
Sun Microsystems Laboratories

Aikido

Programming
Language Reference

Manual

Issue 1.10

David Allison

Sun Microsystems Laboratories

© 2003 Sun Microsystems Inc.
4150 Network Circle
Santa Clara, CA
95054
USA

All Rights Reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 53.227-19.

The language described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending patents.

JavaTM and JavaScript are trademarks of Sun Microsystems Inc. Sun, Sun Microsystems and the Sun Logo
are trademarks or registered trademarks of Sun Microsystems Inc. UNIX® is a registered trademark in the
United States and other countries, exclusively licensed through X/Open Company Inc. All other product
names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INNACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Portions created by David Allison are © 2004 David Allison. All Rights Reserved.

Regular expression support is provided by the PCRE library package which is open source software,
written by Philip Hazel, and copyright by the University of Cambridge, England.

The source code the PCRE can be found at:

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

Sun Microsystems Laboratories

Chapter 1. A tour of Aikido..1-11

1.1. Heritage...1-11
1.2. Dynamic types ..1-11
1.3. Generic variables ..1-12
1.4. Block structure..1-13
1.5. Multithreaded programming ..1-15
1.6. Stream input and output ...1-15
1.7. Expressions and statements..1-16
1.8. Object Orientation ..1-17
1.9. Block extension ..1-17
1.10. Enumerated types ...1-17
1.11. Late binding..1-18
1.12. Access protection ...1-18
1.13. Exception handling...1-19
1.14. Why choose Aikido..1-19

1.14.1. What Aikido is good at...1-20
1.14.2. What Aikido is not good at...1-21

Chapter 2. So, what is a Aikido program anyway?...2-23

2.1. The basics ...2-25
2.1.1. Comments ...2-25
2.1.2. Reserved Words..2-25
2.1.3. Literals..2-25
2.1.4. Identifiers..2-27

Chapter 3. Values...3-29

3.1. Integer ...3-29
3.2. Real ...3-29
3.3. Character...3-29
3.4. Byte ...3-30
3.5. String...3-30
3.6. Vector..3-30
3.7. Byte vector..3-30
3.8. Map ...3-30
3.9. Object..3-31
3.10. Stream ...3-31
3.11. Function ..3-31
3.12. Thread ...3-31
3.13. Class..3-32
3.14. Monitor ...3-32
3.15. Package ...3-32
3.16. Interface ..3-33
3.17. Enumerations ..3-34

3.17.1. Extending enumerations ..3-36
3.18. Memory and Pointer...3-37
3.19. Closures ..3-38
3.20. None..3-38

Chapter 4. Packaging up your code...4-39

4.1. Package scope...4-40
4.2. Packages as namespaces...4-41
4.3. Package dangers ...4-42

Chapter 5. Declarations ..5-43

5.1. Variables ...5-43

Sun Microsystems Laboratories

5.1.1. Constants ..5-44
5.2. Scopes ...5-45
5.3. Blocks ...5-46

5.3.1. Block parameters..5-46
5.3.2. Parameter access control ..5-46
5.3.3. Parameter types..5-47
5.3.4. Default parameters...5-48
5.3.5. Reference parameters ..5-48
5.3.6. Variable parameter list ..5-49
5.3.7. Understanding parameter passing ..5-49
5.3.8. Static declarations..5-50
5.3.9. Static initializers...5-50
5.3.10. Forward declarations ..5-51
5.3.11. Function result types..5-52
5.3.12. Block equivalence ..5-52
5.3.13. Nesting blocks ..5-52
5.3.14. Block inheritance ...5-53
5.3.15. Interface inheritance..5-57
5.3.16. “Virtual” functions ..5-57
5.3.17. Block member resolution ...5-59
5.3.18. Implementing interfaces...5-61
5.3.19. Block extension...5-62

5.4. Functions...5-64
5.4.1. Native functions..5-64
5.4.2. Raw native functions ..5-65

5.5. Threads..5-65
5.6. Classes...5-66

5.6.1. Operator overloading ..5-67

Chapter 6. Expressions..6-75

6.1. Primary expressions ...6-76
6.1.1. Identifiers..6-76
6.1.2. Numbers and characters ..6-76
6.1.3. Vector and Map literals ...6-76
6.1.4. Strings...6-77
6.1.5. Inline blocks ...6-77
6.1.6. Anonymous blocks..6-77

6.2. Arithmetic operators...6-78
6.3. Bitwise operators ..6-80
6.4. Comparison and relational operators ...6-81

6.4.1. Instanceof ...6-83
6.4.2. The in operator...6-84

6.5. Assignment operators ...6-85
6.6. Conditional operator...6-86
6.7. Stream operator...6-86
6.8. Increment and decrement operators...6-88
6.9. Logical operators ..6-89
6.10. Call operator ...6-89

6.10.1. Value and reference parameters ...6-90
6.11. new operator ...6-91

6.11.1. Creating vectors...6-91
6.12. Subscript operator...6-93

6.12.1. Subscripting integers ...6-93
6.12.2. Subscripting vectors, bytevectors and maps ...6-94
6.12.3. Subscripting strings ...6-95

6.13. Member access operator...6-97

Sun Microsystems Laboratories

6.13.1. Access to overloaded operators...6-97
6.14. sizeof and typeof operators ...6-98
6.15. cast operator ...6-100
6.16. Builtin member functions...6-101

Chapter 7. Statements ...7-103

7.1. Declarations and expressions as statements ..7-103
7.2. Compound statements ..7-104
7.3. Selection statements ...7-106

7.3.1. The if statement ..7-106
7.3.2. The switch statement ..7-106

7.4. Import statement ...7-109
7.5. Using statement ..7-110
7.6. Iteration statements...7-111

7.6.1. The while, do and for statements ...7-111
7.6.2. The foreach statement ..7-112
7.6.3. Break and continue statements ..7-114

7.7. Return statement ...7-114
7.8. Exception statements..7-115
7.9. Delete statement ...7-115
7.10. Synchronized statement ...7-116

Chapter 8. Exceptions ...8-117

8.1. Throwing and catching exceptions ..8-118
8.2. Uncaught exceptions and stack unwinding ...8-121
8.3. Exceptions and runtime errors ...8-123

Chapter 9. Streams ..9-125

9.1. Stream operations ...9-125
9.1.1. Stream buffering...9-126

9.2. Reading and writing streams..9-126
9.3. Standard streams...9-127
9.4. File streams...9-128
9.5. Network streams...9-129

9.5.1. Passive and active connections ...9-130
9.5.2. Special considerations for network streams ...9-131
9.5.3. Datagrams ..9-132

9.6. Layering streams: stream filters...9-133

Chapter 10. Multithreaded programming ...10-137

10.1. Threads..10-137
10.1.1. Thread priorities ..10-138
10.1.2. Alternate threading model ...10-139

10.2. Monitors..10-139
10.2.1. Wait and notify for monitors..10-142
10.2.2. Mutexes...10-145
10.2.3. Semaphores ..10-146

10.3. Synchronization..10-147
10.4. Thread streams..10-148

Chapter 11. Writing reusable code..11-149

11.1. Import files..11-149
11.1.1. Search paths ...11-150

11.2. Native functions..11-151
11.2.1. Writing Native functions ..11-151
11.2.2. Deciding on what functions you need ...11-152

Sun Microsystems Laboratories

11.2.3. Declaring the native functions...11-152
11.2.4. Writing the C++ code..11-152
11.2.5. Compiling the C++ code...11-154
11.2.6. Linking the object code..11-155
11.2.7. Importing the shared object...11-155
11.2.8. Placing the files..11-155

11.3. Libraries ..11-155
11.3.1. The main function...11-156

Chapter 12. Macros ...12-159

12.1. The Inner Statement ...12-159
12.2. Macro arguments..12-160
12.3. Macro scope..12-162
12.4. Macro inheritance...12-163

12.4.1. Behavior of inner statement in inheritance...12-163

Chapter 13. Garbage collection ...13-165

13.1. Mark and Sweep Garbage Collection..13-165
13.2. Reference Counting Garbage Collection...13-166
13.3. Copying Garbage Collection..13-166
13.4. Other Garbage Collection algorithms..13-166
13.5. Garbage Collection in Aikido ..13-166
13.6. The finalize function ..13-168

Chapter 14. Dynamic Loading ...14-169

14.1. Dynamic expression evaluation ...14-169
14.1.1. Creating new variables..14-170

14.2. Dynamic code loading..14-171

Chapter 15. System Library...15-173

15.1. Summary...15-173
15.2. Extending the library..15-174
15.3. System Package ..15-175

15.3.1. Output of values ...15-178
15.3.2. Operations on values ...15-179
15.3.3. Operations on files and streams..15-180
15.3.4. Date and time ...15-181
15.3.5. Miscellaneous operations ..15-185
15.3.6. Executing Operating System commands ...15-185
15.3.7. Dynamic loading operations ...15-187
15.3.8. Signal handling ..15-187
15.3.9. Raw memory accesses..15-189
15.3.10. Regular expression matching ..15-191
15.3.11. Classes and packages ..15-191
15.3.12. System information variables ..15-194

15.4. Network package..15-195
15.5. Character typing package...15-196
15.6. Mathematics package ...15-197

15.6.1. Mathematical constants ...15-197
15.6.2. Mathematical functions..15-197

15.7. String object..15-198
15.8. Streambuffer object ..15-199
15.9. Properties object ...15-200
15.10. Containers ...15-201

15.10.1. List ..15-201
15.10.2. Vector ...15-202

Sun Microsystems Laboratories

15.10.3. Map...15-203
15.10.4. Stack ...15-204
15.10.5. Queue..15-204
15.10.6. Hashtable ...15-204

15.11. Security package...15-205
15.12. GTK+ Graphical Toolset package ...15-205

15.12.1. GTK+ resources...15-206
15.12.2. Signals ..15-206

15.13. Filename package ...15-207
15.14. Lexical Analyzer package..15-208

15.14.1. Adding tokens ...15-209
15.14.2. Extracting the token sequence ...15-209

15.15. Registry package (Windows® only)..15-211
15.16. JavaTM Object model ..15-212

Chapter 16. Worked example: A chat service ...16-215

16.1. Architecture ..16-215
16.2. Protocol...16-216

16.2.1. Rooms ...16-217
16.2.2. Users...16-217

16.3. Server ..16-217
16.3.1. The configuration file...16-218
16.3.2. Allowing connections from clients ..16-219
16.3.3. Processing client commands ...16-220
16.3.4. Users and rooms ..16-222
16.3.5. Server control...16-227
16.3.6. Executing user commands ...16-229
16.3.7. Complete server program..16-231

16.4. Client...16-241
16.4.1. Get the client properties ..16-242
16.4.2. Reading the user’s password...16-242
16.4.3. Get the default set of rooms...16-243
16.4.4. Log on to the server ...16-243
16.4.5. Getting input from user..16-245
16.4.6. Screen input and output ...16-246
16.4.7. Complete client program ...16-248

Chapter 17. Aikido Debugger ..17-271

17.1. Running the program..17-272
17.2. Breakpoints ...17-272

17.2.1. Stopping in a block...17-273
17.2.2. Stopping at a line ...17-273
17.2.3. Conditional breakpoints ..17-274
17.2.4. Clearing breakpoints ...17-274

17.3. Controlling execution...17-274
17.3.1. Where am I? ...17-274
17.3.2. Threads...17-275
17.3.3. Single stepping the program..17-275
17.3.4. Executing an expression ..17-276

17.4. Displaying information ..17-276
17.4.1. Printing expressions...17-276
17.4.2. Listing file contents ..17-277

17.5. Other commands...17-277
17.5.1. Aliases...17-277
17.5.2. History ..17-277
17.5.3. Show command ..17-278

Sun Microsystems Laboratories

17.5.4. Disassembly..17-278
17.5.5. Quitting...17-278

Chapter 18. Virtual Machine Instruction Set ..18-279

18.1. Instruction set summary ...18-279
18.2. Operands ...18-282
18.3. Notes ...18-282

Chapter 19. Regular Expressions ..19-285

Chapter 20. Grammar definition...20-307

20.1. Program structure ...20-307
20.2. Declarations ..20-308

20.2.1. Variables ..20-308
20.2.2. Blocks ...20-308

20.3. Statements...20-312
20.4. Expressions...20-315
20.5. Lexical conventions..20-319

Index... 323

A tour of Aikido

Sun Microsystems Laboratories

1-11

Chapter 1. A tour of Aikido

Aikido is an interpreted, dynamically typed language that can be used for general purpose programming but
is best suited for prototyping and scripting. It has been derived from the ideas present in a large number of
languages including Pascal, Ada, C, C++, JavaTM, JavaScript and Verilog. This chapter will give an
overview of the features of the language. Full information is available in the following chapters.

1.1. Heritage
Aikido has been a dream of mine for about 20 years now. In 1980 I began to program computers for fun
and learn more about the various languages out there. The first features that have become Aikido began
when I wrote a macro assembler for a 6502 machine. The assembler had a large amount of the features
found in Aikido today. The inner statement of the macro handlers came from that assembler. When I
began to learn more about high level languages I noticed the beauty of symmetry in language design.
Pascal was the first beautiful language I’d come across in university.

The structure of a Aikido program resembles that of a Pascal program. It is block structured, allowing
functions to be defined anywhere in the program, not just at the top level as in C, or just inside a class like
in the JavaTM programming language. The syntax of the program looks like C++ with the usual C++
operators and syntactic elements. For example, Aikido uses braces to enclose compound statements and
block bodies rather than the begin/end pairs of Pascal or Ada.

In designing the language, I chose C++ as the main language on which to be based. Where a feature is
present in multiple languages, I chose the C++ way of doing it. The reason for this is that C++ is a very
common language with which most professional programmers have had some experience. The JavaTM

language is also based on C++, so I would be in good company. The C++ language has gone through
rigorous standardization recently and has been defined by recognized experts in language design.

The name Aikido comes from the heritage of the language. It has evolved from all the languages with
which I am familiar, just as the Japanese martial art of the same name has evolved from the best parts of
other martial arts

Unlike most other languages, Aikido is an interpreted language. This means that there is no compiler that
produces object code to be run. The source text of the Aikido program is read directly by the interpreter.
All input to the interpreter is in the form of source code – there is no object code at all. Even the system-
supplied libraries are read as source code. This has advantages and disadvantages. The obvious
disadvantage is that the size of the input to the interpreter is larger than it would be if it was pre-compiled.
The size of the interpreter is also larger since it also incorporates a parser for the source code. The speed of
execution is also much slower than compiled languages.

The main advantage is that there is no separate compile phase, meaning that the time from editing the
source code to running is much reduced from a compiled language. This contributes to Aikido’s utility for
rapid prototyping where a fast turnaround from editing to running is essential.

1.2. Dynamic types
Aikido is a dynamically typed language. This is in contrast to all of the languages, from which it is
derived, which are all statically typed. The difference is that a variable in Aikido can take a value of any
type rather than having to explicitly say what type it is when a variable is declared. For example, in C++
you declare variables as follows:

A tour of Aikido

Sun Microsystems Laboratories

1-12

// C++ declarations
int maxval = 1000 ;
std::string name = “Dave” ;
const double pi = 3.14159265 ;
User *u = new User (name) ;

This shows a set of simple variable definitions (and declarations). Each of them is initialized with a value
(although this is not necessary, it is a good idea). Notice that each one specifies a type twice: once for the
declared type and once implied by the initializer.

The same set of declarations in Aikido:

var maxval = 1000
var name = “Dave”
const pi = 3.14159265
var u = new User (name)

Notice that there is no type specification for the variable – the type is inferred from the initial value
(variables and constants must be initialized in Aikido). A variable may be declared by the var, const and
generic keywords. A variable declared using the var keyword is a regular variable that can change value
but not type; one declared using the const keyword is a constant that cannot change value; the generic
keyword declares a variable that can change both value and type.

Aikido provides the following types:

• Integer - 64 bit signed integer
• Real - floating point number
• Character - 8 bit ASCII code
• Byte - 8 bit value
• String - sequence of characters
• Vector - sequence of values
• Bytevector - sequence of bytes
• Map - set of mappings from one value to another
• Object - user defined object
• Stream - Input/output communication channel
• Function - enclosure
• Thread - enclosure that executes in parallel with others
• Class - user defined type
• Monitor - user defined type with mutual exclusion protection
• Package - user defined program section
• Interface - user defined contract
• Enumeration - set of defined names
• Enumeration constant - a user defined member of an enumeration
• None - no type defined

All of the usual operators are present in Aikido and can be applied to any of the types, subject to certain
rules.

1.3. Generic variables
A variable declaration that is done using the generic keyword and defines a variable that can take any value
of any type at any time. For example:

generic x // generic variable
x = 100 // assign integer value

A tour of Aikido

Sun Microsystems Laboratories

1-13

x = “hello” // assign string value
x = func // assign a function value

The template feature in C++ provides a generic type mechanism of sorts. For example, the following
template function is generally quoted in the literature:

template <class T>
T max (T a, T b) {
 return a < b ? b : a ;
}

It is used to calculate the maximum of 2 values. It can be called with values of any type for which the less
than operator is defined. For example, the following calls can be made:

int ix, iy ;
std::string s1, s2 ;

int m = max (ix, iy) ;
std::string s = max (s1, s2)

The first call will instantiate a different copy of the template than the second call. The template mechanism
in C++ is a source level macro-like facility that actually compiles different copies of the code for each
instantiation.

In Aikido , generic variables simplify this substantially. The parameters to a Aikido function are generic
(unless otherwise specified). The following example shows the equivalent function to the C++ template
shown above:

function max (a, b) {
 return a < b ? b : a
}

The function can be called with any type for which the less than operator is defined. The difference
between this and the C++ template is that there is only ever one copy of the function. The Aikido functions
are truly generic, rather than the template facility that shoehorns generic functions into C++.

1.4. Block structure
Aikido programs are organized in a block structure similar to Pascal and Ada. The outer level block in
Aikido is called ‘main’ and is created automatically by the parser. This allows a simple Aikido program to
consist simply of a series of statements without any functions. For example, a program to count from 0 to
99 and print to the screen could be coded as:

foreach x 100 {
 System.println (x)
}

That’s the whole file. In C++ you would have to put this in a function called main. In the JavaTM language
you would have to define a class with a static function called main.

Inside the top level block can be other blocks. A block in Aikido is one of the following entities:

• Package
• Function

A tour of Aikido

Sun Microsystems Laboratories

1-14

• Thread
• Class
• Monitor
• Interface

A package is a block that represents a section of a program. A function is a block that is called, does
something and returns. A thread is a block that executes in parallel with other threads in the program. A
class allows the definition of a user-defined type. And a monitor is a user-defined type that is protected by
a mutual-exclusion lock.

An interface defines a contract for a set of members of a block. If a block implements an interface it is
mandated to provide at least the set of members defined in the interface.

Here is a very contrived example of a set of nested blocks:

// package to provide counter
package CounterExample {
 const LIMIT = 1000 // max range for counter

 // count
 public function count (from, to, inc) {
 if ((to – from) > LIMIT) {
 throw “too many iterations”
 }
 var x = from // current counter

 // function to increment the current counter
 function increment() {
 x += inc
 }

 // function to print the current counter
 function print {
 System.println (x)
 }

 while (x < to) {
 print()
 increment()
 }
 }
}

// check the arguments
if (sizeof (args) != 3) {
 throw “usage: count <from> <to> <inc>”
}

// args are strings, need them as ints
var from = cast<int>(args[0])
var to = cast<int>(args[1])
var inc = cast<int>(args[2])

// run the example
CounterExample.count (from, to, inc)

A tour of Aikido

Sun Microsystems Laboratories

1-15

The package CounterExample provides one public function count. This takes 3 parameters and counts,
printing the values to the screen. The count function has 2 internal functions (increment and print). These
are not really necessary in such a short example, but serves to illustrate the concept of nested blocks. The
nested blocks have access to all the variables of their enclosing block (the function count).

1.5. Multithreaded programming
Aikido provides a simple mechanism for writing programs with multiple threads of control. The threading
mechanism is very simple to use but very powerful. Thread synchronization facilities are provided to allow
threads to share data. The mainstay of the thread synchronization facilities is the monitor. This is an Ada-
like structure that allows only one thread inside it at one time. It also provides the ability for a thread to
wait for resources and notify other threads when resources become available.

The following example shows a simple threaded program:

monitor Semaphore (count = 0) { // simple monitor for a
semaphore

 public function take() { // take the semaphore
 while (count <= 0) {
 wait()
 }
 count--
 }

 public function give() { // give the semaphore back
 count++
 notify()
 }
}

// write to standard output with a semaphore to protect
thread writer (semaphore, s) {
 semaphore.take()
 System.println (s)
 semaphore.give()
}

var lock = new Semaphore(1) // an instance of the semaphore

foreach w 100 {
 writer (lock, “writer: “ + w) // start writer thread
}

For full information on multithreaded programs see Chapter 10.

1.6. Stream input and output
Contrary to C++ and the JavaTM language, Aikido provides full I/O facilities built in to the language. The
operator -> is the stream operator that allows the contents one value to be copied to another. A stream is a
type of value in Aikido that is a communications channel usually connected to a device. There are 3
predefined streams: stdin, stdout and stderr. These are connected to the standard input, standard output and
standard error devices of the operating system.

To write a value to a stream, the stream operator may be used:

A tour of Aikido

Sun Microsystems Laboratories

1-16

var name = “Dave”
name -> stdout

This writes the string name to the stream stdout. Streams can also be used for inputting values to the
program. For example:

var n = 0
stdin -> n

will read from standard input to the integer variable ‘n’. The usual conversions (in this case from ASCII to
binary) are performed when reading and writing to streams.

Streams may be connected to files, terminals, pipes, networks, threads and objects. A stream connected to
a network allows for a simple way to write network-based applications. A program talking to a network
does not even need to be aware that it is doing so.

1.7. Expressions and statements
Aikido provides the usual set of expression operators and control statements. In addition it provides much
higher level constructs than is normally seen in a programming language. These include:

• Strings. Many string manipulation operators are provided. Strings can be used as easily as integers
• Vectors. Vectors are sets of values. Many operations are available
• Maps. A map is an associative container associating one value with another.

These high level constructs make it much faster to write code as most of the functionality is already
available for you. For example, the string operations make string handling as easy as it would be in an old
BASIC program:

var name = “Aikido”
var s = name[0:2] // s = “Aik”

const version = 1.0 // real number
var s1 = name + “ version “ + version // s1 = “Aikido version 1.0”

Automatic conversions from one type to another are preformed seamlessly. Conversions from string to
integer are automatic (where you would have to call the atoi() function in C)

The set of expression operators found in C++ and the JavaTM language are provided with the addition of the
stream operator for input and output. A powerful member-testing operator is provided.

A powerful feature called ‘inline blocks’ allows statements to be used in an expression. This can be used
instead of defining a function that is called only once.

Blocks (functions, classes, etc) may be declared anonymously and used in an expression.

Statements are those usually found in languages such as C++ or The JavaTM language, with the addition of
a powerful foreach loop.

Statements provided include:

• if...else statement with elif clause
• switch statement that operates on any type, not just integer
• try...catch statement for exception handling

A tour of Aikido

Sun Microsystems Laboratories

1-17

• for, do...while and while loops
• foreach loop. Provides convenient iterator functionality
• import statement to allow for modularity
• using statement for namespace management
• break, continue and return

Full information on expressions and statements can be found in Chapter 6 and Chapter 7.

1.8. Object Orientation
Aikido is fully object-oriented. Although the language provides a rich set of types itself, Aikido allows the
user to define completely new types through use of classes. Classes are very similar to other object-
oriented languages, however in Aikido a class is a close relative to a function. This may be hard to see at
first, but a function is really an object whose lifetime is the time it takes to call the function and return. The
memory for the object is allocated when the call is made and deleted when the call completes.

Given that it is object-oriented, Aikido provides the ability for a class to inherit the characteristics of
another class. In fact, because classes and functions are so similar, you make a function inherit the
characteristics of another function (or any other block type).

A class defines a user-defined type. This type can also provide a set of operators that operate on objects of
that type. Aikido, like C++, allows the built-in operators of the language to be overridden for a class.

Aikido also provides the JavaTM interface model for block contracts.

1.9. Block extension
A unique feature of Aikido is the ability to extend an existing block. A block is defined in section 1.4. In a
regular language if you wanted to add a function (say) to a class you would have to either modify the
source code for the class, or derive a new class using inheritance. The former may not be possible or
desirable. The latter means that you have introduced a new type and now must replace all uses of the old
type with the new one.

Aikido allows a function (and anything else) to be added to the class (or other block) directly. Consider the
ubiquitous example of adding a function to an existing string class:

extend String {
 public function compareIgnoreCase (s) {
 // code for comparing
 }
}

The class String will now have a new function compareIgnoreCase().

The extension mechanism can be used to add anything to any block so it is even possible to add code to a
function.

1.10. Enumerated types
Languages have had enumerated types for years. Pascal used them extensively. C and C++ have the enum
type specifier that introduces a set of integer names into the program. Aikido takes the Pascal approach but
improves on it. An enumeration in Aikido is syntactically similar to C and C++ but semantically similar to
Pascal. A constant of an enumeration is a name that can be assigned a constant integral value. A variable
that has a value that is an enumeration constant can only be assigned other constants of the enumeration.
Writing out the variable writes out the enumeration name.

A tour of Aikido

Sun Microsystems Laboratories

1-18

Basically Aikido’s enumerated types are pure and true to the philosophy.

1.11. Late binding
The term late binding refers to the time at which the item referred to is linked to a real definition. Let’s
make this more concrete. If you refer to a variable in an expression the parser searches for the variable
with a certain name and places a pointer to a data structure representing the variable in the expression. This
will not change later on in the program. Similarly, if you refer to a function, the parser will find the
function and make a hard pointer to it – not to be changed later.

In C++, the term late binding refers to a call to a virtual function. If you refer to a member function of an
object through a pointer or reference the C++ compiler does not make a hard reference to a particular
function. Rather it makes a reference to a description of the function. The real function is determined at
runtime when the real type of the object is known. The JavaTM language also does this.

In Aikido this is extended further. In C++ a reference to a non-virtual function or data member of an object
is bound at compile time. In Aikido all references to members of blocks are determined at runtime. This
allows a reference to a block member to be made in the program before the block is actually defined. It
also means that a reference to a block member is made concrete when the actual type of the block is
determined at runtime.

The penalty for this feature is runtime speed. It is obviously slower to do a runtime search for a block
member than it is to statically determine the member at compile time.

In some respects this is similar to The JavaTM language’s call through interface ability, where a call made
to a function through an interface (as opposed to a class) causes a runtime search for the method signature.
Aikido, because of its dynamic type nature, extends this to all references to block members rather than just
methods (functions).

The C++ concept of a virtual function is the normal access method for all blocks in Aikido. If a derived
block provides a member that itself is a block and that member matches the name of a block in a
superblock then it behaves as what C++ calls a method override. In effect it replaces the superblock’s
member.

1.12. Access protection
Like most object-oriented languages, Aikido provides the programmer with control over the access to
members of blocks. Any declaration is Aikido has an access mode associated with it. The access modes
provided are:

• Public – available to anyone
• Protected – only available to the block itself and derived blocks
• Private – only available within the block itself

The access to a block member is determined at runtime when the actual block member is determined (see
section 1.11). This has a runtime cost.

It is important to note that in Aikido any member has an access mode, not just class members. A function
can provide public or protected members. This would be meaningless in the absence of the ability of a
function to be subject to inheritance. In essence, a function can provide a public interface that is accessible
to other functions or classes derived from it. For example:

function A {
 private var a = 1
 public var b = 2

A tour of Aikido

Sun Microsystems Laboratories

1-19

}

function B extends A {
 var x = a // error: a in not accessibla
 var y = b // ok: b is a public member
}

1.13. Exception handling
Exceptions are nothing new. Languages like C++ and the JavaTM language have had them for the few
years. Even good old BASIC had an exception mechanism. Aikido’s exception system is based on the
trusted try/catch/throw mechanism of C++ and The JavaTM language. Because Aikido is supposed to be
lightweight and quick to program, the exception system is not onerous to use. You can simply throw
anything you like at any time and an exception handler will catch it. There is no type specifier in the catch
clause so all exceptions are caught. For example:

try {
 do_something()
} catch (e) {
 if (typeof (e) == “string”) { // pass a string on
 throw e
 }
}

If an exception is uncaught and makes it all the way to the top level of the program a runtime error occurs
and the program terminates. This is unlike C++ where the program is aborted with a core dump. This
allows exceptions to be used as regular errors. For example, it is common to check the arguments of a
program on startup:

if (sizeof (args) < 2) {
 throw “usage: myprog file command”
}

1.14. Why choose Aikido
I am often asked why Aikido is any different or better than any other programming language. People often
see Aikido as another Perl, or a slow C++. Yes, Aikido can be viewed as just another programming
language written by someone keen on programming languages, but it is much more than that.

So why would you choose to write programs in Aikido as opposed to C++ (or even Perl if you are that way
inclined and can read line noise)?

I suppose the trite answer is “why not?” but that is avoiding the question. There is no simple answer but
there are some features of Aikido that make it much easier to write programs than it would be in another
language:

• Aikido’s syntax is very similar to C++ and JavaTM. There is a large community of people who know
and like this syntax. If you know either of these 2 languages you can write a Aikido program with
little or no learning. This is one criticism I have of Perl. The language syntax really does get in the
way no matter how is can be justified. This is, of course, just my opinion. Those who feel differently
can write their programs in Perl.

A tour of Aikido

Sun Microsystems Laboratories

1-20

• Aikido is interpreted. This seems a minor point but does make a lot of difference when you are
actually writing the programs. The fact that Aikido has no ‘compile and link’ phase means that the
turnaround time from editing your code to running it is much less than with a traditional compiled
language.

• Aikido is dynamically typed. When writing code in C++ or the JavaTM language you have to spend a
lot of time taking care of the types of the variables. You have to declare a variable with a certain type
and then make sure that all the functions it is passed to have a parameter of a matching type. The static
nature of C++ and the JavaTM language certainly mean that once the code is compiling it is closer to
being correct than before. In Aikido, all the type checking is done at runtime so getting is correct
means that the code must be executed. This delays the checking for correctness until later in the cycle
but the checks are still done.

• Aikido has high level constructs. These include commonly used types such as vectors, maps and
strings. A vector is one of the most common classes used in a modern C++ program. They have
effectively replaced simple arrays as they are extendible and have little or no access overhead.
Mapping one value to another is a feature that is needed in almost every program but requires the use
of a library class. Strings, of course, are very common. All these are built into Aikido and are as easy
to use as common integers. There is also a high-level foreach statement that is used to iterate though
any expression.

• Aikido has builtin stream input and output facilities. Nearly all programs take input and produce
output. Using Aikido the input and output of values is simple to use and can be directed to any device.
Writing to a network is as easy as writing to the screen. Streams can also be layered allowing
protocols and filters to be implemented very easily.

• Aikido is multithreaded. Writing a program using threads is very easy in Aikido, vastly simpler than
C++. Builtin monitors allow thread synchronization to be done with ease.

• Garbage collection is provided in the interpreter thus removing the burden from the user. Aikido uses
reference counting garbage collection thus spreading the cost throughout the runtime of the program.

• Aikido is object-oriented. This has been a part of Aikido from its birth and not shoehorned into the
language as an afterthought. Writing object-oriented programs in Aikido is very easy. There are even
features not found in other languages, such as object extension and function inheritance.

The only justifiable reason for choosing one language over another is one of cost. If it saves time and
money to use a certain language then that is a compelling reasons for do so. If the price of one language is
similar to another, the choice of a language depends on personal taste and knowledge. Certain languages,
however, do lend themselves to certain programming tasks better than others.

1.14.1. What Aikido is good at
Aikido’s many high level features make it suitable for programming a certain type of application. It is true
to say that Aikido can be used for more or less any programming task but it is better at some than others.
Here is a list of some of the application is could be used for:

• Rapid prototyping.
When writing a program for the first time in order to prove the concepts it is good to be able to
produce a solution quickly. If you code in C++ or the JavaTM language you spend a lot of time
getting the program to compile without errors – there are just so many details to take care of. This
usually involves checking types and inserting cast expressions to perform conversions. The
dynamic types of Aikido more or less free you from this burden. Aikido lets you write a program
very quickly to test the algorithms. The lack of a compile and link phase lets you insert debug and
trace statements in the program and immediately run it. Then, when the program is running (albeit
slower than it would in C++), you can easily edit it to convert it into your final language. I have
used Aikido for this on many occasions and it is definitely quicker (and therefore cheaper) to
program in Aikido and convert to C++ after the program is working than to code in C++ initially.

• Network programming

A tour of Aikido

Sun Microsystems Laboratories

1-21

Writing code that talks to network connections is non-trivial in most languages. This is because
the network support is provided by an external library rather than being built in to the language.
Thus the mechanisms used in the language for regular input and output cannot be used for talking
to a network without an abstraction mechanism. In Aikido the network support is built in to the
language – you can read and write a network connection as easily as you read and write a file.
The basic construct for this is the stream. Streams in Aikido can be layered in order to write
protocol handlers and filters.

• Multithreaded programming
Like network programming, writing programs with multiple threads is non-trivial. The thread
support is usually not provided as a language feature, but is an external library. Aikido changes
this so that thread support is a natural part of the language. Writing a program with threads
becomes as easy (notwithstanding the issues of synchronization) as writing a program with
functions.

• Scripting
Aikido has been used very successfully for writing scripts. Writing a script is not much different
from writing a regular program. The tasks involved are similar, possibly leaning more toward
running OS commands and processing the output. A scripting language usually has little or no
structural components – you write a file containing a set of commands and the script interpreter
executes the commands. Aikido can be written in a similar fashion. Like prototyping, the high
level features of the language make it easy to write scripts. Once you begin writing scripts in an
object oriented language, you won’t go back.

• String manipulation
Handling strings of characters and files in Aikido is very easy. The regular expression handling
features that are incorporated into the language (instead of being in a separate library) make string
processing very powerful. Whenever regular expressions are involved, it is easy for the program
to degenerate into something resembling line noise – with lots of special characters and
backslashes. I think this is a necessary evil when dealing with complex string manipulation.
Aikido also supports slicing of strings and vectors in a very flexible way.

• Tools
Conceptually there is not much difference between tools and scripts. Tools tend be more
functional that scripts and can include higher level parsing and text manipulation features. Aikido
has been used for writing various build tools and source level parsing tools. It is much easier to
write a complex tool in Aikido than use a scripting language such as Perl or one of the shells
available on UNIX®.

• GUI Prototyping
Aikido has an interface to the popular public-domain GUI toolset called GTK+. The interface
converts the C-style GTK+ functions into an object-oriented form. It is very easy to prototype a
GUI application using Aikido. It is even fast enough to run real applications without having to
rewrite them in C++ or Sun’s JavaTM language.

One last thing that Aikido is good at is being the control language for an assembler. This is, after all, what
it was designed to do.

1.14.2. What Aikido is not good at
So what can Aikido not do? It is not a replacement for C++. The very features that make Aikido suitable
for prototyping make it slow and not safe for full scale implementation of a reliable software project. The
dynamic types mean that the program cannot be type-checked unless all of the code has been run. The fact

A tour of Aikido

Sun Microsystems Laboratories

1-22

that it is interpreted makes it much slower to execute than a C++ program (possibly up to 100 times
slower).

So, what is a Aikido program anyway?

Sun Microsystems Laboratories

2-23

Chapter 2. So, what is a Aikido
program anyway?

Before we get to the interesting stuff we have to define what constitutes a program written in Aikido.

All the statements and declarations in a Aikido program reside in a package called main. The main
package is automatically by the Aikido interpreter before the program is read from the disk. It is as if the
programmer declared:

package main {
 const args = [<program arguments>]
}

and included all his statements inside the package body.

A package in Aikido is an enclosure that contains code to be executed and other declarations. The main
package is automatically given a constant vector of strings containing the set of arguments passed to the
program by the operating system.

As stated, the body of a package consists of a series of declarations and code statements. A declaration is a
variable, class, function or other enclosure. A code statement is something that is executed.

No reference manual for any language would be complete without the obligatory “hello world” program.
Here’s a version in Aikido:

System.println (“Hello world”)

That’s it...

What this does it to invoke the println function inside the System package to print the given string to
standard output followed by a line feed character.

We could, of course, make it more complex.

That was too trivial to act as a real example, so here’s a more complex piece of code that actually does
something useful.

// search the given stream for a regular expression

function grep (regex, instream) {
 while (!System.eof (instream)) { // until end of file
 var line = “” // variable to hold line
 instream -> line // read the line
 if (sizeof (line[regex]) != 0) { // contains regex?
 System.println (line) // yes, so print line
 }
 }
}

// check the arguments
if (sizeof (args) < 2) {

So, what is a Aikido program anyway?

Sun Microsystems Laboratories

2-24

 throw “usage: grep expr files...” // exception: args bad
}

var regex = args[0] // get regular expression
delete args[0] // remove from arg list

// now go through each remaining arg, calling the grep function

foreach file args {
 var instream = System.openin (file) // open a stream to the file
 grep (regex, instream) // call the grep function
 System.close (instream) // close the stream
}

This program shows a simple regular expression matcher for a set of files. Regular expressions are familiar
to those who use UNIX®. They allow the user to specify an expression that contains special characters that
match a range of characters in the input. The UNIX® program grep is a system-supplied program that
searches files for regular expressions. This example shows how a grep-like program may be written in
Aikido.

The first thing to notice is the complete lack of semicolon characters at the end of the lines. In other
programming languages (C, C++, JavaTM, Pascal, etc), you have to terminate all statements with a
semicolon character to satisfy the grammar of the language. In most cases, the semicolon is at the end of
the line, immediately followed by a line feed character. In Aikido, the line feed character is significant in
certain circumstances, this removing the need for an artificial end-of-statement character. In all languages
there is a natural end for most statements and expressions. Aikido makes use of this natural end to work
out what the programmer means. See section 7.2 for details on the rules and choices for this.

The program defines one function (called grep) taking 2 arguments: the regular expression to search for;
and the stream to search. The arguments to functions (and other blocks) do not need a type specified for
them. Aikido is a dynamic typed language and the type of a variable can be read at runtime. In this case,
the function is internal to the program and we know exactly what types will be passed to it.

The first argument is a regular expression. This is a string that may contain special characters that match
ranges of characters in the input.

The second argument is a stream. This is a builtin type that is a channel connected to an IO port. In this
case it is connected to an open file.

The body of the function is pretty obvious. It enters a loop, reading each line into a string variable until end
of file is reached. As each line is read, it is searched for the regular expression and, if found, output to
standard output. The search function uses the subscript operator to subscript a string with a string. This
results in a vector whose size is non-zero if a match is found.

The code of the main program first checks that we have been given the correct number of arguments.
Arguments are passed in the vector args, which is a vector of strings. There is one element in the vector for
each argument.

We extract the first argument (args[0]) as the regular expression and then delete the first element of the
args vector. This shifts all the remaining element down one.

We then enter a foreach loop, looping once for each element in the vector. We open a stream attached to
the file whose name is the element, call the grep function, and close the stream.

So, what is a Aikido program anyway?

Sun Microsystems Laboratories

2-25

2.1. The basics

Let’s get down to basics. The input to the Aikido interpreter consists of a sequence of characters in a file.
The file is divided into a series of lines, each terminated by a line feed character. The characters in a line
are grouped into a sequence of lexical tokens. Aikido is a case-sensitive language, meaning that an upper
case letter is treated as distinct from the lower case version of the same letter.

2.1.1. Comments
A comment is identical to those in C++. Comments are ignored by the parser and form no part of the
program. Both single and multi-line comments are supported. A single line comment begins with the
character sequence // and ends at the line feed at the end of the line.

A multi-line comment is a sequence of characters starting with the character sequence /* and ending with
/. It can contain line feed characters, but cannot contain the sequence / (multi-line comments do not
nest).

2.1.2. Reserved Words
Every programming language contains a set of lexical tokens that are defined as reserved. This means that
you cannot use an identifier with the same spelling as one of the reserved words. Aikido is no exception,
the following is the complete set of reserved words in the Aikido language:

class new delete import package public
for thread const try catch throw
function switch case default break continue
macro if else elif foreach while
operator generic null native monitor cast
private protected enum static using extend
return true false var sizeof typeof
interface implements do instanceof synchronized in
extends

Each of the reserved words is in lower case.

Note: Because the word ‘in’ is common in programs the keyword in can be used as an identifier in the
program.

2.1.3. Literals

Like any other programming language, Aikido allows the programmer to use literals. A literal is a lexical
token that is interpreted literally, like a number or a character constant, or a string.

2.1.3.1. Numbers
Aikido supports 2 different types of numbers: floating point and integer. A floating-point number is a
sequence of digits containing a decimal point. The number can be in exponent form by adding the normal
exponent suffix, that is ‘e’ or ‘E’ followed by a signed exponent.

So, what is a Aikido program anyway?

Sun Microsystems Laboratories

2-26

An integer number in Aikido has a base and a value. The base is the mathematical base of the number and
is one of: decimal, hexadecimal, octal or binary. As in C or C++, the base of the number literal is
determined from the initial characters of the number:

• 0x - hexadecimal
• 0b - binary
• 0 - octal

Any other number specifies a decimal number literal. The set of valid characters in the number is
determined by its base:

• Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, a, b, c, d, e, f
• Octal: 0, 1, 2, 3, 4, 5, 6, 7
• Binary: 0, 1
• Decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The end of a number literal is reached when a character not valid for the base is detected in the input
stream.

Examples:

1234 // decimal
0xffe0 // hexadecimal
033 // octal
0b110101 // binary
3.1415927 // floating point
1.23e+40 // floating point number in exponent form

2.1.3.2. Characters
A character constant is a single character enclosed in single quote marks. Only one character is allowed
within the quotes (unlike C++). The value of a character constant is the ASCII code for the character.
UNICODE or other non-english character mappings are not supported.

Like C and C++, a backslash in a character constant is used to escape special codes. The backslash is
followed either with a special character code or an octal or hexadecimal number. The following special
character codes are supported:

\a alert character
\r return
\n line feed
\t tab
\b backspace
\v vertical space

If the backslash is followed by the character ‘x’, then it is interpreted as a hexadecimal number. If it is
followed by a number in the range 0..7, is it interpreted as an octal number. Otherwise the character
following the backslash is read literally. In particular, the character constant ‘\\’ is a backslash character.

2.1.3.3. String literals
A string literal is a sequence of characters enclosed in double quote characters (“). Any double quote
character in the string literal must be escaped by preceding it with a backslash character.

So, what is a Aikido program anyway?

Sun Microsystems Laboratories

2-27

Inside the quote marks, backslashes can be used as in a character constant to specify a special character or
non-ASCII character.

“this is a string” // simple string
“\tPress any key to continue\n” // string with tab and linefeed characters
“\033[31m” // escape sequence (change color to red)
“Please enter value for \”name\”” // escaped quotes

2.1.4. Identifiers

An identifier represents a name in a program. An identifier is a sequence of characters that starts either
with a letter or an underscore character, and contains letters, numbers and underscore characters. As
Aikido is a case-sensitive language, upper and lower case letters are considered as different in an identifier.
Thus the identifiers mapset and MapSet are considered as distinct identifiers. You can’t use a reserved
word as an identifier (except in)

Valid identifiers:

count
__end
quite_a_long_identifier
AnotherName
result34_4
in

Invalid identifiers:

2beOrNot2be // starts with a number
sys$login // illegal character
thread // reserved word

Values

Sun Microsystems Laboratories

3-29

Chapter 3. Values

A program in any language manipulates a set of values. It creates them, copies them from one location to
another, inputs and outputs them and otherwise interprets them. A variable is a memory location that holds
a single value. Any value in a program has an associated type.

A value in a Aikido program has one of the following types:

• Integer - 64 bit signed integer
• Real - floating point number
• Character - 8 bit ASCII code
• Byte - 8 bit byte value
• String - sequence of characters
• Vector - sequence of values
• Byte vector - sequence of bytes
• Map - set of mappings from one value to another
• Object - user defined object
• Stream - Input/output communication channel
• Function - enclosure
• Thread - enclosure that executes in parallel with others
• Class - user defined type
• Monitor - user defined type with mutual exclusion protection
• Package - user defined program
• Interface - contract for interface contents
• Enumeration - set of defined names
• Enumeration constant - a user defined member of an enumeration
• Memory - the address of a block of raw memory
• Pointer - an address inside a block of raw memory
• None - no type defined

3.1. Integer

An integer is a 64 bit signed integral number. The range of an integer is –9223372036854775808 to
9223372036854775807 (approximately –9e18 to 9e18). Every value in the range is usable.

Integers can be manipulated by performing arithmetic on them. There is no overflow detection for integers.

3.2. Real
A real number is what is a floating-point number in IEEE double precision format. This allows numbers in
the range: 2.2250738585072014e-308 to 1.7976931348623157e+308.

As this is stored in floating point format, not all the values in the range are possible. Inaccuracies are also
probable during calculations.

Real numbers may be manipulated like integers, except there are certain operations that are not allowed:
shifting and bitwise operations being 2 examples.

3.3. Character

Values

Sun Microsystems Laboratories

3-30

A character is a value that maps to the American Standard Code for Information Interchange (commonly
known by the acronym ASCII). This defines a mapping for the characters commonly found in the English
speaking world.

Although there are many other characters present in use in the world, Aikido only supports those 256
characters mapped by the ASCII standard. This restriction may be lifted in future.

A character may be though of as an integer in the range 0..255 and behaves as such with respect to
arithmetic operations. It does, however, behave differently when input and output operations are applied to
it.

3.4. Byte
A byte is a value that holds a number between 0 and 255 (inclusive). That is, it is an 8-bit quantity. Bytes
are only really useful when extracted or inserted into bytevectors.

3.5. String

A string is an ordered sequence of characters. It has a certain length (possibly zero). A string with zero
length is called the ‘null string’ and is represented as “” in the Aikido program.

Strings may be manipulated by a restricted set of operators in the Aikido language. In particular, they may
be appended using the ‘+’ operator and subscripted using square brackets.

3.6. Vector
A vector is a value that holds a sequence of other values. It can be of any length (including zero). Each of
the values in the vector can be of a different type. Vectors are represented in the Aikido language by a
sequence of values (possibly none) enclosed in square brackets and separated by commas. For example,
the following is a valid vector literal:

[1,2,3,5,7,11,13,17,19]

representing the set of prime numbers below 20.

Vectors may be manipulated by various operators in the language. In particular, new values may be
inserted into them and others deleted. They may also be subscripted.

3.7. Byte vector
Whereas a vector contains values of any type, a byte vector contains a set of values which are of type byte.
There is no literal representation of a byte vector, but it can be created using the new keyword:

var vec = new byte [100] // vector of 100 bytes

3.8. Map
A map is a value holding a set of mappings from one value to another. Put another way, a map contains a
series of ‘value = value’ pairs. It is an associative container in that it associates one value to another.

A map literal is represented in the language by a series of ‘value = value’ pairs enclosed in braces and
separated by commas. For example, the following is a map:

{“Danville” = 15000, “San Ramon” = 12000, “Oakland” = 500000}

Values

Sun Microsystems Laboratories

3-31

which may represent the population of various Bay Area cities.

Each of the values in a map may be of a different type.

Maps may be manipulated by a restricted set of operators in the language. In particular, new mappings
may be added to them, others deleted and they may be searched by subscripting them.

3.9. Object
An object is an instance of a user defined type (defined using a class or monitor). They are created using
the new operator of the language. The contents of an object are accessed by use of the ‘.’ operator.

Objects may be deleted either by the garbage collector or by explicitly using the delete operator.

The reserved word null specifies the null object.

3.10. Stream
A stream is a channel attached to an IO port and used for sending and receiving data. Streams may be
attached to a file, screen, keyboard, network, or anything else. Standard streams are provided for the
standard file descriptors available to all programs (called stdin, stdout and stderr).

A stream is created when a file is opened or a network connection is made. You can read from and write to
a stream using the ‘->’ operator. There is an abundant set of library functions available to manipulate
streams.

3.11. Function

A function is an enclosure containing declarations and code. When the program invokes a function, control
transfers to the code of the function, which is executed. When the function returns, control is returned to
the statement after the function call.

A function can take a set of parameters, which are assigned values when the function is called. The
function can also return a single value to its caller.

The only valid operations on a function are to pass it around, to extend it, derive from it and call it.

A function is defined like:

function name (arguments) {
 // function body
}

3.12. Thread

A thread is very similar to a function, except that when it is invoked, the invoker continues execution
without waiting for the thread to return. The thread then executes in parallel with the invoker and all other
threads in the program.

Like a function, a thread may be passed a set of parameters, but may not return a value to the caller.

The same set of operations as a function may be applied to threads.

Values

Sun Microsystems Laboratories

3-32

A thread is defined like:

thread name (arguments) {
 // thread body
}

3.13. Class

A class is a user defined type. The Aikido language provides a rich set of predefined types for use in the
programs. By defining a class, you are extending the set of provided types with one of your own. When
you define a class, you give it a body and a set of operators with which to manipulate the body.

A class may be passed parameters, which are assigned values when the new operator is applied to the class,
thus creating a new instance of it (an Object). The body of a class may contain code that is executed when
the instance is created. This code is known as the constructor.

A class definition is very much like that of a function:

class name (arguments) {
 // class body
}

3.14. Monitor
A monitor is a user defined type with a special property – it guarantees mutual exclusion on any accesses to
it. This is essential when programming with threads as their nature means that certain data must be
protected against simultaneous update by multiple threads.

An instance of a monitor is created with the new operator (just like a class). The object created by the
monitor behaves just like a regular object, except that any access to it (invoking a method, reading or
writing an attribute) first gains a mutual exclusion lock on the memory. The lock is released when access is
no longer required.

A monitor definition is very similar to a class:

monitor name (arguments) {
 // monitor body
}

3.15. Package

A package is an enclosure defining a section of a user program. See Chapter 1 for full information on
packages.

A package is defined as:

package name {
 // package body
}

The package name can contain multiple identifiers separated by dots. For example:

Values

Sun Microsystems Laboratories

3-33

package com.sun.Aikido {
 // contents
}

This is equivalent to:

package com {
 public package sun {
 public package Aikido {
 // contents
 }
 }
}

3.16. Interface

An interface is a contract. An interface contains a set of members that have no definition but serve to
define a contract for a block to be defined later. In other words, if a block implements an interface it must
provide all the members defined in the interface.

The members of an interface do not have an access mode – the access is assigned by the implementing
block. They also do not have any bodies as these are provided by the blocks implementing the interface.
Here is an example of an interface:

interface Event {
 function isFatal : int
 function operate (para : integer = 0)
 operator -> (stream, isout)
}

This defines an interface that contains 3 members; 2 functions and an operator. Any block that implements
this interface must provide these 3 members, otherwise an error occurs. The members provided by the
block implementing the inteface must match the interface signature precisely. This means that it must
have:

1. the same number of parameters
2. the same return type (if it is a function)
3. the same variable argument status (…)
4. each parameter must have:

1. the same type (if defined)
2. the same default value (if defined)

Another purpose of an interface is to allow block equivalence to be tested. This can be done using the
instanceof operator. Consider the following example:

interface A {
}

class B implements A {
}

var b = new B // instance of B

Values

Sun Microsystems Laboratories

3-34

var x = b instanceof A // is B an instance of A? yes.

3.17. Enumerations
An enumeration defines a set of constants (enumeration constants). A value whose type is enumeration
may only be assigned one of the member enumeration constants. Effectively an enumeration is a user-
defined type whose values are limited to the constants held within.

For example:

enum Color {
 RED, GREEN, BLUE
}

Defines an enumeration (enumerated type) that contains the 3 constants RED, GREEN and BLUE. In C
and C++, an enumerated type contains a set of named integer constants, which (especially in C) can be used
interchangeably with regular integers.

In Aikido, an enumeration is very much like that of Pascal or Ada. The constants in an enumeration are not
integers but may also be assigned an integer value.. An enumeration should be used when the set of values
taken by an object are known when the program is written and the object cannot take any value outside that
set.

The enumeration in Aikido is pure. Once a variable has a value that is a member of an enumeration it
cannot be then made to take a value outside of the enumeration. For example, if you decide that a variable
has a value RED (indicating that it is a member of the Color enumeration), it doesn’t make any sense to let
the program assign it the value 1000, or “red”.

The identifiers in an enumeration can be considered as integer constants. The default values of the
constants are similar to that in C. The first constant has value 0 and each subsequent constant has a value
one greater than the previous constant. The value of an enumeration constant can be obtained by casting
the constant to an integer. In the enumeration Color, the values of the constants are 0, 1, and 2
respectively. If the default values are not desired, the constants may be given values by appending a
constant expression of integral type. Consider the following enumeration:

enum Type {
 INTEGER = 1
 REAL = 2
 STRING = 4
}

This defines an enumerated type with 3 constants (supposedly representing the types in a compiler). Each
enumeration constant has an integral value. The values may be an integral constant expression. For
example:

enum Opcode {
 IDENTIFIER = 1 << 0,
 NUMBER = 1 << 1,
 CHAR = 1 << 2
}

Most of the normal expression operators may be used in the constant expressions. The operands of the
expressions can be an integer, an enumeration constant or the literals true and false.

Values

Sun Microsystems Laboratories

3-35

The following operators are valid in a constant expression:

| ^ & == != < > <=
>= << >> >>> + - * /
% +(unary) -(unary) ! ~

The constant expression may also include a parenthesized constant expression.

To obtain the value of an enumeration constant you can cast it to an integer (see section 6.15 for
information on casts). For example:

var x = cast<int>(NUMBER) // sets x to the value 1 << 1 (2)

You can also use the enumeration constant as an index into a vector or in a range expression for the in
operator and foreach statement.

Once a variable has been assigned an enumeration constant you can perform the following manipulations
on it:

• Move the value to the next (n) value in the enumeration. The value of n can’t be greater than that
which put you at the last value in the enumeration

• Move the value to the previous (n) value in the enumeration. You can’t go past the start
• Send it to a stream

Consider the following examples:

var color = GREEN // assign member of Color
var nc = color + 1 // nc = BLUE
color = RED // reassign to RED
color += 2 // color = BLUE
color -= 1 // color = GREEN
color -> stdout // send to stream

Sending an enumeration constant to a stream will cause the name of the enumeration to be sent to the
stream. In the above example, the stream gets the characters: GREEN

Moving beyond the limits of the enumeration will cause a runtime error.

You can iterate through the members of an enumeration using the foreach statement:

foreach col Color {
 System.println (col)
}

You can also use an enumeration constant as an index into a vector:

var cols = new [sizeof (Color)] // declare a new vector
cols[GREEN] = 50
cols[RED] = “hello”
var a = BLUE
var b = cols[a]

Values

Sun Microsystems Laboratories

3-36

3.17.1. Extending enumerations
An enumerated type may be extended in 2 ways:

• By deriving a new type from it through inheritance
• By directly extending it

Consider the following enumerated type that would be present in a lexical analyzer of a compiler:

enum Tokens {
 IDENTIFIER,
 NUMBER,
 STRING,
 CHAR
}

This could be a base set of tokens that are recognized by the lexical analyzer. Say we are going to be using
the lexical analyzer in our project. If it is to be of any use, we need to be able to add to the set of tokens. In
C or C++, you would have to define a new enumeration containing the additional tokens and then use casts
to satisfy the compiler and stop it grumbling about type mismatches. For example, a function called
match() could be defined in C++ as follows:

bool Lex::match (Tokens tok) ;

This looks at the current token to see if it matches the one passed as a parameter, and if so moves on to the
next token and returns true. If there is no match is just returns false.

We can call this with one of our defined tokens with no problems:

if (match (CHAR)) {
 // process character matched
}

Say we defined a new set of tokens for our extended lexical analyzer:

enum NewTokens {
 SEMICOLON,
 DOT,
 STAR,
 SLASH,
 PLUS,
 MINUS
}

If we wanted to use these as a parameter to the match function we would have to use a cast:

if (match ((Tokens)PLUS)) {
 // process PLUS token
}

This makes for untidy code.

In Aikido we use a similar technique, but instead of defining a completely new type, we can just derive
from the original enumeration:

enum NewTokens extends Tokens {

Values

Sun Microsystems Laboratories

3-37

 SEMICOLON,
 DOT,
 STAR,
 SLASH,
 PLUS,
 MINUS
}

Now a constant in the NewTokens enumeration is just treated as a member of the Tokens enumeration.

Another approach is to extend the Tokens enumeration as follows:

extend Tokens {
 SEMICOLON,
 DOT,
 STAR,
 SLASH,
 PLUS,
 MINUS
}

The difference in the 2 approaches is that in the first case a new type name is formed and in the second, the
type name remains the same. This may be important if you are doing type checking in the program. In the
absence of type checking, the two approaches are similar.

The integer values of the constants added to the enumeration continue on from the values used in the
enumeration being extended or derived from. For example:

enum Numbers {
 ZERO, ONE, TWO, THREE
}

enum MyNumbers extends Numbers {
 FOUR // value 4
}

or:

extend Numbers {
 FOUR // again, value 4
}

3.18. Memory and Pointer
Memory values are created by calling the function System.malloc(). They represent the address of a block
of raw memory. The block is subject to normal garbage collection rules. A pointer is created by adding an
integer value to a memory value. The pointer must remain inside the block of memory allocated by the
malloc function. Adding or subtracting an integer to/from a pointer will yield another pointer, again inside
the memory block.

See section 15.3.9 for further information about raw memory functions.

Consider the following examples:

var mem = malloc (1024) // raw memory block

Values

Sun Microsystems Laboratories

3-38

var p1 = mem + 1000 // pointer to memory
var p2 = p1 – 100 // another pointer
var p3 = p1 – 1001 // error: outside memory
var p4 = p2 + 200 // error: outside memory
poke (p2, 1234,4) // poke value into memory
poke (p2+200, 1234, 4) // error: pointer is outside memory

3.19. Closures
A closure is a construct that contains enough information for a function, or other block, to be executed in
any context. Basically, this means that the block is packaged up with the complete ‘static chain’ required
for it to execute. The static chain contains the set of blocks that enclose the block. A closure is created
when a block is passed as an argument to or returned from another block. It is a garbage-collected entity
that will be deleted when it is no longer referenced. A consequence of closures is that stack frames are also
garbage collected and will be deleted only when there are no references to them.

The main use of closures is to enable a function to be passed to another function and called. Without
closures (as in older versions of Aikido), the calling function would have to be at the same lexical scope as
the function passed as an argument to it. Consider the following example:

var s = System.transform (“hello”, ctype.toupper)

This calls the library function ‘transform’ and passed a function from another package to it. The transform
function calls this function for every item is its first argument (the characters of the string “hello” in this
case).

The main advantage of closures is that the programmer doesn’t have to worry about the proper lexical
scoping of functions passed as arguments, thus relieving a heavy burden.

3.20. None

This is a special value that means “no value”. It is used in certain occasions when there is no value that can
reasonably be assigned. For example, the contents of a vector created by the ‘new []’ operator have the
value none.

Tip: a convenient way to assign the value none to a variable is to use the predefined identifier ‘none’, or to
assign it the expression {}[0]. This is an index of an empty map, which always results in the value none.

Packaging up your code

Sun Microsystems Laboratories

4-39

Chapter 4. Packaging up your code

Any sizeable program needs to be divided up into meaningful sections. In C you can divide it into a set of
files. In C++, you divide it into files and also use namespaces. The JavaTM language has the idea of a
package, where you specify the name of the directory in which the code will reside when compiled.

Aikido takes this one step further. Take the example of a grep program presented in Chapter 1.

All declarations and code at the top level in Aikido are in the package main. When the program executes, it
starts with the first statement in main and continues to the last one. This is useful for writing small
programs that do one thing, but if you want to write something that may be useful to other programs
(reusable code) you have to rethink the layout. One possibility is to create a single function for the whole
program and call it when you want to invoke the code.

function mygrep (regex, args) {
 // contents of the grep code here
}

// later in the program
mygrep (regex, args)

This is rather limiting, in that the function can only do one thing.

Another, better, alternative is to create a class containing the program and create an instance of it. You can
then invoke the methods of the class from anywhere. If we want to do this, it would be better to name the
class something that is more generic as it will be called upon to do more than one thing. Let’s call it
FileUtils.

class FileUtils {
 public function grep (regex, args) {
 // contents of grep here
 }
}

// later in the program
fileutils = new FileUtils()

fileutils.grep (regex, args)

This is more flexible. The FileUtils class can contain other functions that can be invoked. The
disadvantage of this is that the variable fileutils needs to be available to anything that wants to invoke a
method on the class. This means either passing it around as a parameter or making it a global variable.

The best approach for this problem is to use a package.

package FileUtils {
 public function grep (regex, args) {
 // contents of grep here
 }
}

// later in the program

Packaging up your code

Sun Microsystems Laboratories

4-40

FileUtils.grep (regex, args)

A package cannot have any parameters. It defines an enclosure that contains block members. The
members have access protection. The names within the package are local to that package and do not clash
with names in other packages.

A package name can be a sequence of identifiers separated by dots. This allows a ‘distinguished name’ to
be used for packages. Consider:

package java.lang [
 public class System {
 // body
 }
}

This defines a package whose name is ‘java.lang’ and which contains a single class ‘System’. This is a
shortcut for:

package java {
 public package lang {
 public class System {
 }
 }
}

The ‘System’ class inside the package has the distinguished name ‘java.lang.System’.

Another characteristic of a package is that you can add things to it after it has been defined. For example, if
I wanted to add a copy() function to the FileUtils package:

// somewhere in the program
package FileUtils {
 public function copy (from, to) [
 // contents of copy function
 }
}

// later in program
FileUtils.copy (“a.txt”, “b.txt”)

This piece of code can be placed anywhere in the program. What it does is to extend the package by
adding the function. Why would you want to do this? Maybe the file containing the original FileUtils
package code is not writable, or owned by someone else and you want to add your own function.

4.1. Package scope

A package looks a lot like a class but there is one major difference: you cannot instantiate a package. A
package has no storage associated with it. When a package is declared, all the variables defined inside the
package are placed in the enclosing block – there is not a new block allocated for it.

Packaging up your code

Sun Microsystems Laboratories

4-41

In technical terms, a package introduces a new lexical scope but not a new scope level. This distinction is
important because it enables the variables inside a package to be accessed even though there is no instance
of the package.

Thus a package introduces a new scope in which its variable names live.

4.2. Packages as namespaces
A namespace is an encapsulation for a set of names used in a program. Names used in one namespace to
not collide with those defined in another namespace. The use of namespaces removes the pernicious
problem of ‘namespace pollution’ where a program affects the names in another program by defining its
own names globally.

Every block in a Aikido program defines a new namespace. A scope is a namespace. This is not, however,
what is usually meant when people talk of the concept of a namespace. Generally speaking, a namespace
has evolved to mean a division of the main program in which the names are enclosed in a namespace
identifier.

For example, in C++, a namespace is defined like:

namespace mynames {
 int x ;
 void f() ;
}

This defines a namespace called mynames containing 2 names: ‘x’ and ‘f’. The names ‘x’ and ‘f’ do not
clash with names in other namespaces. Outside the mynames namespace, the variables can be referred to
as:

mynames::x = 1 ;
mynames::f() ;

That is, by prefixing the names by the name of the namespace, you can access the contents of the
namespace.

Another feature of the namespace mechanism in C++ is the ability to reach into a namespace, extract a
name and make an alias for it in your own namespace. This is done using the ‘using’ declarations and
directives. For example, if we wanted to make the function ‘f’ available as the local name ‘f’, we can do:

using mynames::f ;

// call the alias
f() ;

Aikido uses packages as namespaces. A package defines a block therefore it is automatically a namespace.
You can prefix a name inside a package with the package name to access it:

package Lex {
 public var currentToken = 0
 // others
}

var c = Lex.currentToken

Aikido also supports the ‘using’ concept. After a package is defined, you can issue a ‘using’ statement:

Packaging up your code

Sun Microsystems Laboratories

4-42

 using Lex
var c = currentToken

This is a simplified form of the C++ using. It only supports what is called a using directive, not a using
declaration. The difference is that a using directive takes all the names of a namespace and makes aliases
for them in the local namespace. With a using declaration, you can selectively choose which names to
extract.

One area where Aikido exceeds the C++ namespace mechanism is the ability to protect names inside a
namespace. Since a namespace is a package, the normal member access protections apply to any accesses.
Only those names that are marked public will be accessible from outside the namespace. Also, since they
are packages, namespaces can be derived from one another.

4.3. Package dangers

A package is an open enclosure. This allows other source files to contain different parts of the package. It
looks innocent enough to split a package over multiple files, and indeed it is a useful feature, but there is a
danger of which you should be aware…

Consider the following code:

package Parser { // a package for a parser
 function getToken() { // a function in the parser
 // body
 }
 // other bits
}

function print (s) { // a function outside the package
 // do something
}

package Parser { // more parser (in a different file, maybe)
 function error (s) { // an error function
 print (“Error: + s) // results in “Cannot call a value of type none”
 }
}

If you follow the above code, the call to the function ’print’ in the function ‘error’ results in a runtime error.
Why should this be?

The answer lies in the fact that the package is extended by the second package block and this results in the
code for the second package block being appended to the first block. When this is executed it is before the
function ‘print’ has been encountered and therefore the value of the variable holding the function body has
not yet been assigned a value.

Declarations

Sun Microsystems Laboratories

5-43

Chapter 5. Declarations

You’ve seen examples of declarations earlier in the document. The discussion on packages in the previous
chapter showed the declaration of a package. Here we will see other declaration in all their gory detail.

A program cannot do anything useful without having variables to work on. A variable is an example of a
declaration.

var nickname = “Dave”

Shows an example of a variable declaration. It declares a variable called nickname and assigns it an initial
value of the string “Dave”. This tells the interpreter to allocate space of the variable in the current scope.

5.1. Variables
A variable is a named location that can store a value. Variables are allocated space in the current scope.
When a variable goes out of scope its value is destroyed.

Aikido is a stack based interpreter and in this respect it operates just like a C++. When a scope is entered,
space is allocated for all the variables in that scope. All variables (with one notable exception) must be
initialized at point of declaration. This serves to assign an initial type to the variable. Once a variable has
been assigned a type, it cannot be assigned a value with a different type (unless the current type is none).
The one exception to this rule is a generic variable, which can take a value of any type at any time.
Variables that are generic do not need to be initialized when declared.

The var, const or generic declaration statements declare variables:

var name = “Joe” // a string variable
var count = 1234 // an integer variable
const MAX = 1000 // an integer constant
const FILENAME = “/tmp/x” // a string constant
generic rooms // a generic variable

Variables declared using var are known as regular variables. They are the most common sort of variables
in a Aikido program. Their value can be changed at any time (subject to the type restrictions mentioned
earlier). If the variable has been assigned a value of type none, then it can be changed to anything after
that.

Those variables declared using const are constant and their value may not be changed once it has been
assigned.

Generic variables do not need to be initialized and can be assigned any value at any time.

A variable doesn’t have to hold a number or string. It can hold a value of any type including function,
package and class. This allows functions and classes (and other blocks) to be treated as a scalar quantity
and passed around the program.

Consider the following set of variables and statements.

function print { // a function
}

Declarations

Sun Microsystems Laboratories

5-44

class Member { // a class
}

var name = “Dave” // string variable
name = 6 // error: cannot change type to integer

const MAX = 100 // integer constant
MAX = 101 // error: cannot change value of constant

var p = print // function variable
p() // call the function print

generic x
x = name // x == “Dave”
x = 6 * 5 +4 // x == 34

var type = Member // class variable
var q = new type () // instance of Member

The var, const and generic declarations allow multiple variables to be declared at one time. Simply
separate the declarations with commas:

var a = 2, b = 4
generic q, w, e
const max = 1000, min = 0

5.1.1. Constants
The keyword const is used to define a constant. A constant is a variable whose value cannot be changed
by assignment. Since Aikido is dynamically typed there are only a few rudimentary checks that can be
done to ensure that you don’t try to overwrite the value of a constant. The parser will not let you assign a
value to a constant once it has been set in the declaration. Subscripts of constants cannot be assigned to.
Consider the following examples:

const MAX = 100
const name = “fred”
const vals = [1,3,5,7]

var x = MAX // fine
MAX = 101 // error, MAX is constant
name = “joe” // error, name is constant
name[2] = ‘a’ // error, name is constant
vals[100] = 66 // error

When defining the formal parameters for a block it is useful to declare some parameters as const in order to
prevent their modification by the block. For example:

function f (a, const vec) {
 vec[3] = a // error, vec is constant
}

Declarations

Sun Microsystems Laboratories

5-45

5.2. Scopes
Before going any further, we need to introduce the concept of a scope. A scope is a collection of
declarations. There is one global scope in the program (corresponding to the package main). Each time
you declare a new enclosure inside main, you create a new scope. An example of an enclosure would be a
function or package.

A declaration inside a scope will not clash with declarations in other scopes. This means that you are free
to name your declarations anything you like inside a scope without having to pay regard to the names given
to declarations in other scopes.

When you are in a scope, you can reference the declarations in that scope. Scopes may be nested, meaning
you can open a new scope inside a scope. When you are in a nested scope you have access to the variables
within the scope and also variables in any enclosing scopes. The names in a nested scope take priority over
the names in an enclosing scope.

Any variable (or other declaration) must be declared before it can be used.

Here is a contrived set of scopes to explain the rules:

var x = 1 // variable x in scope main
var l = 10 // variable l in scope main

function y { // function y in scope main
 x = l // assign main.l to main.x
 var y = x // declare new variable y and assign main.x
}

class p { // class main.p
 var x = 2 // variable main.p.x
 x = l // main.p.x = main.l

 var l = 20 // new variable main.p.l
 if (q) {
 var x = 3 // new variable x inside block
 x = l // assign main.p.l to local x
 }

 function y (l) { // function main.p.y
 x = l // main.p.x = argument l
 }
}

x = l // main.x = main.l

As can be seen, the scope rules are obvious and make it possible to hide declarations on enclosing scopes.
In order to gain access to a declaration in an enclosing scope, you can qualify the declaration name with its
scope name.

var x = 10 // variable main.x

class p {
 var x = 20 // variable main.p.x
 x = 40 // main.p.x = 40
 main.x = 30 // assign to main.x
}

Declarations

Sun Microsystems Laboratories

5-46

5.3. Blocks
A block in Aikido is a named enclosure. Examples of blocks are packages, functions and classes. A block
contains executable code and declarations enclosed in a set of braces. For example, the function
declaration:

function func {
 // block body
}

Declares a function block. Blocks are referred to by name. The name is declared in the current scope and
must be unique in that scope.

5.3.1. Block parameters
Blocks can be declared anywhere but must be declared before they can be used. Blocks can take
parameters. These are appended after the block name in the declaration. The following is an example of a
function declaration with parameters.

function print (indent, text) {
 // function body
}

The parameters are enclosed in parentheses and consist of the 2 variables indent and text. The parameter
declaration does not specify a type for the parameters. This enables the parameters to be generic variables,
capable of taking any type. The type of the parameters can be checked in the function using the typeof
operator.

If there are no block parameters, you can either use an empty set of parentheses “()” or omit the parentheses
altogether. Consider the following function definitions:

function dosomething() {
 // body
}

function dosomething_again {
}

Both definitions specify functions that take no parameters. Which form to use is a matter of personal taste.
I tend to switch between them.

The parameters to a block may be declared constant by prefixing them with the keyword const. This
prevents assignment to both the variable itself and subscripts of the variable. For example:

function sortArray (const array) {
 // sort the array, but not allowed to modify it
}

Packages cannot have parameters.

5.3.2. Parameter access control

The parameters to a block are subject to the same access control rules as regular variables. In fact, a
parameter to a block is a regular variable inside the block whose value is assigned by the caller. By default

Declarations

Sun Microsystems Laboratories

5-47

the access mode for a parameter is private, just like a variable. You can modify the access mode by using
the access control keywords in the block parameter list. For example:

class Employee (public name, age, protected role) {
 // contents of class
}

var me = new Employee (“Dave”, 37, ENGINEER) // instance of Employee
print (me.name) // OK, name is public
print (me.age) // error: age is private

See section 5.3.17.2 for details on access control of block members.

5.3.3. Parameter types
Sometimes it is desirable to specify a type for a parameter. Aikido does not have any keywords for types.
To specify a type for a parameter, use the following notation:

function print (indent : int, test : string) {
}

This is reminiscent of the way Pascal and Ada do it. The ‘types’ int and string are not types at all, but are
constants initialized with values of the appropriate type. The notation after the ‘:’ in the parameter list is an
expression whose type is used to check the actual parameter type assigned to the parameter. The following
would be the same thing:

function print (indent : 1234, text : “hello world”) {
 // function body
}

The value of the type designator is always ignored, it’s just the type that matters. When the call is made,
the interpreter attempts to convert the actual parameter type to the type of the formal parameter as if by
using a cast operator. If the conversion is not possible a runtime error results.

So when do you decide to use a parameter type instead of leaving it generic? The choice is fairly arbitrary
for internal blocks. I tend to omit them if they are obvious. For an external block (one that is called from
outside your code) you should include the parameter types to ensure that the types are correct. Of course,
you can choose to omit them and do the checks for correct types inside the block body.

The following constants are created by the system as a convenience for use by the programmer when
specifying types for parameter values and for the cast operator. They are not reserved words.

const int = 0
const integer = int
const string = “”
const vector = []
const bytevector
const map = {}
const char = ‘a’
cont byte
const stream = stdout
const real = 0.0
const object = null

Declarations

Sun Microsystems Laboratories

5-48

const none

5.3.4. Default parameters
Parameters can also be given default values. The default value for a parameter is used when the caller does
not supply a value for it. In this case, the parameters with default values can be thought of as optional.

function writeString (text : string, stream = stdout) {
 // function body
}

Here, the function writeString takes to parameters: text (a string) and stream (a stream) with a default value
of stdout. This function can be called as follows:

writeString (“hello”, outstream)
writeString (“hi there”)

The first call writes the text to the stream outstream, while the second writes it to standard output. Default
parameters can only appear at the end of the parameter list. There cannot be any parameters without a
default value after one with a default value. For example, the following is illegal:

function f (t = 0, x) { // x has no default value
}

5.3.5. Reference parameters
One last feature of parameters is the ability to pass a parameter by reference. This allows the parameter to
be used as an output of the block. The syntax for this is the same as Pascal.

function getCoords (var x, var y) {
 x = screen.getX()
 y = screen.getY()
}

In this case, the actual parameters are passed by reference.

var x = 0
var y = 0
getCoords (x,y)

When the block is invoked, the values of the local variables x and y will be set. This can only be used
where the actual value has an address (i.e. is a variable). The interpreter will report an error if an attempt is
made to pass something else (referred in C literature as an rvalue) by reference. The only things that can be
passed by reference are:

• Variables
• Block members using a member access expression
• Subscript expressions (e.g. vec[4])

Declarations

Sun Microsystems Laboratories

5-49

5.3.6. Variable parameter list
You may define a block where the names and number of parameters is not specified in the formal
parameter list.

function printf (format, ...) {
 // body of function
}

In this case, the caller must supply at least one parameter (for the parameter format), but may provide any
number of additional parameters after that. The interpreter gathers the additional parameters into a vector
and passes the vector to the block as a parameter named args.

The block can then refer to elements of the args vector by subscripting. The first additional parameter is at
element args[0], the second as args[1], etc. The number of additional parameters can be obtained by the
expression sizeof (args)

For example, this function prints all the arguments to the given stream:

function printArgs (stream, ...) {
 foreach arg args {
 arg -> stream
 }
}

// called with
printArgs (outstream, 1,2, “hello”, Member)

It is also possible to make a function have only a variable set of arguments:

function f(...)
 // the args vector will contain all arguments
}

5.3.7. Understanding parameter passing
The semantics for passing parameters in Aikido is very similar to that of the JavaTM language:

• Scalar values are passed by value.
• Compound values are passed by reference

A scalar is something that is held within a single value. Examples are integers and characters. A
compound value is something that cannot be held in a single value, but need additional storage for it.
Examples of compound values are vectors, strings and objects.

When you pass a scalar to a block, a copy of the scalar is made and that is passed. If you modify the
parameter within the block, the actual value is not affected (because the formal value is a copy of the
actual).

If you pass an object (or other compound value), you are passing a reference to contents of the object. In
C++ speak, you are passing a pointer to the object. You can use this pointer to modify the object if you so
desire.

If you want to prevent the block modifying the contents of the object you must copy the object before
passing it to the block. This can be done by calling the function System.clone().

Declarations

Sun Microsystems Laboratories

5-50

5.3.8. Static declarations
A declaration that is marked static is one whose lifetime is greater than the block in which it is defined. A
static declaration is allocated memory at the top level of the program (main package). Consider the
following:

package P {
 class A {
 var a = 1
 static var b = 2
 }
}

This shows 2 block declarations. The first is a package named ‘P’. The second is a class within the class
named ‘A’. Inside the class there are 2 variables (‘a’ and ‘b’). The variable ‘a’ is allocated space inside the
class ‘A’, but ‘b’ is marked static, so it will be allocated space in the main package.

The effect of this is that the lifetime of ‘b’ is greater than that of ‘a’ because instances of the class ‘A’ can
come and go.

Static declarations are accessed just like regular declarations. It is only their location that changes. One
difference is that static blocks do not have a ‘this’ parameter passed to them and they can be invoked
through the name of their enclosing block. Consider:

class A {
 static function f() { // a static function
 }
}

A.f() // invoke the f() in A

Here the function ‘f’ is declared static. You can therefore invoke it through the class name rather than
having to do it through an instance of the class.

The initializer for a static variable must contain only other static variable or constants.

5.3.9. Static initializers
The keyword static may also be used to declare a section of code that is used to initialize a block statically.
This is very similar to the JavaTM concept of static initializers. A static initializer is executed when the
program starts. Its purpose is to initialize the members of a block (class, especially) that are statically
allocated. The initializer is executed early and only once.

Consider the following code:

class A {
 static var freelist = null // static variable

 static {
 freelist = new FreeItem() // initialize once
 }

The static initializer for the class A will be executed when the program starts and will only be executed
once.

Declarations

Sun Microsystems Laboratories

5-51

5.3.10. Forward declarations
Sometimes it is necessary to declare a block but not supply the body for the block. This happens when you
have 2 mutually recursive blocks (2 blocks that invoke each other). Although the Aikido interpreter can
invent variables for you, it will not let you call a variable it has invented. This is because it is invariably an
error.

A forward declaration of a block tells the parser that a block will exist in the a scope but that it is not yet
defined. This means that if you reference it in a later block it will refer to the correct declaration rather
than trying to invent one in the current scope.

The syntax for a forward declaration is:

blocktype name ...

Where blocktype is one of function, class, thread, monitor or package. The ellipsis notation (...) tells the
parser that this is a forward declaration.

You cannot use a forward-declared block as a base block for inheritance. Consider the following example:

package P {
 function A ... // forward declaration of A

 function B { // definition of B – call A
 A()
 }

 function A { // definition of A – call B
 B()
 }
}

You can also use block extension to achieve the same effect (see section 5.3.19). The above example using
block extension would be:

package P {
 function A {
 }

 function B {
 A()
 }

 extend A {
 B()
 }
}

The choice is yours.

Another trick you can play to handle forward declarations is to reference it via the this variable. Any
references to members of a block are performed at runtime rather than compile time so they are late bound.
This means that you can delay the lookup of the forward-referenced entity until runtime. Consider:

package P {
 function A {

Declarations

Sun Microsystems Laboratories

5-52

 this.B() // refer to B via this – late bound
 }

 function B {
 }
}

This will be slower to execute because of the additional runtime lookup of the function in the object.

5.3.11. Function result types
It is sometimes convenient to be able to specify that a function returns a specific type. This is useful where
you want to ensure that the function actually returns the specified type rather than being able to return any
type.

A function return type is a clause following the function declaration that specifies an expression whose type
is used to cast the actual return value of the function. If the cast cannot be performed a runtime error will
result. This can happen if the types cannot be cast.

If the function result type is omitted, the function can return any type and is said to be generic.

The following example shows a function return type specification:

function getValue (s) : int {
 // function body
}

The colon character is followed by a simple expression whose type only is used (the value is ignored). This
is very similar to the parameter type specifications. The effect is to cast any values returned by the function
to the type of the expression (integer in this case). So, if the function tries to return a real number or string
this will be converted to an integer and returned.

5.3.12. Block equivalence
A block in Aikido is a scalar variable in many respects. This allows you to assign them and retrieve their
value. Consider the following:

function A {
 }

function B = A

This defines a function A and then make another function B to be equivalent to A. They are, in effect, the
same function with 2 different names. You can do anything the B that is possible with A.

5.3.13. Nesting blocks
A block can contain any declarations. This not only refers to variables, but nested blocks also. A block
declared inside another block is local to the enclosing block. It has access to both its own declarations and
also the declarations of the enclosing block.

function write (thing, stream) {
 function writeInt {
 // code to write an integer

Declarations

Sun Microsystems Laboratories

5-53

 }

 function writeString {
 // code to write a string
 }

 if (typeof (thing) == “integer”) {
 writeInt ()
 } elif (typeof (thing) == “string”) {
 writeString ()
 } else {
 throw “Invalid type”
 }
}

The function write can be used to write integers and strings (to somewhere). It defines 2 internal functions
called writeInt and writeString. These functions are called with the appropriate parameter type as it is
determined by the body of the write function. The 2 internal functions have access to the parameters of the
write function so these do not need to be passed to them.

The ability to nest functions is present in the Pascal family of languages but is absent from the C family.

Although the examples given in this section all use functions as the block type, exactly the same rules apply
to classes, threads, packages and monitors.

This block structure is known as ‘lexical scoping’ in some literature. It is a powerful way of encapsulating
code and data. A nested block can access the contents of any direct parent block as if the contents were
declared inside the nested block itself. The usual access control protection doesn’t apply to access to parent
blocks. For example:

package A {
 private var x = 1 // private variable

 function B { // nested function
 var y = x // OK, x is also private to B
 }
}

var y = A.x // error: no access to private variable A.x

5.3.14. Block inheritance
Aikido allows blocks to inherit from other blocks. Only single inheritance is supported (no multiple-
inheritance). It is important to remember that a block in Aikido can be a function, class, package, thread or
monitor. This implies that a function can inherit from another function (and indeed any other block type).
This is a lot different from other object-oriented languages.

Inheritance allows a block to take advantage of the functionality provided by another block and add new
functionality for its own use. It is not the intention of this manual to delve into object-oriented theory –
there are numerous excellent books on that subject.

For the sake of clarity, we switch to using classes for examples of inheritance, just because that’s the
normal use of it. Let’s build a hierarchy of classes to represent the people employed by a company.

Declarations

Sun Microsystems Laboratories

5-54

class Employee (public name, public department) { // an employee with a
// name and department
 protected var currentJob = “” // currently assigned job
public:
 function setJob (job) { // assign a job
 currentJob = job
 }
}

// a manager – also an employee, but with a management level attribute
class Manager (n, d, public level) extends Employee (n, d) {
 currentJob = “manager” // set current job
 var group = [] // group of employees
public:
 function addGroupMember (employee) { // add an employee to group
 employee -> group
 }
}

// an administrator employee who is assigned to a manager
class Administrator (n, d, public manager) : Employee (n,d) {
}

Declarations

Sun Microsystems Laboratories

5-55

The above classes define a hierarchy as follows:

The syntax for block derivation is very similar to that of C++ except there is no private or protected
inheritance.

What we have defined is a block hierarchy of 3 classes. Each class has a name and a set of attributes. The
attributes are the variables inside the class. The blocks all take parameters and these parameters remain
part of the block attributes (this is substantially different from C++). You will notice that some of the
parameters have the keyword public in front of them. This allows the parameter to be accessible from
outside the block. The default access protection for parameters is private.

The default access protection for all the members of a block is private. This prevents those members being
accessed from outside the block. The keywords protected and public may be used to change the access
protection of a member. See section 5.3.17.2 on page 5-61 for further details on access protection.

When an instance of the block is created, the parameters are assigned values and the body of the block is
executed. When the body of a class, package or monitor is executed it is useful to refer to it as a
constructor. In the case of the Manager class, the constructor executes and does 2 things: sets the variable
currentJob to the string “manager”; and initializes the variable group to an empty vector. After that is
done, the constructor returns and the object is constructed.

One step was omitted from the above discussion of constructors. Before any of the code of a constructor is
executed, the code of the superblock (the parent in the derivation hierarchy) is executed. This sequence
continues up the hierarchy until the top is reached (only one level in this example).

A subtlety of the inheritance mechanism is that there will actually be 2 copies of the attributes of the
superblock when those attributes are passed as parameters. In the above example, the class Manager takes
3 parameters (n, d, and level). The n and d parameters are the name and department passed on to the
superblock (Employee). Since parameters remain as part of the block, the n and d parameters will contain
the same data as the name and department parameters of the Employee class. Thus there are actually 2
copies of the data. This is a little inefficient and care should be taken when designing a hierarchy.

So much for inheritance of classes - it is all pretty standard. A class is just a block, like packages,
functions, threads and monitors. The inheritance of packages and monitors is similar to a class so is easily
understood. The inheritance of a function or thread is a little different from other languages.

Let’s examine the inheritance of a function. Suppose we wanted to add a function to our class hierarchy to
print out the attributes of each of the classes. We could add a function print() to each of the classes that
prints to standard output.

Employee
 name
 department
 currentJob

Manager
 name
 department
 currentJob
 level
 group

Administrator
 name
 department
 currentJob
 manager

Declarations

Sun Microsystems Laboratories

5-56

class Employee (....) { // as before
 // ...
public:
 function print {
 System.print (“name: “ + name + “ department: “ + department)
 }

So much for the Employee class, what about the Manager? Well, it has to print the name and department
too, so we could make the print function in 3 ways:

• print the name and department attributes from directly from the employee class
• call the employee class’s print() function as the first thing done
• derive the manager’s print function from the employee’s print() function

The first is not good because we might add another attribute to the employee that we want printed and
would then have to add it the print() function of the manager too.

The second is fine, but what happens if we introduce another level into the hierarchy between the manager
and the employee? We would have to change the manager’s print function accordingly.

The third is the most flexible as it insulates us from any changes to the hierarchy. This is how you would
do it:

class Manager (......) { // as before
 //
 function print extends print {
 System.print (“ level: “ + level)
 System.print (“ group: ”)
 foreach e group {
 e.print()
 }
 }
}

So, a function can be derived from another function. Apart from the insulation issue discussed above, what
is the difference between deriving from a function and just calling the would-be superblock function as the
first statement?

The answer lies in the definition of a function in Aikido. A function is a block, just like a class. The only
difference is in the lifetime of the memory allocated for the function’s data. When you create an instance
of a class, the memory is allocated until the class is deleted. When you call a function, memory is also
allocated (usually on the program stack) but is freed when the function returns. If you call a function inside
another function, there is no way to access any memory of the called function after it returns (the memory
is free).

If you derive a function from another function, the call of the superblock function is made in the same
context as the function being called. This allows the superblock function to expose some public data to its
children (just like a class would). This makes for an efficient way to pass information between functions in
the same derivation hierarchy.

Another use of function derivation is to enforce preconditions on a set of functions. Consider the following
hierarchy:

Declarations

Sun Microsystems Laboratories

5-57

function checkRange (n) {
 if (n < 0 || n > 255) {
 throw “Invalid number value: “ + n
 }
}

function setX (x) extends checkRange (x) {
}

function setY (y) extends checkRange (y) {
}

This is a trivial example, but shows one use of function derivation.

5.3.15. Interface inheritance
Just like other blocks, interfaces (see section 5.3.18) may be derived from other interfaces. They cannot,
however, be derived from other block types, and blocks (other than interfaces) cannot be derived from
interfaces. Consider the following examples:

interface A {
 function f (a,b)
}

interface B extends A{ // OK, B is derived from A
 function g (c,d)
}

class C extends A { // error: cannot derive class from interface
}

class D implements A { // OK
 function f(a,b) {}
}

class E implements B { // error: function g() is not defined in E
 function f(a,b) {}
}

interface F implements B { // error: interfaces cannot implement interfaces
}

class G extends D { // OK, G also implements A
 }

5.3.16. “Virtual” functions
Aikido does not have the concept of a “virtual” function. Actually, it doesn’t have the concept of a non-
virtual function as all block members are inherently “virtual”. If a derived block provides a member with
the same name and number of parameters as an accessible member in a base block, then the derived block
member overrides the member in the base block. This only applies to block members that are themselves
blocks (functions, classes, etc.).

Declarations

Sun Microsystems Laboratories

5-58

For example:

class A {
 private function f { // private function
 }
 public function g { // protected is also ok
 }
}

class B extends A { // A is base block of B
 private function f { // no override
 }
 public function g { // overrides A.g
 }
}

Because the resolution of block members is done at runtime rather than at compile time, the override of a
block member only comes into affect if the overridden member is invoked from within the base class. For
example:

class A {
 private function f { // private function
 System.println (“A.f”)
 }

 public function g {
 System.println (“A.g”)
 }

 function show {
 f()
 g()
 }
}

class B extends A { // A is base block of B
 private function f { // no override
 System.println (“B.f”)
 }
 public function g { // overrides A.g
 System.println (“B.g”)
 }
}

var a = new A()
var b = new B()
a.f() // prints A.f
a.g() // print A.g
a.show() // prints A.f followed by A.g

b.f() // prints B.f
b.g() // print B.g
b.show() // prints A.f followed by B.g

Declarations

Sun Microsystems Laboratories

5-59

This mechanism allows a derived block to change block type of a member in a base block. This can be
useful if, for example, you wanted to change a function in a base block into a thread.

class X {
 public function run() {
 }
}

class Y extends X {
 public thread run() {
 }
}

I can’t really think of a reason for overriding a class (say) with a function, but it is indeed possible to do so
if someone finds a good application.

5.3.17. Block member resolution
When you need to access a member of a block you do so by use of the ‘.’ operator. The actual resolution of
the member is not done when the program is parsed, but rather when it is actually running. Because the
language is dynamically typed, there is no way for the parser to know what the real type of a variable is
until it is running.

This has some advantages and disadvantages. The disadvantage is that you will not get an early warning of
access to undefined members in blocks. Other, statically typed, languages detect undefined members when
the compiler runs.

The advantage is that there is rarely a need to cast an object of one type to one of another. For example,
consider the following classes:

// a generic tree node
class TreeNode (opcode) {
public:
 var left = null // left pointer
 var right = null // right pointer
}

// tree node for a number
class Number (value) extends TreeNode (NUMBER) {
 public function getValue() { // get the value of the number
 return value
 }
}

// tree node for an identifier
class Identifier (spelling) extends TreeNode (IDENTIFIER) {
 public function getSpelling() {
 return spelling
 }
}

// print a whole tree, a node at a time
function printTree (tree) {
 if (tree = null) {

Declarations

Sun Microsystems Laboratories

5-60

 return
 }

 printTree (tree.left) // print left tree

 switch (tree.opcode) { // look at opcode
 case NUMBER:
 System.print (“NUMBER: “)
 System.println (tree.getValue()) // just call the getValue() function
 break

 case IDENTIFIER:
 System.print (“IDENTIFIER:)
 System.println (tree.getSpelling())
 break
 }

 printTree (tree.right) // print the right node
}

If you can follow the printTree() function, it first calls itself recursively to print the left node, then it prints
the node it is passed, then does the same for the right node. The important section is in the switch
statement. It switches on the opcode and has cases for NUMBER and IDENTIFIER. A number is a tree
node that holds the value of the number. We want to print this as part of the print routine.

In a static typed language, you would have to cast the tree pointer to the appropriate type before
dereferencing it to call the getValue() function. Let’s see what the equivalent function would be in C++
(given the same classes and functions).

void printTree (TreeNode *tree) {
 if (tree == NULL) {
 return ;
 }

 printTree (tree->left) ;

 switch (tree->opcode) {
 case NUMBER: {
 Number *num = static_cast<Number*>(tree) ; // cast to Number*
 std::cout << “NUMBER: “ << num->getValue() << ‘\n’ ;
 break ;
 }

 case IDENTIFIER: {
 Identifier *id = static_cast<Identifier*>(tree) ; // cast to Identifier
 std::cout << “IDENTIFIER: “ << id->getSpelling() << ‘\n’ ;
 break ;
 }
 }
 printTree (tree->right) ;
}

Notice that the code is very similar, the only difference being the lack of a cast to the real type for the tree
node.

Declarations

Sun Microsystems Laboratories

5-61

5.3.17.1. The this variable
When in a block, a special variable with the name this is created by the interpreter. The this variable is set
up to point to the current object so that you can access an members of the current object by using the
notation:

this.member

Unlike C++ the name this is not a reserved word. It is the name of a system defined variable present in all
blocks. Any block that is a (non-static) member of another block is passed the this variable as an implicit
parameter when invoked.

The this variable is actually constant and cannot be written to by the program.

5.3.17.2. Access control
The access to the member is controlled by the access level assigned to the member in the block. There are
3 access levels:

• private: member cannot be accessed outside block
• protected: member can be accessed by derived blocks
• public: member can be accessed from anywhere

The default access mode for all members is private. You can change the access mode in 2 ways: prefix the
member’s declaration with the appropriate access keyword; or change the access mode for the whole block.

The first method is how it is done in the JavaTM language:

class Employee {
 var salary = 0 // private member
 protected function changeManager() // protected member
 public function print() // public member
}

If you omit the access mode keyword, the default for the block is used.

The second method is to change the current access mode. This is the C++ style.

class Employee {
 var salary = 0 // as before, private member
protected: // current mode now protected
 function changeManager() { // protected member
 }
public: // current mode now public
 function print() { // public member
 }
}

Which to use is really a matter of style. The use of the JavaTM method makes each member explicit about
its access mode. Use of the C++ method saves typing and time.

5.3.18. Implementing interfaces
As in the JavaTM language, Aikido allows a special block called an interface to be defined. This specifies
that any block that implements this interface must provide at least the members defined in the interface.
Consider the following interface:

Declarations

Sun Microsystems Laboratories

5-62

interface WindowInterface{
 function open (x,y)
 function close
}

This defines an interface that contains 2 functions. Any block that implements this interface must provide
at least those functions:

class Window implements WindowInterface {
 public function open (x,y) {
 // open the window at coords
 }

 public function close {
 // close the window
 }

 public function resize (w, h) { // extra function not in interface
 // resize the window
 }
}

If the block being defined does not honor the contract and provide the required members a compile time
error results.

The use of interfaces allows stricter control over the type system in the language. In the above example,
the name WindowInterface may be used to refer to any block that implements that interface.

Whereas Aikido only supports single inheritance of blocks (implementation inheritance in the parlance), it
does support multiple interface inheritance.

interface Aint {
 function f()
}

interface Bint {
 function g()
}

class C implements Aint, Bint {
 function f() {}
 function g() {}
|

5.3.19. Block extension
Aikido allows any block to be extended by adding new members to it. This feature is not available in
languages such as C++ where you have to either modify the original source code or derive a new class to
extend a class.

Declarations

Sun Microsystems Laboratories

5-63

Consider a package for string manipulation. Strings are always a good example for extension, as you can
never design a package containing all the features that everyone will want. Suppose our string package is
defined as follows:

package company.Strings { // package for all strings
 public class String (value) { // a string class
 public:
 function append (s) {
 value += s
 }

 // and other members
 }
}

We notice that the String class does not provide a toUpperCase() function. How do we add one? One
solution is to go into the source code and add it with a text editor. This may not be either desirable (if the
code is shared) or possible (you may not have write access to the file).

Another solution is to derive a new class from the String class. Call it MyString. Now we add the function
toUpperCase() to the MyString class. OK, but now we need to change all instances of String to MyString
so that we may use the toUpperCase() function. This is definitely doable, but is messy and error prone.

Another solution: define the function toUpperCase() to take a String as an argument and operate directly on
it. This might work if the contents of the String are publicly accessible, otherwise you will have to go in
and modify the access mode for it.

The best solution is to extend the String class with the desired function. Here’s how you would do it:

package company.Strings { // go into the correct package
 extend String { // extend the String class
 function toUpperCase() { // add the function
 // implementation of function
 }
 }
}

After this is done, the String class now has a new function. All existing code that uses the old String class
will still work, as they won’t call the new function. You can now use the toUpperCase() function on any
object of type String.

Notice that is was not necessary to extend the package. This is because packages are automatically
extended. If the String class was, for example, inside a class rather than a package you would have to first
extend the outer class, then extend the String class.

Extension is not limited to adding functions to classes. You can add anything to any block, including new
code to a function.

If you extend a block you can add parameters to the extension. The parameters must be given default
values as code that is ignorant of the extension will not pass values for the new parameters you add. For
example, you can extend the String class and add a parameter:

package company.Strings {
 extend String (defaultLength = 0) {
 // any other extensions here

Declarations

Sun Microsystems Laboratories

5-64

 }
}

Here, we added a new parameter to the String class in our company’s string package. Any existing code
will not see it and the value of 0 will be passed.

5.4. Functions
A function is a block that is called. When a function is called, control is transferred to the body of the
function after all the parameter values have been assigned. The function then executes until it returns. It
can return a value to the caller by use of the return statement.

function factorial (n) {
 if (n < 2) {
 return 1
 }
 return n * factorial (n – 1)
}

This shows the ubiquitous factorial function that calculates (inefficiently I might add) the formula n!. It is
passed a single parameter and calls itself recursively until the value of the parameter reaches the value 1.
Don’t try this for large values of n as it will overflow the stack quite quickly. The function returns the
value of the current calculation by use of the return statement.

Functions are invoked by a function call expression:

var f = factorial (10) // call the factorial function and assign to x

A function always returns when the thread of control drops off the end. If the caller of the function expects
a value to be returned and one is not returned then a value of type none is returned to the caller.

5.4.1. Native functions
As with any interpreted language, there needs to be a way for a program written in Aikido to make calls out
to code written in another language. Typically this is used to make calls to the operating system in order to
provide extensions to the facilities present in the language.

Aikido allows a function to be defines as native. This tells the interpreter to look for a native symbol in the
symbol table of the process and invoke it whenever the function is called. For example:

native function sin (d) // mathematical sin()
native cos (d) // cosine()

Note that the keyword function is optional.

It would be an inefficient use of resources to code these functions directly in Aikido since they already
exist in the operating system.

The declaration of a native function specifies the names of the parameters passed to the function. The
names are for documentation only but the number of parameters is important and is checked by the
interpreter. Unlike a regular function, the parameters may not be given a type or a default value. You can,
however, use the ellipsis notation to specify that the function takes a variable number of parameters.
Consider the following examples:

native printf (format, ...) // variable parameter list

Declarations

Sun Microsystems Laboratories

5-65

native f (a,b,c,d,e,f) // 6 parameters

The parameters for a native function can be declared to be passed by reference rather than by value. This is
achieved by prefixing the name with the reserved word var. For example:

native func (var a, b)

The first parameter passed to the native function will be passed by reference rather than by value. This
means that the native function can write to the caller’s variable.

5.4.2. Raw native functions
Native functions come in 2 flavors:

• Regular native functions. Where the code for the function is written in C++ and is linked into the
Aikido interpreter from a shared library. Regular native functions have an interface function that
obeys the rules for a Aikido native function

• Raw native functions. Where a function is available in the operating system and is a ‘simple’ function
you can call it directly from Aikido without having to write a special mapping function in C++0

Raw native functions are used when there is no regular native function available. This means that the
language first looks for a regular native function and if it can’t find it, a raw native function is created.
Consider the following example:

native malloc (size) // raw native
native sin (v) // regular native

How do you know if a function is raw or regular? There is no real way to do it just by looking at the
Aikido program. You will have to use the OS to find out if the symbol for the regular function exists.
Symbols for regular native functions are always called ‘Aikido__<name>’.

Declaring a function as ‘raw native’ tells the interpreter that this function exists in the operating system and
the interpreter arranges to call it directly. There are certain rules for raw natives:

1. The symbol must exist in the operating system or in a library loaded into the interpreter
2. There is a maximum of 10 parameters
3. The parameter types must be simple:

• Integers, characters, bytes or enumeration constants
• char * pointers

4. The return type must be simple (same as parameters)
5. No floating point is allowed.

When the call is made, integral parameters are passed as ints and strings are passed as char * pointers.

5.5. Threads
A thread is very similar to a function. It is defined in the same way except by use of the thread reserved
word rather than function.

thread serverloop (stream) {
 while (!System.eof (stream)) {
 // code for thread
 }
}

Declarations

Sun Microsystems Laboratories

5-66

The behavior of a thread is, however, much different from that of a function. When a thread is invoked the
invoker resumes execution immediately without waiting for the thread to execute. The thread executes in
parallel with all the other threads in the system (including the main program). When the thread returns it
terminates.

Consider the following code which could be seen in a server program.

foreach channel channels {
 var stream = getStream(channel)
 serverLoop (stream)
}

The loop creates a number of threads, all of which execute in parallel. The loop does not wait for the
threads to finish. The return value from the call to the thread is a stream connected to the thread as its input
and output streams. This can be used to communicate with the thread.

There can be many executing threads running at once in the program. Care must be taken to ensure the
integrity of any data shared among threads (as with any multithreaded program).

See the Chapter 10 for further information on threads.

5.6. Classes
A class is a user-defined type. It is the mainstay of object-oriented programming. When you define a
class, you are defining a data type and an associated set of operations (known as methods in the literature).
You can create instances of a class using the new operator. An instance of a class created in this way is a
value of type object.

A class is declared using the reserved word class.

For example, consider the following class declaration:

class User (name, password = “”) {
public:
 function validatePassword (pass) {
 return pass == this.password
 }

 function getName {
 return name
 }

 System.println (“User “ + name + “ created”)
}

This declares a class called User with 2 attributes (name and password). There are also 2 member
functions (validatePassword and getName). In addition, the password attribute has a default value of the
null string. The constructor for the class prints something to standard out (probably for debugging, but
who knows)

Instances of this class may be created:

var me = new User (“Dave”, “evaD”) // both name and password supplied

Declarations

Sun Microsystems Laboratories

5-67

var you = new User (“Sandra”) // only name supplied, password = “”

When each instance is created, the constructor prints information about the object just created to the screen.

5.6.1. Operator overloading
One powerful feature of object-oriented programming is the ability to use a user-defined type as if it is a
built-in type. The types built in to the language allow the use of the expression operators to manipulate
them. For example, given the following:

var x = 1
var y = 10
var z = 20

You can perform calculations using expression operators:

var result = x * y + z

This works because the language knows all about the type integer and how to manipulate it. The same can
be said for the other built-in types. For example, if you say:

var outs = “The result is “ + result

The language knows to convert the integer value result to a string before performing the addition.

In this sense, the built-in types are objects for which the language has built-in rules and has code to
explicitly deal with them. What, then happens if you try to use an object for which the language has no
rules? Consider the case of a complex number (used frequently in arithmetic and also in C++
documentation). This is usually implemented as a class:

class Complex (re, im) {
}

You can create instances of it using:

var v = new Complex (1, 3.1)
var c = new Complex (1.2, 2.1)

So far so good. What happens if you now want to add them together? One solution is to define a function
taking 2 parameters of type Complex and perform the addition. This won’t work unless the function has
access to the internal representation of the class (either directly to the variables, or through accessor
functions).

function complexAdd (a, b) {
 // add the Complex numbers a and b
 return result
}

// add 2 complex numbers together

var r = complexAdd (v, c)

This is rather untidy. A better approach would be the ability to overload the ‘+’ operator and provide a
definition for the Complex class.

Declarations

Sun Microsystems Laboratories

5-68

class Complex (re, im) {
 public:
 operator+ (c) {
 // add the contents of this object to ‘c’
 }
}

You can then use the normal expression syntax to perform the calculation:

var result = v + c

So, what are the rules for overloading operators? Firstly, the operator functions (they are treated exactly
like functions) must be inside a class (or monitor of course). Secondly, you can only overload the
following operators:

* () -> [] + - /
% ~ ^ ! & | <<
>> >>> < > <= >= ==
!= sizeof typeof foreach cast in

Thirdly, operators are not inherited from superblocks. This is because operators are only valid for classes
and the superblock of a class may be something other than a class. Also, it might be dangerous to inherit an
operator from another class when you are providing additional functionality on top of the class.

5.6.1.1. Binary and unary operators
A binary operator is defined as a function taking one argument. The function is called with the this
variable set to the left side of the binary operation and the argument set to the right side. The expression on
the right of the operator does not need to be the same type as the left.

For example:

class X {
 public operator * (p) {
 }

 public operator~() {
 }
}

var x = new X()
var r = x * 2

Here, the * operator has been overloaded. The operator function is called with this set to x and p set to the
integer value 2.

For a unary operator, the operator function is defined with no arguments. For example, the operator for
ones-complement (~) is overloaded in the above example. If this is called as:

var q = ~x

The function will be called with this set to x.

Declarations

Sun Microsystems Laboratories

5-69

5.6.1.2. The subscript operator []
The subscript operator is defined as follows:

operator[] (i, j = -1) {
}

It is passed either 1 or 2 parameters, depending on the form of the subscript operation. If it is passed one
parameter, the value of the second parameter is –1.

Which form is used depends on whether the subscript is a simple element or a range of elements.

var r1 = val[2] // called with one parameter
var r2 = val[2:6] // called with 2 parameters

The operator function can determine which form of subscript is required by looking at the value of the
second parameter (j)

5.6.1.3. The function call operator ()
By defining an operator of this type, you allow the programmer to call an object as if it is a function. The
operator function can take any number of parameters as long as the calls to the function match those
parameters.

class T {
 public operator() (a, b, c) {
 return a * b + c
 }
}

var t = new T()
var r = t (2,4,5)

sets the variable r to value 2 * 4 + 5 (13).

This form of operator overloading can be used to perform what are called ‘functors’ in the C++ standard
library.

5.6.1.4. The stream operator (->)
Aikido has a built-in operator for sending and receiving data over streams. Usually this operator is used
directly with values of type stream, but is it useful to be able to encapsulate the stream value in an object.
It can also be useful to treat an object as if it was a stream.

For example, suppose we have a class defined to represent a window on a screen. It might be useful to be
able to send data to the window and have it display the data, scrolling if necessary. It also might be useful
to allow the window to be used as input and enable the data to be read from it. Let’s define 2 classes, one
for a window to be used as output, and another for a window to be used as input.

class OutputWindow {
public:
 operator -> (data, isoutput) {
 if (isoutput) {
 // output to window, scrolling

Declarations

Sun Microsystems Laboratories

5-70

 } else {
 throw “Output window cannot be used for input”
 }
 }
}

class InputWindow {
public:
 operator -> (stream, isoutput) {
 if (isoutput) {
 throw “Input window cannot be used for output”
 } else {
 // read from window and write to stream
 }
 }
}

They may be used as follows:

var out = new OutputWindow() // new output window
var in = new InputWindow() // new input window

“hello world” -> out // write string to output

var str = “” // variable to hold input
in -> str // read from input window

As can be seen, the stream operator takes 2 parameters. The first is the expression to the left or right of the
-> operator. The second is a value of 1 if the first parameter is to the left of the -> operator, and 0 if it is to
the right. Another way of thinking of this is that the isoutput parameter is set to 1 if the stream operator is
pointing to the object, zero otherwise. That is, isoutput means that the object is being output to.

Which values are chosen depends on which of the operands of the -> operator contain the stream operator
function. If both the operands contain a stream operator function, the version with the second parameter set
to 0 is chosen.

In the above example, the stream operator for OutputWindow will be called to write the string. It will be
passed the variable out as the this parameter, and the string “hello world” as the data parameter. The
isoutput parameter will be set to 1.

For the case of reading from the InputWindow, the stream operator function will be passed the variable str
as the stream parameter and the value 0 as the isoutput parameter.

So, how would the stream operator for InputWindow be implemented to work for all cases?

This is one possible implementation:

operator -> (stream, isoutput) {
 if (isoutput) {
 throw “Cannot use input window for output”
 } else {
 readString() -> stream
 }
}

Declarations

Sun Microsystems Laboratories

5-71

The function readString() reads a string from the internal data structures of the window. The -> operator is
then used to output this to the stream parameter. This operator can now be used to read from the window
into any variable. Also, if the stream parameter is itself an object with a stream operator, it will be invoked.
So, you can do this:

var in = new InputWindow()
var out = new OuputWindow()

in -> out

And copy the data directly from the input window to the output window.

5.6.1.5. The sizeof and typeof operators
The sizeof and typeof operators are used to calculate the size and type of value respectively. They can be
used on any internal type. They can also be overloaded to work with any user-defined type. They both
take no parameters. For illustration, consider the following class. The member’s type and size can be
anything meaningful to the class.

class T {
 var type = “something” // set to something meaningful
 var size = 1234 // also set to something meaningful

 public operator sizeof() {
 return size
 }

public operator typeof() {
 return type
}

var t = new ()
var s = sizeof (t)
var t = typeof (t)

The sizeof operator returns an integer value representing the size of the class. This does not have to be the
number of bytes allocated for the class, but can be anything meaningful for the class. For example, if the
class contained a vector, the sizeof operator could return the sizeof the vector. If no sizeof operator is
defined for the class, the default return value is the number of variables in the class.

The typeof operator is used to inquire about the type of an object. The operator can be applied directly to
an object without the typeof operator overload, in which case the type of the class of which the object is an
instance will be returned. The typeof operator does not need to return a string value – it can return anything
that is useful. It can even make up the type on the fly:

class T (name) {
 public operator typeof() {
 return “T “ + name
 }
}

This makes it a truly dynamic type.

Declarations

Sun Microsystems Laboratories

5-72

5.6.1.6. The foreach operator
The foreach operator allows a class to provide an iterator. The foreach statement is used in Aikido to
iterate though all the values of an expression. For built-in types, the foreach operator can determine what
constitutes the elements of an expression (for example, the elements of a vector).

By overloading the foreach operator (called an operator, but really a statement) you can provide the
programmer with the ability to use the foreach statement on an object of your class as if it is a built-in type.

For example, suppose we have a class called Vector, that implements features on top of the built-in vector
type.

class Vector {
 var value = []
public:
 operator foreach() {
 return value
 }
 // other member functions and operators
}

var v = new Vector()
foreach element v {
 f (element)
}

The foreach operator has 2 forms: simple and complex

• Simple form. The operator has no parameters and must return something for which the foreach
operator is valid. This is the form in the above example.

• Complex form. The operator takes one parameter that is a reference to a ‘context’. This form is used
then you have a complex object for which the simple form will not suffice.

Consider the following example of the complex form of the foreach operator:

class List { // single linked list
 var start = null // start of list
 var end = null // end of list

 class Item (public value) { // a single list item with a value
 public var next = null // and a next pointer
 }

 public function insert (v) { // insert value into list
 var item = new Item (v) // make new list item
 if (end == null) { // list empty?
 end = item // assign end of list
 start = item // assign start of list
 } else {
 end.next = item // link to end of list
 end = item // this is now end of list
 }
 }

 public operator foreach (var it) { // iterate through all items

Declarations

Sun Microsystems Laboratories

5-73

 if (typeof (it) == “none”) { // first time in?
 it = start // yes, set context to first item
 return it.value // return item value
 } elif (it == end) { // beyond last iteration?
 it = none // tell caller that we are finished
 } else {
 it = it.next // in the middle of list, move context on
 return it.value // and return current value
 }
 }

In the above example the foreach operator takes a single parameter. This parameter is a reference to a
variable used to hold the current iteration context. The caller of the foreach operator sets this context to the
value none before the first call of the operator. This tells the operator that the caller wishes to start a new
iteration. The operator sets the context to the current position in the list and returns the value of the item
for that iteration. Then, for each additional iteration, the caller passes the context set by the operator. The
operator increments this context and returns the item for each iteration.

When the operator detects that we have reached the end of the list it sets the context to none again and the
caller stops the iterations.

If you think about what the context is: it is the context of the previous call to the operator by this caller. To
get to the next context we need to move it on before returning the value.

5.6.1.7. The cast operator
When you convert a value of one type to a value of another type it is commonly referred to as ‘casting’ the
type. An object may be defined to include an operator that is called when a cast from an instance of the
object to another type is attempted. The operator is called the ‘cast operator’ and is defined as:

class A {
 public operator cast (v) {
 // convert to type of v
 }
}

Now, when you try to convert the object to another type, the cast operator function will be called:

var a = new A()
var b = cast<string>(a)

This will call the ‘operator cast’ function passing an expression of type ‘string’ to it as a parameter. The
cast operator should examine the type of the expression it gets as a parameter to ensure that the conversion
is possible. It should return a value of the appropriate type after the cast is done. For example:

class Name (n : string) {
 public operator cast (v) {
 if (typeof (v) != “string”) {
 throw “Illegal cast of name to “ + typeof (v)
 }
 return n // n is already a string
 }
}

var name = new Name (“Dave”) // instance of Name object

Declarations

Sun Microsystems Laboratories

5-74

var hello = “Hello “ + cast<string>(name) // cast to string and append

5.6.1.8. The in operator

The Aikido language has an operator named in. This is used to test a value for membership of another
value. For example, it may be used on a vector to test if a value is a member of a vector:

var v = [1,2,3,4]
var x = 3 in v // is the value 3 a member of v (yes)

For user defined types, the block can provide an instance of the operator in. This operator will be called
when it is desired to test for block for membership. For example:

class List { // single linked list
 var start = null // start of list
 var end = null // end of list

 class Item (public value) { // a single list item with a value
 public next = null // and a next pointer
 }

 public function insert (v) { // insert value into list
 var item = new Item (v) // make new list item
 if (end == null) { // list empty?
 end = item // assign end of list
 start = item // assign start of list
 } else {
 end.next = item // link to end of list
 end = item // this is now end of list
 }
 }

 public operator in (v) { // test for membership
 for (var item = start ; item != null ; item = item.next) { // go through all
items
 if (item.value == v) { // value matches?
 return true // return true
 }
 }
 return false // no match
 }

As can be seen, the in operator takes a single parameter and returns true or false depending on whether the
parameter is a member of the object or not.

The above example may be used as in:

var list = new List()
var found = 10 in list

Expressions

Sun Microsystems Laboratories

6-75

Chapter 6. Expressions

An expression consists of a series of operators and operands. An operator is a token that performs some
function on the operands. For example, the expression:

(quantity * price) – 3.1

is an expression containing 2 operators and 3 operands. The operators are the ‘*’ and ‘-‘ symbols, with the
operands being the variables quantity and price, and the number 3.1.

All expressions produce a value. From the simplest expression (a single number or variable), to the most
complex expression with many operators.

The type of an expression depends on the types of the operands in the expression. In the above example,
the value would be real. An expression can have any type including vector, map, function, class, etc.

The Aikido language provides a rich set of operators and defines a meaning for them for all the built-in
types. You can provide your own operator functions for user-defined types. See section 5.6.1 for details
on how to overload operators for user-defined objects.

The expression operators are organized into a set or priorities. An operator with higher priority is always
executed before one of a lower priority. For example, the multiply operator (*) is higher priority than the
addition operator (+) so, consider the following:

1 + 7 * 4 // value 29
(1 + 7) * 4 // value 32

The following table shows the relative priority of all the operators. The highest priority is at the top of the
table.

new operator
[] () . ++ -- (postfix)
sizeof typeof cast ! - + ~ ++ --
(unary)
* / %
+ -
<< >> >>>
< > <= >= instanceof in
== !=
&
^
|
&&
||
? :
->
= += -= *= /= %= <<= >>=
>>>= &= |= ^=

Expressions

Sun Microsystems Laboratories

6-76

6.1. Primary expressions
The simplest expression is the primary expression. These are the references to variables, numbers, strings
and other literals. The primary expression is the highest level expression. They have priority over all the
other expression operators. Primary expressions consist of the following:

(expression) // parentheses
identifier // a variable
number // number literal (integer or real)
true // integer value 1
false // integer value 0
null // null object
[expression list] // vector literal
{ map element list } // map literal
new-expression // create a new object
direct-operator-expression // call an operator directly
`statements` // inline block
anonymous-block // anonymous block definition

6.1.1. Identifiers
An identifier is a reference to a variable. The interpreter searches for the variable by traversing the scope
levels in the program in the following order:

1. the current scope
2. the static scope list, consisting of the current block and traversing up the chain to the enclosing blocks
3. any blocks listed in the using statements of the blocks as the search progresses up the enclosing blocks

Usually the variable must exist before it can be used. However, the interpreter can invent the variable if it
doesn’t exist and you are assigning to it. This means you don’t have to use a variable declaration to make a
new variable – if the first reference to it is an assignment statement it will be declared for you.

6.1.2. Numbers and characters
A number may be an integer or real literal. The integer literal may be in decimal, octal, hexadecimal or
binary. A real literal must include a decimal point (period) and may also include an exponent.

A character literal is a character enclosed in single quotes. A character literal is treated as an integer whose
value is the ASCII code for the character. Only 8-bit characters are supported. An escaped hex or octal
constant may also be used inside the quote marks.

6.1.3. Vector and Map literals
A vector literal defines a vector value. They consist of an optional series of expressions enclosed in square
brackets and separated by commas. If there are no expressions in the brackets, the vector will be of zero
length. Consider the following examples:

var x = [1,2,3] // vector of 3 elements
var y = [] // empty vector
var m = [[1,2], [3,4], [5,6]] // vector of vectors

A vector literal may be used anywhere a value may appear.

A map literal defines a map value. It consists of a series of value=value pairs enclosed in braces and
separated by commas. The map may be empty. Consider the following examples of map literals:

Expressions

Sun Microsystems Laboratories

6-77

var m = {1 = “a”, 2 = “b”} // map of 2 elements
var n = {} // empty map

A map literal may be used anywhere a value may appear.

6.1.4. Strings
A string literal is a set of characters enclosed in double quote marks. They may be used anywhere a value
may appear.

“this is a \”string\”.”

Any special characters in the string must be escaped my preceding them with a backslash. A string has a
length and is not terminated by a zero byte as in C. The string may include any characters.

6.1.5. Inline blocks
An inline block is a section of code that is placed in an expression. The code may contain any valid
statements (as can appear inside a function, for example). The code is executed when the expression is
executed and is expected to yield a value. The ‘return’ statement is used to return a value from the inline
block.

An inline block is defined by enclosing the code in a pair of backtick characters (`). The blocks may be
nested. This is similar to the use of backticks to execute subcommands in many shell programming
languages such as the Bourne Shell. Consider the following example:

var x = `return y + 1` // equivalent to x = y + 1

var sum = `var r = 0 // more complex statements
 for (var j = 0 ; j < y ; j++) {
 r += j*j
 }
 return r`

The code in the block is executed in its own scope, meaning that any variables declared in the block are
unique to that block. Variables in enclosing blocks can, of course, be used in the block.

If the block does not return a value, a value of type none is returned.

The use of inline blocks is encouraged in cases where a small function would be defined for the code and
called only once. They can decrease readability of the code, so care must be taken.

6.1.6. Anonymous blocks

An anonymous block is an expression that defines a block with no name. This may be used to define a
function (say) for single use or to be passed as a parameter to another block. The blocks that may be
defined in this way are:

• functions
• threads
• classes and monitors

Expressions

Sun Microsystems Laboratories

6-78

Consider the following trivial example:

// function to test the value of a function
function tester (func, para, value) {
 if (func (para) != value) { // call the function and test value
 “FAILED\n” -> stderr
 System.exit (1)
}

tester (function (p) { return p * p }, 2, 4)
tester (function (p) { return p*p*p }, 2, 8)

The function ‘tester’ is called with 3 parameters: a function, a parameter to that function and the value
expected from the function. The calls pass an anonymous function expression taking one parameter and
performing some calculation on it.

As an aside, consider the following:

var func = function (x,y) {
 // code
 }

This operates in a very similar fashion to a regular function definition:

function func (x,y) {
 // code
}

With a major difference: the former case declares a variable that happens to contain a function value
whereas the latter defines a block. The difference is subtle yet important. In the case of the former you
cannot derive a new block from the variable and cannot extend it using the extend statement.

As an anonymous block is a block, passing it to another block as an argument creates a closure.

6.2. Arithmetic operators
The set of arithmetic operators provided by Aikido are:

ex * ex Multiplication
ex / ex Division
ex % ex Modulus
ex + ex Addition
ex – ex Subtraction
- ex Unary minus
+ ex Unary plus

Each of the arithmetic operators can operate on a selection of built-in types as follows. Where an integer
type is mentioned, the rule also applies to chars.

Expressions

Sun Microsystems Laboratories

6-79

Type combination Meaning Result type
integer * integer Multiply the 2

integers
integer

integer * real Convert integer to
real and perform
multiply

real

real * integer Convert right integer
to real then multiply

real

real * real Floating point
multiplication

real

integer / integer Integer division integer
integer / real convert integer to

real then divide
real

real / integer convert integer to
real then divide

real

real / real floating point
division

real

integer % integer modulus of 2
integers

integer

real % real modulus of 2 reals real
integer + integer integer addition integer
integer + string integer converted to

string then
prepended to string

string

integer + vector integer is prepended
to vector

vector

integer +
enumconst

integer is used to
move to next (n)
constants in enum

enumconst

integer + real integer is converted
to real and addition
performed

real

real + integer integer is converted
to real then added

real

real + string real is converted to
string and prepended
to string

string

real + vector real is prepended to
vector

vector

real + real real addition real
string + integer integer is converted

to string and
appended to left
operand

string

string + real real is converted to
string and appended
to left operand

string

string + string strings are joined string
string + vector string is prepended

to vector
vector

string + enumconst name of enumconst
is appended to string

string

Expressions

Sun Microsystems Laboratories

6-80

string + block name of block is
appended to string

string

vector + vector vectors are appended vector
vector + any type right operand is

appended to end of
vector

vector

map + map maps are appended map
enumconst +
integer

integer used to move
to next (n) constant
in enum

enumconst

enumconst + string enumconst name is
prepended to string

string

enumconst + vector enumconst is
prepended to vector

vector

block + string block name is
prepended to string

string

block + vector block is prepended to
vector

vector

object + vector object is prepended
to vector

 vector

integer – integer integer subtraction integer
integer – enumconst integer used to move

to (n) previous
constant in enum

enumconst

integer – real integer converted to
real and subtraction
performed

real

real – integer integer converted to
real and subtracted

real

real – real real subtraction real
enumconst – integer integer used to move

to (n) previous
constant in enum

enumconst

vector – vector difference in vectors.
Those elements not
present in both
vectors.

vector

- integer unary minus of
integer

integer

- real unary minus of real real

6.3. Bitwise operators
Aikido provides a comprehensive set of operators that operate on the bits of an integer value. They also
apply quite naturally to strings and vectors in certain occasions.

The operators in this category are:

ex & ex AND
ex | ex OR
ex ^ ex exclusive-OR

Expressions

Sun Microsystems Laboratories

6-81

~ ex ones complement
ex << ex left shift
ex >> ex arithmetic right shift
ex >>> ex logical right shift

All of the bitwise operators apply to integer operands. The difference in the >> and >>> operator is
whether the left operand’s sign is extended into the result. The >> operator is the arithmetic shift right
operator and will cause sign extension to be performed on the result. The >>> operator does not perform
sign extension.

This notation comes from the JavaTM language, C++ does not have a >>> operator, but relies on whether
the left operand is a signed or unsigned quantity to determine the shift type.

Although the normal use of bitwise operators is to use them for integers, the following also apply to other
operand types:

Type Combination Meaning Result type
vector & vector intersection of 2 sets. The elements that are common to both

vectors
vector

vector | vector union of 2 sets. The elements in one or both sets. vector
string << integer shift the contents of the string left by the integer number of

characters
string

string >> integer shift the contents of the string right by the integer number of
characters

string

vector << integer shift the contents of the vector left by the integer number of
elements

vector

vector >> integer shift the contents of the vector right by the integer number of
elements

vector

Shifting a string or vector left causes it to shorten by the shift count. If you shift more than the size of the
string or vector, it will become empty. The elements shifted off the left side are discarded.

Shifting a string (or vector) right causes the rightmost elements of the string (or vector) to be deleted. The
length of the string (or vector) is reduced by the shift count.

The use of the & and | operators for vectors (along with the – operator) allow the programmer to perform
set manipulation operations. They are quite compute-intensive operations so care should be taken where
performance is an issue.

6.4. Comparison and relational operators
It is always useful to be able to compare one value to another. Aikido provides the usual set of comparison
and relational operators:

ex == ex Equality
ex != ex Inequality
ex > ex Greater than
ex < ex Less than
ex >= ex Greater than or equal to
ex <= ex Less than or equal to
! ex boolean not
ex instanceof ex Hierarchy membership
ex in ex Membership

Expressions

Sun Microsystems Laboratories

6-82

The result of a comparison is an integer value of 0 (if the comparison fails) or 1 (if the comparison
succeeds).

For comparisons between integers, reals, characters and strings, the following rules hold:

Type Combination Meaning
integer op integer integer comparison
integer op real integer converted to real

then compared
integer op string integer converted to

string then compared
real op real real comparison
string op string string comparison
string op integer as integer op string
string op real as real op string

String comparisons are done using the usual alphanumeric comparison of the characters in the string. For
example:

“abc” == “abc” // true
“abc” == “abcd” // false
“abc” < “def” // true
“abc” < “abcd” // true

For other types the meaning of the operator varies with the type used.

Type Combination Meaning
vector == vector The vectors contain exactly the same elements
stream == stream Streams are the same stream
map == map Maps contain exactly the same elements
enumconst ==
enumconst

Same constant in same enumeration

block < block Left block is subblock of right block (derived
from it)

block == block The same block?
block > block Left block is superblock of right block (base

block)
object == object The objects are at the same address
vector < vector The number of elements in the left is less than

number of elements in the right operand
map < map As vector < vector

The set of comparisons that deserve more explanation is the block op block ones. This is used when one
block (function, class, monitor, thread, package, or enum [in this case]) is compared with another one.
When comparing for less than or greater than, you are testing the inheritance relationship of the blocks.
Less than means that a block is inferior in the inheritance hierarchy, while greater than means it is superior.

For the equality comparison, you are testing whether the blocks are exactly the same block.

The instanceof operator may be used to check if an object is a instance of a certain block set.

Given the following blocks:

Expressions

Sun Microsystems Laboratories

6-83

class A {
}

class B extends A {
}

class C extends A {
}

The comparisons:

B < A // true: B is derived from A
A > B // true: A is the superblock of B
A == B // false: they are not the same object
B == B // true: they are the same object
B < C // false: there is no inheritance relationship

6.4.1. Instanceof

The instanceof operator allows the programmer to test whether an object is an instance of a block. Because
blocks are arranged in inheritance trees, being an instance of a sub-block implies that the object is also an
instance of a superblock.

Given the following instances of the above classes:

var a = new A()
var b = new B()
var c = new C()

a instanceof A // true
b instanceof A // true: B is subclass of A
b instanceof C // false: B is not related to A

Where interfaces are used, the instanceof operator may be used to check if an object implements the
contract for an interface:

interface Dint {
 function f
}

class D implements Dint {
 public function f() {}
}

class E {
 public function f() {} // same function but no interface
}

var d = new D()
var e = new E()

Expressions

Sun Microsystems Laboratories

6-84

d instanceof Dint // true: implements Dint
e instanceof Dint // false: does not implement Dint

6.4.2. The in operator

It is frequently useful to be able to test if a value is a member of some other value. The language provides
an operator named in for just this purpose. The in operator is an infix operator that may be applied to
values of any type (including object instances). The result is either true or false, with true meaning that the
left value is a member of the right value.

The language allows a special syntax known as a range for the in operator: The syntax is:

in-expression: shift-expression in range-expression

range-expression: shift-expression
 shift-expression .. shift-expression
 shift-expression ... shift-expression

This allows the right side of an in expression to be a range of expressions. For example:

1 in 1 .. 3 // true
6 in 7 ... 9 // false

enum Color {
 RED, GREEN, BLUE
}

GREEN in RED .. BLUE // true
BLUE in RED .. GREED // false

The values on either end of the range must be integral.

For builtin types, the following table shows the result of performing the expression:

value in <Right Value>

Right value Operation
vector search vector for value
map search map for value
string search string for substring or

character
object if object has an operator in, call

it, otherwise look for string as
member of object

block look for string value as member
of block

All other types result in a runtime error. Where the type of the right side of the in operator is a block the
left side must be a string. Consider the following examples:

var a = 1
class B {
 public function f() {}

Expressions

Sun Microsystems Laboratories

6-85

}
var b = new B()
var m = {1 = 2, 3 =4}

a in [1,2,3] // vector: a has value 1 therefore true
a in [2,3] // vector: false
a in m // map: true since 1 is a key in the map
2 in m // map: false since 2 is not a key in the map
‘e’ in “hello” // string: true
“el” in “hello” // string: true
“ol” in “hello” // string false
“f” in b // object: true
“f” in B // class: true
“g” in B // class: false
1 in B // runtime error

6.5. Assignment operators
The assignment operators allow a value to be assigned to a variable. The set of assignment operators is the
same as in C++. There is the straight assignment (=); and there are a set of compound assignments that
perform a calculation on the right operand before doing that assignment.

The complete set of assignment operators are:

= Straight assignment
+= Addition assignment
-= Subtraction assignment
*= Multiplication assignment
/= Division assignment
%= Modulus assignment
&= AND assignment
|= OR assignment
^= exclusive-OR assignment
<<= left shift assignment
>>= arithmetic right shift assignment
>>>= logical right shift assignment

A compound assignment is the logical equivalent of a straight assignment and an operator. For example,
for the += compound assignment:

a += b is the same as a = a + b

The rules for type conversion for the individual operators also apply to the assignment operators.

The language allows multiple assignments to be done in one expression:

a = b = c = 2

The left side of an assignment operator has to have an address. That is, it must be a variable or an
expression that has an address (like a vector subscript or block member access). Consider the following:

var a = 1
var v = [1,2,3,4]

class C {

Expressions

Sun Microsystems Laboratories

6-86

 public var x = 1
}
var c = new C()
var d = null

a = 10 // ok, a is a variable
v = [] // ok, vectors can be assigned
v[2] = 10 // ok, element of vector
v[5] = 1 // error, subscript out of range
c.x = 30 // ok, access to member
(a + 1) = 2 // error, expression has no address
2 = 30 // error, number does not have an address
d.x =1 // error: null pointer
c.y = 10 // error: no such block member C.y

6.6. Conditional operator
The conditional operator allows the value of an expression to be tested and results in one of 2 possible
values. It is a 3-operand expression and is of the form:

ex1 ? ex2 : ex3

The expression ex1 is evaluated and if it is non-zero (compared with integer 0), the result of the conditional
expression is ex2, otherwise it results in ex3.

6.7. Stream operator
The stream operator provides a method for input and output in a Aikido program. The operator takes 2
operands and is the form:

stream1 -> stream2

The contents of stream1 are copied to stream2. The operands can be of any type and the interpreter has
code to deal with all the built-in types. For example:

var x = 0 // integer variable
var s = “” // string variable
var v = [] // vector variable

stdin -> stdout // copy standard input to standard output
 “hello world” -> stdout // writes “hello world” to stdout
56 -> outstream // the integer 56
[“the result is: ”, result] -> output // vector literal. Each element written in sequence
x -> output // write variable x

stdin -> x // read from stdin to x
input -> s // read string from input and write to s

x -> v // append variable x to vector v

The rules for the input and output of the various built-in types are:

Output type Input type Operation

Expressions

Sun Microsystems Laboratories

6-87

integer integer copy left to right
real real converted to integer
string string converted to integer if possible, 0

otherwise
vector first element converted to integer
map first element converted to integer
char converted to integer
block integer set to address
enumconst index into enumeration
object call toInteger() if present, otherwise address of

object
stream one integer read from stream

real integer converted to real
real copied
string string converted to real if possible, 0.0

otherwise
vector first element converted to real
map first element converted to real
char converted to integer then real
block converted to integer then real
enumconst converted to integer then real
object toReal() called if present, error otherwise
stream one floating point number read from stream

string integer converted to string
real converted to string
string copied
vector each element appended to string
map each element appended to string
char converted to string
block name of block
enumconst name of constant
object toString() called if present,

blockname@address if not
stream one line read from stream

char integer truncated to 8 bits
real runtime error
string first character in string
vector first element converted to char
map first element converted to char
block first character of name
enumconst ‘A’ = first const, ‘B’ = second, etc
object toChar() called if present, error if not
stream one char read from stream

vector object toVector() called if present, otherwise object
appended to vector

anything appended to vector

map object toMap() called if present, otherwise appended
anything appended as {x = x}

function scalar function called with single argument
vector function called once for each element.

Element passed as parameter

Expressions

Sun Microsystems Laboratories

6-88

Element passed as parameter
map function called for each element. Function has

to arguments for left and right of map pair.
stream function called for each line of input

thread like function

class like function only new object created for each

package like class

enum runtime error

enumconst runtime error

object runtime error

stream integer converted to decimal character sequence
real converted to floating point character sequence
string each character written
char single character written
vector each element written
map each element written as left=right
block block name written
enumconst name of constant written
object “object “ + address written
stream steam copied

In some respects, the stream operator acts like the cast operator for the arithmetic types.

The result of a stream operator is the result returned by its right operator. If the right operator is a block
type (function, etc) or an overloaded stream operator then the result is the value returned by that block. All
the results of the block call are appended to a vector. This allows stream operators to be linked together.
Consider:

var lines = [] // vector variable
lines = instream -> func()

This reads all the lines from the stream and applies the function func() to them one at a time. The vector
lines will contain the result of the function func() for each line.

Another example:

var lines = []
instream -> func1() -> func2() -> lines

sets the vector lines to the results of applying func1() and func2() to each line of the input.

6.8. Increment and decrement operators
There are 4 operators in this category. Two of them are prefix operators and the other 2 are postfix
operators. The operators are:

++ ex Pre-increment
ex ++ Post-increment

Expressions

Sun Microsystems Laboratories

6-89

-- ex Pre-decrement
ex -- Post-decrement

The prefix operators increment or decrement their operand and the result is the value after the increment or
decrement is done. The postfix operators increment or decrement, but the value is as it was before the
operation was done. Consider the following examples:

var a = 1
var b = 20

var c = ++a // value 2
var d = b++ // value 20 (b set to 21)
var e = a++ // value 2 (a now has value 3)
var f = ++b // value 21 (b set to 22)

6.9. Logical operators
The logical operators allow short-circuit evaluation of a logical expression. There are 2 logical operators:
&& (logical AND) and || (logical OR).

Each of them takes 2 operands and executes from left to right. Once the value of the logical expression can
be determined the evaluation stops (this is known as short-circuit evaluation).

In the case of the && operator, the value of the expression is known to be false whenever the left operand
is false. If this is the case, the evaluation stops and the right operand is never evaluated. If the left operand
evaluates to true, then the right operand is evaluated.

For the || operator, the value of the expression is known to be true when the left operand is true. If it is
false, then the right operand is evaluated.

The logical operators are guaranteed to execute left to right and terminate whenever the value is known.

6.10. Call operator
The call operator is the way to invoke a block. What the invocation does depends on the block type. The
syntax for the operator is postfix parentheses enclosing an optional actual parameter list:

expression (optional expression list)

The optional expression list is a list of expressions separated by commas.

The action taken by the call operator is:

Block type Action
function call the function and wait for it to complete
thread start the thread and continue
class create an instance of the class
monitor create an instance of the monitor

Likewise, the value of the call operator depends on the block type:

Block type Value
function value returned from function

Expressions

Sun Microsystems Laboratories

6-90

thread stream through which messages can be sent
to the thread

class object created
monitor object created

The value is returned from a function using the return statement. If no value is returned from a function the
value none is returned.

For a thread, the interpreter creates a stream through which you can send messages to the thread. The
thread can read the messages from its input stream. For more details, see Chapter 1.

For classes and monitors, the object created by the call is returned. This is the same functionality as the
new operator. See section 6.11.

If the block being called is inside an object, call mechanism assigns the this variable to the object on which
the call is being made. Consider the following call examples:

class A (x) {
 public function f (a,b,c) {
 }
}

package P {
 public function g {
 }
}

var a = A(1) // instance of A
var v = a.f (1,2,3) // call of A.f
var p = P.g() // call to package function g

6.10.1. Value and reference parameters
When a call is made, the values of the actual parameters are passed to the formal parameters. What is
passed depends on the type of the actual parameters. Section 5.3.7 specified that scalar values are passed
by value, and compound values by reference. The following table specifies how the various types are
passed:

Type Mode
integer value
char value
real value
string reference
vector reference
map reference
function value
stream value
class value
thread value
object reference
package value
enum value
enumconst value

Expressions

Sun Microsystems Laboratories

6-91

monitor value

So, if you pass an integer to a function then a copy of that integer value is made before the call is made. If
you pass a vector then a copy of the vector is not made. This means that you can modify the contents of the
vector in the function. If you want to prevent the function from modifying the contents of the vector, make
a copy of it before the call. You can do this with the System.clone() function.

Consider the following examples:

function a (x : integer) {
 x = 2
}

function b (var x: int) {
 x = 2
}

function c (v : vector) {
 c[4] = 45
}

var q = 1
var vec = [1,2,3,4]

a (q) // q not modified
b(q) // q set to value 2
c(vec) // vec[4] set to 45
c(System.clone (vec, false)) // vec unmodified

Vectors, maps, strings and objects are all passed by reference in this way.

6.11. new operator
The new operator allows the creation of instances of blocks. It can be used to create a single instance or a
vector of instances. The syntax of the new operator is:

new [size]... // new empty vector
new type (opt expr list) // new object
new type // new object with no arguments
new type (opt expr list) [size]... // new vector of objects with arguments
new type [size] ... // new vector of object with no argments

The simplest case of the new operator is that where a single object is created. The optional expression list
(in parentheses) is passed as the actual arguments to the constructor for the object. This behaves exactly
the same as a call operator applied to a class or monitor.

6.11.1. Creating vectors
The new operator can create multi-dimensional vectors. In the simplest case, the new operator creates a
single dimensional vector all of the elements of which has the value none.

var vec = new [100] // create a 100 element vector

Expressions

Sun Microsystems Laboratories

6-92

This returns a vector containing 100 elements.

A multi-dimensional vector (matrix) can be created by simply appending more dimensions to the operator:

var matrix = new [100][5]

This creates a matrix of 100 elements by 5 elements. Pictorially this is the layout.

This shows that the first dimension of the matrix is set up to point to 100 copies of the second dimension.
If the matrix had even more dimension, then the second dimension vectors would be set up to point to the
3rd dimension, and so on.

In the form shown, each of the elements of the final dimension will have the value none. The new operator
can be used to populate a vector with instances of objects or other values. The following example shows
this:

class A (a) {
}

var avec = new A(2) [10] // vector of 10 instances of A

This creates a vector of 10 instance of the class A, each of which is constructed with the value of the
parameter ‘a’ set to the number 2. If the class A had no parameters, you could omit the parentheses.

You can also use a simple type to create a vector of values.

var ivec = new int [50] // vector of 50 integers

There is no limit to the number of dimensions you can give a vector (or matrix). More than 4, however, is a
little hard to understand (for my simple mind anyway).

6.11.1.1. Byte vectors

A regular vector is a sequence of values. Each element of the vector can take any type. This is not always
exactly what is required. When you are writing programs that deal with network byte streams or raw
memory it is more useful to be able to deal with the sequence of bytes directly without having to convert
the bytes into a vector of values. This saves time and programming effort.

Expressions

Sun Microsystems Laboratories

6-93

Aikido has a special type called a ‘bytevector’. This is (as the name suggests) a sequence of bytes. Like a
vector it is variable in length and all the usual vector operations can be used on it.

A bytevector can be created using the new operator:

var buf = new byte [100] // bytevector of 100 bytes

This creates a bytevector of 100 bytes in length. The individual bytes in the bytevector can be read and
written like a normal vector:

0xff -> buf // append 0xff to buf
buf[5] = 0x75 // write to bfuf
var b = buf[5:9] // slice of bytes
buf -> outfile // write raw data to file

6.12. Subscript operator
The subscript operator can be used to extract and set the value of a single element, or range of elements of a
value. It can be applied to integers, strings, vectors and maps (and objects when it is overloaded by the
object).

There are 2 forms:

expr [subscript] // single subscript
expr [sub1 : sub2] // range subscript

For a range, the subscripts (sub1 and sub) are inclusive. They may appear in any order in the brackets.

The subscript operator may be used both on the left and right side of an assignment. If used on the left, the
subscript selects the element(s) to be set by the assignment.

Subscripts are checked at runtime and result in a runtime error if they are out of range.

6.12.1. Subscripting integers
An integer value can be subscripted. This has the effect of isolating the bits of the integer. The subscripts
must be greater or equal to 0 and less than or equal to 63. That is:

0 <= subscript <= 63

Bit 0 is the least significant bit (rightmost as written down). Bit 63 is the MSB.

The range form of the subscript operator may be used to select a contiguous range of bits in an integer.
Consider:

var x = 0x010203ff
var b0 = x[0] // LSB of word (value 1)
var b = x[7:0] // least significant byte of word (0xff)

x[23:16] = 0xee // x now 0x01ee03ff

Expressions

Sun Microsystems Laboratories

6-94

The use of integer subscripts is more efficient than the usual method of shifting masking and ORing values
into a word.

6.12.2. Subscripting vectors, bytevectors and maps
Subscripting a vector allow the selection of elements within the vector. The subscript must lie in the range:

0 <= subscript < sizeof (vector)

Vector subscripts start at 0 and continue up to sizeof (vector) – 1. So, for example, a vector of 10 elements
will have valid subscripts 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Consider:

var primes = [1, 2, 3, 5, 7, 11] // a few prime numbers
primes[3] // value 5
primes[-3] // error: subscript out of range
primes[6] // error: only 6 elements

You can use a subscript to set the value of a vector element:

primes[2] = 20 // primes now [1,2,20,5,7,11] (!)
primes[7] = 17 // error: subscript out of range

Subscripting a vector using a range subscript produces a vector as a result. Subscripting with a single
subscript can produce a value of any type. So, for example:

var x = primes[3] // value 5
var y = primes[3:3] // value [5] – a vector with only one element

Subscripting a map is a little different from vectors. For a start, the range type of subscript is not allowed.
The use of a subscript for a map is to either add a new element to the map or to search the map for an
element. If the subscript is on the left side of an assignment, then an element is added to the map,
otherwise the map is searched. Consider:

var towns = {“San Ramon” = 15000, “Danville” = 12000} // map of town/population
var pop = towns[“Danville”] // value 12000
var pop2 = towns[“Walnut Creek”] // value none
towns[“Alamo”] = 9000 // insert “Alamo” = 9000

If a map is searched for a value and that value does not exist, then a value of type none is returned. This is
the usual way to search a map:

if (typeof (towns[“Danville”]) == “none”) {
 // no map entry for Danville
}

Another way to insert a value into a map is by using the += operator:

towns += {“Dublin” = 20000, “Pleasanton” = 18000}

This allows multiple values to be inserted in one instruction.

If the value already exists in the map, it is overwritten with the new value.

Expressions

Sun Microsystems Laboratories

6-95

6.12.3. Subscripting strings
Subscripting a string can take 2 forms. In the first case, you can subscript a string with an integer subscript
(or range) and select a character (or substring) from the string. In the second you can search the string for a
regular expression.

Consider the following:

var str = “now is the time” // simple string
var c = str[7] // character at [7] = ‘t’
str[0] = ‘N’ // string is now “Now is the time”
str[11:14] = “tune” // string is now “Now is the tune”

var ex1 = str[“is”] // search for simple regular expression
var ex2 = str[“.*is the ([a-z]+)”] // complex regular expression

For the case of simple, integer subscripts the rules are very similar to vectors. The subscript must be in the
interval:

0 <= subscript < sizeof (string)

The first character in the string is at subscript 0, the last at subscript sizeof (string) – 1. You can extract and
overwrite the characters in the string.

Subscripting a string with a range subscript will produce a string (even if the subscripts are identical).
Subscripting with a single index will produce a character. For example:

var x = str[7] // value ‘t’ – single character
var y = str[7:7] // value “t” – string of one character

The System.find() (section 15.3.2) function may be used to search a string for a substring and return the
index of the start of it.

Regular expressions are more complex and powerful…

6.12.3.1. Subscripting strings with regular expressions
Regular expressions provide a mechanism to extract specific substrings from a string. They are very
powerful and complex. I will give an overview of the most common forms of regular expressions here.
The regular expression support in Aikido is provided by a library implementing Perl 5 compatibility. This
means that the regular expressions in Aikido are compatible (as far as possible) with the Perl language
version 5.

For full details on the regular expression support please refer to Chapter 19 on page 19-285.

A regular expression is a string that contains special characters that can match other characters in the string
being searched. There is a long list of special characters available.

If a character in a regular expression is not a special character then it matches the same character in the
string being searched. So, for the simplest regular expression, consider:

var ex = str[“is”]

This searches for the simple regular expression containing 2 characters (‘i’ and ‘s’). The special characters
let you be ambiguous about what you would like to find. For example, the special character ‘.’ (period)
matches any character in the search string.

Expressions

Sun Microsystems Laboratories

6-96

If you want to switch off the meaning of a special character, prefix it with a backslash character. Actually,
because the regular expression is string literal in Aikido, you will have to escape the backslash with another
backslash to allow it to be passed through as a backslash !!

The asterisk character means “match zero or more of the preceding character”, so this allows you to find a
series of characters all the same. That is not much use on it’s own, but combine it with the fact that an
asterisk can follow a special character (like ‘.’) and you get a way to find a series of any characters.

Like the asterisk, the + character matches “one or more of the preceding character”.

Another useful special character in a regular expression is the square bracket. A set of square brackets
enclose a set of characters (or special characters) and will match any of that set. For example, consider:

var s = “abc1234abc”
s [“[0-9]+”] // matches 1234

This says: match a series of one or more characters in the range 0 to 9. In other words, extract a number
from a string.

Regular expressions can get very unwieldy very quickly. The use of special characters and backslashes can
turn what started out as a reasonably simple string into something resembling line noise. And then it starts
to look like a Perl program.

Here is a list of the common regular expression “special characters”

Special Character (expression) Meaning
. any character
* zero or more of preceding expression
+ one or more of preceding expression
[] any of the enclosing expressions
[^] anything except the enclosing expressions
() subexpression

When Aikido matches a regular expression it returns information about what it found. It returns this
information in a vector of Regex objects. The Regex object is defined as:

class Regex {
 public var start = 0
 public var end = 0
}

The start and end members contain integer subscripts into the string being searched. They are inclusive.
There is one element in the vector of Regex objects for each subexpression matched in the regular
expression. A subexpression is an expression within the regular expression enclosed in parentheses.

The first element of the vector of Regex objects contains the subscripts for the whole regular expression.

If the regular expression is not matched in the string, an empty vector is returned.

For example, consider a system where a string is received consisting of 2 substrings separated by colons.
We want to extract the 2 substrings:

Expressions

Sun Microsystems Laboratories

6-97

function extractStrings (command) {
 var expr = command [“([^:]+):([^:]+)”] // see explanation
 if (sizeof (expr) == 3) { // need 3 expressions
 var sub1 = command[expr[1].start : expr[1].end] // extract first
 var sub2 = command[expr[2].start : expr[2].end] // extract second
 // process sub1 and sub2
 } else {
 // error bad format
 }
}

The regular expression looks complex, but is not really. It contains 2 subexpressions separated by a colon.
Each subexpression is the same and says: “match one or more sequences of characters that doesn’t contain
a colon”. The subexpression is enclosed in parentheses. Let’s look in detail at the composition of the
subexpression:

The first part is “[^:]”. This matches any character except the colon character. This is followed by the +
character, which says “one or more”.

So, put the 2 subexpressions together separated by a colon and you get the whole regular expression.

The next step is to check if we actually got all the expressions we asked for. If all the matches succeed, the
vector returned from the match should contain 3 elements. The first is the match for the whole expression;
the second for subexpression 1 and the third for subexpression 2. Each element contains a RegEx object
whose start and end fields have been filled in. The start field contains the subscipt of the start of the
expression, the end contains the subscript of the last character in the string that matches the expression. So
to extract the matched string, use a range subscript, passing the start and end fields of the appropriate
vector element.

6.13. Member access operator
Members of a block may be accessed by use of the ‘.’ operator. The member access operator is evaluated
at runtime rather than at parse time. See section 5.3.17 for details.

The member access operator may appear on the left or right of an assignment expression. Consider the
following examples:

class A {
 public var a = 0
 public var b = 0
}

var a = new A() // instance of class A
var x = a.a // reference to A.a
a.b = 12 // assignment to A.b

Access to the member is governed by the access mode of the member. See section 5.3.17.2 for full details.

6.13.1. Access to overloaded operators
If a class defines an overloaded operator function you can access it directly as a member. The syntax of
this is:

Expressions

Sun Microsystems Laboratories

6-98

object . operator op

The op is a valid overloadable operator (section 5.6.1). For example, consider the following:

class A {
 public operator + (x) {
 // add this to x
 }
}

var a = new A() // instance of A
var b = a.operator+ (4) // direct call to overloaded operator +

6.14. sizeof and typeof operators
The sizeof operator is unlike the sizeof operator in C and C++. In Aikido, the sizeof operator is a dynamic
operator, capable of calculating the size of anything at runtime. It can be used to get the number of
elements in a vector or string. The following table shows the values returned by the sizeof operator for the
various built-in types:

Type Value of sizeof
integer 8
char 1
string number of characters in string
vector number of elements in vector
bytevector number of bytes in vector
map number of entries in map
object number of variables in object
block number of variables in block
enum number of constants in enum
enumconst 1
real 8
memory number of bytes in memory
pointer number of bytes from pointer

to end of memory
anything else 0

The syntax for the sizeof operator is:

sizeof ex

The value is the size of the expression ex (as from above table). Although parentheses around the
expression are unnecessary it is probably good style to add them. Consider the following examples:

sizeof (“hello world”) // value: 11

var v = [1,2,3,4,5]
sizeof (v) // value: 5

if (sizeof (args) < 3) {
 // error
}

Expressions

Sun Microsystems Laboratories

6-99

The typeof operator is very similar to the sizeof operator. The purpose is to obtain the dynamic type of an
expression. The syntax for the typeof operator is:

typeof ex

Again, like the sizeof operator, parentheses are not necessary but style dictates that they should be added
around the expression. The type of the value of the typeof operator depends on the type of the expression.
The following table shows the typeof result for the built-in types:

Expression type Value of typeof Type of value of typeof
integer “integer” string
real “real” string
char “char” string
string “string” string
vector “vector” string
bytevector “bytevector” string
map “map” string
stream “stream” string
memory “memory” string
pointer “pointer” string
object (with value
null)

“null” string

object (with non
null value)

block type of object block type of object

block block itself block itself
none “none” string
enumconst enumeration

containing
enumconst

enumeration containing
enumconst

anything else “unknown” string

The type of the result of typeof may or may not be important depending on how the operator is used. If the
result of a typeof is compared directly to the result expected then the type matters. Consider the following:

var t = typeof (e)
if (t == “integer”) {
 // process integer
} elif (t == T) {
 // process block T
}

For this to work, you need to know that for an integer, the string “integer” is returned.

Another way of doing this is to use a comparison with another typeof operation:

if (typeof (e) == typeof (int)) {
 // process integer
} elif (typeof (e) == typeof (T)) {
 // process block T
}

Expressions

Sun Microsystems Laboratories

6-100

If this is done, the actual value of the typeof operator is irrelevant, as long as it is the same every time for
the same type.

6.15. cast operator
Given that Aikido is dynamically typed language there is rarely a need to cast one type to another. The
main use of casts in C++ is to convert an object of one type to an object of another. Since the access to
members in Aikido is done at runtime, there is never a need to cast the object (except for readibility
reasons)

However, there is a need so be able to convert a value of one type to a value of another. Casting is a
runtime operation (unlike C++ where it is done at compile time). The cast operator is, for example, able to
convert a number to a string, or a string to a number.

The syntax for the cast operator follows the new C++ cast syntax:

cast < expression1 > (expression2)

The expression1 is an expression whose type is used rather than its value. This is very similar to the use of
the expressions for types in block parameters (section 5.3.3).

The following table shows the operation performed when an expression of one type is converted to another
type.

Cast from Cast to Operation
integer real integer converted to real
real integer real converted to integer
integer string integer formatted to decimal string
real string real formatted to string
integer char truncated to 8 bits
char integer extended to 64 bits
char real extended to 64 bits and converted to real
char string single character string
bytevector string characters in vector
object integer function toInteger() called if present
object real function toReal() called if present
object char function toChar() called if present
object vector function toVector() called if present
object map function toMap() called if present
object string function toString() called if present
string integer string parsed to integer if possible
string real string parsed to real if possible
string char first character extracted from string
string bytevect

or
bytes in string

enumconst integer value of constant
enumconst string name of enum constant as string

Expressions

Sun Microsystems Laboratories

6-101

For conversion from an object to a type, the interpreter can make calls to member functions of the object to
do the conversion. The function called depends on the type to which the object is being converted. The
above table shows the names of the functions called. Consider the following example:

class A {
 public function toString() {
 // return a string
 }
}

var a = new A() // instance of class A
var s = cast<string>(a) // cast to string – call of toString()

Note: if the operator cast is overloaded in the object it will be called in preference to the above conversion
operators.

6.16. Builtin member functions

The '.' operator is normally applied to instances of objects or members of packages. The builtin types, such
as vectors, strings, maps, etc. are not objects and therefore the usual use of the '.' operator does not apply.

However, it is convenient to be able to use the same, object oriented, syntax to apply operations to the
builtin types as you would with objects. The Aikido language provides a small set of operations that can
be applied to the builtin types using the normal member selection operator. This is similar to the way in
which the JavaTM language provides the length attribute for an array when an array is not an instance of a
standard object.

The set of operations that can be applied to the builtin types are:

Operator Meaning
size() sizeof()

type() typeof()

print() System.print()

println() System.println()

clear() Assignment of empty value

append(x) Append to end of value

close() Close a stream

eof() End-of-file of stream

flush() Flush the stream

rewind() Rewind a stream

seek(off, whence) Move to position in stream

clone (deep) Copy object

fill (v, s, e) Fill an object

resize (s) Change the size of an object

sort() Sort a vector

bsearch (v) Search a vector for a value

find (val, index) Find a value in a value

rfind (val, index) Find a value in a value, searching backwards

split (sep) Split a value at a separator

Expressions

Sun Microsystems Laboratories

6-102

transform (func) Apply function to value

trim() Trim white space

replace (find, rep,
all)

Replace parts of a value

hash() Generate hash code

insert (val, index) Insert into a value

Consider the following example:

var v = [1,2,3,4]
for (var i = 0 ; i <v.size() ; i++) {
 v.println ()
}

This is equivalent to:

var v = [1,2,3,4]
for (var i = 0 ; i <sizeof(v) ; i++) {
 println (v)
}

It's a matter of taste as to which you use. The former is more object oriented and might match other code in
the program. The latter is more C-like. The latter will execute faster because there are fewer function calls
made.

Statements

Sun Microsystems Laboratories

7-103

Chapter 7. Statements

A statement is the actual code that is executed by the interpreter. An expression (Chapter 1) is an example
of a statement. Statements allow control of the execution of a program.

Here is a summary of the statements in Aikido:

declaration
expression
macro
{ statement-listopt }

if (expression) statement1
if (expression) statement1 else statement2
if (expression1) statement1 elif (expression2) statement
if (expression1) statement1 elif (expression2) statement2 ... else statementn
switch (expression) switch-block

import identifier-list
import string-literal

using package-expression

while (expression) statement
for (initializationopt ; expressionopt ; expressionopt) statement
do statement while expression
foreach variable inopt expression statement
foreach variable inopt range-expression statement

return expressionopt

break
continue

try statement catch (variable) statement
throw expression

delete expression

synchronized (expression) statement

Notable exceptions to other languages include the lack of a goto statement. Additions include the elif
clause of the if statement and the foreach loop.

A macro is an expansion of a statement-level macro defined using the macro facility of the language. For
further information see Chapter 1.

7.1. Declarations and expressions as statements
As can be seen a declaration and an expression are themselves statements and can therefore be used
anywhere a statement can be used.

Statements

Sun Microsystems Laboratories

7-104

It is considered good practice to limit the scope of a variable to as small an area as possible.

7.2. Compound statements
A compound statement is a set of statements (possibly empty) enclosed in a pair of braces. The separator
for the statements in the compound statement is either a line-feed character or a semicolon character. This
is an unusual aspect of the Aikido language. In regular languages the separator (or terminator) for a
statement is the semicolon character only and this must appear even if it is the last thing on a line.

When the programmer is writing code, she normally puts one statement on a line. This is considered good
programming style. So, by the appearance of a line-feed character at certain positions in the source code,
the parser can infer that the programmer meant to end the statement there.

This is not always the case, of course. The programmer might want to split a long line up across multiple
lines, or put more than one statement on a single line. The Aikido parser allows this using the following
rules:

1. Statements always end at their natural end, regardless of the presence or absence of a line-feed
character.

2. A semicolon character will terminate the statement before its natural end and allow more on the same
line

3. A line-feed character will be ignored if it appears within a statement before the natural end.
4. If the natural end of a statement is ambiguous, a line-feed character terminates the statement.

We need to define what the natural end of a statement means. At any point in the parse of a statement
there is a set of valid tokens that can be next in the sequence. If the next token in the sequence is not
among the valid tokens then the statement has reached its natural end. Most of the time the natural end of
a statement is obvious. Sometimes, however, there are subtle syntactic ambiguities in the language that
make is non-obvious. This occurs when an expression operator can appear as both a prefix and postfix (or
infix) operator. Consider the simple case of the increment operator. This can appear both as postfix (after
the object to be incremented) and prefix.

a = b++ // postfix use of ++
++b // prefix use of ++

Suppose the parser has reached the identifier ‘b’ in the first line above. The next token in the input stream
is the ++ operator. This can be read as either a postfix use of the operator for ‘b’ or as a prefix use for the
next token. Thus there is no natural end for the statement at this point. It is ambiguous. If the programmer
wrote:

x = a
++b

He clearly means something different from:

x = a++
b

In this case, the line feed character is a significant token in the input. Of course, if the programmer is
aware of the ambiguity he can use a semicolon to terminate the statement where he wants, but most people
don’t want to have to think carefully about the end of every statement.

The ++ operator was one (sort of obvious) place where this occurs. There are others that are more subtle.
Here is a list of them:

Statements

Sun Microsystems Laboratories

7-105

1. The + and – operators. Can be unary operators.
2. The ++ and -- operators. Can be used prefix too
3. The subscript operator []. Can also be a vector literal
4. The call operator (). Can also be a parenthesized expression.

If the programmer really wants to split an expression over multiple lines, there are good and bad places to
do so. Aside from the style issue, the rules are that if an expression is split over multiple lines, the split
should occur where there cannot be a natural end for the statement. This only affects the operators listed
above and should not happen in reality. Consider the following cases:

x = a_very_long_identifier_that_makes_the_line_too_long
 + b

a_function_call_with_long_argument_list
 (a1, a2, a3, a4, s5 /* */)

x = a_long_array_name
 [s]

Each of these will be parsed as a different meaning than was desired by the programmer. To make them
correct, reformat them as:

x = a_very_long_identifier_that_makes_the_line_too_long +
 b

a_function_call_with_long_argument_list (
 a1, a2, a3, a4, s5 /* */)

x = a_long_array_name [
 s]

That is, make the split at the place in the statement where it has not reached its natural end.

Of course, if you wish, you can always insert semicolon characters at the end of a statement. I, personally,
find that leaving out the semicolon characters is better because there is less typing and I rarely split
expressions over lines.

One disadvantage of omitting the semicolons is if you ever want to convert a Aikido program to another
language that needs the semicolons, you will have to manually insert them. Personally, I am willing to take
that risk as it is only a matter of a couple of minutes with an editor when the port is attempted.

The following are examples of valid Aikido statement sequences:

if (a == 1) f() ; break

var x = 10 var y = 20

if (x ==
 10)
{ /* do something }

x = 20 y = 30

Statements

Sun Microsystems Laboratories

7-106

7.3. Selection statements
The selection statements allow a value to be tested and an action taken based on that value. The statements
here are the if and switch statements.

if (expression) statement1
if (expression) statement1 else statement2
if (expression1) statement1 elif (expression2) statement
if expression1) statement1 elif (expression2) statement2 ... else statementn
switch (expression) switch-block

7.3.1. The if statement
The if statement tests the expression and executes statement1 if the value is non-zero. If the optional else
clause is present and the value is 0 then statement2 is executed. For example:

if (nickname == “root”) {
 // perform root task
} else {
 throw “Access denied”
}

The optional elif clauses are a shorthand for:

if (expression1) statement1 else if (expression2) statement2 ...

This is provided because the use of nested if statements is a common form found in programs. There may
be many elif clauses in a single if statement. They may be followed by an else clause.

7.3.2. The switch statement
The switch statement is used to test a value and execute a set of statements depending on the value. The
switch-block contains a set of statements labeled with either case or default.

An example of a switch statement is:

switch (command) {
case LOGIN:
 // do login command
 break
case LOGOUT:
 // do logout command
 break
default:
 throw “unknown command”
}

This shows a switch statement that tests the value of the expression command. There are 2 case clauses
inside the switch block and one default. A case clause is of the form:

case expression : statement-listopt

(Note that the expression is not a constant expression as would be mandated by other languages. See
section 7.3.2.1 for more information).

Statements

Sun Microsystems Laboratories

7-107

The colon character is necessary (to keep syntactic compatibility with other languages). The colon is
followed by a list of statements that are terminated by the next case clause, default clause or the end of the
switch statement.

The default clause is similar to the case clause:

default : statement-listopt

There is no expression in the default clause and there may be only one of them in the whole switch
statement.

The operation of this switch statement is the same as:

if (command == LOGIN) {
 // do login command
} elif (command == LOGOUT) {
 // do logout command
} else {
 throw “unknown command”
}

The switch statement compares the value under test to each of the case clauses in sequence until it finds a
match. If a match is found then control is passed to the statement sequence of the case clause. If a match
was not found then control is passed to the default clause if present. If there was no default clause no
action is taken and control passes to the next statement after the switch statement.

Notice that the switch statement has break statements terminating the case clauses. If these were absent,
control would flow from one case clause to the next one if that case clause was activated. For example:

switch (x) {
case 1:
 System.println (“one”)

case 2:
 System.println (“two”)

case 3:
 System.println (“three”)
}

If this was called with the value of x == 1 it would output:

one
two
three

This may not be the expected result. The action of the break statements is to break out of the switch
statement at that point. Usually the absence of a break statement for a case clause is a programming error,
but occasionally they it is useful to be able to fall through to the next case clause. For example, consider
the following switch statement:

switch (a) {
case 1000:
 // do something
 break

Statements

Sun Microsystems Laboratories

7-108

case 2000:
case 2001:
 // do something else
 break
}

The absence of a break for the ‘case 2000’ case clause is legitimate.

If it is not obvious that a fall through to the next case clause (or default) is desired, a well placed comment
would be helpful to anyone reading the code.

7.3.2.1. Differences from C++ and JavaTM switch statements
There are minor differences between the Aikido switch statements and those in C++ or the JavaTM language
(or C for that matter). The biggest difference is that the expressions in the case clauses are not constant
expressions. Aikido allows any expression here and will perform a linear search through them comparing
the value under test to each of them.

This means that the following is legal code:

switch (command) {
case “LOGIN”:
 // do login
 break
case “LOGOUT”:
 // do logout
 break
}

You can even call functions in the case clauses if you so desire.

This difference has a subtle performance issue. Because you can use any expression in the switch
statement case clauses, there is no way for the parser to compile this to a branch table or any other such
high-performance data structure. This makes the switch statement in Aikido have the same performance
characteristics as an if .. elif .. else statement.

Another difference between Aikido and other languages is that there is no check done to make sure that two
case clauses do not have the same value. Because they are expressions rather than constant expressions
there is no way to do this without suffering a large performance penalty at runtime.

Another difference is that each case clause defines a new scope level. This means you can declare
variables in a case clause. For example:

switch (x) {
case 1:
 var name = “xx”
 break
case 2:
 var name = “yy”
 break
}

Each variable ‘name’ will be in a different scope.

Statements

Sun Microsystems Laboratories

7-109

Finally, the last difference is that the default clause can contain an empty statement list. In C++ and the
JavaTM language it has to contain at least one statement.

These differences are due to the way in which switch statements are implemented in Aikido. In C++ and
the JavaTM language they are implemented as a branch table or search, with the case and default clauses
being labels addressing blocks of code. Aikido does it differently. It can do so because it is an interpreted
language rather than being compiled.

7.4. Import statement
The import statement causes the parser to insert a file at the top level scope of the program. This file
contains other Aikido program text that is parsed in the context of the current program. This facility allows
the program to be split into sections and also allows for user-defined and system provided libraries of
classes and other facilities.

The syntax of the import statement is:

import import-identifier-sequence

or:

import string-literal

The import identifier sequence is a series of identifiers separated by periods. The sequence of identifiers is
used to find the file to be imported by a system defined search. Once the file is found, it is parsed in the
context of the top level scope of the program (scope main). The import statement will ensure that the same
file is not imported twice. For example:

package T {
 import string // import the string package

 var s = new String() // create instance of object in string package
}

The sequence of identifiers may include wildcard characters. This allows a single import statement to be
used to import many files. For example:

import chat.*

Will import all files that can be located in the ‘chat’ directory. The meaning of wildcard characters can be
obtained by reading the UNIX® manual page for ‘glob’ (man –s3c glob).

The other form of the import statement uses a string literal as the name of a file to import. This is operating
system dependent. When a string literal is used, it is taken literally as the name of a file to import. If this
file doesn’t exist then the normal rules for finding a file are used. For example:

import “/project/Aikidofiles/lex.aikido” // import a full file name
import “libfind.so.1.3” // for a specific shared library

Again, wildcards may be used to import many files at once.

It should be noted that, while it is referred to as a ‘statement’ is it not truly a statement per se. The
difference between an import statement and other proper statements is that you cannot enclose an import
inside another statement and expect it to be controlled by it. For example:

Statements

Sun Microsystems Laboratories

7-110

if (System.operatingsystem == “Windows”) { // check for OS
 import windows // WILL NOT DO AS EXPECTED
} else {
 import goodos
}

This will not behave as you would expect if import was a proper statement. The above code will result in
both the files being imported at the top level of the program and the ‘if’ statement being empty. Perhaps
not what was intended…

7.5. Using statement
As touched upon on section 4.2, the names available inside a block may be augmented by the names in
package by use of the using statement. The using statement adds the named package to the list of places to
search when looking for the name of a variable, block or any other names in the program.

Normally Aikido searches for a name using the regular scope rules: inner scope first, then progressively
outwards until the it reaches the outside. By inserting a using statement you are inserting side branches off
the main scope search to the named packages. For example:

function A {
 using System
 function B {
 println (“hello”)
 }
}

When inside function B, the identifier println is used as a call. The first place searched in function B itself.
If it is not found here, the search moves on to function A. The println function is not defined in A, but
there is a using statement for the System package, so that is searched next. The println function is indeed
inside the System package, so the search ends there.

The appearance of a using statement inside a block affects the block itself and any nested blocks, but does
not affect any other blocks.

The using statement affects the search from its point of issue to the end of the block in which it appears.
Consider the following:

function A {
 function B {
 println (“hello”)
 }

 using System

 function C {
 println (“hello”)
 }
}

The call to println in function B will result in an error since the using statement has not yet been executed
in the sequence. The one in function C will, however, be fine.

Statements

Sun Microsystems Laboratories

7-111

The use of a using statement can introduce ambiguity into the block. Generally there is no problem as the
names defined locally take precedence over the names in any package you are using. But, if 2 packages
share the same name and both are the subject of a using statement in the same block the language has no
way of determining which one to use, so an error results.

Consider the following:

package A {
 public function print (x) {
 }
}

package B {
 public function print (x) {
 }
}

function C {
 using A
 using B

 print (1) // error: ambiguous use of print
}

Here, the function C has no way to determine which print function to call as there is one in both packages
A and B.

Note that there is an implicit using statement of the System package done automatically by the language
parser. This means that you can use any functions or other things defined in the System package without
using the name of the package (provided they don’t clash with user defined things of course).

7.6. Iteration statements

iterate (‘I-t&-“rAt): (transitive verb) to say or do again [C16: from Latin iterare, from iterum
again]

Iteration statements allow the program to repeat a section of code while a condition is true. The following
are the iteration statements in Aikido.

while (expression) statement
for (initializationopt ; expressionopt ; expressionopt) statement
do statement while (expression)
foreach variable inopt expression statement
foreach variable inopt range-expression statement

7.6.1. The while, do and for statements
The while statement evaluates the expression and while it has a non-zero value executes the statement.

The do statement executes the statement while the expression is true. Unlike the while statement, the
statement is always executed at least once.

Statements

Sun Microsystems Laboratories

7-112

The for statement is intended to be used for fairly regular loops where the initialization, termination and
increment conditions can be expressed at the start of the statement.

The for statement takes 3 optional expressions and executes them as if the loop was written as follows:

for (init ; condition ; increment) statement

init
while (condition) {
 statement
 increment
}

The init part of the for statement can be either an expression or a variable declaration. The variable
declaration must start with the var keyword. This can be used to limit the scope of the control variable for
the loop to the loop itself. Consider:

for (var x = 0 ; x < 10 ; x++) {
 // loop body
}

The variable x is limited in scope to the for loop itself.

All three of the expressions in the for loop are optional. If you omit them all you will get a loop that will
never terminate (unless by some other means).

for (;;) { // forever
 // loop body
}

A break statement will exit the for loop. A continue statement will cause a jump to the increment
expression and the loop may continue.

7.6.2. The foreach statement
The foreach loop is a powerful statement that is used to iterate through all the members of a multi-valued
set. The syntax of the foreach loop is as follows:

foreach variable inopt expression statement
foreach variable inopt range-expression statement

The variable is the name of a variable that will be declared by the foreach statement in the scope of the
loop only. The expression is used to determine how many iterations will be made and what the value of the
variable will be on each iteration. The statement is executed on each iteration.

Consider the following obvious foreach loop:

var primes = [1,2,3,5,7,11,13,17,19]
foreach prime in primes {
 System.println (prime)
}

This iterates through all the members of the vector primes, setting the variable prime to each successive
element. The statement prints the value of the prime variable.

Statements

Sun Microsystems Laboratories

7-113

Note: the ‘in’ keyword is entirely optional. It is allowed to be compatible syntactically with other
languages that provide foreach.

One important note: the expression is only executed once for the lifetime of the loop. The interpreter
evaluates the expression at the start of the loop and uses the value obtained to control the variable.

Another feature of foreach is the ability to iterate over a range of values. The ‘expression’ in the foreach
statement may also be a range-expression. Consider:

foreach x 100..400 {
 f(x)
}

This iterates from 100 to 400 (inclusive) calling the function f() for each iteration. The restriction of this
type of statement is that the range limits must be integral (enumerations are integral).

The foreach statement is used very frequently in a Aikido program. There are many occasions where you
need to iterate through all the elements. The value of the expression in the foreach statement can be one of
the following:

Expression Action
positive integer iterate from 0 up to the integer value in steps of 1
negative integer iterate from 0 down to the integer value in steps of –1
vector iterate through all the elements of the vector
string iterate through each of the characters in the string
map iterate through each of the elements in the map
enumeration iterate through each of the constants in the enumeration
range iterate over each element in range (inclusive)

It is common in a program to execute a loop a fixed number of times. You can do this with a for loop as
follows:

for (var x = 0 ;x < 10 ; x++) {
 // loop body
}

But a much more convenient way to do it is with a foreach loop:

foreach x 10 {
 // loop body
}

or, if the start is not 0:

foreach x 1 .. 9 {
 // loop body
}

Iterating through the elements for a vector or string is a pretty obvious operation: the variable is set to each
successive element on each iteration. Iterating through a map is a little more difficult to visualize.

A map is implemented as an associative array of value versus value. Each ‘element’ in a map consists of a
pair of values. It you iterate through a map, what is the variable set to on each iteration?

The answer is that it is set to an instance of an object of the following type:

Statements

Sun Microsystems Laboratories

7-114

class Pair {
 public generic first
 public generic second
}

An element in a map can be thought of as a mapping from first to second. Consider the following:

var towns = {“San Ramon” = 15000, “Danville” = 12000, “Dublin” = 20000}

foreach town towns {
 var name = town.first
 var population = town.second
}

The map of Bay Area towns versus population is traversed one element at a time with the variable town
being set the each successive element. The variable has its first field set to the town name and its second
field set to the population of the town. There is no guarantee of the order in which the towns are returned –
it depends on the nature of the map.

Note: there is no way to change the value of the loop variable from within the loop. If this is needed, you
must use a different loop type (for or while). The break and continue statements operate as expected
within a foreach loop.

7.6.3. Break and continue statements
When in a loop it is sometimes necessary to terminate the whole loop early or to terminate a particular
iteration. Aikido provides the usual break and continue statements to enable this.

The break statement causes the innermost loop (or switch statement) to terminate immediately, with control
passing out of the loop to the next statement after the loop. It is important to note that only one loop is
terminated. If you are inside many nested loops only the innermost one is affected.

Aikido does not provide a goto statement. This much-vilified statement is present in C++ but not in the
JavaTM language. One of the legitimate uses of the goto statement is to get out of nested loops. This is not
available in Aikido and you must use other means to do so. You could use a variable to detect a loop
terminating condition, or perhaps use an exception (be careful of performance). It is true to say that
wherever a goto statement occurs there is always another way of doing the same operation.

The continue statement causes the innermost loop to terminate its current iteration and continue on to the
next one. In the case of a for loop, the next iteration includes executing the increment expression.

7.7. Return statement
The return statement causes a function to terminate and, possibly, return a value to the caller. The syntax
of the return statement is:

return expressionopt

Used without the optional expression, the return statement causes the function to terminate immediately. If
the caller was expecting a value to be returned from the function the she is out of luck.

Used with a value allows the function to return a value to the caller. There is no restriction on the types of
the values returned from a function (functions are generic). Of course, if you return a type that was not
expected by the caller you can expect to get a runtime error.

Statements

Sun Microsystems Laboratories

7-115

If you want to omit the expression from the return statement you must terminate the statement with either a
semicolon or line-feed character (comments are, of course, ignored). This probably won’t be a problem for
anyone, but it is best to mention it for the sake of completeness.

7.8. Exception statements
Aikido supports a C++ style exception mechanism (see Chapter 1). The supporting statements are the try
and throw statements.

The try statement sets up an exception handler for a block of code. The syntax of a try statement is:

try statement catch (identifier) statement

The statement is executed and if any exception occurs while the execution is taking place, the catch clause
is invoked. Invoking the catch clause involves declaring a variable with the name specified and setting its
value to the exception that has occurred, and then executing the statement in the catch clause.

Unlike C++, there can only be one catch clause in the try statement. It is always executed when an
exception is thrown. The job of the catch clause is to determine if it should handle the exception or not. If
it decides not to handle it (say the type isn’t what it is expecting), it should re-throw the exception to the
next handler.

To raise an exception, use the throw statement. This is of the form:

throw expression

The expression can be of any type (including a block). The exception is thrown to be caught by the first
handler on the way up the call stack. If there are no handlers in place the interpreter terminates and prints a
runtime error to standard error.

There is one call stack per thread, so if a thread does not catch an exception, the whole program will
terminate.

7.9. Delete statement
The delete statement removes a reference to a variable or part of a variable. Aikido is a garbage collected
language. The type of garbage collection used is referred to as ‘reference counting’. When the interpreter
notices that the reference count to an object gets to zero (there are no more references to it), the object is
deleted. For further information see Chapter 1.

The problem with reference counting garbage collection is that is doesn’t work where you have 2 objects
that refer to each other. Consider the following:

Object A Object B

Object C

Statements

Sun Microsystems Laboratories

7-116

Objects A and B are mutually referential (they have pointers to each other), and object C points to object A.
Suppose the reference count for object C goes to zero and it is therefore deleted. The link from C to A is
removed but A is not deleted because it has still got a reference from B.

The solution to the above dilemma is to explicitly delete object A by artificially decrementing its reference
count. This will bring it to 0 and therefore it will be removed. Once A is out of the way, B will have its
reference count set to 0 and it will also be deleted.

The delete operator does just this. It artificially decreases the reference count of an object by 1.

The delete operator can be applied to regular objects or to an element of a vector or map. Consider the
following:

class A {
 public var f = null
}

var a = new A()
var v = [1,2,3]
var m = {1 = ‘a’, 2 = ‘b’, 3 = ‘c’}

delete a.f // object member
delete a // delete the object a
delete v[1] // delete the second element of the vector
delete v // delete the whole vector
delete m[0] // delete the first element in the map

Deleting an element from a vector or map actually removes the element from the vector or map. Consider
the following:

var v = [1, 2, 3, 4] // 4 integer values
delete v[2] // delete the 3rd value – v now contains [1,2,4]

7.10. Synchronized statement

This statement allows a temporary monitor to be created for an object for the duration of the statement. It
is sometimes useful to be able to lock an object for a short period without having to declare the object as a
monitor. This might be for performance reasons. The synchronized statement allows just this:

synchronized (obj) {
 // perform some task on obj knowing that we have a lock
}

When the synchronized statement is executed a monitor is created for the object referenced in the
expression (if it doesn’t already exist of course). This monitor is entered and the statement is executed.
When the statement finishes execution the monitor is released.

Exceptions

Sun Microsystems Laboratories

8-117

Chapter 8. Exceptions

An exception is an occurrence that is not considered to be part of the normal behavior of the program.
They usually signal an error condition where part of the program has been asked to do something it was not
designed, or not willing, to do. An exception occurs at a given point in a program and is handled in
another. The two points may coincide.

There are multiple ways to make an exception occur:

• Print a message to the output of the program. This is usually to the standard error stream
• Return an unusual or out-of-range value from a function. The null pointer is usually considered out of

range for an object. For an integer-valued function, the value –1 is usually returned
• Throw an exception using the built-in exception mechanism

There are also multiple ways to handle an exception:

• Abort the program altogether
• Set a flag and continue
• Totally ignore it
• Invoke an exception handler

As the science of software engineering has evolved over the past half century or so, most of these methods
have been considered state-of-the-art at one time or other. In most cases, there was not other options
available due to system or language constraints. For others they were bad choices for exceptions pure and
simple.

The current state-of-the-art for the occurrence and handling of exceptions is the language-supplied
exception system.

So, let’s say that I design an object to represent a user of a system. Let’s also say that one of the attributes
of a user is a password which the user must supply in order to log on to the system. One of the jobs of the
user object is to provide validation of the password. We choose to implement the user as a class:

class User (name, password) {
 public function validatePassword (pass) {
 if (password != pass) {
 // do something
 }
 }

 public function getName() {
 return name
 }
}

The class provides a member function validatePassword() that takes an argument (pass) and checks to see
if it is the same as that expected for the user. The check is done as a simple comparison. The design issue
is what to do if the password is wrong.

Exceptions

Sun Microsystems Laboratories

8-118

We consider this as an occurrence of an exception, so our choices boil down to the list presented above.
When deciding which option to choose we have to consider how the exception is handled. Realistically we
have 2 choices here. We can either return a boolean value (false, say) to tell the caller that the password
provided was not correct; or we can throw an exception.

If we decide to return a false value to the caller we have defined that the API to this class is that the caller
must check the return value of validatePassword() to see if the password validated OK, or not. This is a
valid thing to do. We have just delegated the responsibility of the password check failure to one of our
callers (of which there potentially may be many). The callers now have to decide what to do when our
validPassword() function tells them that the password was wrong and are faced with the same question as
the original function.

For example, they may do the following:

function login (user, password) {
 if (!user.validatePassword (password)) {
 System.println (“Invalid password”)
 System.exit (1)
 }
// perform login functions
}

or, perhaps the following:

function login (user, password) {
 if (!user.validatePassword (password)) {
 return false
 }
 // perform login functions
 return true
 }

The buck must stop somewhere. The first example shows an exception handler. The exception occurrence
was detected and something was done about it. The program would never get past the login() function if
the password check failed.

The second example just defers the problem and passes it on to the caller of the login() function.

Suppose we chose the first method of handling the exception. What impact does our choice have on the
rest of the program? At first sight it appears that it is minimal – the caller of the login() function doesn’t
ever need to deal with the case of the password being incorrect. However, if the login() function was called
as part of a thread, we do not really want all the other threads in the system to stop, just because one failed.
We need a way to stop a single thread without the other threads in the system being adversely affected.

Unfortunately the only way to stop a thread is to return from the thread function itself, so this means we
have to pass up the error condition all the way to the top. This points us toward the second method of
exception handling where we return an error status from the login() function. We are forced to handle the
exception condition at the top level.

This doesn’t seem very satisfactory. Fortunately, the language comes to the rescue.

8.1. Throwing and catching exceptions
Aikido has an exception handling mechanism built directly into the language. It is based on the C++ and
JavaTM methods and therefore should be a tried and tested mechanism.

Exceptions

Sun Microsystems Laboratories

8-119

The basic idea is that when an exception occurs, an exception object is thrown at the point of occurrence.
The exception then passes up the call stack to the first function that is willing to deal with it. When an
exception handler is found, it is invoked and passed the exception object. If a handler is invoked and it is
not willing to deal with the exception, it can re-throw the exception to the next handler up the chain. If we
get to the end of the chain and nobody was willing to handle it, then we have reached a point where the
program has no option but to terminate.

So, we talk of throwing an exception to a handler who catches it – must like the exception was a ball in a
game. To throw an exception we use the throw statement (section 7.8), and we catch it using the catch
clause of a try statement (also section 7.8).

A try statement sets up the conditions for an exception handler. It tells the interpreter to try to execute the
code within the statement, but that it is willing to deal with any exceptions that occur during the execution.
The phrase “try to execute” is important because, by use of the try statement, you are saying: “I know that
this code may fail and it’s my responsibility to deal with the case where it does”. When the code does
indeed fail (by throwing an exception) the catch clause of the try statement is invoked and the exception
that has occurred is passed to it.

Here is an example of a try statement:

try {
 login (user, password)
 System.println (“User “ + user.getName() + “ logged in”)
 service (user)
} catch (e) {
 log (“Login for “ + user.getName() + “ failed due to: “ + e)
 return
}

The code inside the try statement calls the login() function passing the user and supplied password. If the
login() function succeeds, the user is logged in and the function service() is called for the user, which
presumably services requests by the user (accepts commands or something).

If the login fails (possibly due to password mismatch, but could be anything else), the exception handler is
invoked. The exception handler is passed the exception that was thrown (the variable ‘e’), and it logs a
message saying why the user failed to log in and returns from the function containing this code.

There can only be one catch clause for a try statement, in contrast to the C++ and JavaTM exception
mechanisms. This is because of the dynamically typed nature of the language. The Aikido mechanism is
no less powerful than that of C++ or JavaTM, it is just different. In C++, the exception mechanism is
responsible the doing the type comparisons between the exception being thrown and the exception
handlers. A handler is only ever invoked if the type of exception it is willing to deal with matches that of
the exception (subject to certain rules).

The Aikido mechanism always invokes the exception handler, passing it the responsibility of doing the type
comparison for itself. It could be argued that this is actually a more powerful mechanism than that
available in C++ because the comparison of exceptions can be done by the code in the program itself rather
than it being restricted to a fixed set of rules designed by the language designer.

For example, if we define a set of simple exceptions as follows:

const BAD_PASSWORD = 1 // password mismatch
const TOO_MANY_USERS = 2 // too many users logged in

Exceptions

Sun Microsystems Laboratories

8-120

const USER_BARRED = 3 // user has been barred from logging in today

We can write exception handlers like:

try {
 login() // try to log in
 // etc
} catch (e) {
 if (typeof (e) == typeof (int) && e < 0) { // test for type and value
 System.println (“server failure, have to exit”)
 System.exit (e)
 } elif (typeof (e) == typeof (int)) { // got an expected exception?
 switch (e) {
 case BAD_PASSWORD:
 System.println (“Invalid password, try again”)
 continue // allow a retry
 case TOO_MANY_USERS:
 System.println (“Too many users, try again later”)
 return
 case USER_BARRED:
 System.println (“You are barred, try again tomorrow”)
 return
 }
 } elif (typeof (e) == “string”) { // got a string?
 System.println (“Failed to login due to: “ + e)
 return
 } else {
 throw e // rethrow exception to caller
 }
}

So, given that we can catch exceptions with a handler, how can we signal the occurrence of an exception in
the first place? The throw statement.

Aikido allows the program to throw any value. Recall that a value is the basic holder of information in a
Aikido program (see Chapter 1) and can have one of a number of built-in types. When you want to raise an
exception condition, you create a value and throw it.

Consider the following examples:

throw 1 // an integer 1
throw “Invalid password” // a string
throw InvalidPassword() // an object (could also use new Inv...)
throw getException (1) // something returned from a function
throw false
throw null
throw new Exception (“Invalid password”)
throw InvalidPassword // a class

When a handler comes across an exception is it not prepared to deal with it can throw the exception to the
next handler in the chain. This is done by simply throwing the variable that was caught.

try {
 // code
} catch (e) {
 if (typeof (e) != “string”) { // I only like strings

Exceptions

Sun Microsystems Laboratories

8-121

 throw e // anything else gets thrown on
 } else {
 // deal with string exception
 }
}

Of course, you can always handle the exception and then throw it on again:

var s = System.openin (filename)
try {
 // code
} catch (e) { // for any exception
 System.close (s) // close the stream
 throw e // and rethrow it
}

8.2. Uncaught exceptions and stack unwinding
What happens if the exception reaches the top level in a call stack? To answer this we must define what a
call stack means.

Each thread in a program maintains its own stack. At any point in the execution of a thread, the stack
contains information about where the thread has been. The most basic use of the stack is to hold
information such as the return address for the currently executing function so that when the function
returns, the thread knows what to execute next. It also holds the values of the local variables and other
information for each level in the stack.

The call stack has a top and a bottom. The bottom of the stack contains information about the first function
called by the thread (the thread function itself). The topof the stack keeps changing, but contains
information about the currently executing function.

Suppose we have a set of function like this:

function a {
 var a = 1
}

function b {
 var b = 2
 a()
}

function c {
 var c = 3
 b()
}

thread t {
 var t = 4
 c()
}

Exceptions

Sun Microsystems Laboratories

8-122

If we are currently executing the function ‘a’, then the snapshot of the call stack at this moment in time
would be:

If we return from function ‘a’, the topmost element of the stack would be popped off and we would be left
with function ‘b’ at the top.

When you throw an exception the stack is rewound by traversing from the top to the bottom looking for an
exception handler. Each time we pass from one level to another in the call stack we remove the level just
passed, thus freeing all the memory associated with that level. It also destroys any variables that were
created at that level.

When we come to an exception handler, the language interpreter arranges it so that the top of the stack
contains the function in which the handler is situated and invokes the handler, first assigning the variable
named in the handler with the exception being thrown.

If we get to the bottom of the stack and nobody had caught the exception, then the program must exit
because we have arrived at a situation where an exception that is potentially dangerous has not been
handled. This does not just terminate the current thread, but stops all threads and exits the whole program.

An uncaught exception will cause the interpreter to print a “runtime error” to the standard error stream
before exiting.

So, consider the following (badly written) example:

thread userServer (stream) {
 var user = new User() // might throw an exception, but not handled
 var password = getPassword()
 try {
 login (user, password)
 } catch (e) {
 if (typeof (e) == “integer”) {
 switch (e) {
 // handle exceptions here
 }
 } // oops, don’t handle anything else
}

thread t

function c

function b

function a stack top

Exceptions

Sun Microsystems Laboratories

8-123

If we get an exception thrown that is not an integer (say, a string), or thrown from somewhere outside the
try statement we will see something like the following appear on the terminal:

Runtime Error : no such user fred

I leave it an exercise as to what was thrown.

8.3. Exceptions and runtime errors
When a Aikido program is running, there are occasions when the interpreter itself throws exceptions..
They can be caught like any other exception and handled before causing a Runtime Error and a program
abort.

The types of the exceptions thrown by the interpreter may be a string or may be an instance of the class
System.Exception (or one of its subclasses). The System.Exception class is described in section 15.3.11.

For example, the openin() function in the System package supplied with Aikido tries to open a file for input
and returns a stream if successful. There is always the possibility that the file cannot be opened (maybe it
doesn’t exist, or is not accessible), so the openin() function throws an exception of type
System.FileException if it cannot perform its task.

If you are prepared to deal with the inability of the openin() function to open the file, you can enclose the
call in a try statement:

try {
 var instream = System.openin (“chatrc”)
 processRCFile (instream)
} catch (e) {
 // can’t open file, ignore
}

If it is a requirement of the program that the file exist, you can either let is cause a runtime error, or catch
the exception and give a more appropriate error.

Streams

Sun Microsystems Laboratories

9-125

Chapter 9. Streams

Input and output are perhaps the most important aspects of an program. The incorrect handling of input can
cause devastating program errors. We all know the old phrase Garbage In Garbage Out (GIGO). This
succinctly sums up the problem. Even the most well written program cannot work properly if the input
data is incorrect or is incorrectly handled.

Input and output is built into Aikido. This is a feature that was absent in the C family of languages and
even JavaTM, both of which rely on system provided libraries and functions to perform required IO
operations.

The JavaTM language has the concept of a Stream. This is an object supplied by the java.io package that
supplies methods for reading and writing. In Aikido, the language provides a full set of input and output
operations on built-in values called streams.

A stream is an input/output channel usually connecting the program to a device. The simplest streams are
those connected to files. Consider:

var instream = System.openin (filename) // open the file for input
var lines = [] // create an empty vector
instream -> lines // read whole file into vector
System.close (instream) // close the stream

This code segment first creates a stream connected to a file. The file is opened for input (meaning that you
can only read from it, and it must already exist). It then creates an empty vector and then reads all the lines
from the stream into the vector. Finally it closes the stream.

The System library provides a set of functions to create and close streams. Once a stream is opened, it may
be used as a normal value in the program. The special -> operator is the stream operator (section 6.7) and
causes copies to and from streams. The function of the stream operator depends on the types of its
operands. In the case above, the right side operand is a vector type. The definition of the operation of a
stream write to a vector says that the whole stream is appended to the vector. Thus, this example reads
each line in the file and appends that line to the vector until the end of the stream is detected.

9.1. Stream operations
In addition to creating, reading and writing streams, Aikido provides a set of operations that can be used to
manipulate them. These operations are held in the System package.

The operations provided are:

Operation Result
close (stream) The stream is closed
select (stream, timeout) Returns 1 if there is data waiting to be read from stream.

Times out after timeout microseconds.
eof (stream) Returns 1 if the stream is at the end of file
flush (stream) Flush the data remaining in the stream buffers
getchar (stream) Read a single character from the stream. Returns the

character read
getbuffer (stream) Read all the available characters in the stream buffer.

Returns a string containing all the characters

Streams

Sun Microsystems Laboratories

9-126

availableChars (stream) Returns the number of characters in the buffer
setStreamAttribute (stream, attr, value) Set the value of a stream attribute
rewind (stream) Rewind the stream to the start
seek (stream, offset, whence) Move to a new position in a seekable stream

9.1.1. Stream buffering
Streams are not connected directly to their device. To do this would introduce performance penalties and
erratic behavior due to the latencies of the hardware devices. Rather, the streams have a buffer embedded
in them to insulate the user of the stream from the hardware. A buffer is an area of memory that is used to
hold data that is either waiting to be read by the stream user, or is waiting to be written to the device.

Say we had a stream connected to a network connection. If we did not have buffering, any write to the
stream would cause a packet to be transmitted over the network. This is not only undesirable in terms of
performance, but also may not be what is expected by the receiver of the packets.

Buffering also helps on the incoming side by providing a FIFO for incoming data that has not yet been
processed by the stream user.

The user of a stream must be aware of the buffering scheme being used by the stream. It may not be
obvious, for example, that the data is not actually written to the stream until the output buffer is flushed, so
the user may be happily sending data to it and the stream is simply buffering it up. This can occur
especially with streams connected to networks, where the medium is best suited to large buffers.

The size of the buffer attached to a stream may be controlled by the StreamAttributes.BUFFERSIZE
attribute. This may be set by the use of the setStreamAttribute() operation. For example, if we decide that
we don’t want a stream to be buffered, we could use the following on the open stream:

System.setStreamAttribute (s, System.StreamAttributes.BUFFERSIZE, 0)

Alternatively, we can choose to allocate a large buffer for, say, a network stream by:

System.setStreamAttribute (net, System.StreamAttributes.BUFFERSIZE, 8192)

The default size of the buffer is 512 bytes.

Buffers may be flushed to the hardware by use of the flush() operation. You can read the whole buffer into
a string data type by calling the getbuffer() operation. You can look to see how many characters remain in
the buffer by calling the availableChars() operation.

There is a system-supplied class called StreamBuffer() that provides many of the features you need to send
data over streams. In particular, when you read from a stream into a StreamBuffer it will read all the
characters available in the stream. And when you write a StreamBuffer to a stream it will automatically
flush the buffer.

If the stream attribute AUTOFLUSH is set to true, the stream will be flushed when any data is sent to it.
This should be used with care as performance may suffer. It is useful when the stream is being used for
transmitting characters at a time.

9.2. Reading and writing streams
Streams can be read and written by use of the stream operator. The operator understands the type of data
being read into or written from and behaves differently depending on the data type. The following table
shows the combinations:

Streams

Sun Microsystems Laboratories

9-127

Data type Reading Writing
integer Decimal integer converted to binary Decimal integer
string Whole line read – terminated by line feed

character which is discarded
Characters written to stream.

real ASCII for real value Written as ASCII
char Single character Single character
vector Each line of file appended to vector - line

feed is retained
Each element written

bytevector bytes read from input stream. All the bytes
in the current buffer are read

All the bytes in the vector are
written in raw mode

map cannot read Elements written as first=second
enumeration constant cannot read Name of enumeration constant

9.3. Standard streams
Like any programming language, Aikido provides a set of standard streams connected to the standard
devices of the system. There is one connected to the standard output (stdout), on to the standard input
(stdin) and one connected to the standard error device (stderr).

These are set up by the interpreter and are available to anything in the Aikido program. So, to write an
error message to the standard error stream, you could write:

[“Error: incorrect range: “, a, “ to “, b, ‘\n’] -> stderr

This creates a vector literal and uses the stream operator to write it to the standard error. To read from the
keyboard (usually connected to standard input, but may be redirected), you could write:

var limit = -1
stdin -> limit

In addition to the standard streams, each thread in a Aikido program has 2 streams connected to it. These
are connected by the system and are called input and output. For the main program thread, the input is
connected to stdin and the output is connected to stdout. The idea of these streams is to provide a stream
that can be redirected without worrying about overwriting the standard stream variables and not being able
to direct it back again.

Also, the input and output streams are automatically connected as communication channels to any thread
created. Consider the following:

// server thread, sits waiting for input, processes input and writes result
thread server {
 while (!System.eof(input)) { // process until stream closed
 var command = “”
 input -> command // read command from stream
 var result = execute (command) // execute command
 result -> output // write result to output
 System.flush (output) // flush the stream
 }

 var serverStream = server() // create thread and stream

 var result = “”

Streams

Sun Microsystems Laboratories

9-128

 “cat x.c\n” -> serverStream // send command to server
 System.flush (serverStream) // flush the stream

 serverStream -> result // wait for result

The above example shows a thread that acts as a server. It sits in a loop, reading commands from its input
stream, executing them, and sending the result to the output stream. The main thread first creates the server
thread and then sends a single command to it. It then waits for the result to come back.

As can be seen, when a thread is created, the return value from the thread creation call is a stream that is
connected to the thread. The thread sees the other end of the stream as its input and output streams.

9.4. File streams
One of the most common uses of streams is for access to files. A stream can be attached to a file by
opening the file using one of the file-opening functions provided in the System package. The file access
functions are:

Function Purpose
openin (filename) Open the named file for input
openout (filename) Open the named file for output
openup (filename) Open the names file for update (reading and writing)
openfd (fd) Open the integer file descriptor as a stream
open (filename, mode) Open the named file with the given integer mode

When opening a file for input, the file must already exist. The file is opened and the current position is set
to the start of the file. If the file doesn’t exist, an exception is thrown.

Opening a file for output means that the file is created if it doesn’t exist, or truncated if it does exist. In
either case, the current position will be at the start of the file.

When opening a file for update, the file is created if it doesn’t exist or truncated if it does. The stream is
capable of reading and writing to the file. The current position is set to the end of the file.

The openfd() function connects a stream to an existing file descriptor provided by the operating system.

The open() function takes both the filename and an integral mode parameter. The mode parameter
specifies a particular mode in which to open the file. The modes are enumerated in the System package
and are:

Mode Meaning
OpenMode.APPEND Put file pointer at end of file
OpenMode.BINARY Open the file in binary mode
OpenMode.IN Open the file for input
OpenMode.OUT Open the file for output
OpenMode.TRUNC Truncate the file to zero length
OpenMode.ATEND Open the file and place pointer at end
OpenMode.NOCREATE If the file doesn’t exist, don’t create it

Streams

Sun Microsystems Laboratories

9-129

OpenMode.NOREPLACE If opening for output and the file exists,
don’t replace it

The modes are defined as a set of bits that can be ORed together to form all the properties of the open
File streams are seekable. This means that you can move the current position by use of the rewind() and
seek() functions in the System package.

The rewind() function puts the file pointer at the start of the file. Any reads or writes after a rewind has
been performed will happen at the start of the file.

The seek() function allows the file pointer to be moved to any position in the file. It moves the file pointer
relative to the start, end or current position in the file. The 3rd parameter specifies from which position the
move is relative:

Whence value Meaning
SEEK_SET Relative from the start of the file
SEEK_CUR Relative from current position
SEEK_END Relative from end of file

9.5. Network streams
Aikido has the ability to connect a stream to a network connection. A stream connected to a network port
operates like any other stream except it is not seekable. The Network package contains functions to
support network streams. In order to use the network package it is necessary to import it to your program.
This is done by placing an import statement in your code:

import net

This will search for the file net.aikido in all the normal places. See Chapter 1 for full information on
imports.

Function Meaning
Network.open (addr,port) Open an active network connection (TCP)
Network.openServer (addr, port, type) Open a passive network connection (TCP or

UDP
Network.lookupName (name) Consult a naming service to convert a

network name to an address
Network.lookupAddress (ipaddr) Consult a naming service to convert an

integer IP address into a host name
Network.accept() Wait for and accept an incoming connection
Network.openSocket() Open a UDP client socket for sending

datagrams
Network.send (socket, addr, port,
buffer)

Send a UDP datagram to the given socket.
The addr and port specify the recipient. The
buffer is the string or bytevector to send

Network.receive (socket, var addr, var
port, maxbuffer = 4096)

Wait for an incoming UDP datagram.
Blocks until a datagram is received, then
returns the data as a bytevector. Also sets
the addr and port to the sending address.
The maxbuffer argument specifies the max
size of data that can be received

Network.peek (socket, var addr, var
port, maxbuffer = 4096)

As receive, but don’t extract the data from
the network. A call to receive() will read the
data.

Streams

Sun Microsystems Laboratories

9-130

data.
Network.formatIPAddress (addr) Build a string of the form n.n.n.n out of an

integer IP address.

Networks consist of a set of interconnected machines, each with a unique address. Each machine has a
name that can be translated to an Internet Protocol (IP) address by looking it up in a naming service. One
such common naming service is the Domain Naming Service (DNS).

A network name is a string like “agamemnon.eng.sun.com”. The DNS service converts this to a 4 byte
integer. You may be familiar with the form of IP addresses. They are written down as a series of 4
numbers separated by dots. The numbers are in the range 0..255 (although certain numbers are reserved for
special uses). For example, the name “agamemnon.eng.sun.com” may be translated into the IP address:
152.70.60.45.

The network stream creation functions take an address as the first parameter. An address can either be a
string or an integer. If passed a string, the functions will either perform a lookup on the name, or if the
string conforms to the standard IP address format (4 numbers separated by dots) will convert it to an
integer. If passed an integer, the functions will use the bottom 32 bits of the integer as the IP address.

The port parameter of the functions specifies a TCP port to be used as the endpoint for the connection. It
is an integer in the range 0..65535 (16 bits).

9.5.1. Passive and active connections
The terms “passive” and “active” come from the terminology used in the TCP/IP documentation. An active
connection is a client side connection, and a passive connection is one for a server. Consider what
constitutes a network connection. You have a machine out on the network that is sitting waiting for
incoming connection requests. That machine has done what is called a “passive” open of a network port.
Another machine wants to create a connection across the network to the first machine. It does this by
opening a port in “active” mode. When a port is opened in active mode it will cause the underlying
network software to send traffic across the network to the receiver (determined by the address/port/type
triple).

So we have a server sitting waiting for incoming connections on a port it has opened passively and a client
who is actively sending it traffic from a port it has opened actively.

A passive port can be opened in Aikido by issuing a call to the openserver():

var s = Network.openServer (address, port, Network.TCP)

The return value from the openServer() call is a “socket”. This is an integer that represents a passively
open port. Just by doing this we have just told the network software in the operating system that this port
should be opened. We cannot receive anything on it yet because there are no connections to the port.

As previously stated, a passively open port accepts incoming connections from other machines. In order to
wait for an incoming connection we issue an accept() call. This blocks until we get a connection request,
then creates a stream for the connection and returns the stream value to the caller.

var instream = Network.accept (s) // wait for incoming connection

When the accept() call returns we have an open stream to another machine on the network.

Streams

Sun Microsystems Laboratories

9-131

So, how do we do an active open to connect over the network from the client side? The call open() is used
to do this:

var serverstream = Network.open (addr, port)

When this returns we have an open TCP stream to the server and can start to send messages through it.

9.5.2. Special considerations for network streams
When using network streams it is important to realize that the stream is not connected to a passive device
line a disk drive, but to another program running on a different machine. When a stream is connected to a
disk there is no harm in sending data through the stream at varying rates, even a character at a time. The
only consideration is that of performance. An unbuffered stream attached to a disk will be slower than an
buffered one, but it will still work.

When a stream is connected across the network, the packetization of the data is of utmost importance. The
other end of the connection may not be a Aikido program, so it will be expecting packets containing certain
data. If the Aikido program sending the data sends it in drips and drabs, the other end may see incomplete
packets and will fail with protocol errors.

All data sent across a network is sent in a packet. This is a series of bytes of data enclosed in a protocol
envelope. Usually the protocol is Transmission Control Protocol (TCP), but may be anything else. A
packet’s payload (the term given to the data held within the packet) can be of any length, but certain
protocols impose the exact contents and length of the payload.

Consider the case where a server (written in C or some other non-Aikido language) gets a connection from
a client. Say the server is something that a client logs in to. The server protocol for this application may
require that the first packet seen from the client contain information such as the username and password for
the person wishing to log in. Further, suppose that the contents of the first packet consists of 2 strings, each
of which are terminated by a line-feed character. You could write the client in Aikido as follows:

// login to the server with username and password
function login (server, username, password) {
 function write (s) { // local function to write to stream
 [s, ‘\n’] -> server
 System.flush (server)
 }

 write (username) // write username
 write (password) // write password
}

The above program would cause a protocol error in the server because there will actually be 2 packets sent
to the server. The appearance of the flush() call in the write() function will cause a packet to be sent or both
the username and the password.

The program is very easy to fix – just move the call to the flush() function until all the data has been sent.
In this case, it was trivial, but there are other subtleties that may come into play.

The default size of a buffer for a stream is 512 bytes. If the protocol for a server requires a packet that is
larger than 512 bytes the packet will get split into 2 by the stream buffering mechanism. In this case you
can use the setStreamAttibute() call to increase the local buffer size for the stream.

Another consideration is with the use of strings. When reading strings from a stream, the stream operator
expects a line-feed character to be present at the end of the string. Sometimes this will not be present. If

Streams

Sun Microsystems Laboratories

9-132

so, you'll have to read a character at a time from the stream until you get to the terminating character of the
string.

9.5.3. Datagrams
A network stream is a TCP connection. This is a connection-oriented protocol that uses the TCP protocol
to send and receive data. Another protocol that may be used for sending data over a network is UDP. This
is a connectionless protocol in which every packet sent over the network is addressed with the address of
the intended recipient. Such a packet is known as a datagram.

Datagrams are sometimes used where a TCP connection is not suitable (broadcast messages for example)
or the overhead of the TCP protocol is not wanted. For example, the common DHCP protocol for
assignment of IP addresses on a LAN uses UDP datagrams.

A program wishing to be the recipient of a datagram can create a passive network socket using the
Network.openServer() call and specifying Network,UDP as the ‘type’ parameter:

var socket = Network.openServer (addr, port, Network.UDP)

Once a socket has been created, the server may receive a packet using the Network.receive() function. This
waits for an incoming packet and when it gets one, it reads the sender’s address and reads the data from the
network. It returns the data is received as a string and sets two reference variables to the IP address and
port number of the sender:

var addr = 0 // IP address of sender
var port = 0 // UDP port of sender
var data = Network.receive (socket, addr, port) // receive a datagram

After a receive() call has completed, the ‘addr’ and ‘port’ variables are set to contain the IP address and
UDP port number of the sender of the datagram. The data is returned from the function as a bytevector.

To send a datagram you can call the function Network.send(). This takes the socket to send on, the IP
address and UDP port to send to, and the data to send:

Network.send (“computer2”, 6456, “hello world”)

The data must be a string or bytevector (or something that can be cast to a them).

The Network package also contains a stream filter (section 9.6) for sending repeated datagrams to the same
address. This is called the DatagramStream class and may be used as follows:

var str = new Network.DatagramStream (“computer2”, 6456) // create stream

“hello world” -> str // send string to stream

The DatagramStream may be retargetted by calling the ‘retarget()’ function with the new address and port:

str.retarget (“computer3”, 6456)
“hello again” -> str

The number of datagrams sent through the stream is available in the ‘numDatagrams’ variable in the
stream.

Streams

Sun Microsystems Laboratories

9-133

9.6. Layering streams: stream filters
Communications protocols are comprised of a set of layers. These layers make up what is known as a
stack. This is done to simplify the design of the protocols and to ease understanding. For example, the ISO
Open Systems Interconnect (OSI) communications protocols standard is divided into at least 7 layers, each
of which implements a part of the protocols. Each layer has an interface above and below and has been
given a name. The standard OSI stack model is:

The idea of a layer is that its world consists of a set of 2 interfaces: one to the layer below it and one to the
layer above it. The flow of data is through the layers. For outbound data, the flow is down the stack. Data
enters at the top and is transformed by the layers until it reaches the bottom of the stack. For inbound data,
the opposite it true.

It is also a property of the layering scheme that a higher layer provides higher level data structures than a
lower layer. Take the Presentation layer in the OSI stack. The interface at the top of the layer is a set of
abstract objects (an object model). The lower interface to the session layer is a flat byte stream. Therefore
the presentation layer is responsible for converting to and from the abstract data types to the concrete data
required by its lower interface.

Every protocol available on the network relies on some sort of stack of layers. The simplest would be the
TCP or UDP protocols used throughout the Internet. These consist of 4 layers as follows:

The bottom 2 layers provide the very low level transmission and reception of data over a wire. The third
layer (Internet Protocol) provides a way to address a packet of data and transmit it over the network to
another IP layer on another machine. The top layer is the Transmission Control Protocol (TCP) layer and is
responsible for building and maintaining connections to another TCP layer on another machine. It is also
responsible for ensuring that data sent over the connections arrive in a timely manner and in the correct
order.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Transport Layer (TCP)

Network Layer (IP)

Link Layer

Physical Layer

Streams

Sun Microsystems Laboratories

9-134

One way to implement such a scheme would be for each layer to know exactly where it stands in the stack
and be coded to only fit there. So each layer would provide an API (Application Program Interface) at its
top and make calls to another API at its bottom. This scheme would certainly work but is a little inflexible.
Consider a situation where an application program was sitting above an API and making calls to it. Now
we wish to insert another layer in the stack. We cannot do this without making changes to the application
itself.

A better way to implement the layering scheme is to use a stream mechanism. When AT&T developed the
System V Release 4 (SVR4) version of UNIX® they introduced the concept of a stream access to devices.
Traditionally, a device was accessed through the regular open, close, read, write and ioctl calls provided by
the operating system. These were basically implemented as a set of function pointers in a table provided by
he kernel. If you wanted to add to a device driver you had to either go in and modify the kernel code, or
you could add an application program on top of the device driver and modify all your code to call it rather
than going directly to the device driver.

The streams mechanism extends the traditional interface (open, close, read, write and ioctl) by allowing
you to push a module on to a stream. This, in effect, inserted a piece of code between the application
program making calls to the device driver and the device driver itself. The interface to the device driver
remained the same, it was just that the calls made by the application program now went to the new module
first, rather than going to the device driver directly.

The streams solution provided by AT&T was adopted as a good solution to the device driver access
problems. You could now push a stream module on to a device to allow, for example, encryption of the
data going to the device. The application program would not necessarily have to be aware of the new
module in its path to the device.
Streams are a good generic mechanism for abstracting an interface. They are also applicable for higher
level protocols as well as device drivers. By overloading the stream operator (->) in a Aikido program you
are able to implements the same strategy for the streams used by Aikido programs.

Recall that a class can provide an operator function that will be called whenever the stream operator is
applied to an instance of that class (see section 5.6.1.4). For example:

class A {
 public operator -> (data, isout) {
 }
}

var a = new A() // new instance of A
a -> outstream // write object to stream
instream -> a // read object from stream

The operator function will be called for all input and output operations on the instance ‘a’. It is passed 2
parameters: a data item, and a flag that has value 1 if the operator is being used for output to the object.

So, in the above example, the expression:

a -> outstream

Will call the operator function with data = outstream and isout = false (we are reading from the object).
The expression:

instream -> a

Will result in data = instream and isout = true as we are writing to the object.

Streams

Sun Microsystems Laboratories

9-135

An object providing an overload of the stream operator may by placed in the path of any stream. The user
of the stream does not have to be aware of the existence of the object. Typically an object placed in the
path of a stream will add something to any data passing through the stream on the way out and remove
something on the way in.

An object placed in a stream for the purpose of modifying the data flowing through the stream is referred to
as a stream filter.

For a stream filter, there are 2 directions in which data will flow. The downstream direction is where the
data is sent to the filter for forwarded to the rest of the stream on the outbound side. The upstream
direction is going the other direction. When you write to a stream the data flows downstream, for reading,
the data flows upstream.

In the diagram, the flow from left to right is the downstream direction. This corresponds to the direction of
the arrow suggested by the -> operator.

Consider a simple protocol filter that adds a length indicator to the data passing through it. Let’s define is
as prefixing the data with a marker (say the character ‘A’), then the decimal length of the data, then the
marker again (A). This is followed by the data itself. Let’s define a class called ProtocolA that implements
this layer:

import streambuffer // we use a streambuffer

class ProtocolA (instream, outstream) { // takes input and output streams
 var buffer = new Streambuffer() // make a new buffer

 public operator -> (data, isout) { // stream operator overload
 if (isout) { // output to stream?
 buffer.put (‘A’) // add marker
 buffer.put (sizeof (data)) // add length
 buffer.put (‘A’) // add another marker
 buffer.put (data) // add the data
 buffer -> outstream // write to downstream
 } else {
 instream -> buffer // read from input stream
 if (buffer[0] != ‘A’) { // check for initial marker
 throw “protocol error”
 }
 var ch = 1
 var len = 0
 while (buffer[ch] != ‘A’) { // read the length (until marker)
 len = len * 10 + buffer[ch++] – ‘0’
 }
 ch++ // skip final marker
 buffer[ch:sizeof (buffer) – 2] -> data // write data upstream
 }

Stream
Filter 1

Stream
Filter 2

Stream
Filter 3

Streams

Sun Microsystems Laboratories

9-136

 }
}

The StreamBuffer is used as a convenient way to gather the components required by the protocol into a
single packet. It also allows the bytes received to the extracted.

As can be seen, the ProtocolA stream operator provides for both upstream and downstream flow. When
used in the downstream direction it adds the markers and length to the data. When used in the upstream
direction it checks for the markers, reads the length and sends the payload on its way.

The stream filtering mechanism allows any number of layers to be placed in the stream, each one of which
is unaware of the existence of the others. Its primary use is in the implementation of network protocols, but
may be used for any input and output to a stream. For example, it may be used to filter output to the screen
to convert it to upper case:

class Shout (instream, outstream){
 import ctype // character typing

 public operator -> (data, isout) {
 if (isout) {
 var val = “” // result string
 foreach ch data { // for each char in input
 val += ctype.toupper (ch) // convert to upper case
 }
 val -> outstream // write to out stream
 } else {
 instream -> data // transparent flow through
 }
 }
}

This filter only works for output. It just acts as a pass though when it is used as input.

Multithreaded programming

Sun Microsystems Laboratories

10-137

Chapter 10. Multithreaded
programming

Programming using multiple threads of control can be a daunting task. Conceptually it is very simple, but
there are many subtle problems that can occur if you don’t take care with your data. These are the sort of
problems that do not show themselves until a rare combination of events forces them out.

Aikido supports multithreaded applications directly in the language. Much like its ancestors Ada and the
JavaTM language, Aikido has constructs and support structures to allow the user to write a program with
multiple threads of control all running independently.

In a single threaded program there is one path the program can take. That path may pass through multiple
functions and go back on itself many times, but there is no way to get off the path once you are on in. The
introduction of threading support into operating systems allowed the program to take many paths at the
same time. Sometimes those paths never meet and even go off into canyons never to come out again.
Sometimes they cross and clash.

The basic support construct for a multithreaded program is the thread. A thread is basically a function that
is called and executes in parallel with all other threads in the program. The program can spawn as many
threads as it likes. It Aikido, a thread is defined in a very similar way to a function:

thread t (args) {
 // thread body
}

You start a thread by calling it. For example, the following code will start multiple threads:

foreach x 1000 {
 t()
}

Spawns 1000 copies of the thread ‘t’. Each copy of the thread executes effectively in parallel with all the
other 999 copies of it.

Aikido uses a process or task model for threads. This is where you designate a function as a process and it
always behaves that way. You can, of course, inherit a function from a thread, thus changing it from a
process to a regular function. This is in contrast to the JavaTM method which uses a Thread Object model.
in this model a thread is a regular object with special functions (start() and run()). When the start function
is called the JavaTM interpreter spawns a thread and arranges it so that the first thing called when the thread
starts is the run() function.

10.1. Threads
Everything in a Aikido program runs in a thread. The main program is actually a thread even though you
don’t explicitly name it as such. There are a set of operations provided by the system to give you control
over threads. These are in the package ‘main’ so are accessible to everything.

The functions provided are:

Multithreaded programming

Sun Microsystems Laboratories

10-138

Function Parameters Purpose
sleep time in microseconds Delay the current thread for a time
setPriority integer priority Set the priority level of the current thread
getPriority Return the current priority level of the current thread
getID Get the current integral thread id
join stream connecting to thread Wait for thread to terminate

Consider the following example:

thread test() {
 System.println (“thread “ + getID() + “ sleeping”)
 sleep (10 * 1000000) // 10 seconds
 System.println (“woke up”)
}

var t = test()
System.println (“waiting for test”)
join (t)
System.println (“test completed”)

This shows the use of the thread operations. The thread ‘test’ prints its identifier and sleeps for 10 seconds.
It then wakes up and terminates. The main program spawns one copy of the thread and waits for it to
finish.

Note that if you don’t join a thread before terminating the main program, all the threads will be stopped.

The above example prints:

waiting for test
thread 4 sleeping
[10 seconds pass]
woke up
test completed

The order of the first 2 lines is non-deterministic as the thread may start before the print from the main
program.

10.1.1. Thread priorities
All threads effectively execute in parallel. Each thread has a scheduling priority assigned to it that governs
the amount of CPU time allocated to it relative to other threads. Aikido has 100 priority levels. Level 0 is
the lowest priority and level 99 is the highest. A thread with a higher priority will get more CPU time than
one at a lower priority.

The priority of a running thread can be set only by the thread itself and is an integer in the range 0..99. The
function setPriority() sets the priority and the function getPriority() retrieves the current priority.

The following constants give the limits of the priority levels available:

Constant Meaning
MIN_PRIORITY The lowest priority level (0)
MAX_PRIORITY The highest priority level (99)

The constants are in the System package.

Multithreaded programming

Sun Microsystems Laboratories

10-139

10.1.2. Alternate threading model
The Aikido threads can be made to look like the JavaTM threading model. As mentioned before, the JavaTM

language uses a Thread Object model where an object is defined with a couple of special functions. Let’s
see how to define such an object in Aikido.

class Thread {
 public function run() { // meant to be overridden by subclass
 throw “run called directly in thread”
 }

 private var id = 0 // local copy of thread id

 public thread start() { // start the thread running
 id = getID()
 run()
 }

 public function setPriority (p) {
 main.setPriority (p)
 }

 public function getPriority() {
 return main.getPriority()
 }
}

Given this definition, we can now define subclasses of this Thread class to make our own threads.
Consider:

class ServerThread (stream) extends Thread {
 public function run() {
 for (;;) {
 // run server functionality
 }
 }
}

// 2 instances of the server thread
var t1 = new ServerThread (stream1)
var t2 = new ServerThread (stream2)

// start the threads running
t1.start()
t2.start()

The Thread class is, of course, a simplified version of that available in the JavaTM language. It does,
however, serve to show that the Aikido thread model is very powerful.

10.2. Monitors
Threads frequently need to share data. When data is shared by multiple threads you always have to
possibility that there will be a clash when 2 threads try to access the data at the same time. A monitor
provides a mechanism that allows shared data to be protected by “Mutual Exclusion Lock” or mutex.

Multithreaded programming

Sun Microsystems Laboratories

10-140

So why is it necessary to protect shared data? Consider the situation where we have 2 separate threads
running simultaneously on 2 separate processors in a multiprocessor machine. The data to be shared
between them is in memory attached to both processors. Say that the threads both wish to increment a
counter in the shared memory.

In order to increment a counter the programs need to do the equivalent of the following code:

count = count + 1

This is decomposed into 3 steps:

1. Load the value of count from memory
2. Add 1 to the loaded value
3. Store the incremented value back to memory

Now consider the 2 threads happily running along. The current value of count is 1. Let’s call the threads
‘A’ and ‘B’. Consider one possible scenario where the threads are not trying to access the variable count
at the same time:

Time Thread A Thread B
1 Loads count (1)
2 Increments value to 2
3 Stores count (2)
4 Loads count (2)
5 Increments value o 3
6 Stores count (3)

So after the 2 threads have completed their increment, the value of count is (correctly) 3. Now consider the
scenario where both threads arrive at the code to increment count at the same time:

Time Thread A Thread B
1 Loads value of count (1) Loads value of count (1)
2 Increments value to 2 Increments value to 2
3 Stores value back to count (2) Stores value back to count (2)

This time we get a problem. The value of count is incorrectly set to 2 after both threads have run. This is
known as the “lost update” problem and is one of the classic reasons for failure in multithreaded programs.

You may think that the solution to the problem is to provide the variable count with a ‘lock’. This is a
variable that guards the access to count. Each thread could check the lock before trying to increment the
count variable and loop until it the lock is freed. Consider the scenario where we put a lock on count and
each thread checks the lock before accessing count. Each thread reaches the lock at the same time.

Time Thread A Thread B
1 Loads value of lock – gets 0 Loads value of lock – gets 0
2 checks if lock is 0 – true Checks if lock is 0 – true
3 sets value of lock to 1 sets value of lock to 1
4 loads value of count (1) loads value of count (1)
5 increments value to 2 increments value to 2
6 stores value of count (2) stores value of count (2)
7 stores value 0 back to lock stores value 0 back to lock

Thus we have not solved the problem, only moved the point of contention to the lock variable itself.

Multithreaded programming

Sun Microsystems Laboratories

10-141

In order to solve this problem we need support from the hardware. We need the ability to perform an
atomic ‘lock’ operation that is not divided into several stages. Most processors that can be used in
multiprocessor systems have such an instruction. We need a way to access the instruction from Aikido (or
any other language for that matter).

One solution to the problem is the mutex lock. This is a variable that is treated specially by the operating
system and provides lock and unlock operations. These operations are atomic (probably coded in assembly
language in the operating system to use the atomic instructions of the processor). The semantics of the lock
operation are those we tried to do with the lock variable – if the mutex is locked we wait until it becomes
unlocked. Consider the above scenario with the use of a mutex instead of a lock variable:

Time Thread A Thread B
1 Locks mutex – gets lock Locks mutex – has to wait
2 loads value of count (1)
3 increments value to 2
4 stores value of count (2)
5 unlocks mutex Gets lock on mutex
6 loads value of count (2)
7 increments value (3)
8 stores value (3)
9 unlocks mutex

Thus, is we can guarantee that the lock operation on a mutex is atomic we have solved the lost update
problem.

A monitor is a more functional solution to the problem. It provides an atomic locking mechanism like the
mutex solution but also provides wait and notify operations. These operations can be used to implement
resource allocation problems. A mutex itself cannot be used for resource allocation, you need another
construct called a condition variable. Thus a monitor is a combination of a mutex and a condition variable.

A monitor can be thought of as an area of memory that can only be accessed by one thread at one time.
All accesses to a monitor when it is occupied are blocked and the threads are placed on a queue until they
can gain access.

Consider the code for the update of the count variable written in Aikido with a monitor.

monitor Count // monitor to protect count
 var count = 1 // the counter needing protection

 public function inc() { // function to increment count
 count++
 }
}

var count = new Count() // instance of the monitor

thread A { // thread A
 for (;;) {
 count.inc() // increment count
 }
}

Multithreaded programming

Sun Microsystems Laboratories

10-142

thread B { // thread B
 for (;;) {
 count.inc() // increment count
 }
}

Both threads are infinite loops, incrementing count for ever.

Notice that we used a function to increment the counter. If we had not done this, but provided access to the
counter through the monitor:

thread A {
 for (;;) {
 count.count++
 }
}

Then we still have the problem. This is because the ++ operator is not atomic and breaks down to:

count.count = count.count + 1

The fact that the monitor guarantees exclusive access to the count variable will not help because you are
making 2 separate accesses to it – one to read it and one to write it. Each one will be locked, of course.

10.2.1. Wait and notify for monitors
Monitors can be used to implement a queuing scheme for resource allocation. Resource allocation is where
you have a resource or some sort (say, a disk drive or a network stream) and you have multiple users
wishing to access the resource at the same time. If there were more resources available than users there
would be no problem – just allocate each user its own resource. This is rarely the case.

Consider the case of an audio device on a computer. There is only one audio device and only one set of
speakers. If we have a multithreaded application where each thread wishes to send something to the
speakers we need some way to guard the access so that only one gets control at one time. If this was not
done, the best scenario would be that you would get garbled sound from the speakers as the output from
each thread is interleaved with the output from other threads. The worse case would be a crash due to
contention on the device.

To support resource allocation the following functions are made available to monitors:

• wait()
When inside a monitor, release the monitor and put the thread on the list of those waiting for the
monitor. When woken up, reacquire the monitor.

• timewait(microseconds)
When inside a monitor, release the monitor and wait for a specified time period. When time
expires or when woken up by a call to notify or notifyAll reacquire the monitor.

• notify()
When inside a monitor, notify the first waiting for the monitor that it is about to be released

• notifyAll ()
When inside a monitor, notify all those waiting for the monitor that it is about to be released

All these functions are available when a thread is inside a monitor object. That is, it must have gained
access through the monitor’s mutual exclusion mechanism before they are available.

Multithreaded programming

Sun Microsystems Laboratories

10-143

There are 2 basic operations: wait and notify. Wait is used when a thread wishes to wait for the availability
of a resource. Notify it used to notify those waiting that a resource is about to become available.

Consider the problem of the audio device. Let’s write code to simulate it. The problem can be broken
down to a set of threads wishing to queue a track to play on the speakers. Let’s define a queue of tracks
and a thread that extracts one at a time and plays that track on the speakers. The thread that plays the tracks
is called the player and those queuing the tracks are called clients.

First we need to define the track queue:

monitor Tracks {
 var tracks = [] // vector of tracks
 var numTracks = 0 // number of queued tracks

 public function addTrack (t) {
 // code to add a track to the queue
 }

 public function getTrack() {
 // code to get the first track on the queue
 }
}

var tracks = new Tracks() // an instance of the track queue

The addTrack and getTrack functions are the interface the to queue of tracks. Let’s define that addTrack
adds a track to the queue and getTrack extracts the first track on the queue. In addition, the getTrack
function will not return until there is a track to play.

Let’s define the player thread:

thread player() {
 for (;;) {
 var track = tracks.getTrack()
 System.println (“playing track “ + track)
 }
}

This runs forever, getting tracks off the queue and playing them (actually printing the name in this example,
but you get the idea).

A client can now be defined:

thread client (name) {
 foreach x 5 { // queue 5 tracks
 tracks.addTrack (name + x)
 sleep (System.rand() % 10000000 + 500000) // wait for a random time
 }
}

This is really a test client that just queues 5 tracks at random times. The System.rand() function returns a
pseudo-random value.

Now we need to write the addTrack and getTrack functions.

Multithreaded programming

Sun Microsystems Laboratories

10-144

First the getTrack function. This must wait for a track to be available. We can do this with the wait()
function.

public function getTrack() {
 while (numTracks == 0) { // wait until track is queued
 wait()
 }
 var t = tracks[0] // get first track on queue
 delete tracks[0] // delete the first element
 numTracks— // one fewer tracks
 return t // return track we got
}

The addTrack function will add a track to the vector called tracks and increment the number of tracks.
When this is called the player may be waiting for a track to play, so the addTrack function uses the notify()
function to tell the player that a track is ready.

public function addTrack(t) {
 t -> tracks // append to vector
 numTracks++ // another track added
 notify() // notify player
}

Now we can put it all together into a program that tests the player.

monitor Tracks {
 var tracks = [] // vector of tracks
 var numTracks = 0 // number of queued tracks

 public function addTrack(t) {
 t -> tracks // append to vector
 numTracks++ // another track added
 notify() // notify player
 }

 public function getTrack() {
 while (numTracks == 0) { // wait until track is queued
 wait()
 }
 var t = tracks[0] // get first track on queue
 delete tracks[0] // delete the first element
 numTracks— // one fewer tracks
 return t // return track we got
 }
}

var tracks = new Tracks() // an instance of the track queue

// the player – play all queued tracks forever
thread player() {
 for (;;) {
 var track = tracks.getTrack()
 System.println (“playing track “ + track)
 }
}

Multithreaded programming

Sun Microsystems Laboratories

10-145

// a client – queue 5 tracks
thread client (name) {
 foreach x 5 { // queue 5 tracks
 tracks.addTrack (name + x)
 sleep (System.rand() % 10000000 + 500000) // wait for a random time
 }
}

// start player thread
var p = player()

// start 4 client threads
foreach c 4 {
 client (“client” + c)
}

// wait for player to finish (never)
join (p)

When the program is run, it output a random set of lines of the form:

playing track client00
playing track client01
playing track client30
playing track client20

And so on until all the tracks are exhausted. Then it loops forever waiting for more tracks. There won’t be
any.

10.2.2. Mutexes
It is sometimes easier to think in terms of locking a piece of memory before accessing it, then unlocking it
afterwards. A monitor can be used for this purpose.

One problem with the JavaTM method of locking (it uses monitors too) is that it lulls you into a false sense
of security about the safety of your code. In the JavaTM system, you place the keyword synchronized before
a function definition and is makes a monitor out of the object referenced by the function. I have been
caught thinking that just by a liberal sprinkling of synchronized throughout my code I was automatically
multithread safe – I was wrong.

The same can be said of any monitor implementation. It makes the task of guarding protected data easy if
you design the code to use them. It is very easy to just use monitors everywhere instead of classes. This
will definitely work but it will be slower and may not fully protect you.

A simple mutex can be implemented by a monitor as follows:

monitor Mutex {
 var available = true // flag to say whether it is available

 // lock the mutex and return when lock granted
 public function lock() {
 while (!available) {
 wait()

Multithreaded programming

Sun Microsystems Laboratories

10-146

 }
 available = false
 }

 // unlock the mutex. Can only get here if we locked it
 public function unlock() {
 available = true
 notify()
 }
}

This can be used as follows. Let’s take the previous example of incrementing a shared counter count. We
can protect this variable with a mutex as follows:

var countLock = new Mutex()

function incCount() {
 countLock.lock()
 count++
 countLock.unlock()
}

Threads wishing to increment the count can either call this function directly of provide the equivalent to it
inline.

10.2.3. Semaphores
Semaphores are another simple multithreading tool that can be easier to use than monitors. The too can be
implemented by using a monitor.

A semaphore is a variable that maintains a counter. Threads increment and decrement this counter
corresponding to the availability of the resource guarded by the semaphore. If a thread tries to decrement
the counter and it is already at zero then it has to wait until the counter goes above zero by some other
thread incrementing it.

Let’s call the act of decrementing the counter take() and that of incrementing it put(). Here is one possible
implementation of a simple counting semaphore.

monitor Semaphore (count = 0) {
 public function take() {
 while (count <= 0) {
 wait()
 }
 count--
 }

 public function put() {
 count++
 notify()
 }
}

Multithreaded programming

Sun Microsystems Laboratories

10-147

The monitor takes a parameter specifying the initial value of the counter (default of zero). The take()
function waits until the counter is above 0, then decrements it. The put function increments the counter and
notifies the first thread in line waiting for the semaphore.

Note that this (and the mutex implementation) use notify() rather than notifyAll() in to wake up the threads
after the resource becomes available. This is to guarantee a FIFO ordering for the requests. If notifyAll()
was used, all the threads would wake up at once and there would be no guarantee of the order in which they
will try to get the resource again.

Semaphores are usually pressed into service for resource allocation. Consider a resource protected by a
semaphore. Say we have 10 instances of the resource available and we want to dish it out to the requesting
threads on a FIFO manner.

var res = new Semaphore (10)

function grabResource() {
 res.take()
}

function releaseResource() {
 res.put()
}

The first 10 threads to call the grabResource() function will get the resource, with the rest waiting for one
who has it to free it using the releaseResource() function.

10.3. Synchronization

A monitor is a class in which the interpreter gains a lock before any access is made to the internals of an
instance of the class. Other languages have the keyword synchronized that can be used for the same effect.
Aikido also provides this facility for compatibility reasons.

For example, a monitor can be defined in Aikido as follows:

synchronized class Semaphore {
 // contents
}

The synchronized keyword may also be used as a statement to create temporary locks on objects. See
section 7.10 for details.

A function member of a class may also be synchronized by placing the synchronized keyword before the
declaration. The effect of this is to transform the class into a monitor for the duration of the call to the
function only. For example:

class Concordance {
public:
 synchronized function add (word) {
 // object is mutex locked here
 }
}

In the absence of early return from the function, this is equivalent to:

Multithreaded programming

Sun Microsystems Laboratories

10-148

class Concordance {
public:
 function add (word) {
 synchronized (this) {
 // locked here
 }
 }
}

10.4. Thread streams
A novel feature of the Aikido threading mechanism is the ability to use a stream to communicate with a
thread. A traditional threading model uses semaphores and shared memory in order for one thread to talk
to another. When a thread is spawned in a Aikido program, the interpreter creates a stream connecting the
thread itself and the caller of the thread.

Every thread in a program (including the main thread) gets 2 variables called input and output. These
variables are connected to stdin and stdout respectively for the main thread. For a thread spawned inside
the program they are connected to the stream created for the thread.

The input and output streams for a thread are the main means of communication to the thread. When the
program creates a thread, the return value of the thread call is a stream connected to the thread. The caller
can then use this stream to send data to and read data from the thread. Consider the following example:

In effect, the Aikido thread stream mechanism is similar to the Ada rendezvous where the threads arrange
to meet at a particular time in order to exchange data.

The fact that threads have special input and output streams makes then symmetric to a process. In most
operating systems, a process gets 2 or more streams through which it may communicate with the outside
world.

See section 9.3 for an example of use of the thread streams.

Note that the join() call uses the stream connected to the thread rather than a traditional thread identifier.

Writing reusable code

Sun Microsystems Laboratories

11-149

Chapter 11. Writing reusable code

Any program of any reasonable size will have to be divided up into a set of modules. In a compiled
programming language the modules consist of separately compiled files. These files are compiled into an
object code format that describes the visible contents of the module.

Aikido takes a different approach. Everything in Aikido is in source code form. There is no compiler as
such (although the parser does operate like a traditional compiler front end), so there is no object code. The
visible state of a Aikido program is the public interfaces provided by the packages and classes.

A Aikido program is divided into a set of packages, classes, functions (etc. collectively known as blocks),
and executable statements. The blocks form enclosures for other blocks and statements. Each block can
define a set of its contents to be publicly accessible and therefore form its interface.

The program can be split into a set of separate files that are read by the parser when the it is run. All the
files required by the program must be available to the parser either by explicitly telling it about their
existence or by use of the import statement.

11.1. Import files
An import file is a subset of a program. It contains Aikido declarations and code. A file is imported by
using the import statement of the language. This is similar in concept to taking the contents of the file
named in the import statement and inserting them in place of the import statement. That is, the import
statement itself is replaced by the contents of the file being imported.

This is not a precise definition of the import. If this were the case, contents of the import file would be
inserted in exactly the same scope as the import statement. This would mean that if, for example, the
import statement was inside a class, the contents of the file being imported would only be available to the
class performing the import. This is not desirable because it would result in copies of the import files being
inserted in multiple places in the program, unnecessarily increasing its size. Instead, the contents of the
import file are placed in the top level scope of the program. There is a mechanism in place to stop a file
being imported more than once in the whole program. Consider the following:

// in file myfile.aikido

function myprint (s, stream) {
 [‘*”, s] -> stream
}

This shows an import file that defines a single function called myprint. This function simply prints to a
given stream, prefixing the output with an asterisk (for some unknown reason). If you wrote the following
code:

thread printer {
 import myfile

 myprint (“printer running”
 // and other silly code
}

Then you could use the function myprint anywhere in your program (after the thread printer is defined of
course). For example:

Writing reusable code

Sun Microsystems Laboratories

11-150

printer() // start the printer thread

myprint (“started printer”) // call the myprint function

So, you decide that you want to use an import file. You will want to do this if you are using any of the
system library facilities or simply want to divide your program into pieces. Say you want to use the Vector
monitor provided by the system library. To use it you must import the file containing its definition. Do
this by:

import vector

This searches for the file named ‘vector.aikido’ in certain places (defined later) and when it finds the file it
opens it and inserts the contents into the program after first moving to the top level scope (main).

The name of an import file need not just be a single identifier. It may be a set of identifiers separated by
dots. This modifies the name of the file to search for. For example, you may import a file:

import com.sun.labs.nametool

This looks for a file consisting of the components com, sun, labs and nametool in that order. Where this
file actually resides depends on the operating system. In UNIX®, the dots are replaced by slash characters
so the file would be called: “com/sun/labs/nametool.aikido”

The import statement is also used to load native code into the interpreter. The native code is in files called
shared object files. These are special files produced by the operating system with the conventional name
of:

libname.so

That is, the name of the file, prefixed with the sequence ‘lib’ and suffixed with the extension ‘.so’.

11.1.1. Search paths
So where does Aikido look for import files? This is a complex problem that perplexes most languages that
allow files to be included. An import file can be either a Aikido source file (with the extension “.aikido”)
or a shared object file with the extension “.so” (on UNIX®).

The following algorithm is used to find an import file: First the suffix “.aikido” is appended to the file
name formed from the identifier sequence in the import statement. Then the following places are searched
in the order given:

1. The ‘Aikido.zip’ archive file
2. The directory in which the ‘Aikido’ executable resides
3. The set of directories in the AIKIDOPATH environment variable
4. The current directory

Then the ‘.aikido’ suffix is removed and replace by “.so”. The following places are searched for the new
file:

1. The directories specified in the LD_LIBRARY_PATH environment variable
2. The directory in which the ‘Aikido’ executable resides
3. The set of directories in the AIKIDOPATH environment variable
4. The current directory

Writing reusable code

Sun Microsystems Laboratories

11-151

If the file cannot be found an error is reported by the parser. All import files must exist.

The file ‘Aikido.zip’ is a standard zip archive containing the system import files, such as ‘vector.aikido’,
‘streambuffer.aikido’, etc.

The system searches the directories contained in environment variables. The variables used are:
LD_LIBRARY_PATH and AIKIDOPATH. The former is the standard search path for shared libraries.

AIKIDOPATH specifies a set of directories to search when looking for import files. It is the same format
as the LD_LIBRARY_PATH variable, in that it consists of a set of directory names separated by colon
characters. The search is made from the first directory to the last and it stops when the file is found.

For example, if the following command was issued in the shell:

% setenv AIKIDOPATH /usr/proj/imports:/usr/local/imports:/home/fred

Then the search for an import file will start with /usr/proj/imports, then /usr/local/imports and finally
/home/fred.

11.2. Native functions
Although Aikido provides a powerful set of language features and is capable of doing a large number of
things, you still need to be able to code a function in another (compiled) language. You might want to do
this if:

• The interpreted Aikido version is too slow
• You want access to a native function provided by the operating system
• You want to call into an existing library of functions or a package supplied as object code
• Aikido is too high level for what you want to do

The ability to mix things coded in Aikido and other things coded in another language is an asset to Aikido
and is not discouraged. Unlike the JavaTM language where the existence of a native function makes the
program non-portable, Aikido is agnostic about what language something is written in.

When you write a module using a native function you will generate a shared object file. This file can be
loaded into Aikido using an import statement just like any other import file. You will need to make a
regular Aikido import file to declare the native functions to the parser. This regular Aikido file will also
import the shared object file so its existence should be invisible to the users of your code.

11.2.1. Writing Native functions
Native functions are normally written in C++, but C is also possible (with a C++ wrapper). The steps
involved are:

1. Decide on what native functions you need
2. Declare the native functions in a Aikido file
3. Make a ‘.cc’ file containing the functions
4. Compile the C++ file using a C++ compiler
5. Link the object file to make a shared object file
6. Import the shared object file in the Aikido file
7. Place the Aikido file and shared object file in a location that can be searched with the import statement.

Writing reusable code

Sun Microsystems Laboratories

11-152

11.2.2. Deciding on what functions you need
Before writing any software you need to know what you are going to do. This is no different when
deciding what native functions to provide. Use common sense. A function should be native only if it is
really necessary to make it so. If a regular Aikido function will do, you should probably use one. Native
functions are more hassle to write. You have to use a C++ compiler and maintain another set of files (the
source and shared object files).

Use the criteria in section 11.2 to help you decide if a native function is justified. Aikido provides a lot of
high level functionality. It will be better if you know what Aikido can do before making the decision. For
example, before going off to write a function to string manipulation it would be better if you checked what
Aikido can do with strings. A lot of work has gone into making the facilities in Aikido useful.

11.2.3. Declaring the native functions
Usually a native function will be provided as part of a bigger package (or class, etc). Say you are writing a
screen manipulation package and need a native function to move the cursor around the screen. It has been
decided that this would be much better to code in C++ because of the performance requirements. Let’s call
the package tty.

package tty {
 // contents of tty package
}

We decide to call the function tty_goto() taking 2 parameters: the row and column on the screen. The
purpose of the function is to move the cursor to the given row and column. The declaration would be:

package tty {
 public native tty_goto (row, col)

 // rest of functions
}

11.2.4. Writing the C++ code
Writing the C++ code is pretty straightforward. Create a file called tty.cc and in it put:

#include “Aikido.h”

using namespace Aikido ;

extern “C” {

AIKIDO_NATIVE (tty_goto) {
 if (paras[1].type != T_INTEGER) {
 throw Exception (“Illegal type for row parameter”)) ;
 }
 if (paras[2].type != T_INTEGER) {
 throw Exception (“Illegal type for col parameter”)) ;
 }

 int row = paras[1].integer ;
 int col = paras[2].integer ;

 // code for moving the cursor to (row, col). Probably escape codes

Writing reusable code

Sun Microsystems Laboratories

11-153

 return 0 ;
}

}

The first thing to do is include the Aikido main header file “Aikido.h”. This defines everything you need to
write the native functions. Everything in Aikido is in the C++ namespace “Aikido”, so we issue a using
directive to dump this into the local namespace.

All the native functions must have C linkage (no mangling by the C++ compiler please), so the extern “C”
declaration specifies this.

Next comes the function itself. The AIKIDO_NATIVE macro is defined in “Aikido.h” as a function
declaration and expands to the following (for the tty_goto function):

Aikido::Value Aikido__tty_goto (Aikido::Aikido *b,
Aikido::VirtualMachine *vm,
Aikido::ValueVec ¶s,
Aikido::StackFrame *stack,
Aikido::StackFrame *staticLink,
Aikido::Scope *currentScope,
int currentScopeLevel)

Then follows the body of the function. It is not necessary to understand what each of the parameters is.
The only one you need is the ‘paras’ parameter. This is a vector of Aikido::Value structures containing the
values passed as parameters to the native function. The Aikido::Value is paraphrased as:

struct Value {
 union {
 string *str ;
 INTEGER integer ;
 vector *vec ;
 map *map ;
 Function *func ;
 Thread *thread ;
 Stream *stream ;
 Class *cls ;
 Package *package ;
 Block *block ;
 Enum *en ;
 EnumConst *ec ;
 double real ;
 Object *object ;
 } ;
 Type type ;
}

That is, a structure containing a union of data elements for each of the built-in values and an element
containing the type of the value.

A Type is an enumerated type with the following members:

Writing reusable code

Sun Microsystems Laboratories

11-154

Name Meaning
T_INTEGER 64 bit signed integer
T_CHAR single byte character
T_STRING string of characters
T_VECTOR vector of values
T_FUNCTION function
T_STREAM stream
T_MAP map of value/value pairs
T_THREAD thread
T_OBJECT object (instance of class or monitor)
T_CLASS class
T_INTERFACE interface
T_PACKAGE package
T_ENUM enumeration
T_ENUMCONST enumeration constant
T_REAL real number
T_MONITOR monitor
T_NONE no value

In order to fully understand each of the data types it will be necessary to go and look at the Aikido.h header
file. I leave that as an exercise to anyone writing native code.

The function we have written first verifies that the parameters are of the correct type. Since this function is
defined inside a package (the tty package) the first parameter (paras[0]) is always passed as a pointer to the
instance of the package. The first user parameter is paras[1]. If any of the types is incorrect an exception is
thrown.

We then extract the row and column parameters from the paras vector.

The last thing we do is return a value from the function. Since this is effectively a void function we return
a zero integer value.

11.2.5. Compiling the C++ code
So we have written the C++ code and now want to compile it. To do this we need a decent C++ compiler
that supports the latest C++ standard. In particular we need:

• string support
• vector support
• map support
• namespaces and using directives
• exception support

The first 3 are components of the Standard Template Library (STL).

Once we have access to a good C++ compiler (the Sun C++ compiler version 6 or later is a good one) we
can start to compile the code. We will need to know where the file Aikido.h can be found. Let’s define
this as an environment variable AIKIDODIR. Let’s assume that the C++ compiler is called CC.

% CC -I$AIKIDODIR –c tty.cc

Writing reusable code

Sun Microsystems Laboratories

11-155

The ‘-I’ flag tells the compiler where to look for header files. The ‘-c’ flag tells it to generate an object file
and not to run the linker. When this command completes we will have a file called tty.o in the same
directory.

A better way to do this is to use a makefile for input to the make utility on UNIX®. This is left as an
exercise.

11.2.6. Linking the object code
We now have a file called ‘tty.o’. This is an object file compiled from ‘tty.cc’ and contains our native
function. In order to import this file into the Aikido interpreter it is necessary to convert it into a shared
object. This is done using the linker. The linker on UNIX® is called ‘ld’ and it takes a flag ‘-G’ to tell it to
make a shared object out of a set of object files. Issue the following command:

% ld –G –o libtty.so tty.o

This will produce a file called ‘libtty.so’ in the current directory.

11.2.7. Importing the shared object
Now we need to import the shared object we just created into the Aikido import file. We do this by use of
a standard import statement:

package tty {
 import libtty

 public native tty_goto (row, col)

 // rest of functions
}

Because we called the file libtty.so, there is no clash with the object file tty.o or the Aikido import file
tty.aikido.

Now, any time you import tty.aikido you will also get libtty.so.

11.2.8. Placing the files
In order for Aikido to find the files you need to place them in a place that is searched when looking for
import files. This can be any of the places mentioned in section 11.1.1. The easiest way to do this is to set
the AIKIDOPATH variable to contain the path to the files.

Another way to do it is to pass the flag –I<dir> to the Aikido interpreter. This adds the named directory to
the list of places searched for the files. There can be many –I flags and they are searched in the order given
in the command.

11.3. Libraries
As far as Aikido is concerned, a library is a piece of source code that can be imported into a program. A
library should contain code that can be reused in any circumstances. It general a file provide by a library
should contain a package, although classes and monitors are also acceptable. The use of a block at the top

Writing reusable code

Sun Microsystems Laboratories

11-156

level in a library reduces the pollution of the global namespace and thus the possibility that your carefully
chosen function name will clash with one that the programmer using your library has chosen.

Placing all the functions you want to provide inside a package allows the user to call them through the
name of your package. This may be an appropriate interface. For example, suppose you were providing a
complex number library. It would make sense to place this in a package named for the function of the
library:

package ComplexNumbers {
 public class Complex (re, im) {
 //
 }
}

The user can then refer to the contents of the library as:

var c = new ComplexNumbers.Complex (1, 0.2)

If you just placed the class Complex at the top level and someone else also has a class called Complex in
the same program then the interpreter would complain about a duplicate definition.

Of course, for some things this is inappropriate. For example, the monitor Vector provided by the system
library probably should not be in a package as it will be used frequently and is a sufficiently well
recognized concept. Having to type:

var v = new VectorPackage.Vector()

Is a little onerous for the programmer.

11.3.1. The main function
When writing a program in any language you are often faced with the question of whether to make the
program standalone or make it reusable. For example, when coding in C++ you have to make the decision
of whether to include a ‘main()’ function or not. If you do include main() you will be precluding some
future use of the code in a library where main() will come from elsewhere.

Languages such as Pascal did not even have the concept of a program that was not meant to be executed
directly (unless by an vendor-supplied extension).

The JavaTM language, however, has a good approach: any class may have a function called ‘main’ with a
defined return type and argument list. If the class name is provided to the interpreter as the starting class
and that class contains the designated main function then execution starts at that main function. If other
‘main’ functions exist in other classes they are not used unless specified. This has many advantages.

Any code you write needs to be tested. The simplest way to test a piece of code is to write a test harness
that talks to the code under test and provides a set of input data. This test harness needs to be executable.
In a C++ program you may decide either to include the test harness in a separate file and link that file with
the code under test. This way the test harness is not supplied as part of the code. The JavaTM method let’s
you embed the test harness inside the class to be tested and supply it with the class. So, the class comes
with its own test code that can be rerun at any time. Another approach that can be used in C++ is to
provide a main function in a conditionally compiled section of a file. This can then be compiled in or out
by setting a compile time macro.

Writing reusable code

Sun Microsystems Laboratories

11-157

The Aikido approach to this is very similar to that of the JavaTM language. Consider the following trivial
program:

function factorial (n) {
 if (n <= 1) {
 return 1
 } else {
 return n * factorial (n – 1)
 }
}

That’s the whole file. We want to supply this as part of a mathematical library, but we need to test it. We
could add the following code to the file:

// integer test
for (var f = -1 ; f < 20 ; f++) {
 System.println (“factorial (“ + f + “) = “ + factorial (f))
}

// real test
for (var f = -1.0 ; f < 100.0 ; f++) {
 System.println (“factorial (“ + f + “) = “ + factorial (f))
}

If we do this and find that it all works we have a choice to make. We can either remove the code from the
file (by comments or deletion), or we can keep it in. If we remove the code then the factorial function may
be used as part of a library without executing the test code ever time we import it. Commenting out the
code will work as long as there are no nested comments. Deleting the code will also work except we will
not be able to rerun the test.

If we keep the code in the file then every time we import the file, the test harness code will be rerun. This
is harmless in this case except for a number of lines of output, but may not be feasible if the code enters an
infinite loop.

Another approach is to place the code in a function called ‘main’ at the top level in the file. When the
interpreter runs it will look at the first file it is given to see if it contains a function called ‘main’ inside the
main package. If it exists it will arrange to execute that function after all the code has been executed in the
file. If the file just contains definitions of functions, packages, classes, etc. then the effect will be just to
run the main function. So, we can rewrite our test harness as:

function main {
 // integer test
 for (var f = -1 ; f < 20 ; f++) {
 System.println (“factorial (“ + f + “) = “ + factorial (f))
 }

 // real test
 for (var f = -1.0 ; f < 100.0 ; f++) {
 System.println (“factorial (“ + f + “) = “ + factorial (f))
 }
}

Writing reusable code

Sun Microsystems Laboratories

11-158

The file now contains 2 function definitions: factorial and main. If the file is imported the main function
will never be run but if the file is given as the first argument to the interpreter it will be run after all the
other code in the program. Since there is no other code in the program it will be the only thing run.

Macros

Sun Microsystems Laboratories

12-159

Chapter 12. Macros

Aikido support a statement-level macro system. A macro is a much-maligned facility available in the C
family of languages that works at the source code level. What this means is that a macro actually replaces
the source text instead of being processed by the language parser.

The C family of languages have the “C Preprocessor” available to them. This is a powerful, yet much
misused feature of the language that has become unpopular these days with the introduction of more
powerful language features such as templates and explicit constants. It is, nevertheless, a very popular way
of controlling the input to the compiler.

Macros in Aikido are a lot different from the standard C mechanism. A Aikido macro is an identifier that
maps on to a piece of text. The identifier can only be used “at the statement level” in a Aikido program.
That is, it can be use wherever a statement may be used. This limits the power of the macro but also limits
its potential for abuse.

A macro is defined in a Aikido scope by use of the macro statement:

macro identifier argumentsopt { linefeed
 macro body
}

Unlike a normal statement, a macro is line based. This means that the first line of the macro body must
appear on the next line of source text. The macro body is enclosed in braces just like a regular compound
statement.

The macro has a name and possibly a set of arguments. The arguments are a set of comma-separated
identifiers. Note that there are no parentheses around the argument list for a macro.

The body of the macro contains any text. Whenever the macro name is used as a statement, the macro
name and any arguments are replaced by the macro body before the parser gets a chance to parse it. Thus a
macro provides the potential to let you make your own statements and enhance the language. The name of
a macro may not be an existing reserved word, so you can’t redefine the meaning of a builtin statement.

I tend to think that macros are of limited use, but are present in the language because of its assembler
legacy. They are very useful in an assemler.

12.1. The Inner Statement
A macro is a scope of its own. This implies that the macro body is a complete statement and cannot be
used as part of another statement. The reason for this is that the macro may define variables and these
shouldn’t affect the variables in the scope in which the macro is instantiated. Also, the macro may be
instantiated many times within the same block of code and if it defined its own variables they would
become multiply defined and cause errors.

Consider the following simple macro:

macro forever {
 for (;;)
}

forever {

Macros

Sun Microsystems Laboratories

12-160

 // do something
}

As it stands this macro will not work as expected. The expansion of the macro will be equivalent to:

{ for (;;) }
 // do something
}

Which contains a number of errors. The first is that the for loop does not have a body and will therefore
give a syntax error in the parser. The second is that the open brace after the forever will be consumed as
part of the macro instantiation and therefore the close brace at the end of the supposed macro body will be
misplaced.

The correct definition of such a macro uses the inner statement. This is a special statement that can only be
used within a macro body and is replaced by a block of text when the macro is instantiated. Consider the
following correct macro definition:

macro forever {
 for (;;) {
 ... // inner statement
 }
}

forever {
 System.println (‘.’)
}

The ellipsis notation (...) is the inner statement. In the above example it is replaced textually with the text
passed in the braces after the forever instantiation. The inner statement may only be used inside a macro
body – outside will result in errors. If it is present, the macro must be followed by a block of text and that
text must be on a new line from the macro instantiation. The text must be enclosed in braces and the open
brace must be on the same line as the macro instantiation. The above example shows the correct form.
Here is a couple of incorrect forms:

forever System.println (‘.’) // error: too many macro parameters

forever // error: no open brace
 System.println (‘.’)

forever // error: open brace on new line
{
 System.println (‘.’)
}

Thus the inner statement is fairly restrictive syntactically.

There may only be one inner statement in a macro. See section 12.4.1 for details of the operation of the
inner statement with respect to macro inheritance.

12.2. Macro arguments
A macro can contain a set of arguments. These are specified when the macro is defined as a series of
identifiers separated by commas as follows:

Macros

Sun Microsystems Laboratories

12-161

macro testmac arg1, arg2, arg3 {
 // body
}

This shows a macro called testmac with 3 arguments. Inside the body of the macro the arguments can be
used. In order to use a macro argument you have to prefix it with a dollar sign ($). Remember that macros
are a text-level feature of Aikido so a macro argument is not a regular variable as far as the parser is
concerned. In fact, the parser never sees a macro argument. Consider the following:

macro loop from, to, inc {
 for (var x = $from ; x < $to ; x += $inc) {
 ...
 }
}

function X {
 loop 3, 70, 4 {
 System.println (“loop: “ + x)
 }

The invocation of the loop macro is textually replaced by:

for (var x = 3 ; x < 70 ; x += 4) {
 System.println (“loop: “ + x)
}

The macro instantiator collects the arguments for the macro by scanning forward in the program text until it
gets to a comma or an open brace. The comma and open brace are absorbed.

A macro argument may be given a default value. This default value must be a string and will be used if the
macro argument is omitted. Unlike the arguments for blocks, you can omit a macro argument actual value
at in any part of the argument list. Consider:

macro loop from = “0”, to, inc = “1” {
 for (var x = $from ; x < $to ; x += $inc) {
 ...
 }
}

loop ,100 {
 System.println (“loop: “ + x)
}

This macro invocation omits the first and last argument from the macro instance. The first is omitted by
the appearance of a comma without any preceding text. The last is omitted by the appearance of an open
brace. Thus the above would loop from 0 to 99 in steps of 1.

The use of a macro argument inside the macro body is controlled by the dollar sign ($) preceding the
argument name. If the name is determinable by scanning forward in the text (that it, it is an identifier
terminated by a non-letter or non-number character) the dollar can immediately precede the identifier. If
the identifier is part of a larger string of letters and numbers then you must enclose the macro argument
name in braces. Consider the following:

macro loop2 from, to, inc, prefix {

Macros

Sun Microsystems Laboratories

12-162

 for (var ${prefix}_x = $from ; ${prefix}_x < $to ; ${prefix}_x += $inc) {
 ...
 }
}

loop2 0, 100, 3, my {
 System.println (“loop: “ + my_x)
}

Here the macro has an argument called prefix that is used to prefix the name of the loop variable. The
macro argument name must be enclosed in braces because it is immediately followed by an underscore
character in the macro body.

12.3. Macro scope
A macro is defined in a scope just like any other variable or block. When the parser is searching for a
macro it uses the same rules as for the search for variables.

Macros can define variables and other items inside their body. The body of a macro acts like a brace-
enclosed scope, much the same as a block (function, class, etc.). Thus any variables or blocks defined
within the macro are local to that macro. This also includes other macros.

When a macro is instantiated there are actually 2 active scopes: the scope of the actual macro itself; and the
scope in which it is being instantiated.

Consider the following example:

macro repeat n {
 var x = 0
 while (x < $n) {
 ...
 ++x
 }
}

function T {
 var t = 3
 repeat 10 {
 System.println (“t = “ + t)
 ++t
 }
}

The repeat macro iterates through its inner statement a number of times controlled by the macro parameter
‘n’. The function is expands to:

function T {
 var t = 3
 { var x = 0
 while (x < 10) {
 System.println (“t = “ + t)
 ++t
 ++x
 }
 }

Macros

Sun Microsystems Laboratories

12-163

}

When inside the repeat macro, the scopes that are available are:

• The scope of the repeat macro itself. This is where the variable ‘x’ is declared.
• The scope of the function T. This is where the variable ‘t’ is located

12.4. Macro inheritance
Macros are allowed to be inherited from another macro. Just like blocks, a macro can be defined to extend
another previously defined macro definition. Consider the following macros:

macro base x {
 // body of base
}

macro derived y extends base “.” + $y {
 // body of derived
}

This shows a macro called derived that is derived from the macro base. The macro argument ‘x’ of the
base macro is passed the concatenation of the string “.’ and the value of the ‘y’ argument of the derived
macro. When the macro derived is instantiated it also instantiates the base macro (with the appropriate
parameter value). Notice that the arguments of the derived macro must be prefixed by a dollar sign when
used as actual arguments for the base macro. This is symmetric with the use of macro arguments inside the
macro body.

This facility is useful when you have a set of macros that have common parts. The macros used as bases
for derivation can include things like macros and variables that are made available to derived macros.

The regular access controls apply to macro inheritance as they do with block inheritance. Consider the
following:

macro base x {
 var a = 1
 protected macro m {
 }
 public var b = 3
}

macro derived y extends base “.” + $y {
 // body of derived
}

The macro derived has access to the macro ‘m’ and the variable ‘b’ from its base macro. The variable ‘a’ is
not accessible.

12.4.1. Behavior of inner statement in inheritance
The inner statement of a macro is problematic when dealing with macro inheritance. The basic rule is the
inner statement can only exist once in a whole macro inheritance tree. Consider the following:

Macros

Sun Microsystems Laboratories

12-164

macro loop from, to, inc {
 for (var x = $from ; x < $to ; x += $inc) {
 ...
 }
}

macro myloop from, to : loop $from, $to, 1 {
}

function X {
 myloop 3, 70 {
 System.println (“loop: “ + x)
 }

This shows the definition of a new macro myloop, derived from the loop macro previously seen. The
instantiation of the myloop macro would work fine in the function X because there is only one instance of
an inner statement in the whole inheritance tree. If we had defined myloop as:

macro myloop from, to : loop $from, $to, 1 {
 ...
}

Then the macro is broken. Which of the inner statements will the parser take when the myloop macro is
instantiated?

Garbage collection

Sun Microsystems Laboratories

13-165

Chapter 13. Garbage collection

Garbage collection refers to the act of cleaning up after the program while it is running. During execution a
program will allocate temporary values and discard previously allocated objects. The garbage collector is
responsible for making sure that the memory occupied by the discarded items is returned to the pool of
memory available for new allocations.

In a traditional C or C++ program the programmer can allocate objects using the malloc() function or new
operator. This memory comes from the pool of memory made available by the operating system for free
store (sometimes called the heap). Once the program allocates memory it is the programmers
responsibility to make sure that the memory is freed when the program no longer requires it. Failure to do
so could result in programs running out of memory.

Garbage collection seeks to remove the requirement placed on the programmer to manage the free store
allocation and deallocation by himself. A garbage collector is a piece of software that is intimately aware
of all the objects that have been allocated from the free store and when then may be put back into the free
store. It keeps track of all the objects allocated by the program and their scope. When an object goes out
of scope and is therefore no longer accessible by the program it can be returned to free store.

There are multiple methods of achieving garbage collection. It is not the intention of this book to go into
depth on the various techniques available, but a quick overview wouldn’t hurt. See note 1 for a book on
garbage collection.

13.1. Mark and Sweep Garbage Collection
The basic idea of this is that the garbage collector makes a scan of every object in the heap marking it if it
is referenced by another object. Once all the objects have been scanned, anything that is not marked is
deemed garbage as it has no references. It then makes another pass and deletes all the garbage. So there
are 2 passes: a mark pass and a sweep pass.

For this to work, the garbage collector must know where every object is in the heap. It must keep a
directory of every object so that is may make the passes. This implies that the garbage collector must be
part of the heap software itself and not a layer on top.

While the mark and sweep passes are operating, the program must be idle, as there cannot be any
modifications to the objects in the heap. This means that the heap must be locked (mutex lock or
semaphore, or some other method) during the garbage collection operation. The question is, when is the
best time to do this?

One approach is to wait until the heap fills up and then perform the mark and sweep. This can work when
the heap is bounded and small but may cause a large resident set of memory pages in a virtual memory
system. Another approach is to wait until the program is idle and try the collection then. This has the
problem that it is very hard to guess when the program will be idle. Past behavior is not a good predictor of
future behavior.

Since the heap must be locked, the operation of mark and sweep garbage collection will necessarily cause a
delay in the operation of the program while it is running. This may be unacceptable for a real-time system

1 A good book on garbage collection is “Garbage Collection: Algorithms for Automatic Dynamic Memory
Management” by Richard Jones and Rafael Lins. Published by Wiley in 1996.

System Library

Sun Microsystems Laboratories

13-166

or a server that must always be available and where a delay of a couple of seconds (or more) will cause
uneven performance.

13.2. Reference Counting Garbage Collection
In this form of garbage collection, each object subject to garbage collection maintains a count of the
number of objects that reference it (point to it). Each time a new object is allocated the reference count is
set to zero, then when the object is referenced its reference count it incremented. When a reference is
removed the counter is decremented. When the counter reaches zero the object has no references and is
therefore garbage.

Unlike the mark and sweep methods, this does not require the heap to be locked while garbage collection is
happening – it happens while the program is running. The downside is that any assignment of a pointer to
an object is slower to execute, as the reference counts must be maintained. The cost of garbage collection
is spread throughout the execution of the program. It just happens as a consequence of assigning and
removing pointers to objects. This makes it more suited to real-time and server applications where the
delay caused by mark and sweep would cause an unacceptable performance delay.

Reference counting garbage collection has one major disadvantage: it does not work where you have 2
objects that refer to each other. Say we have 2 objects (object A and object B). Object A has a reference to
object B, and object B has a reference to object A. We also have another object referring to A. When the
external reference to A is removed, its reference count is decremented, but will not get to zero because it
still has a reference from B.

This obvious problem can be dealt with in a number of ways. One way is to ignore the problem and suffer
the consequences of memory leakage due to objects that cannot be deleted. Another way is to combine
reference counting with some form of mark and sweep collection. Yet another way is to allow the
programmer to have some control over the reference count.

13.3. Copying Garbage Collection
In this form, the heap is divided into 2 sections. One section is the active section and this is where all the
objects reside. This is similar to the mark and sweep collection technique described in section 13.1. The
heap must be locked and but only 1 pass is performed. While the heap is locked, the collector visits every
object and if it is referenced, copies the object from the active section of the heap to the other section. It
must then keep track of the fact that it has been moved so the other references wont copy it again. When all
the objects have been traversed, the roles of the 2 heap sections are reversed.

The advantage of this form of collection is that the heap is automatically compacted when the copy is done.
This reduces heap fragmentation and can improve the performance of the program. The disadvantage is
that twice the memory is required to run the system, or put another way, you can only use half the memory
allocated to the program at any time. This may not be such a big problem as memory sizes increase.

13.4. Other Garbage Collection algorithms
There are other algorithms available for performing garbage collection. They all rely on the ability of the
program to automatically detect whether an object is referenced or not. For full information on the current
garbage collection techniques, the reader is referred to note 1 on page 165.

13.5. Garbage Collection in Aikido
Aikido uses the Reference Counting technique for its garbage collection functions (section 13.2). This
relies on each object in the program having a counter for the number of references to that object. An object

System Library

Sun Microsystems Laboratories

13-167

in Aikido is not just those that are instances of a class, but anything that is allocated from the free store.
This includes vectors, strings and maps. Integers and other scalars are not allocated from free store and are
therefore not handled by the garbage collection routines.

When a program is running, Aikido keeps a count, in each object, of the references to that object. When
the reference count goes to zero then the object is deemed garbage and is deleted.

The underlying memory system in Aikido is the basic new and delete system provided by C++. This
maintains a single heap of memory blocks and arranges it so that it is efficient to both allocate new blocks
and free existing ones. Fragmentation is always possible with this system but since the same memory
allocation scheme is used by the operating system itself it is hoped that it is as efficient as possible.

The following values are subject to reference counting:

• Strings
• Streams
• Vectors
• Maps
• Objects (instances of blocks)

An overhead of 4 bytes is added to a value that is reference counted. This holds the reference count itself.
The cost of the garbage collection is spread out though the execution time of the program. There is no heap
locking performed. This means that the Aikido program will be slower to execute when garbage collected
objects are used, but since Aikido is interpreted anyway the overhead is not noticeable.

Garbage collection happens all the time, sometimes when you don’t expect it. Consider the following
statements:

[“the answer is “, answer, ‘\n’] -> stdout // statement (1)

System.println (“the answer is “ + answer) // statement (2)

var a = “the answer is “ + answer // statement (3)
System.println (a) // statement (4)

In statement (1) a vector is created and sent to standard output. When the statement completes, the vector
is deleted.

In statement (2), a string is created by the concatenation of a string and another value. This string is passed
to println. The string is deleted when the statement completes.

Statement (3) creates a string by concatenation. It is not deleted because the variable ‘a’ references it.
When ‘a’ goes out of scope (the function containing it returns or an object containing it is deleted), the
string will also be deleted.

In statement (4), the variable ‘a’ is passed to println. The string is not deleted after the call because
variable ‘a’ references it.

Aikido contains a delete statement. This seems unusual for a garbage-collected language but is necessary
to get around the major flaw with reference counted systems. Remember that a reference counting garbage
collector cannot deal with mutually referential objects (where they refer to each other). In section 13.2,
there were three alternatives suggested for dealing with this problem. The method used in Aikido is to
allow the programmer to explicitly decrement the reference count of an object. This will force the deletion
of a set of mutually referential objects.

System Library

Sun Microsystems Laboratories

13-168

For this to work, the programmer must be aware of the structure of the program. You can, of course,
totally ignore the problem and be prepared to handle memory leaks (don’t care about them). You can also
take the C++ approach and do all the memory allocation and deallocation yourself. Using delete on an
object when you no longer need it does no harm and will help the garbage collector by seeding it with an
object to start with. Alternatively, you can be aware of the Aikido garbage collection and only deal with
those problematic object structures.

If you take the approach of deleting everything when it is not needed, the Aikido interpreter will take care
of the rest of the temporary objects that are created for you (by string concatenation, say).

So, Aikido provides the best of both worlds with respect to garbage collection. If you are a C++
programmer who likes the deal with the problem yourself you can use the delete operator to explicitly
delete the objects. If you are a JavaTM programmer, or one who is lazy like myself, then the system will do
the right thing in most circumstances. You just have to take care of those times where the garbage collector
can fail.

13.6. The finalize function

Like the JavaTM language, an object may include a function called ‘finalize’ to be called when the garbage
collector decides to delete the object. This may be used to clean up anything that is required before the
object memory is freed. For example, an open file may be closed.

class File (name)
 var stream = openout (name)
 // …

 public function finalize() {
 close (stream)
 }
}

Dynamic Loading

Sun Microsystems Laboratories

14-169

Chapter 14. Dynamic Loading

As Aikido is an interpreted language, it is natural to expect that it is possible to dynamically load code into
the interpreter at runtime. Aikido allows any source code to be loaded into it while it is running. Loading
code into a running program presents a number of problems. In particular, in Aikido it is possible to extend
blocks (classes, functions, etc) and add things to them. It is conceivable that code loaded into the
interpreter might want to do this. If it does, what is the effect on existing blocks? Are they extended?

There are 2 facilities provided in Aikido for loading and executing source code at runtime. The first is the
simplest: dynamic expression evaluation. This allows a string containing an expression to be parsed and
evaluated at runtime. The expression can contain anything that could be used in an equivalent non-
dynamic expression at that point in the program.

The second facility is more comprehensive: dynamic code loading. This allows any code contained in a
file or generated by the program itself to be parsed and executed. There is no restriction on the contents of
the code to be loaded. The effect of loading code in this way is the same as if the programmer had inserted
the code at that point in the program inside a package.

The dynamic loading facilities are provided by functions inside the System package rather than directly by
the language itself.

14.1. Dynamic expression evaluation

This is the simplest form of dynamic loading. The function used to do this is the System.eval() function.
This takes a string as a parameter. The string is parsed as if it is a Aikido expression inserted in the code at
the point of the call to the eval() function. Consider the following simple example:

function f {
 var x = 1 // local variable
 var y = System.eval (“x + 1”) // evaluate
}

The one and only argument to the eval() function is a string. The string is an expression that can contain
anything that could be used at that point in the program if the expression was written directly. The above
example is exactly the same as:

function f {
 var x = 1 // local variable
 var y = x + 1 // evaluate
}

Although the above example doesn’t show it, the expression can be much more complex and may be
generated by the program or loaded from some other location. For example, a simple calculator may be
written as:

Dynamic Loading

Sun Microsystems Laboratories

14-170

function calculate { // calculate expressions typed in
 while (!System.eof(stdin)) { // until end of input
 var expr = “” // string to hold expression
 System.print (“Expression: “) // ask user for expression
 System.flush (stdout)
 stdin -> expr // read the expression
 generic result = System.eval (expr) // calculate result
 System.println (“result: “ + result) // print result
 }
}

This function reads from standard input until it is closed, reading strings and printing the results of the
calculation performed on the strings. When run, the program might produce the following:

Expression: 1 + 2
result: 3
Expression: 3.1415927 / 2
result: 1.57079635

If the strings provided to the eval() function contain only numbers and operators on numbers, the result is
obvious (as in the above example run). What happens if you give it identifiers? The answer is that any
expression is valid, including those containing identifiers and function calls. For example, the program
may have been given the following:

Expression: System.println (“hello world”)
hello world
0

Any identifiers can be passed to eval() provided that those identifiers are valid at the point at which the
eval() function is called. The first example showed this: the identifier ‘x’ was passed to eval().

14.1.1. Creating new variables
When the Aikido parser comes across an identifier representing a variable of which it has no knowledge it
has a couple of choices: it could report an error saying that the variable is undeclared; or it could invent a
new variable. Which path it chooses depends on what follows the identifier in the code sequence. If the
identifier is followed by an assignment token (=) then it can be inferred that the programmer omitted the
‘var’ from a variable declaration (of course, this may be a false inference and it might just be that the
programmer mistyped the name of a variable).

So, if the parser comes across an unknown identifier followed by an assignment token (= sign) then it
creates the variable as if the programmer had declared it. This feature is very useful for creating new
variables in a dynamically loaded expression. An assignment to a variable is an expression in Aikido so it
is possible to do the following:

function f {
 System.eval (“r = 1”)
}

This creates a variable called ‘r’ and assigns the integer value 1. The variable is created in the scope of the
caller of the eval function. This means that the variable exists for as long as the caller of the eval function
exists. In the case of a function that calls eval, the variable will be destroyed when the function exits. In
the case of eval being called in a class constructor, the variable will exist until the instance of the class is
deleted.

Dynamic Loading

Sun Microsystems Laboratories

14-171

This feature let’s the simple calculator create variables that may be used as memory storage areas with no
modification to the code:

Expression: m1 = 1234
result: 1234
Expression: m1 / 2
result: 617

14.2. Dynamic code loading
Another way to load code into a running program is to use the System.load() function, the more powerful
cousin of System.eval(). Loading code into a running program is a very powerful but somewhat dangerous
feature that should be used with caution.

The System.load() function allows any code to be loaded into the program while it is running. The code is
taken from a stream or a vector and is in source code format. Typically, the code will be held in a file or be
transmitted over a network.

Consider a file containing (just) the following code:

var myvar = 123
public var x = “hello”

public function print (v, stream) {
 [“(“, v, “)\n”] -> stream
}

Say that this code is in the file ‘code.aikido”. The code may be loaded by the following calls:

var str = System.openin (“code.aikido”)
var p = System.load (str)
System.close (str)

So what does this do? The code is loaded into a new class all of its own and created specially for it by the
interpreter. This class has the name “<anon>” (by default, but you can specify something else). The class
is automatically instantiated and the instance returned as the return value of the System.load() call.

Once loaded, the instance of the class may be used just as if it was coded as part of the program. For
example:

p.x += “ world” // append to variable x
p.print (“wonderful”, stderr) // call print function
var q = p.myvar // oops, ERROR, private variable

The System.load() function parses the code as if it was coded inline at the point of call of the function.
This means that any variables that are in scope at that point are available to the dynamic code. Since the

Dynamic Loading

Sun Microsystems Laboratories

14-172

code is loaded into an empty class any variables you declare are put in that class and do not clash with any
existing variables.

There is no restriction on the code that can be used in dynamically loaded program. You can do anything
in the file that could be coded inline. This includes extending existing blocks. If you extend a block it will
take immediate effect. Care must be taken with this feature in the presence of threads. If you extend a
block that is being used by a thread strange things might happen.

System Library

Sun Microsystems Laboratories

15-173

Chapter 15. System Library

Like most programming languages, Aikido does not have a built-in function for everything that the user
might want to do. There are, however, a set of functions that are built on top of the basic features of the
language and provided with the language interpreter. It is not the intention to provide an all-encompassing
library of functions and classes that will suit every purpose. Rather, the system library provides a set of
simple objects and functions that can be used as building blocks for larger, more functional libraries.

The Aikido system library is:

• Small
No major learning task involved in getting to know the library contents. One of the big obstacles
in learning a language is memorizing all those classes and functions conveniently provided by the
language authors.

• Efficient
The system library is used often by the programs. It therefore must be as efficient as possible.
This is not a purist library where everything is written in Aikido. If something can be done more
efficiently in C++ and is a critical library component, it is written in C++.

• Functional
Although small, the Aikido library provides enough functionality to be useful. Libraries can go
over the top and provide everything that someone might want in the future. This is a daunting, if
not impossible, task. The other extreme is also possible, where the library is of no use to anyone.
The Aikido library packages and classes do one thing well and try not to anticipate every
forthcoming use.

• Extensible
One of the nice features of Aikido is the ability to extend an object. This can be put to good use in
the context of the library. The library does not provide everything that will eventually be needed.
The objects in the library is extensible so the user can easily provide additional functionality for
his own program, or provide an additional library for use by other programmers.

This chapter will provide a reference for the facilities contained in the Aikido system library.

15.1. Summary
The system library consists of the following packages and classes:

Name Import File Purpose
package System <none> Lowest level system functions. Always available

without import
package Network net.aikido Network streams and associated functions
package ctype ctype.aikido Character type functions. Provides functions to

interrogate and manipulate characters
package Math math.aikido Mathematics functions and constants
class String string.aikido A string object providing additional functionality on

top of built-in string value
class Streambuffer streambuffer.aikido Buffering facility for streams
class Properties properties.aikido Facility for handling sets of properties
monitor Vector vector.aikido Vector object providing additional functionality above

built-in type. Also supports mutual exclusion lock

System Library

Sun Microsystems Laboratories

15-174

built-in type. Also supports mutual exclusion lock
monitor Map map.aikido Map object providing additional functionality above

built-in type. Also supports mutual exclusion lock
monitor List list.aikido Linked list of values
monitor Stack stack.aikido LIFO stack of values
monitor Queue queue.aikido FIFO queue of values
monitor Hashtable hashtable.aikido Map making use of hash functions to provide faster

lookup
interface Container container.aikido An interface for all container monitors
package Security security.aikido Encryption facilities
package Filename filename.aikido File name manipulation facilities
package Registry registry.aikido Windows® only. Registry access factilities
package GTK gtk.aikido GTK+ interface for GUI
package GDK gdk.aikido Low level GDK interface for GUI

The above table lists the contents of the system library in 3 columns. The first is the name of the class or
package that is provided. The second is the file in which it is provided. This file must be imported into the
program in order to use the facility. The third is a brief description of the purpose of the package or class.

In order to import a library facility you must use the import statement somewhere in your program. Once
a facility has been imported it is available from that point on in the program. It is imported at the top scope
level so if you import inside a class it will still be made available to the rest of the program. When
importing you should drop the ‘.aikido’ from the end of the file name. For example, to import the class
Vector, you would type:

import vector

The System package is always available as it is automatically imported (from the file system.aikido) when
the interpreter starts.

All the files are provided in the file Aikido.zip (a zip archive). They are always in source code form.

15.2. Extending the library
There are a number of ways to extend the library. It would be naïve of me to presume that this library as it
stands will suffice all the requirements of any programmer. Indeed it is not intended to do so. It is my
intention that the library be added to and extended by anyone using it as time progresses and more
requirements are placed on it.

To extend the library you can either provide additional packages and classes, or you can extend the existing
packages and classes to provide more functions. The functions that you provide may either be written in
Aikido or may be in a native language (primarily C++, but maybe others are possible).

For example, suppose you need a way to convert a string to upper case. This is not supplied by the class
String (although maybe it should be since I’ve used it a number of times in this book). You can do this in a
number of ways, but let’s decide to extend the String class by adding a toUpperCase() function. Let’s see
how to do this:

import string
import ctype

extend String {

System Library

Sun Microsystems Laboratories

15-175

 // convert string contents to upper case
 public function toUpperCase() {
 for (var ch = 0 ; ch < sizeof (value) ; ch++ {
 value[ch] = ctype.toupper (value[ch])
 }
 }
}

Notice that we decided to overwrite the value in the string with the upper case version of itself. We could
also have chosen to make a new string and return it from the toUpperCase() function.

We first needed to import the String class and the ctype package. The ctype package provides the toupper()
function that we need to convert a character to upper case.

As we have extended the String class we can now call the toUpperCase() function at any time. See 1 for an
alternative implementation.

This might be a nice feature to put in a library for your project, so it would be a good idea to save it to a
disk and provide it for import by other people. You can do this by putting the above code in a file with the
name, say, “mylib.aikido”.

If you put the file mylib.aikido somewhere that is accessible by other people, they can then say:

import mylib

And get all the additional functionality you provide.

15.3. System Package
The System package contains a set of functions, classes and constants that deal with many operating system
interfaces. Functions to access files, read directories, etc are provided.

Name Arguments Purpose
function println value, stream Print to stream, appending line-feed

character. Stream defaults to output
function print value, stream Print to stream. Default output
function printf format,... C style printf. Only to output
package
StreamAttributes

Names of attributes for setStreamAttribute

function clone value, recurse Clone a value, optionally recursing
function fill object, value,

start, end
Fill the object with the value from index
start to end. Works with vectors or strings

function resize object, size Change the size of a string or vector
function find object, value,

index
Find a value. The search starts from the
index parameter (default is 0). If the object
is a vector, bytevector or string, the index of
the value found is returned. If the object is
a block or an object, 0 is returned if not
found, or the block if it found.

function rfind object, value.
index

Find a value, searching backwards rather
then forwards.

1 This function can be done using the System.transform() function described in section 15.3.2

System Library

Sun Microsystems Laboratories

15-176

index then forwards.
function split object, separator Split a value into parts. Returns vector of

parts. If value is block, gets all the
variables.

function transform value, function Transform a value by applying a function to
each element of it. A new value is returned
and the old value is not modified.

function replace val, find, repl,
all

Replace parts of a value

function trim value Trim white space off value
function hash val Make hash code for value
function open filename, mode Open a file and returns stream
function openin filename Open a file for input and return stream
function openout filename Open a file for output and return stream
function openup filename Open a file for update and return stream
function openfd file descriptor Attach a stream to an existing file descriptor
function close stream Close a stream
function select stream, timeout Check a stream for ready input
function eof stream Check a stream for end-of-file condition
function flush stream Flush a stream’s buffers
function getchar stream Read a single character from a stream
function getbuffer stream Read all the characters from a stream
function availableChars stream How many characters are available in a

stream
function
setStreamAttributes

stream, attr,
value

Set a stream attribute

function error string Signal an error condition
function format format, ... Format a printf style string
function vformat format, vector Format using vector instead of args
function rewind stream Rewind a stream
function getStackTrace Find out where you are in a program
function system command, env,

dir
Execute a command on the operating
system, returning a vector of lines
containing the output of the command. The
env and dir parameters allow the
environment and current directory to be set
for the command. They are optional

function exec command,
outstream,
errstream, env,
dir

Execute a command and write the output to
the given streams. All parameters are
optional except the command. The default
is to write to standard output and standard
error

function getSystemStatus none Get the exit status of the previous system
command

function pipe command,
redirectStderr,
env, dir

Spawn a new process to run the command
and return an open stream connected to the
standard input and output of the command.
The redirectStderr parameter is optional and
defaults to false. If it is true then standard
error will be sent to the stream. The env
and dir parameters are as in system() and
are optional.

function pipeclose stream Close the stream associated with a pipe
created using the pipe() function. This also
waits for the process to terminate and
returns the status of the process.

System Library

Sun Microsystems Laboratories

15-177

waits for the process to terminate and
returns the status of the process.

function eval expression Evaluate an expression
function seek stream, offset,

whence
Move current position in a stream

function abort Abort the program
function exit code Exit the program gracefully
function stat filename Get statistics on a file
function readdir dirname Read the contents of a directory into a

vector of strings
function chdir dirname change directory
function getwd return current working directory
function rand Generate a random 32 bit number
function srand seed Set the seed of the random number

generator
function sort vector Sort a vector
function bsearch vector, value Search a vector using binary search
function getenv variable Get the value of an environment variable
function setenv variable, value Set the value of an environment variable
function glob pattern Expand pattern as a set of filenames and

return a vector of strings
class StackFrame Record of current location in program
function
printStackTrace

stack trace Print stack trace information to stdout

function whereami Print current location to stdout
class Regex Regular expression result
function readfile filename Read the contents of a text file into a vector

of lines
function time Get the current time in microseconds from

Jan 1, 1970 GMT
function date Get the current date (in a Date object) from

Jan 1, 1970 GMT
class Date Holds the components of a date
class Stat Holds file statistics
class User Holds information on a user
class Pair Holds information for map iteration
function redirectStream stream, value Redirect a stream
package OpenMode Constants for open() function mode

parameter
function load value, name Dynamically load code
class Exception Generic exception
class FileException File based exception
class
ParameterException

Function parameter exception

function kill pid, signal Send signal to process
function sigset signal, handler Set up a signal handler for the given signal
function sighold signal Stop delivery of the given signal
function sigrelse signal Allow delivery of the given signal
function sigignore signal Ignore signal
function sigpause signal Allow delivery of signal and wait until one

is received
package Signals Signal numbers
function getlimit name Get value of OS limit variable

System Library

Sun Microsystems Laboratories

15-178

function setlimit name, value Set the value of an OS limit variable
function getUser username Get details of a user
function malloc size Allocate raw memory
function poke addr, value,size Write to raw memory
function peek addr, size Read from raw memory
function bitsToReal bits Convert bit sequence to real value
function loadLibrary filename Load dynamic library
class RegexMatch Regular expression match object
function match str, expr Match using regular expression
function append val, x Append x onto val

Note: there is an automatic ‘using’ statement done for the System package. This means that it is not
necessary to prefix all system facilities with ‘System.”. This documentation uses the full name of the
facility in order to disambiguate it for the reader.

For example:

System.println (“hello world”)

and:

println (“Hello world”)

will call the same function. Which one to use is mostly a matter of taste, in the absence of any other
requirements.

15.3.1. Output of values
There are a couple of simple functions provided to wrap the stream output facilities of the language. These
functions are:

• println (value = “”, stream = output)
Print the value to the stream followed by a line-feed character. The default for the stream is
output, which will map to standard output unless it has been redirected. The println function is
defined as:

function println (value, stream=output) {
 value -> stream
 ‘\n’ -> stream
}

If the first parameter is omitted the function simply prints a blank line

• print (value, stream = output)
Like the println function, this prints to the output stream. It does not append a line-feed character,
however.

• printf (format, ...)
This is very similar to the standard C printf function. It is provided for those who dislike the style
of stream input/output and would prefer to do it using format characters. The output only goes to
the output stream (or wherever it is redirected to). The function uses the ‘vformat’ function to do
its work. In fact, the function is defined as:

function printf (f: string, ...) {
 print (vformat (f, args))

System Library

Sun Microsystems Laboratories

15-179

}

Example:

printf (“the average is %g\n”, total/count)

If you want to put the result in a string or another stream, use the format function directly.

15.3.2. Operations on values
The following operations on values are available.

• clone (object, recurse)
Make a copy of an object. If the recurse parameter is true then the subobjects of the object are
also copied. The object may be any value, from an instance of a class to a vector, to a simple
integer. The new value is returned

• fill (object, value, start, end)
Fill an object with a value. The only objects that can be filled are vectors and strings. The value
is inserted in all the elements from start to end indices. The end index is not included.

• resize (object, size)
Change the size of a vector or string to that given.

• sort (vec)
Sort a vector in ascending order of value. A new vector is created and sorted by this operation.
The old vector is not modified.

• bsearch (vec, val)
Search a sorted vector for the given value. Returns true if the value is found, false otherwise.

• find (obj, val, index = 0)
Search an object for the given value. The search is linear and this works with vectors, maps,
strings, blocks and objects. The index of the found value is returned for a vector and string. For a
map an object of type Pair is returned. If the find() function is applied to an object the object is
searched for a function named “find” taking one parameter. If this function is present, it is called.
If it is absent, the type of the object is searched. For example, to find a block in the main program
use: System.find (main, “blockname”)

• rfind (obj, val, index = sizeof(obj) - 1)
Search an object for the given value using a reverse search where appropriate The search is linear
and this works with vectors, maps, strings, blocks and objects. The index of the found value is
returned for a vector and string. For a map an object of type Pair is returned. If the find() function
is applied to an object the object is searched for a function named “find” taking one parameter. If
this function is present, it is called. If it is absent, the type of the object is searched. For example,
to find a block in the main program use: System.rfind (main, “blockname”)

• split (obj, sep)
Split a value into parts. The ‘sep’ parameter (separator) is used to delimit the parts. The object
may be a vector, string, object or block. If it is a block the separator is ignored and the list of
components of the block are returned. The return value is a vector of the parts of the value. For a
string, the separator may be a character or a string. Like find(), if the split() function is applied to
an object, and the object contains a function called “split” (with one parameter), then that function
is called. If the function is not defined then the split() function is applied to the type of the object.

• transform (value, func)
Transform a value by applying a function to each part of it. What a ‘part’ means depends on the
type of the value being transformed. If the value consists of multiple parts (string, vector or map),
the function is applied to each element is turn. The result is a value of the same type as that passed
but transformed by the function. A closure is created by the interpreter when the function is
passed, therefore any function taking one argument and returning a value can be used.

• trim (value)

System Library

Sun Microsystems Laboratories

15-180

Trim the white space off a value. If the value is a string the space and tab characters are trimmed
off each end. If the value is a vector the values of type none are trimmed off. If the type is a
bytevector, all zeroes are trimmed off. A new value is returned, the parameter is not modified by
this operation.

• replace (value, find, repl, all)
Replace parts of a value with other values. The first parameter is the value to operate upon. It is
not modified by the operation. The second parameter is the value to find in the first value and
replace with the third parameter. The function can replace either the first or all of the instances
depending on the value of the final parameter.

For example:

var n = System.replace (“hello”, ‘l’, ‘L’, true) // result: heLLo

The type of the first parameter is not limited to strings: vectors and bytevectors can also be used.
• hash (value)

Calculate a hash code for the value passed. The hash code is an integer that will be the same for
identical values. Any type is acceptable as the value. If the value is an object, the function
‘hash()’ in the object will be called if it exists.

• append (val, x)
Append the value x onto the value val.

15.3.3. Operations on files and streams
A substantial portion of the functions in the system library is devoted to the handling of files. When a
Aikido program is running, all access to files it though a stream. There needs to be a way to create the
stream and control it. The system library provides this ability. The following facilities are provided:

• open (file, mode)
Open a named file. The mode parameter specifies how the file will be opened. Modes are in the
OpenMode package included with the System package. If the file can be opened a stream attached
to the file is returned.

• openin (file)
Open a file for input. The file must exist and must be accessible. A stream attached to the file is
returned.

• openout (file)
Open a file for output. The file is created or truncated if it already exists. A stream attached to the
file is returned.

• openup (file)
Open a file for update. The file is created if it doesn’t exist. If it already exists, the file pointer is
set to the end of the file. A stream is returned.

• openfd (fd)
Open a file to a raw file descriptor. This creates a stream attached to an Operating System file
descriptor that is already open.

• close (stream)
Close the given stream.

• select (stream, timeout)
Check the given stream for available data. Returns true if there is data available for reading from
the stream. The timeout parameter specifies how long to wait for data to arrive before giving up
and returning false. A value of 0 means no timeout.

• eof (stream)
Check for end-of-file condition on the given stream. This means that the stream has been closed.
Returns true if the end-of-file condition has been met.

• flush (stream)
Flush any buffered data to the device on an output stream.

System Library

Sun Microsystems Laboratories

15-181

• getchar (stream)
Read a single character (byte) from an input stream.

• getbuffer (stream)
Read all the buffered characters from an input stream. Creates a string containing all the bytes and
returns that.

• availableChars (stream)
Obtain a count of the number of characters that are available for reading from an input stream.

• setStreamAttribute (stream, attr, value)
Set an attribute of a stream. The following attributes are supported:
• StreamAttributes.BUFFERSIZE – integer: the size of the buffer, attached to the stream

(bytes)
• StreamAttributes.MODE – integer: 0: line mode, 1: character mode. Determines whether the

stream is treated as containing lines or characters.
• StreamAttributes.AUTOFLUSH – true or false. If true, the stream will be automatically

flushed when any data is sent to it.
• rewind (stream)

Set the current position back to the start of the stream. The stream must support the seek
operation. That is, it must be a file or a device that has a current position and provides random
access.

• seek (stream, offset, whence)
Seek to a position in the stream. The values for ‘whence’ are SEEK_SET, SEEK_CUR and
SEEK_END meaning to seek to an absolute position, relative from the current position or relative
from the end of the stream respectively.

• stat (file)
Get statistics on a named file. An object of type System.Stat is returned if the file exists and ‘null’
if it does not or is not accessible.

• readdir (dirname)
Read the named directory and return a vector of strings. Each entry in the vector is the name of a
file in the directory. All files except ‘.’ and ‘..’ are returned.

• readfile (filename)
Read all the lines in a file into a vector of strings. Returns the vector.

• chdir (dirname)
Change working directory to that given as the string argument.

• getwd()
Read the current working directory

• redirectStream (stream, newvalue)
Redirect a stream. This simply assigns the new value to the stream. No checking is done to
ensure that either parameter is a streamable object.

• pipeclose (stream)
Close a stream associated with a pipe (created by the pipe() function) and wait for the process to
terminate. Return the status of the process when it terminates.

• loadLibrary (filename)
Load the named file as a shared library.

• glob (pattern)
Expand the pattern to a set of filenames. The pattern may contain wildcard characters. This is
similar to the use of wildcard characters in the regular shells available on operating systems.

15.3.4. Date and time
These functions provide ways to obtain the current date and time. Times are measured in microseconds
since Jan 1, 1970 at midnight GMT.

• time()
Read the current time of day. This is the number of microseconds since the epoch (Jan 1 1970).

System Library

Sun Microsystems Laboratories

15-182

• date()
Read the current date. This returns an instance of the class System.Date.

• gmdate()
Read the current date as a GMT date. An instance of System.Date is returned

• makedate(time)
Make a Date object out of a time value in local time. Return the System.Date object.

• makegmdate (time)
Make a GMT Date object out of a time value. Return the System.Date() object.

• parsedate (datestring, date)
Given a string representation of a date, convert it to a System.Date() object. A wide range of
formats are supported. See the discussion of date formats below for details. The Date object must
be preallocated and passed to this function. The object will be filled in by the function.

The System.Date() class holds the information about a date in time. It can be constructed by either calling
one of the date functions (listed above) or by creating an instance of the System.Date() class and passing a
date in a string form.

The System.Date() class is defined as:

 public class Date (s : string = "") {
 public:
 var sec = 0 // seconds after the minute - [0, 61]
 var min = 0 // minutes after the hour - [0, 59]
 var hour = 0 // hour since midnight - [0, 23]
 var mday = 1 // day of the month - [1, 31]
 var mon = 0 // months since January - [0, 11]
 var year = 0 // years since 1900
 var wday = 0 // days since Sunday - [0, 6]
 var yday = 0 // days since January 1 - [0, 365]
 var isdst = 0 // flag for alternate daylight savings time
 var tzdiff = 0 // difference in seconds from local timezone to GMT
 var tz = "" // local time zone name

 function format (f) // format date with given format
 function toString // format date in default format
 function normalize // normalize the fields of the date
 operator -> (stream, isout) // stream output
 operator + (secs) // move forward by number of seconds
 operator - (secs) // move backwards by number of seconds
 operator == (otherdate)
 operator != (d)
 operator < (otherdate)
 operator > (otherdate)
 operator <= (d)
 operator >= (d)
 operator in (d1, d2)
 static function makeDate (time) // factory method to make a date from a time
 static function makeUTCDate (time) // make a UTC date from a time
}

System Library

Sun Microsystems Laboratories

15-183

15.3.4.1. Date formats

The constructor for the System.Date() class can take a string parameter representing the date to be
constructed. This is passed to the System.parsedate() function to convert it to a System.Date() object. The
string is an English language representation of the date to be converted. A wide range of formats are
available.

The date string consists of a series of ordered tokens. Each token is part of the date to be produced. If the
token is a number it is taken as either a day, hour, minute or second depending on what the following
character is. If the token is a sequence of letters, it must be from the following set of sequences:

sunday monday tuesday wednesday thursday
friday saturday january february march
april may june july august
september october november december am
pm gmt utc

The case of the sequence is ignored. Also, abbreviated sequences are allowed, where the abbreviation is
the initial sequence of letters in the sequence. In other words, you can abbreviate each name by just using
its initial letters ('sep' for 'september' for example).

The general form of a date is:

<month> <day> <year> <hour>:<min>:<sec> <am/pm> <timezone>

The parser allows these in any order, it looks for the next character in the sequence to determine what the
meaning of a field is. For example, if a number is found and it is followed by a colon character it is either
an hour or a minute. The choice depends on whether the hour has already been set or not. The hour can be
in 12 or 24 hour format.

If a field is omitted, it is filled in with the appropriate value from the current date. This means, that if you
omit the time from the string, it will be filled in with the current time.

Time zones are specified by either GMT or UTC plus or minus a delta. The delta is specified as 2 fields
representing the hours and minutes. For example, "GMT+1230" would be 12 hours 30 minutes ahead of
GMT (somewhere in India I think). A negative delta is west of GMT (Greenwich is in London, UK, in
case you were unaware). There is no direct translation of timezone names to the delta (currently).

The following are examples of valid dates (current date is "Thu Nov 14 13:14:31 PST 2002"):

"Wednesday Oct 23" // at 1:14:31PM
"Jan 23 1981 10:0 am"
"13:30:1" // Thursday November 14 13:30:1 PST 2002
"nov 15" // tomorrow at this time
"July 13 GMT-0800" // July 13 13:14:31 PST 2002

System Library

Sun Microsystems Laboratories

15-184

15.3.4.2. Date manipulations and operations
Once an instance of System.Date() exists, is can be manipulated to produce other dates and operated upon
to compare, format, normalize, etc. A date can be made changed to another date by adding or subtracting a
number of seconds from the object (overloaded operators). For example:

var today= System.date()
var tomorrow = today + (60 * 60 * 24)

The individual fields of a date can be manipulated by adding and subtracting numbers from the fields. The
above example could be recoded as:

today.mday--
today.normalize() // normalize the date

In this case we have to call the 'normalize()' function was we might have made the fields internally
consistent (if mday was 1 it will now be 0 and thus out of range). You can perform this operation on any of
the fields of the date object (they are all public).

Dates can be compared with other dates by use of the normal relational operators. Dates are said to be
ordered in time. This means that if one date is less than another, the one that is less represents a time
before the one that is greater. For example:

var today = System.date()
var yesterday = today – (60*24*24)

var x = today > yesterday // true
var y = yesterday > today // false

Because a date includes not only the day/month/year value, but also the time value, you have to be careful
when comparing them. In the above example, the value of 'yesterday' is actually the value of the current
time on the day before today. This is especially important when using the equality operator (==) for
comparing dates. If you want to check if the 2 dates are on the same day, remember to zero the time fields
before comparing.

Dates can be formatted for output. There are 2 ways to format a date:

1.format (fmt)
2.toString()

Both of these functions return a string. The simpler is the toString() function. It formats the date using the
default format. This format is the same as that produced by the date command on UNIX®.

The more comprehensive of the formatting functions is the format() function. This takes a string that
specifies how to format the date into a string. This is a printf() like format specifier using % characters to
control the format. For full information see the manual page on a UNIX® system for the function strftime:

% man strftime

The default format for the toString() function is: "%a %b %e %T %Z %Y"

System Library

Sun Microsystems Laboratories

15-185

15.3.5. Miscellaneous operations

• getStackTrace()
Get a trace of the current location in the program. Returns a vector of System.StackFrame objects.
The first element in the vector is the topmost location on the stack.

• printStackTrace (trace)
Print the contents of a stack trace obtained by getStackTrace to the standard output

• whereami()
Print the current stack trace to standard output

• abort()
Abort the current process. This will probably produce a core dump.

• exit (code)
Exit from the current process gracefully. The code is returned as the status of the process.

• rand()
Generate a 32-bit pseudo random number.

• srand (seed)
Set the seed of the random number generator. This makes the random sequence predictable.

• getenv (variable)
Get the value of an environment variable as a string. The value ‘null’ is returned if the variable
does not exist.

• setenv (variable, value)
Set the value of an environment variable to the string value given.

• error (str)
Report an error in the program. This writes the error to the standard error stream and increments
an internal error count.

• format (str, ...)
Format a C printf style string and return the result as a string. Supports all printf arguments with
the addition of %b for binary output.

• vformat (str, args)
Format a C printf style string and return result as a string. Like format, except takes a vector of
arguments rather than a variable argument list. This can be used from within a variable argument
list function.

• getUser (name)
Given a user name, look up the operating system for the user. If the user is found, an instance of
the class User will be returned containing information about that user. The value null is returned
if the user does not exist.

• getlimit (limitname)
Read the value of an operating system limit variable. The names of the limits are:
• cputime
• filesize
• datasize
• stacksize
• coredumpsize
• descriptors
• memorysize

• setlimit (limitname, value)
Set the value of an operating system limit. The names of the limits are as in getlimit above.

15.3.6. Executing Operating System commands

There are 3 methods of executing commands on the native operating system:

• system (command, env = [], dir = “”)
• exec (command, outstream = output, errstream = stderr, env = [], dir = “”)

System Library

Sun Microsystems Laboratories

15-186

• pipe (command, redirectStderr = false, env = [], dir = “”)
• getSystemStatus()

All of them take a string representing the command to execute. The command is passed to the system shell
(/bin/sh on UNIX®) and may contain multiple commands separated by semicolons. The command is
executed using the system() function on UNIX®. See the UNIX® manual, section 3s for information on
the system() function.

The command executes in its own process. This process inherits the environment of the calling process
(the Aikido interpreter). The parameters env and dir in both the functions allow the environment of the
new process to be modified without affecting the Aikido interpreter. The modifications include adding and
overriding environment variables and changing the current directory.

The env parameter is optional. If it exists, it should be a vector of strings. Each string consists of the name
of an environment variable and a value and is of the form:

“name=value”

This string is added directly to the environment variable list of the process spawned for the system
command.

The dir parameter is an optional string that can contain the name of a directory to which the current
directory of the process is set.

The easiest to use is the system() function. It simply takes the command to execute and the env and dir
parameters (optional). The command is executed and any output from the execution (standard output) is
collected into a vector of strings. This vector is returned from the function. The standard error stream of
the command is not redirected and appears on the terminal. Each of the strings in the returned vector is
terminated by a newline character. Consider the following example:

var files = System.system (“cd /usr/dist ; ls”) // 2 commands
files -> stdout // send output to stdout

The command executed consists of 2 commands (although it could have been done with a simple
command). Notice that they are separated by a semicolon character. The return value is assigned to the
variable files, and this is streamed to standard output. The exit status of the system command may be
obtained by calling the function System.getSystemStatus() immediately after the system call.

The exec() function is more flexible. Like the system() function it takes a command to execute and the
optional env and dir parameters, but is operates differently. With the system() function, the output of the
command is buffered up into a vector and returned from the function. This has the effect of not allowing
the output to be seen until the command completes. If there is a lot of output it will use a lot of memory to
hold the vector. This may not be desirable.

The exec() function takes 2 additional (optional) parameters called outstream and errstream. These specify
the locations to which the standard output and standard error (respectively) streams of the command. The
output from the command is sent to streams as the command executes. The outstream and errstream
parameters may be a stream, vector or an object that provides an overload of the stream operator. If they
point to the same stream, the output to the standard output will always appear before the output to standard
error. Consider the following:

System.exec (“ls”) // perform a list of the current dir
var files = []
System.exec (“ls”, files) // list files into vector

System Library

Sun Microsystems Laboratories

15-187

In the first example, the output from the command is sent to the output stream of the thread running the
command. In the second example, the output is sent to a vector.

The mode (StreamAttributes.MODE) of the stream determines how the output from the command is written
to it. If the mode has value 0, then the output of the command is buffered up into lines and each line is
written to the stream as a string. If the mode is 1, then each character is written to the stream as it is read.

The return value of the exec() function is the exit status of the command. Generally commands will exit
with status 0 for success and anything else for an error. If the command terminates with an error code then
the value of the operating system variable ‘errno’ is returned. If the command terminated with a zero code,
then 0 is returned. If the command terminated due to other conditions (signal, or other cause) then the
return value is that returned from the operating system function ‘wait()’. This value is a series of fields in
one integer. The format of the integer and its associated flags may be found in the file <sys/wait.h> on a
UNIX® system. See the manual pages for wait(2) and wstat(5) for full information.

The pipe() function is the most flexible of those available. It spawns a new process to run the command
and opens a stream to the process. The stream is connected to the standard input and standard output of the
process (and standard error if requested). The pipe() functions returns this stream as its return value. The
caller can then use this stream to send and receive data. The pipe() function does not wait for the process to
terminate before returning (unlike the system() and exec() functions). Consider the following example:

var str = System.pipe (“cat”)

Here the stream ‘str’ is attached to the standard input and standard output of the process running the
command ‘cat’. Writing to the stream will cause the process to receive data from its standard input, while
reading will read output produced by the process.

Unlike the system() and exec() functions, the pipe() function does not wait for the process to terminate. The
process runs in parallel with the program that called the pipe() function.

Note: Since the pipe() function does not wait for the process to terminate, you must close the stream
returned by the function using the pipeclose() function. This will wait for the process to terminate after
closing the stream. The process will see an end-of-file condition on its standard input and should exit. The
exit status will be returned from the pipeclose() function. Failure to call pipeclose() will result in zombie
processes (on UNIX®) being created.

15.3.7. Dynamic loading operations

The following dynamic loading functions are available:

• eval (expression)
Evaluate the expression in the current scope context. The expression is a string. The result of the
expression is returned.

• load (source, name = “<anon>”)
Load source code from a stream, string or vector. The code is placed in a new package whose
name is provided as the second parameter. The default is “<anon>”. The package created is
returned.

15.3.8. Signal handling
When running a Aikido program in a real environment (meaning one that is deployed and must behave
properly under adverse conditions), the program must be able to deal with signals from the operating
system. Signals are the operating system’s way of telling a program that something external to it has

System Library

Sun Microsystems Laboratories

15-188

happened and needs attention. For example, if the user hits ctrl.-C when the program is running, the
operating system sends a signal (SIGINT in this case) to the program to tell it that the user has requested an
interrupt of its operation.

Signals are numbered. Each signal means something different to the program. The SIGINT signal is
number 2. The numbers are assigned by the operating system but there is a standard to the numbering
scheme used.

When a program gets a signal sent to it, it has a number of choices.

1. It may not even see it and the default signal handler is invoked by the operating system
2. It may say “do not disturb” and thus the signal will be ignored
3. It may catch the signal and invoke a function to handle it

The Aikido System package contains functions that provide control over the handling of signals. The
names of the functions are identical to those provided by the Solaris Operating Environment, as are the
names of the signals themselves.

The main signal manipulation function is System.sigset(). This takes 2 parameters:

1. The number of a signal
2. The signal “disposition”

The signal number is one of the constants in the System.Signals package. There is one constant for each
signal provided by the operating system. The disposition is either a function or an integer. If it is a
function then that function is called when the given signal is sent to the process. If it is an integer, it may
be one of:

• System.SIG_DFL - default handler
• System.SIG_IGN - ignore signal
• System.SIG_HOLD - don’t deliver signal
• any other integer value - a native signal handler function

The default handler for a signal is provided by the operating system and is different depending on the signal
number. Some of the signals cause the program to exit (SIGINT for example), others cause a core dump to
be written to the disk, some others are ignored. This is how the signals are handled in the absence of
program control over them.

If a signal is ignored then it will never be sent to the program. The behavior of SIG_HOLD is different. A
program can contain many threads running simultaneously. Since a signal is sent to a process as a whole,
there will be, at any one time, a thread running on a CPU. When the signal is delivered, that thread will
receive the signal and process it. SIG_HOLD causes the calling thread not to see the given signal. Other
threads in the system can still see the signal.

A signal handler function is one that is called when the signal is received. There are restrictions on what
function can be called for a signal. Since a signal is asynchronous, there is no way to know what the static
chain of the signal handler function will be when it is called – it can happen at any time. Since the function
must be able to interact with the rest of the program it must have a valid environment in which to execute.
This means that the function must be in a known location.

The function called by a signal handler must take one parameter. It will be passed the number of the signal
caught when it is invoked

The function can return a value, but that value will be ignored.

System Library

Sun Microsystems Laboratories

15-189

Consider the following trivial example of a ctrl-C counter:

function interrupt (sig) {
 static var count = 0
 System.println (“Signal “ + sig + “ caught: “ + count++)
 if (count > 10) {
 System.exit(0)
 }
}

System.sigset (System.Signals.SIGINT, interrupt)

// continue with rest of program

The function interrupt is a signal handler function. It is called when the user hits ctrl-C. It counts the
number of interrupts and when it reaches 10 the program exits.

The return value of sigset() is either an integer or a function. If it is an integer it represents the disposition
value of signal prior to setting it. This could be the address of a native signal handler function. This value
may be used as a parameter to sigset() to reset the signal disposition to the previous value. If sigset()
returns a function, then this function is the previous signal handler set by the program

The following signal manipulation functions are provided:

• kill (pid, signal)
Send a signal to a process identified by the pid. The signal the number of the signal to send. The
result is 0 if the signal has been sent, -1 otherwise. If the signal is 0 then it can be used to check
for the validity of the process whose id is pid. See kill(2) on UNIX® for details.

• sigset (signal, handler)
Set the disposition of the given signal to the handler. The handler may be either an integer or a
function. If it is an integer it may be one of SIG_DFL, SIG_IGN or SIG_HOLD, or may be the
value returned from a previous call to sigset. If it is a function, the function must be in the main
package and must have one parameter. The function is called when the signal is received. The
sigset function returns the previous value of the signal disposition. This may be either an integer
or a function. If it is an integer it may represent the address of an native function that was
previously set to handle the signal.

• sighold (signal)
Add the given signal to the current thread’s signal mask, thus preventing it from being delivered.

• sigrelse (signal)
Remove the given signal from the current thread’s signal mask, thus enabling its delivery.

• sigignore (signal)
Prevent the signal being delivered to the process

• sigpause (signal)
Remove the given signal from the thread’s signal mask and wait until a signal is received.

15.3.9. Raw memory accesses
Sometimes it is necessary to be able to access raw memory from a Aikido program. Aikido provides 2
functions that should remind readers of the BASIC language facilities for doing this operation. The
functions are peek and poke.

A raw memory address can be one of:

• An integer containing a valid machine address

System Library

Sun Microsystems Laboratories

15-190

• A memory value allocated using System.malloc()
• A pointer value created by adding to a memory value

The function System.malloc() allows the program to allocate a block of memory from the runtime heap.
The parameter to the call is the number of bytes of memory to allocate. The result is a value of type
memory. You can do a limited number of things to a raw memory value:

• Pass it to the peek and poke functions to read and write it
• Add an integer to it to produce a pointer

In the case of addition of an integer to a memory, a pointer is created. The interpreter makes sure that the
pointer cannot be outside the memory address range set up by the System.malloc() function. Once a pointer
is created, you can then add and subtract integers from it to form other pointer values. Again, you cannot
go outside the range of the original memory.

The memory allocated by the System.malloc() function is reference counted and garbage collected like any
other object in the system. When all the memory and pointer values referring to it are deleted, the memory
itself is deleted. This means you do not have to take care of freeing the memory (there is, in fact, no free
function).

The peek function allows raw memory to be read into either an integer or a bytevector depending on the
size of the memory to be read.

The poke function allows raw memory to be written from either an integer or a bytevector, again depending
on its size.

There is also a function called bitsToReal that takes a sequence of raw bits and treats it as a real number.
This is necessary when there is a real number stored in raw memory and it needs to be read into a real
value.

• malloc (size)
Allocate a number of bytes off the program heap and return a memory value representing the start
address of the memory. The memory is reference counted and subject to the normal garbage
collection rules.

• peek (address, size = 1)
Read memory. The address must be an integer representing a valid machine address. The size
parameter is optional (default value is 1 byte) and represents the number of bytes to read. If the
size is either 1, 2, 4 or 8, the value will be read into an integer. Correct alignment is assumed. If
the size is any other value, the appropriate number of bytes will be read into a bytevector and that
will be returned.

• poke (address, value, size = 1)
Write memory. The address is a valid integral machine address. The value is typed appropriately
for the size. If the size is 1, 2, 4 or 8 then the value must be an integral value. Correct alignment
in memory is assumed. If the size is any other value, the value to be written must be in a
bytevector.

• bitsToReal (bits)
Convert a sequence or raw bits into a real value. This is different from casting an integer to real
since there is no floating point conversion done.

If the address passed to peek and poke is an integer type, Aikido performs no checks whatsoever on the
validity of the addresses for these functions. Crashes may occur for misuse. Care must be taken. For
memory and pointer values, address validation is done.

System Library

Sun Microsystems Laboratories

15-191

15.3.10. Regular expression matching

The library provides a convenient wrapper for the standard regular expression matching facilities of the
language. The wrapper consists of one function and a class:

class RegexMatch {
 public function expr (n) // retrieve expression n
 public funciton nExprs() // number of expressions
}

• match (str, expr)
Look for the expression in the string and return a RegexMatch object instance describing the
result. The value null is returned if there were no matches.

The RegexMatch class holds information about the regular expression match. A regular expression
contains sub-expressions. The RegexMatch object holds all these sub-expressions and allows the user to
query how many there are and get access to each one.

Consider the following example:

var str = “result:1234, value:3”
var m = System.match (str, “[^:]*:([0-9]*)[^:]*:([0-9]*)”)

var n = m.nExprs() // 3 expressions matched
var result = m.expr(1) // 1st sub-expression
var value = m.expr(2) // 2nd sub-expression

The line noise in the System.match() function is a regular expression that means:

1. Any sequence of characters except :
2. A colon character
3. A sub-expression containing digits 0-9 only
4. Any sequence of characters except :
5. A colon character
6. A sub-expression containing digits 0-9 only

This will match the string passed and will return an object with 3 expressions in it. The first expression is
the whole matched string. The second and third expressions are the sub-expressions.

Of course, this could all have been accomplished using the built-in features of the language, but this
wrapper is perhaps a little more readable and encapsulates the more common usage of regular expressions:
extraction of portions of a string.

15.3.11. Classes and packages
The System package provides the following set of classes and packages:

// An object representing a user of the computer as returned by getUser
class User {
 var name // username
 var uid // user id (integer)
 var gid // group id (integer)
 var fullname // user’s full name (string)
 var dir // home directory
 var shell // shell executable

System Library

Sun Microsystems Laboratories

15-192

 var password // encrypted password
}

// A vector of StackFrame objects is returned by getStackTrace
class StackFrame {
 var filename // name of file
 var lineno // line number
 var block // name of block
}

// A vector of Regex objects is the value of a regular expression match
class Regex {
 var start // index of start of match
 var end // index of end of match
}

// A Date object is returned from the date function
class Date {
 var sec // seconds after minute – [0, 61]
 var min // minutes after hour – [0, 59]
 var hour // hour since midnight – [0, 23]
 var mday // day of month – [1, 31]
 var mon // months since January – [0, 11]
 var year // years since 1900
 var wday // days since Sunday – [0, 6]
 var yday // days since January 1 – [0, 365]
 var isdst // flag for alternate daylight savings time

 function toString() // convert to string
 operator -> (stream, isout) // stream to output stream
 function day() // get name of day
 function month() // get name of month
}

// A Stat object is returned from the stat function
class Stat {
 var mode // file mode (see mknod (2))
 var inode // inode number
 var dev // id of device containing dir entry for file
 var rdev // id of device
 var nlink // number of links
 var uid // user id of owner
 var gid // group id of owner
 var size // size in bytes
 var atime // time of last access
 var mtime // time of last data modification
 var ctime // time of last status change
 var blksize // preferred IO block size
 var blocks // number of 512 byte blocks
}

// A Pair class is used in a foreach loop through a map
class Pair {
 generic first // key of map entry
 generic second // value of map entry
}

System Library

Sun Microsystems Laboratories

15-193

// Modes for the open() function
package OpenMode {
 const APPEND
 const BINARY
 const IN
 const OUT
 const TRUNC
 const ATEND
 const NOCREATE
 const NOREPLACE
}

// A generic exception
class Exception {
 function report (stream) // report exception to stream
 function printStackTrace (stream) // show location of exception
 operator -> (stream, isout) // stream exception to stream
 function toString() // convert to string
}

// Specific exception types
class FileException { // as Exception
 function getFileName() // get file name
}

class ParameterException { // as Exception
 function getFunction() // get function name
}

package Signals {
 const SIGHUP = 1 // hangup
 const SIGINT = 2 // interrupt (rubout)
 const SIGQUIT = 3 // quit (ASCII FS)
 const SIGILL = 4 // illegal instruction (not reset when
caught)
 const SIGTRAP = 5 // trace trap (not reset when caught)
 const SIGIOT = 6 // IOT instruction
 const SIGABRT = 6 // used by abort, replace SIGIOT in the
future
 const SIGEMT = 7 // EMT instruction
 const SIGFPE = 8 // floating point exception
 const SIGKILL = 9 // kill (cannot be caught or ignored)
 const SIGBUS = 10 // bus error
 const SIGSEGV = 11 // segmentation violation
 const SIGSYS = 12 // bad argument to system call
 const SIGPIPE = 13 // write on a pipe with no one to read it
 const SIGALRM = 14 // alarm clock
 const SIGTERM = 15 //software termination signal from kill
 const SIGUSR1 = 16 // user defined signal 1
 const SIGUSR2 = 17 // user defined signal 2
 const SIGCLD = 18 // child status change
 const SIGCHLD = 18 // child status change alias (POSIX)
 const SIGPWR = 19 // power-fail restart
 const SIGWINCH = 20 // window size change

System Library

Sun Microsystems Laboratories

15-194

 const SIGURG = 21 // urgent socket condition
 const SIGPOLL = 22 // pollable event occured
 const SIGIO = SIGPOLL // socket I/O possible (SIGPOLL alias)
 const SIGSTOP = 23 // stop (cannot be caught or ignored)
 const SIGTSTP = 24 // user stop requested from tty
 const SIGCONT = 25 // stopped process has been continued
 const SIGTTIN = 26 // background tty read attempted
 const SIGTTOU = 27 // background tty write attempted
 const SIGVTALRM = 28 // virtual timer expired
 const SIGPROF = 29 // profiling timer expired
 const SIGXCPU = 30 // exceeded cpu limit
 const SIGXFSZ = 31 // exceeded file size limit
 const SIGWAITING = 32 // process's lwps are blocked
 const SIGLWP = 33 // special signal used by thread library
 const SIGFREEZE = 34 // special signal used by CPR
 const SIGTHAW = 35 // special signal used by CPR
 const SIGCANCEL = 36 // thread cancellation signal used by
libthread
 const SIGLOST = 37 // resource lost (eg, record-lock lost)
 }

15.3.12. System information variables
The System package contains a set of constants that contain information about the system on which the
interpreter is running. These are read from the operating system. The variables are:

Variable Type Meaning
hostname string The name of the machine
username string The name of the current user
domainname string The name of the domain in which the machine resides
pid integer Process id of the process invoking the interpreter
ppid integer Process id of the parent process
pgrp integer Process group of the invoking process
ppgrp integer Process group of the parent of the invoking process
uid integer User identifier (number) for the invoking user
gid integer Group id (number) of the invoking user
operatingsystem string Common name of operating system
osinfo string Name and version of the operating system
machine string Type of the machine
architecture string Architecture name of machine
platform string Platform name
manufacturer string Manufacturer name
serialnumber string Serial number of machine
hostid integer Host identifier of machine
pagesize integer Size of a memory page on machine
numpages integer Number of physical pages of memory
numprocessors integer Number of online processors
fileSeparator string Pathname separator for OS (/ on UNIX®)
extensionSepara
tor

string Separator for file suffix (. on UNIX®)

System Library

Sun Microsystems Laboratories

15-195

One noteworthy variable is System.operatingsystem. This contains the common name for the operating
system and can be used to determine which operating system the program is running on. The currently
supported operating systems are:

Operating System System.operatingsystem value
Sun Microsystems Solaris Solaris
Linux Linux
Microsoft Windows Windows
Mac OS X Mac OS X

So, if necessary, a Aikido program can determine what OS it is running on and can act accordingly:

if (System.operatingsystem == “Windows”) {
 throw “Sorry, Windows does not support this feature”
}

The System.osinfo variable can be used to determine the version of the operating system being run. The
value of this differs depending on the OS. For example, on Solaris the System.osinfo variable may contain:

SunOS 5.7 Generic_106541-17

This shows the operating system name, version and patch level.

Your mileage may vary...

15.4. Network package
The Network package contains facilities to allow the use of network streams in Aikido. A network stream
is a standard stream that is connected through the network to another machine. Aikido’s network facilities
are described in section 9.5. To use the network package you need to import the file ‘net.aikido’:

import net

Then you can call the functions through the package name (Network). For example:

var addr = Network.lookupName (“mycorp.co.ca”)

This library provides the following facilities.

• open (address, port)
Open an active TCP network stream to a server. The address is one of:

1. integer IP address
2. IP address in n.n.n.n format. This is a string. Example: “192.129.1.1”
3. Host name. Also a string. Example: “www.acorn.co.uk”

The port is a TCP port number. The return value is a stream open for reading and writing and
connected to a machine over the network.

• openServer (address, port, type)
Open a passive network stream. This is one that may be connected to by another machine. The
parameters are the same as the ‘open’ call. The type is either Network.TCP or Network.UDP. The
return value is a ‘socket’. This is a number that may be passed to the ‘accept’ ‘send’ or ‘receive’
calls.

• openSocket()
Open a UDP socket for sending or receiving UDP datagrams. The socket is returned.

System Library

Sun Microsystems Laboratories

15-196

• lookupName (name)
Given the name of a machine on the network, consult a naming service to translate the name into
an IP address. The return value is an integer containing the IP address. An exception is thrown if
the name doesn’t exist.

• lookupAddress (addr)
Given an integral IP address, consult the naming service to convert it into a hostname. The
hostname is returned as a string.

• accept (socket)
For a TCP type stream, this waits for an incoming connection to a socket. It blocks until such a
connection is made and returns a stream open for reading and writing.

• send (socket, address, port, data)
Send a UDP datagram to the given address and port. The data must be a bytevector or a string (or
can be cast to a string). The socket is one created by openServer() or openSocket().

• receive (socket, var address, var port, maxbuffer = 4096)
Receive a datagram from the given socket. The reference parameters ‘address’ and ‘port’ are set
to the IP address and UDP port number of the sender of the datagram. The data received is
returned as a bytevector. The optional ‘maxbuffer’ parameter specifies the maximum size of the
datagram we will accept.

• peek (socket, var address, var port, maxbuffer = 4096)
Like receive except that the data is not extracted from the network – it is still there for a receive()
call to get.

• formatIPAddress (addr)
Convert the integral IP address into a n.n.n.n format string.

In addition, the Network package contains a DatagramStream class that may be used as a stream filter for
sending a series of datagrams to the same address. The class contains:

• retarget (addr, port)
Set the target address of the stream filter to the IP address and port given

• getAddress (var addr, var port)
Get the current target address and port of the filter

• operator -> (data, isout)
Stream data out through the filter to the target address and port. The data can be a vector, string or
anything that can be cast to a string. The data is sent as one packet.

• numDatagrams
Variable containing the number of datagrams sent through the filter.

15.5. Character typing package
This package contains a set of functions that can be used to determine the type of a character. The C
language has had this forever and it has been called ‘ctype’ for just as long. To use the package, import
the file ‘ctype.aikido’ and call the functions through the package name (ctype).

import ctype

if (ctype.isupper (ch)) {
}

The facilities provided are:

Function Arguments Purpose

System Library

Sun Microsystems Laboratories

15-197

isalpha c true if c is alphabetic
isdigit c true if c is a digit
isspace c true if c is a white space
isalnum c true if c is alphabetic or numeric
iscntrl c true if c is a control character
islower c true if c is a lower case letter
isupper c true if c is an upper case letter
ispunct c true if c is a punctuation character
isprint c true if c is a printable character
toupper c upper case version of c
tolower c lower case version of c

15.6. Mathematics package
This package includes a rich set of mathematical constants and functions. They mostly operate on real
values (floating point numbers). To use the mathematics package you need to import the file ‘math.aikido’:

import math

Then you can use the functions by calling them though the package name. For example:

var theta = Math.sin (Math.PI)

15.6.1. Mathematical constants
The following constants are provided:

Constant Meaning
E Exponential
LOG2E Base 2 logarithm of E
LOG10E Base 10 logarithm of E
LN2 Natural logarithm of 2
LN10 Natural logarithm of 10
PI pi
PI_2 pi / 2
PI_4 pi / 4
SQRT2 square root of 2
SQRT1_2 square root of _

15.6.2. Mathematical functions

Function Arguments Purpose
sin x Sine of x in radians
cos x Cosine of x in radians
tan x Tangent of x in radians
acos x Arccosine of x
asin x Arcsine of x
atan x Arctangent of x
sinh x Hyperbolic sine of x

System Library

Sun Microsystems Laboratories

15-198

cosh x Hyperbolic cosine of x
tanh x Hyperbolic tangent of x
exp x Exponent (ex)
log x Natural logarithm
log10 x Base 10 logarithm
sqrt x Square root
ceil x Ceiling
fabs x Absolute value
floor x Floor
atan2 x, y Arctangent of x/y
pow x, y x raised to the power of y
ldexp x, exp x * 2exp

fmod x, y Floating point remainder
trunc x integer value of floating point
round x rounded to nearest

I recommend that you either use the UNIX® manual pages or other source for the rigorous definitions of
the mathematics associated with the functions. The Aikido functions map directly onto those in the
operating system.

15.7. String object
Although Aikido provides string data types as part of the language, it is common to think of a string as an
object that can be manipulated using member functions (methods if you like). The string object provided
by the system library does just that. For those JavaTM programmers among us, this should look familiar.

Creating an instance of the String class creates a String object. To do this, you need to import the file
‘string.aikido’:

import string

var q = new String() // empty
var s = new String (“hello”) // initialized with string
var p = new String (1234) // initialized with integer

The parameter to the String constructor is anything that can be cast to a string value (see the cast operator
in section 6.15). You can also omit the parameter, thus getting an empty object.

The following functions are provided:

• append (s)
Append the given string to the end of the object.

• length()
Get the length of the string

• split (sep)
Split the string into sections. The separator (sep) is a regular expression that is used to determine
the start and end of the sections. The return value is a vector of strings.

• replace (s1, s2)
Replace all occurrences of substrings matched by the regular expression ‘s1’ by the string ‘s2’.
This does not overwrite the value of the object, it creates a new string and returns it.

• substring (start, end = 0)
Given 2 indexes (start and end) return a substring of the string. If ‘end’ is omitted (or value 0)
then the substring from ‘start’ to the end of the string is returned.

• toInteger()

System Library

Sun Microsystems Laboratories

15-199

Convert the string to an integer. The integer is returned. If the string does not contain a valid
sequence of characters for an integer (as specified in the cast operator of the language) an
exception is thrown.

• indexOf (s)
Get the start index of the regular expression ‘s’ in the string.

• operator-> (stream, isout)
Stream the string into or out of a stream.

• operator+ (s)
Concatenate a string to the end of the string object and return a new string object.

• operator[] (i, j = -1)
Index the string object by either a single index or a range. If a single index is used, a character is
returned, otherwise a String object is returned.

• operator sizeof()
Get the size of the string

Since the string object provides overloaded operators you can use an instance of it like a regular string
value. The split() and replace() functions allow regular expressions to be used to do the searching.

15.8. Streambuffer object
When a stream is connected to a network it is sometimes necessary to ensure that the data sent across the
network is ‘packetized’ correctly for the protocol. Normally, when using streams, you are unaware of how
the stream is buffered and don’t really care anyway. If you do care about reading and writing chunks of
data at a time you can use an instance of the Streambuffer class. A Streambuffer is an subclass of String so
anything that a String can do, so can a Streambuffer.

A Streambuffer also acts like a stream in that you can read individual characters from it, one at a time. It
maintains a ‘current read position’ pointer that is updated on a ‘get’.

When reading a stream buffer from a stream, the buffer is read as an atomic entity. That is, all the available
characters are read from the stream and inserted into the buffer. In the case of a network stream, this will
mean that the whole packet is read at once.

When writing a stream buffer to a stream, the stream is flushed after the data is written. This ensures that
the data is sent in the correct chunks.

To use a stream buffer you need to import the file ‘streambuffer.aikido”. The class Streambuffer can then
be used:

import streambuffer

var buf = new Streambuffer() // create new buffer
buf.put (“Hello”) // append a string to it
buf -> output // send to output stream (and flush output)

The following facilities are provided:

• clear()
Clear all data out of the object

• put (v)
Put a string into the object. This is the same as String.append()

• putchar (index, v)
Put a character into the buffer at the given index. The buffer must contain a string longer than the
index.

System Library

Sun Microsystems Laboratories

15-200

• getchar()
Get the next character from the streambuffer.

• get (n = 1)
Get a series of characters from the streambuffer. The default is 1. Always returns a string value.

• getall()
Get all remaining characters from the buffer. Returns a string value.

• operator-> (stream, isout)
Read or write the buffer to a stream. If writing to a real stream (as opposed to a filter) the stream
is flushed.

• toString()
Convert the buffer contents to a string value

• operator[] (i, j = -1)
Index the buffer as a string object

• operator sizeof()
Get the size of the buffer.

15.9. Properties object
The Properties object is a very useful object for dealing with properties of a program. The JavaTM langauge
has a very similar object. The most common use of it is reading and writing properties files. These are
files on disk that contain certain properties for a program. Properties each have a name and a value. They
may be used for setting initial values of attributes in a program.

A Properties object can be populated from the contents of a properties file and may also be written out into
a file, thus creating a properties file.

A properties file contains a set of lines of the form:

name = list of values

Where name is the name of a property meaningful to the program. The ‘list of values’ is a comma-
separated list of strings.

To use the Properties object you must import the file “properties.aikido”:

import properties

A new Properties object may be created:

var p = new Properties()

It may be populated from a stream or individual properties added one at a time.

To read a property from the object, use the normal subscript operator of the language. The value of a
property is either a string (if it only has one value), or a vector of strings for multi-valued properties.

The properties object contains the following facilities:

• put (prop, val)
Put a new property into the object. The ‘prop’ parameter is the name of the property. The ‘val’
parameter is either a string or a vector of strings.

• remove (prop)
Remove a named property from the object.

• replace (prop, value)

System Library

Sun Microsystems Laboratories

15-201

Replace the value of a named property in the object.
• operator[] (i, j = -1)

Retrieve the value of a property from the object. Only a single subscript may be used. The
subscript is the name of a property to find. The return value is the value of the property.

• operator-> (stream, isout)
Read or write the properties object to a stream.

• operator foreach()
Iterate through each of the properties. Each element is an object of type System.Pair.

If we have a properties file called, say, “chat.props”, we can read it as follows:

var strm = System.openin (“chat.props”) // open the file
var p = new Properties() // create the object
strm -> p // read the properties
System.close (strm) // close the file

You can then query the properties object for individual properties:

var server = p[“server”] // string property
var port = cast<integer>(p[“port”]) // integer property

15.10. Containers
The system library contains a set of objects that can be used to hold other objects. These are:

• List
• Vector
• Map
• Queue
• Stack
• Hashtable
• Container (interface)

All containers are implemented as monitors to provide thread safety. All the classes implement the
interface Container.

15.10.1. List
The List monitor is an object that provides a doubly-linked list of values. It is thread-safe. In order to use
the List object, you must import the file ‘list.aikido’

import list

Internally, the List object holds the values as a set of objects of type ‘Item’. This contains the ‘next’ and
‘prev’ pointers as well as the data payload. Certain list operations require that an Item be passed (erase,
insertBefore, etc.).

The List object has the following operations

• insertEnd(v)
Insert the value ‘v’ at the end of the list

• insertStart(v)
Insert the value ‘v’ at the start of the list.

• insertBefore (item, v)

System Library

Sun Microsystems Laboratories

15-202

Insert the value ‘v’ before the item ‘item’. The item for a value can be obtained using the ‘find’
function

• insertAfter (item, v)
Insert the value ‘v’ after the item ‘item’. The item for a value can be obtained using the ‘find’ function

• find (v, start=null)
Find the item associated with the given value, starting at ‘start’. If ‘start’ is omitted, the whole list is
searched. Return either null or the item object.

• erase (v)
Erase something from the list. The value ‘v’ is either an item or a value in the list. If it is a value, the
list is searched for the list.

• clear
Clear the list, deleting all the items

• size
Number of items in the list

• operator sizeof
As size()

• operator in (v)
Check if the value ‘v’ is in the list, returns true or false

• push_back (v)
Same as insertEnd()

• push_front (v)
Same as insertStart()

• operator foreach (var x)
Complex iterator. Returns each value in list in turn when used as an argument to the foreach
command.

• empty()
Check if the stack is empty, returns true if so.

15.10.2. Vector
Although the Aikido language contains a builtin value for vectors, the system library provides a monitor
implementing a vector object. The reason for this is two-fold:

1. Those familiar with the JavaTM and C++ languages will think of vectors as objects
2. The built-in vectors are not multithread safe.

To use the Vector monitor, import the file “vector.aikido”:

import vector

Since the Vector is implemented as a monitor, any access is automatically subject to a mutual exclusion
lock. This means that it can be used safely in a multithreaded program without regard to any other locking
mechanism.

The Vector monitor contains the following facilities:

• push_back (v)
C++ style append. Value v is appended to the end of the vector

• append (v)
JavaTM style append. As push_back()

• operator+ (v)
Add a value to the vector and return a new vector. Does not modify the object

• getElements()

System Library

Sun Microsystems Laboratories

15-203

Get the raw vector value from the object
• erase (v)

Search for the value ‘v’ in the vector and erase the element. Throws an exception if the value is
not found.

• operator[] (i, j = -1)
Index the vector with either a single or range subscript.

• size()
Get length of vector

• operator sizeof()
Get the length of the vector

• operator-> (stream, isout)
Read or write the vector from or to a stream

• operator foreach()
Iterate through each element of the vector

15.10.3. Map
Like the Vector monitor (see section 15.10.2) the Map monitor implements an object-oriented Map object
that is protected by a mutual exclusion locking mechanism. In order to use the Map object you must import
the file “map.aikido”:

import map

Aikido provides a built-in map data type. This object provides an object-oriented view of it.

The Map monitor contains the following facilities:

• insert (key, data)
Insert a key/value pair into the map. Exception results if the key exists in the map already

• isPresent (key)
Returns true if the key is present in the map.

• find (key)
Find the value associated with the key in the map. An exception is thrown if it is not present.

• erase (key)
Erase the key from the map. Exception thrown if not present

• size()
Number of keys in the map

• operator sizeof()
Number of keys in the map

• operator foreach()
Iterate through the map. Each iteration results in a System.Pair object

• operator[] (i, j = -1)
Index the map with a value. Behaves as get()

• clear()
Clear all values out of the map

• keys()
Get a vector containing all the keys in the map

• get(key)
Retrieve the value of a key. Return none if not present

• put (key, v)
Same as insert()

• empty()
Is the map empty, true or false

System Library

Sun Microsystems Laboratories

15-204

15.10.4. Stack
A stack is a LIFO (Last In First Out) structure that is an extension of the List object. All the operations
provided for List are also present for Stack. To use a Stack, you must import ‘stack.aikido’:

import stack

A stack implements ‘push’ and ‘pop’ operations. These always operate on the end of the underlying List.

In addition to the operations provided by the List (see 15.10.1), the Stack monitor provides the following
operations:

• push (v)
Push the given value onto the stack. This is inserted at the end of the list

• top()
Get the value at the top of the stack. The value is not removed

• pop()
Pop the value off the top of the stack

15.10.5. Queue
A queue is a FIFO (First In First Out) structure. Like Stack it is an extension of the List object. Items
inserted into the queue are retrieved in the same order as they were inserted. To use the Queue, you need to
import the file ‘queue.aikido’:

import queue

The Queue implements ‘put’ and ‘get’ operations.

• put(v)
Insert the given value into the queue. This is inserted at the end of the queue.

• get()
Get the value at the front of the queue. The value is removed from the queue.

15.10.6. Hashtable
A Hashtable is a fast-access map. It is implemented as a vector of maps. The keys are hashed by the
System.hash() function and the value is used to select a map in the vector.

The regular Map object should provide enough speed for most applications, but if you are writing a
program that requires a very large mapping, the Hashtable might be better.

To use the Hashtable, import the file ‘hashtable.aikido’:

import hashtable

A Hashtable object takes one ones optional parameter in its constructor: size of the table. This is fixed for
the lifetime of the object and cannot be changed. The default is 1009 elements.

The Hashtable behaves exactly like a Map.

System Library

Sun Microsystems Laboratories

15-205

15.11. Security package
This provides a simple password entry and encryption package. Only 2 functions are supported.

The file “security.aikido” must be imported in order to use this package. The functions may be called
through the package name (Security).

import security

var password = Security.getpassword (“Password:”)
password = Security.encryp (password,”da”)

• getpassword (prompt)
Print the prompt to the terminal and read the user’s password from the keyboard. Terminal echo is
switched off while the password is being entered. The string entered is returned.

• encrypt (key, salt)
Encrypt the string passed in ‘key’ using the 2-letter string ‘salt’. The encrypted string is returned.

15.12. GTK+ Graphical Toolset package
GTK+ is a popular public-domain library that allows application to be written to use Graphical User
Interfaces. It is primarily aimed at Unix® and Linux machines but there is also a Windows® port available
on the internet.

Aikido provides an interface to the GTK+ libraries. It can be accessed by importing the file ‘gtk.aikido’:

import gtk

The GTK+ library is written in C, but the designers took a very object-oriented approach to it,
implementing pseudo-objects in C and providing the equivalent of methods for each object. The Aikido
interface to the library functions converts this into real object classes and methods. For each object class in
the GTK+ hierarchy, the Aikido interface provides a class.

For example, the GTK+ functions:

GtkWidget *gtk_window_new (GtkWindowType type);
void gtk_window_set_title (GtkWindow *window, const gchar *title) ;

Are implemented as the following Aikido class:

package GTK {
 public class Window (type, _toplevel = true) extends Bin (false) {
 if (_toplevel) {
 object = gtk_window_new (type)
 }

 public function set_title (title) {
 gtk_window_set_title (object, title)
 }
 }
}

The class takes 2 parameters: the window type and an optional _toplevel. The _toplevel parameter is set to
true if the Window is created directly and false if it is a superclass.

System Library

Sun Microsystems Laboratories

15-206

If the toplevel parameter is true, then the function gtk_window_new() is called to create the window. The
result is assigned to the variable object. This variable exists in the very top level class in the hierarchy: the
Object class. The value returned by gtk_window_new() is a pointer type. This is treated as an integer type
in Aikido (integers are 64 bit so there is enough room). The object variable in a GTK Object is passed
down to the GTK+ C functions as-is and is cast to a pointer.

The member function set_title() simply calls the GTK+ C function, passing the object variable and the title
string.

Most of the GTK+ C functions are implemented as raw native functions (see section 5.4.2). Some of them
are done as regular native functions and have an interface function coded for them. These are the ones that
do not conform to the raw native rules.

Because the Aikido GTK+ interface is simply a mapping to a native library instead of being implemented
in Aikido itself, the performance is very good. It is good enough to allow full GUI applications to be
written in Aikido instead of having to resort to C code.

15.12.1. GTK+ resources
In order to use the GTK+ interface in Aikido, you will need to download the GTK+ libraries. These can be
obtained from:

http://www.gtk.org

The web site contains some documentation on the GTK+ library and its requirements. I suggest that you
examine the header files, GTK+ example code and the Aikido GTK+ interface files to get further
information.

When you have installed GTK+ on your system you will need to tell Aikido where the libraries are. To do
this, set the AIKIDOPATH environment variable to point to the directory containing them. You might also
need to set the LD_LIBRARY_PATH environment variable to locate the GLIB libraries.

The library files should be called a specific name on the system. On Unix® systems the should be called:
libgtk.so and libgdk.so. On Windows®, call them gtk.dll and gdk.dll (you might have to rename them).

15.12.2. Signals

In any GUI toolkit, the application communicates with the toolkit through an event mechanism. The GTK+
library uses the notion of signals to communicate events of interest. The idea is that an object can set it up
so that a function is called upon receipt of a named signal. Signals names are strings.

The class GTK.Object contains the signal connection functions:

package GTK {
 public class Object {
 public function signal_connect (sig, func, data) {
 }
 }
}

The signal_connect() function takes 3 parameters: the name of a signal (a string); the function to call when
the signal occurs; and an arbitrary datum to be passed to the function.

System Library

Sun Microsystems Laboratories

15-207

The following example shows the use of signals:

class ExitConfirmation (text) extends GTK.Dialog {
 set_border_width (10)
 set_modal(true)
 set_title ("Confirmation")
 set_position (GTK.WIN_POS_CENTER)

 // pack the label text into the box
 var vbox = get_vbox()
 var label = new GTK.Label (text)
 vbox.pack_start (label, true, true, 0)
 label.show()

 function no_clicked (widget, p) { // called when the No button is clicked
 hide()
 }

 var actarea = get_action_area()

 // make the action buttons
 var yes = new GTK.Button ("Yes")
 actarea.pack_start (yes, true, true, 0)
 yes.show()

 var no = new GTK.Button ("No")
 actarea.pack_end (no, true, true, 0)
 no.show()

 // connect the signals
 yes.signal_connect ("clicked", function (a,b) { System.exit(0) }, null) // anonymous
 no.signal_connect ("clicked", no_clicked, null) // in class
}

15.13. Filename package
Programs frequently manipulate filenames. This package provides facilities to perform many operations on
strings that are in the format of file names. All the functions return a new string (with the exception of
explode which returns a vector). In no case is the parameter modified by the function.

The filename package resides in the file ‘filename.aikido’ and should be imported before use:

import filename

• explode (filename)
Given a string representing a filename, split it into a vector of strings, each element of which is a
component of the path. If the filename is ‘rooted’, the first string in the vector will be empty.

• implode (vector)
Given a vector of strings, form them into a path name and return the string formed

• dirname (path)
Extract the directory portion of a path name

System Library

Sun Microsystems Laboratories

15-208

• filename (path)
Extract the filename portion of a path name

• suffix (path)
Extract the suffix (file extension) from a path name

• basename (path)
Extract the portion of a filename without the suffix (extension)

• export (path)
Create a full NFS path name for a file. Prefixes /net/machinename to the path if it is not already
over NFS. If on Windows, the export path name is \\machinename\filename.

The filename package used the System.fileSeparator and System.extensionSeparator variables.

15.14. Lexical Analyzer package

Lexical analysis consists of taking an input text and applying transformations on it to split it into a series of
tokens. The input text is said to consist of an ordered sequence of tokens separated by white space
characters. The lexical analyzer package provides a class that can be used to perform the analysis of a
vector of lines of input text.

A token has a type and some associated information. The token types recognized by the raw lexical
analyzer (unextended) are:

• IDENTIFIER
An identifier is a token consisting of an alphabetic character and containing a sequence of alphabetic
and numeric characters.

• NUMBER
A number is a based (base 2, 8, 10 or 16) sequence of valid characters for that base that represents a
numeric quantity.

• STRING
A sequence of characters (excluding double quotes and line feed characters) enclosed in double quotes.
Can contain escape characters prefixed by a backslash character.

• CHAR
A single character enclosed in single quote marks. Can contain escape characters.

• BAD
Unrecognized token

• EOL
End of line token. Can be returned when running in line based mode.

In addition, the analyzer supports blank lines comments. A comment is a started by either a ‘#’ character or
a ‘//’ character sequence and extends to the end of line.

The lexical analyzer is in the file lex.aikido and must be imported using:

import lex

To use it, create an instance of the class Lex and pass a vector of strings the contain the source text, one
line per string.

var lex = new Lex (lines)

System Library

Sun Microsystems Laboratories

15-209

15.14.1. Adding tokens
The raw lexical analyzer recognizes the tokens listed in the previous section. In order to be able to use it,
you need to add other tokens to it. There are 2 types of tokens that you can add:

1. Reserved words
2. Operator tokens

Reserved words are identifiers whose spelling is deemed to be a token by itself. For example, the reserved
word ‘while’ has a meaning to program what parses C. Operator tokens are a sequence of characters that
form a token. Examples are ‘+=’ or ‘<<’.

In order to add new tokens to the analyzer you need to extend the set of tokens that already exist. The
lexical analyzer package contains an enumerated type called ‘Tokens’. We use the Aikido ‘block
extension’ feature to add to it:

extend Tokens {
 WHILE, DO, FOR,
 PLUSPLUS, MINUSMINUS
}

This adds 5 new tokens to the set of tokens recognized. Now we need to give the tokens a definition. To
define a reserved word token use the function ‘addReservedWord()’. To define an operator token, use the
function ‘addToken()’

lex.addReservedWord (“while”, WHILE)
lex.addReservedWord (“do”, DO)
lex.addReservedWord (“for”, FOR)

lex.addToken (“++”, PLUSPLUS)
lex.addToken (“—“, MINUSMINUS)

15.14.2. Extracting the token sequence
Once the tokens have been added to the analyzer, the program can read the next token from the input text
by calling the ‘nextToken()’ function. The analyzer is line based, so the function ‘readLine’ can be used to
read the next line.

The algorithm for parsing a token sequence is as follows:

var lex = new Lex (lines) // create the analyzer

extend Tokens {
 // new tokens
}

lex.addReservedWord (…) // add reserved words
lex.addToken (…) // add tokens

lex.readLine() // read the first line
lex.nextToken() // read the first token

System Library

Sun Microsystems Laboratories

15-210

while (!lex.eof()) { // until end of tokens
 switch (lex.currentToken) { // process the current token
 case <token>:
 // process the token
 lex.nextToken() // move on one token
 }
}

The main functions and variables for the analysis are:

• readLine()
Read the next line from the input line set. Increment the current line counter. Skip blank lines and
lines containing just comments

• nextToken()
Read the next token from the input text. Set the variable ‘currentToken’ to the token type.

• line
Contains the whole contents of the current line

• ch
Contains the index into the current line of the start of the next token. A call to ‘nextToken’ will move
this on to the next token.

• lineno
The current line number, starting at 1 for the first line in the sequence

• spelling
The spelling of the current token (if appropriate). This contains the characters that make up an
identifier or string if the current token is IDENTIFIER or STRING

• number
If the current token is NUMBER, this contains the value of the number.

• currentToken
The current token type. This will be one of the built-in token types (IDENTIFIER. NUMBER, etc) or
one of the tokens added by the user

• eof()
The analyzer has reached the end of input text.

• addReservedWord()
Add a reserved word and its corresponding token to the analyzer

• addToken()
Add an operator token to the analyzer.

• reset()
Reset the analyzer to the start of the sequence. No lines have been read and no tokens parsed.

• match(token)
Look at the current token and if it matches the parameter, skip to the next token and return true. If no
match, don’t move the token pointer and return false

• getIdentifier()

System Library

Sun Microsystems Laboratories

15-211

Extract an identifier from the token sequence. The value of currentToken must be IDENTIFIER. This
returns the spelling of the identifier. If there is no identifier in the sequence, throw an exception.

• getNumber()
Line getIdentifier(), but extract a number from the stream. Throws an exception if the current token is
not a number.

The analyzer always has a value for ‘currentToken’. This is either the type of the token just extracted by
‘nextToken()’ or BAD. It starts out with BAD and each time ‘nextToken()’ is called, the value of
‘currentToken’ is set to the type of the currently recognized token.

The functions match(), getIdentifier() and getNumber() are utility functions that are used to extract certain
token types from the input. The definition of match() is:

function match (t) {
 if (currentToken == t) {
 nextToken()
 return true
 }
 return false
}

The getIdentifier() and getNumber() functions are similar.

The variables ‘spelling’ and ‘number’ are used to provide additional information when the token type is
IDENTIFIER, STRING and NUMBER. In the case of ‘spelling’, it contains the characters that make up
the identifier or string. For a number, the variable ‘number’ contains the value of the number.

15.15. Registry package (Windows® only)
Aikido provided a package for use on the Microsoft® Windows® Operating system only. This package
allows access to the Windows® Registry. This is a hierarchical database of keys and values and is used by
all applications to store persistent data.

The registry package is in the file registry.aikido and is imported by:

import registry

The package is named Registry and provides the following functions:

• openKey (key, name)
Open a subkey of an open key. There are a set of keys that are opened by the operating system. These
are the top level keys. This function opens a subkey of a key and returns the handle for the subkey

• closeKey (key)
Close an open key

• enumKeys (key)
Retrieve the names of the subkeys of an open key. The value returned is a vector of strings, each of
which is a subkey name

• enumValues (key)
Retrieve the names of all the values of an open key. A vector of strings is returned.

• getValue (key, valuename)
Retrieve the value of a named value of an open key. The value of the valuename is returned as a
Aikido value. For example, if the registry value is a type REG_DWORD, the value returned is of type
integer.

System Library

Sun Microsystems Laboratories

15-212

• setValue (key, valuename, valuevalue, type = none)
Set the value of the named value of an open key. The ‘valuevalue’ parameter is a Aikido value whose
type is appropriate for the key value. If the type of the value to be stored in the registry is not obvious
from the type of the ‘valuevalue’ parameter, the additional ‘type’ parameter may be set to one of the
REG_ values.

The top level keys that are always open are:

1. HKEY_CLASSES_ROOT
2. HKEY_CURRENT_CONFIG
3. HKEY_CURRENT_USER
4. HKEY_LOCAL_MACHINE
5. HKEY_USERS

The registry types that can be passed to the setValue function are:

Type name Type in registry Aikido type
REG_DWORD 32 bit integer lower half of integer
REG_DWORD_LITTLE_ENDIAN same as DWORD as DWORD
REG_DWORD_BIG_ENDIAN Big endian 32 bit integer lower half of integer in big

endian format
REG_QWORD 64 bit integer whole integer
REG_QWORD_LITTLE_ENDIAN same as QWORD whole integer
REG_SZ zero terminated string string
REG_EXPAND_SZ zero terminated string containing

environment variables
string

REG_MULTI_SZ zero terminated set of zero
terminated strings

vector of strings

REG_BINARY Binary data bytevector
REG_NONE No value none

15.16. JavaTM Object model
Aikido provides a subset of the JavaTM object model for use by programmers who are familiar with the
JavaTM language. Use of the JavaTM Object model will increase the size of the program and will result in
lower performance because most of the operations executed by the interpreter rather than in native code. If
you are writing a program that will be converted to the JavaTM language, or don’t want to learn another
programming model, you can use the JavaTM object model in your Aikido programs.

The JavaTM Object model is stored in the aikido.zip file as a set of Aikido files. To use the object model
you need to import the Aikido files. This is done using a regular import statement. For example, to use the
JavaTM Thread model:

import java.lang.Thread

All the JavaTM objects are held in the package ‘java’. There are sub-packages of this for the ‘io’ and ‘lang’
components of the model. Only a subset of the JavaTM objects is currently included. The list of objects
that are defined is:

• java.lang.System
• java.lang.Boolean

System Library

Sun Microsystems Laboratories

15-213

• java.lang.Object
• java.lang.Runtime
• java.lang.String
• java.lang.Thread
• java.lang.ThreadGroup
• java.lang.Exception
• java.lang.Process
• java.lang.StringBuffer
• java.io.DataOutputStream
• java.io.FileInputStream
• java.io.FilterOutputStream
• java.io.OutputStream
• java.io.File
• java.io.FileNotFoundException
• java.io.IOException
• java.io.PrintStream
• java.io.FileDescriptor
• java.io.FileOutputStream
• java.io.InputStream

When you import a JavaTM object from the library it must be referenced by its full package name unless
you place a ‘using’ statement in the program. For example:

import java.lang.Thread

class Mythread extends java.lang.Thread {
 // …
}

can also be coded as:

import java.lang.Thread

using java.lang

class Mythread extends Thread {
 // …
}

System Library

Sun Microsystems Laboratories

15-214

Worked example: A chat service

Sun Microsystems Laboratories

16-215

Chapter 16. Worked example: A chat
service

Let’s see how to develop a real program in Aikido. This example is an actual running program used in my
office. It has proved to be very useful for improving team communication.

The example program we will develop in this chapter is a simple chat system. We are probably all familiar
with the notoriety of public chat systems. Just mention the words “chat room” and you will evoke looks of
horror and images of internet stalkers immediately spring to mind. The concept of a chat service has been
around for a long time, ever since people started using mainframe computers and networks. The UNIX®
Operating System has had the ‘talk’ command (a one-to-one chat system) for ever. Digital Equipment
Company had a nice chat system on their VMS operating system (VAX Phone if I remember correctly).

When the internet came along, the most popular chat service was Internet Relay Chat (IRC). This is a
powerful and flexible multi-user chat system that worked worldwide on a vast scale. More recently,
America Online (AOL) have popularized their Instant Messenger (IM) system and there millions of users
logged on at any one time.

I am not going to try to write anything as complex as a multi-server IRC or an IM for an example of how to
use a programming language. The chat system I will explain here is an extremely simple but effective
system that omits most of the bells and whistles of the major systems. It will, however, be fully functional.

During this chapter we will show the development of 2 programs. Each one will be slowly built up from
parts as we write those parts. There will necessarily be repetition of sections of code as the code grows.

16.1. Architecture

The chat service consists of a single server and a set of clients. The communication between the clients and
the server is via the network using the TCP/IP protocol. All the clients connect directly to the server and
messages are exchanged over the communication streams. The following diagram shows a top level view
of the architecture:

Server

Client

Client

Client

Worked example: A chat service

Sun Microsystems Laboratories

16-216

Three clients are shown connected to the single server. The clients and server can each be running on a
different machine. The communication is via a local ethernet or equivalent.

16.2. Protocol
For simplicity, let’s make the messages sent between the client and server strings of characters. Let’s
define a single message as consisting of 3 parts - each part being separated by a colon character. The first
part of the string will be a command identifier and will be an upper case word.

Consider what a client has to do to operate with a chat server:

• Connect to the server program at a given location on the network
• Log in to the server providing an identifier for who the user is and possibly some authentication

information
• Join and leave “chat rooms”. A chat room is where the users reside. Users in a chat room are sending

messages to each other.
• Obtains lists of who is present in the chat rooms and other rooms on the system
• Send messages to a room. A message sent to a room is seen by all users in the room
• Log off from the server, leaving all the rooms and disconnecting the network connection

The connection from the client to the server will be handled by making a network stream. Once a
connection is made, the client will start sending commands to the server.

In a chat system each user is identified by a user name or nickname. A nickname is a short identifier
usually similar to the users first name in real life. The nickname is the primary means of identification in
our chat system.

The following commands will provide the appropriate functions:

Command Argument 1 Argument 2 Meaning
LOGIN nickname of user password Log on and authenticate user
LOGOUT nickname Log the user out
JOIN name of room Join the conversation in a room
LEAVE name of room Leave a room
TALK name of room Set room as current room
MESSAGE nickname text of

message
Send message to all in current
room

BROADCAST nickname text of
message

Send message to all logged in
users

MOTD Get the Message or the Day
USERS Get a list of all users who are

logged in
ROOMS Get a list of all the rooms

available
KICK nickname nickname to

kick off
Remove a user from the server

KILL nickname user number Select a user given his number
and log him off

SHOWLOG room max lines Show the log of messages for a
given room

CLEARLOG room Clear the log file for a room
SHUTDOWN time in seconds reason Shut the server down after a

period of time

Worked example: A chat service

Sun Microsystems Laboratories

16-217

If an argument is listed as blank in the table it means that it is ignored by the command. However, it still
must be present in the command string.

The commands listed above are those sent from the client to the server. We also need to be able to send
messages from the server to the client. These will carry things such as notifications, messages to the client
from other users and errors. Let’s decide to use exactly the same format for the server to client messages as
for the commands going the other way.

Message Argument 1 Argument 2 Meaning
JOIN nickname room The user named by nickname has joined the named

room
LEAVE nickname room The named user has left the named room
MESSAGE nickname message text Incoming message from named user
ERROR error text Error from server
KICK nickname reason Notification of user being kicked off by the named

user
KILL nickname Notification of user being killed by named user
LOGIN nickname Named user has logged in
LOGOUT nickname Named user has logged out
SHUTDOWN time in seconds reason Warning of impending server shutdown
ENDLOG End of output from SHOWLOG command
TALKING room Notification of success of TALK command

16.2.1. Rooms
The protocol refers to rooms. We need to define what a room is. A room is a location in the server
identified by a name. There can be any number of rooms in existence at once. A room contains a set of
users. Rooms can be created at will. A room is created if a user joins it. Rooms are never deleted.

When a message is sent to a room all the users in the room receive the message.

16.2.2. Users
A user of the system is an entity that represents a person typing at a keyboard communicating with the
other users of the system. A user is identified by a nickname but also has the attributes:

• Full name
• Password
• User session id

The full name is the name of the person represented by the user. The password is a secret word that is
known only to the user and verified by the server. When a user logs in, he is assigned a unique user session
identifier. This is used to differentiate between the sessions when a user logs in to the server twice (there is
no limit to the number of times a user may be logged in).

A user may be in many rooms at a time. Typically when a user says something, a message will be sent to
his ‘current room’. The user may set his current room at any time using the TALK command. It is also
possible for a user to set his current room to “*” and after that, any message sent by the user will be sent to
all the rooms in which the user is present.

16.3. Server
Let’s begin writing the chat server. The first thing we need is a package for the server:

Worked example: A chat service

Sun Microsystems Laboratories

16-218

package ChatServer {
}

Because the package has no parameters, an instance will be created automatically by the Aikido system.
Any code placed in the body of the package will be executed when the chat server starts.

The chat server is a network server, so we will need to use network services in it. To do this we need to
import the network package into the server package:

package ChatServer {
 import net
}

This imports the net.aikido file at the top level of the program.

16.3.1. The configuration file
The chat server will need information that remains static. The server is connected to a network so will need
to know which machine it is running on and on what TCP port it is listening. The Aikido system library
contains a package called Properties. This is basically a map of property name versus property value. The
properties object can be read from and written to a file. The format of the file is:

name = value list

Where name is an identifier and value list is a set of strings separated by commas. The properties required
by the chat server are simply the machine name and port number, so the file (let’s call it “chat.props”) will
contain:

chat server properties
server = databank1
port = 6000

Here we set the machine name (property “server”) to a valid machine name for our network and pick a TCP
port number not assigned to anything else running on the server. How do we pick a port number? This is
one of the most problematic areas with the whole of TCP/IP programming. There is no right answer, short
of consulting a port mapping service available for some protocols on some systems. For our purposes, the
number 6000 seems ok.

So, once we have a properties file set up we need to be able to read it into the program and read the value of
the properties. We do this by opening the file and streaming the contents into an object of type Properties:

import properties // import the package

var props = new Properties() // create blank Properties object
var file = System.openin (“chat.props”) // open the properties file
file -> props // read properties into object
System.close (file) // close the file

// now read the properties we care about
var server = props[“server”] // read server machine name
var port = cast<int>(props[“port”]) // read port number as int

Worked example: A chat service

Sun Microsystems Laboratories

16-219

We now have read the properties from the file and have set 2 variables (server and port) to the properties
we care about from the file. Notice that the props object is subscripted with the name of the property to
read. This uses an overloaded operator in the Properties class. The ‘port’ property is supposed to be an
integer type, but all properties come in from the file in the form of strings. Therefore we cast it to integer
before assigning to the port variable.

16.3.2. Allowing connections from clients
The chat server is a typical server. It does nothing else but sit and wait for incoming connections from
clients. The first thing we need to do is create a server socket for the connections:

var socket = Network.openServer (server, port, Network.TCP)

Then, once the socket is opened, we need to enter a loop accepting connections from the socket. The
creation of the socket does a passive open of the network port, so it is ready to accept connections from
clients. The loop is:

for (;;) {
 var s = Network.accept (socket)
 // got a connection, process it
}

Putting this all together with the package and the properties management we have:

package ChatServer {
 import net
 import properties // import the package

 var props = new Properties() // create blank Properties object
 var file = System.openin (“chat.props”) // open the properties file
 file -> props // read properties into object
 System.close (file) // close the file

 // now read the properties we care about
 var server = props[“server”] // read server machine name
 var port = cast<int>(props[“port”]) // read port number as int

 var socket = Network.openServer (server, port, Network.TCP)

 for (;;) {
 var s = Network.accept (socket)
 // got a connection, process it
 }
}

Notice that we have not dealt with any exceptions this far. Anything that goes wrong in this part of the
server will be pretty serious so we are happy for any exceptions to be reported directly to the person
running the server.

So now we have created a Aikido program that will run forever accepting incoming connections on a given
port number on a given machine. When it gets the connection it will do nothing. Let’s fix that little
problem.

Worked example: A chat service

Sun Microsystems Laboratories

16-220

A server is inherently multithreaded. It must be able to process messages from clients and at the same time
accept new connections from other clients. One way to handle this is to create a new thread for every client
connection. We choose to do this because threads are relatively cheap and simple to program.

We define a thread called userServer to handle all the communication from a particular client. This thread
takes, as a parameter, the stream which was created by the incoming client connection request. The thread
has to run until the stream is closed by the client:

thread userServer (clientStream) {
 while (!System.eof (clientStream)) {
 // read and process client commands
 }
}

Putting this thread together with the main server package we get:

package ChatServer {
 import net
 import properties // import the package

 var props = new Properties() // create blank Properties object
 var file = System.openin (“chat.props”) // open the properties file
 file -> props // read properties into object
 System.close (file) // close the file

 // now read the properties we care about
 var server = props[“server”] // read server machine name
 var port = cast<int>(props[“port”]) // read port number as int

 thread userServer (clientStream) {
 while (!System.eof (clientStream)) {
 // read and process client commands
 }
 }

 var socket = Network.openServer (server, port, Network.TCP)

 for (;;) {
 var s = Network.accept (socket) // accept new connection
 userServer (s) // spawn thread to handle it
 }
}

16.3.3. Processing client commands
Now that we have a thread running for each client connection we need to be able to process the commands
those clients send us. The clients are connected to the server through network streams. We have one
thread on the server (userServer) associated with each stream.

Remember that the commands from clients will consist of a string broken in 3 parts. We need to be able to
read the string from the stream and break it up into its constituent parts.

Worked example: A chat service

Sun Microsystems Laboratories

16-221

First let’s see how to read the command from the stream. The main loop of the userServer should be
augmented as follows:

var command = “” // string var to hold command
while (!System.eof (clientStream)) {
 clientStream -> command // read command from stream
 try {
 // process client command
 } catch (error) { // catch exceptions
 [“ERROR:”, error, “:x\n”] -> clientStream // report as errors to client
 System.flush (clientStream)
 }

The next step is to write the code to actually process the client commands. Let’s define a function inside
the userServer thread called clientCommand() that will do the whole processing for us.

Commands are strings of 3 fields separated by colon characters. A convenient way to extract the fields is
to use a regular expression. What must this regular expression match? The first field is a series of
characters ending in ‘:’. The second is also a series of characters ending in ‘:’. The third is the series of
characters from after the second ‘:’ to the end of the string. We want the 3 fields to be extracted without
the colon characters.

A regular expression to do this is:

“([^:]+):([^:]+):(.*)”

This consists of 3 subexpressions (inside the parentheses). The first one says: “one or more of any
character except colon”. The second is the same as the first. The third says: “a sequence of zero or more
characters”

The code to extract the fields (command is a parameter to the clientCommand() function):

var ex = command[“([^:]+):([^:]+):(.*)”]
if (sizeof (ex) > 3) { // need 3 fields
 var cmd = command[ex[1].start:ex[1].end]
 var nick = command[ex[2].start:ex[2].end]
 var text = command[ex[3].start:ex[3].end]
} else {
 throw “Invalid command: “ + command
}

We have chosen to name the fields after their normal use. This may sometimes be wrong but it’s only a
name. The “string subscripted by string” expression returns a vector of System.Regex objects. Each of
these represents a substring within the string being subscripted. The first element in the vector is the start
and end index of the whole regular expression. The follow an element for each subexpression in the
regular expression. Each element contains the start and end subscripts of the section of the string matched
by that subexpression. Thus, element 1 contains the subscipts into the string for the command part of the
command string, element 2 contains the first argument and element 3 contains the second argument.

If the regular expression does not match the command, we throw an exception saying that we don’t
recognize the command. This will be caught by the userServer thread main loop.

Now that we have extracted the fields from the command we can write code to look a the command and do
something with it:

switch (cmd) {

Worked example: A chat service

Sun Microsystems Laboratories

16-222

case “LOGIN”:
 // process login command
 break
case “LOGOUT”:
 // process logout command
 break
// etc
}

This switch statement switches on the ‘cmd’ field of the command. Aikido switch statements can use any
type in the case limbs. In this case we use a string. We should include all the recognized commands in this
switch statement.

16.3.4. Users and rooms
Before going any further with the server command processing we need to define some internal objects for
the server. The server deals with users who are logged in and have joined conversations in rooms. We will
need to keep a set of rooms and a set of logged in users.

We have chosen to make this server secure. This means we have to validate any incoming user to make
sure she is who she says she is. The simplest way to do this is by a password mechanism. We have already
defined that the LOGIN command contain a nickname and a password. We need a way to determine if this
user has an account on the server and if so, if the password supplied matches that on record for the user.

To do this, we have another file. This file is very like the UNIX® /etc/passwd file in that it contains a set
of lines, each of which contains information about a single account. The format of the lines is a set of
fields separated by colons (seem familiar?). The fields are:

1. User’s nickname (eg, joe)
2. User’s full name (eg. Joe Soap)
3. Users password. Let’s assume some sort of encryption for this. It doesn’t matter for the server but it

would be safer.

We can write a function to check that the user has an account and that the password matches. Since the
information is stored in a file we have 2 choices. We can:

1. Open the file when the server starts and read it into a list. Then use this list to validate the user
2. Open the file every time we want to check a user

The first would be higher performance but means that if we add a new user we would have to stop and
restart the server in order to read the file again. This is like having to reboot your PC when you add
anything to it – the hardware settings are read by DOS when it starts.

Having to restart the server for a new user would be onerous. We choose the second option – open the file
every time. The function to do this can be coded as:

function validateUser (name, password) {
 var accounts = System.readfile (“chat.users”)
 foreach account accounts {
 var expr = account[“([^:]+):([^:]+):(.*)”]
 if (name == account[expr[1].start:expr[1].end]) {
 if (password != account[expr[2].start:expr[2].end]) {
 throw “Invalid password”
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-223

 return account[expr[3].start:expr[3].end – 1]
 }
 }
 throw “No such user”
}

This function is called with the name and password for the user. It opens the file and reads all the lines into
a vector. The accounts variable holds one element for each line in the file. The linefeed character is kept
in the string. The function goes through each line in the vector and extracts the 3 fields from the string. If
the first field matches then we have found the entry for the named user. Then we check if the password
string matches that in the file. If it doesn’t then we throw an exception saying that the password is wrong.
If all is well, the function returns the full name of the user.

We need to define classes to hold a user and a room. Let’s start with a room. A room has a name and a set
of users. Rooms are shared among all the users, so the userServer threads will be accessing the rooms.
We need to hold a vector of users in the room. Because the room is shared among the user threads, we
need to protect the vector against simultaneous update by 2 threads at the same time. Fortunately, the
System library contains a class the implements a protected vector. This class is called Vector and is
implemented as a monitor. To use this class we need to import it:

import vector

So what else does a room need?

• A log file so that the messages sent in a room can be read back by someone who has missed part of a
conversation

• Functions to send messages to all users in the room, add a new user and remove a user
• A function to list all the users in the room
• Functions to gain access to the room’s name

Logging to a file is something that is common to a number of classes. We can define a function to do the
logging:

function log (stream, command, from, message) {
 if (message == “”) {
 message = “xxx”
 }
 [command, ‘:’, from, ‘:’, message, ‘\n’] -> stream
 System.flush (stream)
}

This takes a stream and the 3 fields of a message. It writes the 3 fields to the stream, separated by colons.
It is possible that there will be no third field, so the function checks for an empty message and fills it in if
necessary.

With all these requirements in place, let’s define a room class:

class Room (name) {
 var users = new Vector() // protected vector of users

 var logfile = System.openup (“room_” + name + “.log”)

 // send a message to all users in the room
 public function send (command : string, from : string, message : string) {
 log (logfile, command, from, message) // log message
 foreach user users {

Worked example: A chat service

Sun Microsystems Laboratories

16-224

 // send message to user
 }
 }

 // add a user
 public function join (user) {
 users.append (user) // add the user
 send (“JOIN”, user.getNick(), name) // tell the others
 }

 // remove a user
 public function leave (user) {
 send (“LEAVE”, user.getNick(), name) // tell other users
 users.erase (user) // remove the user
 }

 // list all the users in the room
 public function listUsers (stream) {
 [“Room \””, name, “\”:\n”] -> stream
 foreach user users {
 // write user information to stream
 }
 ‘\n’ -> stream // terminate line
 }

 // write the name of the room to a stream
 public function showName (stream) {
 [“\t”, name, “\n”] -> stream
 }

 // get the name of this room
 public function getName() {
 return name
 }
}

I have omitted the calls to functions in a, yet to be defined, user object. I’ll add these when I write the code
for the user object.

So now we need to define a class for a user. Let’s think about what a user object would need:

• A variable to hold the room in which the user is currently talking
• A variable to hold the full name of the user
• A variable for the current session id for this user
• Functions to get access to the name and nickname
• A function to send a message to the client
• Various utility functions

The user object will be created when a user logs into the server. The first thing it must do is validate that
the user’s nickname and password are correct. The side effect of this (the validateUser function) is to get
the full name of the user.

The user object needs to send messages to its stream. The stream is that which was created when the client
connected to the server. Sending a message to stream can be as simple as formatting a string and using the
stream operator to output the string to the stream. For the sake of illustration we will use a class provided

Worked example: A chat service

Sun Microsystems Laboratories

16-225

in the System library to hold the data before sending to the stream. This is a Streambuffer class. Its
purpose is to allow a packet to be formed before sending to a stream to ensure that the data is packed
correctly in a packet. To use it, we need to import it:

import streambuffer

Let’s go ahead and define the class:

class User (nickname, password, outstream, id) {
 var name = validateUser (nickname, password) // validate the user

 public var currentRoom = null // room where I am talking

 public function getNick() { // get the nickname
 return nickname
 }

 public function getName() { // get the full name
 return name
 }

 public function getID() { // get the session id
 return id
 }

 var outputbuffer = new Streambuffer() // buffer for sending data

 var currentTXid = 0 // see section 16.3.4.1

 // send a message to the outstream
 public function send (txid, command, from, message) {
 if (txid != currentTXid) {
 outputbuffer.clear()
 outputbuffer.put (command + “:” + from + “:” + message)
 outputbuffer -> outstream
 currentTXid = txid
 }
 }

 // is this the root user
 public function isRoot() {
 return nickname == “root”
 }

 // close the stream
 public function close() {
 System.close (outstream)
 }

 // time last message was sent by this user
 var lastMessage = System.time()

 // how long has the user been idle (in seconds)
 public function getIdleTime() {
 return (System.time() – lastMessage) / 1000000

Worked example: A chat service

Sun Microsystems Laboratories

16-226

 }

 // reset the idle counter
 public function resetIdle() {
 lastMessage = System.time()
 }
}

The class has a few features we have not yet described. The isRoot() function looks at the nickname of the
user and returns true if this is the superuser. The superuser has the name “root”. The object keeps a note of
the last time a message was sent by this user to other users. The difference between the current time and
the time a message was last sent is the user’s idle time.

16.3.4.1. Transactions

One subtle problem exists with a room. Since users can be present in multiple rooms at the same time and
each room maintains a list of the users present in it there is no way to prevent a user seeing multiple copies
of a message. Consider if a user is present in 3 rooms and another user sends a message to all the rooms
occupied. He can do this either with a BROADCAST command or if he is talking in more than one room.
In this case the user will get 3 copies of the message, one from each of the room he is occupying. This is
undesirable.

The solution is to associate a “transaction identifier” (a number) to each incoming message. When
messages are sent to users from rooms, the transaction identifier is compared with one held in the user
object and the message is only sent if the identifiers do not match. Then the transaction identifier held in
the user object is set to the one of the message. If a new transaction identifier is allocated for each
incoming message then each user will only get the first message sent to it with a new transaction identifier.

To explain this further let’s assume we have an integer variable that holds the current transaction identifier.
Let’s call this messageTXid.

var messageTXid = 0

Each time a userServer thread receives a new message it increments the messageTXid variable and sends
the message to all the rooms it is talking in. Inside the user object is an integer holding the number of the
last transaction identifier sent to the user.

class User {
 // bits of user

 var currentTXid = 0

 public function sent (txid,......) {
 if (txid != currentTXid) {
 // send the message
 currentTXid = txid
 }
 }

 // more user body parts
}

The send function in a user object is passed a variable txid. This is the current transaction id of a message
sent to a room. You can see that only the first message sent to a user object will get sent as the next
message with the same txid will fail the test in the send function.

Worked example: A chat service

Sun Microsystems Laboratories

16-227

Since the “current transaction identifier” is a global variable and can be accessed by multiple user threads at
the same time it needs to be protected in a monitor. Let’s define a monitor for it:

monitor Transactions {
 public var messageTXid = 0

 public function newTransaction() {
 ++messageTXid
 }
}

// make an instance of the monitor
var transactions = new Transactions()

Now instead of accessing the messageTXid directly it will have to be done through the transactions
monitor.

16.3.5. Server control
Now that we have defined the classes for the rooms and users we are in a position to put it all together. The
server needs to keep track of a number of things:

1. A list of all users who have logged in
2. A list of all the rooms that have been created
3. The current user session id

All these can be accessed by multiple threads at once. For example, when a user logs in, the userServer
thread associated with a client receives the LOGIN message. The thread will create a user object and then
it needs to add it to the list of logged in users. This means that all the data needed by the server globally
has to be protected by a monitor. Let’s define it.

monitor ServerControl {
 var loggedInUsers = new Vector() // list of all logged in users
 var rooms = new Map() // map of room name vs Room object
public:

 function broadcast (command, t1, t2) {
 foreach room rooms {
 room.second.send (command, t1, t2)
 }
 }

 var numUsers = 0 // number of logged in users

 function addUser (user) {
 loggedInUsers.append (user)
 ++numUsers
 }

 function removeUser (user) {
 try {
 loggedInUsers.erase (user)

Worked example: A chat service

Sun Microsystems Laboratories

16-228

 --numUsers
 } catch (e) {
 }
 }

 private var uid = 0

 function getID() {
 return ++uid
 }

 // given a room name see if it exists. If it cannot be found, create it and add
 // it to the list of rooms
 function findRoom (name) {
 var room = null
 try {
 room = rooms.find (name)
 } catch (e) { // exception if not found
 room = new Room (name)
 rooms.insert (name, room)
 }
 return room
 }

 // get all rooms
 function allRooms() {
 return rooms
 }

 // get all users
 function allUsers() {
 return loggedInUsers
 }

 function listUsers (stream) {
 “Current user are:\n” -> stream
 foreach room rooms {
 room.second.listUsers (stream)
 }
 System.flush (stream)
 }

 function listRooms (stream) {
 “Available rooms:\n” -> stream
 foreach room rooms {
 room.second.showName (stream)
 }
 }

 // a few other functions
}

// an instance of the ServerControl monitor

Worked example: A chat service

Sun Microsystems Laboratories

16-229

var control = new ServerControl()

The list of all rooms is held in an instance of the class monitor Map(). This is a protected interface on top
of the system defined map type. It is provided in the System library and therefore must be imported:

import map

16.3.5.1. Shutting the server down
There needs to be a way to shut the server down gracefully, Yes, we could just ^C the program but that
would be unfriendly to the uses who are logged in. The SHUTDOWN command can be sent from the
client to shut down the server. This is a protected command only available to the superuser (“root”).

The shutdown command is supposed to give the users a grace time to allow them to say goodbye to their
friends before the world is nuked below their feet. The simplest way to shutdown is just to call
System.exit(). If we want to give a time for shutdown we need to start a thread that sleeps for a period of
time and then calls System.exit().

thread shutdown (control, time : int, reason) {
 var microseconds = time * 1000000
 sleep (microseconds)
 control.broadcast (“SHUTDOWN”, “now”, reason)
 sleep (1000000)
 System.exit (0)
}

The thread is passed the control object so that it can broadcast messages. It is also passed the time in
seconds and a reason for shutdown. Notice that the time parameter has been given a type of int. This is to
save us casting the incoming string from the command to an integer before calling the shutdown thread.

The thread sleeps for the specified amount of time then broadcasts a message to all users telling them that
the server is shutting down now. Then it sleeps for another second (to give the broadcast time to
propagate) and the calls System.exit() thus stopping the program.

There is no way provided to stop a shutdown once it has started. Kind of like starting an auto self-destruct
sequence on the Enterprise!

16.3.6. Executing user commands
We have laid the foundations for the server. Now we just need to process the command sent by the user by
making calls to the functions and classes we have defined.

Let’s revisit the userServer() thread. This is a thread that is spawned when a new connection arrives from a
client. It runs until the stream from the client is closed.

The thread will receive a set of commands from the client. The first command it will receive is the LOGIN
command. What we should do here is to create a new user object and add him to the main list of logged in
users. Let’s define a couple of new variables inside the userServer thread:

var user = null // user object
var rooms = new Vector() // all the rooms occupied by the user

Worked example: A chat service

Sun Microsystems Laboratories

16-230

Now we can write the code for the LOGIN command. Remember that the commands are processed by a
switch statement with case limbs for each separate command:

switch (cmd) {
case “LOGIN”:
 // code for login
 break
// more
}

The operation of a login is the following:

case “LOGIN”:
 user = new User (nick, text, clientStream, control.getID())
 control.addUser (user)
 break

That is, create a new user object passing the parameters we received. The constructor for the user object
validates that the password and nickname are correct. If all is well, we add the user to the server control
monitor.

Let’s now look at the JOIN command. This is sent by the client when a user wishes to join the
conversation in a room:

case “JOIN”:
 var room = control.findRoom (nick) // find or create room
 room.join (user) // join the room
 rooms.append (room) // append to local list of rooms
 user.currentRoom = room // set as current room for talking
 break

We first find or create the room. The semantics of the findRoom() function in ServerControl is that it
creates a room if it doesn’t already exist. In any case it returns a valid room object. We then join the room
and append it to our local list of rooms. The room is then set to be our current room where we will talk.

The main operation of the server is to send messages to users. A message originates at a client when the
user types something. This is sent as a MESSAGE command to the server. The message is sent either to
the room the user is currently talking in, or to all rooms occupied by the user. The variable currentRoom in
the user object specifies where the message will go.

We have defined a concept of a super user. This is a user whose name is “root” and has privileges above
and beyond those of a normal user. One such privilege is that any message sent by root is automatically
sent to all the users in the system.

Let’s look at the code for the MESSAGE command:

case “MESSAGE”:
 if (user.isRoot()) { // root user?
 foreach room control.allRooms() { // send to all users in all rooms
 room.second.send (“MESSAGE”, nick, text)
 }
 } else {
 if (sizeof (rooms) == 0) { // check if we are in a room
 “ERROR:You are not in a room:x\n” -> clientStream
 System.flush (clientStream)
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-231

 if (user.currentRoom != null) { // have we a current room?
 user.currentRoom.send (“MESSAGE”, nick, text) // send to it only
 } else {
 foreach room rooms { // send to all rooms we occupy
 room.send (“MESSAGE”, nick, text)
 }
 }
 user.resetIdle() // reset idle counter
 }
 break

The rest of the command are very similar in nature.

16.3.7. Complete server program
Without further ado (drum roll please), here is the full listing of the complete chat server program.

package ChatServer {

 const version = "0.9"
 System.println ("Aikido chat server version " + version + " running...")

 import net // network support
 import streambuffer // utility buffering for networks
 import map // map objects
 import properties // property maps
 import vector // vector objects

 // this is a list of users that are logged in to the system, for validation purposes
 var loggedInUsers = new Vector() // all logged in users

 // read the system properties file

 var props = new Properties()
 var file = System.openin ("chat.props")
 file -> props
 System.close (file)

 // a user has logged in, check that she has an account and that
 // the password is valid
 function validateUser (name, password) {
 var accounts = System.readfile ("chat.users")
 foreach account accounts {
 var expr = account["([^:]+):([^:]+):(.*)"]
 if (name == account[expr[1].start:expr[1].end]) {
 if (password != account[expr[2].start:expr[2].end]) {
 throw "Invalid password"
 }
 return account[expr[3].start:expr[3].end - 1]
 }
 }
 throw "No such user"
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-232

 // read server address and port from the properties
 var server = props["server"]
 var port = cast<int>(props["port"])

 // this holds the current message tranaction id to prevent multiple messages
 // being sent to a single user when he is in multiple rooms. Since the server
 // is multithreaded and updates to this are done by the client threads, this needs
 // to be protected by a mutex and is therefore a monitor

 monitor Transactions {
 public var messageTXid = 0

 public function newTransaction() {
 ++messageTXid
 }
 }

 // instance of the transactions monitor
 var transactions = new Transactions()

 // the log file

 var syslogfile = System.openup ("chat.log")

 // log to a file
 function log (stream, command, from, message) {
 if (message == "") {
 message = "xxx"
 }
 [command, ":", from, ":", message, "\n"] -> stream
 System.flush (stream)
 }

 // a Room. This object represents a single chat room on the server. It has a name
 // and contains a set of users who are present in the room

 class Room (name) {
 var users = new Vector()

 var logfile = System.openup ("room_" + name + ".log")

 // send a command to all users in the room
 public function send (command: string, from : string, message : string) {

 log (logfile, command, from, message)
 foreach user users {
 user.send (transactions.messageTXid, command, from, message)
 }
 }

 // allow a user to join this room
 public function join (user) {
 users.append (user) // add the user

Worked example: A chat service

Sun Microsystems Laboratories

16-233

 send ("JOIN", user.getNick(), name) // tell other users
 }

 // a user is leaving
 public function leave (user) {
 send ("LEAVE", user.getNick(), name) // tell the others she has gone
 users.erase (user) // remove the user
 }

 // list all the users in the room to the stream
 public function listUsers (stream) {
 ["Room \"", name, "\":\n"] -> stream
 foreach user users {
 var idle = user.getIdleTime()
 [" [", user.getID() , "] ", user.getNick(), " (", user.getName(), ") idle for ", idle, "
second", (idle == 1)?"":"s"] -> stream
 if (user.currentRoom == this) {
 " [currently talking here]" -> stream
 }
 '\n' -> stream
 }
 }

 public function showName (stream) {
 ["\t", name, "\n"] -> stream
 }

 public function getName() {
 return name
 }

 }

 //
 // a User is someone who has an account and is logged on
 //

 class User (nick : string, password : string, outstream, id) {
 var name = validateUser (nick, password)
 public var currentRoom = null

 // return the nickname for the user
 public function getNick() {
 return nick
 }

 public function getName() {
 return name
 }

 public function getID() {
 return id
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-234

 // this variable is a buffer for gathering output data
 var outputBuffer = new Streambuffer()

 // this is the transaction id of a set of messages
 var currentTXid = 0

 // send a command to the client via the stream
 public function send (TXid, command : string, from : string,message : string) {
 if (TXid != currentTXid) {
 outputBuffer.clear()
 outputBuffer.put (command + ":" + from + ":" + message + "\n")
 outputBuffer -> outstream
 currentTXid = TXid
 }
 }

 public function isRoot() {
 return nick == "root"
 }

 public function close() {
 System.close (outstream)
 }

 var lastMessage = System.time() // last time user typed something

 public function getIdleTime() {
 return (System.time() - lastMessage) / 1000000 // idle time in seconds
 }

 public function resetIdle() {
 lastMessage = System.time()
 }
 }

 // shutdown after the given time in seconds
 thread shutdown (control, time : int, reason) {
 var microseconds = time * 1000000
 sleep (microseconds)
 control.broadcast ("SHUTDOWN", "now", reason)
 sleep (1000000)
 System.exit (0)
 }

 // this monitor contains shared data and accesses to it.

 monitor ServerControl {
 public:
 // this variable holds all the rooms that have been created by users
 var rooms = new Map()

 // broadcast to all users
 function broadcast (command, t1, t2) {
 foreach room rooms {
 room.second.send (command, t1, t2)

Worked example: A chat service

Sun Microsystems Laboratories

16-235

 }
 }

 var numUsers = 0

 function stats() {
 broadcast ("STATS", numUsers, sizeof (rooms))
 }

 // add a user to the list of those logged in
 function addUser (user) {
 loggedInUsers.append (user)
 ++numUsers
 }

 // remove a user from the logged in list
 function removeUser (user) {
 try {
 loggedInUsers.erase (user)
 --numUsers
 } catch (e) {
 }
 }

 var uid = 0 // unique id for a user

 // get the next user id
 function getID() {
 return ++uid
 }

 // find a room given its name. If no room exists, create it
 function findRoom (name : string) {
 var room = null
 try {
 room = rooms.find (name)
 } catch (e) {
 room = new Room (name)
 rooms.insert (name, room)
 }
 return room
 }

 function allRooms() {
 return rooms
 }

 // list all the users logged into all rooms
 function listAllUsers (stream) {
 "Current users are:\n" -> stream
 foreach room rooms {
 room.second.listUsers (stream)
 }
 System.flush (stream)
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-236

 // list all the available rooms
 function listRooms (stream) {
 "Available rooms:\n" -> stream
 foreach room rooms {
 room.second.showName (stream)
 }
 }

 // kick a given user off the system
 function kickUser (nick, reason) {
 var user = null
 foreach u loggedInUsers {
 if (u.getNick() == nick) {
 user = u
 break
 }
 }
 if (user == null) {
 throw "User " + nick + " is not logged in"
 }
 log (syslogfile, "KICKED", "root", reason)
 user.send (transactions.messageTXid, "KICK", "root", reason)
 user.close()
 }

 // kill a user given his id
 function killUser (nick, id) {
 var user = null
 foreach u loggedInUsers {
 if (u.getID() == id) {
 if (nick == "root" || nick == u.getNick()) {
 user = u
 break
 }
 }
 }
 if (user == null) {
 throw "Cannot kill user [" + id + "]"
 }
 log (syslogfile, "KILLED", nick, "x")
 user.send (transactions.messageTXid, "KILL", nick, "x")
 user.close()
 }

 generic shutdownThread // stream talking to shutdown thread
 var shuttingDown = false

 function startShutdown (time, reason) {
 if (shuttingDown) {
 return
 }
 broadcast ("SHUTDOWN", time, reason)
 if (time == "now") {
 System.exit (0)
 } else {

Worked example: A chat service

Sun Microsystems Laboratories

16-237

 shutdownThread = shutdown (this, time, reason) // keep stream
in case we cancel
 }
 shuttingDown = true
 }

 }

 // instance of the ServerControl monitor
 var control = new ServerControl()

 //
 // one of these is created for each user in the server. The thread is started
 // when the user's client first connects. The client will send messages
 // to the thread through the clientStream stream. These messages are text
 // based and will drive the functionality of the user server
 //

 thread userServer (clientStream) {
 var user = null // user object associated with
this user
 var rooms = new Vector() // rooms the user is in

 // process an incoming client command
 function clientCommand(command) {

 // the command consists of:
 // series of chars ending in colon (command name)
 // series of chars ending in colon (nickname)
 // series of zero or more chars (text)
 // the regular expression matches these 3 subexpressions

 var commandexpr = command["([^:]+):([^:]+):(.*)"]

 if (sizeof (commandexpr) > 3) { // need at least 3 expressions
 var cmd = command[commandexpr[1].start : commandexpr[1].end]

// command name
 var nick = command[commandexpr[2].start : commandexpr[2].end]

// nickname
 var text = command[commandexpr[3].start : commandexpr[3].end]

// text

 switch (cmd) {
 case "LOGIN":
 log (syslogfile, "LOGIN", nick, "")
 user = new User (nick, text, clientStream, control.getID())
 control.addUser (user)
 //control.stats()
 break

 case "LOGOUT":
 log (syslogfile, "LOGOUT", nick, "")
 control.removeUser (user)
 //control.stats()
 return false

Worked example: A chat service

Sun Microsystems Laboratories

16-238

 case "JOIN":
 var room = control.findRoom (nick)
 room.join (user)
 rooms.append (room)
 user.currentRoom = room
 //control.stats()
 break

 case "TALK": // talk in a room
 if (nick == "*") {
 user.currentRoom = null
 ["TALKING:*:x\n"] -> clientStream
 System.flush (clientStream)
 break
 }
 var found = false
 foreach room rooms {
 if (room.getName() == nick) {
 user.currentRoom = room
 ["TALKING:", nick, ":x\n"] -> clientStream
 System.flush (clientStream)
 found = true
 break
 }
 }
 if (!found) {
 ["ERROR:No such room ", nick, ":x\n"] -> clientStream
 System.flush (clientStream)
 }
 break

 case "LEAVE":
 try {
 var room = control.findRoom (nick)
 room.leave (user)
 rooms.erase (room)
 if (room == user.currentRoom) {
 if (sizeof (rooms) == 0) {
 user.currentRoom = null
 ["TALKING:*:x\n"] -> clientStream
 } else {
 user.currentRoom = rooms[0]
 ["TALKING:", user.currentRoom.getName(), ":x\n"] -> clientStream
 }
 System.flush (clientStream)
 }
 } catch (e) {
 ["ERROR:Can't leave ", nick, ":x\n"] -> clientStream
 System.flush (clientStream)
 }
 break

 case "MESSAGE":
 if (user.isRoot()) {
 foreach room control.allRooms() {
 room.second.send ("MESSAGE", nick, text)

Worked example: A chat service

Sun Microsystems Laboratories

16-239

 }
 } else {
 if (sizeof (rooms) == 0) {
 "ERROR:You are not in a room:x\n" -> clientStream
 System.flush (clientStream)
 }
 if (user.currentRoom != null) {
 user.currentRoom.send ("MESSAGE", nick, text)
 } else {
 foreach room rooms {
 room.send ("MESSAGE", nick, text)
 }
 }
 user.resetIdle()
 }
 break

 case "BROADCAST":
 foreach user loggedInUsers {
 user.send (transactions.messageTXid, "MESSAGE", nick, text)
 }
 break

 case "MOTD":
 try {
 var motd = System.openin ("chat.motd")
 motd -> clientStream
 System.close (motd)
 System.flush (clientStream)
 } catch (e) {
 }
 break

 case "USERS":
 control.listAllUsers(clientStream)
 break

 case "ROOMS":
 control.listRooms (clientStream)
 "\nYou are present in\n" -> clientStream
 foreach room rooms {
 room.showName (clientStream) ;
 }
 if (user.currentRoom == null) {
 "** you are currently talking in all rooms\n" -> clientStream
 } else {
 ["** you are currently talking in ", user.currentRoom.getName(), '\n'] ->
clientStream
 }
 System.flush (clientStream)
 break

 case "KICK": // kick a user off the system
 if (user.isRoot()) {
 control.kickUser (nick, text)
 } else {

Worked example: A chat service

Sun Microsystems Laboratories

16-240

 "ERROR:Access denied:x\n" -> clientStream
 System.flush (clientStream)
 }
 break

 case "KILL": // kill a user given its id
 try {
 control.killUser (nick, text)
 } catch (e) {
 ["ERROR:", e, ":x\n"] -> clientStream
 System.flush (clientStream)
 }
 break

 case "SHOWLOG":
 function showlog (room) {
 try {
 var tail = "/usr/bin/tail -" + text + " room_" + room.getName() + ".log"
 //System.println (tail)
 var lines = System.system (tail)
 lines -> clientStream
 } catch (e) {
 ["ERROR:", e, ":x\n"] -> clientStream
 System.flush (clientStream)
 }
 }
 if (nick == "*") {
 foreach room rooms {
 showlog (room)
 }
 } else {
 room = control.findRoom (nick)
 showlog (room)
 }
 "ENDLOG:x:x\n" -> clientStream
 System.flush (clientStream)
 break

 case "CLEARLOG":
 foreach room control.allRooms() {
 System.system ("/usr/bin/cp /dev/null room_" + room.second.getName() +
".log")
 }
 break

 case "SHUTDOWN":
 if (user.isRoot()) {
 control.startShutdown (nick, text)
 } else {
 "ERROR:Access denied:x\n" -> clientStream
 System.flush (clientStream)
 }
 break

 }
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-241

 return true
 }

 var command = "" // variable to hold incoming command
 while (!System.eof(clientStream)) {
 clientStream -> command // read the command
 transactions.newTransaction() // generate a new transaction for it
 try {
 if (!clientCommand(command)) { // process the command
 break // logged out?
 }
 } catch (error) { // uncaught error in command
 System.println (error) // print it to screen
 ["ERROR:", error, ":x\n"] -> clientStream // send it to client
 System.flush (clientStream)
 break // stop loop
 }
 }
 foreach room rooms { // leave all the rooms
 room.leave (user)
 }
 control.removeUser (user) // remove the user
 System.close (clientStream) // close the stream to the client
 //control.stats()
 }

 // open the network server port and start accepting connections from
 // clients

 var now = System.date()
 ["Started ", now.mon+1, "/", now.mday, "/", now.year+1900, " "] -> syslogfile
 [now.hour, ":", now.min, ":", now.sec, "\n"] -> syslogfile
 System.flush (syslogfile)

 var socket = Network.openServer (server, port, Network.TCP) // create server
socket
 for (;;) {
 var s = Network.accept (socket) // accept a connection
 userServer (s) // start a server thread for it
 }
}

16.4. Client
Now for the client that talks to the server. The client is the software that has the following tasks:

• Connect to the server
• Get the user’s password
• Accept input from the keyboard and send it to the server
• Accept input from the server and send it to the screen
• Control the screen output
• Interpret several user commands to allow control of client

Worked example: A chat service

Sun Microsystems Laboratories

16-242

Let’s start at the top level. The client is a class and will need network support.

class ChatClient (nickame) {
 import net
 import streambuffer

 // client code
}

The client package takes a single parameter – the nickname of the user. The client will usually read the
nickname from a properties file, but this parameter allows the default nickname to be overridden. This is
very useful for logging on as someone else temporarily (particularly as root).

16.4.1. Get the client properties
The client needs a set of properties that are used to control it. These are things like:

• The nickname to use to log in to the server
• Optionally the password to use
• The machine and port on which the server is running
• A set of rooms to join initially

Let’s read the properties from a file called ‘chat.props’ in the user’s home directory:

var home = System.getenv (“HOME”) // get home dir

var userprops = new Properties()
var userfile = System.openin (home + “/chat.props”)
userfile -> userprops
System.close (userfile)

// now read the properties
var server = userprops[“server”]
var port = cast<int>(userprops[“port”])
var nick = nickname == “” ? userprops[“nick”] : nickname

16.4.2. Reading the user’s password
A client needs to log in to the server with a password. Passwords are private data and are encrypted before
sending to the server. The system-provided package Security provides simple methods to read and encrypt
passwords. The user may put his password in the properties file if he wants to. If the client package was
provided with a nickname then the password in the file is ignored as the nickname refers to another user:

function getPassword {
 const prompt = “Enter your chat password: “
 if (nickname != “”) { // same user?
 return Security.getpassword (prompt) // no, get password
 }

 var password = “”
 try {
 password = userprops[“password”] // look in properties
 } catch (e) {

Worked example: A chat service

Sun Microsystems Laboratories

16-243

 password = Security.getpassword (prompt) // not present, ask user
 }
 return password
}

var password = getPassword()

// encrypt the password
password = Security.encrypt (password, “da”)

The Security package contains 2 functions:

Function Parameters Purpose
getpassword prompt Print prompt to screen, switch off echo on terminal

and read the password typed in by the user. Switch
echo back on again

encrypt string, salt Encrypt the password using DES encryption. The
salt string is used by the encryption routine and
must be 2 characters long.

The result of the call to getPassword() and encrypt() is a string of unintelligible characters that bear no
resemblance to the original text typed in by the user.

16.4.3. Get the default set of rooms
The user can provide a set of rooms to join when the client starts. These are held in a property with name
‘rooms’. Let’s read them:

generic rooms = []
try {
 rooms = userprops[“rooms”]
} catch (e) {
}

The ‘rooms’ variable is generic because if there is only one value for the ‘rooms’ property then a string is
returned, otherwise a vector of strings is returned.

16.4.4. Log on to the server
We now have all the information we need to connect and log on to the server. First we connect:

var serverStream = Network.open (server, port, Network.TCP)

Here we create a stream connection to the network. The function ‘Network.open()’ opens a network
connection to the named network address and returns a stream we can read from and write to.

Once the stream to the server is opened we need to be able to read from it in order to receive messages.
This is done by a thread called ‘client’ that is very similar to that in the server.

thread client {
 function print (text) {
 // print text to the screen
 }

 function serverCommand (command) {

Worked example: A chat service

Sun Microsystems Laboratories

16-244

 // process a command from the server
 }

 // read all messages from server
 var command = “”
 while (!System.eof (serverStream)) {
 serverStream -> command // read command from stream
 serverCommand (command) // process command
 }
 print (“*** server has closed connection, exiting\r\n”)
 System.exit (0)
}

The purpose of the serverCommand() function is to process the command from the server. Commands
coming this way (from the server to the client) are usually notifications of events. This may be an event of
someone joining a conversation in a room, or a simple message sent to the client. The format of the
commands coming to the client is the same as those going the other way. We use a regular expression to
extract the fields and switch on the command.

The print() function is responsible for printing something to the screen. We’ll delve into this later.

Now we can send commands to the server and receive them:

client() // start client thread

var buffer = new Streambuffer() // utility buffer

// send LOGIN command to server
buffer.put (“LOGIN:”)
buffer.put (nick + “:”)
buffer.put (password + “\n”)
buffer -> serverStream

// get the message of the day
buffer.clear()
buffer.put (“MOTD:x:x\n”)
buffer -> serverStream

// function to join a room
function join (room) {
 buffer.clear()
 buffer.put (“JOIN:”)
 buffer.put (room + “:xxx\n”)
 buffer -> serverStream
}

// join all the rooms we set up in props file
if (typeof (rooms) == “vector”) {
 foreach room rooms {
 join (room)
 }
} else {
 join (rooms) // only one room
}

// get a list of all the users

Worked example: A chat service

Sun Microsystems Laboratories

16-245

buffer.clear()
buffer.put (“USERS:x:x\n”)
buffer -> serverStream

In the code we performed the following tasks:

1. Started the client thread
2. Sent a LOGIN command to server
3. Sent a MOTD command to server to get the message of the day
4. Joined all the rooms we specified in the properties file
5. Sent a USERS command to get a list of all the users who are logged in

16.4.5. Getting input from user
The main purpose of a chat client is to read input from a user and communicate with the chat server. The
user types messages on the keyboard and those messages are either interpreted as a command to control the
client or are sent to the server as a text message to be sent to the other users. Let’s write the code:

function clientCommand (command) {
 if (sizeof (command) == 0) { // ignore empty string
 return
 }

 buffer.clear() // buffer cleared and ready for use
 if (command[0] == ‘/’) { // client-side command?
 // process client command
 } else { // regular message
 buffer.put (“MESSAGE:”) // form MESSAGE command
 buffer.put (nick + “:”)
 buffer.put (command + “\n”)
 buffer -> serverStream // send it
 }
}

The things typed by the user are either a client command or a regular message. A client command is
signified by the initial character being a slash (/). Anything else is a regular message.

Now we need to be able to read from the keyboard and call this function for everything typed:

for (;;) {
 var msg = “”
 stdin -> msg
 try {
 clientCommand (msg)
 } catch (e) {
 // print error to screen
 }
}

This is the main loop of the chat client.

Worked example: A chat service

Sun Microsystems Laboratories

16-246

16.4.6. Screen input and output
A commercial chat client will use a graphical user interface for its input and output. It will have 2
windows, one for input and one for output. That is too complex for this example, to we will use a regular
text based terminal for our client.

All modern terminals (windows on a screen usually) support cursor motion commands through the use of
escape codes sent to the terminal. We will make use of the cursor motion command to divide our screen
into 2 regions: one for input and one for output.

It is beyond the scope of this example to describe the implementation of such a screen control package but
let’s assume the existence of a package called TTY (old abbreviation for Teletype). This package contains
the following facilities:

Function Parameters Purpose
print string print to the current position on the screen
printAt row, column, string Print the string at the given position
close close the terminal control session
goto row, column move cursor to given row and column
clearLine clear the current line on the screen
clearScreen clear the whole screen
getline top, bottom, left, right read a line from the keyboard and limit it echo to

the rectangle specified by the parameters

The TTY package also provides 2 variables: rows and cols. These are the number of rows and columns on
the screen respectively.

Further, let’s define a simple windowing abstraction on top of the TTY package. This will allow us to
divide the screen into the regions we need. Let’s call the class “Windows” (I’m sure I’ve heard that name
somewhere before, but just can’t quite place it).

class Windows (tty) {
 import tty // out little TTY package

 class Window (protected top, protected bottom,
 protected left, protected right) {
 public:
 function clear() { // clear the window
 for (var l = top ; l <= bottom ; l++) {
 tty.goto (l, 0)
 tty.clearLine()
 }
 }
 }

 // an output window represents a region that is used for output. The region scrolls
 // if necessary to fit the output
 class OutputWindow (t, b, l ,r) extends Window (t, b, l, r) {
 function printLine (line) {
 // print a line to the screen, scrolling if necessary
 }

 public operator -> (data, isout) {
 if (!isout) {
 throw “Output window cannot be used for input”

Worked example: A chat service

Sun Microsystems Laboratories

16-247

 } else {
 switch (typeof (data)) {
 case “vector”:
 var str = “”
 foreach item data {
 str += item
 }
 printLine (str)
 break
 default:
 printLine (data)
 }
 }
 }

 // an input window is where the user types. It is limited to a region on the screen
 class InputWindow (t, b, l, r) extends Window (t, b, l, r) {
 public operator -> (stream, isout) {
 if (isout) {
 throw “Cannot use input window as output”
 } else {
 tty.getline (top, bottom, left, right) -> stream
 }
 }
 }

 function close() {
 tty.close()
 }

}

Both the OutputWindow and InputWindow classes provide an instance of the stream operator. This allows
to stream data to and from the windows like any other stream device.

We can now write the code to use the screen package. We decide to split the screen into 3 regions:

1. A title window at the top of the screen showing information about the current chat session
2. An output window
3. A 2 line input window at the bottom of the screen

var title = null
var out = null
var in = null
var tty = new TTY()
var windows = new Windows (tty)

try {
 tty.clearScreen()
 title = new Windows.OutputWindow (0, 1, 0, tty.cols)
 out = new Windows.OutputWindow (2, tty.rows – 4, 0, tty.cols)
 in = new Windows.InputWindow (tty.rows – 2, tty.rows – 1, 0, tty.cols)
} catch (e) {
 windows.close()
 throw e

Worked example: A chat service

Sun Microsystems Laboratories

16-248

}

Now we can write to the output window by:

line -> out

and read from the input window:

in -> msg

Remembering to trap any exceptions and close the TTY. If we fail to close the TTY before exiting the
program the terminal will probably be broken as the TTY handler will set it in raw mode.

16.4.7. Complete client program
Here is a complete implementation of a client program. It contains slightly more functionality than the
simple client just described. This program is actually in use as I type this. The client presented also
includes a lot of features such as color handling and window resizing. It is left as an exercise to the reader
to follow the code for these.

First, the Windows class:

class Windows (tty) {
public:

 class Line (public text, public color = 0) {
 public operator sizeof() {
 return sizeof (text)
 }
 public operator[] (i, j = -1) {
 if (j >= 0) {
 return text[i:j]
 } else {
 return text[i]
 }
 }
 }

 class Window (protected top, protected bottom, protected left, protected right) {
 public:
 function clear() {
 tty.grabCursor()
 for (var l = top ; l <= bottom ; l++) {
 tty.goto (l, 0)
 tty.clearLine()
 }
 tty.releaseCursor(true)
 }

 function resize (t, b, l, r) {
 top = t
 bottom = b
 left = l
 right = r
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-249

 }

 class OutputWindow (t, b, l, r) extends Window (t, b, l, r) {
 var nlines = 0 // number of filled lines
 var height = bottom - top
 var width = right - left
 var col = 0 // current column

 const MAXLINES = 1000
 var lines = [] // all lines output to window
 var scrolledlines = 0 // distance we have scrolled
 var topline = 0 // index of line at top of window
 var bottomline = topline + height - 1 // index of line at bottom of window

 public:
 function scroll (direction, nl) {
 if (nlines < height) {
 return
 }
 switch (direction) {
 case 0:
 if (topline == 0) {
 return
 }
 if (nl > topline) {
 nl = topline
 }
 topline -= nl
 bottomline -= nl
 tty.scroll (tty.DOWN, top, bottom, nl)
 scrolledlines += nl
 foreach i nl {
 tty.grabCursor()
 tty.goto (top + i, left)
 tty.clearLine()
 tty.releaseCursor(true)
 var line = lines[topline + i]
 tty.printAt (top + i, left, line.text, line.color)
 }
 break
 case 1:
 var disttobottom = sizeof (lines) - bottomline - 1
 if (disttobottom == 0) {
 return
 }
 if (nl > disttobottom) {
 nl = disttobottom
 }
 topline += nl
 bottomline += nl
 tty.scroll (tty.UP, top, bottom, nl)
 scrolledlines -= nl
 foreach i nl {
 tty.grabCursor()
 tty.goto (bottom - i - 1, left)

Worked example: A chat service

Sun Microsystems Laboratories

16-250

 tty.clearLine()
 tty.releaseCursor(true)
 var line = lines[bottomline - i]
 tty.printAt (bottom - i - 1, left, line.text, line.color)
 }
 break
 }
 }

 function printLine (line : Line) {
 var len = sizeof (line)
 var ln = top + nlines
 var lenlines = len == 0 ? 1 : (len - 1) / width + 1
 var remaining = len

 function printLines (line) {
 if (len == 0) {
 new Line (" ") -> lines
 return
 }
 foreach n lenlines {
 var left = n * width
 var right = width
 if (right > remaining) {
 right = remaining
 }
 var index = left + right - 1
 if (index >= len) {
 return
 }
 var l = line[left : index]
 if (sizeof (lines) == MAXLINES) {
 delete lines[0]
 }
 new Line (l, line.color) -> lines // append to
end of lines
 tty.printAt (ln + n, col, l, line.color)
 remaining -= right
 col = 0
 }
 }

 // if we have scrolled, scroll back to bottom
 if (scrolledlines != 0) {
 scroll (tty.DOWN, scrolledlines)
 }
 var linesleft = height - nlines
 if (linesleft < lenlines) { // any room for the lines
 tty.scroll (tty.UP, top, bottom, lenlines)
 topline += lenlines
 bottomline += lenlines
 ln = bottom - lenlines
 printLines (line)
 } else {
 printLines (line)
 nlines += lenlines

Worked example: A chat service

Sun Microsystems Laboratories

16-251

 }
 }

 function refresh() {
 for (var i = 0 ; i < nlines ; i++) {
 tty.printAt (top + i, 0, lines[topline + i].text, lines[topline + i].color) ;
 }
 }

 // print a short string on the screen in bold and leave the cursor at the end
 function printBold (text : string) {
 tty.setColor (3)
 var ln = top + nlines
 var linesleft = height - nlines
 if (linesleft < 1) { // any room for the lines
 tty.scroll (tty.UP, top, bottom, 1)
 ln = bottom - 1
 tty.printAt (ln, col, text)
 } else {
 tty.printAt (ln, col, text)
 }
 col += sizeof (text)
 tty.setColor (0)
 }

 operator -> (data, isout) {
 if (!isout) {
 throw "Cannot use OutputWindow as input"
 } else {
 switch (typeof (data)) {
 case "vector":
 var str = ""
 foreach item data {
 str += item
 }
 printLine (new Line (str))
 break
 default:
 printLine (data)
 }
 }
 }

 function resize (t,b,l,r) extends resize (t,b,l,r) {
 var vdiff = (bottom - top) - height
 var hdiff = (right - left) - width
 if (vdiff < 0) { // shorter window?
 nlines += vdiff
 }
 height = bottom - top
 width = right - left
 }

 }

 class InputWindow (t,b,l,r) extends Window (t,b,l,r) {

Worked example: A chat service

Sun Microsystems Laboratories

16-252

 public operator -> (stream, isout) {
 //tty.grabCursor()
 //tty.goto (t, l)
 //tty.print ("")
 //tty.releaseCursor(false) ;
 if (isout) {
 throw "Cannot use InputWindow as output"
 } else {
 tty.getline (top,bottom,left,right) -> stream
 }
 }

 public function resize (t,b,l,r) extends resize (t,b,l,r) {
 tty.resizeInput (t, b, l, r)
 }
 }

 function newOutputWindow (t, b, l, r) {
 return new OutputWindow (t,b,l,r)
 }

 function newInputWindow (t, b, l, r) {
 return new InputWindow (t,b,l,r)
 }

 function newLine (text, color = 0) {
 return new Line (text, color)
 }

 function close() {
 tty.close()
 }

 function getRows() {
 return tty.rows
 }

 function getCols() {
 return tty.cols
 }
}

Now the client code itself. Note that the client calls itself ‘pchat’.

// this class is a client to the chat server
class ChatClient (nickname) {
 import net // network
 import streambuffer // buffering for network
 import properties // properties object
 import security
 import tty
 import windows

Worked example: A chat service

Sun Microsystems Laboratories

16-253

 const version = "1.54"

 var home = System.getenv ("HOME") // get home directory

 // read in the properties file for the user
 var userprops = new Properties()
 var userfile = System.openin (home + "/pchat.props") // open props file
 userfile -> userprops // read props file
 System.close (userfile)

 // get the variables from the properties
 var nick = nickname == "" ? userprops["nick"] : nickname
 var me = nick

 function getPassword {
 const prompt = "Enter your chat password: "
 if (nickname != "") {
 return Security.getpassword (prompt)
 }
 var password = ""
 try {
 password = userprops["password"] // in the clear, be sure of file
protections
 } catch (e) {
 password = Security.getpassword (prompt)
 }
 return password
 }

 var password = getPassword()

 password = Security.encrypt (password, "da")

 var server = userprops["server"]
 var port = cast<int>(userprops["port"])

 var attn = ""
 generic rooms = []
 var inactivity = 60 * 1000000
 var incolor = true
 var audio = true

 if (nickname == "") {
 try {
 attn = userprops["attn"]
 } catch (e) {
 attn = ""
 }

 // see if there are any default rooms to join
 try {
 rooms = userprops["rooms"]
 } catch (e) { // may not be any rooms, ignore the
error
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-254

 try {
 inactivity = cast<int>(userprops["inactivity"])
 inactivity *= 1000000 // convert to microseconds
 } catch (e) {
 }

 try {
 var c = userprops["color"]
 if (c == "off") {
 incolor = false
 }
 } catch (e) {
 }

 try {
 var a = userprops["audio"]
 if (a == "off") {
 audio = false
 }
 } catch (e) {
 }
 }

 // open the network connection to the server
 var serverStream = Network.open (server, port, Network.TCP)

 // create a utility buffer
 var buffer = new Streambuffer()

 var logfile = stdout
 var logging = false

 // set up the terminal with 3 windows
 var tty = new TTY()
 var windows = new Windows (tty)

 var out = null // output window
 var in = null // input window
 var title = null // title window

 var titlestart = 0

 function drawTitle {
 // make a centered title string for the title window
 var titlestring = "PCHAT Version " + version
 var padstring = ""
 foreach i ((tty.cols - sizeof (titlestring)) / 2) {
 padstring += ' '
 }
 titlestart = sizeof (padstring)
 [padstring, titlestring] -> title
 }

 function drawMargins {
 try {
 tty.grabCursor()

Worked example: A chat service

Sun Microsystems Laboratories

16-255

 tty.goto (1, 0)
 foreach i tty.cols {

 tty.print ('=', false)
 }
 tty.goto (tty.rows - 3, 0)
 foreach i tty.cols {

 tty.print ('-', false)
 }
 tty.releaseCursor (true)
 } catch (e) {
 windows.close ()
 throw e
 }
 }

 // setup and initialize the windows
 try {
 tty.clearScreen()

 title = windows.newOutputWindow (0, 1, 0, tty.cols)
 out = windows.newOutputWindow (2, tty.rows - 4, 0, tty.cols)
 in = windows.newInputWindow (tty.rows - 2, tty.rows -1, 0, tty.cols)

 drawMargins ()
 drawTitle()
 } catch (e) {
 windows.close ()
 throw e
 }

 // resize of screen detected
 function resize (r, c) {
 title.resize (0, 1, 0, c)
 out.resize (2, r - 4, 0, c)
 in.resize (r - 2, r - 1, 0, c)

 var oldr = tty.rows

 tty.resize() // tell tty handler to resize

 // delete the bottom margin
 tty.goto (oldr - 3, 0)
 tty.clearLine()

 tty.goto (0, 0)
 tty.clearLine()

 drawMargins()
 title.refresh()
 out.refresh()
 }

 // default colors
 const BLACK = 0

Worked example: A chat service

Sun Microsystems Laboratories

16-256

 const RED = 1
 const GREEN = 2
 const BEIGE = 3
 const BLUE = 4
 const MAGENTA = 5
 const CYAN = 6
 const GREY = 7

 var nextColor = 0 // color next user gets
 var colormap = {} // map of user versus color
 var ncolors = 8 // number of colors

 var colors = new [8]
 try {
 var usercolors = userprops["colors"] // get colors property
 if (typeof (usercolors) == "vector") { // more than one?
 ncolors = sizeof (usercolors)
 var i = 0
 foreach c usercolors {
 colors[i++] = cast<int>(c)
 }
 } else { // only one color
 ncolors = 1
 colors[0] = cast<int>(usercolors)
 }
 } catch (e) {
 foreach i 8 {
 colors[i] = i // default colors
 }
 }

 // read any new color assignments and do the assignment
 foreach i 8 {
 try {
 var c = userprops["color" + i]
 tty.mapColor (i, c)
 } catch (e) {
 }
 }

 // read the user color assignments
 try {
 function setUserColor (usercolor) {
 var ex = usercolor["([^=]+)=(.+)"]
 if (sizeof (ex) == 3) {
 var user = usercolor[ex[1].start:ex[1].end] // get user name
 var col = usercolor[ex[2].start:ex[2].end] // get color as string
 var color = cast<int>(col) // get color as number
 colormap[user] = color // set colormap
 }
 }
 var usercolors = userprops["usercolors"]
 if (typeof (usercolors) == "vector") { // more than one?
 foreach c usercolors {
 setUserColor (c)
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-257

 } else { // only one color
 setUserColor (usercolors)
 }
 } catch (e) {
 }

 function getColorForUser (nick) {
 var color = BLACK
 if (!incolor) {
 return color
 }
 if (typeof (colormap[nick]) == "none") {
 color = colors[nextColor]
 colormap[nick] = color
 nextColor = (nextColor + 1) % ncolors
 } else {
 color = colormap[nick]
 }
 return color
 }

 var callstring = "I want to talk to you"

 try {
 callstring = userprops["call"]
 } catch (e) {
 }

 var currentRoom = "" // the room I am talking in

 function showCurrentRoom() {
 var c = tty.cols / 5 // one fifth of the way across
 var text = currentRoom
 var pad = titlestart - c - sizeof (currentRoom) // pad to start of
title
 if (pad > 0) {
 foreach i pad {
 text += " "
 }
 }
 tty.printAt (0, c, text, BLUE)
 }

 var aliases = {} // map of alias name versus definition

 function addAlias (name, defn) {
 aliases += {name = defn}
 }

 function showAliases() {
 foreach alias aliases {
 windows.newLine (alias.first + "\t\t" + alias.second) -> out
 }
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-258

 // print a list of supported commands
 function help() {
 function print (line) {
 try {
 windows.newLine (line) -> out
 } catch (e) {
 windows.close()
 throw e
 }
 }

 print ("Supported commands:")
 print (" /join <room> join the given room (room is created if it doesn't
exist)")
 print (" /leave <room> leave the given room")
 print (" /talk [room] talk only in the given room")
 print (" /broadcast <message> send to all users")
 print (" /call <user> call the specified user")
 print (" /users show all logged in users")
 print (" /rooms show all available rooms")
 print (" /log toggle logging (currently " + (logging?"on":"off")
+ ")")
 print (" /showlog [room [n]] show last n server log entries for a given room")
 print (" /invite <user email> <room> invite user to chat room via
email")
 print (" /kill <id> kill a user id")
 print (" /setcolor <c#> <name> set a color number to the given color name")
 print (" /alias [name text] create a command alias (no paras = list aliases")
 if (nick == "root") {
 print (" /kick <user> <reason> kick a user off")
 print (" /shutdown <time> [reason] shutdown the server")
 print (" /clearlog clear the server log")
 }
 }

 var soundoff = false

 function beep() {
 if (audio && !soundoff) {
 '\a' -> stdout
 }
 }

 var lastTimeReceived = System.time() // last time a message was
received

 thread clock() {
 for (;;) {
 var now = System.date()
 var timestring = " " + (now.mon+1) + "/" + now.mday + "/" + (now.year + 1900)
 timestring += " " + now.hour + ":" + now.min + ":" + now.sec
 var timelen = sizeof (timestring)
 var timecol = tty.cols - timelen
 tty.printAt (0, timecol, timestring)

 // print current inactivity timer

Worked example: A chat service

Sun Microsystems Laboratories

16-259

 var time = System.time() - lastTimeReceived
 timestring = cast<string>(time/1000000) + " "
 var color = BLACK
 if (incolor && time > inactivity) {
 color = RED
 }
 tty.printAt (0, 0, timestring, color)

 sleep (1000000) // 1 second
 }
 }

 function showStats (numUsers, numRooms) {
 tty.printAt (0, 10, "" + numUsers + "/" + numRooms)
 }

 // thread for receiving messages from the server
 thread client() {

 // print to the output window and the log file (if logging is enabled)
 function print (text, color = BLACK) {
 try {
 if (!incolor) {
 color = BLACK
 }
 windows.newLine (text, color) -> out // to output window
 } catch (e) {
 windows.close()
 throw e
 }
 if (logging) {
 [text, "\n"] -> logfile // to log file
 System.flush (logfile)
 }
 }

 // process an incoming command from the server
 function serverCommand (command) {
 var commandexpr = command["([^:]+):([^:]+):(.*)"]
 if (sizeof (commandexpr) > 2) {
 var cmd = command[commandexpr[1].start : commandexpr[1].end]
 var nick = command[commandexpr[2].start : commandexpr[2].end]
 var text = command[commandexpr[3].start : commandexpr[3].end]
 switch (cmd) {
 case "JOIN":
 if (nick == me) { // always talk in most recent room
 currentRoom = text
 showCurrentRoom()
 }
 beep()
 print ("** " + nick + " has joined " + text, GREEN)
 break
 case "LEAVE":
 beep()
 print ("** " + nick + " has left " + text, BLUE)
 break

Worked example: A chat service

Sun Microsystems Laboratories

16-260

 case "MESSAGE":
 var color = getColorForUser (nick)
 var who = nick + " says: "
 if (attn != "") {
 if (sizeof (text[attn]) != 0) {
 beep() ; beep()
 }
 }
 var now = System.time()
 if ((now - lastTimeReceived) > inactivity) {
 var date = System.date()
 var prefix = "at " + date.hour + ":" + date.min + ":" + date.sec + ", "
 who = prefix + who
 beep()
 }
 lastTimeReceived = now
 print (who + text, color)
 break
 case "ERROR":
 beep()
 print ("** Error: " + nick, RED)
 break
 case "KICK":
 beep()
 beep()
 beep()
 print ("** You have been kicked off by " + nick + " because: " + text, RED)
 break
 case "KILL":
 beep()
 beep()
 beep()
 print ("** You have been killed by " + nick, RED)
 break
 case "LOGIN":
 print (nick + " logged in")
 break
 case "LOGOUT":
 print (nick + " logged out")
 break
 case "SHUTDOWN":
 beep()
 beep()
 if (nick == "now") {
 print ("*** server shutting down immediately: " + text)
 } else {
 print ("*** server shutting down in " + nick + " seconds: " + text)
 }
 break
 case "ENDLOG":
 print ("--- END OF LOG ---", MAGENTA)
 soundoff = false
 break
 case "STATS":
 showStats (nick, text)
 break

Worked example: A chat service

Sun Microsystems Laboratories

16-261

 case "TALKING":
 if (nick == "*") {
 windows.newLine ("** you are now talking all rooms") -> out
 currentRoom = "*all*"
 } else {
 windows.newLine ("** you are now talking in " + nick) -> out
 currentRoom = nick
 }
 showCurrentRoom()
 break
 default:
 print (command)
 }
 } else {
 print (command)
 }
 }

 // main thread loop, read and process messages from the server
 var message = ""
 while (!System.eof (serverStream)) {
 serverStream -> message
 serverCommand (message)
 }
 print ("***** server has closed connection, exiting\r\n", RED)
 windows.close()
 System.exit (0)
 }

 thread sizer() {
 var prevrow = -1
 var prevcol = -1
 var row = 0
 var col = 0
 var resizeimminent = false
 try {
 for (;;) {
 sleep (500000) // half a second
 if (resizeimminent) {
 if (prevrow == row && prevcol == col) { // stabalized?
 resize (row, col)
 resizeimminent = false
 }
 }
 if (tty.getScreenSize (row, col)) {
 prevrow = row
 prevcol = col
 resizeimminent = true
 }
 }
 } catch (e) {
 windows.close()
 throw e
 }
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-262

 client() // start the client thread
 clock() // start the clock thread
 sizer() // screen size monitor

 // log in to the server
 buffer.put ("LOGIN:")
 buffer.put (nick + ":")
 buffer.put (password + "\n")
 buffer -> serverStream

 // get the Message of the Day
 buffer.clear()
 buffer.put ("MOTD:x:x\n")
 buffer -> serverStream

 // function to join a room
 function join (room) {
 buffer.clear()
 buffer.put ("JOIN:")
 buffer.put (room + ":xxx\n")
 buffer -> serverStream
 }

 // any rooms to join now?
 if (typeof (rooms) == "vector") { // multiple rooms?
 foreach room rooms {
 join (room)
 }
 } else {
 join (rooms)
 }

 // get a list of users who are logged on
 buffer.clear()
 buffer.put ("USERS:x:x\n")
 buffer -> serverStream

 // process a command typed in by the user
 function clientCommand (command) {
 if (sizeof (command) == 0) { // blank line?
 return
 }

 var curindex = 0
 function skipspaces() {
 while (curindex < sizeof (command) && command[curindex] == ' ') {
 ++curindex
 }
 }

 // get a string from the input line
 function getString(stopatspace = true) {
 var str = ""
 skipspaces()
 while (curindex < sizeof (command)) {
 if (stopatspace && command[curindex] == ' ') {

Worked example: A chat service

Sun Microsystems Laboratories

16-263

 break
 }
 str += command[curindex++]
 }
 return str
 }

 // given a command and a set of arguments, look to see if it is an alias. If
 // so, replace the command with the (resursive) alias defintion and replace the
 // arguments ($1, $2) etc with the actual parameters.

 function expandCommand (ci) {
 var cmd = getString() // get first word in command
 var alias = aliases[cmd]
 if (typeof (alias) != "none") { // alias?
 var args = []
 var arg0 = ""
 for (var i = curindex ; i < sizeof (command) ; i++) { // make arg0
 arg0 += command[i]
 }
 arg0 -> args
 while (curindex < sizeof (command)) { // collect the args
 getString() -> args
 }
 var newcmd = "" // new command is
placed here
 for (var i = 0 ; i < sizeof (alias) ; i++) {
 if (alias[i] == '$') {
 i++
 switch (alias[i]) {
 case '$':
 newcmd += '$' ;
 break ;
 default:
 if (alias[i] < '0' || alias[i] > '9') {
 newcmd += alias[i]
 } else {
 newcmd += args[alias[i] - '0']
 }
 }
 } else {
 newcmd += alias[i]
 }
 }
 command = newcmd // commit new command
 curindex = 0
 var ncmd = getString() // get first word (to prevent infinite
recursion)
 curindex = 0
 if (ncmd != cmd) { // not the same?
 expandCommand(0) // expand aliases in new command
 }
 } else {
 curindex = ci
 }
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-264

 buffer.clear()
 // system commands start with slash
 if (command[0] == '/') {
 curindex = 1
 expandCommand(1) // expand any alias in command

 var cmd = getString()
 switch (cmd) {
 case "alias":
 var name = getString()
 if (name == "") {
 showAliases()
 } else {
 var defn = getString (false)
 addAlias (name, defn)
 }
 break

 case "log":
 if (!logging) {
 var logfilename = home + "/pchat.log"
 logfile = System.openout (logfilename)
 windows.newLine ("Logging output to "+ logfilename) -> out
 logging = true
 } else {
 System.close (logfile)
 windows.newLine ("Logging off") -> out
 logging = false
 }
 break
 case "join":
 buffer.put ("JOIN:")
 var room = getString(false)
 if (room == "") {
 throw "Must supply name of room to join"
 }
 buffer.put (room)
 buffer.put (":xxx\n")
 windows.newLine ("joining room " + room) -> out
 buffer -> serverStream
 break
 case "leave":
 buffer.put ("LEAVE:")
 var room = getString(false)
 if (room == "") {
 throw "Must supply name of room to leave"
 }
 buffer.put (room)
 buffer.put (":xxx\n")
 buffer -> serverStream
 break

 case "talk":
 buffer.put ("TALK:")

Worked example: A chat service

Sun Microsystems Laboratories

16-265

 var room = getString(false)
 if (room == "") {
 room = "*"
 }
 buffer.put (room)
 buffer.put (":xxx\n")
 buffer -> serverStream
 break

 case "broadcast":
 buffer.put ("BROADCAST:" + nick +":")
 var text = getString (false)
 if (text == "") {
 break
 }
 buffer.put (text)
 buffer.put ("\n")
 buffer -> serverStream
 break

 case "call":
 buffer.put ("BROADCAST:" + nick +":")
 var who = getString()
 if (who == "") {
 break
 }
 buffer.put ("Calling " + who+ ": " + callstring)
 buffer.put ("\n")
 buffer -> serverStream
 break

 case "setcolor":
 var colornum = getString()
 if (colornum == "") {
 throw "Specify color number"
 }
 var colorname = getString()
 if (colorname == "") {
 throw "specify color name"
 }
 tty.mapColor (cast<int>(colornum), colorname)
 break

 case "help":
 help() ;
 break

 case "kick":
 if (nick == "root") {
 buffer.put ("KICK:")
 var person = getString()
 if (person == "") {
 throw "Must supply name of person to kick"
 }
 var reason = getString (false)
 if (reason == "") {

Worked example: A chat service

Sun Microsystems Laboratories

16-266

 reason = "Just felt like it"
 }
 buffer.put (person + ":" + reason + "\n")
 buffer -> serverStream
 }
 break
 case "kill":
 buffer.put ("KILL:")
 buffer.put (nick + ":")
 var id = getString()
 if (id == "") {
 throw "Must supply id of user to kick"
 }
 buffer.put (id + "\n")
 buffer -> serverStream
 break
 case "users":
 buffer.put ("USERS:x:x\n")
 buffer -> serverStream
 break
 case "rooms":
 buffer.put ("ROOMS:x:x\n")
 buffer -> serverStream
 break
 case "invite":
 var who = getString()
 if (who == "") {
 throw "Invite who?"
 }
 var room = getString (false)
 if (room == "") {
 throw "Invite " + who + " to what room?"
 }
 System.system ("/usr/ucb/Mail -s \"Please join me in pchat room " + room + "\" "
+ who + " < /dev/null")
 windows.newLine ("Invitation sent to " + who + " to join you in " + room) -> out
 break
 case "showlog":
 buffer.put ("SHOWLOG:")
 var room = getString()
 if (room == "") {
 room = "*"
 }
 var lines = getString()
 if (lines == "") {
 lines = "50"
 }
 buffer.put (room + ":" + lines + "\n")
 buffer -> serverStream
 windows.newLine ("---- SERVER LOG ----") -> out
 soundoff = true
 break
 case "shutdown":
 if (nick == "root") {
 buffer.put ("SHUTDOWN:")
 var time = getString()

Worked example: A chat service

Sun Microsystems Laboratories

16-267

 if (time == "") {
 throw "Must supply shutdown time"
 }
 var reason = getString (false)
 if (reason == "") {
 reason = "Restarting"
 }
 buffer.put (time + ":" + reason + "\n")
 buffer -> serverStream
 }
 break
 case "clearlog":
 if (nick == "root") {
 buffer.put ("CLEARLOG:x:x\n")
 buffer -> serverStream
 }
 break
 default:
 throw "No such command"
 }
 } else { // regular text, send to server
 buffer.put ("MESSAGE:")
 buffer.put (nick + ":")
 buffer.put (command + "\n")
 buffer -> serverStream
 lastTimeReceived = System.time() // reset inactivity timer
 }
 }

 // process a scroll command
 function scroll(cmd) {
 try {
 switch (cmd) {
 case 1: // up arrow
 out.scroll (tty.UP, 1)
 break
 case 2: // down arrow
 out.scroll (tty.DOWN, 1)
 break
 }
 } catch (e) {
 windows.close()
 throw e
 }
 }

 function refresh {
 try {
 tty.clearScreen()
 drawMargins ()
 title.refresh()
 //drawTitle()
 out.refresh()
 } catch (e) {
 windows.close()
 throw e

Worked example: A chat service

Sun Microsystems Laboratories

16-268

 }
 }

 // set the window title
 tty.setTitle ("PCHAT Version " + version)

 // read from the pchatrc file and execute the commands
 try {
 var rclines = System.readfile (home + "/.pchatrc")
 foreach line rclines {
 buffer.clear()
 try {
 if (sizeof (line) > 1 && line[0] != '#') {
 clientCommand (line[0:sizeof(line) - 2]) // remove newline from
end
 }
 } catch (error) {
 windows.newLine ("Error: "+ error) -> out
 }
 }
 } catch (e) {
 }

 // main client loop, read from keyboard and send to server
 for (;;) {
 buffer.clear()
 var msg = ""
 try {
 in.clear() // clear the input window
 in -> msg // read the text from input window
 } catch (e) {
 if (typeof (e) == "integer") { // special output
 if (e == 0) { // EOF?
 break
 } elif (e == 1 || e == 2) { // cursor motions
 scroll(e)
 continue
 } elif (e == 3) { // refresh
 refresh()
 continue
 }
 break
 } else {
 windows.close() // other exception, so put the terminal
back
 throw e // and rethrow the exception
 }
 }
 try {
 clientCommand (msg) // process input
 } catch (error) {
 windows.newLine ("Error: "+ error) -> out
 }
 }

Worked example: A chat service

Sun Microsystems Laboratories

16-269

 windows.close() // user hit EOF, so reset terminal
}

// process optional single parameter (alternative username)

var nick = ""
if (sizeof (args) == 1) {
 nick = args[0]
} elif (sizeof (args) > 1) {
 throw "usage: pchat [nick]"
}

// run the client
ChatClient (nick)

Aikido Debugger

Sun Microsystems Laboratories

17-271

Chapter 17. Aikido Debugger

Aikido provides a simple command-line debugger that can be used to help debug a program going awry.
Those familiar with the Sun debugger (dbx) will find no difficulty getting to grips with the Aikido
debugger as its command set is very similar to dbx.

The Aikido debugger is invoked by passing the option “-debug” to the aikido command:

% aikido –debug myprog.aikido

The Aikido interpreter has the code for the debugger built into it so there is no separate command needed to
access the debugger. When passed the “-debug” flag, the interpreter will record information about all the
symbols used in the program and present you with a command line prompt:

% aikido –debug myprog.aikido
aikido>

From this command line you can type debugger commands to control the program. A very useful
command is help. The output from the help command is:

Aikido debugger
(C) Copyright 2000-2002 Sun Microsystems Inc.
David Allison, Sun Microsystems Laboratories

quit exit the debugger
history show command history (use with history

substitution)
alias list all aliases
alias name print the definition of the named alias
alias name defn define the named alias
unalias name delete the named alias
stop in <name> [if <expr>] stop in named block
stop at <line> [if <expr>] stop at given line
stop throw on|off switch on or off break on exception

handling
cont continue execution
run run the program
clear clear all breakpoints
clear <bpnum> clear the given breakpoint
step single step one line
step up continue until return
nexti single step one instruction (over calls)
stepi single step one instruction
next single step one line (over calls)
status show debugger status
print <expr> print value of expression
set <expr> execute expression
call <expr> call expression
up move up stack one frame
down move down one stack frame
where show stack trace
list [s] [e] list lines from s to e

Aikido Debugger

Sun Microsystems Laboratories

17-272

dis [n] print the next n (10) instructions
file <name> select current file
files list all available files
threads list all threads
thread [n] select thread n (or show current thread)
disable <bpnum> disable breakpoint
enable <bpnum> enable breakpoint
show <what> show debugger things:

blocks show all non-system blocks
allblocks show all blocks
breaks show all breakpoints
files show all available files
stack show stack trace
threads show all threads
vars show all variables

This shows the list of commands that are available and a summary of the command’s function.

17.1. Running the program
When the interpreter is first invoked with the “-debug” flag the program is not yet running. It has been
parsed and found to be correct syntactically. To get the program running, use the run, step or next
commands. The run command starts the program running and it will not stop until it hits a breakpoint of
the program completes. The step and next commands run the program until the first user-supplied
statement is reached.

If the program is currently running and a new ‘run’ command is issued, the program will be restarted
immediately,

17.2. Breakpoints
Breakpoints allow you to stop the program at designated points. Once the program has stopped you get a
command prompt and can issue other debugger commands. You can set a breakpoint at the following
locations:

1. The first statement of any block (function, class, package, etc)
2. Any line containing a statement
3. At any exception throw

Breakpoints are set using the stop command. There are 2 variants of it:

stop in <block name>
stop at <line number>

The first variant allows the program to be stopped at the first statement or a named block. The second sets
a breakpoint at a particular line.

To stop when an exception is thrown, you can use the command ‘stop throw on’

aikido> stop throw on

The program will stop when an exception is thrown. You can then examine variables and continue as
normal.

Breakpoints may be disabled and enabled. When first set, a breakpoint is enabled and is shown in the
‘status’ listing as a number in parentheses. When a breakpoint is disabled it is shown in square brackets in

Aikido Debugger

Sun Microsystems Laboratories

17-273

the ‘status’ listing. Disabling a breakpoint means that it will not trigger. The commands to enable and
disable breakpoints are:

enable <bpnum>
disable <bpnum>

Where <bpnum> is the number of the breakpoint in the ‘status’ listing.

17.2.1. Stopping in a block
Setting a breakpoint in a block stops the program whenever the first statement of the block is about to be
executed. You specify the block by naming it in the stop in command variant. A block name is the name
of a function, class, monitor, package or thread. If you don’t know the name of the block you want to stop
in, you can issue the show blocks (section xxx) command to see all the blocks defined in the program.

If the name of the block you specify in the stop in command variant is ambiguous the debugger will present
you with a list of all the blocks that match the name. You can then choose one of them. For example, if
you type the following command:

aikido> stop in toString

The debugger will respond with:

Ambiguous block name, choose one of the following:
 0) cancel
 1) main.System.Date.toString
 2) main.System.Exception.toString
 3) main.System.FileException.toString
 4) main.System.ParameterException.toString
>

You can then type the number corresponding to the block you choose. Typing 0 will cancel the stop
command.

17.2.2. Stopping at a line
Another option for setting a breakpoint is to stop at a particular line in the program. In order to stop at a
line, there must be executable code on that line. To set a breakpoint at a line use the stop at command
variant:

aikido> stop at 356

But how do we specify which file to use? To do this you need to set the current file using the file
command:

aikido> file genconst.aikido

Will set the current file to “genconst.aikido”. This file must be part of the program being debugged. In
order to see what the valid files are you can use the show files command variant.

Aikido Debugger

Sun Microsystems Laboratories

17-274

17.2.3. Conditional breakpoints
It is sometimes very useful to be able to set a conditional breakpoint. This is a breakpoint that is controlled
by an expression. Each time the breakpoint is activated (a thread of control passes over it), the controlling
expression is evaluated and if the result is non-zero the program stops. If the result of the expression is
zero then the execution continues.

The expression can be any valid expression for the point of the program in which the breakpoint sits. You
can use any variables that are in scope at that point.

The syntax for conditional breakpoints is simply to append the condition to the end of the stop command
separated by an if clause:

aikido> stop at 156 if indentLevel > 0

This stops at line 156 if the variable indentLevel (in scope at line 156 of the program) has a value greater
than 0.

A conditional breakpoint can be set for either the stop in or stop at command variants.

Setting a conditional breakpoint will cause the program to run slower if the breakpoint is activated
frequently as the interpreter needs to evaluate an expression each time it is activated.

17.2.4. Clearing breakpoints
When a breakpoint is set, it is assigned a unique number. This number identifies the breakpoint for the
purpose of displaying and clearing them. In order to clear a breakpoint you use the clear command.

This command can take 2 forms:

clear
clear <bpnum>

The first form (with no arguments) clears all the breakpoints set in the program. The second form clears a
particular breakpoint specified by the breakpoint number. You can use the status or show breaks
commands to see what breakpoints have been set.

17.3. Controlling execution
The main purpose of a debugger is to allow to control the execution of the program. The run (section 17.1)
command allows a program to be run and breakpoints (section 17.2) allow it to be stopped. When you
have a command line prompt you have access to other commands that are helpful in the debugging task.

17.3.1. Where am I?
When a program is stopped it is useful to be able to see where you are in the program. When running, the
program will call functions, create objects, etc. A breakpoint may cause the program to stop at any point.
By issuing the where or show stack command you can see the path the program took to get to the current
location. For example:

aikido> where
=>[1] parseWordDef at line 127 in file genconst.aikido
 [2] parseLine at line 315 in file genconst.aikido
 [3] parseFile at line 334 in file genconst.aikido

Aikido Debugger

Sun Microsystems Laboratories

17-275

 [4] main at line 353 in file genconst.aikido

This shows a stack trace after stopping at a breakpoint. The first line listed is the top of the stack. The
marker (=>) shows the current location and may be changed using the up and down commands. Moving
“up’ the stack means moving down the list. If you issue the up command twice from the current location
you will move up to the parseFile and move the marker to that point.

17.3.2. Threads
When you are stopped in the debugger, you are always in the context of a thread known as the ‘current
thread’. There may be other threads running in the program,, and all these are stopped when the debugger
prompt is on the terminal To see what threads exist, the command ‘threads’ may be used. Each thread is
given a number that can be used to refer to the thread. To switch threads, use the ‘thread’ command,
passing the thread number to it.

When you switch threads, the stack is switched to the new current thread and all commands will work as
expected.

The ‘threads’ command will display a list of all the threads that are currently executing in the program:

aikido> threads
0 main(t.aikido:12)
1 println (system.aikido:78)

 * 2 a(t.aikido:2)
 3 t(t.aikido:9)

The line in the display marked by an asterisk is the current thread (thread 2). All the commands that refer
to the current state work in the context of the current thread. When the debugger is running at the prompt,
all the threads in the program are halted.

To switch the current thread, use the ‘thread’ command:

aikido> thread 3
9:}
aikido> threads

0 main(t.aikido:12)
1 println (system.aikido:78)

 2 a(t.aikido:2)
 * 3 t(t.aikido:9)

17.3.3. Single stepping the program
Once stopped at a breakpoint you can continue execution using the cont command. This will cause the
program to continue until it is stopped again at another breakpoint or it terminates. Another option of
resuming execution is to issue a step or next command. These commands continue the execution of the
program for one line. The difference between the step and next commands is that step will step into a
called block whereas next will step over a called block. For example, if the current line is a function call
statement then the step command will stop at the first line of the function being called and the next
command will execute the whole function and stop at the line after the call is done.

Another option for single stepping is to step one instruction at a time. This can be achieved using the stepi
and nexti commands. An instruction in the context of Aikido is one of the Virtual Machine instructions
executed by the interpreter. This is really only useful for very low level debugging and requires an

Aikido Debugger

Sun Microsystems Laboratories

17-276

understanding of the Aikido Virtual Machine instruction set (see Chapter 18 for details of the instruction
set)

The stepi and nexti commands show the instruction that will be executed next.

17.3.4. Executing an expression
It is sometimes useful to be able to set the value of a variable or to call a function while inside the
debugger. The commands available to do this are the set and call commands.

The set command takes an expression as its argument. Although any expression is allowed here, it is only
useful to use an assignment expression. The expression is evaluated in the current context. That means
that the current location is used to determine which variables are accessible for use in the expression.
Moving around the stack by using the up and down commands changes this. For example, to set the value
of a variable:

aikido> set connected = true

The set command may also be used to create new variables in the current scope. If the variable being set
does not exist then it is created for you. This is very useful for assigning an alias for a complex expression
to save on typing.

The call command is very similar to the set command in that it takes an expression as an argument. The
intention is that the call command be used to call functions and other blocks in the program but this is not
necessarily required. An example of the use of the call command:

aikido> call System.println (connected)

This calls the system printer function to print the value of a variable. Like the set command, the current
location determines what is available to be called. Any expression can be executed in the call command.

17.4. Displaying information

17.4.1. Printing expressions
It is useful to be able to show the value of variables in the program when stopped at a breakpoint. We’ve
seen how to do this with the call command in section 17.3.4, but it would a tad inconvenient to have to type
in a call to System.println for every expression we want to print. Also, System.println function cannot print
the contents of an object.

The print command is a powerful command that evaluates an expression and prints its value in a
meaningful way. The command may be used to print any value including instances of objects. If you print
an object it will list all the members of the object and their associated value. It also prints a vector as a
whole with each element indexed and numbered. Any expression can be printed:

aikido> print x
x = 123
Aikido> print vec[5:3]
vec[5:3] = [0] 4
[1] 5
[2] 6
Aikido> print 123 * 456

Aikido Debugger

Sun Microsystems Laboratories

17-277

123 * 456 = 56088

The variables that may be used in the expression are those in scope in the current location.

17.4.2. Listing file contents
The contents of the current file may be listed to the terminal by use of the list command. Without any
arguments, the list command lists from the current line forward by 10 lines or the end of file. With one
argument, it lists from the specified line forward by 10 lines. With 2 arguments it lists the lines between
the two lines specified.

17.5. Other commands

17.5.1. Aliases
Aliases allow commands to be defined in terms of other commands. This is useful for abbreviating
frequently used commands. The alias command has 3 forms:

alias
alias name
alias name definition
unalias name

The first form lists all the aliases that have been set. The second form shows the definition (if any) for the
named alias. The third form defines (or redefines) the named alias with the given definition.

The ‘unalias’ command deletes an alias.

17.5.2. History
The debugger maintains a history like the UNIX® shells. The bang character (!) is used to select a history
line to be repeated. To see all the history lines, the command ‘history’ may be used.

aikido> history
0 stop in a
1 run
2 threads
3 cont
4 threads
5 history

To select a particular command to be run again, use the bang character (!) and append either the command
number or the first couple of characters of the command. For example, the following are the same:

aikido> !3
aikido> !c
aikido> !co

The history substitution may be used anywhere in the command.

Aikido Debugger

Sun Microsystems Laboratories

17-278

17.5.3. Show command
The ‘show’ command is a way to get the debugger to list things. There are a number of options:

show blocks show all non-system blocks
show allblocks show all blocks
show breaks show all breakpoints
show files show all available files
show stack show stack trace
show threads show all threads
show vars show all variables

The one to note is the ‘show vars’ command. This lists the names and values of all variables in the current
stack frame and all parent frames. It is sometimes useful to simply list all the variables rather than using
individual ‘print’ commands.

The ‘show allblocks’ command differs from the ‘show blocks’ command by listing all the blocks known to
the system rather than just the user-defined blocks.

17.5.4. Disassembly
The dis command allows the internal virtual machine instructions to be disassembled. This is only of use to
advanced users who have an understanding of the instructions. Please see Chapter 1 for details of the
instruction set. The dis command prints the next ‘n’ instructions to the screen. The disassembly listing
starts at the current instruction. The default value for ‘n’ is 10.

17.5.5. Quitting
The quit command exits the debugger and returns you to the operating system’s command prompt.

Virtual Machine Instruction Set

Sun Microsystems Laboratories

18-279

Chapter 18. Virtual Machine
Instruction Set

The Aikido Virtual Machine instruction set is a simple code that is used internally by the Aikido
interpreter. Each thread running in the interpreter has an instance of a Virtual Machine (VM). The VM is
the engine that interprets the instructions in order to execute the program.

The instruction set is register based. This means that all instructions use a set of registers to get their data
upon which they operate. Most instructions write a result of the operation to a destination. The destination
may be another register or may be one of the variables used in the program.

18.1. Instruction set summary

Instruction Arguments Operation
MOV dest, src Move src to dest (check for type and

constant assignment)
MOVC dest, src Move constant src to dest (no check for

constant overwrite)
MOVF dest, src Move Forced src to dest (no checks done)
MOVO dest, src Move Override src to dest. Used for

virtual function override
LD dest, src Load indirect via register. Src contains

address
ST dest, src, value Store indirect via register and also place in

dest
COPY dest, src Make a copy of src and place in dest (used

for strings)
MKVECTOR dest, nelems Make a vector of nelems length.

Elements are on stack
MKMAP dest, nelems Make a map of nelems length. Elements

are in pairs on stack
ADD dest, src1, src2 dest = src1 + src2
SUB dest, src1, src2 dest = src1 – src2
MUL dest, src1, src2 dest = src1 * src2
DIV dest, src1, src2 dest = src1 / src2
MOD dest, src1, src2 dest = src1 % src2
SLL dest, src1, src2 dest = src2 << src2
SRL dest, src1, src2 dest = src1 >> src2 (unsigned shift right)
SRA dest, src1, src2 dest = src1 >> src2 (signed shift right)
OR dest, src1, src2 dest = src1 | src2 (bitwise OR)
XOR dest, src1, src2 dest = src1 ^ src2 (exclusive OR)
AND dest, src1, src2 dest = src1 & src2 (bitwise AND)
COMP dest, src dest = ~src (ones complement)
NOT dest, src dest = !src (unary NOT)
UMINUS dest, src dest = -src (unary minus)
SIZEOF dest, src dest = sizeof (src)
TYPEOF dest, src dest = typeof (src)

Virtual Machine Instruction Set

Sun Microsystems Laboratories

18-280

CAST dest, src1, src2
[,pnum]

Cast src2 to type of src1 and store in dest.
Pnum is optional parameter number for
information only

MUX dest, cond, src1, src2 dest = cond ? src1 : src2 (conditional
expression)

CMPEQ dest, src1, src2 dest = src1 == src2
CMPNE dest, src1, src2 dest = src1 != src2
CMPLT dest, src1, src2 dest = src1 < src2
CMPLE dest, src1, src2 dest = src1 <= src2
CMPGT dest, src1, src2 dest = src1 > src2
CMPGE dest, src1, src2 dest = src1 >= src2
B address pc = address (address is constant)
BT src, address if (src) pc = address (address is integer

type)
BF src, address if (!src) pc = address (address is integer

type)
CALL dest, nargs, block Call the given block. Arguments are on

stack and there are ‘nargs’ of them.
Result of call is placed in dest

RET Return from call
RETVAL src Return from call with value src
SUPERCALL block Call superblock constructor
TRY catchlabel, endlabel Start of ‘try’ exception block. Catchlabel

is address of catch clause, endlabel is
address at end of catch clause

CATCH var Execute start of catch clause. Place
caught exception in var.

THROW src Throw the value in src as an exception
NOP No operation
NEW dest, nargs, block Create an instance of the given block.

There are nargs arguments on the stack
NEWVECTOR dest, ndims, ctstart,

ctend
Create a vector of ‘ndims’ dimensions.
Size of dimensions are on stack. If ctstart
and ctend are not zero, they are the
addresses of the start and end of the
construction code for each element of the
vector

DELETE src Delete the operand
STREAM dest, src1, src2 Stream src1 to src2, place result in dest
MACRO macro, endlabel Execute instance of macro. PC is set to

endlabel after macro executes
ENUM block Assign enumeration constant values
FINDV dest, src1, src2 Find the variable src2 in the value src1,

place the value of the variable in dest
FINDA dest, src1, src2 Find the variable src2 in the value src1.

Place the address of the variable in dest
STV dest, src1, src2,

value
First find the value src2 in the variable
src2 then store the value ‘value’ in it.

ADDR dest, src Get the address of src and place in dest
ADDRSUB dest, base, s1 [,s2] Get the address of base subscripted by s1.

If s2 is present then the subscript it [s1:s2]
SETSUB dest, src, base, s1

[,s2]
Set the value of base subscripted by s1
(:s2 if present) to the value of src. Store
result dest also.

Virtual Machine Instruction Set

Sun Microsystems Laboratories

18-281

GETSUB dest, base, s1 [,s2] Get the value of base subscipted by s1 (:s2
is present).

DELSUB base, s1 [,s2] Delete base[s1] or base[s1:s2]
GETOBJ dest, src Get the instance of an object in src. If src

is a package, get the automatic instance of
it

PACKAGEASSIGN dest, src Store the automatic instance of a package
GETTHIS dest, src Get the “this” pointer from the src
PUSHSCOPE scope Push the scope onto the scope stack
POPSCOPE ns, nt, nf Pop ns (scopes), nt (trys), nf (foreach) off

the stack
FOREACH var, src, endlabel Start of a foreach loop. Var is the control

variable, src is the expression to iterate
through. Endlabel is the address of the
end of the loop

NEXT Next iteration in current foreach loop
PUSHADDR src Push the address of src onto the stack
PUSH src Push the value of src onto the stack
POP n Pop n values off the stack
FOREIGN src Pass stream in src to foreign code handler
INLINE dest, endaddr Execute inline block. Code follows

instruction. Result placed in dest. End of
code is enaddr.

ADD.I dest, src1, src2 Add integer
SUB.I dest, src1, src2 Subtract integer
MUL.I dest, src1, src2 Multiply integer
DIV.I dest, src1, src2 Divide integer
MOD.I dest, src1, src2 Modulus of integers
SLL.I dest, src1, src2 Shift integer left
SRL.I dest, src1, src2 Shift integer right logically
SRA.I dest, src1, src2 Shift integer right arithmetically
OR.I dest, src1, src2 Bitwise or integer
XOR.I dest, src1, src2 Bitwise xor integer
AND.I dest, src1, src2 Bitwise and integer
COMP.I dest, src Complement integer
NOT.I dest, src1 Not of integer
UMINUS.I dest, src unary minus of integer
RETVAL.I src Return integer
CMPEQ.I dest, src1, src2 Compare integers EQ
CMPNE.I dest, src1, src2 Compare integers NE
CMPLT.I dest, src1, src2 Compare integers LT
CMPLE.I dest, src1, src2 Compare integers LE
CMPGT.I dest, src1, src2 Compare integers GT
CMPGE.I dest, src1, src2 Compare integers GE
ADD.R dest, src1, src2 Add real
SUB.R dest, src1, src2 Subtract real
MUL.R dest, src1, src2 Multiply real
DIV.R dest, src1, src2 Divide real
MOD.R dest, src1, src2 Modulus of reals
UMINUS.R dest, src unary minus of real
RETVAL.R src Return real
CMPEQ.R dest, src1, src2 Compare reals EQ
CMPNE.R dest, src1, src2 Compare reals NE

Virtual Machine Instruction Set

Sun Microsystems Laboratories

18-282

CMPLT.R dest, src1, src2 Compare reals LT
CMPLE.R dest, src1, src2 Compare reals LE
CMPGT.R dest, src1, src2 Compare reals GT
CMPGE.R dest, src1, src2 Compare reals GE
ADD.S dest, src1, src2 Add strings
SLL.S dest, src1, src2 Shift string left
SRL.S dest, src1, src2 Shift string right
CMPEQ.S dest, src1, src2 Compare strings EQ
CMPNE.S dest, src1, src2 Compare strings NE
CMPLT.S dest, src1, src2 Compare strings LT
CMPLE.S dest, src1, src2 Compare strings LE
CMPGT.S dest, src1, src2 Compare strings GT
CMPGE.S dest, src1, src2 Compare strings GE
RETVAL.S src Return string

18.2. Operands
Each of the instructions takes a number of operands. An operand can be one of:

• A register number
• A variable
• A constant value

There are an unlimited number of registers available. A register is named by ‘Rx’, where x is a number. A
variable can be local (in the current static scope) or may be a number of levels up the static chain. If the
variable name is suffixed with a number in parentheses then it is non-local and the number gives the
number of frames up the static chain.

If the operand is a constant then is appears in the disassembly listing preceded by a hash (or pound sign).

The instruction suffixed with .I, .R or .S are optimizations and are used only where the types of the
operands are known at compile time.

For example:

ADD R6, x(1), #1
destination = register 6
src1 = variable x (1 level up static chain)
src2 = constant 1

FINDV result, R4, print
destination = local variable “result”
src1 = register 4
src2 = identifier print

18.3. Notes
Some of the instructions use a stack. A value is pushed onto the stack by a PUSH or PUSHADDR
instruction. The values are popped off automatically by the instruction making use of the stack.

The PUSHSCOPE and POPSCOPE instructions allow tracking of the current scope. In addition, the
POPSCOPE instruction deals with nested ‘try’ blocks and ‘foreach’ statements.

Virtual Machine Instruction Set

Sun Microsystems Laboratories

18-283

The CALL instruction can be used to call any block, not just functions. The CALL instruction always has
a “this” pointer as its first argument (on the stack). This may be ignored for static functions and those
without a “this” argument. The NEW instruction is identical to a CALL.

When the block being called is invoked, the virtual machine allocates a complete new set of registers for
that block so there is never a need to save the registers from the caller.

The arguments for a CALL are pushed from right to left onto the stack. The call mechanism takes the
arguments off the stack and inserts them into the variables or native parameter list of the called function.
The called block assigns the default parameter values and casts to the formal parameter types. The CALL
instruction deals with the varargs case (insertion of additional args into the args vector). Arguments that
are not constant are passed as addresses. This is to allow for reference parameters.

When the callee is invoked the arguments will have the values passed from the caller.

The call instruction pops all the arguments off the stack

Example:

x = func (1,2,3)

PUSH 3
PUSH 2
PUSH 1
CALL x, 3, func

The NEW instruction is similar to call. The arguments are pushed onto the stack in reverse order and the
call is made. The object returned is placed in the destination location.

var x = new Tree (1,2)

PUSH 2
PUSH 1
NEW x, 2, Tree

The SUPERCALL instruction calls the constructor for the superblock of an object during the construction
of the object. Like a regular call, the arguments are pushed onto the stack and popped by the instruction.

The NEWVECTOR instruction allows a vector to be created, it is pretty complex. There can be any
number of dimensions to the vector and each dimension will have a specified size. The last dimension can
specify an object to be constructed.

The sizes of the dimensions are pushed onto the stack starting with the last dimension. For example

new [100][10][5]

PUSH 5
PUSH 10
PUSH 100
NEWVECTOR dest, 3, 0, 0

new Class [10][5] (1,2)

Virtual Machine Instruction Set

Sun Microsystems Laboratories

18-284

PUSH 5
PUSH 10
NEWVECTOR dest, 2, l1, l2

l1:
PUSH 2
PUSH 1
NEW dest, 2, Class
END

l2:

The sizes of the dimensions are popped by the NEWVECTOR instruction

Inline code blocks are signified by the INLINE instruction and are coded as follows:

INLINE dest, l1
code for block

l1:

The value from the inline block is returned using a RETVAL instruction.

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-285

Chapter 19. Regular Expressions

This text is taken directly from the PCRE documentation and is Copyright © 1997-2001 University of
Cambridge.

DIFFERENCES FROM PERL
 The differences described here are with respect to Perl
 5.005.

 1. By default, a whitespace character is any character that
 the C library function isspace() recognizes, though it is
 possible to compile PCRE with alternative character type
 tables. Normally isspace() matches space, formfeed, newline,
 carriage return, horizontal tab, and vertical tab. Perl 5 no
 longer includes vertical tab in its set of whitespace char-
 acters. The \v escape that was in the Perl documentation for
 a long time was never in fact recognized. However, the char-
 acter itself was treated as whitespace at least up to 5.002.
 In 5.004 and 5.005 it does not match \s.

 2. PCRE does not allow repeat quantifiers on lookahead
 assertions. Perl permits them, but they do not mean what you
 might think. For example, (?!a){3} does not assert that the
 next three characters are not "a". It just asserts that the
 next character is not "a" three times.

 3. Capturing subpatterns that occur inside negative looka-
 head assertions are counted, but their entries in the
 offsets vector are never set. Perl sets its numerical vari-
 ables from any such patterns that are matched before the
 assertion fails to match something (thereby succeeding), but
 only if the negative lookahead assertion contains just one
 branch.

 4. Though binary zero characters are supported in the sub-
 ject string, they are not allowed in a pattern string
 because it is passed as a normal C string, terminated by
 zero. The escape sequence "\0" can be used in the pattern to
 represent a binary zero.

 5. The following Perl escape sequences are not supported:
 \l, \u, \L, \U, \E, \Q. In fact these are implemented by
 Perl's general string-handling and are not part of its pat-
 tern matching engine.

 6. The Perl \G assertion is not supported as it is not
 relevant to single pattern matches.

 7. Fairly obviously, PCRE does not support the (?{code}) and
 (?p{code}) constructions. However, there is some experimen-
 tal support for recursive patterns using the non-Perl item
 (?R).

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-286

 8. There are at the time of writing some oddities in Perl
 5.005_02 concerned with the settings of captured strings
 when part of a pattern is repeated. For example, matching
 "aba" against the pattern /^(a(b)?)+$/ sets $2 to the value
 "b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves $2
 unset. However, if the pattern is changed to
 /^(aa(b(b))?)+$/ then $2 (and $3) are set.

 In Perl 5.004 $2 is set in both cases, and that is also true
 of PCRE. If in the future Perl changes to a consistent state
 that is different, PCRE may change to follow.

 9. Another as yet unresolved discrepancy is that in Perl
 5.005_02 the pattern /^(a)?(?(1)a|b)+$/ matches the string
 "a", whereas in PCRE it does not. However, in both Perl and
 PCRE /^(a)?a/ matched against "a" leaves $1 unset.

 10. PCRE provides some extensions to the Perl regular
 expression facilities:

 (a) Although lookbehind assertions must match fixed length
 strings, each alternative branch of a lookbehind assertion
 can match a different length of string. Perl 5.005 requires
 them all to have the same length.

 (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not
 set, the $ meta- character matches only at the very end of
 the string.

 (c) If PCRE_EXTRA is set, a backslash followed by a letter
 with no special meaning is faulted.

 (d) If PCRE_UNGREEDY is set, the greediness of the repeti-
 tion quantifiers is inverted, that is, by default they are
 not greedy, but if followed by a question mark they are.

 (e) PCRE_ANCHORED can be used to force a pattern to be tried
 only at the start of the subject.

 (f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY options
 for pcre_exec() have no Perl equivalents.

 (g) The (?R) construct allows for recursive pattern matching
 (Perl 5.6 can do this using the (?p{code}) construct, which
 PCRE cannot of course support.)

REGULAR EXPRESSION DETAILS
 The syntax and semantics of the regular expressions sup-
 ported by PCRE are described below. Regular expressions are
 also described in the Perl documentation and in a number of
 other books, some of which have copious examples. Jeffrey
 Friedl's "Mastering Regular Expressions", published by
 O'Reilly (ISBN 1-56592-257), covers them in great detail.

 The description here is intended as reference documentation.

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-287

 The basic operation of PCRE is on strings of bytes. However,
 there is the beginnings of some support for UTF-8 character
 strings. To use this support you must configure PCRE to
 include it, and then call pcre_compile() with the PCRE_UTF8
 option. How this affects the pattern matching is described
 in the final section of this document.

 A regular expression is a pattern that is matched against a
 subject string from left to right. Most characters stand for
 themselves in a pattern, and match the corresponding charac-
 ters in the subject. As a trivial example, the pattern

 The quick brown fox

 matches a portion of a subject string that is identical to
 itself. The power of regular expressions comes from the
 ability to include alternatives and repetitions in the pat-
 tern. These are encoded in the pattern by the use of meta-
 characters, which do not stand for themselves but instead
 are interpreted in some special way.

 There are two different sets of meta-characters: those that
 are recognized anywhere in the pattern except within square
 brackets, and those that are recognized in square brackets.
 Outside square brackets, the meta-characters are as follows:

 \ general escape character with several uses
 ^ assert start of subject (or line, in multiline
 mode)
 $ assert end of subject (or line, in multiline mode)
 . match any character except newline (by default)
 [start character class definition
 | start of alternative branch
 (start subpattern
) end subpattern
 ? extends the meaning of (
 also 0 or 1 quantifier
 also quantifier minimizer
 * 0 or more quantifier
 + 1 or more quantifier
 { start min/max quantifier

 Part of a pattern that is in square brackets is called a
 "character class". In a character class the only meta-
 characters are:

 \ general escape character
 ^ negate the class, but only if the first character
 - indicates character range
] terminates the character class

 The following sections describe the use of each of the
 meta-characters.

BACKSLASH

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-288

 The backslash character has several uses. Firstly, if it is
 followed by a non-alphameric character, it takes away any
 special meaning that character may have. This use of

 backslash as an escape character applies both inside and
 outside character classes.

 For example, if you want to match a "*" character, you write
 "*" in the pattern. This applies whether or not the follow-
 ing character would otherwise be interpreted as a meta-
 character, so it is always safe to precede a non-alphameric
 with "\" to specify that it stands for itself. In particu-
 lar, if you want to match a backslash, you write "\\".

 If a pattern is compiled with the PCRE_EXTENDED option, whi-
 tespace in the pattern (other than in a character class) and
 characters between a "#" outside a character class and the
 next newline character are ignored. An escaping backslash
 can be used to include a whitespace or "#" character as part
 of the pattern.

 A second use of backslash provides a way of encoding non-
 printing characters in patterns in a visible manner. There
 is no restriction on the appearance of non-printing charac-
 ters, apart from the binary zero that terminates a pattern,
 but when a pattern is being prepared by text editing, it is
 usually easier to use one of the following escape sequences
 than the binary character it represents:

 \a alarm, that is, the BEL character (hex 07)
 \cx "control-x", where x is any character
 \e escape (hex 1B)
 \f formfeed (hex 0C)
 \n newline (hex 0A)
 \r carriage return (hex 0D)
 \t tab (hex 09)
 \xhh character with hex code hh
 \ddd character with octal code ddd, or backreference

 The precise effect of "\cx" is as follows: if "x" is a lower
 case letter, it is converted to upper case. Then bit 6 of
 the character (hex 40) is inverted. Thus "\cz" becomes hex
 1A, but "\c{" becomes hex 3B, while "\c;" becomes hex 7B.

 After "\x", up to two hexadecimal digits are read (letters
 can be in upper or lower case).

 After "\0" up to two further octal digits are read. In both
 cases, if there are fewer than two digits, just those that
 are present are used. Thus the sequence "\0\x\07" specifies
 two binary zeros followed by a BEL character. Make sure you
 supply two digits after the initial zero if the character
 that follows is itself an octal digit.

 The handling of a backslash followed by a digit other than 0
 is complicated. Outside a character class, PCRE reads it
 and any following digits as a decimal number. If the number

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-289

 is less than 10, or if there have been at least that many
 previous capturing left parentheses in the expression, the
 entire sequence is taken as a back reference. A description
 of how this works is given later, following the discussion
 of parenthesized subpatterns.

 Inside a character class, or if the decimal number is
 greater than 9 and there have not been that many capturing
 subpatterns, PCRE re-reads up to three octal digits follow-
 ing the backslash, and generates a single byte from the
 least significant 8 bits of the value. Any subsequent digits
 stand for themselves. For example:

 \040 is another way of writing a space
 \40 is the same, provided there are fewer than 40
 previous capturing subpatterns
 \7 is always a back reference
 \11 might be a back reference, or another way of
 writing a tab
 \011 is always a tab
 \0113 is a tab followed by the character "3"
 \113 is the character with octal code 113 (since there
 can be no more than 99 back references)
 \377 is a byte consisting entirely of 1 bits
 \81 is either a back reference, or a binary zero
 followed by the two characters "8" and "1"

 Note that octal values of 100 or greater must not be intro-
 duced by a leading zero, because no more than three octal
 digits are ever read.

 All the sequences that define a single byte value can be
 used both inside and outside character classes. In addition,
 inside a character class, the sequence "\b" is interpreted
 as the backspace character (hex 08). Outside a character
 class it has a different meaning (see below).

 The third use of backslash is for specifying generic charac-
 ter types:

 \d any decimal digit
 \D any character that is not a decimal digit
 \s any whitespace character
 \S any character that is not a whitespace character
 \w any "word" character
 \W any "non-word" character

 Each pair of escape sequences partitions the complete set of
 characters into two disjoint sets. Any given character
 matches one, and only one, of each pair.

 A "word" character is any letter or digit or the underscore
 character, that is, any character which can be part of a
 Perl "word". The definition of letters and digits is con-
 trolled by PCRE's character tables, and may vary if locale-
 specific matching is taking place (see "Locale support"
 above). For example, in the "fr" (French) locale, some char-

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-290

 acter codes greater than 128 are used for accented letters,
 and these are matched by \w.

 These character type sequences can appear both inside and
 outside character classes. They each match one character of
 the appropriate type. If the current matching point is at
 the end of the subject string, all of them fail, since there
 is no character to match.

 The fourth use of backslash is for certain simple asser-
 tions. An assertion specifies a condition that has to be met
 at a particular point in a match, without consuming any
 characters from the subject string. The use of subpatterns
 for more complicated assertions is described below. The
 backslashed assertions are

 \b word boundary
 \B not a word boundary
 \A start of subject (independent of multiline mode)
 \Z end of subject or newline at end (independent of
 multiline mode)
 \z end of subject (independent of multiline mode)

 These assertions may not appear in character classes (but
 note that "\b" has a different meaning, namely the backspace
 character, inside a character class).

 A word boundary is a position in the subject string where
 the current character and the previous character do not both
 match \w or \W (i.e. one matches \w and the other matches
 \W), or the start or end of the string if the first or last
 character matches \w, respectively.

 The \A, \Z, and \z assertions differ from the traditional
 circumflex and dollar (described below) in that they only
 ever match at the very start and end of the subject string,
 whatever options are set. They are not affected by the
 PCRE_NOTBOL or PCRE_NOTEOL options. If the startoffset argu-
 ment of pcre_exec() is non-zero, \A can never match. The
 difference between \Z and \z is that \Z matches before a
 newline that is the last character of the string as well as
 at the end of the string, whereas \z matches only at the
 end.

CIRCUMFLEX AND DOLLAR
 Outside a character class, in the default matching mode, the
 circumflex character is an assertion which is true only if
 the current matching point is at the start of the subject
 string. If the startoffset argument of pcre_exec() is non-
 zero, circumflex can never match. Inside a character class,
 circumflex has an entirely different meaning (see below).

 Circumflex need not be the first character of the pattern if
 a number of alternatives are involved, but it should be the
 first thing in each alternative in which it appears if the

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-291

 pattern is ever to match that branch. If all possible alter-
 natives start with a circumflex, that is, if the pattern is
 constrained to match only at the start of the subject, it is
 said to be an "anchored" pattern. (There are also other con-
 structs that can cause a pattern to be anchored.)

 A dollar character is an assertion which is true only if the
 current matching point is at the end of the subject string,
 or immediately before a newline character that is the last
 character in the string (by default). Dollar need not be the
 last character of the pattern if a number of alternatives
 are involved, but it should be the last item in any branch
 in which it appears. Dollar has no special meaning in a
 character class.

 The meaning of dollar can be changed so that it matches only
 at the very end of the string, by setting the
 PCRE_DOLLAR_ENDONLY option at compile or matching time. This
 does not affect the \Z assertion.

 The meanings of the circumflex and dollar characters are
 changed if the PCRE_MULTILINE option is set. When this is
 the case, they match immediately after and immediately
 before an internal "\n" character, respectively, in addition
 to matching at the start and end of the subject string. For
 example, the pattern /^abc$/ matches the subject string
 "def\nabc" in multiline mode, but not otherwise. Conse-
 quently, patterns that are anchored in single line mode
 because all branches start with "^" are not anchored in mul-
 tiline mode, and a match for circumflex is possible when the
 startoffset argument of pcre_exec() is non-zero. The
 PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is
 set.

 Note that the sequences \A, \Z, and \z can be used to match
 the start and end of the subject in both modes, and if all
 branches of a pattern start with \A it is always anchored,
 whether PCRE_MULTILINE is set or not.

FULL STOP (PERIOD, DOT)
 Outside a character class, a dot in the pattern matches any
 one character in the subject, including a non-printing char-
 acter, but not (by default) newline. If the PCRE_DOTALL
 option is set, dots match newlines as well. The handling of
 dot is entirely independent of the handling of circumflex
 and dollar, the only relationship being that they both
 involve newline characters. Dot has no special meaning in a
 character class.

SQUARE BRACKETS
 An opening square bracket introduces a character class, ter-
 minated by a closing square bracket. A closing square
 bracket on its own is not special. If a closing square

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-292

 bracket is required as a member of the class, it should be
 the first data character in the class (after an initial cir-
 cumflex, if present) or escaped with a backslash.

 A character class matches a single character in the subject;
 the character must be in the set of characters defined by
 the class, unless the first character in the class is a cir-
 cumflex, in which case the subject character must not be in
 the set defined by the class. If a circumflex is actually
 required as a member of the class, ensure it is not the
 first character, or escape it with a backslash.

 For example, the character class [aeiou] matches any lower
 case vowel, while [^aeiou] matches any character that is not
 a lower case vowel. Note that a circumflex is just a con-
 venient notation for specifying the characters which are in
 the class by enumerating those that are not. It is not an
 assertion: it still consumes a character from the subject
 string, and fails if the current pointer is at the end of
 the string.

 When caseless matching is set, any letters in a class
 represent both their upper case and lower case versions, so
 for example, a caseless [aeiou] matches "A" as well as "a",
 and a caseless [^aeiou] does not match "A", whereas a case-
 ful version would.

 The newline character is never treated in any special way in
 character classes, whatever the setting of the PCRE_DOTALL
 or PCRE_MULTILINE options is. A class such as [^a] will
 always match a newline.

 The minus (hyphen) character can be used to specify a range
 of characters in a character class. For example, [d-m]
 matches any letter between d and m, inclusive. If a minus
 character is required in a class, it must be escaped with a
 backslash or appear in a position where it cannot be inter-
 preted as indicating a range, typically as the first or last
 character in the class.

 It is not possible to have the literal character "]" as the
 end character of a range. A pattern such as [W-]46] is
 interpreted as a class of two characters ("W" and "-") fol-
 lowed by a literal string "46]", so it would match "W46]" or
 "-46]". However, if the "]" is escaped with a backslash it
 is interpreted as the end of range, so [W-\]46] is inter-
 preted as a single class containing a range followed by two
 separate characters. The octal or hexadecimal representation
 of "]" can also be used to end a range.

 Ranges operate in ASCII collating sequence. They can also be
 used for characters specified numerically, for example
 [\000-\037]. If a range that includes letters is used when
 caseless matching is set, it matches the letters in either
 case. For example, [W-c] is equivalent to [][\^_`wxyzabc],
 matched caselessly, and if character tables for the "fr"
 locale are in use, [\xc8-\xcb] matches accented E characters

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-293

 in both cases.

 The character types \d, \D, \s, \S, \w, and \W may also
 appear in a character class, and add the characters that
 they match to the class. For example, [\dABCDEF] matches any
 hexadecimal digit. A circumflex can conveniently be used
 with the upper case character types to specify a more res-
 tricted set of characters than the matching lower case type.
 For example, the class [^\W_] matches any letter or digit,
 but not underscore.

 All non-alphameric characters other than \, -, ^ (at the
 start) and the terminating] are non-special in character
 classes, but it does no harm if they are escaped.

POSIX CHARACTER CLASSES
 Perl 5.6 (not yet released at the time of writing) is going
 to support the POSIX notation for character classes, which
 uses names enclosed by [: and :] within the enclosing
 square brackets. PCRE supports this notation. For example,

 [01[:alpha:]%]

 matches "0", "1", any alphabetic character, or "%". The sup-
 ported class names are

 alnum letters and digits
 alpha letters
 ascii character codes 0 - 127
 cntrl control characters
 digit decimal digits (same as \d)
 graph printing characters, excluding space
 lower lower case letters
 print printing characters, including space
 punct printing characters, excluding letters and digits
 space white space (same as \s)
 upper upper case letters
 word "word" characters (same as \w)
 xdigit hexadecimal digits

 The names "ascii" and "word" are Perl extensions. Another
 Perl extension is negation, which is indicated by a ^ char-
 acter after the colon. For example,

 [12[:^digit:]]

 matches "1", "2", or any non-digit. PCRE (and Perl) also
 recognize the POSIX syntax [.ch.] and [=ch=] where "ch" is a
 "collating element", but these are not supported, and an
 error is given if they are encountered.

VERTICAL BAR
 Vertical bar characters are used to separate alternative

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-294

 patterns. For example, the pattern

 gilbert|sullivan

 matches either "gilbert" or "sullivan". Any number of alter-
 natives may appear, and an empty alternative is permitted
 (matching the empty string). The matching process tries
 each alternative in turn, from left to right, and the first
 one that succeeds is used. If the alternatives are within a
 subpattern (defined below), "succeeds" means matching the
 rest of the main pattern as well as the alternative in the
 subpattern.

INTERNAL OPTION SETTING
 The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL,
 and PCRE_EXTENDED can be changed from within the pattern by
 a sequence of Perl option letters enclosed between "(?" and
 ")". The option letters are

 i for PCRE_CASELESS
 m for PCRE_MULTILINE
 s for PCRE_DOTALL
 x for PCRE_EXTENDED

 For example, (?im) sets caseless, multiline matching. It is
 also possible to unset these options by preceding the letter
 with a hyphen, and a combined setting and unsetting such as
 (?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while
 unsetting PCRE_DOTALL and PCRE_EXTENDED, is also permitted.
 If a letter appears both before and after the hyphen, the
 option is unset.

 The scope of these option changes depends on where in the
 pattern the setting occurs. For settings that are outside
 any subpattern (defined below), the effect is the same as if
 the options were set or unset at the start of matching. The
 following patterns all behave in exactly the same way:

 (?i)abc
 a(?i)bc
 ab(?i)c
 abc(?i)

 which in turn is the same as compiling the pattern abc with
 PCRE_CASELESS set. In other words, such "top level" set-
 tings apply to the whole pattern (unless there are other
 changes inside subpatterns). If there is more than one set-
 ting of the same option at top level, the rightmost setting
 is used.

 If an option change occurs inside a subpattern, the effect
 is different. This is a change of behaviour in Perl 5.005.
 An option change inside a subpattern affects only that part
 of the subpattern that follows it, so

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-295

 (a(?i)b)c

 matches abc and aBc and no other strings (assuming
 PCRE_CASELESS is not used). By this means, options can be
 made to have different settings in different parts of the
 pattern. Any changes made in one alternative do carry on
 into subsequent branches within the same subpattern. For
 example,

 (a(?i)b|c)

 matches "ab", "aB", "c", and "C", even though when matching
 "C" the first branch is abandoned before the option setting.
 This is because the effects of option settings happen at
 compile time. There would be some very weird behaviour oth-
 erwise.

 The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can
 be changed in the same way as the Perl-compatible options by
 using the characters U and X respectively. The (?X) flag
 setting is special in that it must always occur earlier in
 the pattern than any of the additional features it turns on,
 even when it is at top level. It is best put at the start.

SUBPATTERNS
 Subpatterns are delimited by parentheses (round brackets),
 which can be nested. Marking part of a pattern as a subpat-
 tern does two things:

 1. It localizes a set of alternatives. For example, the pat-
 tern

 cat(aract|erpillar|)

 matches one of the words "cat", "cataract", or "caterpil-
 lar". Without the parentheses, it would match "cataract",
 "erpillar" or the empty string.

 2. It sets up the subpattern as a capturing subpattern (as
 defined above). When the whole pattern matches, that por-
 tion of the subject string that matched the subpattern is
 passed back to the caller via the ovector argument of
 pcre_exec(). Opening parentheses are counted from left to
 right (starting from 1) to obtain the numbers of the captur-
 ing subpatterns.

 For example, if the string "the red king" is matched against
 the pattern

 the ((red|white) (king|queen))

 the captured substrings are "red king", "red", and "king",
 and are numbered 1, 2, and 3, respectively.

 The fact that plain parentheses fulfil two functions is not

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-296

 always helpful. There are often times when a grouping sub-
 pattern is required without a capturing requirement. If an
 opening parenthesis is followed by "?:", the subpattern does
 not do any capturing, and is not counted when computing the
 number of any subsequent capturing subpatterns. For example,
 if the string "the white queen" is matched against the pat-
 tern

 the ((?:red|white) (king|queen))

 the captured substrings are "white queen" and "queen", and
 are numbered 1 and 2. The maximum number of captured sub-
 strings is 99, and the maximum number of all subpatterns,
 both capturing and non-capturing, is 200.

 As a convenient shorthand, if any option settings are
 required at the start of a non-capturing subpattern, the
 option letters may appear between the "?" and the ":". Thus
 the two patterns

 (?i:saturday|sunday)
 (?:(?i)saturday|sunday)

 match exactly the same set of strings. Because alternative
 branches are tried from left to right, and options are not
 reset until the end of the subpattern is reached, an option
 setting in one branch does affect subsequent branches, so
 the above patterns match "SUNDAY" as well as "Saturday".

REPETITION
 Repetition is specified by quantifiers, which can follow any
 of the following items:

 a single character, possibly escaped
 the . metacharacter
 a character class
 a back reference (see next section)
 a parenthesized subpattern (unless it is an assertion -
 see below)

 The general repetition quantifier specifies a minimum and
 maximum number of permitted matches, by giving the two
 numbers in curly brackets (braces), separated by a comma.
 The numbers must be less than 65536, and the first must be
 less than or equal to the second. For example:

 z{2,4}

 matches "zz", "zzz", or "zzzz". A closing brace on its own
 is not a special character. If the second number is omitted,
 but the comma is present, there is no upper limit; if the
 second number and the comma are both omitted, the quantifier
 specifies an exact number of required matches. Thus

 [aeiou]{3,}

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-297

 matches at least 3 successive vowels, but may match many
 more, while

 \d{8}

 matches exactly 8 digits. An opening curly bracket that
 appears in a position where a quantifier is not allowed, or
 one that does not match the syntax of a quantifier, is taken
 as a literal character. For example, {,6} is not a quantif-
 ier, but a literal string of four characters.
 The quantifier {0} is permitted, causing the expression to
 behave as if the previous item and the quantifier were not
 present.

 For convenience (and historical compatibility) the three
 most common quantifiers have single-character abbreviations:

 * is equivalent to {0,}
 + is equivalent to {1,}
 ? is equivalent to {0,1}

 It is possible to construct infinite loops by following a
 subpattern that can match no characters with a quantifier
 that has no upper limit, for example:

 (a?)*

 Earlier versions of Perl and PCRE used to give an error at
 compile time for such patterns. However, because there are
 cases where this can be useful, such patterns are now
 accepted, but if any repetition of the subpattern does in
 fact match no characters, the loop is forcibly broken.

 By default, the quantifiers are "greedy", that is, they
 match as much as possible (up to the maximum number of per-
 mitted times), without causing the rest of the pattern to
 fail. The classic example of where this gives problems is in
 trying to match comments in C programs. These appear between
 the sequences /* and */ and within the sequence, individual
 * and / characters may appear. An attempt to match C com-
 ments by applying the pattern

 /*.**/

 to the string

 /* first command */ not comment /* second comment */

 fails, because it matches the entire string owing to the
 greediness of the .* item.

 However, if a quantifier is followed by a question mark, it
 ceases to be greedy, and instead matches the minimum number
 of times possible, so the pattern

 /*.*?*/

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-298

 does the right thing with the C comments. The meaning of the
 various quantifiers is not otherwise changed, just the pre-
 ferred number of matches. Do not confuse this use of ques-
 tion mark with its use as a quantifier in its own right.
 Because it has two uses, it can sometimes appear doubled, as
 in

 \d??\d

 which matches one digit by preference, but can match two if
 that is the only way the rest of the pattern matches.

 If the PCRE_UNGREEDY option is set (an option which is not
 available in Perl), the quantifiers are not greedy by
 default, but individual ones can be made greedy by following
 them with a question mark. In other words, it inverts the
 default behaviour.

 When a parenthesized subpattern is quantified with a minimum
 repeat count that is greater than 1 or with a limited max-
 imum, more store is required for the compiled pattern, in
 proportion to the size of the minimum or maximum.

 If a pattern starts with .* or .{0,} and the PCRE_DOTALL
 option (equivalent to Perl's /s) is set, thus allowing the .
 to match newlines, the pattern is implicitly anchored,
 because whatever follows will be tried against every charac-
 ter position in the subject string, so there is no point in
 retrying the overall match at any position after the first.
 PCRE treats such a pattern as though it were preceded by \A.
 In cases where it is known that the subject string contains
 no newlines, it is worth setting PCRE_DOTALL when the pat-
 tern begins with .* in order to obtain this optimization, or
 alternatively using ^ to indicate anchoring explicitly.

 When a capturing subpattern is repeated, the value captured
 is the substring that matched the final iteration. For exam-
 ple, after

 (tweedle[dume]{3}\s*)+

 has matched "tweedledum tweedledee" the value of the cap-
 tured substring is "tweedledee". However, if there are
 nested capturing subpatterns, the corresponding captured
 values may have been set in previous iterations. For exam-
 ple, after

 /(a|(b))+/

 matches "aba" the value of the second captured substring is
 "b".

BACK REFERENCES
 Outside a character class, a backslash followed by a digit

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-299

 greater than 0 (and possibly further digits) is a back

SunOS 5.8 Last change: 30

 reference to a capturing subpattern earlier (i.e. to its
 left) in the pattern, provided there have been that many
 previous capturing left parentheses.

 However, if the decimal number following the backslash is
 less than 10, it is always taken as a back reference, and
 causes an error only if there are not that many capturing
 left parentheses in the entire pattern. In other words, the
 parentheses that are referenced need not be to the left of
 the reference for numbers less than 10. See the section
 entitled "Backslash" above for further details of the han-
 dling of digits following a backslash.

 A back reference matches whatever actually matched the cap-
 turing subpattern in the current subject string, rather than
 anything matching the subpattern itself. So the pattern

 (sens|respons)e and \1ibility

 matches "sense and sensibility" and "response and responsi-
 bility", but not "sense and responsibility". If caseful
 matching is in force at the time of the back reference, the
 case of letters is relevant. For example,

 ((?i)rah)\s+\1

 matches "rah rah" and "RAH RAH", but not "RAH rah", even
 though the original capturing subpattern is matched case-
 lessly.

 There may be more than one back reference to the same sub-
 pattern. If a subpattern has not actually been used in a
 particular match, any back references to it always fail. For
 example, the pattern

 (a|(bc))\2

 always fails if it starts to match "a" rather than "bc".
 Because there may be up to 99 back references, all digits
 following the backslash are taken as part of a potential
 back reference number. If the pattern continues with a digit
 character, some delimiter must be used to terminate the back
 reference. If the PCRE_EXTENDED option is set, this can be
 whitespace. Otherwise an empty comment can be used.

 A back reference that occurs inside the parentheses to which
 it refers fails when the subpattern is first used, so, for
 example, (a\1) never matches. However, such references can

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-300

 be useful inside repeated subpatterns. For example, the pat-
 tern

 (a|b\1)+

 matches any number of "a"s and also "aba", "ababbaa" etc. At
 each iteration of the subpattern, the back reference matches
 the character string corresponding to the previous itera-
 tion. In order for this to work, the pattern must be such
 that the first iteration does not need to match the back
 reference. This can be done using alternation, as in the
 example above, or by a quantifier with a minimum of zero.

ASSERTIONS
 An assertion is a test on the characters following or
 preceding the current matching point that does not actually
 consume any characters. The simple assertions coded as \b,
 \B, \A, \Z, \z, ^ and $ are described above. More compli-
 cated assertions are coded as subpatterns. There are two
 kinds: those that look ahead of the current position in the
 subject string, and those that look behind it.

 An assertion subpattern is matched in the normal way, except
 that it does not cause the current matching position to be
 changed. Lookahead assertions start with (?= for positive
 assertions and (?! for negative assertions. For example,

 \w+(?=;)

 matches a word followed by a semicolon, but does not include
 the semicolon in the match, and

 foo(?!bar)

 matches any occurrence of "foo" that is not followed by
 "bar". Note that the apparently similar pattern

 (?!foo)bar

 does not find an occurrence of "bar" that is preceded by
 something other than "foo"; it finds any occurrence of "bar"
 whatsoever, because the assertion (?!foo) is always true
 when the next three characters are "bar". A lookbehind
 assertion is needed to achieve this effect.

 Lookbehind assertions start with (?<= for positive asser-
 tions and (?<! for negative assertions. For example,

 (?<!foo)bar

 does find an occurrence of "bar" that is not preceded by
 "foo". The contents of a lookbehind assertion are restricted
 such that all the strings it matches must have a fixed
 length. However, if there are several alternatives, they do
 not all have to have the same fixed length. Thus

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-301

 (?<=bullock|donkey)

 is permitted, but

 (?<!dogs?|cats?)

 causes an error at compile time. Branches that match dif-
 ferent length strings are permitted only at the top level of
 a lookbehind assertion. This is an extension compared with
 Perl 5.005, which requires all branches to match the same
 length of string. An assertion such as

 (?<=ab(c|de))

 is not permitted, because its single top-level branch can
 match two different lengths, but it is acceptable if rewrit-
 ten to use two top-level branches:

 (?<=abc|abde)

 The implementation of lookbehind assertions is, for each
 alternative, to temporarily move the current position back
 by the fixed width and then try to match. If there are
 insufficient characters before the current position, the
 match is deemed to fail. Lookbehinds in conjunction with
 once-only subpatterns can be particularly useful for match-
 ing at the ends of strings; an example is given at the end
 of the section on once-only subpatterns.

 Several assertions (of any sort) may occur in succession.
 For example,

 (?<=\d{3})(?<!999)foo

 matches "foo" preceded by three digits that are not "999".
 Notice that each of the assertions is applied independently
 at the same point in the subject string. First there is a
 check that the previous three characters are all digits, and
 then there is a check that the same three characters are not
 "999". This pattern does not match "foo" preceded by six
 characters, the first of which are digits and the last three
 of which are not "999". For example, it doesn't match
 "123abcfoo". A pattern to do that is

 (?<=\d{3}...)(?<!999)foo

 This time the first assertion looks at the preceding six
 characters, checking that the first three are digits, and
 then the second assertion checks that the preceding three
 characters are not "999".

 Assertions can be nested in any combination. For example,

 (?<=(?<!foo)bar)baz

 matches an occurrence of "baz" that is preceded by "bar"

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-302

 which in turn is not preceded by "foo", while

 (?<=\d{3}(?!999)...)foo

 is another pattern which matches "foo" preceded by three
 digits and any three characters that are not "999".

 Assertion subpatterns are not capturing subpatterns, and may
 not be repeated, because it makes no sense to assert the
 same thing several times. If any kind of assertion contains
 capturing subpatterns within it, these are counted for the
 purposes of numbering the capturing subpatterns in the whole
 pattern. However, substring capturing is carried out only
 for positive assertions, because it does not make sense for
 negative assertions.

 Assertions count towards the maximum of 200 parenthesized
 subpatterns.

ONCE-ONLY SUBPATTERNS
 With both maximizing and minimizing repetition, failure of
 what follows normally causes the repeated item to be re-
 evaluated to see if a different number of repeats allows the
 rest of the pattern to match. Sometimes it is useful to
 prevent this, either to change the nature of the match, or
 to cause it fail earlier than it otherwise might, when the
 author of the pattern knows there is no point in carrying
 on.

 Consider, for example, the pattern \d+foo when applied to
 the subject line

 123456bar

 After matching all 6 digits and then failing to match "foo",
 the normal action of the matcher is to try again with only 5
 digits matching the \d+ item, and then with 4, and so on,
 before ultimately failing. Once-only subpatterns provide the
 means for specifying that once a portion of the pattern has
 matched, it is not to be re-evaluated in this way, so the
 matcher would give up immediately on failing to match "foo"
 the first time. The notation is another kind of special
 parenthesis, starting with (?> as in this example:

 (?>\d+)bar

 This kind of parenthesis "locks up" the part of the pattern
 it contains once it has matched, and a failure further into
 the pattern is prevented from backtracking into it. Back-
 tracking past it to previous items, however, works as nor-
 mal.

 An alternative description is that a subpattern of this type
 matches the string of characters that an identical stan-
 dalone pattern would match, if anchored at the current point

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-303

 in the subject string.

 Once-only subpatterns are not capturing subpatterns. Simple
 cases such as the above example can be thought of as a max-
 imizing repeat that must swallow everything it can. So,
 while both \d+ and \d+? are prepared to adjust the number of
 digits they match in order to make the rest of the pattern
 match, (?>\d+) can only match an entire sequence of digits.

 This construction can of course contain arbitrarily compli-
 cated subpatterns, and it can be nested.

 Once-only subpatterns can be used in conjunction with look-
 behind assertions to specify efficient matching at the end
 of the subject string. Consider a simple pattern such as

 abcd$

 when applied to a long string which does not match. Because
 matching proceeds from left to right, PCRE will look for
 each "a" in the subject and then see if what follows matches
 the rest of the pattern. If the pattern is specified as

 ^.*abcd$

 the initial .* matches the entire string at first, but when
 this fails (because there is no following "a"), it back-
 tracks to match all but the last character, then all but the
 last two characters, and so on. Once again the search for
 "a" covers the entire string, from right to left, so we are
 no better off. However, if the pattern is written as

 ^(?>.*)(?<=abcd)

 there can be no backtracking for the .* item; it can match
 only the entire string. The subsequent lookbehind assertion
 does a single test on the last four characters. If it fails,
 the match fails immediately. For long strings, this approach
 makes a significant difference to the processing time.

 When a pattern contains an unlimited repeat inside a subpat-
 tern that can itself be repeated an unlimited number of
 times, the use of a once-only subpattern is the only way to
 avoid some failing matches taking a very long time indeed.
 The pattern

 (\D+|<\d+>)*[!?]

 matches an unlimited number of substrings that either con-
 sist of non-digits, or digits enclosed in <>, followed by
 either ! or ?. When it matches, it runs quickly. However, if
 it is applied to

 aa

 it takes a long time before reporting failure. This is
 because the string can be divided between the two repeats in

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-304

 a large number of ways, and all have to be tried. (The exam-
 ple used [!?] rather than a single character at the end,
 because both PCRE and Perl have an optimization that allows
 for fast failure when a single character is used. They
 remember the last single character that is required for a
 match, and fail early if it is not present in the string.)
 If the pattern is changed to

 ((?>\D+)|<\d+>)*[!?]

 sequences of non-digits cannot be broken, and failure hap-
 pens quickly.

CONDITIONAL SUBPATTERNS
 It is possible to cause the matching process to obey a sub-
 pattern conditionally or to choose between two alternative
 subpatterns, depending on the result of an assertion, or
 whether a previous capturing subpattern matched or not. The
 two possible forms of conditional subpattern are

 (?(condition)yes-pattern)
 (?(condition)yes-pattern|no-pattern)

 If the condition is satisfied, the yes-pattern is used; oth-
 erwise the no-pattern (if present) is used. If there are
 more than two alternatives in the subpattern, a compile-time
 error occurs.

 There are two kinds of condition. If the text between the
 parentheses consists of a sequence of digits, the condition
 is satisfied if the capturing subpattern of that number has
 previously matched. The number must be greater than zero.
 Consider the following pattern, which contains non-
 significant white space to make it more readable (assume the
 PCRE_EXTENDED option) and to divide it into three parts for
 ease of discussion:

 (\()? [^()]+ (?(1) \))

 The first part matches an optional opening parenthesis, and
 if that character is present, sets it as the first captured
 substring. The second part matches one or more characters
 that are not parentheses. The third part is a conditional
 subpattern that tests whether the first set of parentheses
 matched or not. If they did, that is, if subject started
 with an opening parenthesis, the condition is true, and so
 the yes-pattern is executed and a closing parenthesis is
 required. Otherwise, since no-pattern is not present, the
 subpattern matches nothing. In other words, this pattern
 matches a sequence of non-parentheses, optionally enclosed
 in parentheses.

 If the condition is not a sequence of digits, it must be an
 assertion. This may be a positive or negative lookahead or
 lookbehind assertion. Consider this pattern, again contain-

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-305

 ing non-significant white space, and with the two alterna-
 tives on the second line:

 (?(?=[^a-z]*[a-z])
 \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

 The condition is a positive lookahead assertion that matches
 an optional sequence of non-letters followed by a letter. In
 other words, it tests for the presence of at least one
 letter in the subject. If a letter is found, the subject is
 matched against the first alternative; otherwise it is
 matched against the second. This pattern matches strings in
 one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
 letters and dd are digits.

COMMENTS
 The sequence (?# marks the start of a comment which contin-
 ues up to the next closing parenthesis. Nested parentheses
 are not permitted. The characters that make up a comment
 play no part in the pattern matching at all.

 If the PCRE_EXTENDED option is set, an unescaped # character
 outside a character class introduces a comment that contin-
 ues up to the next newline character in the pattern.

RECURSIVE PATTERNS
 Consider the problem of matching a string in parentheses,
 allowing for unlimited nested parentheses. Without the use
 of recursion, the best that can be done is to use a pattern
 that matches up to some fixed depth of nesting. It is not
 possible to handle an arbitrary nesting depth. Perl 5.6 has
 provided an experimental facility that allows regular
 expressions to recurse (amongst other things). It does this
 by interpolating Perl code in the expression at run time,
 and the code can refer to the expression itself. A Perl pat-
 tern to solve the parentheses problem can be created like
 this:

 $re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

 The (?p{...}) item interpolates Perl code at run time, and
 in this case refers recursively to the pattern in which it
 appears. Obviously, PCRE cannot support the interpolation of
 Perl code. Instead, the special item (?R) is provided for
 the specific case of recursion. This PCRE pattern solves the
 parentheses problem (assume the PCRE_EXTENDED option is set
 so that white space is ignored):

 \(((?>[^()]+) | (?R))* \)

 First it matches an opening parenthesis. Then it matches any
 number of substrings which can either be a sequence of non-
 parentheses, or a recursive match of the pattern itself

Virtual Machine Instruction Set

Sun Microsystems Laboratories

19-306

 (i.e. a correctly parenthesized substring). Finally there is
 a closing parenthesis.

 This particular example pattern contains nested unlimited
 repeats, and so the use of a once-only subpattern for match-
 ing strings of non-parentheses is important when applying
 the pattern to strings that do not match. For example, when
 it is applied to

 (aaa()

 it yields "no match" quickly. However, if a once-only sub-
 pattern is not used, the match runs for a very long time
 indeed because there are so many different ways the + and *
 repeats can carve up the subject, and all have to be tested
 before failure can be reported.

 The values set for any capturing subpatterns are those from
 the outermost level of the recursion at which the subpattern
 value is set. If the pattern above is matched against

 (ab(cd)ef)

 the value for the capturing parentheses is "ef", which is
 the last value taken on at the top level. If additional
 parentheses are added, giving

 \((((?>[^()]+) | (?R))*) \)
 ^ ^
 ^ ^ the string they capture is
 "ab(cd)ef", the contents of the top level parentheses. If
 there are more than 15 capturing parentheses in a pattern,
 PCRE has to obtain extra memory to store data during a
 recursion, which it does by using pcre_malloc, freeing it
 via pcre_free afterwards. If no memory can be obtained, it
 saves data for the first 15 capturing parentheses only, as
 there is no way to give an out-of-memory error from within a
 recursion.

Grammar definition

Sun Microsystems Laboratories

20-307

Chapter 20. Grammar definition

This chapter gives a description of the formal grammar of the language. It is not meant as a precise
definition of the language. The Aikido grammar is not a regular grammar. The Aikido parser is tries to be
clever and make sense of the user’s input. In particular, the user can omit the semicolon characters from
statements if the end of the statement is obvious. This feature makes it very difficult (if not impossible) to
describe the grammar in a way that could be used as input to a regular grammar checker (such as yacc).

20.1. Program structure

A program consists of a sequence of statements

program:
statement-sequence

statement-sequence:
statement
statement-sequence statement

statement:
macro-instantiation
null-statement
compound-statement
expression
variable-declaration
static-declaration
block-declaration
block-extension
if-statement
break-statement
continue-statement
return-statement
while-statement
do-statement
for-statement
foreach-statement
switch-statement
macro-statement
inner-statement
try-statement
throw-statement
import-statement
access-control-statement
using-statement
delete-statement
synchronized-statement

static-declaration:
static variable-declaration
static block-declaration

Grammar definition

Sun Microsystems Laboratories

20-308

20.2. Declarations

A declaration is used to tell the parser about the existence of a named thing. This ‘thing’ can be a variable
or a block.

20.2.1. Variables

A variable is introduced by the keyword const, var or generic. Constants and regular variables must be
initialized with an expression. Generic variables need not be initialized.

variable-declaration:
constant-declaration
regular-var-declaration
generic-var-declaration

constant-declaration:
const var-decl-sequence

regular-var-declaration:
var var-decl-sequence

generic-var-declaration:
generic gen-var-decl-sequence

var-decl-sequence:
var-decl
var-decl-sequence , var-decl

var-decl:
identifier = expression

gen-var-decl-sequence:
gen-var-decl
gen-var-decl-sequence , gen-var-decl

gen-var-decl:
identifier
identifier = expression

20.2.2. Blocks

A block is a package, class, function, thread, operator or monitor. In this section we also include
enumerations which, although are not blocks in the same sense as a package, are similar in construction.

block-declaration:
package-declaration
class-declaration
function-declaration
thread-declaration
monitor-declaration

Grammar definition

Sun Microsystems Laboratories

20-309

enum-declaration
operator-declaration
interface-declaration

package-declaration:
package package-name block-definition

class-declaration:
class identifier block-definition

function-declaration:
function identifier block-definition
native functionopt identifier native-parameters

thread-declaration:
thread identifier block-definition

monitor-declaration:
monitor identifier block-definition

enum-declaration:
enum identifier super-enumopt enum-body

operator-declaration:
operator operator-name block-definition

interface-declaration:
interface identifier interface-definition

Enumeration structure. Enumerations can have a super-enum (be derived from another enumeration).
Their body consists of a brace-enclosed set of identifiers.

super-enum:
extends identifier

enum-body:
{ enum-ident-seqopt }

enum-ident-seq:
enum-identifier
enum-ident-seq , enum-identifier

enum-identifier:
identifier enum-id-valueopt

enum-id-value:
= constant-expression

Operator and package names are not simple identifiers. An operator is one of a set of built-in operator
tokens. A package name is a set of identifiers separated by dots.

operator-name: one of
* + - / % ~ ^ ! &
| << >> >>> < > <= >= ==

Grammar definition

Sun Microsystems Laboratories

20-310

!= -> sizeof typeof foreach cast [] () in

package-name:
identifier
identifier . identifier

A block definition consists of a set of parameters, a super-block definition and the block body.
Alternatively it may be simply an ellipsis (...) meaning that it is a forward declaration of the block.

block-definition:
block-parametersopt function-result-typeopt superblock-definitionopt block-body
ellipsis

interface-definition:
superblock-definitionopt interface-body
ellipsis

block-parameters:
(parameter-decl-sequence)

parameter-decl-sequence:
parmeter-decl
parameter-decl-sequence , parameter-decl

parameter-decl:
parameter-decl-specifieropt access-modeopt identifier para-typeopt para-defaultopt

ellipsis

parameter-decl-specifier:
var
const

access-mode:
private
protected
public

para-type:
: postfix-expression

para-default:
= expression

function-result-type:
: postfix-expression

superblock-definition:
extends identifier implements-clauseopt superblock-parametersopt

implements-clause:
implements interface-sequence

interface-sequence:
identifier

Grammar definition

Sun Microsystems Laboratories

20-311

interface-sequence , identifier

superblock-parameters:
expression
superblock-parameters , expression

block-body:
{ statement-sequenceopt }

interface-body:
{ interface-member-sequenceopt }

interface-member-sequence:
interface-member
interface-member-sequence interface-member

interface-member:
interface-member-type identifier block-parameters
operator operator-name block-parameters

native-parameters:
(native-para-list)

native-para-list:
native-para
native-para-list , native-para

native-para:
identifier
var identifier
ellipsis

Block extension allows us to extend an existing block. The syntax does not specify the block type as this is
known from the block name. The block being extended must be in scope (its name is a simple identifier).
The block may be a regular block or an enumeration.

block-extension:
extend identifier externsion-body

extension-body:
extension-parametersopt block-body
enum-body

extension-parameters:
(ext-para-decl-sequence)

ext-para-decl-sequence:
ext-parm-decl
ext-para-decl-sequence , ext-para-decl

ext-para-decl:
parameter-decl-specifieropt access-modeopt identifier para-typeopt para-default

Grammar definition

Sun Microsystems Laboratories

20-312

20.3. Statements
Statements are the meat of the program, providing the code to be executed. An expression and a
declaration are also statements. Note that there is no semicolon terminator on the statements themselves.
Generally, semicolons are ignored when they are found except in certain circumstances. See section 7.2 for
details of the semantics of this.

compound-statement:
{ statement-sequenceopt }

null-statement:
;

if-statement:
if (expression) statement
if (expression) statement else statement
if (expression) statement elif-clause-seq
if (expression) statement elif-clause-seq else statement

elif-clause-seq:
elif-clause
elif-clause-seq elif-clause

elif-clause:
elif (expression) statement

break-statement:
break

continue-statement:
continue

return-statement:
return expressionopt

while-statement:
while (expression) statement

do-statement:
do statement while (expression)

for-statement:
for (for-initopt ; expressionopt ; expressionopt) statement

for-init:
expression
var identifier = expression

foreach-statement:
foreach identifier inopt expression statement
foreach identifier inopt range-expression statement

switch-statement:
switch (expression) switch-body

Grammar definition

Sun Microsystems Laboratories

20-313

switch-body:
{ switch-clause-seq }

switch-clause-seq:
switch-clause
switch-clause-seq switch-clause

switch-clause:
case expression : statement
default : statement

try-statement:
try statement catch-clause

catch-clause:
 catch (identifier) statement

throw-statement:
throw expression

import-statement:
import import-ident-list
import string-literal

import-ident-list:
wildcarded-identifier
import-ident-list . wildcarded-identifier

access-control-statement:
global-access-control
local-access-control

global-access-control:
access-mode :

local-access-control:
access-mode statement

using-statement:
using using-ident-list

using-ident-list:
using-ident
using-ident-list , using-ident

using-ident:
identifier
using-ident . identifier

delete-statement:
delete expression

synchronized-statement:
synchronized (expression) statement

Grammar definition

Sun Microsystems Laboratories

20-314

synchronized statement

Macros are slightly different in structure than a regular statement. They are textual entities that buffer up a
block of text for later when they are instantiated. They don’t care what is in the block until the instantiation
is done.

macro-statement:
macro identifier macro-argsopt super-macroopt macro-body

macro-args:
macro-arg
macro-args , macro-arg

macro-arg:
identifier macro-arg-defaultopt

macro-arg-default:
= string-literal

super-macro:
extends identifier super-macro-argsopt

super-macro-args:
rest of characters up to line-feed

macro-body:
{ line-feed macro-body-parts }

macro-body-parts:
any character sequence

inner-statement:
ellipsis

macro-instantiation:
macro-name macro-actual-parametersopt inner-blockopt

macro-name:
identifier

macro-actual-parameters:
macro-act-para-seq

macro-act-para-seq:
macro-act-paraopt

macro-act-para-seq , macro-act-paraopt

macro-act-para:
character sequence of any character except comma and open brace

inner-block:
{ line-feed statement-sequence }

Grammar definition

Sun Microsystems Laboratories

20-315

20.4. Expressions
Expressions are presented in their usual recursive descent form. The lowest priority expressions are listed
first.

expression:
assignment-expression

constant-expression:
const-or-expression

assignment-expression:
stream-expression
assignment-expression assignment-op stream-expression

assignment-op: one of
= += -= *= /= %= &= |= ^=
<<= >>= >>>=

stream-expression:
conditional-expression
stream-expression -> conditional-expression

conditional-expression:
logical-or-expression
logical-or-expression ? expression : conditional-expression

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

logical-and-expression:
or-expression
logical-and-expression && or-expression

or-expression:
xor-expression
or-expression | xor-expression

xor-expression:
and-expression
xor-expression ^ and-expression

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

relational-expresion:
shift-expression
relational-expression < shift-expression

Grammar definition

Sun Microsystems Laboratories

20-316

relational-expression <= shift-expression
relational-expression > shift-expression
relational-expression >= shift-expression
relational-expression instanceof shift-expression
relational-expression in range-expression

range-expression:
shift-expression
shift-expression ellipsis shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
shift-expression >>> additive-expression

additive-expression:
mult-expression
additive-expression + mult-expression
additive-expression - mult-expression

mult-expression:
unary-expression
mult-expression * unary-expression
mult-expression /unary-expression
mult-expression %unary-expression

unary-expression:
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
++ unary-expression
-- unary-expression
sizeof expression
typeof expression
cast-expression
postfix-expression

cast-expression:
cast < postfix-expression > (expression)

The postfix expression set cause the most problems with the “Natural End” of a statement rules. Any
operator used as a postfix expression operator cannot be preceded by a linefeed character. The text {no
linefeed} is not part of the syntax, but signifies that no linefeed can occur at that point.

postfix-expression:
primary-expression
postfix-expression {no linefeed}++
postfix-expression {no linefeed} --
subscript-expression
member-access-expression
call-expression

subscript-expression:
postfix-expression {no linefeed} [expression]

Grammar definition

Sun Microsystems Laboratories

20-317

member-access-expression:
postfix-expression . operator operator-name
postfix-expression . identifier

call-expression:
postfix-expression {no linefeed} (expression-list)

expression-list:
expression
expression-list , expression

primary-expression:
(expression)
identifier
integer-number
real-number
character-literal
string-literal
true
false
null
vector-literal
map-literal
new-expression
direct-operator-expression
inline-block-expression
anonymous-block-expression

vector-literal:
[expression-listopt]

map-literal:
{ map-entry-seqopt }

map-entry-seq:
map-entry
map-entry-seq , map-entry

map-entry:
conditional-expression = conditional-expression

new-expression:
new new-vector-specifier
new new-identifier new-vector-specifieropt call-expression

new-vector-specifier:
new-vector
new-vector-specifier new-vector

new-vector:
[expression]

new-identifier:
identifier
new-identifier . identifier

Grammar definition

Sun Microsystems Laboratories

20-318

direct-operator-expression:
operator operator-name

inline-block-expression:
` statement-sequence `

anonymous-block-expression:
anon-function-expression
anon-thread-expression
anon-class-expression
anon-monitor-expression
anon-package-expression

anon-function-expression:
function anon-block-definition

anon-thread-expression:
thread anon-block-definition

anon-class-expression:
class anon-block-definition

anon-monitor-expression:
monitor anon-block-definition

anon-package-expression:
package anon-block-definition

anon-block-definition:
block-parametersopt superblock-definitionopt block-body

Constant expressions are integer-only expressions that can be evaluated at parse time. They can contain
identifiers but these must be an existing enumeration constant.

const-or-expression:
const-xor-expression
const-or-expression | const-xor-expression

const-xor-expression:
const-and-expression
const-xor-expression ^ const-and-expression

const-and-expression:
const-equality-expression
const-and-expression & const-equality-expression

const-equality-expression:
const-relational-expression
const-equality-expression == const-relational-expression
const-equality-expression != const-relational-expression

const-relational-expresion:

Grammar definition

Sun Microsystems Laboratories

20-319

const-shift-expression
const-relational-expression < const-shift-expression
const-relational-expression <= const-shift-expression
const-relational-expression > const-shift-expression
const-relational-expression >= const-shift-expression

const-shift-expression:
const-additive-expression
const-shift-expression << const-additive-expression
const-shift-expression >> const-additive-expression
const-shift-expression >>> const-additive-expression

const-additive-expression:
const-mult-expression
const-additive-expression + const-mult-expression
const-additive-expression - const-mult-expression

const-mult-expression:
const-unary-expression
const-mult-expression * const-unary-expression
const-mult-expression /const-unary-expression
const-mult-expression %const-unary-expression

const-unary-expression:
+ const-unary-expression
- const-unary-expression
! const-unary-expression
~ const-unary-expression
const-primary-expression

const-primary-expression:
(constant-expression)
identifier
integer-number
character-literal
true
false

20.5. Lexical conventions
These are the low level constructs of the language.

integer-number
hex-number
decimal-number
octal-number
binary-number

hex-number:
0x hex-digit-sequence

decimal-number:

Grammar definition

Sun Microsystems Laboratories

20-320

digit-sequence

octal-number:
0 octal-digit-sequence

binary-number:
0b binary-digit-sequence

hex-digit-sequence:
hex-digit
hex-digit-sequence hex-digit

digit-sequence:
digit
digit-sequence digit

octal-digit-sequence:
octal-digit
octal-digit-sequence octal-digit

binary-digit-sequence:
binary-digit
binary-digit-sequence binary-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

binary-digit: one of
0 1

real-number:
decimal-digit-sequenceopt . decimal-digit-sequence exponentopt

decimal-digit-sequence exponent

exponent:
e sign decimal-digit-sequence
E sign decimal-digit-sequence

sign: one of
+ -

identifier:
letter-or-underscore identifier-character-sequence

identifier-character-sequence:
identifier-character
identifier-character-sequence identifier-character

Grammar definition

Sun Microsystems Laboratories

20-321

letter-or-underscore: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
_

identifier-character: one of
decimal-digit letter-or-underscore

wildcarded-identifier:
wildcard-character
wildcarded-identifier wildcard-character

wildcard-character:
any character except .

string-literal:
“ string-character-sequence “

character-literal:
‘ character ‘

string-character-sequence:
string-character
string-character-sequence string-character

string-character:
any character except \, line-feed or “
escape-sequence

character:
any character except \, line-feed or ‘
escape-sequence

escape-sequence:
simple-escape
octal-escape
hex-escape

simple-escape: one of
\a \b \f \n \r \t \v
\\ \’ \”

octal-escape:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hex-escape:
\x hex-digit-sequence

ellipsis:
...
..

Index

Sun Microsystems Laboratories

323

Index

A

abort ... 15-185
accept ..9-129, 15-196
Access Control5-55, 5-61
acos .. 15-198
alias .. 17-279
anonymous blocks... 6-77
append.. 15-199
asin... 15-198
atan... 15-198
atan2... 15-198
availableChars ... 15-181

B

bitsToReal.. 15-191
block

anonymous .. 6-77
inline .. 6-77

Block
Equivalence ... 5-52
extension.. 5-62
Inheritance... 5-53
Member ... 5-59
Nesting... 5-52
Parameters ... 5-46

break ...7-112, 7-114
Breakpoint ... 17-274

Clearing ... 17-276
Conditional .. 17-276

bsearch ... 15-179

C

case .. 7-106
cast ..5-73, 6-100
catch..7-115, 8-119
ceil.. 15-198
chdir ... 15-181
Class..3-32, 5-66
clear.. 17-276
clone... 15-179
close ... 15-180
Comments.. 2-25
const... 5-44
Constant ... 5-44
Container ... 15-201
continue ..7-112, 7-114
cos .. 15-198
cosh .. 15-198
ctype... 15-197

D

aikido.zip..11-150
AIKIDOPATH...11-150
date ...15-182
Date ..15-192
Declaration

As statement...7-103
Forward..5-51
static ...5-50

default...7-106
delete ..7-115
do..7-111
down...17-278
Dynamic Types ..1-11

E

elif...7-106
else..7-106
enum...3-34
Enumeration...3-34

Constant ...3-34
Extending ...3-36

eof...15-181
error ..15-185
eval ...15-187
Exception7-115, 8-117, 15-193

Runtime Error ..8-123
Stack unwinding ..8-121
Uncaught..8-121

exec...15-186
exit..15-185
exp ..15-198
Expression

As statement...7-103
Primary...6-76
Regular...6-95

extend ...5-62

F

fabs ...15-198
false ..6-76
FileException ...15-193
Filename...15-208
fill ...15-179
finalize..13-168
find ...15-179
floor ..15-198
flush..15-181
fmod ...15-198

Index

Sun Microsystems Laboratories

324

for..7-111, 7-112
foreach ..7-111, 7-112
format... 15-185
formatIPAddress.. 15-196
function

result type .. 5-52
Function... 5-64

native ... 5-64
Functions

native ... 11-151
virtual... 5-57

G

Garbage collection .. 7-115
getAddress ... 15-196
getbuffer... 15-181
getchar ... 15-181
getenv... 15-185
getlimit... 15-185
getStackTrace .. 15-185
getUser... 15-185
getwd.. 15-181
Grammar.. 20-309

H

hash .. 15-180
Hashtable ... 15-205

I

Identifier ...2-27, 6-76
if 7-106
import..7-109, 11-149
Imports

Search paths... 11-150
Inheritance ..5-53, 12-163

function.. 5-55
Macro... 12-163
Multiple ... 5-53
Single... 5-53

inline blocks .. 6-77
Inner statement .. 1-11
Inner Statement ... 12-159
input ... 9-127
instanceof... 6-83
interface ... 6-83

J

Java .. 15-213
join ... 10-148

K

kill .. 15-189

L

Late binding... 5-59
LD_LIBRARY_PATH 11-150

ldexp...15-198
Lexical Analyzer..15-208
list ...17-279
List..15-202
Literal ...2-25

Character..2-26
Number ..2-25
String..2-27

load...15-188
loadLibrary...15-181
log...15-198
log10...15-198
lookupAddress ...15-196
lookupName..................................... 9-129, 15-196

M

macro..12-159
Macro ...12-159

Arguments..12-160
Inheritance ...12-163
Inner Statement..12-159
Scope..12-162

Map...15-203
Literal ...6-76

match ..15-191
math..15-197
Monitor...3-32

notify ..10-142
notifyAll...10-142
timedwait ...10-142
wait...10-142

Monitors ...10-139
Mutex ...10-145

N

Namespace ...4-41
new ... 5-66, 6-91
next ... 17-274, 17-277
nexti..17-277
notify ..10-142
notifyAll ...10-142
null..6-76
Number...6-76

Binary...2-26
Decimal ..2-26
Hexadecimal ..2-26
Octal ...2-26

O

open 9-128, 15-180, 15-196
openfd... 9-128, 15-180
openin... 9-128, 15-180
OpenMode..15-193
opennet ...9-129
openout... 9-128, 15-180
openserver ..9-129

Index

Sun Microsystems Laboratories

325

openServer... 15-196
openSocket .. 15-196
openup ..9-128, 15-180
Operator

[]5-69
->9-134
Arithmetic.. 6-78
Assignment.. 6-85
Bitwise... 6-80
Call... 6-89
Call of overload... 6-97
cast ..5-73, 6-100
Comparison ... 6-81
Conditional .. 6-86
Decrement ... 6-88
foreach ... 5-72
Function call.. 5-69
in 6-84
Increment... 6-88
instanceof... 6-83
Logical... 6-89
Member access .. 6-97
new... 6-91
Overloading... 5-67
Precedence... 6-75
Relational .. 6-81
sizeof...5-71, 6-98
Stream..................................... 5-69, 6-86, 9-134
Subscript...5-69, 6-93
typeof..5-71, 6-98

operator -> ... 15-196
output ... 9-127

P

package .. 5-63
Package.. 3-32
Pair ... 15-193
Parameter

Default ... 5-48
Reference... 5-48
Types ... 5-47
Understanding ... 5-49
Variable ... 5-49

ParameterException 15-193
peek...15-190, 15-196
pipe .. 15-187
pipeclose .. 15-181
poke.. 15-191
pow .. 15-198
print.. 17-278
printStackTrace ... 15-185
private ...5-55, 5-61
protected ...5-55, 5-61
public ..5-55, 5-61

Q

Queue ...15-204

R

rand...15-185
readdir ..15-181
readfile..15-181
receive ..15-196
redirectStream..15-181
Regex..15-192
Registry ..15-212
Regular expression.......................................19-287
Regular Expressions ..6-95
replace ..15-180
resize ..15-179
retarget..15-196
return ..7-114
rewind...15-181
rfind ..15-179
round ..15-198
run... 17-274, 17-276

S

scope...5-45
seek...15-181
select...15-181
Semaphore..10-146
Semicolon...7-104
send...15-196
set ...17-278
setenv..15-185
setlimit..15-185
setStreamAttribute15-181
show

stack ...17-276
sighold ..15-189
sigignore...15-190
signals...15-188
Signals ..15-193
sigpause..15-190
sigrelse..15-189
sigset...15-189
sin ...15-198
sinh ...15-198
sizeof ..6-98
sort..15-179
split ...15-179
sqrt..15-198
srand ...15-185
Stack...15-204
StackFrame ..15-192
stat ..15-181
Stat..15-192
Statement

break...7-114

Index

Sun Microsystems Laboratories

326

catch... 7-115
Compound ... 7-104
continue ... 7-114
delete.. 7-115
do ... 7-111
elif.. 7-106
else ... 7-106
for..7-111, 7-112
foreach ..7-111, 7-112
if 7-106
import .. 7-109
inner... 12-159
macro ... 12-159
Natural end .. 7-104
return.. 7-114
Semicolon.. 7-104
switch... 7-106
synchronized ... 7-116
throw.. 7-115
try... 7-115
using .. 7-110
while .. 7-111

Statements.. 7-103
stderr .. 9-127
stdin.. 9-127
stdout.. 9-127
step..17-274, 17-277
stepi.. 17-277
stop... 17-274

at 17-274, 17-275
in 17-274

Stream.. 9-125
Buffering ... 9-126
File ... 9-128
Filter .. 9-133
Layering... 9-133
Network ... 9-129
Operations ... 9-125
Reading.. 9-126
Standard... 9-127
Writing... 9-126

Streambuffer.. 9-136
Streams

Thread.. 10-148
String.. 6-77

Subscript.. 6-95
Subscript

Integers .. 6-93
String ... 6-95
Vector .. 6-94

switch... 7-106
Differences from C++ and Java................ 7-108

synchronized.. 7-116
system .. 15-186

T

tan ...15-198
tanh...15-198
this ..5-61
Thread .. 3-31, 5-65

Alternative model10-139
Priority ...10-138

Threads...10-137
Monitors...10-139

throw .. 7-115, 8-118
time...15-182
timewait..10-142
transform ..15-179
trim ...15-180
true..6-76
trunc..15-198
try ... 7-115, 8-119
typeof..6-98
Types

Dynamic...1-11

U

up..17-278
User ..15-192
using ...7-110

V

Value ..3-29
Character..3-30
Class ...3-32
Enumeration...3-34
Function ...3-31
Integer ..3-29
Map ..3-30
Monitor ..3-32
None...3-38
Object...3-31
Package ..3-32
Real ..3-29
Stream ..3-31
String..3-30
Thread ..3-31
Vector...3-30

Variable..5-43
Generic...5-43

Variable parameter list5-49
Vector...15-202

Creating..6-91
Literal ...6-76
Subscript ..6-94

vformat ...15-185

W

wait ...10-142
where ..17-276

Index

Sun Microsystems Laboratories

327

whereami ... 15-185 while...7-111

