response and interrupt requests
from the peripheral to the SMP.

Within the CI, each peripheral unit is identified by its associated PICB number. This
PICB number is also part of a circuit’s internal name, which is its identification
within the system application software.

8.2.1.4 Scan and Distribute Operations

In preparation for a scan or distribute operation, the address register is loaded with
the desired peripheral address, link address (CI board number and PICB number),
and read/write bit. In the SMP, a scan order appears as an assignment from the data
register to some memory location.

When the READY bit is set in the CI, it activates the READY lead. This causes the
SMP to wait until the CI has completed its operations. Thus in the synchronous mode,
a scan or distribute order will appear as one instruction in the SMP.

Serial Control Messages

Two types of serial control messages may be sent over a PICB.

Distribute A control message to cause a hardware action to take place within the
SM.

Scan A control message to a scanner within the SM to return the status of
specific scan point(s).

The format of these orders and replies depends on the type of unit with which the CI
is communicating. Characteristics of orders and replies are:

• Each order has a start code that is examined by the peripheral unit service group
(PUSG) when it is received. A bad start code is reported by a unique
configuration of the "all seems well" bits in the reply. See Figure 8.2-4.

• All orders have a parity bit. Bad parity on an order received by the PUSG is
reported via the "all seems well" bits of the reply.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-2 Issue 5.00

• A portion of the address is used to enable a subunit (such as a circuit pack)
within the peripheral unit. The remaining address bits are used to enable a
register or circuit on the subunit in which data is to be read (scan order).

If no register or circuit is enabled (or if more than one register or circuit is
enabled) the state of the "all seems well" bits will indicate this error condition.

• The fourth configuration of the "all seems well" bits is used to indicate a
successful system operation.

8.2.1.5 MCTSI Subunits

The MCTSI contains the following subunits:

• Time slot interchange (TSI)

• Data interface (DI)

• Dual link interface (DLI)

• Control interface (CI)

• Signal processor (SP)

• Switching module processor (SMP)

• Bootstrapper (BTSR)

• Packet interface (PI)

Figure 8.2-1 shows the relationships between the MCTSI subunits.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-3

The following describes each subunit.

To/From
Peripheral

SP

NCT Links
To/From

TMS
DLI

To/From
Peripheral

TSI

DI
Circuit A

To/From
Peripheral

PIDB 15

LDSUB 1

PIDB 15

LDSUB 0

SIB

PICB 0

CI

PICB 22

PICB 22

PICB 0

To/From
Peripheral

PIDB 0

PIDB 0

SMP

CI

To/From
Other TSI

To/From
Other TSI

To/From
LDSU

DI
Circuit B

Figure 8.2-1 — MCTSI Subunits

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-4 Issue 5.00

TSI The time slot interchange (TSI) performs the time division switching
between the peripheral units of the SM and the time multiplexed switch
(TMS).

In each SM, the outputs from lines and trunks are converted into 16-bit
channels (time slots). These bits are used to encode voice or data, and for
signaling, control, and parity. The time slots are switched through the TSI
and time multiplexed onto the NCT links connecting each SM with the
TMS.

The TMS is a time multiplexed space-division switch that provides the
physical path for the digital signals carrying data and control information
between SMs, and between SMs and the administrative module (AM).
The TMS interconnects the modules through the NCT links.

Multiplexing
Multiplexing is the process that enables a digital transmission system to
transmit multiple telephone conversations over a single strand of fiber or
copper wire.

The multiplexer connects coded messages to a transmission line during
one time slot period. After connecting the first coder to the transmission
line, the multiplexer connects the second coder output to the transmission
line for one sample period, then the third, and so on. The result of this
process is that samples from each coder are placed on the transmission
line one after the other.

If trains A, B, and C were used as an analogy, a car from each of the
original trains would be interleaved in the multiplexer to create a longer
and faster train. One complete pass of the multiplexer places one car of
each train on the track. One pass of the multiplexer constitutes a frame.
The first frame would contain the first car from train A, the first car from
train B, and the first car from train C.

TSI Functions
The TSI provides time-division switching by delivering any of the 512
time slots received from the data interfaces (DIs) to both dual link
interfaces (DLIs) on any of the 512 network time slots.

The TSI connects
• any peripheral time slot from the DI to any DLI time slot
• any peripheral time slot to any other peripheral time slot, or to any

local digital service unit (LDSU) time slot
• any DLI time slot to any peripheral time slot, or to any other DLI

time slot, or to any LDSU time slot
Each SM contains duplicated TSIs. The active TSI is associated with the
active SMP, and the standby TSI is associated with the standby SMP.
Each has a copy of the same data, but only the active TSI is selected for
data transfer. The interface units contain an input switch that is used to
select data, clock, and synchronization from the active TSI only.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-5

DI The data interface (DI) terminates the peripheral interface data buses
(PIDBs). These bidirectional buses carry data time slots between the
peripheral units and the MCTSI via the DI. The DI provides the interface
for the PCM data, the signaling bits, and the clock and time slot
synchronizations between the TSI and the peripheral units.

The interfaces to the periphery are provided in two groups of 256 time
slots each. One group interfaces even TSI time slots, the other interfaces
odd TSI time slots; a DI is required for each. Each DI has 16 PIDBs
connected to the periphery. A PIDB is a 16-bit serial bus with 32 time
slots for each direction of transmission.

DLI The dual link interface (DLI) contains a common clock and control circuit,
and two link interface (LI) circuits. Each LI receives time slot data from
the TMS by way of the NCT links. The DLI delivers this time slot data to
the TSI.

For transmission in the opposite direction, the DLI selects time slot data
from the active TSI and delivers them to the TMS via the NCT links.

Control Time Slot
One time slot on each NCT link is permanently connected to the message
switch (MSGS) through the TMS. This dedicated time slot is referred to
as the control time slot (CTS). The DLI delivers CTS data to the SMP as
a 48K-bps serial bit stream. Similarly, the DLI receives a serial bit
stream from the SMP and inserts it into the CTS for transmission to the
MSGS.

Timing Information
The SM clock is derived from the NCT link data stream by the DLI. This
timing information is then delivered by the DLI to the TSI for
distribution to the rest of the subunits in the SM.

The active TSI receives timing from the active DLI. To ensure that the
TSIs can switch the timing source from one DLI to the other without
introducing data errors, the DLIs are cross-coupled so that one DLI is
dedicated to this timing source (referred to as the "master"). The
phase-locked loop (PLL) circuitry in the DLIs ensures that no rapid shifts
in clock phase occur as the master source is moved from one DLI to the
other.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-6 Issue 5.00

CI The control interface (CI) is located between the SMP and the peripheral
units and is used to communicate control information. The CI is
connected to the SMP via the subunit interface bus (SIB).

The CI reads and writes registers in the peripheral units by means of
control orders (scan and distribute orders) that are sent over the
peripheral interface control buses (PICBs). The CI reports a failing
control order to the SMP by setting the appropriate bits(s) in the error
source register (ESR). A control order may fail due to problems in the
peripheral unit or within the CI.

CI Functions
The CI performs the following functions.

• Terminates the PICBs which carry scan and distribute orders from
the SMP to peripheral units, and returns their response to the SMP.
The "all seems well" bits are used to monitor the result of scan and
distribute orders to the periphery. Failures, as indicated by these
bits, will result in a maintenance interrupt request to the SMP.

• Monitors communication between the SMP and peripheral units, and
reports any errors detected.

• Receives, latches, and reports service requests from the peripheral
units to the SMP.

PICBs
A CI provides up to 23 PICBs to the various interface units of the SM.
Two CIs can be equipped: CI0 and CI1.

• On CI0, two PICBs are reserved for the LDSU.
• CI1 is optional in a stand-alone office, and has no LDSU PICBs. Six

PICBs on CI1 are reserved when a module is configured as a remote
switching module (RSM).

Each PICB connects to a service group of a peripheral unit. A PICB
consists of five twisted wire pairs which carry clock, data, and controller
select information to the interface units and returns data and service
requests to the CI. Each PICB can access up to 256 source or destination
registers in each interface unit.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-7

SP The signal processor (SP) checks the time slot signaling bits for changes
in their state and reports the changes to the SMP. The SP provides the
SMP with access to the signaling and control bits of the time slots
transmitted to and received from the interface units. The SP enhances
the processing capacity of the SMP by performing the real-time repetitive
task of checking the signaling and control bits for changes in their state.

The SP scans for changes in supervision on time slots received from the
TSI and notifies the SMP of "hit-timing" supervision changes. The SP
stores the signaling bits in an immediate access RAM that the SMP can
read at any time.

The SP also provides a means of transmitting to the TSI the state of the
seven signaling bits associated with each time slot.

The SPs of the active and standby MCTSI perform co-ordinated,
simultaneous three-millisecond hit scan timing. This synchronization
ensures that state changes are detected at the same time by both SPs.
This is necessary to ensure that a switch to the standby controller will
occur without the loss of transient calls.

SMP The switching module processor (SMP) performs call processing and
maintenance functions, controls peripheral units, and communicates with
other SMs, the CMP, and the AM.

Each SMP uses a Motorola MC68000-family microprocessor. The
processing power of this microprocessor is augmented by an SP that
performs the real-time iterative task of detecting changes in signaling
states.

BTSR The bootstrapper (BTSR) provides a means of initializing the RAM in the
SMP at a 192K/second rate. The BTSR is only one part of the "fast pump"
data link. The other part is the pump peripheral controller (PPC), located
in the MSGS.

In earlier versions of the MCTSI, the BTSR is a simplex board which
interfaces to the update bus, thereby, providing access to either SMP
memory.

In later versions of the MCTSI, the BTSR is an integrated part of the
SMP and interfaces directly to the internal processor system bus used to
access the SMP memory.

The BTSR supplies address, data, and parity bits, and the necessary
control signals for a direct memory access (DMA) transfer. The selection
of the SMP side (0 or 1) that will be pumped is under software control.

The BTSR receives data over a PIDB in 2K blocks. Each block has a
16-byte header containing 2 bytes of start code, 2 bytes of word count, 1
byte of hashsum check, and 4 bytes of starting address for that block. The
remaining 7 bytes in the header contain a fixed data pattern inserted
between each byte of valid initialization data.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-8 Issue 5.00

PI The packet interface (PI) is only present in SMs that offer integrated
services digital network (ISDN) service (i.e., "loaded" SMs). This optional
subunit routes packet information between the SMP and the protocol
handlers (PHs) of the packet switch unit (PSU). The PI terminates the
packet bus (PB) that carries signaling information between the SMP and
each service group of the PSU.

The PI provides the following functions:
• Provides the means by which the SMP communicates with the PHs.
• Monitors communication between the SMP and PHs, and reports

any errors detected.
The PI has an internal environment similar to that of the PH, capable of
distributed processing and local error recovery.

8.2.1.6 MCTSI Interfaces

The MCTSI has the following interfaces:

• Peripheral interface data buses (PIDBs)

• Peripheral interface control buses (PICBs)

• Local digital service unit buses (LDSUBs)

• Packet buses (PBs)

• Network Control and Timing links (NCT).

Figure 8.2-2 shows the MCTSI subunits and interfaces.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-9

The following describes each interface.

Peripheral Interface Data Buses

A peripheral interface data bus (PIDB) is a duplex bus providing 32 time slots of voice
data between the data interface (DI) and a peripheral unit in the SM. (See Figure
8.2-3).

To/From
Peripheral

SP

NCT Links
To/From

TMS
DLI

To/From
Peripheral

TSI

DI
Circuit A

To/From
Peripheral

PIDB 15

LDSUB 1

PIDB 15

LDSUB 0

SIB

PICB 0

CI

PICB 22

PICB 22

PICB 0

To/From
Peripheral

PIDB 0

PIDB 0

SMP

CI

To/From
Other TSI

To/From
Other TSI

To/From
LDSU

DI
Circuit B

Figure 8.2-2 — MCTSI Subunits and Interfaces

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-10 Issue 5.00

Peripheral Interface Control Buses

A peripheral interface control bus (PICB) is a duplex bus that carries control messages
between the control interface (CI) and an SM’s peripheral units. (See Figure 8.2-4).

PIDB DATA TIME SLOT

0

D6 D7 P G F E D C B A D0 D1 D2 D3 D4 D5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit No.

15 - 8 =
7 - 4 =

3 =
2 =
1 =
0 =

PCM Bits
Signaling Bits
Busy/Idle Bit
TMS Buffer Test Bit
Framing Bit
Parity Bit

Figure 8.2-3 — PIDB Data Time Slot Configuration

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-11

Local Digital Service Unit Buses

A local digital service unit bus (LDSUB) carries data channels from the local digital
service unit (LDSU) to the time slot interchange (TSI).

Packet Bus

The packet bus (PB) carries signaling information between the SMP and the packet
switch unit (PSU).

Network Control and Timing Links

The NCT links are internal fiber optic links that connect the SMs with the
communications module (CM) to provide time slot paths for network connections, carry
control messages (time slots) to the modules, and distribute timing to the modules.
(See Figure 8.2-5.)

ASW CODE DEFINITIONS
ASW 2 ASW 1 ASW 0 Description

0 0 0 Peripheral Detected Bad Address
0 0 1 Parity Error on Message from Controller
0 1 0 All Seems Well
0 1 1 Bad Start Code on Message from

Controller

Figure 8.2-4 — PICB Bit Configuration and All Seems Well (ASW) Code Definitions

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-12 Issue 5.00

8.2.1.7 ISDN Peripheral Units

There are two types of switching within the ISDN environment circuit switching and
packet switching.

• With circuit switching, each call uses its own path. Each path is dedicated to one
user.

• With packet switching, one path may be used simultaneously by many users. The
information on the path is split up into small packets which are then switched
independently.

Two different types of peripheral units are used to provide ISDN service:

• Integrated services line unit (ISLU)

The ISLU provides a physical entrance into the 5ESS® switch, connecting the
basic rate interface (BRI) to the switch.

• Packet switch unit (PSU)

The PSU switches packet data and signaling information.

Framing

Parity

Control Processor Intervention

Not Assigned

Not Assigned Control Word

NCT LINK
CONTROL TIME SLOT

F G P C1 C1 C2 C3 C4 C5 NA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPI

Link Buffer Test

Figure 8.2-5 — NCT Link — Control Time Slot Content

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-13

8.2.2 Categories Of Interrupts

8.2.2.1 Interrupt Categories

The following interrupt categories are reviewed in this section:

• Service requests

• Peripheral interface control bus (PICB) circuitry related errors

• Control interface (CI) errors

• Time slot interchange (TSI) errors

• Signal processor (SP) errors

• Dual link interface (DLI) errors

• Switching module processor (SMP) errors.

8.2.2.2 Service Requests

Interrupts from a peripheral unit to the CI are referred to as service requests. A
peripheral unit requests "service" by causing the service request lead to be activated
when any bit in its interrupt register is set.

Every 40 milliseconds, the peripheral control (PC) foreground function CIscan()
scans the CI’s interrupt source register (ISR) for service requests from the peripherals.

Each PICB has an interrupt lead that connects the peripheral unit to the CI remote
ISR. These sources are summarized in an error source register (ESR). They are
normally masked out and not reported to the SMP.

A service request can be either an operational or a maintenance request. An
operational service request occurs when a peripheral unit needs service for call
processing. A maintenance service request occurs when a peripheral unit detects an
internal abnormal condition.

8.2.2.3 PICB Circuitry Related Errors

PICB circuitry-related interrupts are due to faulty PICB circuitry between the CI and
a peripheral unit. PICB-related errors could be attributed to:

• Timeout (no reply to an order)

• Bad start code on reply

• Bad parity on reply

• Peripheral unit detected a bad address

• Peripheral unit detected a bad start code

• Peripheral unit detected bad parity.

8.2.2.4 Control Interface Errors

Control interface (CI) errors are related to the operations of the CI itself. They
indicate a CI or SMP fault.

Peripheral Unit Error Sources

There are six possible error sources for peripheral unit problems:

• Peripheral unit detected a bad start code

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-14 Issue 5.00

• Peripheral unit detected bad parity

• Peripheral unit detected a bad address

• CI detected a bad start code

• CI detected bad parity

• CI timed out waiting for a reply.

CI Error Sources

There are five possible CI error sources.

• Multiplexer selection error

Multiplexers are used to communicate with the peripheral units. Up to 23 PICBs
can be used to connect the CI with the peripherals; for each PICB, a clock and
data out (or data in) multiplexer must be selected.

"1-out-of-N" checkers reported an error indicating a problem in the multiplexer
circuitry. This error occurs if no PICB or more than one PICB becomes active
during a scan or distribute operation.

• Improper address selection

An attempt was made to read or write a nonexistent register, or to read or write
a register that does not have that capability.

• Address parity error

During a read or write operation to the CI, the register address presented to the
CI by the SMP had bad parity.

• Data parity error

During a write operation to the CI, the data presented to the CI by the SMP had
bad parity.

• PICB address error

An attempt was made by the SMP to write the address register with an invalid
PICB address.

8.2.2.5 Time Slot Interchange Errors

To perform the time slot interchanging function in the TSI, several control RAMs
(including the alternate data RAM) are implemented. Byte parities are checked and
are potential error sources.

Address and data bus parity errors, as well as DLI interface parity errors, are also
error sources. Control and data errors within the TSI are additional sources for errors.

8.2.2.6 Signal Processor Errors

The signal processor (SP) receives the control and signaling bits for 512 time slots
from the periphery. The SP monitors these bits for a change of state. If a change of
state occurs, the control and signaling bits are loaded into an SMP-readable first-in
first-out (FIFO) memory. The SP also sends control and signaling bits for 512 time
slots towards the periphery.

There are two possible sources of errors in the SP:

• FIFO full

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-15

The FIFO memory is monitored for possible overflow and a bit is set in the error
source register (ESR) if the memory becomes full.

• Parity errors

Parity is checked at various points throughout the SP.

8.2.2.7 Dual Link Interface Errors

The DLI provides the interface between the SM and the CM by means of the NCT
links. The DLI also receives timing from the CM and distributes it throughout the
SM.

The following are possible DLI error sources:

• Link errors

— Parity errors on time slot information (both transmit and receive)

— Framing errors (G bit)

• Phase lock loop slip (checks for synchronization to the CM)

• Module controller interface errors - parity errors in the SMP interface

• Buffer errors (buffer test bit - F bit)

• Clock errors

• TSI interface errors - parity errors on data received and transmitted to/from the
TSI

8.2.2.8 Switching Module Processor Errors

The SMP error source registers are organized into two distinct groups those that
report hardware errors and those that report software errors. Of the numerous
interrupt sources, there are only two that are unmaskable sanity timer reset and
central processor intervention (CPI).

• Software error sources

— Write protect violations

— Invalid I/O operations (write of a read only point, read of a write only point,
accessing unequipped points, etc.)

— I/O timer and sequence violations

— Stack protection violations

• Hardware error sources

— Parity errors at the interfaces

— Subunit enable mismatches (any subunit on the subunit interface bus [SIB])

— I/O data bus parity errors

— Ready timeouts

— DLI interface errors

• Memory type errors - double bit error, refresh failure, multiple board select,
cache errors, correctable bit errors

• Sanity timer reset

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-16 Issue 5.00

An interrupt will be triggered if the sanity timer is allowed to time out. Similarly,
an interrupt will be triggered if the sanity timer is being restarted too frequently.

• Central processor intervention (CPI)

The CPI circuitry provides a communication path from the AM to each module
controller in the SM. If an initialization of the SM is required, the CPI circuitry
furnishes this reset as an interrupt source prior to initialization.

• Mate request

A mate request does not indicate a system error. It is a built-in mechanism in
which the active processor wakes up the standby processor to perform some
function.

• Microprocessor errors - parity in the SMP

— Addressing errors

— Divide by zero

— Illegal instruction

— Other traps

8.2.3 Interrupt Levels

8.2.3.1 Interrupt Priority Levels

Interrupts in the microprocessor can occur at one of seven levels of priority, level 1
represents the lowest priority and level 7 the highest.

The microprocessor compares the level of the interrupt request with an interrupt
mask in the status register to determine if the interrupt should be processed. An
interrupt mask of 0 permits all interrupts and an interrupt mask of 7 allows no
interrupts (except level 7). The interrupt will be processed only if it has a higher
priority than the mask level set in the status register.

8.2.3.2 SM Interrupt Levels

There are three levels of SM maintenance interrupts.

Level 7 All hardware and software errors detected within the module controller.

Level 5 Generated by the central processor intervention (CPI) circuitry and
causes a switch of the DLIs (if directed by the AM).

Level 4 Generated by the three programmable interrupt controllers (PIC A, PIC
B, PIC C).

The PIC B and PIC C registers summarize subunit and peripheral
hardware error sources (maintenance interrupts). The PIC A register
reflects operational interrupts only and will not be addressed here.

8.2.3.3 Vectored and Autovectored Interrupts

The Motorola MC68XXX processor can employ both vectored and autovectored
interrupts.

• With vectored interrupts, the interrupting device sends a vector number which is
used to index a table that contains the address of the interrupt routine.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-17

• When autovectoring is used, the device which generated the interrupt initiates
an interrupt request. The SMP examines the priority status of the interrupt to
determine which vector number will be used.

Level 5 and level 7 interrupts implement the autovector mode to obtain the vectors
required to process these interrupts. A level 4 interrupt does not use the autovector
mode. The interrupt is generated by one of the programmable interrupt controllers
(PICs), and the exception vector is read directly from the controller.

8.2.4 MCTU Interrupt Registers

Three pins on the Motorola MC68XXX microprocessor chip are used by external
devices to cause an interrupt. These pins are called IPL0, IPL1, and IPL2 (IPL stands
for interrupt priority level). These three inputs form a 3-bit code used to request
interrupts.

The setting of the IPLs for interrupt levels 4, 5, and 7 are shown here:

Interrupt Level IPL2 IPL1 IPL0
7 1 1 1
5 1 0 1
4 1 0 0

Figure 8.2-6 shows the hierarchy of error registers that are used for interrupts.

8.2.5 Module Controller Interrupts (Level 7)

8.2.5.1 Module Controller Interrupt Registers

The module controller interrupt registers record all hardware and software errors that
can occur within the module controller (i.e., level 7 interrupts). See Figure 8.2-7.

IPL2 IPL1 IPL0

PIC CPIC BPIC A

Reset Source
Register

Interrupt
Source
Register

Time Slot
Interchange

ESR #2

Dual Link
Interface
ESR #2

Control
Interface

ESR

Time Slot
Interchange

ESR #3

Signal
Processor

ESR

Time Slot
Interchange

ESR #1

Dual Link
Interface
ESR #1

Packet
Interface

ESR

Dual Link
Error Source

Register

Memory
Error Source

Register

Software
Error Source

Register

Level 4Level 7

Hardware
Error Source

Register

INTERRUPT DECODER

Figure 8.2-6 — MCTU Interrupt Registers

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-18 Issue 5.00

The following list indicates which table describes each of these registers.

Interrupt Register Table
Reset Source Register Table 8.2-1
Software Error Source Register Table 8.2-2
Hardware Error Source Register Table 8.2-3
Memory Error Source Register Table 8.2-4
DLI Error Source Register Table 8.2-5

8.2.5.2 Reset Source Register

Table 8.2-1 describes the bit layout of the reset source register.

IPL0

Reset Source
Register

IPL1

Hardware
Error Source

Register

Software
Error Source

Register

DLI
Error Source

Register

Memory
Error Source

Register

IPL2

INTERRUPT DECODER

Figure 8.2-7 — Module Controller (Level 7) Interrupt Registers

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-19

Table 8.2-1 — Reset Source Register

Bit Function
7 Sanity timer error
6
5 Reset from CPI circuit
4
3 Reset request from the mate controller

(maskable only if the receiving processor is
active)

2 Hardware error
1 Correctable memory error
0 Software error

This section describes the function of each bit in the reset source register.

Bit 7 Sanity timer error. The sanity timer, which can run for a maximum of
699 ms, must be periodically cleared by the SAN_CLR strobe point. If 699
ms expire since the last time the timer was cleared, bit 7 is set in the
reset source register. This error is not maskable.

A check is also made to ensure that the sanity timer is not cleared until
at least 233 ms have elapsed since the last reset. If this check fails, bit 7
of the reset source register is set.

Bit 6

Bit 5 CPI force reset. Stops the processor and forces it to a base address for
restarting. A CPI reset may be requested manually with the ORD:CPI
input message. This interrupt source is not maskable.

The CPI circuitry provides a communication path from the AM to each
controller in the SM. The gate array in the CPI circuitry recognizes five
types of messages, each of which can be requested manually:

• Diagnostic message verifies the performance of the CPI gate array
and associated circuitry.

• Force reset message resets certain hardware in the SM and causes a
full initialization.

• Force active message forces one controller active and the other
inactive.

• Inhibit/allow sanity timer inhibits or allows the timer from causing an
interrupt due to a timeout.

• CP interrupt can take one of three actions.

— FRC: Forces the specified MCTSI to the active state. This will
cause a single process purge (SPP) if a processor switch is involved.

— GRSW: Generic retrofit switch. Forces the specified MCTSIs to the
active state and causes a full initialization. Used only during a
retrofit.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-20 Issue 5.00

— SW: Switches the MCTSI to a specified side and forces that side
active.

Bit 4

Bit 3 Set by a "reset mate controller" request from the mate controller. If this
controller is not active, the setting of this bit will generate an interrupt
and the processor will reset this controller.

If this controller is active, no interrupt is generated. However, bit 3 is set
to indicate that the attempt was made.

Bit 2 Set when a hardware related interrupt is generated from the hardware
error source register. See Table 8.2-3.

Bit 1 A correctable memory error was detected by the memory controller
circuitry. This error is masked and should never be seen.

Bit 0 Set when a software related interrupt is generated from the software
error source register. See Table 8.2-2.

8.2.5.3 Software Error Source Register

Table 8.2-2 defines the bit layout of the software error source register. The errors
recorded in this register may be caused by hardware or software errors, though they
are predominantly software related.

When an interrupt is generated from this register, bit 0 (software error) is set in the
reset source register (see Table 8.2-1.)

Table 8.2-2 — Software Error Source Register

Bit Function
7,6 Unused
5 Stack protection violation
4 I/O double UNLOCK error
3 I/O double LOCK error
2 I/O timer timeout

Length of I/O timer is 114 µsec
1 Illegal I/O operation
0 Write protection violation

This section describes the software error source register bits.

Bit 5 User or system stack write protect violation. The stack currently in use is
specified by the value written in the stack window register.

Any attempt to write to a stack space not specified by the stack window
register will be aborted, and a stack protect error will be generated.

Bits 4, 3, 2 These three bits are used together. The I/O timer provides a degree of
protection to the I/O registers. Many of the I/O registers require the I/O
timer to be unlocked (started) to access them. This is accomplished by a
write to the UNLOCK strobe point. After the I/O timer has been unlocked,
the requested operation may be performed.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-21

The I/O timer must be locked (stopped) again after the operation by a
write to the I/O timer LOCK strobe point. If the timer is not locked within
114 µsec of its unlocking, the timer will time out and an I/O timer
timeout error will be generated. If the correct sequence is not followed, a
double lock or double unlock error will be generated.

Bit 1 One of the following illegal I/O operations was attempted:

• Reading a write only point

• Writing a read only point

• Accessing an unequipped point

• Accessing a point without I/O timer

• Accessing an 8-bit I/O as a 16-bit address (I/O bus is 8 bits, no parity)

• Accessing an 8-bit I/O on an odd address (all I/O addresses are even).

Bit 0 Write protection violation. Text in memory is protected in 4K blocks. Data
space (including EPROM, I/O, and static RAM) is protected in 1K blocks.

Whenever a write is attempted to an address that has the write protect
bit associated with that block set, the write is aborted and a write protect
violation error is generated.

8.2.5.4 Hardware Error Source Register

Table 8.2-3 defines the bit layout of the hardware error source register. This register
summarizes hardware related errors detected in the module controller, though
software errors can lead to some of these errors (such as data parity errors or memory
system errors caused by an out-of-range read).

When an interrupt is generated from this register, bit 2 (hardware error) is set in the
reset source register. (See Table 8.2-1.)

Table 8.2-3 — Hardware Error Source Register

Bit Function
7 Data parity error (read or write)
6 Address parity error
5 Ready timeout caused by the local controller
4 Memory system error
3 Ready timeout caused by an access of the

mate controller
2 I/O data bus parity error
1 Subunit enable mismatch
0 DLI interface error (SDLC or DLI parity, or

invalid DLI access)

This section describes the hardware error source register bits.

Bit 7 System data bus detected error. The system bus refers to the control,
address, and data buses from the module processor.

Bit 6 Address parity error.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-22 Issue 5.00

Bit 5 Ready timeout, local controller.

Access time to the system bus may be extended for such things as I/O
access, mate read operations, refresh clashes, correct-on-the-fly mode, etc.
The ready timeout circuitry protects the processor from indefinite time
extensions for these types of functions. The ready timeout circuitry will
terminate a bus cycle after 56 µsec.

Bit 4 Reports on faults detected by the memory control board. These faults are
recorded in the memory error source register. See Table 8.2-4.

Bit 3 Ready timeout caused by an access of the mate controller.

Bit 2 Parity error on the I/O data bus (interface to subunits). Parity is
calculated over 16 data bits and 6 address bits.

Bit 1 Each subunit receives its own subunit select signal. This bit is set when
no subunit was selected, or when more than one subunit was selected.

Bit 0 Module processor DLI interface error. This bit summarizes the dual link
interface (DLI) error source register. See Table 8.2-5.

8.2.5.5 Memory Error Source Register

Table 8.2-4 defines the bit layout of the memory error source register. This register
records faults detected by the memory control board.

When an interrupt is generated from this register, bit 4 (memory system error) is set
in the hardware error source register. (See Table 8.2-3.)

Table 8.2-4 — Memory Error Source Register

Bit Function
7 Cache error
6 Correctable bit error
5 More than one board was selected, or no

board was selected
4 Double bit error detected (noncorrectable)
3 Bad parity on system address bus
2 Bad address parity returned from memory

boards
1 Unused
0 Dynamic refresh failure

8.2.5.6 DLI Error Source Register

Table 8.2-5 defines the bit layout of the DLI error source register. This register records
peripheral errors related to a DLI or a synchronous data link controller (SDLC).

When an interrupt is generated from this register, bit 0 (DLI interface error) is set in
the hardware error source register. (See Table 8.2-3.)

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-23

Table 8.2-5 — DLI Error Source Register

Bit Function
7 Unused
6 Invalid DLI switch setting
5 Invalid access to DLI 1
4 Invalid access to DLI 0

(Either the processor was not active, or the
DLI SW register was not set correctly, or
both.)

3 Data parity error on reading DLI 1
2 Data parity error on reading DLI 0
1 Parity error on SDLC B
0 Parity error on SDLC A

8.2.6 Subunit and Peripheral Hardware Interrupts (Level 4)

8.2.6.1 Subunit and Peripheral Hardware Interrupt Registers

The subunit and peripheral hardware interrupt registers record errors that can occur
in the subunits or the peripheral hardware (Level 4 interrupts). See Figure 8.2-8.

The CI, TSI, SP, and DLI have interrupt registers that reflect the state of interrupts
generated in each unit. They record errors in an internal error source register (ESR). A
bit set in the ESR results in an interrupt from the unit to the SMP. The SMP will then

INTERRUPT DECODER

Packet
Interface

ESR

Dual Link
Interface
ESR #1

Time Slot
Interchange

ESR #1

Signal
Processor

ESR

Time Slot
Interchange

ESR #3

Control
Interface

ESR

Dual Link
Interface
ESR #2

Time Slot
Interchange

ESR #2

Interrupt
Source
Register

PIC A PIC B PIC C

IPL0 IPL1 IPL2

Figure 8.2-8 — Subunit and Peripheral Hardware (Level 4) Interrupt Registers

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-24 Issue 5.00

read the interrupting unit’s ESR for more detail. This list indicates which table
describes each of these registers.

Interrupt Register Table Number
PIC A (operational interrupts) not discussed
PIC B 8.2-6
PIC C 8.2-7
PI Error Source 8.2-8
CI Error Source 8.2-9
Interrupt Source not discussed
SP Error Source 8.2-10
TSI Error Source 1 8.2-11
TSI Error Source 2 8.2-12
TSI Error Source 3 8.2-13
DLI Error Source 1 8.2-14
DLI Error Source 2 8.2-15

The PIC A, PIC B, and PIC C registers are shown in the ROP output as LOW, MED,
and HIGH, respectively.

8.2.6.2 PIC B Register

Table 8.2-6 describes the bit layout of the PIC B register.

Table 8.2-6 — PIC B Register

Bit Function
7 Mate maintenance interrupt
6 Mate processor error

5,4 Unused
3 CPI error
2 Correctable bit error

1,0 Unused

This section describes the PIC B register bits.

Bit 7 Any unmasked maintenance interrupt occurring on a standby processor
will set this bit in the active processor. (Level 4 interrupt in mate.)

Bit 6 The mate reset source register latched a processor error. (Level 7
interrupt in mate.)

Bits 5, 4 Unused

Bit 3 Diagnostics detected a fault with the CPI gate array.

Bit 2 Correctable bit error was detected by the memory controller.

Bits 1, 0 Unused

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-25

8.2.6.3 PIC C Register

The PIC C register summarizes faults originating from the PI, CI, SP, TSI, and DLI
subunits.

Table 8.2-7 defines the bit layout of the PIC C register.

Table 8.2-7 — PIC C Register

Bit Function
7 Unused
6 PI errors
5 CI 1 errors
4 CI 0 errors
3 SP errors
2 TSI errors
1 DLI 1 errors
0 DLI 0 errors

This section describes the PIC C register bits.

Bit 7 Unused

Bit 6 The packet switch unit (PSU) interfaces with the module processor via
the packet interface (PI) and the subunit interface bus (SIB). The port
packet processor (an Intel2 80186 processor) controls the interface to the
module processor and to the PSU over the packet buses (PBs).

Bit 6 summarizes errors detected in the PI. See Table 8.2-8.

Bits 5, 4 The CI connects to the module processor via the subunit interface bus
(SIB). Bit 4 summarizes errors detected in CI 0, and bit 5 summarizes
errors detected in CI 1. See Table 8.2-9.

Bit 3 Bit 3 summarizes errors detected in the SP. See Table 8.2-10.

Bit 2 Bit 2 summarizes errors detected in the TSI. The TSI has three error
source registers. See Table 8.2-11, Table 8.2-12, and Table 8.2-13.

Bits 1, 0 Bit 0 summarizes errors detected in DLI 0, and bit 1 summarizes errors
in DLI 1. Each DLI has two error source registers. See Tables 8.2-14 and
8.2-15.

8.2.6.4 PI Error Source Register

Table 8.2-8 defines the bit layout of the PI error source register. This register records
errors detected in the PI.

When an interrupt is generated from this register, bit 6 (PI errors) is set in the PIC C
register. (See Table 8.2-7.)

2. Registered trademark of Intel Corporation.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-26 Issue 5.00

Table 8.2-8 — PI Error Source Register

Bit Function
4 Hamming bit check inhibit
3 Write protect error
2 T1 timer output error
1 Non-correctable memory error
0 SIB parity error

This section describes the PI error source register bits.

Bit 4 The hamming code generator/checker is part of the dual access RAM
(DARAM) and is inhibited only during diagnostics.

Bit 3 A write attempt was made to a write protected address spectrum.

Bit 2 Timeout of this software controller timer indicates loss of sanity.

Bit 1 Hamming detected uncorrectable double error in memory.

Bit 0 Parity error detected on the SIB.

8.2.6.5 CI Error Source Register

Table 8.2-9 defines the bit layout of the CI error source register. This register records
errors related to the CI.

When an interrupt is generated from this register in CI 0, bit 4 (CI 0 errors) is set in
the PIC C register; when an interrupt is generated from this register in CI 1, bit 5 (CI
1 errors) is set in the PIC C register. (See Table 8.2-7.)

Table 8.2-9 — CI Error Source Register

Bit Function
15 Remote source interrupt

14-11 Unused
10 Peripheral detected bad start code
9 Peripheral detected bad address
8 Peripheral detected bad parity
7 Bad parity error
6 Bad start error
5 Timeout error
4 PICB address error
3 Data parity error
2 Address parity error
1 Improper address selection (invalid CI

register)
0 Multiplexer selection error

This section describes the CI error source register bits.

Bit 15 An active service request was received from a peripheral unit. To

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-27

determine which peripheral is requesting service, a read of the remote
interrupt source register is necessary because the remote source interrupt
is normally masked. The CI interrupt source register is checked by the CI
every 40 ms.

Service requests are maskable on a per PICB basis, accomplished through
the remote interrupt inhibit register. If any bit corresponding to a PICB
address is a logical 1 in this register, service requests from the peripheral
at that address will not be reported to the error source register.

Bits 14–11 Unused

Bit 10 A peripheral detected a bad start code in a message from the CI.

Bit 9 A peripheral detected an addressing error in its own circuitry while
attempting to do a scan or distribute requested by the CI.

Bit 8 A peripheral detected bad parity in a message from the CI.

Bit 7 A peripheral reply message had bad parity.

Bit 6 A peripheral reply message had a bad start code.

Bit 5 A peripheral failed to reply to a CI message before the timeout counter in
the receive sequencer circuitry reached its terminal count.

Bit 4 An attempt was made by the SMP to write the address register with an
invalid PICB address.

Bit 3 During a write operation to a peripheral unit, the data presented to the
CI by the SMP had bad parity.

Bit 2 During a read or write operation to the CI, the register address presented
to the CI by the SMP had bad parity.

Bit 1 An attempt was made to read or write to a nonexistent register, or to
read or write to a register that does not have that capability. This
includes an attempted read of the reset register.

Bit 0 The "1-out-of-N" checkers reported an error in the selection of output
clock or output data links. This indicates a problem in the output clock or
output data multiplexer circuitry. This error occurs if no link or more
than one link becomes active during a scan or distribute operation.

8.2.6.6 SP Error Source Register

Table 8.2-10 defines the bit layout of the SP error source register. This register records
errors related to the SP.

When an interrupt is generated from this register, bit 3 (SP errors) is set in the PIC C
register. (See Table 8.2-7.)

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-28 Issue 5.00

Table 8.2-10 — SP Error Source Register

Bit Function
7 FIFO full
6 Parity error input data buffer - ignore RAM
5 Parity error change/hit timing circuit
4 Parity error received TSI data
3 Parity error internal data bus
2 Parity error module processor data bus
1 Parity error module processor address bus
0 Parity error M RAM

This section describes the SP error source register bits.

Bit 7 The SP performs status change calculations on all time slot control and
signaling bits from the TSI. Changes are stored in the FIFO memory
where the SMP has access to them.

By design, the FIFO memory should never fill up. If it does, the memory
could be faulty. However, it is more likely that a peripheral unit is
causing a massive number of originations or disconnects, etc. In such
cases, the integrity of the periphery is suspect.

Bits 6-0 These bits report bad parity detected at certain points within the SP.

8.2.6.7 TSI Error Source Register 1

Time slot interchange (TSI) error source register 1 is a read-only 16-bit register. Any
write to this register will clear it. A bit set via error reporting circuitry will cause the
appropriate TSI interrupt level to be activated until the error condition is resolved and
the register is cleared.

Table 8.2-11 defines the bit layout of TSI error source register 1. This register records
errors related to the TSI.

When an interrupt is generated from this register, bit 2 (TSI errors) is set in the PIC
C register. (See Table 8.2-7.)

Table 8.2-11 — TSI Error Source Register 1

Bit Function Bit Function
15 SMP data bus write high 7 Time slot counter
14 SMP data bus write low 6 I/O address bus
13 SMP data bus read high 5 Read modify write high
12 SMP data bus read low 4 Read modify write low
11 DLI B output 3 Control RAM B high
10 DLI A output 2 Control RAM B low
9 DLI B input 1 Control RAM A high
8 DLI A input 0 Control RAM A low

This section describes the TSI error source register 1 bits.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-29

Bit 15 Parity error over the high byte of the subunit bus while the SMP was
attempting to transmit data toward the TSI. The TSI aborts the
operation.

Bit 14 Parity error over the low byte of the subunit bus while the SMP was
attempting to transmit data toward the TSI. The TSI aborts the
operation.

Bit 13 Parity error over the high byte of the internal subunit bus while
attempting to transmit data toward the SMP.

Bit 12 Parity error over the low byte of the internal subunit bus while
attempting to transmit data toward the SMP.

Bit 11 Parity error on the nibble bus at the output for DLI odd time slot data.

Bit 10 Parity error on the nibble bus at the output for the DLI even time slot
data.

Bit 9 Parity error on the nibble bus at the input from the DLI odd time slot
data.

Bit 8 Parity error on the nibble bus at the input from the DLI even time slot
data.

Bit 7 Parity error in one of the time slot counters. Both the control time slot
counter and the TSI time slot counter can flag the error.

Bit 6 Parity error on the subunit address bus. If this error occurs on an SMP
initiated write cycle, the TSI will abort the operation.

Bit 5 Parity error in the read modify write circuit for the high byte of control
RAM data.

Bit 4 Parity error in the read modify write circuit for the low byte of control
RAM data.

Bit 3 Parity error in the read logic for the high byte of control RAM B.

Bit 2 Parity error in the read logic for the low byte of control RAM B.

Bit 1 Parity error in the read logic for the high byte of control RAM A.

Bit 0 Parity error in the read logic for the low byte of control RAM A.

8.2.6.8 TSI Error Source Register 2

Errors detected in the TSI error source register 2 are associated with the data
interfaces, digital service unit (DSU) interface, SP interface, control RAM C and
alternate data RAM, attenuation ROM, and control RAM E (even locations only).

This a 16-bit, read-only register. Any write to this register causes it to clear. Setting
any bit in this register activates the TSI interrupt lead until the error condition is
resolved and the register is cleared.

Table 8.2-12 defines the bit layout of TSI error source register 2.

When an interrupt is generated from this register, bit 2 (TSI errors) is set in the PIC
C register. (See Table 8.2-7.)

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-30 Issue 5.00

Table 8.2-12 — TSI Error Source Register 2

Bit Function Bit Function
15 Control address 7 DI B output
14 Attenuator error 6 DI A output
13 LDSU B 5 Control RAM E even
12 LDSU A 4 Unused
11 Control RAM C high (odd) 3 TSI AUTISSing (no interrupt

generated)
10 Control RAM C high (even) 2 SP input
9 Latched time slot count 1 Alternate data odd
8 Control RAM C low 0 Alternate data even

This section describes the TSI error source register 2 bits.

Bit 15 Parity error on the TSI control RAM address bus.

Bit 14 Parity error while comparing input data, address, and output data in the
digital attenuator circuit.

Bit 13 Parity error on the data returning to the TSI from SG 1 of the LDSU.
This error usually implicates the LDSU.

Bit 12 Parity error on the data returning to the TSI from SG 0 of the LDSU.
This error usually implicates the LDSU.

Bit 11 Parity error in the read logic for the odd locations of the high byte of
control RAM C.

Bit 10 Parity error in the read logic for the even locations of the high byte of
control RAM C.

Bit 9 Parity error in the latched time slot count circuit. This is a serious error
because this count is used as both address and data in several areas of
the alternate data RAM.

Bit 8 Parity error in the read logic for the low byte of control RAM C.

Bit 7 Parity error on the nibble bus going out to the odd data interface (DI)
board.

Bit 6 Parity error on the nibble bus going out to the even DI board.

Bit 5 Parity error in the read logic for the even locations of control RAM E.

Bit 3 This TSI has invoked automatic time slot switching (AUTISS) on at least
one time slot for 256 consecutive frames. This bit is used as a
maintenance indicator only and does not generate an interrupt.

Bit 2 Parity error on the nibble bus from the SP.

Bit 1 Parity error on the odd time slot nibble bus from the alternate data RAM
at the input to the data selector (DS).

Bit 0 Parity error on the even time slot nibble bus from the alternate data
RAM at the input to the DS.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-31

8.2.6.9 TSI Error Source Register 3

TSI error source register 3 is a 16-bit register, though currently only 10 of the bits are
used.

• Bits 0-3 indicate a specific error condition.

• Bits 8-13 are used as a pointer to the DI error buffer.

• Bits 4-7 are unused.

Table 8.2-13 defines the bit layout of TSI error source register 3.

When an interrupt is generated from this register, bit 2 (TSI errors) is set in the PIC
C register. (See Table 8.2-7.)

Table 8.2-13 — TSI Error Source Register 3

Bit Function
3 Control RAM D odd
2 Control RAM D even
1 Control RAM E odd
0 Data Selector (DS)

This section describes the TSI error source register 3 bits.

Bit 3 Parity error in the read logic for the odd locations of control RAM D.

Bit 2 Parity error in the read logic for the even locations of control RAM D.

Bit 1 Parity error in the read logic for the odd locations of control RAM E.

Bit 0 Parity failure in the data selector (DS) circuit.

8.2.6.10 DLI Error Source Register 1

Table 8.2-14 defines the bit layout of DLI error source register 1.

When an interrupt is generated from this register in DLI 0, bit 0 (DLI 0 errors) is set
in the PIC C register; when an interrupt is generated from this register in DLI 1, bit
1 (DLI 1 errors) is set in the PIC C register. (See Table 8.2-7.)

Table 8.2-14 — DLI Error Source Register 1

Bit Function
7 Phase lock loop slip
6 B link in frame
5 B link transmit parity error
4 B link receive parity error
3 Parity error on module processor interface
2 A link in frame
1 A link transmit parity error
0 A link receive parity error

This section describes the DLI error source register 1 bits.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-32 Issue 5.00

Bit 7 Slip detected between the two 32 MHz clocks in the DLI.

There are two clocks in the DLI. One is driven by the data transitions at
the input to the receive side, and the other resides in the digital phase
lock loop area. There is a 90 degree phase shift between the two clocks, so
that a set of data written into the "elastic buffer" is not read out until
30-plus µsec later. The slip detector checks that the second clock is
exactly 90 degrees shifted from the first clock.

Bits 6, 5, 4 These bits are related and pertain to the odd (i.e., B) NCT link.

Bit 3 The SMP sends orders to the DLI. Since the operation may be a read or
write of some register, the address and data bits accompany the operation
list. Bit 3 is set when bad parity is detected over this data.

Bits 2, 1, 0 These bits are related and pertain to the even (i.e., A) NCT link.

8.2.6.11 DLI Error Source Register 2

Table 8.2-15 defines the bit layout of DLI error source register 2.

When an interrupt is generated from this register in DLI 0, bit 0 (DLI 0 errors) is set
in the PIC C register; when an interrupt is generated from this register in DLI 1, bit
1 (DLI 1 errors) is set in the PIC C register. (See Table 8.2-7.)

Table 8.2-15 — DLI Error Source Register 2

Bit Function
7 Receive message time slot parity error link B
6 Receive message time slot parity error link A
5 Transmit message time slot parity error link

B
4 Transmit message time slot parity error link

A
3 Buffer error link B
2 Buffer error link A
1 B link clock circuit error
0 A link clock circuit error

This section describes the DLI error source register 2 bits.

Bits 7, 6, 5, 4
Parity error detected on a control time slot.

Bits 3, 2 Buffer errors, NCT link A or B.

Bits 1, 0 Clock circuit error. The clock divides down, providing all of the required
frequencies throughout the DLI. It finally divides down to an 8 KHz sync
that is compared to a reference. A mismatch will set one of these bits.

8.2.7 Motorola MC68XXX Processor Family Distinctions

8.2.7.1 Family of Motorola MC68XXX Processors

The Motorola MC68XXX family of microprocessors consists of several generations of
processor chips: MC68000, MC68012, MC68020, MC68040, and MC68060. All are
upwardly compatible.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-33

8.2.7.2 Motorola MC68000 Processor

The Motorola MC68000 processor was the earliest of the MC68XXX based processors.
It had a 24-bit address bus, 16-bit data bus, eight 32-bit data registers, and eight
32-bit address registers.

8.2.7.3 Motorola MC68012 Processor

The Motorola MC68012 processor differs from its predecessor in that it has:

• a 31-bit address bus

• loop-mode caching

• a larger instruction set.

8.2.7.4 Motorola MC68020 Processor

The Motorola MC68020 processor was an improvement on the MC68012 processor,
and provides:

• a 32-bit address bus

• a 32-bit data bus

• a 256-byte instruction cache (direct-mapped)

• a microcoded coprocessor interface

• fewer alignment restrictions (only instructions need be word aligned)

• additional control registers and addressing modes

• a further enlarged instruction set

• two additional stack pointers

• additional status register bits.

The SMP20 (SMP using the Motorola MC68020 processor chip) uses a level 6
interrupt for fast pump operations. Fast pump is used to pump RAM memory
following a power up of the processor or for a full initialization. Data is pumped in
block sizes up to 256 K. If they are available, up to 32 time slots can be used for the
pump operation.

Minor (but significant) changes were made to a number of registers:

• The memory error source register now uses bits 6 and 7. (See Table 8.2-4.)

When set, bit 7 indicates multiple cache banks were "hit" for one access of
memory.

Bit 6 is used to report correctable bit errors.

• Hardware error source register bit 2 is now used to indicate a multiple response
error, i.e., more than one board responded to an operation. Previously, bit 2
indicated an I/O bus parity error. (See Table 8.2-3.)

• Bit 1 of the software error source register is now used to indicate "no response" to
a command. Previously, bit 1 indicated an invalid I/O operation. (See Table 8.2-2.)

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-34 Issue 5.00

8.2.7.5 Motorola MC68040 Processor

The Motorola MC68040 processor is an evolutionary step in switch module
architecture. The core hardware consists of the:

• microprocessor core (CORE40) pack

• 32 Mbyte dynamic memory (MEM32) pack

• bus service node (BSN) pack

• local system bus (LS).

The interrupt structure for SMP40 is similar to the structure of SMP20, except the
SMP40 uses six interrupt levels. See Figure 8.2-9 for the interrupt hierarchy.

The level 7 interrupts are sourced by any unmasked bit set in the reset source
register, which is a collection of the truly unmaskable errors (sanity timer, CPI, etc.)
and the maskable summary errors from the hardware and software error source
registers. All level 7 interrupts are autovectored by the hardware. Figure 8.2-10 shows
the level 7 interrupt hierarchy.

The level 6 interrupt is allocated to the address/data/operational pattern matchers on
the BSN circuit pack. This interrupt is autovectored by the CORE40.

The level 5 interrupt is reserved for the fast pump mechanism on the application
controller pack (APC). This autovectored interrupt is used to indicate that a header

BIT 7

unused

BIT 6

unused

BIT 5

LEVEL 6

BIT 4

LEVEL 5

BIT 3

LEVEL 4

BIT 2

LEVEL 3

BIT 1

LEVEL 2

BIT 0

LEVEL 1

Level 1 Interrupt (unassigned)

Level 2 Interrupt from Operational PIC

Level 3 Interrupt from Maintenance PICs

Level 4 Interrupt from CPI

Level 5 Interrupt from APC Fast Pump

Level 6 Interrupt from BSN Matchers

Level 7 Interrupt from Reset Source Register

PRIORITY ENCODER

IPL0

IPL1

IPL2
MC680XX

Figure 8.2-9 — Interrupt Hierarchy

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-35

has been detected by the bootstrapper circuit and that the microprocessor must
program the fast pump direct memory access (DMA) controller.

The level 4 interrupt is used by the central processor intervention (CPI) gate array on
the BSN. This autovectored interrupt is generated for all operational CPI messages
except CPI reset orders received by the gate array.

The level 3 interrupt is generated by the programmable interrupt controllers for the
generation of peripheral maintenance interrupts. The interrupt is not autovectored
and reads an interrupt vector from the programmable interrupt controllers (PIC B
and PIC C) resident on the BSN.

A level 2 interrupt is created for SMP40 to accommodate the operational interrupts.
The only interrupt at this level is the 10 ms timer interrupt. The interrupt is not
autovectored and reads an interrupt vector from the programmable interrupt
controller (PIC-A) on the BSN. Additional level 2 interrupts in PIC A are allocated to
RS bus packs and miscellaneous timers. These interrupts are presented to the
microprocessor at level 2 when the I/O timer is not running.

The Level 1 interrupt is not assigned.

The settings of the interrupt priority levels (IPLs) for all 6 interrupt levels are shown
here:

Interrupt Level IPL2 IPL1 IPL0
7 1 1 1
6 1 1 0
5 1 0 1
4 1 0 0
3 0 1 1
2 0 1 0

Note: Register layouts for all registers can be obtained from the header files
available through the on-line listing procedure described in Section 2. From the
LISTINGS MENU, select item 2, Source File Name and enter the file name
associated with each register, such as SMmp_xxxxx.h, where xxxxx is the unique
register file name.

The system responds with the full path name, including the register file name, such
as /.../.../.../hdr/smim/SMmp_xxxxx.h and then displays the register layout.

To locate the register layout for any register, look at the file named SMmp_reg.h. This
file lists all registers and the unique register layout file name for each.

For reader convenience, the register layouts shown in this manual contain the unique
register file name.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-36 Issue 5.00

The reset source register summarizes the seven non-maskable interrupt sources to the
microprocessor. It operates in conjunction with the reset source mask register to
generate an NMI if any of the specific conditions are met. Only the hardware,
software and from mate reset bits may be masked by the corresponding bit in the
reset source mask register. The other four bits (SANTIM, SMITS, STOP and PAUSE)
are not maskable. In addition, the mask bit for the from mate reset is only functional
in an active (A-FF set, and RUNNING) processor (this means that the from mate reset
cannot be masked in a non-active processor).

The hardware, software, and summary error source registers (ESRs) function identical
to previous SMPs. The summary ESR reports to the hardware ESR and the hardware
and software ESRs report directly to the reset source register.

From Mate Reset

Pause Mate Request

Stop Mate Request

Spare

Monitor Invoke Request

Sanity Timer Error

Reset Error
Source Register
(SMmp_rstsr.h)

Hardware Error
Source Register
(SMmp_hrsrc.h)

Multiple Response Error

I/O Timer 2 Timeout

I/O Timer 2 Double Lock

I/O Timer 2 Double Unlock

I/O Timer 1 Timeout

I/O Timer 1 Double Lock

I/O Timer 1 Double Unlock

No Response

Write Protect

Long Ready Timeout Error

Short Ready Timeout Error

Address Parity Error

RS Bus Address Parity Error

Read Data Parity Error

Message Handler 2 Error

Message Handler 1 Error

Message Handler 0 Error

Application Controller Error

Memory Slot 3 Error

Memory Slot 2 Error

Memory Slot 1 Error

SUMMARY Error
Source Register
(SMmp_sesr.h)

Software Reset
Source Register
(SMmp_srsrc.h)

Non Maskable Interrupt

Update Bus Data Parity Error

Arbitration Error

Multiple Response Error

LS Bus Address Parity Error

BSN Error
Source Register
(SMmp_bsnes.h)

RS Bus Data Parity Error

Update Bus Address Parity Error

Spare

Correctable Bit Error

Multiple Response Error

Non Correctable Bit Error

System Address Parity Check

Address Parity Error

Spare

Refresh Fail Error

Memory Error
Source Register

(SMmp_memes.h)
Memory Slot 0 Error

SUM

LS Bus Data Parity Error

BSN

Mate Ready Timeout

HARD

SOFT

Figure 8.2-10 — SMP40 Non-maskable Interrupt Hierarchy

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-37

Each MEM32 is equipped with a memory error source register for latching pack
related errors. Each MEM32 pack provides a single error lead that feeds the summary
error source register on the circuit pack. Each bit in the register is maskable by the
corresponding bit in the memory error mask register.

The bus service node (BSN) pack contains a BSN error source register to collect
address and data parity errors for each of three buses terminating on it. Each bit is
maskable by the corresponding bit in the BSN mask register. All mask bits are set by
the hardware reset signal.

The programmable interrupt controller - A (PIC A) register provides a reporting
mechanism for all SMP40 operational interrupts. See Figure 8.2-11 for a bit
description. In the SMP20 this register generates a level 4 interrupt, but in the
SMP40 this is a level 2 interrupt.

Exhibit 8.2-1 — PIC A Register: File SMmp_icldr.h
/*MPICLDR*/

/*INTERRUPT CONTROLLER - LOWEST PRIORITY*/
/* ___ */
/*| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | */
/*| | | | | | | | | */
/*|MTINT |SDLCI |SDBTI |SDATI |SDBRI |SDARI |10MSI |SDCRI | (A) */
/*| | | | | | | | | */
/*|---| */
/*| | | | | | | | | */
/*|MTINT |MT2IN | | | |QUICL |10MSI |QUICH | (D) */
/*| | | | | | | | | */
/*|---| */
/*| | | | | | | | | */
/*|MT2IN |MTINT | |APCOI |MH2OI |MH1OI |MH0OI |10MSI | (K) */
/*| | | | | | | | | */
/* --- */

/* Exists for: */
/* (A) SMP12 */
/* SMP23, SMP23X, SMP23CDM */
/* MCTU2 */
/* (D) MCTU3 */
/* (K) SM-2000 */

Misc Timer 2

Misc Timer 1

Spare

APC Operational Interrupt

Message Handler 2

Message Handler 1

Message Handler 0

10 MS Timer

PIC-A Register
(SMmp_icldr.h)

(low priority)

Figure 8.2-11 — PIC A Register

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-38 Issue 5.00

/* O: offset */
/* M: mask */
/* V: active value */

/* Bit Description */

#if (ASM || EES)
#define _ICLDR 0xea4
#else
#define _ICLDR 0x20080
#endif

#if (ASM)
#define OMPMTINT _ICLDR /*misc.timer interrupt*/
#define MMPMTINT 0x80
#define VMPMTINT 0x1

#define OMPSDLCI _ICLDR /*Combined SDLC interrupt*/
#define MMPSDLCI 0x40 /*This exists in TN872 only*/
#define VMPSDLCI 0x01 /*It was removed with TN1617*/

#define OMPMT2IN _ICLDR /*misc. timer 2 interrupt - MCTU3*/
#define MMPMT2IN 0x40
#define VMPMT2IN 0x01

#define OMPSDBTI _ICLDR /*sdlcb transmit interrupt*/
#define MMPSDBTI 0x20
#define VMPSDBTI 0x1

#define OMPSDATI _ICLDR /*sdlca transmit interrupt*/
#define MMPSDATI 0x10
#define VMPSDATI 0x1

#define OMPSDBRI _ICLDR /*sdlcb receive interrupt*/
#define MMPSDBRI 0x08
#define VMPSDBRI 0x1

#define OMPSDARI _ICLDR /*sdlca receive interrupt*/
#define MMPSDARI 0x04
#define VMPSDARI 0x1

#define OMPQUICL _ICLDR /*QUICC RQOUT interrupt low - MCTU3*/
#define MMPQUICL 0x04
#define VMPQUICL 0x1

#define OMP10MSI _ICLDR /*10 ms timer interrupt*/
#define MMP10MSI 0x02
#define VMP10MSI 0x1

#define OMPSDCRI _ICLDR /*Combined SDLC receive interrupt*/
#define MMPSDCRI 0x01 /*This exists in TN1617 and */
#define VMPSDCRI 0x1 /*UN518 (SMP20) only*/

#define OMPQUICH _ICLDR /*QUICC RQOUT interrupt high - MCTU3*/
#define MMPQUICH 0x01
#define VMPQUICH 0x1
#else

#define OMPMT2IN _ICLDR /*Misc timer 2(billing counter) interrupt*/
#define MMPMT2IN 0x80
#define VMPMT2IN 0x1

#define OMPMTINT _ICLDR /*Misc timer 1(10 ms timer) interrupt*/
#define MMPMTINT 0x40

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-39

#define VMPMTINT 0x1

#define OMPAPCOI _ICLDR /*APC operational interrupt*/
#define MMPAPCOI 0x10
#define VMPAPCOI 0x1

#define OMPMH2OI _ICLDR /*MH 2 operational interrupt*/
#define MMPMH2OI 0x08
#define VMPMH2OI 0x1

#define OMPMH1OI _ICLDR /*MH 1 operational interrupt*/
#define MMPMH1OI 0x04
#define VMPMH1OI 0x1

#define OMPMH0OI _ICLDR /*MH 0 operational interrupt*/
#define MMPMH0OI 0x02
#define VMPMH0OI 0x1

#define OMP10MSI _ICLDR /*10 ms timer interrupt*/
#define MMP10MSI 0x01
#define VMP10MSI 0x1

#endif

/*NOTES: - unlocked read/write
data register
This register represents the contents of the interrupt
service, interrupt mask, interrupt request, and auto
clear registers. The register selected to be read must
be preselected by first writing to the command register[ff41]
to select the desired register[mode bits 5, 6], then reading
this register according to the chart below:
a0 - interrupt service register
a4 - interrupt mask register
a8 - interrupt request register
ac - auto clear register

MCTU3:
The QUICC will only generate one interrupt, so the two QUICC
interrupts (QUICL and QUICH) are actually the same interrupt,
both can be masked/enabled simultaneously. Thus care must be
taken when enabling them both at the same time (possibly dual
interrupts) or when switching priorities (lost interrupts),
as unexpected results may happen when a QUICC interrupt comes
while no QUICH or QUICL bit is active. So when switching
priorities, it’s safe to toggle both bits (QUICH and QUICL) in
the same instruction.
*/

The PIC B and PIC C registers report up to 16 maintenance interrupts. The
functionality is the same as the SMP20, but the interrupt sources have changed
because of differences in the SMP40 architecture. These PICs generate a level 3
interrupt. See Figures 8.2-12 and 8.2-13 for bit descriptions.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-40 Issue 5.00

Exhibit 8.2-2 — PIC B Register: File SMmp_icmdr.h
/*MPICMDR*/

/*INTERRUPT CONTROLLER - MEDIUM PRIORITY*/
/* ___ */
/*| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | */
/*| | | | | | | | | */
/*|MPRIN |MCINT | | | CPIE |CBERR |CI5IN |CI4IN | (A) */
/*| | | | | | | | | */
/* --- */
/*| | | | | | | | | */
/*|MPRIN |MCINT |MRWRI |AFFCI | CPIE |CBERR |CI5IN |CI4IN | (D) */
/*| | | | | | | | | */
/* --- */
/*| | | | | | | | | */
/*|MPRIN |MCINT |CPIE | | |PIIN |CI3IN |CI2IN | (K) */
/*| | | | | | | | | */
/* --- */

/* Exists for: */
/* (A) SMP12 */
/* SMP23, SMP23X, SMP23CDM */
/* MCTU2 */
/* (D) MCTU3 */
/* (K) SM-2000 */

/* O: offset */
/* M: mask */
/* V: active value */

/* Bit Description */

#if (ASM || EES)
#define _ICMDR 0xea8
#else
#define _ICMDR 0x200c0
#endif

#if (ASM)
#define OMPMPRIN _ICMDR /*mate peripheral interrupt [a maintenance*/
#define MMPMPRIN 0x80 /*interrupt occurred on the mate side]*/

Mate Maintenance

Mate Processor Error

CP Intervention Error

Spare Slot Interrupt

Subunit Interrupt 7

Subunit Interrupt 6 (PI)

Subunit Interrupt 5 (CI 3)

Subunit Interrupt 4 (CI 2)

PIC-B Register
(SMmp_icmdr.h)

(medium priority)

Figure 8.2-12 — PIC B Register

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-41

#define VMPMPRIN 0x01

#define OMPMCINT _ICMDR /*mate controller interrupt [a non maskable*/
#define MMPMCINT 0x40 /*interrupt occurred on the mate side]*/
#define VMPMCINT 0x01

#define OMPMRWRI _ICMDR /*mate read while running - MCTU3*/
#define MMPMRWRI 0x20
#define VMPMRWRI 0x01

#define OMPAFFCI _ICMDR /*A-FF clear interrupt - MCTU3*/
#define MMPAFFCI 0x10
#define VMPAFFCI 0x01

#define OMPCPIE _ICMDR /*cp intervention interrupt*/
#define MMPCPIE 0x08
#define VMPCPIE 0x01

#define OMPCBERR _ICMDR /*correctable bit error*/
#define MMPCBERR 0x04
#define VMPCBERR 0x01

#define OMPCI5IN _ICMDR /*CI 5 interrupt*/
#define MMPCI5IN 0x02
#define VMPCI5IN 0x01

#define OMPCI4IN _ICMDR /*CI 4 interrupt*/
#define MMPCI4IN 0x01
#define VMPCI4IN 0x01
#else

#define OMPMPRIN _ICMDR /*mate peripheral interrupt [a maintenance*/
#define MMPMPRIN 0x80 /*interrupt occurred on the mate side]*/
#define VMPMPRIN 0x01

#define OMPMCINT _ICMDR /*mate controller interrupt [a non maskable*/
#define MMPMCINT 0x40 /*interrupt occurred on the mate side]*/
#define VMPMCINT 0x01

#define OMPCPIE _ICMDR /*cp intervention interrupt*/
#define MMPCPIE 0x20
#define VMPCPIE 0x01

#define OMPPIIN _ICMDR /*Packet interface interrupt*/
#define MMPPIIN 0x04
#define VMPPIIN 0x01

#define OMPCI3IN _ICMDR /*CI 3 interrupt*/
#define MMPCI3IN 0x02
#define VMPCI3IN 0x01

#define OMPCI2IN _ICMDR /*CI 2 interrupt*/
#define MMPCI2IN 0x01
#define VMPCI2IN 0x01
#endif

/*NOTES: - data register
unlocked read/write
This register represents the contents of the interrupt
service, interrupt mask, interrupt request, and auto
clear registers. The register selected to be read
must be preselected by first writing to the command register[ff45]
to select the desired register[mode bits 5, 6], then reading this
register according to the chart below:
a0 - interrupt service register
a4 - interrupt mask register

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-42 Issue 5.00

a8 - interrupt request register
ac - auto clear register

MCTU3: The AFFCI bit exists for SM-2000 in the MPICHDR register.
This is only a bit move for the MCTU3.

Any unmasked maintenance interrupt occurring on a standby processor
will show as interrupt 7 in the active processor.
*/

Exhibit 8.2-3 — PIC C Register: File SMmp_ichdr.h
/*MPICHDR*/

/*INTERRUPT CONTROLLER - HIGHEST PRIORITY*/
/* ___ */
/*| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | */
/*| | | | | | | | | */
/*|CI3IN |PIIN |CI1IN |CI0IN |SPINT |TSIIN |DLI1I |DLI0I | Pre-SMP40 */
/*| | | | | | | | | */
/* --- */
/*| | | | | | | | | */
/*|CI1IN |CI0IN |TSIIN |AFFCI |APCIN |MH2IN |MH1IN |MH0IN | SMP40 */
/*| | | | | | | | | */
/* --- */

/* O: offset */
/* M: mask */
/* V: active value */

/* Bit Description */

#if (ASM || EES)
#define _ICHDR 0xeac
#else
#define _ICHDR 0x200c8
#endif

#if (ASM)
#define OMPCI3IN _ICHDR /*control interface 3 interrupt*/
#define MMPCI3IN 0x80

Subunit 3 Interrupt

Subunit 2 Interrupt

Time Slot Interchange (TSI) Interrupt

A-FF Cleared

APC Interrupt

Message Handler 2

Message Handler 1

Message Handler 0

PIC-C Register
(SMmp_ickch.h)

(high priority)

Figure 8.2-13 — PIC C Register

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-43

#define VMPCI3IN 0x1

#define OMPCSCIN OMPCI3IN /* CSC interrupt - See Note 1 */
#define MMPCSCIN MMPCI3IN
#define VMPCSCIN VMPCI3IN

#define OMPPIIN _ICHDR /*PI interrupt*/
#define MMPPIIN 0x40
#define VMPPIIN 0x1

#define OMPCI1IN _ICHDR /*control interface 1 interrupt*/
#define MMPCI1IN 0x20
#define VMPCI1IN 0x1

#define OMPCI0IN _ICHDR /*control interface 0 interrupt*/
#define MMPCI0IN 0x10
#define VMPCI0IN 0x1

#define OMPSPINT _ICHDR /*signal processor interrupt*/
#define MMPSPINT 0x08
#define VMPSPINT 0x1

#define OMPTSIIN _ICHDR /*timeslot interchange interrupt*/
#define MMPTSIIN 0x04
#define VMPTSIIN 0x1

#define OMPDLI1I _ICHDR /*data link 1 interrupt*/
#define MMPDLI1I 0x02
#define VMPDLI1I 0x1

#define OMPDLI0I _ICHDR /*data link 0 interrupt*/
#define MMPDLI0I 0x01
#define VMPDLI0I 0x1
#else

#define OMPCI1IN _ICHDR /*control interface 1 interrupt*/
#define MMPCI1IN 0x80
#define VMPCI1IN 0x1

#define OMPCI0IN _ICHDR /*control interface 0 interrupt*/
#define MMPCI0IN 0x40
#define VMPCI0IN 0x1

#define OMPTSIIN _ICHDR /*timeslot interchange interrupt*/
#define MMPTSIIN 0x20
#define VMPTSIIN 0x1

#define OMPAFFCI _ICHDR /*A-FF cleared interrupt*/
#define MMPAFFCI 0x10
#define VMPAFFCI 0x1

#define OMPAPCIN _ICHDR /*APC interrupt*/
#define MMPAPCIN 0x08
#define VMPAPCIN 0x1

#define OMPMH2IN _ICHDR /*MH2 interrupt*/
#define MMPMH2IN 0x04
#define VMPMH2IN 0x1

#define OMPMH1IN _ICHDR /*MH1 interrupt*/
#define MMPMH1IN 0x02
#define VMPMH1IN 0x1

#define OMPMH0IN _ICHDR /*MH0 interrupt*/
#define MMPMH0IN 0x01
#define VMPMH0IN 0x1

#endif

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-44 Issue 5.00

/*NOTES: - data register

General Comment:
unlocked read/write
This register represents the contents of the interrupt service,
interrupt mask, interrupt request, and auto clear registers.
The register selected to be read must be preselected by first
writing to the command register[ff49] to select the desired
register [mode bits 5, 6], then reading this register according
to the chart below:
a0 - interrupt source register
a4 - interrupt mask register
a8 - interrupt request register
ac - auto clear register

Note 1: In an AWS SM, the CSC will occupy the same slot as
CI3 would have. The bit definitions for the CSC
(MPCSCIN) will share the CI3 bit defines.
*/

The interrupt enable register (IER) and read interrupt status register (RINTS) are
SMP40 registers.

The interrupt enable register provides a single location to mask each level of interrupt
independently. Previous SMPs had various interrupt mask bits scattered throughout
the system (generally associated with the circuitry responsible for generation of the
interrupt); the SMP40 consolidates these mask bits into a single register. See Figure
8.2-14.

Unused

Level 6 Interrupt Enable

Level 5 Interrupt Enable

Level 4 Interrupt Enable

Level 3 Interrupt Enable

Level 2 Interrupt Enable

Level 1 Interrupt Enable

Unused

Interrupt Enable
Register

(SMmp_ier.h)

Figure 8.2-14 — Interrupt Enable Register

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-45

The read interrupt status register (RINTS) makes the pre-enabled status of the
interrupt signals available to the microprocessor. The RINTS register gives software
the ability to determine if a specific level of interrupt is pending prior to enabling that
level. See Figure 8.2-15.

There are five registers that report processor status. The controller status 1, controller
status 2, and active status registers are carry-overs from previous SMPs. The
auxiliary status register and test utility status register are new additions for SMP40.

The auxiliary status register provides additional miscellaneous status. See Figure
8.2-16 for a definition of the active bits.

Unused

Level 6 Interrupt Present

Level 5 Interrupt Present

Level 4 Interrupt Present

Level 3 Interrupt Present

Level 2 Interrupt Present

Level 1 Interrupt Present

Unused

Read Interrupt
Status Register
(SMmp_rints.h)

Figure 8.2-15 — Read Interrupt Status Register

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-46 Issue 5.00

The test utility status register consolidates the status from the test utility bus. This
eight-bit read-only register is shown in Figure 8.2-17.

8.2.7.6 Motorola MC68060 Processor

The CORE60 circuit pack is the second generation CORE processor pack for the
SM-2000 switch module processor. It can replace the CORE40 circuit pack in the
module controller timeslot interchanger model 4 (SMPU4 [SM2000]). The CORE60
circuit pack contains all the functionality of the CORE40 circuit pack.

Test Utility In

SM Automatic Power Recovery

Flash Programing Voltage Present

I/O Timer 2 Running

I/O Timer 1 Running

Mate Controller Performs Control/Display Diagnostics

This Controller Performs Control/Display Diagnostics

Out of Service this Controller

Auxiliary Status
Register

(SMmp_proc3.h)

Figure 8.2-16 — Auxiliary Status Register

SMITS Mode

SMITS Active

Pseudo - ROM

Inhibit Write Protect

Inhibit Timers

Master/Store

Diagnose Test Utility Bus

Auto Track

Test Utility Bus
Status Register
(SMmp_tubsr.h)

Figure 8.2-17 — Test Utility Bus Status Register

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-47

The CORE60 circuit pack is implemented around the Motorola MC68060
microprocessor. The Motorola MC68060 processor provides:

• An integral memory management unit (MMU)

• Two 8 KByte cache memory systems

• An internal branch target cache for improved branch performance

The CORE60 circuit pack also provides the following performance enhancing features:

• A 2 MByte direct mapped unified instruction and data cache

• A dynamic RAM subsystem with EDC (64 MByte with CORE60; 64 or 128 MByte
with CORE60MM)

• A write posting buffer

• An enhanced I/O subsystem with optimized write strobes.

The interrupt structure for the CORE60 is similar to the structure of CORE40. See
Figure 8.2-9. A major difference is the addition of the CORE error source register
(CORES) and the CORE auxiliary error source register (CAXES). See Figure 8.2-18 for
interrupt hierarchy.

Note: Register layouts for all registers can be obtained from the header files
available through the on-line listing procedure described in Section 2. From the
LISTINGS MENU, select item 2, Source File Name and enter the file name
associated with each register, such as SMmp_xxxxx.h, where xxxxx is the unique
register file name.

The system responds with the full path name, including the register file name, such
as /.../.../.../.../hdr/smim/SMmp_xxxxx.h and then displays the register
layout.

To locate the register layout for any register, look at the file named SMmp_reg.h. This
file lists all registers and the unique register layout file name for each.

For reader convenience, the register layouts shown in this manual contain the unique
register file name.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-48 Issue 5.00

The hardware, software, summary, CORE, and CORE auxiliary ESRs function
identically. The CAXES (CORE auxiliary ESR) reports to the CORES (CORE ESR). The
summary and CORES ESRs report to the hardware ESR. The hardware and software
ESRs report to the reset source register. Each bit in each of the five ESRs has the
ability to be set by externally detected sources (if specified) or by software. Each bit
also has an associated mask bit in the appropriate mask register. If a mask bit is set,
the error bit may be set, but the error will not propagate beyond the register. If a
mask bit is not set and an error bit is set (by hardware or software), the error will be
propagated to the next level register.

The interrupt enable and the read interrupt status registers function the same as in
the SMP40.

From Mate Reset

Pause Mate Request

Stop Mate Request

Spare

Monitor Invoke Request

Sanity Timer Error

Reset Error
Source Register
(SMmp_rstsr.h)

Hardware Reset
Source Register
(SMmp_hrsrc.h)

Message Handler 2 Error

Message Handler 1 Error

Message Handler 0 Error

Application Controller Error

Memory Slot 3 Error

Memory Slot 2 Error

Memory Slot 1 Error

Memory Slot 0 Error

BSN Error

Multiple Response Error

I/O Timer 2 Timeout

I/O Timer 2 Double Lock

I/O Timer 2 Double Unlock

I/O Timer 1 Timeout

I/O Timer 1 Double Lock

I/O Timer 1 Double Unlock

No Response

Write Protect

Long Ready Timeout Error

Short Ready Timeout Error

Address Parity Error

Spare

Data Parity Error

Summary Error
Source Register
(SMmp_sesr.h)

Software Reset
Source Register
(SMmp_srsrc.h)

Non Maskable Interrupt

Internal Ready Timeout

Spare

Mate Ready Timeout

Cache Parity Error

CORE Error
Source Register
(SMmp_cores.h)

Orphan Cycle Error

LOCK Protocol Violation

CORE DRAM Address Fail

CORE DRAM Refresh Fail

CORE DRAM Correctable

CORE DRAM Non-Correctable

Spare Error

Spare Error

I/O System Loss of SYNC

APCX Error

CORE Auxiliary Error
Source Register
(SMmp_caxes.h)

SUM

CORE AUX

CORE

HARD

SOFT

Figure 8.2-18 — SMP60 Non-maskable Interrupt Hierarchy

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-49

There are six registers which report processor status. The proc 1 (controller status 1),
proc 2 (controller status 2), and active status register are carry-overs from SMPs prior
to SMP40. The proc 3 (auxiliary status) register and test utility status register were
new additions to SMP40. The CORE60 control and status register is new to the
SMP60. The CORE60 control and status register provides control and status for the
CORE60 functionality. See Figure 8.2-19.

8.2.8 Interrupt Masking

8.2.8.1 Interrupt Masking

Interrupt masking prevents an interrupt from notifying the system of its occurrence.
Although the condition that caused the interrupt may still exist, the interrupt (and
thus its source) is ignored.

Each interrupt register that contains maskable interrupts has an associated mask
register. A bit set in the mask register causes the corresponding interrupt in the
interrupt register to be masked (i.e., ignored). Conversely, if a bit is not set in the
mask register, its associated interrupt in the interrupt register is "allowed."

Interrupts in peripheral units can be masked at the unit level, thus preventing them
from propagating to the CI. Interrupts from the peripheral units to the CI can be
masked in the CI by setting the appropriate bits in the CI mask registers.

Some interrupt registers and their mask registers share the same address. In these
cases, the interrupt register is a read-only register and the mask register is a
write-only register. A read operation causes the interrupt register to be read, while a
write operation to the same address causes the mask register to be written. (Interrupt
and mask registers in the SMP do not share addresses.)

Unused

Unused

Disable External Cache

Inhibit Write Posting Buffer for Non-burst Writes

Write Posting Buffer Busy

Cashe Disabled

Cache BIST Fail

Cache BIST In Progress

CORE60 Status and
Control Register
(SMmp_coctl.h)

Figure 8.2-19 — CORE60 Status and Control Register

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-50 Issue 5.00

Since the mask register cannot be read, any software needing to know its current
state must consult a software image of that mask register. Software images of mask
registers are kept in relations in the database and updated each time the mask
register is written.

8.2.8.2 Status Register

Three bits of the 16-bit status register are used to control the interrupt system.

The module processor compares the level of an interrupt request with the setting of
the interrupt mask in bits 8-10 of the status register. The interrupt will not be
recognized unless it is of a higher level than the mask level set in the status register.

The status register is also used to store other information about the status of the
processor. For example, the conditional branch instruction refers to the status register
to determine the results of previous operations. Bits 0 through 7 of the register
comprise the "user byte" and can be read or modified by programs executing in either
the user or supervisor mode. Bits 8 through 15 comprise the "system byte" and can be
modified only by programs that execute in the supervisor mode. See Figure 8.2-20.

Level of Interrupt to be Masked Interrupt Mask

Bit 10 Bit 9 Bit 8

1 to 7 1 1 1

1 to 6 1 1 0

1 to 5 1 0 1

1 to 4 1 0 0

1 to 3 0 1 1

1 to 2 0 1 0

1 0 0 1

All levels enabled 0 0 0

Status Register

Interrupt
Mask

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

User ByteSystem Byte

15

Figure 8.2-20 — Status Register and Interrupt Masking Structure

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.2-51

System Byte User Byte

Bit Description Bit Description

15 The trace or T1 (Motorola MC68020
processor) bit is a hardware aid for
debuggers. If bit 15 is set, an exception
takes place at the end of each
instruction.

7 Unused

14 The T0 (Motorola MC68020 processor)
bit. If bit 14 is set, a trace occurs on
change of flow. Bits 15 and 14 cannot
both be set at the same time.

6 Unused

13 The supervisor bit is used to regulate
access to certain instructions and to the
system byte of the status register.

5 Unused

12 The master/interrupt (Motorola
MC68020 processor) bit allows
multitask operating systems to use an
interrupt or additional stacks in the
supervision state.

4 The extended bit is always set to
the same state as the carry bit,
bit 0, whenever it is affected by
an instruction. This bit is
provided for use in the
multiprecision arithmetic
operations.

11 Unused 3 The negative bit is set if the high
order bit of a result is set.

10 Interrupt mask 2 The zero bit is set only when an
arithmetic operation produces a
zero or reset with a non-zero
result.

9 Interrupt mask 1 The overflow bit represents
overflow from an operation
yielding a condition where the
result cannot be represented.

8 Interrupt mask 0 The carry bit holds the carry
from the high bit produced by
arithmetic operations or shifts.
Logical operations, moves,
multiples and divides clear the
bit.

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.2-52 Issue 5.00

8.3 INTERRUPT RECEIVE ONLY PRINTER (ROP) OUTPUT

8.3.1 AM Interrupt ROP Output

Report messages (REPT) are used to provide data and information on error interrupt
or system initialization on the 3B20D computer. They are output at the time of the
error and provide a sequence number which can be used to locate additional data that
is related to the error.

Supplementary information is generally output after the processor has stabilized.
Detailed information is saved on disk in a number of error history files known as
logfiles. Each of these logfiles is associated with a specific type of error.

The following is an example of a report message:
REPT CU 0 ERROR INTERRUPT X’08 X’21

This message reports that a noncorrectable parity failure (as indicated by the X’08)
occurred in CU 0. The X’21 is a sequence number that can be used to associate
related ROP output. For a complete description of error messages, refer to the
235-600-750, Output Messages Manual.

8.3.2 SM Interrupt ROP Output

First Message
S570-65669 90-10-06 00:00:30 030742 INT FIVE I
REPT SM=9,0 HWLVL=0 SWLVL=RPI CI0 TIME-OUT-ERROR EVENT=6410 COMPLETED

HW-ERR FAILING ADDR=H’5d8 PROCESS:BG=31,0,RPI CM=NONE, FG=NONE,,

The INT output message provides the following information:

Line 1:

• S570-65669 is the utility number and the process ID that caused this message
to be printed. It is not related to the process that was executing at the time of
the interrupt.

• The remainder of the first line is the date, time, and message sequence number.

Line 2:

• SM=9,0 specifies that SM 9, controller 0 generated this interrupt. Side 0
registers are printed after this message.

• HWLVL=0 is the level of hardware escalation attempted by the system to recover
from the fault.

• SWLVL=RPI is the software action taken to recover from the fault; here, return to
point of interrupt.

• CI0 TIME-OUT-ERROR indicates the type of fault. A peripheral failed to reply to
a CI message before the timeout counter in the receive sequencer circuitry
reached its terminal count.

• EVENT=6410 is the event number. This is the system integrity (SI) number used
for tracking and correlating related output messages.

Line 3:

• HW-ERR indicates that a hardware error is suspected. If a software error was
suspected, this field would have been SW-ERR.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.3-1

• The FAILING ADDR usually points to the address of the executing program. In
this case, however, it is the address of some peripheral device. And, in the case of
a WRITE-PROT-ERR, the FAILING ADDR is the address at which the program
attempted an invalid write.

Second Message
S570-65669 90-10-06 00:00:37 030745 INT_MON FIVE I
REPT SM=9,0 HWLVL=0 SWLVL=RPI EVENT=6410 COMPLETED

CI0 TIME-OUT-ERROR
HW-ERR FAIL-ADDR==H’5d8 ROM-UNK DATA-BUS=H’0 TIME=0:0.2
PROCESS:BG=31,0,RPI CM=NONE, FG=NONE,, NORMAL
ORIG.-HW-STATUS: MC0: ACT MC1: STBY
FINAL-HW-STATUS: MC0: ACT MC1: STBY
PREVIOUS TYPE/COUNT: 119 0
SHADOW TYPE/COUNT: 71 36864
AUX DATA: H’0 H’200 H’0 H’0
ESCALATION-COUNTS: H’0 H’0 H’0 H’0

The first three lines of the INT_MON output message contain information that was also
found in the INT output message described previously. The remainder of the message
provides the following:

• Line 4: Contains the failing address and the data present on the data bus. The
time information field refers to the minutes, seconds, and tenths of seconds past
the hour when the interrupt was triggered.

• Line 5: Provides information about the background and foreground processes and
the recovery action taken by the system (if any).

• Lines 6, 7: Reflect the original and final hardware status of the two module
controllers.

• Line 8: Gives the recovery progress type when the stimuli occurred, and the
recovery progress counter within the recovery progress type when the stimuli
occurred; both values are given in decimal.

• Line 9: SHADOW TYPE is a snapshot of the recovery progress type at the last
recovery progress check, and COUNT is a snapshot of the recovery progress
counter at the last recovery progress check; both values are in decimal.

• Line 10: AUX DATA, with four fields:

1. Unused

2. Reset counter shadow (lower four bits)
Requested TTY level (middle four bits)
Number of links up (upper four bits)

3. Pump return code from the previous initialization

4. SMrcvy_level, highest level of most recent hardware recovery (least
significant 8 bits)
SMoldrcvy_level, shadow hardware recovery level (next 8 bits).

• Line 11: ESCALATION-COUNTS, with four fields:

1. The SI recovery variables, packed into 32 bits:
INallcntr count of all stimuli (upper 16 bits)
INrpicntr count of RPI stimuli (lower 16 bits)

2. The SI recovery variables, packed into 32 bits:
INsppcntr count of interrupt requested SPP stimuli (upper 16 bits)

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.3-2 Issue 5.00

INdefcntr count of assert requested SPP stimuli (lower 16 bits)

3. The SI recovery variables, packed into 32 bits:
INausppcntr count of audit requested SPP stimuli (upper 16 bits)
INdausppcntr count of deferred SPP stimuli (lower 16 bits)

4. The SI recovery variables, packed into 32 bits:
Automatic initialization escalation reason code (upper 16 bits)

Time call processing was turned off due to SPPs and directed audits;
each peg count represents 30 milliseconds (lower 16 bits).

Third Message

This message shows the contents of the Motorola1 MC68XXX processor registers at the
time of the interrupt.

The program counter (PC) register shows the point of interrupt. Typically, the program
counter is two assembly instructions beyond the instruction which caused the
interrupt.
S570-65669 90-10-06 00:00:45 030748 INT_MON FIVE I
REPT SM=9 HARDWARE CONTEXT STANDARD LSM EVENT=6410

68012-REGISTERS: SSP=H’22bfc PC=H’1a0c46 SR=H’4
USP=H’8dde2 FP=H’8dde6 A5=H’0 A4=H’0
A0=H’6877fc A1=H’20100 A2=H’0 A3=H’0
D0=H’80000 D1=H’20000 D2=H’1f D3=H’0
D4=H’0 D5=H’0 D6=H’5d80b00 D7=H’0

PIC-REGISTERS: HI MED LOW
IRR: H’90 H’80 H’c2
IMR: H’c0 H’3b H’c0
ISR: H’10 H’0 H’0

In the PIC-REGISTERS section,

HI = PIC C
MED = PIC B
LOW = PIC A
IRR = interrupt request register, holds interrupt history
IMR = interrupt mask register, masks out the unused PIC bits
ISR = interrupt service register, the contents of each PIC register

Fourth Message

This message reveals the contents of the hardware registers associated with the
failing hardware. The registers that will appear here depends on the type of fault
detected by the processor. In this case, the registers are associated with CI 0.
S570-65669 90-10-06 00:01:01 030754 INT_MON FIVE I
REPT SM=9 CI 0 HW REGS EVENT=6410

ERSRC=H’20 MCTRL=H’2 PERAD=H’5d8 PDATA=H’b00
HLINH=H’b0 LLINH=H’0 HRINH=H’ff LRINH=H’ffff

Fifth Message

1. Registered trademark of Motorola Inc.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.3-3

The user stack trace message contains the return address of each function call leading
up to the point of interrupt. The sequence of the function calls is from right to left.
The most recent address on the stack should match either the FAIL-ADDR or the value
in the PC register.
S570-65669 90-10-06 00:01:09 030759 INT_MON FIVE I
REPT SM=9 STACK TRACE ENV=OSDSM SRC=FR EVENT=6410

USER: 001A0C46 0033663C 00335F1C 0033642C 00335FC8 001F96E0

Sixth Message

This message contains two stack frames. The data in the first stack frame belongs to
the interrupted function; the second stack frame belongs to the function that called
the interrupted function.

The FUNC ADDR of the stack frames are the same as the first two addresses in the
user stack trace message (fifth message).
S570-65669 90-10-06 00:01:23 030764 INT_MON FIVE I
REPT SM=9 STACK FRAME ENV=OSDSM SRC=FR EVENT=6410

FUNC ADDR: H’1a0c46
PARAMETERS: 05D8000B 00000000 DE9A005E D43C0008 02000055

001B0010 0012000A 11EA126A DE9A0008 DE6600C5
LOCAL DATA: 00000000 008C0005 000305DE 00090380 05002000

02008CDE 00000000 8C000003 64B04600 E8DD0800
00000000 5E00E8AB 6600C500 1C002B00 E4DD0800
66DE0800 867D2C00 E8DD0800 FFFF3CD4 0000B88F
010066DE 08000000 DF0A0000 00000000 00000300
000006DF C5000200 66DE0800 00000000 00000000
00000000 1A8C7400 00000000 00000000 0400D6DD
080004DF C500A8C7 2C00BCDD 08003500 E89D3300
3300B8DE 0800B88F 5E000500 0200C500 000096FF

S570-65669 90-10-06 00:01:27 030767 INT_MON FIVE I
REPT SM=9 STACK FRAME ENV=OSDSM SRC=FR EVENT=6410

FUNC ADDR: H’33663c
PARAMETERS: 0008DE8A 00000000 00000000 00000000 00000000

00010000 0000FF83 00000000 1FCC0000 00DACC00
LOCAL DATA: 0000008C 00050003 00000500 0000C500 00000000

9BD30000 0C060000 00000000 00000000 010050E1
C50066DE 08009ADE 6A12EA11 0A001200 10001B00
55000002 08003CD4 5E009ADE 00000000 0B00D805
3C663300 3EDE0800 00000000 008C0005 000305DE
00090380 05002000 02008CDE 00000000 8C000003
64B04600 E8DD0800 00000000 5E00E8AB 6600C500
1C002B00 E4DD0800 66DE0800 867D2C00 E8DD0800
FFFF3CD4 0000B88F 010066DE 08000000 DF0A0000

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.3-4 Issue 5.00

8.4 INTERRUPT ANALYSIS EXAMPLE — HARDWARE

Refer to Exhibit 8.4-1 in the following description of the steps used to analyze an
interrupt caused by a hardware error.

1. Determine which SM and which controller reported the error.

The information field SM=9,0 indicates SM 9, controller 0 is reporting the error.

2. Determine the module controller status before and after the interrupt.

Since there are no differences between the ORIG-HW-STATUS and the
FINAL-HW-STATUS, the status and configuration of the controllers remained
unchanged. Module controller 0 was and is active, and module controller 1 was
and is standby.

3. Determine the cause of the interrupt.

The interrupt was due to a TIME-OUT-ERROR reported by CI 0. The state of bit 5
in the CI error source register (ESR) confirms this.

When set, bit 5 in the CI ESR reports that a peripheral failed to reply to a CI
requested operation before the timeout counter in the receive sequencer circuitry
reached its terminal count.

4. Determine whether the error is software- or hardware-related.

HW-ERR indicates that this interrupt was due to a hardware error.

5. Refer to the dump of the CI hardware registers (CI 0 HW REGS). The PERAD
register contains the peripheral address of the suspected unit. The format of this
register is shown in Figure 8.4-1.

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.4-1

Bit 15 (RWPAB) specifies a read (E.15=0) or write (E.15=1) operation. Bits 12-8
define the PICB number, bits 7-3 select a board in the peripheral unit, and bits
2-0 specify a register on the board.

Bits 12-8 of the PERAD indicate that PICB 5 was selected. Use ODBE to review
the relation PICB in SM 9 to identify the suspected unit:

picb = 5 <<< key

unitnum = 0

unittype = SMDCLU

Thus PICB 5 is associated with digital carrier line unit (DCLU) 0 in SM 9.
Further investigation of bits 7-3 of the PERAD register is needed to identify the
subscriber digital facility interface (SDFI) board that was selected.

6. Determine the program address at which the interrupt occurred.

As indicated by the PC, the interrupt occurred while executing the instruction at
or near address H’1a0c46. Use the UPD:FTRC input message to convert this
address to a function name.

Exhibit 8.4-1 — Hardware Interrupt Example
S570-65669 90-10-06 00:00:30 030742 INT FIVE I
REPT SM=9,0 HWLVL=0 SWLVL=RPI CI0 TIME-OUT-ERROR EVENT=6410 COMPLETED

HW-ERR FAILING ADDR=H’5d8 PROCESS:BG=31,0,RPI CM=NONE, FG=NONE,,

S570-65669 90-10-06 00:00:37 030745 INT_MON FIVE I

BITS:

0 0 0 1 1 0 1 1 1 01 0 0 0 0 0

2 0 1

PERAD = 8 D 5 0

3 4 5 6 7 8 9 10 11 12 13 14 15

CB

A = RWPAB (read/write peripheral address bit)
B = PICB (peripheral interface control bus number)
C = PAB (peripheral address bits)

A

Figure 8.4-1 — PERAD Register

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.4-2 Issue 5.00

REPT SM=9,0 HWLVL=0 SWLVL=RPI EVENT=6410 COMPLETED
CI0 TIME-OUT-ERROR
HW-ERR FAIL-ADDR=H’5d8 ROM-UNK DATA-BUS=H’0 TIME=0:0.2
PROCESS:BG=31,0,RPI CM=NONE, FG=NONE,, NORMAL
ORIG.-HW-STATUS: MC0: ACT MC1: STBY
FINAL-HW-STATUS: MC0: ACT MC1: STBY
PREVIOUS TYPE/COUNT: 119 0
SHADOW TYPE/COUNT: 71 36864
AUX DATA: H’0 H’200 H’0 H’0
ESCALATION-COUNTS: H’0 H’0 H’0 H’0

S570-65669 90-10-06 00:00:45 030748 INT_MON FIVE I
REPT SM=9 HARDWARE CONTEXT STANDARD LSM EVENT=6410

68012-REGISTERS: SSP=H’22bfc PC=H’1a0c46 SR=H’4
USP=H’8dde2 FP=H’8dde6 A5=H’0 A4=H’0
A0=H’6877fc A1=H’20100 A2=H’0 A3=H’0
D0=H’80000 D1=H’20000 D2=H’1f D3=H’0
D4=H’0 D5=H’0 D6=H’5d80b00 D7=H’0

PIC-REGISTERS: HI MED LOW
IRR: H’90 H’80 H’c2
IMR: H’c0 H’3b H’c0
ISR: H’10 H’0 H’0

S570-65669 90-10-06 00:01:01 030754 INT_MON FIVE I
REPT SM=9 CI 0 HW REGS EVENT=6410

ERSRC=H’20 MCTRL=H’2 PERAD=H’5d8 PDATA=H’b00
HLINH=H’b0 LLINH=H’0 HRINH=H’ff LRINH=H’ffff

S570-65669 90-10-06 00:01:09 030759 INT_MON FIVE I
REPT SM=9 STACK TRACE ENV=OSDSM SRC=FR EVENT=6410

USER: 001A0C46 0033663C 00335F1C 0033642C 00335FC8 001F96E0

S570-65669 90-10-06 00:01:23 030764 INT_MON FIVE I
REPT SM=9 STACK FRAME ENV=OSDSM SRC=FR EVENT=6410

FUNC ADDR: H’1a0c46
PARAMETERS: 05D8000B 00000000 DE9A005E D43C0008 02000055

001B0010 0012000A 11EA126A DE9A0008 DE6600C5
LOCAL DATA: 00000000 008C0005 000305DE 00090380 05002000

02008CDE 00000000 8C000003 64B04600 E8DD0800
00000000 5E00E8AB 6600C500 1C002B00 E4DD0800
66DE0800 867D2C00 E8DD0800 FFFF3CD4 0000B88F
010066DE 08000000 DF0A0000 00000000 00000300
000006DF C5000200 66DE0800 00000000 00000000
00000000 1A8C7400 00000000 00000000 0400D6DD
080004DF C500A8C7 2C00BCDD 08003500 E89D3300
3300B8DE 0800B88F 5E000500 0200C500 000096FF

S570-65669 90-10-06 00:01:27 030767 INT_MON FIVE I
REPT SM=9 STACK FRAME ENV=OSDSM SRC=FR EVENT=6410

FUNC ADDR: H’33663c
PARAMETERS: 0008DE8A 00000000 00000000 00000000 00000000

00010000 0000FF83 00000000 1FCC0000 00DACC00
LOCAL DATA: 0000008C 00050003 00000500 0000C500 00000000

9BD30000 0C060000 00000000 00000000 010050E1
C50066DE 08009ADE 6A12EA11 0A001200 10001B00
55000002 08003CD4 5E009ADE 00000000 0B00D805
3C663300 3EDE0800 00000000 008C0005 000305DE
00090380 05002000 02008CDE 00000000 8C000003
64B04600 E8DD0800 00000000 5E00E8AB 6600C500
1C002B00 E4DD0800 66DE0800 867D2C00 E8DD0800
FFFF3CD4 0000B88F 010066DE 08000000 DF0A0000

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.4-3

8.5 INTERRUPT ANALYSIS EXAMPLE — SOFTWARE

In the following example, a software update installed a new version of function
FCoo_ans(). As shown by this output message, the new address of the function is
H’561C5C.
S107-281477271 90-11-14 06:36:24 038035 MAINT YRDLYL0-2V1HD0
UPD APPLY - FCoo_ans NEW ADDRESS 0x00561c5c

A short time later, an MP WRITE-PROT-ERR occurred. This error, which indicates that
a write was attempted to a write-protected address, usually implies a software
problem.

For the moment, ignore the FAILING ADDR pointed to by the output message. This is
the address to which the program attempted an invalid write not the address of the
failing instruction.

Start by locating the value of the PC in the accompanying hardware register dump.
Here, the PC contains H’5623ca, which is most likely one or two instructions beyond
the actual point of the interrupt. It is necessary to examine the program flow to
reconstruct the sequence of events that resulted in the write protect violation.
S570-22741062 90-11-14 06:50:32 038046 SINIT YRDLYL0-2V1HD0
REPT SM=8,1 HWLVL=1 SWLVL=SPP MP WRITE-PROT-ERR EVENT=12620 COMPLETED

SW-ERR FAILING ADDR=H’57001f PROCESS:BG=398,156,PURGED CM=NONE, FG=NONE,,

S570-22741062 90-11-14 06:50:55 038049 LSPPIN YRDLYL0-2V1HD0
REPT SM=8 HARDWARE CONTEXT BASIC LSM EVENT=12620

68000-REGISTERS: SSP=H’22bfc PC=H’5623ca SR=H’0
USP=H’aed3e FP=H’aefee A5=H’a41c04 A4=H’770840
A0=H’4e56ffdc A1=H’74559c A2=H’cd438 A3=H’6b47ee
D0=H’fed4 D1=H’644e20 D2=H’0 D3=H’0
D4=H’21 D5=H’0 D6=H’0 D7=H’c0

PIC-REGISTERS: HI MED LOW
IRR: H’80 H’40 H’ce
IMR: H’c0 H’3b H’c0
ISR: H’0 H’0 H’0

Request a function update trace (UPD:FTRC), and subtract the starting address of the
function from H’5623ca (PC). The remainder will be used as an index into the
program listings to locate the point of failure. Since the starting address of the
assembly code differs from the starting address of the function on the 5ESS® switch,
the following computations must be performed:
H’5623CA Program Counter (value of PC register)
- 561C5C Function Starting Address (From UPD:FTRC response)
––––––––

H’76E Offset

H’224C Assembly Starting Address (program listings)
+ H’76E Offset
––––––––
H’29BA Point of Interrupt (program listings)

To ensure that this portion of the program listings is in sync with the code that
resides on the switch, use generic utilities to dump disassembled code in the area of
the interrupt and compare the two:
dump:ut, sm=8, addr=h’56238a, l=128, dis;

The program listing shows the following:
FCoo_ans()

224c: 4e56 fd52 link %fp,$-0x2ae

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.5-1

[40] 2250: 3f3c 0093 move $0x93,-(%sp)
.
.
.

[345] 299e: 3f3c 0004 move $0x4,-(%sp)
29a2: 4eb9 0000 0000 jsr 0x0
29a8: 548f addl $0x2,%sp

[347] 29aa: 2079 0000 0000 moveal 0x0,%a0
29b0: 0228 00bf 0043 andb $-0x41,0x43(%a0)

[350] 29b6: 3f3c 001c move $0x1c,-(%sp)
29ba: 303c 008c move $0x8c,%d0
.
.
.

Examination of the code reveals that the error occurred at local address 29b0 while
executing the andb instruction. This instruction ANDs the contents of a data register
and an effective address; the results are left in the effective address (A0 + H’43 =
H’57001F). It was the attempt to write the results of this operation at address
H’57001F that caused the write protect violation. Of course, the analysis has just
begun, because the source of the data in register A0 must now be investigated.
A0 = 4E56FFDC

+ 43
––––––––
4E57001F

Mask FFFFFF
–––––––––
0057001F

0057001F

is the FAILING ADDR in the output message.

The C code is shown in Exhibit 8.5-1.

Exhibit 8.5-1 — FCoo_ans() Function Example
/* FCoo_ans(reason, dummy) operator trunk origination answer
* Receives control from the FCoo_call function
* At this point, setup complete has been received from
* the terminating terminal process, the talking path has
* been closed, and the operator should be hearing audible
* ringing tone. Upon receipt of an answer message from the
* terminating process, control will be passed to the
* operator origination talk (FCoo_talk) function.
*/

FCoo_ans(reason, dummy)

short reason;
long dummy; /* needed because OS passes 4 bytes on restart */
{

struct{
OSMSGHEAD msghead;
union{

struct mgREANS reans;
struct mgCLR_BACK clb;
struct mgINTERRUPT intr;
struct mgPATH_REL rel;
struct mgANS_NOCHG ann;
struct mgANS_CHG anc;
struct mgTERM_FAIL termf;
struct mgTIMER timer;
struct mgWINK wink;
struct mgONHOOK onhk;
struct mgRT_FAIL rtf;

INTERRUPT ANALYSIS 235-600-510
November 2000

Page 8.5-2 Issue 5.00

struct mgRECALL recall;
struct mgANSPU anspu;
struct mgTASUCCESS tas;
struct mgTAFAIL taf;

} text;
} msg; /* message buffer */

struct{
OSMSGHEAD msghead;
union {

struct mgRT_REQ rtreq;
struct mgRT_GEN rtgen;

} text;
} rr_msg; /* route request message */

RET_VAL fcr; /* FC return */
RET_VAL osr; /* OS return */
RET_VAL pcr; /* PC return */
FC_DCDB dcdb; /* Digit collection data block */
ASTSTAMP tstamp; /* ASDISCON time stamp */
FCTGSRPGBK *tgsr_ptr; /* pointer to tgsr_data structure */

/* initialize dcdb and rt_req */
[40] FCdcdb_init(&dcdb, &rr_msg.text.rtreq, MGRT_REQ);

/* this process is given control by the operating system */
/* when a message arrives. */

[46] msg.msghead.length = sizeof(msg.text); /* initialize length field */
[47] osr = OSWGETMSG(&msg, 0L); /* ask for message */
[48] if (osr != OSMSG){
[49] ASINCOMPLETE(FCGETCID(), AS_TCL);
[50] PHrel (FCPATH0);
[51] FP_TIDLE (FCSUICIDE);

/* does not return */
}

[55] switch(msg.msghead.type){
.
.
case MGANS_CHG:
case MGANS_NOCHG:
/* terminating party has answered,
* relay offhook to operator

*/
[345] LPsig(PCOFFHK);

/* update supervision to off-hook in PCBLA */
[347] FCSETSSUPV(FCSND_OFF);

/* enable operator flash (winks) */
LPepulse(PCONHK, (unsigned short) FCI_MIN/10,

[350] (unsigned short) FCI_MAX/10, PCWINKON);

235-600-510
November 2000

INTERRUPT ANALYSIS

Issue 5.00 Page 8.5-3

Software Analysis Guide

CONTENTS PAGE

9. SINGLE PROCESS PURGE (SPP) 9-1
9.1 INTRODUCTION TO SINGLE PROCESS PURGE (SPP) 9-1
9.2 SPP RECEIVE ONLY PRINTER (ROP) OUTPUT 9-1
9.3 SPP EXAMPLE . 9-2

235-600-510
November 2000

SINGLE PROCESS PURGE (SPP)

Issue 5.00 Page 9-i

9. SINGLE PROCESS PURGE (SPP)

9.1 INTRODUCTION TO SINGLE PROCESS PURGE (SPP)

A single process purge (SPP) is used when a severe error is detected which prevents
the system from continuing to function. An SPP’s primary objective is the restoration
of a software configuration that can support call processing.

The SPP is the second level of processor initialization after the Return to Point of
Interrupt (RPI). It is responsible for terminating (and restarting, if appropriate) a
target process or job (such as killing terminal and system processes). Terminal
processes are used for event processing (such as a call, terminal maintenance) and do
not restart after being purged. A system process exists for a long duration and is not
created or terminated dynamically, it can manage requests from more than one
terminal process. If a system process is purged, OSDS will recreate it.

SPPs may be triggered by various mechanisms as follows:

• Hardware interrupts

• Hardware resets

• Asserts

• Audits

• Manual request by maintenance personnel.

SPPs may also cause escalation to a high level of recovery (such as, selective
initialization). Consult 235-105-250, System Recovery Manual for more details
concerning recovery escalation.

9.2 SPP RECEIVE ONLY PRINTER (ROP) OUTPUT

As a result of a SPP, the following messages are printed on the ROP:

• Stimulus - INIT:AM-LVL, INIT:CMP-LVL, INIT:SM-LVL-EVENT

• Stack trace - REPT:STACK-TRACE

• Stack frame - REPT:STACK-FRAME

• Data dump - REPT:DATA

The data dump messages are only printed if the target of the purge was an
OSDS process. In which case the purged process’s PCB (Process Control Block)
and PCBLA (Process Control Block Link Area) are dumped using this message.
Otherwise (if OSDS interject was purged), these messages are not printed.

• PMDB dump - REPT:PMDB

The PMDB dump messages are only printed if the target of the purge was an
OSDS terminal process, in which case a PMDB-IN and PMDB-OUT message may be
printed to show the contents of the message the process received or was
constructing.

For detailed descriptions of these messages, see the 235-600-700, Input Messages
Manual and 235-600-750, Output Messages Manual.

235-600-510
November 2000

SINGLE PROCESS PURGE (SPP)

Issue 5.00 Page 9-1

9.3 SPP EXAMPLE

The analysis of an SPP and an assert are very similar. Both consist of analyzing the
stack trace information to determine the software causing the ROP output. The main
difference is that the root of an assert stack trace will be an assert macro, while the
root of an SPP stack trace will be the piece of code causing the SPP. This may be an
assert or code causing a processor fault or some other problem. Due to this
commonality, the reader is referred to "Stack Trace Debugging" Section 5.1.3, in this
manual.

SINGLE PROCESS PURGE (SPP) 235-600-510
November 2000

Page 9-2 Issue 5.00

Software Analysis Guide

CONTENTS PAGE

10. AUDIT ANALYSIS . 10-1
10.1 AUDITS OVERVIEW 10-1

10.1.1 Application Audits 10-1
10.1.2 UNIX RTR System Audits 10-6
10.1.3 Static Data Audits 10-6

10.2 USING AUDITS. 10-10
10.2.1 UNIX RTR System Audits 10-10
10.2.2 SODD Audits 10-11
10.2.3 Application Audit Analysis 10-11

LIST OF TABLES

Table 10-1 — Summary of Audit Scheduling Mechanisms 10-4

Table 10-2 — Summary of Audit Scheduling Effects 10-5

Table 10-3 — Audit Input Message Summary 10-5

Table 10-4 — SODD Audit Responses to Input Messages 10-9

Table 10-5 — Error Code: MODATT 10-19

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-i

10. AUDIT ANALYSIS

Section 10 provides an overview of audits and the process for analyzing audit
messages. Refer to the 235-600-400, Audits Manual for more detailed information,
including specific audit descriptions.

10.1 AUDITS OVERVIEW

There are three different kinds of audits:

• Application audits are programs that verify the consistency of dynamic data used
by 5ESS® switch application code.

• UNIX1 RTR system audits are programs that verify the consistency of data
associated with the control unit (CU), equipment configuration database (ECD),
file manager (FMGR), memory manager (MMGR), and other UNIX RTR system
data in the administrative module (AM).

Refer to the Input Messages Manual, 235-600-700, and Output Messages Manual,
235-600-750, for more information about system audit-related messages.

• Static data audits are programs that verify the consistency of static
office-dependent data (ODD). For more information about SODD audits, refer to
the SODD Audits Manual (236-600-410).

10.1.1 Application Audits

References to "audits" in section 10.1.1 refer to application audits only.

Application audits verify the consistency of dynamic data. The existence of an audit
does not guarantee that the data structure it checks is consistent all the time, but it
does mean that the audit eventually detects inconsistencies and attempts to recover
from them.

By detecting and correcting data inconsistencies, audits help prevent problems such as
resource failures or data errors, which could cause call processing or other switch
activity to fail or run in a degraded manner. By providing a recovery mechanism that
can be invoked by asserts or single process purges, audits help prevent escalation to
higher levels of initialization.

Generally, audits report all errors they detect on the read-only printer (ROP). The
exceptions are due to brevity control restrictions and the printing status of audit
message classes on the processor involved. (Refer to the Input Messages Manual,
235-600-700 and Output Messages Manual, 235-600-750 for more information on
brevity control and message classes).

Audit error reports may be followed by one or more reports that include additional
debugging data associated with the error being reported. (In the 235-600-400 Audits
Manual, refer to the error codes listed in the Error Handling section of the Audit
descriptions and in the Driver Error code manual page [DRERRCDS] for more
information about specific error codes.) When an audit finishes, an audit completion
report is produced that states the total number of errors the audit found.

Audits do not take corrective action without reporting an error on the ROP, unless the
audit is running as part of a selective initialization or in post-initialization mode.

1. Registered trademark of The Open Group in the United States and other countries.

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-1

Audit recovery may include requesting a single process purge or the scheduling of
other related audits (audits of data structures associated with the data being
recovered). A common event number is used for all ROP reports associated with the
same stimulus. For example, an assert might request an audit that might, in turn,
schedule other related audits. The assert reports and all audit reports would contain
the same event number. Technicians can use this information when analyzing ROP
output.

If an audit is unable to correct an error without human intervention, the audit prints
a manual action error report on the ROP. Manual action error reports are marked
with an A in the left margin of the first line of the report. The audit continues to find
(and report) the same manual action error until the problem is corrected by office
personnel.

10.1.1.1 Error Report Descriptions

Each audit error report description in the Audits Manual includes the following
sections:

• Error Description explains what the error is.

• Possible Error Effect describes what might happen if the error went uncorrected.

• Corrective Action Taken describes what the audit does to try to correct the error.

• Manual Action Required specifies the actions office personnel must take to
recover from the error. It contains information only if the audit is unable to
correct the error without human intervention; otherwise, if no manual action is
needed, it says None.

• Dump Description describes the data included in the error report. Five fields are
always included: Error Address, Bad Data, Good Data, Logical Key, and Dump.
These fields contain information relevant to understanding the error being
reported.

The field names do not always indicate the kind of data they contain. For
example, the error address may not be an address, and bad data may not be bad
data. Also, additional optional data dumps may be provided; if so, then Dump is
listed as Dump 1, and succeeding optional data dumps are listed as Dump 2,
Dump 3, and so on. The error description explains what each field contains for
the particular error being reported.

All data dumps are unformatted and printed in hexadecimal.

10.1.1.2 Error Report Formats

There are two basic types of audit error reports.

• The first is for errors that the audit will attempt to recover itself (see the
Corrective Action Taken field in the audit error report description):

AUD SM=2 CR ERROR-CODE=NONEPROC EVENT=326
ERROR-ADDR=H’33c250 BAD-DATA=H’82026d
LOG-KEY=H’47 GOOD-DATA=H’0

• The second is for manual action errors (see the Manual Action Required field in
the error report description):
A AUD DAP=OKP TKQUE ERROR-CODE=PORT EVENT=756

ERROR-ADDR=H’0 BAD-DATA=H’0
LOG-KEY=H’a10e0002 GOOD-DATA=H’0

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-2 Issue 5.00

Refer to the Output Messages Manual, 235-600-750, for more complete descriptions of
these and other audit output messages.

10.1.1.3 Audit Environments

Application audits run in the following 5ESS switch environments:

• CMP (communications module processor)

• MH (message handler)

• MSGS (message switch)

• OKP AM (operational kernel process in the administrative module)

• ONTC (office network and timing complex)

• PH (protocol handler)

• PI (packet switching interface processor)

• QGP (quad gateway processor)

• SM (switching module)

• SMKP AM (switch maintenance kernel process in the administrative module)

Refer to the APP:AUDITS appendix in the Appendixes section of the Output Messages
Manual, 235-600-750, for a list of audits that exist in each environment.

Most audits are intraprocessor; that is, they only check data within one of the
environments. Intraprocessor audits with the same name may exist in more than one
environment, but each instance is independent of the others. For example, the OKP
AM, SMKP AM, and SM environments each have a process control block (PCB) audit
that checks the same kind of data. However, each version is independent of the others
and makes checks only for its own environment.

All other audits are interprocessor; that is, they check data between two of the
environments (typically the CMP and SM environments with the CMP in control). In
this case, the same audit name in different environments refers to different pieces of
the same audit. There are only a few interprocessor audits.

10.1.1.4 Audit Scheduling

Audits run in different modes (refer to Table 10-1):

• Routine audits are scheduled automatically when the processor has no higher
priority work. They are segmented (that is, they periodically give up control of the
processor to let higher priority work be performed).

• Elevated audits run only by request. They may be scheduled by an input
message (refer to section 10.1.1.5 for more information), or by internal requests
(from asserts, internal interfaces, single process purges, or for related recovery
when another audit has detected an error).

Elevated audits run segmented and preempt execution of any routine audits.

• Directed audits are run only by an internal request from an assert, through an
internal interface, or by escalation of a routine or elevated audit through an
audit failure code.

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-3

Directed audits run unsegmented; that is, they do not give up control of the
processor until they are finished, and preempt execution of both routine and
elevated audits.

Directed audits are only used for system-critical resources. Because they run
unsegmented, all other processing (including call processing) is blocked until they
are finished.

• Selective initialization , or post initialization mode audits , are a fixed set (and
sequence) of audits scheduled by system integrity during or immediately after a
selective initialization to correct errors in dynamic data that is not being
reinitialized. The audits are run unsegmented and do not generate any reports.
This is the only exception to the rule that audits do not take any action without
reporting an error.

Audits can be inhibited (prevented from running) by an input message. However, even
when an audit is inhibited, it can be executed manually.

If an audit is scheduled through an input message, an audit completion report is
always sent on the ROP. In all other cases, a report is sent only if the audit has
detected an error. Even if an assert schedules an audit, there is no evidence on the
ROP that the audit was run if the audit did not detect any errors.

If an audit is scheduled by an internal request, all reports from that audit are
associated with an event number supplied by the requester. In particular, an audit
scheduled by an assert or a single process purge has the same event number as the
assert or single process purge.

Related audits also use the same event number. When an audit completes, if it has
found errors, audits of data related to the data just recovered are scheduled (for
example, the related structure may have a linkage to the structure just recovered).
Related audits run elevated and use the same event number as the original audit.
Since related audits are not scheduled when an audit completes with no errors, this
mechanism causes recovery to ripple out from the original stimulus and die out when
recovery actions have been successful.

Table 10-1 — Summary of Audit Scheduling Mechanisms

Scheduling Source Routine Audits Elevated Audits Directed Audits
Input Messages No Yes No
Asserts No Yes Yes
Single Process Purges No Yes No
Related Audits No Yes No
Internal Interfaces No Yes Yes
Audit Failure Codes No No Yes
Automatic Scheduling Yes No No

Table 10-2 summarizes the effect of each type of audit scheduling on other switch
activity.

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-4 Issue 5.00

Table 10-2 — Summary of Audit Scheduling Effects

Routine Audits Elevated Audits Directed Audits Selective
Initialization

None. Minimal
background delays.

Disables call
processing until the
audit completes.

Helps preserve
stable calls and
maintenance states
through a selective
initialization.

10.1.1.5 Input Message Information

The Audit Input Message Summary, Table 10-3, lists the input messages available for
application audits in each environment.

Table 10-3 — Audit Input Message Summary

Input Message Operation
AUD:{audit},SM=# Run an audit
AUD:{audit},cmp={0|1}

AUD:{audit},env={OKP|SMKP}

INH:AUD={audit},SM=# Inhibit an audita

INH:AUD={audit},CMP=#

INH:AUD={audit},ENV={OKP|SMKP}

ALW:AUD={audit},SM=# Allow an audita

ALW:AUD={audit},CMP=#

ALW:AUD={audit},ENV={OKP|SMKP}

STP:AUD,SM=# Stop executionb

STP:AUD,CMP=#

STP:AUD,ENV={OKP|SMKP}
Note(s):
a. ALL can be substituted for audit. This will inhibit or allow all audits in the

processor with one input message.
b. Will only stop execution of the currently running audit. If no audit is currently

running, the input message has no impact.

10.1.1.6 Audit Error Report Analysis

Occasionally, an audit detects (and reports) an error that requires human intervention
to be corrected. Until office personnel have taken the required corrective action, the
error continues to be re-detected and re-reported. Typically, the intervention needed is
a change to the ODD.

Errors that are known to require human intervention, or manual action, for correction
are indicated by an A in the left margin of the first line of the audit error report. By
examining the audit report(s), ODD population rules, and the ODD itself, office
personnel can determine exactly what should be done to correct the inconsistency.

Other audit reported errors (that is, those not marked with the A) are almost always
corrected by the audit itself. In cases where the audit is not able to correct the error

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-5

(or the error is repeatedly reintroduced), the same audit(s) reports the same error(s)
on the same data across multiple events or multiple audit invocations. Such
repetitions should not be confused with either of the following:

• single events that include more than one instance of a particular error report or
set of error reports

• multiple appearances of the same audit reporting different errors in each
appearance, or reporting the same errors on different data each time

As long as reports associated with an event eventually stop appearing and do not
recur, recovery has been taken automatically. Technicians should refer questions or
concerns about particular sets of audit error reports to their next line of support.

10.1.2 UNIX RTR System Audits

UNIX RTR system audits are run under the control of the UNIX RTR operating
system.

System audits are identified by the family name, the family number, and the audit
instance name.

System audits are categorized by the nature of the audit such as file manager,
memory manager, and message buffer. Each audit category is referred to as a family,
for example, the file manager (FMGR) family. The audit also contains a family number
such as FMGR 3 or FMGR 5 (file table audit and internal capability table audit,
respectively.)

The audit instance name is necessary when a single audit is used to audit more than
one software structure. For example, the file system audits have an instance name for
each file system. The instance name is the name of the file system to be audited. An
audit with only one instance needs only the family name and family number for
identification. An audit with more than one instance must be identified by family
name, family number, and instance name.

Refer to the Input Messages Manual, 235-600-700, and Output Messages Manual,
235-600-750, for more information about system audit-related messages.

10.1.3 Static Data Audits

The static ODD (SODD) audit verifies that the data stored in the base relations of the
ODD conform to the database population rules. (Refer to the 235-600-410, Static Office
Dependent Data [SODD] Audits Manual.) Execution of the audit is initiated by a
manual input message. The audit can also be invoked directly to verify a single
database component. Data errors detected by the audit are logged in files. A manual
input message is required to display the contents of an error file in a readable form.
Data errors are not automatically corrected.

The EXC:AUD-SODD input message invokes the SODD audit. The audit is activated
either at the time of the input message, or at the time specified in its schedule
parameter block. Once activated, the execution of the audit proceeds until the
allocated duration has elapsed. The audit process is then suspended and remains
dormant until the input message is re-executed. The audit process then resumes from
the point at which it was suspended. The normal operational scope of the audit is to
run all available components.

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-6 Issue 5.00

The SODD audit is executed in a cyclic mode. During a single cycle, all the relations
within the scope of the audit are examined. When the end of the cycle is reached, an
audit completion report is printed and a new cycle is started.

In a typical scenario, the audit process is activated periodically by a scheduled input
message, and during each period of activity, the execution of the audit cycle is
continued from the previous point of suspension. The duration of each of the active
periods is specified by the originating input message, and the times of day at which
the periods start are specified in a (standard) schedule parameter block entered with
the input message.

Controlled by a process operating in the AM, the audit is applied to the data bases
that are currently active in the AM and the SMs. Unless restrictions are imposed, all
tuples and parameters for which audit products are available will be audited with
respect to the applicable population rules.

When the audit is applied to a partitioned base relation that is distributed among the
AM and the SMs (or among the SMs), the required audit processes are executed
concurrently on the AM. One instance of a redundant relation is separately audited
with respect to the population rules, and the consistency of the redundant data is not
verified. During the auditing of a relation, the integrity of the data involved is not
influenced by RC/V activity.

The AM collects and logs error data. For each 24-hour period, two error logs are
maintained: one for the current audit cycle, and the other for the previous cycle. The
erroneous data is not corrected.

When a specific component of the audit is requested manually, the request is queued
behind any previous requests. The subsequent processing of the manual request queue
depends on the situation prevailing at the time. If the SODD audit is active (and there
is sufficient time remaining), manually requested audits are executed as soon as the
current audit function has finished. If the SODD audit is inactive, manually requested
audits are executed with the highest priority when the audit activity is resumed.

After an audit has been executed by manual request, it will not be executed again in
the current cycle. When made in the preemptive mode, a manual request stops the
active audit (provided that it was not requested manually) and invokes the requested
audit function immediately. The preemptive mode also enables a manually requested
audit to execute when the entire SODD audit is inhibited.

10.1.3.1 Operational Aspects

To execute a complete audit cycle, an interval of audit activity is initiated periodically
by a scheduled input message. The duration of the interval is determined by an input
message parameter, and the starting time is specified by a schedule parameter block
attached to the input message. Note that a typical audit cycle requires several weeks
to complete, depending on the size of the office. There is only a logfile for the current
cycle and the previous cycle. Therefore, the technician must check the logfile each
cycle. When there are errors, the technician must store the logfile before it is
overwritten.

The Glmaxauds parameter controls a number of allowed concurrent audit processes
(one per processor). The concurrent processors are different processors for the same
relation component. The valid range of the parameter is 1 - 3, and the default value,
which is 3, cannot be changed with RC/V. This parameter’s value is checked when the
SODD control process is restarted by user level automatic restart process (ULARP).

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-7

A report is printed when execution of an audit cycle or a manually requested audit
component has completed, or when auditing is suspended at the end of an interval.
This report is also printed when the execution of the audit is stopped manually.
Suspend and resume reports occur when inhibit and allow messages (without COMP)
are processed.

Note that the SODD audit has no error correction mechanism. Errors detected by the
audit must be corrected by hand, using RC/V procedures.

Table 10-4 shows what the SODD audit does with input messages in various
circumstances.

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-8 Issue 5.00

Table 10-4 — SODD Audit Responses to Input Messages

Input State Action
general INH preemptive audit running set flag to stop further

dispatches
general INH all other states set flag, kill any running

product
specific INH this component running set component flag, kill

running
specific INH all other states set component flag
general EXEC DUR < current end time NG ack
general EXEC DUR > current end time reset duration
general EXEC general INH reset duration, send

warning
specific EXEC expired duration queue component, send

warning
specific EXEC preempt manual audit running queue component, send

warning
specific EXEC preempt nonmanual audit running queue component, kill

running
specific EXEC nonpreempt an audit running queue behind previous

manual audits
specific EXEC nonpreempt general INH queue component, send

warning
specific EXEC preempt general INH run component
specific EXEC nonpreempt specific INH of same NG ack
specific EXEC preempt specific INH of same NG ack
general STP is a current duration kill duration, kill running

audit
general STP no current duration NG ack
specific STP this component running

now
kill and requeue, "killed"
msga

specific STP not running now + queued
as manual

requeue, "canceled" msga

specific STP not running now + not
queued as manual

NG ack

Note(s):
a. Requeue using this algorithm: if not run this cycle, requeue as part of a full audit;

else, if run successful once or run more than once, unqueue; else, requeue at tail.

In the case of CP-ONLY and REDUNDANT relations, the log shows the completion of
processors 0 and 193 (193 means redundant). Any error messages coming from the
execution of these processors show processor −1 (the database manager uses −1 to
mean any processor).

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-9

Specifying PROC in an input message for a redundant component has no effect on the
behavior of the component audit. The input messages give an OK acknowledgment, but
have no effect.

10.2 USING AUDITS

The audit system detects, isolates, and corrects errors in the data structures involved
in 5ESS switch software. It corrects broken linkages, restores lost data resources, and
helps identify the location of problems in the source code. The more that is known
about the structure of the 5ESS switch software, particularly of the modified
relational database, the more effectively audits can be used for troubleshooting. When
used for maintenance work in conjunction with other diagnostic tools (such as recent
change check programs and UNIX system diagnostic reports), audit reports, along
with other reports, can help the switch personnel reconstruct the series of events that
caused the problem.

The audit system begins cycling through the audits when the system software is
initialized. When there is a heavy call processing load, however, the audit cycle slows
down. The operator can also execute a given audit, causing it to run sooner than it
would have as part of the cycle. To execute an audit, the operator types an input
message requesting the audit. When the audit completes, a summary report is
printed. If any errors are discovered, reports describing the errors are also printed.
Error reports and summary reports are also generated when the audit runs as part of
the cycle. These reports may be printed on the ROP or directed to a logging file.
Unlike the reports printed due to operator requests, reports for audits executing as
part of the cycle are only generated when the audit discovers errors. If manual action
is required to correct an error, the report is printed unconditionally on the ROP with
an A in the priority of action field.

10.2.1 UNIX RTR System Audits

10.2.1.1 Purpose

Section 10.2.1 explains which input messages query and request software integrity
services using UNIX real-time reliable (RTR) system audits. UNIX RTR system audits
are a part of the system integrity subsystem which is a collection of programs,
processes, commands, database records, and performance records that work together
to ensure the reliability of the operating system software.

10.2.1.2 Types of UNIX RTR System Audits

There are seven input messages that give the user the following audit capabilities.

• Allow the routine execution of audits (ALW:AUD).

• Request audits (AUD). There are twelve types of audits that can be requested.

CUMEM = control unit memory comparison audit

CUSTAT = control unit status audit

ECD = equipment configuration database audit

ECDOWN = equipment configuration database owner audit

FMGR = file manager audit

FSBLK = file system block audit

FSCMPT = file system compaction audit

FSLINK = file system link audit

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-10 Issue 5.00

MMGR = memory manager audit

MSGBUF = message buffer audit

PMS = plant measurements system database audit

PROAD = process administration audit

For more information on these audits, refer to the Audit Descriptions section in
the Audits Manual (235-600-400) and the input message pages in the Input
Messages Manual (235-600-700).

• Inhibit the routine execution of audits (INH:AUD)

• Determine the status of audits (OP:AUD)

• Extract error information for audits (OP:AUDERR)

• Analyze data produced by file system audits (OP:FNAME)

• Stop audits from execution (STOP:AUD)

For information on the use of these input messages, refer to the Input Messages
Manual (235-600-700).

10.2.2 SODD Audits

10.2.2.1 Purpose

The SODD audit detects errors in the static office-dependent database (SODD). It
verifies relations, performs cross checks of attributes, and reports findings to switch
personnel for resolution. For more information about SODD audits, refer to the SODD
Audits Manual (236-600-410).

10.2.3 Application Audit Analysis

10.2.3.1 Purpose

Application audits verify the consistency of dynamic data. In all cases, the goal is to
prevent or to help recover from problems that can cause switch functionality to fail or
to run in a degraded manner.

10.2.3.2 Types of Audit Error Reports

There are two basic types of audit error reports.

• Errors that the audit will attempt to recover

• Errors that require manual action

Occasionally, in the course of reading static data needed to do a check, an audit will
detect static data inconsistency (for example, between two static relations). In that
case, the audit will report the error using a "manual action" error code. The error
report is printed with an A in the left column of the first line to indicate that action is
needed by switch personnel. The description in the Audits Manual provides specific
information on what data is in error. These errors will be reported every time the
audit runs until the static data is manually corrected.

10.2.3.3 Types of Data Audited

Not every piece of dynamic data is checked by an audit. Criteria for auditing include:

• What data errors are possible

• What the effect of an error is, including the severity and scope

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-11

• What other mechanisms might detect and/or correct the error

• If the condition can be detected by an audit

• If the condition can be corrected by an audit

The types of data checked will often determine the audit name. For example, the PCB
audit checks process control blocks. The PORTLA audit checks tuples of the
RLPORTLA relation.

Note: Because data linkages are audited from both directions and sometimes other
consistency checks are appropriate, multiple audits may reference the same pieces of
data.

10.2.3.4 Types of Audit Checks

Audit checks can be categorized by type:

• Linkage consistency

• Data key validation

• Resource ownership and availability

• Dynamic vs. static data consistency

• Hardware vs. software consistency

• Other data consistency

• Data configuration consistency (such as "parent/child" state consistency)

• Stuck in a transient condition

• Quarantine (recover an error detected elsewhere)

To determine the type of error, switch personnel must refer to the audit description
and should not make assumptions based on the error code used in the report.

10.2.3.5 Audit Drivers

An audit driver is a set of code shared by multiple audits that controls segment
breaks, performs syntactic checks, schedules semantic checks, and handles errors.
Because the code is shared, a common set of error codes can be output by many
different audits. If an audit calls a driver, the following message is included in the
audit description:

See Driver Error Codes (DRERRCDS), located in the Audit Drivers section of the
235-600-400, Audits Manual for any error codes not found below.

10.2.3.6 Analyzing Audit Reports

10.2.3.6.1 Analysis Procedure

When attempting to reconstruct a scenario that includes audit reports, switch
personnel should consider all available information about known software or hardware
problems, activity on the switch when the problem first appeared (such as recent
change, growth or degrowth procedures, diagnostics, and software update
applications).

This discussion should be considered a starting point. It is not (and could not be)
exhaustive. The most effective way to learn to debug is to practice. Refer to "Analysis
Examples," section 10.2.3.8 for more detailed examples.

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-12 Issue 5.00

Analysis of audit reports generally includes the following steps:

1. Understanding the meaning of the report.

2. Determining the source of the audit report.

3. Placing the report in context.

10.2.3.6.1.1 Understanding the Meaning of the Report

Look up the error description in the Audits Manual. Find the section covering the
audit reporting the error, and search the alphabetical list of error code descriptions for
the one that was reported.

Note: In some cases, the same error report is used in the same way by multiple
audits and so is described in a separate section of the manual (refer to the "Audit
Drivers" section). In that case, the audit sections will each have a reference to the
shared section.

The specific reason for the report may depend on data included in the report. The
"Extracting Data from an Audit Report," Section 10.2.3.6.2.1 describes how to extract
such data from audit reports.

10.2.3.6.1.2 Determining the Source of the Audit Report

When analyzing audit reports, switch personnel should first try to determine the
source of the audit. The audit message class can help. Audit message classes include:

AUDT = Audits run due to a manual request

AUDTMON = Audits scheduled as part of an ongoing event

AUDTFST = Audit error reports that are the start of a new event

Examples:

1. If the message class of the report is AUDTMON, the audit report must be a side
effect of something else such as an assert, single process purge, or other audit.

2. If the message class is AUDTFST, the audit report is the start of a new event.
However, even here it is possible that the report is due to a problem that was
also detected by an assert (which did not happen to schedule the audit) or due to
other audit recovery.

10.2.3.6.1.3 Placing The Report in Context

Often, audit error reports are just part of a larger set of reports. Using the data
provided in the audit reports to reconstruct the relationships between the various data
structures before and after each audit error can be very useful.

The following sections discuss some common scenarios.

10.2.3.6.1.3.1 Audits Caused by an SPP or Assert

An assert may fire and schedule an audit that finds errors. As part of its recovery, the
audit may purge a process. The SPP code may then schedule additional audits, and so
on.

The reports from all of these actions are typically tied together by a single event
number (the exceptions are due to multiple triggers for the same audit and missing
related audit specifications). For various reasons (such as differing message classes
and priorities), messages do not always print in the same order that the trigger events

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-13

occurred. Therefore, it is important to try to reconstruct the sequence of events on the
switch that resulted in the reports that were generated.

Example:

The audit report in question is an SMXRF audit DEADPID error and the dead process
found in the rlSMXRF tuple was purged in an earlier event. In that case, it is safe to
conclude that the audit error was a side effect of the SPP and further investigation
should focus on the SPP itself.

10.2.3.6.1.3.2 Recurring Audits

Sometimes, the same set of audits may report errors over and over. There are many
possible causes for this. There may be static ODD inconsistencies causing two or more
audits to view the same data differently, causing them to "roll" back and forth, each
undoing the recovery the other has done. Inconsistencies between the database
dictionaries and dynamic access relation head tables can also cause recurring audits.

10.2.3.6.1.3.3 Sporadic Recurring Audits

In other scenarios, the same audit may report errors sporadically but consistently over
time. These cases can be difficult to tie to any specific event. Here again there are
many possible causes, including application code problems in rarely-used legs of code,
transient or "race" conditions between the audit and application code, or even wild
writes from some unrelated piece of code. If a race condition is suspected, one option is
to inhibit the audit in question for some time and then request it manually. If the
number of errors it then finds indicates that they have been accumulating, there
probably isn’t a race condition. If the audit finds few or no errors, it is possible that a
race condition exists.

10.2.3.6.1.3.4 Recurring Errors

It is also possible that the same error is introduced over and over. If the appearance of
the error can be tied to some other event (such as diagnostics, an assert, or a
hardware failure), it is possible that the other event is the root cause. However,
sometimes a correlation is coincidental and not due to cause and effect.

10.2.3.6.1.3.5 Non-recurring Errors

Sometimes an audit report cannot be tied to another event (such as an assert, SPP, or
other audit recovery) and does not recur. Even if it is not possible to determine the
root cause, switch personnel can still use the Audits Manual to understand the
meaning of the report and keep that information in mind when investigating other
problems.

10.2.3.6.2 Analysis Aids

10.2.3.6.2.1 Extracting Data from an Audit Report

Audit reports include three different kinds of reports: the error report, optional data
dump reports, and a completion report. The data dump reports provide unformatted
data (such as the contents of a relation tuple) that may be needed for debugging.
Depending on the software release, data type, and other factors, the dump report may
or may not include a label for the data being dumped. However, the error code
description in the Audits Manual (235-600-400) will specify the data provided by each
dump report.

To interpret the audit error report, the corresponding entry must be found in the
Audits Manual. The meaning of the "Error Address," "Bad Data," "Good Data," and

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-14 Issue 5.00

"Logical Key" fields may vary from error to error. The tags (such as "Bad Data") are
not meaningful in and of themselves.

To interpret the dump, it is necessary to have the data layout. This information is
available in the Dynamic Data Manual (235-600-2xx).

For example, here is an rlCHDB tuple dump:
AUD SM=7 CHDB DUMP 1 OF 1 EVENT=198
KEY=rlCHDB TUPLE WHERE

<the_key>
=<H’14b>

BLOCK-ADDR=H’4c904c
014B0000 00000000 00000000 00000000 00070000 00000000 00000000 00010000
00000000 00000000 00000000 00000001 01000000 00001000 00000000 00000000
00000000 00000000 00000000 00000000 00E00000 00001000 00000000 11050000

Note that the BLOCK-ADDR value is the beginning address of the data being dumped.

From the manual, the layout of an rlCHDB tuple looks like:
struct rlCHDB rlCHDB

(a) uint rlCHDB.chnum
(b) int rlCHDB.offrange
(c) uint rlCHDB.origtime
(d) int rlCHDB.timrown
(e) int rlCHDB.timrfwd
(f) int rlCHDB.timrback
(g) uint rlCHDB.tmstamp
(h) uint rlCHDB.puls_time
(i) DMTONE (enum) rlCHDB.tone
(j) int rlCHDB.gf_tmrown
(k) int rlCHDB.gf_tmrfwd
(l) int rlCHDB.gf_tmrback
(m) uint rlCHDB.bg_fwd_tmr
(n) uint rlCHDB.bg_bwd_tmr
(o) uint rlCHDB.bg_cyc_cnt
(p) uint rlCHDB.fac_ckt
(q) uint rlCHDB.protocol : 10
(r) DMLIST (enum) rlCHDB.pc_list : 6
(s) char rlCHDB.dig_buff [3]
(t) char rlCHDB.ll_ag
(u) char rlCHDB.rcv_mask
(v) char rlCHDB.rep_ag
(w) char rlCHDB.off_ag
(x) char rlCHDB.scnmsk
(y) char rlCHDB.onmintime
(z) char rlCHDB.onrange
(A) char rlCHDB.offmintime
(B) char rlCHDB.digcnt
(C) char rlCHDB.reptproc
(D) char rlCHDB.cnst
(E) char rlCHDB.acspt
(F) char rlCHDB.timrtype
(G) char rlCHDB.puls_st
(H) char rlCHDB.fg_det_state
(I) char rlCHDB.sndinvmsk
(J) char rlCHDB.rcvinvmsk
(K) char rlCHDB.gf_lr_ag
(L) char rlCHDB.gf_tmrval
(M) char rlCHDB.gf_tmrtype
(N) DMINPROC (enum) rlCHDB.inproc : 7
(O) DMBOOL (enum) rlCHDB.reseizflag : 1
(P) DMINPROC (enum) rlCHDB.saveinproc : 7

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-15

(Q) uint rlCHDB.save_ag : 7
(R) DMPCSUPV (enum) rlCHDB.supvchg : 2
(S) uint rlCHDB.ccgnum : 7
(T) ulong rlCHDB.comp_loss : 6
(U) DMAUQUAR (enum) rlCHDB.quarstate : 3
(V) uint rlCHDB.snd_mask : 4
(W) uint rlCHDB.gls_v : 4
(X) uint rlCHDB.rq_tag : 4
(Y) uint rlCHDB.rq_new_tag : 4
(Z) DMGRPTYPE (enum) rlCHDB.trk_dir : 3
(a) uint rlCHDB.ireseizflag : 2
(b) DMBOOL (enum) rlCHDB.ccstrk : 1
(c) DMBOOL (enum) rlCHDB.brgch : 1
(d) DMBOOL (enum) rlCHDB.dcstrk : 1
(e) DMBOOL (enum) rlCHDB.metallic : 1
(f) DMBOOL (enum) rlCHDB.mctqing : 1
(g) DMBOOL (enum) rlCHDB.msg_lost : 1
(h) DMBOOL (enum) rlCHDB.osps_call : 1
(i) DMBOOL (enum) rlCHDB.opcat : 1
(j) DMBOOL (enum) rlCHDB.bit_inv : 1
(k) DMBOOL (enum) rlCHDB.bit_mskng : 1
(l) DMBOOL (enum) rlCHDB.mm_active : 1
(m) DMBOOL (enum) rlCHDB.met_trk : 1
(n) DMBOOL (enum) rlCHDB.pc_flag : 1
(o) DMBOOL (enum) rlCHDB.gf_active : 1
(p) DMBOOL (enum) rlCHDB.ack_alw : 1
(q) DMBOOL (enum) rlCHDB.prg_alw : 1
(r) DMBOOL (enum) rlCHDB.met_ans : 1
(s) DMBOOL (enum) rlCHDB.pol_req : 1
(t) DMBOOL (enum) rlCHDB.tsi_ram : 1
(u) uint rlCHDB.rep_f : 1
(v) uint rlCHDB.ll_f : 1
(w) uint rlCHDB.outg_f : 1
(x) ulong rlCHDB.wrkarea
(y) long rlCHDB.glslprot

DMSETOWN (struct) rlCHDB.chmmo
(z) uint rlCHDB.chmmo.st_headk
(A) uint rlCHDB.chmmo.st_tailk

DMSETMEM (struct) rlCHDB.chubm
(B) uint rlCHDB.chubm.st_ownk
(C) uint rlCHDB.chubm.st_fork
(D) uint rlCHDB.chubm.st_back
(E) uint rlCHDB.chubm.st_link

DMSETMEM (struct) rlCHDB.chccm
(F) uint rlCHDB.chccm.st_ownk
(G) uint rlCHDB.chccm.st_fork
(H) uint rlCHDB.chccm.st_back
(I) uint rlCHDB.chccm.st_link

|3|3|2|2|2|2|2|2|2|2|2|2|1|1|1|1|1|1|1|1|1|1|0|0|0|0|0|0|0|0|0|0|
|1|0|9|8|7|6|5|4|3|2|1|0|9|8|7|6|5|4|3|2|1|0|9|8|7|6|5|4|3|2|1|0|
|---|
| | |

0 | chnum | offrange |
|---|
| | |

4 | origtime | timrown |
|---|
| | |

8 | timrfwd | timrback |
|---|
| | |

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-16 Issue 5.00

12 | tmstamp | puls_time |
|---|
| | |

16 | tone | gf_tmrown |
|---|
| | |

20 | gf_tmrfwd | gf_tmrback |
|---|
| | |

24 | bg_fwd_tmr | bg_bwd_tmr |
|---|
| | |

28 | bg_cyc_cnt | fac_ckt |
|---|
| | | |

32 | protocol | pc_list | dig_buff |
|---|
| | | | |

36 | | ll_ag | rcv_mask | rep_ag |
|---|
| | | | |

40 | off_ag | scnmsk | onmintime | onrange |
|---|
| | | | |

44 | offmintime | digcnt | reptproc | cnst |
|---|
| | | | |

48 | acspt | timrtype | puls_st | fg_det_state |
|---|
| | | | |

52 | sndinvmsk | rcvinvmsk | gf_lr_ag | gf_tmrval |
|---|
| | | | | | |

56 | gf_tmrtype | inproc |O| saveinproc | save_ag | R |
|---|
| | | | | | | |

60 | ccgnum | comp_loss | U | V | gls_v |rq_tag | Y |
|---|
| |

64 | Z | a |b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|* * * * *|
|---|
| |

68 | wrkarea |
|---|
| |

72 | glslprot |
|---|
| | |

76 | st_headk | st_tailk |
|---|
| | |

80 | st_ownk | st_fork |
|---|
| | |

84 | st_back | st_link |
|---|
| | |

88 | st_ownk | st_fork |
|---|
| | |

92 | st_back | st_link |
|---|

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-17

With this information, we can find the value of any attribute in the rlCHDB tuple. For
example, the tone field is 16 bits long, begins at offset 16, and has a value of 7.

10.2.3.6.2.2 Physical vs. Logical Key Values

The relational database used in the administrative module (AM), switching module
(SM) and communications module processor (CMP) environments stores the keys of
dynamic relations in two different ways. In the key attributes of the relation, a logical
value is stored. In the linkage attributes, the physical value is stored. The two values
are related by a constant offset value defined for the relation:

Logical Key = Physical Key − Offset

Physical keys are non-negative (0 and greater) values. Logical keys may be either
positive or negative. A negative logical key indicates that the tuple has been reserved
to act as a head cell instead of a data tuple.

10.2.3.7 Manually Scheduling an Audit

10.2.3.7.1 Running an Audit with an Input Message

Although audits run continually, the operator may occasionally want to run specific
audits to help locate a problem in either the software or the hardware.

• If a problem is suspected with a particular data structure, the audits associated
with the data structure should be run to obtain data dumps that may be
analyzed in detail to isolate the fault.

• If a hardware problem is suspected, an audit report may be useful for identifying
the fault.

Using audits to discover hardware and software problems is a skill. Proficiency comes
with practice and a knowledge of the overall software system. In general, however, the
user should be alert to problems in the system revealed by recurring audit reports and
assert messages.

To run specific audits, the operator enters an audit input message. The operator may
have to turn off brevity controls and logging before running the audit to see all the
audit output. Brevity may be turned off for a message class (for example, AUDTFST) or
for a processor. The operator should not leave brevity off for too long or the logging file
may become overloaded.

Refer to the APP:COMMAND-GRP appendix in the Appendixes section of the Input
Messages Manual (235-600-700) for a list of all input messages associated with the
AUDIT command group.

10.2.3.7.2 System Response to Input Message

If all the information is entered correctly and the system is fully operational, the
system acknowledges requests for specific audits with OK or PF (printout follows). If
there is a problem, a response of NG (no good) plus a short explanation prints. The
system response typically prints within five or ten seconds. For more information on
system response to requests for specific audits, refer to the APP:AUD appendix in the
Appendixes section of the Input Messages Manual (235-600-700).

10.2.3.8 Analysis Examples

Several example analyses are given in this section. Although these examples may refer
to real audits and real error codes, they may not reflect the current code or
documentation for a given release. They are meant to illustrate scenarios and

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-18 Issue 5.00

troubleshooting techniques. Switch personnel should use the current version of the
Audits Manual (235-600-400) when attempting to analyze audit reports.

Note: In the following examples, H’ refers to a hexadecimal number.

10.2.3.8.1 Case History One: Manual Action Error

In this example, the DD audit repeatedly prints the following error report:
A AUD ENV=OKP DD ERROR_CODE=MODATT EVENT=756

ERROR-ADDR=H’0125a324 BAD-DATA=H’15
LOG-KEY=H’32 GOOD-DATA=H’32

The A in the left margin indicates that this error requires manual action for recovery.
This explains why it is reported again and again. It will come out every time the audit
runs until the static data is fixed.

The Audits Manual (235-600-400) entry for the DD audit, error code MODATT is
reproduced here for reference.

Table 10-5 — Error Code: MODATT

Error Code: MODATT
Error Description: A remote switching module (RSM) from static

relation RLHSMRSM (rlHSMRSM.rsmnum[index])
has no corresponding tuple in the RLMODATT
relation. That is, a database read failed for relation
RLMODATT using rlMODATT.module =
rlHSMRSM.rsmnum[index] where the RSM number
was valid (!= 0).

Possible Error Effect: The RSM cannot be made operational.
Corrective Action Taken: None.
Manual Action Required: Either RLHSMRSM is corrupt (it contains an

incorrect RSM number) or the RSM has not been
fully specified in the static ODD. Technicians should
determine if the RSM number corresponds to a real
SM and either remove the reference from
RLHSMRSM or add all missing static ODD via
recent change or ODBE. See poprules for
RLMODATT and RLHSMRSM for more
information.

Dump Description:
Error Address = Index into rlHSMRSM.rsmnum[].

Bad Data = NA.
Good Data = The host SM (HSM) number. This is the key to the

rlHSMRSM tuple (rlHSMRSM.hsmnum).
Logical Index = The RSM number. This is the key to the rlMODATT

tuple (rlMODATT.module) for which the database
read failed.

Dump = The rlHSMRSM tuple.

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-19

Looking at the audit description in the Audits Manual and the data from the error
report, the problem can be identified:

1. The static RLHSMRSM relation indicates that H’15 is a valid remote switching
module (RSM) number for host switching module (HSM) H’32.

2. The rlMODATT tuple where the key attribute module = H’15 does not exist
according to the database manager.

3. The static RLHSMRSM and RLMODATT relations are inconsistent. Either SM
H’15 is a valid RSM and the rlMODATT tuple for it must be inserted, or it is
not a valid RSM number and the rlHSMRSM tuple keyed by hsm = H’32 must
be updated to reflect that.

10.2.3.8.2 Case History Two: Audits Scheduled from Other Events

At times, audits are scheduled to run elevated as part of other events such as single
process purges (SPPs) or asserts. Code attempting to use dynamic data may discover a
problem and schedule the appropriate audit to correct the data. In such cases,
analysis should start with the assert.

10.2.3.8.2.1 Audit Scheduled from an Assert

In the following example, the first block to appear is from the PCBLA audit but the
message class is AUDTMON, indicating that the audit is part of an ongoing event.
Looking further down the output, we see that the PCBLA audit was called to run (or
"scheduled") from an assert. The audit report prints before the assert because the
audit message class is a higher priority than the assert message class. This illustrates
the importance of gathering all the reports related to an event before beginning the
troubleshooting process.

In general, it is an excellent plan to first look at the assert to analyze the problem.
Refer to the Asserts Manual (235-600-500) for more information on asserts. The audit
reports a QUAR error in the rlPCBLA tuple with BAD-DATA=H’3. However, this
particular assert fires due to an inability to follow one tuple to another through the
linkages (refer to the Dynamic Data Manual [235-600-2xx] for a description). The top
function in the stack trace sets the "quarantine" attribute in the rlPCBLA tuple so the
audit will find an error and recover the rlPCBLA tuple to the idle list, then it prints
the assert and schedules the PCBLA audit to be run. Therefore, in this case, looking at
the assert is what is needed rather than looking at the PCBLA audit.

In this example, the RLPCBLA relation has a logical key of −1, which is the idle list
for the RLCCBCOM relation. If the stack trace were not available, a search of the
code for instances of this assert could be restricted to code dealing with the
RLCCBCOM relation and its rlPCBLA owned idle list. In this example, the stack trace
can be analyzed to find the function that fired the assert.

S570-76 99-03-02 07:51:58 001183 AUDTMON N1 i99004sym
AUD SM=1 PCBLA ERROR-CODE=QUAR EVENT=8

ERROR-ADDR=H’1fad900 BAD-DATA=H’3
LOG-KEY=H’ffffffff GOOD-DATA=H’0

S570-76 99-03-02 07:51:58 001184 AUDTMON N1 i99004sym
AUD SM=1 PCBLA DUMP PART-1 EVENT=8

ERROR-ADDR=H’1fad900
KEY=PCBLA H’ffff
BLOCK-ADDR=H’1fad900
FFFF0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00030000 00000000
00010000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-20 Issue 5.00

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 FFFF0000 FFFF0000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

S570-76 99-03-02 07:52:07 001186 AUDTMON N1 i99004sym
AUD SM=1 PCBLA DUMP PART-2 EVENT=8

ERROR-ADDR=H’1fad900
KEY=PCBLA H’ffff
BLOCK-ADDR=H’1fad9c4
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 02630000 00000000 00000000

S570-76 99-03-02 07:52:10 001187 OVLD N1 i99004sym
* OP OVRLD SM=1

REAL TIME NONE
RESOURCE CCBCOM
CONTROLS DNET
CONTROLS AVRT

S570-76 99-03-02 07:52:13 001189 OVLD N1 i99004sym
REPT OVERLOAD HISTORY

MODULE REALTIME RESOURCE
SM=1 NONE CCBCOM
END

S570-76 99-03-02 07:52:15 001190 AUDTMON N1 i99004sym
AUD SM=1 PCBLA DUMP PART-1 EVENT=8

ERROR-ADDR=H’1fad900
KEY=CCBCOM H’1dc
BLOCK-ADDR=H’22bf630
01DC0000 00000000 00000000 00000000 01DC4000 00000000 8C000000 FF000000
00000000 FFFFFFFF FFFF0000 00000000 00000000 00080008 01100000 09060006
01010103 0A400235 00000235 00970046 00000623 029D0104 00010013 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 01DCFFFF FFFFFFFF 00FF0000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 01DCFFFF FFFFFFFF
00FF0000

S570-76 99-03-02 07:52:24 001193 AUDTMON N1 i99004sym
AUD SM=1 PCBLA DUMP PART-2 EVENT=8

ERROR-ADDR=H’1fad900
KEY=CCBCOM H’1dc
BLOCK-ADDR=H’22bf6f4
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 0009029B
00000000 00000000 00000000

S570-76 99-03-02 07:52:32 001195 AUDTMON N1 i99004sym
AUD SM=1 PCBLA COMPLETED ERRORS=1 EVENT=8

S570-76 99-03-02 07:52:42 001197 ASRT N1 i99004sym
INIT SM=1,1 LVL=RPI EVENT=8 COMPLETED

DEF-CHK-FAIL=21291 AUD-SCHED=PCBLA ELEV-MODE
FAILING-ADDR=H’3c462c SM-MODE=NORMAL TIME=45:58.1
PROCESS: BG=431,5,H’10bb656,RPI CM=NONE, FG=NONE,,

S570-76 99-03-02 07:52:51 001199 ASRTMON N1 i99004sym
REPT SM=1 STACK TRACE ENV=OSDSM SRC=DCF EVENT=8

USER: 003C462C 006637AC 0068F84A 0068EC7E 0068D95C 004BBEC0
004EE476 010BBB76 00290630

S570-76 99-03-02 07:52:59 001203 ASRTMON N1 i99004sym
REPT SM=1 STACK FRAME ENV=OSDSM SRC=DCF EVENT=8

FUNC ADDR: H’3c462c
PARAMETERS: FFFF0006 022FB564 0000FFFF FFFF0229 1ED00008

8DC60068 F84A0006 00000793 00000288 00010236
LOCAL DATA: 00000000 1A95F501 E01E2902 00000000 05000000

2B532C46 3C00848D 0800668D 08000000 00000000

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-21

00000000 00008D00 00000900 00000000 00000000
00000000 0000188D 0800668D 08000000 00000081
2902D01F 2902F4D9 FA019A8D 08000081 2902668D
08002E0E B000008D 668D0800 668D0800 00000000
00002B53 96B41F00 668D0800 08000000 8AA5AA00
03002B53 668D0800 668D0800 00000000 21000000
00000000 FDFFFFFF 0000204E 00001001 D01E2902

S570-76 99-03-02 07:53:07 001206 ASRTMON N1 i99004sym
REPT SM=1 STACK FRAME ENV=OSDSM SRC=DCF EVENT=8

FUNC ADDR: H’6637ac
PARAMETERS: 00060000 07930000 02880001 0236002F 00000229

1EE00229 1ED00000 0000FF4A 00088E7A 0068EC7E
LOCAL DATA: D01E2902 FFFFFFFF 000064B5 2F020600 FFFFAC37

66009E8D 08000000 00001A95 F501E01E 29020000
00000500 00002B53 2C463C00 848D0800 668D0800
00000000 00000000 00000000 8D000000 09000000
00000000 00000000 00000000 188D0800 668D0800
00000000 00812902 D01F2902 F4D9FA01 9A8D0800
00812902 668D0800 2E0EB000 008D668D 0800668D
08000000 00000000 2B5396B4 1F00668D 08000800
00008AA5 AA000300 2B53668D 0800668D 08000000

S570-76 99-03-02 07:53:15 001208 ASRTMON N1 i99004sym
REPT SM=1 REGISTER DUMP ENV=OSDSM SRC=DCF EVENT=8

REGISTER DATA= 02298100 00088D9A 01FAD9F4 02291FD0
02298100 00000000 00088D66 00088D18
00000000 00000000 00000000 00000009
0000008D 00000000 00000000 00000000

S570-76 99-03-02 07:53:23 001210 ASRTMON N1 i99004sym
REPT SM=1 PMDB-IN SRC=DCF EVENT=8

MSG: TYPE=124 LENGTH=4 PRIORITY=0
FROM: PROC=2 PCRID=1 UNIQ=0
02880001

10.2.3.8.2.2 Audit Scheduled from a Single Process Purge (SPP)

In the following example, the single process purge (SPP) appears first, and was caused
by a write protect error. In other words, a function attempted to write to a location of
memory it is not allowed to touch. The fifth block in the event report is a STACK
TRACE and all those addresses may be traced back to the line numbers of the called
functions. More detail is given about tracking down this problem in “Assert Analysis,”
section 5 of this manual.

During an SPP, the process that tried to do the illegal action is purged, a "quarantine"
attribute is set in some of the tuples linked to the rlPCBLA tuple, and the associated
audits are requested. This ensures that when the audits run, they will find errors and
recover the tuples associated with the rlPCBLA tuple. This cleanup can sometimes
take quite a while and may result in a number of ROP reports.

Similar to the case in which the audit is scheduled from an assert, the SPP error
blocks sometimes appear further down in the event report. Depending on the type of
process, there may be associated data or processes that generate further reports.

S570-131186 97-07-29 15:10:53 005349 INT A i8.1
REPT SM=4,0,ACT HWLVL=1 SWLVL=SPP EVENT=64 COMPLETED

MP WRITE-PROT-ERR SW-ERR FAILING ADDR=H’8bd
PROCESS:BG=1210,5,PURGED CM=NONE, FG=NONE,,

S570-131186 97-07-29 15:10:59 005350 INT_MON A i8.1
REPT SM=4,0,ACT HWLVL=1 SWLVL=SPP EVENT=64 COMPLETED

MP WRITE-PROT-ERR
SW-ERR FAIL-ADDR=H’8bd ROM-WRITE DATA-BUS=H’0 TIME=8:2.3
PROCESS:BG=1210,5,PURGED CM=NONE, FG=NONE,, NORMAL
ORIG-HW-STATUS: MC0: ACT MC1: STBY

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-22 Issue 5.00

FINAL-HW-STATUS: MC0: ACT MC1: STBY
PREVIOUS TYPE/COUNT: 121 0
SHADOW TYPE/COUNT: 86 2
AUX DATA: H’0 H’200 H’0 H’1
ESCALATION-COUNTS: H’10000 H’0 H’0 H’0

S570-131186 97-07-29 15:11:09 005352 INT_MON A i8.1
REPT SM=4 HARDWARE CONTEXT SM2000 ORM EVENT=64

68040-REGISTERS: SSP=H’100cffc PC=H’101b02c SR=H’4
USP=H’11195d2 FP=H’111963e A5=H’250d342 A4=H’2387e8c
A0=H’8bb A1=H’22e6d90 A2=H’22e87d0 A3=H’250d39a
D0=H’ffff D1=H’94 D2=H’0 D3=H’f150a3c
D4=H’0 D5=H’0 D6=H’0 D7=H’0

PIC-REGISTERS: HI MED LOW
IRR: H’0 H’c0 H’40
IMR: H’e H’3b H’fe
ISR: H’0 H’0 H’0

S570-131186 97-07-29 15:11:13 005354 INT_MON A i8.1
REPT SM=4 MP HW REGS EVENT=64

ACTSR=H’3 EXCEP=2 PORTA=H’0 PRTBN=H’3b
PROC1=H’1 PROC2=H’0 PROC3=H’e0
RSTSR=H’0 HRSRC=H’0 SRSRC=H’0
RSMSK=H’44 HRSMR=H’0 SRSMR=H’0
SESR=H’0 BSNES=H’0 APESR=H’c
SESMR=H’c8 BSNEM=H’0 APESM=H’f00c
CORES=H’0 CAXES=H’0 COCTL=H’0 CPDSR=H’1e
CORMR=H’0 CAXEM=H’0 MCIDR=H’1 CPISR=H’f1
SUBRR=H’ff MEMBD=H’ffff CDSR1=H’0
MBSR10=H’7c MBSR11=H’7c MBSR12=H’7c MBSR13=H’ff
MBESR0=H’0 MBESR1=H’0 MBESR2=H’82 MBESR3=H’ff
MBESM0=H’82 MBESM1=H’82 MBESM2=H’82 MBESM3=H’ff
BUSCR=H’b3 SHADDR=H’0
SHBCR=H’b3 SHOPR=H’0

S570-131186 97-07-29 15:11:17 005356 INT_MON A i8.1
REPT SM=4 STACK TRACE ENV=OSDSM SRC=FR EVENT=64

USER: 0101B02C 0F150A3C 016952C4 01AE6BFA 01AE7B9E 01AE61DE
01AD7922 01AD6A90 01616D98

S570-131186 97-07-29 15:11:21 005359 INT_MON A i8.1
REPT SM=4 STACK FRAME ENV=OSDSM SRC=FR EVENT=64

FUNC ADDR: H’101b02c
PARAMETERS: 00000000 00000000 00000000 00000000 022E87D0

0250D39A 02387E8C 0250D342 016967F0 010D20F2
LOCAL DATA: 085E6901 64961101 FFFFFFFF D0872E02 01000000

2E882E02 ED01D087 2E026A6A 69013696 11010100
00000000 3802562D 5002D087 ED010003 0504BA04
0000028D 18002201 0504BA04 00042700 52256101
32961101 D0872E02 00000000 0E961101 00000000
00000000 3C0A150F FFFF1EB0 01013E96 1101D087
2E025F00 D0872E02 00000000 010094D8 69011101
CA000100 CD008204 A4E76901 B2951101 7CFF2081
E6032201 00042700 01000504 BA049095 1101D087

S570-131186 97-07-29 15:11:26 005361 INT_MON A i8.1
REPT SM=4 STACK FRAME ENV=OSDSM SRC=FR EVENT=64

FUNC ADDR: H’f150a3c
PARAMETERS: 022E87D0 0250D34A 00000000 01119708 01119718

01AE6BFA 0250D342 04820000 0F150A3C 00000000
LOCAL DATA: 0196D087 2E029C8C 2E02F220 0D01F067 690142D3

50028C7E 38029AD3 5002D087 2E020000 00000000
00000000 00000000 00003C0A 150F7896 1101085E
69016496 1101FFFF FFFFD087 2E020100 00002E88
2E02ED01 D0872E02 6A6A6901 36961101 01000000
00003802 562D5002 D087ED01 00030504 BA040000
028D1800 22010504 BA040004 27005225 61013296
1101D087 2E020000 00000E96 11010000 00000000
00003C0A 150FFFFF 1EB00101 3E961101 D0872E02

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-23

S570-131186 97-07-29 15:11:32 005362 INT_MON A i8.1
REPT SM=4 DATA=PCB,1210 ENV=OSDSM SRC=FR EVENT=64

ADDR=H’39fdd00
04BA002A 0A05FFFF FFFFFFFF 00000000 01119596 00800000 FFFFFFFF FFFFFFFF
00270100 0F150A3C 00000000 00000000 00000000 00000000 022E87D0 0250D39A
02387E8C 0250D342 011195C8 011195B4 00000000 00000000 00000000 00000000
00040400 00000000 0078D78C 00800018 FFFFFFFF FFFF0000 0000000B 00000000

S570-131186 97-07-29 15:11:52 005369 INT_MON A i8.1
REPT SM=4 DATA=PCBLA-1,1210 ENV=OSDSM SRC=FR EVENT=64

ADDR=H’39ff400
04BA0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00070500 00000000 00000000 00000100 00000000 00000000 01000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
FFFF0000 FFFF0000 00000000 FFFF0000 FFFF0000 FFFF0000 FFFF0000 FFFF0000
FFFF0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000

S570-131186 97-07-29 15:11:56 005370 INT_MON A i8.1
REPT SM=4 DATA=PCBLA-2,1210 ENV=OSDSM SRC=FR EVENT=64

ADDR=H’39ff4d4
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
05090509 00000000 00000000

S570-131186 97-07-29 15:12:00 005371 AUDTMON A i8.1
AUD SM=4 SMXRF ERROR-CODE=DEADPID EVENT=64

ERROR-ADDR=H’2264fb0 BAD-DATA=H’0
LOG-KEY=H’41 GOOD-DATA=H’0

S570-131186 97-07-29 15:12:04 005372 AUDTMON A i8.1
AUD SM=4 SMXRF DUMP EVENT=64

ERROR-ADDR=H’2264fb0
KEY=SMXRF H’41
BLOCK-ADDR=H’2264fb0
0041023A 000000A4 00020000 10600000 04BA0405 00000000 000A0000 00000000

S570-131186 97-07-29 15:12:09 005373 AUDTMON A i8.1
AUD SM=4 SMXRF COMPLETED ERRORS=1 EVENT=64

S20B-65603 97-07-29 15:12:12 005374 no_cls A i8.1
* REPT SOP CANNOT OPEN SCC CHANNEL

S570-131186 97-07-29 15:12:13 005375 AUDTMON A i8.1
AUD SM=4 CCBCOM ERROR-CODE=QUAR EVENT=64

ERROR-ADDR=H’3e68110 BAD-DATA=H’1
LOG-KEY=H’482 GOOD-DATA=H’0

S570-131186 97-07-29 15:12:18 005376 AUDTMON A i8.1
AUD SM=4 CCBCOM DUMP PART-1 EVENT=64

ERROR-ADDR=H’3e68110
KEY=CCBCOM H’482
BLOCK-ADDR=H’3e68110
04820000 00000000 00000060 04000000 04824000 00000000 8C640000 FF000000
00000000 FFFFFFFF FFFF0000 00000000 00000000 00080008 01980000 09060007
010301C3 580003F7 000003F7 00970007 00008000 007816A1 06201000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 0482FFFF FFFFFFFF 00FF0000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 0482FFFF FFFFFFFF
00FF0000

S570-131186 97-07-29 15:12:22 005377 AUDTMON A i8.1
AUD SM=4 CCBCOM DUMP PART-2 EVENT=64

ERROR-ADDR=H’3e68110
KEY=CCBCOM H’482
BLOCK-ADDR=H’3e681d4
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 023A023A 00000000 00000000 00000000 04C40000

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-24 Issue 5.00

00000000 00000000 00000000

S570-131186 97-07-29 15:12:27 005378 AUDTMON A i8.1
AUD SM=4 CCBCOM COMPLETED ERRORS=1 EVENT=64

S570-131186 97-07-29 15:12:31 005381 AUDTMON A i8.1
AUD SM=4 CDBCOM ERROR-CODE=MEMBER EVENT=64

ERROR-ADDR=H’3f07f40 BAD-DATA=H’1
LOG-KEY=H’23a GOOD-DATA=H’0

S570-131186 97-07-29 15:12:36 005383 AUDTMON A i8.1
AUD SM=4 CDBCOM DUMP EVENT=64

ERROR-ADDR=H’3f07f40
KEY=CDBCOM H’23a
BLOCK-ADDR=H’3f07f40
023A0000 013A0010 00010004 005A0000 00000000 00000000 05090000 00000000

S570-131186 97-07-29 15:12:41 005384 AUDTMON A i8.1
AUD SM=4 CDBCOM DUMP PART-1 EVENT=64

ERROR-ADDR=H’3f07f40
KEY=CCBCOM H’482
BLOCK-ADDR=H’3e68110
04820000 00000000 00000000 00000000 04824000 00000000 8C640000 FF000000
00000000 FFFFFFFF FFFF0000 00000000 00000000 00080008 01980000 09060007
00000000 00000000 000003F7 00970007 00008000 007816A1 06201000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 0482FFFF FFFFFFFF 00FF0000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 0482FFFF FFFFFFFF
00FF0000

S570-131186 97-07-29 15:12:45 005386 AUDTMON A i8.1
AUD SM=4 CDBCOM DUMP PART-2 EVENT=64

ERROR-ADDR=H’3f07f40
KEY=CCBCOM H’482
BLOCK-ADDR=H’3e681d4
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00090000
05240000 00000000 00000000

S570-131186 97-07-29 15:12:49 005387 AUDTMON A i8.1
AUD SM=4 CDBCOM ERROR-CODE=ASSOC_EST EVENT=64

ERROR-ADDR=H’3dfdf40 BAD-DATA=H’0
LOG-KEY=H’23a GOOD-DATA=H’0

S570-131186 97-07-29 15:12:54 005388 AUDTMON A i8.1
AUD SM=4 CDBCOM DUMP EVENT=64

ERROR-ADDR=H’3dfdf40
KEY=SMEST H’23a
BLOCK-ADDR=H’3dfdf40
023A013A 00980041 00040405 00605001 0026C100 04BA0405 DA380155 00000000

S570-131186 97-07-29 15:12:57 005389 AUDTMON A i8.1
AUD SM=4 CDBCOM COMPLETED ERRORS=2 EVENT=64

S570-131186 97-07-29 15:13:01 005390 AUDTMON A i8.1
AUD SM=4 CKTDATA ERROR-CODE=PID EVENT=64

ERROR-ADDR=H’3dfd840 BAD-DATA=H’4ba0405
LOG-KEY=H’202 GOOD-DATA=H’0

S570-131186 97-07-29 15:13:12 005392 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3dfd840
KEY=SMEST H’202
BLOCK-ADDR=H’3dfd840
02020124 00980041 0004040B 00005001 0026C100 04BA0405 DA380155 00000000

S570-131186 97-07-29 15:13:17 005393 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3dfd840

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-25

KEY=SMEST H’246
BLOCK-ADDR=H’3dfe0c0
024600D7 00980041 0004040B 00005001 0026C100 04BA0405 DA380155 00000000

S570-131186 97-07-29 15:13:28 005394 AUDTMON A i8.1
AUD SM=4 CKTDATA ERROR-CODE=AUOOS EVENT=64

ERROR-ADDR=H’3dfd840 BAD-DATA=H’b
LOG-KEY=H’202 GOOD-DATA=H’2

S570-131186 97-07-29 15:13:33 005395 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3dfd840
KEY=SMEST H’202
BLOCK-ADDR=H’3dfd840
02020124 00980052 0002040B 00015001 0026C100 FFFF0000 DA380155 00000000

S570-131186 97-07-29 15:13:40 005396 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3dfd840
KEY=SMEST H’246
BLOCK-ADDR=H’3dfe0c0
024600D7 00980041 0004040B 00005001 0026C100 04BA0405 DA380155 00000000

S570-131186 97-07-29 15:13:49 005398 AUDTMON A i8.1
AUD SM=4 CKTDATA ERROR-CODE=ASSOC_TUP EVENT=64

ERROR-ADDR=H’3f07840 BAD-DATA=H’66
LOG-KEY=H’202 GOOD-DATA=H’0

S570-131186 97-07-29 15:13:54 005399 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3f07840
KEY=CDBCOM H’202
BLOCK-ADDR=H’3f07840
02020000 01240000 01080004 005A0000 00000000 00000000 00710204 00000000

S570-131186 97-07-29 15:14:00 005401 AUDTMON A i8.1
AUD SM=4 CKTDATA ERROR-CODE=AUOOS EVENT=64

ERROR-ADDR=H’3dfd840 BAD-DATA=H’b
LOG-KEY=H’202 GOOD-DATA=H’2

S570-131186 97-07-29 15:14:05 005404 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3dfd840
KEY=SMEST H’202
BLOCK-ADDR=H’3dfd840
02020124 00980052 0002040B 00015001 0026C100 FFFF0000 DA380155 00000000

S570-131186 97-07-29 15:14:09 005407 AUDTMON A i8.1
AUD SM=4 CKTDATA DUMP EVENT=64

ERROR-ADDR=H’3dfd840
KEY=SMEST H’246
BLOCK-ADDR=H’3dfe0c0
024600D7 00980041 0004040B 00005001 0026C100 04BA0405 DA380155 00000000

S570-131186 97-07-29 15:14:14 005411 AUDTMON A i8.1
AUD SM=4 CKTDATA COMPLETED ERRORS=20 EVENT=64

10.2.3.8.3 Case History Three: CKTDATA Audit

This case study illustrates how ROP output generated from a circuit data (CKTDATA)
audit is analyzed. The ROP output was generated due to dynamic data inconsistencies
detected by the CKTDATA audit. In this case, switch personnel gather the information
regarding event 4 provided in the following ROP output.
S0-13799 99-04-26 09:22:02 000289 AUDTFST FIVE

AUD SM=192 CKTDATA ERROR-CODE=VERTICAL EVENT=4
ERROR-ADDR=H’5bda9f4 BAD-DATA=H’4

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-26 Issue 5.00

LOG-KEY=H’91c GOOD-DATA=H’4

S0-13799 99-04-26 09:22:03 000290 AUDTFST FIVE
AUD SM=192 CKTDATA DUMP PART 1 OF 1 EVENT=4

KEY=rlSMEST TUPLE WHERE
<the_key>
=<H’91c>

BLOCK-ADDR=H’5bda9f4
091C00D6 00980052 0002040B 01215001 0026C100 FFFF0000 042687AC 00000000

S0-13799 99-04-26 09:22:05 000291 AUDTFST FIVE
AUD SM=192 CKTDATA DUMP PART 1 OF 1 EVENT=4

KEY=rlSMEST TUPLE WHERE
<the_key>
=<H’81c>

BLOCK-ADDR=H’5bd89f4
081C00D7 00000052 00000200 00014101 FFFF0000 FFFF0000 042687AC 00000000

S0-13799 99-04-26 09:22:06 000292 AUDTFST FIVE
AUD SM=192 CKTDATA DUMP PART 1 OF 1 EVENT=4

KEY=rlSMEST TUPLE WHERE
<the_key>
=<H’89c>

BLOCK-ADDR=H’5bd99f4
089C00D7 00000052 00000100 00014101 FFFF0000 FFFF0000 042687AC 00000000

S0-13799 99-04-26 09:22:08 000293 AUDTFST FIVE
AUD SM=192 CKTDATA DUMP PART 1 OF 1 EVENT=4

KEY=rlSMEST TUPLE WHERE
<the_key>
=<H’61c>

BLOCK-ADDR=H’5bd49f4
061C013A 00000052 00000200 00014001 FFFF0000 FFFF0000 042687AC 00000000

S0-13799 99-04-26 09:22:10 000294 AUDTFST FIVE
AUD SM=192 CKTDATA DUMP PART 1 OF 1 EVENT=4

KEY=rlSMEST TUPLE WHERE
<the_key>
=<H’65c>

BLOCK-ADDR=H’5bd51f4
065C013A 00000052 00000100 00014001 FFFF0000 FFFF0000 042687AC 00000000

S0-13799 99-04-26 09:22:12 000295 AUDTFST FIVE
AUD SM=192 CKTDATA COMPLETED ERRORS=1 EVENT=4

The CKTDATA audit steps through the static RLCKTDATA relation. The RLCKTDATA
relation stores the definition for each circuit that is known by a switching module
(SM). For each of these circuits, the CKTDATA audit verifies that the proper
corresponding dynamic data exists and that this dynamic data is in a consistent state.
For further details on the types of checks the CKTDATA audit makes, please refer to
the Audits Manual (235-600-400).

The next step the switch personnel should take is to look up the CKTDATA audit
VERTICAL error description in the Audits Manual. From the Audits Manual, the
switch personnel will learn that a VERTICAL error is reported when an inconsistency
in maintenance state is found between the circuit under audit (the child circuit) and
its parent circuit(s).

The Audits Manual describes what is dumped in each of the error report fields for a
VERTICAL error. ERROR-ADDR contains the address of the rlSMEST tuple for the child
circuit, BAD-DATA contains the rlSMEST basic status (bas_stat) of the child circuit,
GOOD-DATA contains the number of parents this child circuit has, and LOG-KEY
contains the rlSMEST circuit name (unit_id) of the child circuit. Lastly, the Audits
Manual describes the data dumps that follow a given error report. For VERTICAL

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-27

errors, the first report is the rlSMEST tuple corresponding to the child circuit, and all
the rest of the data dumps are the rlSMEST tuples for the parent circuits.

All of the audit data dump reports for this case history are of a switching module
equipment status table tuple (rlSMEST). The RLSMEST relation is a dynamic relation
that contains a tuple per circuit defined in the static RLCKTDATA relation. The
dynamic state and activity of a circuit can be obtained from its rlSMEST tuple. The
layout of this dynamic data can be found in the Dynamic Data Manual (235-600-2xx).

For analyzing VERTICAL errors, the rlSMEST tuple field values needed are the circuit
name (unit_id), circuit type (type), basic status (bas_stat), and second qualifier
(qual_2) fields. Refer to "Extracting Data from an Audit Report," section 10.2.3.6.2.1
for more information. The switch personnel will need to extract these field values from
each of the rlSMEST tuples dumped.

The circuit name is the key to both the rlCKTDATA tuple and the rlSMEST tuple. The
circuit type is defined by the DMCKTTYPE enumeration. The basic status represents
the maintenance state of the circuit. The second qualifier indicates the reason why the
basic status is set to a particular maintenance state. Both the basic status and second
qualifier fields are defined by the DMMRASTAT enumeration.

Again, the first report contains the rlSMEST tuple for the circuit under audit, which
is the child circuit. The circuit name of the child circuit is H’091C; the circuit type is
H’00D6, which corresponds to the PCPHPSIU DMCKTTYPE enumeration value; the
basic status is H’04, which corresponds to the SMOOS DMMRASTAT enumeration
value; and the second qualifier is H’0B, which corresponds to the SMFE
DMMRASTAT enumeration value. So, this child PH circuit is in the out-of-service
family of equipment state. “Family of equipment” means that this circuit is out of
service because its parent circuit is out of service.

The same analysis should be done for each parent circuit’s rlSMEST tuple. The results
of this can be seen in the following table:

Circuit Name Circuit Type Basic Status Second Qualifier
H’091C PCPHPSIU SMOOS SMFE
H’081C PCSHLFPSIU SMSTBY SMSTNUL
H’089C PCSHLFPSIU SMACT SMSTNUL
H’061C PCCCPSU2 SMSTBY SMSTNUL
H’065C PCCCPSU2 SMACT SMSTNUL

Looking at the table, it can be seen that the parent PSU shelf circuits are running
active/stand-by. The grandparent PSU common controller circuits are also running
active/stand-by. Therefore, the VERTICAL inconsistency is that the child circuit is in
the out-of-service family of equipment state, but none of the parent circuits are out of
service.

Recovery for this VERTICAL error is to load the PH circuit on the MRA recovery
queue. MRA will then take the PH circuit off of the queue and take the appropriate
recovery action to make the child PH circuit’s state consistent with its parents. In this
case, MRA restored the PH circuit to the active state. The “restore completed” message
is the last message on the ROP output.

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-28 Issue 5.00

10.2.3.8.4 Case History Four: PCBLA Audit

This case history addresses the PCBLA audit. Call processing and terminal and switch
maintenance are implemented by means of processes that are associated with tuples
of relation RLPCBLA (process control block link area). Each rlPCBLA tuple has links
to tuples in other relations that contain all the information about a call, such as ports
and time slots used. They also include controls of the call itself, such as call waiting or
forwarding data. Incorrect data in an rlPCBLA tuple can cause a variety of problems
related to call processing.

The function of the PCBLA audit is to verify the integrity of the data and the link
areas. The subsequent audit reports and data dumps are related as indicated by the
common EVENT number.
S570-65669 95-10-06 22:21:13 050504 AUDTMON FIVE I
AUD SM=17 PCBLA ERROR-CODE=DEAD_LNKD EVENT=1055

ERROR-ADDR=H’1425900 BAD-DATA=H’4a4
LOG-KEY=H’3d9 GOOD-DATA=H’0

S570-65669 95-10-06 22:21:21 050512 AUDTMON FIVE I
AUD SM=17 PCBLA DUMP EVENT=1055

ERROR-ADDR=H’1425900
KEY=PCBLA H’3d9
BLOCK-ADDR=H’1425900
03D90000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 FFFF0000 FFFF0000 00000000 FFFF0000 FFFF0000 0000B100 00008000
01000010 00000000 00000000 00000000 00000000 FFFF0000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 B3C20000

S570-65669 95-10-06 22:21:29 050516 AUDTMON FIVE I
AUD SM=17 PCBLA DUMP EVENT=1055

ERROR-ADDR=H’1425900
KEY=PCB H’3d9
BLOCK-ADDR=H’808e76
010300B2 031F03B6 FFFF0000 000CBF0A 08B80000 FFFFFFFF FFFFFFFF FFFFFF00

S570-65669 95-10-06 22:21:45 050521 AUDTMON FIVE I
AUD SM=17 PCBLA COMPLETED ERRORS=1 EVENT=1055

The previous error code, DEAD_LNKD, indicates that the operating system believes the
process associated with this rlPCBLA tuple to be dead, but the linkage fields are not
null. This means that the system has resources tied to a process that is no longer
active. The purpose of this check is to report the error and then release all of the
resources that the dead process is holding. The ERROR-ADDR in the third line of the
report is the physical address of the failing tuple, and BAD-DATA is the bad linkage
indicator. LOG-KEY is the process number. Two data dumps accompany the PCBLA
audit error report: the rlPCBLA tuple and the process control block (PCB) associated
with the process.

The process type can be found by looking at the progi field in the PCB dump. Refer to
the "Extracting Data from an Audit Report," section 10.2.3.6.2.1 for information on
how to determine the value of this attribute.

When the PCBLA audit finds an error, the system automatically calls several other
audits that will check the data that the rlPCBLA tuple could be linked to. For
example, the port linkage area (PORTLA) contains data for all defined line and trunk
ports. When the rlPCBLA tuple is recovered, it breaks the linkage to the rlPORTLA
tuple. The PORTLA audit reports the ONE2ONE error. Similarly, other data linked to the
rlPCBLA tuple may be detected by additional audits. Typically, these error reports
have the same event number.
S570-65669 95-10-06 22:22:10 050527 AUDTMON FIVE I

235-600-510
November 2000

AUDIT ANALYSIS

Issue 5.00 Page 10-29

AUD SM=17 PORTLA ERROR-CODE=ONE2ONE EVENT=1055
ERROR-ADDR=H’152f040 BAD-DATA=H’2
LOG-KEY=H’b3c2 GOOD-DATA=H’0

S570-65669 95-10-06 22:22:18 050528 AUDTMON FIVE I
AUD SM=17 PORTLA DUMP EVENT=1055

ERROR-ADDR=H’152f040
KEY=PORTLA H’b3c2
BLOCK-ADDR=H’152f040
B3C20100 00000A00 00009D9F 04CA3800 00000000 00019261 00000000 03E20000

S570-65669 95-10-06 22:22:26 050530 AUDTMON FIVE I
AUD SM=17 PORTLA COMPLETED ERRORS=1 EVENT=1055

The error code ONE2ONE is not described in the PORTLA section of the Audits Manual
(235-600-400). It can be found in the “Audit Drivers” section of the manual under the
heading DRERRCDS. This is because the error was detected by a common program
(driver) invoked by the PORTLA audit.

The ONE2ONE error is caused by an invalid one-to-one linkage, meaning that the
failing tuple is pointing to a tuple that does not point back. The audit driver
re-initializes the rlPORTLA tuple and, if it belongs on an idle link list, links it to the
appropriate head cell. The ERROR-ADDR is the physical address of the failing tuple,
BAD-DATA is the sub-index to the per-tuple linkage block, and LOG-KEY is the logical
key of the tuple in error. The accompanying PORTLA dump is that of the corrupted
tuple.

AUDIT ANALYSIS 235-600-510
November 2000

Page 10-30 Issue 5.00

Software Analysis Guide

CONTENTS PAGE

11. DATA COLLECTION AND ANALYSIS 11-1
11.1 PURPOSE . 11-1
11.2 ENVIRONMENTAL CONDITIONS 11-1
11.3 SM/CMP/PI/PH EVENT HISTORY 11-1
11.4 FAULT CONDITIONS TO ESCALATE 11-1

235-600-510
November 2000

DATA COLLECTION AND ANALYSIS

Issue 5.00 Page 11-i

11. DATA COLLECTION AND ANALYSIS

11.1 PURPOSE

For each of the areas discussed in this document, an attempt has been made to give a
summary outline of the steps that can be taken to correct errors and return the
5ESS® switch to a sane state. This section lists system environmental conditions that
should be accumulated by the user before calling the next level of technical support.

11.2 ENVIRONMENTAL CONDITIONS

When preparing to escalate a problem, all relevant data, information, and read-only
printer (ROP) output must be readily available and organized for discussion and
analysis. This includes any system environmental conditions that could possibly be
pertinent to the fault condition or fault event including associated system outputs
(such as system initializations), human/machine interactions (such as
growth/degrowth procedures), singular machine processes (such as disk backup),
machine configurations (such as AM or SM active/standby status), machine services
being supported (such as packet switching), and machine loading (such as heavy, light,
resource unavailability). Finally, an event history should be printed.

11.3 SM/CMP/PI/PH EVENT HISTORY

Event histories are data dumps of the latest events for the switching module (SM), the
communications module processor (CMP), the packet interface (PI), and the protocol
handler (PH). They are printed on the ROP after SM/CMP/PI/PH selective
initialization, SM/CMP/PI/PH full initializations, or when manually requested:

op:postmortem,sm=#
(where # is the SM number)

op:postmortem,cmp=0,prim/mate

In the case of the CMP, the event history is also printed as part of a CMP raise error
lead postmortem dump.

Craft personnel can manually request the output of the most recent retained PH/PI
event histories by using the commands:

op:history, psuph=sm#-psu#-shelf#-ph#[,rcvyhst][,eventhst]
(where psu is packet switching unit, rcvyhst is recovery history, and eventhst is
event history)

op:history,mctsi=sm#-pi#[,rcvyhst][,eventhst]
(where mctsi is module controller time slot interchanger, rcvyhst is recovery history,
and eventhst is event history).

For further information, see APP:EVENT-HIST in the 235-600-700, Input Messages
Manual and 235-600-750, Output Messages Manual.

11.4 FAULT CONDITIONS TO ESCALATE

The following list provides a few conditions under which escalation should be
considered:

Interrupts Interrupt errors that are usually caused by software are
ILLEGAL-INSTR, PRIVILEGE-VIOL, STACK-PROT-ERR, TRAP,
and WRITE-PROT-ERR. These errors should be reported to the
next level of technical support for investigation and correction.

235-600-510
November 2000

DATA COLLECTION AND ANALYSIS

Issue 5.00 Page 11-1

Asserts Some files have been stripped of symbol information. In this
case, the upd:ftrc command returns an error message instead
of the file and function name. If this occurs, contact the next
level of technical support.

Audit It is possible that events leading to the audit error are not
printed on the ROP. In this case, consult the 235-600-400, Audits
Manual where the audit and error are described in detail. For
static and dynamic data inconsistencies, the Audits Manual
specifies which relations to check. If the correct procedure cannot
be found, consult the next level of technical support.

Preventing Future
Initializations

For SM initializations, look for the INITIALIZATION TRIGGER
message to find the general cause of the initialization. The
daylog should be dumped from one hour prior to the start of an
initialization until one hour after the SM is stable. These daylog
messages, along with the initialization trigger message, give a
good idea of what occurred. This is the starting point for SM
initializations.

To dump an event history that includes the last 240 events
leading up to the SM initialization (or 544 events leading up to
the SM-2000 initialization), input the command:

op:postmort,sm=# (where # is the SM number) and analyze
the data collected about the initialization. If the cause of the
initialization is unknown, contact the next technical level of
support.

RTA DCF The RTA DCF error message gives information about a defensive
check failure or assert that occurred in the routing and terminal
allocation software. All RTA DCF errors should be investigated to
find the reason for failure so the appropriate corrective action
can be taken. If the reason cannot be found, contact the next
technical level of support.

DATA COLLECTION AND ANALYSIS 235-600-510
November 2000

Page 11-2 Issue 5.00

Software Analysis Guide

CONTENTS PAGE

12. OSDS MONITOR . 12-1

12.1 OSDS BACKGROUND INFORMATION 12.1-1
12.1.1 OSDS Description 12.1-1
12.1.2 Processes 12.1-1

12.1.2.1 System Processes 12.1-1
12.1.2.2 Terminal Processes 12.1-1

12.1.3 Resources 12.1-1
12.1.3.1 OSDS Resources 12.1-1
12.1.3.2 Process Control Block 12.1-2
12.1.3.3 Process Control Block Link Area 12.1-2
12.1.3.4 Process Message Data Block 12.1-2
12.1.3.5 Stack Control Block 12.1-2
12.1.3.6 Message Control Block 12.1-3
12.1.3.7 Timer Control Block 12.1-3

12.1.4 Segment Breaks 12.1-3
12.1.5 Processing Levels 12.1-3
12.1.6 OSDS Messages 12.1-4
12.1.7 Feature Execution (FEX) 12.1-4

12.2 OSDS MONITOR OVERVIEW 12.2-1
12.2.1 OSDS Monitor Purpose 12.2-1
12.2.2 Functions 12.2-1
12.2.3 The OSDS Monitor Buffer 12.2-1

12.3 OSDS MONITOR INPUT MESSAGES 12.3-1

12.4 OSDS MONITOR INPUT FLAGS 12.4-1
12.4.1 Section Description 12.4-1
12.4.2 Starting and Stopping The Monitor 12.4-1
12.4.3 Messaging 12.4-1
12.4.4 Per-Event Data 12.4-2
12.4.5 OSDS Usage 12.4-3
12.4.6 Data Dumps 12.4-4
12.4.7 Client Data Dumps 12.4-4
12.4.8 What To Do Flags 12.4-5
12.4.9 What To Dump Flags (Per-Event Data) 12.4-27
12.4.10 Dumped Data Description 12.4-28

12.4.10.1 Introduction to Dump Description
Tables 12.4-28

12.4.10.2 SM and CMP Data Dump Description 12.4-29

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12-i

12.4.10.3 OKP Data Dump Description 12.4-29
12.4.10.4 SMKP Data Dump Description 12.4-30
12.4.10.5 MSKP Data Dump Description 12.4-31

12.5 INPUT COMMANDS TO CLEAR AND DUMP THE BUFFER 12.5-1
12.5.1 Section Description 12.5-1
12.5.2 Zero The Monitor Buffer 12.5-1
12.5.3 Output Data 12.5-1

12.5.3.1 Input Messages for Data Output 12.5-1
12.5.3.2 Output Messages 12.5-2

12.5.4 Kill A Monitor Job 12.5-2

12.6 USEFUL INPUT MESSAGE SEQUENCES 12.6-1
12.6.1 Section Description 12.6-1
12.6.2 Snap Per-Event Process and Messaging Data 12.6-1

12.6.2.1 Snap Messages, No Processes 12.6-1
12.6.2.2 Snap Messages and Processes 12.6-1
12.6.2.3 Snap Processes, No Messages 12.6-2
12.6.2.4 Snap Processes and Messages for a

Port 12.6-2
12.6.2.5 Snap Processes and Messages and/or

State Definition Language (SDL) Trace
Event Data for Four Ports 12.6-2

12.6.2.6 Snap Processes for a Specific Program
ID 12.6-3

12.6.2.7 Snap Processes at a Specific Priority 12.6-3
12.6.3 Snap Foreground And Messaging Data 12.6-4

12.6.3.1 Snap Foreground Work, All Messages . . . 12.6-4
12.6.3.2 Snap Specific Foreground Entries, No

Messages 12.6-4
12.6.4 Snap Interject and Messaging Data 12.6-4

12.6.4.1 Snap Interject Work, All Messages 12.6-4
12.6.4.2 Snap Interject Work, No Messages 12.6-5

12.6.5 Enable or Disable Monitor on Match or Mismatch . . . 12.6-5
12.6.5.1 Use Input Control Flags 12.6-5
12.6.5.2 Enable Monitor on Data Match 12.6-5
12.6.5.3 Disable Monitor On Data Mismatch 12.6-5
12.6.5.4 Disable Monitor on PCBLA Match 12.6-6

12.6.6 SDL Trace 12.6-6
12.6.6.1 SDL Trace for a Given SM 12.6-6
12.6.6.2 SDL Trace for a Given Port 12.6-7
12.6.6.3 SDL Trace for an Assert 12.6-7
12.6.6.4 SDL Trace for an SM Overload 12.6-8

12.7 OSDS MONITOR BUFFER LAYOUTS 12.7-1
12.7.1 Section Description 12.7-1

OSDS MONITOR 235-600-510
November 2000

Page 12-ii Issue 5.00

12.7.2 Buffer Layout for The AM 12.7-1
12.7.3 AM Buffer Word Content 12.7-2
12.7.4 Buffer Layout for The SM 12.7-9
12.7.5 SM Buffer Word Content 12.7-9
12.7.6 Buffer Layout for The CMP 12.7-13
12.7.7 CMP Buffer Word Content 12.7-14

12.8 SNAPPED DATA DUMP LAYOUTS 12.8-1
12.8.1 Section Description 12.8-1
12.8.2 DAD Data Dump Layout 12.8-1
12.8.3 DAP Data Dump Layout 12.8-2
12.8.4 F00 Data Dump Layout 12.8-3
12.8.5 F01 Data Dump Layout 12.8-5
12.8.6 F18 Data Dump Layout 12.8-6
12.8.7 F22 Data Dump Layout 12.8-7
12.8.8 F23, F25, F27, F29, F31 Data Dump Layout 12.8-7
12.8.9 HUF, HIJ, HPD, HPY, HMX, HSX, HSP Data Dump

Layout . 12.8-8
12.8.10 SEG Data Dump Layout 12.8-12

LIST OF FIGURES

Figure 12.7-1 — OSDS Monitor AM Buffer Layout 12.7-2

Figure 12.7-2 — OSDS Monitor SM Buffer Layout 12.7-9

Figure 12.7-3 — OSDS Monitor CMP Buffer Layout 12.7-14

LIST OF TABLES

Table 12.3-1 — OSDS Monitor Input Messages 12.3-1

Table 12.4-1 — Start and Stop Control Flags 12.4-1

Table 12.4-2 — Messaging Control Flags 12.4-2

Table 12.4-3 — Data Control Flags for Per-Event Data Dumps 12.4-3

Table 12.4-4 — Event Control Flags for Per-Event Data Dumps 12.4-3

Table 12.4-5 — OSDS Usage Control Flags 12.4-4

Table 12.4-6 — Data Dump Control Flags 12.4-4

Table 12.4-7 — Client Data Dump Control Flags 12.4-5

Table 12.4-8 — SM and CMP Data Dump Descriptions 12.4-29

Table 12.4-9 — OKP Data Dump Descriptions 12.4-30

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12-iii

Table 12.4-10 — SMKP Data Dump Descriptions 12.4-31

Table 12.4-11 — MSKP Data Dump Descriptions 12.4-32

Table 12.5-1 — OSDS Monitor Output Messages 12.5-2

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure 12.7-3

Table 12.7-2 — OSDS Monitor SM Buffer Word Structure 12.7-10

Table 12.7-3 — OSDS Monitor CMP Buffer Word Structure 12.7-15

Table 12.8-1 — SM/CMP OSDS Usage Data Layout 12.8-9

Table 12.8-2 — AM OSDS Usage Data Layout 12.8-10

OSDS MONITOR 235-600-510
November 2000

Page 12-iv Issue 5.00

12. OSDS MONITOR

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12-1

12.1 OSDS BACKGROUND INFORMATION

12.1.1 OSDS Description

The operating system for distributed switching (OSDS) is a real-time operating system
designed to efficiently process call originations and terminations. OSDS runs in each
switching module (SM), the communication module processor (CMP), and in two
kernel processes in the administrative module (AM) the operational kernel process
(OKP) and the switch maintenance kernel process (SMKP). The primary function of
the operating system is coordinating the many processes necessary to support
concurrent calling.

OSDS manages processes by:

• Identifying each process with a process control block (PCB). This block contains
information about the status of a process.

• Using a stack to store local variables and return points for function calls.

• Using a program counter to track the location of a process in the program being
executed.

A process is an instance of program execution plus the data necessary for the
execution. There are two kinds of processes system and terminal.

12.1.2 Processes

12.1.2.1 System Processes

System processes are started at system initialization time, and are not created or
terminated dynamically. If a system process is purged, OSDS recreates it. System
processes have predefined process IDs. Other processes simply assume that system
processes exist when attempting to communicate with them.

System processes typically manage multiple terminal processes. Examples of system
processes are scanning and routing.

12.1.2.2 Terminal Processes

Terminal processes typically provide customer services (calls) and terminal
maintenance. These types of processes are created and terminated on demand. For
example, a terminal process is created when a customer initiates a telephone call and
is terminated when the customer hangs up. Terminal processes exist for a finite period
of time (unlike system processes).

12.1.3 Resources

12.1.3.1 OSDS Resources

OSDS manages the following resources:

• Process control block (PCB)

• Process control block link area (PCBLA)

• Process message data block (PMDB)

• Stack control block (SCB)

• Message control block (MCB)

• Timer control block (TCB).

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.1-1

12.1.3.2 Process Control Block

The process control block (PCB) contains the relevant information about a process’s
environment. It is the internal representation of an OSDS process. The PCB stores all
of the data that is required to represent and administer the process, including:

• Process ID

• Process state (ready, running, waiting, etc.)

• Process priority

• Associated program name

• Processor registers (including the program counter)

• Stack index

• Process linkage (for linking PCBs into lists)

• Message linkage (for linking MCBs to processes)

• Timer linkage (for linking TCBs to processes).

PCBs are stored in a linear array. The process number is the index into the PCB array
(PCBI).

Application programs identify a process by the process ID (OSPID). An OSPID is a
unique structure assigned to each process, it contains:

• Processor ID (PCRID)

The processor in which the process exists.

• Uniqueness

This field is used to distinguish between new and old (dead) processes that
happen to have the same PCBI.

• Process number

The PCBI of the process.

12.1.3.3 Process Control Block Link Area

Each terminal process in an SM is assigned a data structure called a process control
block link area (PCBLA) that links other data blocks to the process. Pertinent data
about a call is saved in the PCBLA.

12.1.3.4 Process Message Data Block

Each terminal process in an SM is also assigned a data structure called a process
message data block (PMDB). The PMDB is used to send and receive messages. Each
PMDB contains two sections one for receiving messages and one for constructing
messages. Each section is large enough to store any OSDS message.

12.1.3.5 Stack Control Block

Every running process must have a stack. Each stack is associated with a stack
control block (SCB). Each SCB contains, among other things, the stack location and the
process that owns the stack. OSDS provides primitives for a process to release its
stack while waiting for an event. When the event occurs, a new stack is allocated to
the process.

OSDS MONITOR 235-600-510
November 2000

Page 12.1-2 Issue 5.00

12.1.3.6 Message Control Block

One method that processes use to communicate with each other is sending messages.
OSDS stores messages internally using message control blocks (MCBs). Messages
destined for a process, but not yet read by that process, are linked to the process’s PCB
using MCBs. (See "OSDS Messages," Section 12.1.6 for more information.)

12.1.3.7 Timer Control Block

OSDS represents timers using timer control blocks (TCBs). When a process requests a
timer, a TCB is linked to the process’s PCB. OSDS provides several types of timers
including interval timers, cyclic timers, time of day timers, and cyclic time of day
timers. OSDS determines which timer should expire next by maintaining a heap data
structure containing all of the active timers in the system.

12.1.4 Segment Breaks

Each process, during its execution, has exclusive control of the virtual machine
environment in which it resides. OSDS requires that each process manages its own
real time breaks. That is, each process must periodically return control to OSDS.

OSDS provides two methods for a process to return control suspending and waiting.
To better understand the difference between these two operations, a brief description
of how OSDS schedules processes follows.

OSDS maintains eight process ready queues, one for each priority level. To determine
the next process to run, OSDS looks down the ready queues in priority order (that is,
7 through 0). The first process that it finds is run next.

When a process suspends itself, it is placed at the end of its priority’s ready queue. As
a result, it blocks all lower priority processes from running.

When a process waits, it specifies an event or time period to wait for. When the event
occurs or the specified time expires, the process is placed in the appropriate ready
queue. While the process is waiting, it is not in a ready queue; therefore, it is not
blocking lower priority processes from running.

12.1.5 Processing Levels

OSDS maintains three levels of processing background, interject, and foreground.

• Background

Process execution (that is, all system and terminal processes) is considered
background processing. This is the OSDS environment used most often by
applications.

• Interject

The interject environment is the portion of time between the time that one
process returns control to OSDS and the time that OSDS dispatches the next
process to run. During this time period, the operating system has control.

The essential task during interject is to find the next process that should be
allowed to run and to give control to that process. In addition, OSDS uses
interject to perform message delivery, timer management, signal processing, and
OSDS monitor work.

• Foreground

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.1-3

The foreground environment is entered every 10 ms based on a hardware
interrupt. The primary function of the foreground environment is to scan for all
call originations and terminations, plus perform some process integrity checks.

12.1.6 OSDS Messages

OSDS messages are sent between processes. Each message contains a message header
and the message contents. The header contains information about the sending process,
the message type, whether the message receiver should handle this message at a
higher than normal priority, and the message length.

To receive a message, a process calls an OSDS receive message primitive and provides
OSDS with a buffer to copy a message into. Typically, the receiving process waits for
some period of time for a message to arrive. Ideally, when a process sends a message
to another process, the receiving process has already called an OSDS receive message
primitive and is waiting for a message to arrive. In this case, OSDS copies the
message from the sending process to the buffer provided by the receiving process when
the OSDS receive message primitive was called.

If the receiving process was not waiting for a message (that is, it did not call an OSDS
receive message primitive) or more than one message was sent to the receiving process
before the process had a chance to run, then OSDS queues the message in an MCB and
links the MCB to the receiving process’s PCB. The receiving process can later dequeue
the messages stored in MCBs by calling an OSDS receive message primitive.

12.1.7 Feature Execution (FEX)

In the feature execution (FEX) environment, features are defined in terms of a
hierarchy of finite state models. The FEX environment provides external message
receiving and distribution services, subprocess scheduling, inter-subprocess
communication, and timer services.

FEX uses OSDS messages for communication with external OSDS processes. However,
FEX also has internal messages that are unknown to OSDS. FEX messages are sent
between FEX subprocesses for different model_ids or FEX subprograms. For example,
the subprocess controlling a feature communicates with the subprocess controlling a
port using a FEX internal message.

OSDS MONITOR 235-600-510
November 2000

Page 12.1-4 Issue 5.00

12.2 OSDS MONITOR OVERVIEW

12.2.1 OSDS Monitor Purpose

The OSDS monitor was developed to collect data about the OSDS operating system in
the AM, the CMP, and the SMs of the 5ESS® switch. It allows users to gather
performance data and investigate performance problems without the need for
specialized tools such as logic analyzers.

12.2.2 Functions

The services provided by the OSDS monitor are loosely divided into six areas:

• Start and stop the monitor based on user requests and system conditions

• Gather data concerning messaging

• Gather per-event data

• Gather data concerning OSDS usage

• Perform general data dumps

• Perform specialized client data dumps.

Each area is discussed in the "OSDS Monitor Input Flags," Section 12.4.

12.2.3 The OSDS Monitor Buffer

The monitor is allocated a buffer of approximately 60 Kbytes. It uses the sections of
the buffer for various reasons; however, two sections of the buffer are of main concern
the Control section and the Dispatch array.

• The Control section holds flags that are set to indicate the data that the user
wants the monitor to gather.

• The Dispatch array is the monitor’s general purpose data storage area. The type
of data stored in the dispatch array depends on the monitor functions that the
user selected. The dispatch array size is approximately 56 Kbytes.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.2-1

12.3 OSDS MONITOR INPUT MESSAGES

Table 12.3-1 describes the OSDS monitor input messages. For complete details, see the
235-600-700, Input Messages Manual.

Table 12.3-1 — OSDS Monitor Input Messages

Message Description
ALW:MON Allow the monitor.
CLR:MON Clear the monitor buffer memory.
INH:MON Inhibit the monitor.
SET:MON,WTD Set the monitor control flags, what to do flags, and what to

dump flags.
SET:MON,DATA Initialize the monitor control data.
SET:MON,FCN Set special function execution flags.
SET:MON,SPEC Initialize monitor data for timed data dump or special function

use.
OP:MON,CTL Dump the monitor control data.
OP:MON,DSP Dump selected areas of the monitor buffer or the entire buffer.
OP:MON,PID Dump the program ID data or operating system data.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.3-1

12.4 OSDS MONITOR INPUT FLAGS

12.4.1 Section Description

First, this section describes the monitor’s six functional areas (as listed in the "OSDS
Monitor Overview," Section 12.2) and indicates the specific monitor input message
control flags that relate to each function.

Then, a description of the control flags with examples is provided in "What to Do
Flags," Section 12.4.8 and "What to Dump Flags," Section 12.4.9.

For complete details on the OSDS monitor input messages and flags, see the
235-600-700, Input Messages Manual.

12.4.2 Starting and Stopping The Monitor

The monitor can be started and stopped manually by using input messages, or
automatically based on system conditions.

The control flags in Table 12.4-1 relate to starting and stopping the monitor. For a
more detailed description of each flag, see "What to Do Flags," Section 12.4.8.

Table 12.4-1 — Start and Stop Control Flags

Flag Function
BEG Start writing data at the beginning of the dispatch array (again).
DAT Check the contents of an address for a match or mismatch condition.

Used in conjunction with the SP4 and SP5 flags.
DMH Check the port in the current process’s PCBLA for a match against given

port names. Used in conjunction with the SP5 flag.
DOX Inhibit the monitor or inhibit certain data dumps when the dispatch

array becomes full (otherwise, data wraps to the beginning of the
dispatch array).

F16 Inhibit the monitor if a real time overload occurs.
F17 Inhibit the monitor if a resource overload occurs.
SP3 Start and stop the monitor automatically.
SP4 Inhibit the monitor on a match or mismatch condition.
SP5 Perform a BEG on a match or mismatch condition.
SP6 Check the current process’s PCBLA for a match or mismatch condition.

Used in conjunction with the SP4 and SP5 flags.

12.4.3 Messaging

The monitor can dump data related to OSDS messaging and FEX messaging.

The control flags in Table 12.4-2 are related to messaging data. For a more detailed
description of each flag, see "What to Do Flags," Section 12.4.8.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-1

Table 12.4-2 — Messaging Control Flags

Flag Function
F01 Record data concerning the history of MCB usage (that is, MCB

allocations and deallocations).
F20 Include message contents in message snaps.
F21 Filter message data to or from a specific processor.
F22 Record SDL trace event data.
F23 Include a timestamp in message data.
F24 Collect counts by message type for OKP messages sent to UNIXa RTR

processes.
F25 Record the sender’s program ID, the destination process ID, and the

message header for OKP messages sent to UNIX RTR processes.
F26 Collect counts by message type for messages from UNIX RTR processes

to the OKP, CMP, or SMs.
F27 Record the destination process’s program ID (if OKP is the receiving

process), the destination process ID, and the message header for
messages from UNIX RTR processes to the OKP, CMP, or SMs.

F28 Collect counts of inter-processor messages received by message type and
the sender’s processor ID.

F29 Record message data for inter-processor messages received including the
destination process’s program ID, process number, state and
uniqueness, and the message header.

F30 Collect counts of inter-processor or intra-processor messages sent by
message type and the destination processor ID.

F31 Record message data for inter-processor or intra-processor messages
sent including the sending process’s program ID, the destination process
ID, and the message header.

a. Registered trademark of The Open Group.

12.4.4 Per-Event Data

The monitor can dump data when certain events occur. The user can specify the data
to dump and the events to initiate the dump.

The control flags in Table 12.4-3 indicate the data to dump for a per-event data dump.
For a more detailed description of each flag, see "What to Dump Flags," Section 12.4.9.

OSDS MONITOR 235-600-510
November 2000

Page 12.4-2 Issue 5.00

Table 12.4-3 — Data Control Flags for Per-Event Data Dumps

Flag Function
AAA Combine the ACL, APP, AID, and ASA flags.
ACL Record the value of the clock.
ADM Record the values of up to six data addresses for the message switch

kernel process (MSKP).
ADO Record the values of up to six data addresses.
ADS Record the values of up to six data addresses for the SMKP.
AID Record process priority, program ID, and time spent in the real time

segment.
APC Record the values of up to three data indexes in the current PCBLA.
APP Record the program ID and PCB index.
ASA Record the starting address for the process’s segment, UNIX RTR event

flags, OSDS signals, or MSKP specific data.

The control flags in Table 12.4-4 filter the events for which data is dumped in a
per-event data dump. For a more detailed description of each flag, see "What to Do
Flags," Section 12.4.8.

Table 12.4-4 — Event Control Flags for Per-Event Data Dumps

Flag Function
DAT Filter DPD or DPY per-event data based on the value of a memory

location.
DIJ Record per-event data during interject.

DMH Filter DPD or DPY per-event data based on port names.
DMP Record per-event data for MSKP job types.
DMX Record per-event data for MSKP entry or exit.
DPD Record per-event data filtered on program IDs.
DPY Record per-event data filtered on process priority.
DSP Record SMKP per-event data filtered on program IDs.
DSX Record per-event data for SMKP entry or exit.
DUF Record per-event data for foreground (SM or CMP), or for OKP entry or

exit (AM).
SP6 Filter DPD or DPY per-event data based on values in the running

process’s PCBLA.

12.4.5 OSDS Usage

The monitor can record information concerning the use of OSDS. Most of this data is
related to how long different types of OSDS jobs execute.

The control flags in Table 12.4-5 are related to OSDS usage. For a more detailed
description of each flag, see "What to Do Flags," Section 12.4.8.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-3

Table 12.4-5 — OSDS Usage Control Flags

Flag Function
F18 Record a function back trace for every call to OSREPLACE() and

OSRESTART().
HHH Combine the HUF, HIJ, HPD, and HPY flags.
HIJ Count entries to and accumulated time in interject (AM, SM, CMP).
HMH Produce a histogram of segment lengths for various OSDS job types.
HMX Count entries to and accumulated time in MSKP.
HSP Count dispatches of and accumulated time in each program ID in

SMKP.
HPD Count dispatches of and accumulated time in each program ID (OKP,

SM, CMP).
HPY Count dispatches of and accumulated time in each OSDS priority level

(AM, SM, CMP).
HSX Count entries to and accumulated time in SMKP.
HUF Count entries to and accumulated time in OKP and UNIX RTR (AM), or

count entries to and accumulated time in foreground (SM).
SEG Record data concerning the number of consecutive segments a program

ID runs (OKP, SM, CMP).

12.4.6 Data Dumps

The monitor allows the user to dump raw memory values as well as pseudo raw
dumps of OSDS resources.

The control flags in Table 12.4-6 are related to data dumps. For a more detailed
description of each flag, see "What to Do Flags," Section 12.4.8.

Table 12.4-6 — Data Dump Control Flags

Flag Function
F00 Dump memory regions or data from OSDS resource control blocks (PCB,

SCB, TCB, or MCB).
SP7 Timed data dump.

12.4.7 Client Data Dumps

The monitor provides a mechanism for switch application code to dump extra
debugging information if certain OSDS monitor flags are turned on.

The application code must have hooks in it to dump the additional debugging data.
The OSDS monitor simply provides a general purpose mechanism for the application
code to use.

The control flags in Table 12.4-7 are related to client data dumps. For a more detailed
description of each flag, see "What to Do Flags," Section 12.4.8.

OSDS MONITOR 235-600-510
November 2000

Page 12.4-4 Issue 5.00

Table 12.4-7 — Client Data Dump Control Flags

Flag Function
DAD Stack dump flag.
DAP Data dump flag.

12.4.8 What To Do Flags

This section describes each of the OSDS monitor what to do flags for the AM, SM, and
CMP. The flags are listed alphabetically.

Note: Many of the input flags can be used to control data collection in the AM, CMP,
or SMs, for example:
SET:MON,{AM|SM|CMP},WTD,BEG;
If the command is for the SM, the SM must be specified as SM=x (where x is
the SM number). The CMP is specified as CMP=x-y (where x-y is 0–0 or 0–1).

BEG Environment: AM/SM/CMP

Start recording data at the beginning of the dispatch array (again).

Description:

This flag allows the user to move the monitor’s write pointer back to the
beginning of the dispatch array. This is useful for recording some data,
dumping it to the receive only printer (ROP) or a file, then continuing to
record data. If the BEG flag is used after the first set of data is dumped
and before the monitor is restarted, the monitor will write the second set
of data at the beginning of the dispatch array (overwriting the first set)
making it easier to dump the second set of data. Effectively, this flag
allows the user to restart the monitor without erasing other what to do
flags and/or data that were previously established.

Example:
SET:MON,{AM|SM|CMP},WTD,BEG;

DAD Environment: OKP/SM/CMP

Client stack dump flag.

Description:

This flag is similar to the DAP flag in that switch application code
contains hooks to indicate when data should be dumped (see the DAP
flag).

When the application hook calls the monitor, the DAD flag causes the
stack that the application code is currently executing on to be dumped.
See the "Snapped Data Dump Layouts," Section 12.8 for the general
layout of the data dumped by this flag.

Example:
CLR:MON,{AM|SM|CMP},ALL;
SET:MON,{AM|SM|CMP},DAD,WTD,CTL=ON[,DOX];
SET:MON,{AM|SM|CMP},DATA,AD1=aaaabbbb,AD2=ccccdddd,AD3=eeeeffff,

AD4=gggghhhh,AD5=iiiijjjj,AD6=kkkkllll;
ALW:MON,{AM|SM|CMP};

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-5

Where aaaa - llll are event or group codes to "turn on." If less than 12
codes are specified, 0000 must be used to indicate the end of the list of
codes.

DAP Environment: OKP/SM/CMP

Client data dump flag.

Description:

This flag (and the DAD flag) allows switch application code to dump
additional debugging data. The monitor provides a general purpose
mechanism for application code to dump extra data, but has no control
over what data the application code chooses to dump. The data is dumped
by hooks in the application code.

Each hook in the application code is identified by an event code and a
group code. Each hook has an independent event code; however, any
number of hooks may have the same group code. The user specifies which
hooks dump data by selecting up to 12 event or group codes. Definitions
of the event and group codes are found in the global header
hdr/os/OSclidump.h.

The DAP flag allows the application code to dump a block of memory into
the dispatch array. See the "Snapped Data Dump Layouts," Section 12.8
for the general layout of the data dumped by this flag.

Example:
CLR:MON,{AM|SM|CMP},ALL;
SET:MON,{AM|SM|CMP},DAP,WTD,CTL=ON[,DOX];
SET:MON,{AM|SM|CMP},DATA,AD1=aaaabbbb,AD2=ccccdddd,AD3=eeeeffff,

AD4=gggghhhh,AD5=iiiijjjj,AD6=kkkkllll;
ALW:MON,{AM|SM|CMP};

Where aaaa - llll are event or group codes to "turn on." If less than 12
codes are specified, 0000 must be used to indicate the end of the list of
codes.

DAT Environment: OKP/SM/CMP

Filter DPD or DPY flag per-event data based on a memory match or
mismatch condition.

Description:

This flag must be used in conjunction with the DPD or DPY flag. That is,
this flag is not checked unless either DPD or DPY is on. DAT allows the
user to filter per-event data dumps based on the contents of a memory
location. It also allows the user to start (actually, execute a BEG) or stop
the monitor based on the contents of a memory location when DAT is used
in conjunction with the SP4 or SP5 flags.

When DAT is used to filter per-event data snaps for the DPD or DPY flags,
the user specifies the address to be checked, a mask for the contents of
the address, the data to check against, and whether the monitor should
check for a match or a mismatch. If the specified condition does not exist,
then the DPD or DPY data dump is aborted.

Example:

OSDS MONITOR 235-600-510
November 2000

Page 12.4-6 Issue 5.00

SET:MON,{AM|SM|CMP},WTD,DAT;
SET:MON,{AM|SM|CMP},DATA,PDA=aaaaaaaa,PDM=bbbbbbbb,AD1=cccccccc;

Where:

aaaaaaaa - data value to match or mismatch
bbbbbbbb - mask for the data (used as an AND mask)
cccccccc - address to match or mismatch on

0x00000000 + address for a match
0x80000000 + address for a mismatch

Note: The address must be word aligned (that is, end in 0x0, 0x4, 0x8,
or 0xc).

Either the DPD or DPY flag must also be set for this example to work (see
the DPD or DPY flags).

See the SP4 and SP5 flags for information about how they are used.

DIJ Environment: AM/SM/CMP

Snap per-event data during interject.

Description:

This flag allows the user to snap per-event data when interject begins.
The snaps may be filtered based on the segment length that interject ran.
See the "Dumped Data Description," Section 12.4.10 for an explanation of
various data that may be dumped.

Example:
SET:MON,{AM|SM|CMP},WTD,DIJ,[AAA,ACL,APP,AID,ASA,ADO,APC];
SET:MON,{AM|SM|CMP},DATA,PTM=aaaa;

Where aaaa is the segment length filter in 125 µsec units. Data will only
be recorded if the actual segment time is greater than or equal to the
specified value.

DMH Environment: SM

Filter DPD or DPY flag per-event data using port names.

Description:

This flag must be used in conjunction with either the DPD or DPY flag.
DMH allows the user to filter the DPD or DPY per-event data dumps based
on the port name stored in the PCBLA for the running process. This flag
may be used in conjunction with SP5 to "turn on" the monitor when a
port match occurs (see the SP5 flag). The user can filter the data based
on up to four port names. If the port name in the running process’s
PCBLA does not match one of the given port names, then the data dump
will be aborted.

Example:
SET:MON,SM=SM_number,WTD,DMH,{DPD|DPY};
SET:MON,SM=SM_number,DATA,PRT=aaaaaaaa;

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-7

Where aaaaaaaa is a specific port member number or 0xffff to indicate
that up to four port numbers will be specified by the following command:
SET:MON,SM=SM_number,SPEC,S00=p1p1,S01=p2p2,S02=p3p3,S03=p4p4;

Where p1p1 - p4p4 are the specific port member numbers to trap on. All
four port member numbers must be specified; however, if less than four
port member numbers are desired, one of the port member numbers may
be entered multiple times.

Note: The DPD or DPY flag must be specified in conjunction with this
flag; see the DPD or DPY flags for examples of their use.

Warning: The monitor cannot trap data based on four specific
port member numbers and four specific program IDs (DPD flag)
simultaneously. The monitor can only trap data based on one port
member number and four program IDs, or four port member
numbers and one program ID.

DMP Environment: MSKP

Snap per-event data for MSKP job types.

Description:

This flag allows the user to snap per-event data for MSKP job types. See
the "Dumped Data Description," Section 12.4.10 for an explanation of
various data that may be dumped.

Example:
SET:MON,AM,WTD,DMP,[AAA,ACL,APP,AID,ASA,ADO];

DMX Environment: MSKP

Snap per-event data for MSKP entry or exit.

Description:

This flag allows the user to snap per-event data upon entry or exit from
MSKP. See the "Dumped Data Description," Section 12.4.10 for an
explanation of the various data that may be dumped.

Example:
SET:MON,AM,WTD,DMX,[AAA,ACL,APP,AID,ASA,ADO];

DOX Environment: AM/SM/CMP

Prevent wrap around of the dispatch array for various flags.

Description:

The DOX flag causes certain data dumps or the monitor itself to be
inhibited if the dispatch array becomes full. This list indicates which
flags DOX can be used with and the action that will be taken when a full
condition occurs.

OSDS MONITOR 235-600-510
November 2000

Page 12.4-8 Issue 5.00

Flag Action on Full Condition
DAD Inhibit the monitor
DAP Inhibit the monitor
DIJ Inhibit dumping to the dispatch array
DMP Inhibit dumping to the dispatch array
DMX Inhibit dumping to the dispatch array
DPD Inhibit dumping to the dispatch array
DPY Inhibit dumping to the dispatch array
DSP Inhibit dumping to the dispatch array
DSX Inhibit dumping to the dispatch array
DUF Inhibit dumping to the dispatch array
F00 Inhibit the monitor
F01 Inhibit the monitor
F18 Inhibit the monitor
F22 Inhibit dumping to the dispatch array
F25 Inhibit dumping to the dispatch array
F27 Inhibit dumping to the dispatch array
F29 Inhibit dumping to the dispatch array
SEG Inhibit dumping to the dispatch array
SP7 Inhibit dumping to the dispatch array

If the SP5 flag is used with the DAT, SP6, or DMH flags, the DOX flag will
be turned on when the DAT, SP6, or DMH condition becomes true (see the
DAT, SP6, and DMH flags for more details).

DPD Environment: OKP/SM/CMP

Snap per-event data on process dispatches filtered on program IDs.

Description:

This flag allows the user to snap per-event data when processes are
dispatched and filter the data dumps based on a program ID. The user
can specify a variety of filters:

• All program IDs

• All program IDs except those running at OSDS priority 0

• A specific program ID

• Up to four specific program IDs.

The user can also filter the data dump based on the segment length that
the process runs. See the "Dumped Data Description," Section 12.4.10 for
an explanation of the various data that may be dumped.

Example:
SET:MON,{AM|SM|CMP},WTD,DPD,[AAA,ACL,APP,AID,ASA,ADO];
SET:MON,{AM|SM|CMP},DATA,PRG=aaaa[,PTM=bbbb];

Where:

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-9

aaaa is a specific program ID or one of the following values:

h’ff00 - All program IDs
h’f000 - All program IDs except those running at OSDS

priority 0
h’fff0 - Up to four specific program IDs specified by the

SET:MON,SPEC command

bbbb is a segment length filter in 125 µsec units. Data will only be
recorded if the actual segment time is greater than or equal to the
specified value.

If aaaa is h’fff0, the four program IDs are specified as follows:
SET:MON,{AM|SM|CMP},SPEC,S00=p1p1,S01=p2p2,S02=p3p3,S03=p4p4;

Where p1p1 - p4p4 are the specific program IDs to filter on. All four
program IDs must be specified; however, if less than four program IDs
are desired, one of the program IDs may be entered multiple times.

Warning: The monitor cannot trap data based on four specific
program IDs and four port member numbers (DMH flag)
simultaneously. The monitor can only trap data based on one port
member number and four program IDs, or four port member
numbers and one program ID.

DPY Environment: OKP/SM/CMP

Snap per-event data on process dispatches filtered on priority level.

Description:

This flag allows the user to snap per-event data when processes are
dispatched and filter the data dumps based on the process’s priority. If
the process’s priority level does not match the specified priority level,
then the data dump will be aborted. The user can also filter the data
dump based on the segment length that the process runs. See the
"Dumped Data Description," Section 12.4.10 for an explanation of the
various data that may be dumped.

Example:
SET:MON,{AM|SM|CMP},WTD,DPY,[AAA,ACL,APP,AID,ASA,ADO];
SET:MON,{AM|SM|CMP},DATA,PRI=aaaa[,PTM=bbbb];

Where:

aaaa is the priority level to filter on (0-7).

bbbb is the segment length filter in 125 µsec units. Data will only be
recorded if the actual segment time is greater than or equal to the
specified value.

DSP Environment: SMKP

Snap per-event data for SMKP process dispatches filtered on program IDs.

Description:

OSDS MONITOR 235-600-510
November 2000

Page 12.4-10 Issue 5.00

This flag allows the user to snap per-event data when SMKP processes
are dispatched and filter the data dumps based on program ID. The user
can specify a variety of filters:

• All program IDs

• All program IDs except those running at OSDS priority 0

• A specific program ID

The user can also filter the data dump based on the segment length that
the process runs. See the "Dumped Data Description," Section 12.4.10 for
an explanation of the various data that may be dumped.

Example:
SET:MON,AM,WTD,DSP,[AAA,ACL,APP,AID,ASA,ADO];
SET:MON,AM,DATA,PSG=aaaa[,PST=bbbb];

Where:

aaaa is a specific program ID or one of the following values:

h’ff00 - All program IDs
h’f000 - All program IDs except those running at

OSDS priority 0

bbbb is the segment length filter in 125 µsec units. Data will only be
recorded if the actual segment time is greater than or equal to the
specified value.

DSX Environment: SMKP

Snap per-event data on SMKP entry or exit.

Description:

This flag allows the user to snap per-event data when the SMKP is
entered or exited. See the "Dumped Data Description," Section 12.4.10 for
an explanation of the various data that may be dumped.

Example:
SET:MON,AM,WTD,DSX,[AAA,ACL,APP,AID,ASA,ADO,APC];

DUF Environment: OKP/SM/CMP

Snap per-event data for foreground (SM or CMP), or for OKP entry or exit
(AM).

Description:

This flag allows the user to snap per-event data when an SM or CMP
exits foreground or when OKP is entered or exited from UNIX RTR. The
SM and CMP snaps may be filtered based on the segment length that
foreground ran. See the "Dumped Data Description," Section 12.4.10 for
an explanation of the various data that may be dumped.

Example:
SET:MON,{AM|CMP|SM},WTD,DUF,[AAA,ACL,APP,AID,ASA,ADO,APC];
SET:MON,{SM|CMP},DATA,PTM=aaaa;

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-11

Where aaaa is the segment length filter in 125 µsec units. Data will only
be recorded if the actual segment time is greater than or equal to the
specified value. This parameter only applies to the SM and CMP.

F00 Environment: OKP/SM/CMP

Dump memory or OSDS resource control blocks.

Description:

This flag allows the user to dump various data into the dispatch array:

• Raw memory (option 1)

• PCB data (option 2)

• SCB data (option 3)

• MCB data (option 4)

• TCB data (option 5)

The user may specify up to 15 dump sets. The monitor will process the
sets in order until all sets have been exhausted or until the dispatch
array is full. The monitor will be inhibited after the data dumps are
complete. All of the dumps are performed in one real-time segment. Each
dump set is defined by a three-word entry in the following format:

• Raw memory dump

word 0 - 1 to indicate a raw memory dump
word 1 - starting address of the memory to dump
word 2 - number of bytes to dump

• PCB, SCB, MCB, or TCB dumps

word 0 - 2, 3, 4 or 5 to indicate a PCB, SCB, MCB, or
TCB dump

word 1 - 0
word 2 - 0

See the "Snapped Data Dump Layouts," Section 12.8 for the layout of the
dumped data.

Example:
ALW:MON,{AM|SM|CMP};
SET:MON,{AM|SM|CMP},SPEC,S00=do1,S01=dw1a,S02=dw1b[,S03=do2

,S04=dw2a,S05=dw2b],...[,S42=do15,S43=dw15a,S44=dw15b];
SET:MON,{AM|SM|CMP},FCN,F00;
SET:MON,{AM|SM|CMP},WTD,CTL=ON;

Where:

OSDS MONITOR 235-600-510
November 2000

Page 12.4-12 Issue 5.00

do1-do15 - Dump option (1 - 5)
(word 0 in the three-word entry format)

dw1a-dw15a - First data word for the dump
(word 1 in the three-word entry format)

dw1b-dw15b - Second data word for the dump (word 2 in
the three-word entry format)

Note: If all 15 dump options are not used, the last dump option should
be 0 (zero).

The ALW:MON command must be given before the SET:MON,SPEC
command for this flag to work.

F01 Environment: OKP/SM/CMP

Record MCB usage history data.

Description:

This flag allows the user to record a history of MCB usage. The monitor
records the number of MCBs used by each process (in an array) and also
saves the maximum number of MCBs ever in use. In addition, a dump is
made each time one of the following events occurs:

• An MCB is acquired by a process

• A process is dispatched while at least one MCB is in use

• An MCB is released by a process

The monitor may be automatically inhibited when a user-specified MCB
usage threshold is surpassed. This flag is useful for trying to determine
the events that led to an MCB overload condition.

See the "Snapped Data Dump Layouts," Section 12.8 for the layout of the
data recorded by this flag.

Example:
SET:MON,{AM|SM|CMP},FCN,F01;
SET:MON,{AM|SM|CMP},SPEC,S00=aa;
SET:MON,{AM|SM|CMP},WTD,CTL=ON;
ALW:MON,{AM|SM|CMP};

Where aa is the MCB usage threshold. If more than aa MCBs are used, the
monitor will be inhibited.

F02 - F15 Environment: None.

Spare control flags.

F16 Environment: AM/SM/CMP

Inhibit the monitor on real-time overload.

Description:

If overload control detects a real-time overload and the F16 flag is set,
the monitor is automatically inhibited.

F17 Environment: AM/SM/CMP

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-13

Inhibit the monitor on resource overload.

Description:

If overload control detects a resource overload and the F17 flag is set, the
monitor is automatically inhibited.

F18 Environment: SM

Record a function back trace for every call to OSREPLACE() and
OSRESTART().

Description:

The F18 flag allows the user to obtain a function back trace for every call
to OSREPLACE() and OSRESTART(). This option is used to track a
process’s transitions between program IDs.

For each call to OSREPLACE() or OSRESTART(), a dump is made to the
dispatch array containing the calling process’s ID, a timestamp, the new
and old program IDs, the number of addresses in the function back trace,
and the function back trace. See the "Snapped Data Dump Layouts,"
Section 12.8 for the contents of the dump.

Example:
SET:MON,SM=SM_number,FCN,F18;
SET:MON,SM=SM_number,WTD,CTL=ON;
ALW:MON,SM=SM_number;

F19 Environment: SM

VFSM tracing.

Description:

Virtual finite state machine (VFSM) tracing in GLIB subsystem.

F20 Environment: AM/SM/CMP

Include message contents in message snap.

Description:

This flag causes the contents of the message to be collected with the other
message information. The default setting does not collect the message
contents.

Note: The F20 flag must be used in conjunction with the F25, F27, F29,
or F31 flag.

F21 Environment: OKP/SM/CMP

Filter message data generated by the F29 or F31 flags based on processor
number.

Description:

This flag filters message data for a specific processor. Either the F29 flag
must be set to filter data for messages received by the identified
processor, or the F31 flag must be set to filter data for messages sent by
this processor.

Example:

OSDS MONITOR 235-600-510
November 2000

Page 12.4-14 Issue 5.00

SET:MON,{AM|SM|CMP},FCN,F21;
SET:MON,{AM|SM|CMP},SPEC,S05=<processor#>;

F22 Environment: SM

Record SDL trace event data.

F23 Environment: AM/SM/CMP

Snap the clock for per-event message data (F25, F27, F29, and F31 flags).

Description:

This flag causes a timestamp to be added to the per-event message data
generated by the F25, F27, F29, and F31 flags.

The clock is a software clock that indicates the number of days since the
monitor was last allowed and the number of milliseconds since midnight
of the current day. The most significant four bits of the clock (which is 32
bits total) contain the number of days since the monitor was allowed. The
other 28 bits contain the number of milliseconds since midnight. The
clock is only accurate to 100 ms.

See the "Snapped Data Dump Layouts," Section 12.8 for the location of
this clock in the per message event data.

Example:
SET:MON,{AM|SM|CMP},FCN,F23;

Note: The F23 flag must be used in conjunction with the F25, F27, F29,
or F31 flag.

F24 Environment: OKP

Create a histogram of message types sent from the OKP to UNIX RTR
processes.

Description:

This flag allows the user to create a histogram showing the number of
messages of each message type that OKP sends to UNIX RTR processes.
This histogram is stored as an array of longs where each long represents
a message type. The index into the array is the message type. The array
begins at an offset of 0x800 from the start of the dispatch array. Unlike a
per processor messaging histogram (part of the F28 and F30 flags), each
long in a per message type histogram represents both the number of
messages sent and the number of messages received for a given message
type.

• The most significant short in the long (aaaa in 0xaaaabbbb)
represents the number of messages received for the given type.

• The least significant short in the long (bbbb in 0xaaaabbbb)
represents the number of messages sent for the given type.

The F24 flag only increments the "sent" short of the long.

Note: If the F24 flag is used in conjunction with the F26 flag, double
counting may occur because both flags use the same array.

F25 Environment: OKP

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-15

Snap per-event message data for OKP messages sent to UNIX RTR
processes.

Description:

This flag allows the user to snap per-event message data for messages
sent from the OKP to UNIX RTR processes. The user may filter the
snapped data based on the sending process’s program ID and the message
type. The sending process’s program ID, the destination process ID, and
the message header are written to the dispatch array. See the "Snapped
Data Dump Layouts," Section 12.8 for the layout of the dumped data.

Example:
SET:MON,AM,FCN,F25;
SET:MON,AM,DATA,PRG=aaaa,AD5=0,AD6=bbbb;

Where:

aaaa is a specific program ID or one of the following values:

h’ff00 - All program IDs
h’f000 - All program IDs except those executing at priority 0
h’fff0 - Up to four specific program IDs specified by the

SET:MON,SPEC command.

bbbb is a specific message type or h’f000 for all message types.

If aaaa is h’fff0, the four program IDs are specified as follows:
SET:MON,AM,SPEC,S00=p1p1,S01=p2p2,S02=p3p3,S03=p4p4;

where p1p1 - p4p4 are the specific program IDs. If less than four
program IDs are desired, set the respective inputs to a value greater than
512.

F26 Environment: AM

Create a histogram of message types sent from UNIX RTR processes to the
OKP, CMP, or SMs.

Description:

This flag allows the user to create a histogram showing the number of
messages of each message type that the OKP or the SMs or the CMP
received from UNIX RTR processes.

This histogram is stored as an array of longs where each long represents
a message type. The index into the array is the message type. The array
begins at an offset of 0x800 from the start of the dispatch array.

Unlike a per processor messaging histogram (part of the F28 and F30
flags), each long in a per message type histogram represents both the
number of messages sent and the number of messages received for a
given message type.

• The most significant short in the long (aaaa in 0xaaaabbbb)
represents the number of messages received for the given type.

OSDS MONITOR 235-600-510
November 2000

Page 12.4-16 Issue 5.00

• The least significant short in the long (bbbb in 0xaaaabbbb)
represents the number of messages sent for the given type.

The F26 flag only increments the "received" short of the long.

Note: If the F26 flag is used in conjunction with the F24 flag, double
counting may occur because both flags use the same array.

F27 Environment: AM

Snap per-event message data for messages sent from UNIX RTR to the
OKP, SMs, or CMP.

Description:

This flag allows the user to snap per-event message data for messages
sent from UNIX RTR processes to the OKP, the SMs, or the CMP. The
user may filter the snapped data based on the message type. If the
destination process is in the OKP, the snapped data may also be filtered
on the destination process’s program ID.

The destination process’s program ID (if the destination process is in
OKP), the destination process ID, and the message header are written to
the dispatch array. See the "Snapped Data Dump Layouts," Section 12.8
for the layout of the dumped data.

Example:

See the example for the F25 flag. The F27 flag is used on the
SET:MON,FCN line instead of F25.

F28 Environment: OKP/SM/CMP

Create a histogram of message types received by the processor, and a
histogram of processors that sent messages to the local processor.

Description:

Two histograms are created by this flag. The first is a histogram showing
the number of messages of each message type that the local processor
received from other processors (that is, interprocessor messages).

This histogram is stored as an array of longs where each long represents
a message type. The index into the array is the message type. The array
begins at an offset of 0x800 from the start of the dispatch array.

Each long in a per message type histogram represents both the number of
messages sent and the number received for a given message type.

• The most significant short in the long (aaaa in 0xaaaabbbb)
represents the number of messages received for the given type.

• The least significant short in the long (bbbb in 0xaaaabbbb)
represents the number of messages sent for the given type.

The F28 flag only increments the "received" short of the long.

The second histogram provides the number of messages that other
processors sent to this processor. This histogram is stored as an array of

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-17

longs where each long represents a processor. The index into the array is
the sending processor number. The array begins at the start of the
dispatch array.

Note: If the F28 flag is used in conjunction with the F30 flag, double
counting may occur because both flags use the same array.

F29 Environment: OKP/SM/CMP

Snap per-event message data for inter-processor messages received.

Description:

This flag allows the user to snap per message event data for
inter-processor messages received in the OKP, CMP, and the SMs.

The user may filter the snapped data based on the destination process’s
program ID and the message type. In the SM, the user may also filter on
the port associated with the destination process.

The destination process’s program ID, the destination process ID, and the
message header are written to the dispatch array. See the "Snapped Data
Dump Layouts," Section 12.8 for the layout of the dumped data.

See the F21 flag to filter on the processor number.

Example:
SET:MON,{AM|SM|CMP},FCN,F29;
SET:MON,{AM|SM|CMP},DATA,PRG=aaaa,PRT=bbbb,AD5=0,AD6=cccc;

Where:

aaaa is a specific program ID or one of the following values:

h’ff00 - All program IDs
h’f000 - All program IDs except those executing at priority 0
h’fff0 - Up to four specific program IDs specified by the

SET:MON,SPEC command

bbbb is a specific port member number or one of the following values:

h’0 - All port member numbers
h’ffff - Up to four specific port member numbers specified

via the SET:MON,SPEC command

cccc is a specific message type or h’f000 all message types.

If aaaa is h’fff0, the four program IDs are specified as follows:
SET:MON,{AM|SM|CMP},SPEC,S00=p1p1,S01=p2p2,S02=p3p3,S03=p4p4;

where p1p1 - p4p4 are the specific program IDs. If less than four
program IDs are desired, set the respective inputs to a value greater than
512.

If bbbb is h’ffff, the four port member numbers are specified as
follows:

OSDS MONITOR 235-600-510
November 2000

Page 12.4-18 Issue 5.00

SET:MON,SM,SPEC,S00=p1p1,S01=p2p2,S02=p3p3,S03=p4p4;

where p1p1 - p4p4 are the specific port member numbers. All four port
member numbers must be specified; however, if less than four port
member numbers are desired, one of the port member numbers may be
entered multiple times.

Note: The PRT - p4p4 parameter is only valid on the SM.

Warning: The monitor cannot filter data based on four specific
port member numbers and four specific program IDs
simultaneously. The monitor filters data based on one port member
number and four program IDs, or four port member numbers and
one program ID.

F30 Environment: AM/SM/CMP

Create a histogram of message types sent by the local processor, and a
histogram of processors that received messages from the local processor.

Description:

Two histograms are created by this flag. The first shows the number of
interprocessor and intraprocessor messages of each message type sent by
the local processor. This histogram is stored as an array of longs where
each long represents a message type. The index into the array is the
message type. The array begins at an offset of 0x800 from the start of
the dispatch array.

Each long in the per message type histogram represents both the number
of messages sent and the number received for a given message type.

• The most significant short in the long (aaaa in 0xaaaabbbb)
represents the number of messages received for the given type.

• The least significant short in the long (bbbb in 0xaaaabbbb)
represents the number of messages sent for the given type.

The F30 flag only increments the "sent" short of the long.

The second histogram provides the number of messages that other
processors received from this processor. This histogram is stored as an
array of longs where each long represents a processor. The index into the
array is the receiving processor number. The array begins at the start of
the dispatch array.

Note: If the F30 flag is used in conjunction with the F28 flag, double
counting may occur because both flags use the same array.

F31 Environment: OKP/SM/CMP

Snap per-event message data for intra- and inter-processor messages.

Description:

This flag allows the user to snap per-event message data for intra- and
inter-processor messages sent by the processor. The user may filter the
snapped data based on the sending process’s program ID and the message
type. In the SM, the data may also be filtered based on the port
associated with the sending process. The sending process’s program ID,

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-19

the destination process ID, and the message header are written to the
dispatch array. See the "Snapped Data Dump Layouts," Section 12.8 for
the layout of the dumped data.

Example:

See the example for the F29 flag. The F31 flag is used on the
SET:MON,FCN line instead of F29.

HAP Environment: AM/SM/CMP

Spare control flag.

HHH Environment: AM/SM/CMP

Combine the HUF, HIJ, HPD, and HPY flags.

See the HUF, HIJ, HPD, and HPY flags for details.

HIJ Environment: AM/SM/CMP

Count entries to and accumulated time in interject.

Description:

This flag allows the user to collect data on each entry to interject. For the
SM and CMP, the data consists of a count of the number of entries to
interject, the accumulated time spent in interject, and a count of the
number of entries to interject with no work (OSsignals = 0).

For the AM, the data consists of a count of the number of entries to CM
interject and the accumulated time in CM interject, and a count of the
number of entries to CNI interject with work to do and the accumulated
time in CNI interject. See the "Snapped Data Dump Layouts," Section
12.8 for the location of this data.

Example:
SET:MON,WTD,{AM|SM|CMP},HIJ;

HMH Environment: AM/SM/CMP

Create a histogram of segment lengths for various OSDS jobs.

Description:

This flag allows the user to construct histograms of segment lengths for
various OSDS "jobs" (processes, interject, foreground, SMKP, UNIX RTR,
for example). The histograms are constructed such that for a specific job
type, an array of longs is defined in which each long represents a length
of time.

The first long in the array represents segments of 0 time units, the
second long represents segments of 1 time unit, the third long represents
segments of 2 time units, and so forth. Each time the job runs, a long is
pegged indicating how long of a segment the job ran (if the segment
length is larger than the maximum length represented in the histogram,
the maximum segment length in the histogram is pegged). Over a period
of time a histogram is constructed showing how many segments of each
length the job ran.

OSDS MONITOR 235-600-510
November 2000

Page 12.4-20 Issue 5.00

In the SM and CMP, a unit of time is 125 µsec and histograms are made
of time spent in interject, foreground, and running processes. In addition,
the histogram of time spent in running processes may be filtered based
on program ID. This list indicates the histograms that are created for the
SM and CMP, the range of segment lengths that are recorded in the
histogram, and the index into the dispatch array at which the histogram
begins.

Histogram for Range in ms Start Index in Dispatch Array
Foreground 0 - 128 0

Interject 0 - 128 0x4000

Processes 0 - 128 0x8000

In the AM, a unit of time is one millisecond and histograms are made of
time spent in a wide variety of jobs. As in the SM and CMP, the
histogram of time spent running processes (OKP and SMKP) may be
filtered based on program ID. This list indicates the histograms that are
created for the AM, the range of segment lengths that are recorded in the
histogram, and the index into the dispatch array at which the histogram
begins.

Histogram for Range in ms Start Index in Dispatch Array
OKP 0 - 511 0

UNIX RTR 0 - 255 0x800

OKP processes 0 - 511 0xc00

OKP interject 0 - 127 0x1400

OKP CNI work 0 - 127 0x1600

SMKP 0 - 1023 0x1800

SMKP processes 0 - 1023 0x2800

MSKP event 0 - 255 0x3800

MSKP fault 0 - 255 0x3c00

MSKP interrupt 0 - 255 0x4000

Segment lengths for OKP jobs may contain time spent in UNIX RTR
priority levels 9 - 15 if these levels interrupt OKP.

Example:
SET:MON,{AM|SM|CMP},WTD,HMH;
SET:MON,{AM|CM|CMP},DATA[,PRG=aaaa][,PSG=bbbb];

Where:

aaaa (required for OKP, SM, and CMP histograms) is a specific program
ID or one of the following values:

h’ff00 - All program IDs
h’f000 - All program IDs except those running at

OSDS priority 0

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-21

bbbb (required for SMKP histograms) is a specific program ID or one of
the following values:

h’ff00 - All program IDs
h’f000 - All program IDs except those running at

OSDS priority 0

HMX Environment: MSKP

Count entries to and accumulated time in MSKP.

Description:

This flag allows the user to collect data on each exit from MSKP. The
data consists of a two word entry that contains a count of the number of
entries to MSKP and the accumulated time spent in MSKP. See the
"Snapped Data Dump Layouts," Section 12.8 for the location of this data.

Example:
SET:MON,WTD,AM,HMX;

HPD Environment: OKP/SM/CMP

Count dispatches of and accumulated time in each program ID.

Description:

This flag allows the user to collect data for each dispatched program ID.
The data consists of a two word entry that contains a count of the
number of times the program ID is dispatched and the accumulated time
spent in the program ID. The data is stored in an array indexed by the
program ID in the monitor buffer (independent of the dispatch array). See
the "Snapped Data Dump Layouts," Section 12.8 for the location of this
data.

Example:
SET:MON,WTD,{AM|SM|CMP},HPD;

HPY Environment: AM/SM/CMP

Count dispatches of and accumulated time in each OSDS priority level.

Description:

This flag allows the user to collect data for each OSDS priority level (0-7).
The data consists of a two word entry that contains a count of the
number of times a process of the given priority is dispatched and the
accumulated time spent in the process at the given priority. The data is
stored in an array indexed by the process priority in the monitor buffer
(independent of the dispatch array).

Example:
SET:MON,WTD,{AM|SM|CMP},HPY;

HSP Environment: SMKP

Count dispatches of and accumulated time in each program ID in SMKP.

Description:

OSDS MONITOR 235-600-510
November 2000

Page 12.4-22 Issue 5.00

This flag allows the user to collect data for each dispatched program ID
in SMKP. The data consists of a two word entry that contains a count of
the number of times the program ID is dispatched and the accumulated
time spent in the program ID. The data is stored in an array indexed by
the program ID in the monitor buffer (independent of the dispatch array).
See the "Snapped Data Dump Layouts," Section 12.8 for the location of
this data.

Example:
SET:MON,WTD,{AM|SM|CMP},HSP;

HSX Environment: AM

Count entries to and accumulated time in SMKP.

Description:

This flag allows the user to collect data on each exit from SMKP. The
data consists of a two word entry that contains a count of the number of
entries to SMKP and the accumulated time spent in SMKP.

See the "Snapped Data Dump Layouts," Section 12.8 for the location of
this data.

Example:
SET:MON,WTD,AM,HSX;

HUF Environment: OKP/SM/CMP

Count entries to and accumulated time in OKP and UNIX RTR (AM), or
count entries to and accumulated time in foreground (SM).

Description:

In the AM, this flag allows the user to collect data on each entry to OKP
and UNIX RTR. The data consists of:

• A count of the number of times OKP was entered (which is the same as
the number of times UNIX RTR was entered).

• A count of and accumulated time spent in OKP entries in which work
was performed (interject or process dispatch).

• A count of the number of entries to OKP that exceeded 100 ms.

• The accumulated time of OKP entries which exceeded 2 ms.

• A count of and accumulated time in UNIX RTR entries in which work
was performed (that is, segment length exceeded 1 ms).

• A count of the number of idle entries to UNIX RTR (that is, segment
length was less than 1 ms).

In the SM, this flag allows the user to collect data on each exit from
foreground. The data consists of a two word entry that contains a count of
the number of entries to foreground and the accumulated time spent in
foreground.

See the "Snapped Data Dump Layouts," Section 12.8 for the location of
this data.

Example:

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-23

SET:MON,WTD,{AM|SM|CMP},HUF;

SEG Environment: OKP/SM/CMP

Record data concerning the number of consecutive segments a program ID
runs.

Description:

This flag allows the user to collect data about the number of consecutive
real time segments that a specific program ID runs. Real time segments
are considered consecutive if the process suspends instead of waits
between the two segments. By suspending, the process blocks all lower
priority processes from running.

The user must specify a program ID and a threshold for the number of
real time segments. The program must run at least as many consecutive
segments as specified by the threshold before data will be recorded.

The recorded data contains a timestamp, the program ID, the number of
consecutive segments, the total time of the consecutive segments, and the
elapsed time between the start of the first segment and the end of the
last segment. See the "Snapped Data Dump Layouts," Section 12.8 for the
complete data layout.

Example:
SET:MON,{AM|SM|CMP},WTD,SEG;
SET:MON,{AM|SM|CMP},DATA,PRG=aaaa,PTM=bbbb;

Where:

aaaa - Program ID to check
bbbb - Minimum number of consecutive segments for which

data will be recorded

SP1 - SP2 Environment: None

Spare control flags.

SP3 Environment: AM/SM/CMP

Automatically start and stop the monitor.

Description:

This flag allows the user to automatically start and stop the monitor
based on the time of day. While the monitor is waiting for the start time
to arrive, it is actually on; therefore, the monitor is using system real
time while it is waiting for the start time to occur. Once the start time
arrives, the monitor internally changes its what to do flags to reflect the
operations requested by the user. The user must specify these operations
by using the SET:MON,WTD and SET:MON,DATA commands before the SP3
option is selected.

Example:

1. Specify the operations that the monitor should perform when
automatically started:
SET:MON,{AM|SM|CMP},WTD,...;

OSDS MONITOR 235-600-510
November 2000

Page 12.4-24 Issue 5.00

SET:MON,{AM|SM|CMP},DATA,...;

2. Specify when the monitor should automatically start and stop:
SET:MON,{AM|SM|CMP},DATA,PDA=h’aabbbbbb,PDM=h’ccdddddd;
SET:MON,{AM|SM|CMP},WTD,SP3;

Where:

aa - Start day in number of days past the current day
(current day = 0)

bbbbbb - Start time of day in number of seconds past
midnight on the start day

cc - Stop day in number of days past the current day
(current day = 0)

dddddd - Stop time of day in number of seconds past
midnight on the stop day

3. Allow the monitor to wait for the start time.
ALW:MON,{AM|SM|CMP};

Note: The parameter format in this example is in hex for clarity.

The SP3 flag may not be used in conjunction with the DAT or SP6 flags
because the flags share a common data area (each flag defines data using
the PDA and PDM parameters in the SET:MON,DATA command).

SP4 Environment: OKP/SM/CMP

Inhibit the monitor on a match or mismatch condition.

Description:

This flag can only be used in conjunction with the DAT or SP6 flags (see
the DAT or SP6 flag). If the condition specified by the DAT or SP6 flag
occurs and SP4 is set, the monitor will be turned off.

If both DAT and SP6 are used, the condition that occurs first will cause
the monitor to be inhibited.

This flag takes precedence over SP5.

Example:
SET:MON,WTD,SP4,{DAT|SP6};

SP5 Environment: OKP/SM/CMP

Restart the dispatch array index on a match or mismatch condition.

Description:

This flag can only be used in conjunction with the DAT, SP6, or DMH flags
(see the DAT, SP6, or DMH flags). If the condition specified by the DAT,
SP6, or DMH flag occurs and SP5 is set, the monitor’s write pointer into
the dispatch array is reset to the start of the array and the DOX flag is
turned on.

If a combination of DAT, SP6, and DMH is used, the condition that occurs
first will cause the write pointer to be reset; the SP5, SP6, DMH, and DAT
flags will be turned off.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-25

Example:
SET:MON,WTD,SP5,{DAT|SP6|DMH};

SP6 Environment: SM

Filter per-event data for PCBLA match or mismatch.

Description:

This flag is similar to the DAT flag. It can only be used in conjunction
with the DPD or DPY flags; that is, this flag is not checked unless either
DPD or DPY is on. SP6 allows the user to filter per-event data dumps
based on the contents of the running process’s PCBLA. It also allows the
user to start (actually, execute a BEG) or stop the monitor based on the
contents of the running process’s PCBLA when SP6 is used in conjunction
with the SP4 and SP5 flags.

When SP6 is used to filter per-event data snaps for the DPD or DPY flags,
the user specifies the offset from the start of the running process’s PCBLA
to be checked, a mask for the contents of the address, the data to check
against, and whether the monitor should check for a match or a
mismatch. If the specified condition does not exist, the DPD or DPY data
dump is aborted.

Example:
SET:MON,SM=SM_number,WTD,SP6;
SET:MON,SM=SM_number,DATA,PDA=aaaaaaaa,PDM=bbbbbbbb,LA1=cccccccc;

Where:

aaaaaaaa - Data value to match or mismatch
bbbbbbbb - Mask for the data (used as an AND mask)
cccccccc - PCBLA offset to match or mismatch on

0x00000000 + offset for a match
0x80000000 + offset for a mismatch

Note: The offset must be word aligned (that is, end in 0x0, 0x4, 0x8, or
0xc).

Either the DPD or DPY flag must also be set for this example to work (see
the DPD or DPY flags). See the SP4 and SP5 flags for information about
how they are used.

SP7 Environment: OKP/SM/CMP

Timed data dump.

Description:

This flag allows the user to snap up to 46 memory locations at periodic
intervals. The snaps are actually performed at the beginning of interject,
so the period between dumps will not be exact; instead, it will be at least
the specified period. The snap will occur at the first entry to interject
after the specified period has elapsed.

All of the data for this flag is stored in the dispatch array. The 46
addresses that the user wishes to snap are stored in the first 46 longs of

OSDS MONITOR 235-600-510
November 2000

Page 12.4-26 Issue 5.00

the dispatch array and the periodic dumps begin at the 48th long (an
offset of 0xc0 from the start of the dispatch array).

Example:
SET:MON,{AM|SM|CMP},WTD,SP7;
SET:MON,{AM|SM|CMP},DATA,PTM=aaaa;
SET:MON,{AM|SM|CMP},SPEC,S00=a00[,S01=a01],...[,S45=a45];

Where:

aaaa - Interval between snaps in milliseconds. It is
recommended that this value not be less than
500 ms

a00-a45 - The addresses to be snapped. If less than 46
address are specified, the last address must be 0

Note: The addresses must be on short word boundaries (that is, end in
0x0, 0x2, 0x4, 0x6, 0x8, 0xa, 0xc, or 0xe).

The data is snapped as longs (four bytes).

12.4.9 What To Dump Flags (Per-Event Data)

The following list provides a short description and example of each what to dump flag.
For more information about each flag, see Tables 12.4-8, 12.4-9, 12.4-10, and 12.4-11
in the "Dumped Data Description," Section 12.4.10 that follows.

AAA Description:

Combine the ACL, APP, AID, and ASA flags.

Example:
SET:MON,{AM|SM|CMP},WTD,AAA;

ACL Description:

Snap the clock.

Example:
SET:MON,{AM|SM|CMP},WTD,ACL;

AID Description:

Snap the process priority, program ID, and time in segment.

Example:
SET:MON,{AM|SM|CMP},WTD,AID;

ADM Environment: MSKP

Description:

Perform the same function as the ADO flag, except for the MSKP.

Note: Only one of the ADO, ADM, and ADS flags may be used at one time
in the AM.

ADO Environment: OKP/SM/CMP

Description:

Snap user specified memory addresses (up to six data addresses).

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-27

Example:
SET:MON,{AM|SM|CMP},WTD,ADO;
SET:MON,{AM|SM|CMP},DATA,AD1=addr1[,AD2=addr2]...[,AD6=addr6];

where addr1 - addr6 are the addresses to be snapped. An address must
be short word aligned (that is, end in 0x0, 0x2, 0x4, 0x6, 0x8, 0xa, 0xc,
or 0xe). A long will be dumped for each address. If all six addresses are
not specified, the last address must be 0.

Note: Only one of the ADO, ADM, and ADS flags may be used at one time
in the AM.

ADS Environment: SMKP

Description:

Perform the same function as the ADO flag, except for the SMKP.

Note: Only one of the ADO, ADM, and ADS flags may be used at one time
in the AM.

APC Environment: SM

Description:

Snap user specified PCBLA memory (up to three words from the PCBLA).

Example:
SET:MON,SM=SM_number,WTD,APC;
SET:MON,SM=SM_number,DATA,LA1=idx1[,LA2=idx2][,LA3=idx3];

where idx1 - idx3 are the indexes into the running process’s PCBLA to
be snapped. An index must be short word aligned (that is, end in 0x0,
0x2, 0x4, 0x6, 0x8, 0xa, 0xc, or 0xe). A long will be dumped for each
index. If all three indexes are not specified, the last index must be 0.

APP Description:

Snap the program ID and PCB index.

Example:
SET:MON,{AM|SM|CMP},WTD,APP;

ASA Description:

Snap the starting address for the process’s segment, UNIX RTR event
flags, OSDS signals, or MSKP specific data.

Example:
SET:MON,{AM|SM|CMP},WTD,ASA;

12.4.10 Dumped Data Description

12.4.10.1 Introduction to Dump Description Tables

Tables 12.4-8, 12.4-9, 12.4-10, and 12.4-11 in this section provide a description of the
data that is dumped by each what to dump flag for the various per-event data flags
(DIJ, DUF, DSX, DSP, DMX, DMP, DPD, and DPY). There is one table for each
environment.

The tables also indicate the format of the dumped data in the dispatch array. The data
is dumped in the order shown in the tables (that is, moving left to right in the table is

OSDS MONITOR 235-600-510
November 2000

Page 12.4-28 Issue 5.00

moving from lower to higher addresses in the dispatch array). Remember that the AAA
flag is a combination of the ACL, APP, AID, and ASA flags.

12.4.10.2 SM and CMP Data Dump Description

Table 12.4-8 describes the data that is dumped by each "what to dump" flag for the
various per-event data flags in the SM and CMP.

Table 12.4-8 — SM and CMP Data Dump Descriptions

What to Do
Flags

What to Dump Flags

ACL APP AID ASA ADO APC

DUF Billing clock
at entry to
foreground

N/A Foreground
segment
length

PIC
interrupt
identifier

User
specified
memory
data dumps,
up to 6
longs

N/A

Format: aaaaaaaa 00000000 005Ftttt bbbbbbbb 1-6 longs 00000000

DPD Billing clock
at process
dispatch

Program ID
and PCB
number of
process

OSDS
process
priority and
segment
length

Start
address of
this
segment’s
execution

User
specified
memory
data dumps,
up to 6
longs

User
specified
PCBLA data
dump, up to
3 longs

Format: aaaaaaaa ddddpppp yy5Dtttt cccccccc 1-6 longs 1-3 longs

DPY Same as
DPD

Same as
DPD

Same as
DPD

Same as
DPD

Same as
DPD

Same as
DPD

Format: aaaaaaaa ddddpppp yy5Dtttt cccccccc 1-6 longs 1-3 longs

DIJ Billing clock
at start of
interject

N/A Interject
segment
length

Value of
OSsignals
at start of
interject

User
specified
memory
data dumps,
up to 6
longs

N/A

Format: aaaaaaaa 00000000 0051tttt eeeeeeee 1-6 longs 00000000

Key:

aaaaaaaa - Billing clock in 125 µsec units.

bbbbbbbb - PIC interrupt number. For nested interrupts, only the first interrupt number is
recorded.

cccccccc - Starting address for the process segment.

dddd - Process program ID.

eeeeeeee - Signal flags on entry to interject; that is, the value of OSsignals.

pppp - PCB number.

tttt - Segment length in 125 µsec units.

yy - Process OSDS priority level.

12.4.10.3 OKP Data Dump Description

Table 12.4-9 describes the data that is dumped by each "what to dump" flag for the
various per-event data flags in the OKP.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-29

Table 12.4-9 — OKP Data Dump Descriptions

What to Do
Flags

What to Dump Flags

ACL APP AID ASA ADO

DUF
(OKP entry)

AM real time
clock at OKP
entry

N/A UNIX RTR
segment time

UNIX RTR
event flags

User
specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 008Etttt bbbbbbbb 1-6 longs

DUF
(OKP exit)

AM real time
clock at OKP
exit

N/A OKP segment
time

N/A User
specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 0083tttt 00000000 1-6 longs

DPD AM real time
clock at
process
dispatch

Program ID
and PCB
number of
process

OSDS process
priority and
process
segment
length

Start address
of this
segment’s
execution

User
specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa ddddpppp yy8Dtttt cccccccc 1-6 longs

DPY Same as DPD Same as DPD Same as DPD Same as DPD Same as DPD

Format: aaaaaaaa ddddpppp yy8Dtttt cccccccc 1-6 longs

DIJ
(CM interject

entry)

AM real time
at start of
interject

N/A CM interject
segment
length

N/A User
specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 0081tttt 00000000 1-6 longs

DIJ
(CNI interject

entry)

AM real time
at start of
CNI interject

N/A CNI interject
segment
length

N/A User
specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 008Ctttt 00000000 1-6 longs

Key:

aaaaaaaa - AM real time clock in milliseconds.

bbbbbbbb - UNIX RTR event flags (defined in hdr/dmert/evflag.h).

cccccccc - Starting address for the process segment.

dddd - Process program ID.

pppp - PCB number.

tttt - Segment length in milliseconds.

yy - Process OSDS priority level.

12.4.10.4 SMKP Data Dump Description

Table 12.4-10 describes the data that is dumped by each what to dump flag for the
various per-event data flags in the SMKP.

OSDS MONITOR 235-600-510
November 2000

Page 12.4-30 Issue 5.00

Table 12.4-10 — SMKP Data Dump Descriptions

What to Dump Flags

What to Do
Flags

ACL APP AID ASA ADS

DSX
(SMKP entry)

AM real time
clock at
SMKP entry

N/A N/A UNIX RTR
event flags

User
specified
memory
data dumps,
up to 6 longs

Format: aaaaaaaa 00000000 00BE0000 bbbbbbbb 1-6 longs

DSX
(SMKP exit)

AM real time
clock at
SMKP exit

N/A SMKP
segment
time

N/A User
specified
memory
data dumps,
up to 6 longs

Format: aaaaaaaa 00000000 00B3tttt 00000000 1-6 longs

DSP AM real time
clock at
process
dispatch

Program ID
and PCB
number of
process

OSDS
process
priority and
process
segment
length

Start address
of this
segment’s
execution

User
specified
memory
data dumps,
up to 6 longs

Format: aaaaaaaa ddddpppp yyBDtttt cccccccc 1-6 longs

Key:

aaaaaaaa - AM real time clock in milliseconds.

bbbbbbbb - UNIX RTR event flags (defined in hdr/dmert/evflag.h).

cccccccc - Starting address for the process segment.

dddd - Process program ID.

pppp - PCB number.

tttt - Segment length in milliseconds.

yy - Process OSDS priority level.

12.4.10.5 MSKP Data Dump Description

Table 12.4-11 describes the data that is dumped by each what to dump flag for the
various per-event data flags in the MSKP.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.4-31

Table 12.4-11 — MSKP Data Dump Descriptions

What to Dump Flags

What to Do
Flags

ACL APP AID ASA ADM

DMX
(MSKP entry)

AM real time
clock at
MSKP entry

N/A MSKP
program point
ID

MSKP specific
data, depends
on the
program point
ID

User specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 ccAE0000 bbbbbbbb 1-6 longs

DMX
(MSKP exit)

AM real time
clock at
MSKP exit

N/A MSKP
segment time
and program
point ID

MSKP specific
data, depends
on the
program point
ID

User specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 ccA3tttt bbbbbbbb 1-6 longs

DMP AM real time
clock at
MSKP job
point

N/A MSKP
program point
ID

MSKP specific
data, depends
on the
program point
ID

User specified
memory data
dumps, up to
6 longs

Format: aaaaaaaa 00000000 ccAD0000 bbbbbbbb 1-6 longs

Key:

aaaaaaaa - AM real time clock in milliseconds.

bbbbbbbb - Data depends on the value of the MSKP program point ID (cc).

cc - MSKP program point ID.

tttt - Segment length in milliseconds.

This table defines the values for bbbbbbbb.

If cc is ... Then bbbbbbbb is ...
0xa3 - 0xa7
0xaa - 0xaf
0xbf

UNIX RTR event flags
(defined in hdr/dmert/evflag.h).

0xc3 MSCU side number
anything else 00000000

OSDS MONITOR 235-600-510
November 2000

Page 12.4-32 Issue 5.00

12.5 INPUT COMMANDS TO CLEAR AND DUMP THE BUFFER

12.5.1 Section Description

This section discusses the input commands that are used to perform the following
functions:

• Zero the OSDS monitor buffer or portions of the buffer

• Output data to the ROP or to a file in the AM

• Kill a monitor job.

12.5.2 Zero The Monitor Buffer

The following commands are used to zero the entire monitor buffer or portions of the
buffer.

• Zero the entire buffer.
clr:mon,sm=x,all;

• Zero the control data area.
clr:mon,sm=x,ctl;

• Zero the peg and time data area (i.e., OSDS usage flags, HHH).
clr:mon,sm=x,pta;

• Zero the dispatch array.
clr:mon,sm=x,dpa;

12.5.3 Output Data

12.5.3.1 Input Messages for Data Output

This section presents the messages that are used to write data to the ROP or to a file
in the AM, and lists the types of output messages that the OSDS monitor prints to the
ROP. The following input messages write data to the ROP or to a file in the AM. If
data is to be output to the ROP, use rop in the command line. Use
fn="full_file_pathname" to write data to a file (use the /cdmp or the
/unixa/users directory for the dump).

• Print the formatted control data area.
op:mon,sm=x,wtd,ctl,rop;

An OP MON CTL output message is printed.

This is a good way to see the flags and data that are set. If the first word (ACT) is
0, the monitor is off.

• Dump the entire buffer (control data, peg and time data, and dispatch array).

Note: Always send the entire buffer to a file, never to the ROP.
op:mon,sm=x,dsp,dpa,fn="full_file_pathname";

• Dump the first x words in the dispatch array.
op:mon,sm=x,dsp,dpf=number_of_words,rop;

An OP MON DSP output message is printed.

• Dump a range of words in the dispatch array; that is, from one index in the
array to some other index in the array.
op:mon,sm=x,dsp,dpr=start_idx-end_idx,rop;

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.5-1

An OP MON DSP output message is printed.

Note: start_idx and end_idx should be a number of longs (that is, not a byte
index into the array).

• Dump the last x words in the dispatch array.
op:mon,sm=x,dsp,dpl=number_of_words,rop;

An OP MON DSP output message is printed.

• Dump peg and time information for a specific program ID.

An OP MON PID output message is printed.
op:mon,sm=x,pid,prs=program_id;

• Dump peg and time information for all program IDs.
op:mon,sm=x,pid,prs=ALL;

An OP MON PID output message is printed.

• Dump peg and time information for the operating system (including process
priority levels).
op:mon,sm=x,pid,prt;

An OP MON PID SM output message is printed for the SM.

For the AM and CMP, the output messages are OP MON PID AM and OP MON
PID CMP, respectively.

12.5.3.2 Output Messages

Table 12.5-1 lists the output messages for the AM, SM, and CMP that are provided by
the OSDS monitor. For complete details on the meaning and format of these output
messages, see the 235-600-750, Output Messages Manual.

Table 12.5-1 — OSDS Monitor Output Messages

Message Description
OP MON CTL Control data dump
OP MON DSP Dispatch array dump
OP MON PID Peg and time information dump for program IDs
OP MON PID AM Peg and time operating system data dump (AM)
OP MON PID SM Peg and time operating system data dump (SM)
OP MON PID CMP Peg and time operating system data dump (CMP)

12.5.4 Kill A Monitor Job

The following input message is used to kill an OSDS monitor job.
stp:op,mon,sm=x;

OSDS MONITOR 235-600-510
November 2000

Page 12.5-2 Issue 5.00

12.6 USEFUL INPUT MESSAGE SEQUENCES

12.6.1 Section Description

This section provides the sequence of input messages that are used to perform the
following functions:

• Snap per-event process and messaging data

• Snap foreground and messaging data

• Snap interject and messaging data

• Enable or disable the monitor based on a data or PCBLA match or mismatch

• Perform an SDL trace.

12.6.2 Snap Per-Event Process and Messaging Data

12.6.2.1 Snap Messages, No Processes

The following procedure is used to snap data for all messages, but no processes.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the data information for all program IDs and all message types.
set:mon,data,sm=x,prg=h’ff00,ad5=0,ad6=h’f000;

3. Turn on message snaps.
set:mon,fcn,f31,f29,sm=x;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

5. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.2.2 Snap Messages and Processes

The following procedure is used to snap data for all messages and all processes.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the what to do and what to dump (WTD) flags.
set:mon,wtd,sm=x,dpd,aaa;

3. Set the data information for all program IDs and all message types.
set:mon,data,sm=x,prg=h’ff00,ad5=0,ad6=h’f000,ptm=0;

4. Turn on message snaps.
set:mon,fcn,sm=x,f29,f31;

5. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

6. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.6-1

12.6.2.3 Snap Processes, No Messages

The following procedure is used to snap data for all processes, but not for messages.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dpd,aaa;

3. Set the data information.
set:mon,data,sm=x,prg=h’ff00,ptm=0;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

5. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.2.4 Snap Processes and Messages for a Port

The following procedure is used to snap data for processes and messages associated
with a specific port.

1. Zero the entire buffer.
clr:mon,sm=all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dpd,dmh,aaa;

3. Set the data information for all program IDs, all messages, and a specific port
name.
set:mon,data,sm=x,prg=h’ff00,ad5=0,ad6=h’f000,
prt=h’port_name,ptm=0;

4. Turn on message snaps.
set:mon,fcn,sm=x,f29,f31;

5. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

6. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.2.5 Snap Processes and Messages and/or State Definition Language (SDL)
Trace Event Data for Four Ports

The following procedure is used to snap data for all processes except those running at
priority 0, their messages, and SDL feature execution (FEX) traces. The data is
filtered on four port names.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dpd,dmh,aaa;

3. Set the data information for all program IDs except those at priority 0, all
message types except those for processes at priority 0, and four port names.
set:mon,data,sm=x,prg=h’f000,ad5=0,ad6=h’f000,

prt=h’ffff,ptm=0;

OSDS MONITOR 235-600-510
November 2000

Page 12.6-2 Issue 5.00

set:mon,spec,sm=x,s00=p1p1,s01=p2p2,s02=p3p3,s03=p4p4;

where p1p1 - p4p4 are the four port names to filter on.

Note: For OSDS messages, set all four spare control flags to a non-zero value.

4. Turn on message snaps.
set:mon,fcn,f22,f31,f29,sm=x;

5. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

6. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.2.6 Snap Processes for a Specific Program ID

The following procedure is used to snap data for processes with a specific program ID
and their messages.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dpd,aaa;

3. Set the data information.
set:mon,data,sm=x,prg=program_id,ad5=0,ad6=h’f000,ptm=0;

4. Turn on message snaps.
set:mon,fcn,f31,f29,sm=x;

5. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

6. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.2.7 Snap Processes at a Specific Priority

The following procedure is used to snap data for processes at a specific priority that
run longer than 50 ms.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dpy,aaa;

3. Set the data information for a specific priority and a segment length of 50 ms
(400 × 125 µsec).
set:mon,data,sm=x,pri=priority,ptm=400;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

5. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.6-3

12.6.3 Snap Foreground And Messaging Data

12.6.3.1 Snap Foreground Work, All Messages

The following procedure is used to snap data for foreground work and all messages.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,duf,aaa;

3. Set the data information for all program IDs and all message types.
set:mon,data,sm=x,prg=h’ff00,ad6=h’f000,ad5=0,ptm=0;

4. Turn on message snaps.
set:mon,fcn,f31,f29,sm=x;

5. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

6. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.3.2 Snap Specific Foreground Entries, No Messages

The following procedure is used to snap data for foreground entries that are longer
than 1 ms, but not for messages.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,duf,aaa;

3. Set the data information for segments longer than 1 ms (8 × 125 µsec).
set:mon,data,sm=x,ptm=8;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

5. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.4 Snap Interject and Messaging Data

12.6.4.1 Snap Interject Work, All Messages

The following procedure is used to snap data for interject work and all messages.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dij,aaa;

3. Set the data information.
set:mon,data,sm=x,prg=h’ff00,ad6=h’f000,ad5=0,ptm=0;

4. Turn on message snaps.
set:mon,fcn,sm=x,f29,f31;

5. Turn the monitor on to allow data gathering.

OSDS MONITOR 235-600-510
November 2000

Page 12.6-4 Issue 5.00

alw:mon,sm=x;

6. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.4.2 Snap Interject Work, No Messages

The following procedure is used to snap data for interject work, but not for messages.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,wtd,sm=x,dij,aaa;

3. Set the data information. (The clr command should set ptm = 0, but this
command could also be used.)
set:mon,data,sm=x,ptm=0;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

5. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.5 Enable or Disable Monitor on Match or Mismatch

12.6.5.1 Use Input Control Flags

The input control flags in the examples in this section must be used in conjunction
with the DPD flag or the DPY flag.

12.6.5.2 Enable Monitor on Data Match

The following procedure is used to enable the monitor on a data match, then snap
data for all processes.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,sm=x,wtd,dat,sp5,dpd;

3. Set the data information for all program IDs and the matching data.
set:mon,sm=x,data,pda=data_to_match,pdm=mask,

ad1=addr_of_data,prg=h’ff00,ptm=0;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

5. Turn the monitor off before analyzing the results.
inh:mon,sm=x;

12.6.5.3 Disable Monitor On Data Mismatch

The following procedure is used to disable the monitor on a data mismatch, and record
processes at priority 3 prior to the mismatch.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.6-5

set:mon,sm=x,wtd,dat,sp4,dpy,aaa;

3. Set the data information for priority 3 and the mismatch information. The
address must have the high bit set for a mismatch.
set:mon,sm=x,data,pda=data_to_mismatch,pdm=mask,

ad1=addr_of_data,pri=3,ptm=0;

4. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

12.6.5.4 Disable Monitor on PCBLA Match

The following procedure is used to disable the monitor on a PCBLA match, and snap
data for all processes and messages prior to the match.

1. Zero the entire buffer.
clr:mon,sm=x,all;

2. Set the WTD flags.
set:mon,sm=x,wtd,sp6,sp5,dpd,aaa;

3. Set the data information for all program IDs, all message types, and the
matching data.
set:mon,sm=x,data,pda=data_to_match,pdm=mask,la1=pcbla_idx,

prg=h’ff00,ad5=0,ad6=h’f000,ptm=0;

4. Turn on message snaps.
set:mon,fcn,f31,f29,sm=x;

5. Turn the monitor on to allow data gathering.
alw:mon,sm=x;

12.6.6 SDL Trace

12.6.6.1 SDL Trace for a Given SM

The following procedure is used to perform an SDL trace for all calls on a given SM.

1. Activate the monitor.

Zero the entire buffer area.
clr:mon,sm=x,all;

Set the F22 flag to indicate an SDL trace.
set:mon,sm=x,fcn,f22;

Initalize the monitor for an SDL trace of all processes.
set:mon,sm=x,data,prg=h’ff00;

Allow the monitor to run.
alw:mon,sm=x;

2. Make the desired phone calls.

3. Turn the monitor off and dump the trace information.
inh:mon,sm=x;
op:mon,sm=x,dsp,dpa,fm="/cdmp/sdltrc";

OSDS MONITOR 235-600-510
November 2000

Page 12.6-6 Issue 5.00

12.6.6.2 SDL Trace for a Given Port

The following procedure is used to perform an SDL trace for all calls associated with a
given port.

1. Activate the monitor.

Zero the entire buffer area.
clr:mon,sm=x,all;

Set the F22 flag to indicate an SDL trace.
set:mon,sm=x,fcn,f22;

Initialize the monitor for an SDL trace of all processes associated with the port
83cb.
set:mon,sm=x,data,prg=h’ff00,prt=h’83cb;

Allow the monitor to run.
alw:mon,sm=x;

2. Make the desired phone calls on the specified port.

3. Turn the monitor off and dump the trace information.
inh:mon,sm=x;
op:mon,sm=x,dsp,dpa,fn="/cdmp/sdltrc";

12.6.6.3 SDL Trace for an Assert

The following procedure is used to perform an SDL trace for data associated with an
assert.

1. Activate the monitor.

Zero the entire buffer area.
clr:mon,sm=x,all;

Set the F22 flag to indicate an SDL trace.
set:mon,sm=x,fcn,f22;

Initialize the monitor for an SDL trace of all processes and all ports.
set:mon,sm=x,data,prg=h’ff00;

Allow the monitor to run.
alw:mon,sm=x;

2. Enter the generic utilities (UT) breakpoint to inhibit the monitor when the
assert occurs. You must know where the assert is fired.
when:ut:sm=x,addr=h’yyyy,opc=h’zzzz,hit=1!
load:ut:sm=x,gvar="SIhistory",size=4,l=4,val=0!
end:ut:sm=x,when;
alw:ut:sm=x,util;

Where:

yyyy - The address where the assert is called. This should be
available from the ROP stack back trace (SBT) associated
with this assert.

zzzz - The opcode associated with the address.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.6-7

3. Wait for the assert to occur.

4. Dump the SDL trace information.
op:mon,sm=x,dsp,dpa,fn="cdmp/sdltrc";

In the output, the last entries in the dispatch array show the SDL trace leading
up to the assert.

12.6.6.4 SDL Trace for an SM Overload

The following procedure is used to perform an SDL trace for the OSDS dispatch times
and data associated with an SM overload condition.

1. Activate the monitor.

Zero the entire buffer area.
clr:mon,sm=x,all;

Collect OSDS data.
set:mon,sm=x,wtd,hhh,aaa,dpd;

Set the appropriate flags.
set:mon,sm=x,fcn,f16,f17,f22,f23,f29,f31;

Where:

F16, F17 - Inhibit the monitor on overload
F22 - Provide an SDL trace
F23 - Dump the real time clock

F29, F31 - Provide an OSDS message trace

Initialize the monitor for an SDL trace of all processes, all ports, and all OSDS
messages.
set:mon,sm=x,data,prg=h’ff00,ad6=h’f000;

Allow the monitor to run.
alw:mon,sm=x;

2. Wait for the overload condition to occur.

3. Dump the SDL trace information.
op:mon,sm=x,dsp,dpa,fn="/cdmp/sdltrc";

OSDS MONITOR 235-600-510
November 2000

Page 12.6-8 Issue 5.00

12.7 OSDS MONITOR BUFFER LAYOUTS

12.7.1 Section Description

This section provides the OSDS monitor buffer layout and buffer word content for the
AM, SM, and CMP.

12.7.2 Buffer Layout for The AM

The OSDS monitor AM buffer layout for the 5E10 software release is depicted in
Figure 12.7-1. The OSDS monitor AM buffer is contained in the OShisarray[] array.
This information is from the file hdr/os/OSmons.h.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.7-1

12.7.3 AM Buffer Word Content

The AM buffer word content is described in Table 12.7-1.

SMKP - OSDS Program IDs
Peg Count and Accumulated Time

(260 words)

(15360 words)

OKP - OSDS Program IDs
Peg Count and Accumulated Time

(520 words)

Peg Count for Messages
(13 words)

Spare Words
(6 words)

UNIX RTR Priority Levels
Accumulated Time

(22 words)

OShisarray[]

Monitor Control
(69 words)

Dispatch Array
(14398 words)

Monitor On or Off
(1 word)

OKP - OSDS Priority Levels
Peg Count and Accumulated Time

(16 words)

Peg and
Time Area

Dispatch
Area

Control
Area

Figure 12.7-1 — OSDS Monitor AM Buffer Layout

OSDS MONITOR 235-600-510
November 2000

Page 12.7-2 Issue 5.00

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure

Word Symbol Description
0 OSCONTRL Master control word for monitor routines: 0 = off, !0 =

on
1 OSCINDEX Byte index into dispatch array
2 OSCHDFLG What to do flags
3 OSCDDATA What to dump flags
4 OSCDUMP1 Memory address to dump or 0 - flag AD1

5 OSCDUMP2 Memory address to dump or 0 - flag AD2

6 OSCDUMP3 Memory address to dump or 0 - flag AD3

7 OSCDUMP4 Memory address to dump or 0 - flag AD4

8 OSCDUMP5 Memory address to dump or 0 - flag AD5

9 OSCDUMP6 Memory address to dump or 0 - flag AD6

10 OSCPROGI Program ID(s) to snap data for on dispatch - flag PRG

11 OSCPRIOR Priority level to snap data for on dispatch - flag PRI

12 OSCPTIME Process dispatch time filter value for loading the
dispatch array - flagPTM. Dispatch times less than this
value will not be snapped.

13 OSCPROGS SMKP program ID for data dispatch snap - flag PSG

14 OSCSTIME SMKP process dispatch time filter - flag PST

15 OSCAMDMV OKP match or mismatch data value - flag PDA

16 OSCAMDMM OKP match or mismatch mask word, 1 in bits to be
matched - flag PDM

17 OSCFWORD Control word for special function execution - flag CTL

18 OSCFFLAG Special function execution flags - flag Fii

19 OSCSPAR1 Spare word
20 OSCSPAR2 Spare word
21 OSCSPAR3 Spare word
22 OSCSPAR4 Spare word
23 OSCSPAR5 Spare word
24 OSCSPAR6 Spare word
25 OSCSPAR7 Spare word
26 OSCSPAR8 Spare word
27 OSCSPAR9 Spare word
28 OSCSPARa Spare word
29 OSCSPARb Spare word
30 OSCSPARc Spare word
31 OSCSPARd Spare word
32 OSAUXENT Real time clock at entry to UNIXa RTR
33 OSAOKENT Real time clock at entry to OKP
34 OSSBGACT Flag for background loading of dispatch array

235-600-510
November 2000

OSDS MONITOR

See note(s) at end of table.

Issue 5.00 Page 12.7-3

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure (Contd)

Word Symbol Description
35 OSSVFLAG Save function flag bits word (OSCFFLAG) until time to

start monitor
36 OSSVWORD Save function control word (OSCFWORD) until time to

start monitor
37 OSSVSDAY Record the day the monitor started
38 OSSVSTOD Record the time of day the monitor started
39 OSSVSEGL Save process segment length for monitor special

functions
40 OSVODNSA Save next segment address, OSsignals, or PIC

interrupt value
41 OSVOPIDP Save program ID and PCB index (or 0)
42 OSVOPPDT Save priority, event type, and segment time
43 OSVOCLKB Save clock at beginning of job
44 OSVODDU1 Save dumped data - address slot 1
45 OSVODDU2 Save dumped data - address slot 2
46 OSVODDU3 Save dumped data - address slot 3
47 OSVODDU4 Save dumped data - address slot 4
48 OSVODDU5 Save dumped data - address slot 5
49 OSVODDU6 Save dumped data - address slot 6
50 OSASKENT Real time clock at entry to SMKP
51 OSVSDNSA SMKP save next segment address, OSsignals, or PIC

interrupt value
52 OSVSPIDP SMKP save program ID and PCB index (or 0); or

message peg counts
53 OSVSPPDT SMKP save priority, event type, and segment time; or

message peg counts
54 OSVSCLKB SMKP save clock at beginning of job; or message peg

counts
55 OSVSDDU1 SMKP save dumped data - address slot 1; or message

peg counts
56 OSVSDDU2 SMKP save dumped data - address slot 2; or message

peg counts
57 OSVSDDU3 SMKP save dumped data - address slot 3; or message

peg counts
58 OSVSDDU4 SMKP save dumped data - address slot 4; or message

peg counts
59 OSVSDDU5 SMKP save dumped data - address slot 5; or message

peg counts
60 OSVSDDU6 SMKP save dumped data - address slot 6; or message

peg counts
61 OSAMKENT Real time clock at entry to MSKP

OSDS MONITOR 235-600-510
November 2000

See note(s) at end of table.

Page 12.7-4 Issue 5.00

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure (Contd)

Word Symbol Description
62 OSVMDNSA MSKP save next segment address, OSsignals, or PIC

interrupt value
63 OSVMPIDP MSKP save program ID and PCB index (or 0)
64 OSVMPPDT MSKP save priority, event type, and segment time
65 OSVMCLKB MSKP save clock at beginning of job
66 OSCBEGCL Start clock in millisecond ticks for time accumulation

locations
67 OSCENDCL Stop clock in millisecond ticks for time accumulation

locations
68 OSHPCHUF Peg count of UNIX RTR entries with work to do
69 OSHACHUF Accumulated time in UNIX RTR entries (outside OKP)
70 OSHICHUF Peg count of UNIX RTR idle system entries to OKP
71 OSHICHOX Peg count of OKP entries
72 OSHPCHOX Peg count of OKP entries with work to do
73 OSHACHOX Accumulated time in OKP entries with work to do
74 OSHACOKP Accumulated time in OKP entries that used > 2 ms
75 OSHTOHOX Peg count of OKP entries timed out (used > 100 ms)
76 OSHPCHIJ Peg count of interject entries
77 OSHACHIJ Accumulated time in interject
78 OSHPCCNI Peg count of CNI entries with messages
79 OSHACCNI Accumulated time in CNI processing
80 OSHPCHSX Peg count of entries to SMKP
81 OSHACHSX Accumulated time in SMKP
82 OSHPCHMX Peg count of entries to MSKP
83 OSHACHMX Accumulated time in MSKP
84 OSHPCAPD Peg count of entries to the APDL process
85 OSHACAPD Accumulated time in the APDL process
86 OSHOKAUD Accumulated time in OKP audits
87 OSHSKAUD Accumulated time in SMKP audits
88 OSHPCHPY Peg count for OKP priority 0
89 OSHPCHPY+1 Accumulated time in priority 0
90 OSHPCHPY+2 Peg count for OKP priority 1
91 OSHPCHPY+3 Accumulated time in priority 1
92 OSHPCHPY+4 Peg count for OKP priority 2
93 OSHPCHPY+5 Accumulated time in priority 2
94 OSHPCHPY+6 Peg count for OKP priority 3
95 OSHPCHPY+7 Accumulated time in priority 3
96 OSHPCHPY+8 Peg count for OKP priority 4
97 OSHPCHPY+9 Accumulated time in priority 4

235-600-510
November 2000

OSDS MONITOR

See note(s) at end of table.

Issue 5.00 Page 12.7-5

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure (Contd)

Word Symbol Description
98 OSHPCHPY+10 Peg count for OKP priority 5
99 OSHPCHPY+11 Accumulated time in priority 5
100 OSHPCHPY+12 Peg count for OKP priority 6
101 OSHPCHPY+13 Accumulated time in priority 6
102 OSHPCHPY+14 Peg count for OKP priority 7
103 OSHPCHPY+15 Accumulated time in priority 7
104 OSHACSPY Elapsed time for SPY data at inhibit
105 OSHACSPY+1 Accumulated time in kernel level at inhibit
106 OSHACSPY+2 Accumulated time in kernel process level at inhibit
107 OSHACSPY+3 Accumulated time in supervisor processes at inhibit
108 OSHACSPY+4 Accumulated time in user processes at inhibit
109 OSHACSPY+5 Accumulated time in idle loop at inhibit
110 OSHACSPY+6 Accumulated time in UNIX RTR level 0 at inhibit
111 OSHACSPY+7 Accumulated time in UNIX RTR level 1 at inhibit
112 OSHACSPY+8 Accumulated time in UNIX RTR level 2 at inhibit
113 OSHACSPY+9 Accumulated time in UNIX RTR level 3 at inhibit
114 OSHACSPY+10 Accumulated time in UNIX RTR level 4 at inhibit
115 OSHACSPY+11 Accumulated time in UNIX RTR level 5 at inhibit
116 OSHACSPY+12 Accumulated time in UNIX RTR level 6 at inhibit
117 OSHACSPY+13 Accumulated time in UNIX RTR level 7 at inhibit
118 OSHACSPY+14 Accumulated time in UNIX RTR level 8 at inhibit
119 OSHACSPY+15 Accumulated time in UNIX RTR level 9 at inhibit
120 OSHACSPY+16 Accumulated time in UNIX RTR level 10 at inhibit
121 OSHACSPY+17 Accumulated time in UNIX RTR level 11 at inhibit
122 OSHACSPY+18 Accumulated time in UNIX RTR level 12 at inhibit
123 OSHACSPY+19 Accumulated time in UNIX RTR level 13 at inhibit
124 OSHACSPY+20 Accumulated time in UNIX RTR level 14 at inhibit
125 OSHACSPY+21 Accumulated time in UNIX RTR level 15 at inhibit
126 OSHPMSGI Peg count of inter-processor messages received
127 OSHPMSGO Peg count of inter-processor messages sent
128 OSHPMSGL Peg count of intra-processor messages sent
129 OSHPTUNX Peg count of messages sent from the OKP to another

UNIX RTR process
130 OSHPFUNX Peg count of messages sent from another UNIX RTR

process to the OKP
131 OSHSPAR1 Spare word
132 OSHSPAR2 Spare word
133 OSHSPAR5 Spare word

OSDS MONITOR 235-600-510
November 2000

See note(s) at end of table.

Page 12.7-6 Issue 5.00

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure (Contd)

Word Symbol Description
134 OSHSPAR6 Spare word
135 OSHSPAR7 Spare word
136 OSHSPAR8 Spare word
137 OSHSPAR9 Spare word
138 OSHSPARa Spare word
139 OSHSPARb Spare word
140 OSHSPARc Spare word
141 OSHSPARd Spare word
142 OSHSPARe Spare word
143 OSHSPARf Spare word
144 OSHSPARg Spare word
145 OSHSPARh Spare word
146 OSHSPARi Spare word
147 OSHSPARj Spare word
148 OSHSPARk Spare word
149 OSHPSCTU Peg count of messages from SMs or the CMP to UNIX

RTR processes other than OKP
150 OSHGHAIR Peg count of hairpin messages
151 OSHGIMCP Peg count of integrity monitor messages
152 OSHGAMCT Peg count of OSDS clock accuracy messages
153 OSHGDDCP Peg count of data delivery messages
154 OSHGCCTP Peg count of CCS messages
155 OSHGBCST Peg count of OSDS broadcast messages
156 OSHGAMCP Peg count of AMA messages
157 OSHGPSCP Peg count of TM AML messages
158 OSHGFALT Peg count of messages delivered to processes
159 OSHGCMBP Peg count of messages sent from AM to world
160 OSHGCNIR Peg count of messages received from CNI ring
161 OSHGCNIS Peg count of messages sent to the CNI ring
162 OSHGRTFD Peg count of status forward messages
163 OSHGRTGN Peg count of route generation messages
164 OSHGTSRE Peg count of timeslot release forward messages
165 OSHGPATH Peg count of path established messages
166 OSHGHORQ Peg count of handover request messages
167 OSHGCINJ Peg count of messages passed on to CMinjmsg()

168 OSHPCHPD Peg count for OKP-OSDS program ID = 0 - flag HPD

169 OSHPCHPD+1 Accumulated time in OKP-OSDS program ID = 0
170 OSHPCHPD+2 Peg count for OKP-OSDS program ID = 1

235-600-510
November 2000

OSDS MONITOR

See note(s) at end of table.

Issue 5.00 Page 12.7-7

Table 12.7-1 — OSDS Monitor AM Buffer Word Structure (Contd)

Word Symbol Description
171 OSHPCHPD+3 Accumulated time in OKP-OSDS program ID = 1
.
.
.

686 OSHPCHPD+518 Peg count for OKP-OSDS program ID = 259
687 OSHPCHPD+519 Accumulated time in OKP-OSDS program ID = 259
688 OSHPCHSP Peg count for SMKP-OSDS program ID = 0
689 OSHPCHSP+1 Accumulated time in SMKP-OSDS program ID = 0
690 OSHPCHSP+2 Peg count for SMKP-OSDS program ID = 1
691 OSHPCHSP+3 Accumulated time in SMKP-OSDS program ID = 1
.
.
.

946 OSHPCHSP+258 Peg count of SMKP-OSDS program ID = 129
947 OSHPCHSP+259 Accumulated time in SMKP-OSDS program ID = 129
948 OSHSPDAT Beginning of data storage area for special monitor

functions
949 OSCSPC00 Data storage area for special monitor functions - flag

S00

950 OSCSPC01 Data storage area for special monitor functions - flag
S01

951 OSCSPC02 Data storage area for special monitor functions - flag
S02

.

.

.
995 OSCSPC47 Data storage area for special monitor functions - flag

S47

996 OSHXXDSP Data collection area for the process dispatch array
997 OSHXXDSP+1 Data collection area for the process dispatch array
.
.
.

15358 OSHXXDSP+14362 Data collection area for the process dispatch array
15359 OSHXXEND Last word in the monitor buffer

a. Registered trademark of The Open Group.

OSDS MONITOR 235-600-510
November 2000

Page 12.7-8 Issue 5.00

12.7.4 Buffer Layout for The SM

The OSDS monitor SM and SM-2000 buffer layout for the 5E10 software release is
depicted in Figure 12.7-2. The OSDS monitor SM and SM-2000 buffer is contained in
the SIhistory[] array.

The information included in this section is for reference only. Each software release
contains unique buffer layout information. Consult the hdr/OS/OSmons.h file for
specific details.

12.7.5 SM Buffer Word Content

The SM buffer word content is described in Table 12.7-2.

Spare Words
(8 words)

Monitor Control
(61 words)

Control
Area

Peg and
Time Area

Dispatch
Area

(15360 words)

SIhistory[]

Dispatch Array
(13982 words)

OSDS Program IDs
Peg Count and Accumulated Time

(1300 words)

OSDS Priority Levels
Peg Count and Accumulated Time

(16 words)

Monitor On or Off
(1 word)

Figure 12.7-2 — OSDS Monitor SM Buffer Layout

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.7-9

Table 12.7-2 — OSDS Monitor SM Buffer Word Structure

Word Symbol Description
0 OSCONTRL Master control word for monitor routines: 0 = off, !0 =

on
1 OSCINDEX Byte index into dispatch array
2 OSCHDFLG What to do flags
3 OSCDDATA What to dump flags
4 OSCDUMP1 Memory address to dump or 0 - flag AD1

5 OSCDUMP2 Memory address to dump or 0 - flag AD2

6 OSCDUMP3 Memory address to dump or 0 - flag AD3

7 OSCDUMP4 Memory address to dump or 0 - flag AD4

8 OSCDUMP5 Memory address to dump or 0 - flag AD5

9 OSCDUMP6 Memory address to dump or 0 - flag AD6

10 OSCPCBL1 PCBLA index to dump or 0 - flag LA1

11 OSCPCBL2 PCBLA index to dump or 0 - flag LA2

12 OSCPCBL3 PCBLA index to dump or 0 - flag LA3

13 OSCPROGI OSDS program ID(s) to snap data for on dispatch
14 OSCPRIOR OSDS priority level to snap data for on dispatch
15 OSCPTIME Process dispatch time filter value for loading the

dispatch array PTM. Dispatch times less than this
value will not be snapped.

16 OSCPORTF Port number for filtering - flag PRT

17 OSCSMDMV Data match snap data word
18 OSCSMDMM Data match snap mask word, 1 in bits to be matched
19 OSCSMFRA Previous function return address
20 OSCFWORD Special function control word - flag CTL

21 OSCFFLAG Special function flag bits
22 OSCSPAR1 Spare control word
23 OSCSPAR2 Spare control word
24 OSCSPAR3 Spare control word
25 OSCSPAR4 Spare control word
26 OSCSPAR5 Spare control word
27 OSCSPAR6 Spare control word
28 OSCSPAR7 Spare control word
29 OSCSPAR8 Spare control word
30 OSCSPAR9 Spare control word
31 OSCSPARa Spare control word
32 OSCSPARb Spare control word
33 OSCSPARc Spare control word
34 OSCSPARd Spare control word
35 OSSVPICV Foreground PIC interrupt data value

OSDS MONITOR 235-600-510
November 2000

Page 12.7-10 Issue 5.00

Table 12.7-2 — OSDS Monitor SM Buffer Word Structure (Contd)

Word Symbol Description
36 OSSVCLKF Clock at foreground entry
37 OSSBGACT Flag for background loading of dispatch array
38 OSSVDNSA Save next segment address, OSsignals, or PIC

interrupt value
39 OSSVPIDP Save program ID and PCB index (or 0)
40 OSSVPPDT Save priority, event type, and segment time
41 OSSVCLKB Save clock at beginning of job
42 OSK2FGST Save start of foreground using 15.3615 µsec clock

(SM-2000)
43 OSK2CLKB Save segment begin time using 15.3615 µsec clock

(SM-2000)
44 OSSVFLAG Save function flag bits (OSCFFLAG) until time to start

monitor
45 OSSVWORD Save function control word (OSCFWORD) until time to

start monitor
46 OSSVSDAY Record the day the monitor started
47 OSSVSTOD Record the time of day the monitor started
48 OSSVSEGL Save the process segment length for monitor special

functions
49 OSSVDDU1 Save dumped data - address slot 1
50 OSSVDDU2 Save dumped data - address slot 2
51 OSSVDDU3 Save dumped data - address slot 3
52 OSSVDDU4 Save dumped data - address slot 4
53 OSSVDDU5 Save dumped data - address slot 5
54 OSSVDDU6 Save dumped data - address slot 6
55 OSSVPCL1 Save PCBLA dumped data - address slot 1
56 OSSVPCL2 Save PCBLA dumped data - address slot 2
57 OSSVPCL3 Save PCBLA dumped data - address slot 3
58 OSCBEGCL Start clock in 125 µsec ticks for time accumulation

locations
59 OSCENDCL End clock in 125 µsec ticks for time accumulation

locations
60 OSHPCHUF Peg count of foreground entries
61 OSHACHUF Accumulated time in foreground
62 OSHPCHIJ Peg count of interject entries
63 OSHICHIJ Peg count of interject entries with no flags
64 OSHACHIJ Accumulated time in interject processing
65 OSHPMSGI Peg count of inter-processor messages received by the

processor

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.7-11

Table 12.7-2 — OSDS Monitor SM Buffer Word Structure (Contd)

Word Symbol Description
66 OSHPMSGO Peg count of interprocessor messages sent by the

processor
67 OSHPMSGL Peg count of intraprocessor messages sent by the

processor
68 OSHACHMH Spare word
69 OSHSPAR1 Spare word
70 OSHSPAR2 Spare word
71 OSHSPAR3 Spare word
72 OSHSPAR4 Spare word
73 OSHSPAR5 Spare word
74 OSHSPAR6 Spare word
75 OSHSPAR7 Spare word
76 OSHSPAR8 Spare word
77 OSHSPAR9 Spare word
78 OSHSPARa Spare word
79 OSHSPARb Spare word
80 OSHSPARc Spare word
81 OSHSPARd Spare word
82 OSHSPARe Spare word
83 OSHSPARf Spare word
84 OSHSPARg Spare word
85 OSHSPARh Spare word
86 OSHSPARi Spare word
87 OSHSPARj Spare word
88 OSHSPARk Spare word
89 OSHPCHPY Peg count for OSDS priority 0
90 OSHPCHPY+1 Accumulated time in priority 0
91 OSHPCHPY+2 Peg count for OSDS priority 1
92 OSHPCHPY+3 Accumulated time in priority 1
93 OSHPCHPY+4 Peg count for OSDS priority 2
94 OSHPCHPY+5 Accumulated time in priority 2
95 OSHPCHPY+6 Peg count for OSDS priority 3
96 OSHPCHPY+7 Accumulated time in priority 3
97 OSHPCHPY+8 Peg count for OSDS priority 4
98 OSHPCHPY+9 Accumulated time in priority 4
99 OSHPCHPY+10 Peg count for OSDS priority 5
100 OSHPCHPY+11 Accumulated time in priority 5
101 OSHPCHPY+12 Peg count for OSDS priority 6

OSDS MONITOR 235-600-510
November 2000

Page 12.7-12 Issue 5.00

Table 12.7-2 — OSDS Monitor SM Buffer Word Structure (Contd)

Word Symbol Description
102 OSHPCHPY+13 Accumulated time in priority 6
103 OSHPCHPY+14 Peg count for OSDS priority 7
104 OSHPCHPY+15 Accumulated time in priority 7
105 OSHPCHPD Peg count for program ID 0
106 OSHPCHPD+1 Accumulated time in program ID 0
107 OSHPCHPD+2 Peg count for program ID 1
108 OSHPCHPD+3 Accumulated time in program ID 1
.
.
.

1403 OSHPCHPD+1298 Peg count for program ID 649
1404 OSHPCHPD+1299 Accumulated time in program ID 649
1405 OSHSPDAT Beginning of data storage area for special monitor

functions
1406 OSCSPC00 Special control word - flag S00

1407 OSCSPC01 Special control word - flag S01

.

.

.
1452 OSCSPC47 Special control word - flag S47

1453 OSHXXDSP Data collection area for the process dispatch array
1454 OSHXXDSP+1 Data collection area for the process dispatch array

.

.

.
15358 OSHXXDSP+13905 Data collection area for the process dispatch array

(SM)
15358 OSHXXDSP+75345 Data collection area for the process dispatch array

(SM-2000)
15359 OSHXXEND Last word in the monitor buffer

12.7.6 Buffer Layout for The CMP

The OSDS monitor CMP buffer layout for the 5E10 software release is depicted in
Figure 12.7-3. The OSDS monitor CMP buffer is contained in the SIhistory[] array.
Each software release contains unique buffer layout information. Consult the
hdr/OS/OSmons.h file for specific details.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.7-13

12.7.7 CMP Buffer Word Content

The CMP buffer word content is described in Table 12.7-3.

OSDS Priority Levels
Peg Count and Accumulated Time

(16 words)

Spare Words
(11 words)

Dispatch Array
(14972 words)

Peg Count for Messages
(7 words)

Monitor Control
(61 words)

(15360 words)

SIhistory[]

Monitor On or Off
(1 word)

OSDS Program IDs
Peg Count and Accumulated Time

(300 words)

Peg and
Time Area

Control
Area

Dispatch
Area

Figure 12.7-3 — OSDS Monitor CMP Buffer Layout

OSDS MONITOR 235-600-510
November 2000

Page 12.7-14 Issue 5.00

Table 12.7-3 — OSDS Monitor CMP Buffer Word Structure

Word Symbol Description
0 OSCONTRL Master control word for monitor routines: 0 = off, !0 =

on
1 OSCINDEX Byte index into dispatch array
2 OSCHDFLG What to do flags
3 OSCDDATA What to dump flags
4 OSCDUMP1 Memory address to dump or 0 - flag AD1

5 OSCDUMP2 Memory address to dump or 0 - flag AD2

6 OSCDUMP3 Memory address to dump or 0 - flag AD3

7 OSCDUMP4 Memory address to dump or 0 - flag AD4

8 OSCDUMP5 Memory address to dump or 0 - flag AD5

9 OSCDUMP6 Memory address to dump or 0 - flag AD6

10 OSCPCBL1 PCBLA index to dump or 0 - flag LA1

11 OSCPCBL2 PCBLA index to dump or 0 - flag LA2

12 OSCPCBL3 PCBLA index to dump or 0 - flag LA3

13 OSCPROGI OSDS program ID(s) to snap data for on dispatch
14 OSCPRIOR OSDS priority level to snap data for on dispatch
15 OSCPTIME Process dispatch time filter value for loading the

dispatch array - flagPTM. Dispatch times less than this
value will not be snapped.

16 OSCPORTF Port number for filtering - flag PRT

17 OSCSMDMV Data match snap data word
18 OSCSMDMM Data match snap mask word, 1 in each bit to be

matched
19 OSCSMFRA Previous function return address
20 OSCFWORD Special function control word - flag CTL

21 OSCFFLAG Special function flag bits
22 OSCSPAR1 Spare control word
23 OSCSPAR2 Spare control word
24 OSCSPAR3 Spare control word
25 OSCSPAR4 Spare control word
26 OSCSPAR5 Spare control word
27 OSCSPAR6 Spare control word
28 OSCSPAR7 Spare control word
29 OSCSPAR8 Spare control word
30 OSCSPAR9 Spare control word
31 OSCSPARa Spare control word
32 OSCSPARb Spare control word
33 OSCSPARc Spare control word
34 OSCSPARd Spare control word
35 OSSVPICV Foreground exception vector number

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.7-15

Table 12.7-3 — OSDS Monitor CMP Buffer Word Structure (Contd)

Word Symbol Description
36 OSSVCLKF Clock at foreground entry
37 OSSBGACT Flag for background loading of dispatch array
38 OSSVDNSA Save next segment address, OSsignals, or PIC

interrupt value
39 OSSVPIDP Save program ID and PCB index (or 0)
40 OSSVPPDT Save priority, event type, and segment time
41 OSSVCLKB Save clock at beginning of job
42 OSK2FGST Save start of foreground using 15.3615 µsec clock

(SM-2000)
43 OSK2CLKB Save segment begin time using 15.3615 µsec clock

(SM-2000)
44 OSSVFLAG Save function flag bits word (OSCFFLAG) until time to

start monitor
45 OSSVWORD Save function control word (OSCFWORD) until time to

start monitor
46 OSSVSDAY Record the day the monitor started
47 OSSVSTOD Record the time of day the monitor started
48 OSSVSEGL Save process segment length for monitor special

functions
49 OSSVDDU1 Save dumped data - address slot 1
50 OSSVDDU2 Save dumped data - address slot 2
51 OSSVDDU3 Save dumped data - address slot 3
52 OSSVDDU4 Save dumped data - address slot 4
53 OSSVDDU5 Save dumped data - address slot 5
54 OSSVDDU6 Save dumped data - address slot 6
55 OSSVPCL1 Save PCBLA dumped data - address slot 1
56 OSSVPCL2 Save PCBLA dumped data - address slot 2
57 OSSVPCL3 Save PCBLA dumped data - address slot 3
58 OSCBEGCL Start clock in 125 µsec ticks for time accumulation

locations
59 OSCENDCL End clock in 125 µsec ticks for time accumulation

locations
60 OSHPCHUF Peg count of foreground entries
61 OSHACHUF Accumulated time in foreground
62 OSHPCHIJ Peg count of interject entries
63 OSHICHIJ Peg count of interject entries with no flags
64 OSHACHIJ Accumulated time in interject processing
65 OSHPMSGI Peg count of interprocessor messages received by the

processor

OSDS MONITOR 235-600-510
November 2000

Page 12.7-16 Issue 5.00

Table 12.7-3 — OSDS Monitor CMP Buffer Word Structure (Contd)

Word Symbol Description
66 OSHPMSGO Peg count of interprocessor messages sent by the

processor
67 OSHPMSGL Peg count of intraprocessor messages sent by the

processor
68 OSHGBCST Peg count of OSDS broadcast messages
69 OSHGCPRT Peg count of routing (RTA) messages
70 OSHGDDSP Peg count of data delivery messages
71 OSHGICMP Peg count of integrity monitor messages
72 OSHGPCNC Peg count of peripheral control messages
73 OSHGPRGP Peg count of packet routing messages
74 OSHGFALT Peg count of messages delivered to processes
75 OSHGCICO Peg count of interprocessor data sync (IDS) messages
76 OSHGSPR1 Spare word
77 OSHGSPR2 Spare word
78 OSHACHMH Spare word
79 OSHSPAR1 Spare word
80 OSHSPAR2 Spare word
81 OSHSPAR3 Spare word
82 OSHSPAR4 Spare word
83 OSHSPAR5 Spare word
84 OSHSPAR6 Spare word
85 OSHSPAR7 Spare word
86 OSHSPAR8 Spare word
87 OSHSPAR9 Spare word
88 OSHSPARa Spare word
89 OSHSPARb Spare word
90 OSHSPARc Spare word
91 OSHSPARd Spare word
92 OSHSPARe Spare word
93 OSHSPARf Spare word
94 OSHSPARg Spare word
95 OSHSPARh Spare word
96 OSHSPARi Spare word
97 OSHSPARj Spare word
98 OSHSPARk Spare word
99 OSHPCHPY Peg count for OSDS priority 0
100 OSHPCHPY+1 Accumulated time in priority 0
101 OSHPCHPY+2 Peg count for OSDS priority 1

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.7-17

Table 12.7-3 — OSDS Monitor CMP Buffer Word Structure (Contd)

Word Symbol Description
102 OSHPCHPY+3 Accumulated time in priority 1
103 OSHPCHPY+4 Peg count for OSDS priority 2
104 OSHPCHPY+5 Accumulated time in priority 2
105 OSHPCHPY+6 Peg count for OSDS priority 3
106 OSHPCHPY+7 Accumulated time in priority 3
107 OSHPCHPY+8 Peg count for OSDS priority 4
108 OSHPCHPY+9 A108cumulated time in priority 4
109 OSHPCHPY+10 Peg count for OSDS priority 5
110 OSHPCHPY+11 Accumulated time in priority 5
111 OSHPCHPY+12 Peg count for OSDS priority 6
112 OSHPCHPY+13 Accumulated time in priority 6
113 OSHPCHPY+14 Peg count for OSDS priority 7
114 OSHPCHPY+15 Accumulated time in priority 7
115 OSHPCHPD Peg count for program ID 0
116 OSHPCHPD+1 Accumulated time in program ID 0
117 OSHPCHPD+2 Peg count for program ID 1
118 OSHPCHPD+3 Accumulated time in program ID 1
.
.

443 OSHPCHPD+298 Peg count for program ID 149
444 OSHPCHPD+299 Accumulated time in program ID 149
445 OSHSPDAT Beginning of data storage area for special monitor

functions
446 OSCSPC00 Special control word - flag S00

447 OSCSPC01 Special control word - flag S01

.

.
492 OSCSPC47 Special control word - flag S47

493 OSHXXDSP Data collection area for the process dispatch array
494 OSHXXDSP+1 Data collection area for the process dispatch array
.
.

15358 OSHXXDSP+14865 Data collection area for the process dispatch array
15359 OSHXXEND Last word in the monitor buffer

OSDS MONITOR 235-600-510
November 2000

Page 12.7-18 Issue 5.00

12.8 SNAPPED DATA DUMP LAYOUTS

12.8.1 Section Description

This section provides the data dump layouts for the following input message control
flags:

• DAD

• DAP

• F00

• F01

• F18

• F22

• F23, F25, F27, F29, F31

• HUF, HIJ, HPD, HPY, HMX, HSX, HSP

• SEG

Note: For the DIJ, DMP, DMX, DPD, DPY, DUF, DSP, and DSX flags, see the data dump
descriptions in the "What To Dump Flags," Section 12.4.9.

12.8.2 DAD Data Dump Layout

The DAD flag causes data blocks specified by hooks in the switch application code
along with some header information to be copied to the dispatch array. The DAD flag
supports the DOX flag option.

If there is not enough room in the dispatch array and the DOX flag is set, then as
much data as possible is copied into the array without wrapping around. If the DOX
flag is not set, then the data wraps around overwriting any data previously stored at
the beginning of the dispatch array. Wrap around will not be allowed in the header for
the data dump, but is legal at any other point in the data dump.

The DAD data dump has the following format:

72727272 eeeegggg dddddddd ttttssss

aaaaaaaa xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

...

Where:

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.8-1

72727272 - Tag to identify the start of a dump
eeee - Event code
gggg - Group code

dddddddd - Number of days since January 1, 1970
tttt - Number of milliseconds since midnight
ssss - Number of bytes dumped

aaaaaaaa - Starting address of the dump
xxxxxxxx - Actual data dumped

Note: All data is shown in hex.

12.8.3 DAP Data Dump Layout

The DAP flag causes the used portion of the current stack, the processor registers, and
some header information to be copied to the dispatch array when hooks in switch
application code indicate that a dump should be made. The DAP flag supports the DOX
flag option.

If there is not enough room in the dispatch array and the DOX flag is set, then as
much data as possible is copied into the array without wrapping around. If the DOX
flag is not set, then the data wraps around overwriting any data previously stored at
the beginning of the dispatch array. Wrap around will not be allowed in the header for
the data dump or the register dump, but is legal at any other point in the data dump.
The DAP data dump has the following format:

74747474 eeeegggg dddddddd ttttssss

aaaaaaaa bbbbbbbb cccccccc hhhhhhhh

iiiiiiii jjjjjjjj kkkkkkkk llllllll

mmmmmmmm nnnnnnnn oooooooo pppppppp

qqqqqqqq rrrrrrrr uuuuuuuu vvvvvvvv

wwwwwwww xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

...

Where:

OSDS MONITOR 235-600-510
November 2000

Page 12.8-2 Issue 5.00

74747474 - Tag to identify the start of a dump
eeee - Event code
gggg - Group code

dddddddd - Number of days since January 1, 1970
tttt - Number of milliseconds since midnight
ssss - Number of bytes dumped

aaaaaaaa - Starting address of the dump
bbbbbbbb - R0 (AM), A0 (SM/CMP)
cccccccc - R1 (AM), A1 (SM/CMP)
hhhhhhhh - R2 (AM), A2 (SM/CMP)
iiiiiiii - R3 (AM), A3 (SM/CMP)
jjjjjjjj - R4 (AM), A4 (SM//CMP)
kkkkkkkk - R5 (AM), A5 (SM/CMP)
llllllll - R6 (AM), A6 (also known as FP, SM/CMP)
mmmmmmmm - R7 (AM), A7 (also known as SP, SM/CMP)
nnnnnnnn - R8 (AM), D0 (SM/CMP)
oooooooo - AP (AM), D1 (SM/CMP)
pppppppp - FP (AM), D2 (SM/CMP)
qqqqqqqq - SP (AM), D3 (SM/CMP)
rrrrrrrr - N/A (AM), D4 (SM/CMP)
uuuuuuuu - N/A (AM), D5 (SM/CMP)
vvvvvvvv - N/A (AM), D6 (SM/CMP)
wwwwwwww - N/A (AM), D7 (SM/CMP)
xxxxxxxx - Actual stack data dumped

Note: All data is shown in hex.

12.8.4 F00 Data Dump Layout

The F00 flag allows the user to dump memory or OSDS resource control block data to
the dispatch array.

For dump option 1 (raw memory data dump), the following format is used:

52525252 00000001 aaaaaaaa bbbbbbbb

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

...

Where:

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.8-3

52525252 - Tag to identify the start of a dump
00000001 - Code indicating the dump option (1)
aaaaaaaa - Starting address of the memory dump
bbbbbbbb - Number of bytes dumped. The actual number

of bytes dumped may be less than the
requested length if the dump was truncated
due to the DOX flag.

xxxxxxxx - Actual data dumped

For dump options 2, 3, or 5 (PCB, SCB, or TCB data dump), the following format is
used:

52525252 0000000a 00000000 bbbbbbbb

ccccdddd eeeeffgg ccccdddd eeeeffgg

...

Where:

52525252 - Tag to identify the start of a dump
0000000a - Code indicating the dump option (a = 2, 3, or 5)
bbbbbbbb - Number of PCBs, SCBs, or TCBs that were dumped

cccc - PCB, SCB, or TCB index
dddd - Index of the PCB that owned the PCB, SCB, or TCB
eeee - Program ID associated with the owning PCB

ff - State of the owning PCB

gg - Uniqueness of the owning PCB

For dump option 4 (MCB data dump), the following format is used:

52525252 00000004 00000000 bbbbbbbb

ccccdddd eeeeffgg hhhhhhhh iiiijjkk

...

Where:

52525252 - Tag to identify the start of a dump
00000004 - Code indicating the dump option (4)
bbbbbbbb - Number of MCBs that were dumped

cccc - MCB index
dddd - Index of the PCB that owned the MCB

eeee - Program ID associated with the owning PCB

ff - State of the owning PCB

gg - Uniqueness of the owning PCB

OSDS MONITOR 235-600-510
November 2000

Page 12.8-4 Issue 5.00

hhhhhhhh iiiijjkk is the message header associated with the MCB, where:

hhhhhhhh - Process ID of the sending process (the "from"
PID)

iiii - Message type
jj - Message priority
kk - Message length

Note: All data is shown in hex.

12.8.5 F01 Data Dump Layout

The F01 flag dumps the following information:

• A record of the maximum number of MCBs used

• A histogram of the number of MCBs in use by each process

• Per-event dumps for MCB acquisition, release, and process dispatches when MCBs
are in use

The record of the maximum number of the MCBs used is stored as a short (2 bytes) at
the start of the dispatch array.

The histogram of the number of MCBs in use by process immediately follows this short
at an offset of 0x2 from the start of the dispatch array. The histogram is stored as an
array of shorts and is indexed by the PCB number such that process 0’s data is stored
at offset 0x2 and process i’s data is stored at offset (i + 1) × 2 from the start of the
dispatch array.

Immediately following the histogram, the per-event data dumps begin. The exact offset
depends on the number of PCBs allocated on the processor (OKP: 145, CMP: 150,
loaded SM: 1050, standard or basic SM: 650). The per-event data starts at offset (# of
PCBs + 1) × 2. There are three types of per-event data dumps:

• MCB acquisition

• Process dispatch while an MCB is in use

• MCB release

The format of the MCB acquisition dump is as follows:

AAAAaaaa bbbbcccc ddddeeee

Where:

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.8-5

AAAA - Tag to identify the start of the dump
aaaa -- Acquiring process’s PCB number
bbbb - Message type
cccc - From processor number
dddd - From process’s PCB number
eeee - Number of MCBs held by the acquiring

process

The data dump format for process dispatch while an MCB is in use is as follows:

DDDDaaaa bbbbcccc ccccdddd dddd....

Where:

DDDD - Tag to identify the start of the dump
aaaa - PCB number of the process being dispatched
bbbb - Number of idle MCBs

cccccccc - Timestamp (in milliseconds)
dddddddd - Process’s segment length in milliseconds

.... - Start of the next dump (not part of this
dump)

The format of the MCB release dump is as follows:
FEFEaaaa

Where:

FEFE - Tag to identify the start of the dump
aaaa - Releasing process’s PCB number

Note: All data is shown in hex.

12.8.6 F18 Data Dump Layout

The F18 flag causes a function back trace to be dumped to the dispatch array
whenever OSREPLACE() or OSRESTART() is called.

The F18 dump has the following format:

52525252 aaaaaaaa bbbbbbbb ccccdddd

eeeeeeee ffffffff gggggggg hhhhhhhh

...
...

iiiiiiii

Where:

OSDS MONITOR 235-600-510
November 2000

Page 12.8-6 Issue 5.00

52525252 - Flag indicating the start of a data dump
aaaaaaaa - OSPID of the calling process
bbbbbbbb - Timestamp of the call to OSREPLACE() or

OSRESTART() (10 ms granularity)
cccc - Old program ID
dddd - New program ID

eeeeeeee - Number of addresses that follow
ffffffff - OS primitive’s return address
gggggggg - Return address of the OS primitive’s caller
hhhhhhhh - Return address of the caller of the OS primitive’s

caller
... - Remaining return addresses from the stack

iiiiiiii - Address of OSSUICIDE() (the last function on the user
stack)

12.8.7 F22 Data Dump Layout

The F22 flag dumps SDL trace information. The F22 dump has the following format:

aaaapppp bbbbcccc ttttiiii mmmmssss

Where:

aaaa - Code to identify SDL (7777) or SDLJ (6666)
pppp - Port associated with the process
bbbb - Program ID
cccc - Process ID
tttt - mdb_tag field
iiii - SDL input message type
mmmm - SDL model_id

ssss - SDL state

Note: All data is shown in hex.

12.8.8 F23, F25, F27, F29, F31 Data Dump Layout

The F25, F27, F29, and F31 flags all cause per-event message data to be dumped. All
of these flags use the same format with slightly different meanings for some of the
fields between the SM/CMP and the AM.

The F23 flag causes a timestamp to be appended to the data dumped by the F25, F27,
F29, and F31 flags. The F23 flag causes a long of the following format to be appended
to all per-event message data dumps:
aammmmmm

Where:

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.8-7

aa - Number of days since the monitor was
allowed

mmmmmm - Number of milliseconds since midnight

The F25, F27, F29, and F31 data dumps all have the following format. There are
different meanings for some fields in the different processors.

bbbbcccc ddddeeff gggghhii jjjjkkll

Where:

bbbb - Code to identify the dump source
3333 = F25 flag
2222 = F27 flag
5555 = F29 flag
888x = F31 flag
Where x is the logical link the message is sent over

cccc - Program ID of the receiving process (F27 or F29) or
program ID of the sending process (F25 or F31)

dddd - PCB number of the receiving process
ee - State of the destination process for F29; otherwise, the

destination processor ID
ff - Uniqueness value in the PCB of the receiving process

gggghhii jjjjkkll is the OSDS message header, where:

gggg - PCB number of the sending process (F27, F29, or F31),
or the pseudo PID of the sending process (F25, from a
UNIXa RTR process)

hh - Processor ID that the sending process is on
ii - Uniqueness value of the sending process

jjjj - Logical link (bit 15), end-to-end bit (bit 14), OSDS
message type (bits13 - 0)

kk - Large message indicator (bit 7), software release byte ID
indicator (bit 6), compressed message indicator (bit 5),
OSDS message priority (bits 2 - 0)

ll - Message length

a. Registered trademark of The Open Group.

12.8.9 HUF, HIJ, HPD, HPY, HMX, HSX, HSP Data Dump Layout

The HUF, HIJ, HPD, HPY, HMX, HSX, and HSP flags provide data concerning the number
of times certain OSDS jobs are performed and the amount of time spent in the various
jobs. The output for these flags is contained in reserved locations in the monitor
buffer; that is, the output is not stored in the dispatch array.

OSDS MONITOR 235-600-510
November 2000

Page 12.8-8 Issue 5.00

Table 12.8-1 and Table 12.8-2 show the locations that the data is recorded in for the
SM/CMP and the AM. The "active value" for the locations is the value while the
monitor is allowed and collecting data. The "final value" is the value after the monitor
has been inhibited. When the monitor is inhibited, various data is copied from scratch
locations into its final location.

See "OSDS Monitor Buffer Layouts," Section 12.7, for the actual offsets of the symbols
given in Tables 12.8-1 and 12.8-2.

Table 12.8-1 — SM/CMP OSDS Usage Data Layout

Flag Location Value
ab

OSSVPPDT Count of originated half calls
ab

OSSVCLKB Count of incoming half calls
ab

OSSVDDU1 Count of outgoing half calls
ab

OSSVDDU2 Count of terminated half calls
ab

OSSVDDU3 Number of POTS terminal processes created
HUF OSHPCHUF Count of foreground entries

HUF
OSHACHUF Accumulated time in foreground

HIJ
OSHPCHIJ Count of interject entries

HIJ OSHICHIJ Count of interject entries when OSsignals = 0
HIJ OSHACHIJ Accumulated time in interject when work was done

a
OSHPMSGI Count of interprocessor messages received

a
OSHPMSGO Count of interprocessor messages sent

a
OSHPMSGL Count of local messages delivered

c
OSHGPCNC Accumulator for the number of messages sent to the

PCNC process
c

OSHGCPRT Accumulator for the number of messages sent to the
CPRT process

c
OSHGPRGP Accumulator for the number of messages sent to the

PRGP process
c

OSHGICMP Accumulator for the number of messages sent to the
ICMP process

c
OSHGDDSP Accumulator for the number of messages sent to the

DDSP process
c

OSHGBCST Accumulator for the number of messages sent to the
BCST process

c
OSHGFALT Accumulator for the number of messages handled by

processes
HPYd OSHPCHPY Count of entries to and accumulated time in each

OSDS priority level
HPDd OSHPCHPD Count of entries to and accumulated time in each

program ID
Note(s):
a. A count is generated whenever the monitor is turned on.

235-600-510
November 2000

OSDS MONITOR

Issue 5.00 Page 12.8-9

Table 12.8-1 — SM/CMP OSDS Usage Data Layout (Contd)

Note(s): (Contd)
b. SM only. The count is only valid after the monitor is inhibited (not while the

monitor is running).
c. CMP only. Pegged when the monitor is allowed and when it is inhibited,
d. Data is an array starting at the given location. Each element in the array is 2

longs; the first long is a count of entries and the second long is an accumulated
time. For the HPY flag, the array is indexed by OSDS priority level. For the HPD
flag, the array is indexed by program ID.

Note: All accumulated times are in units of 125 µsec.

Table 12.8-2 — AM OSDS Usage Data Layout

Flag Location Value
ab

OSVSDNSA Count of messages for the IMCP process in OKP
ab

OSVSPIDP Count of messages for UNIX RTR processes
ab

OSVSPPDT Count of hairpin messages
ab

OSVSDDU1 Count of messages for the AMCT process in OKP
ab

OSVSDDU2 Count of messages for the DDCP process in OKP
ab

OSVSDDU3 Count of messages for the CCTP process in OKP
ab

OSVSDDU4 Count of messages for the BCST process in OKP
ab

OSVSDDU5 Count of messages for the AMCP process in OKP
ab

OSVSDDU6 Count of messages handled by processes
ab

OSVMDNSA Count of messages handled by PIC 0
ab

OSVMPIDP Count of messages handled by PIC 1
ab

OSVMPPDT Count of messages received by CNI
ab

OSVMCLKB Count of messages sent by CNI
HUF OSHPCHUF Count of UNIX RTR entries when work was

performed
HUF OSHACHUF Accumulated time in UNIX RTR when work was

performed
HUF OSHICHUF Count of idle UNIX RTR entries
HUF OSHICHOX Count of OKP entries
HUF OSHPCHOX Count of OKP entries when work was performed
HUF OSHACHOX Accumulated time in OKP when work was

performed
HUF OSHACOKP Accumulated time in OKP entries that were

longer than 2 ms
HUF OSHTOHOX Count of OKP entries that were longer than 100

ms
HIJ OSHPCHIJ Count of CM interject entries
HIJ OSHACHIJ Accumulated time in CM interject

OSDS MONITOR 235-600-510
November 2000

See note(s) at end of table.

Page 12.8-10 Issue 5.00

Table 12.8-2 — AM OSDS Usage Data Layout (Contd)

Flag Location Value
HIJ OSHPCCNI Count of CNI interject entries
HIJ OSHACCNI Accumulated time in CNI interject
HSX OSHPCHSX Count of SMKP entries
HSX OSHACHSX Accumulated time in SMKP
HMX OSHPCHMX Count of MSKP entries
HMX OSHACHMX Accumulated time in MSKP
HPYc OSHPCHPY Count of entries to and accumulated time in each

OSDS priority level
a OSHACSPY UNIX RTR SPY times (see the timesnap structure

in hdr/dmert/spy.h)
a OSHGHAIR Accumulator for number of hairpin messages
d OSHGIMCP Accumulator for the number of messages sent to

the IMCP process
d OSHGAMCT Accumulator for the number of messages sent to

the AMCT process
d OSHGDDCP Accumulator for the number of messages sent to

the DDCP process
d OSHGCCTP Accumulator for the number of messages sent to

the CCTP process
d OSHGBCST Accumulator for the number of messages sent to

the BCST process
d OSHGAMCP Accumulator for the number of messages sent to

the AMCP process
d OSHGPSCP Accumulator for the number of messages sent to

the PSCP process
d OSHGFALT Accumulator for the number of messages handled

by processes
a OSHGCMBP Count of messages sent via the base priority

queue (AM to world)
d OSHGCNIR Accumulator for the number of messages received

from the CNI ring
d OSHGCNIS Accumulator for the number of messages sent to

the CNI ring
HPDc OSHPCHPD Count of entries to and accumulated time in each

program ID for OKP
HSPc OSHPCHSP Count of entries to and accumulated time in each

program ID for SMKP
a OSHPMSGI Count of interprocessor messages received
a OSHPMSGO Count of interprocessor messages sent
a OSHPMSGL Count of local messages delivered

235-600-510
November 2000

OSDS MONITOR

See note(s) at end of table.

Issue 5.00 Page 12.8-11

Table 12.8-2 — AM OSDS Usage Data Layout (Contd)

Flag Location Value
a OSHPTUNX Count of messages sent from OKP to another

UNIX RTR process
a OSHPFUNX Count of messages sent from another UNIX RTR

process to OKP
a OSHPSCTU Count of messages from SMs or the CMP to UNIX

RTR processes other than OKP
Note(s):
a. A count is generated whenever the monitor is turned on.
b. The value is only valid after the monitor is inhibited (not while the monitor is

running).
c. Data is an array starting at the given location. Each element in the array is 2

longs; the first long is a count of entries and the second long is an accumulated
time. For the HPY flag, the array is indexed by OSDS priority level. For the HPD
and HSP flags, the array is indexed by program ID.

d. Pegged when the monitor is allowed and when it is inhibited.

Note: All accumulated times are in units of 125 µsec.

12.8.10 SEG Data Dump Layout

The SEG flag causes data concerning the number of consecutive real time segments
that a program runs to be dumped.

The SEG data dump has the following format:

aaaaaaaa bbbbcccc dddddddd eeeeeeee

Where:

aaaaaaaa - Timestamp (125 µsec units for the SM/CMP, 1 millisecond
for OKP)

bbbb - Program ID of the process
cccc - Number of consecutive segments

dddddddd - Total real time of the consecutive segments (125 µsec
units for SM/CMP, 1 millisecond for OKP)

eeeeeeee - Elapsed time between the start of the first segment and
the end of the last segment (125 µsec units for SM/CMP, 1
millisecond for OKP)

OSDS MONITOR 235-600-510
November 2000

Page 12.8-12 Issue 5.00

Software Analysis Guide

CONTENTS PAGE

13. OSDS OVERLOAD MONITOR 13-1
13.1 OVERVIEW . 13-1
13.2 PCB OVERLOADS 13-1
13.3 SCB OVERLOADS 13-1
13.4 MCB OVERLOADS 13-1
13.5 TCB OVERLOADS 13-1
13.6 OUTPUT FILES . 13-1

13.6.1 Output File Location and Layout 13-1
13.6.2 PCB Data Dump Layout 13-2
13.6.3 SCB Data Dump Layout 13-2
13.6.4 MCB Data Dump Layout 13-3
13.6.5 TCB Data Dump Layout 13-3

13.7 UP-LOADING CONTENTION 13-4

235-600-510
November 2000

OSDS OVERLOAD MONITOR

Issue 5.00 Page 13-i

13. OSDS OVERLOAD MONITOR

13.1 OVERVIEW

The OSDS overload monitor is a feature present on the AM-OKP, CMP, and SM-2000s
that records data whenever an overload occurs on one of the OSDS resources such as
process control blocks (PCBs), stack control blocks (SCBs), message control blocks
(MCBs), or timer control blocks (TCBs). See "OSDS Monitor," Section 12.2, for
information on the OSDS resources.

The data is gathered at the moment when the overload is detected and is written to a
file on the AM. The data can be used as a starting point for investigation of the
overload. It may not provide enough information to determine the complete cause of
the overload, but will at least indicate an area to investigate further via the OSDS
monitors.

13.2 PCB OVERLOADS

When a PCB overload occurs, a piece of data is written for every PCB in use. The data
consists of the PCB number (also known as, the process number), program ID, current
state and uniqueness of the process. See "PCB Data Dump Layout," Section 13.6.2 for
the layout of the dump.

13.3 SCB OVERLOADS

When an SCB overload occurs, a piece of data is written for every SCB in use. The data
consists of the SCB number, process number, program ID, current state and
uniqueness of the owning process. See "SCB Data Dump Layout," Section 13.6.3 for the
layout of the dump.

13.4 MCB OVERLOADS

When an MCB overload occurs, a piece of data is written for every MCB in use. The data
consists of the MCB number, process number, program ID, current state and
uniqueness of the owning process, and the message header of the message stored in
the MCB. The message header contains the sending process ID, message type, message
priority, and message length. See "MCB Data Dump Layout," Section 13.6.4 for the
layout of the dump.

13.5 TCB OVERLOADS

When a TCB overload occurs, a piece of data is written for every TCB in use. The data
consists of the TCB number (also known as the timer’s system tag), process number,
program ID, current state and uniqueness of the owning process, the timer’s user tag
and the timer’s state. See "TCB Data Dump Layout," Section 13.6.5 for the layout of
the dump.

13.6 OUTPUT FILES

13.6.1 Output File Location and Layout

The output files for the OSDS overload monitor are all stored on the AM in the /log
directory. The file names follow the convention:
OM<proc #>.<uniq #>

Where:

proc # - number of the processor on which the overload occurred (1-192 =
SMs/SM-2000s, 193 = OKP, 194 = active CMP, 206 = standby CMP).

uniq # - number to ensure that the file name is unique.

235-600-510
November 2000

OSDS OVERLOAD MONITOR

Issue 5.00 Page 13-1

Example:

OM1.456 - overload occurred on SM1

OM193.4 - overload occurred in OKP

A maximum of five OM<proc #>.<uniq #> files can be kept in the /log directory. If
five files exist when another overload occurs, the oldest file will be deleted.

13.6.2 PCB Data Dump Layout

A file containing PCB overload information will begin with a dump of:
5252525200000002

This key is followed by an 8 byte dump for each PCB that was in use at the time of the
overload. The dump layout is:
0000pppp ggggssuu

Where:

pppp - Process number

gggg - Program ID

ss - Process State

0 = EMPTY (not in use)

1 = RUNNING (process was running)

2 = READY (process was ready to run)

3 = WAITING (process was waiting via OSWAIT())

4 = RECEIVING (process was waiting via OSWGETMSG())

5 = RECTYPE (process was waiting via OSWGETTYPE())

6 = RECFROM (process was waiting via OSWGETFROM())

7 = RESTARTING (process was waiting via OSRESTART())

8 = CMP - BLOCKED (process was blocked by CMP soft switch)
OKP,SM - LIMBO (transient state)

9 = CMP - LIMBO (transient state)
OKP,SM - not used

uu - Process uniqueness

13.6.3 SCB Data Dump Layout

A file containing SCB overload information will begin with a dump of:
5252525200000003

This key is followed by an 8 byte dump for each SCB that was in use at the time of the
overload. The dump layout is:
sssspppp ggggssuu

Where:

ssss - SCB number

pppp - number of the owning process

gggg - program ID of the owning process

OSDS OVERLOAD MONITOR 235-600-510
November 2000

Page 13-2 Issue 5.00

ss - state of the owning process (See "PCB Data Dump Layout," Section
13.6.2 for key)

uu - uniqueness of the owning process

13.6.4 MCB Data Dump Layout

A file containing MCB overload information will begin with a dump of:
5252525200000004

This key is followed by a 16 byte dump for each MCB that was in use at the time of the
overload. The dump layout is:
mmmmpppp ggggssuu xxxxyyzz ttttrrll

Where:

mmmm - MCB number

pppp - number of the owning process

gggg - program ID of the owning process

ss - state of the owning process (See "PCB Data Dump Layout," Section
13.6.2 for key)

uu - uniqueness of the owning process

xxxx - process number of the sending process

yy - processor number of the sending process

zz - uniqueness of the sending process

tttt - message type

rr - message priority (0-7)

ll - message length

13.6.5 TCB Data Dump Layout

A file containing TCB overload information will begin with a dump of:
5252525200000005

This key is followed by a 12 byte dump for each TCB that was in use at the time of the
overload. The dump layout is:
ttttpppp ggggssuu xxxx00yy

Where:

tttt - TCB number (timer’s system tag)

pppp - number of the owning process

gggg - program ID of the owning process

ss - state of the owning process (see "PCB Data Dump Layout," Section
13.6.2 for key)

uu - uniqueness of the owning process

xxxx - timer’s user tag

yy - timer’s state

0 = EMPTY (not in use)

1 = QTIMEOUT (timer used by OS wait primitives)

235-600-510
November 2000

OSDS OVERLOAD MONITOR

Issue 5.00 Page 13-3

2 = QTIMER (one-shot timer)

3 = CTIMER (cyclic timer)

4 = ATIMER (one-shot time-of-day timer)

5 = CATIMER (cyclic time-of-day timer)

6 = LIMBO (transient state)

13.7 UP-LOADING CONTENTION

The OSDS overload monitor uses the same up-loading mechanism as the OSDS
monitors. Therefore, only one processor may send overload monitor data or OSDS
monitor data to the AM at a time. The overload monitor has a built in mechanism to
retry up-loading data in the event that the up-loading mechanism is in use.

OSDS OVERLOAD MONITOR 235-600-510
November 2000

Page 13-4 Issue 5.00

A1. ENVIRONMENT TO PATHNAME CROSS REFERENCE

Environment Pathname Description
3BSWAB /bin/3bswab Swab bytes in files for other

machines
ABTAM /cft/shl/cmds/ABT/AMATAPE Abort Automatic Message

Accounting (AMA) tape writing
process

AIM /prc/aim Application integrity monitor
ALSAM /cft/shl/cmds/ALW/AMA/SESSION Allow AMA session
ALTAM /cft/shl/cmds/ALW/AMA/AUTOST Allow automatic AMA tape

writing
AMDW /no5text/prc/amdwic

/no5text/prc/amdwoc
AMA message disk writer
kernel processes

APDL /no5text/prc/apdl Application processor data link
process

APPRC /usr/bin/apprc Recent Change (RC)
maintenance control center

BKCNTL /no5text/rcv/bkcntl Office Dependent Data (ODD)
backup control UNIXa RTR
process

BOCNTL /no5text/prc/SIrcbk RC backup control UNIX RTR
process

CCSINIT /no5text/prc/ccsinit Common Channel Signaling
(CCS) initialization

CCpgeupdt /no5text/hm/CCpgeupdt CCS
CFILEAM /cft/shl/cmds/OP/AMA/CONTROLFILE Output contents of AMA control

file
CMKP /no5text/prc/cmkp Communication package kernel

process
CMP-AP /no5text/cmp/CMP.out CMP application processor
CMP-MSGH /no5text/cmp/CMPMSGH.out CMP message handler processor
CMP-OUT /no5text/cmp/CMP.out
CMPPUMP /no5text/prc/cmppump CMP pump process
COTDL Customer-originated trace data

link
CPBKUP /no5text/rcv/cpbkup Database backup UNIX RTR

process for AM
CPDIAGC /no5text/diag/dgnc/cpdiagc AM diagnostic control
CPIMCTL AM-SM control
CPRMV
CPRS /no5text/diag/dgnc/cprs Diagnostic (DG)
CPTLPR /no5text/diag/dgnc/cptlpr AM trouble locating procedure

process (for CM hardware)
CTRD /no5text/tm/CTrd Terminal Maintenance (TM)
CTWR /no5text/tm/CTwr TM
DB3BBSTUNX Redundant bit map recovery

process
DBCP3BEDPKG /usr/bin/odbe- UNIX RTR product for the

Office Data Base Editor (ODBE)

235-600-510
November 2000

APPENDIX 1
ENVIRONMENT TO PATHNAME CROSS REFERENCE

See note(s) at end of table.

Issue 5.00 Page A1-1

Environment Pathname Description
DBNRGRWUNX Non-redundant ODD growth
DBODDGRW /no5text/rcv/oddgrw AM ODD growth
DBRGRWUNX Redundant ODD growth
DBSACNVT /no5text/rcv/sacnvt Converts an RSM to a

stand-alone module
DBUGRWUNX Unprotected ODD growth
DGCPSUPC /no5text/prc/DGcpsupc AM diagnostic supervisor
DGPSUP /no5text/prc/DGpsup DG paging supervisor
DMAM Diagnostic maintenance

supervisor
DMON /no5text/diag/dgnc/dmon Diagnostic monitor
DWAM /no5text/prc/amdwic DG
ECAP /no5text/as/ECap EADAS UNIX RTR

administrative process
ECR3 /no5text/as/ECr3 EADAS UNIX RTR high

priority channel read process
ECR4 /no5text/as/ECr4 EADAS UNIX RTR low priority
ECR5 /no5text/as/ECr5 EADAS UNIX RTR read

process
ECR6 /no5text/as/ECr6 EADAS UNIX RTR read

process
ECW3 /no5text/as/ECw3 EADAS UNIX RTR high

priority channel write process
ECW4 /no5text/as/ECw4 EADAS UNIX RTR low priority

channel write process
ECW5 /no5text/as/ECw5 EADAS UNIX RTR write

process
ECW6 /no5text/as/ECw6 EADAS UNIX RTR write

process
FPUMP /no5text/prc/fpump SM fast pump
FTPAM /no5text/prc/amftpic AMA file transfer process
GROWTH /no5text/rcv/smoddbst ODD growth processes

/no5text/rcv/smoddngre
/no5text/rcv/smoddrgrw
/no5text/rcv/smoddugrw

HMALM /no5text/hm/HMalm Human machine alarm process
HMIRA /no5text/hm/HMira Human machine input request

administrator
HMLOGMAP /no5text/hm/HMlogmap Human machine logfile

mapping UNIX RTR process
HMMCC /no5text/hm/HMmcc Human machine master control

center (MCC) control process
HMOPN Human machine UNIX RTR

process
HMREAD /no5text/hm/HMiread

/no5text/hm/HMoread
Human machine read UNIX
RTR processes

HMSIP /no5text/hm/HMsip Human machine spooler input
process

APPENDIX 1
ENVIRONMENT TO PATHNAME CROSS REFERENCE

235-600-510
November 2000

See note(s) at end of table.

Page A1-2 Issue 5.00

Environment Pathname Description
HMTIME /no5text/hm/HMtime Human machine timing process
INHSAM /cft/shl/cmds/INH/AMA/SESSION Inhibit AMA session
INHTAM /cft/shl/cmds/INH/AMA/AUTOST Inhibit automatic AMA tape

writing
IODRV /bootfiles/3bsgen.kern I/O driver kernel process
LBPUMP /no5text/prc/lbpump SM little boot pump
LGCNTL /no5text/rcv/lgcntl RC log control UNIX RTR

process
LGCRC /no5text/rcv/lgcrc Customer Originated Recent

Change (CORC) log control
UNIX RTR process

LGINITROLL /no5text/rcv/lginitroll ODD log roll forward UNIX
RTR process

LGLOG /no5text/rcv/lglog RC log control UNIX RTR
process

LGROLL /no5text/rcv/lgroll RC recovery UNIX RTR process
MCRTRC /usr/bin/mcrtrc RC
MONAM AMA monitor process
MOP /no5text/prc/mop Mount offline partition process
MSDIAGC Diagnostic control
MSKP /no5text/prc/mskp Message switch kernel process
ODDPAR /no5text/rev/oddgrow Parent process of the ODD

growth
ODISKAM /cft/shl/cmds/OP/AMA/DISK Output AMA disk occupancy

information
OGEN /prc/ogen AM modified for 5ESS® switch

use
OKP /no5text/prc/okp Operational kernel process
OPTPAM /cft/shl/cmds/OP/AMA/TELEPROCESSINGOutput AMA teleprocessing

information
OSDSM /no5text/im/smtxt/IM.out OSDS in the SM

/no5text/im/sm2ktxt/IM.out
OSESAM /cft/shl/cmds/OP/AMA/SESSION Output AMA session

information
PCTL /no5text/prc/UPpctl Program update control
PDSHL.APP /cft//bin/pdshl.app Application synchronous craft

shell
PDSHLA.APP Application synchronous craft

shell
PLOD /no5text/prc/plod Process for loading ODD on to

disk
PLOP /no5text/prc/plop Process for loading ODD in the

Protected Application Segment
(PAS)

PMKP /prc/pmkp Pump kernel process
PUCR /no5text/prc/pucr Pump control process
PUMP /no5text/ims/pump SM pump process

235-600-510
November 2000

APPENDIX 1
ENVIRONMENT TO PATHNAME CROSS REFERENCE

See note(s) at end of table.

Issue 5.00 Page A1-3

Environment Pathname Description
PUPCI /no5text/prc/UPpupci Program update process - craft

interface
RCCP3BSRC /no5text/rcv/RCcp3bsec RC
RCKP /no5text/prc/rckp RC kernel process
RCRMAS
RINGMON /no5text/ccs/proc/CCringmon CCS ring monitor process
RTR RTR kernel process
SFAM /cft/shl/cmds/SET/AMA/CONTROL Set AMA control file

information
SIOFFN /no5text/prc/SIoffn System integrity offnormal

reporting process
SMAPRTS /no5text/prc/SMaprts Application real time status
SMBKUP /no5text/rcv/cpbkup SM ODD backup UNIX RTR

process
SMDIMP /no5text/prc/SMdimp SM diagnostic input message

processor
SMDOMP /no5text/prc/SMdomp SM diagnostic output message

processor
SMIIAU /no5text/prc/SMiiau Switch maintenance inhibit and

allow UNIX RTR process
SMIMRPT SM, IM report generator
SMKP /no5text/prc/smkp Switch maintenance kernel

process
SMNO5FM 5ESS switch frame power

monitor
SMONL SM off-normal reporting UNIX

RTR process
SMPSM /no5text/prc/SMpsm Switch maintenance power

switch monitor
SMSTO /no5text/prc/SMstout
SMSTOUT /no5text/prc/SMstout Switch maintenance status

output UNIX RTR process
STAM Stop AMA tape writing process
SUOVPRC
TAPEAM AMA tape writing process
TERAUX Export trunk error analysis
TMDAP TM display administrator
TMSR
TMSW
UAXFER
UCNTL /no5text/prc/ucntl AM modified for 5ESS switch

use
UPDISPATCH /no5text/prc/UPdispatch Program update UNIX RTR

process
UPSETIND /no5text/prc/UPsetind Program update UNIX RTR

process
UTCP3B /no5text/prc/utcp3b AM utilities UNIX RTR process

APPENDIX 1
ENVIRONMENT TO PATHNAME CROSS REFERENCE

235-600-510
November 2000

See note(s) at end of table.

Page A1-4 Issue 5.00

Environment Pathname Description
UTLRMAIN /no5text/prc/WElrmain AM untilities UNIX RTR

process
UTLSMAIN /no5text/prc/WElsmain AM utilities UNIX RTR process
VERTAPEAM /no5text/prc/amtapeic Verify the AMA tape
VTAM /cft/shl/cmds/VFY/AMATAPE Verify the AMA tape
WTAM /cft/shl/cmds/CPY/AMATAPE Write the AMA tape

a. Registered trademark of The Open Group.

235-600-510
November 2000

APPENDIX 1
ENVIRONMENT TO PATHNAME CROSS REFERENCE

Issue 5.00 Page A1-5

A2. IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY MNEMONIC)

This section contains the IS25, 3B20, and 3B21 computer instruction list sorted by
mnemonic. The following listing defines the letters used in the syntax column of this
appendix.

g general addressing mode

i immediate mode

n nibble mode (4-bit immediate)

m memory mode (0-9)

r register number

A more detailed discussion of the instruction set for 3B20D and 3B21D computers can
be found in the 3B20D and 3B21D Computer manuals, specifically the 303-028,
UNIX1 RTR Operating System Assembly Language User’s Guide.

Table A2-1 — Mnemonics A Through H

Mnemonic Opcode Subcode Syntax Function Type
acj1 74 0 rggm Add, compare and jump less IS25
acj1 74 4 mggm Add, compare and jump less IS25
acj1 74 8 rggm Add, compare and jump less IS25
acj1 74 C mggm Add, compare and jump less IS25
acj1e 74 2 rggm Add, compare and jump less

or equal
IS25

acj1e 74 6 mggm Add, compare and jump less
or equal

IS25

acjle 74 A rggm Add, compare and jump less
or equal

IS25

acjle 74 E mggm Add, compare and jump less
or equal

IS25

acjleu 74 3 rggm Add, compare and jump less
or equal unsigned

IS25

acjleu 74 7 mggm Add, compare and jump less
or equal unsigned

IS25

acjleu 74 B rggm Add, compare and jump less
or equal unsigned

IS25

acjleu 74 F mggm Add, compare and jump less
or equal unsigned

IS25

acjlu 74 1 rggm Add, compare and jump less
unsigned

IS25

acjlu 74 5 mggm Add, compare and jump less
unsigned

IS25

1. Registered trademark of The Open Group.

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-1

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
acjlu 74 9 rggm Add, compare and jump less

unsigned
IS25

acjlu 74 D mggm Add, compare and jump less
unsigned

IS25

addb2 20 6 rr Add (2 oper) IS25
addb2 21 6 rm Add (2 oper) IS25
addb2 22 6 nr Add (2 oper) IS25
addb2 23 6 nm Add (2 oper) IS25
addb2 24 6 gr Add (2 oper) IS25
addb2 25 6 gm Add (2 oper) IS25
addb3 68 3 ggr Add (3 oper) IS25
addb3 68 B ggm Add (3 oper) IS25
addh2 28 6 rr Add (2 oper) IS25
addh2 29 6 rm Add (2 oper) IS25
addh2 2A 6 nr Add (2 oper) IS25
addh2 2B 6 nm Add (2 oper) IS25
addh2 2C 6 gr Add (2 oper) IS25
addh2 2D 6 gm Add (2 oper) IS25
addh3 69 3 ggr Add (3 oper) IS25
addh3 69 B ggm Add (3 oper) IS25
addw2 10 - rr Add (2 oper) OPT
addw2 11 - nr Add (2 oper) OPT
addw2 30 6 rr Add (2 oper) IS25
addw2 31 6 rm Add (2 oper) IS25
addw2 32 6 nr Add (2 oper) IS25
addw2 33 6 nm Add (2 oper) IS25
addw2 34 6 gr Add (2 oper) IS25
addw2 35 6 gm Add (2 oper) IS25
addw3 6A 3 ggr Add (3 oper) IS25
addw3 6A B ggm Add (3 oper) IS25
alsw2 - - gm Arith. left shift (2 oper) IS25
alsw2 - - gr Arith. left shift (2 oper) IS25
alsw3 6D 2 ggr Arith. left shift (3 oper) IS25
alsw3 6D A ggm Arith. left shift (3 oper) IS25
andb2 20 0 rr And (2 oper) IS25
andb2 21 0 rm And (2 oper) IS25
andb2 22 0 nr And (2 oper) IS25
andb2 23 0 nm And (2 oper) IS25

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-2 Issue 5.00

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
andb2 24 0 gr And (2 oper) IS25
andb2 25 0 gm And (2 oper) IS25
andb3 68 0 ggr And (3 oper) IS25
andb3 68 8 ggm And (3 oper) IS25
andh2 28 0 rr And (2 oper) IS25
andh2 29 0 rm And (2 oper) IS25
andh2 2A 0 nr And (2 oper) IS25
andh2 2B 0 nm And (2 oper) IS25
andh2 2C 0 gr And (2 oper) IS25
andh2 2D 0 gm And (2 oper) IS25
andh3 69 0 ggr And (3 oper) IS25
andh3 69 8 ggm And (3 oper) IS25
andw2 1B - rr And (2 oper) OPT
andw2 30 0 rr And (2 oper) IS25
andw2 31 0 rm And (2 oper) IS25
andw2 32 0 nr And (2 oper) IS25
andw2 33 0 nm And (2 oper) IS25
andw2 34 0 gr And (2 oper) IS25
andw2 35 0 gm And (2 oper) IS25
andw3 6A 0 ggr And (3 oper) IS25
andw3 6A 8 ggm And (3 oper) IS25
arsw2 - - gm Arith. right shift (2 oper) IS25
arsw2 - - gr Arith. right shift (2 oper) IS25
arsw3 6D 3 ggr Arith. right shift (3 oper) IS25
arsw3 6D B ggm Arith. right shift (3 oper) IS25
atjnzb 75 0 rgm Add, test and jump not zero IS25
atjnzb 75 4 mgm Add, test and jump not zero IS25
atjnzb 75 8 rgm Add, test and jump not zero IS25
atjnzb 75 C mgm Add, test and jump not zero IS25
atjnzh 75 1 rgm Add, test and jump not zero IS25
atjnzh 75 5 mgm Add, test and jump not zero IS25
atjnzh 75 9 rgm Add, test and jump not zero IS25
atjnzh 75 D mgm Add, test and jump not zero IS25
atjnzw 75 2 rgm Add, test and jump not zero IS25
atjnzw 75 6 mgm Add, test and jump not zero IS25
atjnzw 75 A rgm Add, test and jump not zero IS25
atjnzw 75 E mgm Add, test and jump not zero IS25
bcc 85 - m Branch on carry clear OPT

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-3

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
bcc 95 - m Branch on carry clear OPT
bcs 86 - m Branch on carry set OPT
bcs 96 - m Branch on carry set OPT
be 82 - m Branch equal OPT
be 92 - m Branch equal OPT
bg 89 - m Branch greater OPT
bg 99 - m Branch greater OPT
bge 83 - m Branch greater or equal OPT
bge 93 - m Branch greater or equal OPT
bgeu 86 - m Branch greater or equal

unsigned
OPT

bgeu 96 - m Branch greater or equal
unsigned

OPT

bgu 8B - m Branch greater unsigned OPT
bgu 9B - m Branch greater unsigned OPT
bitb 20 3 rr Bit test IS25
bitb 21 3 rm Bit test IS25
bitb 22 3 nr Bit test IS25
bitb 23 3 nm Bit test IS25
bitb 24 3 gr Bit test IS25
bitb 25 3 gm Bit test IS25
bith 28 3 rr Bit test IS25
bith 29 3 rm Bit test IS25
bith 2A 3 nr Bit test IS25
bith 2B 3 nm Bit test IS25
bith 2C 3 gr Bit test IS25
bith 2D 3 gm Bit test IS25
bitw 1D - rr Bit test OPT
bitw 30 3 rr Bit test IS25
bitw 31 3 rm Bit test IS25
bitw 32 3 nr Bit test IS25
bitw 33 3 nm Bit test IS25
bitw 34 3 gr Bit test IS25
bitw 35 3 gm Bit test IS25
bl 84 - m Branch less OPT
bl 94 - m Branch less OPT
ble 8A - m Branch less or equal OPT
ble 9A - m Branch less or equal OPT

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-4 Issue 5.00

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
bleu 8C - m Branch less or equal

unsigned
OPT

bleu 9C - m Branch less or equal
unsigned

OPT

blu 85 - m Branch less unsigned OPT
blu 95 - m Branch less unsigned OPT
bne 81 - m Branch not equal OPT
bne 91 - m Branch not equal OPT
bneg 84 - m Branch negative OPT
bneg 94 - m Branch negative OPT
bnneg 83 - m Branch not negative OPT
bnneg 93 - m Branch not negative OPT
bnpos 8A - m Branch not positive OPT
bnpos 9A - m Branch not positive OPT
bnz 81 - m Branch not zero OPT
bnz 91 - m Branch not zero OPT
bph 6F - - Breakpoint halt 3B20
bpos 89 - m Branch positive OPT
bpos 99 - m Branch positive OPT
bpt DA - i Breakpoint trap 3B20
br 80 - m Branch OPT
br 90 - m Branch OPT
bsb 8F - m Branch to subroutine OPT
bsb 9F - m Branch to subroutine OPT
bsmo8 46 8 - BIST and boundary scan 3B21
bsmo9 46 9 - BIST and boundary scan 3B21
bsmoa 46 a - BIST and boundary scan 3B21
bsmob 46 b - BIST and boundary scan 3B21
bsmoc 46 c - BIST and boundary scan 3B21
bsmod 46 d - BIST and boundary scan 3B21
bsmoe 46 e - BIST and boundary scan 3B21
bsmof 46 f - BIST and boundary scan 3B21
bvc 87 - m Branch on overflow clear OPT
bvc 97 - m Branch on overflow clear OPT
bvs 88 - m Branch on overflow set OPT
bvs 98 - m Branch on overflow set OPT
bz 82 - m Branch zero OPT
bz 92 - m Branch zero OPT

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-5

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
cachi C6 3 - Cache initialization PRIV
cale 7C - igi Call to emulation PRIV
call 77 0 ig Call OPT
call 77 1 ig Call OPT
call 78 - ig Call IS25
call 79 - ig Call OPT
call B9 8 igm Call OPT
chrh D4 3 r Cache read hit counter 3B20
chrm D4 4 r Cache read miss counter 3B20
cinov C1 B r Clear I/O inhibit override PRIV
clrmd0 E0 8 - Clear my store error D PRIV
clrmd1 E0 9 - Clear my store error D PRIV
clrod0 E2 8 - Clear other store error D PRIV
clrod1 E2 9 - Clear other store error D PRIV
cmpb 20 E rr Compare IS25
cmpb 21 E rg Compare IS25
cmpb 22 E nr Compare IS25
cmpb 22 F rn Compare IS25
cmpb 23 E ng Compare IS25
cmpb 23 F mn Compare IS25
cmpb 24 E gr Compare IS25
cmpb 25 E gg Compare IS25
cmph 28 E rr Compare IS25
cmph 29 E rg Compare IS25
cmph 2A E nr Compare IS25
cmph 2A F rn Compare IS25
cmph 2B E ng Compare IS25
cmph 2B F mn Compare IS25
cmph 2C E gr Compare IS25
cmph 2D E gg Compare IS25
cmpn 36 - ri Compare IS25
cmpw 18 - rr Compare OPT
cmpw 19 - nr Compare OPT
cmpw 1A - rn Compare OPT
cmpw 30 E rr Compare IS25
cmpw 31 E rg Compare IS25
cmpw 32 E nr Compare IS25
cmpw 32 F rn Compare IS25

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-6 Issue 5.00

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
cmpw 33 E ng Compare IS25
cmpw 33 F mn Compare IS25
cmpw 34 E gr Compare IS25
cmpw 35 E gg Compare IS25
cmpzv 6E 2 riir Compare field IS25
cmpzv 6E 6 riim Compare field IS25
cmpzv 6E A giir Compare field IS25
cmpzv 6E E giim Compare field IS25
cpoff ED 8 rr Compare off-line ms to

on-line ms
PRIV

cpon ED 0 rr Copy on-line main store PRIV
cs D2 - r Change state PRIV
decpth 59 - rr Decrement pointer by index IS25
decptw 5A - rr Decrement pointer by index IS25
diag C3 - i Diagnostics opcode PRIV
divw2 30 A rr Divide (2 oper) IS25
divw2 31 A rm Divide (2 oper) IS25
divw2 32 A nr Divide (2 oper) IS25
divw2 33 A nm Divide (2 oper) IS25
divw2 34 A gr Divide (2 oper) IS25
divw2 35 A gm Divide (2 oper) IS25
divw3 6C 2 ggr Divide (3 oper) IS25
divw3 6C A ggm Divide (3 oper) IS25
dmioh C0 5 rrr Do maint. I/O PRIV
dmiow C0 1 rrr Do maint. I/O PRIV
doioh C0 4 rrr Do I/O PRIV
doiow C0 0 rrr Do I/O PRIV
enmd E0 B - Enable my store error D

reporting
PRIV

enod E2 B - Enable other store error D
reporting

PRIV

extzv 6E 1 riir Extract field IS25
extzv 6E 5 riim Extract field IS25
extzv 6E 9 giir Extract field IS25
extzv 6E D giim Extract field IS25
fidl C0 8 r Force channel idle PRIV
frz 1F - rr Find rightmost zero 3B20
gcc DC 0 r Get condition code 3B20

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-7

Table A2-1 — Mnemonics A Through H (Contd)

Mnemonic Opcode Subcode Syntax Function Type
getproc DC - - Get address of processor

rable entry
3B20

haltx DF - i Halt machine and display 3B20

Table A2-2 — Mnemonics I Through Q

Mnemonic Opcode Subcode Syntax Function Type
incpth 57 - rr Increment pointer by index IS25
incptw 58 - rr Increment pointer by index IS25
inctst B5 - rir Increment and test index IS25
inctst B6 - rig Increment and test index IS25
inhmd E0 A - Inhibit my store error D

reporting
PRIV

inhod E2 A - Inhibit other store error D PRIV
initgp A0 00 - Initialize general purpose

registers
3B20

insv 6E 0 riir Insert field IS25
insv 6E 4 riim Insert field IS25
insv 6E 8 giir Insert field IS25
insv 6E C giim Insert field IS25
iocler C2 8 rr I/O clear error PRIV
ioeack C2 A rr I/O error acknowledge PRIV
ioiack C2 9 rr I/O interrupt acknowledge PRIV
ioidl C2 1 r I/O idle PRIV
iord C2 2 rr I/O receive data PRIV
ioread C2 F rrrr I/O read user cmd PRIV
iorint C2 4 rr I/O receive interrupt status PRIV
iorsr C2 5 rr I/O receive service request PRIV
iorst C2 3 rr I/O receive status PRIV
iosrack C2 B rr I/O service request

acknowledge
PRIV

iowca C2 6 rr I/O write cmd address PRIV
iowd C2 7 rr I/O write data PRIV
iowdp C2 C rr I/O write data with parity PRIV
iowt C2 C rrrr I/O write user cmd PRIV
jbc 72 0 igm Jump on bit clear IS25
jbs 72 1 igm Jump on bit set IS25
jcc 70 5 m Jump on carry clear 3B20
jcs 70 6 m Jump on carry set 3B20

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-8 Issue 5.00

Table A2-2 — Mnemonics I Through Q (Contd)

Mnemonic Opcode Subcode Syntax Function Type
je 70 2 m Jump equal IS25
jg 70 9 m Jump greater IS25
jge 70 3 m Jump greater or equal IS25
jgeu 70 6 m Jump greater or equal

unsigned
IS25

jgu 70 B m Jump greater unsigned IS25
jioe 73 0 m Jump on I/O error 3B20
jiom 73 1 m Jump on I/O maint 3B20
jion 73 2 m Jump on I/O normal 3B20
jiot 73 3 m Jump on I/O timeout 3B20
jl 70 4 m Jump less IS25
jle 70 A m Jump less or equal IS25
jleu 70 C m Jump less or equal

unsigned
IS25

jlu 70 5 m Jump less unsigned IS25
jmp 70 0 m Jump IS25
jne 70 1 m Jump not equal IS25
jneg 70 4 m Jump negative IS25
jnneg 70 3 m Jump not negative IS25
jnpos 70 A m Jump not positive IS25
jnz 70 1 m Jump not zero IS25
jpos 70 9 m Jump positive IS25
jsb 70 F m Jump to subroutine IS25
jvc 70 7 m Jump on overflow clear 3B20
jvs 70 8 m Jump on overflow set 3B20
jz 70 2 m Jump zero IS25
lbsmd 46 7 - BIST and boundary scan 3B21
lbsms 46 6 - BIST and boundary scan 3B21
llsw2 - - gm Logical left shift (2 oper) IS25
llsw2 - - gr Logical left shift (2 oper) IS25
llsw3 6D 0 ggr Logical left shift (3 oper) IS25
llsw3 6D 8 ggm Logical left shift (3 oper) IS25
lmchb C5 5 r Load from on-line mch

buffer
PRIV

lmchs C5 4 r Load from on-line mch
status

PRIV

lrsw2 - - gm Logical right shift (2 oper) IS25
lrsw2 - - gr Logical right shift (2 oper) IS25
lrsw3 6D 1 ggr Logical right shift (3 oper) IS25

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-9

Table A2-2 — Mnemonics I Through Q (Contd)

Mnemonic Opcode Subcode Syntax Function Type
lrsw3 6D 9 ggm Logical right shift (3 oper) IS25
lsm 65 0 gm Load selected multiple

registers
3B20

marf d6 a - Maintenance access - read
offline

3B21

marn d6 8 - Maintenance access - read
online

3B21

mawf d6 b - Maintenance access - write
offline

3B21

mawn d6 9 - Maintenance access - write
online

3B21

mchex C5 1 - Maint. channel exec PRIV
mchin C5 0 - Maint. channel init PRIV
mcomb 40 1 rr Move complemented IS25
mcomb 41 1 rm Move complemented IS25
mcomb 42 1 nr Move complemented IS25
mcomb 43 1 nm Move complemented IS25
mcomb 44 1 gr Move complemented IS25
mcomb 45 1 gm Move complemented IS25
mcomh 48 1 rr Move complemented IS25
mcomh 49 1 rm Move complemented IS25
mcomh 4A 1 nr Move complemented IS25
mcomh 4B 1 nm Move complemented IS25
mcomh 4C 1 gr Move complemented IS25
mcomh 4D 1 gm Move complemented IS25
mcomw 16 - rr Move complemented OPT
mcomw 50 1 rr Move complemented IS25
mcomw 51 1 rm Move complemented IS25
mcomw 52 1 nr Move complemented IS25
mcomw 53 1 nm Move complemented IS25
mcomw 54 1 gr Move complemented IS25
mcomw 55 1 gm Move complemented IS25
memaud EE - rr Memory audit PRIV
meminit EF - r Main store initialization PRIV
mnegh 48 2 rr Move negated IS25
mnegh 49 2 rm Move negated IS25
mnegh 4A 2 nr Move negated IS25
mnegh 4B 2 nm Move negated IS25
mnegh 4C 2 gr Move negated IS25

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-10 Issue 5.00

Table A2-2 — Mnemonics I Through Q (Contd)

Mnemonic Opcode Subcode Syntax Function Type
mnegh 4D 2 gm Move negated IS25
mnegw 17 - rr Move negated OPT
mnegw 50 2 rr Move negated IS25
mnegw 51 2 rm Move negated IS25
mnegw 52 2 nr Move negated IS25
mnegw 53 2 nm Move negated IS25
mnegw 54 2 gr Move negated IS25
mnegw 55 2 gm Move negated IS25
modw2 30 C rr Modulo (2 oper) IS25
modw2 31 C rm Modulo (2 oper) IS25
modw2 32 C nr Modulo (2 oper) IS25
modw2 33 C nm Modulo (2 oper) IS25
modw2 34 C gr Modulo (2 oper) IS25
modw2 35 C gm Modulo (2 oper) IS25
modw3 6C 4 ggr Modulo (3 oper) IS25
modw3 6C C ggm Modulo (3 oper) IS25
movaw 66 2 mr Move address IS25
movaw 66 A mm Move address IS25
movb 40 0 rr Move IS25
movb 41 0 rm Move IS25
movb 42 0 nr Move IS25
movb 43 0 nm Move IS25
movb 44 0 gr Move IS25
movb 45 0 gm Move IS25
movbbh 40 5 rr Move bit extended IS25
movbbh 41 5 rm Move bit extended IS25
movbbh 42 5 nr Move bit extended IS25
movbbh 43 5 nm Move bit extended IS25
movbbh 44 5 gr Move bit extended IS25
movbbh 45 5 gm Move bit extended IS25
movbbw 40 6 rr Move bit extended IS25
movbbw 41 6 rm Move bit extended IS25
movbbw 42 6 nr Move bit extended IS25
movbbw 43 6 nm Move bit extended IS25
movbbw 44 6 gr Move bit extended IS25
movbbw 45 6 gm Move bit extended IS25
movbhw 48 5 rr Move bit extended IS25
movbhw 49 5 rm Move bit extended IS25

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-11

Table A2-2 — Mnemonics I Through Q (Contd)

Mnemonic Opcode Subcode Syntax Function Type
movbhw 4A 5 nr Move bit extended IS25
movbhw 4B 5 nm Move bit extended IS25
movbhw 4C 5 gr Move bit extended IS25
movbhw 4D 5 gm Move bit extended IS25
movblb - - - Move block (see moveblkb) IS25
movblh - - - Move block (see movblkh) IS25
movblkb 6B 0 rrr Move block general 3B20
movblkh 6B 1 rrr Move block general 3B20
movblkw 6B 2 rrr Move block general 3B20
movblw - - - Move block (see movblkw) IS25
movh 48 0 rr Move IS25
movh 49 0 rm Move IS25
movh 4A 0 nr Move IS25
movh 4B 0 nm Move IS25
movh 4C 0 gr Move IS25
movh 4D 0 gm Move IS25
movthb 37 - rr Move truncated IS25
movtwb 37 - rr Move truncated IS25
movtwb 51 8 rm Move IS25
movtwh 51 7 rm Move IS25
movw 14 - rr Move OPT
movw 15 - nr Move OPT
movw 26 - mr Move OPT
movw 27 - mr Move OPT
movw 2F - nm Move OPT
movw 39 - mr Move IS25
movw 3F - rm Move IS25
movw 50 0 rr Move IS25
movw 51 0 rm Move IS25
movw 52 0 nr Move IS25
movw 53 0 nm Move IS25
movw 54 0 gr Move IS25
movw 55 0 gm Move IS25
movzbh 37 - rr Move zero extended IS25
movzbh 44 3 gm Move zero extended IS25
movzbw 37 - rr Move zero extended IS25
movzbw 44 4 gm Move zero extended IS25
movzhw 38 - rr Move zero extended IS25

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-12 Issue 5.00

Table A2-2 — Mnemonics I Through Q (Contd)

Mnemonic Opcode Subcode Syntax Function Type
movznh 42 3 gm Move zero extended IS25
movznw 42 4 gm Move zero extended IS25
mrf DD 0 - Maint. reset function PRIV
msrf D6 0 rr Maint. store read off-line PRIV
msrn D6 3 rr Maint. store read on-line PRIV
mssrf D6 2 rr Maint. store safe read

off-line
PRIV

mssrn D6 5 rr Maint. store safe read
on-line

PRIV

mswf D6 1 rr Maint. store safe read
off-line

PRIV

mulw2 30 8 rr Multiply (2 oper) IS25
mulw2 31 8 rm Multiply (2 oper) IS25
mulw2 32 8 nr Multiply (2 oper) IS25
mulw2 33 8 nm Multiply (2 oper) IS25
mulw2 34 8 gr Multiply (2 oper) IS25
mulw2 35 8 gm Multiply (2 oper) IS25
mulw3 6C 0 ggr Multiply (3 oper) IS25
mulw3 6C 8 ggm Multiply (3 oper) IS25
nop DE - - No operation 3B20
orb2 20 1 rr Or (2 oper) IS25
orb2 21 1 rm Or (2 oper) IS25
orb2 22 1 nr Or (2 oper) IS25
orb2 23 1 nm Or (2 oper) IS25
orb2 24 1 gr Or (2 oper) IS25
orb2 25 1 gm Or (2 oper) IS25
orb3 68 1 ggr Or (3 oper) IS25
orb3 68 9 ggm Or (3 oper) IS25
orh2 28 1 rr Or (2 oper) IS25
orh2 29 1 rm Or (2 oper) IS25
orh2 2A 1 nr Or (2 oper) IS25
orh2 2B 1 nm Or (2 oper) IS25
orh2 2C 1 gr Or (2 oper) IS25
orh2 2D 1 gm Or (2 oper) IS25
orh3 69 1 ggr Or (3 oper) IS25
orh3 69 9 ggm Or (3 oper) IS25
orw2 1C - rr Or (2 oper) OPT
orw2 30 1 rr Or (2 oper) IS25
orw2 31 1 rm Or (2 oper) IS25

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-13

Table A2-2 — Mnemonics I Through Q (Contd)

Mnemonic Opcode Subcode Syntax Function Type
orw2 32 1 nr Or (2 oper) IS25
orw2 33 1 nm Or (2 oper) IS25
orw2 34 1 gr Or (2 oper) IS25
orw2 35 1 gm Or (2 oper) IS25
orw3 6A 1 ggr Or (3 oper) IS25
orw3 6A 9 ggm Or (3 oper) IS25
ost D9 - i Operating system trap 3B20
patb D3 - r Purge atb PRIV
pioe C2 0 r Poll I/O error status PRIV
pioi C2 D r Poll I/O interrupt status PRIV
pior C2 E r Poll I/O service request

status
PRIV

popw 64 0 r Pop word 3B20
popw 64 8 m Pop word 3B20
psiplse 7E 3 rr PSI pulse order PRIV
psipo 7E 0 rrrr PSI peripheral order PRIV
psird 7E 1 rr PSI read register PRIV
psiwt 7E 2 rr PSI write register PRIV
pushaw 63 2 m Push address IS25
pushbb 60 3 r Push bit extended IS25
pushbb 61 3 n Push bit extended IS25
pushbb 62 3 g Push bit extended IS25
pushbh 60 4 r Push bit extended IS25
pushbh 61 4 n Push bit extended IS25
pushbh 62 4 g Push bit extended IS25
pushw 2E - m Push IS25
pushw 60 0 r Push IS25
pushw 61 0 i Push IS25
pushw 62 0 g Push IS25
pushzb 60 1 r Push zero extended IS25
pushzb 61 1 n Push zero extended IS25
pushzb 62 1 g Push zero extended IS25
pushzh 60 2 r Push zero extended IS25
pushzh 61 2 n Push zero extended IS25
pushzh 62 2 g Push zero extended IS25

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-14 Issue 5.00

Table A2-3 — Mnemonics R Through Z

Mnemonic Opcode Subcode Syntax Function Type
rbsmd 46 3 - BIST and boundary scan 3B21
rbsms 46 2 - BIST and boundary scan 3B21
rcb 67 0 mr Read and clear 3B20
rcb 67 8 mm Read and clear 3B20
rch 67 1 mr Read and clear 3B20
rch 67 9 mm Read and clear 3B20
rcrefe D6 8 rrr Read and clear refresh par

err
PRIV

rcw 67 2 mr Read and clear 3B20
rcw 67 A mm Read and clear 3B20
rdblk C1 2 rrr Read block PRIV
rdblki C1 2 rrr Read block and clear device

interrupt
PRIV

rdblkr C1 2 rrr Read block and clear
service request

PRIV

rdinhp C1 B rrr Read word and inhib par
err

PRIV

rdinhpi C1 B rrr Read word, inhib par err
and clear

PRIV

device interrupt
rdinhpr C1 B rrr Read word, inhib par err

and clear
PRIV

service request
rdistk E1 0 r Read cache interrupt stack PRIV
rdmsk c0 f - Read mask 3B21
rdmskb c0 f - Read mask and clear both

service request and device
interrupt

3B21

rdmski c0 f - Read mask and clear device
interrupt

3B21

rdmskr c0 f - Read mask and clear
service request

3B21

rdoser E2 - rr Read other store error
register

PRIV

rdphy D5 0 rr Read with physical address 3B20
rdphyb d5 2 - Physical address - read byte 3B21
rdphyh d5 1 - Physical address - read

half-word
3B21

rdser E0 - rr Read store error register PRIV
rdsr D0 - rs Read special register 3B20
rdtim A2 - rr Read timers PRIV

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-15

Table A2-3 — Mnemonics R Through Z (Contd)

Mnemonic Opcode Subcode Syntax Function Type
rdwrd C1 0 rrr Read word PRIV
rdwrdi C1 0 rrr Read word and clear device

interrupt
PRIV

rdwrdr C1 0 rrr Read word and clear service
request

PRIV

ret 7B - i Return IS25
rete 7D - ii Return to emulation PRIV
rmchb C5 B r Read off-line mch buffer PRIV
rmchr C5 9 rs Read off-line mch register PRIV
rmchs C5 A r Read off-line mch status PRIV
rotlw 6D 4 ggr Rotate left 3B20
rotlw 6D C ggm Rotate left 3B20
rotrw 6D 5 ggr Rotate right 3B20
rotrw 6D E ggm Rotate right 3B20
rp D4 2 - Restore primary 3B20
rrblk C1 D rrr Request to read block PRIV
rrwrd C1 C rrr Request to read word PRIV
rsb 71 - - Return from subroutine IS25
rsblk C1 F rrr Request to send block PRIV
rstat C1 4 rrr Read status PRIV
rstati C1 4 rrr Read status and clear

device
PRIV

interrupt
rstatr C1 4 rrr Read status and clear

service request
PRIV

rswrd C1 E rrr Request to send word PRIV
rtb D8 2 r Return from breakpoint 3B20
rti D8 0 - Return from interrupt 3B20
rto D8 1 r Return from ost 3B20
rtt DC 2 r Return from interrupt

non-standard
3B20

save 7A - i Save IS25
sbsmc 46 0 - BIST and boundary scan 3B21
sbsmd 46 1 - BIST and boundary scan 3B21
scc DC l r Set condition code 3B20
sds D4 1 - Set destination secondary 3B20
sendint C1 9 r Send interrupt PRIV
setmpr A3 - r Measurement pulse in ppr 3B20
sinov C1 A r Send I/O inhibit override PRIV

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-16 Issue 5.00

Table A2-3 — Mnemonics R Through Z (Contd)

Mnemonic Opcode Subcode Syntax Function Type
sioh C0 6 rr Start untimed I/O PRIV
siow C0 2 rr Start untimed I/O PRIV
smccp C5 D rr Send mch cmd to off-line

mch with parity
PRIV

smcdp C5 E rr Send mch date to off-line
mch with parity

PRIV

smchc C5 6 r Send mch cmd to off-line
mch

PRIV

smchd C5 7 r Send mch data to off-line
mch

PRIV

sminst C5 8 rr Send microinstruction to PRIV
off-line mch

smioh C0 7 rr Start untimed maint. I/O PRIV
smiow C0 3 rr Start untimed maint. I/O PRIV
sss D4 0 - Set source secondary 3B20
stat C0 9 rr Return channel status PRIV
stmcbp C5 C rr Store into mch buffer with

parity
PRIV

stmchb C5 3 r Store into mch buffer PRIV
stmchc C5 2 r Store into mch cmd reg PRIV
stsm 65 8 gm Store selected multiple

registers
3B20

subb2 20 7 rr Subtract (2 oper) IS25
subb2 21 7 rm Subtract (2 oper) IS25
subb2 22 7 nr Subtract (2 oper) IS25
subb2 23 7 nm Subtract (2 oper) IS25
subb2 24 7 gr Subtract (2 oper) IS25
subb2 25 7 gm Subtract (2 oper) IS25
subb3 68 4 ggr Subtract (3 oper) IS25
subb3 68 C ggm Subtract (3 oper) IS25
subh2 28 7 rr Subtract (2 oper) IS25
subh2 29 7 rm Subtract (2 oper) IS25
subh2 2A 7 nr Subtract (2 oper) IS25
subh2 2B 7 nm Subtract (2 oper) IS25
subh2 2C 7 gr Subtract (2 oper) IS25
subh2 2D 7 gm Subtract (2 oper) IS25
subh3 69 4 ggr Subtract (3 oper) IS25
subh3 69 C ggm Subtract (3 oper) IS25
subw2 12 - rr Subtract (2 oper) OPT

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-17

Table A2-3 — Mnemonics R Through Z (Contd)

Mnemonic Opcode Subcode Syntax Function Type
subw2 13 - nr Subtract (2 oper) OPT
subw2 30 7 rr Subtract (2 oper) IS25
subw2 31 7 rm Subtract (2 oper) IS25
subw2 32 7 nr Subtract (2 oper) IS25
subw2 33 7 nm Subtract (2 oper) IS25
subw2 34 7 gr Subtract (2 oper) IS25
subw2 35 7 gm Subtract (2 oper) IS25
subw3 6A 4 ggr Subtract (3 oper) IS25
subw3 6A C ggm Subtract (3 oper) IS25
switch BA - irm Switch IS25
switcht BB - rm Switch on case through

switch table
IS25

swks DB 8 - Switch to kernel stack PRIV
swps DB 0 - Switch to private stack PRIV
sxl D7 - r Set execution level PRIV
tarbb 20 5 rr Test and reset bits 3B20
tarbb 21 5 rm Test and reset bits 3B20
tarbb 22 5 nr Test and reset bits 3B20
tarbb 23 5 nm Test and reset bits 3B20
tarbb 24 5 gr Test and reset bits 3B20
tarbb 25 5 gm Test and reset bits 3B20
tarbh 28 5 rr Test and reset bits 3B20
tarbh 29 5 rm Test and reset bits 3B20
tarbh 2A 5 nr Test and reset bits 3B20
tarbh 2B 5 nm Test and reset bits 3B20
tarbh 2C 5 gr Test and reset bits 3B20
tarbh 2D 5 gm Test and reset bits 3B20
tarbw 30 5 rr Test and reset bits 3B20
tarbw 31 5 rm Test and reset bits 3B20
tarbw 32 5 nr Test and reset bits 3B20
tarbw 33 5 nm Test and reset bits 3B20
tarbw 34 5 gr Test and reset bits 3B20
tarbw 35 5 gm Test and reset bits 3B20
tasbb 20 4 rr Test and set bits 3B20
tasbb 21 4 rm Test and set bits 3B20
tasbb 22 4 nr Test and set bits 3B20
tasbb 23 4 nm Test and set bits 3B20
tasbb 24 4 gr Test and set bits 3B20

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-18 Issue 5.00

Table A2-3 — Mnemonics R Through Z (Contd)

Mnemonic Opcode Subcode Syntax Function Type
tasbb 25 4 gm Test and set bits 3B20
tasbh 28 4 rr Test and set bits 3B20
tasbh 29 4 rm Test and set bits 3B20
tasbh 2A 4 nr Test and set bits 3B20
tasbh 2B 4 nm Test and set bits 3B20
tasbh 2C 4 gr Test and set bits 3B20
tasbh 2D 4 gm Test and set bits 3B20
tasbw 30 4 rr Test and set bits 3B20
tasbw 31 4 rm Test and set bits 3B20
tasbw 32 4 nr Test and set bits 3B20
tasbw 33 4 nm Test and set bits 3B20
tasbw 34 4 gr Test and set bits 3B20
tasbw 35 4 gm Test and set bits 3B20
tio C0 A rr Test I/O complete PRIV
ucrd C4 0 r Utility circuit read 3B20
ucwt C4 8 r Utility circuit write 3B20
udivw2 30 B rr Unsigned divide (2 oper) IS25
udivw2 31 B rm Unsigned divide (2 oper) IS25
udivw2 32 B nr Unsigned divide (2 oper) IS25
udivw2 33 B nm Unsigned divide (2 oper) IS25
udivw2 34 B gr Unsigned divide (2 oper) IS25
udivw2 35 B gm Unsigned divide (2 oper) IS25
udivw3 6C 3 ggr Unsigned divide (3 oper) IS25
udivw3 6C B ggm Unsigned divide (3 oper) IS25
umodw2 30 D rr Unsigned modulo (2 oper) IS25
umodw2 31 D rm Unsigned modulo (2 oper) IS25
umodw2 32 D nr Unsigned modulo (2 oper) IS25
umodw2 33 D nm Unsigned modulo (2 oper) IS25
umodw2 34 D gr Unsigned modulo (2 oper) IS25
umodw2 35 D gm Unsigned modulo (2 oper) IS25
umodw3 6C 5 ggr Unsigned modulo (3 oper) IS25
umodw3 6C D ggm Unsigned modulo (3 oper) IS25
umulw2 30 9 rr Unsigned multiply (2 oper) IS25
umulw2 31 9 rm Unsigned multiply (2 oper) IS25
umulw2 32 9 nr Unsigned multiply (2 oper) IS25
umulw2 33 9 nm Unsigned multiply (2 oper) IS25
umulw2 34 9 gr Unsigned multiply (2 oper) IS25
umulw2 35 9 gm Unsigned multiply (2 oper) IS25

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-19

Table A2-3 — Mnemonics R Through Z (Contd)

Mnemonic Opcode Subcode Syntax Function Type
umulw3 6C 1 ggr Unsigned multiply (3 oper) IS25
umulw3 6C 9 ggm Unsigned multiply (3 oper) IS25
utnop A1 00 - Utility nop (in sgs) 3B20
vcall 76 - m Vcall 3B20
vtop A4 - rr Virtual to physical

translation
3B20

wait DC 3 - Wait for interrupt 3B20
waitii C6 2 r Wait with interrupts

ignored
PRIV

wbsmc 46 4 - BIST and boundary scan 3B21
wbsmd 46 5 - BIST and boundary scan 3B21
wcsdump C6 1 rrr Writable control store dump PRIV
wcspump C6 0 rrr Writable control store pump PRIV
wtblk C1 3 rrr Write block PRIV
wtblki C1 3 rrr Write block and clear PRIV

device interrupt
wtblkr C1 3 rrr Write block and clear PRIV

service request
wtcmd C1 5 rrr Write command PRIV
wtcmdi C1 5 rrr Write command and clear PRIV

device interrupt
wtcmdr C1 5 rrr Write command and clear PRIV

service request
wtistk E1 8 r Write interrupt stack PRIV
wtmsk C1 6 rrr Write mask PRIV
wtmskb C1 6 rrr Write mask and clear both PRIV
wtmski C1 6 rrr Write mask and clear PRIV

device interrupt
wtmskr C1 6 rrr Write mask and clear PRIV

service request
wtpar C1 8 rrrr Write with parity PRIV
wtpari C1 8 rrrr Write with parity and clear PRIV

device interrupt
wtparr C1 8 rrrr Write with parity and clear PRIV

service request
wtphy D5 8 rr Write with physical address 3B20
wtphyb d5 a - Physical address - write

byte
3B21

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A2-20 Issue 5.00

Table A2-3 — Mnemonics R Through Z (Contd)

Mnemonic Opcode Subcode Syntax Function Type
wtphyh d5 9 - Physical address - write

half-word
3B21

wtrtn C1 7 rrr Write return code PRIV
wtsr D1 - rs Write special register PRIV
wtwrd C1 1 rrr Write word PRIV
wtwrdi C1 1 rrr Write word and clear PRIV

device interrupt
wtwrdr C1 1 rrr Write word and clear PRIV

service request
xorb2 20 2 rr Exclusive or (2 oper) IS25
xorb2 21 2 rm Exclusive or (2 oper) IS25
xorb2 22 2 nr Exclusive or (2 oper) IS25
xorb2 23 2 nm Exclusive or (2 oper) IS25
xorb2 24 2 gr Exclusive or (2 oper) IS25
xorb2 25 2 gm Exclusive or (2 oper) IS25
xorb3 68 2 ggr Exclusive or (3 oper) IS25
xorb3 68 A ggm Exclusive or (3 oper) IS25
xorh2 28 2 rr Exclusive or (2 oper) IS25
xorh2 29 2 rm Exclusive or (2 oper) IS25
xorh2 2A 2 nr Exclusive or (2 oper) IS25
xorh2 2B 2 nm Exclusive or (2 oper) IS25
xorh2 2C 2 gr Exclusive or (2 oper) IS25
xorh2 2D 2 gm Exclusive or (2 oper) IS25
xorh3 69 2 ggr Exclusive or (3 oper) IS25
xorh3 69 A ggm Exclusive or (3 oper) IS25
xorw2 1E - rr Exclusive or (2 oper) OPT
xorw2 30 2 rr Exclusive or (2 oper) IS25
xorw2 31 2 rm Exclusive or (2 oper) IS25
xorw2 32 2 nr Exclusive or (2 oper) IS25
xorw2 33 2 nm Exclusive or (2 oper) IS25
xorw2 34 2 gr Exclusive or (2 oper) IS25
xorw2 35 2 gm Exclusive or (2 oper) IS25
xorw3 6A 2 ggr Exclusive or (3 oper) IS25
xorw3 6A A ggm Exclusive or (3 oper) IS25
zeroblock E1 - rr Zeroblock IS25

235-600-510
November 2000

APPENDIX 2
IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A2-21

A3. Motorola 1 MC68000 PROCESSOR FAMILY INSTRUCTION SET

This appendix provides a summary of the Motorola MC68000 processor family
instruction set and a chart that lists the opcodes and their meanings.

Motorola MC68000 Processor Family Operation Code Map
0000 Bit Manipulation/MOVEP/Immediate
0001 Move Byte
0010 Move Long
0011 Move Word
0100 Miscellaneous
0101 ADDQ/SUBQ/Scc/DBcc
0110 Bcc/BSR
0111 MOVEQ
1000 OR/DIV/SBCD
1001 SUB/SUBX
1010 (Unassigned)
1011 CMP/EOR
1100 AND/MUL/ABCD/EXG
1101 ADD/ADDX
1110 Shift/Rotate
1111 Coprocessor Interface MC68040 and CPU32 Extensions

Type
000 General (for example: FADD, FABS, FMOVE)
001 FDBcc, FScc, FTRAPcc (not supported)
010 FBcc.W

011 FBcc.L (marginally supported)

100 FSAVE
101 FRESTORE
110 Undefined, reserved, not supported
111 Undefined, reserved, not supported

1. Registered trademark of Motorola Inc.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-1

A3.1 ASSEMBLY INSTRUCTIONS A THROUGH E

Instruction Motorola MC680xx Processor
abcd %dy,%dx ABCD 00/12/20/30/40/60
abcd −(%ay),−(%ax)

Description:
Adds the source operand to the destination operand (along with the
extend bit), and stores the result in the destination location. The addition
is performed using binary-coded decimal arithmetic. The operands can be
addressed in two ways:

Data register to data register - the operands are contained in the data
registers specified in the instruction.

Memory to memory - the operands are addressed with the predecrement
addressing mode using the address registers specified in the instruction.

Operands: %dy specifies that the source register is a data register.

%dx specifies that the destination register is a data register.

%ay used to derive the memory address of the source operand using the
predecrement addressing mode.

%ax used to derive the memory address of the destination operand using
the predecrement addressing mode.

Instruction Motorola MC680xx Processor
addb $expr,<da> ADDI.B 00/12/20/30/40/60
addb $expr,<a> ADDQ.B
addb %dn,<am> ADD.B
addb <d>,%dn ADD.B
add $expr,<da> ADDI.W
add $expr,<a> ADDQ.W
add %dn,<am> ADD.W
add <ea>,%an ADDA.W
add $<1-8>,%an ADDQ.W
add <ea>,%dn ADD.W
addl $expr,<da> ADDI.L
addl $<1-8>,<a> ADDQ.L
addl %dn,<a> ADD.L
addl <ea>,%an ADDA.L
addl $<1-8>,%an ADDQ.L
addl <ea>,%dn ADD.L

Description:
Adds the source operand to the destination operand, and stores the result
in the destination location.

Operands:

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-2 Issue 5.00

<a> Alterable addressing modes.

<am> Alterable memory addressing modes.

<d> Data addressing modes.

<da> Data alterable addressing modes.

<ea> All addressing modes.

$<1-8> Immediate data in the range of 1 through 8.

%dn Specifies any of the eight data registers.

%an Specifies any of the eight address registers.

Programming Note:
When adding a constant to an address register, the lea instruction is
better than add if the constant is in the range of −32768 through 0 or 9
through 32767. For constants of 1 through 8 the add instruction
generates an ADDQ instruction which is better than an lea.

When the assembly instruction add $expr,%dn is given to the
assembler, the ADDI encoding is used instead of the ADD encoding.

Instruction Motorola MC680xx Processor
addxb %dy,%dx ADDX.B 00/12/20/30/40/60
addxb −(%ay),−(%ax) ADDX.B
addx %dy,%dx ADDX.W
addx −(%ay),−(%ax) ADDX.W
addxl %dy,%dx ADDX.L
addxl −(%ay),−(%ax) ADDX.L

Description:
Adds the source operand to the destination operand along with the
extend bit, and stores the result in the destination location.

Data register to data register - operands are contained in data registers
specified in the instruction.

Memory to memory - operands are contained in memory and addressed
with the predecrement addressing mode using the address registers
specified in the instruction.

Operands: %dy specifies the source register.

%dx specifies the destination register.

%ax used to derive the memory address of the destination operand using
the predecrement addressing mode.

%ay used to derive the memory address of the source operand using the
predecrement addressing mode.

Instruction Motorola MC680xx Processor
andb $expr,%ccr ANDI to CCR 00/12/20/30/40/60
andb $expr,<da> ANDI.B
andb %dn,<am> AND.B

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-3

Instruction Motorola MC680xx Processor
andb <d>,%dn AND.B
and $expr,<da> ANDI.W
and %dn,<am> AND.W
and <d>,%dn AND.W
and $expr,%sr ANDI to SR
andl $expr,<da> ANDI.L
andl %dn,<am> AND.L
andl <d>,%dn AND.L

Description:
Bitwise ANDs the source operand to the destination operand, and stores
the result in the destination location.

Operands:

<am> Alterable Memory addressing modes.

<d> Data addressing modes.

<da> Data Alterable addressing modes.

%ccr Condition Code Register.

%dn Data register.

%sr Status Register.

$expr Constant expression.

Programming Note:
When the assembly instruction and $expr,%dn is given to the
assembler, the ANDI encoding is used instead of the AND encoding.

Instruction Motorola MC680xx Processor
asrb %dx,%dy ASR.B 00/12/20/30/40/60
asrb $expr,%dy ASR.B
asr %dx,%dy ASR.W
asr $expr,%dy ASR.W
asr <ea> ASR.W
asrl %dx,%dy ASR.L
asrl $expr,%dy ASR.L
aslb %dx,%dy ASL.B 00/12/20/30/40/60
aslb $expr,%dy ASL.B
asl %dx,%dy ASL.W
asl $expr,%dy ASL.W
asl <ea> ASL.W
asll %dx,%dy ASL.L
asll $expr,%dy ASL.L

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-4 Issue 5.00

Description:
Arithmetically shifts the bits of the operand in the direction specified.
The carry bit receives the last bit shifted out of the operand. The shift
count for the shifting of a register can be specified in two ways:

Immediate - the shift count is specified in the instruction (shift range 1
through 8).

Register - the shift count is contained in a data register specified in the
instruction.

The content of memory can be shifted 1 bit only, where the operand size
is restricted to a word.

ASL - operand is shifted to left. The number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and
the extend bits; zeros are shifted into the low order bit. The overflow bit
indicates if any sign changes occur during the shift.

ASR - operand is shifted to right. The number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and
extend bits; the sign bit is replicated into the higher order bit.

Operands: <ea> specifies the operand to be shifted. Only alterable memory
addressing modes are allowed.

%dy specifies the data register whose content is to be shifted.

$expr or %dx specifies shift count or register where shift count is
located.

Instruction Motorola MC680xx Processor
bcc expr Bcc 00/12/20/30/40/60

Description:
If the specified condition is met, the program execution continues at
location program pounter (PC) plus displacement. Displacement is a 2’s
complement integer which counts the relative distance in bytes. The PC
value is the current location plus two.

The cc part of this instruction represents one of the following conditions:

CC - Carry clear (unsigned greater than or equal)
CS - Carry set (unsigned less than)
EQ - Equal
GE - Greater than or equal
GT - Greater than
HI - High (unsigned greater than)
LE - Less than or equal
LS - Low or same (unsigned less than or equal)
LT - Less than
MI - Minus
NE - Not equal

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-5

PL - Plus
VC - No overflow
VS - Overflow

Operands: expr specifies the program symbolic destination when the branch is
taken.

Instruction Motorola MC680xx Processor
bchg %dn,<ea> BCHG 00/12/20/30/40/60
bchg $expr,<ea>

Description:
Tests a bit in the destination operand, and reflects the state of the
specified bit in the Z condition code. After the test, the state of the
specified bit is changed in the destination. If a data register is the
destination, the bit numbering is modulo 32 which allows bit
manipulation on all bits in a data register. If a memory location is the
destination, a byte is read from the location, the bit operation is
performed using the bit number modulo 8. The byte is written back to the
location. The bit number for this operation is specified in two ways:

Immediate - the bit number is specified in the second word of the
instruction.

Register - the bit number is contained in a data register specified in the
instruction.

Operands: <ea> specifies the destination location. Only data alterable addressing
modes are allowed.

%dn specifies the data register whose content is the bit number.

$expr specifies the bit number.

Instruction Motorola MC680xx Processor
bclr %dn,<ea> BCLR 00/12/20/30/40/60
bclr $expr,<ea>

Description:
Tests a bit in the destination operand, and reflects the state of the
specified bit in the Z condition code. After the test, the specified bit is
cleared in the destination. If a data register is the destination, the bit
numbering is modulo 32 which allows bit manipulation on all bits in a
data register. If a memory location is the destination, a byte is read from
the location, the bit operation is performed using the bit number modulo
8. The byte is written back to the location. The bit number for this
operation can be specified in two ways:

Immediate - the bit number is specified in the second word of the
instruction.

Register - the bit number is contained in a data register specified in the
instruction.

Operands: <ea> specifies the destination location. Only data alterable addressing
modes are allowed.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-6 Issue 5.00

%dn specifies the data register whose content is the bit number.

$expr specifies the bit number.

Instruction Motorola MC680xx Processor
bfchg <ea>{offset:width} BFCHG 20/30/40/60

Description:
Complements the bitfield at the destination location. The N and Z
condition codes are set based upon the initial value of the bitfield.

Operands: <ea> specifies the destination location. Only data register direct or
alterable control addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 0 and 31 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

Instruction Motorola MC680xx Processor
bfclr <ea>{offset:width} BFCLR 20/30/40/60

Description:
Clears the bitfield at the destination location. The N and Z condition
codes are set based upon the initial value of the bitfield.

Operands: <ea> specifies the destination location. Only data register direct or
alterable control addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

Instruction Motorola MC680xx Processor
bfexts <ea>{offset:width},%dn BFEXTS 20/30/40/60

Description:
Extracts the bitfield at the indicated source location, sign-extends it to 32
bits, and places the results in the destination data register. The N and Z
condition codes are set based upon the bitfield value.

Operands: <ea> specifies the source location. Only data register direct or control
addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-7

significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

%dn is the destination data register.

Instruction Motorola MC680xx Processor
bfextu <ea>{offset:width},%dn BFEXTU 20/30/40/60

Description:
Extracts the bitfield at the indicated source location, zero-extends it to 32
bits, and places the results in the destination data register. The N and Z
condition codes are set based upon the bitfield value.

Operands: <ea> specifies the source location. Only data register direct or control
addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

%dn is the destination data register.

Instruction Motorola MC680xx Processor
bfffo <ea>{offset:width},%dn BFFFO 20/30/40/60

Description:
Searches the source location bitfield for the first (i.e., most significant) bit
that is set. If one is found, its offset is placed in the destination data
register. Otherwise the sum of the offset and width are stored there.
The N and Z condition codes are set based upon the bitfield value.

Operands: <ea> specifies the source location. Only data register direct or control
addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

%dn is the destination data register.

Instruction Motorola MC680xx Processor
bfins %dn,<ea>{offset:width} BFINS 20/30/40/60

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-8 Issue 5.00

Description:
Inserts the low-order bits of the source data register into the bitfield at
the destination location. The N and Z condition codes are set based upon
the bitfield value.

Operands: <ea> specifies the destination location. Only data register direct or
alterable control addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

%dn is the source data register.

Instruction Motorola MC680xx Processor
bfset <ea>{offset:width} BFSET 20/30/40/60

Description:
Sets all bits of the bitfield at the destination location. The N and Z
condition codes are set based upon the initial value of the bitfield.

Operands: <ea> specifies the destination location. Only data register direct or
alterable control addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

Instruction Motorola MC680xx Processor
bftst <ea>{offset:width} BFTST 20/30/40/60

Description:
Tests the contents of the bitfield at the destination location and sets the
condition codes accordingly. The N and Z condition codes are set based
upon the bitfield value. The V and C condition codes are cleared and X is
left unchanged.

Operands: <ea> specifies the destination location. Only data register direct or
control addressing modes are allowed.

offset is the bitfield offset. Offsets can lie between −231 and 231−1 and
indicate the position of the leftmost bit of the bitfield relative to the most
significant bit of <ea>. Either an immediate value or a data register
containing the offset may be used.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-9

width is the bitfield width which can lie between 1 and 32 inclusive. A
value of 0 indicates an actual width of 32 bits. Either an immediate value
or a data register containing the width may be used.

Instruction Motorola MC680xx Processor
bkpt $expr BKPT 12/20/30/40

Description:
Executes a breakpoint acknowledge cycle. For the Motorola MC68020 and
MC68030 processors, the lower three bits of the immediate value are
placed on address lines A2 to A4 and zeros are placed on lines A0 and A1.
For the Motorola MC68040 processor, an illegal instruction exception is
generated. For more information see the appropriate processor manual.

Operands: $expr is the breakpoint number. For the Motorola MC68012 and
MC68040 processors, a debug monitor can look at this number to
determine the type of the breakpoint. For the Motorola MC68020 and
MC68030 processors, this number may be used to address an external
device which can place a replacement instruction on the data bus.

Instruction Motorola MC680xx Processor
bra expr BRA 00/12/20/30/40/60

Description:
Program execution continues at location (program counter) plus
displacement. Displacement is a two’s complement integer that counts the
relative distance in bytes. The value in the PC is the current location
(instruction) plus two.

Operands: expr specifies the program symbolic destination when the branch is
taken.

Instruction Motorola MC680xx Processor
bset %dn,<ea> BSET 00/12/20/30/40/60
bset $expr,<ea>

Description:
Tests a bit in the destination operand and reflects the state of the
specified bit in the Z condition code. After the test, the specified bit is set
in the destination. If the destination is a data register, the bit numbering
is modulo 32, which allows bit manipulation on all bits in a data register.
If the destination is a memory location, the bit operation is performed
using the bit number modulo 8, and the byte is written back to the
location. The bit number can be specified in two ways:

Immediate - the bit number is specified in the second word of the
instruction.

Register - the bit number is contained in a data register specified in the
instruction.

Operands: <ea> specifies the destination location. Only data alterable addressing
modes are allowed.

%dn specifies the data register whose content is the bit number.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-10 Issue 5.00

$expr specifies the bit number.

Instruction Motorola MC680xx Processor
bsr expr BSR 00/12/20/30/40/60

Description:
Pushes the address of the instruction immediately following bsr
instruction onto the stack. Program execution continues at the location
(program counter) plus displacement. Displacement is a two’s complement
integer that counts the relative distance in bytes. The value in the
program counter is the current location plus two.

Operands: expr specifies the program symbolic destination when the branch is
taken.

Instruction Motorola MC680xx Processor
btst %dn,<ea> BTST 00/12/20/30/40/60
btst $expr,<ea>

Description:
Tests a bit in the destination operand and reflects the state of the
specified bit in the Z condition code. If the destination is a data register,
the bit numbering is modulo 32, which allows bit manipulation on all bits
in a data register. If the destination is a memory location, a byte is read
from that location. The bit operation is performed using the bit number
modulo 8. The byte is written back to the location. The bit number for
this operation can be specified in two ways:

Immediate - the bit number is specified in the second word of the
instruction.

Register - the bit number is contained in a data register specified in the
instruction.

Operands: <ea> specifies the destination location. Only data addressing modes are
allowed, with the exception of the immediate addressing mode when the
bit number is specified by immediate data.

%dn specifies a data register whose content is the bit number.

$expr specifies the bit number.

Instruction Motorola MC680xx Processor
casb %dc,%du,<ea> CAS.B 20/30/40
cas %dc,%du,<ea> CAS.W
casl %dc,%du,<ea> CAS.L

Description:
Compares the effective address operand to the compare register (%dc). If
equal, the contents of the update register (%du) are copied to the effective
address. Otherwise, the contents of the effective address are copied to
%dc.

Operands: %dc specifies the data register to use for the comparison and to update if
the comparison fails.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-11

%du specifies the data register with the update value.

<ea> specifies the operand to compare to %dc and update if the
comparison succeeds. Only memory alterable modes are allowed.

Instruction Motorola MC680xx Processor
cas2 %dc1:%dc2,%du1:%du2,(%r1):(%r2) CAS2.W 20/30/40/60*
cas2l %dc1:%dc2,%du1:%du2,(%r1):(%r2) CAS2.L

Description:
Compares the first memory operand (contents at address in %r1) to the
first compare register (%dc1) and the second memory operand (contents
at address in %r2) to the second compare register (%dc2). If both
comparisons succeed, the contents of the update registers (%du1, %du2)
are written to the respective memory operand addresses. If either
comparison fails, the contents at the memory operand addresses are
written to the respective comparison registers.

Operands: %dc1, %dc2 specify data registers to use for the comparisons and to
update if either comparison fails.

%du1, %du2 specify the data registers with the update values.

%r1, %r2 specify address or data registers containing the addresses of the
memory operands to compare to %dc1 and %dc2 and to update if both
comparisons succeed.

Programming Note:
This instruction is not implemented in hardware on the 060. Emulation
support is required.

Instruction Motorola MC680xx Processor
chk <ea>,%dn CHK.W 00/12/20/30/40/60
chkl <ea>,%dn CHK.L 20/30/40/60

Description:
Examines the contents of the data register and compares it to the upper
bound specified by the effective address. The upper bound is a two’s
complement integer. If the register value is less than zero or greater than
the upper bound contained in the operand word, then the processor
initiates exception processing. The vector number 6 is generated to
reference the chk instruction exception vector.

Operands: <ea> specifies the upper bound operand word. Only data addressing
modes are allowed.

%dn specifies the data register whose contents is checked.

Instruction Motorola MC680xx Processor
chk2b <ea>,%rn CHK.B 20/30/40
chk2 <ea>,%rn CHK.W
chk2l <ea>,%rn CHK.L

Description:
Examines the contents of the register %rn and compares it to the lower

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-12 Issue 5.00

and upper bounds at the location specified by the effective address. The
bounds must be two’s complement integers with the lower bound being
followed by the upper. If the register value is less than the lower bound
or greater than the upper then the processor initiates exception
processing. The vector number 6 is generated to reference the chk
instruction exception vector.

Operands: <ea> specifies the address of the bounds. Only control addressing modes
are allowed.

%rn specifies the register whose contents is checked. If an address
register is used and the size of the instruction is byte or word the bounds
are sign-extended to 32 bits before the comparisons and are compared
against all 32 bits of the register.

Instruction Motorola MC680xx Processor
cinva [%bc|%dc|%ic|%nc] CINVA 40/60
cinvl [%bc|%dc|%ic|%nc],(%an) CINVL 40/60
cinvp [%bc|%dc|%ic|%nc],(%an) CINVP 40/60

Description:
Invalidates the selected cache lines. Any dirty data is lost. The cpush
instruction should be used instead when dirty data may not have been
written.

The cinvl instruction invalidates the cache line matching the physical
address contained in %an. The cinvp instruction invalidates all lines
matching the physical page specified by %an. The cinva instruction
invalidates all cache entries.

Operands: %bc, %dc, %ic, %nc are cache selectors indicating both caches, the data
cache, the instruction cache, or neither cache (i.e., a no-op), respectively.

%an contains the physical address associated with the line or lines to be
invalidated.

Instruction Motorola MC680xx Processor
clrb <ea> CLR.B 00/12/20/30/40/60
clr <ea> CLR.W
clrl <ea> CLR.L

Description:
Clears destination to all zero bits.

Operands: <ea> specifies the destination location. Only data alterable addresses are
allowed.

Programming Note:
The clr instruction does a read/write, not just a write.

The easiest way to clear an address register is to subtract it from itself.

Instruction Motorola MC680xx Processor
cmpb $expr,<ea> CMPI.B 00/12/20/30/40/60
cmpb <d>,%dn CMP.B

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-13

Instruction Motorola MC680xx Processor
cmp $expr,<da> CMPI.W
cmp <ea>,%an CMPA.W
cmp <ea>,%dn CMP.W
cmpl $expr,<da> CMPI.L
cmpl <ea>,%an CMPA.L
cmpl <ea>,%dn CMP.L

Description:
Subtracts the source operand from the destination operand and sets the
condition codes according to the results. The destination location is
unchanged.

Operands:

<d> Data addressing modes.

<da> Data alterable addressing modes.

<ea> All addressing modes.

%an Address register.

%dn Data register.

$expr Constant expression.

Programming Note:
To test an address register for zero (NULL), use cmp instead of cmpl
since the zero is sign extended.

When the assembly instruction cmp $expr,%dn is given to the
assembler, the CMPI encoding is used instead of the CMP encoding.

Instruction Motorola MC680xx Processor
cmpmb (%ay)+,(%ax)+ CMPM.B 00/12/20/30/40/60
cmpm (%ay)+,(%ax)+ CMPM.W
cmpml (%ay)+,(%ax)+ CMPM.L

Description:
Subtracts the source operand from the destination operand, and sets the
condition codes according to the results. The destination location is not
changed. The operands are always addressed with the post-increment
addressing mode using the address registers specified in the instruction.

Operands: %ay specifies an address register for the post-increment addressing mode.

%ax specifies an address register for the post-increment addressing mode.

Instruction Motorola MC680xx Processor
cmp2b <ea>,%rn CMP2.B 20/30/40/60*
cmp2 <ea>,%rn CMP2.W
cmp2l <ea>,%rn CMP2.L

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-14 Issue 5.00

Description:
Examines the contents of the register %rn and compares it to the lower
and upper bounds at the location specified by the effective address. The
bounds must be two’s complement integers with the lower bound being
followed by the upper. If the register value is less than the lower bound
or greater than the upper then the C condition code is set. If %rn is equal
to either bound the Z condition code is set.

Operands: <ea> specifies the address of the bounds. Only control addressing modes
are allowed.

%rn specifies the register whose contents is checked. If an address
register is used and the size of the instruction is byte or word the bounds
are sign-extended to 32 bits before the comparisons and are compared
against all 32 bits of the register.

Programming Note:
This instruction is not implemented in hardware on the 060. Emulation
support is required.

Instruction Motorola MC680xx Processor
cpusha [%bc|%dc|%ic|%nc] CPUSHA 40/60
cpushl [%bc|%dc|%ic|%nc],(%an) CPUSHL 40/60
cpushp [%bc|%dc|%ic|%nc],(%an) CPUSHP 40/60

Description:
Pushes (i.e., writes) and invalidates the selected cache lines. The cpushl
instruction pushes and invalidates the cache line matching the physical
address contained in %an . The cpushp instruction pushes and
invalidates all lines matching the physical page specified by %an. The
cpusha instruction pushes and invalidates all cache entries.

Operands: %bc, %dc, %ic, %nc are cache selectors indicating both caches, the data
cache, the instruction cache, or neither cache (i.e., a no-op), respectively.

%an contains the physical address associated with the line or lines to be
invalidated.

Instruction Motorola MC680xx Processor
dbcc %dn,expr DBcc 00/12/20/30/40/60

Description:
This instruction is a looping primitive of three parameters: condition,
data register, and displacement. Tests the condition to determine if the
termination condition is not true; if it is true, the low order 16 bits of the
counter data register are decremented by one. If the result is −1, the
counter is exhausted and the execution continues with the next
instruction. If the result is not equal to −1, execution continues at the
location indicated by the current value of the program counter, plus the
sign-extended 16-bit displacement. The value in PC is the address of the
displacement word.

The cc part of this instruction represents one of the following conditions:

CC - Carry clear (unsigned greater than or equal)

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-15

CS - Carry set (unsigned less than)
EQ - Equal

F - Always false
GE - Greater than or equal
GT - Greater than
HI - High (unsigned greater than)
LE - Less than or equal
LS - Low or same (unsigned less than or equal)
LT - Less than
MI - Minus
NE - Not equal
PL - Plus

T - Always true
VC - No overflow
VS - Overflow

Operands: %dn specifies the data register which is the counter.

expr specifies the program symbolic destination when the branch is
taken.

Instruction Motorola MC680xx Processor
divs <ea>,%dn DIVS.W 00/12/20/30/40/60

Description:
Divides the destination by the source and stores the result in the
destination. The destination operand is long and the source operand is a
word. The result is a 32-bit result where:

1. The quotient is in the lower word (least significant 16 bits).

2. The remainder is in the upper word (most significant 16 bits).

Operands: <ea> specifies the source operand. Only the data addressing modes are
allowed.

%dn specifies any of the eight data registers.

Instruction Motorola MC680xx Processor
divsl <ea>,%dq DIVS.L 20/30/40/60*

Description:
Divides the destination by the source and stores a long quotient in %dq.
Both the source and destination are long.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dq specifies any of the eight data registers.

Programming Note:
This instruction is not implemented in hardware on the 060. Emulation
support is required.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-16 Issue 5.00

Instruction Motorola MC680xx Processor
divsl <ea>,%dr:%dq DIVS.L 20/30/40

Description:
Divides the destination by the source and stores a long quotient in %dq
and a long remainder in %dr. The source is a long operand and the
destination is a quad word operand the lower 32 bits of which are stored
in %dq and the upper in %dr.

Operands: <ea> specifies the source operand. Only data addressing modes allowed.

%dr and %dq specify any of eight data registers. They cannot be the same
register.

Instruction Motorola MC680xx Processor
divsll <ea>,%dr:%dq DIVSL.L 20/30/40

Description:
Divides the destination by the source and stores a long quotient in %dq
and a long remainder in %dr. Both the source and destination (taken
from %dq) are long.

Operands: <ea> specifies the source operand. Only data addressing modes allowed.

%dr and %dq specify any of eight data registers. They cannot be the same
register.

Note: The sign of the remainder is always the same as the dividend, unless the
remainder is equal to zero. There are two special conditions:

1. Division by zero causes a trap.

2. Overflow can be detected and set before completion of the instruction. If overflow
is detected, the condition is flagged, but the operands are unaffected. Overflow
occurs in the word form of the instruction if the quotient is larger than a word
and in the long form if the quotient is larger than a long.

Instruction Motorola MC680xx Processor
divu <ea>,%dn DIVU.W 00/12/20/30/40/60

Description:
Divides the destination by the source and stores the result in the
destination. The destination is a long; the source is a word. The
operation is performed using unsigned arithmetic. The result is a 32-bit
result where:

1. The quotient is in the lower word (least significant 16 bits).

2. The remainder is in the upper word (most significant 16 bits).

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dn specifies any of the eight data registers.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-17

Instruction Motorola MC680xx Processor
divul <ea>,%dq DIVU.L 20/30/40/60*

Description:
Divides the destination by the source and stores a long quotient in %dq.
Both the source and destination are long. The operation is performed
using unsigned arithmetic.

Operands: <ea> specifies the source operand. Only data addressing modes allowed.

%dq specifies any of eight data registers.

Programming Note:
This instruction is not implemented in hardware on the 060. Emulation
support is required.

Instruction Motorola MC680xx Processor
divul <ea>,%dr:%dq DIVU.L 20/30/40

Description:
Divides the destination by the source and stores a long quotient in %dq
and a long remainder in %dr. The source is a long operand and the
destination is quad word operand the lower 32 bits of which are stored
in %dq and the upper in %dr. The operation is performed using unsigned
arithmetic.

Operands: <ea> specifies the source operand. Only data addressing modes allowed.

%dr and %dq specify any of eight data registers. They cannot be the
same register.

Instruction Motorola MC680xx Processor
divull <ea>,%dr:%dq DIVUL.L 20/30/40

Description:
Divides the destination by the source and stores a long quotient in %dq
and a long remainder in %dr. Both the source and destination (taken
from %dq) are long. The operation is performed using unsigned
arithmetic.

Operands: <ea> specifies the source operand. Only data addressing modes allowed.

%dr and %dq specify any of eight data registers.

Note:

1. Division by zero causes a trap.

2. Overflow can be detected and set before completion of the instruction. If overflow
is detected, the condition is flagged, but the operands are unaffected. Overflow
occurs in the word form of the instruction if the quotient is larger than a word
and in the long form if the quotient is larger than a long.

Instruction Motorola MC680xx Processor
eorb $expr,%ccr EORI to CCR 00/12/20/30/40/60

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-18 Issue 5.00

Instruction Motorola MC680xx Processor
eorb $expr,<da> EORI.B
eorb %dn,<d> EOR.B
eor $expr,<da> EORI.W
eor %dn,<d> EOR.W
eor $expr,%sr EORI to SR
eorl $expr,<da> EORI.L
eorl %dn,<d> EOR.L

Description:
Exclusive ORs the source operand to the destination operand and stores
the result in the destination location.

Operands:

<d> Data addressing modes.

<da> Data alterable addressing modes.

%ccr Condition code register.

%dn Data register.

%sr Status register.

$expr Constant expression.

Programming Note:
There is no eor <ea>,%dn form to match what is available for the and
and or instructions.

Instruction Motorola MC680xx Processor
exg %rx,%ry EXG 00/12/20/30/40/60

Description:
Exchanges the contents of two registers (always a 32-bit exchange). The
exchange works in three modes: data registers, address register, and a
data and an address register.

Operands: %rx specifies either a data or an address register depending on the
mode.

%ry specifies either a data or an address register depending on the
mode.

Instruction Motorola MC680xx Processor
extbl %dn EXTB.L 20/30/40/60
ext %dn EXT.W 00/12/20/30/40/60
extl %dn EXT.L

Description:
Extends the sign bit of a data register from a byte to a long, byte to a
word, or from a word to a long operand depending on the size selected.
In the byte to long operation, bit 7 of the designated data register is
copied to bits 31:8 of the data register. In the byte to word operation, bit

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-19

7 of the designated data register is copied to bits 15:8 of the data
register. In the long operation, bit 15 of the designated data register is
copied to bits 31:16 of the data register.

Operands: %dn specifies the data register whose content is to be sign-extended.

Programming Note:
Word size instructions where the destination is an address register
always sign extend the source operand before doing the operation.
Sometimes an ext instruction can be avoided by assigning a variable to
an address register.

A3.2 ASSEMBLY INSTRUCTIONS F THROUGH L

Instruction Motorola MC680xx Processor
fabs <d>,%fpn FABS.W 40/60
fabsb <d>,%fpn FABS.B 40/60
fabsw <d>,%fpn FABS.W 40/60
fabsl <d>,%fpn FABS.L 40/60
fabss <d>,%fpn FABS.S 40/60
fabsd <d>,%fpn FABS.D 40/60
fabsx <d>,%fpn FABS.X 40/60
fabsx %fpm,%fpn FABS.X 40/60
fabsx %fpn FABS.X 40/60

Description:
Converts source operand to extended precision (if necessary) and stores
the absolute value of that number in the destination floating point data
register.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers. (Also source register if single register syntax
is used).

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fabsd and fabsx are invalid.

Instruction Motorola MC680xx Processor
fadd <d>,%fpn FADD.W 40/60
faddb <d>,%fpn FADD.B 40/60
faddw <d>,%fpn FADD.W 40/60
faddl <d>,%fpn FADD.L 40/60
fadds <d>,%fpn FADD.S 40/60
faddd <d>,%fpn FADD.D 40/60
faddx <d>,%fpn FADD.X 40/60

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-20 Issue 5.00

Instruction Motorola MC680xx Processor
faddx %fpm,%fpn FADD.X 40/60

Description:
Converts source operand to extended precision (if necessary), adds that
number to the number in the destination floating point data register, and
stores the result in the destination floating point data register.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics faddd and faddx are invalid.

Instruction Motorola MC680xx Processor
fbCC label FBcc.W 40/60
fbCCw label FBcc.W 40/60
fbCCl label FBcc.L 40/60

Description:
If the specified condition is met, the program execution continues at
location program counter (PC) + displacement. The displacement is a
two’s-complement integer that counts the relative distance in bytes. The
PC value used to calculate the destination address is the address of the
branch instruction (current location) plus two. If the displacement size is
a word, then a 16-bit displacement is stored in the word immediately
following the instruction operation word. If the displacement size is a
long word, then a 32-bit displacement is stored in the two words
immediately following the instruction operation word.

The cc and CC parts of this instruction represents one of the following
conditions:

CC cc Description
eq EQ Equal
f F false
ge GE Greater than or equal
gl GL Greater than or less than
gle GLE Greater than or less than or equal
gt GT Greater than
le LE Less than or equal
lt LT Less than
ne NE Not equal

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-21

CC cc Description
nge NGE Not (greater than or equal)
ngl NGL Not (greater than or less than)
ngle NGLE Not (greater than or less than or equal)
ngt NGT Not greater than
nle NLE Not (less than or equal)
nlt NLT Not less than
oge OGE Ordered greater than
ogl OGL Ordered greater than or less than
ogt OGT Ordered greater than
ole OLE Ordered less than or equal
olt OLT Ordered less than
or OR Ordered
seq SEQ Signaling equal
sf SF Signaling false
sne SNE Signaling not equal
st ST Signaling true
t T True
ueq UEQ Unordered equal
uge UGE Unordered greater than or equal
ugt UGT Unordered greater than
ule UGE Unordered less than or equal
ult UGT Unordered less than
un UN Unordered

Operands:

label Specifies the program symbol destination (label) when the
branch in taken.

Programming Note:
If branch distance is +2, or in other words, the branch is to the following
statement, the branch is optimized to an fnop instruction.

Long branches are optimized to word branches if the displacement is
within a word boundary (range).

Note 1: Instructions with long branches are allowed in the assembler
but will not currently load in ITS.

Note 2: When a BSUN exception occurs, the main processor takes a
preinstruction exception. If the exception handler returns without
modifying the image of the program counter on the stack frame (to point
to the instruction following the FBcc), then it must clear the cause of the
exception (by clearing the NAN bit or disabling the BSUN trap), or the
exception will occur again immediately upon return to the routine that
caused the exception.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-22 Issue 5.00

Instruction Motorola MC680xx Processor
fcmp <d>,%fpn FCMP.W 40/60
fcmpb <d>,%fpn FCMP.B 40/60
fcmpw <d>,%fpn FCMP.W 40/60
fcmpl <d>,%fpn FCMP.L 40/60
fcmps <d>,%fpn FCMP.S 40/60
fcmpd <d>,%fpn FCMP.D 40/60
fcmpx <d>,%fpn FCMP.X 40/60
fcmpx %fpm,%fpn FCMP.X 40/60

Description:
Converts source operand to extended precision (if necessary), subtracts
that operand from the destination floating point data register and sets
the condition codes according to the results. The destination location is
unchanged.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fcmpd and fcmpx are invalid.

Instruction Motorola MC680xx Processor
fdiv <d>,%fpn FDIV.W 40/60
fdivb <d>,%fpn FDIV.B 40/60
fdivw <d>,%fpn FDIV.W 40/60
fdivl <d>,%fpn FDIV.L 40/60
fdivs <d>,%fpn FDIV.S 40/60
fdivd <d>,%fpn FDIV.D 40/60
fdivx <d>,%fpn FDIV.X 40/60
fdivx %fpm,%fpn FDIV.X 40/60

Description:
Converts source operand to extended precision (if necessary), divides that
number into the number in the destination floating point data register,
and stores the result in the destination floating point data register.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-23

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fdivd and fdivx are invalid.

Instruction Motorola MC680xx Processor
fint <d>,%fpn FINT.W 40/60
fintb <d>,%fpn FINT.B 40/60
fintw <d>,%fpn FINT.W 40/60
fintl <d>,%fpn FINT.L 40/60
fints <d>,%fpn FINT.S 40/60
fintd <d>,%fpn FINT.D 40/60
fintx <d>,%fpn FINT.X 40/60
fintx %fpm,%fpn FINT.X 40/60
fintx %fpn FINT.X 40/60

Description:
Converts source operand to extended precision (if necessary), extracts the
integer part and converts it to an extended precision floating point
number, and stores the result in the destination floating point data
register. The integer part is extracted by rounding the extended precision
number to an integer using the current rounding mode selected in the
floating point control register (FPCR) mode control byte.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers. (Also source register if single register syntax
is used).

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fintd and fintx are invalid.

Instruction Motorola MC680xx Processor
fintrz <d>,%fpn FINTRZ.W 40/60
fintrzb <d>,%fpn FINTRZ.B 40/60
fintrzw <d>,%fpn FINTRZ.W 40/60
fintrzl <d>,%fpn FINTRZ.L 40/60
fintrzs <d>,%fpn FINTRZ.S 40/60
fintrzd <d>,%fpn FINTRZ.D 40/60
fintrzx <d>,%fpn FINTRZ.X 40/60
fintrzx %fpm,%fpn FINTRZ.X 40/60
fintrzx %fpn FINTRZ.X 40/60

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-24 Issue 5.00

Description:
Converts source operand to extended precision (if necessary), extracts the
integer part and converts it to an extended precision floating point
number, and stores the result in the destination floating point data
register. The integer part is extracted by rounding the extended precision
number to an integer using the round-to-zero mode, regardless of the
rounding mode selected in the floating point control register (FPCR) mode
control byte.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers. (Also source register if single register syntax
is used).

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fintrzd and fintrzx are invalid.

Instruction Motorola MC680xx Processor
fmove <d>,%fpn FMOVE.W 40/60
fmoveb <d>,%fpn FMOVE.B 40/60
fmovew <d>,%fpn FMOVE.W 40/60
fmovel <d>,%fpn FMOVE.L 40/60
fmoves <d>,%fpn FMOVE.S 40/60
fmoved <d>,%fpn FMOVE.D 40/60
fmovex <d>,%fpn FMOVE.X 40/60
fmovex %fpm,%fpn FMOVE.X 40/60
fmove %fpm,<da> FMOVE.W 40/60
fmoveb %fpm,<da> FMOVE.B 40/60
fmovew %fpm,<da> FMOVE.W 40/60
fmovel %fpm,<da> FMOVE.L 40/60
fmoves %fpm,<da> FMOVE.S 40/60
fmoved %fpm,<da> FMOVE.D 40/60
fmovex %fpm,<da> FMOVE.X 40/60

Description:
Moves the contents of the source operand to the destination operand. It
performs data movement and is also considered an arithmetic instruction
since conversion from the source format to the destination format is
performed implicitly during the operation.

Memory-to-Register and Register-to-Register Operation: Converts the
source operand to extended precision (if necessary) and stores it in the
destination floating point data register. Instruction fmove will round the
result to the precision selected in the floating point control register
(%fpcr). Data addressing modes are valid.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-25

Register-to-Memory Operation: Rounds the source operand to the size of
the specified destination format and stores it in the destination operand
effective address. Data alterable addressing modes are valid.

Operands:

<d> Data addressing modes.

<da> Data alterable addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fmoved and fmovex are invalid.

Instruction Motorola MC680xx Processor
fmovel <ea>,<fpsysctlreg> FMOVE.L 40/60
fmovel <fpsysctlreg>,<a> FMOVE.L 40/60

Description:
Moves the contents of a floating point system control register
<fpsysctlreg> (floating point control register: %fpcr, floating point
status register: %fpsr or floating point instruction address register:
%fpiar) to or from an operand effective address. The floating point
status register is changed only if it is the destination.

Memory-to-Register: All addressing modes are valid.

Register-to-Memory: Alterable addressing modes are valid.

Operands:

<ea> All addressing modes.

<a> Alterable addressing modes.

<fpsysctlreg>
Specifies any of the three floating point system control
registers: %fpcr, %fpsr, %fpiar.

Programming Note:
If an address register %an is an operand in the instruction, the source or
destination floating point system control register must be the floating
point instruction address register %fpiar.

Instruction Motorola MC680xx Processor
fmoveml <ea>,<fpsysctlreglst> FMOVEM.L 40/60
fmoveml <fpsysctlreglst>,<a> FMOVEM.L 40/60

Description:
Moves one or more 32-bit values into or out of the specified system
control registers. Any combination of the three system control registers
may be specified. The registers are always moved in the same order,
regardless of the addressing mode used and are moved in the following

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-26 Issue 5.00

order, respectively: floating point control register %fpcr, floating point
status register %fpsr, and floating point instruction address register
%fpiar.

Memory-to-Register: All addressing modes are valid.

Register-to-Memory: Alterable addressing modes are valid.

Operands:

<ea> All addressing modes.

<a> Alterable addressing modes.

<fpsysctlreglst>
Specifies a list of any of the three floating point system
control registers: <%fpcr, %fpsr, %fpiar>.

Programming Note:
If an address register %an is an operand in the instruction, the source or
destination floating point system control register list must contain only
the floating point instruction address register <%fpiar>.

If a data direct register %dn is an operand in the instruction, the source
or destination floating point system control register list must contain only
one of the floating point system control registers: <%fpcr>, <%fpsr>,
<%fpiar>.

Note: If a single register is selected, the opcode is the same as for the
fmovel (FMOVE.L) single floating point system control register
instruction.

Instruction Motorola MC680xx Processor
fmovemx <cntl_pincr>,<fpreglist> FMOVEM.X 40/60
fmovemx <cntl_pincr>,Dn FMOVEM.X 40/60
fmovemx <fpreglist>,<cntlalt_pdecr> FMOVEM.X 40/60
fmovemx Dn,<cntlalt_pdecr> FMOVEM.X 40/60

Description:
Moves one or more extended precision numbers to or from a list of
floating point data registers. No conversion or rounding is performed
during this operation, and the floating point status register is not affected
by the instruction.

Any combination of the eight floating point data registers can be
transferred, with the selected registers specified by a user-supplied mask.
This mask is an 8-bit number, where each bit corresponds to one register;
if a bit is set in the mask, that register is moved. The register select
mask may be specified as a static value contained in the instruction or a
dynamic value in the least significant eight bits of an integer data direct
register.

FMOVEM allows three types of addressing modes: control, predecrement, or
postincrement modes.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-27

If the effective address is one of the control addressing modes, the
registers are transferred between the processor and memory starting at
the specified address up through higher addresses. The order of transfer
is from FP0 - FP7.

If the effective address is the predecrement mode, only a
register-to-memory operation is allowed; the registers are stored starting
at the address contained in the address register down through the lower
addresses. The order of transfer is from FP7 - FP0.

If the effective address is the postincrement mode, only a
memory-to-register operation is allowed; the registers are loaded starting
at the specified address up through higher addresses. The order of
transfer is from FP0 - FP7.

Memory-to-Register: Control or postincrement addressing modes are
valid.

Register-to-Memory: Control alterable or predecrement modes are valid.

Operands:

<cntl_pincr>
Control or postincrement modes.

<cntlalt_pdecr>
Control alterable or predecrement modes.

Dn Data direct register for dynamic mode.

<fpreglist>
Specifies a list of any of the eight floating point data
registers to be transferred, where each is either separated by
a comma (,) delimiter symbol and/or specified as an ordered
range of registers as separated by the dash (-) delimiter.

Also, an 8-bit mask value can be specified as representation
of each register set.

The following, which represent boundary registers, are some
examples valid for <fpreglist>:

<0x01> means <%fp0>

<0x80> means <%fp7>

The following, which represent the same set of registers set,
are some examples valid for <fpreglist>:

<%fp0,%fp1,%fp2,%fp4,%fp6,%fp7>

<%fp0-%fp2,%fp4,%fp6-%fp7>

<%fp7,%fp6,%fp4,%fp2,%fp1,%fp0>

<0xd7>

Programming Note:
This instruction provides a useful feature called dynamic register list
specification that can significantly enhance system performance. If the
calling conventions used for procedure calls use this feature, the number
of floating point data registers saved and restored can be reduced.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-28 Issue 5.00

For predecrement mode, the order of the bitmask is automatically
reversed by the assembler. The bitmask at the start of a procedure and at
the end of the procedure should be identical when they are specified
numerically. This is not true with other assemblers and may lead to
confusion.

On the same note as above, there is a similarity between fmovemx and
movem instructions. Please note that the register list bitmask for
fmovemx is "opposite" to that of movem for predecrement and
postincrement modes. For fmovemx, this difference is compensated within
the assembler.

Instruction Motorola MC680xx Processor
fmul <d>,%fpn FMUL.W 40/60
fmulb <d>,%fpn FMUL.B 40/60
fmulw <d>,%fpn FMUL.W 40/60
fmull <d>,%fpn FMUL.L 40/60
fmuls <d>,%fpn FMUL.S 40/60
fmuld <d>,%fpn FMUL.D 40/60
fmulx <d>,%fpn FMUL.X 40/60
fmulx %fpm,%fpn FMUL.X 40/60

Description:
Converts source operand to extended precision (if necessary), multiplies
that number by the number in the destination floating point data
register, and stores the result in the destination floating point data
register.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fmuld and fmulx are invalid.

Instruction Motorola MC680xx Processor
fneg <d>,%fpn FNEG.W 40/60
fnegb <d>,%fpn FNEG.B 40/60
fnegw <d>,%fpn FNEG.W 40/60
fnegl <d>,%fpn FNEG.L 40/60
fnegs <d>,%fpn FNEG.S 40/60
fnegd <d>,%fpn FNEG.D 40/60
fnegx <d>,%fpn FNEG.X 40/60
fnegx %fpm,%fpn FNEG.X 40/60

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-29

Instruction Motorola MC680xx Processor
fnegx %fpn FNEG.X 40/60

Description:
Converts source operand to extended precision (if necessary), inverts the
sign of the mantissa, and stores the result in the destination floating
point data register.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers (also source register if single register syntax is
used).

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fnegd and fnegx are invalid.

Instruction Motorola MC680xx Processor
fnop FNOP 40/60

Description:
No operation occurs. It is used to force synchronization of the floating
point unit with an integer unit or to force processing of pending
exceptions.

Programming Note:
fnop is the same instruction as the fb<cc>w <label> instruction, where
<cc> = f (nontrapping false value 0) and <label> = +2 (which results in a
displacement of a word-sized 0).

Instruction Motorola MC680xx Processor
frestore <pincr_cntl> FRESTORE 40/60

Description:
Aborts the execution of any floating point operation in progress and loads
a new floating point unit internal state from the state frame located at
the operand effective address.

Operands: <pincr_cntl> Postincrement or control addressing modes.

Instruction Motorola MC680xx Processor
fsave <pdecr_cntlalt> FSAVE 40/60

Description:
Allows the completion of any floating point operation in progress. It saves
the internal state of the floating point unit in a state frame located at the
operand effective address. After the save operation, the floating point unit
is in the idle state, waiting for the execution of the next instruction. Any

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-30 Issue 5.00

floating point operations in progress when and FSAVE is encountered can
be completed before the FSAVE executes, saving an IDLE frame.

Operands: <pdecr_cntlalt> Predecrement or control alterable addressing modes.

Instruction Motorola MC680xx Processor
fsgldiv <d>,%fpn FSGLDIV.W 40/60
fsgldivb <d>,%fpn FSGLDIV.B 40/60
fsgldivw <d>,%fpn FSGLDIV.W 40/60
fsgldivl <d>,%fpn FSGLDIV.L 40/60
fsgldivs <d>,%fpn FSGLDIV.S 40/60
fsgldivd <d>,%fpn FSGLDIV.D 40/60
fsgldivx <d>,%fpn FSGLDIV.X 40/60
fsgldivx %fpm,%fpn FSGLDIV.X 40/60

Description:
Converts source operand to extended precision (if necessary), divides that
number into the number in the destination floating point data register,
and stores the result in the destination floating point data register
rounded to single precision (regardless of the current rounding precision).

Both the source and destination operands are assumed to be
representable in the single precision format. If either operand requires
more than 24 bits of mantissa to be accurately represented, the
extraneous mantissa bits are truncated prior to the division; hence, the
accuracy of the result is not guaranteed. Furthermore, the result
exponent may exceed the range of single precision, regardless of the
rounding precision selected in the floating point control register (FPCR)
mode control byte.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fsgldivd and fsgldivx are invalid. This
function is undefined for 0/0 and ∞/∞.

The accuracy of the result is not affected by the number of mantissa bits
required to represent each input operand since the input operands just
change to extended precision. The result mantissa is rounded to single
precision, despite the rounding precision selected in the FPCR.

Instruction Motorola MC680xx Processor
fsglmul <d>,%fpn FSGLMUL.W 40/60
fsglmulb <d>,%fpn FSGLMUL.B 40/60
fsglmulw <d>,%fpn FSGLMUL.W 40/60

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-31

Instruction Motorola MC680xx Processor
fsglmull <d>,%fpn FSGLMUL.L 40/60
fsglmuls <d>,%fpn FSGLMUL.S 40/60
fsglmuld <d>,%fpn FSGLMUL.D 40/60
fsglmulx <d>,%fpn FSGLMUL.X 40/60
fsglmulx %fpm,%fpn FSGLMUL.X 40/60

Description:
Converts source operand to extended precision (if necessary), multiplies
that number by the number in the destination floating point data
register, and stores the result in the destination floating point data
register rounded to single precision (regardless of the current rounding
precision).

Both the source and destination operands are assumed to be
representable in the single precision format. If either operand requires
more than 24 bits of mantissa to be accurately represented, the
extraneous mantissa bits are truncated prior to the multiplication; hence,
the accuracy of the result is not guaranteed. Furthermore, the result
exponent may exceed the range of single precision, regardless of the
rounding precision selected in the floating point control register (FPCR)
mode control byte.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fsglmuld and fsglmulx are invalid.

The input operand mantissas truncate to single precision before the
multiply operation. The result mantissa rounds to single precision despite
the rounding precision selected in the FPCR.

Instruction Motorola MC680xx Processor
fsqrt <d>,%fpn FSQRT.W 40/60
fsqrtb <d>,%fpn FSQRT.B 40/60
fsqrtw <d>,%fpn FSQRT.W 40/60
fsqrtl <d>,%fpn FSQRT.L 40/60
fsqrts <d>,%fpn FSQRT.S 40/60
fsqrtd <d>,%fpn FSQRT.D 40/60
fsqrtx <d>,%fpn FSQRT.X 40/60
fsqrtx %fpm,%fpn FSQRT.X 40/60
fsqrtx %fpn FSQRT.X 40/60

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-32 Issue 5.00

Description:
Converts source operand to extended precision (if necessary) and
calculates the square root of that number in the destination floating point
data register. This function is not defined for negative operands. FSQRT
will round the result to the precision selected in the floating point control
register (FPCR).

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers (also source register if single register syntax is
used).

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fsqrtd and fsqrtx are invalid.

Instruction Motorola MC680xx Processor
fsub <d>,%fpn FSUB.W 40/60
fsubb <d>,%fpn FSUB.B 40/60
fsubw <d>,%fpn FSUB.W 40/60
fsubl <d>,%fpn FSUB.L 40/60
fsubs <d>,%fpn FSUB.S 40/60
fsubd <d>,%fpn FSUB.D 40/60
fsubx <d>,%fpn FSUB.X 40/60
fsubx %fpm,%fpn FSUB.X 40/60

Description:
Converts source operand to extended precision (if necessary), subtracts
that number from the number in the destination floating point data
register and stores the result in the destination floating point data
register.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

%fpn Destination register. Specifies any of the eight floating point
data registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics fsubd and fsubx are invalid.

Instruction Motorola MC680xx Processor
ftst <d> FTST.W 40/60
ftstb <d> FTST.B 40/60
ftstw <d> FTST.W 40/60

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-33

Instruction Motorola MC680xx Processor
ftstl <d> FTST.L 40/60
ftsts <d> FTST.S 40/60
ftstd <d> FTST.D 40/60
ftstx <d> FTST.X 40/60
ftstx %fpm FTST.X 40/60

Description:
Converts source operand to extended precision (if necessary) and sets the
condition code bits according to the data type of the result.

Operands:

<d> Data addressing modes.

%fpm Source register. Specifies any of the eight floating point data
registers.

Programming Note:
If a data direct register %dn is the data addressing mode in the
instruction, mnemonics ftstd and ftstx are invalid.

Instruction Motorola MC680xx Processor
jmp <ea> JMP 00/20/30/40/60

Description:
Program execution continues at the address specified by the instruction.
The address is specified by the control addressing modes.

Operands: <ea> specifies the address of the next instruction. Only control
addressing modes are allowed.

Instruction Motorola MC680xx Processor
jsr <ea> JSR 00/20/30/40/60

Description:
Pushes the address of the instruction immediately following the jsr
instruction onto the system stack. Program execution continues at the
address specified in the instruction.

Operands: <ea> specifies the address of the next instruction. Only control
addressing modes are allowed.

Instruction Motorola MC680xx Processor
ldccr <ea>,%ccr MOVE to CCR 00/20/30/40/60

Description:
Moves the contents of the source operand to the condition codes. The
source operand is a word, but only the low-order byte of the word is used
to update the condition codes.

Operands: <ea> specifies the location of the source operand. Only data addressing
modes are allowed.

%ccr specifies the condition codes.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-34 Issue 5.00

Instruction Motorola MC680xx Processor
ldsr <ea>,%sr MOVE to SR 00/20/30/40/60

Description:
Moves the contents of the source operand to the status register. The
source operand is a word, and all bits of the status registers are affected.
Privileged.

Operands: <ea> specifies the location of the source operand. Only data addressing
modes are allowed.

%sr specifies the status register.

Instruction Motorola MC680xx Processor
lea <ea>,%an LEA 00/20/30/40/60

Description:
Loads the effective address into the specified address register. This
instruction affects all 32 bits of the address register.

Operands: %an specifies the address register which is to be loaded with the effective
address.

<ea> specifies the address to be loaded into the address register. Only
control addressing modes are allowed.

Instruction Motorola MC680xx Processor
link %an,$expr LINK 00/20/30/40/60
linkl %an,$expr LINK.L 20/30/40/60

Description:
Pushes the current contents of the specified address register onto the
stack. After the push, the address register is loaded from the updated
stack pointer. Finally, the sign-extend displacement is added to the stack
pointer. The content of the address register occupies two words on the
stack.

Operands: %an specifies the address register through which the link is to be
constructed.

$expr specifies the two’s complement integer which is to be added to the
stack pointer. This may be either a word or long word depending on the
size of the instruction.

Instruction Motorola MC680xx Processor
lpstop $expr LPSTOP 60

Description:
Low power stop operation. Move immediate number into status register,
advance the program counter, and stop fetching instructions. An interrupt
or reset causes execution to continue.

Operands: $expr is placed in the status register.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-35

Instruction Motorola MC680xx Processor
lslb %dx,%dy LSL.B 00/20/30/40/60
lslb $expr,%dy LSL.B
lsl %dx,%dy LSL.W
lsl $expr,%dy LSL.W
lsl <ea> LSL.W
lsll %dx,%dy LSL.L
lsll $expr,%dy LSL.L
lsrb %dx,%dy LSR.B 00/20/30/40/60
lsrb $expr,%dy LSR.B
lsr %dx,%dy LSR.W
lsr $expr,%dy LSR.W
lsr <ea> LSR.W
lsrl %dx,%dy LSR.L
lsrl $expr,%dy LSR.L

Description:
Shifts the bits of the operand in the direction specified. The carry bit
receives the last bit shift out of the operand. The shift count for the
shifting of a register is specified in two ways:

Immediate - shift count is specified in instruction (shift range 1 through
8).

Register - shift count is contained in data register specified in
instruction.

The content of memory can be shifted only 1 bit where the operand size is
restricted to a word.

LSL - the operand is shifted left. The number of positions shifted is the
shift count. Bits shifted out of the high-order bit go to both the carry and
extend bits; zeros are shifted into the low-order bit.

LSR - the operand is shifted right. The number of positions shifted is the
shift count. Bits shifted out of the lower-order bit go to both the carry and
extend bits; zeros are shifted into the high-order bit.

Operands: <ea> specifies operand to be shifted. Only alterable memory addressing
modes are allowed.

%dy specifies the data register whose content is to be shifted.

$expr or $dx specifies shift count or register where count is located.

A3.3 ASSEMBLY INSTRUCTIONS M THROUGH Z

Instruction Motorola MC680xx Processor
moveb <d>,<ea> MOVE.B 00/20/30/40/60
move <ea>,%an MOVEA.W
move <ea>,<da> MOVE.W

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-36 Issue 5.00

Instruction Motorola MC680xx Processor
movel $bexpr,%dn MOVEQ
movel <ea>,%an MOVEA.L
movel <ea>,<da> MOVE.L

Description:
Moves the contents of the source to the destination location. The data is
examined as it is moved and condition codes are set accordingly.

Operands:

<d> Data addressing modes.

<da> Data alterable addressing modes.

<ea> All addressing modes.

$bexpr Byte-sized constant expression: −128 to +127.

%an Address register.

%dn Data register.

Instruction Motorola MC680xx Processor
movec %rc,%rn MOVEC 12/20/30/40/60
movec %rn,%rc MOVEC

Description:
Copy the contents of the specified control register (%rc) to a specified
general purpose register (%rn) or vice-versa. A 32-bit transfer is always
done no matter what the size of the control register. Unimplemented bits
are read as zeroes. Privileged.

Operands: %rn may be any address or data register.

%rc may be one of the following:

%sfc - Source function code register.

%dfc - Destination function code register.

%cacr - Cache control register.

%usp - User stack pointer.

%vbr - Vector base register.

%caar - Cache address register (20/30 only).

%msp - Master stack pointer.

%isp - Interrupt stack pointer.

%tc - MMU translation control register (40/60 only).

%itt0 - Instruction transparent translation register 0 (40/60
only).

%itt1 - Instruction transparent translation register 1 (40/60
only).

%dtt0 - Data transparent translation register 0 (40/60 only).

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-37

%dtt1 - Data transparent translation register 1 (40/60 only).

%mmusr - MMU status register (40/60 only).

%urp - User root pointer (40/60 only).

%srp - Supervisor root pointer (40/60 only).

%pcr - Processor configuration register (60 only).

%buscr - Bus control register (60 only).

Instruction Motorola MC680xx Processor
move16 (%ax)+,(%ay)+ MOVE16 40/60
move16 <absol>,(%an) MOVE16 40/60
move16 <absol>,(%an)+ MOVE16 40/60
move16 (%an),<absol> MOVE16 40/60
move16 (%an)+,<absol> MOVE16 40/60

Description:
Moves the source line (i.e., 16-byte quantity) to the destination line. The
lines must be aligned at 16-byte boundaries. Line transfers are performed
using burst reads and writes. The address register used in a
post-increment mode is incremented by 16 after the move.

Operands:

%ax Source address register.

%ay Destination address register.

%an Source or destination address register.

<absol> Source or destination absolute operand.

Instruction Motorola MC680xx Processor
movem reglist,<ea> MOVEM.W 00/20/30/40/60
movem <ea>,reglist MOVEM.W
moveml reglist,<ea> MOVEM.L
moveml <ea>,reglist MOVEM.L

Description:
Transfers selected registers to or from consecutive memory locations,
starting at the location specified by the effective address.

Operands: reglist specifies which registers are to be transferred.

<0x0001>--
means %d0

<0x0080>--
means %d7

<0x0100>--
means %a0

<0x8000>--
means %a7

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-38 Issue 5.00

<ea> specifies the memory address to or from which the registers are to
be moved:

1. Register to memory transfer (only control alterable addressing
modes, or predecrement mode is allowed).

2. Memory to register transfer (only control addressing modes, or
post-increment addressing mode is allowed).

Programming Note:
%d0, %d1, %d2, %a0, %a1 are not saved between function calls. %a6 is the
frame pointer and %a7 is the stack pointer. The "biggest" reglist
needed for an assembly language function called by a C function is
<0x3cf8>.

For predecrement mode addresses the order of the bitmask is
automatically reversed by the assembler. The bitmask at the start of a
procedure and at the end of the procedure should be identical when they
are specified numerically. This is not true with other assemblers and may
lead to confusion.

Instruction Motorola MC680xx Processor
movep %dx,expr(%ay) MOVEP.W 00/20/30/40/60
movep expr(%ay),%dx MOVEP.W
movepl %dx,expr(%ay) MOVEP.L
movepl expr(%ay),%dx MOVEP.L

Description:
Transfers the data between a data register and alternate bytes of
memory, starting at the specified location, and incrementing by two. The
higher-order byte of the data register is transferred first, and the
low-order byte is transferred last. The memory address is specified using
the address register indirect plus displacement addressing mode. If the
address is even, all the transfers are made on the high-order half of the
data bus; if the address is odd, all the transfers are made on the
low-order half of the data bus.

Operands: expr(%ay) specifies the address register indirect, plus the displacement
addressing mode.

%dx specifies the data register to or from which the data is to be
transferred.

Instruction Motorola MC680xx Processor
movesb %rn,<ea> MOVES.B 12/20/30/40/60
movesb <ea>,%rn MOVES.B
moves %rn,<ea> MOVES.W
moves <ea>,%rn MOVES.W
movesl %rn,<ea> MOVES.L
movesl <ea>,%rn MOVES.L

Description:
Move the contents of %rn to the location <ea> in the address space

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-39

specified by %dfc or move the contents of the location <ea> in the
address space specified by %sfc to %rn. If the destination is an address
register, the source operand sign-extended to 32 bits before being moved.

Operands: %rn may be any address or data register.

<ea> may be any memory alterable addressing mode.

Note: For either of the two following examples where %an is the same
register in the source and destination, and the moves instruction is any
size, the value stored is undefined:

moves %an,(%an)+

moves %an,-(%an)

Instruction Motorola MC680xx Processor
muls <ea>,%dn MULS.W 00/20/30/40/60

Description:
Multiplies two signed word operands yielding a long signed result. Only
the low-order word of the register operand is used. All 32 bits of the
product are saved in the destination register.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dn specifies one of the data registers. The field always specifies the
destination.

Instruction Motorola MC680xx Processor
mulsl <ea>,%dl MULS.L 20/30/40/60*

Description:
Multiplies two signed long operands yielding a signed long result (%dl).
Only the low-order 32 bits of the quad word product are saved.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dl specifies one of the data registers.

Note: Overflow will occur if the high-order word of the possible quad
word product is not a sign extension of the result %dl.

Programming Note:
This instruction is not implemented in hardware on the 060. Emulation
support is required.

Instruction Motorola MC680xx Processor
mulsl <ea>,%dh:%dl MULS.L 20/30/40

Description:
Multiplies two signed long operands yielding a signed quad result. The
low-order 32 bits may be found in %dl and the high-order 32 bits in %dh.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-40 Issue 5.00

%dh and %dl specify arbitrary data registers. If they are the same, the
results are undefined.

Instruction Motorola MC680xx Processor
mulu <ea>,%dn MULU.W 00/20/30/40/60

Description:
Multiplies two unsigned word operands yielding a long unsigned result.
Only the low-order word of the register operand is used. All 32 bits of the
product are saved in the destination register.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dn specifies one of the data registers. This field always specifies the
destination.

Instruction Motorola MC680xx Processor
mulul <ea>,%dl MULU.L 20/30/40/60*

Description:
Multiplies two unsigned long operands yielding an unsigned long result
(%dl). Only the low-order 32 bits of the quad word product are saved.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dl specifies one of the data registers.

Note: Overflow will occur if the high-order word of the possible quad
word product is not 0.

Programming Note:
This instruction is not implemented in hardware on the 060. Emulation
support is required.

Instruction Motorola MC680xx Processor
mulul <ea>,%dh:%dl MULU.L 20/30/40

Description:
Multiplies two unsigned long operands yielding an unsigned quad result.
The low-order 32 bits may be found in %dl and the high order 32 bits in
%dh.

Operands: <ea> specifies the source operand. Only data addressing modes are
allowed.

%dh and %dl specify arbitrary data registers. If they are the same, the
results are undefined.

Instruction Motorola MC680xx Processor
mvccr %ccr,<ea> MOVE from CCR 12/20/30/40/60

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-41

Description:
Moves the condition code bits to the destination location, <ea>. Results
are zero extended to a word (16 bits). Unimplemented bits are read as
zeroes.

Operands: <ea> may be any data alterable addressing mode.

Instruction Motorola MC680xx Processor
mvsr %sr,<ea> MOVE from SR 00/20/30/40/60

Description:
Moves the contents of the status register to the destination operand. The
operand size is a word, and all bits of the status register are moved.
Privileged on Motorola MC68012, MC68020, and MC68030 processors.

Operands: <ea> specifies the location of the source operand. Only data alterable
addressing modes are allowed.

%sr specifies the status register.

Instruction Motorola MC680xx Processor
mvusp %usp,%an MOVE USP 00/20/30/40/60
mvusp %an,%usp MOVE USP

Description:
Transfers the contents of the user stack pointer to or from the specified
address register. This instruction is useful for supervisor state programs.
Privileged.

Operands: %usp specifies the user stack pointer.

%an specifies the address register to or from which the user stack pointer
is to be transferred.

Instruction Motorola MC680xx Processor
nbcd <ea> NBCD 00/20/30/40/60

Description:
Subtracts the operand addressed as the destination and the extend bit
from zero. The operation is performed using decimal arithmetic. The
result is saved in the destination location. This instruction produces ten’s
complement of the destination if the extend bit is clear; it produces nine’s
complement if the extend bit is set. This is a byte operation only.

Operands: <ea> specifies the destination operand. Only data alterable addressing
modes are allowed.

Instruction Motorola MC680xx Processor
negb <ea> NEG.B 00/20/30/40/60
neg <ea> NEG.W
negl <ea> NEG.L

Description:
Subtracts from zero the operand addressed as the destination. Stores the
result in the destination location.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-42 Issue 5.00

Operands: <ea> specifies the destination operand. Only data alterable addressing
modes are allowed.

Instruction Motorola MC680xx Processor
negxb <ea> NEGX.B 00/20/30/40/60
negx <ea> NEGX.W
negxl <ea> NEGX.L

Description:
Subtracts the operand addressed as the destination and extend bit from
zero. Stores the result in the destination location.

Operands: <ea> specifies the destination operand. Only data alterable addressing
modes are allowed.

Instruction Motorola MC680xx Processor
nop NOP 00/20/30/40/60

Description:
No operation occurs. The processor, except for the program counter, is
unaffected. Execution continues with the instruction following the nop
instruction.

Instruction Motorola MC680xx Processor
notb <ea> NOT.B 00/20/30/40/60
not <ea> NOT.W
notl <ea> NOT.L

Description:
Converts the destination operand to 1’s complement and stores the result
in the destination location.

Operands: <ea> specifies the destination operand. Only data alterable addressing
modes are allowed.

Instruction Motorola MC680xx Processor
orb $expr,<da> ORI.B 00/20/30/40/60
orb %dn,<am> OR.B
orb <d>,%dn OR.B
orb $expr,%ccr ORI to CCR
or $expr,<da> ORI.W
or %dn,<am> OR.W
or <d>,%dn OR.W
or $expr,%sr ORI to SR
orl $expr,<da> ORI.L
orl %dn,<am> OR.L
orl <d>,%dn OR.L

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-43

Description:
Bitwise ORs the source operand to the destination operand and stores the
result in the destination location.

Operands:

<am> Alterable memory addressing modes.

<d> Data addressing modes.

<da> Data alterable addressing modes.

%ccr Condition code register.

%dn Data register.

%sr Status register.

$expr Constant expression.

Programming Note:
When the assembly instruction or $expr,%dn is given to the assembler,
the ORI encoding is used instead of the OR encoding.

Instruction Motorola MC680xx Processor
pack −(%ax),−(%ay),$adj PACK 20/30/40/60
pack %dx,%dy,$adj PACK

Description:
Adjust and pack the low four bits of each of two bytes into a single byte.
When both arguments are data registers, the adjustment is added to the
value contained in the source register. When the predecrement
addressing mode is used, two bytes from the source are fetched and
concatenated. The result is written to the destination.

Instruction Motorola MC680xx Processor
pea <ea> PEA 00/20/30/40/60

Description:
Computes the effective address and pushes it onto the stack.

Operands: <ea> specifies the address to be pushed onto the stack. Only control
addressing modes are allowed.

Instruction Motorola MC680xx Processor
pflusha PFLUSHA 30/40
pflushan (%an) PFLUSHAN 40/60

Description:
Invalidate all address translation cache entries. The pflushan
instruction affects only non-global entries (i.e., pages whose global bit is
not set).

Instruction Motorola MC680xx Processor
pflush <fc>,$<mask> PFLUSH 30

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-44 Issue 5.00

Description:
Invalidate all address translation cache entries whose function code
matches the <fc> operand modified by $<mask>. The 1 bits in $mask
indicate which bits of <fc> must be matched, exactly. 0 bits indicate
"don’t cares." Privileged.

Operands: <fc> may be either:

1. A 3-bit immediate value.

2. A data register of which only the least significant 3 bits will be used.

3. %sfc or %dfc.

Instruction Motorola MC680xx Processor
pflush <fc>,$<mask>,<ea> PFLUSH 30

Description:
Invalidate all address translation cache entries for the specified effective
address, <ea>, whose function code matches the <fc> operand modified
by $<mask>. The 1 bits in $mask indicate which bits of <fc> must be
matched exactly. 0 bits indicate "don’t cares." Privileged.

Operands: $<mask> is a 3-bit immediate value.

<fc> may be either:

1. A 3-bit immediate value.

2. A data register of which only the least significant 3 bits will be used.

3. %sfc or %dfc.

<ea> specifies the address to match. Only control alterable addressing
modes are allowed.

Instruction Motorola MC680xx Processor
pflush (%an) PFLUSH 40/60
pflushn (%an) PFLUSHN

Description:
Invalidates those address translation cache entries that match the logical
address in %an and the function code specified in %dfc. Both instruction
and data ATCs are affected. The pflushn instruction affects only
non-global entries (i.e., pages whose global bit is not set).

Operands:

%an The address register containing the logical address to match.

%dfc Implied operand. If the value is 1 or 2, only user entries are
flushed. If it is 5 or 6, only supervisor entries are flushed.
Other values are undefined.

Instruction Motorola MC680xx Processor
plpar (%an) PLPAR 60

Description:
Translate the logical address defined by the contents of the destination

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-45

function code register and the address register using full PPMU
functionality and generate a full 32-bit physical address saving the
results in %an.

Operands:

%an the address register.

Instruction Motorola MC680xx Processor
plpaw (%an) PLPAW 60

Description:
Translate the logical address defined by the contents of the destination
function code register and the address register using full PPMU
functionality and generate a full 32-bit physical address writing the
results in %an.

Operands:

%an the address register.

Instruction Motorola MC680xx Processor
ploadr <fc>,<ea> PLOADR 30

Description:
Searches the address translation cache and translation table for the
descriptor corresponding to the given function code, <fc>, and effective
address, <ea>. Updates the address translation cache translation table
and translation table U bits as though a read had occurred.

Operands: <fc> may be either:

1. A 3-bit immediate value.

2. A data register of which only the least significant 3 bits will be used.

3. %sfc or %dfc.

<ea> specifies the effective address to search for. Only control alterable
addressing modes are allowed.

Instruction Motorola MC680xx Processor
ploadw <fc>,<ea> PLOADW 30

Description:
Searches the address translation cache and translation table for the
descriptor corresponding to the given function code, <fc>, and effective
address, <ea>. Updates the address translation cache translation table
and translation table U and M bits as though a write had occurred.
Privileged.

Operands: <fc> may be either:

1. A 3-bit immediate value.

2. A data register of which only the least significant 3 bits will be used.

3. %sfc or %dfc.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-46 Issue 5.00

<ea> specifies the effective address to search for. Only control alterable
addressing modes are allowed.

Instruction Motorola MC680xx Processor
pmove %<pmmureg>,<ea> PMOVE 30
pmove <ea>,%<pmmureg> PMOVE

Description:
Moves the contents of the pmmu register, %<pmmureg>, to the effective
address, <ea> (or vice-verse). Flushes the address translation cache when
%<pmmureg> is any pmmu register except %mmusr. Privileged.

Operands: %<pmmureg> may be either:

%crp

%srp

%tc

%mmusr

%tt0

%tt1

<ea> may be any control alterable addressing mode.

Instruction Motorola MC680xx Processor
pmovefd <ea>,%<pmmureg> PMOVEFD 30

Description:
Moves the contents of the effective address, <ea>, to the specified pmmu
register, %<pmmureg>. Flushing of the address translation cache is
temporarily disabled. Privileged.

Operands: %<pmmureg> may be either:

%crp

%srp

%tc

%mmusr

%tt0

%tt1

<ea> may be any control alterable addressing mode.

Instruction Motorola MC680xx Processor
ptestr <fc>,<ea>,$<level> PTESTR 30
ptestr <fc>,<ea>,$<level>,%an

Description:
Search the address translation cache or translation tables to a specified
level by simulating a read instruction. The function code, <fc>, and
effective address arguments, <ea>, indicate what descriptor to search for.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-47

If <level> is 0, the address translation cache is searched. Otherwise, the
translation tables are searched down to level <level>. The %mmusr
register is updated to reflect the results of the search. The bits that are
set have different meanings depending upon whether the address
translation cache or translation tables are searched. Privileged.

Operands: <fc> may be either:

1. A 3-bit immediate value.

2. A data register of which only the least significant 3 bits will be used.

3. %sfc or %dfc.

<ea> may be any control alterable addressing mode.

$<level> may be an immediate value between 0 and 7 inclusive.

%an will contain the physical address of the last descriptor successfully
fetched if a translation table search is indicated.

Instruction Motorola MC680xx Processor
ptestr (%an) PTESTR 40

Description:
Searches the translation tables for the page descriptor corresponding to
the address in %an and sets the bits of the MMU status register, %mmusr,
accordingly. The upper bits of the translated physical address are also
stored in the %mmusr. A read access is simulated by setting the U bit in
each descriptor. A matching entry in the ATCs will be flushed and a new
entry created. Privileged.

Operands: %an is the address register containing the address corresponding to the
page descriptor searched for.

%dfc is an implicit argument which indicates the function code for the
address in %an.

Instruction Motorola MC680xx Processor
ptestw <fc>,<ea>,$<level> PTESTW 30
ptestw <fc>,<ea>,$<level>,%an

Description:
Search the address translation cache or translation tables to a specified
level by simulating a write instruction. The function code, <fc>, and
effective address arguments, <ea>, indicate what descriptor to search for.
If <level> is 0, the address translation cache is searched. Otherwise, the
translation tables are searched down to level <level>. The %mmusr
register is updated to reflect the results of the search. The bits that are
set have different meanings depending upon whether the address
translation cache or translation tables are searched. Privileged.

Operands: <fc> may be either:

1. A 3-bit immediate value.

2. A data register of which only the least significant 3 bits will be used.

3. %sfc or %dfc.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-48 Issue 5.00

<ea> may be any control alterable addressing mode.

$<level> may be an immediate value between 0 and 7 inclusive.

%an will contain the physical address of the last descriptor successfully
fetched if a translation table search is indicated.

Instruction Motorola MC680xx Processor
ptestw (%an) PTESTW 40

Description:
Searches the translation tables for the page descriptor corresponding to
the address in %an and sets the bits of the MMU status register, %mmusr,
accordingly. The upper bits of the translated physical address are also
stored in the %mmusr. A write access is simulated by setting the U and M
bits in each descriptor, the ATC entry, and %mmusr. A matching entry in
the ATCs will be flushed and a new entry created. Privileged.

Operands: %an is the address register containing the address corresponding to the
page descriptor searched for.

%dfc is an implicit argument which indicates the function code for the
address in %an.

Instruction Motorola MC680xx Processor
reset RESET 00/20/30/40/60

Description:
Asserts the reset line causing all external devices to be reset. The
processor state (except the program counter) is unaffected and execution
continues with the next instruction. Privileged.

Instruction Motorola MC680xx Processor
rolb %dx,%dy ROL.B 00/20/30/40/60
rolb $expr,%dy ROL.B
rol %dx,%dy ROL.W
rol $expr,%dy ROL.W
rol <ea> ROL.W
roll %dx,%dy ROL.L
roll $expr,%dy ROL.L
rorb %dx,%dy ROR.B 00/20/30/40/60
rorb $expr,%dy ROR.B
ror %dx,%dy ROR.W
ror $expr,%dy ROR.W
ror <ea> ROR.W
rorl %dx,%dy ROR.L
rorl $expr,%dy ROR.L

Description:
Rotates the bits of the operand in the direction specified. The extend bit

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-49

is not included in the rotation. The shift count for the rotation of a
register can be specified in two ways:

Immediate - the shift count is specified in the instruction (shift range 1
through 8).

Register - the shift count is contained in a data register specified in the
instruction.

The content of memory can be rotated 1 bit only where the operand size
is restricted to a word.

ROL - the operand is rotated left. The number of positions shifted is the
shift count. Bits shifted out of the low-order bit go to both the carry bit
and back into the high-order bit. The extend bit is not modified or used.

ROR - the operand is rotated right. The number of positions shifted is the
shift count. Bits shifted out of the low-order bit go to both carry bit and
back into the high-order bit. The extend bit is not modified or used.

Operands: <ea> specifies the operand to be rotated. Only alterable memory
addressing modes are allowed.

%dy specifies the data register whose content is to be shifted.

$expr or %dx specifies the rotate count or register where rotate count is
located.

Instruction Motorola MC680xx Processor
roxlb %dx,%dy ROXL.B 00/20/30/40/60
roxlb $expr,%dy ROXL.B
roxl %dx,%dy ROXL.W
roxl $expr,%dy ROXL.W
roxl <ea> ROXL.W
roxll %dx,%dy ROXL.L
roxll $expr,%dy ROXL.L
roxrb %dx,%dy ROXR.B 00/20/30/40/60
roxrb $expr,%dy ROXR.B
roxr %dx,%dy ROXR.W
roxr $expr,%dy ROXR.W
roxr <ea> ROXR.W
roxrl %dx,%dy ROXR.L
roxrl $expr,%dy ROXR.L

Description:
Rotates the bits of the destination operand in the direction specified. The
extend bit is included in the rotation. The shift count for the rotation of a
register can be specified in two ways:

Immediate - the shift count is specified in the instruction (shift range 1
through 8).

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-50 Issue 5.00

Register - the shift count is contained in a data register specified in the
instruction. The content of memory can be rotated 1 bit only where the
operand size is restricted to a word.

ROXL - operand is rotated left. The number of positions shifted is the
shift count. Bits shifted out of the high-order bit go to both the carry and
extend bits; the previous value of the extend bit is shifted to the
low-order bit.

ROXR - operand is rotated right. The number of positions shifted is the
shift count. Bits shifted out of the low-order bit go to both the carry and
extend bits; the previous value of the extend bit is shifted into the
high-order bit.

Operands: <ea> specifies the operand to be rotated. Only alterable memory
addressing modes are allowed.

%dy specifies the data register whose content is to be shifted.

$expr or %dx specifies immediate rotate count or register where rotate
count is located.

Instruction Motorola MC680xx Processor
rtd $expr RTD 12/20/30/40/60

Description:
Pulls the program counter from the stack and adds the sign-extended
16-bit value $expr to the stack pointer. The previous program counter is
lost.

Instruction Motorola MC680xx Processor
rte RTE 00/20/30/40/60

Description:
Pulls the status register and program counter from the system stack. The
previous status register and program counter are lost. All bits in the
status register are affected. Privileged.

Instruction Motorola MC680xx Processor
rtr RTR 00/20/30/40/60

Description:
Pulls the condition codes and program counter from the stack. The
previous condition codes and the program counter are lost. The status
register’s supervisor portion is unaffected.

Instruction Motorola MC680xx Processor
rts RTS 00/20/30/40/60

Description:
Pulls the program counter from the stack. The previous program counter
is lost.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-51

Instruction Motorola MC680xx Processor
sbcd %dy,%dx SBCD 00/20/30/40/60
sbcd −(%ay),−(%ax) SBCD

Description:
Subtracts the source operand from the destination operand (along with
the extend bit), and stores the result in the destination location. The
subtraction is performed in binary-coded decimal arithmetic. The
operands can be addressed in two ways:

Data register to data register - the operands are contained in the data
registers specified in the instructions.

Memory to memory - the operands are addressed with the predecrement
addressing mode using the address registers specified in the instruction.

Operands: %dy specifies that the source register is a data register.

%dx specifies that the destination register is a data register.

%ay used to derive the memory address of the source operand using the
predecrement addressing mode.

%ax used to derive the memory address of the destination operand using
the predecrement addressing mode.

Instruction Motorola MC680xx Processor
scc <ea> Scc 00/20/30/40/60

Description:
Tests the specified condition. If the condition is true, the byte specified by
the effective address is set to TRUE (0xff); otherwise, this byte is set to
FALSE (0x00).

The cc part of this instruction represents one of the following conditions:

CC - Carry clear (unsigned greater than or equal)
CS - Carry set (unsigned less than)
EQ - Equal

F - Always false
GE - Greater than or equal
GT - Greater than
HI - High (unsigned greater than)
LE - Less than or equal
LS - Low or same (unsigned less than or equal)
LT - Less than
MI - Minus
NE - Not equal
PL - Plus

T - Always true

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-52 Issue 5.00

VC - No overflow
VS - Overflow

Operands: <ea> specifies the location into which the TRUE/FALSE byte is stored.
Only alterable data addressing modes are allowed.

Instruction Motorola MC680xx Processor
stop $expr STOP 00/20/30/40/60

Description:
Moves the immediate operand into the entire status register; advances
the program counter to point to the next instruction, and the processor
stops fetching and executing instructions. Execution of instructions
resumes when a trace, interrupt, or reset exception occurs. If an interrupt
request arrives whose priority is higher than current processor priority,
an interrupt exception occurs; otherwise, the interrupt request has no
effect.

If the bit of the immediate data corresponding with the S bit is off,
execution of the instruction causes a privilege violation. External reset
will always initiate reset exception processing. Privileged.

Operands: $expr specifies the data to be loaded into the status register.

Instruction Motorola MC680xx Processor
subb $expr,<da> SUBI.B 00/20/30/40/60
subb $expr,<a> SUBQ.B
subb %dn,<am> SUB.B
subb <d>,%dn SUB.B
sub $expr,<da> SUBI.W
sub $expr,<a> SUBQ.W
sub %dn,<<am> SUB.W
sub <ea>,%an SUBA.W
sub $<1-8>,%an SUBQ.W
sub <ea>,%dn SUB.W
subl $expr,<da> SUBI.L
subl $<1-8>,<a> SUBQ.L
subl %dn,<a> SUB.L
subl <ea>,%an SUBA.L
subl $<1-8>,%an SUBQ.L
subl <ea>,%dn SUB.L

Description:
Subtracts the source operand from the destination operand, and stores
the result in the destination location.

Operands:

<a> Alterable addressing modes.

<am> Alterable memory addressing modes.

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-53

<d> Data addressing modes.

<da> Data alterable addressing modes.

<ea> All addressing modes.

$<1-8> Immediate data in the range of 1 through 8.

%dn Specifies any of the eight data registers.

Programming Note:
When subtracting a constant from an address register, the lea
instruction is better than sub if the constant is in the range of −32767
through 0 or 9 through 32768. For constants of 1 through 8 the sub
instruction generates a SUBQ instruction which is better than an lea.

When the assembly instruction sub $expr,%dn is given to the
assembler, the SUBI encoding is used instead of the SUB encoding.

Instruction Motorola MC680xx Processor
subxb %dy,%dx SUBX.B 00/20/30/40/60
subxb −(%ay),−(%ax) SUBX.B
subx %dy,%dx SUBX.W
subx −(%ay),−(%ax) SUBX.W
subxl %dy,%dx SUBX.L
subxl −(%ay),−(%ax) SUBX.L

Description:
Subtracts the source operand from the destination operand (along with
the extend bit), and stores the result in the destination location.
Operands can be addressed in two ways:

Data register to data register - operands are contained in data registers
specified in the instruction.

Memory to memory - operands are contained in memory and addressed
with the predecrement addressing mode using the addressed registers
specified in the instruction.

Operands: %dx specifies the destination register as a data register.

%dy specifies the source register as a data register.

%ax used to derive the memory address of the destination operand using
the predecrement addressing mode.

%ay used to derive the memory address of the source operand using the
predecrement addressing mode.

Instruction Motorola MC680xx Processor
swap %dn SWAP 00/20/30/40/60

Description:
Exchanges the 16-bit halves of a data register.

Operands: %dn specifies the data register to swap.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-54 Issue 5.00

Instruction Motorola MC680xx Processor
tas <ea> TAS 00/20/30/40/60

Description:
Tests and sets the byte operand addressed by the effective address field.
The current value of the operand is tested and N and Z are set
accordingly. The operation is indivisible (using the read-modify-write
memory cycle) to allow synchronization of several processors.

Operands: <ea> specifies the location of the tested operand. Only data alterable
addressing modes are allowed.

Instruction Motorola MC680xx Processor
trap $vector TRAP 00/20/30/40/60

Description:
Initiates exception processing. The vector number is generated to
reference the trap instruction exception vector specified by the low-order
4 bits of the instruction. Sixteen trap instruction vectors are available.
Privileged.

Operands: $vector specifies which trap vector contains the new program counter
to be loaded.

Instruction Motorola MC680xx Processor
trapv TRAPV 00/20/30/40/60

Description:
If the overflow condition is on, the processor initiates exception
processing. The vector number is generated in reference to the trapv
exception vector. If the overflow condition is off, no operation is
performed, and execution continues with the next instruction in sequence.
Privileged.

Instruction Motorola MC680xx Processor
tstb <ea> TST.B 00/20/30/40/60
tst <ea> TST.W
tstl <ea> TST.L

Description:
Compares the operand with zero. No results are saved; however, the
condition codes are set according to the results of the test.

Operands: <ea> specifies the destination operand. For the Motorola MC68000 and
MC68012 processors, only data alterable addressing modes are allowed.
The Motorola MC68020 and later processors allow all modes with the
restriction that the address register direct mode is only allowed for word
and long operands.

Instruction Motorola MC680xx Processor
unlk %an UNLK 00/20/30/40/60

235-600-510
November 2000

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

Issue 5.00 Page A3-55

Description:
Loads the stack pointer from the specified address register. The address
register is then loaded with the value from the top of the stack.

Operands: %an specifies the address register through which the unlinking is to be
performed.

Instruction Motorola MC680xx Processor
unpk −(%ax),−(%ay),$adj UNPK 20/30/40/60
unpk %dx,%dy,%adj

Description:
Places the two BCD digits in the source operand byte into the lower
nibbles of two bytes, and places zero bits in the upper nibbles of both
bytes.

APPENDIX 3
Motorola MC68000 PROCESSOR FAMILY INSTRUCTION SET

235-600-510
November 2000

Page A3-56 Issue 5.00

A4. Intel 1 8086 AND 80186 PROCESSOR INSTRUCTION SET

This appendix is divided into two sections. The first section describes the Intel 8086
and Intel 80186 processor instructions and the operands accepted by each in the
5ESS® switch. The second section lists the opcode instruction set. For more details see
the iAPX 86, 88 User’s Manual for Intel’s documentation on how the instructions
function. In the first section of this appendix, the following notation is used:

c(operand) The contents of operand. If the operand is a register operand, referral is
to the contents of the register. If the operand is a memory operand,
referral is to the contents of the effective address. The contents of an
immediate operand, by convention, is the value of the operand.

a(operand) The address of operand. This is only meaningful with memory operands
and it means the effective address of the operand.

The Intel 80186 processor instructions are grouped together in a separate table for
ease and clarity.

CONTROL TRANSFER INSTRUCTIONS

iAPX

Instruction

Intel

Instruction

Description Operands

(a) call dest

(b) call *dest

CALL Intrasegment call. 1. In (a), dest must be a
16-bit offset.
2. In (b), dest must be a
memory operand or reg16.

int
int $type

INT Signal an interrupt to the Intel
8086 processor. All interrupts
cause an indirect, long transfer
through the interrupt vector
located at physical address 0 × 0
through 0 × 3ff. See Note 1. A
type 3 interrupt is a special,
1-byte instruction.

Type must be an 8-bit value.

into INTO Interrupt on overflow. Perform an
interrupt of type 4 if the OF is
set.

None

iret IRET Interrupt return. None

(a) jmp dest
(b) jmp *dest

JMP Intrasegment jump. 1. In (a), dest must be a
16-bit or an 8-bit offset. The
8-bit offsets are sign
extended. The offset is
relative to the current %ip.
2. In (b), dest must be a
memory operand or reg16.
The destination is relative
to %cs.

1call segment,
offset
1call *dest

CALL Intersegment call. 1. Segment and offset must
be 16-bit offsets.
2. Dest must be a memory
operand or reg16.

1jmp segment
offset
1jmp *dest

JMP Intersegment jump. 1. Segment and offset must
be 16-bit offsets.
2. Dest must be a memory
operand or reg16.

1. Registered trademark of Intel Corporation.

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-1

CONTROL TRANSFER INSTRUCTIONS

iAPX

Instruction

Intel

Instruction

Description Operands

1ret
1ret incr

RET Intersegment return. Incr must be a 16-bit offset.

ret
ret incr

RET Intrasegment return. Incr must be a 16-bit offset.

Note 1: Refer to iAPX 86 88 Users Manual, Intel Corporation,

August 1981.

ARITHMETIC INSTRUCTIONS

iAPX
Instruction

Intel Instruction Description Operands

aaa AAA Unpacked BCD (ASCII) adjust
for addition.

None

aad AAD Unpacked BCD (ASCII) adjust
for division.

None

aam AAM Unpacked BCD (ASCII) adjust
for multiplication.

None

aas AAS Unpacked BCD (ASCII) adjust
for subtraction.

None

adc
source,dest

adcb
source,dest

ADC Add with carry c(source) to
c(dest).

1. Operands are words for adc
and bytes for adcb.
2. Dest may not be an
immediate oprtsnf.
3. Source and dest may not
both be memory operands.
4. Sreg is not allowed.

add source,
dest

addb source,
dest

ADC Add c(source) to c(dest). 1. Operands are words for add

and bytes for addb.
2. Dest may not be an
immediate operand.
3. Source and dest may not
both be memory operands.
4. Sreg is not allowed.

cbw CBW Convert byte to word in
accumulator.

None

cmp
source,dest

cmpb source,
dest

CMP Compare c(source) with
c(dest). The comparison is
done by subtracting c(source)
from c(dest), throwing the
result away, and setting flags.

1. Operands are words for cmp
and bytes for cmpb.
2. Dest may not be an
immediate operand.
3. Source and dest may not
both be memory operands.
4. Sreg is not allowed.

cwd CWD Convert accumulator to
double word.

None

daa DAA Decimal adjust for addition. None

das DAS Decimal adjust for
subtraction.

None

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-2 Issue 5.00

ARITHMETIC INSTRUCTIONS

iAPX
Instruction

Intel Instruction Description Operands

dec dest

decb dest

DEC Decrement c(dest). 1. c(dest) is a word for dec and
a byte for decb.
2. Dest may not be an
immediate operand.
3. Sreg is not allowed.

div source
[,%ax]

divb source
[,%al]

DIV Unsigned division of extended
accumulator by c(source).

1. c(source) is a word for div
and a byte for divb.
2. Source may not be an
immediate operand.
3. Sreg is not allowed.

idiv source
[,%ax]

idivb source
[,%al]

IDIV Signed division of extended
accumulator by c(source).

1. c(source) is a word for idiv
and a byte for idivb.
2. Source may not be an
immediate operand.
3. Sreg is not allowed.

imul source
[,%ax]

imulb source
[,%al]

IMUL Signed multiplication of
accumulator by c(source).

1. Operands are words for imul
and bytes for imulb.
2. Source may not be an
immediate operand.
3. Sreg is not allowed.

inc dest

incb dest

INC Increment c(dest). 1. c(dest) is a word for inc and
a byte for incb.
2. Dest may not be an
immediate operand.
3. Sreg is not allowed.

mu1 source
[,%ax]

mulb source
[,%a1]

MUL Unsigned multiplication of
accumulator by c(source).

1. Operands are words for mul
and bytes for mulb.
2. Source may not be an
immediate operand.
3. Sreg is not allowed.

neg dest

negb dest

NEG Negate c(dest). 1. c(dest) is a word for neg and
a byte for negb.
2. Dest may not be an
immediate operand or sreg.

sbb source,
dest

sbbb source,
dest

SBB Subtract with borrow c(source)
from c(dest).

1. Operands are words for sbb
and bytes for sbbb.
2. Dest may not be an
immediate operand.
3. Source and dest may not
both be memory operands.
4. Sreg is not allowed.

sub source,
dest

subb source,
dest

SUB Subtract c(source) from
c(dest).

1. Operands are words for sub
and bytes for subb.
2. Dest may not be an
immediate operand.
3. Source and dest may not
both be memory operands.
4. Sreg is not allowed.

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-3

CONDITIONAL JUMP INSTRUCTIONS

Sixteen conditional short jump instructions test and branch on various flag conditions. The destination
operand for all of these instructions is an 8-bit signed offset. If the destination will not fit in 8 bits, the

assembler reverses the sense of the comparison and generates a long transfer to the desired location. For
example,

je OxOabc
will have two instructions generated for it:

jne tag jmp OxOabc tag:
The assembler invents the artificial label tag.

iAPX Instruction Intel Instruction Description Operands

ja dest

jnbe dest

JA
JNBE

Jump on above (not below or
equal).

Dest is an 8-bit offset,
sign-extended to 16 bits.

jae dest

jnb dest

JAE
JNB
JNC

Jump on above or equal (not
below).

Jump on not carry.

Dest is an 8-bit offset,
sign-extended to 16 bits.

jb dest

jnae dest

JB
JNAE

JC

Jump on below (not above or
equal).

Jump on carry.

Dest is an 8-bit offset,
sign-extended to 16 bits.

jbe dest

jna dest

JBE
JNA

Jump on below or equal (not
above).

Dest is an 8-bit offset,
sign-extended to 16 bits.

je dest

jz dest

JE
JZ

Jump on equal (zero). Dest is an 8-bit offset,
sign-extended to 16 bits.

jg dest

jnle dest

JG
JNLE

Jump on greater (not less or
equal).

Dest is an 8-bit offset,
sign-extended to 16 bits.

jge dest

jnl dest

JGE
JNL

Jump on greater or equal (not
less).

Dest is an 8-bit offset,
sign-extended to 16 bits.

jl dest

jnge dest

JL
JNGE

Jump on less (not greater or
equal).

Dest is an 8-bit offset,
sign-extended to 16 bits.

jle dest

jng dest

JLE
JNG

Jump on less or equal (not
greater).

Dest is an 8-bit offset,
sign-extended to 16 bits.

jne dest

jnz dest

JNE
JNZ

Jump on not equal (not zero). Dest is an 8-bit offset,
sign-extended to 16 bits.

jno dest JNO Jump on not overflow. Dest is an 8-bit offset,
sign-extended to 16 bits.

jns dest JNS Jump on not sign. Dest is an 8-bit offset,
sign-extended to 16 bits.

jo dest JO Jump on overflow. Dest is an 8-bit offset,
sign-extended to 16 bits.

jpe dest

jp dest

JPE
JP

Jump on parity even (parity). Dest is an 8-bit offset,
sign-extended to 16 bits.

jpo dest

jnp dest

JPO
JS

Jump on parity odd (not parity). Dest is an 8-bit offset,
sign-extended to 16 bits.

js dest JS Jump on sign. Dest is an 8-bit offset,
sign-extended to 16 bits.

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-4 Issue 5.00

DATA MOVEMENT INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

clr dest

clrb dest

MOV Clear c(dest). These
instructions are abbreviations
for mov and movb.

1. Dest must be either a
register or a memory operand.
2. If dest is a register operand,
the following code is generated
for cir and cirb, respectively:
xor dest, dest
xorb dest, dest
3. Otherwise, clr and clrb are
translated into the following:
mov $0, dest
movb $0, dest

in port

in (%dx)

inb dest

inb (%dx)

INW

IN

Input to the accumulator. 1. A word is transferred to %ax
for in; a byte is transferred to
%al for inb.
2. Port is an unsigned, 8-bit
offset. It is not an immediate
operand, and it is not
sign-extended.

lahf LAHF

segment value, and
dest

Load %ah with flags. None

lds source, dest LDS Load a data segment pointer.
The %ds register is set to a
segment value, and dest is set
to an offset.

1. Source must be a memory
operand.
2. Dest must be reg16.

lea source, dest LEA Load effective address of
source.

1. Source must be a memory
operand.

2. Dest must be reg16.

les source, dest LES Load an extra segment pointer.
The %es register is set to a
segment value, and dest is set
to an offset.

1. Source must be a memory
operand.
2. Dest must be reg16.

mov source, dest

movb source, dest

MOV Move c(source) to c(dest). 1. Operands are words for mov
and bytes for movb.
2. Dest may not be an
immediate operand or %cs.
3. Source and dest may not both
be memory operands.

out port

out (%dx)

outb port

outb (%dx)

OUTW

OUT

Output from the accumulator. 1. A word is transferred from
%ax for out; a byte is
transferred from %al for outb.
2. Port is an unsigned, 8-bit
offset. It is not an immediate
operand, and it is not
sign-extended.

pop dest POP Pop a word off the stack into
c(dest).

1. Dest may not be %cs. Use
1call and 1jmp instead.
2. Dest may not be an
immediate operand.

popf POPF Pop a word off the stack into
the flags.

None

push source PUSH Push c(source) into a word on
the stack.

Immediate operands are not
allowed (see Intel 80106
processor instruction).

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-5

DATA MOVEMENT INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

pushf PUSHF Push flags onto the stack. None

sahf SAHF Store %ah into flags. None

xchg source, dest

xchgb source, dest

XCHG Exchange c(source) and c(dest). 1. Operands are words for xchg
and bytes for xchgb.
2. Dest may not be an
immediate operand.
3. Source and dest may not both
be memory operands.
4. Sreg is not allowed.

xlat XLAT Translate %a1 with the table
addressed by %bx.

None

LOGICAL INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

and source, dest

andb source, dest

AND Bit-wise conjunction of
c(source) to c(dest).

1. Operands are words
for and bytes for andb.
2. Dest may not be an
immediate operand.
3. Source and dest may
not both be memory
operands.
4. Sreg is not allowed.

not dest

notb dest

NOT Convert c(dest) to its
one’s complement.

1. c(dest) is a word to not
and a byte to notb.
2. Dest may not be in
immediate operand or
sreg.

or source, dest

orb source, dest

OR Bit-wise disjunction of
c(source) to c(dest).

1. Operands are words
for or and bytes for orb.
2. Dest may not be an
immediate operand.
3. Source and dest may
not both be memory
operands.
4. Sreg is not allowed.

rcl dest
rcl %cl, dest
rclb dest
rclb %cl, dest

RCL Rotate through carry left. 1. c(dest) is a word for
rel and a byte for rclb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

rcr dest
rcr %cl, dest
rcrb dest
rcrb %cl, dest

RCR Rotate through carry
right.

1. c(dest) is a word for
rcr and a byte for rcrb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

rol dest
rol %cl, dest

rolb dest
rolb %cl, dest

ROL Rotate left. 1. c(dest) is a word for
rol and a byte for rolb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-6 Issue 5.00

LOGICAL INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

ror dest
ror %cl, dest
rorb dest
rorb %cl, dest

ROR Rotate right. 1. c(dest) is a word for
ror and a byte for rorb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

sar dest
sar %cl, dest
sarb dest
sarb %cl, dest

SAR Shift arithmetic right. 1. c(dest) is a word for
shr and a byte for shrb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

shl dest
shl %cl, dest
shlb dest
shlb %cl, dest

SHL

SAL

Shift left. Note: sal and
salb are equivalent to shl
and shlb, respectively.

1. c(dest) is a word for
shl and a byte for shlb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

shr dest
shr %cl, dest
shrb dest
shrb %cl, dest

SHR Shift right logical. 1. c(dest) is a word for
shr and a byte for shrb.
2. Dest may not be an
immediate operand or
sreg (see Intel 80186
processor instructions).

test source, dest
testb source, dest

TEST Bit-wise conjunction
between c(source) and
c(dest). The conjunction
is performed, the flags
are set, but returned. See
Note 1.

1. Operands are a words
for test and bytes for
testb.
2. Dest may not be an
immediate operand.
3. Source and dest may
not both be memory
operands.
4. Sreg is not allowed.

xor source, dest
xorb source, dest

Bit-wise exclusive or of
c(source) to c(dest).

1. Operands are words
for xor and bytes for
xorb.
2. Dest may not be an
immediate operand.
3. Source and dest may
not both be memory
operands.
4. Sreg is not allowed.

Note 1: The assembler allows several abbreviations for the operands of test and testb:

Short Form Long Form

test reg16 test reg16, reg16

test ea test $0xff ff, ea

test ea8 test $0xff ff, ea8

test ea16 test $0xff ff, ea16

testb reg8 testb reg8, reg8

testb ea testb $0xff, ea

testb ea8 testb $0xff, ea8

testb ea16 test $0xff, ea16

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-7

LOOPING INSTRUCTIONS

Loop instructions provide iteration control with %cx register. All of these instructions take an 8-bit offset
as an operand and perform a short jump if certain conditions are satisfied. As in the conditional short
jumps, the assembler will generate correct code, even if the supply operand will not fit into 8 bits. For

example,
loop 0x0abc

will be expanded into the following:
loop tag1

jmp tag2 tag1:
jmp 0x0abc tag2:

The assembler invents the artificial labels tag1 and tag2.

iAPX Instruction Intel Instruction Description Operands

jcxz dest JCXZ Jump on %cx zero. Dest is an 8-bit offset,
sign-extended to 16
bits.

loop dest LOOP Loop on %cx. Dest is an 8-bit offset,
sign-extended to 16
bits.

loope dest

loopz dest

LOOPE

LOOPZ

Loop while equal (zero). Dest is an 8-bit offset,
sign-extended to 16
bits.

loopne dest

loopnz dest

LOOPNE

LOOPNZ

Loop while not equal (not
zero).

Dest is an 8-bit offset,
sign-extended to 16
bits.

PSEUDO OPERATIONS

Name Description Operands

.bss Change the current section to .bss. None

.bss tag, bytes Define symbol tag in the .bss
section and add bytes to the value
of dot for .bss. This does not
change the current section to .bss.

Tag is a symbol name.
Bytes must be an absolute value.

.byte val [, val]... Generate initialized bytes into the
current section; this is not valid for
.bss.

Each val must be an 8-bit value.

.data Change the current section to
.data.

None

.def name Start of symbolic description for
symbol name.
See .endef.

Name is a symbol name.

.dim expr [, expr]... If name of .def is an array, the
expressions give the dimensions.
Up to four dimensions are
accepted.

The type of each expr should be
absolute.

.endef Ending bracket for .def. None

.even Align the current dot to an even
boundary.

None

.file "name" C source filename.
Only one allowed per assembly file.

One to 14 characters allowed.

.globl name Equivalent to extern in C. Name is treated as a global
symbol.

ident "string" Create an entry in the .comment
section containing string.

String is any sequence of
characters not including ".

.line expr Defines the source line number of
the definition of block symbol
name in .def.

Expr should yield an absolute
value.

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-8 Issue 5.00

PSEUDO OPERATIONS

Name Description Operands

.ln line [, addr] Create an entry in the line number
table for a section.

The current dot is the default
value for addr.

Line should be an absolute value
for the source line number. The
type of addr tells which section
owns the line number.

.scl expr Within .def give name storage class
expr.

The type of expr should be
absolute.

.set name, expr Set the value of symbol name to
expr.

As described.

.size expr If name of .def is an object such as
a structure or an array, give it size
expr.

The type of expr should be
absolute.

.tag str If name of .def is a structure or
union, str should be the name of
that structure or union tag,
defined in a previous .def - .endef
pair.

As described.

.text Change the current section to
.text.

None

.tv name Declare name as a transfer vector
symbol. If name will be used
outside the defining file, .globl is
needed. This should be used only
for 20-bit addressing.

In general, name is a function
name.

.type expr Within .def, give name the C
compiler-type representation expr.

The type of expr should be
absolute.

.val expr Within .def, give name the value
expr.

The type of expr determines the
section for name.

.value expr [, expr]... Generate initialized words into the
current section; this is not valid for
.bss.

Each expr is a 16-bit value.

STRING PRIMITIVE INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

rep
repz
repnz

REP Repeat prefixes for the string
primitives. See Chapter 8,
Bibliography, Reference 11, MCS-86
User’s Manual, paragraph 4.4.6 for
exact details. Instructions rep and
repz are equivalent and cause ZF to
be tested with zero; repnz uses a
test on ZF with one.

sca [%ax, (%di)]
scab [%al, (%di)]

SCAW

SCAB

String primitive scan.

Note: A repeat prefix is allowed.

1. Operands are words
for sca and bytes for
scab.
2. (%di) always uses
the extra segment
register to compute the
address of its operand.

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-9

STRING PRIMITIVE INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

scmp [(%si), (%di)]
scmpb [(%si),
(%di)]

CMPW

CMPB

String primitive compare.

Note: A repeat prefix is allowed.

1. Operands are words
for scmp and bytes for
scmpb.
2. (%di) always uses
the extra segment
register to compute the
address of the
destination.
3. (%si) uses the data
segment by default,
but a segment override
prefix may be used.

slod [(%si), %ax]
slodb [(%si), (%al)]

LODW

LODB

String primitive load accumulator. A
repeat prefix is possible but not
normally useful.

1. c(c(%si)) is a word
for slod and a byte for
slodb.
2. (%si) uses the data
segment by default,
but a segment override
prefix may be used.

smov [(%si), (%di)]
smovb [(%si),
(%di)]

MOVW

MOVB

String primitive move.

Note: A repeat prefix is allowed.

1. Operands are words
for smov and bytes for
smovb.
2. (%di) always uses
the extra segment
register to compute the
address of the
destination.
3. (%si) uses the data
segment by default,
but a segment override
prefix may be used.

ssto [%ax, (%di)]
ssstob [%al, (%di)]

STOW

STOB

String primitive store accumulator.
Note: A repeat prefix is allowed.

1. c(c(%di)) is a word
for ssto and a byte for
sstob.
2. (%di) always uses
the extra segment
register to compute the
address of its operand.

INTEL 80186 PROCESSOR INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

push source PUSH Push c(source) into a word on the
stack.

1. Immediate operands
are not allowed.
2. Source will be
sign-extended to 16 bits.

pusha PUSHA Push all general registers onto
the stack.

Registers pushed are all reg 16
registers.

None

popa POPA Pop all general registers (see
push description) off the stack.
Registers popped are all reg 16
registers.

None

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-10 Issue 5.00

INTEL 80186 PROCESSOR INSTRUCTIONS

iAPX Instruction Intel Instruction Description Operands

iimul dest, source,
immed

IMUL Signed multiply of source by
immed.

1. Dest must be reg 16.
2. Immed is an
immediate operand
which will be
sign-extended to 16 bits.

bound register, memory BOUND This instruction checks array
index bounds. If c(register) is less
than c(memory) or greater than
c(memory + 2), then an interrupt
is generated. The interrupt is
trap type 5.

1. Register must be
reg16.
2. The c(memory) is
expected to contain the
lower bound of an array
and c(memory + 2) is
expected to contain the
upper bound.

enter locals, level ENTER Enter executes a calling sequence.
It saves, %bp (the frame pointer)
copies previous procedure frame
pointers, and allocates c(locals)
amount of space on the stack for
local variable.

1. Locals in an
immediate 16-bit
operand represents
amount of space to
alllocate.
2. Level is an immediate
8-bit operand and
represents the current
procedure level.

leave LEAVE Restores the stack. Used upon
exiting a routine.

None

all shift and rotate
instruction

Now can shift or rotate the
destination by immed amount,
whereas before it could only shift
or rotate by 1 or C(%cl).

First operand can now be
an immediate operand.

INTEL 80286 PROCESSOR INSTRUCTIONS

PROTECTED VIRTUAL ADDRESS MODE and PROTECTION PARAMETER VERIFICATION

iAPX Instruction Intel Instruction Description Operands

arpl source, dest ARPL Adjust requested privilege level
field of selector to not less than
that of the source.

1. Dest is a 16-bit
memory or register value
containing the value of a
selector.
2. Source is a register
operand.

clts CLTS Clear the Task Switched Flag
(TS) which the hardware sets
every time it performs a task
switching operation.

None

lar source, dest LAR Load access rights from
descriptor to register.

1. Source is 16-bit
memory or register
operand containing a
selector.
2. Dest is a word register
of which the upper byte
gets set and the lower
byte gets cleared.

lgdt source LGDT Load the Global Descriptor Table
Register (GDT) with base and
limit information for the
system’s global descriptor table.

Operand is 6 bytes in
memory starting at
source.

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-11

INTEL 80286 PROCESSOR INSTRUCTIONS

PROTECTED VIRTUAL ADDRESS MODE and PROTECTION PARAMETER VERIFICATION

iAPX Instruction Intel Instruction Description Operands

lidt source LIDT Load Interrupt Descriptor Table
Register (IDT) with six bytes of
base and limit information for
the system’s interrupt descriptor
table.

Operand is 6 bytes in
memory starting at
source.

lldt source LLDT Load Local Descriptor Table
Register (LDT) with a 16-bit
selector value indicating one of
the local descriptor table listed
within the GDT.

Operand is a 16-bit
memory or register
operand.

lmsw source LMSW Load Machines Status Word
Register.

Source is a 16-bit
memory or register
operand.

lsl source, dest LSL Load segment limit from
descriptor.

1. Source is 16-bit
memory or register
containing a selector.
2. Dest is a word register
operand.

ltr source LTR Load Task Register. Source is a 16-bit
memory or register
operand.

sgdt dest SGDT Stores the contents of the Global
Descriptor Table (GDT).

Operand is 6 bytes in
memory starting at dest.

sidt dest SIDT Store the contents of the
Interrupt Descriptor Table (IDT)
at six bytes starting at operand.

Operand is 6 bytes in
memory starting at dest.

sldt dest SLDT Store Local Descriptor Table
Register.

Dest is 16-bit register or
memory operand.

smsw dest SMSW Store machine status word Dest is 16-bit register or
memory operand.

str dest STR Store task register Dest is 16-bit mem or reg
selector value.

verr source VERR Verify Read Access Source is a 16-bit
register or memory
operand containing a
selector.

verw source VERW Verify Write Access Source is a 16-bit
register or memory
operand containing a
selector.

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-12 Issue 5.00

Table A4-1 — iAPX INTEL 80186 Processor Instructions in Hex Order: 00 - 3F

Opcode
Operands Function

Hex/Binary Instruction

00 00000000 MOD REG R/M ADD EA,REG BYTE ADD (REG) TO EA

01 00000001 MOD REG R/M ADD EA,REG WORD ADD (REG) TO EA

02 00000010 MOD REG R/M ADD REG,EA BYTE ADD (EA) TO REG

03 00000011 MOD REG R/M ADD REG,EA WORD ADD (EA) TO REG

04 00000100 ADD AL,DATA8 BYTE ADD DATA TO REG AL

05 00000101 ADD AX,DATA16 WORD ADD DATA TO REG AX

06 00000110 PUSH ES PUSH (ES) ON STACK

07 00000111 POP ES POP STACK TO REG ES

08 00001000 MOD REG R/M OR EA,REG BYTE OR (REG) TO EA

09 00001001 MOD REG R/M OR EA,REG WORD OR (REG) TO EA

0A 00001010 MOD REG R/M OR REG,EA BYTE OR (EA) TO REG

0B 00001011 MOD REG R/M OR REG,EA WORD OR (EA) TO REG

0C 00001100 OR AL,DATA8 BYTE OR DATA TO REG AL

0D 00001101 OR AX,DATA16 WORD OR DATA TO REG AX

0E 00001110 PUSH CS PUSH (CS) ON STACK

0F 00001111 (not used)

10 00010000 MOD REG R/M ADC EA,REG BYTE ADD (REG) W/ CARRY TO EA

11 00010001 MOD REG R/M ADC EA,REG WORD ADD (REG) W/ CARRY TO
EA

12 00010010 MOD REG R/M ADC REG,EA BYTE ADD (EA) W/ CARRY TO REG

13 00010011 MOD REG R/M ADC REG,EA WORD ADD (EA) W/ CARRY TO
REG

14 00010100 ADC AL,DATA8 BYTE ADD DATA W/ CARRY TO
REG AL

15 00010101 ADC AX,DATA16 WORD ADD DATA W/ CARRY TO
REG AX

16 00010110 PUSH SS PUSH (SS) ON STACK

17 00010111 POP SS POP STACK TO REG SS

18 00011000 MOD REG R/M SBB EA,REG BYTE SUB (REG) W/ BORROW
FROM EA

19 00011001 MOD REG R/M SBB EA,REG WORD SUB (REG) W/ BORROW
FROM EA

1A 00011010 MOD REG R/M SBB REG,EA BYTE SUB (EA) W/ BORROW
FROM REG

1B 00011011 MOD REG R/M SBB REG,EA WORD SUB (EA) W/ BORROW
FROM REG

1C 00011100 SBB AL,DATA8 BYTE SUB DATA W/ BORROW
FROM REG AL

1D 00011101 SBB AX,DATA16 WORD SUB DATA W/ BORROW
FROM REG AX

1E 00011110 PUSH DS PUSH (DS) ON STACK

1F 00011111 POP DS POP STACK TO REG DS

20 00100000 MOD REG R/M AND EA,REG BYTE AND (REG) TO EA

21 00100001 MOD REG R/M AND EA,REG WORD AND (REG) TO EA

22 00100010 MOD REG R/M AND REG,EA BYTE AND (EA) TO REG

23 00100011 MOD REG R/M AND REG,EA WORD AND (EA) TO REG

24 00100100 AND AL,DATA8 BYTE AND DATA TO REG AL

25 00100101 AND AX,DATA16 WORD AND DATA TO REG AX

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-13

Table A4-1 — iAPX INTEL 80186 Processor Instructions in Hex Order: 00 - 3F (Contd)

Opcode
Operands Function

Hex/Binary Instruction

26 00100110 ES: SEGMENT OVERRIDE W/
SEGMENT REGS ES

27 00100111 DAA DECIMAL ADJUST FOR ADD

28 00101000 MOD REG R/M SUB EA,REG BYTE SUBTRACT (REG) FROM EA

29 00101001 MOD REG R/M SUB EA,REG WORD SUBTRACT (REG) FROM EA

2A 00101010 MOD REG R/M SUB REG,EA BYTE SUBTRACT (EA) FROM REG

2B 00101011 MOD REG R/M SUB REG,EA WORD SUBTRACT (EA) FROM REG

2C 00101100 SUB AL,DATA8 BYTE SUBTRACT DATA FROM
REG AL

2D 00101101 SUB AX,DATA16 WORD SUBTRACT DATA FROM
REG AX

2E 00101110 CS: SEGMENT OVERRIDE W/
SEGMENT REGS CS

2F 00101111 DAS DECIMAL ADJUST FOR
SUBTRACT

30 00110000 MOD REG R/M XOR EA,REG BYTE XOR (REG) TO EA

31 00110001 MOD REG R/M XOR EA,REG WORD XOR (REG) TO EA

32 00110010 MOD REG R/M XOR REG,EA BYTE XOR (EA) TO REG

33 00110011 MOD REG R/M XOR REG,EA WORD XOR (EA) TO REG

34 00110100 XOR AL,DATA8 BYTE XOR DATA TO REG AL

35 00110101 XOR AX,DATA16 WORD XOR DATA TO REG AX

36 00110110 SS: SEGMENT OVERRIDE W/
SEGMENT REGS SS

37 00110111 AAA ASCII ADJUST FOR ADD

38 00111000 MOD REG R/M CMP EA,REG BYTE COMPARE (EA) WITH (REG)

39 00111001 MOD REG R/M CMP EA,REG WORD COMPARE (EA) WITH (REG)

3A 00111010 MOD REG R/M CMP REG,EA BYTE COMPARE (REG) WITH (EA)

3B 00111011 MOD REG R/M CMP REG,EA WORD COMPARE (REG) WITH (EA)

3C 00111100 CMP AL,DATA8 BYTE COMPARE DATA WITH (AL)

3D 00111101 CMP AX,DATA16 WORD COMPARE DATA WITH (AX)

3E 00111110 DS: SEGMENT OVERRIDE W/
SEGMENT REGS DS

3F 00111111 AAS ASCII ADJUST FOR SUBTRACT

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-14 Issue 5.00

Table A4-2 — iAPX INTEL 80186 Processor Instructions in Hex Order: 40 - 7F

Opcode
Operands Function

Hex/Binary Instruction

40 01000000 INC AX INCREMENT (AX)

41 01000001 INC AX INCREMENT (CX)

42 01000010 INC DX INCREMENT (DX)

43 01000011 INC DX INCREMENT (BX)

44 01000100 INC SP INCREMENT (SP)

45 01000101 INC BP INCREMENT (BP)

46 01000110 INC SI INCREMENT (SI)

47 01000111 INC DI INCREMENT (DI)

48 01001000 DEC AX DECREMENT (AX)

49 01001001 DEC CX DECREMENT (CX)

4A 01001010 DEC DX DECREMENT (DX)

4B 01001011 DEC BX DECREMENT (BX)

4C 01001100 DEC SP DECREMENT (SP)

4D 01001101 DEC BP DECREMENT (BP)

4E 01001110 DEC SI DECREMENT (SI)

4F 01001111 DEC DI DECREMENT (DI)

50 01010000 PUSH AX PUSH (AX) ON STACK

51 01010001 PUSH CX PUSH (CX) ON STACK

52 01010010 PUSH DX PUSH (DX) ON STACK

53 01010011 PUSH BX PUSH (BX) ON STACK

54 01010100 PUSH SP PUSH (SP) ON STACK

55 01010101 PUSH BP PUSH (BP) ON STACK

56 01010110 PUSH SI PUSH (SI) ON STACK

57 01010111 PUSH DI PUSH (DI) ON STACK

58 01011000 POP AX POP STACK TO REG AX

59 01011001 POP CX POP STACK TO REG CX

5A 01011010 POP DX POP STACK TO REG DX

5B 01011011 POP BX POP STACK TO REG BX

5C 01011100 POP SP POP STACK TO REG SP

5D 01011101 POP BP POP STACK TO REG BP

5E 01011110 POP SI POP STACK TO REG SI

5F 01011111 POP DI POP STACK TO REG DI

60 01100000 PUSHA PUSH ALL DATA, INDEX, AND
POINTER REGISTERS

61 01100001 POPA POP ALL DATA, INDEX, AND
POINTER REGISTERS

62 01100010 MOD REG R/M BOUND REG,EA CHECK INDEX IN REG AGAINST
BOUNDS AT EA

63 01100011 (not used)

64 01100100 (not used)

65 01100101 (not used)

66 01100110 (not used)

67 01100111 (not used)

68 01101000 PUSH DATA16 PUSH WORD DATA ON STACK

69 01101001 MOD REG R/M IMUL REG,EA,DATA16 MULTIPLY (EA) BY WORD DATA;
SIGNED

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-15

Table A4-2 — iAPX INTEL 80186 Processor Instructions in Hex Order: 40 - 7F (Contd)

Opcode
Operands Function

Hex/Binary Instruction

6A 01101010 PUSH DATA8 PUSH BYTE DATA ON STACK,
SIGN-EXTEND

6B 01101011 MOD REG R/M IMUL REG,EA,DATA8 MULTIPLY (EA) BY BYTE DATA;
SIGNED

6C 01101100 INS DST8 BYTE INPUT, STRING OP

6D 01101101 INS DST16 WORD INPUT, STRING OP

6E 01101110 OUTS DST8 BYTE OUTPUT, STRING OP

6F 01101111 OUTS DST16 WORD OUTPUT, STRING OP

70 01110000 JO DISP8 JUMP ON OVERFLOW

71 01110001 JNO DISP8 JUMP ON NOT OVERFLOW

72 01110010 JC/JB/JNAE DISP8 JUMP ON BELOW/NOT ABOVE OR
EQUAL

73 01110011 JNC/JNB/JAE DISP8 JUMP ON NOT BELOW/ABOVE OR
EQUAL

74 01110100 JE/JZ DISP8 JUMP ON EQUAL//ZERO

75 01110101 JNE/JNZ DISP8 JUMP ON NOT EQUAL/NOT ZERO

76 01110110 JBE/JNA DISP8 JUMP ON BELOW OR EQUAL/NOT
ABOVE

77 01110111 JNBE/JA DISP8 JUMP ON NOT BELOW OR
EQUAL/ABOVE

78 01111000 JS DISP8 JUMP ON SIGN

79 01111001 JNS DISP8 JUMP ON NOT SIGN

7A 01111010 JP/JPE DISP8 JUMP ON PARITY/PARITY EVEN

7B 01111011 JNP/JPO DISP8 JUMP ON NOT PARITY/PARITY
ODD

7C 01111100 JL/JNGE DISP8 JUMP ON LESS/NOT GREATER OR
EQUAL

7D 01111101 JNL/JGE DISP8 JUMP ON NOT LESS/GREATER OR
EQUAL

7E 01111110 JLE/JNG DISP8 JUMP ON LESS OR EQUAL/NOT
GREATER

7F 01111111 JNLE/JG DISP8 JUMP ON NOT LESS OR
EQUAL/GREATER

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-16 Issue 5.00

Table A4-3 — iAPX INTEL 80186 Processor Instructions in Hex Order: 80 - BF

Opcode
Operands Function

Hex/Binary Instruction

80 10000000 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA

80 10000000 MOD 001 R/M OR EA,DATA8 BYTE OR DATA TO EA

80 10000000 MOD 010 R/M ADC EA,DATA8 BYTE ADD DATA W/CARRY TO EA

80 10000000 MOD 011 R/M SBB EA,DATA8 BYTE SUB DATA W/BORROW
FROM EA

80 10000000 MOD 100 R/M AND EA,DATA8 BYTE AND DATA TO EA

80 10000000 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA

80 10000000 MOD 110 R/M XOR EA,DATA8 BYTE XOR DATA TO EA

80 10000000 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA WITH (EA)

81 10000001 MOD 000 R/M ADD EA,DATA16 WORD ADD DATA TO EA

81 10000001 MOD 001 R/M OR EA,DATA16 WORD OR DATA TO EA

81 10000001 MOD 010 R/M ADC EA,DATA16 WORD ADD DATA W/CARRY TO EA

81 10000001 MOD 011 R/M SBB EA,DATA16 WORD SUB DATA W/BORROW
FROM EA

81 10000001 MOD 100 R/M AND EA,DATA16 WORD AND DATA TO EA

81 10000001 MOD 101 R/M SUB EA,DATA16 WORD SUBTRACT DATA FROM EA

81 10000001 MOD 110 R/M XOR EA,DATA16 WORD XOR DATA TO EA

81 10000001 MOD 111 R/M CMP EA,DATA16 WORD COMPARE DATA WITH (EA)

82 10000010 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA

82 10000010 MOD 001 R/M (not used)

82 10000010 MOD 010 R/M ADC EA,DATA8 BYTE ADD DATA W/CARRY TO EA

82 10000010 MOD 011 R/M SBB EA,DATA8 BYTE SUB DATA W/BORROW
FROM EA

82 10000010 MOD 100 R/M (not used)

82 10000010 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA

82 10000010 MOD 110 R/M (not used)

82 10000010 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA WITH (EA)

83 10000011 MOD 000 R/M ADD EA,DATA8 WORD ADD DATA TO EA

83 10000011 MOD 001 R/M (not used)

83 10000011 MOD 010 R/M ADC EA,DATA8 WORD ADD DATA W/CARRY TO EA

83 10000011 MOD 011 R/M SBB EA,DATA8 WORD SUB DATA W/BORROW
FROM EA

83 10000011 MOD 100 R/M (not used)

83 10000011 MOD 101 R/M SUB EA,DATA8 WORD SUBTRACT DATA FROM EA

83 10000011 MOD 110 R/M (not used)

83 10000011 MOD 111 R/M CMP EA,DATA8 WORD COMPARE DATA WITH (EA)

84 10000100 MOD REG R/M TEST EA,REG BYTE TEST (EA) WITH (REG)

85 10000101 MOD REG R/M TEST EA,REG WORD TEST (EA) WITH (REG)

86 10000110 MOD REG R/M XCHG REG,EA BYTE EXCHANGE (REG) WITH
(EA)

87 10000111 MOD REG R/M XCHG REG,EA WORD EXCHANGE (REG) WITH
(EA)

88 10001000 MOD REG R/M MOV EA,REG BYTE MOVE (REG) TO EA

89 10001001 MOD REG R/M MOV EA,REG WORD MOVE (REG) TO EA

8A 10001010 MOD REG R/M MOV REG,EA BYTE MOVE (EA) TO (REG)

8B 10001011 MOD REG R/M MOV REG,EA WORD MOVE (EA) TO (REG)

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-17

Table A4-3 — iAPX INTEL 80186 Processor Instructions in Hex Order: 80 - BF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

8C 10001100 MOD 0SR R/M MOV EA,SR WORD MOVE (SEGMENT REG SR)
TO EA

8C 10001100 MOD 1–– R/M (not used)

8D 10001101 MOD REG R/M LEA REG,EA LOAD EFFECTIVE ADDRESS OF
EA TO REG

8E 10001110 MOD 0SB R/M MOV SR,EA WORK MOVE (EA) TO SEGMENT
REG SR

8E 10001110 MOD ––- R/M (not used)

8F 10001111 MOD 000 R/M POP EA POP STACK TO EA

8F 10001111 MOD 001 R/M (not used)

8F 10001111 MOD 010 R/M (not used)

8F 10001111 MOD 011 R/M (not used)

8F 10001111 MOD 100 R/M (not used)

8F 10001111 MOD 101 R/M (not used)

8F 10001111 MOD 110 R/M (not used)

8F 10001111 MOD 111 R/M (not used)

90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NOP)

91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX)

92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (DX)

93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX)

94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP)

95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP)

96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI)

97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (DI)

98 10011000 CBW BYTE CONVERT (AL) TO WORD
(AX)

99 10011001 CWD WORD CONVERT (AX) TO DOUBLE
WORD

9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT CALL

9B 10011011 WAIT WAIT FOR TEST SIGNAL

9C 10011100 PUSHF PUSH FLAGS ON STACK

9D 10011101 POPF POP STACK TO FLAGS

9E 10011110 SAHF STORE (AH) INTO FLAGS

9F 10011111 LAHF LOAD REG AH WITH FLAGS

A0 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO REG AL

A1 10100001 MOV AX,ADDR16 WORD MOVE (ADDR) TO REG AX

A2 10100010 MOV ADDR16,AX BYTE MOVE (AL) TO ADDR

A3 10100011 MOV ADDR16,AX WORD MOVE (AX) TO ADDR

A4 10100100 MOVS DST8,SRC8 BYTE MOVE, STRING OP

A5 10100101 MOVS DST16,SRC16 WORD MOVE, STRING OP

A6 10100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING OP

A7 10100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING OP

A8 10101000 TEST AL,DATA8 BYTE TEST (AL) WITH DATA

A9 10101001 TEST AX,DATA16 WORD TEST (AX) WITH DATA

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-18 Issue 5.00

Table A4-3 — iAPX INTEL 80186 Processor Instructions in Hex Order: 80 - BF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

AA 10101010 STOS DST8 BYTE STORE, STRING OP

AB 10101011 STOS DST16 WORD STORE, STRING OP

AC 10101100 LODS SRC8 BYTE LOAD, STRING OP

AD 10101101 LODS SRC16 WORD LOAD, STRING OP

AE 10101110 SCAS DIPTR8 BYTE SCAN, STRING OP

AF 10101111 SCAS DIPTR16 WORD SCAN, STRING OP

B0 10110000 MOV AL,DATA8 BYTE MOVE DATA TO REG AL

B1 10110001 MOV CL,DATA8 BYTE MOVE DATA TO REG CL

B2 10110010 MOV DL,DATA8 BYTE MOVE DATA TO REG DL

B3 10110011 MOV BL,DATA8 BYTE MOVE DATA TO REG BL

B4 10110100 MOV AH,DATA8 BYTE MOVE DATA TO REG AH

B5 10110101 MOV CH,DATA8 BYTE MOVE DATA TO REG CH

B6 10110110 MOV DH,DATA8 BYTE MOVE DATA TO REG DH

B7 10110111 MOV BH,DATA8 BYTE MOVE DATA TO REG BH

B8 10111000 MOV AX,DATA16 WORD MOVE DATA TO REG AX

B9 10111001 MOV CX,DATA16 WORD MOVE DATA TO REG CX

BA 10111010 MOV DX,DATA16 WORD MOVE DATA TO REG DX

BB 10111011 MOV BX,DATA16 WORD MOVE DATA TO REG BX

BC 10111100 MOV SP,DATA16 WORD MOVE DATA TO REG SP

BD 10111101 MOV BP,DATA16 WORD MOVE DATA TO REG BP

BE 10111110 MOV SI,DATA16 WORD MOVE DATA TO REG SI

BF 10111111 MOV DI,DATA16 WORD MOVE DATA TO REG DI

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-19

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF

Opcode
Operands Function

Hex/Binary Instruction

C0 11000000 MOD 000 R/M ROL EA,DATA8 BYTE ROTATE EA LEFT DATA8
BITS

C0 11000000 MOD 001 R/M ROR EA,DATA8 BYTE ROTATE EA RIGHT DATA8
BITS

C0 11000000 MOD 010 R/M RCL EA,DATA8 BYTE ROTATE EA LEFT THRU
CARRY DATA8 BITS

C0 11000000 MOD 011 R/M RCR EA,DATA8 BYTE ROTATE EA RIGHT THRU
CARRY DATA8 BITS

C0 11000000 MOD 100 R/M SHL/SAL EA,DATA8 BYTE SHIFT EA LEFT DATA8 BITS

C0 11000000 MOD 101 R/M SHR EA,DATA8 BYTE SHIFT EA RIGHT DATA8
BITS

C0 11000000 MOD 110 R/M (not used)

C0 11000000 MOD 111 R/M SAR EA,DATA8 BYTE SHIFT SIGNED EA RIGHT
DATA8 BITS

C1 11000001 MOD 000 R/M ROL EA,DATA8 WORD ROTATE EA LEFT DATA8
BITS

C1 11000001 MOD 001 R/M ROR EA,DATA8 WORD ROTATE EA RIGHT DATA8
BITS

C1 11000001 MOD 010 R/M RCL EA,DATA8 WORD ROTATE EA LEFT THRU
CARRY DATA8 BITS

C1 11000001 MOD 011 R/M RCR EA,DATA8 WORD ROTATE EA RIGHT THRU
CARRY DATA8 BITS

C1 11000001 MOD 100 R/M SHL/SAL EA,DATA8 WORD SHIFT EA LEFT DATA8
BITS

C1 11000001 MOD 101 R/M SHR EA,DATA8 WORD SHIFT EA RIGHT DATA8
BITS

C1 11000001 MOD 110 R/M (not used)

C1 11000001 MOD 111 R/M SAR EA,DATA8 WORD SHIFT SIGNED EA RIGHT
DATA8 BITS

C2 11000010 RET DATA16 INTRA SEGMENT RETURN, ADD
DATA TO REG SP

C3 11000011 RET INTRA SEGMENT RETURN

C4 11000100 MOD REG R/M LES REG,EA WORD LOAD REG AND SEGMENT
REG ES

C5 11000101 MOD REG R/M LDS REG,EA WORD LOAD REG AND SEGMENT
REG DS

C6 11000110 MOD 000 R/M MOV EA,DATA8 BYTE MOVE DATA TO EA

C6 11000110 MOD 001 R/M (not used)

C6 11000110 MOD 010 R/M (not used)

C6 11000110 MOD 011 R/M (not used)

C6 11000110 MOD 100 R/M (not used)

C6 11000110 MOD 101 R/M (not used)

C6 11000110 MOD 110 R/M (not used)

C6 11000110 MOD 111 R/M (not used)

C7 11000111 MOD 000 R/M MOV EA,DATA16 WORD MOVE DATA TO EA

C7 11000111 MOD 001 R/M (not used)

C7 11000111 MOD 010 R/M (not used)

C7 11000111 MOD 011 R/M (not used)

C7 11000111 MOD 100 R/M (not used)

C7 11000111 MOD 101 R/M (not used)

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-20 Issue 5.00

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

C7 11000111 MOD 110 R/M (not used)

C7 11000111 MOD 111 R/M (not used)

C8 11001000 ENTER DATA16,DATA8 PERFORM ENTER SEQUENCE

C9 11001001 LEAVE PERFORM LEAVE SEQUENCE

CA 11001010 RET DATA16 INTER SEGMENT RETURN, ADD
DATA TO REG SP

CB 11001011 RET INTER SEGMENT RETURN

CC 11001100 INT 3 TYPE 3 INTERRUPT

CD 11001101 INT TYPE TYPED INTERRUPT

CE 11001110 INTO INTERRUPT ON OVERFLOW

CF 11001111 IRET RETURN FROM INTERRUPT

D0 11010000 MOD 000 R/M ROL EA,1 BYTE ROTATE EA LEFT 1 BIT

D0 11010000 MOD 001 R/M ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT

D0 11010000 MOD 010 R/M RCL EA,1 BYTE ROTATE EA LEFT 1 BIT

D0 11010000 MOD 011 R/M RCR EA,1 BYTE ROTATE EA RIGHT THRU
CARRY 1 BIT

D0 11010000 MOD 100 R/M SHL EA,1 BYTE SHIFT EA LEFT 1 BIT

D0 11010000 MOD 101 R/M SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT

D0 11010000 MOD 110 R/M (not used)

D0 11010000 MOD 111 R/M SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1
BIT

D1 11010001 MOD 000 R/M ROL EA,1 WORD ROTATE EA LEFT 1 BIT

D1 11010001 MOD 001 R/M ROR EA,1 WORD ROTATE EA RIGHT 1 BIT

D1 11010001 MOD 010 R/M RCL EA,1 WORD ROTATE EA LEFT THRU
CARRY 1 BIT

D1 11010001 MOD 011 R/M RCR EA,1 WORD ROTATE EA RIGHT THRU
CARRY 1 BIT

D1 11010001 MOD 100 R/M SHL EA,1 WORD SHIFT EA LEFT 1 BIT

D1 11010001 MOD 101 R/M SHR EA,1 WORD SHIFT EA RIGHT 1 BIT

D1 11010001 MOD 110 R/M (not used)

D1 11010001 MOD 111 R/M SAR EA,1 WORD SHIFT SIGNED EA RIGHT 1
BIT

D2 11010010 MOD 000 R/M ROL EA,CL BYTE ROTATE EA LEFT (CL) BITS

D2 11010010 MOD 001 R/M ROR EA,CL BYTE ROTATE EA RIGHT (CL)
BITS

D2 11010010 MOD 010 R/M RCL EA,CL BYTE ROTATE EA LEFT THRU
CARRY (CL) BITS

D2 11010010 MOD 011 R/M RCR EA,CL BYTE ROTATE EA RIGHT THRU
CARRY (CL) BITS

D2 11010010 MOD 100 R/M SHL EA,CL BYTE SHIFT EA LEFT (CL) BITS

D2 11010010 MOD 101 R/M SHR EA,CL BYTE SHIFT EA RIGHT (CL) BITS

D2 11010010 MOD 110 R/M (not used)

D2 11010010 MOD 111 R/M SAR EA,CL BYTE SHIFT SIGNED EA RIGHT
(CL) BITS

D3 11010011 MOD 000 R/M ROL EA,CL WORD ROTATE EA LEFT (CL) BITS

D3 11010011 MOD 001 R/M ROR EA,CL WORD ROTATE EA RIGHT (CL)
BITS

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-21

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

D3 11010011 MOD 010 R/M RCL EA,CL WORD ROTATE EA LEFT THRU
CARRY (CL) BITS

D3 11010011 MOD 011 R/M RCR EA,CL WORD ROTATE EA RIGHT THRU
CARRY (CL) BITS

D3 11010011 MOD 100 R/M SHL EA,CL WORD SHIFT EA LEFT (CL) BITS

D3 11010011 MOD 101 R/M SHR EA,CL WORD SHIFT EA RIGHT (CL) BITS

D3 11010011 MOD 110 R/M (not used)

D3 11010011 MOD 111 R/M SAR EA,CL WORD SHIFT SIGNED EA RIGHT
(CL) BITS

D4 11010100 00001010 AAM ASCII ADJUST FOR MULTIPLY

D5 11010101 00001010 R/M AAD ASCII ADJUST FOR DIVIDE

D6 11010110 (not used)

D7 11010111 XLAT TABLE TRANSLATE USING (BX)

D8 11011— MOD— R/M ESC EA ESCAPE TO EXTERNAL DEVICE

D8 11011000 MOD 000 R/M FADD Short-real ADD 4-BYTE EA TO ST

D8 11011000 MOD 001 R/M FMUL Short-real MULTIPLY ST BY 4-BYTE EA

D8 11011000 MOD 010 R/M FCOM Short-real COMPARE 4-BYTE EA WITH ST

D8 11011000 MOD 011 R/M FCOMP Short-real COMPARE 4-BYTE EA WITH ST
AND POP

D8 11011000 MOD 100 R/M FSUB Short-real SUBTRACT 4-BYTE EA FROM ST

D8 11011000 MOD 101 R/M FSUBR Short-real SUBTRACT ST FROM 4-BYTE EA

D8 11011000 MOD 110 R/M FDIV Short-real DIVIDE ST BY 4-BYTE EA

D8 11011000 MOD 111 R/M FDIVR Short-real DIVIDE 4-BYTE EA BY ST

D8 11011000 1 1 000 (i) FADD ST,ST(i) ADD ELEMENT TO ST

D8 11011000 1 1 001 (i) FMUL ST,ST(i) MULTIPLY ST BY ELEMENT

D8 11011000 1 1 010 (i) FCOM ST(i) COMPARE ST(i) WITH ST

D8 11011000 1 1 011 (i) FCOMP ST(i) COMPARE ST(i) WITH ST AND POP

D8 11011000 1 1 100 (i) FSUB ST,ST(i) SUBTRACT ELEMENT FROM ST

D8 11011000 1 1 101 (i) FSUBR ST,ST(i) SUBTRACT ST FROM STACK
ELEMENT

D8 11011000 1 1 110 (i) FDIV ST,ST(i) DIVIDE ST BY ELEMENT

D8 11011000 1 1 111 (i) FDIVR ST,ST(i) DIVIDE ST(i) BY ST

D9 11011001 MOD 000 R/M FLD Short-real PUSH 4-BYTE EA TO ST

D9 11011001 MOD 001 R/M (not used)

D9 11011001 MOD 010 R/M FST Short-real STORE 4-BYTE REAL TO EA

D9 11011001 MOD 011 R/M FSTP Short-real STORE 4-BYTE REAL TO EA AND
POP

D9 11011001 MOD 100 R/M FLDENV 14-BYTES LOAD 8087 ENVIRONMENT FROM
EA

D9 11011001 MOD 101 R/M FLDCW 2-BYTES LOAD CONTROL WORK FROM EA

D9 11011001 MOD 110 R/M FSTENV 14-BYTES STORE 8087 ENVIRONMENT INTO
EA

D9 11011001 MOD 111 R/M FSTCW 2-BYTES STORE CONTROL WORD INTO EA

D9 11011001 1 1 000 (i) FLD ST(i) PUSH ST(i) ONTO ST

D9 11011001 1 1 001 (i) FXCH ST(i) EXCHANGE ST AND ST(i)

D9 11011001 1 1 010 000 FNOP STORE ST IN ST

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-22 Issue 5.00

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

D9 11011001 1 1 010 001 (not used)

D9 11011001 1 1 010 01- (not used)

D9 11011001 1 1 010 1–– (not used)

D9 11011001 1 1 011 (i) *(1)

D9 11011001 1 1 100 000 FCHS CHANGE SIGN OF ST

D9 11011001 1 1 100 001 FABS TAKE ABSOLUTE VALUE OF ST

D9 11011001 1 1 100 01- (not used)

D9 11011001 1 1 100 100 FTST TEST ST AGAINST 0.0

D9 11011001 1 1 100 101 FXAM EXAMINE ST AND REPORT
CONDITION CODE

D9 11011001 1 1 100 11- (not used)

D9 11011001 1 1 101 000 FLD1 PUSH +1.0 TO ST

D9 11011001 1 1 101 001 FLDL2T PUSH log 10 TO ST

D9 11011001 1 1 101 010 FLDL2E PUSH loge TO ST

D9 11011001 1 1 101 011 FLDP1 PUSH Pi TO ST

D9 11011001 1 1 101 100 FLDLG2 PUSH log TO ST

D9 11011001 1 1 101 101 FLDLN2 PUSH loge TO ST

D9 11011001 1 1 101 110 FLDZ PUST ZERO TO ST

D9 11011001 1 1 101 111 (not used)

D9 11011001 1 1 110 000 F2XM1 CALCULATE 2x − 1

D9 11011001 1 1 110 001 FYL2X CALCULATE FUNCTION Y*logX

D9 11011001 1 1 110 010 FPTAN CALCULATE TAN OF ANGLE AS A
RATIO

D9 11011001 1 1 110 011 FPATAN CALCULATE ARCTAN OF ANGLE

D9 11011001 1 1 110 100 FXTRACT EXTRACT EXPONENT AND
SIGNIFICANT FROM ST VALUE

D9 11011001 1 1 110 101 (not used)

D9 11011001 1 1 110 110 FDECSTP DECREMENT STACK POINTER IN
STATUS WORD

D9 11011001 1 1 110 111 FINCSTP INCREMENT STACK POINTER IN
STATUS WORD

D9 11011001 1 1 111 000 FPREM MODULO DIVISION OF ST BY
ST(1)

D9 11011001 1 1 110 001 FYL2XP1 CALCULATE VALUE OF Y*log(X+1)

D9 11011001 1 1 111 010 FSORT CALCULATE SQUARE ROOT OF ST

D9 11011001 1 1 111 011 (not used)

D9 11011001 1 1 111 100 FRNDINT ROUND ST TO INTEGER

D9 11011001 1 1 111 101 FSCALE ADD ST(1) TO EXPONENT OF ST

D9 11011001 1 1 111 11- (not used)

DA 11011010 MOD 000 R/M FIADD Short-integer ADD 4-BYTE INTEGER EA TO ST

DA 11011010 MOD 001 R/M FIMUL Short-integer MULTIPLY ST BY 4-BYTE
INTEGER EA

DA 11011010 MOD 010 R/M FICOM Short-integer CONVERT 4-BYTE INTEGER EA,
AND COMPARE WITH ST

DA 11011010 MOD 011 R/M FICOMP Short-integer CONVERT 4-BYTE INTEGER EA,
COMPARE WITH ST, POP

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-23

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

DA 11011010 MOD 100 R/M FISUB Short-integer SUBTRACT 4-BYTE INTEGER EA
FROM ST

DA 11011010 MOD 101 R/M FISUBR Short-integer SUBTRACT ST FROM 4-BYTE
INTEGER EA

DA 11011010 MOD 110 R/M FIDIV Short-integer DIVIDE ST BY 4-BYTE INTEGER
EA

DA 11011010 MOD 111 R/M FIDIVR Short-integer DIVIDE 4-BYTE INTEGER EA BY
ST

DA 11011010 1 1— (not used)

DB 11011011 MOD 000 R/M FILD Short-integer PUSH 4-BYTE INTEGER EA ONTO
ST

DB 11011011 MOD 001 R/M (not used)

DB 11011011 MOD 010 R/M FIST Short-integer STORE ROUNDED ST IN 4-BYTE
INTEGER EA

DB 11011011 MOD 011 R/M FISTP Short-integer STORE ROUNDED ST IN 4-BYTE
INTEGER EA, POP

DB 11011011 MOD 100 R/M (not used)

DB 11011011 MOD 101 R/M FLD Temp-real PUSH 10-BYTE EA ONTO ST

DB 11011011 MOD 110 R/M Reserved

DB 11011011 MOD 111 R/M FSTP Temp-real STORE ST INTO 10-BYTE EA, POP

DB 11011011 1 1 0— Reserved

DB 11011011 1 1 100 000 FENI ENABLE INTERRUPT

DB 11011011 1 1 100 001 FDISI DISABLE INTERRUPT

DB 11011011 1 1 100 010 FCLEX CLEAR EXCEPTIONS

DB 11011011 1 1 100 011 FINIT INITIALIZE PROCESSOR

DB 11011011 1 1 100 1–– Reserved

DB 11011011 1 1 101 — Reserved

DB 11011011 1 1 11— Reserved

DC 11011100 MOD 000 R/M FADD Long-real ADD 8-BYTE EA TO ST

DC 11011100 MOD 001 R/M FMUL Long-real MULTIPLY ST BY 8-BYTE EA

DC 11011100 MOD 010 R/M FCOM Long-real COMPARE ST WITH 8-BYTE EA

DC 11011100 MOD 011 R/M FCOMP Long-real COMPARE ST WITH 8-BYTE EA,
POP STACK

DC 11011100 MOD 100 R/M FSUB Long-real SUBTRACT 8-BYTE EA FROM ST

DC 11011100 MOD 101 R/M FSUBR Long-real SUBTRACT ST FROM 8-BYTE EA

DC 11011100 MOD 110 R/M FDIV Long-real DIVIDE ST BY 8-BYTE EA

DC 11011100 MOD 111 R/M FDIVR Long-real DIVIDE 8-BYTE EA BY ST

DC 11011100 1 1 000 (i) FADD ST(i),ST ADD ST TO ELEMENT

DC 11011100 1 1 001 (i) FMUL ST(i),ST MULTIPLY ELEMENT BY ST

DC 11011100 1 1 010 (i) *(2)

DC 11011100 1 1 011 (i) *(3)

DC 11011100 1 1 100 (i) FSUBR ST(i),ST SUBTRACT ST FROM ELEMENT

DC 11011100 1 1 101 (i) FSUB ST(i),ST SUBTRACT ELEMENT FROM ST

DC 11011100 1 1 110 (i) FDIVR ST(i),ST DIVIDE ST(i) BY ST

DC 11011100 1 1 111 (i) FDIV ST(i),ST DIVIDE ST BY ST(i)

DD 11011101 MOD 000 R/M FLD Long-real PUSH 8-BYTE EA ONTO ST

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-24 Issue 5.00

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

DD 11011101 MOD 001 R/M Reserved

DD 11011101 MOD 010 R/M FST Long-real STORE ST INTO 8-BYTE EA

DD 11011101 MOD 011 R/M FSTP Long-real STORE ST INTO 8-BYTE EA, POP

DD 11011101 MOD 100 R/M FRSTOR 94-BYTES RESTORE 8087 STATE FROM EA

DD 11011101 MOD 101 R/M Reserved

DD 11011101 MOD 110 R/M FSAVE 94-BYES SAVE 8087 STATE TO EA

DD 11011101 MOD 111 R/M FSTSW 2-BYTES STORE 8087 STATUS WORD TO
2-BYTE EA

DD 11011101 1 1 000 (i) FFREE ST(i) SET STACK TAG TO "EMPTY"

DD 11011101 1 1 001 (i) *(4)

DD 11011101 1 1 010 (i) FST ST(i) STORE ST INTO ST(i)

DD 11011101 1 1 011 (i) FSTP ST(i) STORE ST INTO ST(i), POP

DD 11011101 1 1 11— Reserved

DE 11011110 MOD 000 R/M FIADD Word-integer ADD 2-BYTE INTEGER EA TO ST

DE 11011110 MOD 001 R/M FIMUL Word-integer MULTIPLY ST BY 2-BYTE
INTEGER EA

DE 11011110 MOD 010 R/M FICOM Word-integer COMPARE 2-BYTE EA INTEGER
WITH ST

DE 11011110 MOD 011 R/M FICOMP Word-integer COMPARE 2-BYTE INTEGER EA
WITH ST, POP

DE 11011110 MOD 100 R/M FISUB Word-integer SUBTRACT 2-BYTE INTEGER EA
FROM ST

DE 11011110 MOD 101 R/M FISUBR Word-integer SUBTRACT ST FROM 2-BYTE
INTEGER EA

DE 11011110 MOD 110 R/M FIDIV Word-integer DIVIDE ST BY 2-BYTE INTEGER
EA

DE 11011110 MOD 111 R/M FIDIVR Word-integer DIVIDE 2-BYTE INTEGER EA BY
ST

DE 11011110 1 1 000 (i) FADDP ST(i),ST ADD ST TO ELEMENT, POP

DE 11011110 1 1 001 (i) FMULP ST(i),ST MULTIPLY ST BY ELEMENT, POP

DE 11011110 1 1 010 ––- *(5)

DE 11011110 1 1 011 000 Reserved

DE 11011110 1 1 011 FCOMPP COMPARE ST WITH ST(1), POP
TWICE

DE 11011110 1 1 011 01- Reserved

DE 11011110 1 1 011 1–– Reserved

DE 11011110 1 1 100 (i) FSUBRP ST(i),ST SUBTRACT ST FROM ELEMENT,
POP

DE 11011110 1 1 101 (i) FSUBP ST(i),ST SUBTRACT ST(i) FROM ST, POP

DE 11011110 1 1 110 (i) FDIVRP ST(i),ST DIVIDE STACK ELEMENT BY ST,
POP

DE 11011110 1 1 111 (i) FDIVP ST(i),ST DIVIDE ST BY STACK ELEMENT,
POP

DF 11011111 MOD 000 R/M FILD Word-integer CONVERT 2-BYTE EA AND PUSH
ONTO STACK

DF 11011111 MOD 001 R/M Reserved

DF 11011111 MOD 010 R/M FIST Word-integer ROUND ST AND STORE IN 2-BYTE
INTEGER EA

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-25

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

DF 11011111 MOD 011 R/M FISTP Word-integer ROUND ST, STORE IN 2-BYTE
INTEGER EA, POP

DF 11011111 MOD 100 R/M FBLD Packed decimal LOAD BCD TO ST

DF 11011111 MOD 101 R/M FILD Long-integer CONVERT 8-BYTE INTEGER EA
AND PUSH ONTO STACK

DF 11011111 MOD 110 R/M FBSTP Packed decimal CONVERT ST, STORE IN 10-BYTE
BCD EA, POP

DF 11011111 MOD 111 R/M FISTP Long-integer ROUND ST, STORE IN 8-BYTE
INTEGER EA, POP

DF 11011111 1 1 000 (i) *(6)

DF 11011111 1 1 001 (i) *(7)

DF 11011111 1 1 010 (i) *(8)

DF 11011111 1 1 011 (i) *(9)

DF 11011111 1 1 ––- ––- Reserved

E0 11100000 LOOPNZ/LOOPNE DISP8 LOOP (CX) TIMES WHILE NOT
ZERO/NOT EQUAL

E1 11100001 LOOPZ/LOOPE DISP8 LOOP (CX) TIMES WHILE
ZERO/EQUAL

E2 11100010 LOOP DISP8 LOOP (CX) TIMES

E3 11100011 JCXZ DISP8 JUMP ON (CX)=0

E4 11100100 IN AL,PORT BYTE INPUT FROM PORT TO REG
AL

E5 11100101 IN AX,PORT WORD INPUT FROM PORT TO
REG AX

E6 11100110 OUT PORT,AL BYTE OUTPUT (AL) TO PORT

E7 11100111 OUT PORT,AX WORD OUTPUT (AX) TO PORT

E8 11101000 CALL DISP16 DIRECT INTRA SEGMENT CALL

E9 11101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP

EA 11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT JUMP

EB 11101010 JMP DISP8 DIRECT INTRA SEGMENT JUMP

EC 11101010 IN AL,DX BYTE INPUT FROM PORT (DX) TO
REG AL

ED 11101010 IN AX,DX WORD INPUT FROM PORT (DX)
TO REG AX

EE 11101010 OUT DX,AL BYTE OUTPUT (AL) TO PORT (DX)

EF 11101010 OUT DX,AX WORD OUTPUT (AX) TO PORT
(DX)

F0 11110000 LOCK BUS LOCK PREFIX

F1 11110001 (not used)

F2 11110010 REPNZ/REPNE REPEAT WHILE (CX)0 AND (ZF)=0

F3 11110011 REPZ/REPE/REP REPEAT WHILE (CX)0 AND (ZF)=1

F4 11110100 HLT HALT

F5 11110101 CMC COMPLEMENT CARRY FLAG

F6 11110110 MOD 000 R/M TEST EA,DATA8 BYTE TEST (EA) WITH DATA

F6 11110110 MOD 001 R/M (not used)

F6 11110110 MOD 010 R/M NOT EA BYTE INVERT EA

F6 11110110 MOD 011 R/M NEG EA BYTE NEGATE EA

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-26 Issue 5.00

Table A4-4 — iAPX INTEL 80186 Processor Instructions in Hex Order: C0 - FF
(Contd)

Opcode
Operands Function

Hex/Binary Instruction

F6 11110110 MOD 100 R/M MUL EA BYTE MULTIPLY BY (EA),
UNSIGNED

F6 11110110 MOD 101 R/M IMUL EA BYTE MULTIPLY BY (EA), SIGNED

F6 11110110 MOD 110 R/M DIV EA BYTE DIVIDE BY (EA), UNSIGNED

F6 11110110 MOD 111 R/M IDIV EA BYTE DIVIDE BY (EA), SIGNED

F7 11110111 MOD 000 R/M TEST EA,DATA16 WORD TEST (EA) WITH DATA

F7 11110111 MOD 001 R/M (not used)

F7 11110111 MOD 010 R/M NOT EA WORD INVERT EA

F7 11110111 MOD 011 R/M NEG EA WORD NEGATE EA

F7 11110111 MOD 100 R/M MUL EA WORD MULTIPLY BY (EA),
UNSIGNED

F7 11110111 MOD 101 R/M IMUL EA WORD MULTIPLY BY (EA),
SIGNED

F7 11110111 MOD 110 R/M DIV EA WORD DIVIDE BY (EA),
UNSIGNED

F7 11110111 MOD 111 R/M IDIV EA WORD DIVIDE BY (EA), SIGNED

F8 11111000 CLC CLEAR CARRY FLAG

F9 11111001 STC SET CARRY FLAG

FA 11111010 CLI CLEAR INTERRUPT FLAG

FB 11111011 STI SET INTERRUPT FLAG

FC 11111100 CLD CLEAR DIRECTION FLAG

FD 11111101 STD SET DIRECTION FLAG

FE 11111110 MOD 000 R/M INC EA BYTE INCREMENT EA

FE 11111110 MOD 001 R/M DEC EA BYTE DECREMENT EA

FE 11111110 MOD 010 R/M (not used)

FE 11111110 MOD 011 R/M (not used)

FE 11111110 MOD 100 R/M (not used)

FE 11111110 MOD 101 R/M (not used)

FE 11111110 MOD 110 R/M (not used)

FE 11111110 MOD 111 R/M (not used)

FF 11111111 MOD 000 R/M INC EA WORD INCREMENT EA

FF 11111111 MOD 001 R/M DEC EA WORD DECREMENT EA

FF 11111111 MOD 010 R/M CALL EA INDIRECT INTRA SEGMENT CALL

FF 11111111 MOD 011 R/M CALL EA INDIRECT INTRA SEGMENT CALL

FF 11111111 MOD 100 R/M JMP EA INDIRECT INTRA SEGMENT JUMP

FF 11111111 MOD 101 R/M JMP EA INDIRECT INTRA SEGMENT JUMP

FF 11111111 MOD 110 R/M PUSH EA PUSH (EA) ON STACK

FF 11111111 MOD 111 R/M (not used)

REG is assigned according to the following table:

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-27

16–BIT (W=1) 8–BIT (W=0) SEGMENT REG

000 AX 000 AL 00 ES

001 CX 001 CL 01 ES

010 DX 010 DL 10 SS

011 BX 011 BL 11 DS

100 SP 100 AH

101 BP 101 CH

110 SI 110 DH

111 DI 111 BH

EA is computed as follows: (DISP8 sign extended to 16 bits)

00 000 (BX)+(SI) DS

00 001 (BX)+(DI) DS

00 010 (BP+(SI) SS

00 011 (BP)+(DI) SS

00 100 (SI) DS

00 101 (DI) DS

00 110 DISP16 (DIRECT ADDRESS) DS

00 111 (BX) DS

01 000 (BX)+(SI)+DISP8 DS

01 001 (BS)+(DI)+DISP8 DS

01 010 (BP)+(SI)+DISP8 SS

01 011 (BP)+(DL)+DISP8 SS

01 100 (SI)+DISP8 DS

01 101 (DI)+DISP8 DS

01 110 (BP)+DISP8 SS

01 111 (BX)+DISP8 DS

10 000 (BX)+(SI)+DISP16 DS

10 001 (BX)+(DI)+DISP16 DS

10 010 (BP)+(SI)+DISP16 SS

10 011 (BP)+(DI)+DISP16 SS

10 100 (SI)+DISP16 DS

10 101 (DI)+DISP16 DS

10 110 (BP)+DISP16 SS

10 111 (BX)+DISP16 DS

11 000 REG AX/AL

11 001 REG CX/CL

11 010 REG DX/DL

11 011 REG BX/BL

11 100 REG SP/AH

11 101 REG BP/CH

11 110 REG SI/DH

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

235-600-510
November 2000

Page A4-28 Issue 5.00

11 111 REG DI/BH

FLAGS register contains:

X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

235-600-510
November 2000

APPENDIX 4
Intel 8086 AND 80186 PROCESSOR INSTRUCTION SET

Issue 5.00 Page A4-29

A5. PowerPC 1 PROCESSOR FAMILY INSTRUCTION LIST (BY MNEMONIC)

The information in this appendix was reproduced from documentation at Motorola’s
www.mot-sps.com/products/index.html web site.

The following sections include an instruction field summary, a list of split-field
notation and conventions, and the entire PowerPC instruction set sorted by mnemonic.

A5.1 Instruction Field Summary

Table A5-1 describes the instruction fields used in the various instruction formats.

Table A5-1 — Instruction Syntax Conventions

Field Description
AA (30) Absolute address bit.

0 The immediate field represents an address relative to the
current instruction address (CIA). The effective (logical)
address of the branch is either the sum of the LI field
sign-extended to 64 bits and the address of the branch
instruction or the sum of the BD field sign-extended to 64
bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The
effective address (EA) of the branch is the LI field
sign-extended to 64 bits or the BD field sign-extended to
64 bits.

Note: The LI and BD fields are sign-extended to 32 bits in 32–bit
implementations.

BD (16–29) Immediate field specifying a 14–bit signed two’s complement branch
displacement that is concatenated on the right with 0b00 and
sign-extended to 64 bits (32 bits in 32–bit implementations).

BI (11–15) Field used to specify a bit in the CR to be used as the condition of a
branch conditional instruction.

BO (6–10) Field used to specify options for the branch conditional instructions.
crb A (11–15) Field used to specify a bit in the CR to be used as a source.
crb B (16–20) Field used to specify a bit in the CR to be used as a source.

crb D (6–10) Field used to specify a bit in the CR, or in the FPSCR, as the
destination of the result of an instruction.

crf D (6–8) Field used to specify one of the CR fields, or one of the FPSCR fields,
as a destination.

crf S (11–13) Field used to specify one of the CR fields, or one of the FPSCR fields,
as a source.

CRM (12–19) Field mask used to identify the CR fields that are to be updated by
the mtcrf instruction.

d (16–31) Immediate field specifying a 16–bit signed two’s complement integer
that is sign-extended to 64 bits (32 bits in 32–bit implementations).

1. Trademark of International Business Machines Corporation.

235-600-510
November 2000

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A5-1

Table A5-1 — Instruction Syntax Conventions (Contd)

Field Description

ds (16–29)
Immediate field specifying a 14–bit signed two’s complement integer
which is concatenated on the right with 0b00 and sign-extended to 64
bits. This field is defined in 64–bit implementations only.

FM (7–14) Field mask used to identify the FPSCR fields that are to be updated
by the mtfsf instruction.

frA (11–15) Field used to specify an FPR as a source.
frB (16–20) Field used to specify an FPR as a source.
frC (21–25) Field used to specify an FPR as a source.
frD (6–10) Field used to specify an FPR as the destination.
frS (6–10) Field used to specify an FPR as a source.

IMM (16–19) Immediate field used as the data to be placed into a field in the
FPSCR.

L (10)
Field used to specify whether an integer compare instruction is to
compare 64–bit numbers or 32–bit numbers. This field is defined in
64–bit implementations only.

LI (6–29)
Immediate field specifying a 24–bit signed two’s complement integer
that is concatenated on the right with 0b00 and sign-extended to 64
bits (32 bits in 32–bit implementations).

LK (31)

Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch

instruction, the address of the instruction following the
branch instruction is placed into the LR.

MB (21–25)
and ME
(26–30)

Fields used in rotate instructions to specify a 64–bit mask (32 bits in
32–bit implementations) consisting of 1 bits from bit MB + 32 through
bit ME + 32 inclusive, and 0 bits elsewhere.

NB (16–20) Field used to specify the number of bytes to move in an immediate
string load or store.

OE (21) Used for extended arithmetic to enable setting OV and SO in the
XER.

OPCD (0–5) Primary opcode field.
rA (11–15) Field used to specify a GPR to be used as a source or destination.
rB (16–20) Field used to specify a GPR to be used as a source.

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A5-2 Issue 5.00

Table A5-1 — Instruction Syntax Conventions (Contd)

Field Description

Rc (31)

Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0–2 are set to reflect the result as a
signed quantity and CR bit 3 receives a copy of the summary overflow
bit, XER[SO]. The result as an unsigned quantity or a bit string can
be deduced from the EQ bit. For floating-point instructions, CR bits
4–7 are set to reflect floating-point exception, floating-point enabled
exception, floating-point invalid operation exception, and floating-point
overflow exception. (Note that the architecture specification refers to
exceptions also as interrupts.)

rD (6–10) Field used to specify a GPR to be used as a destination.
rS (6–10) Field used to specify a GPR to be used as a source.
SH (16–20) Field used to specify a shift amount.
SIMM
(16–31) Immediate field used to specify a 16–bit signed integer.

SR (12–15) Field used to specify one of the 16 segment registers (32–bit
implementation only).

TO (6–10) Field used to specify the conditions on which to trap.
UIMM
(16–31) Immediate field used to specify a 16–bit unsigned integer.

XO (21–29,
21–30,
22–30,
26–30,
27–29,
27–30, or
30–31)

Extended opcode field.
Bits 21–29, 27–29, 27–30, 30–31 pertain to 64–bit implementations
only.

Split fields — mb, me, sh, spr, and tbr — are described in Table A5-2.

235-600-510
November 2000

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY

MNEMONIC)

Issue 5.00 Page A5-3

Table A5-2 — Split-Field Notation and Conventions

Field Description
mb (21–26) Field used in rotate instructions to specify the first 1 bit of a 64–bit

mask (32 bits in 32–bit implementations). This field is defined in
64–bit implementations only.

me (21–26) Field used in rotate instructions to specify the last 1 bit of a 64–bit
mask (32 bits in 32–bit implementations). This field is defined in
64–bit implementations only.

sh (16–20)
and sh (30)

Fields used to specify a shift amount (64–bit implementations only).

spr (11–20) Field used to specify a special purpose register for the mtspr and
mfspr instructions.

tbr (11–20) Field used to specify either the time base lower (TBL) or time base
uppper (TBU).

A5.2 PowerPC Instruction Set Listings

This section lists the PowerPC architecture’s instruction set. Instructions are sorted by
mnemonic. Split fields, that represent the concatenation of sequences from left to
right, are shown in lowercase. Note that the MPC750 is a 32–bit microprocessor, and
doesn’t implement any 64–bit instructions.

Table A5-3 lists the instructions implemented in the PowerPC architecture in
alphabetical order by mnemonic.

Key: 0 0 0 0 0* denotes reserved bits.

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A5-4 Issue 5.00

Table A5-3 — Complete Instruction List Sorted by Mnemonic

Name 0–5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0* OE 234 Rc

addzex 31 D A 0 0 0 0 0* OE 202 Rc

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0* 528 LK

bclr x 19 BO BI 0 0 0 0 0* 16 LK

cmp 31 crfD 0* L A B 0 0*

cmpi 11 crfD 0* L A SIMM

cmpl 31 crfD 0* L A B 32 0*

cmpli 10 crfD 0* L A UIMM

cntlzd xd 31 S A 0 0 0 0 0* 58 Rc

cntlzw x 31 S A 0 0 0 0 0* 26 Rc

crand 19 crbD crbA crbB 257 0*

crandc 19 crbD crbA crbB 129 0*

creqv 19 crbD crbA crbB 289 0*

crnand 19 crbD crbA crbB 225 0*

crnor 19 crbD crbA crbB 33 0*

cror 19 crbD crbA crbB 449 0*

crorc 19 crbD crbA crbB 417 0*

crxor 19 crbD crbA crbB 193 0*

dcba e,h 31 0 0 0 0 0* A B 758 0*

dcbf 31 0 0 0 0 0* A B 86 0*

dcbi a 31 0 0 0 0 0* A B 470 0*

dcbst 31 0 0 0 0 0* A B 54 0*

dcbt 31 0 0 0 0 0* A B 278 0*

dcbtst 31 0 0 0 0 0* A B 246 0*

dcbz 31 0 0 0 0 0* A B 1014 0*

divd xd 31 D A B OE 489 Rc

divdu xd 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

eciwx 31 D A B 310 0*

ecowx 31 S A B 438 0*

eieio 31 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 854 0*

235-600-510
November 2000

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY

MNEMONIC)

See note(s) at end of table.

Issue 5.00 Page A5-5

Table A5-3 — Complete Instruction List Sorted by Mnemonic (Contd)

Name 0–5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0* 954 Rc

extsh x 31 S A 0 0 0 0 0* 922 Rc

extsw xd 31 S A 0 0 0 0 0* 986 Rc

fabs x 63 D 0 0 0 0 0* B 264 Rc

fadd x 63 D A B 0 0 0 0 0* 21 Rc

fadds x 59 D A B 0 0 0 0 0* 21 Rc

fcfid xd 63 D 0 0 0 0 0* B 846 Rc

fcmpo 63 crfD 0 0* A B 32 0*

fcmpu 63 crfD 0 0* A B 0 0*

fctid xd 63 D 0 0 0 0 0* B 814 Rc

fctidz xd 63 D 0 0 0 0 0* B 815 Rc

fctiw x 63 D 0 0 0 0 0* B 14 Rc

fctiwz x 63 D 0 0 0 0 0* B 15 Rc

fdiv x 63 D A B 0 0 0 0 0* 18 Rc

fdivs x 59 D A B 0 0 0 0 0* 18 Rc

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmr x 63 D 0 0 0 0 0* B 72 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fmul x 63 D A 0 0 0 0 0* C 25 Rc

fmuls x 59 D A 0 0 0 0 0* C 25 Rc

fnabs x 63 D 0 0 0 0 0* B 136 Rc

fneg x 63 D 0 0 0 0 0* B 40 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

fres xe 59 D 0 0 0 0 0* B 0 0 0 0 0* 24 Rc

frsp x 63 D 0 0 0 0 0* B 12 Rc

frsqrte xe 63 D 0 0 0 0 0* B 0 0 0 0 0* 26 Rc

fsel xe 63 D A B C 23 Rc

fsqrt xe,h 63 D 0 0 0 0 0* B 0 0 0 0 0* 22 Rc

fsqrts xe,h 59 D 0 0 0 0 0* B 0 0 0 0 0* 22 Rc

fsub x 63 D A B 0 0 0 0 0* 20 Rc

fsubs x 59 D A B 0 0 0 0 0* 20 Rc

icbi 31 0 0 0 0 0* A B 982 0*

isync 19 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 150 0*

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0*

lbzx 31 D A B 87 0*

ldd 58 D A ds 0

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

See note(s) at end of table.

Page A5-6 Issue 5.00

Table A5-3 — Complete Instruction List Sorted by Mnemonic (Contd)

Name 0–5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ldarx d 31 D A B 84 0*

ldu d 58 D A ds 1

ldux d 31 D A B 53 0*

ldx d 31 D A B 21 0*

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0*

lfdx 31 D A B 599 0*

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0*

lfsx 31 D A B 535 0*

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0*

lhax 31 D A B 343 0*

lhbrx 31 D A B 790 0*

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0*

lhzx 31 D A B 279 0*

lmw c 46 D A d

lswi c 31 D A NB 597 0*

lswx c 31 D A B 533 0*

lwad 58 D A ds 2

lwarx 31 D A B 20 0*

lwaux d 31 D A B 373 0*

lwax d 31 D A B 341 0*

lwbrx 31 D A B 534 0*

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0*

lwzx 31 D A B 23 0*

mcrf 19 crfD 0 0* crfS 0 0* 0 0 0 0 0* 0 0*

mcrfs 63 crfD 0 0* crfS 0 0* 0 0 0 0 0* 64 0*

mcrxr 31 crfD 0 0* 0 0 0 0 0* 0 0 0 0 0* 512 0*

mfcr 31 D 0 0 0 0 0* 0 0 0 0 0* 19 0*

mffs x 63 D 0 0 0 0 0* 0 0 0 0 0* 583 Rc

mfmsr a 31 D 0 0 0 0 0* 0 0 0 0 0* 83 0*

mfspr b 31 D spr 339 0*

mfsr a,f,g 31 D 0* SR 0 0 0 0 0* 595 0*

mfsrin a,f,g 31 D 0 0 0 0 0* B 659 0*

mftb 31 D tbr 371 0*

mtcrf 31 S 0* CRM 0* 144 0*

235-600-510
November 2000

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY

MNEMONIC)

See note(s) at end of table.

Issue 5.00 Page A5-7

Table A5-3 — Complete Instruction List Sorted by Mnemonic (Contd)

Name 0–5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsb0 x 63 crbD 0 0 0 0 0* 0 0 0 0 0* 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0* 0 0 0 0 0* 38 Rc

mtfsf x 31 0* FM 0* B 711 Rc

mtfsfi x 63 crfD 0 0* 0 0 0 0 0* IMM 0* 134 Rc

mtmsr a,g 31 S 0 0 0 0 0* 0 0 0 0 0* 146 0*

mtmsrd a,d 31 S 0 0 0 0 0* 0 0 0 0 0* 178 0*

mtspr b 31 S spr 467 0*

mtsr a,f,g 31 S 0* SR 0 0 0 0 0* 210 0*

mtsrd a,f 31 S 0* SR 0 0 0 0 0* 82 0*

mtsrdin a,f 31 S 0 0 0 0 0* B 114 0*

mtsrin a,f,g 31 S 0 0 0 0 0* B 242 0*

mulhd xd 31 D A B 0* 73 Rc

mulhdu xd 31 D A B 0* 9 Rc

mulhw x 31 D A B 0* 75 Rc

mulhwu x 31 D A B 0* 11 Rc

mulld xd 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullw x 31 D A B OE 235 Rc

nand x 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0* OE 104 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi a,g 19 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 50 0*

rfid a,d 19 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 18 0*

rldcl xd 30 S A B mb 8 Rc

rldcr xd 30 S A B me 9 Rc

rldic xd 30 S A sh mb 2 sh Rc

rldicl xd 30 S A sh mb 0 sh Rc

rldicr xd 30 S A sh me 1 sh Rc

rldimi xd 30 S A sh mb 3 sh Rc

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A B MB ME Rc

sc 17 0* 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0* 1 0*

slbia a,d,e 31 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 498 0*

slbie a,d,e 31 0 0 0 0 0* 0 0 0 0 0* B 434 0*

sld xd 31 S A B 27 Rc

slw x 31 S A B 24 Rc

srad xd 31 S A B 794 Rc

sradi xd 31 S A sh 413 sh Rc

sraw x 31 S A B 792 Rc

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

See note(s) at end of table.

Page A5-8 Issue 5.00

Table A5-3 — Complete Instruction List Sorted by Mnemonic (Contd)

Name 0–5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

srawi x 31 S A SH 824 Rc

srd xd 31 S A B 539 Rc

srw x 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0*

stbx 31 S A B 215 0*

std d 62 S A ds 0

stdcx. d 31 S A B 214 1

stdu d 62 S A ds 1

stdux d 31 S A B 181 0*

stdx d 31 S A B 149 0*

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0*

stfdx 31 S A B 727 0*

stfiwx e 31 S A B 983 0*

stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0*

stfsx 31 S A B 663 0*

sth 44 S A d

sthbrx 31 S A B 918 0*

sthu 45 S A d

sthux 31 S A B 439 0*

sthx 31 S A B 407 0*

stmw c 47 S A d

stswi c 31 S A NB 725 0*

stswx c 31 S A B 661 0*

stw 36 S A d

stwbrx 31 S A B 662 0*

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0*

stwx 31 S A B 151 0*

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfme x 31 D A 0 0 0 0 0* OE 232 Rc

subfze x 31 D A 0 0 0 0 0* OE 200 Rc

sync 31 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 598 0*

tdd 31 TO A B 68 0*

tdi d 02 TO A SIMM

235-600-510
November 2000

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY

MNEMONIC)

See note(s) at end of table.

Issue 5.00 Page A5-9

Table A5-3 — Complete Instruction List Sorted by Mnemonic (Contd)

Name 0–5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbia a,e,h 31 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 370 0*

tlbie a,e 31 0 0 0 0 0* 0 0 0 0 0* B 306 0*

tlbsync a,e 31 0 0 0 0 0* 0 0 0 0 0* 0 0 0 0 0* 566 0*

tw 31 TO A B 4 0*

twi 03 TO A SIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Note(s):

a. Supervisor-level instruction

b. Supervisor- and user-level instruction

c. Load and store string or multiple instruction

d. 64–bit instruction

e. Optional instruction

f. 32–bit instruction only

g. Optional 64–bit bridge instruction

h. 32–bit instruction not implemented by the MPC750

APPENDIX 5
PowerPC PROCESSOR FAMILY INSTRUCTION LIST (BY
MNEMONIC)

235-600-510
November 2000

Page A5-10 Issue 5.00

A6. SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT TRAIL

This appendix is the audit trail used to construct the stack in the "Assert Analysis
Example — SM," Section 5.2.2.
LOCAL DATA OF THE FUNCTION SMiclvco
struct {

OSMSGHEAD msghead;
struct mgCDFH2MRA text;

} mramsg; /* outgoing message buffer */
struct rlSMEST smest; /* local SMEST tuple buffer */
struct mgDFIHMSG outmsg; /* buffer for PERFR msg*/
DMCIRCUIT cfac_name; /* CFAC internal name */

register char *ddlptr; /* DDL message pointer*/
register short i;

GH:GHDR7 5D00725
/* PTC:

DM: OSMSGHEAD FALSE TRUE TRUE
*/
#include <hdr/smfw/FWospid.h>
/* OSDS message header definition.
*/
typedef struct {

OSPID from; /* Sending process. */
unsigned short type; /* Message type. */
unsigned char priority; /* Message priority. */
unsigned char length; /* Text length, in bytes. */

} OSMSGHEAD;
GH:GHDR7 5D00725
/* PTC:

DM: OSPID FALSE TRUE TRUE
*/
/* Definition of an OSDS process I.D.
*/
typedef struct {

short procno; /* Process number */
unsigned char pcrid; /* Processor id */
unsigned char uniq; /* Uniqueness field */

} OSPID;
SM:SMRSMCDFH 5D76400
@LOCAL HEADER FILE: smim/hdr/MGcdfh2mra.h
/*
* File: smim/hdr/MGcdfh2mra.h
*
* Description: This file defines the message sent between the CDFI
* handler system process, CDFH, and various MRA terminal
* processes to report the completion of action taken on
* RCLs. These actions include a connectivity exercise,
* or a request to remove or restore ddl communication
* over an ICL.
*/
#include <hdr/db/DMcircuit.h>
#include <hdr/db/DMmrartval.h>
#include <hdr/db/DMmraverb.h>

#define MGCDFH2MRA 2049

struct mgCDFH2MRA {
DMCIRCUIT cfac_name; /* CFAC internal circuit name */
DMMRAVERB verb; /* response to action of this type */
DMMRARTVAL result; /* result of attempting action */
unsigned char serial; /* msg serial number (for */

/* connectivity exercise only) */
};

GH:GHDR2 5D00600
/* PTC:

DM: DMCIRCUIT TRUE TRUE FALSE

235-600-510
November 2000

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT

TRAIL

Issue 5.00 Page A6-1

SB: DMCIRCUIT 0 65535
*/

/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* circuit Internal names for hardware circuits
*
**/

typedef unsigned short DMCIRCUIT; /* range = 0, 65535 */
GH:GHDR2 5D00600
/* PTC:

DM: DMMRAVERB TRUE TRUE FALSE
BF: BFMRAVERB 4

*/

#define BFMRAVERB 4

/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* mraverb Craft command verbs
*
**/

typedef enum {
SMRMV, /* Remove */
SMRST, /* Restore */
SMDGN, /* Diagnose */
SMEX, /* Exercise */
SMSW, /* Switch */
SMSTOP, /* Stop */
SMABT, /* Abort */
SMINH, /* Inhibit */
SMALW, /* Allow */
SMOP, /* Output */
SMRTN, /* Routine Exercise */
SMTEST, /* Special Test */
SMNULL, /* Null Verb */
SMCFG, /* Configuration */
SMCLR, /* Clear */
SMSET, /* Set */

} DMMRAVERB;
GH:GHDR2 5D00600
/*
* File: DMmrartval.G
*
* Pathname: [u]hdr/db (CMS instance = msg)
*
* Description: This file defines the structure used by SMIM-MRA
* to pass return codes around (some other areas use this
* structure when interfacing with MRA). The two fields
* info and resp provide low- and high-level
* information respectively, and may eventually
* produce craft output. Examples:
* resp - stopped, completed, not started, ...
* info - hardware init failure, previous
* request in progress, ...
*/

#define _DMMRARTVAL

#ifndef _DMMRARESP
#include <hdr/db/DMmraresp.h>
#endif

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL

235-600-510
November 2000

Page A6-2 Issue 5.00

#ifndef _DMMRAINFO
#include <hdr/db/DMmrainfo.h>
#endif

typedef struct {
DMMRAINFO info;
DMMRARESP resp;

} DMMRARTVAL;
GH:GHDR2 5D00600
#define _DMMRAINFO

typedef enum {
SMNUL = 0, SMDG0 = 1, SMDG1 = 2,
SMDG2 = 3, SMDG3 = 4, SMDG4 = 5,
SMDG5 = 6, SMDG6 = 7, SMDG7 = 8,
SMDG8 = 9, SMDG9 = 10, SMDG10 = 11,
SMDG11 = 12, SMDG12 = 13, SMDG13 = 14,
SMDG14 = 15, SMDG15 = 16, SMDG16 = 17,
SMDG17 = 18, SMDG18 = 19, SMDG19 = 20,
SMDG20 = 21, SMDG21 = 22, SMDG22 = 23,
SMDG23 = 24, SMDG24 = 25, SMDG25 = 26,
SMDG26 = 27, SMDG27 = 28, SMDG28 = 29,
SMDG29 = 30, SMDG30 = 31, SMDG31 = 32,
SMDG32 = 33, SMDG33 = 34, SMDG34 = 35,
SMDG35 = 36, SMDG36 = 37, SMDG37 = 38,
SMDG38 = 39, SMDG39 = 40, SMDG40 = 41,
SMDG41 = 42, SMDG42 = 43, SMDG43 = 44,
SMDG44 = 45, SMDG45 = 46, SMDG46 = 47,
SMDG47 = 48, SMDG48 = 49, SMDG49 = 50,
SMDG50 = 51, SMDG51 = 52, SMDG52 = 53,
SMDG53 = 54, SMDG54 = 55, SMDG55 = 56,
SMDG56 = 57, SMDG57 = 58, SMDG58 = 59,
SMDG59 = 60, SMDG60 = 61, SMDG61 = 62,
SMDG62 = 63, SMDG63 = 64, SMDG64 = 65,
SMDG65 = 66, SMDG66 = 67, SMDG67 = 68,
SMDG68 = 69, SMDG69 = 70, SMDG70 = 71,
SMDG71 = 72, SMDG72 = 73, SMDG73 = 74,
SMDG74 = 75, SMDG75 = 76, SMDG76 = 77,
SMDG77 = 78, SMDG78 = 79, SMDG79 = 80,
SMDG80 = 81, SMATP = 82, SMSTF = 83,
SMCATP = 84, SMNTR = 85, SMUU = 86,
SMOTE = 87, SMPLE = 88, SMRNA = 89,
SMAOS = 90, SMUAF = 91, SMMOS = 92,
SMMAF = 93, SMNCR = 94, SMURS = 95,
SMPRA = 96, SMOHP = 97, SMFAE = 98,
SMPOS = 99, SMDAR = 100, SMNRQ = 101,
SMUGS = 102, SMDLD = 103, SMDBE = 104,
SMPCE = 105, SMRTAE = 106, SMHDWE = 107,
SMTME = 108, SMSCE = 109, SMUTBA = 110,
SMQF = 111, SMFWN = 112, SMSLC01 = 113,
SMSLC02 = 114, SMSLC03 = 115, SMSLC04 = 116,
SMSLC05 = 117, SMSLC06 = 118, SMSLC07 = 119,
SMSLC08 = 120, SMSLC09 = 121, SMSLC10 = 122,
SMSLC11 = 123, SMSLC12 = 124, SMSLC13 = 125,
SMSLC14 = 126, SMSLC15 = 127, SMSLC16 = 128,
SMSLC17 = 129, SMSLC18 = 130, SMSLC19 = 131,
SMSLC20 = 132, SMSLC21 = 133, SMSLC22 = 134,
SMSLC23 = 135, SMSLC24 = 136, SMSLC25 = 137,
SMSLC26 = 138, SMSLC27 = 139, SMSLC28 = 140,
SMSLC29 = 141, SMSLC30 = 142, SMSLC31 = 143,
SMSLC32 = 144, SMSLC33 = 145, SMSLC34 = 146,
SMSLC35 = 147, SMSLC36 = 148, SMSLC37 = 149,
SMSLC38 = 150, SMSLC39 = 151, SMSLC40 = 152,
SMSLC41 = 153, SMSLC42 = 154, SMSLC43 = 155,
SMSLC44 = 156, SMSLC45 = 157, SMSLC46 = 158,
SMSLC47 = 159, SMSLC48 = 160, SMSLC49 = 161,

235-600-510
November 2000

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT

TRAIL

Issue 5.00 Page A6-3

SMSLC50 = 162,
SMAMLE = 163, /* AML exceeded */
SMAMLNE = 164, /* AML not exceeded */
SMMRA00 = 165, SMMRA01 = 166, SMMRA02 = 167,
SMFLTC = 168, /* CPI fault */
SMSTUKC = 169, /* CPI status unknown */
SMELS00 = 170, SMELS01 = 171, SMELS02 = 172,
SMELS03 = 173, SMELS04 = 174, SMELS05 = 175,
SMELS06 = 176, SMELS07 = 177, SMELS08 = 178,
SMRSM00 = 179, SMRSM01 = 180, SMRSM02 = 181,
SMRSM03 = 182, SMRSM04 = 183, SMRSM05 = 184,
SMRSM06 = 185, SMRSM07 = 186, SMRSM08 = 187,
SMRSM09 = 188, SMRSM10 = 189, SMRSM11 = 190,
SMRSM12 = 191, SMRSM13 = 192, SMRSM14 = 193,
SMRSM15 = 194, SMRSM16 = 195, SMRSM17 = 196,
SMRSM18 = 197, SMRSM19 = 198, SMRSM20 = 199,
SMRSM21 = 200, SMRSM22 = 201, SMRSM23 = 202,
SMRSM24 = 203, SMRSM25 = 204, SMRSM26 = 205,
SMRSM27 = 206, SMRSM28 = 207, SMRSM29 = 208,
SMRSM30 = 209, SMRSM31 = 210, SMRSM32 = 211,
SMRSM33 = 212, SMRSM34 = 213, SMRSM35 = 214,
SMRSM36 = 215, SMRSM37 = 216, SMRSM38 = 217,
SMRSM39 = 218, SMRSM40 = 219, SMRSM41 = 220,
SMRSM42 = 221, SMRSM43 = 222, SMRSM44 = 223,
SMRSM45 = 224, SMRSM46 = 225, SMRSM47 = 226,
SMRSM48 = 227, SMRSM49 = 228,
SMDCE = 229, ** DCTU communication error **
SMDG81 = 230, SMDG82 = 231, SMDG83 = 232,
SMDG84 = 233, SMDG85 = 234, SMDG86 = 235,
SMDG87 = 236, SMDG88 = 237, SMDG89 = 238,
SMDG90 = 239, SMDG91 = 240, SMDG92 = 241,
SMDG93 = 242, SMDG94 = 243, SMDG95 = 244,
SMDG96 = 245, SMDG97 = 246, SMDG98 = 247,
SMDG99 = 248, SMDG100 = 249,
SMDMNULL = 250, SMDM00 = 251, SMDM01 = 252,
SMDM02 = 253, SMDM03 = 254, SMDM04 = 255,
SMDM05 = 256, SMDM06 = 257, SMDM07 = 258,
SMDM08 = 259, SMDM09 = 260, SMDM10 = 261,
SMDM11 = 262, SMDM12 = 263, SMDM13 = 264,
SMDM14 = 265, SMDM15 = 266, SMDM16 = 267,
SMDM17 = 268, SMDM18 = 269, SMDM19 = 270,
SMDM20 = 271, SMDM21 = 272, SMDM22 = 273,
SMDM23 = 274, SMDM24 = 275, SMDM25 = 276,
SMDM26 = 277, SMDM27 = 278, SMDM28 = 279,
SMDM29 = 280, SMDM30 = 281, SMDM31 = 282,
SMDM32 = 283, SMDM33 = 284, SMDM34 = 285,
SMDM35 = 286, SMDM36 = 287, SMDM37 = 288,
SMDM38 = 289, SMDM39 = 290, SMDM40 = 291,
SMDM41 = 292, SMDM42 = 293, SMDM43 = 294,
SMDM44 = 295, SMDM45 = 296, SMDM46 = 297,
SMDM47 = 298, SMDM48 = 299, SMDM49 = 300,
SMCAMPON = 301,
SMELS09 = 302, SMELS10 = 303, SMELS11 = 304,
SMELS12 = 305, SMELS13 = 306,
SMMRA03 = 307, SMMRA04 = 308, SMMRA05 = 309,
SMMRA06 = 310, SMMRA07 = 311, SMMRA08 = 312,
SMMPO = 313, /* mate powered off */
SMCHE1 = 314,
SMCHE2 = 315,
SMCHE3 = 316,

/* Following return values are used by the SMckptckt()
function which is called by TM to determine equipment
status when checking the PSA tables. The convention
for LEN status given below is :
[base state,qualifier,op restriction,suppl info] */

SMPMFE = 317, /* PPMCKT OOS with
[OOS, MTCE, PPMFE, NULL] line status */

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL

235-600-510
November 2000

Page A6-4 Issue 5.00

SMMFE = 318, /* PPMCKT OOS with
[OOS, MTCE, FE, PPM] line status */

SMFEPMFE = 319, /* PPMCKT OOS with both line status */

SMLPMFE = 320, /* LEN OOS and PPMCKT OOS with
[OOS, MTCE, PPMFE, NULL] line status */

SMLMFE = 321, /* LEN OOS and PPMCKT OOS with
[OOS, MTCE, FE, PPM] line status */

SMLFEPMFE = 322, /* LEN OOS and PPMCKT OOS with
both line status */

SMAUTSTP = 323, /* Diagnostic Stopped by PFR */
SMMANSTP = 324, /* Diagnostic Stopped by CFT/MRA */
SML16LB = 325, /* Campon Timeout, < 16 Lines busy */
SML32LB = 326, /* Campon Timeout, < 32 Lines busy */
SMFNL = 327, /* Feature Package Not Loaded */
SMNSPAR = 328, /* No Spare Available */
SMSWF = 329, /* Switch Failed */
SMDFD = 330, /* Duplex Failure Denied, Mate Being */

/* Diagnosed */
SMDFDG = 331, /* Duplex Failure, Diagnostic in */

/* progress */
SMDFM = 332, /* Duplex Failure, Manual Action */

/* Required */
SM0LB = 333, /* Campon Successful, All Lines Removed */
SM1LB = 334, /* Campon Timeout, 1 Line Busy */
SM2LB = 335, /* Campon Timeout, 2 Lines Busy */
SM3LB = 336, /* Campon Timeout, 3 Lines Busy */
SM4LB = 337, /* Campon Timeout, 4 Lines Busy */
SM5LB = 338, /* Campon Timeout, 5 Lines Busy */
SM6LB = 339, /* Campon Timeout, 6 Lines Busy */
SM7LB = 340, /* Campon Timeout, 7 Lines Busy */
SM8LB = 341, /* Campon Timeout, 8 Lines Busy */
SM9LB = 342, /* Campon Timeout, 9 Lines Busy */
SM10LB = 343, /* Campon Timeout, 10 Lines Busy */
SM15LB = 344, /* Campon Timeout, 15 Lines Busy */
SM20LB = 345, /* Campon Timeout, 20 Lines Busy */
SM30LB = 346, /* Campon Timeout, 30 Lines Busy */
SM32LB = 347, /* Campon Timeout, 32 Lines Busy */
SMDFR = 348, /* Restored From Duplex Failure */
SMMBSY = 349, /* Mate circuit is MRA Busy */
SMRQDN = 350, /* Request Denied */
SMRACT = 351, /* Restore to Active */
SMRSTBY = 352, /* Restore to Standby */
SMDSLWS = 353, /* DSL Group Left without Service */
SMPHNR = 354, /* Not all PSIU PH Units Restored */
SMDRS = 355, /* Deferred Restoral Scheduled */
SMPTOOS = 356, /* Warning Ports may still be OOS */
SMRACTMIN = 357, /* Restored to Active Minor */
SMSWSHS = 358, /* Soft SW Escalated to Hard SW,

Rst Scheduled */
SMSWFHS = 359, /* Soft and Hard Switch Failed,

Rst Scheduled */
SMM32LB = 360, /* Campon Timeout,32 or More Lines Busy */

/* New DGerrcode.h values added for ISLU operation */

SMPCFAIL = 361, /* Failure to seize resource */
SMSEIZE = 362, /* SRA Failure */
SMCKTDF = 363, /* CKTDATA Read Failure */
SMDCBF = 364, /* Diagnostic Control Block Corrupted */
SMSMESTF = 365, /* SMEST Read Failure */
SMOPCMDF = 366, /* Bad argument in operate call */
SMPATHF = 367, /* Path hunt failure in PC */
SMUCIWF = 368, /* Cannot write to ISLU */
SMUCIRF = 369, /* Cannot read from ISLU */
SMCCIF = 370, /* Failure to initialize ISLUCC */
SMUCIQF = 371, /* SMIM primitive failure in ISLU */

SM_BAD_FID = 372, /* Unable to Match on DG Feature ID */

235-600-510
November 2000

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT

TRAIL

Issue 5.00 Page A6-5

SM_FNL = 373, /* DG Feature Package Not Loaded */
SM_PSERMSG = 374, /* Port Processor Send Message

Error Return */
SM_PSNRMSG = 375, /* No Resources Available for Port */

/* Processor Send Message */

/* Spare code for ISDN DG use */
SMDGIS00 = 376,
SM_PSCCERR = 377, /* Port Processor Completion Code */

/* Error in Message Returned */
SM_PSTOERR = 378, /* Port Processor Message Verify */

/* Timeout Error */
SM_PSSNERR = 379, /* Port Processor Sequence Number */

/* Error in Message Returned */
/* Spare codes for ISDN DG use */
SMDGIS04 = 380,
SMDGIS05 = 381,
SMDGIS06 = 382,
SMDGIS07 = 383,
SMDGIS08 = 384,
SMDGIS09 = 385,
SMMRA09 = 386, /* Mate Failed While Initializing a

subunit */
SMSPRACT = 387, /* Circuit involved in Line Card

Sparing */
SMSPRRS = 388, /* Resource unavail due tp sparing

conflict */
SMSPRCMPL = 389, /* Spare completed */
SMSPRFL1 = 390, /* spare fail message 1 */
SMSPRFL2 = 391, /* Spare failure message 2 */
SMSPRFL3 = 392, /* Spare failure message 3 */
SMPTIS = 393, /* Warning Ports May Still Be In Service */
SMOSPSBUSY = 394, /* Request Denied OSPS Ports Busy */
SMCCDF = 395, /* CC Duplex Failure */
SMRQDDIP = 396, /* Request Denied, Diagnostic In */

/* Progress */
SMCCDFRMF = 397, /* CC Duplex Failure; Remove Mate First */
SMPSATDP = 398, /* Ports Still Assigned To DPIDB */
SMNAILUP = 399, /* Port is nailed up */
SMRGOLST = 400, /* RG confg attempt lost some of orig

relays */
SMRGBUSSM = 401, /* RG init passed but no relays able

to close */
SMRGNOBSAV = 402, /* No RG buses avail to connect to */
SMRSUNAV = 403, /* Resource was unavailable from SRA */
SMSPRFAIL = 404, /* spare of zcard failed */
SMSPRTSK = 405, /* zcard sparing task failed */
SMSWDEGR = 406, /* Escalated to hard switch

- act unit was degraded */
SMSWPROS = 407, /* Escalated to hard switch

- act unit was pre-OOS */
SMSSCBUSY = 408, /* Some Subtending Circuits are Busy */
SMRQDPORTBSY = 409, /* Request Denied - Some Ports Are

Busy */
SMSWUDGINP = 410, /* Switch Unsuccessful - DGN in

Progress on Assoc Ckts */
SMSWUMCB = 411, /* Switch Unsuccessful - Mate Circuit

is MRA Busy */
SMSPRRLSD = 412, /* line card spare released */
SMSPRPOS = 413, /* Sparing possible for card */
SMSPR1 = 414, /* extra for future Ucard sparing */
SMSPR2 = 415, /* extra for future Zcard sparing */
SMSPR3 = 416, /* extra for ? */
SMHSERR = 417, /* hashsum error */
SMRGRLY0 = 418, /* RG relay config failure */
SMRGRLY1 = 419, /* RG relay config failure */
SMRGRLY2 = 420, /* RG relay config failure */
SMRGRLY3 = 421, /* RG relay config failure */
SMRGRLY4 = 422, /* RG relay config failure */

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL

235-600-510
November 2000

Page A6-6 Issue 5.00

SMRGRLY5 = 423, /* RG relay config failure */
SMRGRLY6 = 424, /* RG relay config failure */
SMRGRLY7 = 425, /* RG relay config failure */
SMRGRLY8 = 426, /* RG relay config failure */
SMRGRLY9 = 427, /* RG relay config failure */
SMNSAPHD = 428, /* No Spare Available, PH Degraded */
SMPRFDRR = 429, /* Port Restoral failed, Deferred

* Restoral WITH DGN Requested.
*/

SMSTPMP = 430, /* Pump received stop request */
SMTOPI = 431, /* SM timed out waiting for PI */
SMTOPH = 432, /* SM timed out waiting for PH */
SMPHSWFL = 433, /* PH Switch Failed */
SMGRPOOS = 434, /* Cannot assign CG, another group OOS */
SMGRPDGR = 435, /* Cannot assign CG, another PH DGR */
SMGRPBY = 436, /* Requested group is MRA Busy */
SMGRPUNEQ = 437, /* Requested group is unequipped */
SMPRF = 438, /* Port Restoral failed */
SM_SPR_1 = 439, /* Spare Code for MRA ISLU use */
SM_SPR_2 = 440, /* Spare Code for MRA ISLU use */
SM_SPR_3 = 441, /* Spare Code for MRA ISLU use */
SM_SPR_4 = 442, /* Spare Code for MRA ISLU use */

SMCPHPMPF = 443, /* No Phs fully passed pump and init */
SMPHDWINC = 444, /* PH-DSLG Hardware Inconsistency */
SMPHMPI1 = 445, /* Spare Code for MRA MPI usage */
SMPHMPI2 = 446, /* Spare Code for MRA MPI usage */
SMPHMPI3 = 447, /* Spare Code for MRA MPI usage */
SMPHMPI4 = 448, /* Spare Code for MRA MPI usage */
SMPHMPI5 = 449, /* Spare Code for MRA MPI usage */
SMINHF = 450, /* INHIBIT FAILURE */
SMISM = 452, /* Insufficient Memory */
SMINCDATA = 453, /* Inconsistent Data found during */

/* switch attempt */
} DMMRAINFO;

GH:GHDR2 5D00600
#define _DMMRARESP

typedef enum {
SMCMPL = 0, SMCMPL_CERT = 1, SMSTPD = 2,
SMABTD = 3, SMNS = 4, SMSKIP = 5

} DMMRARESP;
GH:GHDR3 5D00625
* msgtype message type
* atpcount number of times diagnostics ran ATP
* qual type of inhibit
* state inhibit
* errorblk link to SMPERBLK tuple
* dgstat diagnostic return code
* transient flag to indicate the tuple is in a transient state
* progflag audit progress flag
* quarstate audit quarantine field
* rexinh inhibit status for REX for each unit that REX schedules,
* iatouch indicates when IMIIA touches the tuple
* pinhtype type of peripheral circuit inhibit
* red_alm indicates that a RED CARRIER GROUP ALARM is active
* on a DFI-2 T1 facility
* ylw_alm indicates that a YELLOW CARRIER GROUP ALARM is active
* on a DFI-2 T1 facility
* ais_alm indicates that an ALARM INDICATION SIGNAL is active
* on a DFI-2 T1 facility
**

#define RLSMEST 65

struct rlSMEST {
OSPID orig_pid;
OSPID tp_pid;
DMCIRCUIT unit_id;

235-600-510
November 2000

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT

TRAIL

Issue 5.00 Page A6-7

DMUNS16 msgtype;
DMUCHAR atpcount;
DMUCHAR errorblk;
DMACTIVITY stat_act :BFACTIVITY;
DMMRASTAT bas_stat :BFMRASTAT;
DMINHTYPE qual :BFINHTYPE;
DMMEASTAT qual_2 :BFMRASTAT;
DMBOOL transient :BFBOOL;
DMDGSTAT dgstat :BFDGSTAT;
DMMRASRC qual_1 :BDMRASRC;
DMBOOL mccupd :BFBOOL;
DMBOOL rexinh :BFBOOL;
DMBOOL progflag :BFBOOL;
DMSTATUS state :BFSTATUS;
DMAUQUAR quarstate :BFAUQUAR;
DMPINHTYPE pinhtype :BFPINHTYPE;
DMPBOOL ais_alm :BFBOOL;
DMBOOL ylw_alm :BFBOOL;
DMBOOL red_alm :BFBOOL;
DMBOOL iatouch :BFBOOL;

};
GH:GHDR3 5D00625
/* PTC:
DM: DMUNS16 TRUE TRUE FALSE
SB: DMUNS16 0 65535

*/
/**
* dom_name domain description
* -------- ------------------
* uns16 Unsigned 16 bits
**
typedef unsigned short DMUNS16; /* range = 0, 65535 */

GH: GHDR3 5D00625
/* PTC:
DM: DMUCHAR TRUE TRUE FALSE

*/
#define _DMUCHAR
/***
/* The #define _DM... or _RL... symbol or #ifndef _DM /#endif
/* construct has been left in
/* this domain or relation because it is used in or is a
/* DBM dictionary relation. The dictionaries (via a constructed
/* .c file DBddat.c) are compiled by ODA and the Data Population
/* Environment Group using cc and cc370 respectively. This
/* compile requires that the domains and relations to be included
/* only once. Therefore the #ifndef _DM or #ifndef _RL constructs
/* must remain for all DBM dictionary relations and the domains
/* used in them. The DBM dictionary relations involved are:
/* RLdb_accdict.h
/* RLdb_attdict.h
/* RLdb_domdict.h
/* RLdb_drldict.h
/* RLdb_dsc.h
/* RLdb_enudict.h
/* RLdb_inddict.h
/* RLdb_reldict.h
/* RLdb_satdict.h
/* RLdb_cmdct.h
/* RLdbincdct.h
***/
/**
*
* dom_name domain description
* -------- ------------------
* uchar character
**
typedef unsigned char DMUCHAR;
GH:GHDR2 5D00600

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL

235-600-510
November 2000

Page A6-8 Issue 5.00

/* PTC:
DM: DMACTIVITY TRUE TRUE FALSE
BF: BFACTIVITY 2

*/

#define BFACTIVITY 2

/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* activity The activity status
* *
**/

typedef enum {
DBBUSY,
DBIDLE,
TM_ACTV

} DMACTIVITY;

GH:GHDR2 5D00600
/* PTC:
DM: DMMRASTAT TRUE TRUE FALSE
BF: BFMRASTAT 6

*/

#define BFMRASTAT 6
/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* mrastat Equipment status states
*
**/

typedef enum {
SMSTNUL, /* Null value */
SMACT, /* active */
SMSTBY, /* standby (not in PDS) */
SMUNAV, /* unavailable (not in PDS) */
SMOOS, /* out of service */
SMRMVD, /* removed */
SMUPDT, /* update */
SMDGNS, /* diagnose */
SMFLT, /* fault */
SMTBLA, /* trouble analysis */
SMRTN_EX, /* routine exercise */
SMFE, /* family of equipment */
SMPROOS, /* pre-OOS */
SMAMJ, /* active major */
SMAMI, /* active minor */
SMLOOP, /* looped */
SMSPR, /* line card that is spared */
SMDSPR, /* designated spare line card actively spared */
SMDG_EX, /* diagnostic interactive exercise */
SMACTR, /* active restricted */
SMRATST, /* in service test */
SMCMPON, /* camped on */
SMST1, /* state 1 */
SMST2, /* state 2 */
SMST3, /* state 3 */
SMHELPER, /* Diagnose Temp (Helper) */
SMRCNORM, /* MMRSM remote clock in normal mode */
SMRCFAST, /* MMRSM remote clock in fast mode */
SMRCHOLD, /* MMRSM remote clock in holdover mode */

235-600-510
November 2000

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT

TRAIL

Issue 5.00 Page A6-9

SMRCFREE, /* MMRSM remote clock in free run mode */
SMRCWARM, /* MMRSM remote clock oscillator not warmed */

/* up after power up */
SMCDNY, /* Indicates unit campon timed out */
SMSWTCH, /* Indicates unit is being switched */
SMDEGRADED, /* Indicates some component is defective unit */
SMINIT_ACT, /* Indicates unit to be initialized to active */
SMINIT_STBY, /* Indicates unit to be initialized to standby */
SMAUOOS, /* Taken OOS by Audits */
SMDEFRD, /* Deferred */
SMPWROFF, /* Power off */
SMPWRALM, /* Power alarm */

} DMMRASTAT;
GH:GHDR2 5D00600
/* PTC:
DM: DMBOOL TRUE TRUE FALSE
BF: BFBOOL 1

*/
#define _DMBOOL
/***
* The above #define _DM... symbol has been left in this domain
* because the domain is used by the ACP subsystem which is a
* pre-modularity subsystem. The _DM... symbol is still used
* in pre-modularity environments.
**/
/***
/* The #define _DM... or _RL... symbol or #ifndef _DM /#endif
/* construct has been left in
/* this domain or relation because it is used in or is a
/* DBM dictionary relation. The dictionaries (via a constructed
/* .c file DBddat.c) are compiled by ODA and the Data Population
/* Environment Group using cc and cc370 respectively. This
/* compile requires that the domains and relations to be included
/* only once. Therefore the #ifndef _DM or #ifndef _RL constructs
/* must remain for all DBM dictionary relations and the domains
/* used in them. The DBM dictionary relations involved are :
/* RLdb_accdict.h
/* RLdb_attdict.h
/* RLdb_domdict.h
/* RLdb_drldict.h
/* RLdb_dsc.h
/* RLdb_enudict.h
/* RLdb_inddict.h
/* RLdb_reldict.h
/* RLdb_satdict.h
/* RLdb_cmdct.h
/* RLdbincdct.h
**/

#define BFBOOL 1

/**
* dom_name domain description
* –––––––– ––––––––––––––––––
* bool yes or no
**/

typedef enum {
DBNO,
DBYES

} DMBOOL;

GH:GHDR2 5D00600
/* PTC:

DM: DMDGSTAT TRUE TRUE FALSE
BF: BFDGSTAT 3

*/

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL

235-600-510
November 2000

Page A6-10 Issue 5.00

#define BFDGSTAT 3

/**
*
* dom_name domain description
* –––––––– –––––––––––––––––––––––––––––––
* dgstat diagnostic return codes
*
**/

typedef enum {
DGNTR, /* No Tests Run */
DGATP, /* All Tests Passed */
DGCATP, /* Conditional All Tests Passed */
DGSTF, /* Some Tests Failed */
DGNULL, /* Null Code */
DGCMPABT, /* Test Aborted */
DGCMPSTP, /* Test Stopped */
DGCMPSPR, /* Spare */

} DMDGSTAT;
GH:GHDR2 5D00600
/* PTC:

DM: DMMRASRC TRUE TRUE FALSE
BF: BFMRASRC 4

*/

#define BFMRASRC 4

/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* mrasrc Source of maintenance request
*
**/

typedef enum {
SMSNUL, /* Null value */
SMAUTO, /* Automatic */
SMAN, /* Manual */
SMQTEST, /* Test request */
SMUN, /* Unequipped */
SMGR, /* Growth */
SMSGR, /* Special Growth */
SMREX, /* Routine Exercise */
SMRESTORE, /* Comm. Link Restore */
SMRESTART, /* Comm. Link Restart */
SMSTABLE, /* Comm. Link Stable */
SMFRCD, /* Forced */
SMAUTOSUB, /* Automatic LGC SUB option - transient state */
SMANSUB, /* Manual LGC SUB option - transient state */
SMRISLUCGA, /* Terminal Maintenance, RISLU DFI conditioning */
SMPSURCV, /* SMIM/RCV - transient state. */

} DMMRASRC;
GH:GHDR2 5D00600
/* PTC:

DM: DMAUQUAR TRUE TRUE FALSE
BF: BFAUQUAR 3

*/

#define BFAUQUAR 3

/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––

235-600-510
November 2000

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT

TRAIL

Issue 5.00 Page A6-11

* auquar quarantine states for data blocks
*
**/

typedef enum {
AUNOTSET = 0,
AUSISET = 1,
AUAUSET = 2,
AUDEFCHECK = 3,
AU1TRANTIME = 4,
AU2TRANTIME = 5,
AU1RACECON = 6,
AU2RACECON = 7

} DMAUQUAR;

GH:GHDR2 5D00600
/* PTC:

DM: DMINHTYPE TRUE TRUE FALSE
BF: BFINHTYPE 2

*/

#define BFINHTYPE 2

/**
*
* dom_name domain description
* –––––––– ––––––––––––––––––
* inhtype Inhibit type
*
**/

typedef enum {
SMIA_MAN,
SMIA_AUTO,
SMIATEMP

} DMINHTYPE;

APPENDIX 6
SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT
TRAIL

235-600-510
November 2000

Page A6-12 Issue 5.00

GLOSSARY

3B20D 3B20 Duplex computer

3B31D 3B21 Duplex computer

Address The number assigned to a particular memory or storage
location.

Addressing The means of assigning program test, data, or stack to storage
locations, and subsequently retrieving them.

AIM Application Integrity Monitor. The subsystem environment in
which the detection and correction of insanity in application
software is overseen.

ALCB Access Link Control Block

AM Administrative Module. The central processing unit of the
5ESS® switch. Previously, the AM was called the central
processor (CP).

Analog Signal A signal that varies in a continuous manner as the voice varies
(frequency and amplitude).

APDL Application Processor Data Link

Array A number of elements of the same type and size arranged in
rows and columns.

AS Administrative Services. The subsystem that collects and
processes information about switching activities.

Assembly Language A programming language that lets programmers write their
programs at the machine language level.

Assert A small segment of code within an application program that
checks the ranges, redundancy, linkage, and/or consistency of
program variables. A common way to perform defensive checks,
record failures, and invoke recovery actions.

Assert Handler The software invoked when a defensive check fails. It reports
and recovers from the assert.

ASW All Seems Well

ATB Address Translation Buffer

Attributes Columns in a data table having unique names.

Audit An autonomous subroutine that verifies and/or re-establishes
the consistency of data, data relations, and the linkages
between relations.

Audit Control The program unit that schedules and controls all application
audits.

Audit System The software system that detects, isolates, and corrects errors
in the 5ESS switch data structures.

AUTISS Automatic Time Slot Switching

BGB Bidirectional Gating Bus

BIC Bus Interface Controller. A circuit that provides a 32-bit to
16-bit data interface between the duplex dual serial bus selector
(DDSBS) and the peripheral interface controller (PIC).

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-1

Bit The smallest unit of information represented in a computer. The
information is represented by a positive or negative charge, or
an on or off state. Short for binary digit.

Bookstrap An initialization or re-initialization action that results in a
memory reload.

Breakpoint A programming entity that enables users to halt a process
running in the 5ESS switch, execute a predefined set of utility
functions, and resume execution of the process.

Brevity The feature that limits the number of audit output messages
logged and printed.

BRI Basic Rate Interface. The customer’s interface to the integrated
services line unit (ISLU) that combines two B channels and one
D channel.

BSTR Bootstrapper. A circuit in the module controller/time slot
interchange (MCTSI) that performs initialization actions that
result in memory reloads.

Buffer An area of memory that temporarily holds data that is being
received, transmitted, read, or written. It is often used to
compensate for differences in speed or timing of devices.

BUS One or more conductors (communications path) over which
information is transmitted from any of several sources to any of
several destinations.

Bus Seizure Circuit The circuit that interfaces the necessary test set leads on the
update bus to gain control of the bus. Also buffers a reset signal
from the module processor (MP) to the bootstrapper (BTSR).

BWM Broadcast Warning Message

Byte A contiguous group of binary digits (8 bits) usually operated on
as a unit.

C The high-level programming language in which most of the
5ESS switch software is written.

C Language Structure
A collection of variables, possibly of different types, grouped
together under a single name for convenient handling.

Call Processing The activities involved in transmitting voice and data calls from
inception, through the network, to their final destination. Three
subsystems handle call processing: feature control (FC),
peripheral control (PC), and routing and terminal allocation
(RTA).

CCBCOM Channel Control Block Common Area

CCS Common Channel Signaling

CDAL Control and Diagnostic Access Link

CDR Channel Data Register

GLOSSARY 235-600-510
November 2000

Page G-2 Issue 5.00

CF Control Fanout. The circuitry in the packet switch unit (PSU)
that interfaces the peripheral interface control buses (PICBs)
from the module controller/time slot interchange (MCTSI). It
also terminates the control interface buses (CIBs) from the data
fanout (DF) and packet fanout (PF) units.

CFDB Call Flow Data Block

Channel A peripheral time slot.

CI Control Interface. Circuitry in the module controller/time slot
interchange (MCTSI) that communicates control information
between the switching module processor (SMP) and the
peripheral units.

CIB Control Interface Bus. The bus that carries control messages
between the control fanout (CF) and the data fanout (DF).

CM Communication Module. The 5ESS switch hardware that
provides the interface between the administrative module (AM)
and the switching modules (SMs). In a multimodule office, the
CM consists of the message switch (MSGS) and the time
multiplexed switch (TMS). The CM has a maximum capacity of
30 SMs.

CM2 Communications Module - Model 2. Combines the MSGS and
TMS into a single frame with a maximum capacity of 190 SMs
or 192 SMs/RSMs.

CMKP Communications Kernel Process. The principal function of the
CMKP is to maintain the process identifier (PID) translation
tables. The information in these tables is responsible for
UNIX1-RTR message communication between the OSDS and
UNIX-RTR operating system environments.

CMP Communication Module Processor. A processor connected to the
communication module (CM) that provides call processing,
routing, and recent change and verify (RC/V) functions. These
functions were previously provided by the administrative
module (AM).

CMPPUMP Communication Module Processor Pump (Supervisor Process)

CNI Common Network Interface

Compiler A computer program that translates a set of program code
written in a higher level language into machine language.

Control Register The register used for initializing the bootstrapper.

CPI Central Processor Intervention

CSD Circuit Switched Data

CSV Circuit Switched Voice

CTS Control Time Slot

CTSP Control Time Slot Pump

CTSPUMP Control Time Slot Pump (Supervisor Process)

1. Registered trademark of The Open Group.

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-3

DA Directed Audit

DA Discontinued Availability

DALB D-Channel Application Linkage Block

DBM Database Monitor

DCDB Digital Collection Data Block

DCF Defensive Check Failure. A synonym for assert.

DCLU Digital Carrier Line Unit. The 5ESS switch hardware that
consists of two service groups which concentrate six SLC® 96
carrier system mode I and II remote terminals.

DCTU Directly Connected Test Unit

DF Data Fanout. The circuitry that switches any directly connected
peripheral interface data bus (DPIDB) time slot to any protocol
handler (PH).

DI Data Interface. A hardware circuit located in the module
controller/time slot interchange (MCTSI) that terminates
peripheral interface data buses (PIDBs). (See PIDB.)

Diagnostics The programs that locate faults and verify repairs.

DLI Dual Link Interface. Transmits time slot data between the time
multiplexed switch (TMS) and the time slot interchange (TSI)
via the network control and timing (NCT) links, transmits
control data between the message switch (MSGS) and the
switching module processor (SMP) via the control time slot on
each NCT link, and delivers timing information to the TSI for
distribution to the SM peripherals.

DLTU Digital Line and Trunk Unit. The 5ESS switch hardware that
terminates digital trunks from remote switching modules
(RSMs) or other offices via T1 facilities.

DMA Direct Memory Access

DMERT Duplex Multi-Environment Real-Time. An old term for the
UNIX real time reliable (RTR) operating system. An operating
system for the 3B20D computer. In the 5ESS switch, it controls
the operating system for distributed switching in the
administrative module (OSDS-C). (See OSDS-C.)

DMI Duplex Message Interface. The circuitry that terminates the
message interface buses (MIBs) from the module message
processors (MMPs).

DMU Data Manipulation Unit

DN Directory Number

Domain A specific set of values that an attribute can have.

Double Indexing A way of accessing data in a database such that the relation key
is divided to produce two indexes. The first index is used to find
an offset in the first data page that gives the block number of
the pointer to a page at the second level. The second index
number is used with the tuple size to find the offset in the
second page where tuples are being stored.

GLOSSARY 235-600-510
November 2000

Page G-4 Issue 5.00

DPB D-Channel Port Block

DPIDB Directly Connected Peripheral Interface Data Bus. The bus that
carries user and control messages between the integrated
services line unit (ISLU) and the packet switch unit (PSU).

DSI Digital Signal Interface

DSL Digital Subscriber Line

DSN Digital Switching Network

DSU Digital Service Unit

Dynamic Data Data that changes relatively frequently. Equipment status, call
status, and work queues are examples of dynamic data.

EA Effective Address

EAI Emergency Action Interface

ECD Equipment Configuration Database. The database that
describes the physical and logical configuration of the computer
and the peripherals.

EGRASP Enhanced Generic Access Package

EIH Error Interrupt Handler

Element A component of an array, structure, or union.

Elevated Segmented Mode
The mode of operation in which audits run at priority 1 and
take real-time breaks.

Environment A collection of resources used to support a function.

ER Error Register. The register that logs errors from various points
in the system. The ERs with the least significant bit have the
highest priority.

Escalation A recovery action taken when a critical resource is in error and
when taking segment breaks before the error is corrected would
further degrade processing.

ESR Error Source Register. A register used to store error indications.

Event 1. A system fault. Events are assigned event numbers, which
are printed in the output messages.

2. A two-bit piece of information sent by a process to notify
another process about an impending message.

FC Feature Control. A set of procedures that sequence call
processing actions. This call processing subsystem receives
customer inputs (dialed digits), determines the actions to be
performed, and calls on peripheral control (PC) to initiate
hardware actions that advance the call.

FEX Feature Execution

Fiber Optics Cables made of glass fibers that are used to transmit data
encoded into light pulses at very high speeds.

FI Full Initialization

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-5

FIDB Facility Interface Data Bus. The bus that transmits 32 time
slots (TSs) from the digital line and trunk unit (DLTU) to the
facilities interface unit (FIU) in a remote switching module
(RSM).

Finite State Machine An abstraction that is useful for modeling event-driven
sequential processes. A finite state machine consists of a finite
set of states, a finite set of inputs, an output function,and a
next state function.

FIU Facility Interface Unit

FP Fast Pump

FPC Foundation Peripheral Controller. A component of the message
switch (MSGS) in the CM. Handles message traffic between the
3B processor and the module controller and also provides
maintenance and control access to the network clock.

FPI Full Process Initialization

FPUMP Fast Pump

Function A section of code from a software design unit. A well-defined
operation performed during development.

GIDB Group Interface Data Bus. The bus that carries user and control
information between the basic rate interface (BRI) card and the
line group controller (LGC).

Global Data The data in memory that is not allocated on a software releaess
basis or at compile time to individual subsystems.

GRASP Generic Access Program

GRASP Generic Access Package

Halfword A halfword consists of 2 bytes or 16 bits.

Hardware Registers Registers that are used to give information about various
hardware functions.

Hashing A more sophisticated way to access data in a database. It uses a
relation key in an algorithm. The algorithm produces a number
that is used to find the data.

HM Human Machine Interface. The maintenance software
subsystem that provides interaction between maintenance
personnel and the switching system.

HSM Host Switching Module

HSR Hardware Status Register. The bits that set the priorities for
interface to the bidirectional gating bus (BGB).

I/O Input/Output

IC Integrity Control

IDCU Integrated Digital Carrier Unit

IDCULSI Integrated Digital Carrier Unit Loop Side Interface

IM Interface Module (now SM)

IM Interrupt Mask Register

GLOSSARY 235-600-510
November 2000

Page G-6 Issue 5.00

IMR Interrupt Mask Register

Index A number that specifies an element in an array.

INIT Initialization

Initialization Mode The mode of operation in which audits are run during system
initialization.

Insanity The condition of the system in which abnormal processing
occurs.

Interrupt The method of notifying a hardware unit of certain
asynchronous conditions.

IPL Interrupt Priority Level

IRR Interrupt Request Register

IS In Service

IS Interrupt Set Register

ISDN Integrated Services Digital Network. A service of international
scope that features simultaneous voice, interactive data,
telemetry, bulk data, and video.

ISLU Integrated Services Line Unit. The unit that houses the basic
rate interface (BRI) cards.

ISR Interrupt Source Register. The register that logs interrupts from
32 sources. The interrupts with the least significant bits have
the highest priority.

ITIME Operating system for distributed switching (OSDS) time relative
to OSDS initialization.

JSR Jump to Subroutine

Kernel The lowest level of virtual machine in UNIX RTR. It controls
the hardware directly and does not depend on other operating
system services.

Kernel Process A logical collection of software running at the level closest to the
machine.

LBPUMP Little Boot Pump (Supervisor Process)

LCCB Logical Channel Control Block

LDSU Local Digital Service Unit. The service unit that provides
low-level signaling and measurement functions within the SM.

LDSUB Local Digital Service Unit Bus. Carries data channels from the
local digital service unit (LDSU) to the time slot interchange
(TSI).

LGC Line Group Controller

LIDB Local Interface Data Bus

LIFO Last In First Out

LLCB Logical Link Control Block

LSI Loop Side Interface

LSM Local Switching Module

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-7

LU Line Unit

Macro A predefined shorthand. Arguments that can be part of a
substitution process.

Mapping A way of establishing a relationship between the elements of
one set and the elements of another. The verification that is
smaller address refers to the address in main memory.
Performed by the storage address translator (SAT) and cache.

MCB Message Control Block. A data structure linked to a process’s
process control block (PCB) that is used by the operating system
for distributed switching (OSDS) to store messages to be
retrieved by the receiving process.

MCC Maintenance (Master) Control Center

MCC/ROP Master Control Center/Receive Only Printer

MCTSI Module Controller/Time Slot Interchanger. The switching
module (SM) hardware unit that provides the control, time
division switching, call processing, call supervision, and
maintenance functions for the SM. Also called the module
control and time slot interchange unit (MCTU).

MCTU Module Controller and TSI Unit. The switching module (SM)
hardware unit that provides the control, time division
switching, call processing, call supervision, and maintenance
functions for the SM. Also called the module controller/time slot
interchange (MCTSI).

MIB Message Interface Bus

MICO Module Integrity Control

MICU Message Interface Clock Unit

MIR Micro-Instruction Register

MLHG Multi-Line Hunt Group

MMP Module Message Processor. Circuitry in the message switch
(MSGS) that handles control message protocol on the link to the
SM.

MMU Memory Management Unit

Modularity A design in which the hardware and software consist of many
small units.

MOTD Message Of The Day

MP Module Processor

MPU Microprogram Unit

MRF Maintenance Reset Function

MSCU Message Switch Control Unit

MSGS Message Switch. The hardware in the communication module
(CM) that is the center of all communication between the many
processors in a 5ESS switch.

MSKP Message Switch Kernel Process

MSPU Message Switch Peripheral Unit

GLOSSARY 235-600-510
November 2000

Page G-8 Issue 5.00

Multiplexing A process that enables a digital transmission system to transmit
many telephone conversations over a single pair of wires.

NARTAC North American Regional Technical Assistance Center

NCT Network Control and Timing Links. Internal fiber optic links
that connect the switching modules (SMs) with the
communication module (CM) to provide time slot paths for
network connections, carry control messages (time slots) to the
modules, and distribute timing to the module.

NOC Normalized Office Code

NOG Network Operations Group

Nonreturning Assert An assert that does not return to program control and also
purges the current process.

Nonsegmented Mode The mode of operation in which audits run to completion
without real-time breaks.

ODBE Office Data Base Editor

ODD Office Dependent Data

ODP On-Demand Packet

OKP Operational Kernel Process. An environment in the
administrative module (AM) in which application-oriented call
processing occurs. The application software that is controlled by
OSDS-C and combines with OSDS-C.

OM Output Message

ONTC Office Network Timing Complex

OOS Out of Service

OP Code Operation Code. The portion of an instruction that identifies the
particular operation to take place.

Operating System The software that organizes the storage of information, compiles
programs, oversees input/output (I/O) operations, reports system
status, provides the maintenance personnel interface facilities,
provides program modification and debugging routines, and, in
general controls system operations.

OSDS Operating System for Distributed Switching. The 5ESS switch
real time operating system that provides identical interfaces to
application software under its control in the AM, CMP, and
SMs. Provides process management, memory management,
interprocess communications, and timing for the application
programs running under it.

OSDS Monitor Input messages and flags that are used to gather performance
data and investigate performance problems without the need for
specialized tools such as logic analyzers. Developed to collect
data about the operating system for distributed switching
(OSDS) in the AM, CMP, and SMs.

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-9

OSDS-C Operating System for Distributed Switching in the
Administrative Module (AM). Software controlled by the UNIX
RTR operating system, OSDS-C provides the interface with the
operating system, the input/output, and the software in other
subsystems in the AM.

OSDS-M Operating System for Distributed Switching in the Switching
Module (SM). Provides interfaces with other software
subsystems in the SM and communications software used to
send messages to either the AM or another SM.

OSDS-P Operating System for Distributed Switching - Protocol Handler

OSDS-X Operating System for Distributed Switching on Axp.

OSPID A unique number assigned to each process. Includes processor
ID, uniqueness, and process number. Maintained by OSDS.

OSPS Operator Services Position System

PA Program Address Register. The register that holds the address
of the last address retrieved from main store.

PAB Peripheral Address Bit

Packet A grouping of data into a relatively small block (for example,
1000 bits) with an identifying header.

Parity Bit The bit that is used to make the sum of the "1" bits in a word
odd or even. In odd parity, the sum of the bits is odd, for even
parity the sum of the bits is even. Parity is used to help verify
that the information is valid.

PAS Protected Application Segment

PB Packet Bus. The buss that carries packet information between
the packet switch unit (PSU) and the switching module
processor (SMP).

PBX Private Branch Exchange. A customer premises switching
system.

PC Peripheral Control. A software subsystem that manages and
controls the switching peripherals. The call processing
subsystem acts on a customer request collected by the feature
control (FC) subsystem and insulates the FC and terminal
maintenance (TM) subsystems from changes in hardware
configuration.

PC Program Change

PCB Process Control Block. A block of relevant information about a
process’s environment. Stores all of the data that is required to
represent and administer the process.

PCBI Process Control Block Index

PCBLA Process Control Block Link Area. A data structure assigned to a
terminal process that links other data blocks to the process.
Contains all pertinent data about a call.

GLOSSARY 235-600-510
November 2000

Page G-10 Issue 5.00

PCM Pulse Code Modulation. A technique for coding analog signals
for transmission on a digital circuit, by sampling the analog
signal at regular intervals and converting each sample into a
digital codeword.

PCRID Processor ID

PERAD Peripheral Address Register

PF Packet Fanout. The circuitry that sends control messages to or
from the protocol handlers (PHs) and the control fanout (CF).

PH Protocol Handler. The circuitry that switches control messages
between the basic rate interface (BRI) and the module
controller/time slot interchange (MCTSI).

PHDB Protocol Handler Data Bus. The bus that transmits control
messages between the data fanout (DF) and the protocol
handler (PH).

PI Packet Interface. Circuitry that is only present in SMs that
offer integrated services digital network (ISDN) services. Routes
packet information between the switching module processor
(SMP) and the protocol handlers (PHs) of the packet switch unit
(PSU).

PIB Packet Interconnect Bus

PIC Peripheral Interface Controller. A 16-bit microprocessor. In the
administrative module (AM), the PIC controls the I/O transfer
between the main store (MAS) and the peripheral controllers. In
the message switch (MSGS), the PIC handles the interface
between the AM and the MSGS peripheral units (MSPUs).

PIC Programmable Interrupt Controller

PICB Peripheral Interface Control Bus. A duplex bus that carries
clock, data, and control messages from the control interface (CI)
to a switching module (SM) peripheral unit, and returns data
and service requests to the CI.

PICO Protocol Handler Integrity Control

PID Process Identifier

PIDB Peripheral Interface Data Bus. A duplex bus providing 32 time
slots of voice data between the data interface (DI) and a
peripheral unit in the SM.

PIR Programmed Interrupt Request

PLL Phase Locked Loop

PLOD Process for Loading the ODD onto Disk

PLOP Process for Loading the ODD in the PAS

PMDB Process Message Data Block. A data structure assigned to a
terminal process in an SM for receiving messages (PMDB-IN) or
constructing and sending messages (PMDB-OUT).

PMKP Partition Mounting Kernel Process. The kernel process that
mounts new 5ESS switch test and office dependent data (ODD)
partitions and creates the application integrity monitor (AIM)
on full configuration CP boots.

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-11

Point-To/Point-Back Check
A verification process that determines whether a relation
pointed to from a source relation points back to the source
relation.

Pointer A variable used to store the address of another variable.

Popping The operation of removing a node from a stack.

PORTLA Port Linkage Area

Postinitialization Mode
The mode in which audits restore noncritical data structures
after system initialization.

PPB Permanent Packet B-channel

PPC Pump Peripheral Controller. Circuitry located in the message
switch (MSGS) that is responsible for the rapid reinitialization
(fast pump) of the switching module (SM) in case of total
failure.

PPD Permanent Packet D-channel

PPR Pulse Point Register

Process A programming entity that implements an activity. An instance
of programming execution plus the data necessary for the
execution.

PSBR Primary Segment Base Register

PSU Packet Switch Unit. Switches packet data and signaling
information. A central processing unit including mainframe and
peripheral equipment which, when connected via access lines to
a customer node, will pass information between customer nodes.

PSUPH Packet Switch Unit Protocol Handler

PSW Program Status Word. The bits used by the system software to
sent and maintain the status of the currently executing
program.

PTSB Peripheral Time Slot Block

PUCR Pump Control

PUSG Peripheral Unit Service Group

Pushing The operation of adding a node to a stack.

RAM Random Access Memory

RBOC Regional Bell Operating Company

RC/V Recent Change and Verify

RCKP Recent Change Kernel Process

Relation An array of tuples.

Relational Database A logical view of data items organized into a table or tables.

RISLU Remote Integrated Services Line Unit

ROP Receive/Read Only Printer

GLOSSARY 235-600-510
November 2000

Page G-12 Issue 5.00

Routine Segmented Mode
The mode of operation in which audits run at priority 0 and
take real-time breaks.

RPI Return to Point of Interrupt

RSM Remote Switching Module

RSTSR Reset Error Source Register

RTA Routing and Terminal Allocation

RTA DCF Routing and Terminal Allocation Defensive Check Failure

RTC Real Time Clock

RTIME The operating system for distributed switching (OSDS) time
relative to switch initialization

RTR Real Time Reliable. Designation of the UNIX operating system
used in the 3B20D computers.

RWPAB Read/Write Peripheral Address Bit

Sanity The normal processing state of the system.

Sanity Timer The system integrity measure that detects malfunctions by
checking the time required to perform system processes.

SAR Store Address Register

SAS Stop and Switch

SBT Stack Back Trace

SCB Stack Control Block. The representation of a stack in the
operating system for distributed switching (OSDS), including
the stack location and the process that owns the stack.

SCC Switching Control Center. A centralized system that controls the
switching operations of many electronic switching systems
(ESSs).

SDFI Subscriber Digital Facility Interface

SDL State Definition Language

SDLC Synchronous Data Link Controller

SDR Store Data Register

Segment 1. An interval of time during which an audit runs.

2. The basic memory unit in RTR, composed of from 1 to 64
pages. Each segment is 512 32-bit words in length.

Segmented Programs that may be interrupted at certain points to let other
processes execute.

SG Service Group

SI Selective Initialization. The form of initialization in which
transient calls (those note in a stable talking state) are
disconnected.

SI System Integrity. The maintenance software subsystem that
provides treatment of software errors and handling of overload
conditions.

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-13

SICO System Integrity Control

Signaling The switching function that transmits information about lines,
trunks, or calls to control switching equipment, station
equipment, and other aspects of call handling.

SIM System Integrity Monitor

SIR Store Instruction Register

SM Switching Module. A module controller/time slot interchange
(MCTSI) along with a number of peripherals. The general name
for remote SMs (RSMs), host SMs (HSMs), and local SMs
(LSMs). Previously, the SM was called the interface module
(IM).

SMKP Switch Maintenance Kernel Process. Switch maintenance
software that is controlled by OSDS-M that works with
OSDS-M and OSDS-C to provide the interface for maintenance
software and switch maintenance processes in the message
switch (MSGS) and switching modue (SM).

SMP Switching Module Processor. Microprocessor in the module
controller/time slot interchange (MCTSI) that performs call
processing and maintenance functions, controls the peripheral
units, and communicates with other SMs, the CMP, and the
AM.

SODD Static Office Dependent Data

SP Signal Processor. Circuitry in the module controller/time slot
interchange (MCTSI) that checks the time slot signaling bits for
changes in their state and reports the changes to the switching
module processor (SMP).

SPC Stored Program Control

SPP Single Process Purge. The form of initialization in which a
single process is terminated.

SRC Source

SSR System Status Register. The register that controls the status of
the system configuration.

Stack A section of memory used for short-term storage. Stores local
variables and return points for function calls. A linked list in
which additions and deletions can only be made at one end.

Standby In this state, the equipment is not active but available to be
switched to the active state.

Static Data Data that is permanently stored in the 5ESS switch. It
represents, for example, equipment, lines, and trunks.

Structure See C Language structure.

System Process A process that provides services on a system-wide basis, within
or outside of call processing. It provides one service (such as
routing) and manages requests from more than one terminal
process.

GLOSSARY 235-600-510
November 2000

Page G-14 Issue 5.00

TCB Timer Control Block. The representation of a timer in the
operating system for distributed switching (OSDS); linked to the
process’s process control block (PCB) when the process requests
a timer.

TEDB Terminal Equipment Data Block

TEILA Terminal Endpoint Identifier Linkage Area

Terminal Process A process that is created on demand to provide customer
services (such as calls) and terminal maintenance, then the
process is terminated.

Time Slot The time interval to which sequential representations of a given
signal can be assigned.

TM Terminal Maintenance

TMS Time Multiplexed Switch. In the 5ESS switch communication
module (DM), the TMS provides the physical path for the digital
signals carrying data and control information between SMs and
between the SMs and the AM.

TSI Time Slot Interchange. Circuitry that performs the time division
switching between the peripheral units of the SM and the time
multiplexed switch (TMS); rearranges the order of the time
slots.

TU Trunk Unit

Tuple The content of any row in a relation.

TV Transfer Vector

Two-Dimensional Array
An array having more than one row. A two-dimensional array is
implemented as an array of arrays.

Union A type of structure that saves memory space by overwriting
portions of it. A device that allows storage of different data
types in the same memory space. Unions are set up much the
same way as structures.

UNIX RTR Operating System
UNIX Real Time Reliable (RTR). The main operating system in
the 3B administrative module (AM). Previously, the UNIX RTR
operating system was called the DMERT operating system.

UP Program Update Subsystem

VBD Voice Band Data

Virtual Address The addresses, starting at zero, that a programmer reserves in
the program for the program. Basically, it tells how much space
the program needs to run.

Virtual Machine Software that performs lower-level functions. In other words, all
of the code and data needed to do a specific function contained
in one set of programs.

VLMM Very Large Main Memory

VLSI Very Large Scale Integration

235-600-510
November 2000

GLOSSARY

Issue 5.00 Page G-15

Word A discrete area of memory, usually four bytes long. The size is
machine dependent. In the AM, the size is four bytes; in the
SM, the size is 2 bytes.

GLOSSARY 235-600-510
November 2000

Page G-16 Issue 5.00

A

Address modes
3B20D and 3B21D computer addressing modes, 4.1-4
Intel 80186 processor addressing modes, 4.5-5
MC68000 processor family addressing modes, 4.3-4

Array size limitations - 5ESS switch, 3.2-1
Assert reports

Assert messages, 5.1-1
Asserts

CMP assert analysis example, 5.2-9
Handler - assert, 5.1-1, 5.1-8, 5.1-9
Macro - AUCFTASRT, 5.1-4
Macro - AUCFTREFASRT, 5.1-4
Macro - RTDUMPDATA, 5.1-5
Macro - RTRTGERR, 5.1-5
Macros, 5.1-2
Memory stack - AM, 5.1-8
ROP output - assert, 5.1-5
SM assert analysis example, 5.2-1
SM/CMP memory stack, 5.1-11
Stack frame variations - AM and SM/CMP, 5.1-7

Assistance, Technical, 1-5
Auxiliary Status Register, 8.2-47

C

C language
5ESS switch array size limitations, 3.2-1
5ESS switch sizeof distinctions, 3.2-1
Arithmetic operators, 3.1-4
Arrays, 3.1-15
Bitfields, 3.1-3
Cast, 3.1-20
Control statements, 3.1-22
Data types, 3.1-1
Functions, 3.1-21
Logical operators, 3.1-5
Membership operator, 3.1-19
Multiple structure assignments - 5ESS switch, 3.2-1
Operator precedence, 3.1-6
Pointers, 3.1-15
Preprocessor, 3.1-14
Relational operators, 3.1-5
Storage class specifiers, 3.1-12
Structures and unions, 3.1-11
Unsigned data types - 5ESS switch, 3.2-1
Variables (local and global), 3.1-10

C programming language, 3-1
Comment Form, 1-4
CTAM, 1-5
Customer Information Center, 1-5

235-600-510
June 2001

INDEX

Issue 5.00B Page I-1

Customer Technical Assistance Management (CTAM), 1-5

D

Data conversion
3B20D and 3B21D processor data conversion rules, 4.2-4
Intel 80186 processor data conversion rules, 4.6-3
MC68000 processor data conversion rules, 4.4-3

Data dump layout
MCB, 13-3
PCB, 13-2
SCB, 13-2
TCB, 13-3

Data sizes and alignment
3B20D and 3B21D processor data sizes and alignment, 4.2-2
AM, SM, and CMP data sizes and alignment, 5.1-10
Intel 80186 processor data sizes and alignment, 4.6-1
MC68000 processor data sizes and alignment, 4.4-1

Document Distribution, 1-5
Documentation Hotline, 1-5

E

Event history
SM/CMP/PI/PH event history, 11-1

EXAMPLES
GRASP/EGRASP Analysis Example, 6-16

F

Feature execution (FEX), 12.1-4
Messages, 12.1-4

G

Generic Utilities
Breakpoint usage - SM, CMP, and peripherals, 7-1

GRASP/EGRASP
ALW command - AM, 6-7
Breakpoint definition - AM, 6-7
COPY command - AM, 6-1
DUMP command - AM, 6-3
IN:DTIME command - AM, 6-10
LOAD command - AM, 6-5
Message Acknowledgements - AM, 6-14
Overriding default time limits - AM, 6-10
Trace and matching messages - AM, 6-11
Transfer trace function - AM, 6-10
WHEN command - AM, 6-7

INDEX 235-600-510
June 2001

Page I-2 Issue 5.00B

H

Hotline, Documentation, 1-5

I

Information Product Hotline, 1-5
Interrupt

Analysis, 8-1
Definition, 8-1
Types, 8-1

Interrupt Enable Register, 8.2-45
Interrupt Hierarchy, 8.2-35
Interrupts

3B20D processor error register, 8.1-6
3B20D processor error register bit configuration, 8.1-8
3B20D processor interrupt source register, 8.1-11
3B20D processor interrupts, 8.1-1
AM interrupt ROP output, 8.3-1
Autovectored interrupts, 8.2-17
Bootstrapper, 8.2-4
CI error source register, 8.2-27
Control interface (CI), 8.2-4
Control interface (CI) error sources, 8.2-14
Data interface (DI), 8.2-4
DLI error source register, 8.2-23
DLI error source register 1, 8.2-32
DLI error source register 2, 8.2-33
Dual link interface (DLI), 8.2-4
Dual link interface (DLI) error sources, 8.2-16
Error interrupt handler (EIH), 8.1-2, 8.1-5
Error sources of interrupts by category, 8.2-14
Execution levels, 8.1-3
Hardware error source register, 8.2-22
Interrupt stack, 8.1-1
Interrupts analysis example - hardware, 8.4-1
Interrupts analysis example - software, 8.5-1
ISDN peripheral units, 8.2-13
Levels of interrupts - Motorola MC68000 processor family, 8.2-17
Local digital service unit buses (LDSUBs), 8.2-12
Masking - 3B20D processor, 8.1-12
Masking - module processor, 8.2-50
Masking - MotorolaMC68000 processor, 8.2-50
MCTU interrupt registers, 8.2-18
Memory error source register, 8.2-23
Module controller/time slot interchange (MCTSI) functions, 8.2-1
Module controller/time slot interchange (MCTSI) interfaces, 8.2-9
Module controller/time slot interchange (MCTSI) subunits, 8.2-3
MOTOROLA MC68000 Processor Family, 8.2-1
Motorola MC68000 processor family level 4 interrupts, 8.2-24
Motorola MC68000 processor family level 7 interrupts, 8.2-18
Network control and timing (NCT) links, 8.2-12

235-600-510
June 2001

INDEX

Issue 5.00B Page I-3

Non-operational interrupt: error - 3B20D processor, 8.1-3
Non-operational interrupt: maintenance - 3B20D processor, 8.1-6
Packet bus (PB), 8.2-12
Packet interface (PI), 8.2-4
Peripheral interface control buses (PICBs), 8.2-11
Peripheral interface data buses (PIDBs), 8.2-10
PI error source register, 8.2-26
PIC B register, 8.2-25
PIC C register, 8.2-26
PICB circuitry related error sources, 8.2-14
Reset source register, 8.2-19
Serial control messages (distribute/scan orders), 8.2-2
Service requests, 8.2-14
Signal processor (SP), 8.2-4
Signal processor (SP) error sources, 8.2-15
SM, 8.2-1
SM interrupt ROP output, 8.3-1
Software error source register, 8.2-21
SP error source register, 8.2-28
Status register and interrupt masking structure - MotorolaMC68000 processor,

8.2-51
Switching module processor (SMP), 8.2-4
Switching module processor (SMP) error sources, 8.2-16
Time slot interchange (TSI), 8.2-4
Time slot interchange (TSI) error sources, 8.2-15
TSI error source register 1, 8.2-29
TSI error source register 2, 8.2-30
TSI error source register 3, 8.2-32
Vectored interrupts, 8.2-17

ISDN
Packet interface (PI), 8.2-4
Switching types in ISDN, 8.2-13

L

Listings menu, 2-2
Listings menu options, 2-3
Log file

Postmortem log file (PMLOG), 8.1-6
Log files

Error interrupt handler log file (ERLOG), 8.1-4
Memory history log file (MEMLOG), 8.1-4

Lucent Technologies Customer Information Center, 1-5

M

MCB data dump layout, 13-3
MCB overloads, 13-1
MCTSI

Bootstrapper, 8.2-4
Control interface (CI), 8.2-4
Data interface (DI), 8.2-4

INDEX 235-600-510
June 2001

Page I-4 Issue 5.00B

Dual link interface (DLI), 8.2-4
Module controller/time slot interchange (MCTSI) functions, 8.2-1
Module controller/time slot interchange (MCTSI) interfaces, 8.2-9
Module controller/time slot interchange (MCTSI) subunits, 8.2-3
Packet interface (PI), 8.2-4
Signal processor (SP), 8.2-4
Switching module processor (SMP), 8.2-4
Time slot interchange (TSI), 8.2-4

Memory layout
3B20D and 3B21D processor instruction example, 4.1-8
3B20D and 3B21D processor instruction template, 4.1-8
Intel 80186 processor instruction example, 4.5-6
Intel 80186 processor instruction template, 4.5-5
MC68000 processor instruction example, 4.3-9
MC68000 processor instruction template, 4.3-5

Memory management
3B20D and 3B21D processor memory segment, 4.2-4
Intel 80186 processor memory management, 4.6-3
Interrupt stack, 8.1-1
MC68000 processor optimization, 4.4-4

N

NARTAC, 1-5
North American Regional Technical Assistance Center (NARTAC), 1-5

O

Online access procedure, 2-1
Online program listings, 2-1
Operands

3B20D and 3B21D computer operands, 4.1-4
Intel 80186 processor operands, 4.5-4
MC68000 processor family operands, 4.3-4

OSDS
Message control block (MCB), 12.1-3
Messages, 12.1-4
Process control block link area (PCBLA), 12.1-2
Process control block (PCB), 12.1-2
Process message data block (PMDB), 12.1-2
Processing levels, 12.1-3
Resources, 12.1-1
Segment breaks, 12.1-3
Stack control block (SCB), 12.1-2
System processes, 12.1-1
Terminal processes, 12.1-1
Timer control block (TCB), 12.1-3

OSDS monitor
Buffer, 12.2-1
Buffer layout for the AM, 12.7-1
Buffer layout for the CMP, 12.7-13
Buffer layout for the SM, 12.7-9

235-600-510
June 2001

INDEX

Issue 5.00B Page I-5

Client data dump control flags, 12.4-4
Data control flags for per-event data, 12.4-2
Data dump control flags, 12.4-4
Event control flags for per-event data, 12.4-3
Functions, 12.2-1
Input commands to clear and dump the buffer, 12.5-1
Input message control flags, 12.4-1
Input messages, 12.3-1
Messaging control flags, 12.4-1
MSKP data dump description, 12.4-31
OKP data dump description, 12.4-29
OSDS usage control flags, 12.4-3
Output messages, 12.5-2
SM and CMP data dump description, 12.4-29
SMKP data dump description, 12.4-30
Snapped data dump layouts, 12.8-1
Start and stop control flags, 12.4-1
up-loading contention, 13-4
Useful input message sequences, 12.6-1
What to do flags, 12.4-5
What to dump flags, 12.4-27

OSDS overload monitor
output file, 13-1
overview, 13-1

Output file location and layout
OSDS overload monitor, 13-1

Overloads
MCB, 13-1
PCB, 13-1
SCB, 13-1
TCB, 13-1

overview
OSDS overload monitor, 13-1

P

PCB data dump layout, 13-2
PCB overloads, 13-1
PERAD register, 8.4-2
PIC-A Register, 8.2-38
PIC-B Register, 8.2-41
PIC-C Register, 8.2-43

R

Read Interrupt Status Register, 8.2-46
References, 1-5
Register

PERAD, 8.4-2
Registers

3B20D and 3B21D processor error register, 4.1-3
3B20D and 3B21D processor hardware registers, 4.1-2

INDEX 235-600-510
June 2001

Page I-6 Issue 5.00B

3B20D and 3B21D processor hardware status register, 4.1-4
3B20D and 3B21D processor interrupt mask register, 4.1-3
3B20D and 3B21D processor interrupt set register, 4.1-3
3B20D and 3B21D processor register notation, 4.1-2
3B20D and 3B21D processor registers, 4.2-6
3B20D and 3B21D processor system status register, 4.1-3
3B20D processor error register, 8.1-6
3B20D processor error register bit configuration, 8.1-8
3B20D processor interrupt source register, 8.1-11
3B20D processor primary segment base register, 8.1-2
3B20D processor program address register, 8.1-2
3B20D processor secondary segment base register, 8.1-2
3B20D processor status word register, 8.1-2
3B2XD processor argument pointer, 5.1-8
CI error source register, 8.2-27
DLI error source register, 8.2-23
DLI error source register 1, 8.2-32
DLI error source register 2, 8.2-33
Hardware error source register, 8.2-22
iAPX 8 byte registers, 4.5-4
iAPX word registers, 4.5-3
Intel 80186 processor 8 byte registers, 4.5-4
Intel 80186 processor data registers, 4.6-5
Intel 80186 processor pointer and index registers, 4.6-5
Intel 80186 processor segment registers, 4.6-5
Intel 80186 processor status and control registers, 4.6-6
Intel 80186 processor word registers, 4.5-3
MC68000 processor address registers, 4.4-6
MC68000 processor control registers, 4.3-3
MC68000 processor register notation, 4.3-3
Memory error source register, 8.2-23
Motorola MC68XXX processor family distinctions, 8.2-33
PI error source register, 8.2-26
PIC B register, 8.2-25
PIC C register, 8.2-26
Program status word register, 4.1-3
Reset source register, 8.2-19
Software error source register, 8.2-21
SP error source register, 8.2-28
Status register, 8.2-51
TSI error source register 1, 8.2-29
TSI error source register 2, 8.2-30
TSI error source register 3, 8.2-32

S

SCB data dump layout, 13-2
SCB overloads, 13-1
Single process purge (SPP)

Single process purge (SPP) analysis example, 9-2
SMP40 Interrupt Hierarchy, 8.2-37
SMP60 Interrupt Hierarchy, 8.2-49

235-600-510
June 2001

INDEX

Issue 5.00B Page I-7

Stacks
3B20D and 3B21D processor stack usage, 4.2-7
Intel 80186 processor stack usage, 4.6-7
MC68000 processor stack usage, 4.4-7

Status and Control Register, 8.2-50

T

TCB data dump layout, 13-3
TCB overloads, 13-1
Technical Assistance, 1-5
Test Utility Bus Status Register, 8.2-47
Transfer vector, 4.2-5, 4.4-6, 4.6-7

U

Up-loading contention
OSDS monitor, 13-4

User Feedback, 1-4
User Feedback Form, 1-4
Using program listings, 2-4
Using the program listings, 2-1

INDEX 235-600-510
June 2001

Page I-8 Issue 5.00B

	CONTENTS
	FIGURES/TABLES/EXHIBITS
	FIGURES CH. 3
	FIGURES CH. 4
	FIGURES CH. 5
	FIGURES CH. 8
	FIGURES CH. 12
	TABLES CH. 3
	TABLES CH. 4
	TABLES CH. 5
	TABLES CH. 8
	TABLES CH. 10
	TABLES CH. 12
	EXHIBITS CH. 2
	EXHIBITS CH. 3
	EXHIBITS CH. 5
	EXHIBITS CH. 7
	EXHIBITS CH. 8

	1. INTRODUCTION
	1. INTRODUCTION
	1.1 PURPOSE
	1.2 UPDATE INFORMATION
	1.2.1 General
	1.2.2 Supported Software Releases
	1.2.3 Terminology

	1.3 ORGANIZATION
	1.4 USER FEEDBACK
	1.5 DISTRIBUTION
	1.6 TECHNICAL ASSISTANCE
	1.7 REFERENCES

	2. USING THE PROGRAM LISTINGS
	2. USING THE PROGRAM LISTINGS
	2.1 INTRODUCTION TO ONLINE PROGRAM LISTINGS
	2.2 ONLINE ACCESS PROCEDURE
	2.3 THE LISTINGS MENU
	2.4 THE LISTINGS MENU
	2.5 LISTINGS MENU OPTIONS
	2.6 EXAMPLE — USING THE PROGRAM LISTINGS
	2.6.1 Example Introduction
	2.6.2 Determine the Function Name
	2.6.3 Locate the Function

	3. C PROGRAMMING LANGUAGE
	3.1 DATA TYPES
	3.1.1 Data Types - General
	3.1.2 Bitfields
	3.1.3 Arithmetic Operators
	3.1.4 Relational Operators
	3.1.5 Logical Operators
	3.1.6 Operator Precedence
	3.1.7 Variables (Local and Global)
	3.1.8 Structures
	3.1.8.1 Struct
	3.1.8.2 Unions

	3.1.9 Storage Class Specifiers
	3.1.10 Preprocessor
	3.1.11 Pointers and Arrays
	3.1.12 Membership Operator
	3.1.13 Casting
	3.1.14 Functions
	3.1.15 Control Statements

	3.2 5ESS ® SWITCH DIFFERENCES FROM K AND R REFERENCE
	3.2.1 Introduction to Section
	3.2.2 Sizeof
	3.2.3 Array Size Limitations
	3.2.4 Multiple Structure Assignments
	3.2.5 Unsigned Data Types
	3.2.6 Float/Double Floating Point Data Types
	3.2.7 Bitfields
	3.2.8 Zero-Length Bitfields and Their Alignment
	3.2.9 Integer Bitfields and Their Alignment
	3.2.10 The Value of An Assignment
	3.2.11 Enumeration Comparisons
	3.2.12 Function Templates
	3.2.13 Flexnames
	3.2.14 Integer Size

	4. DISASSEMBLY/ASSEMBLY LANGUAGE
	4.1 3B20D/3B21D PROCESSOR ASSEMBLY LANGUAGE
	4.1.1 Values
	4.1.2 Constants
	4.1.3 Expressions
	4.1.4 Machine Instruction Notation
	4.1.5 Operands
	4.1.6 Instruction Set

	4.2 3B20D/3B21D PROCESSOR MACHINE DEPENDENCIES
	4.2.1 Data Type Memory Boundaries
	4.2.2 Arithmetic Types Supported
	4.2.3 Data Conversion Rules
	4.2.4 Memory Configuration
	4.2.5 Register Notation
	4.2.6 Stack Usage

	4.3 MOTOROLA 1 MC68000 PROCESSOR ASSEMBLY LANGUAGE
	4.3.1 Values
	4.3.2 Constants
	4.3.3 Expressions
	4.3.4 Machine Instruction Notation
	4.3.5 Operands
	4.3.6 Instruction Set

	4.4 MOTOROLA 1 MC68000 PROCESSOR MACHINE DEPENDENCIES
	4.4.1 Data Type Memory Boundaries
	4.4.2 Arithmetic Types Supported
	4.4.3 Data Conversion Rules
	4.4.4 Memory Configuration
	4.4.4.1 Overview
	4.4.4.2 Optimization

	4.4.5 Register Notation
	4.4.5.1 Register Classes
	4.4.5.2 General Purpose Registers
	4.4.5.3 Special Registers

	4.4.6 Stack Usage
	4.4.7 Unsupported

	4.5 INTEL 1 80186 PROCESSOR ASSEMBLY LANGUAGE
	4.5.1 Values
	4.5.2 Constants
	4.5.3 Expressions
	4.5.4 Machine Instruction Notation
	4.5.5 Operands
	4.5.6 Instruction Set

	4.6 INTEL 1 80186 PROCESSOR MACHINE DEPENDENCIES
	4.6.1 Data Type Memory Boundaries
	4.6.2 Arithmetic Types Supported
	4.6.3 Data Conversion Rules
	4.6.4 Memory Configuration
	4.6.5 Register Notation
	4.6.6 Stack Usage

	5. ASSERT ANALYSIS
	5. ASSERT ANALYSIS
	5.1 ASSERT ANALYSIS DESCRIPTION
	5.1.1 ASSERT DEFINITION
	5.1.1.1 Assert Messages
	5.1.1.2 Assert Handler
	5.1.1.3 Assert Macros

	5.1.2 RECEIVE ONLY PRINTER OUTPUT (ROP)
	5.1.2.1 ROP Messages
	5.1.2.2 Defensive Check Failure (DCF) Asserts
	5.1.2.3 MANUAL ACTION Asserts
	5.1.2.4 RTA Asserts

	5.1.3 STACK TRACE DEBUGGING
	5.1.3.1 Stack Formatting Overview
	5.1.3.2 AM Stack Layout (3B2XD Processor)
	5.1.3.3 SM/CMP Stack Layout (MC68XXX Processor Family)

	5.1.4 FAILING FUNCTION

	5.2 ASSERT ANALYSIS EXAMPLES
	5.2.1 ASSERT ANALYSIS EXAMPLE — AM
	5.2.2 ASSERT ANALYSIS EXAMPLE — SM
	5.2.3 ASSERT ANALYSIS EXAMPLE — CMP
	5.2.4 ASSERT ANALYSIS EXAMPLE — RTA DCF
	5.2.4.1 RTA DCF ROUTING Error
	5.2.4.2 RTA DCF: RTDUMPDATA()

	6. GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP
	6. GENERIC ACCESS PACKAGE (GRASP)/ENHANCED GRASP
	6.1 PURPOSE
	6.2 GRASP/EGRASP OVERVIEW
	6.3 GRASP/EGRASP CAPABILITIES
	6.3.1 Data Transfer Functions
	6.3.2 Breakpoints
	6.3.3 Overriding A Default Time Limit
	6.3.4 Transfer Trace Function
	6.3.5 Trace And Matching Messages

	6.4 LAYOUTS
	6.4.1 Input Message Acknowledgements
	6.4.2 Register Mnemonics
	6.4.3 GRASP/EGRASP Output Message Layout

	6.5 GRASP/EGRASP EXAMPLE

	7. GENERIC UTILITIES
	7. GENERIC UTILITIES
	7.1 GENERIC UTILITIES OVERVIEW
	7.2 CREATE AND SAVE A BREAKPOINT FOR FUTURE USE - GENERAL

	8. INTERRUPT ANALYSIS
	8. INTERRUPT ANALYSIS
	8.1 3B20D PROCESSOR INTERRUPTS
	8.1.1 Introduction to 3B20D Processor Interrupts
	8.1.2 Interrupt Stack
	8.1.3 Error Interrupt Handler
	8.1.4 Execution Levels
	8.1.5 Non-Operational Interrupt: Error
	8.1.5.1 Introduction to Non-Operational Interrupt Errors
	8.1.5.2 Software Error Handling
	8.1.5.3 Hardware Error Handling

	8.1.6 Non-Operational Interrupt: Maintenance
	8.1.7 Error Register
	8.1.8 Interrupt Source Register
	8.1.9 Interrupt Masking

	8.2 MOTOROLA 1 MC68000 PROCESSOR FAMILY INTERRUPTS
	8.2.1 Module Controller/Time Slot Interchange
	8.2.1.1 MCTSI Functions
	8.2.1.2 Network Control and Timing Links
	8.2.1.3 Service Groups
	8.2.1.4 Scan and Distribute Operations
	8.2.1.5 MCTSI Subunits
	8.2.1.6 MCTSI Interfaces
	8.2.1.7 ISDN Peripheral Units

	8.2.2 Categories Of Interrupts
	8.2.2.1 Interrupt Categories
	8.2.2.2 Service Requests
	8.2.2.3 PICB Circuitry Related Errors
	8.2.2.4 Control Interface Errors
	8.2.2.5 Time Slot Interchange Errors
	8.2.2.6 Signal Processor Errors
	8.2.2.7 Dual Link Interface Errors
	8.2.2.8 Switching Module Processor Errors

	8.2.3 Interrupt Levels
	8.2.3.1 Interrupt Priority Levels
	8.2.3.2 SM Interrupt Levels
	8.2.3.3 Vectored and Autovectored Interrupts

	8.2.4 MCTU Interrupt Registers
	8.2.5 Module Controller Interrupts (Level 7)
	8.2.5.1 Module Controller Interrupt Registers
	8.2.5.2 Reset Source Register
	8.2.5.3 Software Error Source Register
	8.2.5.4 Hardware Error Source Register
	8.2.5.5 Memory Error Source Register
	8.2.5.6 DLI Error Source Register

	8.2.6 Subunit and Peripheral Hardware Interrupts (Level 4)
	8.2.6.1 Subunit and Peripheral Hardware Interrupt Registers
	8.2.6.2 PIC B Register
	8.2.6.3 PIC C Register
	8.2.6.4 PI Error Source Register
	8.2.6.5 CI Error Source Register
	8.2.6.6 SP Error Source Register
	8.2.6.7 TSI Error Source Register 1
	8.2.6.8 TSI Error Source Register 2
	8.2.6.9 TSI Error Source Register 3
	8.2.6.10 DLI Error Source Register 1
	8.2.6.11 DLI Error Source Register 2

	8.2.7 Motorola MC68XXX Processor Family Distinctions
	8.2.7.1 Family of Motorola MC68XXX Processors
	8.2.7.2 MotorolaMC68000 Processor
	8.2.7.3 MotorolaMC68012 Processor
	8.2.7.4 MotorolaMC68020 Processor
	8.2.7.5 MotorolaMC68040 Processor
	8.2.7.6 MotorolaMC68060 Processor

	8.2.8 Interrupt Masking
	8.2.8.1 Interrupt Masking
	8.2.8.2 Status Register

	8.3 INTERRUPT RECEIVE ONLY PRINTER (ROP) OUTPUT
	8.3.1 AM Interrupt ROP Output
	8.3.2 SM Interrupt ROP Output

	8.4 INTERRUPT ANALYSIS EXAMPLE — HARDWARE
	8.5 INTERRUPT ANALYSIS EXAMPLE — SOFTWARE

	9. SINGLE PROCESS PURGE (SPP)
	9. SINGLE PROCESS PURGE (SPP)
	9.1 INTRODUCTION TO SINGLE PROCESS PURGE (SPP)
	9.2 SPP RECEIVE ONLY PRINTER (ROP) OUTPUT
	9.3 SPP EXAMPLE

	10. AUDIT ANALYSIS
	10. AUDIT ANALYSIS
	10.1 AUDITS OVERVIEW
	10.1.1 Application Audits
	10.1.2 UNIXRTR System Audits
	10.1.3 Static Data Audits

	10.2 USING AUDITS
	10.2.1 UNIXRTR System Audits
	10.2.2 SODD Audits
	10.2.3 Application Audit Analysis

	11. DATA COLLECTION AND ANALYSIS
	11. DATA COLLECTION AND ANALYSIS
	11.1 PURPOSE
	11.2 ENVIRONMENTAL CONDITIONS
	11.3 SM/CMP/PI/PH EVENT HISTORY
	11.4 FAULT CONDITIONS TO ESCALATE

	12. OSDS MONITOR
	12. OSDS MONITOR
	12.1 OSDS BACKGROUND INFORMATION
	12.1.1 OSDS Description
	12.1.2 Processes
	12.1.2.1 System Processes
	12.1.2.2 Terminal Processes

	12.1.3 Resources
	12.1.3.1 OSDS Resources
	12.1.3.2 Process Control Block
	12.1.3.3 Process Control Block Link Area
	12.1.3.4 Process Message Data Block
	12.1.3.5 Stack Control Block
	12.1.3.6 Message Control Block
	12.1.3.7 Timer Control Block

	12.1.4 Segment Breaks
	12.1.5 Processing Levels
	12.1.6 OSDS Messages
	12.1.7 Feature Execution (FEX)

	12.2 OSDS MONITOR OVERVIEW
	12.2.1 OSDS Monitor Purpose
	12.2.2 Functions
	12.2.3 The OSDS Monitor Buffer

	12.3 OSDS MONITOR INPUT MESSAGES
	12.4 OSDS MONITOR INPUT FLAGS
	12.4.1 Section Description
	12.4.2 Starting and Stopping The Monitor
	12.4.3 Messaging
	12.4.4 Per-Event Data
	12.4.5 OSDS Usage
	12.4.6 Data Dumps
	12.4.7 Client Data Dumps
	12.4.8 What To Do Flags
	12.4.9 What To Dump Flags (Per-Event Data)
	12.4.10 Dumped Data Description
	12.4.10.1 Introduction to Dump Description Tables
	12.4.10.2 SM and CMP Data Dump Description
	12.4.10.3 OKP Data Dump Description
	12.4.10.4 SMKP Data Dump Description
	12.4.10.5 MSKP Data Dump Description

	12.5 INPUT COMMANDS TO CLEAR AND DUMP THE BUFFER
	12.5.1 Section Description
	12.5.2 Zero The Monitor Buffer
	12.5.3 Output Data
	12.5.3.1 Input Messages for Data Output
	12.5.3.2 Output Messages

	12.5.4 Kill A Monitor Job

	12.6 USEFUL INPUT MESSAGE SEQUENCES
	12.6.1 Section Description
	12.6.2 Snap Per-Event Process and Messaging Data
	12.6.2.1 Snap Messages, No Processes
	12.6.2.2 Snap Messages and Processes
	12.6.2.3 Snap Processes, No Messages
	12.6.2.4 Snap Processes and Messages for a Port
	12.6.2.5 Snap Processes and Messages and/or State Definition Language (SDL) Trace Event Data for Four Ports
	12.6.2.6 Snap Processes for a Specific Program ID
	12.6.2.7 Snap Processes at a Specific Priority

	12.6.3 Snap Foreground And Messaging Data
	12.6.3.1 Snap Foreground Work, All Messages
	12.6.3.2 Snap Specific Foreground Entries, No Messages

	12.6.4 Snap Interject and Messaging Data
	12.6.4.1 Snap Interject Work, All Messages
	12.6.4.2 Snap Interject Work, No Messages

	12.6.5 Enable or Disable Monitor on Match or Mismatch
	12.6.5.1 Use Input Control Flags
	12.6.5.2 Enable Monitor on Data Match
	12.6.5.3 Disable Monitor On Data Mismatch
	12.6.5.4 Disable Monitor on

	12.6.6 SDL Trace
	12.6.6.1 SDL Trace for a Given SM
	12.6.6.2 SDL Trace for a Given Port
	12.6.6.3 SDL Trace for an Assert
	12.6.6.4 SDL Trace for an SM Overload

	12.7 OSDS MONITOR BUFFER LAYOUTS
	12.7.1 Section Description
	12.7.2 Buffer Layout for The AM
	12.7.3 AM Buffer Word Content
	12.7.4 Buffer Layout for The SM
	12.7.5 SM Buffer Word Content
	12.7.6 Buffer Layout for The CMP
	12.7.7 CMP Buffer Word Content

	12.8 SNAPPED DATA DUMP LAYOUTS
	12.8.1 Section Description
	12.8.2 DAD Data Dump Layout
	12.8.3 DAP Data Dump Layout
	12.8.4 F00 Data Dump Layout
	12.8.5 F01 Data Dump Layout
	12.8.6 F18 Data Dump Layout
	12.8.7 F22 Data Dump Layout
	12.8.8 F23, F25, F27, F29, F31 Data Dump Layout
	12.8.9 HUF, HIJ, HPD, HPY, HMX, HSX, HSP Data Dump Layout
	12.8.10 SEG Data Dump Layout

	13. OSDS OVERLOAD MONITOR
	13. OSDS OVERLOAD MONITOR
	13.1 OVERVIEW
	13.2 PCB OVERLOADS
	13.3 SCB OVERLOADS
	13.4 MCB OVERLOADS
	13.5 TCB OVERLOADS
	13.6 OUTPUT FILES
	13.6.1 Output File Location and Layout
	13.6.2 PCB Data Dump Layout
	13.6.3 SCB Data Dump Layout
	13.6.4 MCB Data Dump Layout
	13.6.5 TCB Data Dump Layout

	13.7 UP-LOADING CONTENTION

	A1. ENVIRONMENT TO PATHNAME CROSS REFERENCE
	A2. IS25, 3B20, AND 3B21 COMPUTER INSTRUCTION LIST (BY MNEMONIC)
	A3. Motorola 1 MC68000 PROCESSOR FAMILY INSTRUCTION SET
	A4. Intel 1 8086 AND 80186 PROCESSOR INSTRUCTION SET
	A5. PowerPC 1 PROCESSOR FAMILY INSTRUCTION LIST (BY MNEMONIC)
	A6. SWITCHING MODULE ASSERT ANALYSIS EXAMPLE AUDIT TRAIL
	GLOSSARY
	INDEX

