O'REILLY"

C# 10

in a Nutshell

The Definitive Reference

Joseph Albahari

9

O'REILLY"

C#10in aNutshell

When you have questions about C#10 or .NET 6,
this best-selling guide has the answers you need.
C# is a language of unusual flexibility and breadth,
and with its continual growth, there's always so
much more to learn. In the tradition of O'Reilly’s
Nutshell guides, this thoroughly updated edition
is simply the best one-volume reference to the C#
language available today.

Organized around concepts and use cases, this
comprehensive and complete reference provides
intermediate and advanced programmers with

a concise map of C# and .NET that also plumbs
significant depths.

e Get up to speed on C#, from syntax and
variables to advanced topics such as
pointers, closures, and patterns

® Digdeepinto LINQ, with three chapters
dedicated to the topic

® Explore concurrency and asynchrony,
advanced threading, and parallel
programming

e Work with .NET features, including regular
expressions, networking, assemblies, spans,
reflection, and cryptography

“C#10in a Nutshell is
one of the few books
| keep on my desk as
a quick reference.”

—Scott Guthrie
Microsoft

“Novices and experts
alike will find the latest
techniques in C#
programmming here."

—EricLippert
C# Standards Committee

Joseph Albahari is the author of
C#9.0 ina Nutshell, C# 10 Pocket
Reference, and LINQ Pocket
Reference (all from O'Reilly).

He also wrote LINQPad—the
popular code scratchpad and
LINQ querying utility.

PROGRAMMING / C#

US $79.99 CAN $99.99
ISBN: 978-1-098-12195-2

VAN v
o TR

810981121952

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

(#10INA
NUTSHELL

THE DEFINITIVE REFERENCE

Joseph Albahari

C#10in a Nutshell
by Joseph Albahari

Copyright © 2022 Joseph Albahari. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: WordCo Indexing Services, Inc.
Development Editor: Corbin Collins Interior Designer: David Futato

Production Editor: Kristen Brown Cover Designer: Karen Montgomery
Copyeditor: Charles Roumeliotis lllustrator: Kate Dullea

Proofreader: Piper Editorial Consulting, LLC
February 2022: First Edition

Revision History for the First Edition
2022-02-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098121952 for release details.

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. C# 10 in a Nutshell, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publish-
er’s views. While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-12195-2
(LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098121952

Table of Contents

Preface.ooiiiii Xi
1. IntroducingGand NET........coooiiiniiiiii i, 1
Object Orientation 1
Type Safety 2
Memory Management 3
Platform Support 3
CLRs, BCLs, and Runtimes 3
A Brief History of C# 7
2. (Hlanguage Basics.vvviieiiiiniiniiiiiiiiiiiiiiiiiiianaenns 25
A First C# Program 25
Syntax 28
Type Basics 30
Numeric Types 41
Boolean Type and Operators 49
Strings and Characters 51
Arrays 54
Variables and Parameters 59
Expressions and Operators 70
Null Operators 74
Statements 76
Namespaces 87
3. CreatingTypesinCh........oovvriiiiiiiiiiii 95
Classes 95
Inheritance 115
The object Type 125

Structs 129

Access Modifiers
Interfaces
Enums

Nested Types
Generics

CAdvanced . e

Delegates

Events

Lambda Expressions
Anonymous Methods

try Statements and Exceptions
Enumeration and Iterators
Nullable Value Types
Nullable Reference Types
Extension Methods
Anonymous Types

Tuples

Records

Patterns

Attributes

Caller Info Attributes
Dynamic Binding
Operator Overloading
Unsafe Code and Pointers
Preprocessor Directives
XML Documentation

NETOVOIVIOW. oo veeii e iii i iieieeneenennns

.NET Standard

Runtime and C# Language Versions
Reference Assemblies

The CLR and BCL

Application Layers

NETFundamentals..........ccoovvvvnviiniinennnne.

String and Text Handling
Dates and Times
DateOnly and TimeOnly
DateTime and Time Zones

132
134
140
144
145

159
159
167
174
180
181
189
194
200
202
205
207
211
222
227
229
232
239
243
249
252

257
259
261
261
262
266

271
271
284
292
292

iv

| Table of Contents

Formatting and Parsing

Standard Format Strings and Parsing Flags

Other Conversion Mechanisms
Globalization

Working with Numbers
BitOperations

Enums

The Guid Struct

Equality Comparison

Order Comparison

Utility Classes

B 4] FT ()

Enumeration

The ICollection and IList Interfaces
The Array Class

Lists, Queues, Stacks, and Sets
Dictionaries

Customizable Collections and Proxies
Immutable Collections

Plugging in Equality and Order

e LINQQUEKIES. oot evve e et ittt itieteeneeneeneennennennenns

Getting Started

Fluent Syntax

Query Expressions
Deferred Execution
Subqueries

Composition Strategies
Projection Strategies
Interpreted Queries

EF Core

Building Query Expressions

. LINQOperators. ...ovverere et iee i e eieteeneneenaenenanaanns

Overview
Filtering
Projecting
Joining
Ordering

297
303
310
314
315
320
320
323
324
335
338

343
343
351
355
363
372
378
384
388

395
395
397
403
408
414
418
421
424
430
442

447
448
451
456
468
476

Table of Contents

| v

10.

1.

12.

13.

Grouping

Set Operators
Conversion Methods
Element Operators
Aggregation Methods
Quantifiers
Generation Methods

LINQtoXML. ... ovvniiiiii i i

Architectural Overview
X-DOM Overview
Instantiating an X-DOM
Navigating and Querying
Updating an X-DOM
Working with Values
Documents and Declarations
Names and Namespaces
Annotations

Projecting into an X-DOM

Other XML and JSON Technologies...............ccoveuen

XmlReader

XmlWriter

Patterns for Using XmlReader/XmlWriter
Working with JSON

Disposal and Garbage Collection........................

IDisposable, Dispose, and Close
Automatic Garbage Collection
Finalizers

How the GC Works

Managed Memory Leaks

Weak References

Diagnostics.oeviii i e

Conditional Compilation
Debug and Trace Classes
Debugger Integration
Processes and Process Threads
StackTrace and StackFrame

............

479
483
485
488
490
495
496

497
497
498
502
504
510
513
515
519
524
525

529
529
537
539
544

557
557
563
565
569
576
579

585
585
589
592
593
594

vi

| Table of Contents

14.

15.

16.

17.

Windows Event Logs
Performance Counters

The Stopwatch Class
Cross-Platform Diagnostic Tools

Concurrency and Asynchrony.

Introduction

Threading

Tasks

Principles of Asynchrony
Asynchronous Functions in C#
Asynchronous Patterns
Obsolete Patterns

Streamsand 1/0........ovvvviniiiiiininnnn,

Stream Architecture

Using Streams

Stream Adapters
Compression Streams
Working with ZIP Files

File and Directory Operations
OS Security
Memory-Mapped Files

Networking.........oovvvviiiiiiiiinnnennnns

Network Architecture
Addresses and Ports

URIs

HttpClient

Writing an HTTP Server

Using DNS

Sending Mail with SmtpClient
Using TCP

Receiving POP3 Mail with TCP

Assemblies.ooverieiiniiiiiiiiinee

What's in an Assembly

Strong Names and Assembly Signing
Assembly Names

Authenticode Signing

596
598
602
603

..................... 609

609
610
626
634
639
659
667

..................... 671

671
673
687
695
698
699
710
712

.................... 17

717
719
720
722
731
734
734
735
739

..................... M

741
746
747
749

Table of Contents | vii

18.

19.

20.

21.

Resources and Satellite Assemblies
Loading, Resolving, and Isolating Assemblies

Reflectionand Metadata............coovvvnenevnnnennnn.

Reflecting and Activating Types
Reflecting and Invoking Members
Reflecting Assemblies

Working with Attributes

Dynamic Code Generation

Emitting Assemblies and Types
Emitting Type Members

Emitting Generic Methods and Types
Awkward Emission Targets

Parsing IL

Dynamic Programming............oovviiiiiiiiiiiiiinnn

The Dynamic Language Runtime
Numeric Type Unification

Dynamic Member Overload Resolution
Implementing Dynamic Objects
Interoperating with Dynamic Languages

Cryptography.covvviiiiiiiiiiiiiiiiiiiieiieeenns

Overview

Windows Data Protection

Hashing

Symmetric Encryption

Public-Key Encryption and Signing

Advanced Threading...........cooveviiiiiininnnnnnnes

Synchronization Overview
Exclusive Locking

Locking and Thread Safety
Nonexclusive Locking

Signaling with Event Wait Handles
The Barrier Class

Lazy Initialization

Thread-Local Storage

Timers

752
759

781
782
789
802
803
808
815
818
823
825
829

835
835
836
838
844
847

851
851
852
853
855
860

865
866
866
874
880
887
894
896
898
901

viii

| Table of Contents

22. Parallel Programming..........ooeuiiiiiiiiiniinnienieennnrennnes 907

Why PFX? 908
PLINQ 911
The Parallel Class 924
Task Parallelism 930
Working with AggregateException 940
Concurrent Collections 942
BlockingCollection<T> 945
23. Span<T>and Memory<T>.......ccoviiiiiiiiiiiiiiiiiiiniiinneenn, 951
Spans and Slicing 952
Memory<T> 955
Forward-Only Enumerators 957
Working with Stack-Allocated and Unmanaged Memory 958
24. Native and COM Interoperability...........ccovviviiiiiiiiinn.s, 961
Calling into Native DLLs 961
Type and Parameter Marshaling 962
Callbacks from Unmanaged Code 967
Simulating a C Union 970
Shared Memory 971
Mapping a Struct to Unmanaged Memory 973
COM Interoperability 977
Calling a COM Component from C# 979
Embedding Interop Types 982
Exposing C# Objects to COM 983
25. Regular EXpressions.c.ovevveiieeinrenneenneenneennesenns 987
Regular Expression Basics 987
Quantifiers 992
Zero-Width Assertions 993
Groups 996
Replacing and Splitting Text 997
Cookbook Regular Expressions 999
Regular Expressions Language Reference 1003
INdeX. ... 1007

Table of Contents | ix

Preface

C# 10 represents the ninth major update to Microsoft’s flagship programming
language, positioning C# as a language with unusual flexibility and breadth. At one
end, it offers high-level abstractions such as query expressions and asynchronous
continuations, whereas at the other end, it allows low-level efficiency through con-
structs such as custom value types and optional pointers.

The price of this growth is that there’s more than ever to learn. Although tools such
as Microsoft’s IntelliSense—and online references—are excellent in helping you on
the job, they presume an existing map of conceptual knowledge. This book provides
exactly that map of knowledge in a concise and unified style—free of clutter and
long introductions.

Like the past seven editions, C# 10 in a Nutshell is organized around concepts and
use cases, making it friendly both to sequential reading and to random browsing.
It also plumbs significant depths while assuming only basic background knowledge,
making it accessible to intermediate as well as advanced readers.

This book covers C#, the Common Language Runtime (CLR), and the .NET 6
Base Class Library (BCL). We've chosen this focus to allow space for difficult
and advanced topics without compromising depth or readability. Features recently
added to C# are flagged so that you can also use this book as a reference for C# 9,
C#8,and C#7.

Intended Audience

This book targets intermediate to advanced audiences. No prior knowledge of
C# is required, but some general programming experience is necessary. For the
beginner, this book complements, rather than replaces, a tutorial-style introduction
to programming.

This book is an ideal companion to any of the vast array of books that focus on
an applied technology such as ASPNET Core or Windows Presentation Foundation

Xi

(WPF). C# 10 in a Nutshell covers the areas of the language and .NET that such
books omit, and vice versa.

If you're looking for a book that skims every .NET technology, this is not for you.
This book is also unsuitable if you want to learn about APIs specific to mobile
device development.

How This Book Is Organized

Chapters 2 through 4 concentrate purely on C#, starting with the basics of syntax,
types, and variables, and finishing with advanced topics such as unsafe code and
preprocessor directives. If you're new to the language, you should read these chap-
ters sequentially.

The remaining chapters focus on .NET 6’s Base Class Libraries (BCLs), covering
such topics as Language-Integrated Query (LINQ), XML, collections, concurrency,
I/O and networking, memory management, reflection, dynamic programming,
attributes, cryptography, and native interoperability. You can read most of these
chapters randomly, except for Chapters 5 and 6, which lay a foundation for subse-
quent topics. You're also best off reading the three chapters on LINQ in sequence,
and some chapters assume some knowledge of concurrency, which we cover in
Chapter 14.

What You Need to Use This Book

The examples in this book require .NET 6. You will also find Microsofts .NET
documentation useful to look up individual types and members (which is available
online).

Although its possible to write source code in a simple text editor and build your
program from the command line, youll be much more productive with a code
scratchpad for instantly testing code snippets, plus an integrated development envi-
ronment (IDE) for producing executables and libraries.

For a Windows code scratchpad, download LINQPad 7 from www.lingpad.net
(free). LINQPad fully supports C# 10 and is maintained by the author.

For a Windows IDE, download Visual Studio 2022: any edition is suitable for what’s
taught in this book. For a cross-platform IDE, download Visual Studio Code.

All code listings for all chapters are available as interactive
(editable) LINQPad samples. You can download the entire
lot in a single click: at the bottom left, click the LINQPad’s
Samples tab, click “Download more samples,” and then choose
“C# 10 in a Nutshell”

xii | Preface

http://www.linqpad.net
https://visualstudio.microsoft.com

Conventions Used in This Book

The book uses basic UML notation to illustrate relationships between types, as
shown in Figure P-1. A slanted rectangle means an abstract class; a circle means
an interface. A line with a hollow triangle denotes inheritance, with the triangle
pointing to the base type. A line with an arrow denotes a one-way association; a line
without an arrow denotes a two-way association.

(r Interface
Base type
T / Abstract class /
Subtype
Property association) | Referenced type
Referencing type (Bidirectional Referencing type
Property association) Property

Figure P-1. Sample diagram

The following typographical conventions are used in this book:

Italic
Indicates new terms, URIs, filenames, and directories

Constant width
Indicates C# code, keywords and identifiers, and program output

Constant width bold
Shows a highlighted section of code

Constant width italic
Shows text that should be replaced with user-supplied values

Preface | xiii

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://www.albahari.com/nutshell.

This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact
us for permission unless youre reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting
example code does not require permission (although we appreciate attribution).
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “C# 10 in a Nutshell by
Joseph Albahari (O’Reilly). Copyright 2022 Joseph Albahari, 978-1-098-12195-2”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

For more than 40 years, O'Reilly Media has pro-

O.RE I LLY® vided technology and business training, knowl-

edge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our online learning platform.
O'Reilly’s online learning platform gives you on-demand access to live training
courses, in-depth learning paths, interactive coding environments, and a vast collec-
tion of text and video from O’Reilly and 200+ other publishers. For more informa-
tion, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/c-sharp-nutshell-10.

xiv | Preface

http://www.albahari.com/nutshell
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/c-sharp-nutshell-10

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

Since its first incarnation in 2007, this book has relied on input from some superb
technical reviewers. For their input into recent editions, I'd like to extend particular
thanks to Stephen Toub, Paulo Morgado, Fred Silberberg, Vitek Karas, Aaron Rob-
inson, Jan Vorlicek, Sam Gentile, Rod Stephens, Jared Parsons, Matthew Groves,
Dixin Yan, Lee Coward, Bonnie DeWitt, Wonseok Chae, Lori Lalonde, and James
Montemagno.

And for their input into earlier editions, 'm most grateful to Eric Lippert, Jon Skeet,
Stephen Toub, Nicholas Paldino, Chris Burrows, Shawn Farkas, Brian Grunkemeyer,
Maoni Stephens, David DeWinter, Mike Barnett, Melitta Andersen, Mitch Wheat,
Brian Peek, Krzysztof Cwalina, Matt Warren, Joel Pobar, Glyn Griffiths, Ion Vasi-
lian, Brad Abrams, and Adam Nathan.

I appreciate that many of the technical reviewers are accomplished individuals at
Microsoft, and I particularly thank you for taking the time to raise this book to the
next quality bar.

I want to thank Ben Albahari and Eric Johannsen, who contributed to previous
editions, and the O’Reilly team—particularly my efficient and responsive editor
Corbin Collins. Finally, my deepest thanks to my wonderful wife, Li Albahari,
whose presence kept me happy throughout the project.

Preface | xv

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Introducing Ci and .NET

C# is a general-purpose, type-safe, object-oriented programming language. The goal
of the language is programmer productivity. To this end, C# balances simplicity,
expressiveness, and performance. The chief architect of the language since its first
version is Anders Hejlsberg (creator of Turbo Pascal and architect of Delphi).
The C# language is platform neutral and works with a range of platform-specific
runtimes.

Object Orientation

C# is a rich implementation of the object-orientation paradigm, which includes
encapsulation, inheritance, and polymorphism. Encapsulation means creating a
boundary around an object to separate its external (public) behavior from its inter-
nal (private) implementation details. Following are the distinctive features of C#
from an object-oriented perspective:

Unified type system
The fundamental building block in C# is an encapsulated unit of data and func-
tions called a type. C# has a unified type system in which all types ultimately
share a common base type. This means that all types, whether they represent
business objects or are primitive types such as numbers, share the same basic
functionality. For example, an instance of any type can be converted to a string
by calling its ToString method.

Classes and interfaces
In a traditional object-oriented paradigm, the only kind of type is a class. In C#,
there are several other kinds of types, one of which is an interface. An interface
is like a class that cannot hold data. This means that it can define only behavior
(and not state), which allows for multiple inheritance as well as a separation
between specification and implementation.

Properties, methods, and events
In the pure object-oriented paradigm, all functions are methods. In C#, meth-
ods are only one kind of function member, which also includes properties and
events (there are others, too). Properties are function members that encapsulate
a piece of an object’s state, such as a button’s color or a label’s text. Events are
function members that simplify acting on object state changes.

Although C# is primarily an object-oriented language, it also borrows from the
functional programming paradigm; specifically:

Functions can be treated as values
Using delegates, C# allows functions to be passed as values to and from other
functions.

C# supports patterns for purity
Core to functional programming is avoiding the use of variables whose values
change, in favor of declarative patterns. C# has key features to help with
those patterns, including the ability to write unnamed functions on the fly
that “capture” variables (lambda expressions) and the ability to perform list or
reactive programming via query expressions. C# also provides records, which
make it easy to write immutable (read-only) types.

Type Safety

C# is primarily a type-safe language, meaning that instances of types can interact
only through protocols they define, thereby ensuring each types internal consis-
tency. For instance, C# prevents you from interacting with a string type as though it
were an integer type.

More specifically, C# supports static typing, meaning that the language enforces type
safety at compile time. This is in addition to type safety being enforced at runtime.

Static typing eliminates a large class of errors before a program is even run. It shifts
the burden away from runtime unit tests onto the compiler to verify that all the
types in a program fit together correctly. This makes large programs much easier to
manage, more predictable, and more robust. Furthermore, static typing allows tools
such as IntelliSense in Visual Studio to help you write a program because it knows
for a given variable what type it is, and hence what methods you can call on that
variable. Such tools can also identify everywhere in your program that a variable,
type, or method is used, allowing for reliable refactoring.

C# also allows parts of your code to be dynamically typed via
the dynamic keyword. However, C# remains a predominantly
statically typed language.

C# is also called a strongly typed language because its type rules are strictly enforced
(whether statically or at runtime). For instance, you cannot call a function that’s
designed to accept an integer with a floating-point number, unless you first explicitly
convert the floating-point number to an integer. This helps prevent mistakes.

2 | Chapter 1:Introducing C# and .NET

Memory Management

C# relies on the runtime to perform automatic memory management. The Com-
mon Language Runtime has a garbage collector that executes as part of your
program, reclaiming memory for objects that are no longer referenced. This frees
programmers from explicitly deallocating the memory for an object, eliminating the
problem of incorrect pointers encountered in languages such as C++.

C# does not eliminate pointers: it merely makes them unnecessary for most pro-
gramming tasks. For performance-critical hotspots and interoperability, pointers
and explicit memory allocation is permitted in blocks that are marked unsafe.

Platform Support

C# has runtimes that support the following platforms:
o Windows Desktop 7-11 (for rich-client, web, server, and command-line
applications)
o macOS (for rich-client, web, and command-line applications)
o Linux and macOS (for web and command-line applications)
o Android and iOS (for mobile applications)
o Windows 10 devices (Xbox, Surface Hub, and HoloLens)

There is also a technology called Blazor that can compile C# to web assembly that
runs in a browser.

CLRs, BCLs, and Runtimes

Runtime support for C# programs consists of a Common Language Runtime and
a Base Class Library. A runtime can also include a higher-level application layer
that contains libraries for developing rich-client, mobile, or web applications (see
Figure 1-1). Different runtimes exist to allow for different kinds of applications, as
well as different platforms.

APIs specific to writing web
orrich-client applications
(ASP.NET Core, WPF,
WinForms, WinUI, MAUI)

Application layer | Application layer

BCL
Base Class Library Lower-level functionality
(e.g., collections, threading,
CLR networking, 1/0, XML/JSON)
Common Language Runtime

Figure 1-1. Runtime architecture

Memory Management | 3

n_
B3
33
=&
25
-4 Q

Common Language Runtime

A Common Language Runtime (CLR) provides essential runtime services such as
automatic memory management and exception handling. (The word “common”
refers to the fact that the same runtime can be shared by other managed program-
ming languages, such as F#, Visual Basic, and Managed C++.)

C# is called a managed language because it compiles source code into managed
code, which is represented in Intermediate Language (IL). The CLR converts the
IL into the native code of the machine, such as X64 or X86, usually just prior
to execution. This is referred to as Just-in-Time (JIT) compilation. Ahead-of-time
compilation is also available to improve startup time with large assemblies or
resource-constrained devices (and to satisfy iOS app store rules when developing
mobile apps).

The container for managed code is called an assembly. An assembly contains not
only IL but also type information (metadata). The presence of metadata allows
assemblies to reference types in other assemblies without needing additional files.

You can examine and disassemble the contents of an assembly
with Microsoft’s ildasm tool. And with tools such as ILSpy or
JetBrain’s dotPeek, you can go further and decompile the IL
to C#. Because IL is higher level than native machine code,
the decompiler can do quite a good job of reconstructing the
original C#.

A program can query its own metadata (reflection) and even generate new IL at
runtime (reflection.emit).

Base Class Library

A CLR always ships with a set of assemblies called a Base Class Library (BCL).
A BCL provides core functionality to programmers, such as collections, input/out-
put, text processing, XML/JSON handling, networking, encryption, interop, con-
currency, and parallel programming.

A BCL also implements types that the C# language itself requires (for features such
as enumeration, querying, and asynchrony) and lets you explicitly access features of
the CLR, such as reflection and memory management.

Runtimes

A runtime (also called a framework) is a deployable unit that you download and
install. A runtime consists of a CLR (with its BCL), plus an optional application
layer specific to the kind of application that you’re writing—web, mobile, rich client,
etc. (If you're writing a command-line console application or a non-UI library, you
don’t need an application layer.)

When writing an application, you target a particular runtime, which means that
your application uses and depends on the functionality that the runtime provides.

4 | Chapter 1:Introducing C# and .NET

Your choice of runtime also determines which platforms your application will
support.

The following table lists the major runtime options:

Application layer CLR/BCL Program type Runs on...

ASP.NET NET 6 Web Windows, Linux, mac0S

Windows Desktop NET 6 Windows Windows 7-10+

MAUI (early 2022) NET 6 Mobile, desktop i0S, Android, mac0S, Windows 10+
WinUI 3 (early 2022) NET 6 Win10 Windows 10+ desktop

uwp .NET Core 2.2 Win10 + Win10 devices Windows 10+ desktop & devices
(Legacy) .NET Framework .NET Framework Web, Windows Windows 7-10+

Figure 1-2 shows this information graphically and also serves as a guide to what’s
covered in the book.

Windows Desktop WinUI3 MAUI ASP.NET Core
- Windows App SDK Mobile & cross-platform Web applications
WPF | Windows Forms (Windows 10+) desktop (cross-platforms)
.NET6BCLand CLR
Chapter 5 NET Overview Chapter16 Networking
< Chapter 6 .NET Fundamentals Chapter17 Assemblies
'l Chapter 7 Collections Chapter 18 Reflection and Metadata
) Chapter 8 LINQ Queries Chapter 19 Dynamic Programming
% Chapter 9 LINQ Operators Chapter 20 Cryptography
® Chapter 10 LINQ to XML Chapter 21 Advanced Threading
O | Chapter110ther XMLand JSON Technologies Chapter 22 Parallel Programming
= Chapter 12 Disposal and Garbage Collection Chapter 23 Span<T> & Memory<T>
) | Chapter13 Diagnostics Chapter 24 Native and COM Interop
Chapter 14 Concurrency and Asynchrony Chapter 25 Regular Expressions
Chapter 15 Streams and I/0

Figure 1-2. Runtimes for C#

NET6

.NET 6 is Microsoft’s flagship open-source runtime. You can write web and console
applications that run on Windows, Linux, and macOS; rich-client applications that
run on Windows 7 through 11 and macOS; and mobile apps that run on iOS and
Android. This book focuses on the NET 6 CLR and BCL.

CLRs, BCLs, and Runtimes | 5

n_
B2
33
=5
23
-4 Q

Unlike .NET Framework, .NET 6 is not preinstalled on Windows machines. If you
try to run a .NET 6 application without the correct runtime being present, a mes-
sage will appear directing you to a web page where you can download the runtime.
You can avoid this by creating a self-contained deployment, which includes the parts
of the runtime required by the application.

NET 65 predecessor was .NET 5, whose predecessor
was .NET Core 3. (Microsoft removed “Core” from the name
and skipped version 4.) The reason for skipping a version was
to avoid confusion with .NET Framework 4.x.

This means that assemblies compiled under .NET Core ver-
sions 1, 2, and 3 (and .NET 5) will, in most cases, run without
modification under .NET 6. In contrast, assemblies compiled
under (any version of) .NET Framework are usually incom-
patible with .NET 6.

The .NET 6 BCL and CLR are very similar to NET 5 (and .NET Core 3), with their
differences centering mostly on performance and deployment.

MAUI

MAUI (Multi-platform App U], early 2022) is designed for creating mobile apps for
iOS and Android, as well as cross-platform desktop apps for macOS and Windows.
MAUI is an evolution of Xamarin, and allows a single project to target multiple
platforms.

UWP and WinUI 3

Universal Windows Platform (UWP) is designed for writing immersive touch-first
applications that run on Windows 10+ desktop and devices (Xbox, Surface Hub,
and HoloLens). UWP apps are sandboxed and ship via the Windows Store. UWP is
preinstalled with Windows 10. It uses a version of the NET Core 2.2 CLR/BCL, and
it’s unlikely that this dependency will be updated. Instead, Microsoft has released a
successor called WinUI 3, as part of the Windows App SDK.

The Windows App SDK works with the latest NET, integrates better with the NET
desktop APIs, and can run outside a sandbox. However, it does not yet support
devices such as Xbox or HoloLens.

.NET Framework

NET Framework is Microsoft’s original Windows-only runtime for writing web
and rich-client applications that run (only) on Windows desktops/servers. No major
new releases are planned, although Microsoft will continue to support and maintain
the current 4.8 release due to the wealth of existing applications.

With the .NET Framework, the CLR/BCL is integrated with the application
layer. Applications written in .NET Framework can be recompiled under .NET 6,
although they usually require some modification. Some features of .NET Frame-
work are not present in .NET 6 (and vice versa).

6 | Chapter1:Introducing C# and .NET

NET Framework is preinstalled with Windows and is automatically patched via
Windows Update. When you target NET Framework 4.8, you can use the features
of C# 7.3 and earlier.

The word “NET” has long been used as an umbrella term for
any technology that includes the word “NET” (NET Frame-
work, .NET Core, .NET Standard, and so on).

This means that Microsoft’s renaming of .NET Core to .NET
has created an unfortunate ambiguity. In this book, we'll refer
to the new .NET as .NET 5+. And to refer to .NET Core and
its successors, we'll use the phrase “NET Core and .NET 5+

To add to the confusion, .NET (5+) is a framework, yet it’s
very different from the .NET Framework. Hence, we'll use the
term runtime in preference to framework, where possible.

Niche Runtimes
There are also the following niche runtimes:
o The NET Micro Framework is for running .NET code on highly resource-
constrained embedded devices (under one megabyte).
« Unity is a game development platform that allows game logic to be scripted

with C#.

It’s also possible to run managed code within SQL Server. With SQL Server CLR
integration, you can write custom functions, stored procedures, and aggregations in
C# and then call them from SQL. This works in conjunction with .NET Framework
and a special “hosted” CLR that enforces a sandbox to protect the integrity of the
SQL Server process.

A Brief History of C#

The following is a reverse chronology of the new features in each C# version, for the
benefit of readers who are already familiar with an older version of the language.

What's New in (# 10

C# 10 ships with Visual Studio 2022, and is used when you target .NET 6.

File-scoped namespaces

In the common case that all types in a file are defined in a single namespace,
a file-scoped namespace declaration in C# 10 reduces clutter and eliminates an
unnecessary level of indentation:

namespace MyNamespace; // Applies to everything that follows in the file.

class Class1 {} // inside MyNamespace
class Class2 {} // inside MyNamespace

ABriefHistoryof G# | 7

(2]
£
']
3
o
z
m
—'

5
-
=
o
Q
c
@,
5
«Q

The global using directive

When you prefix a using directive with the global keyword, it applies the directive
to all files in the project:

global using System;
global using System.Collection.Generic;

This lets you avoid repeating the same directives in every file. global using direc-
tives work with using static.

Additionally, NET 6 projects now support implicit global using directives: if the
ImplicitUsings element is set to true in the project file, the most commonly used
namespaces are automatically imported (based on the SDK project type). See “The
global using Directive (C# 10)” on page 88 for more detail.

Nondestructive mutation for anonymous types

C# 9 introduced the with keyword, to perform nondestructive mutation on records.
In C# 10, the with keyword also works with anonymous types:

var al =new { A=1,B=2,C=3,D=4,E=51};
var a2 = al with { E = 10 };
Console.WriteLine (a2); /] {A=1,B=2,C=3,D=4, E=10}

New deconstruction syntax

C# 7 introduced the deconstruction syntax for tuples (or any type with a
Deconstruct method). C# 10 takes this syntax further, letting you mix assignment
and declaration in the same deconstruction:

var point = (3, 4);

double x = 0;
(x, double y) = point;

Field initializers and parameterless constructors in structs

From C# 10, you can include field initializers and parameterless constructors in
structs (see “Structs” on page 129). These execute only when the constructor is
called explicitly, and so can easily be bypassed—for instance, via the default key-
word. This feature was introduced primarily for the benefit of struct records.

Record structs

Records were first introduced in C# 9, where they acted as a compiled-enhanced
class. In C# 10, records can also be structs:

record struct Point (int X, int Y);

The rules are otherwise similar: record structs have much the same features as class
structs (see “Records” on page 211). An exception is that the compiler-generated
properties on record structs are writable, unless you prefix the record declaration
with the readonly keyword.

8 | Chapter 1:Introducing C# and .NET

Lambda expression enhancements

The syntax around lambda expressions has been enhanced in a number of ways.
First, implicit typing (var) is permitted:

n_
B2
33
=&
25
-4 @

var greeter = () => "Hello, world";

The implicit type for a lambda expression is an Action or Func delegate, so greeter,
in this case, is of type Func<string>. You must explicitly state any parameter types:

var square = (int x) => x * x;
Second, a lambda expression can specify a return type:

var sqr = int (int x) => x;
This is primarily to improve compiler performance with complex nested lambdas.
Third, you can pass a lambda expression into a method parameter of type object,
Delegate, or Expression:

M1 (() => "test"); // Implicitly typed to Func<string>
M2 (() => "test"); // Implicitly typed to Func<string>
M3 (() => "test"); // Implicitly typed to Expression<Func<string>>

void M1 (object x) {}
void M2 (Delegate x) {}
void M3 (Expression x) {}

Finally, you can apply attributes to a lambda expression’s compile-generated target
method (as well as its parameters and return value):

Action a = [Description("test")] () => { };

See “Applying Attributes to Lambda Expressions (C# 10)” on page 228 for more
detail.

Nested property patterns

The following simplified syntax is legal in C# 10 for nested property pattern match-
ing (see “Property Patterns” on page 225):

var obj = new Uri ("https://www.lingpad.net");
if (obj is Uri { Scheme.Length: 5 }) ...

This is equivalent to:

if (obj is Uri { Scheme: { Length: 5 }}) ...

CallerArgumentExpression

A method parameter to which you apply the [CallerArgumentExpression]
attribute captures an argument expression from the call site:

ABriefHistoryof G# | 9

Print (Math.PI * 2);

void Print (double number,
[CallerArgumentExpression("number")] string expr = null)
=> Console.WriteLine (expr);

// Output: Math.PI * 2

This feature is intended primarily for validation and assertion libraries (see “Caller-
ArgumentExpression (C# 10)” on page 231).

Other new features

The #1ine directive has been enhanced in C# 10 to allow a column and range to be
specified.

Interpolated strings in C# 10 can be constants, as long as the interpolated values are
constants.

Records can seal the ToString() method in C# 10.

C#s definite assignment analysis has been improved so that expressions such as the
following work:

if (foo?.TryParse ("123", out var number) ?? false)
Console.WriteLine (number);

(Prior to C# 10, the compiler would generate an error: “Use of unassigned local
variable ‘number’’)

What's New in C# 9.0
C# 9.0 shipped with Visual Studio 2019, and is used when you target NET 5.

Top-level statements

With top-level statements (see “Top-Level Statements” on page 35), you can write a
program without the baggage of a Main method and Program class:

using System;
Console.WriteLine ("Hello, world");

Top-level statements can include methods (which act as local methods). You can
also access command-line arguments via the “magic” args variable and return a
value to the caller. Top-level statements can be followed by type and namespace
declarations.

Init-only setters

An init-only setter (see “Init-only setters” on page 108) in a property declaration
uses the init keyword instead of the set keyword:

class Foo { public int ID { get; init; } }

10 | Chapter1:Introducing G# and .NET

This behaves like a read-only property, except that it can also be set via an object
initializer:
var foo = new Foo { ID = 123 };

This makes it possible to create immutable (read-only) types that can be populated
via an object initializer instead of a constructor, and helps to avoid the antipattern
of constructors that accept a large number of optional parameters. Init-only setters
also allow for nondestructive mutation when used in records.

Records

A record (see “Records” on page 211) is a special kind of class thats designed to
work well with immutable data. Its most special feature is that it supports nondes-
tructive mutation via a new keyword (with):

Point pl = new Point (2, 3);
Point p2 = p1 with { Y=43}; // p2 is a copy of p1l, but with Y set to 4
Console.WriteLine (p2); // Point { X =2, Y=41}

record Point

{
public Point (double x, double y) => (X, Y) = (x, y);

public double X { get; init; }
public double Y { get; init; }
3
In simple cases, a record can also eliminate the boilerplate code of defining proper-
ties and writing a constructor and deconstructor. We can replace our Point record
definition with the following, without loss of functionality:

record Point (double X, double Y);

Like tuples, records exhibit structural equality by default. Records can subclass
other records and can include the same constructs that classes can include. The
compiler implements records as classes at runtime.

Pattern-matching improvements

The relational pattern (see “Patterns” on page 222) allows the <, >, <=, and >=
operators to appear in patterns:

string GetWeightCategory (decimal bmi) => bmi switch {
< 18.5m => "underweight",
< 25m => "normal",
< 30m => "overweight",

=> "obese" };

With pattern combinators, you can combine patterns via three new keywords (and,
or, and not):

bool IsVowel (char c) => c is 'a' or 'e' or 'i{' or 'o' or 'u';

ABriefHistoryof G# | 11

(2]
£
']
3
2
z
m
—'

5
=
=
o
Q
c
@,
5
«Q

bool IsLetter (char c) => c is >= 'a' and <= 'z'
or >= 'A' and <= 'Z';
As with the && and || operators, and has higher precedence than or. You can
override this with parentheses.

The not combinator can be used with the type pattern to test whether an object is
(not) a type:

if (obj is not string) ...

Target-typed new expressions

When constructing an object, C# 9 lets you omit the type name when the compiler
can infer it unambiguously:

System.Text.StringBuilder sbl = new();
System.Text.StringBuilder sb2 = new ("Test");

This is particularly useful when the variable declaration and initialization are in
different parts of your code:

class Foo

{
System.Text.StringBuilder sb;
public Foo (string initialvalue) => sb = new (initialValue);

}

And in the following scenario:

MyMethod (new ("test"));
void MyMethod (System.Text.StringBuilder sb) { ... }

see “Target-Typed new Expressions” on page 69 for more information.

Interop improvements

C# 9 introduced function pointers (see “Function Pointers” on page 248 and “Call-
backs with Function Pointers” on page 967). Their main purpose is to allow unman-
aged code to call static methods in C# without the overhead of a delegate instance,
with the ability to bypass the P/Invoke layer when the arguments and return types
are blittable (represented identically on each side).

C# 9 also introduced the nint and nuint native-sized integer types (see “Native-
Sized Integers” on page 246), which map at runtime to System.IntPtr and
System.UIntPtr. At compile time, they behave like numeric types with support
for arithmetic operations.

Other new features
Additionally, C# 9 now lets you do the following:

o Override a method or read-only property such that it returns a more derived
type (see “Covariant return types” on page 120)

12 | Chapter1: Introducing G and .NET

Apply attributes to local functions (see “Attributes” on page 227)

« Apply the static keyword to lambda expressions or local functions to ensure
that you don’t accidentally capture local or instance variables (see “Static lamb-
das” on page 177)

n_
B3
33
=5
25
-4 Q

o Make any type work with the foreach statement, by writing a GetEnumerator
extension method

o Define a module initializer method that executes once when an assembly is
first loaded, by applying the [ModuleInitializer] attribute to a (static void
parameterless) method

 Use a “discard” (underscore symbol) as a lambda expression argument

Write extended partial methods that are mandatory to implement—enabling
scenarios such as Roslyn’s new source generators (see “Extended partial meth-
ods” on page 114)

o Apply an attribute to methods, types, or modules to prevent local variables
from being initialized by the runtime (see “[SkipLocalsInit]” on page 248)

What's New in (# 8.0

C# 8.0 first shipped with Visual Studio 2019, and is still used today when you
target .NET Core 3 or NET Standard 2.1.

Indices and ranges

Indices and ranges simplify working with elements or portions of an array (or the
low-level types Span<T> and ReadOnlySpan<T>).

Indices let you refer to elements relative to the end of an array by using the »
operator. ~1 refers to the last element, ~2 refers to the second-to-last element, and
s0 on:

char[] vowels = new char[] {'a','e','i','0","'u'};

char lastElement vowels [~1]; // 'u'
char secondTolLast = vowels [#2]; // 'o'

Ranges let you “slice” an array by using the .. operator:

char[] firstTwo = vowels [..2]; /] 'a', 'e
char[] lastThree = vowels [2..]; // 't', 'o', 'u'
char[] middleOne = vowels [2..3] /] 'l

char[] lastTwo = vowels [*2..]; // 'o', 'u'

C# implements indexes and ranges with the help of the Index and Range types:

Index last = ~1;
Range firstTwoRange = 0..2;
char[] firstTwo = vowels [firstTwoRange]; // 'a', 'e'

ABriefHistoryof G# | 13

You can support indices and ranges in your own classes by defining an indexer with
a parameter type of Index or Range:

class Sentence

{
string[] words = "The quick brown fox".Split();

public string this [Index index] => words [index];
public string[] this [Range range] => words [range];

}

For more information, see “Indices” on page 56.

Null-coalescing assignment

The ??= operator assigns a variable only if it’s null. Instead of
if (s == null) s = "Hello, world";

you can now write this:

s ?2?2= "Hello, world";

Using declarations

If you omit the brackets and statement block following a using statement, it
becomes a using declaration. The resource is then disposed when execution falls
outside the enclosing statement block:

if (File.Exists ("file.txt"))
{

using var reader = File.OpenText ("file.txt");
Console.WriteLine (reader.ReadLine());

}...

In this case, reader will be disposed when execution falls outside the if statement
block.

Read-only members

C# 8 lets you apply the readonly modifier to a struct’s functions, ensuring that if the
function attempts to modify any field, a compile-time error is generated:

struct Point

{

public int X, V;

public readonly void ResetX() => X = 0; // Error!
}

If a readonly function calls a non-readonly function, the compiler generates a
warning (and defensively copies the struct to avoid the possibility of a mutation).

14 | Chapter 1: Introducing G and .NET

Static local methods

Adding the static modifier to a local method prevents it from seeing the local
variables and parameters of the enclosing method. This helps to reduce coupling
and enables the local method to declare variables as it pleases, without risk of
colliding with those in the containing method.

Default interface members

C# 8 lets you add a default implementation to an interface member, making it
optional to implement:

interface ILogger

{

void Log (string text) => Console.WriteLine (text);

}

This means that you can add a member to an interface without breaking implemen-
tations. Default implementations must be called explicitly through the interface:

((ILogger)new Logger()).Log ("message");

Interfaces can also define static members (including fields), which can be accessed
from code inside default implementations:

interface ILogger

{

void Log (string text) => Console.WriteLine (Prefix + text);
static string Prefix = "";

}

Or from outside the interface unless restricted via an accessibility modifier on the
static interface member (such as private, protected, or internal):

ILogger.Prefix = "File log: ";

Instance fields are prohibited. For more details, see “Default Interface Members” on
page 139.

Switch expressions
From C# 8, you can use switch in the context of an expression:

string cardName = cardNumber switch // assuming cardNumber is an int
{

13 => "King",

12 => "Queen",

11 => "Jack",
=> "Pip card" // equivalent to 'default'

b

For more examples, see “Switch expressions” on page 82.

ABriefHistoryof G# | 15

(2]
£
']
3
o
z
m
—'

5
-
=
o
Q
c
]
5
«Q

Tuple, positional, and property patterns

C# 8 supports three new patterns, mostly for the benefit of switch state-
ments/expressions (see “Patterns” on page 222). Tuple patterns let you switch on
multiple values:

int cardNumber = 12; string suite = "spades";
string cardName = (cardNumber, suite) switch

{
(13, "spades") => "King of spades",
(13, "clubs") => "King of clubs",

};...

Positional patterns allow a similar syntax for objects that expose a deconstructor,
and property patterns let you match on an object’s properties. You can use all of the
patterns both in switches and with the is operator. The following example uses a
property pattern to test whether obj is a string with a length of 4:

if (obj is string { Length:4 }) ...

Nullable reference types

Whereas nullable value types bring nullability to value types, nullable reference
types do the opposite and bring (a degree of) non-nullability to reference types,
with the purpose of helping to avoid NullReferenceExceptions. Nullable reference
types introduce a level of safety that's enforced purely by the compiler in the
form of warnings or errors when it detects code that’s at risk of generating a
NullReferenceException.

Nullable reference types can be enabled either at the project level (via the Nullable
element in the .csproj project file) or in code (via the #nullable directive). After it’s
enabled, the compiler makes non-nullability the default: if you want a reference type
to accept nulls, you must apply the ? suffix to indicate a nullable reference type:

#nullable enable // Enable nullable reference types from this point on

string s1 = null; // Generates a compiler warning! (s1 is non-nullable)
string? s2 = null; // OK: s2 is nullable reference type

Uninitialized fields also generate a warning (if the type is not marked as nulla-
ble), as does dereferencing a nullable reference type, if the compiler thinks a
NullReferenceException might occur:

void Foo (string? s) => Console.Write (s.Length); // Warning (.Length)
To remove the warning, you can use the null-forgiving operator (!):
void Foo (string? s) => Console.Write (s!.Length);

For a full discussion, see “Nullable Reference Types” on page 200.

16 | Chapter 1: Introducing G and .NET

Asynchronous streams

Prior to C# 8, you could use yield return to write an iterator, or await to write
an asynchronous function. But you couldn’t do both and write an iterator that
awaits, yielding elements asynchronously. C# 8 fixes this through the introduction
of asynchronous streams:

async IAsyncEnumerable<int> RangeAsync (
int start, int count, int delay)

{

for (int 1 = start; i < start + count; i++)

{
awailt Task.Delay (delay);

yield return i;

}
}

The await foreach statement consumes an asynchronous stream:

await foreach (var number in RangeAsync (0, 10, 100))
Console.WriteLine (number);

For more information, see “Asynchronous Streams” on page 650.

What's New in (# 7.x

C# 7.x was first shipped with Visual Studio 2017. C# 7.3 is still used today by Visual
Studio 2019 when you target .NET Core 2, .NET Framework 4.6 to 4.8, or NET
Standard 2.0.

#73

C# 7.3 made minor improvements to existing features, such as enabling use of
the equality operators with tuples, improving overload resolution, and offering the
ability to apply attributes to the backing fields of automatic properties:

[field:NonSerialized]
public int MyProperty { get; set; }

C# 7.3 also built on C# 7.2’s advanced low-allocation programming features, with
the ability to reassign ref locals, no requirement to pin when indexing fixed fields,
and field initializer support with stackalloc:

int* pointer = stackalloc int[] {1, 2, 3};

Span<int> arr = stackalloc [] {1, 2, 3};

Notice that stack-allocated memory can be assigned directly to a Span<T>. We
describe spans—and why you would use them—in Chapter 23.

G#7.2

C# 7.2 added a new private protected modifier (the intersection of internal
and protected), the ability to follow named arguments with positional ones when
calling methods, and readonly structs. A readonly struct enforces that all fields are

ABrief Historyof G4 | 17

(2]
£
']
3
o
z
m
—'

5
=
=
o
Q
c
]
5
«Q

readonly, to aid in declaring intent and to allow the compiler more optimization
freedom:

readonly struct Point

{
public readonly int X, Y; // X and Y must be readonly

}

C# 7.2 also added specialized features to help with micro-optimization and low-
allocation programming: see “The in modifier” on page 64, “Ref Locals” on page
67, “Ref Returns” on page 68, and “Ref Structs” on page 131).

7.1

From C# 7.1, you can omit the type when using the default keyword, if the type
can be inferred:

decimal number = default; // number is decimal

C# 7.1 also relaxed the rules for switch statements (so that you can pattern-match
on generic type parameters), allowed a program’s Main method to be asynchronous,
and allowed tuple element names to be inferred:

var now = DateTime.Now;
var tuple = (now.Hour, now.Minute, now.Second);
Numeric literal improvements

Numeric literals in C# 7 can include underscores to improve readability. These are
called digit separators and are ignored by the compiler:

int million = 1_000_000;
Binary literals can be specified with the @b prefix:

var b = 0b1010_1011_1100_1101_1110_1111;

Out variables and discards

C# 7 makes it easier to call methods that contain out parameters. First, you can now
declare out variables on the fly (see “Out variables and discards” on page 64):

bool successful = int.TryParse ("123", out int result);
Console.WriteLine (result);

And when calling a method with multiple out parameters, you can discard ones
you’re uninterested in with the underscore character:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);
Console.WriteLine (x);
Type patterns and pattern variables

You can also introduce variables on the fly with the is operator. These are called
pattern variables (see “Introducing a pattern variable” on page 118):

18 | Chapter 1: Introducing G and .NET

void Foo (object x)
{
if (x is string s)
Console.WriteLine (s.Length);

5
-
=
o
Q
c
aQ
5
«Q

3
The switch statement also supports type patterns, so you can switch on type as well
as constants (see “Switching on types” on page 81). You can specify conditions
with a when clause and also switch on the null value:

(2]
£
']
3
o
z
m
—'

switch (x)
{
case int i:
Console.WriteLine ("It's an int!");
break;
case string s:
Console.WriteLine (s.Length); // We can use the s variable

break;
case bool b when b == true: // Matches only when b is true
Console.WriteLine ("True");
break;
case null:
Console.WriteLine ("Nothing");
break;

Local methods
A local method is a method declared within another function (see “Local methods”
on page 98):

voild WriteCubes()

{
Console.WriteLine (Cube (3));

Console.WriteLine (Cube (4));
Console.WriteLine (Cube (5));

int Cube (int value) => value * value * value;

}

Local methods are visible only to the containing function and can capture local
variables in the same way that lambda expressions do.

More expression-bodied members

C# 6 introduced the expression-bodied “fat-arrow” syntax for methods, read-only
properties, operators, and indexers. C# 7 extends this to constructors, read/write

properties, and finalizers:

public class Person

{

string name;

public Person (string name) => Name = name;

ABriefHistoryof G | 19

public string Name

get => name;
set => name = value 2? "";

}

~Person () => Console.WriteLine ("finalize");

}

Deconstructors

C# 7 introduces the deconstructor pattern (see “Deconstructors” on page 102).
Whereas a constructor typically takes a set of values (as parameters) and assigns
them to fields, a deconstructor does the reverse and assigns fields back to a set of
variables. We could write a deconstructor for the Person class in the preceding
example as follows (exception handling aside):

public void Deconstruct (out string firstName, out string lastName)

{
int spacePos = name.IndexOf (' ');
firstName = name.Substring (0, spacePos);
lastName = name.Substring (spacePos + 1);

}

Deconstructors are called with the following special syntax:

var joe = new Person ("Joe Bloggs");

var (first, last) = joe; // Deconstruction
Console.WriteLine (first); /] Joe
Console.WriteLine (last); // Bloggs

Tuples

Perhaps the most notable improvement to C# 7 is explicit fuple support (see
“Tuples” on page 207). Tuples provide a simple way to store a set of related values:

var bob = ("Bob", 23);
Console.WriteLine (bob.Item1); // Bob
Console.WriteLine (bob.Item2); // 23

C#s new tuples are syntactic sugar for using the System.ValueTuple<..> generic
structs. But thanks to compiler magic, tuple elements can be named:

var tuple = (name:"Bob", age:23);
Console.WriteLine (tuple.name); // Bob
Console.WriteLine (tuple.age); /] 23

With tuples, functions can return multiple values without resorting to out parame-
ters or extra type baggage:

static (int row, int column) GetFilePosition() => (3, 10);

static void Main()

{

var pos = GetFilePosition();

20 | Chapter 1:Introducing C# and .NET

Console.WriteLine (pos.row); // 3
Console.WriteLine (pos.column); // 10

}

Tuples implicitly support the deconstruction pattern, so you can easily deconstruct
them into individual variables:

static void Main()

{
(int row, int column) = GetFilePosition(); /] Creates 2 local variables
Console.WriteLine (row); /] 3
Console.WriteLine (column); // 10

}

throw expressions

Prior to C# 7, throw was always a statement. Now it can also appear as an expression
in expression-bodied functions:

public string Foo() => throw new NotImplementedException();
A throw expression can also appear in a ternary conditional expression:

string Capitalize (string value) =>
value == null ? throw new ArgumentException ("value") :
value == "" 2 "n .
char.ToUpper (value[0]) + value.Substring (1);

What's New in (# 6.0

C# 6.0, which shipped with Visual Studio 2015, features a new-generation compiler,
completely written in C#. Known as project “Roslyn,” the new compiler exposes the
entire compilation pipeline via libraries, allowing you to perform code analysis on
arbitrary source code. The compiler itself is open source, and the source code is
available at github.com/dotnet/roslyn.

In addition, C# 6.0 features several minor but significant enhancements, aimed
primarily at reducing code clutter.

The null-conditional (“Elvis”) operator (see “Null Operators” on page 74) avoids
having to explicitly check for null before calling a method or accessing a type
member. In the following example, result evaluates to null instead of throwing a
NullReferenceException:

System.Text.StringBuilder sb = null;
string result = sb?.ToString(); // result is null

Expression-bodied functions (see “Methods” on page 98) allow methods, properties,
operators, and indexers that comprise a single expression to be written more tersely,
in the style of a lambda expression:

public int TimesTwo (int x) => x * 2;
public string SomeProperty => "Property value";

ABriefHistoryof G | 21

(2]
£
']
3
o
z
m
—'

5
=
=
o
Q
c
]
5
«Q

http://github.com/dotnet/roslyn

Property initializers (Chapter 3) let you assign an initial value to an automatic
property:

public DateTime TimeCreated { get; set; } = DateTime.Now;
Initialized properties can also be read-only:

public DateTime TimeCreated { get; } = DateTime.Now;

Read-only properties can also be set in the constructor, making it easier to create
immutable (read-only) types.

Index initializers (Chapter 4) allow single-step initialization of any type that exposes
an indexer:

var dict = new Dictionary<int,string>()
{
[3] = "three",
[10] = "ten"
IH
String interpolation (see “String Type” on page 52) offers a succinct alternative to
string.Format:

string s = $"It is {DateTime.Now.DayOfWeek} today";

Exception filters (see “try Statements and Exceptions” on page 181) let you apply a
condition to a catch block:

string html;
try

{
html = await new HttpClient().GetStringAsync ("http://asef");

}

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

{
.

The using static (see “Namespaces” on page 87) directive lets you import all the
static members of a type so that you can use those members unqualified:

using static System.Console;

WriteLine ("Hello, world"); // WriteLine instead of Console.WritelLine

The nameof (Chapter 3) operator returns the name of a variable, type, or other
symbol as a string. This avoids breaking code when you rename a symbol in Visual
Studio:

int capacity = 123;
string x = nameof (capacity); // x is "capacity"
string y = nameof (Uri.Host); // y is "Host"

And finally, youre now allowed to awatit inside catch and finally blocks.

22 | Chapter 1:Introducing C# and .NET

What's New in (#5.0

C# 5.0s big new feature was support for asynchronous functions via two new
keywords, async and await. Asynchronous functions enable asynchronous continu-
ations, which make it easier to write responsive and thread-safe rich-client applica-
tions. They also make it easy to write highly concurrent and efficient I/O-bound
applications that don't tie up a thread resource per operation. We cover asynchro-
nous functions in detail in Chapter 14.

What's New in (# 4.0

C# 4.0 introduced four major enhancements:

Dynamic binding (Chapters 4 and 19) defers binding—the process of resolving types
and members—from compile time to runtime and is useful in scenarios that would
otherwise require complicated reflection code. Dynamic binding is also useful when
interoperating with dynamic languages and COM components.

Optional parameters (Chapter 2) allow functions to specify default parameter values
so that callers can omit arguments, and named arguments allow a function caller to
identify an argument by name rather than position.

Type variance rules were relaxed in C# 4.0 (Chapters 3 and 4), such that type
parameters in generic interfaces and generic delegates can be marked as covariant or
contravariant, allowing more natural type conversions.

COM interoperability (Chapter 24) was enhanced in C# 4.0 in three ways. First,
arguments can be passed by reference without the ref keyword (particularly useful
in conjunction with optional parameters). Second, assemblies that contain COM
interop types can be linked rather than referenced. Linked interop types support
type equivalence, avoiding the need for Primary Interop Assemblies and putting an
end to versioning and deployment headaches. Third, functions that return COM
Variant types from linked interop types are mapped to dynamic rather than object,
eliminating the need for casting.

What's New in (#3.0

The features added to C# 3.0 were mostly centered on Language-Integrated Query
(LINQ) capabilities. LINQ enables queries to be written directly within a C# pro-
gram and checked statically for correctness, and query both local collections (such
as lists or XML documents) or remote data sources (such as a database). The C#
3.0 features added to support LINQ comprised implicitly typed local variables,
anonymous types, object initializers, lambda expressions, extension methods, query
expressions, and expression trees.

Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable
type in a declaration statement, allowing the compiler to infer it. This reduces
clutter as well as allows anonymous types (Chapter 4), which are simple classes
created on the fly that are commonly used in the final output of LINQ queries. You
can also implicitly type arrays (Chapter 2).

ABriefHistoryof G# | 23

n_
B3
33
=5
25
-4 @

Object initializers (Chapter 3) simplify object construction by allowing you to set
properties inline after the constructor call. Object initializers work with both named
and anonymous types.

Lambda expressions (Chapter 4) are miniature functions created by the compiler on
the fly; they are particularly useful in “fluent” LINQ queries (Chapter 8).

Extension methods (Chapter 4) extend an existing type with new methods (without
altering the type’s definition), making static methods feel like instance methods.
LINQ’s query operators are implemented as extension methods.

Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ quer-
ies that can be substantially simpler when working with multiple sequences or range
variables.

Expression trees (Chapter 8) are miniature code Document Object Models (DOM:s)
that describe lambda expressions assigned to the special type Expression<TDele
gate>. Expression trees make it possible for LINQ queries to execute remotely (e.g.,
on a database server) because they can be introspected and translated at runtime
(e.g., into an SQL statement).

C# 3.0 also added automatic properties and partial methods.

Automatic properties (Chapter 3) cut the work in writing properties that simply
get/set a private backing field by having the compiler do that work automatically.
Partial methods (Chapter 3) let an autogenerated partial class provide customizable
hooks for manual authoring that “melt away” if unused.

What's New in (# 2.0

The big new features in C# 2 were generics (Chapter 3), nullable value types (Chap-
ter 4), iterators (Chapter 4), and anonymous methods (the predecessor to lambda
expressions). These features paved the way for the introduction of LINQ in C# 3.

C# 2 also added support for partial classes and static classes, and a host of minor
and miscellaneous features such as the namespace alias qualifier, friend assemblies,
and fixed-size buffers.

The introduction of generics required a new CLR (CLR 2.0), because generics
maintain full type fidelity at runtime.

24 | Chapter 1:Introducing C# and .NET

(# Language Basics

In this chapter, we introduce the basics of the C# language.

Almost all of the code listings in this book are available as
interactive samples in LINQPad. Working through these sam-
ples in conjunction with the book accelerates learning in that
you can edit the samples and instantly see the results without
needing to set up projects and solutions in Visual Studio.

To download the samples, in LINQPad, click the Samples tab,
and then click “Download more samples” LINQPad is free—
go to http://www.linqpad.net.

A First G Program

Following is a program that multiplies 12 by 30 and prints the result, 360, to
the screen. The double forward slash indicates that the remainder of a line is a
comment:

int x = 12 * 30; // Statement 1
System.Console.WriteLine (x); // Statement 2

Our program consists of two statements. Statements in C# execute sequentially and
are terminated by a semicolon. The first statement computes the expression 12 * 30
and stores the result in a variable, named x, whose type is a 32-bit integer (int).
The second statement calls the WriteLine method on a class called Console, which is
defined in a namespace called System. This prints the variable x to a text window on
the screen.

A method performs a function; a class groups function members and data members
to form an object-oriented building block. The Console class groups members
that handle command-line input/output (I/O) functionality, such as the WriteLine
method. A class is a kind of type, which we examine in “Type Basics” on page 30.

25

http://www.linqpad.net

At the outermost level, types are organized into namespaces. Many commonly used
types—including the Console class—reside in the System namespace. The .NET
libraries are organized into nested namespaces. For example, the System.Text
namespace contains types for handling text, and System. IO contain types for input/
output.

Qualifying the Console class with the System namespace on every use adds clutter.
The using directive lets you avoid this clutter by importing a namespace:

using System; // Import the System namespace

int x = 12 * 30;

Console.WriteLine (x); // No need to specify System.
A basic form of code reuse is to write higher-level functions that call lower-level
functions. We can refactor our program with a reusable method called FeetToInches
that multiplies an integer by 12, as follows:

using System;

Console.WriteLine (FeetToInches (30)); // 360
Console.WriteLine (FeetToInches (100)); // 1200

int FeetToInches (int feet)
{

int inches = feet * 12;
return inches;

}

Our method contains a series of statements surrounded by a pair of braces. This is
called a statement block.

A method can receive input data from the caller by specifying parameters and output
data back to the caller by specifying a return type. Our FeetToInches method has a
parameter for inputting feet, and a return type for outputting inches:

int FeetToInches (int feet)

The literals 30 and 100 are the arguments passed to the FeetToInches method.

If a method doesn’t receive input, use empty parentheses. If it doesn’t return any-
thing, use the void keyword:

using System;
SayHello();

void SayHello()
{

Console.WriteLine ("Hello, world");
}
Methods are one of several kinds of functions in C#. Another kind of function we
used in our example program was the * operator, which performs multiplication.
There are also constructors, properties, events, indexers, and finalizers.

26 | Chapter2: C# Language Basics

Compilation

The C# compiler compiles source code (a set of files with the .cs extension) into
an assembly. An assembly is the unit of packaging and deployment in .NET. An
assembly can be either an application or a library. A normal console or Windows
application has an entry point, whereas a library does not. The purpose of a library
is to be called upon (referenced) by an application or by other libraries. NET itself is
a set of libraries (as well as a runtime environment).

Each of the programs in the preceding section began directly with a series of state-
ments (called top-level statements). The presence of top-level statements implicitly
creates an entry point for a console or Windows application. (Without top-level
statements, a Main method denotes an applications entry point—see “Custom
Types” on page 31.)

Unlike .NET Framework, .NET 6 assemblies never have
an .exe extension. The .exe that you see after building a NET 6
application is a platform-specific native loader responsible for
starting your application’s .dll assembly.

NET 6 also allows you to create a self-contained deployment
that includes the loader, your assemblies, and the .NET run-
time—all in a single .exe file.

The dotnet tool (dotnet.exe on Windows) helps you to manage .NET source code
and binaries from the command line. You can use it to both build and run your
program, as an alternative to using an integrated development environment (IDE)
such as Visual Studio or Visual Studio Code.

You can obtain the dotnet tool either by installing the .NET 6 SDK or by instal-
ling Visual Studio. Its default location is %ProgramFiles%\dotnet on Windows
or /ust/bin/dotnet on Ubuntu Linux.

To compile an application, the dotnet tool requires a project file as well as one or
more C# files. The following command scaffolds a new console project (creates its
basic structure):

dotnet new Console -n MyFirstProgram

This creates a subfolder called MyFirstProgram containing a project file called
MyFirstProgram.csproj and a C# file called Program.cs that prints “Hello world”.

To build and run your program, run the following command from the MyFirstPro-
gram folder:

dotnet run MyFirstProgram
Or, if you just want to build without running:
dotnet build MyFirstProgram.csproj
The output assembly will be written to a subdirectory under bin\debug.

We explain assemblies in detail in Chapter 17.

AFirst C# Program | 27

W
]
@,
0
0

abenbue] #d

Syntax

C# syntax is inspired by C and C++ syntax. In this section, we describe C#s
elements of syntax, using the following program:

using System;

int x = 12 * 30;
Console.WriteLine (x);

Identifiers and Keywords

Identifiers are names that programmers choose for their classes, methods, variables,
and so on. Here are the identifiers in our example program, in the order in which
they appear:

System x Console MWriteLine

An identifier must be a whole word, essentially made up of Unicode characters
starting with a letter or underscore. C# identifiers are case sensitive. By convention,
parameters, local variables, and private fields should be in camel case (e.g., myVaria
ble), and all other identifiers should be in Pascal case (e.g., MyMethod).

Keywords are names that mean something special to the compiler. There are two
keywords in our example program, using and int.

Most keywords are reserved, which means that you can’t use them as identifiers.
Here is the full list of C# reserved keywords:

abstract do in protected throw

as double int public true
base else interface readonly try

bool enum internal record typeof
break event is ref uint
byte explicit lock return ulong
case extern long sbyte unchecked
catch false namespace sealed unsafe
char finally new short ushort
checked fixed null sizeof using
class float object stackalloc virtual
const for operator static void
continue foreach out string volatile
decimal goto override struct while
default 1if params switch

delegate 1implicit private this

28 | Chapter 2: C# Language Basics

If you really want to use an identifier that clashes with a reserved keyword, you can
do so by qualifying it with the @ prefix; for instance:

int using = 123; // Illegal
int @using = 123; // Legal

The @ symbol doesn't form part of the identifier itself. So, @myVariable is the same
as myVariable.

Contextual keywords

Some keywords are contextual, meaning that you also can use them as identifiers—
without an @ symbol:

add dynamic join on value
alias equals let or var
and from managed orderby with
ascending get nameof partial when
async global nint remove where
await group not select yield
by init notnull set

descending 1into nuint unmanaged

With contextual keywords, ambiguity cannot arise within the context in which they
are used.

Literals, Punctuators, and Operators

Literals are primitive pieces of data lexically embedded into the program. The
literals we used in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. An example is the semi-
colon, which terminates a statement. Statements can wrap multiple lines:

Console.WriteLine
(1+2+3+4+5+6+7+8+9+10);
An operator transforms and combines expressions. Most operators in C# are deno-
ted with a symbol, such as the multiplication operator, *. We discuss operators in
more detail later in this chapter. These are the operators we used in our example
program:

=* . 0

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are
used when the method accepts no arguments. (Parentheses also have other purposes
that you'll see later in this chapter.) An equals sign performs assignment. (The
double equals sign, ==, performs equality comparison, as you'll see later.)

Syntax | 29

W
]
=,
0
0

abenbue] #D

Comments

C# offers two different styles of source-code documentation: single-line comments
and multiline comments. A single-line comment begins with a double forward slash
and continues until the end of the line; for example:

int x = 3; // Comment about assigning 3 to x
A multiline comment begins with /* and ends with */; for example:

int x = 3; /* This is a comment that
spans two lines */

Comments can embed XML documentation tags, which we explain in “XML Docu-
mentation” on page 252.

Type Basics

A type defines the blueprint for a value. In this example, we use two literals of type
int with values 12 and 30. We also declare a variable of type int whose name is x:

int x = 12 * 30;
Console.WriteLine (x);

Because most of the code listings in this book require types
from the System namespace, we will omit “using System”
from now on, unless we're illustrating a concept relating to
namespaces.

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value and the set of
possible values a variable can have are determined by its type.

Predefined Type Examples

Predefined types are types that are specially supported by the compiler. The int
type is a predefined type for representing the set of integers that fit into 32 bits of
memory, from —23! to 2°! — 1, and is the default type for numeric literals within this
range. You can perform functions such as arithmetic with instances of the int type,
as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of
characters, such as “NET” or “http://oreilly.com” You can work with strings by
calling functions on them, as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage); // HELLO WORLD

30 | Chapter2: G Language Basics

http://oreilly.com

int x = 2022;
message = message + x.ToString();
Console.WriteLine (message); // Hello world2022

In this example, we called x.ToString() to obtain a string representation of the
integer x. You can call ToString() on a variable of almost any type.

The predefined bool type has exactly two possible values: true and false. The
bool type is commonly used with an if statement to conditionally branch execution
flow:

bool simplevar = false;
if (simplevar)
Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
Console.WriteLine ("This will print");

In C#, predefined types (also referred to as built-in types)
are recognized with a C# keyword. The System namespace
in NET contains many important types that are not prede-
fined by C# (e.g., DateTime).

Custom Types

Just as we can write our own methods, we can write our own types. In this next
example, we define a custom type named UnitConverter—a class that serves as a
blueprint for unit conversions:

UnitConverter feetToInchesConverter = new UnitConverter (12);
UnitConverter milesToFeetConverter = new UnitConverter (5280);

Console.WriteLine (feetToInchesConverter.Convert(30)); /] 360
Console.WriteLine (feetToInchesConverter.Convert(100)); // 1200

Console.WriteLine (feetToInchesConverter.Convert(
milesToFeetConverter.Convert(1))); /] 63360

public class UnitConverter
{
int ratio; // Field

public UnitConverter (int unitRatio) // Constructor

{
ratio = unitRatio;
}
public int Convert (int unit) // Method
{

return unit * ratio;

TypeBasics | 31

W
]
=,
0
0

abenbue #d

In this example, our class definition appears in the same file
as our top-level statements. This is legal—as long as the top-
level statements appear first—and is acceptable when writ-
ing small test programs. With larger programs, the standard
approach is to put the class definition in a separate file such as
UnitConverter.cs.

Members of a type

A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of UnitConverter
are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types

A beautiful aspect of C# is that predefined types and custom types have few
differences. The predefined int type serves as a blueprint for integers. It holds
data—32 bits—and provides function members that use that data, such as ToString.
Similarly, our custom UnitConverter type acts as a blueprint for unit conversions. It
holds data—the ratio—and provides function members to use that data.

Constructors and instantiation

Data is created by instantiating a type. Predefined types can be instantiated simply
by using a literal such as 12 or "Hello world". The new operator creates instances of
a custom type. We created and declared an instance of the UnitConverter type with
this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is
called to perform initialization. A constructor is defined like a method, except that
the method name and return type are reduced to the name of the enclosing type:

public UnitConverter (int unitRatio) { ratio = unitRatio; }

Instance versus static members

The data members and function members that operate on the instance of the type
are called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the instance of the type
can be marked as static. To refer to a static member from outside its type, you
specify its type name rather than an instance. An example is the WriteLine method
of the Console class. Because this is static, we call Console.WriteLine() and not
new Console().WriteLine().

32 | Chapter2: G Language Basics

(The Console class is actually declared as a static class, which means that all of its
members are static, and you can never create instances of a Console.)

In the following code, the instance field Name pertains to an instance of a particular
Panda, whereas Population pertains to the set of all Panda instances. We create two
instances of the Panda, print their names, and then print the total population:

Panda p1 = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (pl.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah

Console.WriteLine (Panda.Population); // 2

public class Panda

{
public string Name; // Instance field
public static int Population; // Static field

public Panda (string n) // Constructor
{
Name = n; // Assign the instance field
Population = Population + 1; // Increment the static Population field
}
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time
error.

The public keyword

The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not marked as public, it would be private and could not be
accessed from outside the class. Marking a member public is how a type communi-
cates: “Here is what I want other types to see—everything else is my own private
implementation details” In object-oriented terms, we say that the public members
encapsulate the private members of the class.

Defining namespaces

Particularly with larger programs, it makes sense to organize types into namespaces.
Here’s how to define the Panda class inside a namespace called Animals:

using System;
using Animals;

Panda p = new Panda ("Pan Dee");
Console.WriteLine (p.Name);

namespace Animals

{

public class Panda

TypeBasics | 33

W
]
@,
0
0

abenbue #D

{

}
}

In this example, we also imported the Animals namespace so that our top-level
statements could access its types without qualification. Without that import, wed
need to do this:

Animals.Panda p = new Animals.Panda ("Pan Dee");

We cover namespaces in detail at the end of this chapter (see “Namespaces” on page
87).

Defining a Main method

All of our examples, so far, have used top-level statements (a feature introduced in
C#9).

Without top-level statements, a simple console or Windows application looks like
this:

using System;

class Program

{
static void Main() // Program entry point
{
int x = 12 * 30;
Console.WriteLine (x);
}
}

In the absence of top-level statements, C# looks for a static method called Main,
which becomes the entry point. The Main method can be defined inside any class
(and only one Main method can exist). Should your Main method need to access
private members of a particular class, defining a Main method inside that class can
be simpler than using top-level statements.

The Main method can optionally return an integer (rather than void) in order
to return a value to the execution environment (where a nonzero value typically
indicates an error). The Main method can also optionally accept an array of strings
as a parameter (that will be populated with any arguments passed to the executable).
For example:

static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of
elements of a particular type. Arrays are specified by placing
square brackets after the element type. We describe them in
“Arrays” on page 54.

34 | Chapter2: G Language Basics

(The Main method can also be declared async and return a Task or Task<int> in
support of asynchronous programming, which we cover in Chapter 14.)

Top-Level Statements

Top-level statements (introduced in C# 9) let you avoid the baggage of a static Main
method and a containing class. A file with top-level statements comprises three
parts, in this order:

1. (Optionally) using directives

2. A series of statements, optionally mixed with method declarations

3. (Optionally) Type and namespace declarations

For example:

using System; /] Part 1
Console.WriteLine ("Hello, world"); /] Part 2
void SomeMethod1() { ... } /] Part 2
Console.WriteLine ("Hello again!"); /] Part 2
void SomeMethod2() { ... } /] Part 2
class SomeClass { ... } /] Part 3
namespace SomeNamespace { ... } /] Part 3

Because the CLR doesn’t explicitly support top-level statements, the compiler trans-
lates your code into something like this:

using System; /] Part 1

static class Program$ // Special compiler-generated name

{
static void Main$ (string[] args) // Compiler-generated name
{
Console.WriteLine ("Hello, world"); /] Part 2
void SomeMethod1() { ... } /] Part 2
Console.WriteLine ("Hello again!"); /] Part 2
void SomeMethod2() { ... } /] Part 2
}
}
class SomeClass { ... } /] Part 3
namespace SomeNamespace { ... } /] Part 3

Notice that everything in Part 2 is wrapped inside the main method. This means
that SomeMethod1 and SomeMethod2 act as local methods. We discuss the full implica-
tions in “Local methods” on page 98, the most important being that local methods
(unless declared as static) can access variables declared within the containing
method:

int x = 3;
LocalMethod();

void LocalMethod() { Console.WriteLine (x); } // We can access x

TypeBasics | 35

W
]
=,
0
7

abenbue] #D

Another consequence is that top-level methods cannot be accessed from other
classes or types.

Top-level statements can optionally return an integer value to the caller and access
a “magic” variable of type string[] called args, corresponding to command-line
arguments passed by the caller.

As a program can have only one entry point, there can be at most one file with
top-level statements in a C# project.

Types and Conversions

C# can convert between instances of compatible types. A conversion always creates
a new value from an existing one. Conversions can be either implicit or explicit:
implicit conversions happen automatically, and explicit conversions require a cast.
In the following example, we implicitly convert an int to a long type (which has
twice the bit capacity of an int) and explicitly cast an int to a short type (which has
half the bit capacity of an int):

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integer
short z = (short)x; // Explicit conversion to 16-bit integer

Implicit conversions are allowed when both of the following are true:

o The compiler can guarantee that they will always succeed.

 No information is lost in conversion.!
Conversely, explicit conversions are required when one of the following is true:

 The compiler cannot guarantee that they will always succeed.

o Information might be lost during conversion.

(If the compiler can determine that a conversion will always fail, both kinds of
conversion are prohibited. Conversions that involve generics can also fail in certain
conditions—see “Type Parameters and Conversions” on page 152.)

The numeric conversions that we just saw are built into the
language. C# also supports reference conversions and boxing
conversions (see Chapter 3) as well as custom conversions (see
“Operator Overloading” on page 239). The compiler doesn’t
enforce the aforementioned rules with custom conversions, so
it’s possible for badly designed types to behave otherwise.

1 A minor caveat is that very large long values lose some precision when converted to double.

36 | Chapter2: C# Language Basics

Value Types Versus Reference Types
All C# types fall into the following categories:

« Value types
o Reference types
 Generic type parameters

« Pointer types

In this section, we describe value types and reference types.
We cover generic type parameters in “Generics” on page 145
and pointer types in “Unsafe Code and Pointers” on page 243.

W
]
=,
0
0

abenbue #O

Value types comprise most built-in types (specifically, all numeric types, the char
type, and the bool type) as well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes

the predefined string type.)

The fundamental difference between value types and reference types is how they are

handled in memory.

Value types

The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the struct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

Or more tersely:

public struct Point { public int X, VY; }

Point struct

X

Y

}Value/ instance

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance; for example:

Point pl = new Point();
pl.X = 7;

Point p2

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

pl; // Assignment causes copy

TypeBasics | 37

pl.X = 9; // Change p1.X

Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 7

Figure 2-2 shows that p1 and p2 have independent storage.

Point struct
pl p2
9 7
........ i s

Figure 2-2. Assignment copies a value-type instance

Reference types

A reference type is more complex than a value type, having two parts: an object and
the reference to that object. The content of a reference-type variable or constant is
a reference to an object that contains the value. Here is the Point type from our
previous example rewritten as a class rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }

Point class
Reference Object
| Reference I -
Object
metadata
X)
v Value / instance

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance.
This allows multiple variables to refer to the same object—something not ordinarily
possible with value types. If we repeat the previous example, but with Point now a
class, an operation to p1 affects p2:

Point pl = new Point();
pl.X = 7;

Point p2 = pi; // Copies p1l reference

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

pl.X = 9; // Change p1.X

Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 9

38 | Chapter2: G Language Basics

Figure 2-4 shows that p1 and p2 are two references that point to the same object.

Point class
pl

p2

..................

Object
metadata

W
]
=,
(2]
0

Figure 2-4. Assignment copies a reference

abenbue #D

Null

A reference can be assigned the literal null, indicating that the reference points to
no object:

Point p = null;
Console.WriteLine (p == null); // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

class Point {...}

In “Nullable Reference Types” on page 200, we describe a
feature of C# that helps to reduce accidental NullReference
Exception errors.

In contrast, a value type cannot ordinarily have a null value:

Point p = null; // Compile-time error
int x = null; // Compile-time error

struct Point {...}

C# also has a construct called nullable value types for repre-
senting value-type nulls. For more information, see “Nullable
Value Types” on page 194.

Storage overhead

Value-type instances occupy precisely the memory required to store their fields. In
this example, Point takes 8 bytes of memory:

struct Point
{
int x; // 4 bytes
int y; // 4 bytes
}

TypeBasics | 39

Technically, the CLR positions fields within the type at an
address that’s a multiple of the fields™ size (up to a maximum
of 8 bytes). Thus, the following actually consumes 16 bytes of
memory (with the 7 bytes following the first field “wasted”):

struct A { byte b; long 1; }

You can override this behavior by applying the StructLayout
attribute (see “Mapping a Struct to Unmanaged Memory” on
page 973).

Reference types require separate allocations of memory for the reference and object.
The object consumes as many bytes as its fields, plus additional administrative
overhead. The precise overhead is intrinsically private to the implementation of
the NET runtime, but at minimum, the overhead is 8 bytes, used to store a key
to the objects type as well as temporary information such as its lock state for
multithreading and a flag to indicate whether it has been fixed from movement by
the garbage collector. Each reference to an object requires an extra 4 or 8 bytes,
depending on whether the .NET runtime is running on a 32- or 64-bit platform.

Predefined Type Taxonomy
The predefined types in C# are as follows:
Value types
o Numeric
— Signed integer (sbyte, short, int, long)
— Unsigned integer (byte, ushort, uint, ulong)
— Real number (float, double, decimal)
o Logical (bool)
o Character (char)

Reference types
o String (string)
o Object (object)

Predefined types in C# alias .NET types in the System namespace. There is only a
syntactic difference between these two statements:

int 1 = 5;

System.Int32 1 = 5;
The set of predefined value types excluding decimal are known as primitive types
in the CLR. Primitive types are so called because they are supported directly via

instructions in compiled code, and this usually translates to direct support on the
underlying processor; for example:

40 | Chapter2: C# Language Basics

// Underlying hexadecimal representation

int 1 =7; /] ox7
bool b = true; /] ox1
char c = 'A'; /] 0x41

float f = 0.5f; // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 24).

Numeric Types

C# has the predefined numeric types shown in Table 2-1.

W
]
=,
[2]
0

abenbue #D

Table 2-1. Predefined numeric types in C#

G type System type Suffix Size Range
Integral—signed

sbyte SByte 8 bits -2 10271
short Intié6 16bits 2" t02"-1
int Int32 32bits —31t0 231
long Int64 L 64 bits —29 10 2831
nint IntPtr 32/64 bits

Integral—unsigned

byte Byte 8 bits 010281

ushort UInt16 16bits 00 2"-1

uint UInt32 u 32bits 0to2%2-1

ulong UInté4 UL 64bits 0to 281

unint UIntPtr 32/64 bits

Real

float Single F 32 bits + (~107% to 10%)
double Double D 64 bits + (~10732 to 10308)
decimal Decimal M 128 bits + (~10"2t0 10%)

Of the integral types, int and long are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or
when space efficiency is paramount. The nint and nuint native-sized integer types
(introduced in C# 9) are most useful in helping with pointer arithmetic, so we will
describe these in a later chapter (see “Native-Sized Integers” on page 246).

NumericTypes | 41

Of the real number types, float and double are called floating-point types* and
are typically used for scientific and graphical calculations. The decimal type is
typically used for financial calculations, for which base-10-accurate arithmetic and
high precision are required.

From .NET 5, there is a 16-bit floating point type called Half.
This is intended mainly for interoperating with graphics card
processors and does not have native support in most CPUs.
Half is not a primitive CLR type and does not have special
language support in C#.

Numeric Literals

Integral-type literals can use decimal or hexadecimal notation; hexadecimal is deno-
ted with the 0x prefix. For example:

int x = 127;
long y = OX7F;

You can insert an underscore anywhere within a numeric literal to make it more
readable:

int million = 1_000_000;
You can specify numbers in binary with the @b prefix:
var b = 0b1010_1011_1100_1101_1110_1111;
Real literals can use decimal and/or exponential notation:
double d = 1.5;
double million = 1E06;
Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral
type:
o If the literal contains a decimal point or the exponential symbol (E), it is a
double.
o Otherwise, the literal’s type is the first type in this list that can fit the literal’s

value: int, uint, long, and ulong.

For example:

Console.WriteLine (1.0.GetType()); // Double (double)
Console.WriteLine (1E06.GetType()); // Double (double)
Console.WriteLine (1.GetType()); // Int32 (int)

2 Technically, decimal is a floating-point type, too, although it’s not referred to as such in the C#
language specification.

42 | Chapter2: C# Language Basics

Console.WriteLine (OxFOOO0000.GetType()); // UInt32 (uint)
Console.WriteLine (0x100000000.GetType()); // Int64 (long)

Numeric suffixes

Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower-
case or uppercase, and are as follows:

Category C#type Example

W
]
@,
(2]
0

abenbue #D

F float float f = 1.0F;
D double double d = 1D;

M decimal decimal d = 1.0M;
U uint uint 1 = 1U;

L long long 1 = 1L;

uL ulong ulong 1 = 1UL;

The suffixes U and L are rarely necessary because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

long 1 = 5; // Implicit lossless conversion from int literal to long

The D suffix is technically redundant in that all literals with a decimal point are
inferred to be double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when
specifying float or decimal literals. Without the F suffix, the following line would
not compile, because 4.5 would be inferred to be of type double, which has no
implicit conversion to float:

float f = 4.5F;
The same principle is true for a decimal literal:
decimal d = -1.23M; // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.
Numeric Conversions

Converting between integral types

Integral type conversions are implicit when the destination type can represent every
possible value of the source type. Otherwise, an explicit conversion is required; for
example:

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integral type
short z = (short)x; // Explicit conversion to 16-bit integral type

NumericTypes | 43

Converting between floating-point types

A float can be implicitly converted to a double given that a double can represent
every possible value of a float. The reverse conversion must be explicit.

Converting between floating-point and integral types
All integral types can be implicitly converted to all floating-point types:

int 1

=1;
float f =

i;
The reverse conversion must be explicit:
int 12 = (int)f;

When you cast from a floating-point number to an integral
type, any fractional portion is truncated; no rounding is per-
formed. The static class System.Convert provides methods
that round while converting between various numeric types
(see Chapter 6).

Implicitly converting a large integral type to a floating-point type preserves magni-
tude but can occasionally lose precision. This is because floating-point types always
have more magnitude than integral types but can have less precision. Rewriting our
example with a larger number demonstrates this:

int 11 = 100000001;
float f = i1; // Magnitude preserved, precision lost
int 12 = (int)f; // 100000000

Decimal conversions

All integral types can be implicitly converted to the decimal type given that a
decimal can represent every possible C# integral-type value. All other numeric
conversions to and from a decimal type must be explicit because they introduce the
possibility of either a value being out of range or precision being lost.

Arithmetic Operators

The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types:

+ Addition

Subtraction
* Multiplication
/ Division
% Remainder after division

44 | Chapter 2: C# Language Basics

Increment and Decrement Operators

The increment and decrement operators (++, - -, respectively) increment and decre-
ment numeric types by 1. The operator can either follow or precede the variable,
depending on whether you want its value before or after the increment/decrement;
for example:

int x =0, y =0;

Console.WriteLine (x++); // Outputs 0; x is now 1

Console.WriteLine (++y); // Outputs 1; y is now 1

Specialized Operations on Integral Types

The integral types are int, uint, long, ulong, short, ushort, byte, and sbyte.
Division

Division operations on integral types always eliminate the remainder (round toward

zero). Dividing by a variable whose value is zero generates a runtime error (a
DivideByZeroException):

inta=2/3; /] 0
int b = 0;
int c =5/ b; // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Overflow

At runtime, arithmetic operations on integral types can overflow. By default, this
happens silently—no exception is thrown, and the result exhibits “wraparound”
behavior, as though the computation were done on a larger integer type and the
extra significant bits discarded. For example, decrementing the minimum possible
int value results in the maximum possible int value:

int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

Overflow check operators

The checked operator instructs the runtime to generate an OverflowException
rather than overflowing silently when an integral-type expression or statement
exceeds the arithmetic limits of that type. The checked operator affects expressions
with the ++, ——, +, - (binary and unary), *, /, and explicit conversion operators
between integral types. Overflow checking incurs a small performance cost.

The checked operator has no effect on the double and float
types (which overflow to special “infinite” values, as you'll see
soon) and no effect on the decimal type (which is always
checked).

NumericTypes | 45

W
]
@,
0
0

abenbue] #D

You can use checked around either an expression or a statement block:

int a = 1000000;

int b = 1000000;
int ¢ = checked (a * b); // Checks just the expression.
checked // Checks all expressions
{ // in statement block.
c: a * b;
}

You can make arithmetic overflow checking the default for all expressions in a
program by selecting the “checked” option at the project level (in Visual Studio,
go to Advanced Build Settings). If you then need to disable overflow checking just
for specific expressions or statements, you can do so with the unchecked operator.
For example, the following code will not throw exceptions—even if the project’s
“checked” option is selected:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions

Regardless of the “checked” project setting, expressions evaluated at compile time
are always overflow-checked—unless you apply the unchecked operator:

int x = int.MaxValue + 1; // Compile-time error
int y = unchecked (int.MaxValue + 1); // No errors

Bitwise operators

C# supports the following bitwise operators:

Operator Meaning Sample expression Result

~ Complement ~OxfU oxfffffffou
& And oxfo & 0x33 0x30

| Or 0xfo | 0x33 oxf3

" Exclusive Or 0xffoO ~ Ox0ff0 OxfOfO

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

From .NET 6, additional bitwise operations are exposed via
a new class called BitOperations in the System.Numerics
namespace (see “BitOperations” on page 320).

46 | Chapter2: C# Language Basics

8- and 16-Bit Integral Types

The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types
as required. This can cause a compile-time error when trying to assign the result
back to a small integral type:

short x =1, y = 1;
short z = x + y; // Compile-time error

W
]
@,
(2]
0

In this case, x and y are implicitly converted to int so that the addition can be
performed. This means that the result is also an int, which cannot be implicitly cast
back to a short (because it could cause loss of data). To make this compile, you
must add an explicit cast:

abenbue #D

short z = (short) (x +y); // OK

Special Float and Double Values

Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (Not a Number), +eo, —co, and —0. The float
and double classes have constants for NaN, +oo, and —eo, as well as other values
(MaxValue, MinValue, and Epsilon); for example:

Console.WriteLine (double.NegativeInfinity); // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+oo double.PositiveInfinity float.PositiveInfinity
—oo double.NegativeInfinity float.NegativeInfinity
-0 -0.0 -0.0f

Dividing a nonzero number by zero results in an infinite value:

Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (-1.0 / 0.0); // -Infinity
Console.WriteLine (1.0 / -0.0); // -Infinity
Console.WriteLine (-1.0 / -0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN:

Console.WriteLine (0.0 / 0.0); // NaN

Console.WriteLine ((1.0 / 0.0) - (1.0 / 0.0)); // NaN
When using ==, a NaN value is never equal to another value, even another NaN
value:

Console.WriteLine (0.0 / 0.0 == double.NaN); /] False

NumericTypes | 47

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN
method:

Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True
When using object.Equals, however, two NaN values are equal:
Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN)); /] True

NaNs are sometimes useful in representing special values. In
Windows Presentation Foundation (WPF), double.NaN repre-
sents a measurement whose value is “Automatic” Another way
to represent such a value is with a nullable type (Chapter 4);
another is with a custom struct that wraps a numeric type and
adds an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported
natively by almost all processors. You can find detailed information on the behavior
of these types at http://www.ieee.org.

double Versus decimal

double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “human-made”
rather than the result of real-world measurements. Here’s a summary of the
differences:

Category double decimal

Internal representation ~ Base 2 Base 10

Decimal precision 15-16 significant figures ~ 28-29 significant figures

Range £(~1073% to ~10%%) +(~10"2t0 ~10%)

Special values +0,—0, 400, —co, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower
than double)

Real Number Rounding Errors

float and double internally represent numbers in base 2. For this reason, only
numbers expressible in base 2 are represented precisely. Practically, this means most
literals with a fractional component (which are in base 10) will not be represented
precisely; for example:

float x = 0.1f; // Not quite 0.1

Console.WriteLine (X + X + X + X + X + X + X + X + X + X); // 1.0000001
This is why float and double are bad for financial calculations. In contrast,
decimal works in base 10 and so can precisely represent numbers expressible in
base 10 (as well as its factors, base 2 and base 5). Because real literals are in base 10,
decimal can precisely represent numbers such as 0.1. However, neither double nor

48 | Chapter2: C# Language Basics

http://www.ieee.org

decimal can precisely represent a fractional number whose base 10 representation is
recurring:

decimal m = 1M / 6M; /] ©.1666666666666666666666666667M
double d =1.0/ 6.0; /] ©.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m; // 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989

which break equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M); // False
Console.WriteLine (notQuiteWholeD < 1.0); // True

Boolean Type and Operators

C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one
byte of memory because this is the minimum chunk that the runtime and processor
can efficiently work with. To avoid space inefficiency in the case of arrays, .NET
provides a BitArray class in the System.Collections namespace that is designed to
use just one bit per Boolean value.

bool Conversions

No casting conversions can be made from the bool type to numeric types, or
vice versa.

Equality and Comparison Operators

== and != test for equality and inequality of any type but always return a bool
value.? Value types typically have a very simple notion of equality:

int x = 1;
inty = 2;
int z = 1;
Console.WriteLine (x == y); // False
Console.WriteLine (x == z); /] True

For reference types, equality, by default, is based on reference, as opposed to the
actual value of the underlying object (more on this in Chapter 6):

Dude d1 = new Dude ("John");

Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2); /] False
Dude d3 = di;

3 Its possible to overload these operators (Chapter 4) such that they return a non-bool type, but
this is almost never done in practice.

Boolean Type and Operators | 49

W
]
=,
(2]
0

abenbue #D

Console.WriteLine (d1 == d3); // True

public class Dude

‘ public string Name;
public Dude (string n) { Name = n; }

3
The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric
types, but you should use them with caution with real numbers (as we saw in “Real
Number Rounding Errors” on page 48). The comparison operators also work on
enum type members by comparing their underlying integral-type values. We describe
this in “Enums” on page 140.

We explain the equality and comparison operators in greater detail in “Operator
Overloading” on page 239, “Equality Comparison” on page 324, and “Order Com-
parison” on page 335.

Conditional Operators

The && and | | operators test for and and or conditions. They are frequently used in
conjunction with the ! operator, which expresses not. In the following example, the
UseUmbrella method returns true if it’s rainy or sunny (to protect us from the rain
or the sun), as long as it’s not also windy (umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)

{
return !windy && (rainy || sunny);
}
The && and || operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy || sunny) is not even evaluated.

Short-circuiting is essential in allowing expressions such as the following to run
without throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...
The & and | operators also test for and and or conditions:
return !windy & (rainy | sunny);

The difference is that they do not short-circuit. For this reason, they are rarely used
in place of conditional operators.

Unlike in C and C++, the & and | operators perform (non-
short-circuiting) Boolean comparisons when applied to bool
expressions. The & and | operators perform bitwise operations
only when applied to numbers.

50 | Chapter2: G Language Basics

Conditional operator (ternary operator)

The conditional operator (more commonly called the ternary operator because it’s
the only operator that takes three operands) has the form q ? a : b; thus, if
condition q is true, a is evaluated, otherwise b is evaluated:

static int Max (int a, int b)

{

return (a > b) 2 a : b;

}

The conditional operator is particularly useful in LINQ expressions (Chapter 8).

W
]
@
(2]
0

abenbue #D

Strings and Characters

C#’s char type (aliasing the System.Char type) represents a Unicode character and
occupies 2 bytes (UTF-16). A char literal is specified within single quotes:

char c = 'A'; // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally.
An escape sequence is a backslash followed by a character with a special meaning;
for example:

char newLine = '\n';
char backSlash = "\\';

Table 2-2 shows the escape sequence characters.

Table 2-2. Escape sequence characters

Char Meaning Value

\' Singlequote Ox0027
\" Double quote ©x0022
\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return @x000D
\t Horizontal tab ©x0009
\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its
four-digit hexadecimal code:

Strings and Characters | 51

char copyrightSymbol = '\u®OA9';
char omegaSymbol "\UuB3A9';
char newLine "\UBOBOA' ;

Char Conversions

An implicit conversion from a char to a numeric type works for the numeric types
that can accommodate an unsigned short. For other numeric types, an explicit
conversion is required.

String Type

C#’s string type (aliasing the System.String type, covered in depth in Chapter 6)
represents an immutable (unmodifiable) sequence of Unicode characters. A string
literal is specified within double quotes:

string a = "Heat";

string is a reference type rather than a value type. Its equality
operators, however, follow value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b); // True
The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it
twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal
is prefixed with @ and does not support escape sequences. The following verbatim
string is identical to the preceding one:

string a2 = @"\\server\fileshare\helloworld.cs";
A verbatim string literal can also span multiple lines:

string escaped = "First Line\r\nSecond Line";
string verbatim = @"First Line
Second Line";

// True if your text editor uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

52 | Chapter2: G Language Basics

String concatenation
The + operator concatenates two strings:
string s = "a" + "b";

One of the operands might be a nonstring value, in which case ToString is called on
that value:

string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is
to use the System.Text.StringBuilder type (described in Chapter 6).

String interpolation

A string preceded with the $ character is called an interpolated string. Interpolated
strings can include expressions enclosed in braces:

int x = 4;

Console.Write ($"A square has {x} sides"); // Prints: A square has 4 sides
Any valid C# expression of any type can appear within the braces, and C# will
convert the expression to a string by calling its ToString method or equivalent. You
can change the formatting by appending the expression with a colon and a format
string (format strings are described in “String.Format and composite format strings”
on page 276):

string s = $"255 in hex is {byte.MaxValue:X2}"; // X2 = 2-digit hexadecimal

// Evaluates to "255 in hex is FF"

Should you need to use a colon for another purpose (such as a ternary condi-
tional operator, which we'll cover later), you must wrap the entire expression in
parentheses:

bool b = true;

Console.WriteLine ($"The answer in binary is {(b 2 1 : 0)}");
Interpolated strings must complete on a single line, unless you also specify the
verbatim string operator:

int x = 2;

// Note that $ must appear before @ prior to C# 8:

string s = $@"this interpolation spans {

x} lines";
To include a brace literal in an interpolated string, repeat the desired brace
character.

String comparisons

string does not support < and > operators for comparisons. You must use the
string’s CompareTo method, described in Chapter 6.

Strings and Characters | 53

W
]
=,
0
0

abenbue #O

Constant interpolated strings (C# 10)

From C# 10, interpolated strings can be constants, as long as the interpolated values
are constants:

const string greeting = "Hello";
const string message = $"{greeting}, world";

Arrays

An array represents a fixed number of variables (called elements) of a particular
type. The elements in an array are always stored in a contiguous block of memory,
providing highly efficient access.

An array is denoted with square brackets after the element type:
char[] vowels = new char[5]; // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]); /] e

This prints “¢” because array indexes start at 0. You can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the
integer 1 from 0 to 4:
for (int 1 = 0; 1 < vowels.Length; i++)
Console.Write (vowels[i]); /] aeilou
The Length property of an array returns the number of elements in the array.
After an array has been created, you cannot change its length. The System.Collec

tion namespace and subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single
step:

char[] vowels = new char[] {'a','e','i','0",'u'};
Or simply:

char[] vowels = {'a','e','i','0','u'};

All arrays inherit from the System.Array class, providing common services for all
arrays. These members include methods to get and set elements regardless of the
array type. We describe them in “The Array Class” on page 355.

54 | Chapter2: G Language Basics

Default Element Initialization

Creating an array always preinitializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Because int is a value type, this allocates 1,000 integers
in one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]); /] 0
Value types versus reference types

Whether an array element type is a value type or a reference type has important
performance implications. When the element type is a value type, each element
value is allocated as part of the array, as shown here:

Point[] a = new Point[1000];
int x = a[500].X; /] 0

public struct Point { public int X, VY; }

Had Point been a class, creating the array would have merely allocated 1,000 null
references:

Point[] a = new Point[1000];
int x = a[500].X; // Runtime error, NullReferenceException

public class Point { public int X, Y; }

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the
array:

Point[] a = new Point[1000];
for (int 1 = 0; 1 < a.Length; i++) // Iterate i1 from 0 to 999
a[i] = new Point(); /] Set array element 1 with new point

An array itself is always a reference type object, regardless of the element type. For
instance, the following is legal:

int[] a = null;

Indices and Ranges

Indices and ranges (introduced in C# 8) simplify working with elements or portions
of an array.

Indices and ranges also work with the CLR types Span<T> and
ReadOnlySpan<T> (see Chapter 23).

You can also make your own types work with indices and
ranges, by defining an indexer of type Index or Range (see
“Indexers” on page 109).

Arrays | 55

W
]
@,
0
0

abenbue #O

Indices
Indices let you refer to elements relative to the end of an array, with the » operator.
A1 refers to the last element, 2 refers to the second-to-last element, and so on:

[I e e

char[] vowels = new char[] {'a','e','i','0",'u'};
char lastElement = vowels [#1]; // 'u'
char secondTolLast = vowels [#2]; // 'o'

(0 equals the length of the array, so vowels[~0] generates an error.)

C# implements indices with the help of the Index type, so you can also do the
following:

Index first = 0;

Index last = ~1;

char firstElement = vowels [first]; // 'a'

char lastElement = vowels [last]; /] 'u'
Ranges

Ranges let you “slice” an array by using the .. operator:

char[] firstTwo = vowels [..2]; // 'a', 'e’
char[] lastThree = vowels [2..]; // 'i', 'o', 'u'
char[] middleOne = vowels [2..3]; // 'i

The second number in the range is exclusive, so ..2 returns the elements before
vowels[2].

You can also use the ~ symbol in ranges. The following returns the last two
characters:

char[] lastTwo = vowels [*2..]; /] 'o', 'u'

C# implements ranges with the help of the Range type, so you can also do the
following:

Range firstTwoRange = 0..2;
char[] firstTwo = vowels [firstTwoRange]; // 'a', 'e'

Multidimensional Arrays

Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an n-dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays

Rectangular arrays are declared using commas to separate each dimension. The
following declares a rectangular two-dimensional array for which the dimensions
are 3 by 3:

int[,] matrix = new int[3,3];

56 | Chapter2: G Language Basics

The GetLength method of an array returns the length for a given dimension (start-
ing at 0):

for (int 1 = 0; 1 < matrix.GetLength(0); i++)
for (int j = 0; j < matrix.GetLength(1); j++)
matrix[i,j] = 1 * 3 + j;

You can initialize a rectangular array with explicit values. The following code creates
an array identical to the previous example:

int[,] matrix = new int[,]
{

{0,1,2},

{3,4,5},

{6,7,8}
I

W
]
=,
0
0

abenbue #D

Jagged arrays

Jagged arrays are declared using successive square brackets to represent each
dimension. Here is an example of declaring a jagged two-dimensional array for
which the outermost dimension is 3:

int[][] matrix = new int[3][];

Interestingly, this is new int[3][] and not new int[][3].
Eric Lippert has written an excellent article on why this is so.

The inner dimensions aren’t specified in the declaration because, unlike a rectangu-
lar array, each inner array can be an arbitrary length. Each inner array is implicitly
initialized to null rather than an empty array. You must manually create each inner
array:

for (int 1 = 0; 1 < matrix.Length; i++)
{
matrix[i] = new int[3]; // Create inner array
for (int j = 0; j < matrix[i].Length; j++)
matrix[1][j] = 1 * 3 + i;

You can initialize a jagged array with explicit values. The following code creates an
array identical to the previous example with an additional element at the end:

int[][] matrix = new int[][]

new int[] {0,1,2},

new int[] {3,4,5},

new int[] {6,7,8,9}
1

Simplified Array Initialization Expressions

There are two ways to shorten array initialization expressions. The first is to omit
the new operator and type qualifications:

Arrays | 57

http://albahari.com/jagged

char[] vowels = {'a','e','i','0','u'};

int[,] rectangularMatrix =
{

{0,1,2},

{3,4,5},

{6,7,8}
b

int[][] jaggedMatrix =
{
new int[] {0,1,2},
new int[] {3,4,5},
new int[] {6,7,8,9}
b

The second approach is to use the var keyword, which instructs the compiler to
implicitly type a local variable:

var 1 = 3; // 1 is implicitly of type int
var s = "sausage"; // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,] /] rectMatrix is implicitly of type int[,]
{

{0,1,2},

{3,4,5},

{6,7,8}
I

var jaggedMat = new int[][] // jaggedMat is implicitly of type int[][]
{
new int[] {0,1,2},
new int[] {3,4,5},
new int[] {6,7,8,9}
I
Implicit typing can be taken one stage further with arrays: you can omit the type
qualifier after the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','0",'u'}; // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and
at least one of the elements must be of that type, and there must be exactly one best
type), as in the following example:

var x = new[] {1,10000000000}; // all convertible to long

Bounds Checking

All array indexing is bounds checked by the runtime. An IndexOutOfRange
Exception is thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1; // IndexOutOfRangeException thrown

58 | Chapter2: G Language Basics

Array bounds checking is necessary for type safety and simplifies debugging.

Generally, the performance hit from bounds checking is
minor, and the Just-in-Time (JIT) compiler can perform opti-
mizations, such as determining in advance whether all indexes
will be safe before entering a loop, thus avoiding a check on
each iteration. In addition, C# provides “unsafe” code that
can explicitly bypass bounds checking (see “Unsafe Code and
Pointers” on page 243).

Variables and Parameters

A variable represents a storage location that has a modifiable value. A variable can
be a local variable, parameter (value, ref, out, or in), field (instance or static), or array
element.

The Stack and the Heap

The stack and the heap are the places where variables reside. Each has very different
lifetime semantics.

Stack

The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a method or function is entered and exited. Consider
the following method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)

{
if (x == 0) return 1;
return x * Factorial (x-1);

}

This method is recursive, meaning that it calls itself. Each time the method is
entered, a new int is allocated on the stack, and each time the method exits, the int
is deallocated.

Heap

The heap is the memory in which objects (i.e., reference-type instances) reside.
Whenever a new object is created, it is allocated on the heap, and a reference to that
object is returned. During a program’s execution, the heap begins filling up as new
objects are created. The runtime has a garbage collector that periodically deallocates
objects from the heap, so your program does not run out of memory. An object is
eligible for deallocation as soon as it’s not referenced by anything that’s itself “alive”

In the following example, we begin by creating a StringBuilder object referenced
by the variable ref1 and then write out its content. That StringBuilder object
is then immediately eligible for garbage collection because nothing subsequently
uses it.

Variables and Parameters | 59

W
]
@,
0
0

abenbue] #D

Then, we create another StringBuilder referenced by variable ref2 and copy
that reference to ref3. Even though ref2 is not used after that point, ref3 keeps
the same StringBuilder object alive—ensuring that it doesn’t become eligible for
collection until we've finished using ref3:

using System;
using System.Text;

StringBuilder refl = new StringBuilder ("object1");
Console.WriteLine (ref1l);
// The StringBuilder referenced by refl is now eligible for GC.

StringBuilder ref2 = new StringBuilder ("object2");
StringBuilder ref3 = ref2;
// The StringBuilder referenced by ref2 is NOT yet eligible for GC.

Console.WriteLine (ref3); /] object2

Value-type instances (and object references) live wherever the variable was declared.
If the instance was declared as a field within a class type, or as an array element, that
instance lives on the heap.

You can’t explicitly delete objects in C#, as you can in C++.
An unreferenced object is eventually collected by the garbage
collector.

The heap also stores static fields. Unlike objects allocated on the heap (which can be
garbage-collected), these live until the process ends.

Definite Assignment

C# enforces a definite assignment policy. In practice, this means that outside of
an unsafe or interop context, you can’'t accidentally access uninitialized memory.
Definite assignment has three implications:

o Local variables must be assigned a value before they can be read.

« Function arguments must be supplied when a method is called (unless marked
as optional; see “Optional parameters” on page 65).

o All other variables (such as fields and array elements) are automatically initial-
ized by the runtime.

For example, the following code results in a compile-time error:

int x;

Console.WriteLine (x); // Compile-time error
Fields and array elements are automatically initialized with the default values for
their type. The following code outputs 0 because array elements are implicitly
assigned to their default values:

60 | Chapter2: C# Language Basics

int[] ints = new int[2];
Console.WriteLine (ints[0]); /] ©

The following code outputs 0, because fields are implicitly assigned a default value
(whether instance or static):

Console.WriteLine (Test.X); // ©
class Test { public static int X; } // field

Default Values

All type instances have a default value. The default value for the predefined types is
the result of a bitwise zeroing of memory:

Type Default value

Reference types (and nullable value types) null

Numeric and enum types 0
char type "\o'
bool type false

You can obtain the default value for any type via the default keyword:
Console.WriteLine (default (decimal)); // ©

You can optionally omit the type when it can be inferred:
decimal d = default;

The default value in a custom value type (i.e., struct) is the same as the default
value for each field defined by the custom type.

Parameters

A method may have a sequence of parameters. Parameters define the set of argu-
ments that must be provided for that method. In the following example, the method
Foo has a single parameter named p, of type int:

Foo (8); // 8 is an argument
static void Foo (int p) {...} // p is a parameter

You can control how parameters are passed with the ref, in, and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned
(None) Value Going in

ref Reference Going in

in Reference (read-only) Going in

out Reference Going out

Variables and Parameters | 61

W
]
@
(2]
0

abenbue #D

Passing arguments by value

By default, arguments in C# are passed by value, which is by far the most common
case. This means that a copy of the value is created when passed to the method:

int x = 8;
Foo (x); // Make a copy of x
Console.WriteLine (x); // x will still be 8

static void Foo (int p)

{
p=p+1; // Increment p by 1
Console.WriteLine (p); // Write p to screen

}

Assigning p a new value does not change the contents of x, because p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference but not the object.
In the following example, Foo sees the same StringBuilder object we instantiated
(sb) but has an independent reference to it. In other words, sb and fooSB are
separate variables that reference the same StringBuilder object:

StringBuilder sb = new StringBuilder();
Foo (sb);
Console.WriteLine (sb.ToString());]/ test

static void Foo (StringBuilder fooSB)
{

fooSB.Append ("test");

fooSB = null;

}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If,
however, fooSB was declared and called with the ref modifier, sb would become

null.)
The ref modifier

To pass by reference, C# provides the ref parameter modifier. In the following
example, p and x refer to the same memory locations:

int x = 8;
Foo (ref x); /] Ask Foo to deal directly with x
Console.WriteLine (x); /] x is now 9

static void Foo (ref int p)

{
p=p+1; // Increment p by 1
Console.WriteLine (p); // Write p to screen

}

62 | Chapter2: C# Language Basics

Now assigning p a new value changes the contents of x. Notice how the ref modifier
is required both when writing and when calling the method.* This makes it very
clear what’s going on.

The ref modifier is essential in implementing a swap method (in “Generics” on
page 145, we show how to write a swap method that works with any type):

string x = "Penn";

string y = "Teller";

Swap (ref x, ref y);
Console.WriteLine (x); /] Teller
Console.WriteLine (y); // Penn

W
]
@,
0
0

abenbue] #d

static voild Swap (ref string a, ref string b)

{
string temp = a;
a =b;
b = temp;

}

A parameter can be passed by reference or by value, regardless
of whether the parameter type is a reference type or a value

type.

The out modifier

An out argument is like a ref argument except for the following:

« It need not be assigned before going into the function.

o It must be assigned before it comes out of the function.

The out modifier is most commonly used to get multiple return values back from a
method; for example:

string a, b;

Split ("Stevie Ray Vaughn", out a, out b);
Console.WriteLine (a); // Stevie Ray
Console.WriteLine (b); // Vaughn

void Split (string name, out string firstNames, out string lastName)
{

int 1 = name.LastIndexOf (' ');

firstNames = name.Substring (0, i);

lastName = name.Substring (1 + 1);

}

Like a ref parameter, an out parameter is passed by reference.

4 An exception to this rule is when calling Component Object Model (COM) methods. We discuss
this in Chapter 25.

Variables and Parameters | 63

Out variables and discards

You can declare variables on the fly when calling methods with out parameters. We
can replace the first two lines in our preceding example with this:

Split ("Stevie Ray Vaughan", out string a, out string b);

When calling methods with multiple out parameters, sometimes you're not interes-
ted in receiving values from all the parameters. In such cases, you can “discard” the
ones in which you’re uninterested by using an underscore:

Split ("Stevie Ray Vaughan", out string a, out _); // Discard 2nd param
Console.WriteLine (a);

In this case, the compiler treats the underscore as a special symbol, called a discard.
You can include multiple discards in a single call. Assuming SomeBigMethod has
been defined with seven out parameters, we can ignore all but the fourth, as follows:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);

For backward compatibility, this language feature will not take effect if a real
underscore variable is in scope:

string _;
Split ("Stevie Ray Vaughan", out string a, out _);
Console.WriteLine (_); // Vaughan

Implications of passing by reference

When you pass an argument by reference, you alias the storage location of an
existing variable rather than create a new storage location. In the following example,
the variables x and y represent the same instance:

class Test
{
static int x;

static void Main() { Foo (out x); }

static voild Foo (out int y)

{
Console.WriteLine (x); /] x is 0
y =1; // Mutate y
Console.WriteLine (x); /] x is 1
}
}
The in modifier

An in parameter is similar to a ref parameter except that the arguments value
cannot be modified by the method (doing so generates a compile-time error). This
modifier is most useful when passing a large value type to the method because it
allows the compiler to avoid the overhead of copying the argument prior to passing
it in while still protecting the original value from modification.

64 | Chapter2: C# Language Basics

Overloading solely on the presence of in is permitted:

void Foo (SomeBigStruct a) { ... }
void Foo (in SomeBigStruct a) { ... }

To call the second overload, the caller must use the in modifier:

SomeBigStruct x = ...;
Foo (x); // Calls the first overload
Foo (in x); // Calls the second overload

W
]
@,
0
0

When there’s no ambiguity,

abenbue] #D

void Bar (in SomeBigStruct a) { ... }

use of the in modifier is optional for the caller:

Bar (x); // OK (calls the 'in' overload)
Bar (in x); // OK (calls the 'in' overload)

To make this example meaningful, SomeBigStruct would be defined as a struct (see
“Structs” on page 129).

The params modifier

The params modifier, if applied to the last parameter of a method, allows the
method to accept any number of arguments of a particular type. The parameter
type must be declared as an (single-dimensional) array, as shown in the following
example:

int total = Sum (1, 2, 3, 4);
Console.WriteLine (total); // 10

// The call to Sum above is equivalent to:
int total2 = Sum (new int[] { 1, 2, 3, 4 });

int Sum (params int[] ints)

{
int sum = 0;
for (int 1 = 0; 1 < ints.Length; i++)
sum += ints [1]; // Increase sum by ints[i]
return sum;

}

If there are zero arguments in the params position, a zero-length array is created.

You can also supply a params argument as an ordinary array. The first line in our
example is semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4});

Optional parameters

Methods, constructors, and indexers (Chapter 3) can declare optional parameters. A
parameter is optional if it specifies a default value in its declaration:

Variables and Parameters | 65

void Foo (int x = 23) { Console.WriteLine (x); }
You can omit optional parameters when calling the method:
Foo(); /] 23

The default argument of 23 is actually passed to the optional parameter x—the com-
piler bakes the value 23 into the compiled code at the calling side. The preceding call
to Foo is semantically identical to

Foo (23);

because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called
from another assembly requires recompilation of both assem-
blies—just as though the parameter were mandatory.

The default value of an optional parameter must be specified by a constant expres-
sion, a parameterless constructor of a value type, or a default expression. Optional
parameters cannot be marked with ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and the method call (the exception is with params arguments, which still
always come last). In the following example, the explicit value of 1 is passed to x,
and the default value of 0 is passed to y:

Foo (1); /] 1, 0
void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

You can do the converse (pass a default value to x and an explicit value to y) by
combining optional parameters with named arguments.

Named arguments

Rather than identifying an argument by position, you can identify an argument by
name:

Foo (x:1, y:2); // 1, 2
void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

Named arguments can occur in any order. The following calls to Foo are semanti-
cally identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

66 | Chapter2: C# Language Basics

A subtle difference is that argument expressions are evalu-
ated in the order in which they appear at the calling site.
In general, this makes a difference only with interdependent
side-effecting expressions such as the following, which writes
0, 1:

int a = 0;

Foo (y: ++a, x: --a); // ++a is evaluated first
Of course, you would almost certainly avoid writing such code
in practice!

W
]
@
0
0

You can mix named and positional arguments:

abenbue] #d

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named
arguments unless they are used in the correct position. So, you could call Foo like
this:

Foo (x:1, 2); // OK. Arguments in the declared positions
But not like this:
Foo (y:2, 1); // Compile-time error. y isn't in the first position

Named arguments are particularly useful in conjunction with optional parameters.
For instance, consider the following method:

void Bar (int a =0, intb=0, intc=0, intd=0) { ... }
You can call this supplying only a value for d, as follows:
Bar (d:3);

This is particularly useful when calling COM APIs, which we discuss in detail in
Chapter 24.

Ref Locals

A somewhat esoteric feature of C# is that you can define a local variable that
references an element in an array or field in an object (from C# 7):

int[] numbers = { 0, 1, 2, 3, 4 };
ref int numRef = ref numbers [2];

In this example, numRef is a reference to numbers[2]. When we modify numRef, we
modify the array element:

numRef *= 10;
Console.WriteLine (numRef); /] 20
Console.WriteLine (numbers [2]); // 20

The target for a ref local must be an array element, field, or local variable; it cannot
be a property (Chapter 3). Ref locals are intended for specialized micro-optimization
scenarios and are typically used in conjunction with ref returns.

Variables and Parameters | 67

Ref Returns

The Span<T> and ReadOnlySpan<T> types that we describe
in Chapter 23 use ref returns to implement a highly effi-
cient indexer. Outside such scenarios, ref returns are not com-
monly used, and you can consider them a micro-optimization
feature.

You can return a ref local from a method. This is called a ref return:
class Program
{
static string x = "Old Value";

static ref string GetX() => ref x; // This method returns a ref

static void Main()

{
ref string xRef = ref GetX(); // Assign result to a ref local
xRef = "New Value";
Console.WriteLine (x); // New Value
}
}

If you omit the ref modifier on the calling side, it reverts to returning an ordinary
value:

string localX = GetX(); // Legal: localX is an ordinary non-ref variable.
You also can use ref returns when defining a property or indexer:

static ref string Prop => ref x;
Such a property is implicitly writable, despite there being no set accessor:

Prop = "New Value";
You can prevent such modification by using ref readonly:

static ref readonly string Prop => ref x;

The ref readonly modifier prevents modification while still enabling the perfor-
mance gain of returning by reference. The gain would be very small in this case,
because x is of type string (a reference type): no matter how long the string, the
only inefficiency that you can hope to avoid is the copying of a single 32- or 64-bit
reference. Real gains can occur with custom value types (see “Structs” on page 129),
but only if the struct is marked as readonly (otherwise, the compiler will perform a
defensive copy).

Attempting to define an explicit set accessor on a ref return property or indexer is
illegal.

68 | Chapter2: C# Language Basics

var—Implicitly Typed Local Variables

It is often the case that you declare and initialize a variable in one step. If the
compiler is able to infer the type from the initialization expression, you can use the
keyword var in place of the type declaration; for example:

var x = "hello";

var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

W
]
@,
0
17

This is precisely equivalent to the following:

abenbue] #D

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

var can decrease code readability when you can't deduce the
type purely by looking at the variable declaration; for example:

Random r = new Random();
var x = r.Next();

What type is x?
In “Anonymous Types” on page 205, we will describe a scenario in which the use of
var is mandatory.
Target-Typed new Expressions

Another way to reduce lexical repetition is with target-typed new expressions (from
C#9):

System.Text.StringBuilder sb1l = new();
System.Text.StringBuilder sb2 = new ("Test");

This is precisely equivalent to:

System.Text.StringBuilder sbl = new System.Text.StringBuilder();
System.Text.StringBuilder sb2 = new System.Text.StringBuilder ("Test");

The principle is that you can call new without specifying a type name if the compiler
is able to unambiguously infer it. Target-typed new expressions are particularly
useful when the variable declaration and initialization are in different parts of your
code. A common example is when you want to initialize a field in a constructor:

class Foo

{
System.Text.StringBuilder sb;

public Foo (string initialvalue)

{

Variables and Parameters | 69

sb = new (initialvalue);
}
}

Target-typed new expressions are also helpful in the following scenario:

MyMethod (new ("test"));

void MyMethod (System.Text.StringBuilder sb) { ... }

Expressions and Operators

An expression essentially denotes a value. The simplest kinds of expressions are
constants and variables. Expressions can be transformed and combined using oper-
ators. An operator takes one or more input operands to output a new expression.

Here is an example of a constant expression:
12

We can use the * operator to combine two operands (the literal expressions 12 and
30), as follows:

12 * 30

We can build complex expressions because an operand can itself be an expression,
such as the operand (12 * 30) in the following example:

1+ (12 * 30)

Operators in C# can be classed as unary, binary, or ternary, depending on the
number of operands they work on (one, two, or three). The binary operators always
use infix notation in which the operator is placed between the two operands.

Primary Expressions

Primary expressions include expressions composed of operators that are intrinsic to
the basic plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression per-
forms a member lookup (with the . operator), and the second expression performs
a method call (with the () operator).

Void Expressions

A void expression is an expression that has no value, such as this:

Console.WriteLine (1)

Because it has no value, you cannot use a void expression as an operand to build
more complex expressions:

1 + Console.WriteLine (1) // Compile-time error

70 | Chapter2: G Language Basics

Assignment Expressions

An assignment expression uses the = operator to assign the result of another expres-
sion to a variable; for example:

X=Xx%*5

An assignment expression is not a void expression—it has a value of whatever
was assigned, and so can be incorporated into another expression. In the following
example, the expression assigns 2 to x and 10 to y:

y=5%*(x=2)
You can use this style of expression to initialize multiple values:
a=b=c=d=0

The compound assignment operators are syntactic shortcuts that combine assign-
ment with another operator:

X *= 2 // equivalent to x = x * 2
X <<= 1 [/ equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the
+=and -= operators here are treated specially and map to the event’s add and remove
accessors.)

Operator Precedence and Associativity

When an expression contains multiple operators, precedence and associativity deter-
mine the order of their evaluation. Operators with higher precedence execute before
operators with lower precedence. If the operators have the same precedence, the
operator’s associativity determines the order of evaluation.

Precedence
The following expression
1+2*3
is evaluated as follows because * has a higher precedence than +:

1+ (2*3)

Left-associative operators

Binary operators (except for assignment, lambda, and null-coalescing operators) are
left-associative; in other words, they are evaluated from left to right. For example,
the following expression

8/ 4/ 2
is evaluated as follows:

(8/4)/2 /1

Expressions and Operators | 71

W
]
@
(2]
0

abenbue #D

You can insert parentheses to change the actual order of evaluation:

8/Ca/2) /4

Right-associative operators

The assignment operators as well as the lambda, null-coalescing, and conditional
operators are right-associative; in other words, they are evaluated from right to left.
Right associativity allows multiple assignments, such as the following, to compile:

X =y =3;

This first assigns 3 to y and then assigns the result of that expression (3) to x.

Operator Table

Table 2-3 lists C#’s operators in order of precedence. Operators in the same category
have the same precedence. We explain user-overloadable operators in “Operator
Overloading” on page 239.

Table 2-3. C# operators (categories in order of precedence)

Category Operator Operator name Example User-
symbol overloadable
Primary . Member access X.y No
?2.and ?[] Null-conditional x?.yorx?[0] No
! (postfix) Null-forgiving x!.yorx![0] No
-> (unsafe) Pointer to struct X->y No
O Function call x() No
[1 Array/index a[x] Via indexer
++ Post-increment X++ Yes
- Post-decrement X—= Yes
new Create instance new Foo() No
stackalloc Stack allocation stackalloc(10) No
typeof Get type from typeof(int) No
identifier
nameof Get name of nameof (x) No
identifier
checked Integral overflow checked(x) No
check on
unchecked Integral overflow unchecked(x) No
check off
default Default value default(char) No
Unary await Await await myTask No

72 | Chapter2: G Language Basics

Category Operator Operator name Example User-

symbol overloadable
sizeof Get size of struct sizeof(int) No
+ Positive value of +X Yes
- Negative value of ~ -x Yes
! Not Ix Yes g
wr
~ Bitwise complement ~x Yes g. g
++ Pre-increment +4X Yes @ %
- Pre-decrement --X Yes s
O Cast (int)x No
A Index from end array[~1] No
* (unsafe) Value at address *x No
& (unsafe) Address of value &x No
Range .. Range of indices X. .y No
SN X.. Ny
Switch & with switch Switch expression num switch { No
1 => true,
_ => false
}
with With expression rec with No
{X=1231}
Multiplicative ~ * Multiply X *y Yes
/ Divide x|y Yes
% Remainder X%y Yes
Additive + Add X +y Yes
- Subtract X -y Yes
Shift << Shift left x << 1 Yes
>> Shift right X >> 1 Yes
Relational < Less than X<y Yes
> Greater than X >y Yes
<= Llessthanorequal x <=y Yes
to
>= Greater than or X >=y Yes
equal to
is Typeisorissubcass x is y No
of
as Type conversion X as 'y No
Equality == Equals X ==y Yes

Expressions and Operators | 73

Category Operator Operator name
symbol
1= Not equals
Logical And & And
Logical Xor A Exclusive Or
Logical Or | Or

Conditional And && Conditional And

Conditional Or || Conditional Or

Null coalescing ~ 2? Null coalescing

Conditional ?2: Conditional
Assignment = Assign
and lambda
*= Multiply self by
/= Divide self by
%= Remainder & assign
to self
+= Add to self
-= Subtract from self
<<= Shift self left by
>>= Shift self right by
&= And self by
A= Exclusive-Or self by
= Or self by
22= Null-coalescing
assignment
=> Lambda

Example

x =y
X &y

x "y
x|y

X && 'y
x|y
X 2?7y
isTrue ? thenThis
: elseThis
X =Yy

X ¥*= 2

X [= 2

X %= 2

X += 2
X -= 2

X <<= 2
X >>= 2
X &= 2

X A= 2

X |= 2
X ?27=0
X =X+ 1

User-
overloadable

Yes
Yes
Yes
Yes
Via &
Via |
No
No

No

Via *

Via /

Via +
Via -
Via <<
Via >>
Via &
Via~
Via |
No

No

Null Operators

C# provides three operators to make it easier to work with nulls: the null-coalescing
operator, the null-coalescing assignment operator, and the null-conditional operator.

Null-Coalescing Operator

The ?? operator is the null-coalescing operator. It says, “If the operand to the left is
non-null, give it to me; otherwise, give me another value” For example:

string s1 = null;
string s2 = s1 ?? "nothing";

/] s2 evaluates to "nothing"

74 | Chapter2: G Language Basics

If the lefthand expression is non-null, the righthand expression is never evaluated.
The null-coalescing operator also works with nullable value types (see “Nullable
Value Types” on page 194).

Null-Coalescing Assignment Operator

The ??= operator (introduced in C# 8) is the null-coalescing assignment operator. It
says, “If the operand to the left is null, assign the right operand to the left operand”
Consider the following:

W
]
@,
0
0

myVariable ??= someDefault;

abenbue] #D

This is equivalent to:
if (myvariable == null) myVariable = someDefault;

The ??= operator is particularly useful in implementing lazily calculated properties.
We'll cover this topic later, in “Calculated Fields and Lazy Evaluation” on page 217.

Null-Conditional Operator

The ?. operator is the null-conditional or “Elvis” operator (after the Elvis emoticon).
It allows you to call methods and access members just like the standard dot operator
except that if the operand on the left is null, the expression evaluates to null instead
of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?2.ToString(); // No error; s instead evaluates to null

The last line is equivalent to the following:
string s = (sb == null ? null : sb.ToString());
Null-conditional expressions also work with indexers:

string foo = null;
char? ¢ = foo?[1]; // c is null

Upon encountering a null, the Elvis operator short-circuits the remainder of the
expression. In the following example, s evaluates to null, even with a standard dot
operator between ToString() and ToUpper():

System.Text.StringBuilder sb = null;
string s = sb?2.ToString().ToUpper(); // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left might
be null. The following expression is robust to both x being null and x.y being null:

x?.y?.z
It is equivalent to the following (except that x.y is evaluated only once):

x == null ? null
¢ (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

Null Operators | 75

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length; // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Value Types” on
page 194). If you're already familiar with nullable value types, here’s a preview:

int? length = sb?.ToString().Length; // OK: int? can be null
You can also use the null-conditional operator to call a void method:
someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a Null
ReferenceException.

You can use the null-conditional operator with the commonly used type members
that we describe in Chapter 3, including methods, fields, properties, and indexers. It
also combines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing"; // s evaluates to "nothing"

Statements

Functions comprise statements that execute sequentially in the textual order in
which they appear. A statement block is a series of statements appearing between
braces (the {3} tokens).

Declaration Statements

A variable declaration introduces a new variable, optionally initializing it with
an expression. You may declare multiple variables of the same type in a comma-
separated list:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

A constant declaration is like a variable declaration except that it cannot be changed
after it has been declared, and the initialization must occur with the declaration (see
“Constants” on page 96):

const double ¢ = 2.99792458E08;
c += 10; // Compile-time Error

Local variables

The scope of a local variable or local constant extends throughout the current block.
You cannot declare another local variable with the same name in the current block
or in any nested blocks:

int x;
{
int y;
int x; // Error - x already defined

76 | Chapter2: G Language Basics

}

{
int y; // OK - y not in scope

}

Console.Write (y); // Error - y is out of scope

A variable’s scope extends in both directions throughout its
code block. This means that if we moved the initial declara-
tion of x in this example to the bottom of the method, wed
get the same error. This is in contrast to C++ and is somewhat
peculiar, given that it’s not legal to refer to a variable or con-
stant before it’s declared.

W
]
@,
0
0

abenbue] #d

Expression Statements

Expression statements are expressions that are also valid statements. An expression
statement must either change state or call something that might change state.
Changing state essentially means changing a variable. Following are the possible
expression statements:

 Assignment expressions (including increment and decrement expressions)

o Method call expressions (both void and nonvoid)

o Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;

int x, y;

System.Text.StringBuilder sb;

// Expression statements

x =14+ 2; // Assignment expression

X++; // Increment expression

y = Math.Max (x, 5); // Assignment expression
Console.WriteLine (y); // Method call expression

sb = new StringBuilder(); // Assignment expression

new StringBuilder(); // Object instantiation expression

When you call a constructor or a method that returns a value, youre not obliged
to use the result. However, unless the constructor or method changes state, the
statement is completely useless:

new StringBuilder(); // Legal, but useless
new string ('c', 3); // Legal, but useless
x.Equals (y); // Legal, but useless

Statements | 77

Selection Statements

C# has the following mechanisms to conditionally control the flow of program
execution:

o Selection statements (if, switch)

« Conditional operator (?:)

o Loop statements (while, do-while, for, foreach)

This section covers the simplest two constructs: the if statement and the switch
statement.

The if statement
An if statement executes a statement if a bool expression is true:

if (5 <2 * 3)
Console.WriteLine ("true"); // true

The statement can be a code block:

if (5 <2 * 3)

{
Console.WriteLine ("true");
Console.WriteLine ("Let’s move on!");

}

The else clause
An if statement can optionally feature an else clause:

if (2 + 2 == 5)
Console.WriteLine ("Does not compute");
else
Console.WriteLine ("False"); // False

Within an else clause, you can nest another if statement:

if (2 + 2 == 5)
Console.WriteLine ("Does not compute");
else
if(2+2==4)
Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces

An else clause always applies to the immediately preceding if statement in the
statement block:

if (true)
if (false)
Console.WriteLine();

78 | Chapter2: G Language Basics

else
Console.WriteLine ("executes");

This is semantically identical to the following:

if (true)
{
if (false)
Console.WriteLine();
else
Console.WriteLine ("executes");

}

We can change the execution flow by moving the braces:

if (true)
{
if (false)
Console.WriteLine();

}

else
Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of
nested if statements—even when not required by the compiler. A notable exception
is with the following pattern:

void TellMeWhatICanDo (int age)

{
if (age >= 35)
Console.WriteLine ("You can be president!");
else if (age >= 21)
Console.WriteLine ("You can drink!");
else if (age >= 18)
Console.WriteLine ("You can vote!");
else
Console.WriteLine ("You can wait!");

}

Here, we've arranged the if and else statements to mimic the “elseif” construct
of other languages (and C#s #elif preprocessor directive). Visual Studios auto-
formatting recognizes this pattern and preserves the indentation. Semantically,
though, each if statement following an else statement is functionally nested within
the else clause.

The switch statement

switch statements let you branch program execution based on a selection of possi-
ble values that a variable might have. switch statements can result in cleaner code
than multiple 1f statements because switch statements require an expression to be
evaluated only once:

voild ShowCard (int cardNumber)

{

switch (cardNumber)

Statements | 79

W
]
@,
0
0

abenbue] #DO

{

case 13:
Console.WriteLine ("King");
break;

case 12:
Console.WriteLine ("Queen");
break;

case 11:
Console.WriteLine ("Jack");
break;

case -1: // Joker is -1
goto case 12; // In this game joker counts as queen

default: // Executes for any other cardNumber
Console.WriteLine (cardNumber);
break;

}
}

This example demonstrates the most common scenario, which is switching on
constants. When you specify a constant, youre restricted to the built-in integral
types; the bool, char, and enum types; and the string type.

At the end of each case clause, you must specify explicitly where execution is to go
next, with some kind of jump statement (unless your code ends in an infinite loop).
Here are the options:

o break (jumps to the end of the switch statement)
o goto case x (jumps to another case clause)
o goto default (jumps to the default clause)

 Any other jump statement—namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{
case 13:
case 12:
case 11:
Console.WriteLine ("Face card");
break;
default:
Console.WriteLine ("Plain card");
break;

}

This feature of a switch statement can be pivotal in terms of producing cleaner code
than multiple if-else statements.

80 | Chapter2: C# Language Basics

Switching on types

Switching on a type is a special case of switching on a pattern.
A number of other patterns have been introduced in recent
versions of C#; see “Patterns” on page 222 for a full discussion.

You can also switch on types (from C# 7):

TellMeTheType (12);
TellMeTheType ("hello");
TellMeTheType (true);

W
]
@,
0
0

abenbue] #d

void TellMeTheType (object x) // object allows any type.
{

switch (x)

{

case int i:
Console.WriteLine ("It's an int!");
Console.WriteLine ($"The square of {i} is {i * 1}");
break;

case string s:
Console.WriteLine ("It's a string");
Console.WriteLine ($"The length of {s} is {s.Length}");
break;

default:
Console.WriteLine ("I don't know what x is");
break;

}
}

(The object type allows for a variable of any type; we discuss this fully in “Inheri-
tance” on page 115 and “The object Type” on page 125.)

Each case clause specifies a type upon which to match, and a variable upon which
to assign the typed value if the match succeeds (the “pattern” variable). Unlike with
constants, there’s no restriction on what types you can use.

You can predicate a case with the when keyword:

switch (x)
{
case bool b when b == true: // Fires only when b is true
Console.WriteLine ("True!");
break;

case bool b:
Console.WriteLine ("False!");
break;

3

The order of the case clauses can matter when switching on type (unlike when
switching on constants). This example would give a different result if we reversed
the two cases (in fact, it would not even compile, because the compiler would
determine that the second case is unreachable). An exception to this rule is the
default clause, which is always executed last, regardless of where it appears.

Statements | 81

If you want to switch on a type, but are uninterested in its value, you can use a

discard ():

case DateTime _
Console.WriteLine ("It's a DateTime");

You can stack multiple case clauses. The Console.WriteLine in the following code
will execute for any floating-point type greater than 1,000:

switch (x)

{
case float f when f > 1000:

case double d when d > 1000:

case decimal m when m > 1000:
Console.WriteLine ("We can refer to x here but not f or d or m");
break;

}

In this example, the compiler lets us consume the pattern variables f, d, and m, only
in the when clauses. When we call Console.WriteLine, its unknown which one of
those three variables will be assigned, so the compiler puts all of them out of scope.

You can mix and match constants and patterns in the same switch statement. And
you can also switch on the null value:

case null:
Console.WriteLine ("Nothing here");
break;

Switch expressions

From C# 8, you can use switch in the context of an expression. Assuming that
cardNumber is of type int, the following illustrates its use:

string cardName = cardNumber switch

{
13 => "King",
12 => "Queen",
11 => "Jack",
_ => "Pip card" // equivalent to 'default'
IH
Notice that the switch keyword appears after the variable name and that the case
clauses are expressions (terminated by commas) rather than statements. Switch
expressions are more compact than their switch statement counterparts, and you
can use them in LINQ queries (Chapter 8).

If you omit the default expression (_) and the switch fails to match, an exception is
thrown.

You can also switch on multiple values (the tuple pattern):

int cardNumber = 12;
string suite = "spades";

82 | Chapter2: C# Language Basics

string cardName = (cardNumber, suite) switch

{
(13, "spades") => "King of spades",
(13, "clubs") => "King of clubs",

b

Many more options are possible through the use of patterns (see “Patterns” on page
222).

Iteration Statements

C# enables a sequence of statements to execute repeatedly with the while, do-while,
for, and foreach statements.

while and do-while loops

while loops repeatedly execute a body of code while a bool expression is true.
The expression is tested before the body of the loop is executed. For example, the
following writes 012:

int 1 = 0;

while (1 < 3)

{

Console.Write (1);
14+;
3
do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while
loop:

int 1 = 0;

do

{
Console.WriteLine (i);
1t++;

}

while (1 < 3);

for loops

for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
statement-or-statement-block

Statements | 83

W
]
=,
(2]
0

abenbue #D

Here’s what each clause does:

Initialization clause
Executed before the loop begins; used to initialize one or more iteration vari-
ables

Condition clause
The bool expression that, while true, will execute the body

Iteration clause
Executed after each iteration of the statement block; used typically to update
the iteration variable

For example, the following prints the numbers 0 through 2:

for (int 1 = 0; 1 < 3; 1++)
Console.WriteLine (1i);

The following prints the first 10 Fibonacci numbers (in which each number is the
sum of the previous two):

for (int 1 = 0, prevFib = 1, curFib = 1; 1 < 10; i1++)
{

Console.WriteLine (prevFib);

int newFib = prevFib + curFib;

prevFib = curFib; curFib = newFib;

}

Any of the three parts of the for statement can be omitted. You can implement an
infinite loop such as the following (though while(true) can be used, instead):

for (53)
Console.WriteLine ("interrupt me");

foreach loops

The foreach statement iterates over each element in an enumerable object. Most of
the .NET types that represent a set or list of elements are enumerable. For example,
both an array and a string are enumerable. Here is an example of enumerating over
the characters in a string, from the first character through to the last:

foreach (char c¢ in "beer") // c is the iteration variable
Console.WriteLine (c);

Here’s the output:

N CEN Ry

We define enumerable objects in “Enumeration and Iterators” on page 189.

84 | Chapter2: C# Language Basics

Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

Jump statements obey the reliability rules of try statements
(see “try Statements and Exceptions” on page 181). This
means that:

e A jump out of a try block always executes the try’s
finally block before reaching the target of the jump.

W
]
@,
0
0

abenbue #D

o A jump cannot be made from the inside to the outside of
a finally block (except via throw).

The break statement

The break statement ends the execution of the body of an iteration or switch
statement:
int x = 0;

while (true)

{
if (x++ > 5)
break; // break from the loop

3

// execution continues here after break

The continue statement

The continue statement forgoes the remaining statements in a loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int 1 = 0; 1 < 10; 1++)

if ((1 % 2) == 0) // If 1 is even,
continue; // continue with next iteration
Console.Write (1 + " ");

3

OUTPUT: 13579

The goto statement

The goto statement transfers execution to another label within a statement block.
The form is as follows:

goto statement-label;
Or, when used within a switch statement:

goto case case-constant; // (Only works with constants, not patterns)

Statements | 85

A label is a placeholder in a code block that precedes a statement, denoted with a
colon suftix. The following iterates the numbers 1 through 5, mimicking a for loop:
int 1 = 1;
startLoop:
if (1 <= 5)
{
Console.Write (1 + " ");
1++;
goto startLoop;
}

OUTPUT: 123 45

The goto case case-constant transfers execution to another case in a switch
block (see “The switch statement” on page 79).

The return statement

The return statement exits the method and must return an expression of the
method’s return type if the method is nonvoid:

decimal AsPercentage (decimal d)

{

decimal p = d * 100m;

return p; // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block)
and can be used more than once.

The throw statement

The throw statement throws an exception to indicate an error has occurred (see “try
Statements and Exceptions” on page 181):

if (w == null)
throw new ArgumentNullException (...);

Miscellaneous Statements

The using statement provides an elegant syntax for calling Dispose on objects
that implement IDisposable, within a finally block (see “try Statements and
Exceptions” on page 181 and “IDisposable, Dispose, and Close” on page 557).

C# overloads the using keyword to have independent mean-
ings in different contexts. Specifically, the using directive is
different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the
Montitor class (see Chapters 14 and 23).

86 | Chapter2: C# Language Basics

Namespaces

A namespace is a domain for type names. Types are typically organized into hier-
archical namespaces, making them easier to find and preventing conflicts. For
example, the RSA type that handles public key encryption is defined within the
following namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

W
]
@,
0
0

abenbue] #d

System.Security.Cryptography.RSA rsa =
System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are .dll files
that serve as units of deployment (described in Chapter 17).

Namespaces also have no impact on member visibility—pub
lic, internal, private, and so on.

The namespace keyword defines a namespace for types within that block; for
example:

namespace Outer.Middle.Inner

{
class Class1 {}
class Class2 {}

}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example:

namespace Outer

{

namespace Middle

{

namespace Inner

{
class Class1 {}
class Class2 {}
}
}
}
You can refer to a type with its fully qualified name, which includes all namespaces
from the outermost to the innermost. For example, we could refer to Class1 in the

preceding example as Outer .Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example.

Namespaces | 87

File-Scoped Namespaces (C# 10)
Often, you will want all the types in a file to be defined in one namespace:

namespace MyNamespace

{
class Class1 {}
class Class2 {}

}

From C# 10, you can accomplish this with a file-scoped namespace:

namespace MyNamespace; // Applies to everything that follows in the file.

class Class1 {} // inside MyNamespace

class Class2 {} // inside MyNamespace
File-scoped namespaces reduce clutter and eliminate an unnecessary level of
indentation.

The using Directive

The using directive imports a namespace, allowing you to refer to types without
their fully qualified names. The following imports the previous example’s Outer.Mid
dle.Inner namespace:

using Outer.Middle.Inner;

Classl c; // Don’t need fully qualified name

Its legal (and often desirable) to define the same type name
in different namespaces. However, youd typically do so only
if it was unlikely for a consumer to want to import both
namespaces at once. A good example is the TextBox class,
which is defined both in System.Windows.Controls (WPF)
and System.Windows.Forms (Windows Forms).

A using directive can be nested within a namespace itself to limit the scope of the
directive.

The global using Directive (C# 10)

From C# 10, if you prefix a using directive with the global keyword, the directive
will apply to all files in the project or compilation unit:

global using System;
global using System.Collection.Generic;

This lets you centralize common imports and avoid repeating the same directives in
every file.

global using directives must precede nonglobal directives and cannot appear
inside namespace declarations. The global directive can be used with using static.

88 | Chapter2: C# Language Basics

Implicit global usings

From .NET 6, project files allow for implicit global using directives. If the
ImplicitUsings element is set to true in the project file (the default for new
projects), the following namespaces are automatically imported:

System

System.Collections.Generic

System. IO

System.Ling

System.Net.Http

System.Threading

System.Threading.Tasks
Additional namespaces are imported, based on the project SDK (Web, Windows
Forms, WPE and so on).

using static

The using static directive imports a type rather than a namespace. All static
members of the imported type can then be used without qualification. In the follow-
ing example, we call the Console class’s static WriteLine method without needing to
refer to the type:

using static System.Console;

WriteLine ("Hello");

The using static directive imports all accessible static members of the type,
including fields, properties, and nested types (Chapter 3). You can also apply this
directive to enum types (Chapter 3), in which case their members are imported. So,
if we import the following enum type

using static System.Windows.Visibility;
we can specify Hidden instead of Visibility.Hidden:
var textBox = new TextBox { Visibility = Hidden }; // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not
smart enough to infer the correct type from the context and will generate an error.

Rules Within a Namespace

Name scoping

Names declared in outer namespaces can be used unqualified within inner name-
spaces. In this example, Class1 does not need qualification within Inner:

namespace Outer

{
class Class1 {}

namespace Inner

Namespaces | 89

W
]
@
0
0

abenbue #D

{
class Class2 : Classi {}

}
}

If you want to refer to a type in a different branch of your namespace hierarchy, you
can use a partially qualified name. In the following example, we base SalesReport
on Common.ReportBase:

namespace MyTradingCompany

{

namespace Common

{
class ReportBase {}

}

namespace ManagementReporting

{

class SalesReport : Common.ReportBase {}

}
}

Name hiding

If the same type name appears in both an inner and an outer namespace, the inner
name wins. To refer to the type in the outer namespace, you must qualify its name:

namespace Outer

{

class Foo { }

namespace Inner

{
class Foo { }

class Test
{
Foo f1; // = Outer.Inner.Foo
Outer.Foo f2; // = Outer.Foo
}
}
}
All type names are converted to fully qualified names at
compile time. Intermediate Language (IL) code contains no
unqualified or partially qualified names.
Repeated namespaces

You can repeat a namespace declaration, as long as the type names within the
namespaces don’t conflict:

namespace Outer.Middle.Inner

{
class Class1 {}

}

90 | Chapter2: C# Language Basics

namespace Outer.Middle.Inner

{
class Class2 {}

}

We can even break the example into two source files such that we could compile
each class into a different assembly.

Source file 1:

W
]
@
0
0

namespace Outer.Middle.Inner

{
class Class1 {}

}

Source file 2:

abenbue #D

namespace Outer.Middle.Inner

{
class Class2 {}

}

Nested using directives

You can nest a using directive within a namespace. This allows you to scope the
using directive within a namespace declaration. In the following example, Class1 is
visible in one scope but not in another:

namespace N1

{
class Class1 {}

}

namespace N2

{

using N1;

class Class2 : Classi1 {}
}

namespace N2

{

class Class3 : Classl {} // Compile-time error

}
Aliasing Types and Namespaces

Importing a namespace can result in type-name collision. Rather than importing
the entire namespace, you can import just the specific types that you need, giving
each type an alias:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

Namespaces | 91

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern

Extern aliases allow your program to reference two types with the same fully
qualified name (i.e., the namespace and type name are identical). This is an unusual
scenario and can occur only when the two types come from different assemblies.
Consider the following example.

Library 1, compiled to Widgets1.dll:

namespace Widgets

{
public class Widget {}

}
Library 2, compiled to Widgets2.dll:

namespace Widgets

{
public class Widget {}

3
Application, which references Widgets1.dll and Widgets2.dll:

using Widgets;

Widget w = new Widget();

The application cannot compile, because Widget is ambiguous. Extern aliases can
resolve the ambiguity. The first step is to modify the application’s .csproj file, assign-
ing a unique alias to each reference:

<ItemGroup>
<Reference Include="Widgets1">
<Aliases>Wl</Aliases>
</Reference>
<Reference Include="Widgets2">
<Aliases>W2</Aliases>
</Reference>
</ItemGroup>

The second step is to use the extern alias directive:

extern alias W1;
extern alias W2;

W1l.Widgets.Widget wl = new W1l.Widgets.Widget();
W2.Widgets.Widget w2 = new W2.Widgets.Widget();

92 | Chapter2: C# Language Basics

Namespace alias qualifiers

As we mentioned earlier, names in inner namespaces hide names in outer namespa-
ces. However, sometimes even the use of a fully qualified type name does not resolve
the conflict. Consider the following example:

namespace N

{
class A
{
static void Main() => new A.B(); // Instantiate class B
public class B {} // Nested type
}
}
namespace A
{
class B {}
}

The Main method could be instantiating either the nested class B or the class B
within the namespace A. The compiler always gives higher precedence to identifiers
in the current namespace, in this case the nested B class.

To resolve such conflicts, a namespace name can be qualified, relative to one of the
following:
o The global namespace—the root of all namespaces (identified with the contex-
tual keyword global)
o The set of extern aliases
The :: token performs namespace alias qualification. In this example, we qualify

using the global namespace (this is most commonly seen in autogenerated code to
avoid name conflicts):

namespace N

{
class A
{
static void Main()
{
System.Console.WriteLine (new A.B());
System.Console.WriteLine (new global::A.B());
}
public class B {}
}
}
namespace A
{
class B {}
}

Namespaces | 93

W
]
@,
0
0

abenbue #D

Here is an example of qualifying with an alias (adapted from the example in
“Extern”):

extern alias Wi;
extern alias W2;

W1::Widgets.Widget wl = new W1::Widgets.Widget();
W2::Widgets.Widget w2 = new W2::Widgets.Widget();

94 | Chapter 2: C# Language Basics

Creating Types in C#

In this chapter, we delve into types and type members.

Classes

A class is the most common kind of reference type. The simplest possible class
declaration is as follows:

class YourClassName
{
}

A more complex class optionally has the following:

Preceding the keyword Attributes and class modifiers. The non-nested class modifiers are public,

class internal, abstract, sealed, static, unsafe,and partial.
Following Your Generic type parameters and constraints, a base class, and interfaces.

ClassName

Within the braces Class members (these are methods, properties, indexers, events, fields, constructors,

overloaded operators, nested types, and a finalizer).

This chapter covers all of these constructs except attributes, operator functions,
and the unsafe keyword, which are covered in Chapter 4. The following sections
enumerate each of the class members.

Fields
A field is a variable that is a member of a class or struct; for example:

class Octopus

{

string name;

public int Age = 10;
}

95

Fields allow the following modifiers:

Static modifier static

Access modifiers public internal private protected
Inheritance modifier new

Unsafe code modifier unsafe

Read-only modifier ~ readonly

Threading modifier ~ volatile

There are two popular naming conventions for private fields: camel-cased (e.g.,
firstName) and camel-cased with an underscore (_firstName). The latter conven-
tion lets you instantly distinguish private fields from parameters and local variables.

The readonly modifier

The readonly modifier prevents a field from being modified after construction. A
read-only field can be assigned only in its declaration or within the enclosing type’s
constructor.

Field initialization
Field initialization is optional. An uninitialized field has a default value (0, '\0"',
null, false). Field initializers run before constructors:
public int Age = 10;
A field initializer can contain expressions and call methods:

static readonly string TempFolder = System.IO.Path.GetTempPath();

Declaring multiple fields together

For convenience, you can declare multiple fields of the same type in a comma-
separated list. This is a convenient way for all the fields to share the same attributes
and field modifiers:

static readonly int legs
eyes

8,
2;

Constants

A constant is evaluated statically at compile time, and the compiler literally substi-
tutes its value whenever used (rather like a macro in C++). A constant can be bool,
char, string, any of the built-in numeric types, or an enum type.

A constant is declared with the const keyword and must be initialized with a value.
For example:

96 | Chapter3:Creating Typesin G#

public class Test

{

public const string Message = "Hello World";

}

A constant can serve a similar role to a static readonly field, but it is much more
restrictive—both in the types you can use and in field initialization semantics. A
constant also differs from a static readonly field in that the evaluation of the
constant occurs at compile time; thus

public static double Circumference (double radius)

{
return 2 * System.Math.PI * radius;
} =
So
is compiled to: ? 3
v g9
—
public static double Circumference (double radius) ?ﬂg
{ #
return 6.2831853071795862 * radius;
}

It makes sense for PI to be a constant because its value is predetermined at compile
time. In contrast, a static readonly field’s value can potentially differ each time
the program is run:

static readonly DateTime StartupTime = DateTime.Now;

A static readonly field is also advantageous when exposing
to other assemblies a value that might change in a later ver-
sion. For instance, suppose that assembly X exposes a constant
as follows:

public const decimal ProgramVersion = 2.3;

If assembly Y references X and uses this constant, the value
2.3 will be baked into assembly Y when compiled. This means
that if X is later recompiled with the constant set to 2.4, Y will
still use the old value of 2.3 until Y is recompiled. A static
readonly field avoids this problem.

Another way of looking at this is that any value that might
change in the future is not constant by definition; thus, it
should not be represented as one.

Constants can also be declared local to a method:

void Test()

{
const double twoPI = 2 * System.Math.PI;

Classes | 97

Nonlocal constants allow the following modifiers:

Access modifiers public internal private protected

Inheritance modifier new

Methods

A method performs an action in a series of statements. A method can receive input
data from the caller by specifying parameters, and output data back to the caller by
specifying a return type. A method can specify a void return type, indicating that
it doesn't return any value to its caller. A method can also output data back to the
caller via ref/out parameters.

A method’s signature must be unique within the type. A method’s signature compri-
ses its name and parameter types in order (but not the parameter names, nor the
return type).

Methods allow the following modifiers:

Static modifier static

Access modifiers public internal private protected
Inheritance modifiers new virtual abstract override sealed
Partial method modifier partial

Unmanaged code modifiers unsafe extern

Asynchronous code modifier async

Expression-bodied methods
A method that comprises a single expression, such as
int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A fat arrow replaces the
braces and return keyword:

int Foo (int x) => x * 2;
Expression-bodied functions can also have a void return type:

void Foo (int x) => Console.WriteLine (x);

Local methods
You can define a method within another method:

void WriteCubes()

{
Console.WriteLine (Cube (3));
Console.WriteLine (Cube (4));
Console.WriteLine (Cube (5));

98 | Chapter 3:Creating Typesin G

int Cube (int value) => value * value * value;

}

The local method (Cube, in this case) is visible only to the enclosing method (Write
Cubes). This simplifies the containing type and instantly signals to anyone looking
at the code that Cube is used nowhere else. Another benefit of local methods is that
they can access the local variables and parameters of the enclosing method. This
has a number of consequences, which we describe in detail in “Capturing Outer
Variables” on page 176.

Local methods can appear within other function kinds, such as property accessors,
constructors, and so on. You can even put local methods inside other local methods
and inside lambda expressions that use a statement block (Chapter 4). Local meth-
ods can be iterators (Chapter 4) or asynchronous (Chapter 14).

Static local methods

Adding the static modifier to a local method (from C# 8) prevents it from seeing
the local variables and parameters of the enclosing method. This helps to reduce
coupling and prevents the local method from accidentally referring to variables in
the containing method.

Local methods and top-level statements

Any methods that you declare in top-level statements are treated as local methods.
This means that (unless marked as static) they can access the variables in the
top-level statements:

int x = 3;
Foo();

void Foo() => Console.WriteLine (x);

Overloading methods

Local methods cannot be overloaded. This means that meth-
ods declared in top-level statements (which are treated as local
methods) cannot be overloaded.

A type can overload methods (define multiple methods with the same name) as long
as the signatures are different. For example, the following methods can all coexist in
the same type:

void Foo (int x) {...}

void Foo (double x) {...}

void Foo (int x, float y) {...}
void Foo (float x, int y) {...}

However, the following pairs of methods cannot coexist in the same type, because
the return type and the params modifier are not part of a method’s signature:

Classes | 99

-
<
T
D
(7]
=
0
*

Bupeald

void Foo (int x) {...}
float Foo (int x) {...} // Compile-time error

void Goo (int[] x) {...}
void Goo (params int[] x) {...} // Compile-time error

Whether a parameter is pass-by-value or pass-by-reference is also part of the signa-
ture. For example, Foo(int) can coexist with either Foo(ref int) or Foo(out int).
However, Foo(ref int) and Foo(out int) cannot coexist:

void Foo (int x) {...}

void Foo (ref int x) {...} // OK so far
void Foo (out int x) {...} // Compile-time error
Instance Constructors

Constructors run initialization code on a class or struct. A constructor is defined
like a method, except that the method name and return type are reduced to the
name of the enclosing type:

Panda p = new Panda ("Petey"); // Call constructor

public class Panda

{
string name; // Define field
public Panda (string n) // Define constructor
{
name = n; // Initialization code (set up field)
}
}

Instance constructors allow the following modifiers:

Access modifiers public internal private protected

Unmanaged code modifiers unsafe extern

Single-statement constructors can also be written as expression-bodied members:

public Panda (string n) => name = n;

Overloading constructors

A class or struct may overload constructors. To avoid code duplication, one con-
structor can call another, using the this keyword:

using System;

public class Wine
{
public decimal Price;
public int Year;
public Wine (decimal price) { Price = price; }

100 | Chapter3: Creating Types in C#

public Wine (decimal price, int year) : this (price) { Year = year; }

}

When one constructor calls another, the called constructor executes first.
You can pass an expression into another constructor, as follows:
public Wine (decimal price, DateTime year) : this (price, year.Year) { }

The expression itself cannot make use of the this reference, for example, to call an
instance method. (This is enforced because the object has not been initialized by the
constructor at this stage, so any methods that you call on it are likely to fail.) It can,
however, call static methods.

Implicit parameterless constructors

For classes, the C# compiler automatically generates a parameterless public con-
structor if and only if you do not define any constructors. However, as soon as
you define at least one constructor, the parameterless constructor is no longer
automatically generated.

Constructor and field initialization order

We previously saw that fields can be initialized with default values in their
declaration:

class Player

{
int shields = 50; // Initialized first
int health = 100; // Initialized second

}

Field initializations occur before the constructor is executed, and in the declaration
order of the fields.

Nonpublic constructors

Constructors do not need to be public. A common reason to have a nonpublic con-
structor is to control instance creation via a static method call. The static method
could be used to return an object from a pool rather than creating a new object, or
to return various subclasses based on input arguments:

public class Classi1

Class1() {3} // Private constructor
public static Classl Create (...)
{
// Perform custom logic here to return an instance of Classil
}
}

Classes | 101

-
<
]
(0]
0
=
(2]
*

puneald

Deconstructors

A deconstructor (also called a deconstructing method) acts as an approximate oppo-
site to a constructor: whereas a constructor typically takes a set of values (as
parameters) and assigns them to fields, a deconstructor does the reverse and assigns
fields back to a set of variables.

A deconstruction method must be called Deconstruct and have one or more out
parameters, such as in the following class:

class Rectangle

{
public readonly float Width, Height;

public Rectangle (float width, float height)

{
Width = width;
Height = height;
}

public void Deconstruct (out float width, out float height)
{
width = Width;
height = Height;
}
}

The following special syntax calls the deconstructor:

var rect = new Rectangle (3, 4);
(float width, float height) = rect; |/ Deconstruction
Console.WriteLine (width + " " + height); /] 3 4

The second line is the deconstructing call. It creates two local variables and
then calls the Deconstruct method. Our deconstructing call is equivalent to the
following:

float width, height;
rect.Deconstruct (out width, out height);

Or:
rect.Deconstruct (out var width, out var height);

Deconstructing calls allow implicit typing, so we could shorten our call to this:
(var width, var height) = rect;

Or simply this:

var (width, height) = rect;

102 | Chapter3: Creating Types in C#

You can use C#’s discard symbol (_) if youre uninterested in
one or more variables:

var (_, height) = rect;

This better indicates your intention than declaring a variable
that you never use.

If the variables into which you’re deconstructing are already defined, omit the types
altogether:

float width, height;

(width, height) = rect;
This is called a deconstructing assignment. You can use a deconstructing assignment
to simplify your class’s constructor:

public Rectangle (float width, float height) =>

(Width, Height) = (width, height);

You can offer the caller a range of deconstruction options by overloading the
Deconstruct method.

The Deconstruct method can be an extension method (see
“Extension Methods” on page 202). This is a useful trick if you
want to deconstruct types that you did not author.

From C# 10, you can mix and match existing and new variables when
deconstructing:

double x1 = 0;
(x1, double y2) = rect;

Object Initializers

To simplify object initialization, any accessible fields or properties of an object can
be set via an object initializer directly after construction. For example, consider the
following class:

public class Bunny

{
public string Name;
public bool LikesCarrots;
public bool LikesHumans;

public Bunny () {}
public Bunny (string n) { Name = n; }
}

Using object initializers, you can instantiate Bunny objects as follows:

/] Note parameterless constructors can omit empty parentheses
Bunny bl = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo") { LikesCarrots=true, LikesHumans=false };

Classes | 103

-
<
°]
(0]
0
=
0
*

Buieald

The code to construct b1 and b2 is precisely equivalent to the following:

Bunny templ = new Bunny(); // templ is a compiler-generated name
temp1.Name = "Bo";

templ.LikesCarrots = true;

templ.LikesHumans = false;

Bunny bl = tempi;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;

The temporary variables are to ensure that if an exception is thrown during initiali-
zation, you can’t end up with a half-initialized object.

Object Initializers Versus Optional Parameters

Instead of using object initializers, we could make Bunny’s constructor accept
optional parameters:

public Bunny (string name,
bool likesCarrots = false,
bool likesHumans = false)
{
Name = name;
LikesCarrots = likesCarrots;
LikesHumans = likesHumans;

}
This would allow us to construct a Bunny as follows:

Bunny bl = new Bunny (name: "Bo",
likesCarrots: true);

Historically, this approach could be advantageous in that it allowed us to make
Bunny’s fields (or properties, which we’ll explain shortly) read-only. Making fields
or properties read-only is good practice when there’s no valid reason for them
to change throughout the life of the object. However, as we'll see soon in our
discussion on properties, the init modifier that was introduced in C# 9 lets us
achieve this goal with object initializers.

Optional parameters have two drawbacks. The first is that while their use in
constructors allows for read-only types, they don’t (easily) allow for nondestruc-
tive mutation. (We'll cover nondestructive mutation—and the solution to this
problem—in “Records” on page 211.)

The second drawback of optional parameters is that when used in public libraries,
they hinder backward compatibility. This is because the act of adding an optional
parameter at a later date breaks the assembly’s binary compatibility with existing
consumers. (This is particularly important when a library is published on NuGet:
the problem becomes intractable when a consumer references packages A and B, if
A and B each depend on incompatible versions of L.)

104 | Chapter3: Creating Types in C#

The difficulty is that each optional parameter value is baked into the calling site. In
other words, C# translates our constructor call into this:

Bunny bl = new Bunny ("Bo", true, false);

This is problematic if we instantiate the Bunny class from another assembly and
later modify Bunny by adding another optional parameter—such as likesCats.
Unless the referencing assembly is also recompiled, it will continue to call the
(now nonexistent) constructor with three parameters and fail at runtime. (A subtler
problem is that if we changed the value of one of the optional parameters, callers
in other assemblies would continue to use the old optional value until they were
recompiled.)

The this Reference

The this reference refers to the instance itself. In the following example, the Marry
method uses this to set the partner’s mate field:

public class Panda

{
public Panda Mate;

public voild Marry (Panda partner)
{
Mate = partner;
partner.Mate = this;
}
}

The this reference also disambiguates a local variable or parameter from a field; for
example:

public class Test

{
string name;
public Test (string name) { this.name = name; }

}

The this reference is valid only within nonstatic members of a class or struct.

Properties

Properties look like fields from the outside, but internally they contain logic, like
methods do. For example, you can't tell by looking at the following code whether
CurrentPrice is a field or a property:

Stock msft = new Stock();

msft.CurrentPrice = 30;

msft.CurrentPrice -= 3;

Console.WriteLine (msft.CurrentPrice);
A property is declared like a field but with a get/set block added. Here’s how to
implement CurrentPrice as a property:

Classes | 105

-
<
]
(0]
7
=
(2]
*

puneald

public class Stock

{
decimal currentPrice; // The private "backing" field
public decimal CurrentPrice // The public property
{
get { return currentPrice; }
set { currentPrice = value; }
}
}

get and set denote property accessors. The get accessor runs when the property
is read. It must return a value of the property’s type. The set accessor runs when
the property is assigned. It has an implicit parameter named value of the property’s
type that you typically assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they
give the implementer complete control over getting and setting its value. This con-
trol enables the implementer to choose whatever internal representation is needed
without exposing the internal details to the user of the property. In this example, the
set method could throw an exception if value was outside a valid range of values.

Throughout this book, we use public fields extensively to keep
the examples free of distraction. In a real application, you
would typically favor public properties over public fields in
order to promote encapsulation.

Properties allow the following modifiers:

Static modifier static
Access modifiers public internal private protected
Inheritance modifiers new virtual abstract override sealed

Unmanaged code modifiers unsafe extern

Read-only and calculated properties

A property is read-only if it specifies only a get accessor, and it is write-only if it
specifies only a set accessor. Write-only properties are rarely used.

A property typically has a dedicated backing field to store the underlying data.
However, a property can also be computed from other data:

decimal currentPrice, sharesOwned;

public decimal Worth
{

get { return currentPrice * sharesOwned; }

}

106 | Chapter3: Creating Types in C#

Expression-bodied properties
You can declare a read-only property, such as the one in the preceding example,

more tersely as an expression-bodied property. A fat arrow replaces all the braces and
the get and return keywords:

public decimal Worth => currentPrice * sharesOwned;
With a little extra syntax, set accessors can also be expression-bodied:

public decimal Worth
{

get => currentPrice * sharesOwned;
set => sharesOwned = value / currentPrice;

}

Automatic properties

The most common implementation for a property is a getter and/or setter that sim-
ply reads and writes to a private field of the same type as the property. An automatic
property declaration instructs the compiler to provide this implementation. We can
improve the first example in this section by declaring CurrentPrice as an automatic
property:

public class Stock

{

public decimal CurrentPrice { get; set; }

}

The compiler automatically generates a private backing field of a compiler-
generated name that cannot be referred to. The set accessor can be marked private
or protected if you want to expose the property as read-only to other types.
Automatic properties were introduced in C# 3.0.

Property initializers
You can add a property initializer to automatic properties, just as with fields:
public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with an initializer can be
read-only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties can also be assigned in
the type’s constructor. This is useful in creating immutable (read-only) types.

get and set accessibility

The get and set accessors can have different access levels. The typical use case for
this is to have a public property with an internal or private access modifier on
the setter:

Classes | 107

-
<
]
(0]
0
=
(2]
*

puneald

public class Foo

{

private decimal x;
public decimal X
{
get { return x; }
private set { x = Math.Round (value, 2); }
}
}

Notice that you declare the property itself with the more permissive access level
(public, in this case) and add the modifier to the accessor you want to be less
accessible.

Init-only setters
From C# 9, you can declare a property accessor with init instead of set:

public class Note

{
public int Pitch { get; init; } =20; // “Init-only” property
public int Duration { get; init; } = 100; // “Init-only” property
}

These init-only properties act like read-only properties, except that they can also be
set via an object initializer:

var note = new Note { Pitch = 50 };
After that, the property cannot be altered:
note.Pitch = 200; // Error - init-only setter!

Init-only properties cannot even be set from inside their class, except via their
property initializer, the constructor, or another init-only accessor.

The alternative to init-only properties is to have read-only properties that you
populate via a constructor:

public class Note

{
public int Pitch { get; }
public int Duration { get; }

public Note (int pitch = 20, int duration = 100)
{
Pitch = pitch; Duration = duration;
}
}

Should the class be part of a public library, this approach makes versioning difficult,
in that adding an optional parameter to the constructor at a later date breaks binary
compatibility with consumers (whereas adding a new init-only property breaks
nothing).

108 | Chapter3: Creating Types in C#

Init-only properties have another significant advantage, which
is that they allow for nondestructive mutation when used in
conjunction with records (see “Records” on page 211).

As with ordinary set accessors, init-only accessors can provide an implementation:

public class Note

{
readonly int _pitch;
public int Pitch { get => _pitch; init => _pitch = value; }

Notice that the _pitch field is read-only: init-only setters are permitted to modify
readonly fields in their own class. (Without this feature, _pitch would need to be
writable, and the class would fail at being internally immutable.)

Changing a property’s accessor from init to set (or vice
versa) is a binary breaking change: anyone that references your
assembly will need to recompile their assembly.

Buieald

-
<
°]
(0]
0
=
0
*

This should not be an issue when creating wholly immutable
types, in that your type will never require properties with a
(writable) set accessor.

CLR property implementation
C# property accessors internally compile to methods called get_XXX and set_xxx:

public decimal get_CurrentPrice {...}

public void set_CurrentPrice (decimal value) {...}
An 1init accessor is processed like a set accessor, but with an extra flag encoded
into the set accessor’s “modreq” metadata (see “Init-only properties” on page 794).

Simple nonvirtual property accessors are inlined by the Just-in-Time (JIT) compiler,
eliminating any performance difference between accessing a property and a field.
Inlining is an optimization in which a method call is replaced with the body of that
method.

Indexers

Indexers provide a natural syntax for accessing elements in a class or struct that
encapsulate a list or dictionary of values. Indexers are similar to properties but are
accessed via an index argument rather than a property name. The string class has
an indexer that lets you access each of its char values via an int index:

string s = "hello";

Console.WriteLine (s[0]); // 'h'

Console.WriteLine (s[3]); // 'l'
The syntax for using indexers is like that for using arrays, except that the index
argument(s) can be of any type(s).

Classes | 109

Indexers have the same modifiers as properties (see “Properties” on page 105) and
can be called null-conditionally by inserting a question mark before the square
bracket (see “Null Operators” on page 74):

string s = null;
Console.WriteLine (s?[0]); // Writes nothing; no error.

Implementing an indexer

To write an indexer, define a property called thtis, specifying the arguments in
square brackets:

class Sentence

{
string[] words = "The quick brown fox".Split();

public string this [int wordNum] // indexer
{
get { return words [wordNum]; }
set { words [wordNum] = value; }
}
}

Here’s how we could use this indexer:

Sentence s = new Sentence();

Console.WriteLine (s[3]); /] fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo

A type can declare multiple indexers, each with parameters of different types. An
indexer can also take more than one parameter:

public string this [int argl, string arg2]
{

get { ...} set { ...}
}

If you omit the set accessor, an indexer becomes read-only, and you can use
expression-bodied syntax to shorten its definition:

public string this [int wordNum] => words [wordNum];

(LR indexer implementation
Indexers internally compile to methods called get_Itemand set_Itenm, as follows:

public string get_Item (int wordNum) {...}
public void set_Item (int wordNum, string value) {...}

Using indices and ranges with indexers

You can support indices and ranges (see “Indices and ranges” on page 13) in your
own classes by defining an indexer with a parameter type of Index or Range.

110 | Chapter3: Creating Types in C#

We could extend our previous example by adding the following indexers to the
Sentence class:

public string this [Index index] => words [index];
public string[] this [Range range] => words [range];

This then enables the following:

Sentence s = new Sentence();
Console.WriteLine (s [~1]); /] fox
string[] firstTwoWords = s [..2]; // (The, quick)

Static Constructors

A static constructor executes once per type rather than once per instance. A type can
define only one static constructor, and it must be parameterless and have the same

name as the type:

Buieald

-
<
]
(0]
7
=
0
*

class Test

{
static Test() { Console.WriteLine ("Type Initialized"); }

3
The runtime automatically invokes a static constructor just prior to the type being
used. Two things trigger this:

« Instantiating the type

o Accessing a static member in the type

The only modifiers allowed by static constructors are unsafe and extern.

If a static constructor throws an unhandled exception (Chap-
ter 4), that type becomes wunusable for the life of the
application.

From C# 9, you can also define module initializers, which
execute once per assembly (when the assembly is first loaded).
To define a module initializer, write a static void method
and then apply the [ModuleInitializer] attribute to that
method:

[System.Runtime.CompilerServices.ModuleInitializer]
internal static voild InitAssembly()

{
.

Static constructors and field initialization order

Static field initializers run just before the static constructor is called. If a type has
no static constructor, static field initializers will execute just prior to the type being
used—or anytime earlier at the whim of the runtime.

Classes | 111

Static field initializers run in the order in which the fields are declared. The follow-
ing example illustrates this. X is initialized to 0, and Y is initialized to 3:

class Foo

{
public static int X = V; /] ©
public static int Y = 3; /] 3

}

If we swap the two field initializers around, both fields are initialized to 3. The next
example prints 0 followed by 3 because the field initializer that instantiates a Foo
executes before X is initialized to 3:

Console.WriteLine (Foo.X); // 3

class Foo

{

public static Foo Instance = new Foo();
public static int X = 3;

Foo() => Console.WriteLine (X); /] ©
}

If we swap the two lines in boldface, the example prints 3 followed by 3.

Static Classes

A class marked static cannot be instantiated or subclassed, and must be composed
solely of static members. The System.Console and System.Math classes are good
examples of static classes.

Finalizers

Finalizers are class-only methods that execute before the garbage collector reclaims
the memory for an unreferenced object. The syntax for a finalizer is the name of the
class prefixed with the ~ symbol:

class Classl

{
~Class1()

{

}
3
This is actually C# syntax for overriding Object’s Finalize method, and the com-
piler expands it into the following method declaration:

protected override void Finalize()

{

base.Finalize();
}

We discuss garbage collection and finalizers fully in Chapter 12.

112 | Chapter3: Creating Types in C#

Finalizers allow the following modifier:
Unmanaged code modifier unsafe

You can write single-statement finalizers using expression-bodied syntax:

~Class1() => Console.WriteLine ("Finalizing");

Partial Types and Methods

Partial types allow a type definition to be split—typically across multiple files. A
common scenario is for a partial class to be autogenerated from some other source
(such as a Visual Studio template or designer), and for that class to be augmented
with additional hand-authored methods:

// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

partial class PaymentForm {}
class PaymentForm {}

Participants cannot have conflicting members. A constructor with the same param-
eters, for instance, cannot be repeated. Partial types are resolved entirely by the
compiler, which means that each participant must be available at compile time and
must reside in the same assembly.

You can specify a base class on one or more partial class declarations, as long
as the base class, if specified, is the same. In addition, each participant can inde-
pendently specify interfaces to implement. We cover base classes and interfaces in
“Inheritance” on page 115 and “Interfaces” on page 134.

The compiler makes no guarantees with regard to field initialization order between
partial type declarations.

Partial methods

A partial type can contain partial methods. These let an autogenerated partial type
provide customizable hooks for manual authoring; for example:

partial class PaymentForm // In auto-generated file

{

partial void ValidatePayment (decimal amount);

}

partial class PaymentForm // In hand-authored file
{

Classes | 113

-
<
]
(0]
0
=
(2]
*

puneald

partial void ValidatePayment (decimal amount)

{
if (amount > 100)

}
}

A partial method consists of two parts: a definition and an implementation. The
definition is typically written by a code generator, and the implementation is typi-
cally manually authored. If an implementation is not provided, the definition of the
partial method is compiled away (as is the code that calls it). This allows autogener-
ated code to be liberal in providing hooks without having to worry about bloat.
Partial methods must be void and are implicitly private. They cannot include out
parameters.

Extended partial methods

Extended partial methods (from C# 9) are designed for the reverse code generation
scenario, where a programmer defines hooks that a code generator implements. An
example of where this might occur is with source generators, a Roslyn feature that
lets you feed the compiler an assembly that automatically generates portions of your
code.

A partial method declaration is extended if it begins with an accessibility modifier:

public partial class Test

{
public partial void M1(); // Extended partial method
private partial void M2(); // Extended partial method
}

The presence of the accessibility modifier doesn't just affect accessibility: it tells the
compiler to treat the declaration differently.

Extended partial methods must have implementations; they do not melt away
if unimplemented. In this example, both M1 and M2 must have implementations
because they each specify accessibility modifiers (public and private).

Because they cannot melt away, extended partial methods can return any type and
can include out parameters:

public partial class Test

{
public partial bool IsValid (string identifier);
internal partial bool TryParse (string number, out int result);

}
The nameof operator

The nameof operator returns the name of any symbol (type, member, variable, and
so on) as a string:

114 | Chapter3: Creating Types in C#

int count = 123;
string name = nameof (count); // name is "count"

Its advantage over simply specifying a string is that of static type checking. Tools
such as Visual Studio can understand the symbol reference, so if you rename the
symbol in question, all of its references will be renamed, too.

To specify the name of a type member such as a field or property, include the type as
well. This works with both static and instance members:

string name = nameof (StringBuilder.Length);
This evaluates to Length. To return StringBuilder.Length, you would do this:

nameof (StringBuilder) + "." + nameof (StringBuilder.Length);

Inheritance

A class can inherit from another class to extend or customize the original class.
Inheriting from a class lets you reuse the functionality in that class instead of
building it from scratch. A class can inherit from only a single class but can itself be
inherited by many classes, thus forming a class hierarchy. In this example, we begin
by defining a class called Asset:

puneald

-
<
]
(0]
0
=
(2]
*

public class Asset

{

public string Name;

}
Next, we define classes called Stock and House, which will inherit from Asset.
Stock and House get everything an Asset has, plus any additional members that
they define:

public class Stock : Asset // inherits from Asset

{
public long SharesOwned;

}

public class House : Asset // inherits from Asset

{

public decimal Mortgage;

}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
SharesOwned=1000 };

Console.WriteLine (msft.Name); /] MSFT
Console.WriteLine (msft.SharesOwned); // 1000

House mansion = new House { Name="Mansion",
Mortgage=250000 };

Inheritance | 115

Console.WriteLine (mansion.Name); // Mansion
Console.WriteLine (mansion.Mortgage); // 250000

The derived classes, Stock and House, inherit the Name field from the base class,
Asset.

A derived class is also called a subclass.

A base class is also called a superclass.

Polymorphism

References are polymorphic. This means a variable of type x can refer to an object
that subclasses x. For instance, consider the following method:

public static void Display (Asset asset)
{

System.Console.WriteLine (asset.Name);

3
This method can display both a Stock and a House because they are both Assets:

Stock msft = new Stock ... ;
House mansion = new House ... ;

Display (msft);
Display (mansion);

Polymorphism works on the basis that subclasses (Stock and House) have all the
features of their base class (Asset). The converse, however, is not true. If Display
was modified to accept a House, you could not pass in an Asset:

Display (new Asset()); // Compile-time error

public static void Display (House house) // Will not accept Asset
{

System.Console.WriteLine (house.Mortgage);

}
Casting and Reference Conversions

An object reference can be:

« Implicitly upcast to a base class reference
o Explicitly downcast to a subclass reference
Upcasting and downcasting between compatible reference types performs reference

conversions: a new reference is (logically) created that points to the same object. An
upcast always succeeds; a downcast succeeds only if the object is suitably typed.

116 | Chapter3: Creating Types in C#

Upcasting
An upcast operation creates a base class reference from a subclass reference:

Stock msft = new Stock();
Asset a = msft; // Upcast

After the upcast, variable a still references the same Stock object as variable msft.
The object being referenced is not itself altered or converted:

Console.WriteLine (a == msft); /] True

Although a and msft refer to the identical object, a has a more restrictive view on
that object:

Console.WriteLine (a.Name); // OK
Console.WriteLine (a.SharesOwned); // Compile-time error

puneald

The last line generates a compile-time error because the variable a is of type Asset,
even though it refers to an object of type Stock. To get to its SharesOwned field, you
must downcast the Asset to a Stock.

-
<
]
(0]
0
=
(2]
*

Downcasting

A downcast operation creates a subclass reference from a base class reference:

Stock msft = new Stock();

Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned); // <No error>
Console.WriteLine (s == a); /] True
Console.WriteLine (s == msft); /] True

As with an upcast, only references are affected—not the underlying object. A down-
cast requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of
runtime type checking (we elaborate on this concept in “Static and Runtime Type
Checking” on page 127).

The as operator

The as operator performs a downcast that evaluates to null (rather than throwing
an exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock; // s is null; no exception thrown

This is useful when youre going to subsequently test whether the result is null:

if (s != null) Console.WriteLine (s.SharesOwned);

Inheritance | 117

Without such a test, a cast is advantageous, because if it fails,
a more helpful exception is thrown. We can illustrate by com-
paring the following two lines of code:

long shares = ((Stock)a).SharesOwned; // Approach #1

long shares = (a as Stock).SharesOwned; // Approach #2
If a is not a Stock, the first line throws an InvalidCastExcep
tion, which is an accurate description of what went wrong.
The second line throws a NullReferenceException, which is
ambiguous. Was a not a Stock, or was a null?

Another way of looking at it is that with the cast operator,
youre saying to the compiler, “I'm certain of a value’s type; if
I’'m wrong, there’s a bug in my code, so throw an exception!”
Whereas with the as operator, you're uncertain of its type and
want to branch according to the outcome at runtime.

The as operator cannot perform custom conversions (see “Operator Overloading” on
page 239), and it cannot do numeric conversions:

long x = 3 as long; // Compile-time error

The as and cast operators will also perform upcasts, although
this is not terribly useful because an implicit conversion will
do the job.

The is operator

The is operator tests whether a variable matches a pattern. C# supports several
kinds of patterns, the most important being a type pattern, where a type name
follows the is keyword.

In this context, the is operator tests whether a reference conversion would suc-
ceed—in other words, whether an object derives from a specified class (or imple-
ments an interface). It is often used to test before downcasting:

if (a is Stock)
Console.WriteLine (((Stock)a).SharesOwned);

The is operator also evaluates to true if an unboxing conversion would succeed (see
“The object Type” on page 125). However, it does not consider custom or numeric
conversions.

The is operator works with many other patterns introduced
in recent versions of C#. For a full discussion, see “Patterns”
on page 222.

Introducing a pattern variable
You can introduce a variable while using the is operator:

if (a is Stock s)
Console.WriteLine (s.SharesOwned);

118 | Chapter3: Creating Types in C#

This is equivalent to the following:

Stock s;
if (a is Stock)
{
s = (Stock) a;
Console.WriteLine (s.SharesOwned);

3
The variable that you introduce is available for “immediate” consumption, so the
following is legal:

if (a is Stock s && s.SharesOwned > 100000)
Console.WriteLine ("Wealthy");

And it remains in scope outside the is expression, allowing this:

if (a is Stock s && s.SharesOwned > 100000)
Console.WriteLine ("Wealthy");

Else
s = new Stock(); // s is in scope

puneald

-
<
]
(0]
0
=
(¢]
*

Console.WriteLine (s.SharesOwned); // Still in scope

Virtual Function Members

A function marked as virtual can be overridden by subclasses wanting to provide
a specialized implementation. Methods, properties, indexers, and events can all be

declared virtual:

public class Asset

{
public string Name;
public virtual decimal Liability => 0; // Expression-bodied property

}

(Liability => 0 is a shortcut for { get { return 0; } }. For more details on
this syntax, see “Expression-bodied properties” on page 107.)

A subclass overrides a virtual method by applying the override modifier:

public class Stock : Asset

{
public long SharesOwned;

}

public class House : Asset

{
public decimal Mortgage;
public override decimal Liability => Mortgage;

}
By default, the Liability of an Asset is 8. A Stock does not need to specialize this
behavior. However, the House specializes the Liability property to return the value
of the Mortgage:

Inheritance | 119

House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;

Console.WriteLine (mansion.Liability); // 250000
Console.WriteLine (a.Liability); // 2560000

The signatures, return types, and accessibility of the virtual and overridden methods
must be identical. An overridden method can call its base class implementation via
the base keyword (we cover this in “The base Keyword” on page 122).

Calling virtual methods from a constructor is potentially dan-
gerous because authors of subclasses are unlikely to know,
when overriding the method, that they are working with
a partially initialized object. In other words, the overriding
method might end up accessing methods or properties that
rely on fields not yet initialized by the constructor.

Covariant return types

From C# 9, you can override a method (or property get accessor) such that it
returns a more derived (subclassed) type. For example:

public class Asset

{
public string Name;
public virtual Asset Clone() => new Asset { Name = Name };

}

public class House : Asset

{
public decimal Mortgage;
public override House Clone() => new House
{ Name = Name, Mortgage = Mortgage };
}
This is permitted because it does not break the contract that Clone must return an
Asset: it returns a House, which is an Asset (and more).

Prior to C# 9, you had to override methods with the identical return type:
public override Asset Clone() => new House { ... }

This still does the job, because the overridden Clone method instantiates a House
rather than an Asset. However, to treat the returned object as a House, you must
then perform a downcast:

House mansionl = new House { Name="McMansion", Mortgage=250000 };
House mansion2 = (House) mansionl.Clone();

Abstract Classes and Abstract Members

A class declared as abstract can never be instantiated. Instead, only its concrete
subclasses can be instantiated.

120 | Chapter3: Creating Types in C#

Abstract classes are able to define abstract members. Abstract members are like vir-
tual members except that they don't provide a default implementation. That imple-
mentation must be provided by the subclass unless that subclass is also declared
abstract:

public abstract class Asset

{
// Note empty implementation

public abstract decimal NetValue { get; }
}

public class Stock : Asset

{
public long SharesOwned;

public decimal CurrentPrice;

// Override like a virtual method.
public override decimal NetValue => CurrentPrice * SharesOwned;

}
Hiding Inherited Members
A base class and a subclass can define identical members. For example:

public class A { public int Counter = 1; }

public class B : A { public int Counter = 2; }
The Counter field in class B is said to hide the Counter field in class A. Usually, this
happens by accident, when a member is added to the base type after an identical
member was added to the subtype. For this reason, the compiler generates a warn-
ing and then resolves the ambiguity as follows:

o References to A (at compile time) bind to A.Counter.
o References to B (at compile time) bind to B.Counter.
Occasionally, you want to hide a member deliberately, in which case you can apply

the new modifier to the member in the subclass. The new modifier does nothing more
than suppress the compiler warning that would otherwise result:

public class A { public int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler—and other program-
mers—that the duplicate member is not an accident.

C# overloads the new keyword to have independent meanings
in different contexts. Specifically, the new operator is different
from the new member modifier.

Inheritance | 121

-
<
]
(0]
0
=
(2
*

Buieald

new versus override
Consider the following class hierarchy:

public class BaseClass

{

public virtual void Foo() { Console.WriteLine ("BaseClass.Foo"); }

}

public class Overrider : BaseClass

{

public override void Foo() { Console.WriteLine ("Overrider.Foo"); }

}

public class Hider : BaseClass

{

public new void Foo() { Console.WriteLine ("Hider.Foo"); }

}

The differences in behavior between Overrider and Hider are demonstrated in the
following code:

Overrider over = new Overrider();

BaseClass bl = over;

over.Foo(); // Overrider.Foo
b1.Foo(); // Overrider.Foo

Hider h = new Hider();

BaseClass b2 = h;

h.Foo(); // Hider.Foo
b2.Foo(); // BaseClass.Foo

Sealing Functions and Classes

An overridden function member can seal its implementation with the sealed key-
word to prevent it from being overridden by further subclasses. In our earlier
virtual function member example, we could have sealed House’s implementation of
Liability, preventing a class that derives from House from overriding Liability,
as follows:

public sealed override decimal Liability { get { return Mortgage; } }

You can also apply the sealed modifier to the class itself, to prevent subclassing.
Sealing a class is more common than sealing a function member.

Although you can seal a function member against overriding, you can’t seal a
member against being hidden.

The base Keyword

The base keyword is similar to the this keyword. It serves two essential purposes:

o Accessing an overridden function member from the subclass

122 | Chapter3: Creating Types in C#

o Calling a base-class constructor (see the next section)

In this example, House uses the base keyword to access Asset’s implementation of
Liability:

public class House : Asset

{

public override decimal Liability => base.Liability + Mortgage;
}
With the base keyword, we access Asset’s Liability property nonvirtually. This
means that we will always access Asset’s version of this property—regardless of the
instance’s actual runtime type.

The same approach works if Liability is hidden rather than overridden. (You
can also access hidden members by casting to the base class before invoking the
function.)

Constructors and Inheritance

A subclass must declare its own constructors. The base class’s constructors are
accessible to the derived class but are never automatically inherited. For example, if
we define Baseclass and Subclass as follows:

public class Baseclass

{
public int X;
public Baseclass () { }
public Baseclass (int x) { this.X = x; }

}

public class Subclass : Baseclass { }
the following is illegal:

Subclass s = new Subclass (123);

Subclass must hence “redefine” any constructors it wants to expose. In doing so,
however, it can call any of the base class’s constructors via the base keyword:

public class Subclass : Baseclass

{
public Subclass (int x) : base (x) { }

}

The base keyword works rather like the this keyword except that it calls a con-
structor in the base class.

Base-class constructors always execute first; this ensures that base initialization
occurs before specialized initialization.

Inheritance | 123

-
<
]
(0]
0
=
(9]
*

puneald

Implicit calling of the parameterless base-class constructor

If a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called:

public class BaseClass

{
public int X;
public BaseClass() { X = 1; }

}
public class Subclass : BaseClass
{
public Subclass() { Console.WriteLine (X); } // 1
}

If the base class has no accessible parameterless constructor, subclasses are forced to
use the base keyword in their constructors.

Constructor and field initialization order

When an object is instantiated, initialization takes place in the following order:

1. From subclass to base class:

a. Fields are initialized.

b. Arguments to base-class constructor calls are evaluated.
2. From base class to subclass:

a. Constructor bodies execute.

For example:

public class B

{
int x = 1; // Executes 3rd
public B (int x)
{
e // Executes 4th
}
}
public class D : B
{
inty = 1; // Executes 1st

public D (int x)
: base (x + 1) // Executes 2nd
{
// Executes 5th
}
}

124 | Chapter3: Creating Types in C#

Overloading and Resolution

Inheritance has an interesting impact on method overloading. Consider the follow-
ing two overloads:

static voild Foo (Asset a) { }
static voild Foo (House h) { }

When an overload is called, the most specific type has precedence:

House h = new House (...);

Foo(h); // Calls Foo(House)
The particular overload to call is determined statically (at compile time) rather than
at runtime. The following code calls Foo(Asset), even though the runtime type of a
is House:

Asset a = new House (...);
Foo(a); // Calls Foo(Asset)

puneald

-
<
]
(0]
0
=
(2]
*

If you cast Asset to dynamic (Chapter 4), the decision as to
which overload to call is deferred until runtime and is then
based on the object’s actual type:

Asset a = new House (...);
Foo ((dynamic)a); // Calls Foo(House)

The object Type

object (System.Object) is the ultimate base class for all types. Any type can be
upcast to object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data
structure based on the principle of LIFO—“last in, first out” A stack has two
operations: push an object on the stack, and pop an object off the stack. Here is a
simple implementation that can hold up to 10 objects:

public class Stack
{

int position;

object[] data = new object[10];

public void Push (object obj) { data[position++] = obj; }

public object Pop() { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop instances of any
type to and from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop(); // Downcast, so explicit cast is needed

Console.WriteLine (s); // sausage

The object Type | 125

object is a reference type, by virtue of being a class. Despite this, value types, such
as int, can also be cast to and from object, and so be added to our stack. This
feature of C# is called type unification and is demonstrated here:

stack.Push (3);
int three = (int) stack.Pop();

When you cast between a value type and object, the CLR must perform some
special work to bridge the difference in semantics between value and reference
types. This process is called boxing and unboxing.

In “Generics” on page 145, we describe how to improve our
Stack class to better handle stacks with same-typed elements.

Boxing and Unboxing

Boxing is the act of converting a value-type instance to a reference-type instance.
The reference type can be either the object class or an interface (which we visit
later in the chapter).! In this example, we box an int into an object:

int x = 9;

object obj = x; // Box the int
Unboxing reverses the operation by casting the object back to the original value
type:

int y = (int)obj; // Unbox the int
Unboxing requires an explicit cast. The runtime checks that the stated value type
matches the actual object type, and throws an InvalidCastException if the check

fails. For instance, the following throws an exception because long does not exactly
match int:

object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:

object obj = 3.5; // 3.5 is inferred to be of type double
int x = (int) (double) obj; // x is now 3

In the last example, (double) performs an unboxing, and then (int) performs a
numeric conversion.

1 The reference type can also be System.ValueType or System.Enum (Chapter 6).

126 | Chapter3: Creating Types in C#

Boxing conversions are crucial in providing a unified type
system. The system is not perfect, however: we’ll see in
“Generics” on page 145 that variance with arrays and generics
supports only reference conversions and not boxing conversions:

object[] a1
object[] a2

new string[3]; // Legal
new int[3]; /] Error

Copying semantics of boxing and unboxing

Boxing copies the value-type instance into the new object, and unboxing copies the
contents of the object back into a value-type instance. In the following example,
changing the value of 1 doesn’'t change its previously boxed copy:

int 1 = 3;
object boxed = 1i;
i=75;

Console.WriteLine (boxed); /] 3

Static and Runtime Type Checking

C# programs are type-checked both statically (at compile time) and at runtime (by
the CLR).

Static type checking enables the compiler to verify the correctness of your program
without running it. The following code will fail because the compiler enforces static

typing:
int x = "5";

Runtime type checking is performed by the CLR when you downcast via a reference
conversion or unboxing:

object y = "5";
int z = (int) y; // Runtime error, downcast failed

Runtime type checking is possible because each object on the heap internally stores
a little type token. You can retrieve this token by calling the GetType method of
object.

The GetType Method and typeof Operator

All types in C# are represented at runtime with an instance of System.Type. There
are two basic ways to get a System. Type object:

o Call GetType on the instance.

o Use the typeof operator on a type name.

GetType is evaluated at runtime; typeof is evaluated statically at compile time
(when generic type parameters are involved, it’s resolved by the JIT compiler).

The object Type | 127

-
<
]
(0]
0
=
(2]
*

puneald

System.Type has properties for such things as the type’s name, assembly, base type,
and so on:

Point p = new Point();

Console.WriteLine (p.GetType().Name); // Point
Console.WriteLine (typeof (Point).Name); // Point
Console.WriteLine (p.GetType() == typeof(Point)); // True
Console.WriteLine (p.X.GetType().Name); // Int32
Console.WriteLine (p.Y.GetType().FullName); // System.Int32

public class Point { public int X, Y; }

System.Type also has methods that act as a gateway to the runtime’s reflection
model, described in Chapter 18.

The ToString Method

The ToString method returns the default textual representation of a type instance.
This method is overridden by all built-in types. Here is an example of using the int
type’s ToString method:

int x = 1;
string s = x.ToString(); /] s is "1"

You can override the ToString method on custom types as follows:

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p); // Petey

public class Panda

{
public string Name;
public override string ToString() => Name;

}
If you don’t override ToString, the method returns the type name.
When you call an overridden object member such as

ToString directly on a value type, boxing doesn’t occur. Box-
ing then occurs only if you cast:

int x = 1;

string s1 = x.ToString(); // Calling on nonboxed value
object box = x;

string s2 = box.ToString(); // Calling on boxed value

Object Member Listing
Here are all the members of object:

public class Object

{
public Object();

public extern Type GetType();

128 | Chapter3: Creating Types in C#

public virtual bool Equals (object obj);
public static bool Equals (object objA, object objB);
public static bool ReferenceEquals (object objA, object objB);

public virtual int GetHashCode();
public virtual string ToString();

protected virtual void Finalize();
protected extern object MemberwiseClone();

}

We describe the Equals, ReferenceEquals, and GetHashCode methods in “Equality
Comparison” on page 324.

Structs

A struct is similar to a class, with the following key differences:

o A struct is a value type, whereas a class is a reference type.

« A struct does not support inheritance (other than implicitly deriving from
object, or more precisely, System.ValueType).

A struct can have all of the members that a class can, except for a finalizer. And
because it cannot be subclassed, members cannot be marked as virtual, abstract, or
protected.

Prior to C# 10, structs were further prohibited from defining
fields initializers and parameterless constructors. Although
this prohibition has now been relaxed—primarily for the ben-
efit of record structs (see “Records” on page 211)—it’s worth
thinking carefully before defining these constructs, as they
can result in confusing behavior that we'll describe in “Struct
Construction Semantics” on page 129.

A struct is appropriate when value-type semantics are desirable. Good examples of
structs are numeric types, where it is more natural for assignment to copy a value
rather than a reference. Because a struct is a value type, each instance does not
require instantiation of an object on the heap; this results in useful savings when
creating many instances of a type. For instance, creating an array of value type
elements requires only a single heap allocation.

Because structs are value types, an instance cannot be null. The default value for a
struct is an empty instance, with all fields empty (set to their default values).
Struct Construction Semantics

Unlike with classes, every field in a struct must be explicitly assigned in the con-
structor (or field initializer). For example:

Structs | 129

-
<
T
(1]
(7]
=
0
*

Bupeald

struct Point

{

int x, y;

public Point (int x, int y) { this.x = x; this.y =y; } // OK
}

If we added the following constructor, the struct would not compile, because y
would remain unassigned:

public Point (int x) { this.x = x; } // Not OK

The default constructor

In addition to any constructors that you define, a struct always has an implicit
parameterless constructor that performs a bitwise-zeroing of its fields (setting them
to their default values):

Point p = new Point(); // p.x and p.y will be 0
struct Point { int x, y; }

Even when you define a parameterless constructor of your own, the implicit param-
eterless constructor still exists and can be accessed via the default keyword:

Point p1 = new Point(); // pl.x and pl.y will be 1
Point p2 = default; // p2.x and p2.y will be 0

struct Point

{

int x = 1;

int y;

public Point() =>y = 1;
}

In this example, we initialized x to 1 via a field initializer, and we initialized y to 1
via the parameterless constructor. And yet with the default keyword, we were still
able to create a Point that bypassed both initializations. The default constructor can
be accessed other ways, too, as the following example illustrates:

var points = new Point[10]; // Each point in the array will be (0,0)
var test = new Test(); // test.p will be (0,0)

class Test { Point p; }

Having what amounts to two parameterless constructors can
be a source of confusion and is arguably a good reason to
avoid defining field initializers and explicit parameterless con-
structors in structs.

A good strategy with structs is to design them such that their default value is a
valid state, thereby making initialization redundant. For example, rather than this:

struct WebOptions { public string Protocol { get; set; } = "https"; }

consider the following:

130 | Chapter3: Creating Types in C#

struct WebOptions
{

string protocol;
public string Protocol { get => protocol ?? "https";
set => protocol = value; }

}
Read-Only Structs and Functions

You can apply the readonly modifier to a struct to enforce that all fields are
readonly; this aids in declaring intent as well as affording the compiler more
optimization freedom:

readonly struct Point

{
public readonly int X, Y; // X and Y must be readonly

}

If you need to apply readonly at a more granular level, you can apply the readonly
modifier (from C# 8) to a struct’s functions. This ensures that if the function
attempts to modify any field, a compile-time error is generated:

struct Point

{
public int X, VY;
public readonly void ResetX() => X = 0; // Error!

}

If a readonly function calls a non-readonly function, the compiler generates a
warning (and defensively copies the struct to avoid the possibility of a mutation).

Ref Structs

Ref structs were introduced in C# 7.2 as a niche feature pri-
marily for the benefit of the Span<T> and ReadOnlySpan<T>
structs that we describe in Chapter 23 (and the highly opti-
mized Utf8JsonReader that we describe in Chapter 11). These
structs help with a micro-optimization technique that aims to
reduce memory allocations.

Unlike reference types, whose instances always live on the heap, value types live
in-place (wherever the variable was declared). If a value type appears as a parameter
or local variable, it will reside on the stack:

void SomeMethod()

{
Point p; // p will reside on the stack

struct Point { public int X, Y; }

Structs | 131

-
<
]
(0]
0
=
(2]
*

puneald

But if a value type appears as a field in a class, it will reside on the heap:

class MyClass
{

Point p; // Lives on heap, because MyClass instances live on the heap

Similarly, arrays of structs live on the heap, and boxing a struct sends it to the heap.

Adding the ref modifier to a struct’s declaration ensures that it can only ever reside
on the stack. Attempting to use a ref struct in such a way that it could reside on the
heap generates a compile-time error:

var points = new Point [100]; // Error: will not compile!

ref struct Point { public int X, Y; }
class MyClass { Point P; } /] Error: will not compile!

Ref structs were introduced mainly for the benefit of the Span<T> and ReadOnly
Span<T> structs. Because Span<T> and ReadOnlySpan<T> instances can exist only on
the stack, it’s possible for them to safely wrap stack-allocated memory.

Ref structs cannot partake in any C# feature that directly or indirectly introduces
the possibility of existing on the heap. This includes a number of advanced C#
features that we describe in Chapter 4, namely lambda expressions, iterators, and
asynchronous functions (because, behind the scenes, these features all create hidden
classes with fields). Also, ref structs cannot appear inside non-ref structs, and they
cannot implement interfaces (because this could result in boxing).

Access Modifiers

To promote encapsulation, a type or type member can limit its accessibility to other
types and other assemblies by adding one of five access modifiers to the declaration:

public
Fully accessible. This is the implicit accessibility for members of an enum or
interface.

internal
Accessible only within the containing assembly or friend assemblies. This is the
default accessibility for non-nested types.

private
Accessible only within the containing type. This is the default accessibility for
members of a class or struct.

protected
Accessible only within the containing type or subclasses.

protected internal
The wunion of protected and 1internal accessibility. A member that is
protected internal is accessible in two ways.

132 | Chapter3: Creating Types in C#

private protected (from C#7.2)
The intersection of protected and internal accessibility. A member that is
private protected is accessible only within the containing type, or subclasses
that reside in the same assembly (making it less accessible than protected or
internal alone).

Examples
Classz2 is accessible from outside its assembly; Class1 is not:

class Class1 {} // Classl is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly; ClassA does not:

class ClassA { int x; } // x is private (default)
class ClassB { internal int x; }

puneald

-

<

]
(0]
0
=
(2]
*

Functions within Subclass can call Bar but not Foo:

class BaseClass

{
void Foo() {} /] Foo is private (default)
protected void Bar() {}

}

class Subclass : BaseClass

{
void Test1() { Foo(); } // Error - cannot access Foo
void Test2() { Bar(); } // OK

}

Friend Assemblies

You can expose internal members to other friend assemblies by adding
the System.Runtime.CompilerServices.InternalsVisibleTo assembly attribute,
specifying the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly has a strong name (see Chapter 17), you must specify its full
160-byte public key:

[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]

You can extract the full public key from a strongly named assembly with a LINQ
query (we explain LINQ in detail in Chapter 8):

string key = string.Join ("",
Assembly.GetExecutingAssembly().GetName().GetPublicKey()
.Select (b => b.ToString ("x2")));

The companion sample in LINQPad invites you to browse to
an assembly and then copies the assembly’s full public key to
the clipboard.

Access Modifiers | 133

Accessibility Capping

A type caps the accessibility of its declared members. The most common example
of capping is when you have an internal type with public members. For example,
consider this:

class C { public void Foo() {} }

Cs (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked public is to make for easier
refactoring should C later be changed to public.

Restrictions on Access Modifiers

When overriding a base class function, accessibility must be identical on the over-
ridden function; for example:

class BaseClass { protected virtual void Foo() {} }
class Subclass1 : BaseClass { protected override void Foo() {} } // OK
class Subclass2 : BaseClass { public override void Foo() {} } // Error

(An exception is when overriding a protected internal method in another assem-
bly, in which case the override must simply be protected.)

The compiler prevents any inconsistent use of access modifiers. For example, a
subclass itself can be less accessible than a base class, but not more:

internal class A {}
public class B : A {} // Error

Interfaces

An interface is similar to a class, but only specifies behavior and does not hold state
(data). Consequently:

« An interface can define only functions and not fields.

o Interface members are implicitly abstract. (Although nonabstract functions are
permitted from C# 8, this is considered a special case, which we describe in
“Default Interface Members” on page 139.)

o A class (or struct) can implement multiple interfaces. In contrast, a class can
inherit from only a single class, and a struct cannot inherit at all (aside from
deriving from System.ValueType).

An interface declaration is like a class declaration, but it (typically) provides no
implementation for its members because its members are implicitly abstract. These
members will be implemented by the classes and structs that implement the inter-
face. An interface can contain only functions, that is, methods, properties, events,
and indexers (which noncoincidentally are precisely the members of a class that can
be abstract).

134 | Chapter3: Creating Types in C#

As defined in System.Collections, here is the definition of the IEnumerator
interface:

public interface IEnumerator

{
bool MoveNext();
object Current { get; }
void Reset();

}
Interface members are always implicitly public and cannot declare an access modi-
fier. Implementing an interface means providing a public implementation for all of
its members:

internal class Countdown : IEnumerator
{
int count = 11;
public bool MoveNext() => count-- > 0;
public object Current => count;
public void Reset() { throw new NotSupportedException(); }

}

You can implicitly cast an object to any interface that it implements:

puneald

-

<

]
(0]
7
=
(2]
*

IEnumerator e = new Countdown();
while (e.MoveNext())
Console.Write (e.Current); // 109876543210

Even though Countdown is an internal class, its members that
implement IEnumerator can be called publicly by casting an
instance of Countdown to IEnumerator. For instance, if a pub-
lic type in the same assembly defined a method as follows:

public static class Util
{

public static object GetCountDown() => new CountDown()

}
a caller from another assembly could do this:

IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();

If IEnumerator were itself defined as internal, this wouldn’t
be possible.

Extending an Interface
Interfaces can derive from other interfaces; for instance:

public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of IUndoable. In other words, types that
implement IRedoable must also implement the members of IUndoable.

Interfaces | 135

Explicit Interface Implementation

Implementing multiple interfaces can sometimes result in a collision between
member signatures. You can resolve such collisions by explicitly implementing an
interface member. Consider the following example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2

{
public void Foo()

{

Console.WriteLine ("Widget's implementation of I1.Foo");

}

int I2.Foo()
{
Console.WriteLine ("Widget's implementation of I2.Foo");
return 42;
}
}

Because I1 and I2 have conflicting Foo signatures, Widget explicitly implements I2’s
Foo method. This lets the two methods coexist in one class. The only way to call an
explicitly implemented member is to cast to its interface:

Widget w = new Widget();

w.Foo(); // Widget's implementation of I1.Foo
((I1)w).Foo(); // Widget's implementation of I1.Foo
((I2)w).Foo(); // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that
are highly specialized and distracting to a type’s normal use case. For example, a
type that implements ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually

An implicitly implemented interface member is, by default, sealed. It must be
marked virtual or abstract in the base class in order to be overridden:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{

public virtual void Undo() => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox

{

public override void Undo() => Console.WriteLine ("RichTextBox.Undo");

}

136 | Chapter3: Creating Types in C#

Calling the interface member through either the base class or the interface calls the
subclass’s implementation:

RichTextBox r = new RichTextBox();

r.undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo
((TextBox)r).uUndo(); // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it
be overridden in the usual manner. It can, however, be reimplemented.

Reimplementing an Interface in a Subclass

A subclass can reimplement any interface member already implemented by a base
class. Reimplementation hijacks a member implementation (when called through
the interface) and works whether or not the member is virtual in the base class. It
also works whether a member is implemented implicitly or explicitly—although it
works best in the latter case, as we will demonstrate.

In the following example, TextBox implements IUndoable.Undo explicitly, and so
it cannot be marked as virtual. To “override” it, RichTextBox must reimplement
IUndoable’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{

voild IUndoable.Undo() => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox, IUndoable
{

public void Undo() => Console.WriteLine ("RichTextBox.Undo");
3
Calling the reimplemented member through the interface calls the subclass’s
implementation:

RichTextBox r = new RichTextBox();
r.undo(); // RichTextBox.Undo Case 1
((IUndoable)r).Undo(); // RichTextBox.Undo Case 2

Assuming the same RichTextBox definition, suppose that TextBox implemented
Undo implicitly:

public class TextBox : IUndoable
{

public void Undo() => Console.WriteLine ("TextBox.Undo");

}

This would give us another way to call Undo, which would “break” the system, as
shown in Case 3:

RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo Case 1

Interfaces | 137

-
<
]
(0]
0
=
(2]
*

puneald

((IUndoable)r).Undo(); // RichTextBox.Undo Case 2
((TextBox)r).uUndo(); // TextBox.Undo Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a mem-
ber is called through the interface and not through the base class. This is usually
undesirable in that it can create inconsistent semantics. This makes reimplementa-
tion most appropriate as a strategy for overriding explicitly implemented interface
members.

Alternatives to interface reimplementation

Even with explicit member implementation, interface reimplementation is problem-
atic for a couple of reasons:

o The subclass has no way to call the base class method.

o The base class author might not anticipate that a method would be reimple-
mented and might not allow for the potential consequences.

Reimplementation can be a good last resort when subclassing hasn't been anticipa-
ted. A better option, however, is to design a base class such that reimplementation
will never be required. There are two ways to achieve this:

o When implicitly implementing a member, mark it virtual if appropriate.

o When explicitly implementing a member, use the following pattern if you
anticipate that subclasses might need to override any logic:

public class TextBox : IUndoable

{
void IUndoable.Undo() => Undo(); // Calls method below
protected virtual void Undo() => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox

{

protected override void Undo() => Console.WriteLine("RichTextBox.Undo");

}

If you don’t anticipate any subclassing, you can mark the class as sealed to preempt
interface reimplementation.
Interfaces and Boxing

Converting a struct to an interface causes boxing. Calling an implicitly implemented
member on a struct does not cause boxing:

interface I { void Foo(); }
struct S : I { public void Foo() {3} }

S s = new S();
s.Foo(); // No boxing.

138 | Chapter3: Creating Types in C#

I1i1=s; // Box occurs when casting to interface.
i.Foo();

Default Interface Members

From C# 8, you can add a default implementation to an interface member, making it
optional to implement:

interface ILogger

{

void Log (string text) => Console.WriteLine (text);
}
This is advantageous if you want to add a member to an interface defined in a
popular library without breaking (potentially thousands of) implementations.

puneald

Default implementations are always explicit, so if a class implementing ILogger fails
to define a Log method, the only way to call it is through the interface:

-
<
]
(0]
0
=
(2]
*

class Logger : ILogger { }

((ILogger)new Logger()).Log ("message");
This prevents a problem of multiple implementation inheritance: if the same default
member is added to two interfaces that a class implements, there is never an
ambiguity as to which member is called.

Interfaces can also now define static members (including fields), which can be
accessed from code inside default implementations:

interface ILogger

{
vold Log (string text) =>
Console.WriteLine (Prefix + text);

nwn,
>

static string Prefix =
3
Because interface members are implicitly public, you can also access static members
from the outside:

ILogger.Prefix = "File log: ";
You can restrict this by adding an accessibility modifier to the static interface

member (such as private, protected, or internal).

Instance fields are (still) prohibited. This is in line with the principle of interfaces,
which is to define behavior, not state.

Interfaces | 139

Writing a Class Versus an Interface

As a guideline:

« Use classes and subclasses for types that naturally share an implementation.

o Use interfaces for types that have independent implementations.

Consider the following classes:

abstract class Animal {}

abstract class Bird : Animal {}
abstract class Insect : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore : Animal {}

// Concrete classes:

class Ostrich : Bird {}

class Eagle : Bird, FlyingCreature, Carnivore {} // Illegal
class Bee : Insect, FlyingCreature {} // Illegal
class Flea : Insect, Carnivore {} // Illegal

The Eagle, Bee, and Flea classes do not compile because inheriting from multiple
classes is prohibited. To resolve this, we must convert some of the types to inter-
faces. The question then arises, which types? Following our general rule, we could
say that insects share an implementation, and birds share an implementation, so
they remain classes. In contrast, flying creatures have independent mechanisms for
flying, and carnivores have independent strategies for eating animals, so we would
convert FlyingCreature and Carnivore to interfaces:

interface IFlyingCreature {3}
interface ICarnivore {}

In a typical scenario, Bird and Insect might correspond to a Windows control and
a web control; FlyingCreature and Carnivore might correspond to IPrintable and
IUndoable.

Enums

An enum is a special value type that lets you specify a group of named numeric
constants. For example:

public enum BorderSide { Left, Right, Top, Bottom }
We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top); // true

Each enum member has an underlying integral value. These are by default:

« Underlying values are of type int.

140 | Chapter3: Creating Types in C#

o The constants 0, 1, 2... are automatically assigned in the declaration order of the
enum members.

You can specify an alternative integral type, as follows:
public enum BorderSide : byte { Left, Right, Top, Bottom }

You can also specify an explicit underlying value for each enum member:
public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum
members. The unassigned enum members keep incrementing
from the last explicit value. The preceding example is equiva-
lent to the following:

public enum BorderSide : byte
{ Left=1, Right, Top=10, Bottom }

puneald

-

<

]
(0]
0
=
(2]
*

Enum Conversions

You can convert an enum instance to and from its underlying integral value with an
explicit cast:

int 1 = (int) BorderSide.Left;

BorderSide side = (BorderSide) i;

bool leftOrRight = (int) side <= 2;
You can also explicitly cast one enum type to another. Suppose that Horizontal
Alignment is defined as follows:

public enum HorizontalAlignment

{
Left = BorderSide.Left,

Right = BorderSide.Right,
Center

}
A translation between the enum types uses the underlying integral values:

HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;

/] same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;

The numeric literal 0 is treated specially by the compiler in an enum expression and
does not require an explicit cast:

BorderSide b = 0; // No cast required
if (b==0) ...

There are two reasons for the special treatment of 0:

o The first member of an enum is often used as the “default” value.

o For combined enum types, 0 means “no flags”

Enums | 141

Flags Enums

You can combine enum members. To prevent ambiguities, members of a combina-
ble enum require explicitly assigned values, typically in powers of two:

[Flags]
enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }

or:
enum BorderSides { None=0, Left=1, Right=1<<1, Top=1<<2, Bottom=1<<3 }

To work with combined enum values, you use bitwise operators such as | and &.
These operate on the underlying integral values:

BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight); // True

s ~= BorderSides.Right; // Toggles BorderSides.Right
Console.WriteLine (s); /] Left

By convention, the Flags attribute should always be applied to an enum type
when its members are combinable. If you declare such an enum without the Flags
attribute, you can still combine members, but calling ToString on an enum instance
will emit a number rather than a series of names.

By convention, a combinable enum type is given a plural rather than singular name.

For convenience, you can include combination members within an enum declara-
tion itself:

[Flags]
enum BorderSides
{
None=0,
Left=1, Right=1<<1, Top=1<<2, Bottom=1<<3,
LeftRight = Left | Right,
TopBottom = Top | Bottom,
All LeftRight | TopBottom
}

Enum Operators
The operators that work with enums are:

= == 1= < > <= >= + - ~Ag |

+= -= 4+ -- sizeof

142 | Chapter3: Creating Types in C#

The bitwise, arithmetic, and comparison operators return the result of processing
the underlying integral values. Addition is permitted between an enum and an
integral type, but not between two enums.

Type-Safety Issues
Consider the following enum:
public enum BorderSide { Left, Right, Top, Bottom }

Because an enum can be cast to and from its underlying integral type, the actual
value it can have might fall outside the bounds of a legal enum member:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); /] 12345

The bitwise and arithmetic operators can produce similarly invalid values:

puneald

-
<
]
(0]
0
=
(2]
*

BorderSide b = BorderSide.Bottom;
b++; // No errors

An invalid BorderSide would break the following code:

void Draw (BorderSide side)

{

if (side == BorderSide.Left) {...}

else if (side == BorderSide.Right) {...}

else if (side == BorderSide.Top) {...}

else {...} // Assume BorderSide.Bottom
}

One solution is to add another else clause:

else if (side == BorderSide.Bottom) ...
else throw new ArgumentException ("Invalid BorderSide:

+ side, "side");

Another workaround is to explicitly check an enum value for validity. The static
Enum. IsDefined method does this job:

BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side)); /] False

Unfortunately, Enum.IsDefined does not work for flagged enums. However, the
following helper method (a trick dependent on the behavior of Enum.ToString())
returns true if a given flagged enum is valid:

for (int 1 = 0; 1 <= 16; 1++)
{
BorderSides side = (BorderSides)i;
Console.WriteLine (IsFlagDefined (side) + " " + side);

}

bool IsFlagDefined (Enum e)
{
decimal d;
return !decimal.TryParse(e.ToString(), out d);

Enums | 143

}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

Nested Types

A nested type is declared within the scope of another type:

public class TopLevel

{
public class Nested { } // Nested class
public enum Color { Red, Blue, Tan } // Nested enum

3
A nested type has the following features:

o It can access the enclosing type’s private members and everything else the
enclosing type can access.

e You can declare it with the full range of access modifiers rather than just
public and internal.

o The default accessibility for a nested type is private rather than internal.

o Accessing a nested type from outside the enclosing type requires qualification
with the enclosing type’s name (like when accessing static members).

For example, to access Color.Red from outside our TopLevel class, wed need to do
this:

TopLevel.Color color = TopLevel.Color.Red;

All types (classes, structs, interfaces, delegates, and enums) can be nested within
either a class or a struct.

Here is an example of accessing a private member of a type from a nested type:

public class TopLevel
{

static int x;
class Nested

{

static void Foo() { Console.WriteLine (TopLevel.x); }
}
}

Here is an example of applying the protected access modifier to a nested type:

public class TopLevel

{
protected class Nested { }

}

public class SubTopLevel : TopLevel
{

144 | Chapter3: Creating Types in C#

static void Foo() { new TopLevel.Nested(); }
}

Here is an example of referring to a nested type from outside the enclosing type:

public class TopLevel

{
public class Nested { }

}

class Test

{
TopLevel.Nested n;

}

Nested types are used heavily by the compiler itself when it generates private classes
that capture state for constructs such as iterators and anonymous methods.

If the sole reason for using a nested type is to avoid cluttering
a namespace with too many types, consider using a nested
namespace instead. A nested type should be used because of
its stronger access control restrictions, or when the nested
class must access private members of the containing class.

Generics

C# has two separate mechanisms for writing code that is reusable across different
types: inheritance and generics. Whereas inheritance expresses reusability with a
base type, generics express reusability with a “template” that contains “placeholder”
types. Generics, when compared to inheritance, can increase type safety and reduce
casting and boxing.

C# generics and C++ templates are similar concepts, but they
work differently. We explain this difference in “C# Generics
Versus C++ Templates” on page 157.

Generic Types

A generic type declares type parameters—placeholder types to be filled in by the
consumer of the generic type, which supplies the type arguments. Here is a generic
type Stack<T>, designed to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>

{
int position;
T[] data = new T[100];
public void Push (T obj) => data[position++] = obj;
public T Pop() => data[--position];
}

Generics | 145

-
<
]
(0]
0
=
(2}
*

Buieald

We can use Stack<T> as follows:

var stack = new Stack<int>();
stack.Push (5);

stack.Push (10);

int x = stack.Pop(); // x is 10
int y = stack.Pop(); /]y is 5

Stack<int> fills in the type parameter T with the type argument int, implicitly cre-
ating a type on the fly (the synthesis occurs at runtime). Attempting to push a string
onto our Stack<int> would, however, produce a compile-time error. Stack<int>
effectively has the following definition (substitutions appear in bold, with the class
name hashed out to avoid confusion):

public class ###
{
int position;
int[] data = new int[100];
public void Push (int obj) => data[position++] = obj;
public int Pop() => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed
type. At runtime, all generic type instances are closed—with the placeholder types
filled in. This means that the following statement is illegal:

var stack = new Stack<T>(); // Illegal: What is T?

However, it’s legal if it’s within a class or method that itself defines T as a type
parameter:

public class Stack<T>
{

public Stack<T> Clone()

{
Stack<T> clone = new Stack<T>(); // Legal

.
}

Why Generics Exist

Generics exist to write code that is reusable across different types. Suppose that
we need a stack of integers, but we don’t have generic types. One solution would
be to hardcode a separate version of the class for every required element type
(e.g., IntStack, StringStack, etc.). Clearly, this would cause considerable code
duplication. Another solution would be to write a stack that is generalized by using
object as the element type:

public class ObjectStack
{
int position;
object[] data = new object[10];

146 | Chapter3: Creating Types in C#

public void Push (object obj) => data[position++] = obj;
public object Pop() => data[--position];
}

An ObjectStack, however, wouldn't work as well as a hardcoded IntStack for

specifically stacking integers. An ObjectStack would require boxing and downcast-
ing that could not be checked at compile time:

// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s"); // Wrong type, but no error!
int 1 = (int)stack.Pop(); // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element
types as well as a way to easily specialize that stack to a specific element type for
increased type safety and reduced casting and boxing. Generics give us precisely this
by allowing us to parameterize the element type. Stack<T> has the benefits of both
ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to work
generally across all types. Like IntStack, Stack<T> is specialized for a particular
type—the beauty is that this type is T, which we substitute on the fly.

Buieald

-
<
]
(0]
0
=
(2}
*

ObjectStack is functionally equivalent to Stack<object>.

Generic Methods
A generic method declares type parameters within the signature of a method.

With generic methods, many fundamental algorithms can be implemented in a
general-purpose way. Here is a generic method that swaps the contents of two
variables of any type T:

static voild Swap<T> (ref T a, ref T b)
{

e

el

= a;

I et

m
b;
= temp;

o o -

}

Swap<T> is called as follows:

int x = 5;

int y = 10;

Swap (ref x, ref y);
Generally, there is no need to supply type arguments to a generic method, because
the compiler can implicitly infer the type. If there is ambiguity, generic methods can
be called with type arguments as follows:

Swap<int> (ref x, ref y);

Generics | 147

Within a generic type, a method is not classed as generic unless it introduces type
parameters (with the angle bracket syntax). The Pop method in our generic stack
merely uses the type’s existing type parameter, T, and is not classed as a generic
method.

Methods and types are the only constructs that can introduce type parameters.
Properties, indexers, events, fields, constructors, operators, and so on cannot
declare type parameters, although they can partake in any type parameters already
declared by their enclosing type. In our generic stack example, for instance, we
could write an indexer that returns a generic item:

public T this [int index] => data [index];
Similarly, constructors can partake in existing type parameters but not introduce

them:

public Stack<T>() { } // Illegal

Declaring Type Parameters

Type parameters can be introduced in the declaration of classes, structs, interfaces,
delegates (covered in Chapter 4), and methods. Other constructs, such as proper-
ties, cannot introduce a type parameter, but they can use one. For example, the
property Value uses T:

public struct Nullable<T>

{
public T Value { get; }

}

A generic type or method can have multiple parameters:

class Dictionary<TKey, TValue> {...}
To instantiate:

Dictionary<int,string> myDict = new Dictionary<int,string>();
Or:

var myDict = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number
of type parameters is different. For example, the following three type names do not
conflict:

class A {3
class A<T> {3
class A<T1,T2> {}

By convention, generic types and methods with a single type
parameter typically name their parameter T, as long as the
intent of the parameter is clear. When using multiple type
parameters, each parameter is prefixed with T but has a more
descriptive name.

148 | Chapter3: Creating Types in C#

typeof and Unbound Generic Types

Open generic types do not exist at runtime: they are closed as part of compilation.
However, it is possible for an unbound generic type to exist at runtime—purely as
a Type object. The only way to specify an unbound generic type in C# is via the
typeof operator:

class A<T> {}
class A<T1,T2> {}

Type al = typeof (A<>); // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>); // Use commas to indicate multiple type args.

Open generic types are used in conjunction with the Reflection API (Chapter 18).

You can also use the typeof operator to specify a closed type:

puneald

-
<
]
(0]
0
=
(2]
*

Type a3 = typeof (A<int,int>);

Or, you can specify an open type (which is closed at runtime):

class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value

You can use the default keyword to get the default value for a generic type parame-
ter. The default value for a reference type is null, and the default value for a value
type is the result of bitwise-zeroing the value type’s fields:

static vold Zap<T> (T[] array)
{

for (int 1 = 0; 1 < array.Length; i++)
array[i] = default(T);
3
From C# 7.1, you can omit the type argument for cases in which the compiler is able
to infer it. We could replace the last line of code with this:

array[i] = default;

Generic Constraints

By default, you can substitute a type parameter with any type whatsoever. Con-
straints can be applied to a type parameter to require more specific type arguments.
These are the possible constraints:

where T : base-class [/ Base-class constraint

where T : interface // Interface constraint

where T : class // Reference-type constraint

where T : class? // (see "Nullable Reference Types" in Chapter 1)
where T : struct // Value-type constraint (excludes Nullable types)
where T : unmanaged // Unmanaged constraint

where T : new() // Parameterless constructor constraint

where U : T // Naked type constraint

Generics | 149

where T : notnull // Non-nullable value type, or (from C# 8)
// a non-nullable reference type

In the following example, GenericClass<T,U> requires T to derive from (or be
identical to) SomeClass and implement Interfacel, and requires U to provide a
parameterless constructor:

class SomeClass {}
interface Interfacel {3}

class GenericClass<T,U> where T : SomeClass, Interfacel
where U : new()
...}
You can apply constraints wherever type parameters are defined, in both methods
and type definitions.

A base-class constraint specifies that the type parameter must subclass (or match)
a particular class; an interface constraint specifies that the type parameter must
implement that interface. These constraints allow instances of the type parameter
to be implicitly converted to that class or interface. For example, suppose that we
want to write a generic Max method, which returns the maximum of two values. We
can take advantage of the generic interface defined in the System namespace called
IComparable<Ts>:

public interface IComparable<T> // Simplified version of interface

{

int CompareTo (T other);

}

CompareTo returns a positive number if this is greater than other. Using this
interface as a constraint, we can write a Max method as follows (to avoid distraction,
null checking is omitted):

static T Max <T> (T a, T b) where T : IComparable<T>
{

return a.CompareTo (b) >0 ? a : b;

}

The Max method can accept arguments of any type implementing IComparable<T>
(which includes most built-in types such as int and string):

int z = Max (5, 10); // 10

string last = Max ("ant", "zoo"); // zoo
The class constraint and struct constraint specify that T must be a reference type
or (non-nullable) value type. A great example of the struct constraint is the Sys

tem.Nullable<T> struct (we discuss this class in depth in “Nullable Value Types” on
page 194):

struct Nullable<T> where T : struct {...}

150 | Chapter3: Creating Types in C#

The unmanaged constraint (introduced in C# 7.3) is a stronger version of a struct
constraint: T must be a simple value type or a struct that is (recursively) free of any
reference types.

The parameterless constructor constraint requires T to have a public parameterless
constructor. If this constraint is defined, you can call new() on T:

static voild Initialize<T> (T[] array) where T : new()
{
for (int 1 = 0; 1 < array.Length; i++)
array[i] = new T();

3
The naked type constraint requires one type parameter to derive from (or match) —
another type parameter. In this example, the method FilteredStack returns 30
. ®
another Stack, containing only the subset of elements where the type parameter o a
U is of the type parameter T: : =
*
class Stack<T>
{
Stack<U> FilteredStack<U>() where U : T {...}
}

Subclassing Generic Types

A generic class can be subclassed just like a nongeneric class. The subclass can leave
the base class’s type parameters open, as in the following example:

class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Or, the subclass can close the generic type parameters with a concrete type:
class IntStack : Stack<int> {...}
A subtype can also introduce fresh type arguments:

class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}

Technically, all type arguments on a subtype are fresh: you
could say that a subtype closes and then reopens the base
type arguments. This means that a subclass can give new (and
potentially more meaningful) names to the type arguments
that it reopens:

class List<T> {...}
class KeyedList<TElement,TKey> : List<TElement> {...}

Self-Referencing Generic Declarations
A type can name ifself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>

Generics | 151

public string Color { get; set; }
public int CC { get; set; }

public bool Equals (Balloon b)
{
if (b == null) return false;
return b.Color == Color && b.CC == CC;

}

}

The following are also legal:
class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data

Static data is unique for each closed type:
Console.WritelLine (++Bob<int>.Count); /] 1
Console.WritelLine (++Bob<int>.Count); /] 2

Console.WriteLine (++Bob<string>.Count); // 1
Console.WriteLine (++Bob<object>.Count); // 1

class Bob<T> { public static int Count; }

Type Parameters and Conversions

C#’s cast operator can perform several kinds of conversion, including:

e Numeric conversion
o Reference conversion
« Boxing/unboxing conversion

« Custom conversion (via operator overloading; see Chapter 4)

The decision as to which kind of conversion will take place happens at compile time,
based on the known types of the operands. This creates an interesting scenario with
generic type parameters, because the precise operand types are unknown at compile
time. If this leads to ambiguity, the compiler generates an error.

The most common scenario is when you want to perform a reference conversion:

StringBuilder Foo<T> (T arg)

{
if (arg is StringBuilder)
return (StringBuilder) arg; // Will not compile

}...

Without knowledge of T’s actual type, the compiler is concerned that you might
have intended this to be a custom conversion. The simplest solution is to instead

152 | Chapter3: Creating Types in C#

use the as operator, which is unambiguous because it cannot perform custom
conversions:

StringBuilder Foo<T> (T arg)

{
StringBuilder sb = arg as StringBuilder;

if (sb != null) return sb;

}...

A more general solution is to first cast to object. This works because conversions
to/from object are assumed not to be custom conversions, but reference or box-
ing/unboxing conversions. In this case, StringBuilder is a reference type, so it
must be a reference conversion:

return (StringBuilder) (object) arg;

Unboxing conversions can also introduce ambiguities. The following could be an
unboxing, numeric, or custom conversion:

int Foo<T> (T x) => (int) Xx; // Compile-time error
The solution, again, is to first cast to object and then to int (which then unambig-

uously signals an unboxing conversion in this case):

int Foo<T> (T x) => (int) (object) x;

Covariance

Assuming A is convertible to B, X has a covariant type parameter if X<A> is converti-
ble to X.

With C#’s notion of covariance (and contravariance), “conver-
tible” means convertible via an implicit reference conversion—
such as A subclassing B, or A implementing B. Numeric conver-
sions, boxing conversions, and custom conversions are not
included.

For instance, type IFoo<T> has a covariant T if the following is legal:

IFoo<string> s = ...;
IFoo<object> b = s;

Interfaces permit covariant type parameters (as do delegates; see Chapter 4), but
classes do not. Arrays also allow covariance (A[] can be converted to B[] if A has an
implicit reference conversion to B) and are discussed here for comparison.

Covariance and contravariance (or simply “variance”) are
advanced concepts. The motivation behind introducing and
enhancing variance in C# was to allow generic interface and
generic types (in particular, those defined in .NET, such as
IEnumerable<T>) to work more as youd expect. You can
benefit from this without understanding the details behind
covariance and contravariance.

Generics | 153

-
<
T
(0]
(7]
=
0
*

Buieald

Variance is not automatic

To ensure static type safety, type parameters are not automatically variant. Consider
the following:

class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T> // A simple Stack implementation
{
int position;
T[] data = new T[100];
public void Push (T obj) => data[position++] = obj;
public T Pop() => data[--position];
}

The following fails to compile:

Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears; // Compile-time error

That restriction prevents the possibility of runtime failure with the following code:
animals.Push (new Camel()); // Trying to add Camel to bears

Lack of covariance, however, can hinder reusability. Suppose, for instance, that we
wanted to write a method to Wash a stack of animals:

public class ZooCleaner

{

public static voild Wash (Stack<Animal> animals) {...}

3

Calling Wash with a stack of bears would generate a compile-time error. One work-
around is to redefine the Wash method with a constraint:

class ZooCleaner

{

public static void Wash<T> (Stack<T> animals) where T : Animal { ... }

}

We can now call Wash as follows:

Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);

Another solution is to have Stack<T> implement an interface with a covariant type
parameter, as you'll see shortly.

Arrays

For historical reasons, array types support covariance. This means that B[] can be
cast to A[] if B subclasses A (and both are reference types):

Bear[] bears = new Bear[3];
Animal[] animals = bears; // OK

154 | Chapter3: Creating Types in C#

The downside of this reusability is that element assignments can fail at runtime:

animals[0] = new Camel(); // Runtime error

Declaring a covariant type parameter

Type parameters on interfaces and delegates can be declared covariant by marking
them with the out modifier. This modifier ensures that, unlike with arrays, cova-
riant type parameters are fully type-safe.

We can illustrate this with our Stack<T> class by having it implement the following
interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return
types for methods). The out modifier flags the type parameter as covariant and
allows us to do this:

var bears = new Stack<Bear>();

bears.Push (new Bear());

// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal

Animal a = animals.Pop();

The conversion from bears to animals is permitted by the compiler—by virtue of
the type parameter being covariant. This is type-safe because the case the compiler
is trying to avoid—pushing a Camel onto the stack—can’t occur, because there’s no
way to feed a Camel into an interface where T can appear only in output positions.

Covariance (and contravariance) in interfaces is something
that you typically consume: its less common that you need to
write variant interfaces.

Curiously, method parameters marked as out are not eligible
for covariance, due to a limitation in the CLR.

We can leverage the ability to cast covariantly to solve the reusability problem
described earlier:

public class ZooCleaner

{
public static void Wash (IPoppable<Animal> animals) { ... }

}

The IEnumerator<T> and IEnumerable<T> interfaces
described in Chapter 7 have a covariant T. This allows you
to cast IEnumerable<string> to IEnumerable<object>, for
instance.

The compiler will generate an error if you use a covariant type parameter in an
input position (e.g., a parameter to a method or a writable property).

Generics | 155

-
<
°]
(0]
0
=
0
*

Buieald

Covariance (and contravariance) works only for elements
with reference conversions—not boxing conversions. (This
applies both to type parameter variance and array variance.)
So, if you wrote a method that accepted a parameter
of type IPoppable<object>, you could call it with IPoppa
ble<string> but not IPoppable<int>.

Contravariance

We previously saw that, assuming that A allows an implicit reference conversion to
B, a type X has a covariant type parameter if X<A> allows a reference conversion to
X. Contravariance is when you can convert in the reverse direction—from X
to X<A>. This is supported if the type parameter appears only in input positions and
is designated with the in modifier. Extending our previous example, suppose the
Stack<T> class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }
We can now legally do this:

IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());

No member in IPushable outputs a T, so we can’t get into trouble by casting
animals to bears (there’s no way to Pop, for instance, through that interface).

Our Stack<T> class can implement both IPushable<T> and
IPoppable<T>—despite T having opposing variance annota-
tions in the two interfaces! This works because you must
exercise variance through the interface and not the class;
therefore, you must commit to the lens of either IPoppable
or IPushable before performing a variant conversion. This
lens then restricts you to the operations that are legal under
the appropriate variance rules.

This also illustrates why classes do not allow variant type
parameters: concrete implementations typically require data
to flow in both directions.

To give another example, consider the following interface, defined in the System
namespace:

public interface IComparer<in T>

{

// Returns a value indicating the relative ordering of a and b
int Compare (T a, T b);
}

156 | Chapter3: Creating Types in C#

Because the interface has a contravariant T, we can use an IComparer<object> to
compare two strings:

var objectComparer = Comparer<object>.Default;

// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;

int result = stringComparer.Compare ("Brett", "Jemaine");

Mirroring covariance, the compiler will report an error if you try to use a contravar-
iant type parameter in an output position (e.g., as a return value or in a readable

property).

C# Generics Versus (++ Templates

C# generics are similar in application to C++ templates, but they work very differ-
ently. In both cases, a synthesis between the producer and consumer must take
place in which the placeholder types of the producer are filled in by the consumer.
However, with C# generics, producer types (i.e., open types such as List<T>) can
be compiled into a library (such as mscorlib.dll). This works because the synthesis
between the producer and the consumer that produces closed types doesn’t actually
happen until runtime. With C++ templates, this synthesis is performed at compile
time. This means that in C++ you don’t deploy template libraries as .dlls—they exist
only as source code. It also makes it difficult to dynamically inspect, let alone create,
parameterized types on the fly.

To dig deeper into why this is the case, consider again the Max method in C#:

static T Max <T> (T a, T b) where T : IComparable<T>
=> a.CompareTo (b) >0 ? a : b;

Why couldn’t we have implemented it like this?

static T Max <T> (T a, T b)
=> (a>b?a:b); // Compile error
The reason is that Max needs to be compiled once and work for all possible values
of T. Compilation cannot succeed because there is no single meaning for > across
all values of T—in fact, not every T even has a > operator. In contrast, the following
code shows the same Max method written with C++ templates. This code will be
compiled separately for each value of T, taking on whatever semantics > has for a
particular T and failing to compile if a particular T does not support the > operator:

template <class T> T Max (T a, T b)
{

return a >b ? a : b;

}

Generics | 157

-
<
]
(0]
0
=
(2]
*

puneald

Advanced (#

In this chapter, we cover advanced C# topics that build on concepts explored in
Chapters 2 and 3. You should read the first four sections sequentially; you can read
the remaining sections in any order.

Delegates

A delegate is an object that knows how to call a method.

A delegate type defines the kind of method that delegate instances can call. Specif-
ically, it defines the method’s return type and its parameter types. The following
defines a delegate type called Transformer:

delegate int Transformer (int x);

Transformer is compatible with any method with an int return type and a single
int parameter, such as this:

int Square (int x) { return x * x; }
Or, more tersely:
int Square (int x) => x * x;
Assigning a method to a delegate variable creates a delegate instance:
Transformer t = Square;
You can invoke a delegate instance in the same way as a method:
int answer = t(3); // answer is 9

Here’s a complete example:

Transformer t = Square; /] Create delegate instance
int result = t(3); // Invoke delegate
Console.WriteLine (result); /] 9

int Square (int x) => x * x;

159

delegate int Transformer (int x); // Delegate type declaration

A delegate instance literally acts as a delegate for the caller: the caller invokes the
delegate, and then the delegate calls the target method. This indirection decouples
the caller from the target method.

The statement

Transformer t = Square;

is shorthand for:

Transformer t = new Transformer (Square);

Technically, we are specifying a method group when we refer
to Square without brackets or arguments. If the method is
overloaded, C# will pick the correct overload based on the
signature of the delegate to which it’s being assigned.

The expression

t(3)

is shorthand for:

t.Invoke(3)

A delegate is similar to a callback, a general term that captures
constructs such as C function pointers.

Writing Plug-In Methods with Delegates

A delegate variable is assigned a method at runtime. This is useful for writing
plug-in methods. In this example, we have a utility method named Transform that
applies a transform to each element in an integer array. The Transform method has
a delegate parameter, which you can use for specifying a plug-in transform:

int[] values = { 1, 2, 3 };
Transform (values, Square); // Hook in the Square method

foreach (int i1 in values)
Console.Write (1 + " "); //1 4 9

void Transform (int[] values, Transformer t)

{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = t (values[i]);

}

int Square (int x) => x * x;
int Cube (int x) => x * x * x;

delegate int Transformer (int x);

160

| Chapter 4: Advanced Ci#

We can change the transformation just by changing Square to Cube in the second
line of code.

Our Transform method is a higher-order function because it’s a function that takes
a function as an argument. (A method that returns a delegate would also be a
higher-order function.)

Instance and Static Method Targets

A delegate’s target method can be a local, static, or instance method. The following
illustrates a static target method:

Transformer t = Test.Square;
Console.WriteLine (t(10)); // 100

class Test { public static int Square (int x) => x * x; }
delegate int Transformer (int x);
The following illustrates an instance target method:

Test test = new Test();
Transformer t = test.Square;
Console.WriteLine (t(10)); // 100

>
Q
<
)
3
o
(1]
Q
0
#*

class Test { public int Square (int x) => x * x; }

delegate int Transformer (int x);

When an instance method is assigned to a delegate object, the latter maintains a

reference not only to the method but also to the instance to which the method

belongs. The System.Delegate class’s Target property represents this instance (and

will be null for a delegate referencing a static method). Here’s an example:
MyReporter r = new MyReporter();

r.Prefix = "%Complete: ";
ProgressReporter p = r.ReportProgress;

p(99); // %Complete: 99
Console.WriteLine (p.Target == r); /] True

Console.WriteLine (p.Method); // Void ReportProgress(Int32)
r.Prefix = "";

p(99); /] 99

public delegate void ProgressReporter (int percentComplete);

class MyReporter

{
public string Prefix = "";
public void ReportProgress (int percentComplete)
=> Console.WriteLine (Prefix + percentComplete);
}

Because the instance is stored in the delegate’s Target property, its lifetime is
extended to (at least as long as) the delegate’s lifetime.

Delegates | 161

Multicast Delegates

All delegate instances have multicast capability. This means that a delegate instance
can reference not just a single target method but also a list of target methods. The +
and += operators combine delegate instances:

SomeDelegate d = SomeMethod1;
d += SomeMethod2;

The last line is functionally the same as the following:
d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are invoked
in the order in which they are added.

The - and -= operators remove the right delegate operand from the left delegate
operand:

d -= SomeMethod1;
Invoking d will now cause only SomeMethod2 to be invoked.

Calling + or += on a delegate variable with a null value works, and it is equivalent to
assigning the variable to a new value:

SomeDelegate d = null;
d += SomeMethod1; // Equivalent (when d is null) to d = SomeMethod1;

Similarly, calling -= on a delegate variable with a single matching target is equivalent
to assigning null to that variable.

Delegates are immutable, so when you call += or -=, you're in
fact creating a new delegate instance and assigning it to the
existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value
from the last method to be invoked. The preceding methods are still called, but
their return values are discarded. For most scenarios in which multicast delegates
are used, they have void return types, so this subtlety does not arise.

All delegate types implicitly derive from System.Multicast
Delegate, which inherits from System.Delegate. C# compiles
+, -, +=, and -= operations made on a delegate to the static
Combine and Remove methods of the System.Delegate class.

Multicast delegate example

Suppose that you wrote a method that took a long time to execute. That method
could regularly report progress to its caller by invoking a delegate. In this example,
the HardWork method has a ProgressReporter delegate parameter, which it invokes
to indicate progress:

162 | Chapter4: Advanced C#

public delegate void ProgressReporter (int percentComplete);

public class Util

{
public static void HardWork (ProgressReporter p)
{
for (int 1 = 0; 1 < 10; i++)
{
p (1 * 10); // Invoke delegate
System.Threading.Thread.Sleep (100); // Simulate hard work
}
}
}

To monitor progress, we can create a multicast delegate instance p, such that pro-
gress is monitored by two independent methods:

ProgressReporter p = WriteProgressToConsole;
p += WriteProgressToFile;
Util.HardWork (p);

void WriteProgressToConsole (int percentComplete)
=> Console.WriteLine (percentComplete);

>
Qo
<
)
3
o
o
Q
0
#*

void WriteProgressToFile (int percentComplete)
=> System.IO0.File.WriteAllText ("progress.txt",
percentComplete.ToString());

Generic Delegate Types
A delegate type can contain generic type parameters:
public delegate T Transformer<T> (T arg);

With this definition, we can write a generalized Transform utility method that
works on any type:

int[] values = { 1, 2, 3 };

Util.Transform (values, Square); // Hook in Square
foreach (int 1 in values)
Console.Write (1 + " "); // 1 4 9

int Square (int x) => x * Xx;

public class Util

{
public static void Transform<T> (T[] values, Transformer<T> t)
{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = t (values[i]);
}
}

Delegates | 163

The Funcand Action Delegates

With generic delegates, it becomes possible to write a small set of delegate types that
are so general they can work for methods of any return type and any (reasonable)
number of arguments. These delegates are the Func and Action delegates, defined
in the System namespace (the in and out annotations indicate variance, which we
cover in the context of delegates shortly):

delegate TResult Func <out TResult> 0);

delegate TResult Func <in T, out TResult> (T arg);

delegate TResult Func <in T1, in T2, out TResult> (T1 argl, T2 arg2);
. and so on, up to T16

delegate void Action 0);

delegate void Action <in T> (T arg);

delegate void Action <in T1, in T2> (T1 argl, T2 arg2);
. and so on, up to T16

These delegates are extremely general. The Transformer delegate in our previous
example can be replaced with a Func delegate that takes a single argument of type T
and returns a same-typed value:

public static void Transform<T> (T[] values, Func<T,T> transformer)

{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = transformer (values[i]);

}

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

When C# was first introduced, the Func and Action delegates
did not exist (because generics did not exist). Its for this his-
torical reason that much of .NET uses custom delegate types
rather than Func and Action.

Delegates Versus Interfaces

A problem that you can solve with a delegate can also be solved with an interface.
For instance, we can rewrite our original example with an interface called ITrans
former instead of a delegate:

int[] values = { 1, 2, 3 };

Util.TransformAll (values, new Squarer());

foreach (int i1 in values)
Console.WriteLine (i);

public interface ITransformer

{

int Transform (int x);

}

public class Util
{

164 | Chapter4: Advanced C#

public static voild TransformAll (int[] values, ITransformer t)
{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = t.Transform (values[i]);

}
}
class Squarer : ITransformer
{
public int Transform (int x) => x * Xx;
}

A delegate design might be a better choice than an interface design if one or more of
these conditions are true:

o The interface defines only a single method.

o Multicast capability is needed.

o The subscriber needs to implement the interface multiple times.

In the ITransformer example, we don’t need to multicast. However, the interface
defines only a single method. Furthermore, our subscriber might need to implement
ITransformer multiple times, to support different transforms, such as square or
cube. With interfaces, were forced into writing a separate type per transform
because a class can implement ITransformer only once. This is quite cumbersome:

>
Q
<
)
3
o
o
Q
0
#*

int[] values = { 1, 2, 3 };

Util.TransformAll (values, new Cuber());

foreach (int 1 in values)
Console.WriteLine (i);

class Squarer : ITransformer

{
public int Transform (int x) => x * x;
}
class Cuber : ITransformer
{
public int Transform (int x) => x * x * x;
}

Delegate Compatibility

Type compatibility

Delegate types are all incompatible with one another, even if their signatures are the
same:

D1 d1
D2 d2

Method1;
di; // Compile-time error

void Method1() { }

Delegates | 165

delegate void D1();
delegate void D2();

The following, however, is permitted:

D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same method targets:

D d1 = Method1;
D d2 = Method1;
Console.WriteLine (d1 == d2); // True

void Method1() { }
delegate void D();

Multicast delegates are considered equal if they reference the same methods in the
same order.

Parameter compatibility

When you call a method, you can supply arguments that have more specific types
than the parameters of that method. This is ordinary polymorphic behavior. For
the same reason, a delegate can have more specific parameter types than its method
target. This is called contravariance. Here’s an example:

StringAction sa = new StringAction (ActOnObject);
sa ("hello");

void ActOnObject (object o) => Console.WriteLine (o); // hello

delegate void StringAction (string s);

(As with type parameter variance, delegates are variant only for reference
conversions.)

A delegate merely calls a method on someone else’s behalf. In this case, the String
Action is invoked with an argument of type string. When the argument is then
relayed to the target method, the argument is implicitly upcast to an object.

The standard event pattern is designed to help you utilize
contravariance through its use of the common EventArgs base
class. For example, you can have a single method invoked by
two different delegates, one passing a MouseEventArgs and the
other passing a KeyEventArgs.

Return type compatibility

If you call a method, you might get back a type that is more specific than what you
asked for. This is ordinary polymorphic behavior. For the same reason, a delegate’s
target method might return a more specific type than described by the delegate.
This is called covariance:

166 | Chapter4: Advanced C#

ObjectRetriever o = new ObjectRetriever (RetriveString);
object result = o();
Console.WriteLine (result); // hello

string RetriveString() => "hello";

delegate object ObjectRetriever();

ObjectRetriever expects to get back an object, but an object subclass will also do:
delegate return types are covariant.

Generic delegate type parameter variance

In Chapter 3, we saw how generic interfaces support covariant and contravariant
type parameters. The same capability exists for delegates, too.

If you're defining a generic delegate type, it’s good practice to do the following:

o Mark a type parameter used only on the return value as covariant (out).

o Mark any type parameters used only on parameters as contravariant (in).

Doing so allows conversions to work naturally by respecting inheritance relation-
ships between types.

>
Q
<
)
3
]
(1]
Q
0
#*

The following delegate (defined in the System namespace) has a covariant TResult:
delegate TResult Func<out TResult>();
This allows:

Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) has a contravariant T:
delegate void Action<in T> (T arg);

This allows:
Action<object> x = ...;

Action<string> y = x;

Events

When using delegates, two emergent roles commonly appear: broadcaster and
subscriber.

The broadcaster is a type that contains a delegate field. The broadcaster decides
when to broadcast, by invoking the delegate.

The subscribers are the method target recipients. A subscriber decides when to start
and stop listening by calling += and -= on the broadcaster’s delegate. A subscriber
does not know about, or interfere with, other subscribers.

Events | 167

Events are a language feature that formalizes this pattern. An event is a construct
that exposes just the subset of delegate features required for the broadcaster/sub-
scriber model. The main purpose of events is to prevent subscribers from interfering
with one another.

The easiest way to declare an event is to put the event keyword in front of a delegate
member:

// Delegate definition
public delegate void PriceChangedHandler (decimal oldPrice,
decimal newPrice);
public class Broadcaster
{
// Event declaration
public event PriceChangedHandler PriceChanged;

}

Code within the Broadcaster type has full access to PriceChanged and can treat it
as a delegate. Code outside of Broadcaster can perform only += and -= operations
on the PriceChanged event.

How Do Events Work on the Inside?
Three things happen under the hood when you declare an event as follows:

public class Broadcaster

{

public event PriceChangedHandler PriceChanged;

}

First, the compiler translates the event declaration into something close to the
following:

PriceChangedHandler priceChanged; // private delegate
public event PriceChangedHandler PriceChanged

{
add { priceChanged += value; }
remove { priceChanged -= value; }

}

The add and remove keywords denote explicit event accessors—which act rather like
property accessors. We describe how to write these later.

Second, the compiler looks within the Broadcaster class for references to Price
Changed that perform operations other than += or -= and redirects them to the
underlying priceChanged delegate field.

Third, the compiler translates += and -= operations on the event to calls to the
event’s add and remove accessors. Interestingly, this makes the behavior of += and -=
unique when applied to events: unlike in other scenarios, it’s not simply a shortcut
for + and - followed by an assignment.

168 | Chapter4: Advanced C#

Consider the following example. The Stock class fires its PriceChanged event every
time the Price of the Stock changes:
public delegate void PriceChangedHandler (decimal oldPrice,
decimal newPrice);

public class Stock
{

string symbol;
decimal price;
public Stock (string symbol) => this.symbol = symbol;

public event PriceChangedHandler PriceChanged;

public decimal Price

{
get => price;
set
{
if (price == value) return; /] Exit if nothing has changed
decimal oldPrice = price;
price = value;
if (PriceChanged != null) // If invocation list not
PriceChanged (oldPrice, price); // empty, fire event.
}
}

}

If we remove the event keyword from our example so that PriceChanged becomes
an ordinary delegate field, our example would give the same results. However, Stock
would be less robust insomuch as subscribers could do the following things to
interfere with one another:

o Replace other subscribers by reassigning PriceChanged (instead of using the +=
operator)

o Clear all subscribers (by setting PriceChanged to null)
o Broadcast to other subscribers by invoking the delegate

Standard Event Pattern

In almost all cases for which events are defined in the .NET libraries, their defini-
tion adheres to a standard pattern designed to provide consistency across library
and user code. At the core of the standard event pattern is System.EventArgs, a pre-
defined .NET class with no members (other than the static Empty field). EventArgs
is a base class for conveying information for an event. In our Stock example, we
would subclass EventArgs to convey the old and new prices when a PriceChanged
event is fired:

Events | 169

>
Q
<
)
3
o
(1]
Q
0
#®

public class PriceChangedEventArgs : System.EventArgs
{

public readonly decimal LastPrice;
public readonly decimal NewPrice;

public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)

{

LastPrice = lastPrice;
NewPrice = newPrice;

}
}

For reusability, the EventArgs subclass is named according to the information it
contains (rather than the event for which it will be used). It typically exposes data as
properties or as read-only fields.

With an EventArgs subclass in place, the next step is to choose or define a delegate
for the event. There are three rules:
o It must have a void return type.

o It must accept two arguments: the first of type object and the second a
subclass of EventArgs. The first argument indicates the event broadcaster, and
the second argument contains the extra information to convey.

o Its name must end with EventHandler.

.NET defines a generic delegate called System.EventHandler<> to help with this:
public delegate void EventHandler<TEventArgs> (object source, TEventArgs e)

Before generics existed in the language (prior to C# 2.0), we
would have had to instead write a custom delegate as follows:

public delegate void PriceChangedHandler
(object sender, PriceChangedEventArgs e);

For historical reasons, most events within the NET libraries
use delegates defined in this way.

The next step is to define an event of the chosen delegate type. Here, we use the
generic EventHandler delegate:

public class Stock
{

public event EventHandler<PriceChangedEventArgs> PriceChanged;
}
Finally, the pattern requires that you write a protected virtual method that fires the
event. The name must match the name of the event, prefixed with the word On, and
then accept a single EventArgs argument:

170 | Chapter4: Advanced C#

public class Stock
{

public event EventHandler<PriceChangedEventArgs> PriceChanged;

protected virtual void OnPriceChanged (PriceChangedEventArgs e)

{
if (PriceChanged != null) PriceChanged (this, e);
}
}

To work robustly in multithreaded scenarios (Chapter 14),
you need to assign the delegate to a temporary variable before
testing and invoking it:

var temp = PriceChanged;
if (temp != null) temp (this, e);

We can achieve the same functionality without the temp vari-
able with the null-conditional operator:
PriceChanged?.Invoke (this, e);

Being both thread-safe and succinct, this is the best general
way to invoke events.

>
Q
<
)
3
o
(1]
Q
0
#*

This provides a central point from which subclasses can invoke or override the
event (assuming the class is not sealed).

Here's the complete example:
using System;

Stock stock = new Stock ("THPW");
stock.Price = 27.10M;

// Register with the PriceChanged event
stock.PriceChanged += stock_PriceChanged;
stock.Price = 31.59M;

void stock_PriceChanged (object sender, PriceChangedEventArgs e)

{
if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
Console.WriteLine ("Alert, 10% stock price increase!");

}

public class PriceChangedEventArgs : EventArgs

{
public readonly decimal LastPrice;
public readonly decimal NewPrice;

public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)

{

LastPrice = lastPrice; NewPrice = newPrice;
}
}

public class Stock

Events | 171

string symbol;
decimal price;

public Stock (string symbol) => this.symbol = symbol;
public event EventHandler<PriceChangedEventArgs> PriceChanged;

protected virtual void OnPriceChanged (PriceChangedEventArgs e)

{
PriceChanged?.Invoke (this, e);
}
public decimal Price
{
get => price;
set
{
if (price == value) return;
decimal oldPrice = price;
price = value;
OnPriceChanged (new PriceChangedEventArgs (oldPrice, price));
}
}

}

The predefined nongeneric EventHandler delegate can be used when an event
doesn’t carry extra information. In this example, we rewrite Stock such that
the PriceChanged event is fired after the price changes, and no information
about the event is necessary, other than it happened. We also make use of the
EventArgs.Empty property to avoid unnecessarily instantiating an instance of
EventArgs:

public class Stock
{

string symbol;
decimal price;

public Stock (string symbol) { this.symbol = symbol; }
public event EventHandler PriceChanged;

protected virtual void OnPriceChanged (EventArgs e)
{
PriceChanged?.Invoke (this, e);

}

public decimal Price
{
get { return price; }
set
{
if (price == value) return;
price = value;

172 | Chapter4: Advanced C#

OnPriceChanged (EventArgs.Empty);

}
}
}

Event Accessors

An events accessors are the implementations of its += and -= functions. By
default, accessors are implemented implicitly by the compiler. Consider this event
declaration:

public event EventHandler PriceChanged;

The compiler converts this to the following:

o A private delegate field

o« A public pair of event accessor functions (add_PriceChanged and
remove_PriceChanged) whose implementations forward the += and -= opera-
tions to the private delegate field

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the PriceChanged event from our previous example:

private EventHandler priceChanged; // Declare a private delegate

public event EventHandler PriceChanged

{
add { priceChanged += value; }

remove { priceChanged -= value; }

}

This example is functionally identical to C#s default accessor implementation
(except that C# also ensures thread safety around updating the delegate via a lock-
free compare-and-swap algorithm; see http://albahari.com/threading). By defining
event accessors ourselves, we instruct C# not to generate default field and accessor
logic.

With explicit event accessors, you can apply more complex strategies to the storage
and access of the underlying delegate. There are three scenarios for which this is
useful:

o When the event accessors are merely relays for another class that is broadcast-
ing the event.

o When the class exposes many events, for which most of the time very few
subscribers exist, such as a Windows control. In such cases, it is better to store
the subscriber’s delegate instances in a dictionary because a dictionary will
contain less storage overhead than dozens of null delegate field references.

o When explicitly implementing an interface that declares an event.

Events | 173

>
Qo
<
)
3
o
(1]
Q
0
#®

http://albahari.com/threading

Here is an example that illustrates the last point:

public interface IFoo { event EventHandler Ev; }

class Foo : IFoo

{

private EventHandler ev;

event EventHandler IFoo.Ev
{
add { ev += value; }
remove { ev -= value; }
}
}

The add and remove parts of an event are compiled to add_xxx
and remove_XXX methods.

Event Modifiers

Like methods, events can be virtual, overridden, abstract, or sealed. Events can also
be static:

public class Foo

{

public static event EventHandler<EventArgs> StaticEvent;
public virtual event EventHandler<EventArgs> VirtualEvent;

}

Lambda Expressions

A lambda expression is an unnamed method written in place of a delegate
instance. The compiler immediately converts the lambda expression to either of
the following:

o A delegate instance.

o An expression tree, of type Expression<TDelegate>, representing the code
inside the lambda expression in a traversable object model. This allows the
lambda expression to be interpreted later at runtime (see “Building Query
Expressions” on page 442).

In the following example, x => x * x is alambda expression:

Transformer sqr = x => x * x;
Console.WriteLine (sqr(3)); /]9

delegate int Transformer (int i);

Internally, the compiler resolves lambda expressions of this
type by writing a private method and then moving the expres-
sion’s code into that method.

174 | Chapter4: Advanced C#

A lambda expression has the following form:
(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one
parameter of an inferable type.

In our example, there is a single parameter, x, and the expression is x * x:
X => X * X;

Each parameter of the lambda expression corresponds to a delegate parameter, and
the type of the expression (which may be void) corresponds to the return type of
the delegate.

In our example, x corresponds to parameter i, and the expression x * x corre-
sponds to the return type int, therefore being compatible with the Transformer
delegate:

delegate int Transformer (int i);

A lambda expression’s code can be a statement block instead of an expression. We
can rewrite our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates,
so you will most often see our earlier expression written as follows:

Func<int,int> sqr = x => x * x;
Here’s an example of an expression that accepts two parameters:

Func<string,string,int> totalLength = (s1, s2) => sl.Length + s2.Length;
int total = totalLength ("hello", "world"); // total is 10;

If you do not need to use the parameters, you can discard them with an underscore
(from C# 9):

Func<string,string,int> totalLength = (_,_) => ...
Here’s an example of an expression that takes zero arguments:
Func<string> greetor = () => "Hello, world";

From C# 10, the compiler permits implicit typing with lambda expressions that can
be resolved via the Func and Action delegates, so we can shorten this statement to:

var greeter = () => "Hello, world";

Explicitly Specifying Lambda Parameter and Return Types

The compiler can usually infer the type of lambda parameters contextually. When
this is not the case, you must specify the type of each parameter explicitly. Consider
the following two methods:

void Foo<T> (T x) {3
void Bar<T> (Action<T> a) {}

Lambda Expressions | 175

>
Qo
<
)
3
o
(1]
Q
0
#*

The following code will fail to compile, because the compiler cannot infer the type
of x:

Bar (x => Foo (x)); // What type is x?
We can fix this by explicitly specifying x’s type as follows:
Bar ((int x) => Foo (x));
This particular example is simple enough that it can be fixed in two other ways:

Bar<int> (x => Foo (x)); // Specify type parameter for Bar
Bar<int> (Foo); // As above, but with method group

The following example illustrates another use for explicit parameter types (from C#
10):
var sqr = (int x) => x * x;

The compiler infers sqr to be of type Func<int,int>. (Without specifying int,
implicit typing would fail: the compiler would know that sqr should be Func<T,T>,
but it wouldn’t know what T should be.)

From C# 10, you can also specify the lambda return type:
var sqr = int (int x) => x;

Specifying a return type can improve compiler performance with complex nested
lambdas.

Capturing Outer Variables

A lambda expression can reference any variables that are accessible where the
lambda expression is defined. These are called outer variables, and can include local
variables, parameters, and fields:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WriteLine (multiplier (3)); /] 6

Outer variables referenced by a lambda expression are called captured variables. A
lambda expression that captures variables is called a closure.

Variables can also be captured by anonymous methods and
local methods. The rules for captured variables, in these cases,
are the same.

Captured variables are evaluated when the delegate is actually invoked, not when the
variables were captured:

int factor = 2;

Func<int, int> multiplier = n => n * factor;

factor = 10;

Console.WriteLine (multiplier (3)); // 30

Lambda expressions can themselves update captured variables:

176 | Chapter4: Advanced C#

int seed = 0;
Func<int> natural = () => seed++;

Console.WriteLine (natural()); /] ©
Console.WriteLine (natural()); /] 1
Console.WriteLine (seed); /] 2

Captured variables have their lifetimes extended to that of the delegate. In the
following example, the local variable seed would ordinarily disappear from scope
when Natural finished executing. But because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

static Func<int> Natural()

{
int seed = 0;
return () => seed++; // Returns a closure

}

static void Main()

{
Func<int> natural = Natural(); >
Console.WriteLine (natural()); /] 0 2-
Console.WriteLine (natural()); /] 1 g
} o
o
A local variable instantiated within a lambda expression is unique per invocation of Q

the delegate instance. If we refactor our previous example to instantiate seed within
the lambda expression, we get a different (in this case, undesirable) result:

static Func<int> Natural()

{
return() => { int seed = 0; return seed++; };
}
static void Main()
{
Func<int> natural = Natural();
Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 0
}
Capturing is internally implemented by “hoisting” the cap-
tured variables into fields of a private class. When the method
is called, the class is instantiated and lifetime-bound to the
delegate instance.
Static lambdas

When you capture local variables, parameters, instance fields, or the this reference,
the compiler may need to create and instantiate a private class to store a reference to
the captured data. This incurs a small performance cost, because memory must be
allocated (and subsequently collected). In situations where performance is critical,
one micro-optimization strategy is to minimize the load on the garbage collector by
ensuring that code hot paths incur few or no allocations.

Lambda Expressions | 177

From C# 9, you can ensure that a lambda expression, local function, or anonymous
method doesn’t capture state by applying the static keyword. This can be useful
in micro-optimization scenarios to prevent unintentional memory allocations. For
example, we can apply the static modifier to a lambda expression as follows:

Func<int, int> multiplier = static n => n * 2;

If we later try to modify the lambda expression such that it captures a local variable,
the compiler will generate an error:

int factor = 2;
Func<int, int> multiplier = static n => n * factor; // will not compile

The lambda itself evaluates to a delegate instance, which
requires a memory allocation. However, if the lambda doesnt
capture variables, the compiler will reuse a single cached
instance across the life of the application, so there will be no
cost in practice.

This feature can also be used with local methods. In the following example, the
Multiply method cannot access the factor variable:

void Foo()

{
int factor = 123;
static int Multiply (int x) => x * 2; // Local static method

}

Of course, the Multiply method could still explicitly allocate memory by calling
new. What this protects us from is a potential allocation by stealth. Applying static
here is also arguably useful as a documentation tool, indicating a reduced level of
coupling.

Static lambdas can still access static variables and constants (because these do not
require a closure).

The static keyword acts merely as a check; it has no effect
on the IL that the compiler produces. Without the static
keyword, the compiler does not generate a closure unless it
needs to (and even then, it has tricks to mitigate the cost).

(Capturing iteration variables

When you capture the iteration variable of a for loop, C# treats that variable as
though it were declared outside the loop. This means that the same variable is
captured in each iteration. The following program writes 333 instead of 012:

Action[] actions = new Action[3];

for (int 1 = 0; 1 < 3; 1++)
actions [1] = () => Console.Write (i);

foreach (Action a in actions) a(); // 333

178 | Chapter4: Advanced C#

Each closure (shown in boldface) captures the same variable, i. (This actually makes
sense when you consider that i is a variable whose value persists between loop
iterations; you can even explicitly change i within the loop body if you want.) The
consequence is that when the delegates are later invoked, each delegate sees s value
at the time of invocation—which is 3. We can illustrate this better by expanding the
for loop, as follows:

Action[] actions = new Action[3];

int 1 = 0;

actions[0] = () => Console.Write (i);

i=1;

actions[1] = () => Console.Write (i);

i=2;

actions[2] = () => Console.Write (i);

i=3;

foreach (Action a in actions) a(); // 333

The solution, if we want to write 012, is to assign the iteration variable to a local
variable that’s scoped within the loop:

Action[] actions = new Action[3];
for (int 1 = 0; 1 < 3; 1++)
{
int loopScopedi = i;
actions [1] = () => Console.Write (loopScopedi);

}
foreach (Action a in actions) a(); /] 012

Because loopScopedt is freshly created on every iteration, each closure captures a
different variable.

Prior to C# 5.0, foreach loops worked in the same way. This
caused considerable confusion: unlike with a for loop, the
iteration variable in a foreach loop is immutable, and so you
would expect it to be treated as local to the loop body. The
good news is that it's now fixed, and you can safely capture a
foreach loop’s iteration variable without surprises.

Lambda Expressions Versus Local Methods
The functionality of local methods (see “Local methods” on page 19) overlaps with
that of lambda expressions. Local methods have the following three advantages:

o They can be recursive (they can call themselves) without ugly hacks.

o They avoid the clutter of specifying a delegate type.

o They incur slightly less overhead.
Local methods are more efficient because they avoid the indirection of a delegate
(which costs some CPU cycles and a memory allocation). They can also access

local variables of the containing method without the compiler having to “hoist” the
captured variables into a hidden class.

Lambda Expressions | 179

>
Q
<
)
3
o
(1]
Q
0
#*

However, in many cases you need a delegate—most commonly when calling a
higher-order function, that is, a method with a delegate-typed parameter:

public voild Foo (Func<int,bool> predicate) { ... }

(You can see plenty more of these in Chapter 8.) In such cases, you need a delegate
anyway, and it’s in precisely these cases that lambda expressions are usually terser
and cleaner.

Anonymous Methods

Anonymous methods are a C# 2.0 feature that was mostly subsumed by C# 3.0’s
lambda expressions. An anonymous method is like a lambda expression, but it lacks
the following features:

« Implicitly typed parameters

« Expression syntax (an anonymous method must always be a statement block)

o The ability to compile to an expression tree, by assigning to Expression<T>
An anonymous method uses the delegate keyword followed (optionally) by a

parameter declaration and then a method body. For example:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3)); /] 9

delegate int Transformer (int i);
The first line is semantically equivalent to the following lambda expression:
Transformer sqr = (int x) => {return x * x;};

Or simply:

Transformer sqr X => X * Xx;

Anonymous methods capture outer variables in the same way lambda expressions
do, and can be preceded by the static keyword to make them behave like static
lambdas.

A unique feature of anonymous methods is that you can
omit the parameter declaration entirely—even if the delegate
expects it. This can be useful in declaring events with a default
empty handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event.
The following is also legal:

// Notice that we omit the parameters:
Clicked += delegate { Console.WriteLine ("clicked"); };

180 | Chapter4: Advanced C#

try Statements and Exceptions

A try statement specifies a code block subject to error-handling or cleanup code.
The try block must be followed by one or more catch blocks and/or a finally
block, or both. The catch block executes when an error is thrown in the try block.
The finally block executes after execution leaves the try block (or, if present,
the catch block) to perform cleanup code, regardless of whether an exception was
thrown.

A catch block has access to an Exception object that contains information about
the error. You use a catch block to either compensate for the error or rethrow the
exception. You rethrow an exception if you merely want to log the problem or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program: the CLR endeavors to always
execute it. It’s useful for cleanup tasks such as closing network connections.

A try statement looks like this:

try
{
... /] exception may get thrown within execution of this block
}
catch (ExceptionA ex)
{
... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
... // handle exception of type ExceptionB
}
finally
... /] cleanup code
}

Consider the following program:

int y = Calc (0);
Console.WriteLine (y);

int Calc (int x) => 10 / x;

Because x is zero, the runtime throws a DivideByZeroException, and our program
terminates. We can prevent this by catching the exception as follows:

try

{
int y = Calc (0);
Console.WriteLine (y);

}

catch (DivideByZeroException ex)

{

Console.WriteLine ("x cannot be zero");

try Statements and Exceptions | 181

>
Qo
<
)
3
o
[0]
Q
0
#*

}
Console.WriteLine ("program completed");
int Calc (int x) => 10 / x;

Here’s the output:

X cannot be zero
program completed

This is a simple example to illustrate exception handling. We
could deal with this particular scenario better in practice by
checking explicitly for the divisor being zero before calling
Calc.

Checking for preventable errors is preferable to relying on
try/catch blocks because exceptions are relatively expensive
to handle, taking hundreds of clock cycles or more.

When an exception is thrown within a try statement, the CLR performs a test:
Does the try statement have any compatible catch blocks?
o If so, execution jumps to the compatible catch block, followed by the finally
block (if present), and then execution continues normally.

« If not, execution jumps directly to the finally block (if present), then the CLR
looks up the call stack for other try blocks; if found, it repeats the test.

If no function in the call stack takes responsibility for the exception, the program
terminates.

The catch Clause

A catch clause specifies what type of exception to catch. This must either be
System.Exception or a subclass of System.Exception.

Catching System.Exception catches all possible errors. This is useful in the follow-
ing circumstances:
 Your program can potentially recover regardless of the specific exception type.
« You plan to rethrow the exception (perhaps after logging it).

o Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types to avoid having to deal
with circumstances for which your handler wasn’t designed (e.g., an OutOfMemory
Exception).

You can handle multiple exception types with multiple catch clauses (again, this
example could be written with explicit argument checking rather than exception
handling):

182 | Chapter4: Advanced C#

class Test

{

static vold Main (string[] args)

{
try

byte b = byte.Parse (args[0]);
Console.WriteLine (b);

catch (IndexOutOfRangeException)
{

Console.WriteLine ("Please provide at least one argument");
}

catch (FormatException)

{

Console.WriteLine ("That's not a number!");

}

catch (OverflowException)

{

Console.WriteLine ("You've given me more than a byte!");

}
}
}

Only one catch clause executes for a given exception. If you want to include a safety
net to catch more general exceptions (such as System.Exception), you must put the
more-specific handlers first.

An exception can be caught without specifying a variable, if you don’t need to access
its properties:

catch (OverflowException) // no variable

{
}...

Furthermore, you can omit both the variable and the type (meaning that all excep-
tions will be caught):

catch { ... }

Exception filters
You can specify an exception filter in a catch clause by adding a when clause:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

{
L

If a WebException is thrown in this example, the Boolean expression following the
when keyword is then evaluated. If the result is false, the catch block in question is
ignored and any subsequent catch clauses are considered. With exception filters, it
can be meaningful to catch the same exception type again:

try Statements and Exceptions | 183

>
Q
<
)
3
o
[0]
Q
0
#®

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

{ ...}
catch (WebException ex) when (ex.Status == WebExceptionStatus.SendFailure)
{ ...}

The Boolean expression in the when clause can be side-effecting, such as a method
that logs the exception for diagnostic purposes.

The finally Block

A finally block always executes—regardless of whether an exception is thrown
and whether the try block runs to completion. You typically use finally blocks for
cleanup code.

A finally block executes after any of the following:

o A catch block finishes (or throws a new exception).

o The try block finishes (or throws an exception for which there’s no catch

block).

« Control leaves the try block because of a jump statement (e.g., return or goto).

The only things that can defeat a finally block are an infinite loop or the process
ending abruptly.
A finally block helps add determinism to a program. In the following example, the
file that we open always gets closed, regardless of whether:

o The try block finishes normally.

« Execution returns early because the file is empty (EndOfStream).

o An IOException is thrown while reading the file.

void ReadFile()

{
StreamReader reader = null; // In System.IO namespace
try
{
reader = File.OpenText ("file.txt");
if (reader.EndOfStream) return;
Console.WriteLine (reader.ReadToEnd());
}
finally
{
if (reader != null) reader.Dispose();
}
}

In this example, we closed the file by calling Dispose on the StreamReader. Calling
Dispose on an object, within a finally block, is a standard convention and is
supported explicitly in C# through the using statement.

184 | Chapter4: Advanced C#

The using statement

Many classes encapsulate unmanaged resources, such as file handles, graphics
handles, or database connections. These classes implement System.IDisposable,
which defines a single parameterless method named Dispose to clean up these
resources. The using statement provides an elegant syntax for calling Dispose on an
IDisposable object within a finally block.

Thus,
using (StreamReader reader = File.OpenText ("file.txt"))
{
}
is precisely equivalent to the following:
{
StreamReader reader = File.OpenText ("file.txt");
try >
{ o
<
o
} a
finally 3_
{ 0
if (reader != null) *
((IDisposable)reader).Dispose();
}
}

using declarations

If you omit the brackets and statement block following a using statement (C# 8+),
it becomes a using declaration. The resource is then disposed when execution falls
outside the enclosing statement block:

if (File.Exists ("file.txt"))
{

using var reader = File.OpenText ("file.txt");
Console.WriteLine (reader.ReadLine());

}...

In this case, reader will be disposed when execution falls outside the if statement
block.

Throwing Exceptions

Exceptions can be thrown either by the runtime or in user code. In this example,
Display throws a System.ArgumentNullException:

try { Display (null); }
catch (ArgumentNullException ex)
{

Console.WriteLine ("Caught the exception");

try Statements and Exceptions | 185

}

void Display (string name)

{
if (name == null)
throw new ArgumentNullException (nameof (name));

Console.WriteLine (name);

}

Because null-checking an argument and throwing an
ArgumentNullException is such a common code path, theres
actually a shortcut for it, from .NET 6:

void Display (string name)
{
ArgumentNullException.ThrowIfNull (name);
Console.WriteLine (name);
}
Notice that we didn’t need to specify the name of the parame-
ter. We'll explain why later, in “CallerArgumentExpression (C#
10)” on page 231.

throw expressions
throw can also appear as an expression in expression-bodied functions:
public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:

string ProperCase (string value) =>
value == null ? throw new ArgumentException ("value") :
value == "" 7 " .
char.ToUpper (value[0]) + value.Substring (1);

Rethrowing an exception

You can capture and rethrow an exception as follows:

try { ... }
catch (Exception ex)
{

// Log error

throw; // Rethrow same exception

}

If we replaced throw with throw ex, the example would still
work, but the StackTrace property of the newly propagated
exception would no longer reflect the original error.

Rethrowing in this manner lets you log an error without swallowing it. It also lets
you back out of handling an exception should circumstances turn out to be beyond

186 | Chapter4: Advanced C#

what you expected. The other common scenario is to rethrow a more specific
exception type:

try
{
... [/ Parse a DateTime from XML element data
}
catch (FormatException ex)
{
throw new XmlException ("Invalid DateTime", ex);
}

Notice that when we constructed XmlException, we passed in the original excep-
tion, ex, as the second argument. This argument populates the InnerException
property of the new exception and aids debugging. Nearly all types of exception
offer a similar constructor.

Rethrowing a less-specific exception is something you might do when crossing a
trust boundary, so as not to leak technical information to potential hackers.

Key Properties of System.Exception

The most important properties of System.Exception are the following:

StackTrace
A string representing all the methods that are called from the origin of the
exception to the catch block.

Message
A string with a description of the error.

InnerException
The inner exception (if any) that caused the outer exception. This, itself, can
have another InnerException.

All exceptions in C# are runtime exceptions—there is no
equivalent to Java’s compile-time checked exceptions.

Common Exception Types

The following exception types are used widely throughout the CLR and .NET libra-
ries. You can throw these yourself or use them as base classes for deriving custom
exception types:

System.ArgumentException
Thrown when a function is called with a bogus argument. This generally
indicates a program bug.

System.ArgumentNullException
Subclass of ArgumentException thats thrown when a function argument is
(unexpectedly) null.

try Statements and Exceptions | 187

>
Q
<
)
3
o
(1]
Q
0
#*

System.ArgumentOutOfRangeException
Subclass of ArgumentException that’s thrown when a (usually numeric) argu-
ment is too big or too small. For example, this is thrown when passing a
negative number into a function that accepts only positive values.

System.InvalidOperationException
Thrown when the state of an object is unsuitable for a method to successfully
execute, regardless of any particular argument values. Examples include read-
ing an unopened file or getting the next element from an enumerator for which
the underlying list has been modified partway through the iteration.

System.NotSupportedException
Thrown to indicate that a particular functionality is not supported. A good
example is calling the Add method on a collection for which IsReadOnly
returns true.

System.NotImplementedException
Thrown to indicate that a function has not yet been implemented.

System.0ObjectDisposedException
Thrown when the object upon which the function is called has been disposed.

Another commonly encountered exception type is NullReferenceException. The
CLR throws this exception when you attempt to access a member of an object
whose value is null (indicating a bug in your code). You can throw a NullReferen
ceException directly (for testing purposes) as follows:

throw null;

The TryXXX Method Pattern

When writing a method, you have a choice, when something goes wrong, to return
some kind of failure code or throw an exception. In general, you throw an exception
when the error is outside the normal workflow—or if you expect that the immediate
caller won't be able to cope with it. Occasionally, though, it can be best to offer
both choices to the consumer. An example of this is the int type, which defines two
versions of its Parse method:

public int Parse (string input);
public bool TryParse (string input, out int returnValue);

If parsing fails, Parse throws an exception; TryParse returns false.

You can implement this pattern by having the XXX method call the TryXXX method
as follows:

public return-type XXX (input-type input)
{
return-type returnValue;
if (!TryXXX (input, out returnValue))
throw new YYYException (...)

188 | Chapter4: Advanced C#

return returnvalue;

}

Alternatives to Exceptions

As with int.TryParse, a function can communicate failure by sending an error
code back to the calling function via a return type or parameter. Although this
can work with simple and predictable failures, it becomes clumsy when extended
to all errors, polluting method signatures and creating unnecessary complexity and
clutter. It also cannot generalize to functions that are not methods, such as operators
(e.g., the division operator) or properties. An alternative is to place the error in a
common place where all functions in the call stack can see it (e.g., a static method
that stores the current error per thread). This, though, requires each function to
participate in an error-propagation pattern, which is cumbersome and, ironically,
itself error prone.

Enumeration and Iterators

Enumeration
An enumerator is a read-only, forward-only cursor over a sequence of values. C#
treats a type as an enumerator if it does any of the following:

o Has a public parameterless method named MoveNext and property called

Current

o Implements System.Collections.Generic.IEnumerator<T>

o Implements System.Collections.IEnumerator
The foreach statement iterates over an enumerable object. An enumerable object is
the logical representation of a sequence. It is not itself a cursor, but an object that

produces cursors over itself. C# treats a type as enumerable if it does any of the
following (the check is performed in this order):

o Has a public parameterless method named GetEnumerator that returns an
enumerator
« Implements System.Collections.Generic.IEnumerable<T>
o Implements System.Collections.IEnumerable
o (From C# 9) Can bind to an extension method named GetEnumerator that
returns an enumerator (see “Extension Methods” on page 202)
The enumeration pattern is as follows:

class Enumerator [/ Typically implements IEnumerator or IEnumerator<T>

{
public IteratorVariableType Current { get {...} }
public bool MoveNext() {...}

Enumeration and Iterators | 189

>
Q
<
)
3
o
(1]
Q
0
#*

}

class Enumerable [/ Typically implements IEnumerable or IEnumerable<T>

{

public Enumerator GetEnumerator() {...}

3
Here is the high-level way of iterating through the characters in the word beer using

a foreach statement:

foreach (char c¢ in "beer")
Console.WriteLine (c);

Here is the low-level way of iterating through the characters in beer without using a
foreach statement:

using (var enumerator = "beer".GetEnumerator())
while (enumerator.MoveNext())
{

var element = enumerator.Current;
Console.WriteLine (element);

}

If the enumerator implements IDisposable, the foreach statement also acts as a
using statement, implicitly disposing the enumerator object.

Chapter 7 explains the enumeration interfaces in further detail.

Collection Initializers
You can instantiate and populate an enumerable object in a single step:

using System.Collections.Generic;

List<int> 1ist = new List<int> {1, 2, 3};
The compiler translates this to the following:

using System.Collections.Generic;

List<int> list = new List<int>();
list.Add (1);
list.Add (2);
list.Add (3);

This requires that the enumerable object implements the System.Collec
tions.IEnumerable interface, and that it has an Add method that has the appropri-
ate number of parameters for the call. You can similarly initialize dictionaries (see
“Dictionaries” on page 372) as follows:

var dict = new Dictionary<int, string>()

{
{5, "five" },

190 | Chapter4: Advanced C#

{ 10, "ten" }
b

Or, more succinctly:

var dict = new Dictionary<int, string>()

{
[3] = "three",
[10] = "ten"
I
The latter is valid not only with dictionaries but with any type for which an indexer
exists.

Iterators

Whereas a foreach statement is a consumer of an enumerator, an iterator is a
producer of an enumerator. In this example, we use an iterator to return a sequence
of Fibonacci numbers (where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

foreach (int fib in Fibs(6))
Console.Write (fib + " ");

}

>
[}
<
)
3
o
[0]
Q
(2]
#*

IEnumerable<int> Fibs (int fibCount)

{
for (int 1 = 0, prevFib = 1, curFib = 1; 1 < fibCount; i++)
{
yield return prevFib;
int newFib = prevFib+curFib;
prevFib = curFib;
curFib = newFib;
}
}

OUTPUT: 1 1 2 3 5 8

Whereas a return statement expresses, “Here’s the value you asked me to return
from this method,” a yield return statement expresses, “Here’s the next element
you asked me to yield from this enumerator” On each yield statement, control is
returned to the caller, but the callee’s state is maintained so that the method can
continue executing as soon as the caller enumerates the next element. The lifetime
of this state is bound to the enumerator such that the state can be released when the
caller has finished enumerating.

Enumeration and Iterators | 191

The compiler converts iterator methods into private classes
that implement IEnumerable<T> and/or IEnumerator<T>. The
logic within the iterator block is “inverted” and spliced into
the MoveNext method and Current property on the compiler-
written enumerator class. This means that when you call an
iterator method, all you're doing is instantiating the compiler-
written class; none of your code actually runs! Your code runs
only when you start enumerating over the resultant sequence,
typically with a foreach statement.

Iterators can be local methods (see “Local methods” on page 19).

Iterator Semantics

An iterator is a method, property, or indexer that contains one or more yield
statements. An iterator must return one of the following four interfaces (otherwise,
the compiler will generate an error):

// Enumerable interfaces
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

// Enumerator interfaces
System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An iterator has different semantics, depending on whether it returns an enumerable
interface or an enumerator interface. We describe this in Chapter 7.

Multiple yield statements are permitted:

foreach (string s in Foo())
Console.WriteLine(s); // Prints "One","Two","Three"

IEnumerable<string> Foo()
{
yield return "One";
yield return "Two";
yield return "Three";

}

yield break

A return statement is illegal in an iterator block; instead you must use the yield
break statement to indicate that the iterator block should exit early, without return-
ing more elements. We can modify Foo as follows to demonstrate:

IEnumerable<string> Foo (bool breakEarly)
{

yield return "One";
yield return "Two";

if (breakEarly)
yield break;

192 | Chapter4: Advanced C#

yield return "Three";

}

Iterators and try/catch/finally blocks
A yield return statement cannot appear in a try block that has a catch clause:

IEnumerable<string> Foo()

{
try { yield return "One"; } // Illegal

catch { ... }
}

Nor can yield return appear in a catch or finally block. These restrictions
are due to the fact that the compiler must translate iterators into ordinary classes
with MoveNext, Current, and Dispose members, and translating exception-handling
blocks would create excessive complexity.

You can, however, yield within a try block that has (only) a finally block:

IEnumerable<string> Foo()

{
try { yield return "One"; } // OK
finally { ... }

}

The code in the finally block executes when the consuming enumerator reaches
the end of the sequence or is disposed. A foreach statement implicitly disposes the
enumerator if you break early, making this a safe way to consume enumerators.
When working with enumerators explicitly, a trap is to abandon enumeration early
without disposing it, circumventing the finally block. You can avoid this risk by
wrapping explicit use of enumerators in a using statement:

string firstElement = null;
var sequence = Foo();
using (var enumerator = sequence.GetEnumerator())
if (enumerator.MoveNext())
firstElement = enumerator.Current;

Composing Sequences

Iterators are highly composable. We can extend our example, this time to output
even Fibonacci numbers only:

using System;
using System.Collections.Generic;

foreach (int fib in EvenNumbersOnly (Fibs(6)))
Console.WriteLine (fib);

IEnumerable<int> Fibs (int fibCount)
{

for (int 1 = 0, prevFib = 1, curFib = 1; 1 < fibCount; i++)

Enumeration and Iterators | 193

>
Qo
<
)
3
o
o
Q
0
#®

{
yield return prevFib;
int newFib = prevFib+curFib;
prevFib = curFib;
curFib = newFib;
}
}

IEnumerable<int> EvenNumbersOnly (IEnumerable<int> sequence)

{

foreach (int x in sequence)
if ((x % 2) == 0)
yield return x;

}

Each element is not calculated until the last moment—when requested by a Move
Next() operation. Figure 4-1 shows the data requests and data output over time.

j&— next
[{€— next
1 —>
[€— next
1 —>
-g.”- [€— next - o
S 22— 3)
s ——1{8 |2
§. § [— next § s
5 €4— next: 3 B l
g 3 —> %
S [¢—next A
5 —>
[4— next:
8§ —P
8§ —»
«— Pulling data —
— Yielding data—p

Figure 4-1. Composing sequences

The composability of the iterator pattern is extremely useful in LINQ; we discuss
the subject again in Chapter 8.

Nullable Value Types

Reference types can represent a nonexistent value with a null reference. Value types,
however, cannot ordinarily represent null values:

string s = null; // OK, Reference Type
int 1 = null; // Compile Error, Value Type cannot be null

194 | Chapter4: Advanced C#

To represent null in a value type, you must use a special construct called a nullable
type. A nullable type is denoted with a value type followed by the ? symbol:

int? 1 = null; // OK, Nullable Type
Console.WriteLine (i == null); // True
Nullable<T> Struct

T? translates into System.Nullable<T>, which is a lightweight immutable structure,
having only two fields, to represent Value and HasValue. The essence of System
.Nullable<T> is very simple:

public struct Nullable<T> where T : struct
{
public T Value {get;}
public bool HasValue {get;}
public T GetValueOrDefault();
public T GetValueOrDefault (T defaultValue);

} ...
The code

int? 1 = null;
Console.WriteLine (i == null); /] True

>
Qo
<
)
3
o
o
Q
0
#*

translates to the following:

Nullable<int> 1 = new Nullable<int>();
Console.WriteLine (! i.HasValue); /] True

Attempting to retrieve Value when HasValue is false throws an InvalidOperation
Exception. GetValueOrDefault() returns Value if HasValue is true; otherwise, it
returns new T() or a specified custom default value.

The default value of T2 is null.

Implicit and Explicit Nullable Conversions

The conversion from T to T? is implicit, while the conversion from T? to T is
explicit:

int? x = 5; // implicit

int y = (int)x; /] explicit

The explicit cast is directly equivalent to calling the nullable object’s Value property.
Hence, an InvalidOperationException is thrown if HasValue is false.

Boxing and Unboxing Nullable Values

When T? is boxed, the boxed value on the heap contains T, not T?. This optimiza-
tion is possible because a boxed value is a reference type that can already express
null.

Nullable Value Types | 195

C# also permits the unboxing of nullable value types with the as operator. The
result will be null if the cast fails:

object o = "string";
int? x = o as int?;
Console.WriteLine (x.HasValue); // False

Operator Lifting

The Nullable<T> struct does not define operators such as <, >, or even ==. Despite
this, the following code compiles and executes correctly:

int? x = 5;

int? y = 10;

bool b = x < y; /] true
This works because the compiler borrows or “lifts” the less-than operator from
the underlying value type. Semantically, it translates the preceding comparison
expression into this:

bool b = (x.HasValue && y.HasValue) ? (x.Value < y.Value) : false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false.

Operator lifting means that you can implicitly use T’s operators on T?. You can
define operators for T? in order to provide special-purpose null behavior, but in
the vast majority of cases, it’s best to rely on the compiler automatically applying
systematic nullable logic for you. Here are some examples:

int? x = 5;
int? y = null;

// Equality operator examples

Console.WriteLine (x == y); /] False
Console.WriteLine (x == null); // False
Console.WriteLine (x == 5); /] True
Console.WriteLine (y == null); // True
Console.WriteLine (y == 5); /] False
Console.WriteLine (y != 5); /] True

// Relational operator examples

Console.WriteLine (x < 6); /] True
Console.WriteLine (y < 6); /] False
Console.WriteLine (y > 6); /] False

// ALl other operator examples
Console.WriteLine (x + 5); // 10
Console.WriteLine (x + y); // null (prints empty line)

The compiler performs null logic differently depending on the category of operator.
The following sections explain these different rules.

196 | Chapter4: Advanced C#

Equality operators (==and !=)

Lifted equality operators handle nulls just like reference types do. This means that
two null values are equal:

Console.WriteLine (null == null); // True
Console.WriteLine ((bool?)null == (bool?)null); // True

Further:

o If exactly one operand is null, the operands are unequal.

« If both operands are non-null, their Values are compared.

Relational operators (<, <=, >=, >)

The relational operators work on the principle that it is meaningless to compare null
operands. This means comparing a null value to either a null or a non-null value
returns false:

bool b = x < y; // Translation:

bool b = (x.HasValue && y.HasValue)
? (x.Value < y.vValue)
. false;

>
Q
<
)
3
o
[0]
Q
0
#*

// b is false (assuming x is 5 and y is null)

All other operators (+,—, *,/,%, & |, A, <<, >>, +, ++, -, 1, ~)

These operators return null when any of the operands are null. This pattern should
be familiar to SQL users:

int? ¢ = x +y; // Translation:

int? c = (x.HasValue && y.HasValue)
? (int?) (x.value + y.Value)
. null;

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to bool?, which we discuss
shortly.

Mixing nullable and non-nullable operators

You can mix and match nullable and non-nullable value types (this works because
there is an implicit conversion from T to T?):
int? a = null;

int b = 2;
int? c=a +b; // c is null - equivalent to a + (int?)b

Nullable Value Types | 197

bool? with & and | Operators

When supplied operands of type bool?, the & and | operators treat null as an
unknown value. So, null | true is true because:

o If the unknown value is false, the result would be true.

o If the unknown value is true, the result would be true.

Similarly, null & false is false. This behavior should be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null;
bool? f = false;
bool? t = true;

Console.WriteLine (n |
Console.WriteLine (n |
Console.WriteLine (n | t); /] True

Console.WriteLine (n & n); /] (null)
Console.WriteLine (n & f); // False
Console.WriteLine (n & t); /] (null)

n); /] (null)
/] (null)

Nullable Value Types and Null Operators

Nullable value types work particularly well with the ?? operator (see “Null-
Coalescing Operator” on page 74), as illustrated in this example:

int? x = null;
inty = x ?2?2 5; /]y is 5

int? a = null, b =1, c = 2;
Console.WriteLine (a ?? b 2?2 ¢); // 1 (first non-null value)

Using ?? on a nullable value type is equivalent to calling GetValueOrDefault with
an explicit default value except that the expression for the default value is never
evaluated if the variable is not null.

Nullable value types also work well with the null-conditional operator (see “Null-
Conditional Operator” on page 75). In the following example, length evaluates to
null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null-coalescing operator to evaluate to zero instead of
null:

int length = sb?.ToString().Length ?? 0; // Evaluates to 0@ if sb is null

Scenarios for Nullable Value Types

One of the most common scenarios for nullable value types is to represent
unknown values. This frequently occurs in database programming, where a class
is mapped to a table with nullable columns. If these columns are strings (e.g., an

198 | Chapter4: Advanced C#

EmailAddress column on a Customer table), there is no problem because string is
a reference type in the CLR, which can be null. However, most other SQL column
types map to CLR struct types, making nullable value types very useful when
mapping SQL to the CLR:

// Maps to a Customer table in a database
public class Customer

{

public decimal? AccountBalance;

}

A nullable type can also be used to represent the backing field of what’s sometimes
called an ambient property. An ambient property, if null, returns the value of its
parent:

public class Row

{
Grid parent; >
Color? color; =
o
3
public Color Color 2
{ o
get { return color ?? parent.Color; } §2
set { color = value == parent.Color ? (Color?)null : value; }
}
}

Alternatives to Nullable Value Types

Before nullable value types were part of the C# language (i.e., before C# 2.0), there
were many strategies to deal with them, examples of which still appear in the .NET
libraries for historical reasons. One of these strategies is to designate a particular
non-null value as the “null value”; an example is in the string and array classes.
String.IndexOf returns the magic value of -1 when the character is not found:

int 1 = "Pink".Index0f ('b');

Console.WriteLine (i); /] -1
However, Array.IndexOf returns -1 only if the index is 0-bounded. The more
general formula is that IndexOf returns one less than the lower bound of the array.
In the next example, IndexOf returns © when an element is not found:

// Create an array whose lower bound is 1 instead of 0:

Array a = Array.CreateInstance (typeof (string),
new int[] {2}, new int[] {1});
a.SetValue ("a", 1);
a.Setvalue ("b", 2);
Console.WriteLine (Array.IndexOf (a, "c")); // ©

Nullable Value Types | 199

Nominating a “magic value” is problematic for several reasons:

It means that each value type has a different representation of null. In contrast,
nullable value types provide one common pattern that works for all value types.

o There might be no reasonable designated value. In the previous example, —1
could not always be used. The same is true for our earlier example representing
an unknown account balance.

Forgetting to test for the magic value results in an incorrect value that might
go unnoticed until later in execution—when it pulls an unintended magic trick.
Forgetting to test HasValue on a null value, however, throws an InvalidOpera
tionException on the spot.

The ability for a value to be null is not captured in the type. Types communicate
the intention of a program, allow the compiler to check for correctness, and
enable a consistent set of rules enforced by the compiler.

Nullable Reference Types

Whereas nullable value types bring nullability to value types, nullable reference types
(C# 8+) do the opposite. When enabled, they bring (a degree of) non-nullability to
reference types, with the purpose of helping to avoid NullReferenceExceptions.

Nullable reference types introduce a level of safety that’s enforced purely by the
compiler, in the form of warnings when it detects code that’s at risk of generating a
NullReferenceException.

To enable nullable reference types, you must either add the Nullable element to
your .csproj project file (if you want to enable it for the entire project):

<PropertyGroup>
<Nullable>enable</Nullable>
</PropertyGroup>
or/and use the following directives in your code, in the places where it should take
effect:

#nullable enable // enables nullable reference types from this point on
#nullable disable // disables nullable reference types from this point on
#nullable restore // resets nullable reference types to project setting

After being enabled, the compiler makes non-nullability the default: if you want a
reference type to accept nulls without the compiler generating a warning, you must
apply the ? suffix to indicate a nullable reference type. In the following example, s1 is
non-nullable, whereas s2 is nullable:

#nullable enable // Enable nullable reference types

string s1 = null; // Generates a compiler warning!
string? s2 = null; // OK: s2 is nullable reference type

200 | Chapter4: Advanced G

Because nullable reference types are compile-time constructs,
there’s no runtime difference between string and string?.
In contrast, nullable value types introduce something concrete
into the type system, namely the Nullable<T> struct.

The following also generates a warning because x is not initialized:
class Foo { string x; }

The warning disappears if you initialize x, either via a field initializer or via code in
the constructor.

The Null-Forgiving Operator

The compiler also warns you upon dereferencing a nullable reference type, if it
thinks a NullReferenceException might occur. In the following example, accessing
the string’s Length property generates a warning:

void Foo (string? s) => Console.Write (s.Length);
You can remove the warning with the null-forgiving operator (!):
voild Foo (string? s) => Console.Write (s!.Length);

Our use of the null-forgiving operator in this example is dangerous in that we could
end up throwing the very NullReferenceException we were trying to avoid in the
first place. We could fix it as follows:

void Foo (string? s)

{
if (s != null) Console.Write (s.Length);

}
Notice now that we don’t need the null-forgiving operator. This is because the
compiler performs static flow analysis and is smart enough to infer—at least in
simple cases—when a dereference is safe and there’s no chance of a NullReference
Exception.

The compiler’s ability to detect and warn is not bulletproof, and there are also limits
to what’s possible in terms of coverage. For instance, it's unable to know whether
an array’s elements have been populated, and so the following does not generate a
warning:

var strings = new string[10];
Console.WriteLine (strings[0].Length);

Separating the Annotation and Warning Contexts

Enabling nullable reference types via the #nullable enable directive (or the
<Nullable>enable</Nullable> project setting) does two things:

Nullable Reference Types | 201

>
Qo
<
)
3
o
(1]
Q
(2]
#*

o It enables the nullable annotation context, which tells the compiler to treat all
reference-type variable declarations as non-nullable unless suffixed by the ?
symbol.

o It enables the nullable warning context, which tells the compiler to gener-
ate warnings upon encountering code at risk of throwing a NullReference
Exception.

It can sometimes be useful to separate these two concepts and enable just the
annotation context, or (less usefully) just the warning context:

#nullable enable annotations // Enable the annotation context
// OR:
#nullable enable warnings // Enable the warning context

(The same trick works with #nullable disable and #nullable restore.)
You can also do it via the project file:

<Nullable>annotations</Nullable>
<!-- OR -->
<Nullable>warnings</Nullable>

Enabling just the annotation context for a particular class or assembly can be a good
first step in introducing nullable reference types into a legacy codebase. By correctly
annotating public members, your class or assembly can act as a “good citizen” to
other classes or assemblies—so that they can benefit fully from nullable reference
types—without having to deal with warnings in your own class or assembly.

Treating Nullable Warnings as Errors

In greenfield projects, it makes sense to fully enable the nullable context from the
outset. You might want to take the additional step of treating nullable warnings
as errors so that your project cannot compile until all null warnings have been
resolved:

<PropertyGroup>
<Nullable>enable</Nullable>
<WarningsAsErrors>CS8600;CS8602;CS8603</WarningsAsErrors>
</PropertyGroup>

Extension Methods

Extension methods allow an existing type to be extended with new methods without
altering the definition of the original type. An extension method is a static method
of a static class, where the this modifier is applied to the first parameter. The type
of the first parameter will be the type that is extended:

public static class StringHelper

{
public static bool IsCapitalized (this string s)

{

202 | Chapter4: Advanced G#

if (string.IsNullOrEmpty(s)) return false;
return char.IsUpper (s[0]);

}
}

The IsCapitalized extension method can be called as though it were an instance
method on a string, as follows:

Console.WriteLine ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static
method call:

Console.WriteLine (StringHelper.IsCapitalized ("Perth"));
The translation works as follows:

arg0.Method (argl, arg2, ...); // Extension method call
StaticClass.Method (arg®, argl, arg2, ...); // Static method call

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)
{
foreach (T element in sequence)
return element;

>
Q
<
)
3
o
o
Q
(2]
#*

throw new InvalidOperationException ("No elements!");

}

Console.WriteLine ("Seattle".First()); /]S

Extension Method Chaining

Extension methods, like instance methods, provide a tidy way to chain functions.
Consider the following two functions:

public static class StringHelper

{
public static string Pluralize (this string s) {...}

public static string Capitalize (this string s) {...}
}

x and y are equivalent, and both evaluate to "Sausages", but x uses extension
methods, whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();
string y = StringHelper.Capitalize (StringHelper.Pluralize ("sausage"));

Ambiguity and Resolution

Namespaces

An extension method cannot be accessed unless its class is in scope, typically by its
namespace being imported. Consider the extension method IsCapitalized in the
following example:

Extension Methods | 203

using System;

namespace Utils

{

public static class StringHelper

{
public static bool IsCapitalized (this string s)

{
if (string.IsNullOrEmpty(s)) return false;
return char.IsUpper (s[0]);
}
}
}

To use IsCapitalized, the following application must import Utils to avoid a
compile-time error:

namespace MyApp
{

using Utils;

class Test

{

static void Main() => Console.WriteLine ("Perth".IsCapitalized());
}
}

Extension methods versus instance methods

Any compatible instance method will always take precedence over an extension
method. In the following example, Test’s Foo method will always take precedence,
even when called with an argument x of type int:

class Test

{
public void Foo (object x) { } // This method always wins

}

static class Extensions

{
public static void Foo (this Test t, int x) { }

}

The only way to call the extension method in this case is via normal static syntax, in
other words, Extensions.Foo(...).

Extension methods versus extension methods

If two extension methods have the same signature, the extension method must
be called as an ordinary static method to disambiguate the method to call. If one
extension method has more specific arguments, however, the more specific method
takes precedence.

To illustrate, consider the following two classes:

204 | Chapter4: Advanced G#

static class StringHelper

{

public static bool IsCapitalized (this string s) {...}
}
static class ObjectHelper
{

public static bool IsCapitalized (this object s) {...}
}

The following code calls StringHelper’s IsCapitalized method:
bool testl = "Perth".IsCapitalized();

Classes and structs are considered more specific than interfaces.

Demoting an extension method

An interesting scenario can arise when Microsoft adds an extension method to
a .NET runtime library that conflicts with an extension method in some existing
third-party library. As the author of the third-party library, you might want to
“withdraw” your extension method, but without removing it, and without breaking
binary compatibility with existing consumers.

Fortunately, this is easy to accomplish, simply by removing the this keyword from
your extension method’s definition. This demotes your extension method to an
ordinary static method. The beauty of this solution is that any assembly that was
compiled against your old library will continue to work (and bind to your method,
as before). This is because extension method calls are converted to static method
calls during compilation.

Consumers will be affected by your demotion only when they recompile, at which
time calls to your former extension method will now bind to Microsoft’s version
(if the namespace has been imported). Should the consumer still want to call your
method, they can do so by invoking it as a static method.

Anonymous Types

An anonymous type is a simple class created by the compiler on the fly to store a set
of values. To create an anonymous type, use the new keyword followed by an object
initializer, specifying the properties and values the type will contain; for example:

var dude = new { Name = "Bob", Age = 23 };
The compiler translates this to (approximately) the following:

internal class AnonymousGeneratedTypeName

{
private string name; // Actual field name is irrelevant
private int age; // Actual field name is irrelevant

public AnonymousGeneratedTypeName (string name, int age)

{

this.name = name; this.age = age;

Anonymous Types | 205

>
Qo
<
)
3
o
(1]
Q
(2]
*

}

public string Name { get { return name; } }
public int Age { get { return age; 1} }

// The Equals and GetHashCode methods are overridden (see Chapter 6).
// The ToString method is also overridden.

var dude = new AnonymousGeneratedTypeName ("Bob", 23);

You must use the var keyword to reference an anonymous type because it doesn't
have a name.

The property name of an anonymous type can be inferred from an expression that
is itself an identifier (or ends with one); thus

int Age = 23;
var dude = new { Name = "Bob", Age, Age.ToString().Length };

is equivalent to the following:
var dude = new { Name = "Bob", Age = Age, Length = Age.ToString().Length };

Two anonymous type instances declared within the same assembly will have the
same underlying type if their elements are named and typed identically:

var al =new { X =2, Y =41};
var a2 =new { X =2, Y =41%;
Console.WriteLine (al.GetType() == a2.GetType()); // True

Additionally, the Equals method is overridden to perform structural equality com-
parison (comparison of the data):

Console.WriteLine (al.Equals (a2)); /] True

whereas the equality operator (==) performs referential comparison:
Console.WriteLine (a1l == a2); // False

You can create arrays of anonymous types as follows:

var dudes = new[]

{
new { Name = "Bob", Age
new { Name = "Tom", Age
I
A method cannot (usefully) return an anonymously typed object, because it is illegal
to write a method whose return type is var:

30 },
40 }

var Foo() => new { Name = "Bob", Age = 30 }; // Not legal!

Instead, you must use object or dynamic, and then whoever calls Foo must rely on
dynamic binding, with loss of static type safety (and IntelliSense in Visual Studio):

dynamic Foo() => new { Name = "Bob", Age = 30 }; // No static type safety.

206 | Chapter4: Advanced G

Anonymous types are immutable, so instances cannot be modified after creation.
However, from C# 10, you can use the with keyword to create a copy with variations
(nondestructive mutation):

var al =new { A=1,B=2,C=3,D=4,E=51};

var a2 = al with { E = 10 };

Console.WriteLine (a2); /] {A=1,B=2,C=3,D=4, E=10}
Anonymous types are particularly useful when writing LINQ queries (see
Chapter 8).

Tuples

Like anonymous types, tuples provide a simple way to store a set of values. The
main purpose of tuples is to safely return multiple values from a method without
resorting to out parameters (something you cannot do with anonymous types).

Tuples do almost everything that anonymous types do and
more. Their one disadvantage—as you’ll see soon—is runtime
type erasure with named elements.

The simplest way to create a tuple literal is to list the desired values in parentheses.
This creates a tuple with unnamed elements, which you refer to as Item1, Item2, and
so on:

var bob = ("Bob", 23); // Allow compiler to infer the element types

Console.WriteLine (bob.Item1); // Bob
Console.WriteLine (bob.Item2); // 23

Tuples are value types, with mutable (read/write) elements:

var joe = bob; // joe is a *copy* of bob

joe.Iteml = "Joe"; // Change joe’s Iteml from Bob to Joe
Console.WriteLine (bob); // (Bob, 23)

Console.WriteLine (joe); // (Joe, 23)

Unlike with anonymous types, you can specify a tuple type explicitly. Just list each of
the element types in parentheses:

(string,int) bob = ("Bob", 23);
This means that you can usefully return a tuple from a method:

(string,int) person = GetPerson(); // Could use 'var' instead if we want
Console.WriteLine (person.Iteml); // Bob
Console.WriteLine (person.Item2); // 23

(string,int) GetPerson() => ("Bob", 23);
Tuples play well with generics, so the following types are all legal:
Task<(string,int)>

Dictionary<(string,int),Uri>
IEnumerable<(int id, string name)> // See below for naming elements

Tuples | 207

>
Q
<
)
3
o
(1]
Q
0
#*

Naming Tuple Elements
You can optionally give meaningful names to elements when creating tuple literals:
var tuple = (name:"Bob", age:23);

Console.WriteLine (tuple.name); // Bob
Console.WriteLine (tuple.age); /] 23

You can do the same when specifying tuple types:

var person = GetPerson();
Console.WriteLine (person.name); // Bob
Console.WriteLine (person.age); /] 23

(string name, int age) GetPerson() => ("Bob", 23);

Note that you can still treat the elements as unnamed and refer to them as Itemi,
Item2, etc. (although Visual Studio hides these fields from IntelliSense).

Element names are automatically inferred from property or field names:

var now = DateTime.Now;
var tuple = (now.Day, now.Month, now.Year);
Console.WriteLine (tuple.Day); /] OK

Tuples are type compatible with one another if their element types match up (in
order). Their element names need not:

("Bob", 23, 'M");
bob1; // No error!

(string name, int age, char sex) bob1l
(string age, 1int sex, char name) bob2

Our particular example leads to confusing results:

Console.WriteLine (bob2.name); // M

Console.WriteLine (bob2.age); // Bob
Console.WriteLine (bob2.sex); /] 23
Type erasure

We stated previously that the C# compiler handles anonymous types by building
custom classes with named properties for each of the elements. With tuples, C#
works differently and uses a preexisting family of generic structs:

public struct ValueTuple<T1>
public struct ValueTuple<T1,T2>
public struct ValueTuple<T1,T2,T3>

Each of the ValueTuple<> structs has fields named Item1, Item2, and so on.

Hence, (string,int) is an alias for ValueTuple<string,int>, and this means that
named tuple elements have no corresponding property names in the underlying
types. Instead, the names exist only in the source code, and in the imagination
of the compiler. At runtime, the names mostly disappear, so if you decompile a
program that refers to named tuple elements, you’ll see references to just Itemi,

208 | Chapter4: Advanced G

Item2, and so on. Further, when you examine a tuple variable in a debugger after
having assigned it to an object (or Dump it in LINQPad), the element names are not
there. And for the most part, you cannot use reflection (Chapter 18) to determine a
tuple’s element names at runtime.

We said that the names mostly disappear because there’s an
exception. With methods/properties that return named tuple
types, the compiler emits the element names by applying
a custom attribute called TupleElementNamesAttribute (see
“Attributes” on page 227) to the member’s return type. This
allows named elements to work when calling methods in a
different assembly (for which the compiler does not have the
source code).

ValueTuple.Create

You can also create tuples via a factory method on the (nongeneric) ValueTuple
type:
ValueTuple<string,int> bobl = ValueTuple.Create ("Bob", 23);

(string,int) bob2 = ValueTuple.Create ("Bob", 23);
(string name, int age) bob3 = ValueTuple.Create ("Bob", 23);

Deconstructing Tuples

Tuples implicitly support the deconstruction pattern (see “Deconstructors” on page
20), so you can easily deconstruct a tuple into individual variables. Consider the
following:

var bob = ("Bob", 23);

string name = bob.Itemi;
int age = bob.Item2;

With the tuple’s deconstructor, you can simplify the code to this:

var bob = ("Bob", 23);

(string name, int age) = bob; // Deconstruct the bob tuple into

|/ separate variables (name and age).
Console.WriteLine (name);
Console.WriteLine (age);

The syntax for deconstruction is confusingly similar to the syntax for declaring a
tuple with named elements. The following highlights the difference:

(string name, int age) = bob; // Deconstructing a tuple
(string name, int age) bob2 = bob; // Declaring a new tuple

Here’s another example, this time when calling a method and with type inference
(var):

Tuples | 209

>
Q
<
)
3
o
(1]
Q
0
#*

var (name, age, sex) = GetBob();

Console.WriteLine (name); // Bob
Console.WriteLine (age); /] 23
Console.WriteLine (sex); // M

string, int, char) GetBob() => ("Bob", 23, 'M');

You can also deconstruct directly into fields and properties, which provides a nice
shortcut for populating multiple fields or properties in a constructor:

class Point

{

public readonly int X, V;

public Point (int x, int y) => (X, Y) = (X, y);
}

Equality Comparison

As with anonymous types, the Equals method performs structural equality compar-
ison. This means that it compares the underlying data rather than the reference:

var t1 = ("one", 1);
var t2 = ("one", 1);
Console.WriteLine (t1.Equals (t2)); /] True

In addition, ValueTuple<> overloads the == and != operators:
Console.WriteLine (t1 == t2); // True (from C# 7.3)

Tuples also override the GetHashCode method, making it practical to use tuples as
keys in dictionaries. We cover equality comparison in detail in “Equality Compari-
son” on page 324, and dictionaries in Chapter 7.

The ValueTuple<> types also implement IComparable (see “Order Comparison” on
page 335), making it possible to use tuples as a sorting key.

The System.Tuple classes

You'll find another family of generic types in the System namespace called Tuple
(rather than ValueTuple). These were introduced back in 2010 and were defined as
classes (whereas the ValueTuple types are structs). Defining tuples as classes was
in retrospect considered a mistake: in the scenarios in which tuples are commonly
used, structs have a slight performance advantage (in that they avoid unnecessary
memory allocations), with almost no downside. Hence, when Microsoft added
language support for tuples in C# 7, it ignored the existing Tuple types in favor of
the new ValueTuple. You might still come across the Tuple classes in code written
prior to C# 7. They have no special language support and are used as follows:

Tuple<string,int> t = Tuple.Create ("Bob", 23); // Factory method
Console.WriteLine (t.Iteml); // Bob
Console.WriteLine (t.Item2); /] 23

210 | Chapter4: Advanced G#

Records

A record is a special kind of class or struct that’s designed to work well with immut-
able (read-only) data. Its most useful feature is nondestructive mutation; however,
records are also useful in creating types that just combine or hold data. In simple
cases, they eliminate boilerplate code while honoring the equality semantics most
suitable for immutable types.

Records are purely a C# compile-time construct. At runtime, the CLR sees them
just as classes or structs (with a bunch of extra “synthesized” members added by the
compiler).

Background

Writing immutable types (whose fields cannot be modified after initialization) is a
popular strategy for simplifying software and reducing bugs. It’s also a core aspect of
functional programming, where mutable state is avoided and functions are treated
as data. LINQ is inspired by this principle.

In order to “modify” an immutable object, you must create a new one and copy over
the data while incorporating your modifications (this is called nondestructive muta-
tion). In terms of performance, this is not as inefficient as you might expect, because
a shallow copy will always suffice (a deep copy, where you also copy subobjects and
collections, is unnecessary when data is immutable). But in terms of coding effort,
implementing nondestructive mutation can be very inefficient, especially when
there are many properties. Records solve this problem via a language-supported
pattern.

A second issue is that programmers—particularly functional programmers—some-
times use immutable types just to combine data (without adding behavior). Defin-
ing such types is more work than it should be, requiring a constructor to assign each
parameter to each property (a deconstructor may also be useful). With records, the
compiler can do this work for you.

Finally, one of the consequences of an object being immutable is that its identity
cannot change, which means that it’s more useful for such types to implement struc-
tural equality than referential equality. Structural equality means that two instances
are the same if their data is the same (as with tuples). Records give you structural
equality by default—regardless of whether the underlying type is a class or struct—
without any boilerplate code.

Defining a Record

A record definition is like a class or struct definition, and can contain the same
kinds of members, including fields, properties, methods, and so on. Records can
implement interfaces, and (class-based) records can subclass other (class-based)
records.

Records | 211

>
Q
<
)
3
o
(1]
Q
0
#®

By default, the underlying type of a record is a class:
record Point { } // Point is a class

From C# 10, the underlying type of a record can also be a struct:
record struct Point { } // Point is a struct

(record class is also legal and has the same meaning as record.)

A simple record might contain just a bunch of init-only properties and perhaps a
constructor:

record Point

{
public Point (double x, double y) => (X, Y) = (X, y);

public double X { get; init; }
public double Y { get; init; }
}

Our constructor employs a shortcut that we described in the
preceding section.

(X, ¥) = (X, ¥);
is equivalent (in this case) to the following:

{ this.X = x; this.Y = y; }

Upon compilation, C# transforms the record definition into a class (or struct) and
performs the following additional steps:

o It writes a protected copy constructor (and a hidden Clone method) to facilitate
nondestructive mutation.

o It overrides/overloads the equality-related functions to implement structural
equality.

o It overrides the ToString() method (to expand the record’s public properties,
as with anonymous types).

The preceding record declaration expands into something like this:

class Point

{
public Point (double x, double y) => (X, Y) = (X, y);

public double X { get; init; }
public double Y { get; init; }

protected Point (Point original) /] “Copy constructor”

{

this.X = original.X; this.Y = original.Y

}

// This method has a strange compiler-generated name:
public virtual Point <Clone>$() => new Point (this); // Clone method

212 | Chapter 4: Advanced G#

// Additional code to override Equals, ==, !=, GetHashCode, ToString()

/...
}

While there’s nothing to stop you from putting optional
parameters into the constructor, a good pattern (at least in
public libraries) is to leave them out of the constructor and
expose them purely as init-only properties:

new Foo (123, 234) { Optional2 = 345 };

record Foo

{
public Foo (int requiredl, int required2) { ... }

public int Requiredl { get; init; }
public int Required2 { get; init; }

public int Optionall { get; init; }

public int Optional2 { get; init; }

}

The advantage of this pattern is that you can safely add init-
only properties later without breaking binary compatibility
with consumers who have compiled against older versions of
your assembly.

>
Q
<
)
3
o
(1]
Q
0
#*

Parameter lists
A record definition can also include a parameter list:

record Point (double X, double Y)
{

// You can optionally define additional class members here...

}

Parameters can include the in and params modifiers, but not out or ref. If a
parameter list is specified, the compiler performs the following extra steps:

o It writes an init-only property per parameter.

o It writes a primary constructor to populate the properties.

o It writes a deconstructor.

Mutability with Record Structs

When you define a parameter list in a record struct, the compiler emits writable
properties instead of init-only properties, unless you prefix the record declaration
with readonly:

readonly record struct Point (double X, double Y);

Records | 213

The rationale is that in typical use cases, the safety benefits of immutability arise not
from a struct being immutable but from its home being immutable. In the following
example, we are unable to mutate field X, even though X is writable:

var test = new Immutable();
test.Field.X++; // Prohibited, because Field is readonly
test.Prop.X++; // Prohibited, because Prop is {get;} only

class Immutable

{
public readonly Mutable Field;
public Mutable Prop { get; }

}

struct Mutable { public int X, Y; }
And while we could do the following:

var test = new Immutable();
Mutable m = test.Prop;
m.X++;

all that we would achieve is to mutate a local variable (a copy of test.Prop). Mutat-
ing a local variable can be a useful optimization and doesn’t invalidate the benefits of
an immutable type system.

Conversely, if we made Field a writable field, and Prop a writable property, we could
simply replace their contents—regardless of how the Mutable struct was declared.

This means that if we declare our Point record simply as
record Point (double X, double Y);

the compiler will end up generating (almost) exactly what we listed in the preceding
expansion. A minor difference is that the parameter names in the primary construc-
tor will end up as X and Y instead of x and y:

public Point (double X, double Y) // “Primary constructor”
{

this.X = X; this.Y = Y;
}

Also, due to being a primary constructor, parameters X and Y
become magically available to any field or property initializers
in your record. We discuss the subtleties of this later, in “Pri-
mary Constructors” on page 219.

Another difference, when you define a parameter list, is that the compiler also
generates a deconstructor:

public void Deconstruct (out double X, out double Y) // Deconstructor

{
X = this.X; Y = this.Y;
}

Records with parameter lists can be subclassed using the following syntax:

214 | Chapter4: Advanced G#

record Point3D (double X, double Y, double Z) : Point (X, Y);
The compiler then emits a primary constructor as follows:

class Point3D : Point

{
public double Z { get; init; }

public Point3D (double X, double Y, double Z) : base (X, Y)
=> this.Z = Z;

Parameter lists offer a nice shortcut when you need a class that
simply groups together a bunch of values (a product type in
functional programming), and can also be useful for prototyp-
ing. As we'll see later, they’re not so helpful when you need to
add logic to the init accessors (such as argument validation).

Nondestructive Mutation

The most important step that the compiler performs with all records is to write
a copy constructor (and a hidden Clone method). This enables nondestructive muta-
tion via the with keyword:

Point pl = new Point (3, 3);
Point p2 = p1 with { Y = 4 };
Console.WriteLine (p2); /] Point { X =3, Y=41}

record Point (double X, double Y);

In this example, p2 is a copy of p1, but with its Y property set to 4. The benefit is
more apparent when there are more properties:

Test t1 = new Test (1, 2, 3, 4, 5, 6, 7, 8);
Test t2 = t1 with { A = 10, C = 30 };
Console.WriteLine (t2);

record Test (int A, int B, int C, int D, int E, int F, int G, int H);
Here’s the output:
Test {A=10,B=2,C=30,D=4,E=5,F=6,G=7,H=281}
Nondestructive mutation occurs in two phases:
1. First, the copy constructor clones the record. By default, it copies each of
the record’s underlying fields, creating a faithful replica while bypassing (the

overhead of) any logic in the init accessors. All fields are included (public and
private, as well as the hidden fields that back automatic properties).

2. Then, each property in the member initializer list is updated (this time using
the init accessors).

The compiler translates:

Records | 215

>
Q
<
)
3
o
(1]
Q
0
#*

Test t2 = t1 with { A = 10, C = 30 };
into something functionally equivalent to the following:

Test t2 = new Test(tl); // Use copy constructor to clone t1 field by field
t2.A = 10; // Update property A
t2.C = 30; // Update property C

(The same code would not compile if you wrote it explicitly because A and C
are init-only properties. Furthermore, the copy constructor is protected; C# works
around this by invoking it via a public hidden method that it writes into the record
called <Clone>$.)

If necessary, you can define your own copy constructor. C# will then use your
definition instead of writing one itself:

protected Point (Point original)

{

this.X = original.X; this.Y = original.Y;

3

Writing a custom copy constructor might be useful if your record contains mutable
subobjects or collections that you wish to clone, or if there are computed fields
that you wish to clear. Unfortunately, you can only replace, not enhance, the default
implementation.

When subclassing another record, the copy constructor is
responsible for copying only its own fields. To copy the base
record’s fields, delegate to the base:

protected Point (Point original) : base (original)

{
}...

Property Validation

With explicit properties, you can write validation logic into the init accessors. In
the following example, we ensure that X can never be NaN (Not a Number):

record Point

{
// Notice that we assign x to the X property (and not the _x field):
public Point (double x, double y) => (X, Y) = (X, y);

double _x;
public double X
{
get => _x;
init
{
if (double.IsNaN (value))
throw new ArgumentException ("X Cannot be NaN");
_x = value;

216 | Chapter4: Advanced G#

public double Y { get; init; }
3
Our design ensures that validation occurs both during construction and when the
object is nondestructively mutated:

Point pl = new Point (2, 3);
Point p2 = pl with { X = double.NaN }; // throws an exception
Recall that the automatically generated copy constructor copies over all fields and

automatic properties. This means that the generated copy constructor will now look
like this:

protected Point (Point original)

{
_x = original._x; Y = original.Y;
}
Notice that the copying of the _x field circumvents the X property accessor. How-
ever, this cannot break anything, because it’s faithfully copying an object that will
have already been safely populated via X’s init accessor.

(Calculated Fields and Lazy Evaluation

A popular functional programming pattern that works well with immutable types is
lazy evaluation, where a value is not computed until required, and is then cached for
reuse. Suppose, for instance, that we want to define a property in our Point record
that returns the distance from the origin (0, 0):

record Point (double X, double Y)

{
public double DistanceFromOrigin => Math.Sqrt (X*X + Y*Y);

}

Let’s now try to refactor this to avoid the cost of recomputing DistanceFromOrigin
every time the property is accessed. We'll start by removing the property list and
defining X, Y, and DistanceFromOrigin as read-only properties. Then we can calcu-
late the latter in the constructor:

record Point

{
public double X { get; }
public double Y { get; }
public double DistanceFromOrigin { get; }

public Point (double x, double y) =>
(X, Y, DistanceFromOrigin) = (x, y, Math.Sqrt (x*x + y*y));
}
This works, but it doesn’t allow for nondestructive mutation (changing X and Y
to init-only properties would break the code because DistanceFromOrigin would
become stale after the init accessors execute). It’s also suboptimal in that the calcu-
lation is always performed, regardless of whether the DistanceFromOrigin property

Records | 217

>
Qo
<
)
3
o
o
Q
0
#*

is ever read. The optimal solution is to cache its value in a field and populate it lazily
(on first use):

record Point

{

double? _distance;
public double DistanceFromOrigin

{
get

{
if (_distance == null)
_distance = Math.Sqrt (X*X + Y*Y);

return _distance.Value;
}
}
}

Technically, we mutate _distance in this code. It’s still fair,
though, to call Point an immutable type. Mutating a field
purely to populate a lazy value does not invalidate the prin-
ciples or benefits of immutability, and can even be masked
through the use of the Lazy<T> type that we describe in
Chapter 21.

With C#s null-coalescing assignment operator (2?=) we can reduce the entire prop-
erty declaration to one line of code:

public double DistanceFromOrigin => _distance ??= Math.Sqrt (X*X + Y*Y);

(This says, return _distance if it's non-null; otherwise return Math.Sqrt (X*X +
Y*Y) while assigning it to _distance.)

To make this work with init-only properties, we need one further step, which is to
clear the cached _distance field when X or Y is updated via the init accessor. Here’s
the complete code:

record Point

{
public Point (double x, double y) => (X, Y) = (X, y);

double _x, _y;
public double X { get => _x; init { _x = value; _distance = null; } }
public double Y { get => _y; init { _y = value; _distance = null; } }

double? _distance;
public double DistanceFromOrigin => _distance ??= Math.Sgrt (X*X + Y*Y);
}

Point can now be mutated nondestructively:

Point pl = new Point (2, 3);
Console.WriteLine (pl.DistanceFromOrigin); // 3.605551275463989

218 | Chapter4: Advanced G#

Point p2 = p1 with { Y =4 };

Console.WriteLine (p2.DistanceFromOrigin); // 4.47213595499958
A nice bonus is that the autogenerated copy constructor copies over the cached
_distance field. This means that should a record have other properties that aren’t
involved in the calculation, a nondestructive mutation of those properties wouldn’t
trigger an unnecessary loss of the cached value. If you don’t care for this bonus,
an alternative to clearing the cached value in the init accessors is to write a
custom copy constructor that ignores the cached field. This is more concise because
it works with parameter lists, and the custom copy constructor can leverage the
deconstructor:

record Point (double X, double Y)

double? _distance;
public double DistanceFromOrigin => _distance ??= Math.Sgrt (X*X + Y*Y);

protected Point (Point other) => (X, Y) = other;
}

Note that with either solution, the addition of lazy calculated fields breaks the
default structural equality comparison (because such fields may or may not be
populated), although we'll see shortly that it’s relatively easy to fix.

Primary Constructors

When you define a record with a parameter list, the compiler generates property
declarations automatically, as well as a primary constructor (and a deconstructor).
As we've seen, this works well in simple cases, and in more complex cases you
can omit the parameter list and write the property declarations and constructor
manually.

C# also offers a mildly useful intermediate option—if you're willing to deal with
the curious semantics of primary constructors—which is to define a parameter list
while writing some or all of the property declarations yourself:

record Student (string ID, string LastName, string GivenName)

{
public string ID { get; } = ID;
}

In this case, we “took over” the ID property definition, defining it as read-only
(instead of init-only), preventing it from partaking in nondestructive mutation.
If you never need to nondestructively mutate a particular property, making it
read-only lets you store computed data in the record without having to code up a
refresh mechanism.

Notice that we needed to include a property initializer (in boldface):

public string ID { get; } = ID;

Records | 219

>
Q
<
)
3
o
(1]
Q
0
#*

When you “take over” a property declaration, you become responsible for initializ-
ing its value; the primary constructor no longer does this automatically. Note that
the ID in boldface refers to the primary constructor parameter, not the ID property.

With record structs, it’s legal to redefine a property as a field:

record struct Student (string ID)

{
public string ID = ID;
}

A unique feature of primary constructors is that their parameters (ID, LastName,
and GivenName in this case) are magically visible to all field and property initializers.
We can illustrate this by extending our example as follows:

record Student (string ID, string LastName, string FirstName)

{

public string ID { get; } = ID;

readonly int _enrollmentYear = int.Parse (ID.Substring (0, 4));
}

Again, the ID in boldface refers to the primary constructor parameter, not the
property. (The reason for there not being an ambiguity is that it’s illegal to access
properties from initializers.)

In this example, we calculated _enrollmentYear from the first four digits of the ID.
While it’s safe to store this in a read-only field (because the ID property is read-only
and so cannot be nondestructively mutated), this code would not work so well in
the real world. This is because without an explicit constructor, there’s no central
place in which to validate ID and throw a meaningful exception should it be invalid
(a common requirement).

Validation is also a good reason for needing to write explicit init-only accessors
(as we discussed in “Property Validation” on page 216). Unfortunately, primary
constructors do not play well in this scenario. To illustrate, consider the following
record, where an init accessor performs a null validation check:

record Person (string Name)

{
string _name = Name;
public string Name

{
get => _name;
init => _name = value ?? throw new ArgumentNullException ("Name");
}
}

Because Name is not an automatic property, it cannot define an initializer. The best
we can do is put the initializer on the backing field (in boldface). Unfortunately,
doing so bypasses the null check:

var p = new Person (null); // Succeeds! (bypasses the null check)

The difficulty is that there’s no way to assign a primary constructor parameter to a
property without writing the constructor ourselves. While there are workarounds

220 | Chapter4: Advanced G#

(such as factoring the init validation logic into a separate static method that we call
twice), the simplest workaround is to avoid the parameter list altogether and write
an ordinary constructor manually (and deconstructor, should you need it):

record Person

{

public Person (string name) => Name = name; // Assign to *PROPERTY*

string _name;
public string Name { get => _name; init => ... }

}

Records and Equality Comparison

Just as with structs, anonymous types, and tuples, records provide structural equal-
ity out of the box, meaning that two records are equal if their fields (and automatic
properties) are equal:

var pl = new Point (1, 2);
var p2 = new Point (1, 2);
Console.WriteLine (pl.Equals (p2)); // True

record Point (double X, double Y);

The equality operator also works with records (as it does with tuples):

Console.WriteLine (p1 == p2); /] True

The default equality implementation for records is unavoidably fragile. In particular,
it breaks if the record contains lazy values, transient values, arrays, or collection
types (which require special handling for equality comparison). Fortunately, it’s
relatively easy to fix (should you need equality to work), and doing so is less work
than adding full equality behavior to classes or structs.

Unlike with classes and structs, you do not (and cannot) override the
object.Equals method; instead, you define a public Equals method with the
following signature:

record Point (double X, double Y)

{
double _someOtherField;
public virtual bool Equals (Point other) =>
other != null && X == other.X && Y == other.Y;

}

The Equals method must be virtual (not override), and it must be strongly typed
such that it accepts the actual record type (Point in this case, not object). Once you
get the signature right, the compiler will automatically patch in your method.

In our example, we changed the equality logic such that we compare only X and Y
(and ignore _someOtherField).

Should you subclass another record, you can call the base.Equals method:

public virtual bool Equals (Point other) => base.Equals (other) && ...

Records | 221

>
Q
<
)
3
o
(1]
Q
0
#*

As with any type, if you take over equality comparison, you should also override
GetHashCode(). A nice feature of records is that you don't overload != or ==; nor
do you implement IEquatable<T>: this is all done for you. We cover this topic of
equality comparison fully in “Equality Comparison” on page 324.

Patterns

In Chapter 3, we demonstrated how to use the is operator to test whether a
reference conversion will succeed:

if (obj is string)
Console.WriteLine (((string)obj).Length);

Or, more concisely:

if (obj is string s)
Console.WriteLine (s.Length);

This employs one kind of pattern called a type pattern. The is operator also sup-
ports other patterns that were introduced in recent versions of C#, such as the
property pattern:

if (obj is string { Length:4 })
Console.WriteLine ("A string with 4 characters");

Patterns are supported in the following contexts:

o After the is operator (variable is pattern)
o In switch statements

o In switch expressions

We've already covered the type pattern (and briefly, the tuple pattern) in “Switching
on types” on page 81 and “The is operator” on page 118. In this section, we cover
more advanced patterns that were introduced in recent versions of C#.

Some of the more specialized patterns are intended for use in switch state-
ments/expressions. Here, they reduce the need for when clauses and let you use
switches where you couldn’t previously.

The patterns in this section are mild-to-moderately useful in
some scenarios. Remember that you can always replace highly
patterned switch expressions with simple if statements—
or, in some cases, the ternary conditional operator—often
without much extra code.

var Pattern

The var pattern is a variation of the type pattern whereby you replace the type name
with the var keyword. The conversion always succeeds, so its purpose is merely to
let you reuse the variable that follows:

222 | Chapter4: Advanced G#

bool IsJanetOrJohn (string name) =>
name.ToUpper() is var upper && (upper == "JANET" || upper == "JOHN");

This is equivalent to:

bool IsJanetOrJohn (string name)

{ string upper = name.ToUpper();
return upper == "JANET" || upper == "JOHN";
}
The ability to introduce and reuse an intermediate variable (upper, in this case)
in an expression-bodied method is convenient. Unfortunately, it tends to be useful
only when the method in question has a bool return type.

Constant Pattern

The constant pattern lets you match directly to a constant, and is useful when
working with the object type:

void Foo (object obj) E
<

{ o
if (obj is 3) ... §
} %
0

-4

This expression in boldface is equivalent to the following:
obj is int && (int)obj ==

(Being a static operator, C# won't let you use == to compare an object directly to a
constant, because the compiler needs to know the types in advance.)

On its own, this pattern is only marginally useful in that there’s a reasonable
alternative:

if (3.Equals (obj)) ...
As we'll see soon, the constant pattern can become more useful with pattern
combinators.
Relational Patterns
From C# 9, you can use the <, >, <=, and >= operators in patterns:
if (x is > 100) Console.WriteLine ("x is greater than 100");
This becomes meaningfully useful in a switch:

string GetWeightCategory (decimal bmi) => bmi switch

< 18.5m => "underweight",
< 25m => "npormal",
< 30m => "overweight",

=> "obese"

Patterns | 223

Relational patterns become even more useful in conjunction with pattern
combinators.

The relational pattern also works when the variable has a
compile-time type of object, but you have to be extremely
careful with your use of numeric constants. In the following
example, the last line prints False because we are attempting to
match a decimal value to an integer literal:

object obj = 2m; // obj is decimal
Console.WriteLine (obj is < 3m); // True
Console.WriteLine (obj is < 3); // False

Pattern Combinators

From C# 9, you can use the and, or, and not keywords to combine patterns:

bool IsJanetOrJohn (string name) => name.ToUpper() is "JANET" or "JOHN";
bool IsVowel (char c) => c is 'a' or 'e' or 'i' or 'o' or 'u';
bool Between1And9 (int n) => n is >= 1 and <= 9;

bool IsLetter (char c) => c is >= 'a' and <= 'z'
or >= 'A' and <= 'Z’';

As with the && and || operators, and has higher precedence than or. You can
override this with parentheses.

A nice trick is to combine the not combinator with the type pattern to test whether
an object is (not) a type:

if (obj is not string) ...
This looks nicer than:

if (!(obj is string)) ...

Tuple and Positional Patterns
The tuple pattern (introduced in C# 8) matches tuples:

var p = (2, 3);
Console.WriteLine (p is (2, 3)); // True

You can use this to switch on multiple values:

int AverageCelsiusTemperature (Season season, bool daytime) =>
(season, daytime) switch
{
(Season.Spring, true) => 20,
(Season.Spring, false) => 16,
(Season.Summer, true) => 27,
(Season.Summer, false) => 22,
(Season.Fall, true) => 18,
(Season.Fall, false) => 12,
(Season.Winter, true) => 10,

224 | Chapter4: Advanced G#

(Season.Winter, false) => -2,
_ => throw new Exception ("Unexpected combination")

¥
enum Season { Spring, Summer, Fall, Winter };

The tuple pattern can be considered a special case of the positional pattern (C# 8+),
which matches any type that exposes a Deconstruct method (see “Deconstructors”
on page 20). In the following example, we leverage the Point record’s compiler-
generated deconstructor:

var p = new Point (2, 2);
Console.WriteLine (p is (2, 2)); // True

record Point (int X, int Y); // Has compiler-generated deconstructor
You can deconstruct as you match, using the following syntax:

Console.WriteLine (p is (var x, var y) && x ==y); /] True

Here’s a switch expression that combines a type pattern with a positional pattern: >
string Print (object obj) => obj switch §
{ Point (0, 0) => "Empty point", g
Point (var x, var y) when x == => "Diagonal" g:
. e
Property Patterns

A property pattern (C# 8+) matches on one or more of an object’s property values.
We gave a simple example previously in the context of the is operator:

if (obj is string { Length:4 }) ...
However, this doesn’t save much over the following:
if (obj is string s && s.Length == 4) ...

With switch statements and expressions, property patterns are more useful. Con-
sider the System.Ur1i class, which represents a URL It has properties that include
Scheme, Host, Port, and IsLoopback. In writing a firewall, we could decide whether
to allow or block a URI by employing a switch expression that uses property
patterns:

bool ShouldAllow (Uri uri) => uri switch
{
{ Scheme: "http", Port: 80 } => true,
{ Scheme: "https", Port: 443 } => true,
{ Scheme: "ftp", Port: 21 } => true,
{ IsLoopback: true } => true,
_ => false

b

Patterns | 225

You can nest properties, making the following clause legal:
{ Scheme: { Length: 4 }, Port: 80 } => true,
which, from C# 10, can be simplified to:
{ Scheme.Length: 4, Port: 80 } => true,
You can use other patterns inside property patterns, including the relational pattern:
{ Host: { Length: < 1000 }, Port: > 0 } => true,
More elaborate conditions can be expressed with a when clause:
{ Scheme: "http" } when string.IsNullOrWhiteSpace (uri.Query) => true,
You can also combine the property pattern with the type pattern:

bool ShouldAllow (object uri) => uri switch

{
Uri { Scheme: "http", Port: 80 } => true,
Uri { Scheme: "https", Port: 443 } => true,

As you might expect with type patterns, you can introduce a variable at the end of a
clause and then consume that variable:

Uri { Scheme: "http", Port: 80 } httpUri => httpUri.Host.Length < 1000,
You can also use that variable in a when clause:

Uri { Scheme: "http", Port: 80 } httpuri
when httpUri.Host.Length < 1000 => true,

A somewhat bizarre twist with property patterns is that you can also introduce
variables at the property level:

{ Scheme: "http", Port: 80, Host: string host } => host.Length < 1000,

Implicit typing is permitted, so you can substitute string with var. Here’s a com-
plete example:

bool ShouldAllow (Uri uri) => uri switch

{
{ Scheme: "http", Port: 80, Host: var host } => host.Length < 1000,
{ Scheme: "https", Port: 443 } => true,
{ Scheme: "ftp", Port: 21 } => true,
{ IsLoopback: true } => true,
_ => false
1

It’s difficult to invent examples for which this saves more than a few characters. In
our case, the alternative is actually shorter:

{ Scheme: "http", Port: 80 } => uri.Host.Length < 1000 => ...
Or:

{ Scheme: "http", Port: 80, Host: { Length: < 1000 } } => ...

226 | Chapter4: Advanced G

Attributes

You're already familiar with the notion of attributing code elements of a program
with modifiers, such as virtual or ref. These constructs are built into the language.
Attributes are an extensible mechanism for adding custom information to code
elements (assemblies, types, members, return values, parameters, and generic type
parameters). This extensibility is useful for services that integrate deeply into the
type system, without requiring special keywords or constructs in the C# language.

A good scenario for attributes is serialization—the process of converting arbitrary
objects to and from a particular format for storage or transmission. In this scenario,
an attribute on a field can specify the translation between C#’s representation of the
field and the format’s representation of the field.

Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the
abstract class System.Attribute. To attach an attribute to a code element, specify
the attribute’s type name in square brackets, before the code element. For example,
the following attaches the ObsoleteAttribute to the Foo class:

[ObsoleteAttribute]
public class Foo {...}

This particular attribute is recognized by the compiler and will cause compiler
warnings if a type or member marked as obsolete is referenced. By convention, all

attribute types end in the word Attribute. C# recognizes this and allows you to omit
the suffix when attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace as follows (simpli-
fied for brevity):

public sealed class ObsoleteAttribute : Attribute {...}

The .NET libraries include many predefined attributes. We describe how to write
your own attributes in Chapter 18.

Named and Positional Attribute Parameters

Attributes can have parameters. In the following example, we apply XmlTypeAttri
bute to a class. This attribute instructs the XML serializer (in System.Xml.Seriali
zation) as to how an object is represented in XML and accepts several attribute
parameters. The following attribute maps the CustomerEntity class to an XML
element named Customer, which belongs to the http://oreilly.com namespace:

[XmlType ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attributes | 227

>
Q
<
)
3
o
(1]
Q
0
#*

Attribute parameters fall into one of two categories: positional or named. In the
preceding example, the first argument is a positional parameter; the second is a
named parameter. Positional parameters correspond to parameters of the attribute
type’s public constructors. Named parameters correspond to public fields or public
properties on the attribute type.

When specifying an attribute, you must include positional parameters that corre-
spond to one of the attribute’s constructors. Named parameters are optional.

In Chapter 18, we describe the valid parameter types and rules for their evaluation.

Applying Attributes to Assemblies and Backing Fields

Implicitly, the target of an attribute is the code element it immediately precedes,
which is typically a type or type member. You can also attach attributes, however,
to an assembly. This requires that you explicitly specify the attribute’s target. Here
is how you can use the AssemblyFileVersion attribute to attach a version to the
assembly:

[assembly: AssemblyFileVersion ("1.2.3.4")]

From C# 7.3, you can use the field: prefix to apply an attribute to the backing
fields of an automatic property. This can be useful in controlling serialization:

[field:NonSerialized]
public int MyProperty { get; set; }

Applying Attributes to Lambda Expressions (C# 10)

From C# 10, you can apply attributes to the method, parameters, and return value
of a lambda expression:

Action<int> a = [Description ("Method")]
[return: Description ("Return value")]
([Description ("Parameter")]int x) => Console.Write (x);

This is useful when working with frameworks—such as
ASPNET—that rely on you placing attributes on methods that
you write. With this feature, you can avoid having to create
named methods for simple operations.

These attributes are applied to the compiler-generated method to which the delegate
points. In Chapter 18, we'll describe how to reflect over attributes in code. For now,
here’s the extra code you need to resolve that indirection:

var methodAtt = a.GetMethodInfo().GetCustomAttributes();
var paramAtt = a.GetMethodInfo().GetParameters()[0].GetCustomAttributes();
var returnAtt = a.GetMethodInfo().ReturnParameter.GetCustomAttributes();

To avoid syntactical ambiguity when applying attributes to a parameter on a
lambda expression, parentheses are always required. Attributes are not permitted
on expression-tree lambdas.

228 | Chapter4: Advanced G#

Specifying Multiple Attributes

You can specify multiple attributes for a single code element. You can list each
attribute either within the same pair of square brackets (separated by a comma) or
in separate pairs of square brackets (or a combination of the two). The following
three examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant(false)]
public class Bar {...}

Caller Info Attributes

You can tag optional parameters with one of three caller info attributes, which
instruct the compiler to feed information obtained from the caller’s source code into
the parameter’s default value:

>
Q
<
)
3
o
o
Q
0
#*

o [CallerMemberName] applies the caller’s member name.

o [CallerFilePath] applies the path to the caller’s source code file.

o [CallerLineNumber] applies the line number in the caller’s source code file.

The Foo method in the following program demonstrates all three:

using System;
using System.Runtime.CompilerServices;

class Program

{

static void Main() => Foo();

static void Foo (
[CallerMemberName] string memberName = null,
[CallerFilePath] string filePath = null,
[CallerLineNumber] int lineNumber = 0)

{
Console.WriteLine (memberName);
Console.WriteLine (filePath);
Console.WriteLine (lineNumber);

}

}

Assuming that our program resides in c:\source\test\Program.cs, the output would

be:

Caller Info Attributes | 229

Main
c:\source\test\Program.cs
6

As with standard optional parameters, the substitution is done at the calling site.
Hence, our Main method is syntactic sugar for this:

static void Main() => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for logging—and for implementing patterns such
as firing a single change notification event whenever any property on an object
changes. In fact, there’s a standard interface for this in the System.ComponentModel
namespace, called INotifyPropertyChanged:

public interface INotifyPropertyChanged
{

event PropertyChangedEventHandler PropertyChanged;
}

public delegate void PropertyChangedEventHandler
(object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs

{
public PropertyChangedEventArgs (string propertyName);
public virtual string PropertyName { get; }

}

Notice that PropertyChangedEventArgs requires the name of the property that
changed. By applying the [CallerMemberName] attribute, however, we can imple-
ment this interface and invoke the event without ever specifying property names:

public class Foo : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged = delegate { };

void RaisePropertyChanged ([CallerMemberName] string propertyName = null)
=> PropertyChanged (this, new PropertyChangedEventArgs (propertyName));

string customerName;
public string CustomerName
{
get => customerName;
set
{
if (value == customerName) return;
customerName = value;
RaisePropertyChanged();
// The compiler converts the above line to:
// RaisePropertyChanged ("CustomerName");

230 | Chapter4: Advanced G#

CallerArgumentExpression (C# 10)

A method parameter to which you apply the [CallerArgumentExpression]
attribute captures an argument expression from the call site:

Print (Math.PI * 2);

void Print (double number,
[CallerArgumentExpression("number")] string expr = null)
=> Console.WriteLine (expr);

// Output: Math.PI * 2

The compiler feeds in the calling expressions source code literally, including
comments:

Print (Math.PI /*(n)*/ * 2);

// Output: Math.PI /*(n)*/ * 2

The main application for this feature is when writing validation and assertion
libraries. In the following example, an exception is thrown, whose message includes
the text “2 + 2 == 5" This aids in debugging:

Assert (2 + 2 == 5);

>
Q
<
)
3
o
o
Q
0
#*

voild Assert (bool condition,
[CallerArgumentExpression ("condition")] string message = null)

{

if (!condition) throw new Exception ("Assertion failed:

}

Another example is the static ThrowIfNull method on the ArgumentNullException
class. This method was introduced in .NET 6 and is defined as follows:

+ message);

public static void ThrowIfNull (object argument,
[CallerArgumentExpression("argument")] string paramName = null)

{
if (argument == null)
throw new ArgumentNullException (paramName);

}

It is used as follows:

voild Print (string message)

{
ArgumentNullException.ThrowIfNull (message);

}...

You can use [CallerArgumentExpression] multiple times, to capture multiple
argument expressions.

Caller Info Attributes | 231

Dynamic Binding

Dynamic binding defers binding—the process of resolving types, members, and
operators—from compile time to runtime. Dynamic binding is useful when at
compile time you know that a certain function, member, or operation exists, but
the compiler does not. This commonly occurs when you are interoperating with
dynamic languages (such as IronPython) and COM as well as for scenarios in which
you might otherwise use reflection.

A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject();
d.Quack();

A dynamic type tells the compiler to relax. We expect the runtime type of d to have
a Quack method. We just can't prove it statically. Because d is dynamic, the compiler
defers binding Quack to d until runtime. To understand what this means requires
distinguishing between static binding and dynamic binding.

Static Binding Versus Dynamic Binding

The canonical binding example is mapping a name to a specific function when
compiling an expression. To compile the following expression, the compiler needs
to find the implementation of the method named Quack:

d.Quack();
Let’s suppose that the static type of d is Duck:

Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking for a parameterless
method named Quack on Duck. Failing that, the compiler extends its search to meth-
ods taking optional parameters, methods on base classes of Duck, and extension
methods that take Duck as its first parameter. If no match is found, youll get a
compilation error. Regardless of what method is bound, the bottom line is that
the binding is done by the compiler, and the binding utterly depends on statically
knowing the types of the operands (in this case, d). This makes it static binding.

Now let’s change the static type of d to object:

object d = ...

d.Quack();
Calling Quack gives us a compilation error, because although the value stored in d
can contain a method called Quack, the compiler cannot know it, because the only
information it has is the type of the variable, which in this case is object. But let’s
now change the static type of d to dynamic:

dynamic d = ...
d.Quack();

232 | Chapter4: Advanced G#

A dynamic type is like object—its equally nondescriptive about a type. The dif-
ference is that it lets you use it in ways that aren't known at compile time. A
dynamic object binds at runtime based on its runtime type, not its compile-time
type. When the compiler sees a dynamically bound expression (which in general is
an expression that contains any value of type dynamic), it merely packages up the
expression such that the binding can be done later at runtime.

At runtime, if a dynamic object implements IDynamicMetaObjectProvider, that
interface is used to perform the binding. If not, binding occurs in almost the same
way as it would have had the compiler known the dynamic object’s runtime type.
These two alternatives are called custom binding and language binding.

Custom Binding

Custom binding occurs when a dynamic object implements IDynamicMetaObject
Provider (IDMOP). Although you can implement IDMOP on types that you write
in C#, and that is useful to do, the more common case is that you have acquired
an IDMOP object from a dynamic language that is implemented in .NET on the
Dynamic Language Runtime (DLR), such as IronPython or IronRuby. Objects from
those languages implicitly implement IDMOP as a means by which to directly
control the meanings of operations performed on them.

We discuss custom binders in greater detail in Chapter 19, but for now, let’s write a
simple one to demonstrate the feature:

using System;
using System.Dynamic;

dynamic d = new Duck();
d.Quack(); // Quack method was called
d.Waddle(); // Waddle method was called

public class Duck : DynamicObject
{

public override bool TryInvokeMember (
InvokeMemberBinder binder, object[] args, out object result)

{
Console.WriteLine (binder.Name + " method was called");
result = null;
return true;
}
}

The Duck class doesn't actually have a Quack method. Instead, it uses custom bind-
ing to intercept and interpret all method calls.

Language Binding

Language binding occurs when a dynamic object does not implement IDynamic
MetaObjectProvider. It is useful when working around imperfectly designed types
or inherent limitations in the .NET type system (we explore more scenarios in

DynamicBinding | 233

>
Q
<
)
3
o
(1]
Q
0
#*

Chapter 19). A typical problem when using numeric types is that they have no
common interface. We have seen that we can bind methods dynamically; the same
is true for operators:

int x = 3, y = 4;
Console.WriteLine (Mean (x, y));

dynamic Mean (dynamic x, dynamic y) => (x +vy) / 2;

The benefit is obvious—you don't need to duplicate code for each numeric
type. However, you lose static type safety, risking runtime exceptions rather than
compile-time errors.

Dynamic binding circumvents static type safety but not run-
time type safety. Unlike with reflection (Chapter 18), you can't
circumvent member accessibility rules with dynamic binding.

By design, language runtime binding behaves as similarly as possible to static
binding, had the runtime types of the dynamic objects been known at compile time.
In our previous example, the behavior of our program would be identical if we
hardcoded Mean to work with the int type. The most notable exception in parity
between static and dynamic binding is for extension methods, which we discuss in
“Uncallable Functions” on page 238.

Dynamic binding also incurs a performance hit. Because of
the DLR’s caching mechanisms, however, repeated calls to the
same dynamic expression are optimized—allowing you to effi-
ciently call dynamic expressions in a loop. This optimization
brings the typical overhead for a simple dynamic expression
on today’s hardware down to less than 100 ns.

RuntimeBinderException

If a member fails to bind, a RuntimeBinderException is thrown. You can think of
this like a compile-time error at runtime:

dynamic d = 5;
d.Hello(); // throws RuntimeBinderException

The exception is thrown because the int type has no Hello method.

Runtime Representation of Dynamic

There is a deep equivalence between the dynamic and object types. The runtime
treats the following expression as true:

typeof (dynamic) == typeof (object)
This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

234 | Chapter4: Advanced G#

Like an object reference, a dynamic reference can point to an object of any type
(except pointer types):

dynamic x = "hello";
Console.WriteLine (x.GetType().Name); // String

x = 123; // No error (despite same variable)
Console.WriteLine (x.GetType().Name); // Int32

Structurally, there is no difference between an object reference and a dynamic
reference. A dynamic reference simply enables dynamic operations on the object
it points to. You can convert from object to dynamic to perform any dynamic
operation you want on an object:

object o = new System.Text.StringBuilder();

dynamic d = o;

d.Append ("hello");
Console.WriteLine (o); // hello

Reflecting on a type exposing (public) dynamic members

>
reveals that those members are represented as annotated 2
. . o
objects; for example 3
public class Test 3
{ 0
public dynamic Foo; T

}

is equivalent to:

public class Test

{

[System.Runtime.CompilerServices.DynamicAttribute]
public object Foo;
}

This allows consumers of that type to know that Foo should
be treated as dynamic while allowing languages that don't
support dynamic binding to fall back to object.

Dynamic Conversions
The dynamic type has implicit conversions to and from all other types:

int 1 = 7;

dynamic d = i;

long j = d; // No cast required (implicit conversion)
For the conversion to succeed, the runtime type of the dynamic object must be
implicitly convertible to the target static type. The preceding example worked
because an int is implicitly convertible to a long.

The following example throws a RuntimeBinderException because an int is not
implicitly convertible to a short:

int 1 = 7;

dynamic d = i;

short j = d; // throws RuntimeBinderException

DynamicBinding | 235

var Versus dynamic

The var and dynamic types bear a superficial resemblance, but the difference is
deep:

o var says, “Let the compiler figure out the type”

o dynamic says, “Let the runtime figure out the type”

To illustrate:

dynamic x = "hello"; // Static type is dynamic; runtime type is string
var y = "hello"; // Static type is string; runtime type is string
int 1 = x; // Runtime error (cannot convert string to int)
int j =vy; // Compile-time error (cannot convert string to int)

The static type of a variable declared with var can be dynamic:

dynamic x = "hello";

var y = x; // Static type of y is dynamic
int z = y; // Runtime error (cannot convert string to int)
Dynamic Expressions

Fields, properties, methods, events, constructors, indexers, operators, and conver-
sions can all be called dynamically.

Trying to consume the result of a dynamic expression with a void return type is
prohibited—just as with a statically typed expression. The difference is that the
error occurs at runtime:

dynamic list = new List<int>();
var result = list.Add (5); // RuntimeBinderException thrown

Expressions involving dynamic operands are typically themselves dynamic because
the effect of absent type information is cascading:

dynamic x = 2;

var y = x * 3; // Static type of y is dynamic
There are a couple of obvious exceptions to this rule. First, casting a dynamic
expression to a static type yields a static expression:

dynamic x = 2;

var y = (int)x; // Static type of y is int
Second, constructor invocations always yield static expressions—even when called

with dynamic arguments. In this example, x is statically typed to a StringBuilder:

dynamic capacity = 10;
var x = new System.Text.StringBuilder (capacity);

In addition, there are a few edge cases for which an expression containing a
dynamic argument is static, including passing an index to an array and delegate
creation expressions.

236 | Chapter4: Advanced G

Dynamic Calls Without Dynamic Receivers

The canonical use case for dynamic involves a dynamic receiver. This means that a
dynamic object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo(); /] x is the receiver

However, you can also call statically known functions with dynamic arguments.
Such calls are subject to dynamic overload resolution and can include the following:

o Static methods
¢ Instance constructors

o Instance methods on receivers with a statically known type

In the following example, the particular Foo that gets dynamically bound is depen-
dent on the runtime type of the dynamic argument:

class Program

{

static void Foo (int x) => Console.WriteLine ("int");
static void Foo (string x) => Console.WriteLine ("string");

>
Qo
<
)
3
o
o
Q
0
#*

static void Main()

{
dynamic x = 5;
dynamic y = "watermelon";

Foo (x); /] int
Foo (y); /] string
}
}

Because a dynamic receiver is not involved, the compiler can statically perform
a basic check to see whether the dynamic call will succeed. It checks whether a
function with the correct name and number of parameters exists. If no candidate is
found, you get a compile-time error:

class Program

{

static void Foo (int x) => Console.WriteLine ("int");
static void Foo (string x) => Console.WriteLine ("string");

static void Main()

{
dynamic x = 5;
Foo (x, X); // Compiler error - wrong number of parameters
Fook (x); // Compiler error - no such method name

}

3

DynamicBinding | 237

Static Types in Dynamic Expressions

It’s obvious that dynamic types are used in dynamic binding. It's not so obvious that
static types are also used—wherever possible—in dynamic binding. Consider the
following:

class Program

{
static void Foo (object x, object y) { Console.WriteLine ("oo");
static void Foo (object x, string y) { Console.WriteLine ("os");
static void Foo (string x, object y) { Console.WriteLine ("so");
static void Foo (string x, string y) { Console.WriteLine ("ss");

}
}
}
}

static void Main()
{
object o = "hello";
dynamic d = "goodbye";
Foo (o, d); /] os
}
}

The call to Foo (o0,d) is dynamically bound because one of its arguments, d, is
dynamic. But because o is statically known, the binding—even though it occurs
dynamically—will make use of that. In this case, overload resolution will pick the
second implementation of Foo due to the static type of o and the runtime type of d.
In other words, the compiler is “as static as it can possibly be”

Uncallable Functions

Some functions cannot be called dynamically. You cannot call the following:

« Extension methods (via extension method syntax)
o Members of an interface, if you need to cast to that interface to do so

o Base members hidden by a subclass

Understanding why this is so is useful in understanding dynamic binding.

Dynamic binding requires two pieces of information: the name of the function to
call and the object upon which to call the function. However, in each of the three
uncallable scenarios, an additional type is involved, which is known only at compile
time. As of this writing, there’s no way to specify these additional types dynamically.

When calling extension methods, that additional type is implicit. It’s the static
class on which the extension method is defined. The compiler searches for it
given the using directives in your source code. This makes extension methods
compile-time-only concepts because using directives melt away upon compilation
(after they’ve done their job in the binding process in mapping simple names to
namespace-qualified names).

238 | Chapter4: Advanced G#

When calling members via an interface, you specify that additional type via an
implicit or explicit cast. There are two scenarios for which you might want to
do this: when calling explicitly implemented interface members and when calling
interface members implemented in a type internal to another assembly. We can
illustrate the former with the following two types:

interface IFoo { voild Test(); }
class Foo : IFoo { void IFoo.Test() {} }

To call the Test method, we must cast to the IFoo interface. This is easy with static
typing:

IFoo f = new Foo(); // Implicit cast to interface
f.Test();

Now consider the situation with dynamic typing:

IFoo f = new Foo();

dynamic d = f;

d.Test(); // Exception thrown
The implicit cast shown in bold tells the compiler to bind subsequent member calls
on f to IFoo rather than Foo—in other words, to view that object through the lens
of the IFoo interface. However, that lens is lost at runtime, so the DLR cannot
complete the binding. The loss is illustrated as follows:

Console.WriteLine (f.GetType().Name); // Foo

A similar situation arises when calling a hidden base member: you must specify an
additional type via either a cast or the base keyword—and that additional type is
lost at runtime.

Should you need to invoke interface members dynamically, a
workaround is to use the Uncapsulator open source library,
available on NuGet and GitHub. Uncapsulator was written
by the author to address this problem, and leverages custom
binding to provide a better dynamic than dynamic:

IFoo f = new Foo();
dynamic uf = f.Uncapsulate();
uf.Test();

Uncapsulator also lets you cast to base types and interfaces by
name, dynamically call static members, and access nonpublic
members of a type.

Operator Overloading

You can overload operators to provide more natural syntax for custom types. Oper-
ator overloading is most appropriately used for implementing custom structs that
represent fairly primitive data types. For example, a custom numeric type is an
excellent candidate for operator overloading.

Operator Overloading | 239

>
Q
<
)
3
o
(1]
Q
0
#®

The following symbolic operators can be overloaded:

+(unary) - (unary) ! T ++
- + - %
% & |~ <<
>> == = > <
>= <=

The following operators are also overloadable:

o Implicit and explicit conversions (with the implicit and explicit keywords)

o The true and false operators (not literals)
The following operators are indirectly overloaded:

o The compound assignment operators (e.g., +=, /=) are implicitly overridden by
overriding the noncompound operators (e.g., +, /).

o The conditional operators && and || are implicitly overridden by overriding
the bitwise operators & and |.

Operator Functions

You overload an operator by declaring an operator function. An operator function
has the following rules:

o The name of the function is specified with the operator keyword followed by
an operator symbol.

« The operator function must be marked static and public.
o The parameters of the operator function represent the operands.
o The return type of an operator function represents the result of an expression.

o At least one of the operands must be the type in which the operator function is
declared.

In the following example, we define a struct called Note representing a musical note
and then overload the + operator:

public struct Note

{
int value;
public Note (int semitonesFromA) { value = semitonesFromA; }
public static Note operator + (Note x, int semitones)

{

return new Note (x.value + semitones);

240 | Chapter4: Advanced G

}
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Overloading an operator automatically overloads the corresponding compound

assignment operator. In our example, because we overrode +, we can use += too:
CSharp += 2;

Just as with methods and properties, C# allows operator functions comprising a

single expression to be written more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
=> new Note (x.value + semitones);

Overloading Equality and Comparison Operators

Equality and comparison operators are sometimes overridden when writing structs,
and in rare cases when writing classes. Special rules and obligations come with
overloading the equality and comparison operators, which we explain in Chapter 6.
A summary of these rules is as follows:

Pairing
The C# compiler enforces operators that are logical pairs to both be defined.
These operators are (== !=), (< >), and (<= >=).

Equals and GetHashCode
In most cases, if you overload (==) and (!=), you must override the Equals and
GetHashCode methods defined on object to get meaningful behavior. The C#
compiler will give a warning if you do not do this. (See “Equality Comparison”
on page 324 for more details.)

IComparable and IComparable<T>
If you overload (< >) and (<= >=), you should implement IComparable and
IComparable<Ts.

Custom Implicit and Explicit Conversions

Implicit and explicit conversions are overloadable operators. These conversions are
typically overloaded to make converting between strongly related types (such as
numeric types) concise and natural.

To convert between weakly related types, the following strategies are more suitable:

 Write a constructor that has a parameter of the type to convert from.

o Write ToXXX and (static) FromXXX methods to convert between types.

Operator Overloading | 241

>
Qo
<
)
3
o
(1]
Q
0
#®

As explained in the discussion on types, the rationale behind implicit conversions is
that they are guaranteed to succeed and not lose information during the conversion.
Conversely, an explicit conversion should be required either when runtime circum-
stances will determine whether the conversion will succeed or if information might
be lost during the conversion.

In this example, we define conversions between our musical Note type and a double
(which represents the frequency in hertz of that note):

// Convert to hertz
public static implicit operator double (Note x)
=> 440 * Math.Pow (2, (double) x.value / 12);

// Convert from hertz (accurate to the nearest semitone)
public static explicit operator Note (double x)
=> new Note ((int) (0.5 + 12 * (Math.Log (x/440) / Math.Log(2))));

Note n

= (Note)554.37; // explicit conversion
double x =

n; // implicit conversion

Following our own guidelines, this example might be better
implemented with a ToFrequency method (and a static From
Frequency method) instead of implicit and explicit operators.

Custom conversions are ignored by the as and is operators:

Console.WriteLine (554.37 is Note); /| False
Note n = 554.37 as Note; /| Error

Overloading true and false

The true and false operators are overloaded in the extremely rare case of types
that are Boolean “in spirit” but do not have a conversion to bool. An example is a
type that implements three-state logic: by overloading true and false, such a type
can work seamlessly with conditional statements and operators—namely, if, do,
while, for, &&, | |, and ?:. The System.Data.SqlTypes.SqlBoolean struct provides
this functionality:

SqlBoolean a = SqlBoolean.Null;

if (a)
Console.WriteLine ("True");
else if (!a)
Console.WriteLine ("False");
else

Console.WriteLine ("Null");

OUTPUT:
Null

The following code is a reimplementation of the parts of SqlBoolean necessary to
demonstrate the true and false operators:

242 | Chapter4: Advanced G

public struct SqlBoolean
{

public static bool operator true (SqlBoolean x)
=> x.m_value == True.m_value;

public static bool operator false (SqlBoolean x)
=> x.m_value == False.m_value;

public static SqlBoolean operator ! (SqlBoolean x)

{
if (x.m_value == Null.m_value) return Null;
if (x.m_value == False.m_value) return True;
return False;

}

public static readonly SqlBoolean Null = new SqlBoolean(0);
public static readonly SqlBoolean False = new SqlBoolean(1);
public static readonly SqlBoolean True = new SqlBoolean(2);

private SqlBoolean (byte value) { m_value = value; }
private byte m_value;

}

Unsafe Code and Pointers

C# supports direct memory manipulation via pointers within blocks of code
marked unsafe and compiled with the /unsafe compiler option. Pointer types are
primarily useful for interoperability with C APIs, but you also can use them for
accessing memory outside the managed heap or for performance-critical hotspots.

Pointer Basics

For every value type or reference type V, there is a corresponding pointer type V*. A
pointer instance holds the address of a variable. Pointer types can be (unsafely) cast
to any other pointer type. Following are the main pointer operators:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable.
* The dereference operator returns the variable at the address of a pointer.
-> The pointer-to-member operator is a syntactic shortcut, in which x - >y is equivalent to (*x) . y.

In keeping with C, adding (or subtracting) an integer offset to a pointer generates
another pointer. Subtracting one pointer from another generates a 64-bit integer
(on both 64-bit and 32-bit platforms).

Unsafe Code

By marking a type, type member, or statement block with the unsafe keyword,
youre permitted to use pointer types and perform C style pointer operations on

Unsafe Code and Pointers | 243

>
Q
<
)
3
o
[0]
Q
0
#*

memory within that scope. Here is an example of using pointers to quickly process a
bitmap:

unsafe voild BlueFilter (int[,] bitmap)

{
int length = bitmap.Length;
fixed (int* b = bitmap)

{
int* p = b;
for (int 1 = 0; 1 < length; i++)
*p++ &= OXFF;
}

}

Unsafe code can run faster than a corresponding safe implementation. In this case,
the code would have required a nested loop with array indexing and bounds check-
ing. An unsafe C# method can also be faster than calling an external C function
given that there is no overhead associated with leaving the managed execution
environment.

The fixed Statement

The fixed statement is required to pin a managed object, such as the bitmap in the
previous example. During the execution of a program, many objects are allocated
and deallocated from the heap. To avoid unnecessary waste or fragmentation of
memory, the garbage collector moves objects around. Pointing to an object is futile
if its address could change while referencing it, so the fixed statement tells the
garbage collector to “pin” the object and not move it around. This can have an
impact on the efficiency of the runtime, so you should use fixed blocks only briefly,
and you should avoid heap allocation within the fixed block.

Within a fixed statement, you can get a pointer to any value type, an array of value
types, or a string. In the case of arrays and strings, the pointer will actually point to
the first element, which is a value type.

Value types declared inline within reference types require the reference type to be
pinned, as follows:

Test test = new Test();

unsafe
{
fixed (int* p = &test.X) // Pins test
{
*p = 9;
}
Console.WriteLine (test.X);
}

class Test { public int X; }

We describe the fixed statement further in “Mapping a Struct to Unmanaged
Memory” on page 973.

244 | Chapter 4: Advanced G#

The Pointer-to-Member Operator

In addition to the & and * operators, C# also provides the C++ style -> operator,
which you can use on structs:

Test test = new Test();
unsafe

{
Test* p = &test;
p->X = 9;
System.Console.WriteLine (test.X);

}

struct Test { public int X; }

The stackalloc Keyword

You can allocate memory in a block on the stack explicitly by using the stackalloc
keyword. Because it is allocated on the stack, its lifetime is limited to the execution
of the method, just as with any other local variable (whose life hasn't been extended
by virtue of being captured by a lambda expression, iterator block, or asynchronous
function). The block can use the [] operator to index into memory:

int* a = stackalloc int [10];
for (int 1 = 0; 1 < 10; ++1)
Console.WriteLine (a[i]);
In Chapter 23, we describe how you can use Span<T> to manage stack-allocated
memory without using the unsafe keyword:

Span<int> a = stackalloc int [10];
for (int 1 = 0; 1 < 10; ++1)
Console.WriteLine (a[i]);

Fixed-Size Buffers

The fixed keyword has another use, which is to create fixed-size buffers within
structs (this can be useful when calling an unmanaged function; see Chapter 24):

new UnsafeClass ("Christian Troy");

unsafe struct UnsafeUnicodeString

{
public short Length;
public fixed byte Buffer[30]; // Allocate block of 30 bytes

}

unsafe class UnsafeClass

{

UnsafeUnicodeString uus;

public UnsafeClass (string s)

{
uus.Length = (short)s.Length;

Unsafe Code and Pointers | 245

>
Q
<
)
3
o
[0]
Q
0
#*

fixed (byte* p = uus.Buffer)
for (int 1 = 0; 1 < s.Length; i++)
p[i] = (byte) s[il;
}
}

Fixed-size buffers are not arrays: if Buffer were an array, it would consist of a
reference to an object stored on the (managed) heap, rather than 30 bytes within the
struct itself.

The fixed keyword is also used in this example to pin the object on the heap
that contains the buffer (which will be the instance of UnsafeClass). Hence, fixed
means two different things: fixed in size and fixed in place. The two are often used
together, in that a fixed-size buffer must be fixed in place to be used.

void*

A void pointer (void*) makes no assumptions about the type of the underlying data
and is useful for functions that deal with raw memory. An implicit conversion exists
from any pointer type to void*. A void* cannot be dereferenced, and arithmetic
operations cannot be performed on void pointers. Here’s an example:

short[] a={1,1, 2, 3, 5, 8, 13, 21, 34, 55 };
unsafe
{
fixed (short* p = a)
{
//sizeof returns size of value-type in bytes
Zap (p, a.Length * sizeof (short));
}
}
foreach (short x in a)
System.Console.WriteLine (x); // Prints all zeros

unsafe void Zap (void* memory, int byteCount)

{
byte* b = (byte*)memory;
for (int 1 = 0; 1 < byteCount; i++)
*b++ = 0;

}
Native-Sized Integers

The nint and nuint native-sized integer types (introduced in C# 9) are sized to
match the address space of the process at runtime (in practice, 32 or 64 bits).
Native-sized integers can improve efficiency, overflow safety, and convenience when
performing pointer arithmetic.

The gain in efficiency arises because when you subtract two pointers in C#, the
result is always a 64-bit integer (long), which is inefficient on 32-bit platforms. By
first casting the pointers to nint, the result of a subtraction is also nint (which will
be 32 bits on a 32-bit platform):

246 | Chapter4: Advanced G

unsafe nint AddressDif (char* x, char* y) => (nint)x - (nint)y;

The gain in overflow safety and convenience arises when you need a type to repre-
sent an offset in memory or a buffer length. This is because the historical alternative
to using nint/nuint has been to repurpose System.IntPtr and System.UIntPtr,
types whose intended purpose is to wrap operating system handles or address
pointers, allowing interop outside an unsafe context. Although they are natively
sized, these types have limited support for arithmetic—and the support they have is
always unchecked (so overflows fail silently).

In contrast, native-sized integers behave much like standard integers, with full
support for arithmetic operations and overflow checking:

nint x = 123, y = 234;
checked
{

nint sum = x + y, product = x * y;
Console.WriteLine (product);

}

Native-sized integers can be assigned 32-bit integer constants (but not 64-bit integer
constants, because these might overflow at runtime). You can use an explicit cast to
convert to or from other integral types.

At runtime, nint and nuint map to the IntPtr and UIntPtr structs, so you can
convert between them without casting (an identity conversion):

nint x = 123;
IntPtr p = x;
nint y = p;

For reasons described previously, nint/nuint are not merely shortcuts for IntPtr/
UIntPtr, despite their runtime equivalence. Specifically, the compiler treats a vari-
able of type nint/nuint as a numeric type, allowing you to perform arithmetic
operations not implemented by IntPtr and UIntPtr (and with checked blocks
honored).

A nint/nuint variable is like an IntPtr/UIntPtr wearing a
special hat. This hat is recognized by the compiler to mean
“please treat me as a safe numeric type”

This multi-hat behavior is unique to native-sized integers. For
example, int acts as a pure synonym for System.Int32, and
the two can be freely interchanged.

This nonequivalence means that both constructs are useful:

« nint/nuint are useful for representing a memory offset or buffer length.

o INntPtr/UIntPtr are useful for wrapping handles and pointers for interop.

Using the types in this manner also correctly signals your intention.

Unsafe Code and Pointers | 247

>
Q
<
)
3
o
(1]
Q
0
#®

A good example of the real-world use of nint and nuint is
in the implementation of Buffer.MemoryCopy. You can see
this in the .NET source code for Buffer.cs on GitHub or by
decompiling the method in ILSpy. A simplified version has
also been included in the LINQPad samples for C# 10 in a
Nutshell.

Function Pointers

A function pointer (from C# 9) is like a delegate, but without the indirection of a
delegate instance; instead, it points directly to a method. A function pointer can
point only to static methods, lacks multicast capability, and requires an unsafe con-
text (because it bypasses runtime type safety). Its main purpose is to simplify and
optimize interop with unmanaged APIs (see “Callbacks from Unmanaged Code” on
page 967).

A function pointer type is declared as follows (with the return type appearing last):
delegate*<int, char, string, void> // (void refers to the return type)
This matches a function with this signature:
void SomeFunction (int x, char y, string z)

The & operator creates a function pointer from a method group. Here’s a complete
example:

unsafe

{
delegate*<string, int> functionPointer = &GetLength;
int length = functionPointer ("Hello, world");

static int GetLength (string s) => s.Length;
}

In this example, functionPointer is not an object upon which you can call a
method such as Invoke (or with a reference to a Target object). Instead, it’s a
variable that points directly to the target method’s address in memory:

Console.WriteLine ((IntPtr)functionPointer);

Like any other pointer, it’s not subject to runtime type checking. The following
treats our functions return value as a decimal (which, being longer than an int,
means that we incorporate some random memory into the output):

var pointer2 = (delegate*<string, decimal>) (IntPtr) functionPointer;
Console.WriteLine (pointer2 ("Hello, unsafe world"));

[SkipLocalsInit]

When C# compiles a method, it emits a flag that instructs the runtime to initial-
ize the method’s local variables to their default values (by zeroing the memory).
From C# 9, you can ask the compiler not to emit this flag by applying the

248 | Chapter 4: Advanced G#

[SkipLocalInit] attribute to a method (in the System.Runtime.CompilerServices
namespace):

[SkipLocalsInit]
void Foo() ...

You can also apply this attribute to a type—which is equivalent to applying it to all
of the type’s methods—or even an entire module (the container for an assembly):

[module: System.Runtime.CompilerServices.SkipLocalsInit]

In normal safe scenarios, [SkipLocalsInit] has little effect on functionality or
performance, because C#’s definite assignment policy requires that you explicitly
assign local variables before they can be read. This means that the JIT optimizer is
likely to emit the same machine code, whether or not the attribute is applied.

In an unsafe context, however, use of [SkipLocalsInit] can usefully save the
CLR from the overhead of initializing value-typed local variables, creating a small
performance gain with methods that make extensive use of the stack (through
a large stackalloc). The following example prints uninitialized memory when
[SkipLocalsInit] is applied (instead of all zeros):

[SkipLocalsInit]
unsafe void Foo()

{
int local;
int* ptr = &local;
Console.WriteLine (*ptr);

int* a = stackalloc int [100];
for (int 1 = 0; 1 < 100; ++i) Console.WriteLine (a [i]);
3
Interestingly, you can achieve the same result in a “safe” context through the use of
Span<T>:

[SkipLocalsInit]
void Foo()

{
Span<int> a = stackalloc int [100];
for (int 1 = 0; 1 < 100; ++1) Console.WriteLine (a [1]);

}

Consequently, use of [SkipLocalsInit] requires that you compile your assembly
with the unsafe option—even if none of your methods are marked as unsafe.

Preprocessor Directives

Preprocessor directives supply the compiler with additional information about
regions of code. The most common preprocessor directives are the conditional
directives, which provide a way to include or exclude regions of code from
compilation:

Preprocessor Directives | 249

>
Q
<
)
3
o
(1]
Q
0
#®

#define DEBUG
class MyClass
{

int x;
voild Foo()

{
#if DEBUG

Console.WriteLine ("Testing: x = {0}", Xx);
#endif
}

}...

In this class, the statement in Foo is compiled as conditionally dependent upon the
presence of the DEBUG symbol. If we remove the DEBUG symbol, the statement is not
compiled. You can define preprocessor symbols within a source file (as we have
done) or at a project level in the .csproj file:

<PropertyGroup>
<DefineConstants>DEBUG; ANOTHERSYMBOL</DefineConstants>
</PropertyGroup>

With the #if and #elif directives, you can use the ||, &, and ! operators to
perform or, and, and not operations on multiple symbols. The following directive

instructs the compiler to include the code that follows if the TESTMODE symbol is
defined and the DEBUG symbol is not defined:

#1f TESTMODE && !DEBUG

Keep in mind, however, that you're not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

The #error and #warning symbols prevent accidental misuse of conditional direc-
tives by making the compiler generate a warning or error given an undesirable set of
compilation symbols. Table 4-1 lists the preprocessor directives.

Table 4-1. Preprocessor directives

#define symbol Defines symbol

#undef symbol Undefines symbol

#1f symbol symbol to test

[operator symbol?2]...
operatorsare ==, ! =, &8, and | |, followed by #else,
#elif, and #endif

#else Executes code to subsequent #endif

#elif symbol Combines #else branch and #1f test

[operator symbol2]

250 | Chapter4: Advanced G#

#endif Ends conditional directives

#warning text text of the warning to appear in compiler output
#error text text of the error to appear in compiler output

#error version Reports the compiler version and exits

#pragma warning Disables/restores compiler warning(s)

[disable | restore]

#line [number ["file"] | number specifies the line in source code (a column can also
hidden] be specified from C# 10); f1i Le s the filename to appear in

computer output; hidden instructs debuggers to skip over
code from this point until the next #1ine directive

#region name Marks the beginning of an outline
#endregion Ends an outline region
#nullable option See “Nullable reference types” on page 16

Conditional Attributes

An attribute decorated with the Conditional attribute will be compiled only if a
given preprocessor symbol is present:

/] filel.cs

#define DEBUG

using System;

using System.Diagnostics;
[Conditional("DEBUG")]

public class TestAttribute : Attribute {}

/] file2.cs
#define DEBUG
[Test]

class Foo

{
[Test]
string s;
3
The compiler will incorporate the [Test] attributes only if the DEBUG symbol is in
scope for file2.cs.

Pragma Warning

The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don’t ordinarily prevent your application
from compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness,
however, is undermined when you get false warnings. In a large application,

Preprocessor Directives | 251

>
Q
<
)
3
o
[0]
Q
0
#*

maintaining a good signal-to-noise ratio is essential if the “real” warnings are to
be noticed.

To this effect, the compiler allows you to selectively suppress warnings by using the
#pragma warning directive. In this example, we instruct the compiler not to warn us
about the field Message not being used:

public class Foo

{
static void Main() { }

#pragma warning disable 414
static string Message = "Hello";
#pragma warning restore 414

3

Omitting the number in the #pragma warning directive disables or restores all
warning codes.

If you are thorough in applying this directive, you can compile with the /warnaser
ror switch—this instructs the compiler to treat any residual warnings as errors.

XML Documentation

A documentation comment is a piece of embedded XML that documents a type or
member. A documentation comment comes immediately before a type or member
declaration and starts with three slashes:

//] <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done like this:

/// <summary>
/// Cancels a running query

//] </summary>
public void Cancel() { ... }

Or like this (notice the extra star at the start):

/**

<summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }

If you add the following option to your .csproj file

<PropertyGroup>
<DocumentationFile>SomeFile.xml</DocumentationFile>
</PropertyGroup>
the compiler extracts and collates documentation comments into the specified XML
file. This has two main uses:

252 | Chapter 4: Advanced G#

o If placed in the same folder as the compiled assembly, tools such as Visual
Studio and LINQPad automatically read the XML file and use the information
to provide IntelliSense member listings to consumers of the assembly of the
same name.

o Third-party tools (such as Sandcastle and NDoc) can transform the XML file
into an HTML help file.

Standard XML Documentation Tags

Here are the standard XML tags that Visual Studio and documentation generators
recognize:

<summary>
<summary>...</summary>
Indicates the tool tip that IntelliSense should display for the type or member,
typically a single phrase or sentence.
<remarks>
<remarks>...</remarks>
Additional text that describes the type or member. Documentation generators
pick this up and merge it into the bulk of a type’s or member’s description.
<param>
<param name="name">...</param>
Explains a parameter on a method.
<returns>
<returns>...</returns>
Explains the return value for a method.
<exception>
<exception [cref="type"]>...</exception>
Lists an exception that a method can throw (cref refers to the exception type).
<example>
<example>...</example>

Denotes an example (used by documentation generators). This usually contains
both description text and source code (source code is typically within a <c> or
<code> tag).

<Cc>
<c>...</c>

Indicates an inline code snippet. This tag is usually used within an <example>

block.

XML Documentation | 253

>
o
<
)
3
o
o
Q
(2]
#*

<code>
<code>...</code>

Indicates a multiline code sample. This tag is usually used within an <example>
block.

<see>
<see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML documen-
tation generators typically convert this to a hyperlink. The compiler emits a
warning if the type or member name is invalid. To refer to generic types, use
curly braces; for example, cref="Foo{T,U}".

<seealso>
<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typically
write this into a separate “See Also” section at the bottom of the page.

<paramref>
<paramref name="npame" />

References a parameter from within a <summary> or <remarks> tag.

<list>

<list type=[bullet | number | table]>
<listheader>
<term>...</term>
<description>...</description>
</listheader>
<item>
<term>...</term>
<description>...</description>
</item>
</list>

Instructs documentation generators to emit a bulleted, numbered, or table-
style list.

<para>
<para>...</para>
Instructs documentation generators to format the contents into a separate
paragraph.
<include>
<include file='filename' path='tagpath[@name="1d"]'>...</include>

Merges an external XML file that contains documentation. The path attribute
denotes an XPath query to a specific element in that file.

254 | Chapter 4: Advanced G#

User-Defined Tags

Little is special about the predefined XML tags recognized by the C# compiler,
and you are free to define your own. The only special processing done by the
compiler is on the <param> tag (in which it verifies the parameter name and that all
the parameters on the method are documented) and the cref attribute (in which
it verifies that the attribute refers to a real type or member and expands it to a
fully qualified type or member ID). You can also use the cref attribute in your
own tags; it is verified and expanded just as it is in the predefined <exception>,
<permission>, <see>, and <seealso> tags.

Type or Member Cross-References

Type names and type or member cross-references are translated into IDs that
uniquely define the type or member. These names are composed of a prefix that
defines what the ID represents and a signature of the type or member. Following are
the member prefixes:

XML type prefix 1D prefixes applied to...

Namespace

Type (class, struct, enum, interface, delegate)
Field

Property (includes indexers)

Method (includes special methods)

m =X © mMm - =

Event

! Error

The rules describing how the signatures are generated are well documented,
although fairly complex.

Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS

{
//] T:NS.MyClass
class MyClass

{
/// F:NS.MyClass.aField
string aField;

/// P:NS.MyClass.aProperty
short aProperty {get {...} set {...}}

/// T:NS.MyClass.NestedType
class NestedType {...};

/// M:NS.MyClass.X()

XML Documentation | 255

>
Q
<
)
3
o
[0]
Q
0
#*

void X() {...}

/// M:NS.MyClass.Y(System.Int32,System.Double@,System.Decimal@)
void Y(int p1, ref double p2, out decimal p3) {...}

/// M:NS.MyClass.Z(System.Char[],System.Single[0:,0:])
void Z(char[] p1, float[,] p2) {...}

/// M:NS.MyClass.op_Addition(NS.MyClass,NS.MyClass)
public static MyClass operator+(MyClass cl, MyClass c2) {...}

/// M:NS.MyClass.op_Implicit(NS.MyClass) System.Int32
public static implicit operator int(MyClass c) {...}

/// M:NS.MyClass.#ctor
MyClass() {...}

/// M:NS.MyClass.Finalize
“MyClass() {...}

/// M:NS.MyClass.#cctor
static MyClass() {...}

256

Chapter 4: Advanced C#

.NET Overview

Almost all of the capabilities of the NET 6 runtime are exposed via a vast set
of managed types. These types are organized into hierarchical namespaces and
packaged into a set of assemblies.

Some of the .NET types are used directly by the CLR and are essential for the
managed hosting environment. These types reside in an assembly called System.Pri-
vate.CoreLib.dll and include C#’s built-in types as well as the basic collection classes,
and types for stream processing, serialization, reflection, threading, and native
interoperability.

System.Private.CoreLib.dll replaces NET FrameworK’s mscor-
lib.dll. Many places in the official documentation still refer to
mscorlib.

At a level above this are additional types that “flesh out” the CLR-level functional-
ity, providing features such as XML, JSON, networking, and Language-Integrated
Query. These constitute the Base Class Library (BCL). Sitting above this are applica-
tion layers, which provide APIs for developing particular kinds of applications such
as web or rich client.

In this chapter, we provide the following:

o An overview of the BCL (which we cover in the rest of the book)

o A high-level summary of the application layers

257

What's New in .NET 6

In .NET 6, the Base Class Library has numerous new features. In particular:

New DateOnly/TimeOnly structs cleanly capture a date or time for scenarios
such as recording a birthday or alarm time (see “DateOnly and TimeOnly” on
page 292).

A new BitOperations static class provides access to low-level base-2 numeric
operations (see “BitOperations” on page 320).

The following new LINQ methods have been added: Chunk, DistinctBy,
UnionBy, IntersectBy, ExceptBy, MinBy, and MaxBy (see Chapter 9). Take also
now accepts a Range variable.

The new JsonNode API provides a fluent writable DOM whose types don’t
require disposal (see “JsonNode” on page 551. Utf8JsonWriter also now has a
WriteRawValue method.

The new RandomAccess class provides performant thread-safe file I/O
operations.

The new NullabilityInfoContext class in System.Reflection queries nullabil-
ity annotations (see “NullabilityContextInfo” on page 794).

The RandomNumberGenerator class in System.Security.Cryptography now has
a static GetBytes(int) method that returns an array of random bytes in one
operation. There are also new methods to simplify encryption and decryption
(see “Encrypting in Memory” on page 856).

A new ForEachAsync method on the Parallel class limits asynchronous con-
currency (see “Parallel.ForEachAsync” on page 882). Task also now has a
WaitAsync method, which applies a timeout to any asynchronous operation,
and there’s a new timer designed to work with await (see “PeriodicTimer” on
page 902).

The new NativeMemory class provides a lightweight wrapper around low-level
memory allocation operations such as malloc.

.NET 6 also features numerous performance improvements to the runtime and
enhanced support for Windows ARM64 and Apple M1/M2 processors.

In the application layers, the biggest change is in the introduction of MAUI (Multi-
platform App Ul, early 2022), which replaces Xamarin for cross-platform mobile
development. MAUI also supports cross-platform desktop application development
for macOS and Windows, and targets a unified .NET 6 CLR/BCL. UWP also has a
successor, Windows App SDK (with WinUI 3 as its presentation layer), and a new
technology has emerged called Blazor Desktop for writing HTML-based desktop
and mobile applications.

258

Chapter 5: .NET Overview

.NET Standard

The wealth of public libraries that are available on NuGet wouldn’t be as valuable if
they supported only .NET 6. When writing a library, you'll often want to support a
variety of platforms and runtime versions. To achieve that goal without creating a
separate build for each runtime, you must target the lowest common denominator.
This is relatively easy if you wish to support only .NET 6s direct predecessors: for
example, if you target .NET Core 3.0, your library will run on .NET Core 3.0, NET
Core 3.1, and .NET 5+.

The situation becomes messier if you also want to support .NET Framework or
Xamarin. This is because each of these runtimes has a CLR and BCL with overlap-
ping features—no one runtime is a pure subset of the others.

.NET Standard solves this problem by defining artificial subsets that work across an
entire range of legacy runtimes. By targeting .NET Standard, you can easily write
libraries with extensive reach.

NET Standard is not a runtime; its merely a specification
describing a minimum baseline of functionality (types and
members) that guarantees compatibility with a certain set of
runtimes. The concept is similar to C# interfaces: .NET Stan-
dard is like an interface that concrete types (runtimes) can
implement.

.NET Standard 2.0

The most useful version is .NET Standard 2.0. A library that targets NET Standard
2.0 instead of a specific runtime will run without modification on most modern and
legacy runtimes that are still in use today, including:

o
3z
<m
-
2

o .NET Core 2.0+ (including .NET 5 and .NET 6)

« UWP 10.0.16299+

o Mono 5.4+ (the CLR/BCL used by older versions of Xamarin)
o .NET Framework 4.6.1+

To target NET Standard 2.0, add the following to your .csproj file:

<PropertyGroup>
<TargetFramework>netstandard2.0</TargetFramework>
<PropertyGroup>

Most of the APIs described in this book are supported by .NET Standard 2.0.

.NETStandard | 259

.NET Standard 2.1

NET Standard 2.1 is a superset of .NET Standard 2.0 that supports (only) the
following platforms:

o NET Core 3+
e Mono 6.4+

.NET Standard 2.1 is not supported by any version of NET Framework (and not
even by UWP), making it much less useful than .NET Standard 2.0.

The following APIs, in particular, are available in NET Standard 2.1 (but not .NET
Standard 2.0):

o Span<T> (Chapter 23)
o Reflection.Emit (Chapter 18)
o ValueTask<T> (Chapter 14)

Older .NET Standards

There are also older .NET Standards, most notably 1.1, 1.2, 1.3, and 1.6. A higher-
numbered standard is always a strict superset of a lower-numbered standard. For
instance, if you write a library that targets NET Standard 1.6, you will support
not only recent versions of the major runtimes but also .NET Core 1.0. And if
you target NET Standard 1.3, you support everything we've already mentioned
plus .NET Framework 4.6.0. The table that follows elaborates:

If you target... You also support...

Standard 1.6 .NET Core 1.0

Standard 1.3 Above plus .NET 4.6.0

Standard 1.2 Above plus .NET 4.5.1, Windows Phone 8.1, WinRT for Windows 8.1
Standard 1.1 Above plus .NET 4.5.0, Windows Phone 8.0, WinRT for Windows 8.0

The 1.x standards lack thousands of APIs that are present in

‘ 2.0, including much of what we describe in this book. This can

' make targeting a 1.x standard significantly more challenging,
especially if you need to integrate existing code or libraries.

You can also think of NET Standard as a lowest common denominator. In the case
of NET Standard 2.0, the runtimes that implement it have a similar BCL, so the
lowest common denominator is big and useful. However, if you also want compati-
bility with .NET Core 1.0 (with its significantly cut-down BCL), the lowest common
denominator—.NET Standard 1.x—becomes much smaller and less useful.

260 | Chapter5:.NET Overview

.NET Framework and .NET 6 Compatibility

Because .NET Framework has existed for so long, it’s not uncommon to encounter
libraries that are available only for NET Framework (with no .NET Standard, .NET
Core, or .NET 6 equivalent). To help mitigate this situation, .NET 5+ and .NET
Core projects are permitted to reference NET Framework assemblies, with the
following provisos:

« An exception is thrown should the .NET Framework assembly call an API
that’s unsupported.

« Nontrivial dependencies might (and often do) fail to resolve.

In practice, it's most likely to work in simple cases, such as an assembly that wraps
an unmanaged DLL.

Runtime and (# Language Versions

By default, your project’s runtime version determines which C# language version is
used:

o For .NET 6, it’s C# 10.
o For NET 5, its C# 9.
o For NET Core 3.x, Xamarin, and .NET Standard 2.1, it’s C# 8.

o For .NET Core 2.x, NET Framework, and .NET Standard 2.0 and below, it’s
C#7.3.

This is because later versions of C# rely on types that are available only in later
runtimes.

You can override the language version in your project file with the <LangVersion>
element. Using an older runtime (such as .NET 5) with a later language version
(such as C# 10) means that the language features that rely on newer .NET types will
not work (although in some cases, you can define those types yourself).

Reference Assemblies

When you target .NET Standard, your project implicitly references an assembly
called netstandard.dll, which contains all of the allowable types and members for
your chosen version of .NET Standard. This is called a reference assembly because
it exists only for the benefit of the compiler and contains no compiled code. At
runtime, the “real” assemblies are identified through assembly redirection attributes
(the choice of assemblies will depend on which runtime and platform the assembly
eventually runs on).

Interestingly, a similar thing happens when you target NET 6. Your project implic-
itly references a set of reference assemblies whose types mirror what’s in the

Runtime and G# Language Versions | 261

o
<
o
s
o
g

13N°

runtime assemblies for the chosen .NET version. This helps with versioning and
cross-platform compatibility, and also allows you to target a different NET version
than what is installed on your machine.

The CLR and BCL
System Types

The most fundamental types live directly in the System namespace. These include
C#s built-in types; the Exception base class; the Enum, Array, and Delegate base
classes; and Nullable, Type, DateTime, TimeSpan, and Guid. The System name-
space also includes types for performing mathematical functions (Math), generating
random numbers (Random), and converting between various types (Convert and
BitConverter).

Chapter 6 describes these types as well as the interfaces that define standard pro-
tocols used across .NET for such tasks as formatting (IFormattable) and order
comparison (IComparable).

The System namespace also defines the IDisposable interface and the GC class for
interacting with the garbage collector, which we cover in Chapter 12.

Text Processing

The System.Text namespace contains the StringBuilder class (the editable or
mutable cousin of string) and the types for working with text encodings, such as
UTF-8 (Encoding and its subtypes). We cover this in Chapter 6.

The System.Text.RegularExpressions namespace contains types that perform
advanced pattern-based search-and-replace operations; we describe these in
Chapter 25.

Collections

NET offers a variety of classes for managing collections of items. These include
both list- and dictionary-based structures; they work in conjunction with a set of
standard interfaces that unify their common characteristics. All collection types are
defined in the following namespaces, covered in Chapter 7:

System.Collections // Nongeneric collections
System.Collections.Generic /] Generic collections
System.Collections.Specialized /] Strongly typed collections
System.Collections.0ObjectModel // Bases for your own collections
System.Collections.Concurrent // Thread-safe collections (Chapter 22)

Querying

Language-Integrated Query (LINQ) allows you to perform type-safe queries over
local and remote collections (e.g., SQL Server tables) and is described in Chapters 8

262 | Chapter5:.NET Overview

through 10. A big advantage of LINQ is that it presents a consistent querying API
across a variety of domains. The essential types reside in the following namespaces:

System.Ling // LINQ to Objects and PLINQ
System.Ling.Expressions // For building expressions manually
System.Xml.Ling // LINQ to XML

XML and JSON

XML and JSON are widely supported in .NET. Chapter 10 focuses entirely on
LINQ to XML—a lightweight XML Document Object Model (DOM) that can be
constructed and queried through LINQ. Chapter 11 covers the performant low-level
XML reader/writer classes, XML schemas and stylesheets, and types for working
with JSON:

System.Xml // XmlReader, XmlWriter

System.Xml.Ling // The LINQ to XML DOM

System.Xml.Schema // Support for XSD

System.Xml.Serialization // Declarative XML serialization for .NET types
System.Xml.XPath // XPath query language

System.Xml.Xsl // Stylesheet support

System.Text.Json // JISON reader/writer and DOM

In the online supplement at http://www.albahari.com/nutshell, we cover the JSON
serializer.

Diagnostics

In Chapter 13, we cover logging and assertion and describe how to interact with
other processes, write to the Windows event log, and handle performance monitor-
ing. The types for this are defined in and under System.Diagnostics.

Concurrency and Asynchrony

Many modern applications need to deal with more than one thing happening at
a time. Since C# 5.0, this has become easier through asynchronous functions and
high-level constructs such as tasks and task combinators. Chapter 14 explains all
of this in detail, after starting with the basics of multithreading. Types for work-
ing with threads and asynchronous operations are in the System.Threading and
System.Threading.Tasks namespaces.

Streams and Input/Output

.NET provides a stream-based model for low-level input/output (I/O). Streams are
typically used to read and write directly to files and network connections, and can
be chained or wrapped in decorator streams to add compression or encryption
functionality. Chapter 15 describes the stream architecture as well as the specific
support for working with files and directories, compression, pipes, and memory-
mapped files. The Stream and I/O types are defined in and under the System.IO

The(LRandBCL | 263

o
<
o
s
)
g

13N°

http://www.albahari.com/nutshell

namespace, and the Windows Runtime (WinRT) types for file I/O are in and under
Windows.Storage.

Networking

You can directly access most standard network protocols such as HTTP, TCP/IP,
and SMTP via the types in System.Net. In Chapter 16, we demonstrate how to
communicate using each of these protocols, starting with simple tasks such as
downloading from a web page and finishing with using TCP/IP directly to retrieve
POP3 email. Here are the namespaces we cover:

System.Net

System.Net.Http // HttpClient
System.Net.Mail // For sending mail via SMTP
System.Net.Sockets // TCP, UDP, and IP

Assemblies, Reflection, and Attributes

The assemblies into which C# programs compile comprise executable instructions
(stored as IL) and metadata, which describes the program’s types, members, and
attributes. Through reflection, you can inspect this metadata at runtime and do such
things as dynamically invoke methods. With Reflection.Emit, you can construct
new code on the fly.

In Chapter 17, we describe the makeup of assemblies and how to dynamically load
and isolate them. In Chapter 18, we cover reflection and attributes—describing
how to inspect metadata, dynamically invoke functions, write custom attributes,
emit new types, and parse raw IL. The types for using reflection and working with
assemblies reside in the following namespaces:

System
System.Reflection
System.Reflection.Emit

Dynamic Programming

In Chapter 19, we look at some of the patterns for dynamic programming and uti-
lizing the Dynamic Language Runtime (DLR). We describe how to implement the
Visitor pattern, write custom dynamic objects, and interoperate with IronPython.
The types for dynamic programming are in System.Dynamic.

Cryptography
NET provides extensive support for popular hashing and encryption protocols.

In Chapter 20, we cover hashing, symmetric and public-key encryption, and the
Windows Data Protection API. The types for this are defined in:

System.Security
System.Security.Cryptography

264 | Chapter5:.NET Overview

Advanced Threading

C#’s asynchronous functions make concurrent programming significantly easier
because they lessen the need for lower-level techniques. However, there are still
times when you need signaling constructs, thread-local storage, reader/writer
locks, and so on. Chapter 21 explains this in depth. Threading types are in the
System.Threading namespace.

Parallel Programming

In Chapter 22, we cover in detail the libraries and types for leveraging multicore
processors, including APIs for task parallelism, imperative data parallelism, and
functional parallelism (PLINQ).

Span<T> and Memory<T>

To help with micro-optimizing performance hotspots, the CLR provides a number
of types to help you program in such a way as to reduce the load on the memory
manager. Two of the key types are Span<T> and Memory<T>, which we describe in
Chapter 23.

Native and COM Interoperability

You can interoperate with both native and Component Object Model (COM) code.
Native interoperability allows you to call functions in unmanaged DLLs, register
callbacks, map data structures, and interoperate with native data types. COM inter-
operability allows you to call COM types (on Windows machines) and expose .NET
types to COM. The types that support these functions are in System.Runtime.Inter
opServices, and we cover them in Chapter 24.

Regular Expressions

In Chapter 25, we cover how you can use regular expressions to match character
patterns in strings.

Serialization

NET provides several systems for saving and restoring objects to a binary or
text representation. Such systems can be used for communication as well as for
saving and restoring objects to a file. In the online supplement at http://www.alba-
hari.com/nutshell, we cover all four serialization engines: the binary serializer, the
(newly updated) JSON serializer, the XML serializer, and the data contract serializer.

TheC(LRandBCL | 265

o
<
o
s
o
2

13N°

http://www.albahari.com/nutshell
http://www.albahari.com/nutshell

The Roslyn Compiler

The C# compiler itself is written in C#—the project is called “Roslyn,” and the
libraries are available as NuGet packages. With these libraries, you can utilize the
compiler’s functionality in many ways besides compiling source code to an assem-
bly, such as writing code analysis and refactoring tools. We cover Roslyn in the
online supplement, at http://www.albahari.com/nutshell.

Application Layers

User interface (UI)-based applications can be divided into two categories: thin
client, which amounts to a website, and rich client, which is a program the end user
must download and install on a computer or mobile device.

For writing thin-client applications in C#, there’s ASPNET Core, which runs on
Windows, Linux, and macOS. ASPNET Core is also designed for writing web APIs.

For rich-client applications, there is a choice of APIs:

o The Windows Desktop layer includes the WPF and Windows Forms APIs, and
runs on Windows 7/8/10/11 desktop.

o UWP lets you write Windows Store apps that run on Windows 10+ desktop
and devices.

o WinUI 3 (Windows App SDK) is a recent successor to UWP that runs on
Windows 10+ desktop.

o MAUI (formerly Xamarin) runs on iOS and Android mobile devices. MAUI
also allows for cross-platform desktop applications that target macOS and
Windows.

There are also third-party libraries, such as Avalonia, which offer cross-platform UI
support.

ASP.NET Core

ASPNET Core is a lightweight modular successor to ASP.NET and is suitable for
creating web sites, REST-based web APIs, and microservices. It can also run in con-
junction with two popular single-page-application frameworks: React and Angular.

ASP.NET supports the popular Model-View-Controller (MVC) pattern, as well as a
newer technology called Blazor, where client-side code is written in C# instead of
JavaScript.

ASP.NET Core runs on Windows, Linux, and macOS and can self-host in a custom
process. Unlike its NET Framework predecessor (ASPNET), ASPNET Core is not
dependent on System.Web and the historical baggage of web forms.

266 | Chapter5:.NET Overview

http://www.albahari.com/nutshell

As with any thin-client architecture, ASPNET Core offers the following general
advantages over rich clients:

o There is zero deployment at the client end.

o The client can run on any platform that supports a web browser.

o Updates are easily deployed.

Windows Desktop

The Windows Desktop application layer offers a choice of two UI APIs for writing
rich-client applications: WPF and Windows Forms. Both APIs run on Windows
Desktop/Server 7 through 11.

WPF

WPF was introduced in 2006 and has been enhanced ever since. Unlike its prede-
cessor, Windows Forms, WPF explicitly renders controls using DirectX, with the
following benefits:

o It supports sophisticated graphics, such as arbitrary transformations, 3D ren-
dering, multimedia, and true transparency. Skinning is supported through
styles and templates.

o Its primary measurement unit is not pixel based, so applications display cor-
rectly at any DPI setting.

o It has extensive and flexible layout support, which means that you can localize
an application without danger of elements overlapping.

o Its use of DirectX makes rendering fast and able to take advantage of graphics
hardware acceleration.

o It offers reliable data binding.

o Uls can be described declaratively in XAML files that can be maintained
independent of the “code-behind” files—this helps to separate appearance from
functionality.

WPF takes some time to learn due to its size and complexity. The types for writing
WPF applications are in the System.Windows namespace and all subnamespaces
except for System.Windows.Forms.

Windows Forms

Windows Forms is a rich-client API that shipped with the first version of .NET
Framework in 2000. Compared to WPE, Windows Forms is a relatively simple tech-
nology that provides most of the features you need for writing a typical Windows
application. It also has significant relevancy in maintaining legacy applications. But

Application Layers | 267

o
<
o
s
o
2

13N°

compared to WPE, it has numerous drawbacks, most of which stem from it being a
wrapper over GDI+ and the Win32 control library:

o Although it provides mechanisms for DPI-awareness, it’s still too easy to
write applications that break on clients whose DPI settings differ from the
developer’s.

o The API for drawing nonstandard controls is GDI+, which, although reasona-
bly flexible, is slow in rendering large areas (and without double buffering,
might flicker).

« Controls lack true transparency.

o Most controls are noncompositional. For instance, you can’t put an image
control inside a tab control header. Customizing list views, combo boxes, and
tab controls in a way that would be trivial with WPF is time consuming and
painful in Windows Forms.

o Dynamic layout is difficult to correctly implement reliably.

The last point is an excellent reason to favor WPF over Windows Forms—even
if youre writing a business application that needs just a Ul and not a “user
experience” The layout elements in WPE, such as Grid, make it easy to assemble
labels and text boxes such that they always align—even after language-changing
localization—without messy logic and without any flickering. Further, you don’t
need to bow to the lowest common denominator in screen resolution—WPF layout
elements have been designed from the outset to adapt properly to resizing.

On the positive side, Windows Forms is relatively simple to learn and still has a
good number of third-party controls.

The Windows Forms types are in the System.Windows.Forms (in System.Win-
dows.Forms.dll) and System.Drawing (in System.Drawing.dll) namespaces. The lat-
ter also contains the GDI+ types for drawing custom controls.

UWP and WinUI 3

UWP is a rich-client API for writing touch-first Uls that target Windows 10+
desktop and devices. The word “Universal” refers to its ability to run on a range of
Windows 10 devices, including Xbox, Surface Hub, and HoloLens. However, it’s not
compatible with earlier versions of Windows, including Windows 7 and Windows
8/8.1.

The UWP API uses XAML and is somewhat similar to WPE Here are its key
differences:
o The primary mode of distribution for UWP apps is the Windows Store.

o UWP apps run in a sandbox to lessen the threat of malware, which means that
they cannot perform tasks such as reading or writing arbitrary files, and they
cannot run with administrative elevation.

268 | Chapter5:.NET Overview

o UWP relies on WinRT types that are part of the operating system (Windows),
not the managed runtime. This means that when writing apps, you must nomi-
nate a Windows version range (such as Windows 10 build 17763 to Windows 10
build 18362). This means that you either need to target an old API or require
that your customers install the latest Windows update.

Because of the limitations created by these differences, UWP never succeeded in
matching the popularity of WPF and Windows Forms. To address this, Microsoft
has introduced a new technology to supersede UWP called Windows App SDK
(with a Ul layer called WinUI 3).

The Windows App SDK transfers the WinRT APIs from the operating system to the
runtime, thereby exposing a fully managed interface and removing the necessity to
target a specific operating system version range. It also does the following:

o Integrates better with the Windows Desktop APIs (Windows Forms and WPF)
o Allows you to write applications that run outside the Windows Store sandbox

« Runs atop the latest .NET (instead of being tied to .NET Core 2.2, as is the case
with UWP)

The Windows App SDK, however, does not support Xbox or HoloLens at the time
of writing.

MAUI

MAUTI (early 2022) is the new incarnation of Xamarin, and lets you develop mobile
apps in C# that target iOS and Android (as well as cross-platform desktop apps that
target macOS and Windows).

The CLR/BCL that runs on iOS and Android is called Mono (a derivation of
the open-source Mono runtime). Historically, Mono hasn’t been fully compatible
with .NET, and libraries that ran on both Mono and .NET would target .NET Stan-
dard. With MAUI, Mono's public interface has merged with .NET 6, making Mono,
in effect, an implementation of NET 6.

Features new to MAUTI include a unified project interface, hot reloading, support for
Blazor Desktop and hybrid apps, and improved performance and startup times. See
https://github.com/dotnet/maui for more information.

Application Layers | 269

o
<
o
s
)
g

13N°

https://github.com/dotnet/maui

.NET Fundamentals

Many of the core facilities that you need when programming are provided not by
the C# language but by types in the NET BCL. In this chapter, we cover types that
help with fundamental programming tasks, such as virtual equality comparison,
order comparison, and type conversion. We also cover the basic .NET types, such as
String, DateTime, and Enum.

The types in this section reside in the System namespace, with the following
exceptions:

o StringBuilder is defined in System.Text, as are the types for text encodings.

o CultureInfo and associated types are defined in System.Globalizattion.

o XmlConvert is defined in System.Xml.

String and Text Handling
Char

A C# char represents a single Unicode character and aliases the System.Char struct.
In Chapter 2, we described how to express char literals:

char c = 'A';

char newLine = '\n';
System.Char defines a range of static methods for working with characters, such

as ToUpper, ToLower, and IsWhiteSpace. You can call these through either the
System.Char type or its char alias:

Console.WriteLine (System.Char.ToUpper ('c')); /] C
Console.WriteLine (char.IsWhiteSpace ('\t')); // True

ToUpper and ToLower honor the end user’s locale, which can lead to subtle bugs. The
following expression evaluates to false in Turkey:

27

char.ToUpper ('i') == 'L

The reason is because in Turkey, char.ToUpper ('i') is 'I' (notice the dot on
top!). To avoid this problem, System.Char (and System.String) also provides
culture-invariant versions of ToUpper and ToLower ending with the word Invariant.
These always apply English culture rules:

Console.WriteLine (char.ToUpperInvariant ('i')); /]I
This is a shortcut for:
Console.WriteLine (char.ToUpper ('i', CultureInfo.InvariantCulture))
For more on locales and culture, see “Formatting and Parsing” on page 297.
Most of char’s remaining static methods are related to categorizing characters.

Table 6-1 lists these.

Table 6-1. Static methods for categorizing characters

Static method Characters included Unicode categories included
IsLetter A-Z, a-z, and letters of other alphabets UpperCaseletter
LowerCaselLetter
TitleCaseletter
ModifierLetter
OtherLetter
IsUpper Uppercase letters UpperCaseletter
IsLower Lowercase letters LowerCaseLetter
IsDigit 0-9 plus digits of other alphabets DecimalDigitNumber
IsLetterOrDigit Letters plus digits (IsLetter, IsDigit)
IsNumber All digits plus Unicode fractions and Roman DecimalDigitNumber
numeral symbols LetterNumber
OtherNumber
IsSeparator Space plus all Unicode separator characters LineSeparator
ParagraphSeparator
IsWhiteSpace All separators plus \n, \r, \t, \f, and \v LineSeparator
ParagraphSeparator

IsPunctuation Symbols used for punctuation in Western and DashPunctuation
other alphabets ConnectorPunctuation
InitialQuotePunctuation
FinalQuotePunctuation

IsSymbol Most other printable symbols MathSymbol
ModifierSymbol
OtherSymbol
IsControl Nonprintable “control” characters below 0x20, ~ (None)

suchas \r, \n, \t, \0, and characters between
0x7F and 0x9A

272 | Chapter 6: .NET Fundamentals

For more granular categorization, char provides a static method called GetUnicode
Category; this returns a UnicodeCategory enumeration whose members are shown
in the rightmost column of Table 6-1.

By explicitly casting from an integer, it’s possible to produce
a char outside the allocated Unicode set. To test a charac-
ter’s validity, call char.GetUnicodeCategory: if the result is
UnicodeCategory.OtherNotAssigned, the character is invalid.

A char is 16 bits wide—enough to represent any Unicode character in the Basic
Multilingual Plane. To go beyond this, you must use surrogate pairs: we describe the
methods for doing this in “Text Encodings and Unicode” on page 281.

String

A C# string (== System.String) is an immutable (unchangeable) sequence of
characters. In Chapter 2, we described how to express string literals, perform equal-
ity comparisons, and concatenate two strings. This section covers the remaining
functions for working with strings, exposed through the static and instance mem-
bers of the System.String class.

Constructing strings
The simplest way to construct a string is to assign a literal, as we saw in Chapter 2:

string s1 = "Hello";
string s2 = "First Line\r\nSecond Line";
string s3 = @"\\server\fileshare\helloworld.cs";

To create a repeating sequence of characters, you can use string’s constructor:
Console.Write (new string ('*', 10)); [FEEEEEEER

You can also construct a string from a char array. The ToCharArray method does
the reverse:

char[] ca = "Hello".ToCharArray();
string s = new string (ca); /1's = "Hello®

string’s constructor is also overloaded to accept various (unsafe) pointer types, in
order to create strings from types such as char*.

Null and empty strings

An empty string has a length of zero. To create an empty string, you can use either
a literal or the static string.Empty field; to test for an empty string, you can either
perform an equality comparison or test its Length property:

string empty = "";

Console.WriteLine (empty == ""); // True
Console.WriteLine (empty == string.Empty); // True
Console.WriteLine (empty.Length == 0); // True

Stringand TextHandling | 273

m
c
S
Qo
o
3
(]
-]
-
o
0

Because strings are reference types, they can also be null:

string nullString = null;

Console.WriteLine (nullString == null); // True

Console.WriteLine (nullString == ""); // False
Console.WriteLine (nullString.Length == 0); // NullReferenceException

The static string.IsNullOrEmpty method is a useful shortcut for testing whether a
given string is either null or empty.

Accessing characters within a string

A string’s indexer returns a single character at the given index. As with all functions
that operate on strings, this is zero-indexed:

string str = "abcde";
char letter = str[1]; // letter == 'b'

string also implements IEnumerable<char>, so you can foreach over its
characters:

foreach (char c in "123") Console.Write (c + ","); /] 1,2,3,

Searching within strings

The simplest methods for searching within strings are StartsWith, EndsWith, and
Contains. These all return true or false:

Console.WriteLine ("quick brown fox".EndsWith ("fox")); /] True
Console.WriteLine ("quick brown fox".Contains ("brown")); /] True

StartsWith and EndsWith are overloaded to let you specify a StringComparison
enum or a CultureInfo object to control case and culture sensitivity (see “Ordinal
versus culture comparison” on page 278). The default is to perform a case-sensitive
match using rules applicable to the current (localized) culture. The following
instead performs a case-insensitive search using the invariant culture’s rules:

"abcdef".StartsWith ("aBc", StringComparison.InvariantCultureIgnoreCase)

The Contains method doesn’t offer the convenience of this overload, although you
can achieve the same result with the Index0f method.

IndexOf is more powerful: it returns the first position of a given character or
substring (or -1 if the substring isn’t found):

Console.WriteLine ("abcde".IndexOf ("cd")); /] 2

IndexOf is also overloaded to accept a startPosition (an index from which to
begin searching) as well as a StringComparison enum:

Console.WriteLine ("abcde abcde".IndexOf ("CD", 6,
StringComparison.CurrentCultureIgnoreCase)); // 8

274 | Chapter 6: .NET Fundamentals

LastIndexOf is like IndexOf, but it works backward through the string.
IndexOfAny returns the first matching position of any one of a set of characters:

Console.Write ("ab,cd ef".IndexOfAny (new char[] {' ', ','})); /] 2
Console.Write ("pas5w@rd".IndexOfAny ("0123456789".ToCharArray())); // 3

LastIndexOfAny does the same in the reverse direction.

Manipulating strings

Because String is immutable, all the methods that “manipulate” a string return a
new one, leaving the original untouched (the same goes for when you reassign a
string variable).

Substring extracts a portion of a string:

string left3 = "12345".Substring (0, 3); /] left3 = "123";
string mid3 = "12345".Substring (1, 3); // mid3 = "234";

If you omit the length, you get the remainder of the string:
string end3 = "12345".Substring (2); // end3 = "345";
Insert and Remove insert or remove characters at a specified position:

string s1 = "helloworld".Insert (5, ", "); // s1 = "hello, world"
string s2 = s1.Remove (5, 2); // s2 = "helloworld";

PadLeft and PadRight pad a string to a given length with a specified character (or a
space if unspecified):
Console.WriteLine ("12345".PadLeft (9, '*')); /] ****12345
Console.WriteLine ("12345".PadLeft (9)); // 12345

If the input string is longer than the padding length, the original string is returned
unchanged.

TrimStart and TrimEnd remove specified characters from the beginning or end of
a string; Trim does both. By default, these functions remove whitespace characters
(including spaces, tabs, new lines, and Unicode variations of these):

m
c
S
Q.
o
3
(]
-]
-
o
0

Console.WriteLine (" abc \t\r\n ".Trim().Length); // 3

Replace replaces all (nonoverlapping) occurrences of a particular character or
substring:

Console.WriteLine ("to be done".Replace (" ", " | ")); // to | be | done
Console.WriteLine ("to be done".Replace (" ", "")); // tobedone

ToUpper and ToLower return uppercase and lowercase versions of the input string.
By default, they honor the user’s current language settings; ToUpperInvariant and
ToLowerInvariant always apply English alphabet rules.

Stringand TextHandling | 275

Splitting and joining strings
Split divides a string into pieces:
string[] words = "The quick brown fox".Split();

foreach (string word in words)
Console.Write (word + "|"); // The|guick|brown|fox|

By default, Split uses whitespace characters as delimiters; its also overloaded to
accept a params array of char or string delimiters. Split also optionally accepts a

StringSplitOptions enum, which has an option to remove empty entries: this is
useful when words are separated by several delimiters in a row.

The static Join method does the reverse of Split. It requires a delimiter and string
array:

string[] words = "The quick brown fox".Split();

string together = string.Join (" ", words); // The quick brown fox
The static Concat method is similar to Join but accepts only a params string
array and applies no separator. Concat is exactly equivalent to the + operator (the
compiler, in fact, translates + to Concat):

string sentence = string.Concat ("The", " quick", " brown", " fox");
string sameSentence = "The" + " quick" + " brown" + " fox";

String.Format and composite format strings

The static Format method provides a convenient way to build strings that embed
variables. The embedded variables (or values) can be of any type; the Format simply
calls ToString on them.

The master string that includes the embedded variables is called a composite for-
mat string. When calling string.Format, you provide a composite format string
followed by each of the embedded variables:

string composite = "It's {0} degrees in {1} on this {2} morning";
string s = string.Format (composite, 35, "Perth", DateTime.Now.DayOfWeek);

/] s == "It's 35 degrees in Perth on this Friday morning"
(And that’s Celsius!)

We can use interpolated string literals to the same effect (see “String Type” on page
52). Just precede the string with the $ symbol and put the expressions in braces:

string s = $"It's hot this {DateTime.Now.DayOfWeek} morning";

Each number in curly braces is called a format item. The number corresponds to the
argument position and is optionally followed by:

276 | Chapter 6: .NET Fundamentals

o A comma and a minimum width to apply

o A colon and a format string
The minimum width is useful for aligning columns. If the value is negative, the data
is left-aligned; otherwise, it’s right-aligned:

string composite = "Name={0,-20} Credit Limit={1,15:C}";

Console.WriteLine (string.Format (composite, "Mary", 500));
Console.WriteLine (string.Format (composite, "Elizabeth", 20000));

Here’s the result:

Name=Mary Credit Limit= $500.00
Name=Elizabeth Credit Limit= $20,000.00

Here’s the equivalent without using string.Format:

string s = "Name=" + "Mary".PadRight (20) +
" Credit Limit=" + 500.ToString ("C").PadLeft (15);

The credit limit is formatted as currency by virtue of the "C" format string. We
describe format strings in detail in “Formatting and Parsing” on page 297.

Comparing Strings

In comparing two values, .NET differentiates the concepts of equality comparison
and order comparison. Equality comparison tests whether two instances are seman-
tically the same; order comparison tests which of two (if any) instances comes first
when arranging them in ascending or descending sequence.

Equality comparison is not a subset of order comparison; the
two systems have different purposes. It’s legal, for instance, to
have two unequal values in the same ordering position. We
resume this topic in “Equality Comparison” on page 324.

m
c
S
Q.
o
3
(]
-]
-
o
0

For string equality comparison, you can use the == operator or one of string’s
Equals methods. The latter are more versatile because they allow you to specify
options such as case insensitivity.

Another difference is that == does not work reliably on strings
if the variables are cast to the object type. We explain why
this is so in “Equality Comparison” on page 324.

For string order comparison, you can use either the CompareTo instance method
or the static Compare and CompareOrdinal methods. These return a positive or
negative number, or zero, depending on whether the first value comes after, before,
or alongside the second.

Before going into the details of each, we need to examine .NET’s underlying string
comparison algorithms.

Stringand TextHandling | 277

Ordinal versus culture comparison

There are two basic algorithms for string comparison: ordinal and culture sensitive.
Ordinal comparisons interpret characters simply as numbers (according to their
numeric Unicode value); culture-sensitive comparisons interpret characters with
reference to a particular alphabet. There are two special cultures: the “current cul-
ture,” which is based on settings picked up from the computer’s control panel, and
the “invariant culture,” which is the same on every computer (and closely matches
American culture).

For equality comparison, both ordinal and culture-specific algorithms are useful.
For ordering, however, culture-specific comparison is nearly always preferable: to
order strings alphabetically, you need an alphabet. Ordinal relies on the numeric
Unicode point values, which happen to put English characters in alphabetical order
—but even then, not exactly as you might expect. For example, assuming case
sensitivity, consider the strings "Atom", "atom", and "Zamia". The invariant culture
puts them in the following order:

"atom", "Atom", "Zamia"
Ordinal arranges them instead as follows:
"Atom", "Zamia", "atom"

This is because the invariant culture encapsulates an alphabet, which considers
uppercase characters adjacent to their lowercase counterparts (aAbBcCdD...). The
ordinal algorithm, however, puts all the uppercase characters first and then all
lowercase characters (A...Z, a..z). This is essentially a throwback to the ASCII
character set invented in the 1960s.

String equality comparison

Despite ordinal’s limitations, string’s == operator always performs ordinal case-
sensitive comparison. The same goes for the instance version of string.Equals
when called without arguments; this defines the “default” equality comparison
behavior for the string type.

The ordinal algorithm was chosen for string’s == and Equals
functions because it’s both highly efficient and deterministic.
String equality comparison is considered fundamental and is
performed far more frequently than order comparison.

A “strict” notion of equality is also consistent with the general
use of the == operator.

The following methods allow culture-aware or case-insensitive comparisons:

public bool Equals(string value, StringComparison comparisonType);

public static bool Equals (string a, string b,
StringComparison comparisonType);

278 | Chapter 6: .NET Fundamentals

The static version is advantageous in that it still works if one or both of the strings
are null. StringComparison is an enum defined as follows:

public enum StringComparison

{
CurrentCulture, // Case-sensitive
CurrentCultureIgnoreCase,
InvariantCulture, // Case-sensitive
InvariantCultureIgnoreCase,
Ordinal, // Case-sensitive
OrdinalIgnoreCase

}

For example:

Console.WriteLine (string.Equals ("foo", "F00",
StringComparison.OrdinalIgnoreCase)); // True

Console.WriteLine ("0" == "G"); // False

Console.WriteLine (string.Equals ("G", "G",
StringComparison.CurrentCulture)); /] ?
(The result of the third example is determined by the computer’s current language
settings.)

String order comparison

String’s CompareTo instance method performs culture-sensitive, case-sensitive order
comparison. Unlike the == operator, CompareTo does not use ordinal comparison:
for ordering, a culture-sensitive algorithm is much more useful. Here’s the method’s
definition:

public int CompareTo (string strB);

The CompareTo instance method implements the generic
IComparable interface, a standard comparison protocol used
across the .NET libraries. This means string’s CompareTo
defines the default ordering behavior of strings in such appli-
cations as sorted collections, for instance. For more informa-
tion on IComparable, see “Order Comparison” on page 335.

m
c
S
Qo
o
3
(]
-]
-
o
0

For other kinds of comparison, you can call the static Compare and CompareOrdinal
methods:

public static int Compare (string strA, string strB,
StringComparison comparisonType);

public static int Compare (string strA, string strB, bool ignoreCase,
CultureInfo culture);

public static int Compare (string strA, string strB, bool ignoreCase);

public static int CompareOrdinal (string strA, string strB);

Stringand Text Handling | 279

The last two methods are simply shortcuts for calling the first two methods.

All of the order comparison methods return a positive number, a negative number,
or zero depending on whether the first value comes after, before, or alongside the
second value:

Console.WriteLine ("Boston".CompareTo ("Austin")); /] 1

Console.WriteLine ("Boston".CompareTo ("Boston")); /] ©
Console.WriteLine ("Boston".CompareTo ("Chicago")); /] -1
Console.WriteLine ("ﬁ".CompareTo "a")); /] ©
Console.WriteLine ("foo".CompareTo ("F00")); /] -1

The following performs a case-insensitive comparison using the current culture:
Console.WriteLine (string.Compare ("foo", "FOO", true)); // ©
By supplying a CultureInfo object, you can plug in any alphabet:

// CultureInfo is defined in the System.Globalization namespace

CultureInfo german = CultureInfo.GetCultureInfo ("de-DE");
int 1 = string.Compare ("Midller", "Muller", false, german);

StringBuilder

The StringBuilder class (System.Text namespace) represents a mutable (editable)
string. With a StringBuilder, you can Append, Insert, Remove, and Replace sub-
strings without replacing the whole StringButilder.

StringBuilder’s constructor optionally accepts an initial string value as well as a
starting size for its internal capacity (default is 16 characters). If you go beyond this,
StringBuilder automatically resizes its internal structures to accommodate (at a
slight performance cost) up to its maximum capacity (default is int.MaxValue).

A popular use of StringBuilder is to build up a long string by repeatedly calling
Append. This approach is much more efficient than repeatedly concatenating ordi-
nary string types:

StringBuilder sb = new StringBuilder();
for (int 1 = 0; 1 < 50; i++) sb.Append(i).Append(",");

To get the final result, call ToString():

Console.WriteLine (sb.ToString());

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,
AppendLine performs an Append that adds a new line sequence ("\r\n" in Win-
dows). AppendFormat accepts a composite format string, just like String.Format.

In addition to the Insert, Remove, and Replace methods (Replace works like
string’s Replace), StringBuilder defines a Length property and a writable indexer
for getting/setting individual characters.

280 | Chapter 6:.NET Fundamentals

To clear the contents of a StringBuilder, either instantiate a new one or set its
Length to zero.

Setting a StringBuilder’s Length to zero doesn't shrink its
internal capacity. So, if the StringBuilder previously con-
tained one million characters, it will continue to occupy
around two megabytes of memory after zeroing its Length.
If you want to release the memory, you must create a new
StringBuilder and allow the old one to drop out of scope
(and be garbage collected).

Text Encodings and Unicode

A character set is an allocation of characters, each with a numeric code, or code
point. There are two character sets in common use: Unicode and ASCII. Unicode
has an address space of approximately one million characters, of which about
100,000 are currently allocated. Unicode covers most spoken world languages as
well as some historical languages and special symbols. The ASCII set is simply the
first 128 characters of the Unicode set, which covers most of what you see on a
US-style keyboard. ASCII predates Unicode by 30 years and is still sometimes used
for its simplicity and efficiency: each character is represented by one byte.

The .NET type system is designed to work with the Unicode character set. ASCII is
implicitly supported, though, by virtue of being a subset of Unicode.

A text encoding maps characters from their numeric code point to a binary repre-
sentation. In .NET, text encodings come into play primarily when dealing with text
files or streams. When you read a text file into a string, a text encoder translates
the file data from binary into the internal Unicode representation that the char
and string types expect. A text encoding can restrict what characters can be
represented as well as affect storage efficiency.

There are two categories of text encoding in .NET:

o Those that map Unicode characters to another character set

o Those that use standard Unicode encoding schemes

The first category contains legacy encodings such as IBM’s EBCDIC and 8-bit char-
acter sets with extended characters in the upper-128 region that were popular prior
to Unicode (identified by a code page). The ASCII encoding is also in this category:
it encodes the first 128 characters and drops everything else. This category contains
the nonlegacy GB18030 as well, which is the mandatory standard for applications
written in China—or sold to China—since 2000.

In the second category are UTF-8, UTF-16, and UTF-32 (and the obsolete UTE-7).
Each differs in space efficiency. UTF-8 is the most space-efficient for most kinds of
text: it uses between one and four bytes to represent each character. The first 128
characters require only a single byte, making it compatible with ASCIL. UTEF-8 is the
most popular encoding for text files and streams (particularly on the internet), and

Stringand TextHandling | 281

m
c
S
Q.
o
3
(]
-]
-
o
n

it is the default for stream input/output (I/O) in .NET (in fact, it’s the default for
almost everything that implicitly uses an encoding).

UTF-16 uses one or two 16-bit words to represent each character. This is what .NET
uses internally to represent characters and strings. Some programs also write files in
UTEF-16.

UTF-32 is the least space-efficient: it maps each code point directly to 32 bits, so
every character consumes four bytes. UTF-32 is rarely used for this reason. It does,
however, make random access very easy because every character takes an equal
number of bytes.

Obtaining an Encoding object

The Encoding class in System.Text is the common base type for classes that encap-
sulate text encodings. There are several subclasses—their purpose is to encapsulate
families of encodings with similar features. The most common encodings can be
obtained through dedicated static properties on Encoding:

Encoding name Static property on Encoding

UTF-8 Encoding.UTF8

UTF-16 Encoding.Unicode (not UTF16)
UTF-32 Encoding.UTF32

ASl Encoding.ASCII

You can obtain other encodings by calling Encoding.GetEncoding with a standard
Internet Assigned Numbers Authority (IANA) Character Set name:

// In .NET 5+ and .NET Core, you must first call RegisterProvider:
Encoding.RegisterProvider (CodePagesEncodingProvider.Instance);

Encoding chinese = Encoding.GetEncoding ("GB18030");

The static GetEncodings method returns a list of all supported encodings along
with their standard IANA names:

foreach (EncodingInfo info in Encoding.GetEncodings())
Console.WriteLine (info.Name);

The other way to obtain an encoding is to directly instantiate an encoding class.
Doing so allows you to set various options via constructor arguments, including:

o Whether to throw an exception if an invalid byte sequence is encountered
when decoding. The default is false.

o Whether to encode/decode UTF-16/UTF-32 with the most significant bytes
first (big endian) or the least significant bytes first (little endian). The default is
little endian, the standard on the Windows operating system.

282 | Chapter 6: .NET Fundamentals

o Whether to emit a byte-order mark (a prefix that indicates endianness).

Encoding for file and stream 1/0

The most common application for an Encoding object is to control how text is read
and written to a file or stream. For example, the following writes “Testing...” to a file
called data.txt in UTF-16 encoding:

System.IO.File.WriteAllText ("data.txt", "Testing...", Encoding.Unicode);

If you omit the final argument, WriteAllText applies the ubiquitous UTEF-8
encoding.

UTF-8 is the default text encoding for all file and stream I/O.

We resume this subject in Chapter 15, in “Stream Adapters” on page 687.

Encoding to byte arrays

You can also use an Encoding object to go to and from a byte array. The GetBytes
method converts from string to byte[] with the given encoding; GetString con-
verts from byte[] to string:

byte[] utf8Bytes = System.Text.Encoding.UTF8.GetBytes ("0123456789");
byte[] utfi6Bytes = System.Text.Encoding.Unicode.GetBytes ("0123456789");
byte[] utf32Bytes = System.Text.Encoding.UTF32.GetBytes ("0123456789");

Console.WriteLine (utf8Bytes.Length); // 10

m
Console.WriteLine (utfi6Bytes.Length); // 20 g
Console.WriteLine (utf32Bytes.Length); // 40 %
3
string originall = System.Text.Encoding.UTF8.GetString (utf8Bytes); g
string original2 = System.Text.Encoding.Unicode.GetString (utfi16Bytes); o
string original3 = System.Text.Encoding.UTF32.GetString (utf32Bytes); 0
Console.WriteLine (originall); // 0123456789
Console.WriteLine (original2); // 0123456789
Console.WriteLine (original3); // 0123456789

UTF-16 and surrogate pairs

Recall that .NET stores characters and strings in UTF-16. Because UTF-16 requires
one or two 16-bit words per character, and a char is only 16 bits in length,
some Unicode characters require two chars to represent. This has a couple of
consequences:

o A string’s Length property can be greater than its real character count.

« A single char is not always enough to fully represent a Unicode character.

Stringand TextHandling | 283

Most applications ignore this because nearly all commonly used characters fit into
a section of Unicode called the Basic Multilingual Plane (BMP), which requires only
one 16-bit word in UTF-16. The BMP covers several dozen world languages and
includes more than 30,000 Chinese characters. Excluded are characters of some
ancient languages, symbols for musical notation, and some less-common Chinese
characters.

If you need to support two-word characters, the following static methods in char
convert a 32-bit code point to a string of two chars and back again:

string ConvertFromUtf32 (int utf32)
int ConvertToUtf32 (char highSurrogate, char lowSurrogate)

Two-word characters are called surrogates. They are easy to spot because each word
is in the range 0xD800 to 0xDFFE You can use the following static methods in char
to assist:

bool IsSurrogate (char c)
bool IsHighSurrogate (char c)
bool IsLowSurrogate (char c)
bool IsSurrogatePair (char highSurrogate, char lowSurrogate)

The StringInfo class in the System.Globalization namespace also provides a
range of methods and properties for working with two-word characters.

Characters outside the BMP typically require special fonts and have limited operat-
ing system support.

Dates and Times

The following immutable structs in the System namespace do the job of repre-
senting dates and times: DateTime, DateTimeOffset, TimeSpan, DateOnly, and Time
Only. C# doesn’t define any special keywords that map to these types.

TimeSpan

A TimeSpan represents an interval of time—or a time of the day. In the latter role,
it’s simply the “clock” time (without the date), which is equivalent to the time since
midnight, assuming no daylight saving transition. A TimeSpan has a resolution of
100 ns, has a maximum value of about 10 million days, and can be positive or
negative.

There are three ways to construct a TimeSpan:

 Through one of the constructors
o By calling one of the static From... methods

« By subtracting one DateTime from another

Here are the constructors:

284 | Chapter 6: .NET Fundamentals

public TimeSpan (int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds,

int milliseconds);

public TimeSpan (long ticks); // Each tick = 100ns

The static From... methods are more convenient when you want to specify an
interval in just a single unit, such as minutes, hours, and so on:

public
public
public
public
public

static TimeSpan
static TimeSpan
static TimeSpan
static TimeSpan
static TimeSpan

FromDays (double value);
FromHours (double value);
FromMinutes (double value);
FromSeconds (double value);
FromMilliseconds (double value);

For example:

Console.WriteLine (new TimeSpan (2, 30, 0)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (2.5)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (-2.5)); // -02:30:00

TimeSpan overloads the < and > operators as well as the + and - operators. The
following expression evaluates to a TimeSpan of 2.5 hours:

TimeSpan.FromHours(2) + TimeSpan.FromMinutes(30);

The next expression evaluates to one second short of 10 days:

TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);

/1

9.23:59:59

Using this expression, we can illustrate the integer properties Days, Hours, Minutes,
Seconds, and Milliseconds:

TimeSpan nearlyTenDays =

m

c

Console.WriteLine (nearlyTenDays.Days); /] 9 g_
Console.WriteLine (nearlyTenDays.Hours); // 23 o
Console.WriteLine (nearlyTenDays.Minutes); /] 59 %
Console.WriteLine (nearlyTenDays.Seconds); /] 59 E
Console.WriteLine (nearlyTenDays.Milliseconds); // 0 v

In contrast, the Total...

TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);

properties return values of type double describing the entire

time span:
Console.WriteLine (nearlyTenDays.TotalDays); /] 9.99998842592593
Console.WriteLine (nearlyTenDays.TotalHours); /] 239.999722222222
Console.WriteLine (nearlyTenDays.TotalMinutes); // 14399.9833333333
Console.WriteLine (nearlyTenDays.TotalSeconds); // 863999
Console.WriteLine (nearlyTenDays.TotalMilliseconds); // 863999000

The static Parse method does the opposite of ToString, converting a string to
a TimeSpan. TryParse does the same but returns false rather than throwing an
exception if the conversion fails. The XmlConvert class also provides TimeSpan/
string conversion methods that follow standard XML formatting protocols.

The default value for a TimeSpan is TimeSpan.Zero.

Datesand Times | 285

TimeSpan can also be used to represent the time of the day (the elapsed time since
midnight). To obtain the current time of day, call DateTime.Now.TimeOfDay.

DateTime and DateTimeOffset

DateTime and DateTimeOffset are immutable structs for representing a date and,
optionally, a time. They have a resolution of 100 ns and a range covering the years
0001 through 9999.

DateTimeOffset is functionally similar to DateTime. Its distinguishing feature is
that it also stores a Coordinated Universal Time (UTC) offset; this allows more
meaningful results when comparing values across different time zones.

An excellent article on the rationale behind the introduction
of DateTimeOffset is available online, titled “A Brief History
of DateTime,” by Anthony Moore.

Choosing between DateTime and DateTimeOffset

DateTime and DateTimeOffset differ in how they handle time zones. A DateTime
incorporates a three-state flag indicating whether the DateTime is relative to the
following:

o The local time on the current computer

o UTC (the modern equivalent of Greenwich Mean Time)

o Unspecified

A DateTimeOffset is more specific—it stores the offset from UTC as a TimeSpan:
July 01 2019 03:00:00 -06:00
This influences equality comparisons, which is the main factor in choosing between
DateTime and DateTimeOffset. Specifically:
o DateTime ignores the three-state flag in comparisons and considers two values
equal if they have the same year, month, day, hour, minute, and so on.

o DateTimeOffset considers two values equal if they refer to the same point in
time.

Daylight Saving Time can make this distinction important
even if your application doesn’t need to handle multiple geo-
graphic time zones.

So, DateTime considers the following two values different, whereas DateTimeOffset
considers them equal:

July 01 2019 09:00:00 +00:00 (GMT)
July 01 2019 03:00:00 -06:00 (local time, Central America)

286 | (Chapter 6:.NET Fundamentals

https://oreil.ly/-sNh3

In most cases, DateTimeOffset’s equality logic is preferable. For example, in calcu-
lating which of two international events is more recent, a DateTimeOffset implicitly
gives the correct answer. Similarly, a hacker plotting a Distributed Denial of Service
attack would reach for a DateTimeOffset! To do the same with DateTime requires
standardizing on a single time zone (typically UTC) throughout your application.
This is problematic for two reasons:

o To be friendly to the end user, UTC DateTimes require explicit conversion to
local time prior to formatting.

o It’s easy to forget and incorporate a local DateTime.

DateTime is better, though, at specifying a value relative to the local computer at
runtime—for example, if you want to schedule an archive at each of your interna-
tional offices for next Sunday, at 3 A.M. local time (when there’s the least amount of
activity). Here, DateTime would be more suitable because it would respect each site’s
local time.

Internally, DateTimeOffset uses a short integer to store the
UTC offset in minutes. It doesn’t store any regional informa-
tion, so there’s nothing present to indicate whether an offset of
+08:00, for instance, refers to Singapore time or Perth time.

We revisit time zones and equality comparison in more depth in “DateOnly and
TimeOnly” on page 292.

SQL Server 2008 introduced direct support for DateTimeOff
set through a new data type of the same name.

Constructing a DateTime

DateTime defines constructors that accept integers for the year, month, and day—
and, optionally, the hour, minute, second, and millisecond:

m
c
S
Q.
o
3
(]
-]
-
o
n

public DateTime (int year, int month, int day);

public DateTime (int year, int month, int day,
int hour, int minute, int second, int millisecond);

If you specify only a date, the time is implicitly set to midnight (0:00).

The DateTime constructors also allow you to specify a DateTimeKind—an enum
with the following values:

Unspecified, Local, Utc

This corresponds to the three-state flag described in the preceding section. Unspect
fied is the default, and it means that the DateTime is time-zone-agnostic. Local
means relative to the local time zone on the current computer. A local DateTime

Datesand Times | 287

does not include information about which particular time zone it refers to, or, unlike
DateTimeOffset, the numeric offset from UTC.

A DateTime’s Kind property returns its DateTimeKind.

DateTime’s constructors are also overloaded to accept a Calendar object, as well.
This allows you to specify a date using any of the Calendar subclasses defined in
System.Globalization:

DateTime d = new DateTime (5767, 1, 1,
new System.Globalization.HebrewCalendar());

Console.WriteLine (d); /] 12/12/2006 12:00:00 AM

(The formatting of the date in this example depends on your computer’s control
panel settings.) A DateTime always uses the default Gregorian calendar—this exam-
ple, a one-time conversion, takes place during construction. To perform computa-
tions using another calendar, you must use the methods on the Calendar subclass
itself.

You can also construct a DateTime with a single ticks value of type long, where ticks
is the number of 100 ns intervals from midnight 01/01/0001.

For interoperability, DateTime provides the static FromFileTime and FromFile
TimeUtc methods for converting from a Windows file time (specified as a long)
and FromOADate for converting from an OLE automation date/time (specified as a
double).

To construct a DateTime from a string, call the static Parse or ParseExact method.
Both methods accept optional flags and format providers; ParseExact also accepts
a format string. We discuss parsing in greater detail in “Formatting and Parsing” on
page 297.

Constructing a DateTimeOffset

DateTimeOffset has a similar set of constructors. The difference is that you also
specify a UTC offset as a TimeSpan:

public DateTimeOffset (int year, int month, int day,
int hour, int minute, int second,
TimeSpan offset);

public DateTimeOffset (int year, int month, int day,
int hour, int minute, int second, int millisecond,
TimeSpan offset);

The TimeSpan must amount to a whole number of minutes; otherwise an exception
is thrown.

DateTimeOffset also has constructors that accept a Calendar object, a long ticks
value, and static Parse and ParseExact methods that accept a string.

288 | Chapter 6: .NET Fundamentals

You can construct a DateTimeOffset from an existing DateTime either by using
these constructors:

public DateTimeOffset (DateTime dateTime);
public DateTimeOffset (DateTime dateTime, TimeSpan offset);

or with an implicit cast:
DateTimeOffset dt = new DateTime (2000, 2, 3);

The implicit cast from DateTime to DateTimeOffset is handy
because most of the NET BCL supports DateTime—not Date
TimeOffset.

If you don't specify an offset, it’s inferred from the DateTime value using these rules:

o If the DateTime has a DateTimeKind of Utc, the offset is zero.
o If the DateTime has a DateTimeKind of Local or Unspecified (the default), the

offset is taken from the current local time zone.

To convert in the other direction, DateTimeOffset provides three properties that
return values of type DateTime:

o The UtcDateTime property returns a DateTime in UTC time.

o The LocalDateTime property returns a DateTime in the current local time zone
(converting it if necessary).

o The DateTime property returns a DateTime in whatever zone it was specified,
with a Kind of Unspecified (i.e., it returns the UTC time plus the offset).

The current DateTime/DateTimeOffset

Both DateTime and DateTimeOffset have a static Now property that returns the
current date and time:

m
c
S
Q.
o
3
(]
-]
-
o
0

Console.WriteLine (DateTime.Now); // 11/11/2019 1:23:45 PM
Console.WriteLine (DateTimeOffset.Now); // 11/11/2019 1:23:45 PM -06:00

DateTime also provides a Today property that returns just the date portion:
Console.WriteLine (DateTime.Today); // 11/11/2019 12:00:00 AM
The static UtcNow property returns the current date and time in UTC:

Console.WriteLine (DateTime.UtcNow); /] 11/11/2019 7:23:45 AM
Console.WriteLine (DateTimeOffset.UtcNow); // 11/11/2019 7:23:45 AM +00:00

The precision of all these methods depends on the operating system and is typically
in the 10 to 20 ms region.

Datesand Times | 289

Working with dates and times

DateTime and DateTimeOffset provide a similar set of instance properties that
return various date/time elements:

DateTime dt = new DateTime (2000, 2, 3,
10, 20, 30);

Console.WriteLine (dt.Year); // 2000
Console.WriteLine (dt.Month); /] 2
Console.WriteLine (dt.Day); /] 3

Console.WriteLine (dt.DayOfWeek); // Thursday
Console.WriteLine (dt.DayOfYear); /] 34

Console.WriteLine (dt.Hour); // 10
Console.WriteLine (dt.Minute); /] 20
Console.WriteLine (dt.Second); // 30
Console.WriteLine (dt.Millisecond); // O
Console.WriteLine (dt.Ticks); // 630851700300000000

Console.WriteLine (dt.TimeOfDay); // 10:20:30 (returns a TimeSpan)
DateTimeOffset also has an Of fset property of type TimeSpan.

Both types provide the following instance methods to perform computations (most
accept an argument of type double or int):

AddYears AddMonths AddDays
AddHours AddMinutes AddSeconds AddMilliseconds AddTicks

These all return a new DateTime or DateTimeOffset, and they take into account
such things as leap years. You can pass in a negative value to subtract.

The Add method adds a TimeSpan to a DateTime or DateTimeOffset. The + operator
is overloaded to do the same job:

TimeSpan ts = TimeSpan.FromMinutes (90);
Console.WriteLine (dt.Add (ts));
Console.WriteLine (dt + ts); /] same as above

You can also subtract a TimeSpan from a DateTime/DateTimeOffset and subtract
one DateTime/DateTimeOffset from another. The latter gives you a TimeSpan:

DateTime thisYear = new DateTime (2015, 1, 1);
DateTime nextYear = thisYear.AddYears (1);
TimeSpan oneYear = nextYear - thisYear;

Formatting and parsing DateTimes

Calling ToString on a DateTime formats the result as a short date (all numbers)
followed by a long time (including seconds). For example:

11/11/2019 11:50:30 AM

The operating system’s control panel, by default, determines such things as whether
the day, month, or year comes first; the use of leading zeros; and whether 12- or
24-hour time is used.

290 | Chapter 6:.NET Fundamentals

Calling ToString on a DateTimeOffset is the same, except that the offset is also
returned:

11/11/2019 11:50:30 AM -06:00

The ToShortDateString and ToLongDateString methods return just the date por-
tion. The long date format is also determined by the control panel; an example
is “Wednesday, 11 November 2015 ToShortTimeString and ToLongTimeString
return just the time portion, such as 17:10:10 (the former excludes seconds).

These four just-described methods are actually shortcuts to four different format
strings. ToString is overloaded to accept a format string and provider, allowing you
to specify a wide range of options and control how regional settings are applied. We
describe this in “Formatting and Parsing” on page 297.

DateTimes and DateTimeOffsets can be misparsed if the cul-
ture settings differ from those in force when formatting takes
place. You can avoid this problem by using ToString in con-
junction with a format string that ignores culture settings

« »

(such as “0”):

DateTime dtl = DateTime.Now;
string cannotBeMisparsed = dt1.ToString ("o");
DateTime dt2 = DateTime.Parse (cannotBeMisparsed);

The static Parse/TryParse and ParseExact/TryParseExact methods do the reverse
of ToString, converting a string to a DateTime or DateTimeOffset. These methods

are also overloaded to accept a format provider. The Try* methods return false
instead of throwing a FormatException.

Null DateTime and DateTimeOffset values

Because DateTime and DateTimeOffset are structs, they are not intrinsically nulla-
ble. When you need nullability, there are two ways around this:

o Use aNullable type (i.e., DateTime? or DateTimeOffset?).

o Use the static field DateTime.MinValue or DateTimeOffset.MinValue (the
default values for these types).

A nullable type is usually the best approach because the compiler helps to prevent
mistakes. DateTime.MinValue is useful for backward compatibility with code writ-
ten prior to C# 2.0 (when nullable value types were introduced).

Calling ToUniversalTime or ToLocalTime on a DateTime.Min
Value can result in it no longer being DateTime.MinValue
(depending on which side of GMT you are on). If youre
right on GMT (England, outside daylight saving), the problem
won't arise at all because local and UTC times are the same.
This is your compensation for the English winter!

Datesand Times | 291

m
c
S
Q.
o
3
(]
-]
-
o
n

DateOnly and TimeOnly

The DateOnly and TimeOnly structs (from .NET 6) exist for when you only want to
represent a date or time.

DateOnly is similar to DateTime, but without a time component. DateOnly also lacks
DateTimeKind; in effect, it's always Unspecified and has no concept of Local or
Utc. The historical alternative to DateOnly was to use DateTime with a zero time
(midnight). The difficulty with this approach is that equality comparisons fail when
a non-zero time finds its way into your code.

TimeOnly is similar to DateTime, but without a date component. TimeOnly is
intended for capturing the time of day and is suitable for applications such as
recording alarm times or opening hours.

DateTime and Time Zones

DateTime is simplistic in its handling of time zones. Internally, it stores a DateTime
using two pieces of information:

o A 62-bit number, indicating the number of ticks since 1/1/0001

o A 2-bit enum, indicating the DateTimeKind (Unspecified, Local, or Utc)

When you compare two DateTime instances, only their ticks values are compared;
their DateTimeKinds are ignored:

DateTime dtl = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Local);
DateTime dt2 = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Utc);
Console.WriteLine (dt1l == dt2); // True

DateTime local = DateTime.Now;

DateTime utc = local.ToUniversalTime();

Console.WriteLine (local == utc); // False

The instance methods ToUniversalTime/ToLocalTime convert to universal/local
time. These apply the computer’s current time zone settings and return a new
DateTime with a DateTimeKind of Utc or Local. No conversion happens if you call
ToUnilversalTime on a DateTime that’s already Utc, or ToLocalTime on a DateTime
that’s already Local. You will get a conversion, however, if you call ToUniversal
Time or ToLocalTime on a DateTime that’s Unspecified.

You can construct a DateTime that differs from another only in Kind with the static
DateTime.SpecifyKind method:

DateTime d = new DateTime (2015, 12, 12); // Unspecified
DateTime utc = DateTime.SpecifyKind (d, DateTimeKind.Utc);
Console.WriteLine (utc); /] 12/12/2015 12:00:00 AM

292 | Chapter 6: .NET Fundamentals

DateTimeOffset and Time Zones

Internally, DateTimeOffset comprises a DateTime field whose value is always in
UTC, and a 16-bit integer field for the UTC offset in minutes. Comparisons look
only at the (UTC) DateTime; the Of fset is used primarily for formatting.

The ToUniversalTime/ToLocalTime methods return a DateTimeOffset represent-
ing the same point in time but with a UTC or local offset. Unlike with DateTime,
these methods don't affect the underlying date/time value, only the offset:

DateTimeOffset local = DateTimeOffset.Now;
DateTimeOffset utc = local.ToUniversalTime();

Console.WriteLine (local.Offset); // -06:00:00 (in Central America)
Console.WriteLine (utc.Offset); // 00:00:00

Console.WriteLine (local == utc); /] True
To include the Of fset in the comparison, you must use the EqualsExact method:

Console.WriteLine (local.EqualsExact (utc)); // False

TimeZonelnfo

The TimeZoneInfo class provides information on time zone names, UTC offsets,
and Daylight Saving Time rules.

TimeZone
The static TimeZone.CurrentTimeZone method returns a TimeZone:

TimeZone zone = TimeZone.CurrentTimeZone;
Console.WriteLine (zone.StandardName); // Pacific Standard Time
Console.WriteLine (zone.DaylightName); // Pacific Daylight Time

The GetDaylightChanges method returns specific Daylight Saving Time informa-
tion for a given year:

m
c
S
Qo
o
3
(]
-]
-
o
0

DaylightTime day = zone.GetDaylightChanges (2019);

Console.WriteLine (day.Start.ToString ("M")); // 10 March
Console.WriteLine (day.End.ToString ("M")); // 03 November
Console.WriteLine (day.Delta); // 01:00:00

TimeZonelnfo

The static TimeZoneInfo.Local method returns a TimeZoneInfo object based on the
current local settings. The following demonstrates the result if run in California:

TimeZoneInfo zone = TimeZonelInfo.Local;
Console.WriteLine (zone.StandardName); // Pacific Standard Time
Console.WriteLine (zone.DaylightName); // Pacific Daylight Time

The IsDaylightSavingTime and GetUtcOffset methods work as follows:

DateTime and Time Zones | 293

DateTime dtl = new DateTime (2019, 1, 1);

DateTime dt2 = new DateTime (2019, 6, 1);

Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

(zone
(zone
(zone
(zone

.IsDaylightSavingTime (dt1));
.IsDaylightSavingTime (dt2));
.GetUtcOffset (dt1));
.GetUtcOffset (dt2));

/1l
/1l
/1l
/1

// DateTimeOffset works, too

True
False
-08:00:00
-07:00:00

You can obtain a TimeZoneInfo for any of the world’s time zones by calling Find
SystemTimeZoneById with the zone ID. We'll switch to Western Australia for rea-
sons that will soon become clear:

TimeZoneInfo wa = TimeZoneInfo.FindSystemTimeZoneById

Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

("W. Australia Standard Time");

(wa.Id);
(wa.DisplayName);
(wa.BaseUtcOffset);

(wa.SupportsDaylightSavingTime);

// W. Australia Standard Time
// (GMT+08:00) Perth

// ©8:00:00

/] True

The Id property corresponds to the value passed to FindSystemTimeZoneById. The
static GetSystemTimeZones method returns all world time zones; hence, you can list
all valid zone ID strings as follows:

foreach (TimeZoneInfo z in TimeZoneInfo.GetSystemTimeZones())
Console.WriteLine (z.Id);

arguments.

You can also create a custom time zone by calling Time
ZoneInfo.CreateCustomTimeZone. Because TimeZoneInfo is
immutable, you must pass in all the relevant data as method

You can serialize a predefined or custom time zone to
a (semi) human-readable string by calling ToSerialized
String—and deserialize it by calling TimeZoneInfo.FromSer
ializedString.

The static ConvertTime method converts a DateTime or DateTimeOffset from one
time zone to another. You can include either just a destination TimeZoneInfo, or
both source and destination TimeZoneInfo objects. You can also convert directly
from or to UTC with the methods ConvertTimeFromUtc and ConvertTimeToUtc.

For working with Daylight Saving Time, TimeZoneInfo provides the following addi-
tional methods:

IsInvalidTime returns true if a DateTime is within the hour (or delta) that’s
skipped when the clocks move forward.

IsAmbiguousTime returns true if a DateTime or DateTimeOffset is within the

hour (or delta) that’s repeated when the clocks move back.

GetAmbiguousTimeOffsets returns an array of TimeSpans representing the
valid offset choices for an ambiguous DateTime or DateTimeOffset.

294

| Chapter 6: .NET Fundamentals

You can't obtain simple dates from a TimeZoneInfo indicating the start and end of
Daylight Saving Time. Instead, you must call GetAdjustmentRules, which returns a
declarative summary of all daylight saving rules that apply to all years. Each rule has
aDateStart and DateEnd indicating the date range within which the rule is valid:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
Console.WriteLine ("Rule: applies from " + rule.DateStart +
" to " + rule.DateEnd);

Western Australia first introduced Daylight Saving Time in 2006, midseason (and
then rescinded it in 2009). This required a special rule for the first year; hence, there
are two rules:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM

Each AdjustmentRule has a DaylightDelta property of type TimeSpan (this is
one hour in almost every case) and properties called DaylightTransitionStart
and DaylightTransitionEnd. The latter two are of type TimeZoneInfo.Transition
Time, which has the following properties:

public bool IsFixedDateRule { get; }
public DayOfWeek DayOfWeek { get; }
public int Week { get; }

public int Day { get; }

public int Month { get; }

public DateTime TimeOfDay { get; }

A transition time is somewhat complicated in that it needs to represent both fixed

and floating dates. An example of a floating date is “the last Sunday in March.” Here
are the rules for interpreting a transition time:

1. If, for an end transition, IsFixedDateRule is true, Day is 1, Month is 1, and
TimeOfDay is DateTime.MinValue, there is no end to Daylight Saving Time in
that year (this can happen only in the southern hemisphere, upon the initial
introduction of daylight saving time to a region).

2. Otherwise, if IsFixedDateRule is true, the Month, Day, and TimeOfDay proper-
ties determine the start or end of the adjustment rule.

3. Otherwise, if IsFixedDateRule is false, the Month, DayOfWeek, Week, and
TimeOfDay properties determine the start or end of the adjustment rule.

In the last case, Week refers to the week of the month, with “5” meaning the last
week. We can demonstrate this by enumerating the adjustment rules for our wa time
zone:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())

{
Console.WriteLine ("Rule: applies from " + rule.DateStart +
" to " + rule.DateEnd);

Console.WriteLine (" Delta: " + rule.DaylightDelta);

DateTime and Time Zones | 295

m
c
S
Qo
)
3
(]
-]
-
o
0

+ FormatTransitionTime
(rule.DaylightTransitionStart, false));

Console.WriteLine (" Start:

+ FormatTransitionTime
(rule.DaylightTransitionEnd, true));

Console.WriteLine (" End:

Console.WriteLine();

}

In FormatTransitionTime, we honor the rules just described:

static string FormatTransitionTime (TimeZoneInfo.TransitionTime tt,
bool endTime)
{
if (endTime && tt.IsFixedDateRule
&& tt.Day == 1 && tt.Month ==
&& tt.TimeOfDay == DateTime.MinValue)

non,
]

return

string s;
if (tt.IsFixedDateRule)
s = tt.Day.ToString();

else
s = "The " +
"first second third fourth last".Split() [tt.Week - 1] +
" " + tt.DayOfWeek + " in";
return s + " " + DateTimeFormatInfo.CurrentInfo.MonthNames [tt.Month-1]
+ " at " + tt.TimeOfDay.TimeOfDay;
}

Daylight Saving Time and DateTime

If you use a DateTimeOffset or a UTC DateTime, equality comparisons are unimpe-
ded by the effects of Daylight Saving Time. But with local DateTimes, daylight saving
can be problematic.

We can summarize the rules as follows:

o Daylight saving affects local time but not UTC time.

o When the clocks turn back, comparisons that rely on time moving forward will
break if (and only if) they use local DateTimes.

 You can always reliably round-trip between UTC and local times (on the same
computer)—even as the clocks turn back.

The IsDaylightSavingTime tells you whether a given local DateTime is subject to
Daylight Saving Time. UTC times always return false:

Console.Write (DateTime.Now.IsDaylightSavingTime()); // True or False
Console.Write (DateTime.UtcNow.IsDaylightSavingTime()); // Always False

296 | Chapter 6:.NET Fundamentals

Assuming dto is a DateTimeOffset, the following expression does the same:
dto.LocalDateTime.IsDaylightSavingTime

The end of Daylight Saving Time presents a particular complication for algorithms
that use local time, because when the clocks go back, the same hour (or more
precisely, Delta) repeats itself.

You can reliably compare any two DateTimes by first call-
ing ToUniversalTime on each. This strategy fails if (and
only if) exactly one of them has a DateTimeKind of Unspeci
fied. This potential for failure is another reason for favoring
DateTimeOffset.

Formatting and Parsing

Formatting means converting fo a string; parsing means converting from a string.
The need to format or parse arises frequently in programming, in a variety of
situations. Hence, .NET provides a variety of mechanisms:

ToString and Parse
These methods provide default functionality for many types.

Format providers
These manifest as additional ToString (and Parse) methods that accept a
format string and/or a format provider. Format providers are highly flexible
and culture-aware. .NET includes format providers for the numeric types and
DateTime/DateTimeOffset.

XmlConvert
This is a static class with methods that format and parse while honoring XML
standards. XmlConvert is also useful for general-purpose conversion when you
need culture independence or you want to preempt misparsing. XmlConvert
supports the numeric types, bool, DateTime, DateTimeOffset, TimeSpan, and
Guid.

Type converters
These target designers and XAML parsers.

In this section, we discuss the first two mechanisms, focusing particularly on format
providers. We then describe XmlConvert, type converters, and other conversion
mechanisms.

ToString and Parse

The simplest formatting mechanism is the ToString method. It gives meaningful
output on all simple value types (bool, DateTime, DateTimeOffset, TimeSpan, Guid,
and all the numeric types). For the reverse operation, each of these types defines a
static Parse method:

Formatting and Parsing | 297

m
c
S
Q.
o
3
(]
-]
-
o
0

true.ToString(); /] s = "True"

string s =
= bool.Parse (s); // b = true

bool b
If the parsing fails, a FormatException is thrown. Many types also define a Try

Parse method, which returns false if the conversion fails rather than throwing an
exception:

bool failure = int.TryParse ("qwerty", out int i1);
bool success = int.TryParse ("123", out int 12);

If you don’t care about the output and want to test only whether parsing would
succeed, you can use a discard:

bool success = int.TryParse ("123", out int _);

If you anticipate an error, calling TryParse is faster and more elegant than calling
Parse in an exception handling block.

The Parse and TryParse methods on DateTime(Offset) and the numeric types
respect local culture settings; you can change this by specifying a CultureInfo
object. Specifying invariant culture is often a good idea. For instance, parsing
“1.234” into a double gives us 1234 in Germany:

Console.WriteLine (double.Parse ("1.234")); // 1234 (In Germany)

This is because in Germany, the period indicates a thousands separator rather than a
decimal point. Specifying invariant culture fixes this:

double x = double.Parse ("1.234", CultureInfo.InvariantCulture);
The same applies when calling ToString():

string x = 1.234.ToString (CultureInfo.InvariantCulture);

Format Providers

Sometimes, you need more control over how formatting and parsing take place.
There are dozens of ways to format a DateTime(Offset), for instance. Format
providers allow extensive control over formatting and parsing, and are supported
for numeric types and date/times. Format providers are also used by user interface
controls for formatting and parsing.

The gateway to using a format provider is IFormattable. All numeric types—and
DateTime(Offset)—implement this interface:

public interface IFormattable

{

string ToString (string format, IFormatProvider formatProvider);

}

The first argument is the format string; the second is the format provider. The format
string provides instructions; the format provider determines how the instructions
are translated. For example:

298 | Chapter 6: .NET Fundamentals

NumberFormatInfo f = new NumberFormatInfo();
f.CurrencySymbol = "$$";
Console.WriteLine (3.ToString ("C", f)); // $$ 3.00

Here, "C" is a format string that indicates currency, and the NumberFormatInfo
object is a format provider that determines how currency—and other numeric
representations—are rendered. This mechanism allows for globalization.

All format strings for numbers and dates are listed in “Stan-
dard Format Strings and Parsing Flags” on page 303.

If you specify a null format string or provider, a default is applied. The default
format provider is CultureInfo.CurrentCulture, which, unless reassigned, reflects
the computer’s runtime control panel settings. For example, on this computer:

Console.WriteLine (10.3.ToString ("C", null)); // $10.30

For convenience, most types overload ToString such that you can omit a null
provider:

Console.WriteLine (10.3.ToString ("C")); /] $10.30
Console.WriteLine (10.3.ToString ("F4")); // 10.3000 (Fix to 4 D.P.)

Calling ToString on a DateTime(Offset) or a numeric type with no arguments is
equivalent to using a default format provider, with an empty format string.

NET defines three format providers (all of which implement IFormatProvider):

NumberFormatInfo
DateTimeFormatInfo
CulturelInfo

All enum types are also formattable, though there’s no special
IFormatProvider class.

Format providers and Cultureinfo

Within the context of format providers, CultureInfo acts as an indirection mecha-
nism for the other two format providers, returning a NumberFormatInfo or Date
TimeFormatInfo object applicable to the culture’s regional settings.

In the following example, we request a specific culture (english language in Great
Britain):

CultureInfo uk = CultureInfo.GetCultureInfo ("en-GB");
Console.WriteLine (3.ToString ("C", uk)); // £3.00

This executes using the default NumberFormatInfo object applicable to the en-GB
culture.

The next example formats a DateTime with invariant culture. Invariant culture is
always the same, regardless of the computer’s settings:

Formatting and Parsing | 299

m
c
S
Q.
o
3
(]
-]
-
o
0

DateTime dt = new DateTime (2000, 1, 2);

CultureInfo iv = CultureInfo.InvariantCulture;

Console.WriteLine (dt.ToString (iv)); // 01/02/2000 00:00:00
Console.WriteLine (dt.ToString ("d", iv)); /] 01/02/2000

Invariant culture is based on American culture, with the fol-
lowing differences:

o The currency symbol is % instead of $.

o Dates and times are formatted with leading zeros
(though still with the month first).

o Time uses the 24-hour format rather than an AM/PM
designator.

Using NumberFormatinfo or DateTimeFormatinfo

In the next example, we instantiate a NumberFormatInfo and change the group
separator from a comma to a space. We then use it to format a number to three
decimal places:

NumberFormatInfo f = new NumberFormatInfo ();
f.NumberGroupSeparator = " ";
Console.WriteLine (12345.6789.ToString ("N3", f)); // 12 345.679

The initial settings for a NumberFormatInfo or DateTimeFormatInfo are based on
the invariant culture. Sometimes, however, it's more useful to choose a different
starting point. To do this, you can Clone an existing format provider:

NumberFormatInfo f = (NumberFormatInfo)
CultureInfo.CurrentCulture.NumberFormat.Clone();

A cloned format provider is always writable—even if the original was read-only.

Composite formatting

Composite format strings allow you to combine variable substitution with format
strings. The static string.Format method accepts a composite format string (we
illustrated this in “String.Format and composite format strings” on page 276):

string composite = "Credit={0:C}";
Console.WriteLine (string.Format (composite, 500)); // Credit=$500.00

The Console class itself overloads its Write and WriteLine methods to accept
composite format strings, allowing us to shorten this example slightly:

Console.WriteLine ("Credit={0:C}", 500); // Credit=$500.00

You can also append a composite format string to a StringBuilder (via Append
Format), and to a TextWriter for I/O (see Chapter 15).

string.Format accepts an optional format provider. A simple application for this is
to call ToString on an arbitrary object while passing in a format provider:

300 | Chapter6: .NET Fundamentals

string s = string.Format (CultureInfo.InvariantCulture, "{0}", someObject);
This is equivalent to the following:

string s;
if (someObject is IFormattable)
s = ((IFormattable)someObject).ToString (null,
CultureInfo.InvariantCulture);
else if (someObject == null)
s=""
else
s = someObject.ToString();

Parsing with format providers

There’s no standard interface for parsing through a format provider. Instead, each
participating type overloads its static Parse (and TryParse) method to accept a
format provider and, optionally, a NumberStyles or DateTimeStyles enum.

NumberStyles and DateTimeStyles control how parsing works: they let you specify
such things as whether parentheses or a currency symbol can appear in the input
string (by default, the answer to both questions is no). For example:

int error = int.Parse ("(2)"); // Exception thrown

int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
NumberStyles.AllowParentheses); // OK

decimal fivePointTwo = decimal.Parse ("£5.20", NumberStyles.Currency,
CultureInfo.GetCultureInfo ("en-GB"));

The next section lists all NumberStyles and DateTimeStyles members as well as the
default parsing rules for each type.
IFormatProvider and ICustomFormatter

All format providers implement IFormatProvider:

m
c
S
Q.
o
3
(]
-]
-
o
0

public interface IFormatProvider { object GetFormat (Type formatType); }

The purpose of this method is to provide indirection—this is what allows Culture
Info to defer to an appropriate NumberFormatInfo or DateTimeInfo object to do the
work.

By implementing IFormatProvider—along with ICustomFormatter—you can also
write your own format provider that works in conjunction with existing types.
ICustomFormatter defines a single method, as follows:

string Format (string format, object arg, IFormatProvider formatProvider);
The following custom format provider writes numbers as words:

public class WordyFormatProvider : IFormatProvider, ICustomFormatter

{

static readonly string[] _numberWords =

Formatting and Parsing | 301

"zero one two three four five six seven eight nine minus point".Split();
IFormatProvider _parent; // Allows consumers to chain format providers

public WordyFormatProvider () : this (CultureInfo.CurrentCulture) { }
public WordyFormatProvider (IFormatProvider parent) => _parent = parent;

public object GetFormat (Type formatType)

{
if (formatType == typeof (ICustomFormatter)) return this;
return null;

}

public string Format (string format, object arg, IFormatProvider prov)
{
// If it's not our format string, defer to the parent provider:
if (arg == null || format != "W")
return string.Format (_parent, "{0:" + format + "}", arg);

StringBuilder result = new StringBuilder();
string digitList = string.Format (CultureInfo.InvariantCulture,

"{0}", arg);
foreach (char digit in digitList)
{
int 1 = "0123456789-.".Index0f (digit),
StringComparison.InvariantCulture);
if (1 == -1) continue;
if (result.Length > 0) result.Append (' ');
result.Append (_numberWords[i]);
}
return result.ToString();
}

}

Notice that in the Format method, we used string.Format—with Invariant
Culture—to convert the input number to a string. It would have been simpler just
to call ToString() on arg, but then CurrentCulture would have been used instead.
The reason for needing the invariant culture is evident a few lines later:

int 1 = "0123456789-.".Index0f (digit),
StringComparison.InvariantCulture);

It’s critical here that the number string comprises only the characters 0123456789- .
and not any internationalized versions of these.

Here’s an example of using WordyFormatProvider:

double n = -123.45;
IFormatProvider fp = new WordyFormatProvider();
Console.WriteLine (string.Format (fp, "{0:C} in words is {0:W}", n));

// -$123.45 in words is minus one two three point four five

You can use custom format providers only in composite format strings.

302 | Chapter6:.NET Fundamentals

Standard Format Strings and Parsing Flags

The standard format strings control how a numeric type or DateTime/DateTime

Offset is converted to a string. There are two kinds of format strings:

Standard format strings

With these, you provide general guidance. A standard format string consists of
a single letter, followed, optionally, by a digit (whose meaning depends on the

letter). An example is "C" or "F2".

Custom format strings

With these, you micromanage every character with a template. An example is

"0:#.000E+00".

Custom format strings are unrelated to custom format providers.

Numeric Format Strings

Table 6-2 lists all standard numeric format strings.

Table 6-2. Standard numeric format strings

Letter Meaning Sample input

Gorg “General” 1.2345, "G"
0.00001, "G"
0.00001, "g"
1.2345, "G3"
12345, "G3"

F Fixed point 2345.678, "F2"
2345.6, "F2"

N Fixed point with 2345.678, "N2"
group separator 2345.6, "N2"
(“Numeric”)

D Pad with 123, "D5"
leading zeros 123, "D1"

Eore Force 56789, "E"
exponential 56789, "e"
notation 56789, "E2"

C Currency 1.2, "C"

1.2, "C4"

P Percent .503, "p"

.503, "po"

Result

1.2345
1E-05
le-05
1.23
1.23E04

2345.68
2345.60

2,345.68
2,345.60

00123
123

5.678900E+004
5.678900e+004
5.68E+004

$1.20
$1.2000

50.30%
50%

Notes

Switches to exponential notation
for small or large numbers.

G3 limits precision to three digits
in total (before + after point).

F2 rounds to two decimal places.

As above, with group (1,0005)
separator (details from format
provider).

m
c
S
Q.
o
3
[}
-]
-
o
0

For integral types only.
D5 pads left to five digits; does
not truncate.

Six-digit default precision.

C with no digit uses default
number of D.P. from format
provider.

Uses symbol and layout from
format provider.

Decimal places can optionally be
overridden.

Standard Format Strings and Parsing Flags |

303

Letter Meaning Sample input Result
Xorx Hexadecimal 47, "X" 2F
47, "x" 2f
47, "X4" 002F
Ror Round-trip if / 3f, "R" 0.333333343
G9/G17

Notes

X for uppercase hex digits; x for
lowercase hex digits.
Integrals only.

Use R for BigInteger, G17 for
double, or G9 for float.

Supplying no numeric format string (or a null or blank string) is equivalent to using
the "G" standard format string followed by no digit. This exhibits the following

behavior:

o Numbers smaller than 10~ or larger than the types precision are expressed in

exponential (scientific) notation.

o The two decimal places at the limit of float or double’s precision are rounded
away to mask the inaccuracies inherent in conversion to decimal from their

underlying binary form.

The automatic rounding just described is usually beneficial
and goes unnoticed. However, it can cause trouble if you need
to round-trip a number; in other words, convert it to a string

and back again (maybe repeatedly) while preserving value
equality. For this reason, the R, G17, and G9 format strings
exist to circumvent this implicit rounding.

Table 6-3 lists custom numeric format strings.

Table 6-3. Custom numeric format strings

Specifier Meaning Sample input Result Notes
Digit 12.345, ".##" 12.35 Limits digits after D.P.
placeholder 12.345, ".####" 12.345
0 Lero 12.345, ".00" 12.35 As above, but also pads with
placeholder 12.345, ".0000" 12.3450 zeros before and after D.P.
99, "000.00" 099.00
Decimal Indicates D.P.
point Actual symbol comes from
NumberFormatInfo.
, Group 1234, "#,### #4448 1,234 Symbol comes from Number
separator 1234, "0,000,000" 0,001,234 FormatInfo.
s Multiplier 1000000, "#," 1000 If comma is at end or before D.P.,
(as above) 1000000, "#,, 1 it acts as a multiplier—dividing
result by 1,000, 1,000,000, etc.
304 | Chapter6: .NET Fundamentals

Specifier Meaning Sample input Result Notes
% Percent 0.6, "00%" 60% First multiplies by 100
notation and then substitutes percent
symbol obtained from
NumberFormatInfo.
EOQ, €0, Exponent 1234, "OEO" 1E3
E+0, notation 1234, "OE+0" 1E+3
e+0 E-0, 1234, "0.00EG0" 1.23E03
e-0 1234, "0.00e00" 1.23e03
\ Literal 50, @"\#0" #50 Use in conjunction with an @
character prefix on the string—or use \ \.
quote
"xx''xx' Lliteralstring 50, "©@ '...'" 50 ...
quote
; Section 15, "#;(#);zero" 15 (If positive.)
separator
-5, "#;(#);zero" (5) (If negative.)
0, "#;(#);zero" zero (If zero.)
Any other Literal 35.2, "$0 . 00c" $35 . 20c
char
NumberStyles

Each numeric type defines a static Parse method that accepts a NumberStyles

argument. NumberStyles is a flags enum that lets you determine how the string is

AllowLeadingWhite
AllowLeadingSign
AllowParentheses
AllowThousands

read as it’s converted to a numeric type. It has the following combinable members: u
3

AllowTrailingWhite %

AllowTrailingSign ¢3D

AllowDecimalPoint 3

AllowExponent v

0

AllowCurrencySymbol AllowHexSpecifier

NumberStyles also defines these composite members:

None Integer

Float Number

HexNumber

Currency Any

Except for None, all composite values include AllowLeadingWwhite and Allow
TrailingWhite. Figure 6-1 shows their remaining makeup, with the most useful

three emphasized.

Standard Format Strings and Parsing Flags | 305

S
~
/S VLS /&
S S/ /5 /S
SIS/ /S ST/ S/S
S/ &/ S/ /S &5
LA/ [/ XS/ R
S/ S/ SIS/S/S/S
N/ N/ S/F//P
NAYATAVAVAVAAS
Integer v
Float v v v
Number VvV v
HexNumber v
currency VIV VIV IV [V
Any vIiVIVIVIVIVIV

Figure 6-1. Composite NumberStyles

When you call Parse without specifying any flags, the defaults illustrated in Fig-
ure 6-2 are applied.

Q>
3 & &/
& S/ /S S/
& SIS/ S
S SIS LEIETET B
& SISTSSIS/ST /S
S /DS S/E
& SIS/S/S/S/S/S/S
< NAVAVAVAVAVAVAS
Integral types Integer V4
double and float | o2
oubte oa AllowThousands v vIVIV
decimal Number v |V v IV

Figure 6-2. Default parsing flags for numeric types

If you don’t want the defaults shown in Figure 6-2, you must explicitly specify
NumberStyles:

int thousand = int.Parse ("3E8", NumberStyles.HexNumber);

int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
NumberStyles.AllowParentheses);

double aMillion = double.Parse ("1,000,000", NumberStyles.Any);

decimal threeMillion = decimal.Parse ("3e6", NumberStyles.Any);

decimal fivePointTwo = decimal.Parse ("$5.20", NumberStyles.Currency);

Because we didn't specify a format provider, this example works with your local
currency symbol, group separator, decimal point, and so on. The next example is
hardcoded to work with the euro sign and a blank group separator for currencies:

306 | Chapter6: .NET Fundamentals

NumberFormatInfo ni = new NumberFormatInfo();

ni.CurrencySymbol = "€";
ni.CurrencyGroupSeparator =

nony,
B

double million = double.Parse ("€1 000 000", NumberStyles.Currency, ni);

Date/Time Format Strings

Format strings for DateTime/DateTimeOffset can be divided into two groups based
on whether they honor culture and format provider settings. Table 6-4 lists those
that do; Table 6-5 lists those that don’t. The sample output comes from formatting
the following DateTime (with invariant culture, in the case of Table 6-4):

new DateTime (2000, 1, 2,

17, 18, 19);

Table 6-4. Culture-sensitive date/time format strings

Format string Meaning Sample output
d

Short date
D Long date
t Short time
T Long time
f Long date + short time
F Long date + long time
g Short date + short time
G (default) Short date + long time
m, M Month and day
y, Y Year and month

01/02/2000
Sunday, 02
17:18
17:18:19
Sunday, 02
Sunday, 02
01/02/2000
01/02/2000
02 January
January 200

January 2000

January 2000 17:18
January 2000 17:18:19

17:18

17:18:19

0

Table 6-5. Culture-insensitive date/time format strings

Format Meaning Sample output

string

o) Round- 2000-01-02T17:18:19.0000000
trippable

r,R RFC 1123 Sun, 02 Jan 2000 17:18:19
standard GMT

s Sortable; 2000-01-02T17:18:19
1S0 8601

u “Universal” 2000-01-02 17:18:19Z
sortable

U UTC Sunday, 02 January 2000

17:18:19

Notes

Will append time zone information
unless DateTimeKind is
Unspecified

You must explicitly convert to UTC with
DateTime.ToUniversalTime.

Compatible with text-based sorting.

Similar to above; must explicitly convert
to UTC.

Long date + short time, converted to
uTc.

Standard Format Strings and Parsing Flags |

307

m
c
S
Qo
o
3
[}
-]
-
o
0

The format strings "r", "R", and "u" emit a suffix that implies UTC; yet they don’t
automatically convert a local to a UTC DateTime (so you must do the conversion
yourself). Ironically, "U" automatically converts to UTC but doesn't write a time
zone suffix! In fact, "o" is the only format specifier in the group that can write an
unambiguous DateTime without intervention.

DateTimeFormatInfo also supports custom format strings: these are analogous to
numeric custom format strings. The list is extensive and is available online in
Microsoft’s documentation. Here’s an example of a custom format string:

yyyy-MM-dd HH:mm:ss

Parsing and misparsing DateTimes

Strings that put the month or day first are ambiguous and can easily be misparsed—
particularly if you have global customers. This is not a problem in user interface
controls, because the same settings are in force when parsing as when formatting.
But when writing to a file, for instance, day/month misparsing can be a real prob-
lem. There are two solutions:

o Always state the same explicit culture when formatting and parsing (e.g., invar-
iant culture).

o Format DateTime and DateTimeOffsets in a manner independent of culture.

The second approach is more robust—particularly if you choose a format that
puts the four-digit year first: such strings are much more difficult to misparse
by another party. Further, strings formatted with a standards-compliant year-first
format (such as "o0") can parse correctly alongside locally formatted strings—rather
like a “universal donor.” (Dates formatted with "s" or "u" have the further benefit of
being sortable.)

To illustrate, suppose that we generate a culture-insensitive DateTime string s as
follows:

string s = DateTime.Now.ToString ("o");

The "o" format string includes milliseconds in the output.
The following custom format string gives the same result as
"0" but without milliseconds:

yyyy-MM-ddTHH:mm:ss K

We can reparse this in two ways. ParseExact demands strict compliance with the
specified format string:

DateTime dtl = DateTime.ParseExact (s, "o", null);

(You can achieve a similar result with XmlConvert’s ToString and ToDateTime
methods.)

308 | Chapter6: .NET Fundamentals

https://oreil.ly/kUSCm

Parse, however, implicitly accepts both the "o" format and the CurrentCulture
format:

DateTime dt2 = DateTime.Parse (s);

This works with both DateTime and DateTimeOffset.

ParseExact is usually preferable if you know the format of
the string that youre parsing. It means that if the string is
incorrectly formatted, an exception will be thrown—which is
usually better than risking a misparsed date.

DateTimeStyles

DateTimeStyles is a flags enum that provides additional instructions when calling
Parse on a DateTime(Offset). Here are its members:

None,

AllowLeadingWhite, AllowTrailingWhite, AllowInnerWhite,
AssumelLocal, AssumeUniversal, AdjustToUniversal,
NoCurrentDateDefault, RoundTripKind

There is also a composite member, AllowWhiteSpaces:
AllowWhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite

The default is None. This means that extra whitespace is normally prohibited (white-
space that’s part of a standard DateTime pattern is exempt).

AssumeLocal and AssumeUniversal apply if the string doesn’t have a time zone
suffix (such as Z or +9:00). AdjustToUniversal still honors time zone suffixes but
then converts to UTC using the current regional settings.

If you parse a string comprising a time but no date, today’s date is applied by
default. If you apply the NoCurrentDateDefault flag, however, it instead uses 1st
January 0001.

m
c
S
Q.
o
3
(]
-]
-
o
0

Enum Format Strings

In “Enums” on page 140, we described formatting and parsing enum values.
Table 6-6 lists each format string and the result of applying it to the following
expression:

Console.WriteLine (System.ConsoleColor.Red.ToString (formatString));

Standard Format Strings and Parsing Flags | 309

Table 6-6. Enum format strings

Format string Meaning Sample output Notes

Gorg “General” Red Default

Forf Treat as though Flags Red Works on combined members even if
attribute were present enum has no Flags attribute

Dord Decimal value 12 Retrieves underlying integral value

Xorx Hexadecimal value 0000000C Retrieves underlying integral value

Other Conversion Mechanisms

In the previous two sections, we covered format providers— NET’s primary mech-
anism for formatting and parsing. Other important conversion mechanisms are
scattered through various types and namespaces. Some convert to and from string,
and some do other kinds of conversions. In this section, we discuss the following
topics:
 The Convert class and its functions:
— Real to integral conversions that round rather than truncate
— Parsing numbers in base 2, 8, and 16
— Dynamic conversions
— Base-64 translations
» XmlConvert and its role in formatting and parsing for XML

o Type converters and their role in formatting and parsing for designers and
XAML

 BitConverter, for binary conversions

Convert
NET calls the following types base types:

o bool, char, string, System.DateTime, and System.DateTimeOffset

o All the C# numeric types

The static Convert class defines methods for converting every base type to every
other base type. Unfortunately, most of these methods are useless: either they
throw exceptions or they are redundant alongside implicit casts. Among the clutter,
however, are some useful methods, listed in the following sections.

310 | Chapter 6: .NET Fundamentals

All base types (explicitly) implement IConvertible, which
defines methods for converting to every other base type. In
most cases, the implementation of each of these methods
simply calls a method in Convert. On rare occasions, it can
be useful to write a method that accepts an argument of type
IConvertible.

Rounding real to integral conversions

In Chapter 2, we saw how implicit and explicit casts allow you to convert between
numeric types. In summary:

o Implicit casts work for nonlossy conversions (e.g., int to double).

o Explicit casts are required for lossy conversions (e.g., double to int).

Casts are optimized for efficiency; hence, they truncate data that won't fit. This can
be a problem when converting from a real number to an integer, because often
you want to round rather than truncate. Convert’s numerical conversion methods
address just this issue—they always round:

double d = 3.9;
int 1 = Convert.ToInt32 (d); /] i ==

Convert uses bankers rounding, which snaps midpoint values to even integers (this
prevents positive or negative bias). If banker’s rounding is a problem, first call
Math.Round on the real number: this accepts an additional argument that allows you
to control midpoint rounding.

Parsing numbers in base 2, 8, and 16

Hidden among the To(integral-type) methods are overloads that parse numbers
in another base:

int thirty = Convert.ToInt32 ("1E", 16); // Parse in hexadecimal
uint five = Convert.ToUInt32 ("101", 2); // Parse in binary

The second argument specifies the base. It can be any base you like—as long as it’s 2,
8, 10, or 16!

Dynamic conversions

Occasionally, you need to convert from one type to another, but you don't know
what the types are until runtime. For this, the Convert class provides a ChangeType
method:

public static object ChangeType (object value, Type conversionType);

The source and target types must be one of the “base” types. ChangeType also
accepts an optional IFormatProvider argument. Here’s an example:

Type targetType = typeof (int);
object source = "42";

Other Conversion Mechanisms | 311

m
c
S
Q.
o
3
(]
-]
-+
o
n

object result = Convert.ChangeType (source, targetType);

Console.WriteLine (result); /] 42

Console.WriteLine (result.GetType()); // System.Int32
An example of when this might be useful is in writing a deserializer that can work
with multiple types. It can also convert any enum to its integral type (see “Enums”
on page 140).

A limitation of ChangeType is that you cannot specify a format string or parsing flag.

Base-64 conversions

Sometimes, you need to include binary data such as a bitmap within a text docu-
ment, such as an XML file or email message. Base 64 is a ubiquitous means of
encoding binary data as readable characters, using 64 characters from the ASCII set.

Convert’s ToBase64String method converts from a byte array to base 64; From
Base64String does the reverse.

XmlConvert

If youre dealing with data thats originated from or destined for an XML file,
XmlConvert (in the System.Xml namespace) provides the most suitable methods
for formatting and parsing. The methods in XmlConvert handle the nuances of
XML formatting without needing special format strings. For instance, true in XML
is “true” and not “True” The .NET BCL internally uses XmlConvert extensively.
XmlConvert is also good for general-purpose culture-independent serialization.

The formatting methods in XmlConvert are all provided as overloaded ToString
methods; the parsing methods are called ToBoolean, ToDateTime, and so on:

string s = XmlConvert.ToString (true); /] s = "true"
bool isTrue = XmlConvert.ToBoolean (s);

The methods that convert to and from DateTime accept an XmlDateTimeSerializa
tionMode argument. This is an enum with the following values:

Unspecified, Local, Utc, RoundtripKind

Local and Utc cause a conversion to take place when formatting (if the DateTime is
not already in that time zone). The time zone is then appended to the string:

2010-02-22T714:08:30.9375 // Unspecified
2010-02-22T14:07:30.9375+09:00 // Local
2010-02-22T705:08:30.9375Z /] Utc

Unspecified strips away any time-zone information embedded in the DateTime
(i.e., DateTimeKind) before formatting. RoundtripKind honors the DateTime’s Date
TimeKind—so when it’s reparsed, the resultant DateTime struct will be exactly as it
was originally.

312 | Chapter 6: .NET Fundamentals

Type Converters

Type converters are designed to format and parse in design-time environments.
They also parse values in Extensible Application Markup Language (XAML) docu-
ments—as used in Windows Presentation Foundation (WPF).

In .NET, there are more than 100 type converters—covering such things as colors,
images, and URIs. In contrast, format providers are implemented for only a handful
of simple value types.

Type converters typically parse strings in a variety of ways—without needing hints.
For instance, in a WPF application in Visual Studio, if you assign a control a
background color by typing "Beige" into the appropriate property window, Color’s
type converter figures out that you're referring to a color name and not an RGB
string or system color. This flexibility can sometimes make type converters useful in
contexts outside of designers and XAML documents.

All type converters subclass TypeConverter in System.ComponentModel. To obtain a
TypeConverter, call TypeDescriptor.GetConverter. The following obtains a Type
Converter for the Color type (in the System.Drawing namespace):

TypeConverter cc = TypeDescriptor.GetConverter (typeof (Color));

Among many other methods, TypeConverter defines methods to ConvertToString
and ConvertFromString. We can call these as follows:

Color beige = (Color) cc.ConvertFromString ("Beige");

Color purple = (Color) cc.ConvertFromString ("#800080");

Color window = (Color) cc.ConvertFromString ("Window");
By convention, type converters have names ending in Converter and are usually in
the same namespace as the type they’re converting. A type links to its converter via a
TypeConverterAttribute, allowing designers to pick up converters automatically.

Type converters can also provide design-time services such as generating standard
value lists for populating a drop-down list in a designer or assisting with code
serialization.

BitConverter

Most base types can be converted to a byte array, by calling BitConverter.GetBytes:

foreach (byte b in BitConverter.GetBytes (3.5))
Console.Write (b + " "); // ©0 0000 12 64

BitConverter also provides methods, such as ToDouble, for converting in the other
direction.

The decimal and DateTime(0ffset) types are not supported by BitConverter. You
can, however, convert a decimal to an int array by calling decimal.GetBits. To go
the other way around, decimal provides a constructor that accepts an int array.

Other Conversion Mechanisms | 313

m
c
S
Q.
o
3
(]
-]
-
o
0

In the case of DateTime, you can call ToBinary on an instance—this returns a long
(upon which you can then use BitConverter). The static DateTime.FromBinary
method does the reverse.

Globalization

There are two aspects to internationalizing an application: globalization and
localization.

Globalization is concerned with three tasks (in decreasing order of importance):

1. Making sure that your program doesn’t break when run in another culture
2. Respecting a local culture’s formatting rules; for instance, when displaying dates

3. Designing your program so that it picks up culture-specific data and strings
from satellite assemblies that you can later write and deploy

Localization means concluding that last task by writing satellite assemblies for
specific cultures. You can do this after writing your program (we cover the details in
“Resources and Satellite Assemblies” on page 752).

NET helps you with the second task by applying culture-specific rules by default.
We've already seen how calling ToString on a DateTime or number respects local
formatting rules. Unfortunately, this makes it easy to fail the first task and have
your program break because youre expecting dates or numbers to be formatted
according to an assumed culture. The solution, as we've seen, is either to specify
a culture (such as the invariant culture) when formatting and parsing or to use
culture-independent methods such as those in XmlConvert.

Globalization Checklist

We've already covered the important points in this chapter. Here’s a summary of the
essential work required:

« Understand Unicode and text encodings (see “Text Encodings and Unicode” on
page 281).

o Be mindful that methods such as ToUpper and ToLower on char and string are
culture sensitive: use ToUpperInvariant/ToLowerInvariant unless you want
culture sensitivity.

o Favor culture-independent formatting and parsing mechanisms for DateTime
and DateTimeOffsets such as ToString("o") and XmlConvert.

 Otherwise, specify a culture when formatting/parsing numbers or date/times
(unless you want local-culture behavior).

314 | Chapter 6: .NET Fundamentals

Testing

You can test against different cultures by reassigning Thread’s CurrentCulture
property (in System.Threading). The following changes the current culture to
Turkey:

Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo ("tr-TR");

Turkey is a particularly good test case because:

o "i".ToUpper() != "I"and "I".ToLower() != "i".
o Dates are formatted as day.month.year (note the period separator).

o The decimal point indicator is a comma instead of a period.

You can also experiment by changing the number and date formatting settings
in the Windows Control Panel: these are reflected in the default culture (Culture
Info.CurrentCulture).

CultureInfo.GetCultures() returns an array of all available cultures.

Thread and CultureInfo also support a CurrentUICulture
property. This is concerned more with localization, which we
cover in Chapter 17.

Working with Numbers

Conversions

We covered numeric conversions in previous chapters and sections; Table 6-7 sum-
marizes all of the options.

Table 6-7. Summary of numeric conversions

Task Functions Examples
e Parse double d = double.Parse ("3.5");
TryParse int 1;

bool ok = int.TryParse ("3", out i);

Parsing frombase 2,8, Convert.ToIntegral int 1 = Convert.ToInt32 ("1E", 16);
or 16

Formatting to ToString ("X") string hex = 45.ToString ("X");
hexadecimal

Lossless numeric Implicit cast int 1 = 23;

conversion double d = i;

Truncating numeric Explicit cast double d = 23.5;

conversion int 1 = (int) d;

Working with Numbers | 315

m
c
S
Q.
o
3
[}
-]
-
o
0

Task Functions Examples

Rounding numeric Convert.ToIntegral double d = 23.5;

conversion (real to int 1 = Convert.ToInt32 (d);
integral)

Math

Table 6-8 lists the key members of the static Math class. The trigonometric functions
accept arguments of type double; other methods such as Max are overloaded to
operate on all numeric types. The Math class also defines the mathematical constants
E (e) and PI.

Table 6-8. Methods in the static Math class

Category Methods

Rounding Round, Truncate, Floor, Ceiling
Maximum/minimum Max, Min

Absolute value and sign Abs, Sign

Square root Sqrt

Raising to a power Pow, Exp
Logarithm Log, Log10
Trigonometric Sin, Cos, Tan,

Sinh, Cosh, Tanh,
Asin, Acos, Atan

The Round method lets you specify the number of decimal places with which to
round as well as how to handle midpoints (away from zero, or with banker’s
rounding). Floor and Ceiling round to the nearest integer: Floor always rounds
down, and Ceiling always rounds up—even with negative numbers.

Max and Min accept only two arguments. If you have an array or sequence of
numbers, use the Max and Min extension methods in System.Ling.Enumerable.
BigInteger

The BigInteger struct is a specialized numeric type. It resides in the System.Numer
ics namespace and allows you to represent an arbitrarily large integer without any
loss of precision.

C# doesn’t provide native support for BigInteger, so there’s no way to represent
BigInteger literals. You can, however, implicitly convert from any other integral
type to a BigInteger:

BigInteger twentyFive = 25; // implicit conversion from integer

316 | Chapter6: .NET Fundamentals

To represent a bigger number, such as one googol (10'%°), you can use one of
BigInteger’s static methods, such as Pow (raise to the power):

BigInteger googol = BigInteger.Pow (10, 100);
Alternatively, you can Parse a string:

BigInteger googol = BigInteger.Parse ("1".PadRight (101, '0'));
Calling ToString() on this prints every digit:

Console.WriteLine (googol.ToString()); // 10000000000000000000000000000
000

You can perform potentially lossy conversions between BigInteger and the stan-
dard numeric types by using the explicit cast operator:

double g2 = (double) googol; // Explicit cast
BigInteger g3 = (BigInteger) g2; // Explicit cast
Console.WriteLine (g3);

The output from this demonstrates the loss of precision:
9999999999999999673361688041166912. . .

BigInteger overloads all the arithmetic operators including remainder (%) as well
as the comparison and equality operators.

You can also construct a BigInteger from a byte array. The following code gener-
ates a 32-byte random number suitable for cryptography and then assigns it to a
BigInteger:

// This uses the System.Security.Cryptography namespace:
RandomNumberGenerator rand = RandomNumberGenerator.Create();

byte[] bytes = new byte [32];

rand.GetBytes (bytes);

var bigRandomNumber = new BigInteger (bytes); // Convert to BigInteger

The advantage of storing such a number in a BigInteger over a byte array is that
you get value-type semantics. Calling ToByteArray converts a BigInteger back to a
byte array.

Half

The Half struct is a 16-bit floating point type and was introduced with .NET 5. Half
is intended mainly for interoperating with graphics card processors and does not
have native support in most CPUs.

You can convert between Half and float or double via an explicit cast:

Half h = (Half) 123.456;
Console.WriteLine (h); // 123.44 (note loss of precision)

There are no arithmetic operations defined for this type, so you must convert to
another type such as float or double in order to perform calculations.

Working with Numbers | 317

m
c
S
Q.
o
3
(]
-]
-+
o
n

Half has a range of -65500 to 65500:

Console.WriteLine (Half.Minvalue); // -65500
Console.WriteLine (Half.MaxValue); // 65500

Note the loss of precision at the maximum range:

Console.WriteLine ((Half)65500); // 65500

Console.WriteLine ((Half)65490); // 65500

Console.WriteLine ((Half)65480); // 65470
Complex

The Complex struct is another specialized numeric type that represents complex
numbers with real and imaginary components of type double. Complex resides in
the namespace (along with BigInteger).

To use Complex, instantiate the struct, specifying the real and imaginary values:

var c1 = new Complex (2, 3.5);
var c2 = new Complex (3, 0);

There are also implicit conversions from the standard numeric types.

The Complex struct exposes properties for the real and imaginary values as well as
the phase and magnitude:

Console.WriteLine (c1.Real); /] 2
Console.WriteLine (ci1.Imaginary); // 3.5
Console.WriteLine (c1.Phase); // 1.05165021254837

Console.WriteLine (cl.Magnitude); // 4.03112887414927

You can also construct a Complex number by specifying magnitude and phase:
Complex c3 = Complex.FromPolarCoordinates (1.3, 5);

The standard arithmetic operators are overloaded to work on Complex numbers:

Console.WriteLine (c1 + c2); // (5, 3.5)
Console.WriteLine (c1 * c2); // (6, 10.5)

The Complex struct exposes static methods for more advanced functions, including
the following:

o Trigonometric (Sin, Asin, Sinh, Tan, etc.)

o Logarithms and exponentiations

e Conjugate

318 | Chapter 6: .NET Fundamentals

Random

The Random class generates a pseudorandom sequence of random bytes, integers,
or doubles.

To use Random, you first instantiate it, optionally providing a seed to initiate the
random number series. Using the same seed guarantees the same series of numbers
(if run under the same CLR version), which is sometimes useful when you want
reproducibility:

Random r1 = new Random (1);

Random r2 = new Random (1);

Console.WriteLine (ri.Next (100) + ", " + ril.Next (100)); /] 24, 11
Console.WriteLine (r2.Next (100) + ", " + r2.Next (100)); /] 24, 11

If you don't want reproducibility, you can construct Random with no seed; in that
case, it uses the current system time to make one up.

Because the system clock has limited granularity, two Random
instances created close together (typically within 10 ms) will
yield the same sequence of values. A common trap is to
instantiate a new Random object every time you need a random
number rather than reusing the same object.

A good pattern is to declare a single static Random instance.
In multithreaded scenarios, however, this can cause trouble
because Random objects are not thread-safe. We describe a
workaround in “Thread-Local Storage” on page 898.

Calling Next(n) generates a random integer between 0 and n-1. NextDouble gener-
ates a random double between 0 and 1. NextBytes fills a byte array with random
values.

Random is not considered random enough for high-security applications such as
cryptography. For this, .NET provides a cryptographically strong random number
generator, in the System.Security.Cryptography namespace. Here’s how to use it:

var rand = System.Security.Cryptography.RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes); // Fill the byte array with random numbers.

The downside is that it’s less flexible: filling a byte array is the only means of
obtaining random numbers. To obtain an integer, you must use BitConverter:

byte[] bytes = new byte [4];

rand.GetBytes (bytes);
int 1 = BitConverter.ToInt32 (bytes, 0);

Working with Numbers | 319

m
c
S
Q.
o
3
(]
-]
-
o
0

BitOperations

The System.Numerics.BitOperations class (from .NET 6) exposes the following
methods to help with base-2 operations:

IsPow2
Returns true if a number is a power of 2

LeadingZeroCount/TrailingZeroCount
Returns the number of leading zeros, when formatted as a base-2 32-bit or
64-bit unsigned integer

Log2
Returns the integer base-2 log of an unsigned integer

PopCount
Returns the number of bits set to 1 in an unsigned integer

RotateLeft/RotateRight
Performs a bitwise left/right rotation

RoundUpToPower0f2
Rounds an unsigned integer up to the closest power of 2

Enums

In Chapter 3, we described C#’s enum type and showed how to combine members,
test equality, use logical operators, and perform conversions. .NET extends C#’s
support for enums through the System.Enum type. This type has two roles:

o Providing type unification for all enum types

o Defining static utility methods

Type unification means that you can implicitly cast any enum member to a
System.Enum instance:

Display (Nut.Macadamia); // Nut.Macadamia
Display (Size.Large); // Size.lLarge

void Display (Enum value)

{

Console.WriteLine (value.GetType().Name +

}

+ value.ToString());

enum Nut { Walnut, Hazelnut, Macadamia }
enum Size { Small, Medium, Large }

The static utility methods on System.Enum are primarily related to performing
conversions and obtaining lists of members.

320 | Chapter6:.NET Fundamentals

Enum Conversions

There are three ways to represent an enum value:

 As an enum member
o Asits underlying integral value

o Asastring

In this section, we describe how to convert between each.

Enum to integral conversions

Recall that an explicit cast converts between an enum member and its integral value.
An explicit cast is the correct approach if you know the enum type at compile time:

[Flags]

public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

int 1 = (int) BorderSides.Top; /] i==24

BorderSides side = (BorderSides) i; // side == BorderSides.Top

You can cast a System. Enum instance to its integral type in the same way. The trick is
to first cast to an object and then the integral type:

static int GetIntegralValue (Enum anyEnum)
{

return (int) (object) anyEnum;

}

This relies on you knowing the integral type: the method we just wrote would crash

if passed an enum whose integral type was long. To write a method that works with u
an enum of any integral type, you can take one of three approaches. The first is to call 2
Convert.ToDecimal: 3
)
static decimal GetAnyIntegralValue (Enum anyEnum) E
{ o
return Convert.ToDecimal (anyEnum);
3

This works because every integral type (including ulong) can be converted to
decimal without loss of information. The second approach is to call Enum.GetUnder
lyingType in order to obtain the enum’s integral type, and then call Convert.Change
Type:

static object GetBoxedIntegralValue (Enum anyEnum)

{
Type integralType = Enum.GetUnderlyingType (anyEnum.GetType());

return Convert.ChangeType (anyEnum, integralType);
}

This preserves the original integral type, as the following example shows:

Enums | 321

object result = GetBoxedIntegralValue (BorderSides.Top);
Console.WriteLine (result); /] 4
Console.WriteLine (result.GetType()); // System.Int32

Our GetBoxedIntegralType method in fact performs no value
conversion; rather, it reboxes the same value in another type.
It translates an integral value in enum-type clothing to an inte-
gral value in integral-type clothing. We describe this further in
“How Enums Work” on page 323.

The third approach is to call Format or ToString specifying the "d" or "D" format
string. This gives you the enum’s integral value as a string, and it is useful when
writing custom serialization formatters:

static string GetIntegralValueAsString (Enum anyEnum)
{

return anyEnum.ToString ("D"); // returns something like "4"
3
Integral to enum conversions
Enum.ToObject converts an integral value to an enum instance of the given type:

object bs = Enum.ToObject (typeof (BorderSides), 3);
Console.WriteLine (bs); // Left, Right

This is the dynamic equivalent of the following:
BorderSides bs = (BorderSides) 3;

ToObject is overloaded to accept all integral types as well as object. (The latter
works with any boxed integral type.)

String conversions

To convert an enum to a string, you can either call the static Enum.Format method or
call ToString on the instance. Each method accepts a format string, which can be
"G" for default formatting behavior, "D" to emit the underlying integral value as a
string, "X" for the same in hexadecimal, or "F" to format combined members of an
enum without the Flags attribute. We listed examples of these in “Standard Format
Strings and Parsing Flags” on page 303.

Enum.Parse converts a string to an enum. It accepts the enum type and a string that
can include multiple members:

BorderSides leftRight = (BorderSides) Enum.Parse (typeof (BorderSides),
"Left, Right");

An optional third argument lets you perform case-insensitive parsing. An Argument
Exception is thrown if the member is not found.

Enumerating Enum Values

Enum.GetValues returns an array comprising all members of a particular enum type:

322 | Chapter6:.NET Fundamentals

foreach (Enum value in Enum.GetValues (typeof (BorderSides)))
Console.WriteLine (value);

Composite members such as LeftRight = Left | Right are included, too.
Enum.GetNames performs the same function but returns an array of strings.

Internally, the CLR implements GetValues and GetNames by
reflecting over the fields in the enum’s type. The results are
cached for efficiency.

How Enums Work

The semantics of enums are enforced largely by the compiler. In the CLR, there’s
no runtime difference between an enum instance (when unboxed) and its underly-
ing integral value. Further, an enum definition in the CLR is merely a subtype
of System.Enum with static integral-type fields for each member. This makes the
ordinary use of an enum highly efficient, with a runtime cost matching that of
integral constants.

The downside of this strategy is that enums can provide static but not strong type
safety. We saw an example of this in Chapter 3:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

BorderSides b = BorderSides.Left;

b += 1234; // No error!
When the compiler is unable to perform validation (as in this example), there’s no
backup from the runtime to throw an exception.

What we said about there being no runtime difference between an enum instance
and its integral value might seem at odds with the following:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

Console.WriteLine (BorderSides.Right.ToString()); // Right
Console.WriteLine (BorderSides.Right.GetType().Name); // BorderSides

Given the nature of an enum instance at runtime, youd expect this to print 2 and
Int32! The reason for its behavior is down to some more compile-time trickery.
C# explicitly boxes an enum instance before calling its virtual methods—such as
ToString or GetType. And when an enum instance is boxed, it gains a runtime
wrapping that references its enum type.

The Guid Struct

The Guid struct represents a globally unique identifier: a 16-byte value that, when
generated, is almost certainly unique in the world. Guids are often used for keys
of various sorts, in applications and databases. There are 22 or 3.4 x 10% unique
Guids.

The Guid Struct | 323

m
c
S
Q.
o
3
(]
-]
-
o
0

The static Guid.NewGuid method generates a unique Guid:

Guid g = Guid.NewGuid ();
Console.WriteLine (g.ToString()); // 0d57629c-7d6e-4847-97cb-9e2fc25083fe

To instantiate an existing value, you use one of the constructors. The two most
useful constructors are:

public Guid (byte[] b); // Accepts a 16-byte array
public Guid (string g); /] Accepts a formatted string

When represented as a string, a Guid is formatted as a 32-digit hexadecimal number,
with optional hyphens after the 8th, 12th, 16th, and 20th digits. The whole string
can also be optionally wrapped in brackets or braces:

Guid g1 = new Guid ("{0d57629c-7d6e-4847-97cb-9e2fc25083fe}");
Guid g2 = new Guid ("0d57629c7d6e484797cb9e2fc25083fe");
Console.WriteLine (g1 == g2); // True

Being a struct, a Guid honors value-type semantics; hence, the equality operator
works in the preceding example.

The ToByteArray method converts a Guid to a byte array.

The static Guid.Empty property returns an empty Guid (all zeros). This is often used
in place of null.

Equality Comparison

Until now, we've assumed that the == and != operators are all there is to equality
comparison. The issue of equality, however, is more complex and subtler, some-
times requiring the use of additional methods and interfaces. This section explores
the standard C# and .NET protocols for equality, focusing particularly on two
questions:

o When are == and != adequate—and inadequate—for equality comparison, and
what are the alternatives?

o How and when should you customize a type’s equality logic?

But before exploring the details of equality protocols and how to customize them,
we first must look at the preliminary concept of value versus referential equality.

Value Versus Referential Equality
There are two kinds of equality:

Value equality
Two values are equivalent in some sense.

Referential equality
Two references refer to exactly the same object.

324 | Chapter 6: .NET Fundamentals

Unless overridden:

o Value types use value equality.

o Reference types use referential equality. (This is overridden with anonymous
types and records.)

Value types, in fact, can use only value equality (unless boxed). A simple demonstra-
tion of value equality is to compare two numbers:

int x =5, y = 5;
Console.WriteLine (x ==y); // True (by virtue of value equality)

A more elaborate demonstration is to compare two DateTimeOffset structs. The
following prints True because the two DateTimeOffsets refer to the same point in
time and so are considered equivalent:

var dtl = new DateTimeOffset (2010, 1, 1, 1, 1, 1, TimeSpan.FromHours(8));
var dt2 = new DateTimeOffset (2010, 1, 1, 2, 1, 1, TimeSpan.FromHours(9));
Console.WriteLine (dt1 == dt2); /] True

DateTimeOffset is a struct whose equality semantics have
been tweaked. By default, structs exhibit a special kind of
value equality called structural equality in which two values
are considered equal if all of their members are equal. (You
can see this by creating a struct and calling its Equals method;
more on this later.)

Reference types exhibit referential equality by default. In the following example, f1
and f2 are not equal, despite their objects having identical content:

class Foo { public int X; }

Foo f1 = new Foo { X = 5 };
Foo f2 = new Foo { X = 5 };
Console.WriteLine (f1 == f2); // False

m
c
S
Q.
o
3
(]
-]
-
o
0

In contrast, f3 and f1 are equal because they reference the same object:

Foo f3 = f1;

Console.WriteLine (f1 == f3); // True
Later in this section, we explain how you can customize reference types to exhibit
value equality. An example of this is the Uri class in the System namespace:

Uri uril = new Uri ("http://www.lingpad.net");

Uri uri2 = new Uri ("http://www.lingpad.net");
Console.WriteLine (uril == uri2); // True

The string class exhibits similar behavior:

var s1 = "http://www.lingpad.net";
var s2 = "http://" + "www.lingpad.net";
Console.WriteLine (s1 == s2); /] True

Equality Comparison | 325

Standard Equality Protocols

There are three standard protocols that types can implement for equality
comparison:

o The ==and != operators
o The virtual Equals method in object

o The IEquatable<T> interface

In addition, there are the pluggable protocols and the IStructuralEquatable inter-
face, which we describe in Chapter 7.

==and!=

We've already seen in many examples how the standard == and != operators per-
form equality/inequality comparisons. The subtleties with == and != arise because
they are operators; thus, they are statically resolved (in fact, they are implemented
as static functions). So, when you use == or !=, C# makes a compile-time decision
as to which type will perform the comparison, and no virtual behavior comes into
play. This is normally desirable. In the following example, the compiler hardwires
== to the int type because x and y are both int:

int x = 5;
int y = 5;
Console.WriteLine (x ==y); /] True

But in the next example, the compiler wires the == operator to the object type:

object x = 5;
object y = 5;
Console.WriteLine (x == y); // False
Because object is a class (and so a reference type), object’s == operator uses

referential equality to compare x and y. The result is false because x and y each
refer to different boxed objects on the heap.

The virtual Object.Equals method

To correctly equate x and y in the preceding example, we can use the virtual Equals
method. Equals is defined in System.0Object and so is available to all types:

object x = 5;
object y = 5;
Console.WriteLine (x.Equals (y)); /] True

Equals is resolved at runtime—according to the object’s actual type. In this case, it
calls Int32’s Equals method, which applies value equality to the operands, returning
true. With reference types, Equals performs referential equality comparison by
default; with structs, Equals performs structural comparison by calling Equals on
each of its fields.

326 | Chapter6: .NET Fundamentals

Why the Complexity?

You might wonder why the designers of C# didn't avoid the problem by making ==
virtual and thus functionally identical to Equals. There are three reasons for this:

o If the first operand is null, Equals fails with a NullReferenceException; a static
operator does not.

o Because the == operator is statically resolved, it executes extremely quickly.
This means that you can write computationally intensive code without pen-
alty—and without needing to learn another language such as C++.

o Sometimes it can be useful to have == and Equals apply different definitions of
equality. We describe this scenario later in this section.

Essentially, the complexity of the design reflects the complexity of the situation: the
concept of equality covers a multitude of scenarios.

Hence, Equals is suitable for equating two objects in a type-agnostic fashion. The
following method equates two objects of any type:

public static bool AreEqual (object objl, object obj2)
=> objl.Equals (obj2);

There is one case, however, in which this fails. If the first argument is null, you get
a NullReferenceException. Here’s the fix:

public static bool AreEqual (object objl, object obj2)

{
if (obj1 == null) return obj2 == null;
return objl.Equals (obj2);

}

Or, more succinctly:

m
c
S
Qo
o
3
[}
-]
-
o
n

public static bool AreEqual (object objl, object obj2)
=> obj1l == null ? obj2 == null : objl.Equals (obj2);

The static object.Equals method

The object class provides a static helper method that does the work of AreEqual in
the preceding example. Its name is Equals—just like the virtual method—but there’s
no conflict because it accepts two arguments:

public static bool Equals (object objA, object objB)

This provides a null-safe equality comparison algorithm for when the types are
unknown at compile time:

Equality Comparison | 327

object x = 3, y = 3;
Console.WriteLine (object.Equals (x, y)); /] True

x = null;
Console.WriteLine (object.Equals (x, y)); // False
y = null;

Console.WriteLine (object.Equals (x, y)); /] True

A useful application is when writing generic types. The following code will not
compile if object.Equals is replaced with the == or != operator:

class Test <T>

{
T _value;
public void SetValue (T newValue)
{
if (!object.Equals (newValue, _value))
{
_value = newValue;
OnValueChanged();
}
}
protected virtual void OnValueChanged() { ... }
}

Operators are prohibited here because the compiler cannot bind to the static
method of an unknown type.

A more elaborate way to implement this comparison is with
the EqualityComparer<T> class. This has the advantage of
preventing boxing:

if (!EqualityComparer<T>.Default.Equals (newValue, _value))

We discuss EqualityComparer<T> in more detail in Chapter 7
(see “Plugging in Equality and Order” on page 388).

The static object.ReferenceEquals method

Occasionally, you need to force referential equality comparison. The static
object.ReferenceEquals method does just that:

Widget wl = new Widget();

Widget w2 = new Widget();
Console.WriteLine (object.ReferenceEquals (w1, w2)); // False

class Widget { ... }

You might want to do this because it’s possible for Widget to override the virtual
Equals method such that wil.Equals(w2) would return true. Further, it’s possible
for Widget to overload the == operator so that wl==w2 would also return true. In
such cases, calling object.ReferenceEquals guarantees normal referential equality
semantics.

328 | Chapter 6:.NET Fundamentals

Another way to force referential equality comparison is to cast
the values to object and then apply the == operator.

The IEquatable<T> interface

A consequence of calling object.Equals is that it forces boxing on value types. This
is undesirable in highly performance-sensitive scenarios because boxing is relatively
expensive compared to the actual comparison. A solution was introduced in C# 2.0,
with the IEquatable<T> interface:

public interface IEquatable<T>

{
bool Equals (T other);

}

The idea is that IEquatable<T>, when implemented, gives the same result as calling
object’s virtual Equals method—but more quickly. Most basic .NET types imple-
ment IEquatable<T>. You can use IEquatable<T> as a constraint in a generic type:

class Test<T> where T : IEquatable<T>

{
public bool IskEqual (T a, T b)
{
return a.Equals (b); // No boxing with generic T
}
}

If we remove the generic constraint, the class would still compile, but a.Equals(b)
would instead bind to the slower object.Equals (slower assuming T was a value

type).

When Equals and == are not equal

We said earlier that it's sometimes useful for == and Equals to apply different
definitions of equality. For example:

double x = double.NaN;
Console.WriteLine (x == x); // False
Console.WriteLine (x.Equals (x)); /] True

The double type’s == operator enforces that one NaN can never equal anything
else—even another NaN. This is most natural from a mathematical perspective, and
it reflects the underlying CPU behavior. The Equals method, however, is obliged to
apply reflexive equality; in other words:

x.Equals (x) must always return true.

Collections and dictionaries rely on Equals behaving this way; otherwise, they
could not find an item they previously stored.

Having Equals and == apply different definitions of equality is actually quite rare
with value types. A more common scenario is with reference types; this happens

Equality Comparison | 329

m
c
S
Q.
o
3
(]
-]
-
o
(7]

when the author customizes Equals so that it performs value equality while leaving
== to perform (default) referential equality. The StringBuilder class does exactly
that:

var sbl = new StringBuilder ("foo");

var sb2 = new StringBuilder ("foo");

Console.WriteLine (sbl == sb2); /| False (referential equality)
Console.WriteLine (sbl.Equals (sb2)); // True (value equality)

Let’s now look at how to customize equality.

Equality and Custom Types

Recall default equality comparison behavior:

o Value types use value equality.

o Reference types use referential equality unless overridden (as is the case with
anonymous types and records).

Further:

o A structs Equals method applies structural value equality by default (i.e., it
compares each field in the struct).

Sometimes, it makes sense to override this behavior when writing a type. There are
two cases for doing so:

o To change the meaning of equality

« To speed up equality comparisons for structs

Changing the meaning of equality

Changing the meaning of equality makes sense when the default behavior of ==
and Equals is unnatural for your type and is not what a consumer would expect.
An example is DateTimeOffset, a struct with two private fields: a UTC DateTime
and a numeric integer offset. If you were writing this type, youd probably want
to ensure that equality comparisons considered only the UTC DateTime field and
not the offset field. Another example is numeric types that support NaN values such
as float and double. If you were implementing such types yourself, youd want to
ensure that NaN-comparison logic was supported in equality comparisons.

With classes, it's sometimes more natural to offer value equality as the default
instead of referential equality. This is often the case with small classes that hold a
simple piece of data, such as System.Uri (or System.String).

With records, the compiler automatically implements structural equality (by com-
paring each field). Sometimes, however, this will include fields that you don’t want
to compare, or objects that require special comparison logic, such as collections.

330 | Chapter6:.NET Fundamentals

The process of overriding equality with records is slightly different because records
follow a special pattern that’s designed to play well with its rules for inheritance.

Speeding up equality comparisons with structs

The default structural equality comparison algorithm for structs is relatively slow.
Taking over this process by overriding Equals can improve performance by a
factor of five. Overloading the == operator and implementing IEquatable<T> allows
unboxed equality comparisons, and this can speed things up by a factor of five
again.

Overriding equality semantics for reference types doesn’t ben-
efit performance. The default algorithm for referential equal-
ity comparison is already very fast because it simply compares
two 32- or 64-bit references.

There’s another, rather peculiar case for customizing equality, and that’s to improve
a struct’s hashing algorithm for better performance in a hashtable. This comes as
a result of the fact that equality comparison and hashing are joined at the hip. We
examine hashing in a moment.

How to override equality semantics

To override equality with classes or structs, here are the steps:

1. Override GetHashCode() and Equals().
2. (Optionally) overload !=and ==.
3. (Optionally) implement IEquatable<T>.

The process is different (and simpler) with records because the compiler already
overrides the equality methods and operators in line with its own special pattern. If
you want to intervene, you must conform to this pattern, which means writing an
Equals method with a signature like this:

record Test (int X, int Y)

{
public virtual bool Equals (Test t) => t != null && t.X == X && t.Y == V;

}

Notice that Equals is virtual (not override) and accepts the actual record type
(Test in this case, and not object). The compiler will recognize that your method
has the “correct” signature and will patch it in.

You must also override GetHashCode(), just as you would with classes or structs.
You don’t need to (and shouldn’t) overload !=and ==, or implement IEquatable<T>,
because this is already done for you.

Equality Comparison | 331

m
c
S
Q.
o
3
(]
-]
-
o
0

Overriding GetHashCode

It might seem odd that System.Object—with its small footprint of members—
defines a method with a specialized and narrow purpose. GetHashCode is a virtual
method in Object that fits this description; it exists primarily for the benefit of just
the following two types:

System.Collections.Hashtable
System.Collections.Generic.Dictionary<TKey,TValue>

These are hashtables—collections for which each element has a key used for storage
and retrieval. A hashtable applies a very specific strategy for efficiently allocating
elements based on their key. This requires that each key have an Int32 number, or
hash code. The hash code need not be unique for each key but should be as varied
as possible for good hashtable performance. Hashtables are considered important
enough that GetHashCode is defined in System.0Object—so that every type can emit
a hash code.

We describe hashtables in detail in Chapter 7.

Both reference and value types have default implementations of GetHashCode,
meaning that you don't need to override this method—unless you override Equals.
(And if you override GetHashCode, you will almost certainly want to also override
Equals.)

Here are the other rules for overriding object.GetHashCode:

o It must return the same value on two objects for which Equals returns true
(hence, GetHashCode and Equals are overridden together).

o It must not throw exceptions.

o It must return the same value if called repeatedly on the same object (unless the
object has changed).

For maximum performance in hashtables, you should write GetHashCode so as to
minimize the likelihood of two different values returning the same hashcode. This
gives rise to the third reason for overriding Equals and GetHashCode on structs,
which is to provide a more efficient hashing algorithm than the default. The default
implementation for structs is at the discretion of the runtime and can be based on
every field in the struct.

In contrast, the default GetHashCode implementation for classes is based on an
internal object token, which is unique for each instance in the CLR’s current
implementation.

332 | Chapter6: .NET Fundamentals

If an object’s hashcode changes after it’s been added as a key to
a dictionary, the object will no longer be accessible in the dic-
tionary. You can preempt this by basing hashcode calculations
on immutable fields.

We provide a complete example illustrating how to override GetHashCode shortly.

Overriding Equals

The axioms for object.Equals are as follows:

+ An object cannot equal null (unless it’s a nullable type).

o Equality is reflexive (an object equals itself).

o Equality is commutative (if a.Equals(b), then b.Equals(a)).

o Equality is transitive (if a.Equals(b) and b.Equals(c), then a.Equals(c)).

o Equality operations are repeatable and reliable (they don’t throw exceptions).

Overloading ==and !=

In addition to overriding Equals, you can optionally overload the equality and
inequality operators. This is nearly always done with structs because the conse-
quence of not doing so is that the == and != operators will simply not work on your

type.

With classes, there are two ways to proceed:

o Leave == and != alone—so that they apply referential equality.

e Overload == and != in line with Equals.

The first approach is most common with custom types—especially mutable types.
It ensures that your type follows the expectation that == and != should exhibit
referential equality with reference types, and this prevents confusing consumers. We
saw an example earlier:

m
c
S
Q.
o
3
(]
-]
-
o
0

var sbl = new StringBuilder ("foo");

var sb2 = new StringBuilder ("foo");

Console.WriteLine (sbl == sb2); // False (referential equality)
Console.WriteLine (sb1l.Equals (sb2)); // True (value equality)

The second approach makes sense with types for which a consumer would never

want referential equality. These are typically immutable—such as the string and
System.Ur1i classes—and are sometimes good candidates for structs.

Although it’s possible to overload != such that it means some-
thing other than ! (==), this is almost never done in practice,
except in cases such as comparing float.NaN.

Equality Comparison | 333

Implementing IEquatable<T>

For completeness, it’s also good to implement IEquatable<T> when overriding
Equals. Its results should always match those of the overridden objects Equals
method. Implementing IEquatable<T> comes at no programming cost if you struc-
ture your Equals method implementation as in the example that follows in a
moment.

An example: the Area struct

Imagine that we need a struct to represent an area whose width and height are
interchangeable. In other words, 5 x 10 is equal to 10 x 5. (Such a type would be
suitable in an algorithm that arranges rectangular shapes.)

Here’s the complete code:

public struct Area : IEquatable <Area>
{

public readonly int Measurel;

public readonly int Measure2;

public Area (int m1, int m2)
{
Measurel = Math.Min (m1, m2);
Measure2 = Math.Max (m1, m2);
}

public override bool Equals (object other)
=> other is Area a && Equals (a); // Calls method below

public bool Equals (Area other) // Implements IEquatable<Area>
=> Measurel == other.Measurel && Measure2 == other.Measure2;

public override int GetHashCode()
=> HashCode.Combine (Measurel, Measure2);

public static bool operator == (Area al, Area a2) => al.Equals (a2);
public static bool operator != (Area al, Area a2) => !al.Equals (a2);
From C# 10, you can shortcut the process with records. By

declaring this as a record struct, you can remove all the
code following the constructor.

In implementing GetHashCode, we used .NET’s HashCode . Combine function to pro-
duce a composite hashcode. (Before that function existed, a popular approach was
to multiply each value by some prime number and then add them together.)

Here’s a demonstration of the Area struct:

Area al = new Area (5, 10);
Area a2 = new Area (10, 5);

334 | Chapter6: .NET Fundamentals

Console.WriteLine (al.Equals (a2)); /] True
Console.WriteLine (al == a2); // True

Pluggable equality comparers

If you want a type to take on different equality semantics just for a specific scenario,
you can use a pluggable IEqualityComparer. This is particularly useful in conjunc-
tion with the standard collection classes, and we describe it in the following chapter,
in “Plugging in Equality and Order” on page 388.

Order Comparison

As well as defining standard protocols for equality, C# and .NET define two stan-
dard protocols for determining the order of one object relative to another:

o The IComparable interfaces (IComparable and IComparable<T>)

o The > and < operators

The IComparable interfaces are used by general-purpose sorting algorithms. In the
following example, the static Array.Sort method works because System.String
implements the IComparable interfaces:

string[] colors = { "Green", "Red", "Blue" };
Array.Sort (colors);
foreach (string c in colors) Console.Write (c + " "); // Blue Green Red

The < and > operators are more specialized, and they are intended mostly for
numeric types. Because they are statically resolved, they can translate to highly
efficient bytecode, suitable for computationally intensive algorithms.

.NET also provides pluggable ordering protocols, via the IComparer interfaces. We
describe these in the final section of Chapter 7.

m
c
S
Q.
o
3
(]
-]
-
o
0

IComparable

The IComparable interfaces are defined as follows:

public interface IComparable { int CompareTo (object other); }
public interface IComparable<in T> { int CompareTo (T other); }

The two interfaces represent the same functionality. With value types, the generic
type-safe interface is faster than the nongeneric interface. In both cases, the Compare
To method works as follows:

o If a comes after b, a.CompareTo(b) returns a positive number.

o If ais the same as b, a.CompareTo(b) returns 0.

o If a comes before b, a.CompareTo(b) returns a negative number.

For example:

Order Comparison | 335

Console.WriteLine ("Beck".CompareTo ("Anne")); /] 1
Console.WriteLine ("Beck".CompareTo ("Beck")); /] ©
Console.WriteLine ("Beck".CompareTo ("Chris")); /] -1

Most of the base types implement both IComparable interfaces. These interfaces are
also sometimes implemented when writing custom types. We provide an example
shortly.

IComparable versus Equals

Consider a type that both overrides Equals and implements the IComparable inter-
faces. Youd expect that when Equals returns true, CompareTo should return 0. And
youd be right. But here’s the catch:

When Equals returns false, CompareTo can return what it likes (as long as
it’s internally consistent)!

In other words, equality can be “fussier” than comparison, but not vice versa
(violate this and sorting algorithms will break). So, CompareTo can say, “All objects
are equal,” whereas Equals says, “But some are more equal than others!”

A great example of this is System.String. String’s Equals method and == operator
use ordinal comparison, which compares the Unicode point values of each charac-
ter. Its CompareTo method, however, uses a less fussy culture-dependent comparison.

On most computers, for instance, the strings “U” and “U” are different according to
Equals but the same according to CompareTo.

In Chapter 7, we discuss the pluggable ordering protocol, IComparer, which allows
you to specify an alternative ordering algorithm when sorting or instantiating a sor-
ted collection. A custom IComparer can further extend the gap between CompareTo
and Equals—a case-insensitive string comparer, for instance, will return 6 when
comparing "A" and "a". The reverse rule still applies, however: CompareTo can
never be fussier than Equals.

When implementing the IComparable interfaces in a custom
type, you can avoid running afoul of this rule by writing the
first line of CompareTo as follows:

if (Equals (other)) return 0;

After that, it can return what it likes, as long as it’s consistent!

<and >
Some types define < and > operators. For instance:
bool after2010 = DateTime.Now > new DateTime (2010, 1, 1);

You can expect the < and > operators, when implemented, to be functionally consis-
tent with the IComparable interfaces. This is standard practice across .NET.

It’s also standard practice to implement the IComparable interfaces whenever < and
> are overloaded, although the reverse is not true. In fact, most .NET types that

336 | Chapter6:.NET Fundamentals

implement IComparable do not overload < and >. This differs from the situation
with equality for which it’s normal to overload == when overriding Equals.

Typically, > and < are overloaded only when:
o A type has a strong intrinsic concept of “greater than” and “less than” (versus
IComparable’s broader concepts of “comes before” and “comes after”).
o There is only one way, or context, in which to perform the comparison.
o The result is invariant across cultures.
System.String doesn’t satisfy the last point: the results of string comparisons can
vary according to language. Hence, string doesn’t support the > and < operators:

bool error = "Beck" > "Anne"; // Compile-time error

Implementing the IComparable Interfaces

In the following struct representing a musical note, we implement the IComparable
interfaces as well as overloading the < and > operators. For completeness, we also
override Equals/GetHashCode and overload == and !=:

public struct Note : IComparable<Note>, IEquatable<Note>, IComparable
{

int _semitonesFromA;
public int SemitonesFromA { get { return _semitonesFromA; } }

public Note (int semitonesFromA)

{
_semitonesFromA = semitonesFromA;
}
public int CompareTo (Note other) // Generic IComparable<T>
{
if (Equals (other)) return 0; // Faill-safe check
return _semitonesFromA.CompareTo (other._semitonesFromA);
}
int IComparable.CompareTo (object other) // Nongeneric IComparable
{
if (!(other is Note))
throw new InvalidOperationException ("CompareTo: Not a note");
return CompareTo ((Note) other);
}

public static bool operator < (Note n1, Note n2)
=> nl.CompareTo (n2) < 0;

public static bool operator > (Note n1, Note n2)
=> nl.CompareTo (n2) > 0;

public bool Equals (Note other) // for IEquatable<Note>
=> _semitonesFromA == other._semitonesFromA;

Order Comparison | 337

m
c
S
Qo
o
3
(]
-]
-
o
0

public override bool Equals (object other)

if (!(other is Note)) return false;
return Equals ((Note) other);
}

public override int GetHashCode() => _semitonesFromA.GetHashCode();
public static bool operator == (Note n1, Note n2) => nl.Equals (n2);

public static bool operator != (Note n1, Note n2) => !(nl == n2);
}

Utility Classes

Console

The static Console class handles standard input/output for console-based applica-
tions. In a command-line (console) application, the input comes from the keyboard
via Read, ReadKey, and ReadLine, and the output goes to the text window via Write
and WriteLine. You can control the window’s position and dimensions with the
properties WindowLeft, WindowTop, WindowHeight, and WindowWidth. You can also
change the BackgroundColor and ForegroundColor properties and manipulate the
cursor with the CursorLeft, CursorTop, and CursorSize properties:

Console.WindowWidth = Console.LargestWindowWidth;
Console.ForegroundColor = ConsoleColor.Green;
Console.Write ("test... 50%");

Console.CursorLeft -= 3;

Console.Write ("90%"); /] test... 90%

The Write and WriteLine methods are overloaded to accept a composite format
string (see String.Format in “String and Text Handling” on page 271). How-
ever, neither method accepts a format provider, so youre stuck with CultureInfo
.CurrentCulture. (The workaround, of course, is to explicitly call string.Format.)

The Console.Out property returns a TextWriter. Passing Console.Out to a method
that expects a TextWriter is a useful way to get that method to write to the Console
for diagnostic purposes.

You can also redirect the Console’s input and output streams via the SetIn and
SetOut methods:

// First save existing output writer:
System.I0.TextWriter oldOut = Console.Out;

// Redirect the console's output to a file:
using (System.IO.TextWriter w = System.IO0.File.CreateText
("e:\\output.txt"))
{
Console.SetOut (w);

338 | Chapter6: .NET Fundamentals

Console.WriteLine ("Hello world");

}

// Restore standard console output
Console.SetOut (oldOut);

In Chapter 15, we describe how streams and text writers work.

When running WPF or Windows Forms applications under
Visual Studio, the Console’s output is automatically redirected
to Visual Studios output window (in debug mode). This
can make Console.Write useful for diagnostic purposes;
although in most cases, the Debug and Trace classes in the
System.Diagnostics namespace are more appropriate (see
Chapter 13).

Environment

The static System.Environment class provides a range of useful properties:

Files and folders
CurrentDirectory, SystemDirectory, CommandLine

Computer and operating system
MachineName, ProcessorCount, 0SVersion, NewLine

User logon
UserName, UserInteractive, UserDomainName

Diagnostics
TickCount, StackTrace, WorkingSet, Version

You can obtain additional folders by calling GetFolderPath; we describe this in
“File and Directory Operations” on page 699.

You can access OS environment variables (what you see when you type set at the
command prompt) with the following three methods: GetEnvironmentVariable,
GetEnvironmentVariables, and SetEnvironmentVariable.

The ExitCode property lets you set the return code—for when your program is
called from a command or batch file—and the FailFast method terminates a
program immediately, without performing cleanup.

The Environment class available to Windows Store apps offers just a limited number
of members (ProcessorCount, NewLine, and FailFast).
Process

The Process class in System.Diagnostics allows you to launch a new process. (In
Chapter 13, we describe how you can also use it to interact with other processes
running on the computer.)

Utility Classes | 339

m
c
S
Qo
o
3
(]
-]
-
o
0

For security reasons, the Process class is not available to
Windows Store apps, and you cannot start arbitrary processes.
Instead, you must use the Windows.System.Launcher class to
“launch” a URT or file to which you have access. For example,

Launcher.LaunchUriAsync (new Uri ("http://albahari.com"));

var file = await KnownFolders.DocumentsLibrary
.GetFileAsync ("foo.txt");
Launcher.LaunchFileAsync (file);

opens the URI or file, using whatever program is associated
with the URI scheme or file extension. Your program must be
in the foreground for this to work.

The static Process.Start method has several overloads; the simplest accepts a
simple filename with optional arguments:

Process.Start ("notepad.exe");
Process.Start ("notepad.exe", "e:\\file.txt");

The most flexible overload accepts a ProcessStartInfo instance. With this, you
can capture and redirect the launched process’s input, output, and error output (if
you leave UseShellExecute as false). The following captures the output of calling
ipconfig:

ProcessStartInfo psi = new ProcessStartInfo

{
FileName = "cmd.exe",
Arguments = "/c ipconfig /all",
RedirectStandardOutput = true,
UseShellExecute = false
1
Process p = Process.Start (psi);
string result = p.StandardOutput.ReadToEnd();
Console.WriteLine (result);

If you don't redirect output, Process.Start executes the program in parallel to the
caller. If you want to wait for the new process to complete, you can call WattForExit
on the Process object, with an optional timeout.

Redirecting output and error streams

With UseShellExecute false (the default in .NET), you can capture the standard
input, output, and error streams and then write/read these streams via the Standard
Input, StandardOutput, and StandardError properties.

A difficulty arises when you need to redirect both the standard output and standard
error streams, in that you can’t usually know in which order to read data from each
(because you don’'t know in advance how the data will be interleaved). The solution
is to read from both streams at once, which you can accomplish by reading from (at
least) one of the streams asynchronously. Here’s how to do this:

340 | Chapter6:.NET Fundamentals

o Handle the OutputDataReceived and/or ErrorDataReceived events. These
events fire when output/error data is received.

o Call BeginOutputReadLine and/or BeginErrorReadLine. This enables the

aforementioned events.

The following method runs an executable while capturing both the output and error
streams:

(string output, string errors) Run (string exePath, string args = "")
{
using var p = Process.Start (new ProcessStartInfo (exePath, args)
{

RedirectStandardOutput = true,
RedirectStandardError = true,
UseShellExecute = false,

b

var errors = new StringBuilder ();

// Read from the error stream asynchronously...
p.ErrorDataReceived += (sender, errorArgs) =>

{

if (errorArgs.Data != null) errors.AppendLine (errorArgs.Data);
b

p.BeginErrorReadLine ();

// ...while we read from the output stream synchronously:
string output = p.StandardOutput.ReadToEnd();

p.WaltForExit();
return (output, errors.ToString());

UseShellExecute

m
c
S
Qo
)
3
(]
-]
-
o
0

In NET 5+ (and .NET Core), the default for UseShellEx
ecute is false, whereas in .NET Framework, it was true.
Because this is a breaking change, it’s worth checking all calls
to Process.Start when porting code from .NET Framework.

The UseShellExecute flag changes how the CLR starts the process. With UseShell
Execute true, you can do the following:

o Specify a path to a file or document rather than an executable (resulting in the
operating system opening the file or document with its associated application)

o Specify a URL (resulting in the operating system navigating to that URL in the
default web browser)

o (Windows only) Specify a Verb (such as “runas’, to run the process with admin-
istrative elevation)

Utility Classes | 341

The drawback is that you cannot redirect the input or output streams. Should
you need to do so—while launching a file or document—a workaround is to set
UseShellExecute to false and invoke the command-line process (cmd.exe) with the
“/c” switch, as we did earlier when calling ipconfig.

Under Windows, UseShellExecute instructs the CLR to use the Windows ShellExe-
cute function instead of the CreateProcess function. Under Linux, UseShellExecute
instructs the CLR to call xdg-open, gnome-open, or kfmclient.

AppContext

The static System.AppContext class exposes two useful properties:

o BaseDirectory returns the folder in which the application started. This folder
is important for assembly resolution (finding and loading dependencies) and
locating configuration files (such as appsettings.json).

o TargetFrameworkName tells you the name and version of the NET runtime that
the application targets (as specified in its .runtimeconfig.json file). This might be
older than the runtime actually in use.

In addition, the AppContext class manages a global string-keyed dictionary of
Boolean values, intended to offer library writers a standard mechanism for allowing
consumers to switch new features on or off. This untyped approach makes sense
with experimental features that you want to keep undocumented to the majority of
users.

The consumer of a library requests that you enable a feature as follows:

AppContext.SetSwitch ("MyLibrary.SomeBreakingChange", true);
Code within that library can then check for that switch as follows:

bool isDefined, switchValue;
isDefined = AppContext.TryGetSwitch ("MyLibrary.SomeBreakingChange",
out switchvalue);

TryGetSwitch returns false if the switch is undefined; this lets you distinguish an
undefined switch from one whose value is set to false, should this be necessary.

Ironically, the design of TryGetSwitch illustrates how not to
write APIs. The out parameter is unnecessary, and the method
should instead return a nullable bool whose value is true,
false, or null for undefined. This would then enable the fol-
lowing use:

bool switchvalue = AppContext.GetSwitch ("...") ?? false;

342 | Chapter6: .NET Fundamentals

Collections

NET provides a standard set of types for storing and managing collections of
objects. These include resizable lists, linked lists, sorted and unsorted dictionaries,
and arrays. Of these, only arrays form part of the C# language; the remaining
collections are just classes you instantiate like any other.

We can divide the types in the NET BCL for collections into the following
categories:

o Interfaces that define standard collection protocols

 Ready-to-use collection classes (lists, dictionaries, etc.)

« Base classes for writing application-specific collections
This chapter covers each of these categories, with an additional section on the types
used in determining element equality and order.

The collection namespaces are as follows:

Namespace Contains

System.Collections Nongeneric collection classes and interfaces
System.Collections.Specialized Strongly typed nongeneric collection classes
System.Collections.Generic Generic collection classes and interfaces
System.Collections.ObjectModel Proxiesand bases for custom collections

System.Collections.Concurrent Thread-safe collections (see Chapter 22)

Enumeration

In computing, there are many different kinds of collections, ranging from simple
data structures, such as arrays or linked lists, to more complex ones, such as
red/black trees and hashtables. Although the internal implementation and external

343

characteristics of these data structures vary widely, the ability to traverse the con-
tents of the collection is an almost universal need. The .NET BCL supports this
need via a pair of interfaces (IEnumerable and IEnumerator, and their generic
counterparts) that allow different data structures to expose a common traversal APL
These are part of a larger set of collection interfaces illustrated in Figure 7-1.

IEnumerator O——————0 IEnumerator<T>

IEnumerable

:’ |Enumerable<T> Enumeration only

Nongeneric ; Generic

*|Collection<T> has added functionality

Figure 7-1. Collection interfaces

IEnumerable and IEnumerator

The IEnumerator interface defines the basic low-level protocol by which elements
in a collection are traversed—or enumerated—in a forward-only manner. Its decla-
ration is as follows:

public interface IEnumerator
{
bool MoveNext();
object Current { get; }
void Reset();

}

MoveNext advances the current element or “cursor” to the next position, returning
false if there are no more elements in the collection. Current returns the element
at the current position (usually cast from object to a more specific type). MoveNext
must be called before retrieving the first element—this is to allow for an empty
collection. The Reset method, if implemented, moves back to the start, allowing
the collection to be enumerated again. Reset exists mainly for Component Object
Model (COM) interoperability; calling it directly is generally avoided because it’s
not universally supported (and is unnecessary in that it’s usually just as easy to
instantiate a new enumerator).

Collections do not usually implement enumerators; instead, they provide enumera-
tors, via the interface IEnumerable:

344 | Chapter7: Collections

public interface IEnumerable

{

IEnumerator GetEnumerator();

}

By defining a single method retuning an enumerator, IEnumerable provides flexibil-
ity in that the iteration logic can be farmed out to another class. Moreover, it means
that several consumers can enumerate the collection at once without interfering
with one another. You can think of IEnumerable as “IEnumeratorProvider;” and it is
the most basic interface that collection classes implement.

The following example illustrates low-level use of IEnumerable and IEnumerator:
string s = "Hello";

// Because string implements IEnumerable, we can call GetEnumerator():
IEnumerator rator = s.GetEnumerator();

while (rator.MoveNext())
{

char ¢ = (char) rator.Current;
Console.Write (c + ".");

}

// Output: H.e.l.l.o.

However, it’s rare to call methods on enumerators directly in this manner because
C# provides a syntactic shortcut: the foreach statement. Here’s the same example
rewritten using foreach:

string s = "Hello"; // The String class implements IEnumerable

foreach (char c in s)
Console.Write (c + ".");

IEnumerable<T> and IEnumerator<T>

IEnumerator and IEnumerable are nearly always implemented in conjunction with
their extended generic versions:

public interface IEnumerator<T> : IEnumerator, IDisposable

{
T Current { get; }

}

public interface IEnumerable<T> : IEnumerable

{

IEnumerator<T> GetEnumerator();

3
By defining a typed version of Current and GetEnumerator, these interfaces
strengthen static type safety, avoid the overhead of boxing with value-type elements,
and are more convenient to the consumer. Arrays automatically implement IEnumer
able<T> (where T is the member type of the array).

Enumeration | 345

0
o
)
o
=
o
3
(7]

Thanks to the improved static type safety, calling the following method with an
array of characters will generate a compile-time error:

void Test (IEnumerable<int> numbers) { ... }

Its a standard practice for collection classes to publicly expose IEnumerable<T>
while “hiding” the nongeneric IEnumerable through explicit interface implementa-
tion. This is so that if you directly call GetEnumerator (), you get back the type-safe
generic IEnumerator<T>. There are times, though, when this rule is broken for
reasons of backward compatibility (generics did not exist prior to C# 2.0). A good
example is arrays—these must return the nongeneric (the nice way of putting it
is “classic”) IEnumerator to prevent breaking earlier code. To get a generic IEnumera
tor<T>, you must cast to expose the explicit interface:

int[] data = { 1, 2, 3 };
var rator = ((IEnumerable <int>)data).GetEnumerator();

Fortunately, you rarely need to write this sort of code, thanks to the foreach
statement.

IEnumerable<T> and IDisposable

IEnumerator<T> inherits from IDisposable. This allows enumerators to hold refer-
ences to resources such as database connections—and ensure that those resources
are released when enumeration is complete (or abandoned partway through). The
foreach statement recognizes this detail and translates the following:

foreach (var element in somethingEnumerable) { ... }
into the logical equivalent of this:

using (var rator = somethingEnumerable.GetEnumerator())
while (rator.MoveNext())
{

var element = rator.Current;

When to Use the Nongeneric Interfaces

Given the extra type safety of the generic collection interfaces such as IEnumera
ble<T>, the question arises: do you ever need to use the nongeneric IEnumerable (or
ICollection or IList)?

In the case of IEnumerable, you must implement this interface in conjunction with
IEnumerable<T>—because the latter derives from the former. However, it’s very rare
that you actually implement these interfaces from scratch: in nearly all cases, you
can take the higher-level approach of using iterator methods, Collection<T>, and
LINQ.

346 | Chapter7: Collections

So, what about as a consumer? In nearly all cases, you can manage entirely with the
generic interfaces. The nongeneric interfaces are still occasionally useful, though, in
their ability to provide type unification for collections across all element types. The
following method, for instance, counts elements in any collection recursively:

public static int Count (IEnumerable e)

{
int count = 0;
foreach (object element in e)

{

var subCollection = element as IEnumerable;
if (subCollection != null)

count += Count (subCollection);
else

count++;

}

return count;
3
Because C# offers covariance with generic interfaces, it might seem valid to have
this method instead accept IEnumerable<object>. This, however, would fail with
value-type elements and with legacy collections that dont implement IEnumera
ble<T>—an example is ControlCollection in Windows Forms.

(On a slight tangent, you might have noticed a potential bug in our example: cyclic
references will cause infinite recursion and crash the method. We could fix this most
easily with the use of a HashSet (see “HashSet<T> and SortedSet<T>" on page 370).

The using block ensures disposal—more on IDisposable in Chapter 12.

Implementing the Enumeration Interfaces
You might want to implement IEnumerable or IEnumerable<T> for one or more of
the following reasons:

o To support the foreach statement

o To interoperate with anything expecting a standard collection

o To meet the requirements of a more sophisticated collection interface

o To support collection initializers

To implement IEnumerable/IEnumerable<T>, you must provide an enumerator. You
can do this in one of three ways:

o If the class is “wrapping” another collection, by returning the wrapped collec-
tion’s enumerator
 Via an iterator using yield return

« By instantiating your own IEnumerator/IEnumerator<T>implementation

Enumeration | 347

0
o
o
o
=
(o)
3
(7]

You can also subclass an existing collection: Collection<T> is
designed just for this purpose (see “Customizable Collections
and Proxies” on page 378). Yet another approach is to use the
LINQ query operators, which we cover in Chapter 8.

Returning another collection’s enumerator is just a matter of calling GetEnumerator
on the inner collection. However, this is viable only in the simplest scenarios in
which the items in the inner collection are exactly what are required. A more
flexible approach is to write an iterator, using C#s yield return statement. An
iterator is a C# language feature that assists in writing collections, in the same way
the foreach statement assists in consuming collections. An iterator automatically
handles the implementation of IEnumerable and IEnumerator—or their generic
versions. Here’s a simple example:

public class MyCollection : IEnumerable

{
int[] data = { 1, 2, 3 };

public IEnumerator GetEnumerator()
{
foreach (int 1 in data)
yield return i;
}
}

Notice the “black magic”: GetEnumerator doesn't appear to return an enumerator at
all! Upon parsing the yield return statement, the compiler writes a hidden nested
enumerator class behind the scenes and then refactors GetEnumerator to instantiate
and return that class. Iterators are powerful and simple (and are used extensively in
the implementation of LINQ-to-Object’s standard query operators).

Keeping with this approach, we can also implement the generic interface IEnumera
ble<T>:

public class MyGenCollection : IEnumerable<int>

{
int[] data = { 1, 2, 3 };

public IEnumerator<int> GetEnumerator()

{
foreach (int 1 in data)
yield return i;

}

// Explicit implementation keeps it hidden:
IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();

}

Because IEnumerable<T> inherits from IEnumerable, we must implement both
the generic and the nongeneric versions of GetEnumerator. In accordance with
standard practice, we've implemented the nongeneric version explicitly. It can

348 | Chapter7: Collections

simply call the generic GetEnumerator because IEnumerator<T> inherits from
IEnumerator.

The class we've just written would be suitable as a basis from which to write a
more sophisticated collection. However, if we need nothing above a simple IEnumer
able<T> implementation, the yield return statement allows for an easier variation.
Rather than writing a class, you can move the iteration logic into a method return-
ing a generic IEnumerable<T> and let the compiler take care of the rest. Here’s an
example:

public static IEnumerable <int> GetSomeIntegers()

{
yield return 1;
yield return 2;
yield return 3;

3

Here’s our method in use:

foreach (int 1 in Test.GetSomelntegers())
Console.WriteLine (1);

The final approach in writing GetEnumerator is to write a class that implements
IEnumerator directly. This is exactly what the compiler does behind the scenes, in
resolving iterators. (Fortunately, it’s rare that you’ll need to go this far yourself.) The
following example defines a collection that’s hardcoded to contain the integers 1, 2,
and 3:

public class MyIntList : IEnumerable

{
int[] data = { 1, 2, 3 };

public IEnumerator GetEnumerator() => new Enumerator (this);

class Enumerator : IEnumerator // Define an inner class
{ // for the enumerator.
MyIntList collection;
int currentIndex = -1;
0
public Enumerator (MyIntList items) => this.collection = items; g
2
public object Current o
{ a
get
{
if (currentIndex == -1)
throw new InvalidOperationException ("Enumeration not started!");
if (currentIndex == collection.data.Length)
throw new InvalidOperationException ("Past end of list!");
return collection.data [currentIndex];
}
}

public bool MoveNext()

Enumeration | 349

}

}

{
if (currentIndex >= collection.data.Length - 1) return false;
return ++currentIndex < collection.data.Length;

}

public void Reset() => currentIndex = -1;

Implementing Reset is optional—you can instead throw a
NotSupportedException.

Note that the first call to MoveNext should move to the first (and not the second)
item in the list.

To get on par with an iterator in functionality, we must also implement IEnumera
tor<T>. Here’s an example with bounds checking omitted for brevity:

class MyIntList : IEnumerable<int>

}

int[] data = { 1, 2, 3 };

// The generic enumerator is compatible with both IEnumerable and
// IEnumerable<T>. We implement the nongeneric GetEnumerator method
// explicitly to avoid a naming conflict.

public IEnumerator<int> GetEnumerator() => new Enumerator(this);
IEnumerator IEnumerable.GetEnumerator() => new Enumerator(this);

class Enumerator : IEnumerator<int>

{

}

int currentIndex = -1;
MyIntList collection;

public Enumerator (MyIntList items) => this.items = items;

public int Current => collection.data [currentIndex];
object IEnumerator.Current => Current;

public bool MoveNext() => ++currentIndex < collection.data.Length;
public void Reset() => currentIndex = -1;
// Given we don't need a Dispose method, it's good practice to

// implement it explicitly, so it's hidden from the public interface.
void IDisposable.Dispose() {}

The example with generics is faster because IEnumerator<int>.Current doesn’t
require casting from int to object and so avoids the overhead of boxing.

350

Chapter 7: Collections

The ICollection and IList Interfaces

Although the enumeration interfaces provide a protocol for forward-only iteration
over a collection, they don't provide a mechanism to determine the size of the
collection, access a member by index, search, or modify the collection. For such
functionality, .NET defines the ICollection, IList, and IDictionary interfaces.
Each comes in both generic and nongeneric versions; however, the nongeneric
versions exist mostly for legacy support.

Figure 7-1 showed the inheritance hierarchy for these interfaces. The easiest way to
summarize them is as follows:

IEnumerable<T> (and IEnumerable)
Provides minimum functionality (enumeration only)

ICollection<T> (and ICollection)
Provides medium functionality (e.g., the Count property)

IList<T>/IDictionary<K,V> and their nongeneric versions
Provide maximum functionality (including “random” access by index/key)

Its rar