
ptg

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The C# Programming Language
Fourth Edition

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft® .NET Development Series

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

The C#
Programming
Language
Fourth Edition

Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth
Peter Golde

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the Unit-
ed States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

The C# programming language / Anders Hejlsberg ... [et al.]. — 4th ed.
 p. cm.
 Includes index.
 ISBN 978-0-321-74176-9 (hardcover : alk. paper)
 1. C# (Computer program language) I. Hejlsberg, Anders.
 QA76.73.C154H45 2010
 005.13’3—dc22
 2010032289

Copyright © 2011 Microsoft Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-74176-9
ISBN-10: 0-321-74176-5
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2010

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

v

Contents

Foreword xi
Preface xiii
About the Authors xv
About the Annotators xvii

1	 Introduction 1
1.1 Hello, World 3
1.2 Program Structure 4
1.3 Types and Variables 6
1.4 Expressions 13
1.5 Statements 16
1.6 Classes and Objects 21
1.7 Structs 50
1.8 Arrays 53
1.9 Interfaces 56
1.10 Enums 58
1.11 Delegates 60
1.12 Attributes 61

2 Lexical Structure 65
2.1 Programs 65
2.2 Grammars 65
2.3 Lexical Analysis 67
2.4 Tokens 71
2.5 Preprocessing Directives 85

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

vi

Contents

3 Basic Concepts 99
3.1 Application Start-up 99
3.2 Application Termination 100
3.3 Declarations 101
3.4 Members 105
3.5 Member Access 107
3.6 Signatures and Overloading 117
3.7 Scopes 120
3.8 Namespace and Type Names 127
3.9 Automatic Memory Management 132
3.10 Execution Order 137

4 Types 139
4.1 Value Types 140
4.2 Reference Types 152
4.3 Boxing and Unboxing 155
4.4 Constructed Types 160
4.5 Type Parameters 164
4.6 Expression Tree Types 165
4.7 The dynamic Type 166

5 Variables 169
5.1 Variable Categories 169
5.2 Default Values 175
5.3 Definite Assignment 176
5.4 Variable References 192
5.5 Atomicity of Variable References 193

6 Conversions 195
6.1 Implicit Conversions 196
6.2 Explicit Conversions 204
6.3 Standard Conversions 213
6.4 User-Defined Conversions 214
6.5 Anonymous Function Conversions 219
6.6 Method Group Conversions 226

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

vii

Contents

7 Expressions 231
7.1 Expression Classifications 231
7.2 Static and Dynamic Binding 234
7.3 Operators 238
7.4 Member Lookup 247
7.5 Function Members 250
7.6 Primary Expressions 278
7.7 Unary Operators 326
7.8 Arithmetic Operators 331
7.9 Shift Operators 343
7.10 Relational and Type-Testing Operators 344
7.11 Logical Operators 355
7.12 Conditional Logical Operators 358
7.13 The Null Coalescing Operator 360
7.14 Conditional Operator 361
7.15 Anonymous Function Expressions 364
7.16 Query Expressions 373
7.17 Assignment Operators 389
7.18 Expression 395
7.19 Constant Expressions 395
7.20 Boolean Expressions 397

8 Statements 399
8.1 End Points and Reachability 400
8.2 Blocks 402
8.3 The Empty Statement 404
8.4 Labeled Statements 406
8.5 Declaration Statements 407
8.6 Expression Statements 412
8.7 Selection Statements 413
8.8 Iteration Statements 420
8.9 Jump Statements 429
8.10 The try Statement 438
8.11 The checked and unchecked Statements 443
8.12 The lock Statement 443
8.13 The using Statement 445
8.14 The yield Statement 449

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

viii

Contents

9 Namespaces 453
9.1 Compilation Units 453
9.2 Namespace Declarations 454
9.3 Extern Aliases 456
9.4 Using Directives 457
9.5 Namespace Members 463
9.6 Type Declarations 464
9.7 Namespace Alias Qualifiers 464

10 Classes 467
10.1 Class Declarations 467
10.2 Partial Types 481
10.3 Class Members 490
10.4 Constants 506
10.5 Fields 509
10.6 Methods 520
10.7 Properties 545
10.8 Events 559
10.9 Indexers 566
10.10 Operators 571
10.11 Instance Constructors 579
10.12 Static Constructors 586
10.13 Destructors 589
10.14 Iterators 592

11 Structs 607
11.1 Struct Declarations 608
11.2 Struct Members 609
11.3 Class and Struct Differences 610
11.4 Struct Examples 619

12 Arrays 625
12.1 Array Types 625
12.2 Array Creation 628
12.3 Array Element Access 628

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

ix

Contents

12.4 Array Members 628
12.5 Array Covariance 629
12.6 Array Initializers 630

13 Interfaces 633
13.1 Interface Declarations 633
13.2 Interface Members 639
13.3 Fully Qualified Interface Member Names 645
13.4 Interface Implementations 645

14 Enums 663
14.1 Enum Declarations 663
14.2 Enum Modifiers 664
14.3 Enum Members 665
14.4 The System.Enum Type 668
14.5 Enum Values and Operations 668

15 Delegates 671
15.1 Delegate Declarations 672
15.2 Delegate Compatibility 676
15.3 Delegate Instantiation 676
15.4 Delegate Invocation 677

16 Exceptions 681
16.1 Causes of Exceptions 683
16.2 The System.Exception Class 683
16.3 How Exceptions Are Handled 684
16.4 Common Exception Classes 685

17 Attributes 687
17.1 Attribute Classes 688
17.2 Attribute Specification 692
17.3 Attribute Instances 698
17.4 Reserved Attributes 699
17.5 Attributes for Interoperation 707

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

x

Contents

18 Unsafe Code 709
18.1 Unsafe Contexts 710
18.2 Pointer Types 713
18.3 Fixed and Moveable Variables 716
18.4 Pointer Conversions 717
18.5 Pointers in Expressions 720
18.6 The fixed Statement 728
18.7 Fixed-Size Buffers 733
18.8 Stack Allocation 736
18.9 Dynamic Memory Allocation 738

A Documentation Comments 741
A.1 Introduction 741
A.2 Recommended Tags 743
A.3 Processing the Documentation File 754
A.4 An Example 760

B Grammar 767
B.1 	Lexical Grammar 767
B.2 Syntactic Grammar 777
B.3 Grammar Extensions for Unsafe Code 809

C References 813

Index 815

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

xi

Foreword

It’s been ten years since the launch of .NET in the summer of 2000. For me, the significance
of .NET was the one-two combination of managed code for local execution and XML mes-
saging for program-to-program communication. What wasn’t obvious to me at the time
was how important C# would become.

From the inception of .NET, C# has provided the primary lens used by developers for
understanding and interacting with .NET. Ask the average .NET developer the difference
between a value type and a reference type, and he or she will quickly say, “Struct versus
class,” not “Types that derive from System.ValueType versus those that don’t.” Why?
Because people use languages—not APIs—to communicate their ideas and intention to the
runtime and, more importantly, to each other.

It’s hard to overstate how important having a great language has been to the success of the
platform at large. C# was initially important to establish the baseline for how people think
about .NET. It’s been even more important as .NET has evolved, as features such as itera-
tors and true closures (also known as anonymous methods) were introduced to developers
as purely language features implemented by the C# compiler, not as features native to the
platform. The fact that C# is a vital center of innovation for .NET became even more appar-
ent with C# 3.0, with the introduction of standardized query operators, compact lambda
expressions, extension methods, and runtime access to expression trees—again, all driven
by development of the language and compiler. The most significant feature in C# 4.0,
dynamic invocation, is also largely a feature of the language and compiler rather than
changes to the CLR itself.

It’s difficult to talk about C# without also talking about its inventor and constant shepherd,
Anders Hejlsberg. I had the distinct pleasure of participating in the recurring C# design
meetings for a few months during the C# 3.0 design cycle, and it was enlightening watch-
ing Anders at work. His instinct for knowing what developers will and will not like is truly

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

xii

Foreword

world-class—yet at the same time, Anders is extremely inclusive of his design team and
manages to get the best design possible.

With C# 3.0 in particular, Anders had an uncanny ability to take key ideas from the func-
tional language community and make them accessible to a very broad audience. This is no
trivial feat. Guy Steele once said of Java, “We were not out to win over the Lisp program-
mers; we were after the C++ programmers. We managed to drag a lot of them about half-
way to Lisp.” When I look at C# 3.0, I think C# has managed to drag at least one C++
developer (me) most of the rest of the way. C# 4.0 takes the next step toward Lisp (and
JavaScript, Python, Ruby, et al.) by adding the ability to cleanly write programs that don’t
rely on static type definitions.

As good as C# is, people still need a document written in both natural language (English,
in this case) and some formalism (BNF) to grok the subtleties and to ensure that we’re all
speaking the same C#. The book you hold in your hands is that document. Based on my
own experience, I can safely say that every .NET developer who reads it will have at least
one “aha” moment and will be a better developer for it.

Enjoy.

Don Box
Redmond, Washington

May 2010

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

xiii

Preface

The C# project started more than 12 years ago, in December 1998, with the goal to create a
simple, modern, object-oriented, and type-safe programming language for the new and
yet-to-be-named .NET platform. Since then, C# has come a long way. The language is now
in use by more than a million programmers and has been released in four versions, each
with several major new features added.

This book, too, is in its fourth edition. It provides a complete technical specification of the
C# programming language. This latest edition includes two kinds of new material not
found in previous versions. Most notably, of course, it has been updated to cover the new
features of C# 4.0, including dynamic binding, named and optional parameters, and cova-
riant and contravariant generic types. The overarching theme for this revision has been to
open up C# more to interaction with objects outside of the .NET environment. Just as LINQ
in C# 3.0 gave a language-integrated feel to code used to access external data sources, so
the dynamic binding of C# 4.0 makes the interaction with objects from, for example,
dynamic programming languages such as Python, Ruby, and JavaScript feel native to C#.

The previous edition of this book introduced the notion of annotations by well-known C#
experts. We have received consistently enthusiastic feedback about this feature, and we are
extremely pleased to be able to offer a new round of deep and entertaining insights, guide-
lines, background, and perspective from both old and new annotators throughout the
book. We are very happy to see the annotations continue to complement the core material
and help the C# features spring to life.

Many people have been involved in the creation of the C# language. The language design
team for C# 1.0 consisted of Anders Hejlsberg, Scott Wiltamuth, Peter Golde, Peter Sollich,
and Eric Gunnerson. For C# 2.0, the language design team consisted of Anders Hejlsberg,
Peter Golde, Peter Hallam, Shon Katzenberger, Todd Proebsting, and Anson Horton.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

xiv

Preface

Furthermore, the design and implementation of generics in C# and the .NET Common
Language Runtime is based on the “Gyro” prototype built by Don Syme and Andrew
Kennedy of Microsoft Research. C# 3.0 was designed by Anders Hejlsberg, Erik Meijer,
Matt Warren, Mads Torgersen, Peter Hallam, and Dinesh Kulkarni. On the design team for
C# 4.0 were Anders Hejlsberg, Matt Warren, Mads Torgersen, Eric Lippert, Jim Hugunin,
Lucian Wischik, and Neal Gafter.

It is impossible to acknowledge the many people who have influenced the design of C#,
but we are nonetheless grateful to all of them. Nothing good gets designed in a vacuum,
and the constant feedback we receive from our large and enthusiastic community of devel-
opers is invaluable.

C# has been and continues to be one of the most challenging and exciting projects on which
we’ve worked. We hope you enjoy using C# as much as we enjoy creating it.

Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth

Peter Golde
Seattle, Washington

September 2010

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

xv

About the Authors

Anders Hejlsberg is a programming legend. He is the architect of the C# language and a
Microsoft Technical Fellow. He joined Microsoft Corporation in 1996, following a 13-year
career at Borland, where he was the chief architect of Delphi and Turbo Pascal.

Mads Torgersen is the program manager for the C# language at Microsoft Corporation,
where he runs the day-to-day language design process and maintains the language
specification.

Scott Wiltamuth is director of program management for the Visual Studio Professional
team at Microsoft Corporation. At Microsoft, he has worked on a wide range of develop-
ment tools, including OLE Automation, Visual Basic, Visual Basic for Applications, VBScript,
JScript, Visual J++, and Visual C#.

Peter Golde was the lead developer of the original Microsoft C# compiler. As the primary
Microsoft representative on the ECMA committee that standardized C#, he led the imple-
mentation of the compiler and worked on the language design. He is currently an architect
at Microsoft Corporation working on compilers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

xvii

About the Annotators

Brad Abrams was a founding member of both the Common Language Runtime and the
.NET Framework teams at Microsoft Corporation, where he was most recently the director
of program management for WCF and WF. Brad has been designing parts of the .NET
Framework since 1998, when he started his framework design career building the BCL (Base
Class Library) that ships as a core part of the .NET Framework. Brad graduated from North
Carolina State University in 1997 with a BS in computer science. Brad’s publications include:
Framework Design Guidelines, Second Edition (Addison-Wesley, 2009), and .NET Framework
Standard Library Annotated Reference (Volumes 1 and 2) (Addison-Wesley, 2006).

Joseph Albahari is coauthor of C# 4.0 in a Nutshell (O’Reilly, 2007), the C# 3.0 Pocket Refer-
ence (O’Reilly, 2008), and the LINQ Pocket Reference (O’Reilly, 2008). He has 17 years of expe-
rience as a senior developer and software architect in the health, education, and
telecommunication industries, and is the author of LINQPad, the utility for interactively
querying databases in LINQ.

Krzysztof Cwalina is a principal architect on the .NET Framework team at Microsoft. He
started his career at Microsoft designing APIs for the first release of the Framework. Cur-
rently, he is leading the effort to develop, promote, and apply design and architectural
standards to the development of the .NET Framework. He is a coauthor of Framework
Design Guidelines (Addison-Wesley, 2005). Reach him at his blog at http://blogs.msdn.com/
kcwalina.

Jesse Liberty (“Silverlight Geek”) is a senior program manager at Microsoft and the author
of numerous best-selling programming books and dozens of popular articles. He’s also a
frequent speaker at events world-wide. His blog, http://JesseLiberty.com, is required read-
ing for Silverlight, WPF, and Windows Phone 7 developers. Jesse has more than two
decades of real-world programming experience, including stints as a vice president at Citi
and as a distinguished software engineer at AT&T. He can be reached through his blog and
followed at @JesseLiberty.

www.it-ebooks.info

http://blogs.msdn.com/kcwalina
http://blogs.msdn.com/kcwalina
http://JesseLiberty.com
http://www.it-ebooks.info/

ptg

xviii

About the Annotators

Eric Lippert is a senior developer on the C# compiler team at Microsoft. He has worked
on the design and implementation of the Visual Basic, VBScript, JScript, and C# languages
and Visual Studio Tools For Office. His blog about all those topics and more can be found
at http://blogs.msdn.com/EricLippert.

Christian Nagel is a Microsoft regional director and MVP. He is the author of several
books, including Professional C# 4 with .NET 4 (Wrox, 2010) and Enterprise Services with the
.NET Framework (Addison-Wesley, 2005). As founder of CN innovation and associate of
thinktecture, he teaches and coaches software developers on various Microsoft .NET tech-
nologies. Christian can be reached at http://www.cninnovation.com.

Vladimir Reshetnikov is a Microsoft MVP for Visual C#. He has more than eight years of
software development experience, and about six years of experience in Microsoft .NET and
C#. He can be reached at his blog http://nikov-thoughts.blogspot.com.

Marek Safar is the lead developer of the Novell C# compiler team. He has been working
on most of the features of Mono C# compiler over the past five years. Reach him at his blog
at http://mareksafar.blogspot.com.

Chris Sells is a program manager for the Business Platform Division (aka the SQL Server
division) of Microsoft Corporation. He's written several books, including Programming
WPF (O’Reilly, 2007), Windows Forms 2.0 Programming (Addison-Wesley, 2006), and ATL
Internals (Addison-Wesley, 1999). In his free time, Chris hosts various conferences and
makes a pest of himself on Microsoft internal product team discussion lists. More informa-
tion about Chris, and his various projects, is available at http://www.sellsbrothers.com.

Peter Sestoft is a professor of software development at the IT University of Copenhagen,
Denmark. He was a member of the ECMA International C# standardization committee
from 2003 through 2006, and is the author of C# Precisely (MIT Press, 2004) and Java Pre-
cisely (MIT Press, 2005). Find him at http://www.itu.dk/people/sestoft.

Jon Skeet is the author of C# in Depth (Manning, 2010) and a C# MVP. He works for
Google in London, writing and speaking about C# in his leisure time. His blog is at
http://msmvps.com/jon.skeet —or you can find him answering questions most days on
Stack Overflow (http:// stackoverflow.com).

Bill Wagner is the founder of SRT Solutions, a Microsoft regional director, and a C# MVP.
He spent the overwhelming majority of his professional career between curly braces. He
is the author of Effective C# (Addison-Wesley, 2005) and More Effective C# (Addison- Wesley,
2009), a former C# columnist for Visual Studio Magazine, and a contributor to the C# Devel-
oper Center on MSDN. You can keep up with his evolving thoughts on C# and other top-
ics at http://srtsolutions.com/blogs/billwagner.

www.it-ebooks.info

http://www.cninnovation.com
http://nikov-thoughts.blogspot.com
http://www.sellsbrothers.com
http://www.itu.dk/people/sestoft
http://msmvps.com/jon.skeet
http://stackoverflow.com
http://mareksafar.blogspot.com
http://srtsolutions.com/blogs/billwagner
http://blogs.msdn.com/EricLippert
http://www.it-ebooks.info/

ptg

1

Introduction1.

C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe program-
ming language. C# has its roots in the C family of languages and will be immediately
familiar to C, C++, and Java programmers. C# is standardized by ECMA International as
the ECMA-334 standard and by ISO/IEC as the ISO/IEC 23270 standard. Microsoft’s C#
compiler for the .NET Framework is a conforming implementation of both of these
standards.

C# is an object-oriented language, but C# further includes support for component-oriented
programming. Contemporary software design increasingly relies on software components
in the form of self-contained and self-describing packages of functionality. Key to such
components is that they present a programming model with properties, methods, and
events; they have attributes that provide declarative information about the component;
and they incorporate their own documentation. C# provides language constructs to directly
support these concepts, making C# a very natural language in which to create and use
software components.

Several C# features aid in the construction of robust and durable applications: Garbage
collection automatically reclaims memory occupied by unused objects; exception handling
provides a structured and extensible approach to error detection and recovery; and the
type-safe design of the language makes it impossible to read from uninitialized variables,
to index arrays beyond their bounds, or to perform unchecked type casts.

C# has a unified type system. All C# types, including primitive types such as int and
double, inherit from a single root object type. Thus all types share a set of common opera-
tions, and values of any type can be stored, transported, and operated upon in a consistent
manner. Furthermore, C# supports both user-defined reference types and value types,
allowing dynamic allocation of objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in a compatible manner,
much emphasis has been placed on versioning in C#’s design. Many programming lan-
guages pay little attention to this issue. As a result, programs written in those languages
break more often than necessary when newer versions of dependent libraries are intro-
duced. Aspects of C#’s design that were directly influenced by versioning considerations
include the separate virtual and override modifiers, the rules for method overload reso-
lution, and support for explicit interface member declarations.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

2

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The rest of this chapter describes the essential features of the C# language. Although later
chapters describe rules and exceptions in a detail-oriented and sometimes mathematical
manner, this chapter strives for clarity and brevity at the expense of completeness. The
intent is to provide the reader with an introduction to the language that will facilitate the
writing of early programs and the reading of later chapters.

n
n  CHRIS SELLS I’m absolutely willing to go with “modern, object-oriented, and

type-safe,” but C# isn’t nearly as simple as it once was. However, given that the lan-
guage gained functionality such as generics and anonymous delegates in C# 2.0,
LINQ-related features in C# 3.0, and dynamic values in C# 4.0, the programs them-
selves become simpler, more readable, and easier to maintain—which should be the
goal of any programming language.

n
n  ERIC LIPPERT C# is also increasingly a functional programming language. Fea-

tures such as type inference, lambda expressions, and monadic query comprehensions
allow traditional object-oriented developers to use these ideas from functional lan-
guages to increase the expressiveness of the language.

n
n  CHRISTIAN NAGEL C# is not a pure object-oriented language but rather a lan-

guage that is extended over time to get more productivity in the main areas where C#
is used. Programs written with C# 3.0 can look completely different than programs
written in C# 1.0 with functional programming constructs.

n
n  JoN SkEET Certain aspects of C# have certainly made this language more func-

tional over time—but at the same time, mutability was encouraged in C# 3.0 by both
automatically implemented properties and object initializers. It will be interesting to
see whether features encouraging immutability arrive in future versions, along with
support for other areas such as tuples, pattern matching, and tail recursion.

n
n  BILL WAGNER This section has not changed since the first version of the C# spec.

Obviously, the language has grown and added new idioms—and yet C# is still an
approachable language. These advanced features are always within reach, but not
always required for every program. C# is still approachable for inexperienced devel-
opers even as it grows more and more powerful.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.1		 Hello, World

3

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

1.1 Hello, World
The “Hello, World” program is traditionally used to introduce a programming language.
Here it is in C#:

using System;

class Hello
{
 static void Main() {
 Console.WriteLine("Hello, World");
 }
}

C# source files typically have the file extension .cs. Assuming that the “Hello, World”
program is stored in the file hello.cs, the program can be compiled with the Microsoft C#
compiler using the command line

csc hello.cs

which produces an executable assembly named hello.exe. The output produced by this
application when it is run is

Hello, World

The “Hello, World” program starts with a using directive that references the System
namespace. Namespaces provide a hierarchical means of organizing C# programs and
libraries. Namespaces contain types and other namespaces—for example, the System
namespace contains a number of types, such as the Console class referenced in the pro-
gram, and a number of other namespaces, such as IO and Collections. A using directive
that references a given namespace enables unqualified use of the types that are members
of that namespace. Because of the using directive, the program can use Console.WriteLine
as shorthand for System.Console.WriteLine.

The Hello class declared by the “Hello, World” program has a single member, the method
named Main. The Main method is declared with the static modifier. While instance meth-
ods can reference a particular enclosing object instance using the keyword this, static
methods operate without reference to a particular object. By convention, a static method
named Main serves as the entry point of a program.

The output of the program is produced by the WriteLine method of the Console class in
the System namespace. This class is provided by the .NET Framework class libraries, which,
by default, are automatically referenced by the Microsoft C# compiler. Note that C# itself
does not have a separate runtime library. Instead, the .NET Framework is the runtime
library of C#.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

4

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  BRAD ABRAMS It is interesting to note that Console.WriteLine() is simply a

shortcut for Console.Out.WriteLine. Console.Out is a property that returns an imple-
mentation of the System.IO.TextWriter base class designed to output to the console.
The preceding example could be written equally correctly as follows:

using System;
class Hello
{
 static void Main() {
 Console.Out.WriteLine("Hello, World");
 }
}

Early in the design of the framework, we kept a careful eye on exactly how this section
of the C# language specification would have to be written as a bellwether of the com-
plexity of the language. We opted to add the convenience overload on Console to
make “Hello, World” that much easier to write. By all accounts, it seems to have paid
off. In fact, today you find almost no calls to Console.Out.WriteLine().

1.2 Program Structure
The key organizational concepts in C# are programs, namespaces, types, members, and
assemblies. C# programs consist of one or more source files. Programs declare types, which
contain members and can be organized into namespaces. Classes and interfaces are exam-
ples of types. Fields, methods, properties, and events are examples of members. When C#
programs are compiled, they are physically packaged into assemblies. Assemblies typi-
cally have the file extension .exe or .dll, depending on whether they implement applica-
tions or libraries.

The example

using System;

namespace Acme.Collections
{
 public class Stack
 {
 Entry top;

 public void Push(object data) {
 top = new Entry(top, data);
 }

 public object Pop() {
 if (top == null) throw new InvalidOperationException();
 object result = top.data;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.2		 Program Structure

5

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 top = top.next;
 return result;
 }

 class Entry
 {
 public Entry next;
 public object data;

 public Entry(Entry next, object data) {
 this.next = next;
 this.data = data;
 }
 }
 }
}

declares a class named Stack in a namespace called Acme.Collections. The fully qualified
name of this class is Acme.Collections.Stack. The class contains several members: a field
named top, two methods named Push and Pop, and a nested class named Entry. The Entry
class further contains three members: a field named next, a field named data, and a con-
structor. Assuming that the source code of the example is stored in the file acme.cs, the
command line

csc /t:library acme.cs

compiles the example as a library (code without a Main entry point) and produces an
assembly named acme.dll.

Assemblies contain executable code in the form of Intermediate Language (IL) instructions,
and symbolic information in the form of metadata. Before it is executed, the IL code in an
assembly is automatically converted to processor-specific code by the Just-In-Time (JIT)
compiler of .NET Common Language Runtime.

Because an assembly is a self-describing unit of functionality containing both code and
metadata, there is no need for #include directives and header files in C#. The public types
and members contained in a particular assembly are made available in a C# program sim-
ply by referencing that assembly when compiling the program. For example, this program
uses the Acme.Collections.Stack class from the acme.dll assembly:

using System;
using Acme.Collections;

class Test
{
 static void Main() {
 Stack s = new Stack();
 s.Push(1);
 s.Push(10);
 s.Push(100);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

6

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 Console.WriteLine(s.Pop());
 Console.WriteLine(s.Pop());
 Console.WriteLine(s.Pop());
 }
}

If the program is stored in the file test.cs, when test.cs is compiled, the acme.dll assem-
bly can be referenced using the compiler’s /r option:

csc /r:acme.dll test.cs

This creates an executable assembly named test.exe, which, when run, produces the fol-
lowing output:

100
10
1

C# permits the source text of a program to be stored in several source files. When a multi-
file C# program is compiled, all of the source files are processed together, and the source
files can freely reference one another—conceptually, it is as if all the source files were con-
catenated into one large file before being processed. Forward declarations are never needed
in C# because, with very few exceptions, declaration order is insignificant. C# does not
limit a source file to declaring only one public type nor does it require the name of the
source file to match a type declared in the source file.

n
n  ERIC LIPPERT This is unlike the Java language. Also, the fact that the declaration

order is insignificant in C# is unlike the C++ language.

n
n  CHRIS SELLS Notice in the previous example the using Acme.Collections

statement, which looks like a C-style #include directive, but isn’t. Instead, it’s merely
a naming convenience so that when the compiler encounters the Stack, it has a set of
namespaces in which to look for the class. The compiler would take the same action if
this example used the fully qualified name:

Acme.Collections.Stack s = new Acme.Collections.Stack();

1.3 Types and Variables
There are two kinds of types in C#: value types and reference types. Variables of value
types directly contain their data, whereas variables of reference types store references to
their data, the latter being known as objects. With reference types, it is possible for two

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.3		 Types and Variables

7

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

variables to reference the same object and, therefore, possible for operations on one vari-
able to affect the object referenced by the other variable. With value types, the variables
each have their own copy of the data, and it is not possible for operations on one to affect
the other (except in the case of ref and out parameter variables).

n
n  JoN SkEET The choice of the word “reference” for reference types is perhaps

unfortunate. It has led to huge amounts of confusion (or at least miscommunication)
when considering the difference between pass-by-reference and pass-by-value seman-
tics for parameter passing.

The difference between value types and reference types is possibly the most important
point to teach C# beginners: Until that point is understood, almost nothing else makes
sense.

n
n  ERIC LIPPERT Probably the most common misconception about value types is

that they are “stored on the stack,” whereas reference types are “stored on the heap.”
First, that behavior is an implementation detail of the runtime, not a fact about the
language. Second, it explains nothing to the novice. Third, it’s false: Yes, the data asso-
ciated with an instance of a reference type is stored on the heap, but that data can
include instances of value types and, therefore, value types are also stored on the heap
sometimes. Fourth, if the difference between value and reference types was their stor-
age details, then the CLR team would have called them “stack types” and “heap
types.” The real difference is that value types are copied by value, and reference types
are copied by reference; how the runtime allocates storage to implement the lifetime
rules is not important in the vast majority of mainline programming scenarios.

n
n  BILL WAGNER C# forces you to make the important decision of value semantics

versus reference semantics for your types. Developers using your type do not get to
make that decision on each usage (as they do in C++). You need to think about the
usage patterns for your types and make a careful decision between these two kinds of
types.

n
n  VLADIMIR RESHETNIkoV C# also supports unsafe pointer types, which are

described at the end of this specification. They are called “unsafe” because their neg-
ligent use can break the type safety in a way that cannot be caught by the compiler.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

8

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

C#’s value types are further divided into simple types, enum types, struct types, and nul-
lable types. C#’s reference types are further divided into class types, interface types, array
types, and delegate types.

The following table provides an overview of C#’s type system.

Category Description

Value
types

Simple types Signed integral: sbyte, short, int, long

Unsigned integral: byte, ushort, uint, ulong

Unicode characters: char

IEEE floating point: float, double

High-precision decimal: decimal

Boolean: bool

Enum types User-defined types of the form enum E {...}

Struct types User-defined types of the form struct S {...}

Nullable types Extensions of all other value types with a null value

Reference
types

Class types Ultimate base class of all other types: object

Unicode strings: string

User-defined types of the form class C {...}

Interface types User-defined types of the form interface I {...}

Array types Single- and multi-dimensional; for example, int[] and
int[,]

Delegate types User-defined types of the form e.g. delegate int
D(...)

The eight integral types provide support for 8-bit, 16-bit, 32-bit, and 64-bit values in signed
or unsigned form.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.3		 Types and Variables

9

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  JoN SkEET Hooray for byte being an unsigned type! The fact that in Java a byte

is signed (and with no unsigned equivalent) makes a lot of bit-twiddling pointlessly
error-prone.

It’s quite possible that we should all be using uint a lot more than we do, mind you:
I’m sure many developers reach for int by default when they want an integer type.
The framework designers also fall into this category, of course: Why should
String.Length be signed?

n
n  ERIC LIPPERT The answer to Jon’s question is that the framework is designed to

work well with the Common Language Specification (CLS). The CLS defines a set of
basic language features that all CLS-compliant languages are expected to be able to
consume; unsigned integers are not in the CLS subset.

The two floating point types, float and double, are represented using the 32-bit single-
precision and 64-bit double-precision IEEE 754 formats.

The decimal type is a 128-bit data type suitable for financial and monetary calculations.

n
n  JoN SkEET These two paragraphs imply that decimal isn’t a floating point type.

It is—it’s just a floating decimal point type, whereas float and double are floating
binary point types.

C#’s bool type is used to represent boolean values—values that are either true or false.

Character and string processing in C# uses Unicode encoding. The char type represents a
UTF-16 code unit, and the string type represents a sequence of UTF-16 code units.

The following table summarizes C#’s numeric types.

Category Bits Type Range/Precision

Signed
integral

8 sbyte –128...127

16 short –32,768...32,767

32 int –2,147,483,648...2,147,483,647

64 long –9,223,372,036,854,775,808...9,223,372,036,854,775,807

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

10

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Category Bits Type Range/Precision

Unsigned
integral

8 byte 0...255

16 ushort 0...65,535

32 uint 0...4,294,967,295

64 ulong 0...18,446,744,073,709,551,615

Floating
point

32 float 1.5 × 10−45 to 3.4 × 1038, 7-digit precision

64 double 5.0 × 10−324 to 1.7 × 10308, 15-digit precision

Decimal 128 decimal 1.0 × 10−28 to 7.9 × 1028, 28-digit precision

n
n  CHRISTIAN NAGEL One of the problems we had with C++ on different platforms

is that the standard doesn’t define the number of bits used with short, int, and long.
The standard defines only short <= int <= long, which results in different sizes on
16-, 32-, and 64-bit platforms. With C#, the length of numeric types is clearly defined,
no matter which platform is used.

C# programs use type declarations to create new types. A type declaration specifies the
name and the members of the new type. Five of C#’s categories of types are user-definable:
class types, struct types, interface types, enum types, and delegate types.

A class type defines a data structure that contains data members (fields) and function
members (methods, properties, and others). Class types support single inheritance and
polymorphism, mechanisms whereby derived classes can extend and specialize base
classes.

n
n  ERIC LIPPERT Choosing to support single rather than multiple inheritance on

classes eliminates in one stroke many of the complicated corner cases found in mul-
tiple inheritance languages.

A struct type is similar to a class type in that it represents a structure with data members
and function members. However, unlike classes, structs are value types and do not require
heap allocation. Struct types do not support user-specified inheritance, and all struct types
implicitly inherit from type object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.3		 Types and Variables

11

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  VLADIMIR RESHETNIkoV Structs inherit from object indirectly. Their implicit

direct base class is System.ValueType, which in turn directly inherits from object.

An interface type defines a contract as a named set of public function members. A class or
struct that implements an interface must provide implementations of the interface’s func-
tion members. An interface may inherit from multiple base interfaces, and a class or struct
may implement multiple interfaces.

A delegate type represents references to methods with a particular parameter list and
return type. Delegates make it possible to treat methods as entities that can be assigned to
variables and passed as parameters. Delegates are similar to the concept of function point-
ers found in some other languages, but unlike function pointers, delegates are object-ori-
ented and type-safe.

Class, struct, interface, and delegate types all support generics, whereby they can be
parameterized with other types.

An enum type is a distinct type with named constants. Every enum type has an underlying
type, which must be one of the eight integral types. The set of values of an enum type is the
same as the set of values of the underlying type.

n
n  VLADIMIR RESHETNIkoV Enum types cannot have type parameters in their

declarations. Even so, they can be generic if nested within a generic class or struct
type. Moreover, C# supports pointers to generic enum types in unsafe code.

Sometimes enum types are called “enumeration types” in this specification. These two
names are completely interchangeable.

C# supports single- and multi-dimensional arrays of any type. Unlike the types listed
above, array types do not have to be declared before they can be used. Instead, array types
are constructed by following a type name with square brackets. For example, int[] is a
single-dimensional array of int, int[,] is a two-dimensional array of int, and int[][] is
a single-dimensional array of single-dimensional arrays of int.

nullable Nullable types also do not have to be declared before they can be used. For each non-
value type T there is a corresponding nullable type T?, which can hold an additional value
null. For instance, int? is a type that can hold any 32 bit integer or the value null.

n
n  CHRISTIAN NAGEL T? is the C# shorthand notation for the Nullable<T>

structure.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

12

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT In C# 1.0, we had nullable reference types and non-nullable value

types. In C# 2.0, we added nullable value types. But there are no non-nullable refer-
ence types. If we had to do it all over again, we probably would bake nullability and
non-nullability into the type system from day one. Unfortunately, non-nullable refer-
ence types are difficult to add to an existing type system that wasn’t designed for
them. We get feature requests for non-nullable reference types all the time; it would be
a great feature. However, code contracts go a long way toward solving the problems
solved by non-nullable reference types; consider using them if you want to enforce
non-nullability in your programs. If this subject interests you, you might also want to
check out Spec#, a Microsoft Research version of C# that does support non-nullable
reference types.

C#’s type system is unified such that a value of any type can be treated as an object. Every
type in C# directly or indirectly derives from the object class type, and object is the ulti-
mate base class of all types. Values of reference types are treated as objects simply by view-
ing the values as type object. Values of value types are treated as objects by performing
boxing and unboxing operations. In the following example, an int value is converted to
object and back again to int.

using System;

class Test
{
 static void Main() {
 int i = 123;
 object o = i; // Boxing
 int j = (int)o; // Unboxing
 }
}

When a value of a value type is converted to type object, an object instance, also called
a “box,” is allocated to hold the value, and the value is copied into that box. Conversely,
when an object reference is cast to a value type, a check is made that the referenced
object is a box of the correct value type, and, if the check succeeds, the value in the box is
copied out.

C#’s unified type system effectively means that value types can become objects “on
demand.” Because of the unification, general-purpose libraries that use type object can be
used with both reference types and value types.

There are several kinds of variables in C#, including fields, array elements, local variables,
and parameters. Variables represent storage locations, and every variable has a type that
determines what values can be stored in the variable, as shown by the following table.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.4		 Expressions

13

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Type of Variable Possible Contents

Non-nullable value
type

A value of that exact type

Nullable value type A null value or a value of that exact type

object A null reference, a reference to an object of any reference type, or a
reference to a boxed value of any value type

Class type A null reference, a reference to an instance of that class type, or a
reference to an instance of a class derived from that class type

Interface type A null reference, a reference to an instance of a class type that
implements that interface type, or a reference to a boxed value of
a value type that implements that interface type

Array type A null reference, a reference to an instance of that array type, or a
reference to an instance of a compatible array type

Delegate type A null reference or a reference to an instance of that delegate type

1.4 Expressions
Expressions are constructed from operands and operators. The operators of an expression
indicate which operations to apply to the operands. Examples of operators include +, -, *,
/, and new. Examples of operands include literals, fields, local variables, and expressions.

When an expression contains multiple operators, the precedence of the operators controls
the order in which the individual operators are evaluated. For example, the expression x +
y * z is evaluated as x + (y * z) because the * operator has higher precedence than the +
operator.

n
n  ERIC LIPPERT Precedence controls the order in which the operators are executed,

but not the order in which the operands are evaluated. Operands are evaluated from left
to right, period. In the preceding example, x would be evaluated, then y, then z, then the
multiplication would be performed, and then the addition. The evaluation of operand x
happens before that of y because x is to the left of y; the evaluation of the multiplication
happens before the addition because the multiplication has higher precedence.

Most operators can be overloaded. Operator overloading permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a
user-defined class or struct type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

14

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The following table summarizes C#’s operators, listing the operator categories in order of
precedence from highest to lowest. Operators in the same category have equal
precedence.

Category Expression Description

Primary x.m Member access

x(...) Method and delegate invocation

x[...] Array and indexer access

x++ Post-increment

x-- Post-decrement

new T(...) Object and delegate creation

new T(...){...} Object creation with initializer

new {...} Anonymous object initializer

new T[...] Array creation

typeof(T) Obtain System.Type object for T

checked(x) Evaluate expression in checked context

unchecked(x) Evaluate expression in unchecked context

default(T) Obtain default value of type T

delegate {...} Anonymous function (anonymous method)

Unary +x Identity

-x Negation

!x Logical negation

~x Bitwise negation

++x Pre-increment

--x Pre-decrement

(T)x Explicitly convert x to type T

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.4		 Expressions

15

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Category Expression Description

Multiplicative x * y Multiplication

x / y Division

x % y Remainder

Additive x + y Addition, string concatenation, delegate
combination

x – y Subtraction, delegate removal

Shift x << y Shift left

x >> y Shift right

Relational and type
testing

x < y Less than

x > y Greater than

x <= y Less than or equal

x >= y Greater than or equal

x is T Return true if x is a T, false otherwise

x as T Return x typed as T, or null if x is not a T

Equality x == y Equal

x != y Not equal

Logical AND x & y Integer bitwise AND, boolean logical AND

Logical XOR x ^ y Integer bitwise XOR, boolean logical XOR

Logical OR x | y Integer bitwise OR, boolean logical OR

Conditional AND x && y Evaluates y only if x is true

Conditional OR x || y Evaluates y only if x is false

Null coalescing X ?? y Evaluates to y if x is null, to x otherwise

Conditional x ? y : z Evaluates y if x is true, z if x is false

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

16

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Category Expression Description

Assignment or
anonymous
function

x = y Assignment

x op= y Compound assignment; supported operators are
*= /= %= += -= <<= >>= &= ^= |=

(T x) => y Anonymous function (lambda expression)

n
n  ERIC LIPPERT It is often surprising to people that the lambda and anonymous

method syntaxes are described as operators. They are unusual operators. More typi-
cally, you think of an operator as taking expressions as operands, not declarations of
formal parameters. Syntactically, however, the lambda and anonymous method syn-
taxes are operators like any other.

1.5 Statements
The actions of a program are expressed using statements. C# supports several kinds of
statements, a number of which are defined in terms of embedded statements.

A block permits multiple statements to be written in contexts where a single statement is
allowed. A block consists of a list of statements written between the delimiters { and }.

Declaration statements are used to declare local variables and constants.

Expression statements are used to evaluate expressions. Expressions that can be used as
statements include method invocations, object allocations using the new operator, assign-
ments using = and the compound assignment operators, and increment and decrement
operations using the ++ and -- operators.

Selection statements are used to select one of a number of possible statements for
execution based on the value of some expression. In this group are the if and switch
statements.

Iteration statements are used to repeatedly execute an embedded statement. In this group
are the while, do, for, and foreach statements.

Jump statements are used to transfer control. In this group are the break, continue, goto,
throw, return, and yield statements.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.5		 Statements

17

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

The try...catch statement is used to catch exceptions that occur during execution of a
block, and the try...finally statement is used to specify finalization code that is always
executed, whether an exception occurred or not.

n
n  ERIC LIPPERT This is a bit of a fib; of course, a finally block does not always

execute. The code in the try block could go into an infinite loop, the exception could
trigger a “fail fast” (which takes the process down without running any finally
blocks), or someone could pull the power cord out of the wall.

The checked and unchecked statements are used to control the overflow checking context
for integral-type arithmetic operations and conversions.

The lock statement is used to obtain the mutual-exclusion lock for a given object, execute
a statement, and then release the lock.

The using statement is used to obtain a resource, execute a statement, and then dispose of
that resource.

The following table lists C#’s statements and provides an example for each one.

Statement Example

Local variable
declaration

static void Main() {
 int a;
 int b = 2, c = 3;
 a = 1;
 Console.WriteLine(a + b + c);
}

Local constant
declaration

static void Main() {
 const float pi = 3.1415927f;
 const int r = 25;
 Console.WriteLine(pi * r * r);
}

Expression
statement

static void Main() {
 int i;
 i = 123; // Expression statement
 Console.WriteLine(i); // Expression statement
 i++; // Expression statement
 Console.WriteLine(i); // Expression statement
}

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

18

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Statement Example

if statement static void Main(string[] args) {
 if (args.Length == 0) {
 Console.WriteLine("No arguments");
 }
 else {
 Console.WriteLine("One or more arguments");
 }
}

switch statement static void Main(string[] args) {
 int n = args.Length;
 switch (n) {
 case 0:
 Console.WriteLine("No arguments");
 break;
 case 1:
 Console.WriteLine("One argument");
 break;
 default:
 Console.WriteLine("{0} arguments", n);
 break;
 }
 }
}

while statement static void Main(string[] args) {
 int i = 0;
 while (i < args.Length) {
 Console.WriteLine(args[i]);
 i++;
 }
}

do statement static void Main() {
 string s;
 do {
 s = Console.ReadLine();
 if (s != null) Console.WriteLine(s);
 } while (s != null);
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.5		 Statements

19

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Statement Example

for statement static void Main(string[] args) {
 for (int i = 0; i < args.Length; i++) {
 Console.WriteLine(args[i]);
 }
}

foreach
statement

static void Main(string[] args) {
 foreach (string s in args) {
 Console.WriteLine(s);
 }
}

break statement static void Main() {
 while (true) {
 string s = Console.ReadLine();
 if (s == null) break;
 Console.WriteLine(s);
 }
}

continue
statement

static void Main(string[] args) {
 for (int i = 0; i < args.Length; i++) {
 if (args[i].StartsWith("/")) continue;
 Console.WriteLine(args[i]);
 }
}

goto statement static void Main(string[] args) {
 int i = 0;
 goto check;
 loop:
 Console.WriteLine(args[i++]);
 check:
 if (i < args.Length) goto loop;
}

return statement static int Add(int a, int b) {
 return a + b;
}
static void Main() {
 Console.WriteLine(Add(1, 2));
 return;
}

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

20

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Statement Example

yield statement static IEnumerable<int> Range(int from, int to) {
 for (int i = from; i < to; i++) {
 yield return i;
 }
 yield break;
}
static void Main() {
 foreach (int x in Range(-10,10)) {
 Console.WriteLine(x);
 }
}

throw and try
statements

static double Divide(double x, double y) {
 if (y == 0) throw new DivideByZeroException();
 return x / y;
}
static void Main(string[] args) {
 try {
 if (args.Length != 2) {
 throw new Exception("Two numbers required");
 }
 double x = double.Parse(args[0]);
 double y = double.Parse(args[1]);
 Console.WriteLine(Divide(x, y));
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 finally {
 Console.WriteLine(“Good bye!”);
 }
}

checked and
unchecked
statements

static void Main() {
 int i = int.MaxValue;
 checked {
 Console.WriteLine(i + 1); // Exception
 }
 unchecked {
 Console.WriteLine(i + 1); // Overflow
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

21

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Statement Example

lock statement class Account
{
 decimal balance;
 public void Withdraw(decimal amount) {
 lock (this) {
 if (amount > balance) {
 throw new Exception("Insufficient funds");
 }
 balance -= amount;
 }
 }
}

using statement static void Main() {
 using (TextWriter w = File.CreateText("test.txt")) {
 w.WriteLine("Line one");
 w.WriteLine("Line two");
 w.WriteLine("Line three");
 }
}

1.6 Classes and objects
Classes are the most fundamental of C#’s types. A class is a data structure that combines
state (fields) and actions (methods and other function members) in a single unit. A class
provides a definition for dynamically created instances of the class, also known as objects.
Classes support inheritance and polymorphism, mechanisms whereby derived classes can
extend and specialize base classes.

New classes are created using class declarations. A class declaration starts with a header
that specifies the attributes and modifiers of the class, the name of the class, the base class
(if given), and the interfaces implemented by the class. The header is followed by the
class body, which consists of a list of member declarations written between the delimit-
ers { and }.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

22

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The following is a declaration of a simple class named Point:

 public class Point
 {
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 }

Instances of classes are created using the new operator, which allocates memory for a new
instance, invokes a constructor to initialize the instance, and returns a reference to the
instance. The following statements create two Point objects and store references to those
objects in two variables:

Point p1 = new Point(0, 0);
Point p2 = new Point(10, 20);

The memory occupied by an object is automatically reclaimed when the object is no longer
in use. It is neither necessary nor possible to explicitly deallocate objects in C#.

1.6.1 Members
The members of a class are either static members or instance members. Static members
belong to classes, and instance members belong to objects (instances of classes).

n
n  ERIC LIPPERT The term “static” was chosen because of its familiarity to users of

similar languages, rather than because it is a particularly sensible or descriptive term
for “shared by all instances of a class.”

n
n  JoN SkEET I’d argue that “shared” (as used in Visual Basic) gives an incorrect

impression, too. “Sharing” feels like something that requires one or more participants,
whereas a static member doesn’t require any instances of the type. I have the perfect
term for this situation, but it’s too late to change “static” to “associated-with-the-type-
rather-than-with-any-specific-instance-of-the-type” (hyphens optional).

The following table provides an overview of the kinds of members a class can contain.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

23

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Member Description

Constants Constant values associated with the class

Fields Variables of the class

Methods Computations and actions that can be performed by the class

Properties Actions associated with reading and writing named properties of the class

Indexers Actions associated with indexing instances of the class like an array

Events Notifications that can be generated by the class

Operators Conversions and expression operators supported by the class

Constructors Actions required to initialize instances of the class or the class itself

Destructors Actions to perform before instances of the class are permanently discarded

Types Nested types declared by the class

1.6.2 Accessibility
Each member of a class has an associated accessibility, which controls the regions of pro-
gram text that are able to access the member. The five possible forms of accessibility are
summarized in the following table.

Accessibility Meaning

public Access not limited

protected Access limited to this class or classes derived from this class

internal Access limited to this program

protected internal Access limited to this program or classes derived from this class

private Access limited to this class

n
n  kRzySzToF CWALINA People need to be careful with the public keyword.
public in C# is not equivalent to public in C++! In C++, it means “internal to my
compilation unit.” In C#, it means what extern meant in C++ (i.e., everybody can
call it). This is a huge difference!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

24

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  CHRISTIAN NAGEL I would describe the internal access modifier as “access lim-

ited to this assembly” instead of “access limited to this program.” If the internal access
modifier is used within a DLL, the EXE referencing the DLL does not have access to it.

n
n  ERIC LIPPERT protected internal has proven to be a controversial and some-

what unfortunate choice. Many people using this feature incorrectly believe that
protected internal means “access is limited to derived classes within this pro-
gram.” That is, they believe it means the more restrictive combination, when in fact it
means the less restrictive combination. The way to remember this relationship is to
remember that the “natural” state of a member is “private” and every accessibility
modifier makes the accessibility domain larger.

Were a hypothetical future version of the C# language to provide a syntax for “the
more restrictive combination of protected and internal,” the question would then be
which combination of keywords would have that meaning. I am holding out for either
“proternal” or “intected,” but I suspect I will have to live with disappointment.

n
n  CHRISTIAN NAGEL C# defines protected internal to limit access to this assem-

bly or classes derived from this class. The CLR also allows limiting access to this
assembly and classes derived from this class. C++/CLI offers this CLR feature with the
public private access modifier (or private public—the order is not relevant). Real-
istically, this access modifier is rarely used.

1.6.3 Type Parameters
A class definition may specify a set of type parameters by following the class name with
angle brackets enclosing a list of type parameter names. The type parameters can then be
used in the body of the class declarations to define the members of the class. In the follow-
ing example, the type parameters of Pair are TFirst and TSecond:

 public class Pair<TFirst, TSecond>
 {
 public TFirst First;

 public TSecond Second;
 }

A class type that is declared to take type parameters is called a generic class type. Struct,
interface, and delegate types can also be generic.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

25

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  ERIC LIPPERT If you need a pair, triple, and so on, the generic “tuple” types

defined in the CLR 4 version of the framework are handy types.

When the generic class is used, type arguments must be provided for each of the type
parameters:

Pair<int,string> pair = new Pair<int,string> { First = 1, Second = "two" };
int i = pair.First; // TFirst is int
string s = pair.Second; // TSecond is string

A generic type with type arguments provided, like Pair<int,string> above, is called a
constructed type.

1.6.4 Base Classes
A class declaration may specify a base class by following the class name and type param-
eters with a colon and the name of the base class. Omitting a base class specification is the
same as deriving from type object. In the following example, the base class of Point3D is
Point, and the base class of Point is object:

 public class Point
 {
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 }

 public class Point3D : Point
 {
 public int z;

 public Point3D(int x, int y, int z): base(x, y)
 {
 this.z = z;
 }
 }

A class inherits the members of its base class. Inheritance means that a class implicitly con-
tains all members of its base class, except for the instance and static constructors, and the
destructors of the base class. A derived class can add new members to those it inherits, but
it cannot remove the definition of an inherited member. In the previous example, Point3D

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

26

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

inherits the x and y fields from Point, and every Point3D instance contains three fields, x,
y, and z.

n
n  JESSE LIBERTy There is nothing more important to understand about C# than

inheritance and polymorphism. These concepts are the heart of the language and the
soul of object-oriented programming. Read this section until it makes sense, or ask for
help or supplement it with additional reading, but do not skip over it—these issues
are the sine qua non of C#.

An implicit conversion exists from a class type to any of its base class types. Therefore, a
variable of a class type can reference an instance of that class or an instance of any derived
class. For example, given the previous class declarations, a variable of type Point can refer-
ence either a Point or a Point3D:

Point a = new Point(10, 20);
Point b = new Point3D(10, 20, 30);

1.6.5 Fields
A field is a variable that is associated with a class or with an instance of a class.

A field declared with the static modifier defines a static field. A static field identifies
exactly one storage location. No matter how many instances of a class are created, there is
only ever one copy of a static field.

n
n  ERIC LIPPERT Static fields are per constructed type for a generic type. That is, if

you have a

class Stack<T> {
 public readonly static Stack<T> empty = whatever; ...
}

then Stack<int>.empty is a different field than Stack<string>.empty.

A field declared without the static modifier defines an instance field. Every instance of a
class contains a separate copy of all the instance fields of that class.

In the following example, each instance of the Color class has a separate copy of the r, g,
and b instance fields, but there is only one copy of the Black, White, Red, Green, and Blue
static fields:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

27

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 public class Color
 {
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);
 public static readonly Color Red = new Color(255, 0, 0);
 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 private byte r, g, b;

 public Color(byte r, byte g, byte b)
 {
 this.r = r;
 this.g = g;
 this.b = b;
 }
 }

As shown in the previous example, read-only fields may be declared with a readonly
modifier. Assignment to a readonly field can occur only as part of the field’s declaration or
in a constructor in the same class.

n
n  BRAD ABRAMS readonly protects the location of the field from being changed

outside the type’s constructor, but does not protect the value at that location. For
example, consider the following type:

public class Names
{
 public static readonly StringBuilder FirstBorn = new StringBuilder("Joe");
 public static readonly StringBuilder SecondBorn = new StringBuilder("Sue");
}

Outside of the constructor, directly changing the FirstBorn instance results in a com-
piler error:

Names.FirstBorn = new StringBuilder("Biff");
// Compile error

However, I am able to accomplish exactly the same results by modifying the
StringBuilder instance:

Names.FirstBorn.Remove(0,6).Append("Biff");
Console.WriteLine(Names.FirstBorn); // Outputs "Biff"

It is for this reason that we strongly recommend that read-only fields be limited to
immutable types. Immutable types do not have any publicly exposed setters, such as
int, double, or String.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

28

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  BILL WAGNER Several well-known design patterns make use of the read-only

fields of mutable types. The Adapter, Decorator, Façade, and Proxy patterns are the
most obvious examples. When you are creating a larger structure by composing
smaller structures, you will often express instances of those smaller structures using
read-only fields. A read-only field of a mutable type should indicate that one of these
structural patterns is being used.

1.6.6 Methods
A method is a member that implements a computation or action that can be performed by
an object or class. Static methods are accessed through the class. Instance methods are
accessed through instances of the class.

Methods have a (possibly empty) list of parameters, which represent values or variable
references passed to the method, and a return type, which specifies the type of the value
computed and returned by the method. A method’s return type is void if it does not return
a value.

Like types, methods may also have a set of type parameters, for which type arguments
must be specified when the method is called. Unlike types, the type arguments can often
be inferred from the arguments of a method call and need not be explicitly given.

The signature of a method must be unique in the class in which the method is declared.
The signature of a method consists of the name of the method, the number of type param-
eters, and the number, modifiers, and types of its parameters. The signature of a method
does not include the return type.

n
n  ERIC LIPPERT An unfortunate consequence of generic types is that a constructed

type may potentially have two methods with identical signatures. For example, class
C<T> { void M(T t){} void M(int t){} ...} is perfectly legal, but C<int> has two
methods M with identical signatures. As we’ll see later on, this possibility leads to
some interesting scenarios involving overload resolution and explicit interface imple-
mentations. A good guideline: Don’t create a generic type that can create ambiguities
under construction in this way; such types are extremely confusing and can produce
unexpected behaviors.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

29

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

1.6.6.1 Parameters
Parameters are used to pass values or variable references to methods. The parameters of a
method get their actual values from the arguments that are specified when the method is
invoked. There are four kinds of parameters: value parameters, reference parameters, out-
put parameters, and parameter arrays.

A value parameter is used for input parameter passing. A value parameter corresponds to
a local variable that gets its initial value from the argument that was passed for the param-
eter. Modifications to a value parameter do not affect the argument that was passed for the
parameter.

n
n  BILL WAGNER The statement that modifications to value parameters do not

affect the argument might be misleading because mutator methods may change the
contents of a parameter of reference type. The value parameter does not change, but
the contents of the referred-to object do.

Value parameters can be optional, by specifying a default value so that corresponding
arguments can be omitted.

A reference parameter is used for both input and output parameter passing. The argument
passed for a reference parameter must be a variable, and during execution of the method,
the reference parameter represents the same storage location as the argument variable. A
reference parameter is declared with the ref modifier. The following example shows the
use of ref parameters.

using System;

class Test
{
 static void Swap(ref int x, ref int y) {
 int temp = x;
 x = y;
 y = temp;
 }

 static void Main() {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine("{0} {1}", i, j); // Outputs "2 1"
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

30

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT This syntax should help clear up the confusion between the two

things both called “passing by reference.” Reference types are called this name in C#
because they are “passed by reference”; you pass an object instance to a method, and
the method gets a reference to that object instance. Some other code might also be
holding on to a reference to the same object.

Reference parameters are a slightly different form of “passing by reference.” In this case,
the reference is to the variable itself, not to some object instance. If that variable happens
to contain a value type (as shown in the previous example), that’s perfectly legal. The
value is not being passed by reference, but rather the variable that holds it is.

A good way to think about reference parameters is that the reference parameter
becomes an alias for the variable passed as the argument. In the preceding example, x
and i are essentially the same variable. They refer to the same storage location.

An output parameter is used for output parameter passing. An output parameter is similar
to a reference parameter except that the initial value of the caller-provided argument is
unimportant. An output parameter is declared with the out modifier. The following exam-
ple shows the use of out parameters.

using System;

class Test
{
 static void Divide(int x, int y, out int result, out int remainder) {
 result = x / y;
 remainder = x % y;
 }

 static void Main() {
 int res, rem;
 Divide(10, 3, out res, out rem);
 Console.WriteLine("{0} {1}", res, rem); // Outputs "3 1"
 }
}

n
n  ERIC LIPPERT The CLR directly supports only ref parameters. An out param-

eter is represented in metadata as a ref parameter with a special attribute on it indi-
cating to the C# compiler that this ref parameter ought to be treated as an out
parameter. This explains why it is not legal to have two methods that differ solely in
“out/ ref-ness”; from the CLR’s perspective, they would be two identical methods.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

31

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

A parameter array permits a variable number of arguments to be passed to a method. A
parameter array is declared with the params modifier. Only the last parameter of a method
can be a parameter array, and the type of a parameter array must be a single-dimensional
array type. The Write and WriteLine methods of the System.Console class are good exam-
ples of parameter array usage. They are declared as follows.

public class Console
{
 public static void Write(string fmt, params object[] args) {...}

 public static void WriteLine(string fmt, params object[] args) {...}

 ...
}

Within a method that uses a parameter array, the parameter array behaves exactly like a
regular parameter of an array type. However, in an invocation of a method with a param-
eter array, it is possible to pass either a single argument of the parameter array type or any
number of arguments of the element type of the parameter array. In the latter case, an array
instance is automatically created and initialized with the given arguments. This example

Console.WriteLine("x={0} y={1} z={2}", x, y, z);

is equivalent to writing the following.

string s = "x={0} y={1} z={2}";
object[] args = new object[3];
args[0] = x;
args[1] = y;
args[2] = z;
Console.WriteLine(s, args);

n
n  BRAD ABRAMS You may recognize the similarity between params and the C pro-

gramming language’s varargs concept. In keeping with our goal of making C# very
simple to understand, the params modifier does not require a special calling conven-
tion or special library support. As such, it has proven to be much less prone to error
than varargs.

Note, however, that the C# model does create an extra object allocation (the containing
array) implicitly on each call. This is rarely a problem, but in inner-loop type scenarios
where it could get inefficient, we suggest providing overloads for the mainstream
cases and using the params overload for only the edge cases. An example is the
StringBuilder.AppendFormat() family of overloads:

public StringBuilder AppendFormat(string format, object arg0);
public StringBuilder AppendFormat(string format, object arg0, object arg1);
public StringBuilder AppendFormat(string format, object arg0, object arg1, object arg2);
public StringBuilder AppendFormat(string format, params object[] args);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

32

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  CHRIS SELLS One nice side effect of the fact that params is really just an optional

shortcut is that I don’t have to write something crazy like the following:

static object[] GetArgs() { ... }

static void Main() {
 object[] args = GetArgs();
 object x = args[0];
 object y = args[1];
 object z = args[2];
 Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}

Here I’m calling the method and cracking the parameters out just so the compiler can
create an array around them again. Of course, I should really just write this:

static object[] GetArgs() { ... }

static void Main() {
 Console.WriteLine("x={0} y={1} z={2}", GetArgs());
}

However, you’ll find fewer and fewer methods that return arrays in .NET these days,
as most folks prefer using IEnumerable<T> for its flexibility. This means you’ll proba-
bly be writing code like so:

static IEnumerable<object> GetArgs() { ... }

static void Main() {
 Console.WriteLine("x={0} y={1} z={2}", GetArgs().ToArray());
}

It would be handy if params “understood” IEnumerable directly. Maybe next time.

1.6.6.2 Method Body and Local Variables
A method’s body specifies the statements to execute when the method is invoked.

A method body can declare variables that are specific to the invocation of the method. Such
variables are called local variables. A local variable declaration specifies a type name, a
variable name, and possibly an initial value. The following example declares a local vari-
able i with an initial value of zero and a local variable j with no initial value.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

33

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

using System;

class Squares
{
 static void Main() {
 int i = 0;
 int j;
 while (i < 10) {
 j = i * i;
 Console.WriteLine("{0} x {0} = {1}", i, j);
 i = i + 1;
 }
 }
}

C# requires a local variable to be definitely assigned before its value can be obtained. For
example, if the declaration of the previous i did not include an initial value, the compiler
would report an error for the subsequent usages of i because i would not be definitely
assigned at those points in the program.

A method can use return statements to return control to its caller. In a method returning
void, return statements cannot specify an expression. In a method returning non-void,
return statements must include an expression that computes the return value.

1.6.6.3 Static and Instance Methods
A method declared with a static modifier is a static method. A static method does not
operate on a specific instance and can only directly access static members.

n
n  ERIC LIPPERT It is, of course, perfectly legal for a static method to access instance

members should it happen to have an instance handy.

A method declared without a static modifier is an instance method. An instance method
operates on a specific instance and can access both static and instance members. The
instance on which an instance method was invoked can be explicitly accessed as this. It is
an error to refer to this in a static method.

The following Entity class has both static and instance members.

 class Entity
 {
 static int nextSerialNo;

 int serialNo;

 public Entity()
 {

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

34

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 serialNo = nextSerialNo++;
 }
 public int GetSerialNo()
 {
 return serialNo;
 }

 public static int GetNextSerialNo()
 {
 return nextSerialNo;
 }

 public static void SetNextSerialNo(int value)
 {
 nextSerialNo = value;
 }
 }

Each Entity instance contains a serial number (and presumably some other information
that is not shown here). The Entity constructor (which is like an instance method) initial-
izes the new instance with the next available serial number. Because the constructor is an
instance member, it is permitted to access both the serialNo instance field and the
nextSerialNo static field.

The GetNextSerialNo and SetNextSerialNo static methods can access the nextSerialNo
static field, but it would be an error for them to directly access the serialNo instance
field.

The following example shows the use of the Entity class.

using System;

class Test
{
 static void Main() {
 Entity.SetNextSerialNo(1000);

 Entity e1 = new Entity();
 Entity e2 = new Entity();

 Console.WriteLine(e1.GetSerialNo()); // Outputs "1000"
 Console.WriteLine(e2.GetSerialNo()); // Outputs "1001"
 Console.WriteLine(Entity.GetNextSerialNo()); // Outputs "1002"
 }
}

Note that the SetNextSerialNo and GetNextSerialNo static methods are invoked on the
class, whereas the GetSerialNo instance method is invoked on instances of the class.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

35

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

1.6.6.4 Virtual, Override, and Abstract Methods
When an instance method declaration includes a virtual modifier, the method is said to
be a virtual method. When no virtual modifier is present, the method is said to be a non-
virtual method.

When a virtual method is invoked, the runtime type of the instance for which that invoca-
tion takes place determines the actual method implementation to invoke. In a nonvirtual
method invocation, the compile-time type of the instance is the determining factor.

A virtual method can be overridden in a derived class. When an instance method declara-
tion includes an override modifier, the method overrides an inherited virtual method with
the same signature. Whereas a virtual method declaration introduces a new method, an
override method declaration specializes an existing inherited virtual method by providing
a new implementation of that method.

n
n  ERIC LIPPERT A subtle point here is that an overridden virtual method is still

considered to be a method of the class that introduced it, and not a method of the class
that overrides it. The overload resolution rules in some cases prefer members of more
derived types to those in base types; overriding a method does not “move” where that
method belongs in this hierarchy.

At the very beginning of this section, we noted that C# was designed with versioning
in mind. This is one of those features that helps prevent “brittle base-class syndrome”
from causing versioning problems.

An abstract method is a virtual method with no implementation. An abstract method is
declared with the abstract modifier and is permitted only in a class that is also declared
abstract. An abstract method must be overridden in every non-abstract derived class.

The following example declares an abstract class, Expression, which represents an expres-
sion tree node, and three derived classes, Constant, VariableReference, and Operation,
which implement expression tree nodes for constants, variable references, and arithmetic
operations. (This is similar to, but not to be confused with, the expression tree types intro-
duced in §4.6).

using System;
using System.Collections;

public abstract class Expression
{
 public abstract double Evaluate(Hashtable vars);
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

36

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

public class Constant: Expression
{
 double value;

 public Constant(double value) {
 this.value = value;
 }

 public override double Evaluate(Hashtable vars) {
 return value;
 }
}
public class VariableReference: Expression
{
 string name;

 public VariableReference(string name) {
 this.name = name;
 }

 public override double Evaluate(Hashtable vars) {
 object value = vars[name];
 if (value == null) {
 throw new Exception("Unknown variable: " + name);
 }
 return Convert.ToDouble(value);
 }
}

public class Operation: Expression
{
 Expression left;
 char op;
 Expression right;

 public Operation(Expression left, char op, Expression right) {
 this.left = left;
 this.op = op;
 this.right = right;
 }

 public override double Evaluate(Hashtable vars) {
 double x = left.Evaluate(vars);
 double y = right.Evaluate(vars);
 switch (op) {
 case '+': return x + y;
 case '-': return x - y;
 case '*': return x * y;
 case '/': return x / y;
 }
 throw new Exception("Unknown operator");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

37

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

The previous four classes can be used to model arithmetic expressions. For example, using
instances of these classes, the expression x + 3 can be represented as follows.

Expression e = new Operation(
 new VariableReference("x"),
 '+',
 new Constant(3));

The Evaluate method of an Expression instance is invoked to evaluate the given expres-
sion and produce a double value. The method takes as an argument a Hashtable that con-
tains variable names (as keys of the entries) and values (as values of the entries). The
Evaluate method is a virtual abstract method, meaning that non-abstract derived classes
must override it to provide an actual implementation.

A Constant’s implementation of Evaluate simply returns the stored constant. A
VariableReference’s implementation looks up the variable name in the hashtable and
returns the resulting value. An Operation’s implementation first evaluates the left
and right operands (by recursively invoking their Evaluate methods) and then performs
the given arithmetic operation.

The following program uses the Expression classes to evaluate the expression x * (y + 2)
for different values of x and y.

using System;
using System.Collections;

class Test
{
 static void Main() {

 Expression e = new Operation(
 new VariableReference("x"),
 '*',
 new Operation(
 new VariableReference("y"),
 '+',
 new Constant(2)
)
);

 Hashtable vars = new Hashtable();

 vars["x"] = 3;
 vars["y"] = 5;
 Console.WriteLine(e.Evaluate(vars)); // Outputs "21"

 vars["x"] = 1.5;
 vars["y"] = 9;
 Console.WriteLine(e.Evaluate(vars)); // Outputs "16.5"
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

38

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  CHRIS SELLS Virtual functions are a major feature of object-oriented program-

ming that differentiate it from other kinds of programming. For example, if you find
yourself doing something like this:

double GetHourlyRate(Person p) {
 if(p is Student) { return 1.0; }
 else if(p is Employee) { return 10.0; }
 return 0.0;
}

You should almost always use a virtual method instead:

class Person {
 public virtual double GetHourlyRate() {
 return 0.0;
 }
}
class Student {
 public override double GetHourlyRate() {
 return 1.0;
 }
}
class Employee {
 public override double GetHourlyRate() {
 return 10.0;
 }
}

1.6.6.5 Method Overloading
Method overloading permits multiple methods in the same class to have the same name as
long as they have unique signatures. When compiling an invocation of an overloaded
method, the compiler uses overload resolution to determine the specific method to invoke.
Overload resolution finds the one method that best matches the arguments or reports an
error if no single best match can be found. The following example shows overload resolu-
tion in effect. The comment for each invocation in the Main method shows which method
is actually invoked.

class Test
{
 static void F() {
 Console.WriteLine("F()");
 }

 static void F(object x) {
 Console.WriteLine("F(object)");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

39

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 static void F(int x) {
 Console.WriteLine("F(int)");
 }

 static void F(double x) {
 Console.WriteLine("F(double)");
 }

 static void F<T>(T x) {
 Console.WriteLine("F<T>(T)");
 }

 static void F(double x, double y) {
 Console.WriteLine("F(double, double)");
 }

 static void Main() {
 F(); // Invokes F()
 F(1); // Invokes F(int)
 F(1.0); // Invokes F(double)
 F("abc"); // Invokes F(object)
 F((double)1); // Invokes F(double)
 F((object)1); // Invokes F(object)
 F<int>(1); // Invokes F<T>(T)
 F(1, 1); // Invokes F(double, double)

}
}

As shown by the example, a particular method can always be selected by explicitly casting
the arguments to the exact parameter types and/or explicitly supplying type arguments.

n
n  BRAD ABRAMS The method overloading feature can be abused. Generally

speaking, it is better to use method overloading only when all of the methods do
semantically the same thing. The way many developers on the consuming end think
about method overloading is that a single method takes a variety of arguments. In
fact, changing the type of a local variable, parameter, or property could cause a differ-
ent overload to be called. Developers certainly should not see side effects of the deci-
sion to use overloading. For users, however, it can be a surprise when methods with
the same name do different things. For example, in the early days of the .NET Frame-
work (before version 1 shipped), we had this set of overloads on the string class:

public class String {
 public int IndexOf (string value);
 // Returns the index of value with this instance
 public int IndexOf (char value);
 // Returns the index of value with this instance
 public int IndexOf (char [] value);
 // Returns the first index of any of the
 // characters in value within the current instance
}

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

40

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

This last overload caused problems, as it does a different thing. For example,

"Joshua, Hannah, Joseph".IndexOf("Hannah");// Returns 7

but

"Joshua, Hannah, Joseph".IndexOf(new char [] {'H','a','n','n','a,'h;");
// Returns 3

In this case, it would be better to give the overload that does something a differ-
ent name:

public class String {
 public int IndexOf (string value);
 // Returns the index of value within this instance
 public int IndexOf (char value);
 // Returns the index of value within this instance
 public int IndexOfAny(char [] value);
 // Returns the first index of any of the
 // characters in value within the current instance
}

n
n  BILL WAGNER Method overloading and inheritance don’t mix very well. Because

overload resolution rules sometimes favor methods declared in the most derived class,
that can sometimes mean a method declared in the derived class may be chosen
instead of a method that appears to be a better match in the base class. For that reason,
I recommend not overloading members that are declared in a base class.

1.6.7 other Function Members
Members that contain executable code are collectively known as the function members of
a class. The preceding section describes methods, which are the primary kind of function
members. This section describes the other kinds of function members supported by C#:
constructors, properties, indexers, events, operators, and destructors.

The following table shows a generic class called List<T>, which implements a growable
list of objects. The class contains several examples of the most common kinds of function
members.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

41

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

public class List<T>
{

 const int defaultCapacity = 4; Constant

 T[] items;
 int count;

Fields

 public List(int capacity = defaultCapacity) {
 items = new T[capacity];
 }

Constructors

 public int Count {
 get { return count; }
 }
 public int Capacity {
 get {
 return items.Length;
 }
 set {
 if (value < count) value = count;
 if (value != items.Length) {
 T[] newItems = new T[value];
 Array.Copy(items, 0, newItems, 0, count);
 items = newItems;
 }
 }
 }

Properties

 public T this[int index] {
 get {
 return items[index];
 }
 set {
 items[index] = value;
 OnChanged();
 }
 }

Indexer

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

42

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 public void Add(T item) {
 if (count == Capacity) Capacity = count * 2;
 items[count] = item;
 count++;
 OnChanged();
 }
 protected virtual void OnChanged() {
 if (Changed != null) Changed(this, EventArgs.Empty);
 }
 public override bool Equals(object other) {
 return Equals(this, other as List<T>);
 }
 static bool Equals(List<T> a, List<T> b) {
 if (a == null) return b == null;
 if (b == null || a.count != b.count) return false;
 for (int i = 0; i < a.count; i++) {
 if (!object.Equals(a.items[i], b.items[i])) {
 return false;
 }
 }
 return true;
 }

Methods

 public event EventHandler Changed; Event

 public static bool operator ==(List<T> a, List<T> b) {
 return Equals(a, b);
 }
 public static bool operator !=(List<T> a, List<T> b) {
 return !Equals(a, b);
 }

Operators

}

1.6.7.1 Constructors
C# supports both instance and static constructors. An instance constructor is a member
that implements the actions required to initialize an instance of a class. A static constructor
is a member that implements the actions required to initialize a class itself when it is first
loaded.

A constructor is declared like a method with no return type and the same name as the con-
taining class. If a constructor declaration includes a static modifier, it declares a static
constructor. Otherwise, it declares an instance constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

43

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Instance constructors can be overloaded. For example, the List<T> class declares two
instance constructors, one with no parameters and one that takes an int parameter. Instance
constructors are invoked using the new operator. The following statements allocate two
List<string> instances using each of the constructors of the List class.

List<string> list1 = new List<string>();
List<string> list2 = new List<string>(10);

Unlike other members, instance constructors are not inherited, and a class has no instance
constructors other than those actually declared in the class. If no instance constructor is
supplied for a class, then an empty one with no parameters is automatically provided.

n
n  BRAD ABRAMS Constructors should be lazy! The best practice is to do minimal

work in the constructor—that is, to simply capture the arguments for later use. For
example, you might capture the name of the file or the path to the database, but don’t
open those external resources until absolutely necessary. This practice helps to ensure
that possibly scarce resources are allocated for the smallest amount of time possible.

I was personally bitten by this issue recently with the DataContext class in Linq to
Entities. It opens the database in the connection string provided, rather than waiting
to perform that operation until it is needed. For my test cases, I was providing test
suspect data directly and, in fact, never wanted to open the database. Not only does
this unnecessary activity lead to a performance loss, but it also makes the scenario
more complicated.

1.6.7.2 Properties
Properties are a natural extension of fields. Both are named members with associated
types, and the syntax for accessing fields and properties is the same. However, unlike
fields, properties do not denote storage locations. Instead, properties have accessors that
specify the statements to be executed when their values are read or written.

n
n  JESSE LIBERTy A property looks to the creator of the class like a method allow-

ing the developer to add behavior prior to setting or retrieving the underlying value.
In contrast, the property appears to the client of the class as if it were a field, providing
direct, unencumbered access through the assignment operator.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

44

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT A standard “best practice” is to always expose field-like data as

properties with getters and setters rather than exposing the field. That way, if you ever
want to add functionality to your getter and setter (e.g., logging, data binding, secu-
rity checking), you can easily do so without “breaking” any consumer of the code that
might rely on the field always being there.

Although in some sense this practice is a violation of another bit of good advice
(“Avoid premature generalization”), the new “automatically implemented proper-
ties” feature makes it very easy and natural to use properties rather than fields as part
of the public interface of a type.

n
n  CHRIS SELLS Eric makes such a good point that I wanted to show an example.

Don’t ever make a field public:

class Cow
{
 public int Milk; // BAD!
}

If you don’t want to layer in anything besides storage, let the compiler implement the
property for you:

class Cow
{
 public int Milk { get; set; } // Good
}

That way, the client binds to the property getter and setter so that later you can take
over the compiler’s implementation to do something fancy:

class Cow {
 bool gotMilk = false;
 int milk;
 public int Milk {
 get {
 if(!gotMilk) {
 milk = ApplyMilkingMachine();
 gotMilk = true; }
 return milk;
 }
 set {

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

45

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 ApplyReverseMilkingMachine(value); // The cow might not like this..
 milk = value;
 }
 }
 ...
}

Also, I really love the following idiom for cases where you know a calculated value
will be used in your program:

class Cow {
 public Cow() {
 Milk = ApplyMilkingMachine();
 }

 public int Milk { get; private set; }
 ...
}

In this case, we are precalculating the property, which is a waste if we don’t know
whether we will need it. If we do know, we save ourselves some complication in the
code by eliminating a flag, some branching logic, and the storage management.

n
n  BILL WAGNER Property accesses look like field accesses to your users—and they

will naturally expect them to act like field accesses in every way, including perfor-
mance. If a get accessor needs to do significant work (reading a file or querying a
database, for example), it should be exposed as a method, not a property. Callers
expect that a method may be doing more work.

For the same reason, repeated calls to property accessors (without intervening code)
should return the same value. DateTime.Now is one of very few examples in the frame-
work that does not follow this advice.

A property is declared like a field, except that the declaration ends with a get accessor
and/or a set accessor written between the delimiters { and } instead of ending in a semi-
colon. A property that has both a get accessor and a set accessor is a read-write property,
a property that has only a get accessor is a read-only property, and a property that has only
a set accessor is a write-only property.

A get accessor corresponds to a parameterless method with a return value of the property
type. Except as the target of an assignment, when a property is referenced in an expression,
the get accessor of the property is invoked to compute the value of the property.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

46

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

A set accessor corresponds to a method with a single parameter named value and no
return type. When a property is referenced as the target of an assignment or as the operand
of ++ or --, the set accessor is invoked with an argument that provides the new value.

The List<T> class declares two properties, Count and Capacity, which are read-only and
read-write, respectively. The following is an example of use of these properties.

List<string> names = new List<string>();
names.Capacity = 100; // Invokes set accessor
int i = names.Count; // Invokes get accessor
int j = names.Capacity; // Invokes get accessor

Similar to fields and methods, C# supports both instance properties and static properties.
Static properties are declared with the static modifier, and instance properties are declared
without it.

The accessor(s) of a property can be virtual. When a property declaration includes a
virtual, abstract, or override modifier, it applies to the accessor(s) of the property.

n
n  VLADIMIR RESHETNIkoV If a virtual property happens to have a private acces-

sor, this accessor is implemented in CLR as a nonvirtual method and cannot be over-
ridden in derived classes.

1.6.7.3 Indexers
An indexer is a member that enables objects to be indexed in the same way as an array. An
indexer is declared like a property except that the name of the member is this followed by
a parameter list written between the delimiters [and]. The parameters are available in the
accessor(s) of the indexer. Similar to properties, indexers can be read-write, read-only, and
write-only, and the accessor(s) of an indexer can be virtual.

The List class declares a single read-write indexer that takes an int parameter. The indexer
makes it possible to index List instances with int values. For example:

List<string> names = new List<string>();
names.Add("Liz");
names.Add("Martha");
names.Add("Beth");
for (int i = 0; i < names.Count; i++) {
 string s = names[i];
 names[i] = s.ToUpper();
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

47

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Indexers can be overloaded, meaning that a class can declare multiple indexers as long as
the number or types of their parameters differ.

1.6.7.4 Events
An event is a member that enables a class or object to provide notifications. An event is
declared like a field except that the declaration includes an event keyword and the type
must be a delegate type.

n
n  JESSE LIBERTy In truth, event is just a keyword that signals C# to restrict the

way a delegate can be used, thereby preventing a client from directly invoking an
event or hijacking an event by assigning a handler rather than adding a handler. In
short, the keyword event makes delegates behave in the way you expect events to
behave.

n
n  CHRIS SELLS Without the event keyword, you are allowed to do this:

delegate void WorkCompleted();

class Worker {
 public WorkCompleted Completed; // Delegate field, not event
 ...
}

class Boss {
 public void WorkCompleted() { ... }
}

class Program {
 static void Main() {
 Worker peter = new Worker();
 Boss boss = new Boss();

 peter.Completed += boss.WorkCompleted; // This is what you want to happen
 peter.Completed = boss.WorkCompleted; // This is what the compiler allows
 ...
 }
}

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

48

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Unfortunately, with the event keyword, Completed is just a public field of type dele-
gate, which can be stepped on by anyone who wants to—and the compiler is okay with
that. By adding the event keyword, you limit the operations to += and -= like so:

class Worker {
 public event WorkCompleted Completed;
 ...
}
...
 peter.Completed += boss.WorkCompleted; // Compiler still okay
 peter.Completed = boss.WorkCompleted; // Compiler error

The use of the event keyword is the one time where it’s okay to make a field public,
because the compiler narrows the use to safe operations. Further, if you want to take
over the implementation of += and -+ for an event, you can do so.

Within a class that declares an event member, the event can be accessed like a field of a
delegate type (provided the event is not abstract and does not declare accessors). The field
stores a reference to a delegate that represents the event handlers that have been added to
the event. If no event handlers are present, the field is null.

The List<T> class declares a single event member called Changed, which indicates that a
new item has been added to the list. The Changed event is raised by the OnChanged virtual
method, which first checks whether the event is null (meaning that no handlers are pres-
ent). The notion of raising an event is precisely equivalent to invoking the delegate repre-
sented by the event—thus there are no special language constructs for raising events.

Clients react to events through event handlers. Event handlers are attached using the +=
operator and removed using the -= operator. The following example attaches an event
handler to the Changed event of a List<string>.

using System;

class Test
{
 static int changeCount;

 static void ListChanged(object sender, EventArgs e) {
 changeCount++;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.6		 Classes and objects

49

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 static void Main() {
 List<string> names = new List<string>();
 names.Changed += new EventHandler(ListChanged);
 names.Add("Liz");
 names.Add("Martha");
 names.Add("Beth");
 Console.WriteLine(changeCount); // Outputs "3"
 }
}

For advanced scenarios where control of the underlying storage of an event is desired, an
event declaration can explicitly provide add and remove accessors, which are somewhat
similar to the set accessor of a property.

n
n  CHRIS SELLS As of C# 2.0, explicitly creating a delegate instance to wrap a

method was no longer necessary. As a consequence, the code

names.Changed += new EventHandler(ListChanged);

can be more succinctly written as

names.Changed += ListChanged;

Not only does this shortened form require less typing, but it is also easier to read.

1.6.7.5 Operators
An operator is a member that defines the meaning of applying a particular expression
operator to instances of a class. Three kinds of operators can be defined: unary operators,
binary operators, and conversion operators. All operators must be declared as public and
static.

The List<T> class declares two operators, operator == and operator !=, and thus gives
new meaning to expressions that apply those operators to List instances. Specifically, the
operators define equality of two List<T> instances as comparing each of the contained
objects using their Equals methods. The following example uses the == operator to com-
pare two List<int> instances.

using System;

class Test
{
 static void Main() {
 List<int> a = new List<int>();
 a.Add(1);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

50

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 a.Add(2);
 List<int> b = new List<int>();
 b.Add(1);
 b.Add(2);
 Console.WriteLine(a == b); // Outputs "True"
 b.Add(3);
 Console.WriteLine(a == b); // Outputs "False"
 }
}

The first Console.WriteLine outputs True because the two lists contain the same number
of objects with the same values in the same order. Had List<T> not defined operator ==,
the first Console.WriteLine would have output False because a and b reference different
List<int> instances.

1.6.7.6 Destructors
A destructor is a member that implements the actions required to destruct an instance of a
class. Destructors cannot have parameters, they cannot have accessibility modifiers, and
they cannot be invoked explicitly. The destructor for an instance is invoked automatically
during garbage collection.

The garbage collector is allowed wide latitude in deciding when to collect objects and run
destructors. Specifically, the timing of destructor invocations is not deterministic, and
destructors may be executed on any thread. For these and other reasons, classes should
implement destructors only when no other solutions are feasible.

n
n  VLADIMIR RESHETNIkoV Destructors are sometimes called “finalizers.”

This name also appears in the garbage collector API—for example,
GC.WaitForPendingFinalizers.

The using statement provides a better approach to object destruction.

1.7 Structs
Like classes, structs are data structures that can contain data members and function mem-
bers, but unlike classes, structs are value types and do not require heap allocation. A vari-
able of a struct type directly stores the data of the struct, whereas a variable of a class type
stores a reference to a dynamically allocated object. Struct types do not support user-
specified inheritance, and all struct types implicitly inherit from type object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.7		 Structs

51

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  ERIC LIPPERT The fact that structs do not require heap allocation does not mean

that they are never heap allocated. See the annotations to §1.3 for more details.

Structs are particularly useful for small data structures that have value semantics. Complex
numbers, points in a coordinate system, or key–value pairs in a dictionary are all good
examples of structs. The use of structs rather than classes for small data structures can
make a large difference in the number of memory allocations an application performs. For
example, the following program creates and initializes an array of 100 points. With Point
implemented as a class, 101 separate objects are instantiated—one for the array and one
each for the 100 elements.

class Point
{
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

class Test
{
 static void Main()
 {
 Point[] points = new Point[100];
 for (int i = 0; i < 100; i++) points[i] = new Point(i, i);
 }
}

An alternative is to make Point a struct.

 struct Point
 {
 public int x, y;
 public Point(int x, int y)

 {
 this.x = x;
 this.y = y;
 }
 }

Now, only one object is instantiated—the one for the array—and the Point instances are
stored in-line in the array.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

52

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT The takeaway message here is that certain specific data-intensive

applications, which would otherwise be gated on heap allocation performance, benefit
greatly from using structs. The takeaway message is emphatically not “Always use
structs because they make your program faster.”

The performance benefit here is a tradeoff: Structs can in some scenarios take less time
to allocate and deallocate, but because every assignment of a struct is a value copy,
they can take more time to copy than a reference copy would take.

Always remember that it makes little sense to optimize anything other than the slowest
thing. If your program is not gated on heap allocations, then pondering whether to
use structs or classes for performance reasons is not an effective use of your time. Find
the slowest thing, and then optimize it.

Struct constructors are invoked with the new operator, but that does not imply that memory
is being allocated. Instead of dynamically allocating an object and returning a reference to
it, a struct constructor simply returns the struct value itself (typically in a temporary loca-
tion on the stack), and this value is then copied as necessary.

With classes, it is possible for two variables to reference the same object and thus possible
for operations on one variable to affect the object referenced by the other variable. With
structs, the variables each have their own copy of the data, and it is not possible for opera-
tions on one to affect the other. For example, the output produced by the following code
fragment depends on whether Point is a class or a struct.

Point a = new Point(10, 10);
Point b = a;
a.x = 20;
Console.WriteLine(b.x);

If Point is a class, the output is 20 because a and b reference the same object. If Point is a
struct, the output is 10 because the assignment of a to b creates a copy of the value, and this
copy is unaffected by the subsequent assignment to a.x.

The previous example highlights two of the limitations of structs. First, copying an entire
struct is typically less efficient than copying an object reference, so assignment and value
parameter passing can be more expensive with structs than with reference types. Second,
except for ref and out parameters, it is not possible to create references to structs, which
rules out their usage in a number of situations.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.8		 Arrays

53

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  BILL WAGNER Read those last two paragraphs again. They describe the most

important design differences between structs and classes. If you don’t want value
semantics in all cases, you must use a class. Classes can implement value semantics in
some situations (string is a good example), but by default they obey reference seman-
tics. That difference is more important for your designs than size or stack versus heap
allocations.

1.8 Arrays
An array is a data structure that contains a number of variables that are accessed through
computed indices. The variables contained in an array, also called the elements of the array,
are all of the same type, and this type is called the element type of the array.

Array types are reference types, and the declaration of an array variable simply sets aside
space for a reference to an array instance. Actual array instances are created dynamically
at runtime using the new operator. The new operation specifies the length of the new array
instance, which is then fixed for the lifetime of the instance. The indices of the elements of
an array range from 0 to Length - 1. The new operator automatically initializes the elements
of an array to their default value, which, for example, is zero for all numeric types and null
for all reference types.

n
n  ERIC LIPPERT The confusion resulting from some languages indexing arrays

starting with 1 and some others starting with 0 has befuddled multiple generations of
novice programmers. The idea that array “indexes” start with 0 comes from a subtle
misinterpretation of the C language’s array syntax.

In C, when you say myArray[x], what this means is “start at the beginning of the array
and refer to the thing x steps away.” Therefore, myArray[1] refers to the second element,
because that is what you get when you start at the first element and move one step.

Really, these references should be called array offsets rather than indices. But because
generations of programmers have now internalized that arrays are “indexed” starting
at 0, we’re stuck with this terminology.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

54

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The following example creates an array of int elements, initializes the array, and prints out
the contents of the array.

using System;

class Test
{
 static void Main() {
 int[] a = new int[10];
 for (int i = 0; i < a.Length; i++) {
 a[i] = i * i;
 }
 for (int i = 0; i < a.Length; i++) {
 Console.WriteLine("a[{0}] = {1}", i, a[i]);
 }
 }
}

This example creates and operates on a single-dimensional array. C# also supports multi-
dimensional arrays. The number of dimensions of an array type, also known as the rank
of the array type, is one plus the number of commas written between the square brackets
of the array type. The following example allocates one-dimensional, two-dimensional, and
three-dimensional arrays.

int[] a1 = new int[10];
int[,] a2 = new int[10, 5];
int[,,] a3 = new int[10, 5, 2];

The a1 array contains 10 elements, the a2 array contains 50 (10 × 5) elements, and the a3
array contains 100 (10 × 5 × 2) elements.

n
n  BILL WAGNER An FxCop rule recommends against multi-dimensional arrays;

it’s primarily guidance against using multi-dimensional arrays as sparse arrays. If you
know that you really are filling in all the elements in the array, multi-dimensional
arrays are fine.

The element type of an array can be any type, including an array type. An array with
elements of an array type is sometimes called a jagged array because the lengths of
the element arrays do not all have to be the same. The following example allocates an array
of arrays of int:

int[][] a = new int[3][];
a[0] = new int[10];
a[1] = new int[5];
a[2] = new int[20];

The first line creates an array with three elements, each of type int[] and each with an
initial value of null. The subsequent lines then initialize the three elements with references
to individual array instances of varying lengths.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.8		 Arrays

55

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

The new operator permits the initial values of the array elements to be specified using an
array initializer, which is a list of expressions written between the delimiters { and }. The
following example allocates and initializes an int[] with three elements.

int[] a = new int[] {1, 2, 3};

Note that the length of the array is inferred from the number of expressions between { and
}. Local variable and field declarations can be shortened further such that the array type
does not have to be restated.

int[] a = {1, 2, 3};

Both of the previous examples are equivalent to the following:

int[] t = new int[3];
t[0] = 1;
t[1] = 2;
t[2] = 3;
int[] a = t;

n
n  ERIC LIPPERT In a number of places thus far, the specification notes that a par-

ticular local initialization is equivalent to “assign something to a temporary variable,
do something to the temporary variable, declare a local variable, and assign the tem-
porary to the local variable.” You may be wondering why the specification calls out
this seemingly unnecessary indirection. Why not simply say that this initialization is
equivalent to this:

int[] a = new int[3];
a[0] = 1; a[1] = 2; a[2] =3;

In fact, this practice is necessary because of definite assignment analysis. We would like
to ensure that all local variables are definitely assigned before they are used. In particu-
lar, we would like an expression such as object[] arr = {arr}; to be illegal because
it appears to use arr before it is definitely assigned. If this were equivalent to

object[] arr = new object[1];
arr[0] = arr;

then that would be legal. But by saying that this expression is equivalent to

object[] temp = new object[1];
temp[0] = arr;
object[] arr = temp;

then it becomes clear that arr is being used before it is assigned.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

56

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

1.9 Interfaces
An interface defines a contract that can be implemented by classes and structs. An interface
can contain methods, properties, events, and indexers. An interface does not provide
implementations of the members it defines—it merely specifies the members that must be
supplied by classes or structs that implement the interface.

Interfaces may employ multiple inheritance. In the following example, the interface
IComboBox inherits from both ITextBox and IListBox.

 interface IControl
 {
 void Paint();
 }

 interface ITextBox : IControl
 {
 void SetText(string text);
 }

 interface IListBox : IControl
 {
 void SetItems(string[] items);
 }

 interface IComboBox : ITextBox, IListBox { }

Classes and structs can implement multiple interfaces. In the following example, the class
EditBox implements both IControl and IDataBound.

 interface IDataBound
 {
 void Bind(Binder b);
 }

 public class EditBox : IControl, IDataBound
 {
 public void Paint() {...}

 public void Bind(Binder b) {...}
 }

n
n  kRzySzToF CWALINA Perhaps I am stirring up quite a bit of controversy with

this statement, but I believe the lack of support for multiple inheritance in our type
system is the single biggest contributor to the complexity of the .NET Framework.
When we designed the type system, we explicitly decided not to add support for mul-
tiple inheritance so as to provide simplicity. In retrospect, this decision had the exact
opposite effect. The lack of multiple inheritance forced us to add the concept of inter-
faces, which in turn are responsible for problems with the evolution of the framework,
deeper inheritance hierarchies, and many other problems.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.9		 Interfaces

57

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

When a class or struct implements a particular interface, instances of that class or struct can
be implicitly converted to that interface type. For example:

EditBox editBox = new EditBox();
IControl control = editBox;
IDataBound dataBound = editBox;

In cases where an instance is not statically known to implement a particular interface,
dynamic type casts can be used. For example, the following statements use dynamic type
casts to obtain an object’s IControl and IDataBound interface implementations. Because
the actual type of the object is EditBox, the casts succeed.

object obj = new EditBox();
IControl control = (IControl)obj;
IDataBound dataBound = (IDataBound)obj;

In the previous EditBox class, the Paint method from the IControl interface and the Bind
method from the IDataBound interface are implemented using public members. C# also
supports explicit interface member implementations, using which the class or struct can
avoid making the members public. An explicit interface member implementation is writ-
ten using the fully qualified interface member name. For example, the EditBox class could
implement the IControl.Paint and IDataBound.Bind methods using explicit interface
member implementations as follows.

 public class EditBox : IControl, IDataBound
 {
 void IControl.Paint() {...}

 void IDataBound.Bind(Binder b) {...}
 }

Explicit interface members can only be accessed via the interface type. For example, the
implementation of IControl.Paint provided by the previous EditBox class can only be
invoked by first converting the EditBox reference to the IControl interface type.

EditBox editBox = new EditBox();
editBox.Paint(); // Error; no such method
IControl control = editBox;
control.Paint(); // Okay

n
n  VLADIMIR RESHETNIkoV Actually, explicitly implemented interface members

can also be accessed via a type parameter, constrained to the interface type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

58

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

1.10 Enums
An enum type is a distinct value type with a set of named constants. The following exam-
ple declares and uses an enum type named Color with three constant values, Red, Green,
and Blue.

using System;

enum Color
{
 Red,
 Green,
 Blue
}

class Test
{
 static void PrintColor(Color color) {
 switch (color) {
 case Color.Red:
 Console.WriteLine("Red");
 break;
 case Color.Green:
 Console.WriteLine("Green");
 break;
 case Color.Blue:
 Console.WriteLine("Blue");
 break;
 default:
 Console.WriteLine("Unknown color");
 break;
 }
 }

 static void Main() {
 Color c = Color.Red;
 PrintColor(c);
 PrintColor(Color.Blue);
 }
}

Each enum type has a corresponding integral type called the underlying type of the enum
type. An enum type that does not explicitly declare an underlying type has an underlying
type of int. An enum type’s storage format and range of possible values are determined
by its underlying type. The set of values that an enum type can take on is not limited by its
enum members. In particular, any value of the underlying type of an enum can be cast to
the enum type and is a distinct valid value of that enum type.

The following example declares an enum type named Alignment with an underlying type
of sbyte.

 enum Alignment : sbyte
 {
 Left = -1,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.10		 Enums

59

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 Center = 0,
 Right = 1
 }

VLADIMIR RESHETNIkoV Although this syntax resembles base type specification,
it has a different meaning. The base type of Alignment is not sbyte, but System.Enum,
and there is no implicit conversion from Alignment to sbyte.

As shown by the previous example, an enum member declaration can include a constant
expression that specifies the value of the member. The constant value for each enum mem-
ber must be in the range of the underlying type of the enum. When an enum member
declaration does not explicitly specify a value, the member is given the value zero (if it is
the first member in the enum type) or the value of the textually preceding enum member
plus one.

Enum values can be converted to integral values and vice versa using type casts. For
example:

int i = (int)Color.Blue; // int i = 2;
Color c = (Color)2; // Color c = Color.Blue;

BILL WAGNER The fact that zero is the default value for a variable of an enum type
implies that you should always ensure that zero is a valid member of any enum
type.

The default value of any enum type is the integral value zero converted to the enum type.
In cases where variables are automatically initialized to a default value, this is the value
given to variables of enum types. For the default value of an enum type to be easily avail-
able, the literal 0 implicitly converts to any enum type. Thus the following is permitted.

Color c = 0;

BRAD ABRAMS My first programming class in high school was in Turbo Pascal
(Thanks, Anders!). On one of my first assignments I got back from my teacher, I saw a
big red circle around the number 65 in my source code and the scrawled note, “No
Magic Constants!!” My teacher was instilling in me the virtues of using the constant
RetirementAge for readability and maintenance. Enums make this a super-easy deci-
sion to make. Unlike in some programming languages, using an enum does not incur
any runtime performance overhead in C#. While I have heard many excuses in API
reviews, there are just no good reasons to use a magic constant rather than an enum!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

60

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

1.11 Delegates
A delegate type represents references to methods with a particular parameter list and
return type. Delegates make it possible to treat methods as entities that can be assigned to
variables and passed as parameters. Delegates are similar to the concept of function point-
ers found in some other languages, but unlike function pointers, delegates are object-
oriented and type-safe.

The following example declares and uses a delegate type named Function.

using System;

delegate double Function(double x);

class Multiplier
{
 double factor;

 public Multiplier(double factor) {
 this.factor = factor;
 }

 public double Multiply(double x) {
 return x * factor;
 }
}

class Test
{
 static double Square(double x) {
 return x * x;
 }

 static double[] Apply(double[] a, Function f) {
 double[] result = new double[a.Length];
 for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
 return result;
 }

 static void Main() {
 double[] a = {0.0, 0.5, 1.0};

 double[] squares = Apply(a, Square);

 double[] sines = Apply(a, Math.Sin);

 Multiplier m = new Multiplier(2.0);
 double[] doubles = Apply(a, m.Multiply);
 }
}

An instance of the Function delegate type can reference any method that takes a double
argument and returns a double value. The Apply method applies a given Function to the
elements of a double[], returning a double[] with the results. In the Main method, Apply is
used to apply three different functions to a double[].

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.12		 Attributes

61

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

A delegate can reference either a static method (such as Square or Math.Sin in the previous
example) or an instance method (such as m.Multiply in the previous example). A delegate
that references an instance method also references a particular object, and when the instance
method is invoked through the delegate, that object becomes this in the invocation.

Delegates can also be created using anonymous functions, which are “in-line methods”
that are created on the fly. Anonymous functions can see the local variables of the sur-
rounding methods. Thus the multiplier example above can be written more easily without
using a Multiplier class:

double[] doubles = Apply(a, (double x) => x * 2.0);

An interesting and useful property of a delegate is that it does not know or care about the
class of the method it references; all that matters is that the referenced method has the same
parameters and return type as the delegate.

BILL WAGNER This property of delegates make them an excellent tool for providing
interfaces between components with the lowest possible coupling.

1.12 Attributes
Types, members, and other entities in a C# program support modifiers that control certain
aspects of their behavior. For example, the accessibility of a method is controlled using the
public, protected, internal, and private modifiers. C# generalizes this capability such
that user-defined types of declarative information can be attached to program entities and
retrieved at runtime. Programs specify this additional declarative information by defining
and using attributes.

The following example declares a HelpAttribute attribute that can be placed on program
entities to provide links to their associated documentation.

using System;

public class HelpAttribute: Attribute
{
 string url;
 string topic;

 public HelpAttribute(string url) {
 this.url = url;
 }

 public string Url {
 get { return url; }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1. Introduction

62

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 public string Topic {
 get { return topic; }
 set { topic = value; }
 }
}

All attribute classes derive from the System.Attribute base class provided by the .NET
Framework. Attributes can be applied by giving their name, along with any arguments,
inside square brackets just before the associated declaration. If an attribute’s name ends in
Attribute, that part of the name can be omitted when the attribute is referenced. For exam-
ple, the HelpAttribute attribute can be used as follows.

[Help("http://msdn.microsoft.com/.../MyClass.htm")]
public class Widget
{
 [Help("http://msdn.microsoft.com/.../MyClass.htm", Topic = "Display")]
 public void Display(string text) { }
}

This example attaches a HelpAttribute to the Widget class and another HelpAttribute to
the Display method in the class. The public constructors of an attribute class control the
information that must be provided when the attribute is attached to a program entity.
Additional information can be provided by referencing public read-write properties of the
attribute class (such as the reference to the Topic property previously).

The following example shows how attribute information for a given program entity can be
retrieved at runtime using reflection.

using System;
using System.Reflection;

class Test
{
 static void ShowHelp(MemberInfo member) {
 HelpAttribute a = Attribute.GetCustomAttribute(member,
 typeof(HelpAttribute)) as HelpAttribute;
 if (a == null) {
 Console.WriteLine("No help for {0}", member);
 }
 else {
 Console.WriteLine("Help for {0}:", member);
 Console.WriteLine(" Url={0}, Topic={1}",
 a.Url, a.Topic);
 }
 }

 static void Main() {
 ShowHelp(typeof(Widget));
 ShowHelp(typeof(Widget).GetMethod("Display"));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

1.12		 Attributes

63

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

When a particular attribute is requested through reflection, the constructor for the attribute
class is invoked with the information provided in the program source, and the resulting
attribute instance is returned. If additional information was provided through properties,
those properties are set to the given values before the attribute instance is returned.

BILL WAGNER The full potential of attributes will be realized when some future ver-
sion of the C# compiler enables developers to read attributes and use them to modify
the code model before the compiler creates IL. I’ve wanted to be able to use attributes
to change the behavior of code since the first release of C#.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

65

Lexical Structure2.

2.1 Programs
A C# program consists of one or more source files, known formally as compilation units
(§9.1). A source file is an ordered sequence of Unicode characters. Source files typically
have a one-to-one correspondence with files in a file system, but this correspondence is not
required. For maximal portability, it is recommended that files in a file system be encoded
with the UTF-8 encoding.

Conceptually speaking, a program is compiled using three steps:

Transformation, which converts a file from a particular character repertoire and encod-1.
ing scheme into a sequence of Unicode characters.

Lexical analysis, which translates a stream of Unicode input characters into a stream of 2.
tokens.

Syntactic analysis, which translates the stream of tokens into executable code.3.

2.2 Grammars
This specification presents the syntax of the C# programming language using two gram-
mars. The lexical grammar (§2.2.2) defines how Unicode characters are combined to form
line terminators, white space, comments, tokens, and preprocessing directives. The syntac-
tic grammar (§2.2.3) defines how the tokens resulting from the lexical grammar are com-
bined to form C# programs.

2.2.1 Grammar Notation
The lexical and syntactic grammars are presented using grammar productions. Each gram-
mar production defines a nonterminal symbol and the possible expansions of that nonter-
minal symbol into sequences of nonterminal or terminal symbols. In grammar productions,
nonterminal symbols are shown in italic type, and terminal symbols are shown in a fixed-
width font.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

66

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

The first line of a grammar production is the name of the nonterminal symbol being
defined, followed by a colon. Each successive indented line contains a possible expansion
of the nonterminal given as a sequence of nonterminal or terminal symbols. For example,
the production

while-statement:
while (boolean-expression) embedded-statement

defines a while-statement to consist of the token while, followed by the token “(”, followed
by a boolean-expression, followed by the token “)”, followed by an embedded-statement.

When there is more than one possible expansion of a nonterminal symbol, the alternatives
are listed on separate lines. For example, the production

statement-list:
statement
statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed
by a statement. In other words, the definition is recursive and specifies that a statement list
consists of one or more statements.

A subscripted suffix “opt” is used to indicate an optional symbol. The production

block:
{ statement-listopt }

is shorthand for

block:
{ }
{ statement-list }

and defines a block to consist of an optional statement-list enclosed in “{” and “}” tokens.

Alternatives are normally listed on separate lines, though in cases where there are many
alternatives, the phrase “one of” may precede a list of expansions given on a single line.
This is simply shorthand for listing each of the alternatives on a separate line. For example,
the production

real-type-suffix: one of
F f D d M m

is shorthand for

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.3		 Lexical Analysis

67

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

real-type-suffix:
F
f
D
d
M
m

2.2.2 Lexical Grammar
The lexical grammar of C# is presented in §2.3, §2.4, and §2.5. The terminal symbols of the
lexical grammar are the characters of the Unicode character set, and the lexical grammar
specifies how characters are combined to form tokens (§2.4), white space (§2.3.3), com-
ments (§2.3.2), and preprocessing directives (§2.5).

Every source file in a C# program must conform to the input production of the lexical
grammar (§2.3).

2.2.3 Syntactic Grammar
The syntactic grammar of C# is presented in the chapters and appendices that follow this
chapter. The terminal symbols of the syntactic grammar are the tokens defined by the lexi-
cal grammar, and the syntactic grammar specifies how tokens are combined to form C#
programs.

Every source file in a C# program must conform to the compilation-unit production of the
syntactic grammar (§9.1).

2.3 Lexical Analysis
The input production defines the lexical structure of a C# source file. Each source file in a
C# program must conform to this lexical grammar production.

input:
input-sectionopt

input-section:
input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

68

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: line terminators
(§2.3.1), white space (§2.3.3), comments (§2.3.2), tokens (§2.4), and preprocessing directives
(§2.5). Of these basic elements, only tokens are significant in the syntactic grammar of a C#
program (§2.2.3).

The lexical processing of a C# source file consists of reducing the file into a sequence of
tokens, which then becomes the input to the syntactic analysis. Line terminators, white
space, and comments can serve to separate tokens, and preprocessing directives can cause
sections of the source file to be skipped, but otherwise these lexical elements have no
impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a source file,
the lexical processing always forms the longest possible lexical element. For example, the
character sequence // is processed as the beginning of a single-line comment because that
lexical element is longer than a single / token.

2.3.1 Line Terminators
Line terminators divide the characters of a C# source file into lines.

new-line:
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable
a source file to be viewed as a sequence of properly terminated lines, the following trans-
formations are applied, in order, to every source file in a C# program:

If the last character of the source file is a Control-Z character (•	 U+001A), this character is
deleted.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.3		 Lexical Analysis

69

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

A carriage return character (•	 U+000D) is added to the end of the source file if that source
file is non-empty and if the last character of the source file is not a carriage return
(U+000D), a line feed (U+000A), a line separator (U+2028), or a paragraph separator
(U+2029).

2.3.2 Comments
Two forms of comments are supported: single-line comments and delimited comments.
Single-line comments start with the characters // and extend to the end of the source line.
Delimited comments start with the characters /* and end with the characters */. Delimited
comments may span multiple lines.

comment:
single-line-comment
delimited-comment

single-line-comment:
// input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment:
/* delimited-comment-textopt asterisks /

delimited-comment-text:
delimited-comment-section
delimited-comment-text delimited-comment-section

delimited-comment-section:
/
asterisksopt not-slash-or-asterisk

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

70

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

asterisks:
*
asterisks *

not-slash-or-asterisk:
Any Unicode character except / or *

Comments do not nest. The character sequences /* and */ have no special meaning within
a // comment, and the character sequences // and /* have no special meaning within a
delimited comment.

Comments are not processed within character and string literals.

The example

/* Hello, world program
 This program writes "hello, world" to the console
*/
class Hello
{
 static void Main() {
 System.Console.WriteLine("hello, world");
 }
}

includes a delimited comment.

The example

// Hello, world program
// This program writes "hello, world" to the console
//
class Hello // any name will do for this class
{
 static void Main() { // this method must be named "Main"
 System.Console.WriteLine("hello, world");
 }
}

shows several single-line comments.

2.3.3 White Space
White space is defined as any character with Unicode class Zs (which includes the space
character) as well as the horizontal tab character, the vertical tab character, and the form
feed character.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

71

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

whitespace:
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctua-
tors. White space and comments are not tokens, though they act as separators for tokens.

token:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Unicode Character Escape Sequences
A Unicode character escape sequence represents a Unicode character. Unicode character
escape sequences are processed in identifiers (§2.4.2), character literals (§2.4.4.4), and regu-
lar string literals (§2.4.4.5). A Unicode character escape is not processed in any other loca-
tion (for example, to form an operator, punctuator, or keyword).

unicode-escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

n
n  ERIC LIPPERT This practice differs from Java, in which Unicode escape sequences

may appear almost anywhere.

A Unicode escape sequence represents the single Unicode character formed by the hexa-
decimal number following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of
Unicode code points in characters and string values, a Unicode character in the range
U+10000 to U+10FFFF is not permitted in a character literal and is represented using a

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

72

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Unicode surrogate pair in a string literal. Unicode characters with code points above
0x10FFFF are not supported.

Multiple translations are not performed. For instance, the string literal “\u005Cu005C” is
equivalent to “\u005C” rather than “\”. The Unicode value \u005C is the character “\”.

The example

class Class1
{
 static void Test(bool \u0066) {
 char c = '\u0066';
 if (\u0066)
 System.Console.WriteLine(c.ToString());
 }
}

shows several uses of \u0066, which is the escape sequence for the letter “f”. The program
is equivalent to

class Class1
{
 static void Test(bool f) {
 char c = 'f';
 if (f)
 System.Console.WriteLine(c.ToString());
 }
}

2.4.2 Identifiers
The rules for identifiers given in this section correspond exactly to those recommended by
the Unicode Standard Annex 31, except that underscore is allowed as an initial character
(as is traditional in the C programming language), Unicode escape sequences are permit-
ted in identifiers, and the “@” character is allowed as a prefix to enable keywords to be used
as identifiers.

identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

73

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

identifier-start-character:
letter-character
_ (the underscore character U+005F)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

For information on the Unicode character classes mentioned above, see The Unicode Stan-
dard, Version 3.0, section 4.5.

Examples of valid identifiers include “identifier1”, “_identifier2”, and “@if”.

An identifier in a conforming program must be in the canonical format defined by Unicode
Normalization Form C, as defined by Unicode Standard Annex 15. The behavior when
encountering an identifier not in Normalization Form C is implementation-defined; how-
ever, a diagnostic is not required.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

74

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing
with other programming languages. The character @ is not actually part of the identifier, so
the identifier might be seen in other languages as a normal identifier, without the prefix.
An identifier with an @ prefix is called a verbatim identifier. Use of the @ prefix for identi-
fiers that are not keywords is permitted, but strongly discouraged as a matter of style.

The example

class @class
{
 public static void @static(bool @bool) {
 if (@bool)
 System.Console.WriteLine("true");
 else
 System.Console.WriteLine("false");
 }
}

class Class1
{
 static void M() {
 cl\u0061ss.st\u0061tic(true);
 }
}

defines a class named “class” with a static method named “static” that takes a parameter
named “bool”. Note that since Unicode escapes are not permitted in keywords, the token
“cl\u0061ss” is an identifier, and is the same identifier as “@class”.

Two identifiers are considered the same if they are identical after the following transforma-
tions are applied, in order:

The prefix “•	 @”, if used, is removed.

Each •	 unicode-escape-sequence is transformed into its corresponding Unicode character.

Any •	 formatting-characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use
by the implementation. For example, an implementation might provide extended key-
words that begin with two underscores.

2.4.3 keywords
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used
as an identifier except when prefaced by the @ character.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

75

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

keyword: one of
abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto
if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true
try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

In some places in the grammar, specific identifiers have special meaning, but are not key-
words. Such identifiers are sometimes referred to as “contextual keywords.” For example,
within a property declaration, the “get” and “set” identifiers have special meaning
(§10.7.2). An identifier other than get or set is never permitted in these locations, so this
use does not conflict with a use of these words as identifiers. In other cases, such as with
the identifier “var” in implicitly typed local variable declarations (§8.5.1), a contextual
keyword can conflict with declared names. In such cases, the declared name takes prece-
dence over the use of the identifier as a contextual keyword.

n
n  ERIC LIPPERT C# has not added any new reserved keywords since its original

release. All the new language features that require new keywords (yield, select, and
so on) use “contextual keywords,” which are not reserved and have special meaning
only in context. This decision helps preserve backward compatibility with existing
programs.

n
n  VLADIMIR RESHETNIkoV In case you need the full list of these contextual key-

words (including supported attribute targets), here it is:

add alias ascending assembly by descending dynamic equals field from get
global group into join let method module on orderby param partial property
remove select set type typevar value var where yield

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

76

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

2.4.4 Literals
A literal is a source code representation of a value.

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.4.4.1 Boolean Literals
There are two boolean literal values: true and false.

boolean-literal:
true
false

The type of a boolean-literal is bool.

2.4.4.2 Integer Literals
Integer literals are used to write values of types int, uint, long, and ulong. Integer literals
have two possible forms: decimal and hexadecimal.

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix: one of
U u L l UL Ul uL ul LU Lu lU lu

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

77

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

hexadecimal-integer-literal:
0x hex-digits integer-type-suffixopt

0X hex-digits integer-type-suffixopt

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

n
n  ERIC LIPPERT C# does not support octal literals, for two reasons. First, hardly

anyone uses octal literals these days. Second, if C# supported octal in the standard
“leading zero means octal” format, then it would be a potential source of errors. Con-
sider this code:

FlightNumber = 0541;

Clearly this expression is intended as a decimal literal, not an octal literal.

The type of an integer literal is determined as follows:

If the literal has no suffix, it has the first of these types in which its value can be repre-•	
sented: int, uint, long, ulong.

If the literal is suffixed by •	 U or u, it has the first of these types in which its value can be
represented: uint, ulong.

If the literal is suffixed by •	 L or l, it has the first of these types in which its value can be
represented: long, ulong.

If the literal is suffixed by •	 UL, Ul, uL, ul, LU, Lu, lU, or lu, it is of type ulong.

If the value represented by an integer literal is outside the range of the ulong type, a
compile-time error occurs.

As a matter of style, it is suggested that “L” be used instead of “l” when writing literals of
type long, since it is easy to confuse the letter “l” with the digit “1”.

To permit the smallest possible int and long values to be written as decimal integer liter-
als, the following two rules exist:

When a •	 decimal-integer-literal with the value 2147483648 (231) and no integer-type-suffix
appears as the token immediately following a unary minus operator token (§7.7.2), the

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

78

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

result is a constant of type int with the value −2147483648 (−231). In all other situations,
such a decimal-integer-literal is of type uint.

When a •	 decimal-integer-literal with the value 9223372036854775808 (263) and no integer-
type-suffix or the integer-type-suffix L or l appears as the token immediately following a
unary minus operator token (§7.7.2), the result is a constant of type long with the value
−9223372036854775808 (−263). In all other situations, such a decimal-integer-literal is of
type ulong.

n
n  JoSEPH ALBAHARI Thanks to implicit constant expression conversions (§6.1.8),

integer literals can be assigned directly to the uint, long, and ulong types (as well as
short, ushort, byte, and sbyte):

uint x = 3; long y = 3; ulong z = 3;

As a consequence, the U and L suffixes are rarely necessary. An example of when they
are still useful is to force 64-bit calculations on literals that would otherwise attract
32-bit arithmetic:

long error = 1000000 * 1000000 ; // Compile-time error (32-bit overflow)
long trillion = 1000000L * 1000000L; // Okay -- no overflow

2.4.4.3 Real Literals
Real literals are used to write values of types float, double, and decimal.

real-literal:
decimal-digits . decimal-digits exponent-partopt real-type-suffixopt
. decimal-digits exponent-partopt real-type-suffixopt

decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

exponent-part:
e signopt decimal-digits
E signopt decimal-digits

sign: one of
+ -

real-type-suffix: one of
F f D d M m

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

79

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

If no real-type-suffix is specified, the type of the real literal is double. Otherwise, the real
type suffix determines the type of the real literal, as follows:

A real literal suffixed by •	 F or f is of type float. For example, the literals 1f, 1.5f, 1e10f,
and 123.456F are all of type float.

A real literal suffixed by •	 D or d is of type double. For example, the literals 1d, 1.5d, 1e10d,
and 123.456D are all of type double.

A real literal suffixed by •	 M or m is of type decimal. For example, the literals 1m, 1.5m,
1e10m, and 123.456M are all of type decimal. This literal is converted to a decimal value
by taking the exact value and, if necessary, rounding to the nearest representable value
using banker's rounding (§4.1.7). Any scale apparent in the literal is preserved unless the
value is rounded or the value is zero (in which latter case, the sign and scale will be 0).
Hence the literal 2.900m will be parsed to form the decimal with sign 0, coefficient 2900,
and scale 3.

If the specified literal cannot be represented in the indicated type, a compile-time error
occurs.

The value of a real literal of type float or double is determined by using the IEEE “round
to nearest” mode.

Note that in a real literal, decimal digits are always required after the decimal point. For
example, 1.3F is a real literal but 1.F is not.

n
n  JoSEPH ALBAHARI Of all the numeric suffixes, m and f are by far the most useful.

Without these suffixes, a fractional float or decimal literal cannot be specified with-
out a cast. For example, the following code will not compile, because the literal 1.5
will be parsed as type double:

float x = 1.5; // Error: no implicit conversion from double to float
decimal y = 1.5; // Error: no implicit conversion from double to decimal

Interestingly, the following code does compile, because C# defines an implicit conver-
sion from int to decimal:

decimal z = 123; // Okay: parsed as int, and then implicitly converted
 // to decimal

The d suffix is technically redundant in that the presence of a decimal point does the
same job:

Console.WriteLine ((123.0).GetType() == typeof (double));// True

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

80

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

2.4.4.4 Character Literals
A character literal represents a single character, and usually consists of a character in
quotes, as in 'a'.

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character:
Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence:
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

A character that follows a backslash character (\) in a character must be one of the following
characters: ', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs.

A hexadecimal escape sequence represents a single Unicode character, with the value
formed by the hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error
occurs.

A Unicode character escape sequence (§2.4.1) in a character literal must be in the range
U+0000 to U+FFFF.

A simple escape sequence represents a Unicode character encoding, as described in the
table below.

Escape Sequence Character Name Unicode Encoding

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

81

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Escape Sequence Character Name Unicode Encoding

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The type of a character-literal is char.

2.4.4.5 String Literals
C# supports two forms of string literals: regular string literals and verbatim string
literals.

A regular string literal consists of zero or more characters enclosed in double quotes, as in
"hello", and may include both simple escape sequences (such as \t for the tab character),
and hexadecimal and Unicode escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote character,
zero or more characters, and a closing double-quote character. A simple example is
@"hello". In a verbatim string literal, the characters between the delimiters are interpreted
verbatim, the only exception being a quote-escape-sequence. In particular, simple escape
sequences and hexadecimal and Unicode escape sequences are not processed in verbatim
string literals. A verbatim string literal may span multiple lines.

n
n  JoN SkEET One aspect of verbatim string literals that makes me nervous is the

way a line break will take on the form in which it occurs in the file. It’s the natural
option of course, but it means switching a file between “\r\n” and “\n” line breaks
isn’t a purely decorative change: It can affect behavior, too.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

82

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-charactersopt "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal:
@" verbatim-string-literal-charactersopt "

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
Any character except "

quote-escape-sequence:
""

A character that follows a backslash character (\) in a regular-string-literal-character must be
one of the following characters: ', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time
error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.4		 Tokens

83

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

The example

string a = "hello, world"; // hello, world
string b = @"hello, world"; // hello, world

string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me

string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt

string i = "one\r\ntwo\r\nthree";
string j = @"one
two
three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that
spans multiple lines. The characters between the quotation marks, including white space
such as new line characters, are preserved verbatim.

n
n  BRAD ABRAMS In the early days of the C# language design, we experimented

with using the backtick (`) character. Personally, I really liked this choice: The backtick
is in the quote family and is a grossly underused character. In fact, it was so underused
that some international keyboards don’t even include a key for it. We were lucky to
have such a good, early international following for C#, which allowed us to fix this
potential error very early in the design of the language.

Since a hexadecimal escape sequence can have a variable number of hex digits, the string
literal "\x123" contains a single character with hex value 123. To create a string containing
the character with hex value 12 followed by the character 3, one could write "\x00123" or
"\x12" + "3" instead.

n
n  JoN SkEET Hexadecimal escape sequences aren’t just rare—they’re dangerous.

While a string such as "\x9Tabbed" is reasonably clear, it’s not nearly as obvious that
"\x9Badly tabbed" actually begins with the Unicode character U+9BAD.

The type of a string-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more
string literals that are equivalent according to the string equality operator (§7.10.7) appear

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

84

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

in the same program, these string literals refer to the same string instance. For instance, the
output produced by

class Test
{
 static void Main() {
 object a = "hello";
 object b = "hello";
 System.Console.WriteLine(a == b);
 }
}

is True because the two literals refer to the same string instance.

n
n  JoSEPH ALBAHARI This optimization is called interning. One of the benefits of

interning is that it reduces the size of the compiled assembly because duplicate string
literals are factored out.

In the preceding example, a and b are declared of type object, which forces the sub-
sequent comparison to use object’s reference-type equality semantics. If a and b were
declared of type string, the comparison would bind to string’s == operator, which
evaluates to true if the strings have identical content—even if they refer to different
underlying objects.

2.4.4.6 The null Literal
null-literal:

null

The null-literal can be implicitly converted to a reference type or nullable type.

n
n  ERIC LIPPERT The null literal expression itself does not have a type.

2.4.5 operators and Punctuators
There are several kinds of operators and punctuators. Operators are used in expressions to
describe operations involving one or more operands. For example, the expression a + b
uses the + operator to add the two operands a and b. Punctuators are for grouping and
separating.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

85

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

operator-or-punctuator: one of
{ } [] () . , : ;
+ - * / % & | ^ ! ~
= < > ? ?? :: ++ -- && ||
-> == != <= >= += -= *= /= %=
&= |= ^= << <<= =>

right-shift:
>|>

right-shift-assignment:
>|>=

The vertical bars in the right-shift and right-shift-assignment productions are used to indicate
that, unlike other productions in the syntactic grammar, no characters of any kind (not
even white space) are allowed between the tokens. These productions are treated specially
to enable the correct handling of type-parameter-lists (§10.1.3).

2.5 Preprocessing Directives

n
n  BILL WAGNER This section shows how the C heritage colors so much of modern

development. I rarely, if ever, use any of the preprocessing directives—but I can only
imagine the storm of criticism if C# had not included a strong set of preprocessing
directives.

The preprocessing directives provide the ability to conditionally skip sections of source
files, to report error and warning conditions, and to delineate distinct regions of source
code. The term “preprocessing directives” is used only for consistency with the C and C++
programming languages. In C#, there is no separate preprocessing step; preprocessing
directives are processed as part of the lexical analysis phase.

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region
pp-pragma

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

86

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

The following preprocessing directives are available:

#define•	 and #undef, which are used to define and undefine, respectively, conditional
compilation symbols (§2.5.3).

#if•	 , #elif, #else, and #endif, which are used to conditionally skip sections of source
code (§2.5.4).

#line•	 , which is used to control line numbers emitted for errors and warnings (§2.5.7).

#error•	 and #warning, which are used to issue errors and warnings, respectively
(§2.5.5).

#region•	 and #endregion, which are used to explicitly mark sections of source code
(§2.5.6).

#pragma•	 , which is used to specify optional contextual information to the compiler
(§2.5.8).

A preprocessing directive always occupies a separate line of source code and always begins
with a # character and a preprocessing directive name. White space may occur before the
character and between the # character and the directive name.

A source line containing a #define, #undef, #if, #elif, #else, #endif, or #line directive
may end with a single-line comment. Delimited comments (the /* */ style of comments)
are not permitted on source lines containing preprocessing directives.

Preprocessing directives are not tokens and are not part of the syntactic grammar of C#.
However, preprocessing directives can be used to include or exclude sequences of tokens
and can in that way affect the meaning of a C# program. For example, when compiled, the
program

#define A
#undef B

class C
{
#if A
 void F() {}
#else
 void G() {}
#endif

#if B
 void H() {}
#else
 void I() {}
#endif
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

87

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

results in the exact same sequence of tokens as the program

class C
{
 void F() {}
 void I() {}
}

Thus, whereas lexically the two programs are quite different, syntactically they are
identical.

2.5.1 Conditional Compilation Symbols
The conditional compilation functionality provided by the #if, #elif, #else, and #endif
directives is controlled through preprocessing expressions (§2.5.2) and conditional compi-
lation symbols.

conditional-symbol:
Any identifier-or-keyword except true or false

A conditional compilation symbol has two possible states: defined or undefined. At the
beginning of the lexical processing of a source file, a conditional compilation symbol is
undefined unless it has been explicitly defined by an external mechanism (such as a com-
mand-line compiler option). When a #define directive is processed, the conditional com-
pilation symbol named in that directive becomes defined in that source file. The symbol
remains defined until an #undef directive for that same symbol is processed, or until the
end of the source file is reached. An implication of this is that #define and #undef direc-
tives in one source file have no effect on other source files in the same program.

When referenced in a preprocessing expression, a defined conditional compilation symbol
has the boolean value true, and an undefined conditional compilation symbol has the
boolean value false. There is no requirement that conditional compilation symbols be
explicitly declared before they are referenced in preprocessing expressions. Instead, unde-
clared symbols are simply undefined and thus have the value false.

The name space for conditional compilation symbols is distinct and separate from all other
named entities in a C# program. Conditional compilation symbols can only be referenced
in #define and #undef directives and in preprocessing expressions.

2.5.2 Preprocessing Expressions
Preprocessing expressions can occur in #if and #elif directives. The operators !, ==, !=,
&&, and || are permitted in preprocessing expressions, and parentheses may be used for
grouping.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

88

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

pp-expression:
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression:
true
false
conditional-symbol
(whitespaceopt pp-expression whitespaceopt)

When referenced in a preprocessing expression, a defined conditional compilation symbol
has the boolean value true, and an undefined conditional compilation symbol has the
boolean value false.

Evaluation of a preprocessing expression always yields a boolean value. The rules of eval-
uation for a preprocessing expression are the same as those for a constant expression
(§7.19), except that the only user-defined entities that can be referenced are conditional
compilation symbols.

2.5.3 Declaration Directives
The declaration directives are used to define or undefine conditional compilation
symbols.

pp-declaration:
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

pp-new-line:
whitespaceopt single-line-commentopt new-line

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

89

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

The processing of a #define directive causes the given conditional compilation symbol to
become defined, starting with the source line that follows the directive. Likewise, the pro-
cessing of a #undef directive causes the given conditional compilation symbol to become
undefined, starting with the source line that follows the directive.

Any #define and #undef directives in a source file must occur before the first token (§2.4)
in the source file; otherwise, a compile-time error occurs. In intuitive terms, #define and
#undef directives must precede any “real code” in the source file.

The example

#define Enterprise

#if Professional || Enterprise
 #define Advanced
#endif

namespace Megacorp.Data
{
 #if Advanced
 class PivotTable {...}
 #endif
}

is valid because the #define directives precede the first token (the namespace keyword) in
the source file.

The following example results in a compile-time error because a #define follows real code:

#define A
namespace N
{
 #define B
 #if B
 class Class1 {}
 #endif
}

A #define may define a conditional compilation symbol that is already defined, without
there being any intervening #undef for that symbol. The example below defines a condi-
tional compilation symbol A and then defines it again.

#define A
#define A

A #undef may “undefine” a conditional compilation symbol that is not defined. The exam-
ple below defines a conditional compilation symbol A and then undefines it twice; although
the second #undef has no effect, it is still valid.

#define A
#undef A
#undef A

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

90

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

2.5.4 Conditional Compilation Directives
The conditional compilation directives are used to conditionally include or exclude por-
tions of a source file.

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line
conditional-sectionopt

pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line
conditional-sectionopt

pp-else-section:
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt

pp-endif:
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section:
input-section
skipped-section

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

not-number-sign:
Any input-character except #

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

91

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

As indicated by the syntax, conditional compilation directives must be written as sets con-
sisting of, in order, an #if directive, zero or more #elif directives, zero or one #else direc-
tive, and an #endif directive. Between the directives are conditional sections of source
code. Each section is controlled by the immediately preceding directive. A conditional sec-
tion may itself contain nested conditional compilation directives provided these directives
form complete sets.

n
n  CHRIS SELLS I can see #if and #endif, but #elif? Is this a Santa’s helper with

a lisp? A hipster abbreviation for some large, gray, wrinkled animal? I’d have pre-
ferred springing for the two extra characters in #elseif simply so I could actually
remember it. . .

A pp-conditional selects at most one of the contained conditional-sections for normal lexical
processing:

The •	 pp-expressions of the #if and #elif directives are evaluated in order until one yields
true. If an expression yields true, the conditional-section of the corresponding directive
is selected.

If all •	 pp-expressions yield false, and if an #else directive is present, the conditional-section
of the #else directive is selected.

Otherwise, no •	 conditional-section is selected.

The selected conditional-section, if any, is processed as a normal input-section: The source
code contained in the section must adhere to the lexical grammar; tokens are generated
from the source code in the section; and preprocessing directives in the section have the
prescribed effects.

The remaining conditional-sections, if any, are processed as skipped-sections: Except for pre-
processing directives, the source code in the section need not adhere to the lexical gram-
mar; no tokens are generated from the source code in the section; and preprocessing
directives in the section must be lexically correct but are not otherwise processed. Within a
conditional-section that is being processed as a skipped-section, any nested conditional-sections
(contained in nested #if...#endif and #region...#endregion constructs) are also processed
as skipped-sections.

The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction
{

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

92

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

 void Commit() {
 #if Debug
 CheckConsistency();
 #if Trace
 WriteToLog(this.ToString());
 #endif
 #endif
 CommitHelper();
 }
}

Except for preprocessing directives, skipped source code is not subject to lexical analysis.
For example, the following is valid despite the unterminated comment in the #else
section:

#define Debug // Debugging on

class PurchaseTransaction
{
 void Commit() {
 #if Debug
 CheckConsistency();
 #else
 // Do something else
 #endif
 }
}

Note, however, that preprocessing directives are required to be lexically correct even in
skipped sections of source code.

n
n  CHRIS SELLS Avoid the use of nested preprocessing directives if you can, simply

because by default the most popular C# editor on the planet, Visual Studio, will
arrange them along the left edge of your text file, making it very difficult to follow the
nesting. For example,

#define Debug // Debugging on
#undef Trace // Tracing off
class PurchaseTransaction {
 void Commit() {
#if Debug
 CheckConsistency();
#if Trace
 WriteToLog(this.ToString());
#endif
#endif
 CommitHelper();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

93

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Preprocessing directives are not processed when they appear inside multi-line input ele-
ments. For example, the program

class Hello
{
 static void Main() {
 System.Console.WriteLine(@"hello,
#if Debug
 World
#else
 Nebraska
#endif
 ");
 }
}

results in the output:

hello,
#if Debug
 world
#else
 Nebraska
#endif

In peculiar cases, the set of preprocessing directives that is processed might depend on the
evaluation of the pp-expression. The example

#if X
 /*
#else
 /* */ class Q { }
#endif

always produces the same token stream (class Q { }), regardless of whether X is defined.
If X is defined, the only processed directives are #if and #endif, due to the multi-line
comment. If X is undefined, then three directives (#if, #else, #endif) are part of the
directive set.

2.5.5 Diagnostic Directives
The diagnostic directives are used to explicitly generate error and warning messages that
are reported in the same way as other compile-time errors and warnings.

pp-diagnostic:
whitespaceopt # whitespaceopt error pp-message
whitespaceopt # whitespaceopt warning pp-message

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

94

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

pp-message:
new-line
whitespace input-charactersopt new-line

The example

#warning Code review needed before check-in

#if Debug && Retail
 #error A build can't be both debug and retail
#endif

class Test {...}

always produces a warning (“Code review needed before check-in”), and produces a com-
pile-time error (“A build can’t be both debug and retail”) if the conditional symbols Debug
and Retail are both defined. Note that a pp-message can contain arbitrary text; specifically,
it need not contain well-formed tokens, as shown by the single quote in the word can't.

2.5.6 Region Directives
The region directives are used to explicitly mark regions of source code.

pp-region:
pp-start-region conditional-sectionopt pp-end-region

pp-start-region:
whitespaceopt # whitespaceopt region pp-message

pp-end-region:
whitespaceopt # whitespaceopt endregion pp-message

No semantic meaning is attached to a region; regions are intended for use by the program-
mer or by automated tools to mark a section of source code. The message specified in a
#region or #endregion directive likewise has no semantic meaning; it merely serves to
identify the region. Matching #region and #endregion directives may have different
pp-messages.

The lexical processing of a region

#region
...
#endregion

corresponds exactly to the lexical processing of a conditional compilation directive of
the form:

#if true
...
#endif

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

95

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

2.5.7 Line Directives
Line directives may be used to alter the line numbers and source file names that are
reported by the compiler in output such as warnings and errors.

Line directives are most commonly used in meta-programming tools that generate C#
source code from some other text input.

pp-line:
whitespaceopt # whitespaceopt line whitespace line-indicator pp-new-line

line-indicator:
decimal-digits whitespace file-name
decimal-digits
default
hidden

file-name:
" file-name-characters "

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except "

When no #line directives are present, the compiler reports true line numbers and source
file names in its output. When processing a #line directive that includes a line-indicator
that is not default, the compiler treats the line after the directive as having the given line
number (and file name, if specified).

n
n  JoN SkEET If you’re writing a tool that generates code from some other source,

you might think that the easiest approach is to just include a #line directive for every
line you output. It’s not quite that simple, however: A #line directive within a verba-
tim string literal ends up as part of the string, rather than being treated as a directive.
So the following code almost certainly doesn’t work as intended:

#line 5
Console.WriteLine(@"First line
#line 6
Second line");

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2. Lexical Structure

96

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

Le
xi

ca
l S

tr
uc

tu
re

2.
	

A #line default directive reverses the effect of all preceding #line directives. The compiler
reports true line information for subsequent lines, precisely as if no #line directives had
been processed.

A #line hidden directive has no effect on the file and line numbers reported in error mes-
sages, but does affect source-level debugging. When debugging, all lines between a #line
hidden directive and the subsequent #line directive (that is not #line hidden) have no line
number information. When stepping through code in the debugger, these lines will be
skipped entirely.

Note that a file-name differs from a regular string literal in that escape characters are not
processed; the ‘\’ character simply designates an ordinary backslash character within a
file-name.

2.5.8 Pragma Directives
The #pragma preprocessing directive is used to specify optional contextual information to
the compiler. The information supplied in a #pragma directive will never change program
semantics.

pp-pragma:
whitespaceopt # whitespaceopt pragma whitespace pragma-body pp-new-line

pragma-body:
pragma-warning-body

C# provides #pragma directives to control compiler warnings. Future versions of the lan-
guage may include additional #pragma directives. To ensure interoperability with other C#
compilers, the Microsoft C# compiler does not issue compilation errors for unknown
#pragma directives; such directives do, however, generate warnings.

2.5.8.1 Pragma Warning
The #pragma warning directive is used to disable or restore all or a particular set of warning
messages during compilation of the subsequent program text.

pragma-warning-body:
warning whitespace warning-action
warning whitespace warning-action whitespace warning-list

warning-action:
disable
restore

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

2.5		 Preprocessing Directives

97

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

Lexical Structure
2.	

warning-list:
decimal-digits
warning-list whitespaceopt , whitespaceopt decimal-digits

A #pragma warning directive that omits the warning list affects all warnings. A #pragma
warning directive that includes a warning list affects only those warnings that are specified
in the list.

n
n  JoN SkEET I’m not sure that defaulting to affecting all warnings is a good idea.

Requiring an explicit “all” as an alternative warning list wouldn’t have conflicted with
any other warnings (because individual warnings have to be numeric) and it would
make the meaning a good deal clearer. Having said this, I’ve never seen anyone dis-
able all warnings—and I hope never to do so.

A #pragma warning disable directive disables all or the given set of warnings.

A #pragma warning restore directive restores all or the given set of warnings to the state
that was in effect at the beginning of the compilation unit. Note that if a particular warning
was disabled externally, a #pragma warning restore (whether for all or the specific warn-
ing) will not re-enable that warning.

The following example shows use of #pragma warning to temporarily disable the warning
reported when obsoleted members are referenced, using the warning number from the
Microsoft C# compiler.

using System;

class Program
{
 [Obsolete]
 static void Foo() {}

 static void Main() {
#pragma warning disable 612
 Foo();
#pragma warning restore 612
 }
}

n
n  JoSEPH ALBAHARI The compiler generates a warning when it detects a condi-

tion that might possibly indicate a mistake in the code. Because of the potential for
false positives, the ability to disable certain warnings over selected lines of code is
important in maintaining a good signal-to-noise ratio—so that the real mistakes are
noticed. It’s also essential if you want to instruct the compiler to treat warnings as
errors—something I do in my own projects

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

99

Basic Concepts3.

3.1 Application Start-up
An assembly that has an entry point is called an application. When an application is run,
a new application domain is created. Several different instantiations of an application may
exist on the same machine at the same time, and each has its own application domain.

An application domain enables application isolation by acting as a container for applica-
tion state. An application domain acts as a container and boundary for the types defined in
the application and the class libraries it uses. Types loaded into one application domain are
distinct from the same type loaded into another application domain, and instances of
objects are not directly shared between application domains. For instance, each application
domain has its own copy of static variables for these types, and a static constructor for a
type is run at most once per application domain. Implementations are free to provide
implementation-specific policy or mechanisms for the creation and destruction of applica-
tion domains.

Application start-up occurs when the execution environment calls a designated method,
which is referred to as the application’s entry point. This entry point method is always
named Main, and can have one of the following signatures:

static void Main() {...}

static void Main(string[] args) {... }

static int Main() {...}

static int Main(string [] args) {...}

As shown, the entry point may optionally return an int value. This return value is used in
application termination (§3.2).

The entry point may optionally have one formal parameter. The parameter may have any
name, but the type of the parameter must be string[]. If the formal parameter is present,
the execution environment creates and passes a string[] argument containing the com-
mand-line arguments that were specified when the application was started. The string[]
argument is never null, but it may have a length of zero if no command-line arguments
were specified.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

100

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

Since C# supports method overloading, a class or struct may contain multiple definitions
of some method, provided each has a different signature. However, within a single pro-
gram, no class or struct may contain more than one method called Main whose definition
qualifies it to be used as an application entry point. Other overloaded versions of Main are
permitted, however, provided they have more than one parameter, or their only parameter
is other than type string[].

An application can be made up of multiple classes or structs. It is possible for more than
one of these classes or structs to contain a method called Main whose definition qualifies it
to be used as an application entry point. In such cases, an external mechanism (such as a
command-line compiler option) must be used to select one of these Main methods as the
entry point.

n
n  ERIC LIPPERT The “csc” command-line compiler provides the /main: switch for

this purpose.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the
declared accessibility (§3.5.1) of a method is determined by the access modifiers (§10.3.5)
specified in its declaration, and similarly the declared accessibility of a type is determined
by the access modifiers specified in its declaration. For a given method of a given type to
be callable, both the type and the member must be accessible. However, the application
entry point is a special case. Specifically, the execution environment can access the applica-
tion’s entry point regardless of its declared accessibility and regardless of the declared
accessibility of its enclosing type declarations.

The application entry point method may not be in a generic class declaration.

In all other respects, entry point methods behave like those that are not entry points.

3.2 Application Termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves
as the application’s termination status code. The purpose of this code is to allow commu-
nication of success or failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) that termi-
nates the method, or executing a return statement that has no expression, results in a ter-
mination status code of 0.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.3		 Declarations

101

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

n
n  BILL WAGNER The following rule is an important difference between C# and

other managed environments.

Prior to an application’s termination, destructors for all of its objects that have not yet been
garbage collected are called, unless such cleanup has been suppressed (by a call to the
library method GC.SuppressFinalize, for example).

3.3 Declarations
Declarations in a C# program define the constituent elements of the program. C# programs
are organized using namespaces (§9), which can contain type declarations and nested
namespace declarations. Type declarations (§9.6) are used to define classes (§10), structs
(§10.14), interfaces (§13), enums (§14), and delegates (§15). The kinds of members permit-
ted in a type declaration depend on the form of the type declaration. For instance, class
declarations can contain declarations for constants (§10.4), fields (§10.5), methods (§10.6),
properties (§10.7), events (§10.8), indexers (§10.9), operators (§10.10), instance constructors
(§10.11), static constructors (§10.12), destructors (§10.13), and nested types (§10.3.8).

A declaration defines a name in the declaration space to which the declaration belongs.
Except for overloaded members (§3.6), it is a compile-time error to have two or more dec-
larations that introduce members with the same name in a declaration space. It is never
possible for a declaration space to contain different kinds of members with the same
name. For example, a declaration space can never contain a field and a method by the
same name.

n
n  ERIC LIPPERT “Declaration spaces” are frequently confused with “scopes.”

Although related conceptually, the two have quite different purposes. The scope of a
named element is the region of the program text in which that element may be referred
to by name without additional qualification. By contrast, the declaration space of an
element is the region in which no two elements may have the same name. (Well,
almost—methods may have the same name if they differ in signature, and types may
have the same name if they differ in generic arity.)

There are several different types of declaration spaces.

Within all source files of a program, •	 namespace-member-declarations with no enclosing
namespace-declaration are members of a single combined declaration space called the
global declaration space.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

102

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

Within all source files of a program, •	 namespace-member-declarations within namespace-
declarations that have the same fully qualified namespace name are members of a single
combined declaration space.

Each class, struct, or interface declaration creates a new declaration space. Names are •	
introduced into this declaration space through class-member-declarations, struct-member-
declarations, interface-member-declarations, or type-parameters. Except for overloaded
instance constructor declarations and static constructor declarations, a class or struct
cannot contain a member declaration with the same name as the class or struct. A class,
struct, or interface permits the declaration of overloaded methods and indexers. Fur-
thermore, a class or struct permits the declaration of overloaded instance constructors
and operators. For example, a class, struct, or interface may contain multiple method
declarations with the same name, provided these method declarations differ in their
signature (§3.6). Note that base classes do not contribute to the declaration space of a
class, and base interfaces do not contribute to the declaration space of an interface. Thus
a derived class or interface is allowed to declare a member with the same name as an
inherited member. Such a member is said to hide the inherited member.

Each delegate declaration creates a new declaration space. Names are introduced into •	
this declaration space through formal parameters (fixed-parameters and parameter-arrays)
and type-parameters.

Each enumeration declaration creates a new declaration space. Names are introduced •	
into this declaration space through enum-member-declarations.

Each method declaration, indexer declaration, operator declaration, instance construc-•	
tor declaration, and anonymous function creates a new declaration space called a local
variable declaration space. Names are introduced into this declaration space through
formal parameters (fixed-parameters and parameter-arrays) and type-parameters. The body
of the function member or anonymous function, if any, is considered to be nested within
the local variable declaration space. It is an error for a local variable declaration space
and a nested local variable declaration space to contain elements with the same name.
Thus, within a nested declaration space, it is not possible to declare a local variable or
constant with the same name as a local variable or constant in an enclosing declaration
space. It is possible for two declaration spaces to contain elements with the same name
as long as neither declaration space contains the other.

Each •	 block or switch-block, as well as each for, foreach, and using statement, creates a
local variable declaration space for local variables and local constants. Names are intro-
duced into this declaration space through local-variable-declarations and local-constant-
declarations. Note that blocks that occur as or within the body of a function member or
anonymous function are nested within the local variable declaration space declared by

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.3		 Declarations

103

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

those functions for their parameters. Thus it is an error to have, for example, a method
with a local variable and a parameter of the same name.

Each •	 block or switch-block creates a separate declaration space for labels. Names are intro-
duced into this declaration space through labeled-statements, and the names are refer-
enced through goto-statements. The label declaration space of a block includes any nested
blocks. Thus, within a nested block, it is not possible to declare a label with the same
name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular,
textual order is not significant for the declaration and use of namespaces, constants, meth-
ods, properties, events, indexers, operators, instance constructors, destructors, static con-
structors, and types. Declaration order is significant in the following ways:

Declaration order for field declarations and local variable declarations determines the •	
order in which their initializers (if any) are executed.

Local variables must be defined before they are used (§3.7).•	

Declaration order for enum member declarations (§14.3) is significant when •	 constant-
expression values are omitted.

The declaration space of a namespace is “open-ended,” and two namespace declarations
with the same fully qualified name contribute to the same declaration space. For
example:

namespace Megacorp.Data
{
 class Customer
 {
 ...
 }
}

namespace Megacorp.Data
{
 class Order
 {
 ...
 }
}

The two namespace declarations above contribute to the same declaration space, in this
case declaring two classes with the fully qualified names Megacorp.Data.Customer and
Megacorp.Data.Order. Because the two declarations contribute to the same declaration
space, it would have caused a compile-time error if each contained a declaration of a class
with the same name.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

104

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

n
n  BILL WAGNER Think of namespaces as a tool to manage the logical organiza-

tion of your code. By comparison, assemblies manage the physical organization of
your code.

As specified above, the declaration space of a block includes any nested blocks. Thus, in
the following example, the F and G methods result in a compile-time error because the
name i is declared in the outer block and cannot be redeclared in the inner block. However,
the H and I methods are valid because the two i’s are declared in separate non-nested
blocks.

class A
 {
 void F()
 {
 int i = 0;
 if (true)
 {
 int i = 1;
 }
 }

 void G()
 {
 if (true)
 {
 int i = 0;
 }
 int i = 1;
 }

 void H()
 {
 if (true)
 {
 int i = 0;
 }
 if (true)
 {
 int i = 1;
 }
 }

 void I()
 {
 for (int i = 0; i < 10; i++)
 H();
 for (int i = 0; i < 10; i++)
 H();
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.4		 Members

105

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

3.4 Members
Namespaces and types have members. The members of an entity are generally available
through the use of a qualified name that starts with a reference to the entity, followed by a
“.” token, followed by the name of the member.

Members of a type are either declared in the type declaration or inherited from the base
class of the type. When a type inherits from a base class, all members of the base class,
except instance constructors, destructors, and static constructors, become members of the
derived type. The declared accessibility of a base class member does not control whether
the member is inherited—inheritance extends to any member that isn’t an instance con-
structor, static constructor, or destructor. However, an inherited member may not be acces-
sible in a derived type, either because of its declared accessibility (§3.5.1) or because it is
hidden by a declaration in the type itself (§3.7.1.2).

3.4.1 Namespace Members
Namespaces and types that have no enclosing namespace are members of the global
namespace. This corresponds directly to the names declared in the global declaration
space.

Namespaces and types declared within a namespace are members of that namespace. This
corresponds directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or
internal namespaces, and namespace names are always publicly accessible.

3.4.2 Struct Members
The members of a struct are the members declared in the struct and the members inherited
from the struct’s direct base class System.ValueType and the indirect base class object.

The members of a simple type correspond directly to the members of the struct type aliased
by the simple type:

The members of •	 sbyte are the members of the System.SByte struct.

The members of •	 byte are the members of the System.Byte struct.

The members of •	 short are the members of the System.Int16 struct.

The members of •	 ushort are the members of the System.UInt16 struct.

The members of •	 int are the members of the System.Int32 struct.

The members of •	 uint are the members of the System.UInt32 struct.

The members of •	 long are the members of the System.Int64 struct.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

106

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

The members of •	 ulong are the members of the System.UInt64 struct.

The members of •	 char are the members of the System.Char struct.

The members of •	 float are the members of the System.Single struct.

The members of •	 double are the members of the System.Double struct.

The members of •	 decimal are the members of the System.Decimal struct.

The members of •	 bool are the members of the System.Boolean struct.

3.4.3 Enumeration Members
The members of an enumeration are the constants declared in the enumeration and the
members inherited from the enumeration’s direct base class System.Enum and the indirect
base classes System.ValueType and object.

3.4.4 Class Members
The members of a class are the members declared in the class and the members inherited
from the base class (except for class object, which has no base class). The members inher-
ited from the base class include the constants, fields, methods, properties, events, indexers,
operators, and types of the base class, but not the instance constructors, destructors, and
static constructors of the base class. Base class members are inherited without regard to
their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties,
events, indexers, operators, instance constructors, destructors, static constructors, and
types.

The members of object and string correspond directly to the members of the class types
they alias:

The members of •	 object are the members of the System.Object class.

The members of •	 string are the members of the System.String class.

3.4.5 Interface Members
The members of an interface are the members declared in the interface and in all base inter-
faces of the interface. The members in class object are not, strictly speaking, members of
any interface (§13.2). However, the members in class object are available via member
lookup in any interface type (§7.4).

3.4.6 Array Members
The members of an array are the members inherited from class System.Array.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5		 Member Access

107

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

3.4.7 Delegate Members
The members of a delegate are the members inherited from class System.Delegate.

n
n  VLADIMIR RESHETNIkoV In the Microsoft implementation of C#, the members

of a delegate also include the instance methods Invoke, BeginInvoke, and EndInvoke,
and the members inherited from class System.MulticastDelegate.

n
n  JoN SkEET The Invoke, BeginInvoke, and EndInvoke methods mentioned by

Vladimir cannot be specified within the Delegate or MulticastDelegate types, as they
depend on the parameters and return type of the delegate. This is an example of
parameterized typing that generics couldn’t quite handle even if it had been present
from the first version of C#.

3.5 Member Access
Declarations of members allow control over member access. The accessibility of a member
is established by the declared accessibility (§3.5.1) of the member combined with the acces-
sibility of the immediately containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Con-
versely, when access to a particular member is disallowed, the member is said to be inac-
cessible. Access to a member is permitted when the textual location in which the access
takes place is included in the accessibility domain (§3.5.2) of the member.

3.5.1 Declared Accessibility
The declared accessibility of a member can be one of the following:

Public, which is selected by including a •	 public modifier in the member declaration. The
intuitive meaning of public is “access not limited.”

Protected, which is selected by including a •	 protected modifier in the member declara-
tion. The intuitive meaning of protected is “access limited to the containing class or
types derived from the containing class.”

Internal, which is selected by including an •	 internal modifier in the member declaration.
The intuitive meaning of internal is “access limited to this program.”

Protected internal (meaning protected or internal), which is selected by including both •	
a protected and an internal modifier in the member declaration. The intuitive meaning

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

108

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

of protected internal is “access limited to this program or types derived from the con-
taining class.”

Private, which is selected by including a •	 private modifier in the member declaration.
The intuitive meaning of private is “access limited to the containing type.”

n
n  JESSE LIBERTy While there is always a default accessibility, it is good program-

ming practice to declare the accessibility explicitly. This makes for code that is easier
to read and far easier to maintain.

n
n  JoN SkEET The default accessibility is nicely chosen in C#: It’s always the most

restrictive level available, with the exception of making a property getter/setter more
restrictive than the overall property declaration. I used to prefer to leave the accessibil-
ity as an implicit value, but I’ve come around to Jesse’s point of view over time. Mak-
ing anything explicit indicates that you are aware that a choice exists, and that you
have deliberately chosen this particular option. If you leave the choice implicit, it
could be because you wanted that option—or it could be because you forgot there was
a choice to make in the first place.

Depending on the context in which a member declaration takes place, only certain types of
declared accessibility are permitted. Furthermore, when a member declaration does not
include any access modifiers, the context in which the declaration takes place determines
the default declared accessibility.

Namespaces implicitly have •	 public declared accessibility. No access modifiers are
allowed on namespace declarations.

Types declared in compilation units or namespaces can have •	 public or internal declared
accessibility and default to internal declared accessibility.

Class members can have any of the five kinds of declared accessibility and default to •	
private declared accessibility. (Note that a type declared as a member of a class can have
any of the five kinds of declared accessibility, whereas a type declared as a member of a
namespace can have only public or internal declared accessibility.)

n
n  VLADIMIR RESHETNIkoV If a sealed class declares a protected or protected
internal member, a warning is issued. If a static class declares a protected or
protected internal member, a compile-time error occurs (CS1057).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5		 Member Access

109

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

Struct members can have •	 public, internal, or private declared accessibility and default
to private declared accessibility because structs are implicitly sealed. Struct members
introduced in a struct (that is, not inherited by that struct) cannot have protected or
protected internal declared accessibility. (Note that a type declared as a member of a
struct can have public, internal, or private declared accessibility, whereas a type declared
as a member of a namespace can have only public or internal declared accessibility.)

Interface members implicitly have •	 public declared accessibility. No access modifiers are
allowed on interface member declarations.

Enumeration members implicitly have •	 public declared accessibility. No access modifi-
ers are allowed on enumeration member declarations.

n
n  VLADIMIR RESHETNIkoV The wording “enumeration members” here means

“members, declared in an enumeration.” Enumerations also inherit members from
their base classes System.Enum, System.ValueType, and System.Object, and those
members can be non-public.

n
n  JoSEPH ALBAHARI The rationale behind these rules is that the default declared

accessibility for any construct is the minimum accessibility that it requires to be useful.
Minimizing accessibility is positive in the sense that it promotes encapsulation.

n
n  JESSE LIBERTy That said, it is good programming practice to make the accessi-

bility explicit, which makes your code much easier to maintain.

n
n  ERIC LIPPERT There is a difference between the “declared” accessibility and the

actual effective accessibility. For example, a method declared as public on a class
declared as internal is, for most practical purposes, an internal method.

A good way to think about this issue is to recognize that a public class member is
public only to the entities that have access to the class.

n
n  JoN SkEET One notable exception to Eric’s annotation is when you’re overriding

a public method within an internal (or even private) class—including implement-
ing an interface. Many interface implementations will be within internal classes, but
instances may still be available to other assemblies via the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

110

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

3.5.2 Accessibility Domains
The accessibility domain of a member consists of the (possibly disjoint) sections of pro-
gram text in which access to the member is permitted. For purposes of defining the acces-
sibility domain of a member, a member is said to be top-level if it is not declared within a
type, and a member is said to be nested if it is declared within another type. Furthermore,
the program text of a program is defined as all program text contained in all source files of
the program, and the program text of a type is defined as all program text contained in the
type-declarations of that type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is
unlimited.

The accessibility domain of a top-level unbound type T (§4.4.3) that is declared in a pro-
gram P is defined as follows:

If the declared accessibility of •	 T is public, the accessibility domain of T is the program
text of P and any program that references P.

If the declared accessibility of •	 T is internal, the accessibility domain of T is the program
text of P.

From these definitions, it follows that the accessibility domain of a top-level unbound type
is always at least the program text of the program in which that type is declared.

The accessibility domain for a constructed type T<A1, ...,AN> is the intersection of the acces-
sibility domain of the unbound generic type T and the accessibility domains of the type
arguments A1, ...,AN.

The accessibility domain of a nested member M declared in a type T within a program P is
defined as follows (noting that M itself may possibly be a type):

If the declared accessibility of •	 M is public, the accessibility domain of M is the accessibil-
ity domain of T.

If the declared accessibility of •	 M is protected internal, let D be the union of the program
text of P and the program text of any type derived from T, which is declared outside P.
The accessibility domain of M is the intersection of the accessibility domain of T with D.

If the declared accessibility of •	 M is protected, let D be the union of the program text of T
and the program text of any type derived from T. The accessibility domain of M is the
intersection of the accessibility domain of T with D.

If the declared accessibility of •	 M is internal, the accessibility domain of M is the intersec-
tion of the accessibility domain of T with the program text of P.

If the declared accessibility of •	 M is private, the accessibility domain of M is the program
text of T.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5		 Member Access

111

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

From these definitions, it follows that the accessibility domain of a nested member is
always at least the program text of the type in which the member is declared. Furthermore,
it follows that the accessibility domain of a member is never more inclusive than the acces-
sibility domain of the type in which the member is declared.

In intuitive terms, when a type or member M is accessed, the following steps are evaluated
to ensure that the access is permitted:

First, if •	 M is declared within a type (as opposed to a compilation unit or a namespace), a
compile-time error occurs if that type is not accessible.

Then, if •	 M is public, the access is permitted.

Otherwise, if •	 M is protected internal, the access is permitted if it occurs within the
program in which M is declared, or if it occurs within a class derived from the class in
which M is declared and takes place through the derived class type (§3.5.3).

Otherwise, if •	 M is protected, the access is permitted if it occurs within the class in which
M is declared, or if it occurs within a class derived from the class in which M is declared
and takes place through the derived class type (§3.5.3).

Otherwise, if •	 M is internal, the access is permitted if it occurs within the program in
which M is declared.

Otherwise, if •	 M is private, the access is permitted if it occurs within the type in which M
is declared.

Otherwise, the type or member is inaccessible, and a compile-time error occurs.•	

In the example

 public class A
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }

 internal class B
 {
 public static int X;
 internal static int Y;
 private static int Z;

 public class C
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }

 private class D

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

112

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

 {
 public static int X;
 internal static int Y;
 private static int Z;
 }
 }

the classes and members have the following accessibility domains:

The accessibility domain of •	 A and A.X is unlimited.

The accessibility domain of •	 A.Y, B, B.X, B.Y, B.C, B.C.X, and B.C.Y is the program text of
the containing program.

The accessibility domain of •	 A.Z is the program text of A.

The accessibility domain of •	 B.Z and B.D is the program text of B, including the program
text of B.C and B.D.

The accessibility domain of •	 B.C.Z is the program text of B.C.

The accessibility domain of •	 B.D.X and B.D.Y is the program text of B, including the pro-
gram text of B.C and B.D.

The accessibility domain of •	 B.D.Z is the program text of B.D.

As the example illustrates, the accessibility domain of a member is never larger than that
of a containing type. For example, even though all X members have public declared acces-
sibility, all but A.X have accessibility domains that are constrained by a containing type.

n
n  JoSEPH ALBAHARI Declaring a public member within an internal type might

seem pointless, given that the member’s visibility will be capped at internal. It can
make sense, however, if the public member modifier is interpreted as meaning “hav-
ing the same visibility as the containing type.”

A good question to ask in deciding whether to declare a member of an internal type as
public or internal is this: If the type was later promoted to public, would I want this
member to become public, too? If the answer is yes, one could argue for declaring the
member as public from the outset.

n
n  JESSE LIBERTy While there are rational examples of each of the cases mentioned

above, good programming practice strongly favors using the least complex and most
obvious accessibility, to reduce confusion and make for more easily maintainable code.
I’ve written hundreds of commercially viable applications using nothing more than
public, private, and protected.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5		 Member Access

113

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

As described in §3.4, all members of a base class, except for instance constructors, destruc-
tors, and static constructors, are inherited by derived types. This includes even private
members of a base class. However, the accessibility domain of a private member includes
only the program text of the type in which the member is declared. In the example

class A
{
 int x;

 static void F(B b)
 {
 b.x = 1; // Ok
 }
}

class B : A
{
 static void F(B b)
 {
 b.x = 1; // Error: x not accessible
 }
}

the B class inherits the private member x from the A class. Because the member is private,
it is only accessible within the class-body of A. Thus the access to b.x succeeds in the A.F
method, but fails in the B.F method.

n
n  BILL WAGNER Notice that the inaccessible methods also obviate the need for the

new modifier on B:F().

3.5.3 Protected Access for Instance Members
When a protected instance member is accessed outside the program text of the class in
which it is declared, and when a protected internal instance member is accessed outside
the program text of the program in which it is declared, the access must take place within
a class declaration that derives from the class in which it is declared. Furthermore, the
access is required to take place through an instance of that derived class type or a class type
constructed from it. This restriction prevents one derived class from accessing protected
members of other derived classes, even when the members are inherited from the same
base class.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

114

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

n
n  ERIC LIPPERT For instance, suppose you have a base class Animal and two

derived classes, Mammal and Reptile, and Animal has a protected method Feed().
Then the Mammal code can call Feed() on a Mammal or any subclass of Mammal
(Tiger, say).

Mammal code cannot call Feed() on an expression of type Reptile because there is no
inheritance relationship between Mammal and Reptile.

Furthermore, because an expression of type Animal might actually be a Reptile at
runtime, Mammal code also cannot call Feed() on an expression of type Animal.

Let B be a base class that declares a protected instance member M, and let D be a class that
derives from B. Within the class-body of D, access to M can take one of the following forms:

An unqualified •	 type-name or primary-expression of the form M.

A •	 primary-expression of the form E.M, provided the type of E is T or a class derived from
T, where T is the class type D, or a class type constructed from D.

A •	 primary-expression of the form base.M.

In addition to these forms of access, a derived class can access a protected instance con-
structor of a base class in a constructor-initializer (§10.11.1).

n
n  VLADIMIR RESHETNIkoV Put simply, other forms of access are not allowed. For

example, a derived class cannot invoke its base class’s protected constructor in a new
operator:

class Base
{
 protected Base() { }
}

class Derived : Base
{
 static void Main()
 {
 new Base(); // Error CS0122: 'Base.Base()' is
 // inaccessible due to its
 // protection level
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.5		 Member Access

115

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

In the example

public class A
{
 protected int x;

 static void F(A a, B b)
 {
 a.x = 1; // Okay
 b.x = 1; // Okay
 }
}

public class B : A
{
 static void F(A a, B b)
 {
 a.x = 1; // Error: must access through instance of B
 b.x = 1; // Okay
 }
}

within A, it is possible to access x through instances of both A and B, since in either case the
access takes place through an instance of A or a class derived from A. However, within B, it
is not possible to access x through an instance of A, since A does not derive from B.

In the example

class C<T>
{
 protected T x;
}

class D<T> : C<T>
{
 static void F()
 {
 D<T> dt = new D<T>();
 D<int> di = new D<int>();
 D<string> ds = new D<string>();
 dt.x = default(T);
 di.x = 123;
 ds.x = "test";
 }
}

the three assignments to x are permitted because they all take place through instances of
class types constructed from the generic type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

116

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

n
n  CHRIS SELLS To minimize the surface area of a class or namespace, I recom-

mend keeping things private/internal until they prove to be necessary in a wider
scope. Refactoring is your friend here.

n
n  BILL WAGNER These rules exist to allow for the separate evolution of compo-

nents in different assemblies. You should not incorporate these rules into your regular
design patterns.

3.5.4 Accessibility Constraints
Several constructs in the C# language require a type to be at least as accessible as a mem-
ber or another type. A type T is said to be at least as accessible as a member or type M if the
accessibility domain of T is a superset of the accessibility domain of M. In other words, T is
at least as accessible as M if T is accessible in all contexts in which M is accessible.

n
n  VLADIMIR RESHETNIkoV For the purposes of this paragraph, only accessibility

modifiers are considered. For instance, if a protected member is declared in a public
sealed class, the fact that this class cannot have descendants (and, therefore, the acces-
sibility domain of this member does not include any descendants) is not considered.

The following accessibility constraints exist:

The direct base class of a class type must be at least as accessible as the class type itself.•	

The explicit base interfaces of an interface type must be at least as accessible as the inter-•	
face type itself.

The return type and parameter types of a delegate type must be at least as accessible as •	
the delegate type itself.

The type of a constant must be at least as accessible as the constant itself.•	

The type of a field must be at least as accessible as the field itself.•	

The return type and parameter types of a method must be at least as accessible as the •	
method itself.

The type of a property must be at least as accessible as the property itself.•	

The type of an event must be at least as accessible as the event itself.•	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.6		 Signatures and overloading

117

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

The type and parameter types of an indexer must be at least as accessible as the indexer •	
itself.

The return type and parameter types of an operator must be at least as accessible as the •	
operator itself.

The parameter types of an instance constructor must be at least as accessible as the •	
instance constructor itself.

In the example

class A {...}

public class B: A {...}

the B class results in a compile-time error because A is not at least as accessible as B.

Likewise, in the example

class A {...}

public class B
{
 A F() {...}

 internal A G() {...}

 public A H() {...}
}

the H method in B results in a compile-time error because the return type A is not at least as
accessible as the method.

3.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their
signatures:

The signature of a method consists of the name of the method, the number of type •	
parameters, and the type and kind (value, reference, or output) of each of its formal
parameters, considered in the order left to right. For these purposes, any type param-
eter of the method that occurs in the type of a formal parameter is identified not by its
name, but rather by its ordinal position in the type argument list of the method. The
signature of a method specifically does not include the return type, the params modi-
fier that may be specified for the rightmost parameter, or the optional type parameter
constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

118

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

n
n  JoN SkEET The use of overloading by number of type parameters is

interesting—and occurs at the type level, too (consider, for example, the .NET types
System.Nullable and System.Nullable<T>). The fact that constraints aren’t taken into
account can very occasionally be irritating. In some cases, it could be handy to be able
to write

void Process<T>(T reference) where T : class { ... }
void Process<T>(T value) where T : struct { ... }

but this would introduce more complexity into an area that can already be very tricky
to reason about. Developers’ minds have been known to spontaneously combust when
overloading and type inference meet.

The signature of an instance constructor consists of the type and kind (value, reference, •	
or output) of each of its formal parameters, considered in the order left to right. The
signature of an instance constructor specifically does not include the params modifier
that may be specified for the rightmost parameter.

The signature of an indexer consists of the type of each of its formal parameters, consid-•	
ered in the order left to right. The signature of an indexer specifically does not include
the element type, nor does it include the params modifier that may be specified for the
rightmost parameter.

The signature of an operator consists of the name of the operator and the type of each of •	
its formal parameters, considered in the order left to right. The signature of an operator
specifically does not include the result type.

Signatures are the enabling mechanism for overloading of members in classes, structs, and
interfaces:

Overloading of methods permits a class, struct, or interface to declare multiple methods •	
with the same name, provided their signatures are unique within that class, struct, or
interface.

Overloading of instance constructors permits a class or struct to declare multiple instance •	
constructors, provided their signatures are unique within that class or struct.

Overloading of indexers permits a class, struct, or interface to declare multiple indexers, •	
provided their signatures are unique within that class, struct, or interface.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.6		 Signatures and overloading

119

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

n
n  VLADIMIR RESHETNIkoV One exception to the uniqueness requirement for

indexer signatures: If an indexer is an explicit implementation of an interface, its sig-
nature is checked for uniqueness only within those interface’s explicitly implemented
indexers:

class A : IIndexable
{
 int IIndexable.this[int x]
 {
 get { /* ... */ }
 }

 public int this[int x] // Okay
 {
 get { /* ... */ }
 }
}

Overloading of operators permits a class or struct to declare multiple operators with the •	
same name, provided their signatures are unique within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members
declared in a single type cannot differ in signature solely by ref and out. A compile-time
error occurs if two members are declared in the same type with signatures that would be
the same if all parameters in both methods with out modifiers were changed to ref modi-
fiers. For other purposes of signature matching (e.g., hiding or overriding), ref and out are
considered part of the signature and do not match each other. (This restriction is to allow
C# programs to be easily translated to run on the Common Language Infrastructure [CLI],
which does not provide a way to define methods that differ solely in ref and out.)

For the purposes of signatures, the types object and dynamic are considered the same.
Members declared in a single type cannot, therefore, differ in signature solely by object
and dynamic.

The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest
 {
 void F(); // F()

 void F(int x); // F(int)

 void F(ref int x); // F(ref int)

 void F(out int x); // F(out int) error

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

120

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

 void F(int x, int y); // F(int, int)

 int F(string s); // F(string)

 int F(int x); // F(int) error

 void F(string[] a); // F(string[])

 void F(params string[] a); // F(string[]) error
 }

Note that any ref and out parameter modifiers (§10.6.1) are part of a signature. Thus
F(int) and F(ref int) are unique signatures. However, F(ref int) and F(out int) cannot
be declared within the same interface because their signatures differ solely by ref and out.
Also, note that the return type and the params modifier are not part of a signature, so it is
not possible to overload solely based on return type or on the inclusion or exclusion of the
params modifier. As such, the declarations of the methods F(int) and F(params string[])
identified above result in a compile-time error.

3.7 Scopes
The scope of a name is the region of program text within which it is possible to refer to the
entity declared by the name without qualification of the name. Scopes can be nested, and
an inner scope may redeclare the meaning of a name from an outer scope (this does not,
however, remove the restriction imposed by §3.3 that within a nested block it is not pos-
sible to declare a local variable with the same name as a local variable in an enclosing
block). The name from the outer scope is then said to be hidden in the region of program
text covered by the inner scope, and access to the outer name is possible only by qualify-
ing the name.

The scope of a namespace member declared by a •	 namespace-member-declaration (§9.5)
with no enclosing namespace-declaration is the entire program text.

The scope of a namespace member declared by a •	 namespace-member-declaration within
a namespace-declaration whose fully qualified name is N is the namespace-body of every
namespace-declaration whose fully qualified name is N or starts with N, followed by a
period.

The scope of a name defined by an •	 extern-alias-directive extends over the using-directives,
global-attributes, and namespace-member-declarations of its immediately containing compi-
lation unit or namespace body. An extern-alias-directive does not contribute any new
members to the underlying declaration space. In other words, an extern-alias-directive is
not transitive, but rather affects only the compilation unit or namespace body in which
it occurs.

The scope of a name defined or imported by a •	 using-directive (§9.4) extends over the
namespace-member-declarations of the compilation-unit or namespace-body in which the

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.7		 Scopes

121

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

using-directive occurs. A using-directive may make zero or more namespace or type names
available within a particular compilation-unit or namespace-body, but does not contribute
any new members to the underlying declaration space. In other words, a using-directive
is not transitive, but rather affects only the compilation-unit or namespace-body in which it
occurs.

The scope of a type parameter declared by a •	 type-parameter-list on a class-declaration
(§10.1) is the class-base, type-parameter-constraints-clauses, and class-body of that class-
declaration.

The scope of a type parameter declared by a •	 type-parameter-list on a struct-declaration
(§11.1) is the struct-interfaces, type-parameter-constraints-clauses, and struct-body of that
struct-declaration.

The scope of a type parameter declared by a •	 type-parameter-list on an interface-declaration
(§13.1) is the interface-base, type-parameter-constraints-clauses, and interface-body of that
interface-declaration.

The scope of a type parameter declared by a •	 type-parameter-list on a delegate-declaration
(§15.1) is the return-type, formal-parameter-list, and type-parameter-constraints-clauses of
that delegate-declaration.

The scope of a member declared by a •	 class-member-declaration (§10.1.6) is the class-body in
which the declaration occurs. In addition, the scope of a class member extends to the
class-body of those derived classes that are included in the accessibility domain (§3.5.2)
of the member.

The scope of a member declared by a •	 struct-member-declaration (§11.2) is the struct-body
in which the declaration occurs.

The scope of a member declared by an •	 enum-member-declaration (§14.3) is the enum-body
in which the declaration occurs.

The scope of a parameter declared in a •	 method-declaration (§10.6) is the method-body of
that method-declaration.

The scope of a parameter declared in an •	 indexer-declaration (§10.9) is the accessor-
declarations of that indexer-declaration.

The scope of a parameter declared in an •	 operator-declaration (§10.10) is the block of that
operator-declaration.

The scope of a parameter declared in a •	 constructor-declaration (§10.11) is the constructor-
initializer and block of that constructor-declaration.

The scope of a parameter declared in a •	 lambda-expression (§7.15) is the lambda-expression-
body of that lambda-expression.

The scope of a parameter declared in an •	 anonymous-method-expression (§7.15) is the block
of that anonymous-method-expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

122

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

The scope of a label declared in a •	 labeled-statement (§8.4) is the block in which the declara-
tion occurs.

The scope of a local variable declared in a •	 local-variable-declaration (§8.5.1) is the block in
which the declaration occurs.

The scope of a local variable declared in a •	 switch-block of a switch statement (§8.7.2) is
the switch-block.

The scope of a local variable declared in a •	 for-initializer of a for statement (§8.8.3) is the
for-initializer, the for-condition, the for-iterator, and the contained statement of the for
statement.

The scope of a local constant declared in a •	 local-constant-declaration (§8.5.2) is the block in
which the declaration occurs. It is a compile-time error to refer to a local constant in a
textual position that precedes its constant-declarator.

The scope of a variable declared as part of a •	 foreach-statement, using-statement, lock-
statement, or query-expression is determined by the expansion of the given construct.

n
n  JESSE LIBERTy This list is a classic, almost iconic example of the difference

between what is possible and what is advisable. Scope, like method names, and nearly
everything else in your program should be as self-revealing and unambiguous as
possible—but no more so!

Within the scope of a namespace, class, struct, or enumeration member, it is possible to
refer to the member in a textual position that precedes the declaration of the member. For
example, in

 class A
 {
 void F()
 {
 i = 1;
 }

 int i = 0;
 }

it is valid for F to refer to i before it is declared.

Within the scope of a local variable, it is a compile-time error to refer to the local variable
in a textual position that precedes the local-variable-declarator of the local variable. For
example:

class A
{
 int i = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.7		 Scopes

123

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

 void F()
 {
 i = 1; // Error: use precedes declaration
 int i;
 i = 2;
 }

 void G()
 {
 int j = (j = 1); // Valid
 }

 void H()
 {
 int a = 1, b = ++a; // Valid
 }
}

In the F method above, the first assignment to i specifically does not refer to the field
declared in the outer scope. Rather, it refers to the local variable and results in a compile-
time error because it textually precedes the declaration of the variable. In the G method, the
use of j in the initializer for the declaration of j is valid because the use does not precede
the local-variable-declarator. In the H method, a subsequent local-variable-declarator correctly
refers to a local variable declared in an earlier local-variable-declarator within the same local-
variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name
used in an expression context is always the same within a block. If the scope of a local vari-
able were to extend only from its declaration to the end of the block, then in the example
above, the first assignment would assign to the instance variable and the second assign-
ment would assign to the local variable, possibly leading to compile-time errors if the state-
ments of the block were later rearranged.

The meaning of a name within a block may differ based on the context in which the name
is used. In the example

using System;

class A { }

class Test
{
 static void Main()
 {
 string A = "hello, world";
 string s = A; // Expression context

 Type t = typeof(A); // Type context

 Console.WriteLine(s); // Writes "hello, world"
 Console.WriteLine(t); // Writes "A"
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

124

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

the name A is used in an expression context to refer to the local variable A and in a type
context to refer to the class A.

3.7.1 Name Hiding
The scope of an entity typically encompasses more program text than the declaration space
of the entity. In particular, the scope of an entity may include declarations that introduce
new declaration spaces containing entities of the same name. Such declarations cause the
original entity to become hidden. Conversely, an entity is said to be visible when it is not
hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap
through inheritance. The characteristics of the two types of hiding are described in the fol-
lowing sections.

n
n  JESSE LIBERTy I would argue that name hiding should always be considered a

bug, in that it makes for code that is miserably difficult to maintain and it is always
avoidable.

3.7.1.1 Hiding Through Nesting
Name hiding through nesting can occur as a result of nesting namespaces or types within
namespaces, as a result of nesting types within classes or structs, and as a result of param-
eter and local variable declarations.

In the example

class A
{
 int i = 0;

 void F()
 {
 int i = 1;
 }

 void G()
 {
 i = 1;
 }
}

within the F method, the instance variable i is hidden by the local variable i, but within the
G method, i still refers to the instance variable.

When a name in an inner scope hides a name in an outer scope, it hides all overloaded
occurrences of that name. In the example

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.7		 Scopes

125

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

class Outer
{
 static void F(int i) { }

 static void F(string s) { }

 class Inner
 {
 void G()
 {
 F(1); // Invokes Outer.Inner.F
 F("Hello"); // Error
 }

 static void F(long l) { }
 }
}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden
by the inner declaration. For the same reason, the call F("Hello") results in a compile-time
error.

n
n  VLADIMIR RESHETNIkoV If a nested scope contains a member with the same

name as a member from an outer scope, then the member from the outer scope is not
always hidden due to the following rule: If the member is invoked, all non-invocable
members are removed from the set (see §7.3).

 class A
 {
 static void Foo() { }
 class B
 {
 const int Foo = 1;
 void Bar()
 {
 Foo(); // Okay
 }
 }
 }

3.7.1.2 Hiding Through Inheritance
Name hiding through inheritance occurs when classes or structs redeclare names that were
inherited from base classes. This type of name hiding takes one of the following forms:

A constant, field, property, event, or type introduced in a class or struct hides all base •	
class members with the same name.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

126

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

A method introduced in a class or struct hides all nonmethod base class members with •	
the same name, and all base class methods with the same signature (method name and
parameter count, modifiers, and types).

An indexer introduced in a class or struct hides all base class indexers with the same •	
signature (parameter count and types).

The rules governing operator declarations (§10.10) make it impossible for a derived class
to declare an operator with the same signature as an operator in a base class. Thus opera-
tors never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inher-
ited scope causes a warning to be reported. In the example

class Base
{
 public void F() { }
}

class Derived : Base
{
 public void F() { } // Warning: hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name
is specifically not an error, since that would preclude separate evolution of base classes. For
example, the above situation might have come about because a later version of Base intro-
duced an F method that wasn’t present in an earlier version of the class. Had the above
situation been an error, then any change made to a base class in a separately versioned class
library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new
modifier:

class Base
{
 public void F() { }
}

class Derived : Base
{
 new public void F() { }
}

The new modifier indicates that the F in Derived is “new,” and that it is indeed intended to
hide the inherited member.

A declaration of a new member hides an inherited member only within the scope of the
new member.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.8		 Namespace and Type Names

127

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

class Base
{
 public static void F() { }
}

class Derived : Base
{
 new private static void F() { } // Hides Base.F in Derived only
}

class MoreDerived : Derived
{
 static void G() { F(); } // Invokes Base.F
}

In the example above, the declaration of F in Derived hides the F that was inherited from
Base, but since the new F in Derived has private access, its scope does not extend to
MoreDerived. Thus the call F() in MoreDerived.G is valid and will invoke Base.F.

n
n  CHRIS SELLS If you find yourself using new to hide an instance method on the

base class, you’re almost always going to be disappointed, if for no other reason than
a caller can simply cast to the base class to get to the “hidden” method. For example:

class Base { public void F() {} }
class Derived : Base { new public void F() {} }
Derived d = new Derived();
((Base)d).F(); // Base.F not so hidden as you would like

You’ll be much happier if you pick a new name for the method in the derived class
instead.

3.8 Namespace and Type Names
Several contexts in a C# program require a namespace-name or a type-name to be specified.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier type-argument-listopt
namespace-or-type-name . identifier type-argument-listopt

qualified-alias-member

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

128

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

A namespace-name is a namespace-or-type-name that refers to a namespace. Following resolu-
tion as described below, the namespace-or-type-name of a namespace-name must refer to a
namespace; otherwise, a compile-time error occurs. No type arguments (§4.4.1) can be
present in a namespace-name (only types can have type arguments).

A type-name is a namespace-or-type-name that refers to a type. Following resolution as
described below, the namespace-or-type-name of a type-name must refer to a type; otherwise,
a compile-time error occurs.

If the namespace-or-type-name is a qualified-alias-member, its meaning is as described in §9.7.
Otherwise, a namespace-or-type-name has one of four forms:

I•	

I<A•	 1, ..., AK>

N.I•	

N.I<A•	 1, ..., AK>

where I is a single identifier, N is a namespace-or-type-name, and <A1, ..., AK> is an optional
type-argument-list. When no type-argument-list is specified, consider K to be zero.

The meaning of a namespace-or-type-name is determined as follows:

If the •	 namespace-or-type-name is of the form I or of the form I<A1, ..., AK>:

If - K is zero and the namespace-or-type-name appears within a generic method declara-
tion (§10.6) and if that declaration includes a type parameter (§10.1.3) with name I,
then the namespace-or-type-name refers to that type parameter.

Otherwise, if the - namespace-or-type-name appears within a type declaration, then for
each instance type T (§10.3.1), starting with the instance type of that type declaration
and continuing with the instance type of each enclosing class or struct declaration
(if any):

If •	 K is zero and the declaration of T includes a type parameter with name I, then
the namespace-or-type-name refers to that type parameter.

Otherwise, if the •	 namespace-or-type-name appears within the body of the type dec-
laration, and T or any of its base types contain a nested accessible type having
name I and K type parameters, then the namespace-or-type-name refers to that type
constructed with the given type arguments. If there is more than one such type, the
type declared within the more derived type is selected. Note that nontype mem-
bers (constants, fields, methods, properties, indexers, operators, instance construc-
tors, destructors, and static constructors) and type members with a different
number of type parameters are ignored when determining the meaning of the
namespace-or-type-name.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.8		 Namespace and Type Names

129

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

If the previous steps were unsuccessful, then, for each namespace - N, starting with the
namespace in which the namespace-or-type-name occurs, continuing with each enclos-
ing namespace (if any), and ending with the global namespace, the following steps
are evaluated until an entity is located:

If •	 K is zero and I is the name of a namespace in N, then:

If the location where the - namespace-or-type-name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an extern-
alias-directive or using-alias-directive that associates the name I with a namespace
or type, then the namespace-or-type-name is ambiguous and a compile-time error
occurs.

Otherwise, the - namespace-or-type-name refers to the namespace named I in N.

Otherwise, if •	 N contains an accessible type having name I and K type parame-
ters, then:

If - K is zero and the location where the namespace-or-type-name occurs is enclosed
by a namespace declaration for N and the namespace declaration contains an
extern-alias-directive or using-alias-directive that associates the name I with a
namespace or type, then the namespace-or-type-name is ambiguous and a com-
pile-time error occurs.

Otherwise, the - namespace-or-type-name refers to the type constructed with the
given type arguments.

Otherwise, if the location where the •	 namespace-or-type-name occurs is enclosed by a
namespace declaration for N:

If - K is zero and the namespace declaration contains an extern-alias-directive or
using-alias-directive that associates the name I with an imported namespace or
type, then the namespace-or-type-name refers to that namespace or type.

Otherwise, if the namespaces imported by the - using-namespace-directives of the
namespace declaration contain exactly one type having name I and K type
parameters, then the namespace-or-type-name refers to that type constructed with
the given type arguments.

Otherwise, if the namespaces imported by the - using-namespace-directives of the
namespace declaration contain more than one type having name I and K type
parameters, then the namespace-or-type-name is ambiguous and an error occurs.

Otherwise, the - namespace-or-type-name is undefined and a compile-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

130

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

Otherwise, the •	 namespace-or-type-name is of the form N.I or of the form N.I<A1, ..., AK>. N
is first resolved as a namespace-or-type-name. If the resolution of N is not successful, a
compile-time error occurs. Otherwise, N.I or N.I<A1, ..., AK> is resolved as follows:

If - K is zero and N refers to a namespace and N contains a nested namespace with name
I, then the namespace-or-type-name refers to that nested namespace.

Otherwise, if - N refers to a namespace and N contains an accessible type having name I
and K type parameters, then the namespace-or-type-name refers to that type constructed
with the given type arguments.

Otherwise, if - N refers to a (possibly constructed) class or struct type and N or any of its
base classes contain a nested accessible type having name I and K type parameters,
then the namespace-or-type-name refers to that type constructed with the given type
arguments. If there is more than one such type, the type declared within the more
derived type is selected. Note that if the meaning of N.I is being determined as part
of resolving the base class specification of N, then the direct base class of N is consid-
ered to be object (§10.1.4.1).

Otherwise, - N.I is an invalid namespace-or-type-name, and a compile-time error
occurs.

n
n  VLADIMIR RESHETNIkoV This algorithm is different from (albeit similar to) the

corresponding algorithm for simple names (see §7.6.2). It means that in contrived
cases, the same identifier may have different meanings in contexts of type-name and
simple-name:

class T
{
 public const int X = 1;
}

class C
{
 void Foo<T>(int x = T.X /* global::T */,

 T y = default(T) /* type parameter */) { }
}

A namespace-or-type-name is permitted to reference a static class (§10.1.1.3) only if

The •	 namespace-or-type-name is the T in a namespace-or-type-name of the form T.I, or

The •	 namespace-or-type-name is the T in a typeof-expression (§7.5.11) of the form
typeof(T).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.8		 Namespace and Type Names

131

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

3.8.1 Fully Qualified Names
Every namespace and type has a fully qualified name, which uniquely identifies the
namespace or type among all others. The fully qualified name of a namespace or type N is
determined as follows:

If •	 N is a member of the global namespace, its fully qualified name is N.

Otherwise, its fully qualified name is •	 S.N, where S is the fully qualified name of the
namespace or type in which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifi-
ers that lead to N, starting from the global namespace. Because every member of a
namespace or type must have a unique name, it follows that the fully qualified name of
a namespace or type is always unique.

The example below shows several namespace and type declarations, along with their asso-
ciated fully qualified names.

 class A { } // A

 namespace X // X
 {
 class B // X.B
 {
 class C { } // X.B.C
 }

 namespace Y // X.Y
 {
 class D { } // X.Y.D
 }
 }

 namespace X.Y // X.Y
 {
 class E { } // X.Y.E
 }

n
n  JoSEPH ALBAHARI If a fully qualified name conflicts with a partially qualified

or unqualified name (a nested accessible type, for instance), the latter wins. Prefixing
the name with global:: forces the fully qualified name to win (§9.7). There is little
chance of such a collision in human-written code; with machine-written code, how-
ever, the odds are greater. For this reason, some code generators in design tools and
IDEs emit the global:: prefix before all fully qualified type names to eliminate any
possibility of conflict.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

132

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

3.9 Automatic Memory Management
C# employs automatic memory management, which frees developers from manually allo-
cating and freeing the memory occupied by objects. Automatic memory management poli-
cies are implemented by a garbage collector. The memory management life cycle of an
object is as follows:

When the object is created, memory is allocated for it, the constructor is run, and the 1.
object is considered live.

If the object, or any part of it, cannot be accessed by any possible continuation of execu-2.
tion, other than the running of destructors, the object is considered no longer in use, and
it becomes eligible for destruction. The C# compiler and the garbage collector may
choose to analyze code to determine which references to an object may be used in the
future. For instance, if a local variable that is in scope is the only existing reference to an
object, but that local variable is never referred to in any possible continuation of execu-
tion from the current execution point in the procedure, the garbage collector may (but
is not required to) treat the object as no longer in use.

n
n  CHRISTIAN NAGEL From a destructor, the C# compiler creates code to override

the Finalize method of the base class. Overriding the Finalize method also means
an overhead on object instantiation and keeps the object longer alive until the finaliza-
tion was run. With C++/CLI, the code generated from the destructor implements the
IDisposable interface, which has a better fit with deterministic cleanup.

n
n  JoN SkEET The point at which an object is eligible for destruction is earlier than

you might expect. In particular, an object’s destructor may run while another thread is
still executing an instance method “in” the same object—so long as that instance
method doesn’t refer to any instance variables in any possible code path after the cur-
rent point of execution.

Fortunately, this behavior can cause a noticeable problem only in types with destruc-
tors, which are relatively uncommon in .NET code since the advent of SafeHandle.

Once the object is eligible for destruction, at some unspecified later time the destructor 3.
(§10.13) (if any) for the object is run. Unless overridden by explicit calls, the destructor
for the object is run once only.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.9		 Automatic Memory Management

133

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

n
n  CHRISTIAN NAGEL “The destruction is called at some unspecified later time . . .”

When a destructor is created, it’s usually a good idea to implement the interface
IDisposable as well. With the IDisposable interface, the caller has a chance to invoke
the cleanup code early, when the object is no longer needed.

n
n  CHRISTIAN NAGEL To invoke the destructor more than once, GC.ReRegister-
ForFinalize keeps the object alive and allows for the destructor to be called once
more. Instead of taking this tack, it could be worthwhile to change the application
architecture.

Once the destructor for an object is run, if that object, or any part of it, cannot be accessed 4.
by any possible continuation of execution, including the running of destructors, the
object is considered inaccessible and the object becomes eligible for collection.

Finally, at some time after the object becomes eligible for collection, the garbage collec-5.
tor frees the memory associated with that object.

The garbage collector maintains information about object usage, and uses this information
to make memory management decisions, such as where in memory to locate a newly cre-
ated object, when to relocate an object, and when an object is no longer in use or
inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so
that the garbage collector may implement a wide range of memory management policies.
For instance, C# does not require that destructors be run or that objects be collected as soon
as they are eligible, or that destructors be run in any particular order, or on any particular
thread.

The behavior of the garbage collector can be controlled, to some degree, via static methods
on the class System.GC. This class can be used to request a collection to occur, destructors
to be run (or not run), and so forth.

n
n  ERIC LIPPERT Using these static methods to control the behavior of the garbage

collector is almost never a good idea. In production code, odds are good that the gar-
bage collector knows more about when would be a good time to do a collection than
your program does.

Explicit tweaking of the garbage collector behavior at runtime should typically be
limited to purposes such as forcing a collection for testing purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

134

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

Since the garbage collector is allowed wide latitude in deciding when to collect objects and
run destructors, a conforming implementation may produce output that differs from that
shown by the following code. The program

 using System;

 class A
 {
 ~A()
 {
 Console.WriteLine("Destruct instance of A");
 }
 }

 class B
 {
 object Ref;

 public B(object o)
 {
 Ref = o;
 }

 ~B()
 {
 Console.WriteLine("Destruct instance of B");
 }
 }

 class Test
 {
 static void Main()
 {
 B b = new B(new A());
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
 }

creates an instance of class A and an instance of class B. These objects become eligible for
garbage collection when the variable b is assigned the value null, since after this time it is
impossible for any user-written code to access them. The output could be either

Destruct instance of A
Destruct instance of B

or

Destruct instance of B
Destruct instance of A

because the language imposes no constraints on the order in which objects are garbage
collected.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.9		 Automatic Memory Management

135

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

In subtle cases, the distinction between “eligible for destruction” and “eligible for collec-
tion” can be important. For example:

using System;

using System;
class A
{
 ~A() {
 Console.WriteLine("Destruct instance of A");
 }

 public void F() {
 Console.WriteLine("A.F");
 Test.RefA = this;
 }
}

class B
{
 public A Ref;

 ~B() {
 Console.WriteLine("Destruct instance of B");
 Ref.F();
 }
}

class Test
{
 public static A RefA;
 public static B RefB;

 static void Main() {
 RefB = new B();
 RefA = new A();
 RefB.Ref = RefA;
 RefB = null;
 RefA = null;

 // A and B now eligible for destruction
 GC.Collect();
 GC.WaitForPendingFinalizers();

 // B now eligible for collection, but A is not
 if (RefA != null)
 Console.WriteLine("RefA is not null");
}

In the above program, if the garbage collector chooses to run the destructor of A before the
destructor of B, then the output of this program might be

Destruct instance of A
Destruct instance of B
A.F
RefA is not null

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

136

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

Note that although the instance of A was not in use and A’s destructor was run, it is still
possible for methods of A (in this case, F) to be called from another destructor. Also, note
that running a destructor may cause an object to become usable from the mainline program
again. In this case, the running of B’s destructor caused an instance of A that was previously
not in use to become accessible from the live reference Test.RefA. After the call to
WaitForPendingFinalizers, the instance of B is eligible for collection, but the instance of A
is not, because of the reference Test.RefA.

To avoid confusion and unexpected behavior, it is generally a good idea for destructors to
only perform cleanup on data stored in their object’s own fields, and not to perform any
actions on referenced objects or static fields.

n
n  ERIC LIPPERT It is an even better idea for the destructor to clean up only the

fields that contain data representing unmanaged objects, such as operating system
handles. Because you do not know which thread the destructor will run on or when it
will run, it is particularly important that the destructor have as few side effects as
possible.

The calls to Console.WriteLine in the example obviously violate this good advice to
only do cleanup and not perform other actions. This code is intended solely as a peda-
gogic aid. Real production code destructors should never attempt to do anything that
has a complex side effect such as console output.

An alternative to using destructors is to let a class implement the System.IDisposable
interface. This allows the client of the object to determine when to release the resources of
the object, typically by accessing the object as a resource in a using statement (§8.13).

n
n  BRAD ABRAMS Nine times out of ten, using GC.Collect() is a mistake. It is

often an indication of a poor design that is being cobbled together. The garbage col-
lector is a finely tuned instrument, like a Porsche. Just as you would not play bum-
per tag with a new Porsche, so you should generally avoid interfering with the
garbage collector’s algorithms. The garbage collector is designed to unobtrusively
step in at the right time and collect the most important unused memory. Kicking it
with the call GC.Collect() can throw off the balance and tuning. Before resorting to
this solution, take a few minutes to figure why it is required. Have you disposed of
all your instances? Have you dropped references where you could? Have you used
weak references in the right places?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3.10		 Execution order

137

B
asic Concepts

3.	
B

asic Concepts
3.	

B
asic Concepts

3.	
B

asic Concepts
3.	

n
n  kRzySzToF CWALINA Some people attribute the performance problems of

modern VM-based systems to their use of garbage collection. In fact, modern garbage
collectors are so efficient that there is very little software left that would have prob-
lems with the garbage collector’s performance in itself. The biggest performance cul-
prit is over-engineering of applications and, sadly, many framework libraries.

n
n  CHRIS SELLS In the modern business systems that .NET is generally used to

build, garbage collection provides wondrous robustness. It’s only now that we have
begun to use managed code in real-time applications, such as games (e.g., XNA for
Xbox) and the Windows Phone 7 platforms, that the careful consideration of the
behavior of the garbage collector has become important. Even in those cases, an effi-
cient design is much more about pre-allocating resources before the twitch begins than
with monkeying directly with the garbage collector.

n
n  CHRISTIAN NAGEL To reemphasize the point made by Krzysztof, discussions on

the performance of the garbage collector usually are similar to discussions some years
ago when C code was compared to assembly code, or some years later when C++
performance was suspect in comparison to C. Of course, there is still a place for assem-
bler code and for C, but most applications are happy with a managed runtime.

n
n  BILL WAGNER Collectively, these notes point out how few of your regular

assumptions are valid in the context of a destructor. Member variables may have
already executed their destructors. They are called on a different thread, so thread
local storage may not be valid. They are called by the system, so your application
won’t see errors reported by destructors using exceptions. It’s hard to over-emphasize
how defensively you need to write destructors. Luckily, they are needed only rarely.

3.10 Execution order
Execution of a C# program proceeds such that the side effects of each executing thread are
preserved at critical execution points. A side effect is defined as a read or write of a volatile
field, a write to a nonvolatile variable, a write to an external resource, and the throwing of
an exception. The critical execution points at which the order of these side effects must be
preserved are references to volatile fields (§10.5.3), lock statements (§8.12), and thread

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

3. Basic Concepts

138

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

B
as

ic
 C

on
ce

pt
s

3.
	

creation and termination. The execution environment is free to change the order of execu-
tion of a C# program, subject to the following constraints:

Data dependence is preserved within a thread of execution. That is, the value of each •	
variable is computed as if all statements in the thread were executed in original program
order.

Initialization ordering rules are preserved (§10.5.4 and §10.5.5).•	

The ordering of side effects is preserved with respect to volatile reads and writes (§10.5.3). •	
Additionally, the execution environment need not evaluate part of an expression if it can
deduce that that expression’s value is not used and that no needed side effects are pro-
duced (including any caused by calling a method or accessing a volatile field). When
program execution is interrupted by an asynchronous event (such as an exception
thrown by another thread), it is not guaranteed that the observable side effects will be
visible in the original program order.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

139

4. Types

The types of the C# language are divided into two main categories: value types and refer-
ence types. Both value types and reference types may be generic types, which take one or
more type parameters. Type parameters can designate both value types and reference
types.

type:
value-type
reference-type
type-parameter

A third category of types, pointers, is available only in unsafe code. This issue is discussed
further in §18.2.

Value types differ from reference types in that variables of the value types directly contain
their data, whereas variables of the reference types store references to their data, the latter
being known as objects. With reference types, it is possible for two variables to reference
the same object, and thus possible for operations on one variable to affect the object refer-
enced by the other variable. With value types, the variables each have their own copy of
the data, so it is not possible for operations on one to affect the other.

C#’s type system is unified such that a value of any type can be treated as an object. Every type
in C# directly or indirectly derives from the object class type, and object is the ultimate
base class of all types. Values of reference types are treated as objects simply by viewing the
values as type object. Values of value types are treated as objects by performing boxing
and unboxing operations (§4.3).

n
n  ERIC LIPPERT We normally do not think of interface types or the types associ-

ated with type parameters as having a “base class” per se. What this discussion is
getting at is that every concrete object—no matter how you are treating it at compile
time—may be treated as an instance of object at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

140

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

4.1 Value Types
A value type is either a struct type or an enumeration type. C# provides a set of pre-
defined struct types called the simple types. The simple types are identified through
reserved words.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte
byte
short
ushort
int
uint
long
ulong
char

floating-point-type:
float
double

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
type

enum-type:
type-name

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.1		 Value Types

141

Types
4.	

Types
4.	

Types
4.	

Types
4.	

Unlike a variable of a reference type, a variable of a value type can contain the value null
only if the value type is a nullable type. For every non-nullable value type, there is a cor-
responding nullable value type denoting the same set of values plus the value null.

Assignment to a variable of a value type creates a copy of the value being assigned. This
differs from assignment to a variable of a reference type, which copies the reference but not
the object identified by the reference.

4.1.1 The System.ValueType Type
All value types implicitly inherit from the class System.ValueType, which in turn inherits
from class object. It is not possible for any type to derive from a value type, and value
types are thus implicitly sealed (§10.1.1.2).

Note that System.ValueType is not itself a value-type. Rather, it is a class-type from which all
value-types are automatically derived.

n
n  ERIC LIPPERT This point is frequently confusing to novices. I am often asked,

“But how is it possible that a value type derives from a reference type?” I think the
confusion arises as a result of a misunderstanding of what “derives from” means.
Derivation does not imply that the layout of the bits in memory of the base type is
somewhere found in the layout of bits in the derived type. Rather, it simply implies
that some mechanism exists whereby members of the base type may be accessed from
the derived type.

4.1.2 Default Constructors
All value types implicitly declare a public parameterless instance constructor called the
default constructor. The default constructor returns a zero-initialized instance known as
the default value for the value type:

For all •	 simple-types, the default value is the value produced by a bit pattern of all zeros:

For - sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is 0.

For - char, the default value is '\x0000'.

For - float, the default value is 0.0f.

For - double, the default value is 0.0d.

For - decimal, the default value is 0.0m.

For - bool, the default value is false.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

142

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

For an •	 enum-type E, the default value is 0, converted to the type E.

For a •	 struct-type, the default value is the value produced by setting all value type fields
to their default values and all reference type fields to null.

n
n  VLADIMIR RESHETNIkoV Obviously, the wording “all fields” here means only

instance fields (not static fields). It also includes field-like instance events, if any exist.

For a •	 nullable-type, the default value is an instance for which the HasValue property is
false and the Value property is undefined. The default value is also known as the null
value of the nullable type.

Like any other instance constructor, the default constructor of a value type is invoked
using the new operator. For efficiency reasons, this requirement is not intended to actually
have the implementation generate a constructor call. In the example below, variables i and
j are both initialized to zero.

class A
{
 void F() {
 int i = 0;
 int j = new int();
 }
}

Because every value type implicitly has a public parameterless instance constructor, it is not
possible for a struct type to contain an explicit declaration of a parameterless constructor. A
struct type is, however, permitted to declare parameterized instance constructors (§11.3.8).

n
n  ERIC LIPPERT Another good way to obtain the default value of a type is to use

the default(type) expression.

n
n  JoN SkEET This is one example of where the C# language and the underlying

platform may have different ideas. If you ask the .NET platform for the constructors
of a value type, you usually won’t find a parameterless one. Instead, .NET has a spe-
cific instruction for initializing the default value for a value type. Usually these small
impedence mismatches have no effect on developers, but it’s good to know that they’re
possible—and that they don’t represent a fault in either specification.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.1		 Value Types

143

Types
4.	

Types
4.	

Types
4.	

Types
4.	

4.1.3 Struct Types
A struct type is a value type that can declare constants, fields, methods, properties, index-
ers, operators, instance constructors, static constructors, and nested types. The declaration
of struct types is described in §11.1.

4.1.4 Simple Types
C# provides a set of predefined struct types called the simple types. The simple types are
identified through reserved words, but these reserved words are simply aliases for pre-
defined struct types in the System namespace, as described in the table below.

Reserved Word Aliased Type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

Because a simple type aliases a struct type, every simple type has members. For example,
int has the members declared in System.Int32 and the members inherited from System.
Object, and the following statements are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

144

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

The simple types differ from other struct types in that they permit certain additional
operations:

Most simple types permit values to be created by writing •	 literals (§2.4.4). For example,
123 is a literal of type int and 'a' is a literal of type char. C# makes no provision for
literals of struct types in general, and nondefault values of other struct types are ulti-
mately always created through instance constructors of those struct types.

n
n  ERIC LIPPERT The “most” in the phrase “most simple types” refers to the fact

that some simple types, such as short, have no literal form. In reality, any integer lit-
eral small enough to fit into a short is implicitly converted to a short when used as
one, so in that sense there are literal values for all simple types.

There are a handful of possible values for simple types that have no literal forms. The
NaN (Not-a-Number) values for floating point types, for example, have no literal form.

When the operands of an expression are all simple type constants, it is possible for the •	
compiler to evaluate the expression at compile time. Such an expression is known as a
constant-expression (§7.19). Expressions involving operators defined by other struct types
are not considered to be constant expressions.

n
n  VLADIMIR RESHETNIkoV It is not just “possible”: The compiler always does

fully evaluate constant-expressions at compile time.

Through •	 const declarations, it is possible to declare constants of the simple types (§10.4).
It is not possible to have constants of other struct types, but a similar effect is provided
by static readonly fields.

Conversions involving simple types can participate in evaluation of conversion opera-•	
tors defined by other struct types, but a user-defined conversion operator can never
participate in evaluation of another user-defined operator (§6.4.3).

n
n  JoSEPH ALBAHARI The simple types also provide a means by which the com-

piler can leverage direct support within the IL (and ultimately the processor) for
computations on integer and floating point values. This scheme allows arithmetic on
simple types that have processor support (typically float, double, and the integral
types) to run at native speed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.1		 Value Types

145

Types
4.	

Types
4.	

Types
4.	

Types
4.	

4.1.5 Integral Types
C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and
char. The integral types have the following sizes and ranges of values:

The • sbyte type represents signed 8-bit integers with values between –128 and 127.

The• byte type represents unsigned 8-bit integers with values between 0 and 255.

The •	 short type represents signed 16-bit integers with values between –32768 and
32767.

The •	 ushort type represents unsigned 16-bit integers with values between 0 and 65535.

The •	 int type represents signed 32-bit integers with values between –2147483648 and
2147483647.

The •	 uint type represents unsigned 32-bit integers with values between 0 and
4294967295.

The •	 long type represents signed 64-bit integers with values between –9223372036854775808
and 9223372036854775807.

The •	 ulong type represents unsigned 64-bit integers with values between 0 and
18446744073709551615.

The •	 char type represents unsigned 16-bit integers with values between 0 and 65535. The
set of possible values for the char type corresponds to the Unicode character set.
Although char has the same representation as ushort, not all operations permitted on
one type are permitted on the other.

n
n  JESSE LIBERTy I have to confess that with the power of modern PCs, and the

greater cost of programmer time relative to the cost of memory, I tend to use int for
just about any integral (nonfractional) value and double for any fractional value. All
the rest, I pretty much ignore.

The integral-type unary and binary operators always operate with signed 32-bit precision,
unsigned 32-bit precision, signed 64-bit precision, or unsigned 64-bit precision:

For the unary •	 + and ~ operators, the operand is converted to type T, where T is the first
of int, uint, long, and ulong that can fully represent all possible values of the operand.
The operation is then performed using the precision of type T, and the type of the
result is T.

For the unary •	 – operator, the operand is converted to type T, where T is the first of int
and long that can fully represent all possible values of the operand. The operation is then

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

146

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

performed using the precision of type T, and the type of the result is T. The unary –
operator cannot be applied to operands of type ulong.

For the binary •	 +, –, *, /, %, &, ^, |, ==, !=, >, <, >=, and <= operators, the operands are con-
verted to type T, where T is the first of int, uint, long, and ulong that can fully represent
all possible values of both operands. The operation is then performed using the preci-
sion of type T, and the type of the result is T (or bool for the relational operators). It is
not permitted for one operand to be of type long and the other to be of type ulong with
the binary operators.

For the binary •	 << and >> operators, the left operand is converted to type T, where T is the
first of int, uint, long, and ulong that can fully represent all possible values of the oper-
and. The operation is then performed using the precision of type T, and the type of the
result is T.

The char type is classified as an integral type, but it differs from the other integral types in
two ways:

There are no implicit conversions from other types to the •	 char type. In particular, even
though the sbyte, byte, and ushort types have ranges of values that are fully repre-
sentable using the char type, implicit conversions from sbyte, byte, or ushort to char
do not exist.

Constants of the •	 char type must be written as character-literals or as integer-literals in
combination with a cast to type char. For example, (char)10 is the same as '\x000A'.

The checked and unchecked operators and statements are used to control overflow check-
ing for integral-type arithmetic operations and conversions (§7.6.12). In a checked context,
an overflow produces a compile-time error or causes a System.OverflowException to be
thrown. In an unchecked context, overflows are ignored and any high-order bits that do not
fit in the destination type are discarded.

4.1.6 Floating Point Types
C# supports two floating point types: float and double. The float and double types are
represented using the 32-bit single-precision and 64-bit double-precision IEEE 754 formats,
which provide the following sets of values:

Positive zero and negative zero. In most situations, positive zero and negative zero •	
behave identically as the simple value zero, but certain operations distinguish between
the two (§7.8.2).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.1		 Value Types

147

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  VLADIMIR RESHETNIkoV Be aware that the default implementation of the
Equals method in value types can use bitwise comparison in some cases to speed up
performance. If two instances of your value type contain in their fields positive and
negative zero, respectively, they can compare as not equal. You can override the Equals
method to change the default behavior.

using System;

struct S
{
 double X;

 static void Main()
 {
 var a = new S {X = 0.0};
 var b = new S {X = -0.0};
 Console.WriteLine(a.X.Equals(b.X)); // True
 Console.WriteLine(a.Equals(b)); // False
 }
}

n
n  PETER SESToFT Some of the confusion over negative zero may stem from the

fact that the current implementations of C# print positive and negative zero in
the same way, as 0.0, and no combination of formatting parameters seems to affect
that display. Although this is probably done with the best of intentions, it is unfortu-
nate. To reveal a negative zero, you must resort to strange-looking code like this, which
works because 1/(-0.0) = -Infinity < 0:

public static string DoubleToString(double d) {
 if (d == 0.0 && 1/d < 0)
 return "-0.0";
 else
 return d.ToString();
}

Positive infinity and negative infinity. Infinities are produced by such operations as •	
dividing a non-zero number by zero. For example, 1.0 / 0.0 yields positive infinity, and
–1.0 / 0.0 yields negative infinity.

The •	 Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid float-
ing point operations, such as dividing zero by zero.

n
n  PETER SESToFT A large number of distinct NaNs exist, each of which has a dif-

ferent “payload.” See the annotations on §7.8.1.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

148

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

The finite set of non-zero values of the form •	 s × m × 2e, where s is 1 or −1, and m and e
are determined by the particular floating point type: For float, 0 < m < 224 and −149 ≤ e
≤ 104; for double, 0 < m < 253 and −1075 ≤ e ≤ 970. Denormalized floating point numbers
are considered valid non-zero values.

The float type can represent values ranging from approximately 1.5 × 10−45 to 3.4 × 1038

with a precision of 7 digits.

The double type can represent values ranging from approximately 5.0 × 10−324 to 1.7 × 10308

with a precision of 15 or 16 digits.

If one of the operands of a binary operator is of a floating point type, then the other oper-
and must be of an integral type or a floating point type, and the operation is evaluated as
follows:

If one of the operands is of an integral type, then that operand is converted to the float-•	
ing point type of the other operand.

Then, if either of the operands is of type •	 double, the other operand is converted to
double, the operation is performed using at least double range and precision, and the
type of the result is double (or bool for the relational operators).

Otherwise, the operation is performed using at least •	 float range and precision, and the
type of the result is float (or bool for the relational operators).

The floating point operators, including the assignment operators, never produce excep-
tions. Instead, in exceptional situations, floating point operations produce zero, infinity, or
NaN, as described below:

If the result of a floating point operation is too small for the destination format, the result •	
of the operation becomes positive zero or negative zero.

If the result of a floating point operation is too large for the destination format, the result •	
of the operation becomes positive infinity or negative infinity.

If a floating point operation is invalid, the result of the operation becomes NaN.•	

If one or both operands of a floating point operation is NaN, the result of the operation •	
becomes NaN.

Floating point operations may be performed with higher precision than the result type of
the operation. For example, some hardware architectures support an “extended” or “long
double” floating point type with greater range and precision than the double type, and
implicitly perform all floating point operations using this higher precision type. Only at
excessive cost in performance can such hardware architectures be made to perform float-
ing point operations with less precision. Rather than require an implementation to forfeit

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.1		 Value Types

149

Types
4.	

Types
4.	

Types
4.	

Types
4.	

both performance and precision, C# allows a higher precision type to be used for all float-
ing point operations. Other than delivering more precise results, this rarely has any mea-
surable effects. However, in expressions of the form x * y / z, where the multiplication
produces a result that is outside the double range, but the subsequent division brings the
temporary result back into the double range, the fact that the expression is evaluated in a
higher range format may cause a finite result to be produced instead of an infinity.

n
n  JoSEPH ALBAHARI NaNs are sometimes used to represent special values. In

Microsoft’s Windows Presentation Foundation, double.NaN represents a measure-
ment whose value is “automatic.” Another way to represent such a value is with a
nullable type; yet another is with a custom struct that wraps a numeric type and adds
another field.

4.1.7 The decimal Type
The decimal type is a 128-bit data type suitable for financial and monetary calculations.
The decimal type can represent values ranging from 1.0 × 10−28 to approximately 7.9 × 1028

with 28 or 29 significant digits.

The finite set of values of type decimal are of the form (–1)s × c × 10-e, where the sign s is 0
or 1, the coefficient c is given by 0 ≤ c < 296, and the scale e is such that 0 ≤ e ≤ 28.The decimal
type does not support signed zeros, infinities, or NaNs. A decimal is represented as a 96-bit
integer scaled by a power of 10. For decimals with an absolute value less than 1.0m, the
value is exact to the 28th decimal place, but no further. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Unlike with the float and
double data types, decimal fractional numbers such as 0.1 can be represented exactly in the
decimal representation. In the float and double representations, such numbers are often
infinite fractions, making those representations more prone to round-off errors.

n
n  PETER SESToFT The IEEE 754-2008 standard describes a decimal floating point

type called decimal128. It is similar to the type decimal described here, but packs a lot
more punch within the same 128 bits. It has 34 significant decimal digits, a range from
10-6134 to 106144, and supports NaNs. It was designed by Mike Cowlishaw at IBM UK.
Since it extends the current decimal in all respects, it would seem feasible for C# to
switch to IEEE decimal128 in some future version.

If one of the operands of a binary operator is of type decimal, then the other operand must
be of an integral type or of type decimal. If an integral type operand is present, it is con-
verted to decimal before the operation is performed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

150

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

n
n  BILL WAGNER You cannot mix decimal and the floating point types (float,
double). This rule exists because you would lose precision mixing computations
between those types. You must apply an explicit conversion when mixing decimal
and floating point types.

The result of an operation on values of type decimal is what would result from calculating
an exact result (preserving scale, as defined for each operator) and then rounding to fit the
representation. Results are rounded to the nearest representable value and, when a result
is equally close to two representable values, to the value that has an even number in the
least significant digit position (this is known as “banker’s rounding”). A zero result always
has a sign of 0 and a scale of 0.

n
n  ERIC LIPPERT This method has the attractive property that it typically intro-

duces less bias than methods that always round down or up when there is a “tie”
between two possibilities.

Oddly enough, despite the nickname, there is little evidence that this method of round-
ing was ever in widespread use in banking.

If a decimal arithmetic operation produces a value less than or equal to 5 × 10-29 in absolute
value, the result of the operation becomes zero. If a decimal arithmetic operation produces
a result that is too large for the decimal format, a System.OverflowException is thrown.

The decimal type has greater precision but smaller range than the floating point types.
Thus conversions from the floating point types to decimal might produce overflow excep-
tions, and conversions from decimal to the floating point types might cause loss of preci-
sion. For these reasons, no implicit conversions exist between the floating point types and
decimal, and without explicit casts, it is not possible to mix floating point and decimal
operands in the same expression.

n
n  ERIC LIPPERT C# does not support the Currency data type familiar to users of

Visual Basic 6 and other OLE Automation-based programming languages. Because
decimal has both more range and precision than Currency, anything that you could
have done with a Currency can be done just as well with a decimal.

4.1.8 The bool Type
The bool type represents boolean logical quantities. The possible values of type bool are
true and false.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.1		 Value Types

151

Types
4.	

Types
4.	

Types
4.	

Types
4.	

No standard conversions exist between bool and other types. In particular, the bool type
is distinct and separate from the integral types; a bool value cannot be used in place of an
integral value, and vice versa.

In the C and C++ languages, a zero integral or floating point value, or a null pointer, can
be converted to the boolean value false, and a non-zero integral or floating point value, or
a non-null pointer, can be converted to the boolean value true. In C#, such conversions are
accomplished by explicitly comparing an integral or floating point value to zero, or by
explicitly comparing an object reference to null.

n
n  CHRIS SELLS The inability of a non-bool to be converted to a bool most often

bites me when comparing for null. For example:

object obj = null;
if(obj) { ... } // Okay in C/C++, error in C#
if(obj != null) { ... } // Okay in C/C++/C#

4.1.9 Enumeration Types
An enumeration type is a distinct type with named constants. Every enumeration type has
an underlying type, which must be byte, sbyte, short, ushort, int, uint, long, or ulong.
The set of values of the enumeration type is the same as the set of values of the underlying
type. Values of the enumeration type are not restricted to the values of the named con-
stants. Enumeration types are defined through enumeration declarations (§14.1).

n
n  ERIC LIPPERT This is an important point: Nothing stops you from putting a

value that is not in the enumerated type into a variable of that type. Do not rely on the
language or the runtime environment to verify that instances of enumerated types are
within the bounds you expect.

n
n  VLADIMIR RESHETNIkoV The CLR also supports char as an underlying type of

an enumeration. If you happen to reference an assembly containing such a type in
your application, the C# compiler will not recognize this type as an enumeration and
will not allow you, for example, to convert it to or from an integral type.

4.1.10 Nullable Types
A nullable type can represent all values of its underlying type plus an additional null value.
A nullable type is written T?, where T is the underlying type. This syntax is shorthand for
System.Nullable<T>, and the two forms can be used interchangeably.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

152

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

A non-nullable value type, conversely, is any value type other than System.Nullable<T>
and its shorthand T? (for any T), plus any type parameter that is constrained to be a non-
nullable value type (that is, any type parameter with a struct constraint). The System.
Nullable<T> type specifies the value type constraint for T (§10.1.5), which means that the
underlying type of a nullable type can be any non-nullable value type. The underlying
type of a nullable type cannot be a nullable type or a reference type. For example, int??
and string? are invalid types.

An instance of a nullable type T? has two public read-only properties:

A •	 HasValue property of type bool

A •	 Value property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance contains
a known value and Value returns that value.

An instance for which HasValue is false is said to be null. A null instance has an undefined
value. Attempting to read the Value of a null instance causes a System.InvalidOperation-
Exception to be thrown. The process of accessing the Value property of a nullable instance
is referred to as unwrapping.

In addition to the default constructor, every nullable type T? has a public constructor that
takes a single argument of type T. Given a value x of type T, a constructor invocation of
the form

new T?(x)

creates a non-null instance of T? for which the Value property is x. The process of creating
a non-null instance of a nullable type for a given value is referred to as wrapping.

Implicit conversions are available from the null literal to T? (§6.1.5) and from T to T?
(§6.1.4).

4.2 Reference Types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.2		 Reference Types

153

Types
4.	

Types
4.	

Types
4.	

Types
4.	

class-type:
type-name
object
dynamic
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an
object. The special value null is compatible with all reference types and indicates the
absence of an instance.

4.2.1 Class Types
A class type defines a data structure that contains data members (constants and fields),
function members (methods, properties, events, indexers, operators, instance constructors,
destructors, and static constructors), and nested types. Class types support inheritance, a
mechanism whereby derived classes can extend and specialize base classes. Instances of
class types are created using object-creation-expressions (§7.6.10.1).

Class types are described in §10.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

154

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Certain predefined class types have special meaning in the C# language, as described in
the table below.

Class Type Description

System.Object The ultimate base class of all other types. (See §4.2.2.)

System.String The string type of the C# language. (See §4.2.3.)

System.ValueType The base class of all value types. (See §4.1.1.)

System.Enum The base class of all enum types. (See §14.)

System.Array The base class of all array types. (See §12.)

System.Delegate The base class of all delegate types. (See §15.)

System.Exception The base class of all exception types. (See §16.)

4.2.2 The object Type
The object class type is the ultimate base class of all other types. Every type in C# directly
or indirectly derives from the object class type.

The keyword object is simply an alias for the predefined class System.Object.

4.2.3 The dynamic Type
The dynamic type, like object, can reference any object. When operators are applied to
expressions of type dynamic, their resolution is deferred until the program is run. Thus, if
the operator cannot legally be applied to the referenced object, no error is given during
compilation. Instead, an exception will be thrown when resolution of the operator fails at
runtime.

The dynamic type is further described in §4.7, and dynamic binding in §7.2.2.

4.2.4 The string Type
The string type is a sealed class type that inherits directly from object. Instances of the
string class represent Unicode character strings.

Values of the string type can be written as string literals (§2.4.4.5).

The keyword string is simply an alias for the predefined class System.String.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.3		 Boxing and Unboxing

155

Types
4.	

Types
4.	

Types
4.	

Types
4.	

4.2.5 Interface Types
An interface defines a contract. A class or struct that implements an interface must adhere
to its contract. An interface may inherit from multiple base interfaces, and a class or struct
may implement multiple interfaces.

Interface types are described in §13.

4.2.6 Array Types
An array is a data structure that contains zero or more variables that are accessed through
computed indices. The variables contained in an array, also called the elements of the array,
are all of the same type, and this type is called the element type of the array.

Array types are described in §12.

4.2.7 Delegate Types
A delegate is a data structure that refers to one or more methods. For instance methods, it
also refers to their corresponding object instances.

The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a func-
tion pointer can reference only static functions, a delegate can reference both static and
instance methods. In the latter case, the delegate stores not only a reference to the method’s
entry point, but also a reference to the object instance on which to invoke the method.

Delegate types are described in §15.

n
n  CHRIS SELLS Although C++ can reference instance member functions via a

member function pointer, it’s such a difficult thing to get right that the feature might
as well be illegal!

4.3 Boxing and Unboxing
The concept of boxing and unboxing is central to C#’s type system. It provides a bridge
between value-types and reference-types by permitting any value of a value-type to be con-
verted to and from type object. Boxing and unboxing enables a unified view of the type
system wherein a value of any type can ultimately be treated as an object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

156

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

n
n  JoSEPH ALBAHARI Prior to C# 2.0, boxing and unboxing were the primary

means by which you could write a general-purpose collection, such as a list, stack, or
queue. Since the introduction of C# 2.0, generics have provided an alternative solution
in these cases, which leads to better static type safety and performance. Boxing/
unboxing necessarily demands a small performance overhead, because it means copy-
ing values, dealing with indirection, and allocating memory on the heap.

n
n  JESSE LIBERTy I would go further and say that the introduction of generics has,

for all practical purposes, dislodged boxing and unboxing from a central concern to a
peripheral one, of interest only when passing value types as out or ref parameters.

n
n  CHRISTIAN NAGEL The normally small performance overhead associated with

boxing and unboxing can become huge if you are iterating over large collections.
Generic collection classes help with this problem.

4.3.1 Boxing Conversions
A boxing conversion permits a value-type to be implicitly converted to a reference-type. The
following boxing conversions exist:

From any • value-type to the type object.

From any• value-type to the type System.ValueType.

From any• non-nullable-value-type to any interface-type implemented by the value-type.

From any •	 nullable-type to any interface-type implemented by the underlying type of the
nullable-type.

n
n  VLADIMIR RESHETNIkoV The nullable-type does not implement the interfaces

from its underlying type; it is simply convertible to them. This distinction is impor-
tant in some contexts—for example, in checking generic constraints.

From any • enum-type to the type System.Enum.

From any• nullable-type with an underlying enum-type to the type System.Enum.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.3		 Boxing and Unboxing

157

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  BILL WAGNER The choice of the word “conversion” here is illustrative of the

behavior seen in these circumstances. You are not reinterpreting the same storage as a
different type; you are converting it. That is, you are examining different storage, not
looking at the same storage through two different variable types.

Note that an implicit conversion from a type parameter will be executed as a boxing con-
version if at runtime it ends up converting from a value type to a reference type (§6.1.10).

Boxing a value of a non-nullable-value-type consists of allocating an object instance and
copying the non-nullable-value-type value into that instance.

Boxing a value of a nullable-type produces a null reference if it is the null value (HasValue
is false), or the result of unwrapping and boxing the underlying value otherwise.

The actual process of boxing a value of a non-nullable-value-type is best explained by imag-
ining the existence of a generic boxing class, which behaves as if it were declared as
follows:

sealed class Box<T>: System.ValueType
{
 T value;

 public Box(T t) {
 value = t;
 }
}

Boxing of a value v of type T now consists of executing the expression new Box<T>(v) and
returning the resulting instance as a value of type object. Thus the statements

int i = 123;
object box = i;

conceptually correspond to

int i = 123;
object box = new Box<int>(i);

A boxing class like Box<T> above doesn’t actually exist, and the dynamic type of a boxed
value isn’t actually a class type. Instead, a boxed value of type T has the dynamic type T, and
a dynamic type check using the is operator can simply reference type T. For example,

int i = 123;
object box = i;
if (box is int) {
 Console.Write("Box contains an int");
}

will output the string “Box contains an int” on the console.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

158

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

A boxing conversion implies making a copy of the value being boxed. This is different from
a conversion of a reference-type to type object, in which the value continues to reference the
same instance and simply is regarded as the less derived type object. For example, given
the declaration

struct Point
{
 public int x, y;
 public Point(int x, int y) {

 this.x = x;
 this.y = y;
 }
}

the following statements

Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs
in the assignment of p to box causes the value of p to be copied. Had Point been declared a
class instead, the value 20 would be output because p and box would reference the same
instance.

n
n  ERIC LIPPERT This possibility is just one reason why it is a good practice to make

structs immutable. If the struct cannot mutate, then the fact that boxing makes a copy
is irrelevant: Both copies will be identical forever.

4.3.2 Unboxing Conversions
An unboxing conversion permits a reference-type to be explicitly converted to a value-type.
The following unboxing conversions exist:

From the type • object to any value-type.

From the type• System.ValueType to any value-type.

From any •	 interface-type to any non-nullable-value-type that implements the interface-type.

From any •	 interface-type to any nullable-type whose underlying type implements the
interface-type.

From the type • System.Enum to any enum-type.

From the type• System.Enum to any nullable-type with an underlying enum-type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.3		 Boxing and Unboxing

159

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  BILL WAGNER As with boxing, unboxing involves a conversion. If you box a

struct and then unbox it, three different storage locations may result. You most cer-
tainly do not have three variables examining the same storage.

Note that an explicit conversion to a type parameter will be executed as an unboxing con-
version if at runtime it ends up converting from a reference type to a value type (§6.2.6).

An unboxing operation to a non-nullable-value-type consists of first checking that the object
instance is a boxed value of the given non-nullable-value-type, and then copying the value
out of the instance.

n
n  ERIC LIPPERT Although it is legal to convert an unboxed int to an unboxed
double, it is not legal to convert a boxed int to an unboxed double—only to an
unboxed int. This constraint exists because the unboxing instruction would then have
to know all the rules for type conversions that are normally done by the compiler. If
you need to do these kinds of conversions at runtime, use the Convert class instead of
an unboxing cast.

Unboxing to a nullable-type produces the null value of the nullable-type if the source oper-
and is null, or the wrapped result of unboxing the object instance to the underlying type
of the nullable-type otherwise.

Referring to the imaginary boxing class described in the previous section, an unboxing
conversion of an object box to a value-type T consists of executing the expression ((Box<T>)
box).value. Thus the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new Box<int>(123);
int i = ((Box<int>)box).value;

For an unboxing conversion to a given non-nullable-value-type to succeed at runtime, the
value of the source operand must be a reference to a boxed value of that non-nullable-value-
type. If the source operand is null, a System.NullReferenceException is thrown. If the
source operand is a reference to an incompatible object, a System.InvalidCastException
is thrown.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

160

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

n
n  JoN SkEET Some unboxing conversions aren’t guaranteed to work by the C#

specification, yet are legal under the CLI specification. For example, the previously
given description precludes unboxing from an enum value to its underlying type, and
vice versa:

object o = System.DayOfWeek.Sunday;
int i = (int) o;

This conversion will succeed in .NET, but would not be guaranteed to succeed on a
different C# implementation.

For an unboxing conversion to a given nullable-type to succeed at runtime, the value of the
source operand must be either null or a reference to a boxed value of the underlying non-
nullable-value-type of the nullable-type. If the source operand is a reference to an incompati-
ble object, a System.InvalidCastException is thrown.

n
n  CHRIS SELLS Boxing and unboxing are designed such that you almost never

have to think about them unless you’re trying to reduce your memory usage (in which
case, profiling is your friend!). However, if you see out or ref values whose values
don’t seem to be set properly at the caller’s site, suspect boxing.

4.4 Constructed Types
A generic type declaration, by itself, denotes an unbound generic type that is used as a
“blueprint” to form many different types, by way of applying type arguments. The type
arguments are written within angle brackets (< and >) immediately following the name of
the generic type. A type that includes at least one type argument is called a constructed
type. A constructed type can be used in most places in the language in which a type name
can appear. An unbound generic type can be used only within a typeof-expression (§7.6.11).

Constructed types can also be used in expressions as simple names (§7.6.2) or when access-
ing a member (§7.6.4).

When a namespace-or-type-name is evaluated, only generic types with the correct number of
type parameters are considered. Thus it is possible to use the same identifier to identify
different types, as long as the types have different numbers of type parameters. This is use-
ful when mixing generic and nongeneric classes in the same program:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.4		 Constructed Types

161

Types
4.	

Types
4.	

Types
4.	

Types
4.	

namespace Widgets
{
 class Queue {...}
 class Queue<TElement> {...}
}

namespace MyApplication
{
 using Widgets;

 class X
 {
 Queue q1; // Nongeneric Widgets.Queue
 Queue<int> q2; // Generic Widgets.Queue
 }
}

A type-name might identify a constructed type even though it doesn’t specify type param-
eters directly. This can occur where a type is nested within a generic class declaration, and
the instance type of the containing declaration is implicitly used for name lookup
(§10.3.8.6):

class Outer<T>
{
 public class Inner {...}

 public Inner i; // Type of i is Outer<T>.Inner
}

In unsafe code, a constructed type cannot be used as an unmanaged-type (§18.2).

4.4.1 Type Arguments
Each argument in a type argument list is simply a type.

type-argument-list:
< type-arguments >

type-arguments:
type-argument
type-arguments , type-argument

type-argument:
type

In unsafe code (§18), a type-argument may not be a pointer type. Each type argument must
satisfy any constraints on the corresponding type parameter (§10.1.5).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

162

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

4.4.2 open and Closed Types
All types can be classified as either open types or closed types. An open type is a type that
involves type parameters. More specifically:

A type parameter defines an open type.•	

An array type is an open type if and only if its element type is an open type.•	

A constructed type is an open type if and only if one or more of its type arguments is an •	
open type. A constructed nested type is an open type if and only if one or more of its
type arguments or the type arguments of its containing type(s) is an open type.

A closed type is a type that is not an open type.

At runtime, all of the code within a generic type declaration is executed in the context of a
closed constructed type that was created by applying type arguments to the generic decla-
ration. Each type parameter within the generic type is bound to a particular runtime type.
The runtime processing of all statements and expressions always occurs with closed types,
and open types occur only during compile-time processing.

Each closed constructed type has its own set of static variables, which are not shared with
any other closed constructed types. Since an open type does not exist at runtime, there are
no static variables associated with an open type. Two closed constructed types are the same
type if they are constructed from the same unbound generic type, and their corresponding
type arguments are the same type.

4.4.3 Bound and Unbound Types
The term unbound type refers to a nongeneric type or an unbound generic type. The term
bound type refers to a nongeneric type or a constructed type.

n
n  ERIC LIPPERT Yes, nongeneric types are considered to be both bound and

unbound.

An unbound type refers to the entity declared by a type declaration. An unbound generic
type is not itself a type, and it cannot be used as the type of a variable, argument, or return
value, or as a base type. The only construct in which an unbound generic type can be ref-
erenced is the typeof expression (§7.6.11).

4.4.4 Satisfying Constraints
Whenever a constructed type or generic method is referenced, the supplied type argu-
ments are checked against the type parameter constraints declared on the generic type or

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.4		 Constructed Types

163

Types
4.	

Types
4.	

Types
4.	

Types
4.	

method (§10.1.5). For each where clause, the type argument A that corresponds to the named
type parameter is checked against each constraint as follows:

If the constraint is a class type, an interface type, or a type parameter, let •	 C represent that
constraint with the supplied type arguments substituted for any type parameters that
appear in the constraint. To satisfy the constraint, it must be the case that type A is con-
vertible to type C by one of the following:

- An identity conversion (§6.1.1).

- An implicit reference conversion (§6.1.6).

- A boxing conversion (§6.1.7), provided that type A is a non-nullable value type.

- An implicit reference, boxing, or type parameter conversion from a type parameter
A to C.

If the constraint is the reference type constraint (•	 class), the type A must satisfy one of
the following:

A - is an interface type, class type, delegate type, or array type. Both System.ValueType
and System.Enum are reference types that satisfy this constraint.

A - is a type parameter that is known to be a reference type (§10.1.5).

If the constraint is the value type constraint (•	 struct), the type A must satisfy one of the
following:

A - is a struct type or enum type, but not a nullable type. Both System.ValueType and
System.Enum are reference types that do not satisfy this constraint.

A - is a type parameter having the value type constraint (§10.1.5).

If the constraint is the constructor constraint •	 new(), the type A must not be abstract
and must have a public parameterless constructor. This is satisfied if one of the follow-
ing is true:

A - is a value type, since all value types have a public default constructor (§4.1.2).

A - is a type parameter having the constructor constraint (§10.1.5).

A - is a type parameter having the value type constraint (§10.1.5).

A - is a class that is not abstract and contains an explicitly declared public constructor
with no parameters.

A - is not abstract and has a default constructor (§10.11.4).

A compile-time error occurs if one or more of a type parameter’s constraints are not satis-
fied by the given type arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

164

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Since type parameters are not inherited, constraints are never inherited either. In the exam-
ple below, D needs to specify the constraint on its type parameter T so that T satisfies the
constraint imposed by the base class B<T>. In contrast, class E need not specify a constraint,
because List<T> implements IEnumerable for any T.

class B<T> where T: IEnumerable {...}

class D<T>: B<T> where T: IEnumerable {...}

class E<T>: B<List<T>> {...}

4.5 Type Parameters
A type parameter is an identifier designating a value type or reference type that the
parameter is bound to at runtime.

type-parameter:
identifier

Since a type parameter can be instantiated with many different actual type arguments,
type parameters have slightly different operations and restrictions than other types:

A type parameter cannot be used directly to declare a base class (§10.2.4) or interface •	
(§13.1.3).

The rules for member lookup on type parameters depend on the constraints, if any, •	
applied to the type parameter. They are detailed in §7.4.

The available conversions for a type parameter depend on the constraints, if any, applied •	
to the type parameter. They are detailed in §6.1.10 and §6.2.6.

The literal •	 null cannot be converted to a type given by a type parameter, except if the
type parameter is known to be a reference type (§6.1.10). However, a default expression
(§7.6.13) can be used instead. In addition, a value with a type given by a type parameter
can be compared with null using == and != (§7.10.6) unless the type parameter has the
value type constraint.

A •	 new expression (§7.6.10.1) can be used with a type parameter only if the type parameter
is constrained by a constructor-constraint or the value type constraint (§10.1.5).

A type parameter cannot be used anywhere within an attribute. •	

A type parameter cannot be used in a member access (§7.6.4) or type name (§3.8) to •	
identify a static member or a nested type.

In unsafe code, a type parameter cannot be used as an •	 unmanaged-type (§18.2).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.6		 Expression Tree Types

165

Types
4.	

Types
4.	

Types
4.	

Types
4.	

As a type, type parameters are purely a compile-time construct. At runtime, each type
parameter is bound to a runtime type that was specified by supplying a type argument to
the generic type declaration. Thus the type of a variable declared with a type parameter
will, at runtime, be a closed constructed type (§4.4.2). The runtime execution of all state-
ments and expressions involving type parameters uses the actual type that was supplied
as the type argument for that parameter.

4.6 Expression Tree Types
Expression trees permit anonymous functions to be represented as data structures instead
of executable code. Expression trees are values of expression tree types of the form System.
Linq.Expressions.Expression<D>, where D is any delegate type. For the remainder of this
specification, we will refer to these types using the shorthand Expression<D>.

If a conversion exists from an anonymous function to a delegate type D, a conversion also
exists to the expression tree type Expression<D>. Whereas the conversion of an anonymous
function to a delegate type generates a delegate that references executable code for the
anonymous function, conversion to an expression tree type creates an expression tree rep-
resentation of the anonymous function.

Expression trees are efficient in-memory data representations of anonymous functions and
make the structure of the anonymous function transparent and explicit.

Just like a delegate type D, Expression<D> is said to have parameter and return types,
which are the same as those of D.

The following example represents an anonymous function both as executable code and
as an expression tree. Because a conversion exists to Func<int,int>, a conversion also
exists to Expression<Func<int,int>>:

Func<int,int> del = x => x + 1; // Code
Expression<Func<int,int>> exp = x => x + 1; // Data

Following these assignments, the delegate del references a method that returns x + 1,
and the expression tree exp references a data structure that describes the expression x =>
x + 1.

The exact definition of the generic type Expression<D> as well as the precise rules for con-
structing an expression tree when an anonymous function is converted to an expression
tree type are implementation defined.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4. Types

166

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Two things are important to make explicit:

Not all anonymous functions can be represented as expression trees. For instance, anon-•	
ymous functions with statement bodies and anonymous functions containing assign-
ment expressions cannot be represented. In these cases, a conversion still exists, but will
fail at compile time.

Expression<D>•	 offers an instance method Compile that produces a delegate of type D:

Func<int,int> del2 = exp.Compile();

Invoking this delegate causes the code represented by the expression tree to be executed.
Thus, given the definitions above, del and del2 are equivalent, and the following two
statements will have the same effect:

int i1 = del(1);
int i2 = del2(1);

After executing this code, i1 and i2 will both have the value 2.

4.7 The dynamic Type
The type dynamic has special meaning in C#. Its purpose is to allow dynamic binding,
which is described in detail in §7.2.2.

The dynamic type is considered identical to the object type except in the following
respects:

Operations on expressions of type •	 dynamic can be dynamically bound (§7.2.2).

Type inference (§7.5.2) will prefer •	 dynamic over object if both are candidates.

Because of this equivalence, the following statements hold:

There is an implicit identity conversion between •	 object and dynamic, and between con-
structed types that are the same when replacing dynamic with object.

Implicit and explicit conversions to and from •	 object also apply to and from dynamic.

Method signatures that are the same when replacing •	 dynamic with object are consid-
ered the same signature.

The type dynamic is indistinguishable from object at runtime.

An expression of the type dynamic is referred to as a dynamic expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

4.7		 The dynamic Type

167

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  ERIC LIPPERT The type dynamic is a bizarre type, but it is important to note

that, from the compiler’s perspective, it is a type. Unlike with var, you can use it in
most of the situations that call for a type: return types, parameter types, type argu-
ments, and so on.

n
n  PETER SESToFT Actually, var is a reserved word, not a compile-time type,

whereas dynamic is a compile-time type. The var keyword tells the compiler, “Please
infer the compile-time type of this variable from its initializer expression.” The
dynamic type essentially tells the compiler, “Do not worry about compile-time type
checking of expressions in which this variable appears; the runtime system will do
the right thing based on the runtime type of the value of the variable (or throw an
exception, where the compiler would have reported a type error).” The type dynamic
cannot be used as receiver (this type) of an extension method, as base type of a class,
or as type bound for a generic type parameter, but otherwise it can be used pretty
much like any other type.

n
n  MAREk SAFAR Method signatures are considered to be same when using the
dynamic and object types. This allows use of a nice trick: The interface method
declared using type object can be directly implemented using a method with type
dynamic.

n
n  CHRIS SELLS I begin to wonder about any language where the following string

of characters is both valid and meaningful:

class Foo {
 public static dynamic DoFoo() {...}
}

Of course, this means that the DoFoo method is a type method (as opposed to an
instance method) and that the type of the return value is unknown until runtime, but
it’s hard not to read DoFoo as both static and dynamic at the same time and worry
about an occurrence of a singularity.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

169

Variables5.

Variables represent storage locations. Every variable has a type that determines what val-
ues can be stored in the variable. C# is a type-safe language, and the C# compiler guaran-
tees that values stored in variables are always of the appropriate type. The value of a
variable can be changed through assignment or through use of the ++ and -- operators.

A variable must be definitely assigned (§5.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially
unassigned. An initially assigned variable has a well-defined initial value and is always
considered definitely assigned. An initially unassigned variable has no initial value. For an
initially unassigned variable to be considered definitely assigned at a certain location, an
assignment to the variable must occur in every possible execution path leading to that
location.

5.1 Variable Categories
C# defines seven categories of variables: static variables, instance variables, array elements,
value parameters, reference parameters, output parameters, and local variables. The sec-
tions that follow describe each of these categories.

In the example

class A
{
 public static int x;
 int y;

 void F(int[] v, int a, ref int b, out int c)
 {
 int i = 1;
 c = a + b++;
 }
}

x is a static variable, y is an instance variable, v[0] is an array element, a is a value param-
eter, b is a reference parameter, c is an output parameter, and i is a local variable.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

170

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

n
n  JESSE LIBERTy It is inevitable—but unfortunate—that x is used as the name of

the first variable described in all our books. Variable names should be self-revealing
and, except perhaps when used as counters in for loops, should never be given single-
letter names. I’d much prefer to see this example written (to stretch the point) as
follows:

class ASimpleExampleClass
{
 public static int staticMember;
 int memberVariable;
 void ExampleFunction(
 int[] arrayOfIntsParam,
 int simpleParam,
 ref int refParam,
 out int OutParam)
 {
 int tempVariable = 1;
 outParam = simpleParam + refParam ++;
 }
}

While the naming scheme may seem cumbersome in this simple example, there is no
ambiguity about what is happening or why—and the explanation that follows is
nearly superfluous.

5.1.1 Static Variables
A field declared with the static modifier is called a static variable. A static variable comes
into existence before execution of the static constructor (§10.12) for its containing type, and
ceases to exist when the associated application domain ceases to exist.

The initial value of a static variable is the default value (§5.2) of the variable’s type.

For purposes of definite assignment checking, a static variable is considered initially
assigned.

5.1.2 Instance Variables
A field declared without the static modifier is called an instance variable.

5.1.2.1 Instance Variables in Classes
An instance variable of a class comes into existence when a new instance of that class is
created, and ceases to exist when there are no references to that instance and the instance’s
destructor (if any) has executed.

The initial value of an instance variable of a class is the default value (§5.2) of the vari-
able’s type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.1		 Variable Categories

171

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

For the purpose of definite assignment checking, an instance variable of a class is consid-
ered initially assigned.

5.1.2.2 Instance Variables in Structs
An instance variable of a struct has exactly the same lifetime as the struct variable to which
it belongs. In other words, when a variable of a struct type comes into existence or ceases
to exist, so, too, do the instance variables of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the con-
taining struct variable. In other words, when a struct variable is considered initially assigned,
so, too, are its instance variables. When a struct variable is considered initially unassigned,
its instance variables are likewise unassigned.

n
n  BILL WAGNER An instance variable in a struct of reference type may not be eli-

gible for garbage collection when the struct containing it ceases to exist. If the object is
reachable in another path, the object is still alive even though the instance variable of
the struct is not. This is also true for array elements.

5.1.3 Array Elements
The elements of an array come into existence when an array instance is created, and cease
to exist when there are no references to that array instance.

The initial value of each of the elements of an array is the default value (§5.2) of the type of
the array elements.

For the purpose of definite assignment checking, an array element is considered initially
assigned.

5.1.4 Value Parameters
A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (method,
instance constructor, accessor, or operator) or anonymous function to which the parameter
belongs, and is initialized with the value of the argument given in the invocation. A value
parameter normally ceases to exist upon return of the function member or anonymous
function. However, if the value parameter is captured by an anonymous function (§7.15),
its lifetime extends at least until the delegate or expression tree created from that anony-
mous function is eligible for garbage collection.

For the purpose of definite assignment checking, a value parameter is considered initially
assigned.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

172

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

5.1.5 Reference Parameters
A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference param-
eter represents the same storage location as the variable given as the argument in the func-
tion member or anonymous function invocation. Thus the value of a reference parameter
is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different
rules for output parameters described in §5.1.6.

A variable must be definitely assigned (§5.3) before it can be passed as a reference param-•	
eter in a function member or delegate invocation.

Within a function member or anonymous function, a reference parameter is considered •	
initially assigned.

Within an instance method or instance accessor of a struct type, the this keyword behaves
exactly as a reference parameter of the struct type (§7.6.7).

n
n  ERIC LIPPERT Less formally, the difference between a reference and an output

parameter is that a reference parameter represents an “input and output” parameter:
It must be initialized when the method starts, and the method may optionally change
the contents. An output parameter, by comparison, is used for output; the method
must fill in the contents and may not peek at the contents until after it has done so.

n
n  JoN SkEET Even an output parameter doesn’t have to be used solely for output.

In particular, after a method has assigned a value to an output parameter, it can then
read from it. Because the parameter will share a storage location with another vari-
able, however, there’s no guarantee that the value won’t change again after it’s been
assigned in the method. This approach prevents output parameters being used
covariantly.

n
n  ERIC LIPPERT Some other programming languages support another kind of

parameter passing: an “input only” reference. That is, the reference to the variable is
passed to the method but, unlike a C# reference parameter, the method may not write
to it—only read from it. This approach is useful for efficiently passing large value
types around; passing a reference to a variable may lead to better performance than
passing a copy of the value if the value is large. C# does not support this kind of refer-
ence passing.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.1		 Variable Categories

173

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

5.1.6 output Parameters
A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter
represents the same storage location as the variable given as the argument in the function
member or delegate invocation. Thus the value of an output parameter is always the same
as the underlying variable.

The following definite assignment rules apply to output parameters. Note the different
rules for reference parameters described in §5.1.5.

A variable need not be definitely assigned before it can be passed as an output param-•	
eter in a function member or delegate invocation.

Following the normal completion of a function member or delegate invocation, each •	
variable that was passed as an output parameter is considered assigned in that execu-
tion path.

Within a function member or anonymous function, an output parameter is considered •	
initially unassigned.

Every output parameter of a function member or anonymous function must be defi-•	
nitely assigned (§5.3) before the function member or anonymous function returns
normally.

Within an instance constructor of a struct type, the this keyword behaves exactly as an
output parameter of the struct type (§7.6.7).

n
n  CHRISTIAN NAGEL Instead of using output parameters to return multiple values

from a function, you might use the tuple type. This type is new with .NET 4.

5.1.7 Local Variables
A local variable is declared either by a local-variable-declaration, which may occur in a block,
a for-statement, a switch-statement, or a using-statement; by a foreach-statement; or by a specific-
catch-clause for a try-statement.

The lifetime of a local variable is the portion of program execution during which storage is
guaranteed to be reserved for it. This lifetime extends at least from entry into the block, for-
statement, switch-statement, using-statement, foreach-statement, or specific-catch-clause with
which it is associated, until execution of that block, for-statement, switch-statement, using-
statement, foreach-statement, or specific-catch-clause ends in any way. (Entering an enclosed
block or calling a method suspends, but does not end, execution of the current block, for-
statement, switch-statement, using-statement, foreach-statement, or specific-catch-clause.) If the

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

174

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

local variable is captured by an anonymous function (§7.15.5.1), its lifetime extends at least
until the delegate or expression tree created from the anonymous function, along with any
other objects that come to reference the captured variable, are eligible for garbage
collection.

n
n  BILL WAGNER This last sentence has important implications for the possible cost

of local variables captured in anonymous functions. The lifetimes of those variables
may be much longer, which means any other objects that are referenced by those local
variables will also live much longer.

If the parent block, for-statement, switch-statement, using-statement, foreach-statement, or
specific-catch-clause is entered recursively, a new instance of the local variable is created
each time, and its local-variable-initializer, if any, is evaluated each time.

A local variable introduced by a local-variable-declaration is not automatically initialized and
thus has no default value. For the purpose of definite assignment checking, a local variable
introduced by a local-variable-declaration is considered initially unassigned. A local-variable-
declaration may include a local-variable-initializer, in which case the variable is considered
definitely assigned only after the initializing expression (§5.3.3.4).

n
n  ERIC LIPPERT Requiring local variables to be definitely assigned rather than

automatically assigning them to their default values might seem like it confers a per-
formance benefit; after all, the compiler need not generate code that redundantly
assigns a default value to the location. In reality, this is not the motivation for the fea-
ture. In practice, the CLR does initialize local variables to their default values, which
typically takes place very rapidly. The motivating factor for definite assignment checks
is that it prevents a common cause of bugs. C# does not guess that you meant for the
local variable to be initialized and hide your bug; it requires that the local variable be
explicitly initialized before you use it.

Within the scope of a local variable introduced by a local-variable-declaration, it is a compile-
time error to refer to that local variable in a textual position that precedes its local-variable-
declarator. If the local variable declaration is implicit (§8.5.1), it is also an error to refer to the
variable within its local-variable-declarator.

A local variable introduced by a foreach-statement or a specific-catch-clause is considered defi-
nitely assigned in its entire scope.

The actual lifetime of a local variable is implementation-dependent. For example, a com-
piler might statically determine that a local variable in a block is used for only a small

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.2		 Default Values

175

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

portion of that block. Using this analysis, the compiler could generate code that results in
the variable’s storage having a shorter lifetime than its containing block.

The storage referred to by a local reference variable is reclaimed independently of the life-
time of that local reference variable (§3.9).

n
n  CHRIS SELLS C required variables to be declared at the top of a scope:

void F() {
 int x = ...;
 ...
 Foo(x); // What was x again?
 ...
}

In C#, it’s generally considered bad practice to declare a variable far from where it’s
used. Instead, the following form is preferred:

void F() {
 ...
 int x = ...;
 Foo(x); // Oh, right, I see x...
 ...
}

Taking this principle, which is known as “locality of reference,” into account makes
your programs more readable and more maintainable.

5.2 Default Values
The following categories of variables are automatically initialized to their default values:

Static variables.•	

Instance variables of class instances.•	

Array elements.•	

The default value of a variable depends on the type of the variable and is determined as
follows:

For a variable of a •	 value-type, the default value is the same as the value computed by the
value-type’s default constructor (§4.1.2).

For a variable of a •	 reference-type, the default value is null.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

176

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Initialization to default values is typically done by having the memory manager or garbage
collector initialize memory to all-bits-zero before it is allocated for use. For this reason, it is
convenient to use all-bits-zero to represent the null reference.

5.3 Definite Assignment
At a given location in the executable code of a function member, a variable is said to be
definitely assigned if the compiler can prove, by a particular static flow analysis (§5.3.3),
that the variable has been automatically initialized or has been the target of at least one
assignment. Informally stated, the rules of definite assignment are:

An initially assigned variable (§5.3.1) is always considered definitely assigned.•	

An initially unassigned variable (§5.3.2) is considered definitely assigned at a given loca-•	
tion if all possible execution paths leading to that location contain at least one of the
following:

- A simple assignment (§7.17.1) in which the variable is the left operand.

- An invocation expression (§7.6.5) or object creation expression (§7.6.10.1) that passes
the variable as an output parameter.

- For a local variable, a local variable declaration (§8.5.1) that includes a variable
initializer.

The formal specification underlying the above informal rules is described in §5.3.1, §5.3.2,
and §5.3.3.

The definite assignment states of instance variables of a struct-type variable are tracked
individually as well as collectively. In addition to the rules above, the following rules apply
to struct-type variables and their instance variables:

An instance variable is considered definitely assigned if its containing •	 struct-type vari-
able is considered definitely assigned.

A •	 struct-type variable is considered definitely assigned if each of its instance variables is
considered definitely assigned.

Definite assignment is a requirement in the following contexts:

A variable must be definitely assigned at each location where its value is obtained. This •	
ensures that undefined values never occur. The occurrence of a variable in an expression
is considered to obtain the value of the variable, except when

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

177

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

- The variable is the left operand of a simple assignment,

- The variable is passed as an output parameter, or

The variable is a - struct-type variable and occurs as the left operand of a member
access.

A variable must be definitely assigned at each location where it is passed as a reference •	
parameter. This ensures that the function member being invoked can consider the refer-
ence parameter initially assigned.

All output parameters of a function member must be definitely assigned at each location •	
where the function member returns (through a return statement or through execution
reaching the end of the function member body). This ensures that function members do
not return undefined values in output parameters, thus enabling the compiler to con-
sider a function member invocation that takes a variable as an output parameter equiv-
alent to an assignment to the variable.

The •	 this variable of a struct-type instance constructor must be definitely assigned at each
location where that instance constructor returns.

5.3.1 Initially Assigned Variables
The following categories of variables are classified as initially assigned:

Static variables.•	

Instance variables of class instances.•	

Instance variables of initially assigned struct variables.•	

Array elements.•	

Value parameters.•	

Reference parameters.•	

Variables declared in a •	 catch clause or a foreach statement.

5.3.2 Initially Unassigned Variables
The following categories of variables are classified as initially unassigned:

Instance variables of initially unassigned struct variables.•	

Output parameters, including the •	 this variable of struct instance constructors.

Local variables, except those declared in a •	 catch clause or a foreach statement.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

178

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

5.3.3 Precise Rules for Determining Definite Assignment
To determine that each used variable is definitely assigned, the compiler must use a pro-
cess that is equivalent to the one described in this section.

The compiler processes the body of each function member that has one or more initially
unassigned variables. For each initially unassigned variable v, the compiler determines a
definite assignment state for v at each of the following points in the function member:

At the beginning of each statement.•	

At the end point (§8.1) of each statement.•	

On each arc that transfers control to another statement or to the end point of a •	
statement.

At the beginning of each expression.•	

At the end of each expression.•	

The definite assignment state of v can be either:

Definitely assigned. This indicates that on all possible control flows to this point, •	 v has
been assigned a value.

Not definitely assigned. For the state of a variable at the end of an expression of type •	
bool, the state of a variable that isn’t definitely assigned may (but doesn’t necessarily)
fall into one of the following substates:

Definitely assigned after true expression. This state indicates that - v is definitely
assigned if the boolean expression evaluated as true, but is not necessarily assigned
if the boolean expression evaluated as false.

Definitely assigned after false expression. This state indicates that - v is definitely
assigned if the boolean expression evaluated as false, but is not necessarily assigned
if the boolean expression evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

5.3.3.1 General Rules for Statements

v •	 is not definitely assigned at the beginning of a function member body.

v•	 is definitely assigned at the beginning of any unreachable statement.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

179

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

n
n  ERIC LIPPERT This rule may strike you as unusual. Why should every variable

be considered to be definitely assigned within an unreachable statement? Some rea-
sons are discussed here.

If the statement is unreachable, then it will not execute. If it will not execute, then it
will not read from an unassigned variable. Therefore, it is not a problem; the compiler
is looking for potential problems, and this is not one.

Also, unreachable statements are almost certainly mistakes. Once the compiler has
identified one mistake, odds are good that a whole host of related mistakes are clus-
tered around it. Rather than reporting a huge number of related problems, it is often a
better idea to report just one problem and allow the user to fix it, rather than trying to
report every possible specification violation.

The definite assignment state of •	 v at the beginning of any other statement is determined
by checking the definite assignment state of v on all control flow transfers that target the
beginning of that statement. If (and only if) v is definitely assigned on all such control
flow transfers, then v is definitely assigned at the beginning of the statement. The set of
possible control flow transfers is determined in the same way as for checking statement
reachability (§8.1).

The definite assignment state of •	 v at the end point of a block, checked, unchecked, if,
while, do, for, foreach, lock, using, or switch statement is determined by checking the
definite assignment state of v on all control flow transfers that target the end point of that
statement. If v is definitely assigned on all such control flow transfers, then v is definitely
assigned at the end point of the statement. Otherwise, v is not definitely assigned at the
end point of the statement. The set of possible control flow transfers is determined in the
same way as for checking statement reachability (§8.1).

5.3.3.2 Block Statements, checked Statements, and unchecked Statements
The definite assignment state of v on the control transfer to the first statement of the state-
ment list in the block (or to the end point of the block, if the statement list is empty) is the
same as the definite assignment statement of v before the block, checked, or unchecked
statement.

5.3.3.3 Expression Statements
For an expression statement stmt that consists of the expression expr:

v•	 has the same definite assignment state at the beginning of expr as at the beginning
of stmt.

If •	 v is definitely assigned at the end of expr, it is definitely assigned at the end point of
stmt; otherwise, it is not definitely assigned at the end point of stmt.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

180

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

5.3.3.4 Declaration Statements

If •	 stmt is a declaration statement without initializers, then v has the same definite assign-
ment state at the end point of stmt as at the beginning of stmt.

If •	 stmt is a declaration statement with initializers, then the definite assignment state for
v is determined as if stmt were a statement list, with one assignment statement for each
declaration with an initializer (in the order of declaration).

5.3.3.5 if Statements
For an if statement stmt of the form:

if (expr) then-stmt else else-stmt

v•	 has the same definite assignment state at the beginning of expr as at the beginning
of stmt.

If •	 v is definitely assigned at the end of expr, then it is definitely assigned on the control
flow transfer to then-stmt and to either else-stmt or to the end point of stmt if there is no
else clause.

If •	 v has the state “definitely assigned after true expression” at the end of expr, then it is
definitely assigned on the control flow transfer to then-stmt, and not definitely assigned
on the control flow transfer to either else-stmt or to the end point of stmt if there is no
else clause.

If •	 v has the state “definitely assigned after false expression” at the end of expr, then it is
definitely assigned on the control flow transfer to else-stmt, and not definitely assigned
on the control flow transfer to then-stmt. It is definitely assigned at the end point of stmt
if and only if it is definitely assigned at the end point of then-stmt.

Otherwise, •	 v is considered not definitely assigned on the control flow transfer to either
then-stmt or else-stmt, or to the end point of stmt if there is no else clause.

5.3.3.6 switch Statements
In a switch statement stmt with a controlling expression expr:

The definite assignment state of •	 v at the beginning of expr is the same as the state of v at
the beginning of stmt.

The definite assignment state of •	 v on the control flow transfer to a reachable switch block
statement list is the same as the definite assignment state of v at the end of expr.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

181

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

n
n  ERIC LIPPERT Unfortunately, in the few cases where it is feasible to switch

exhaustively on the entire range of a controlling expression without a default switch
label (that is, bool, the byte types, and their corresponding nullable types), definite
assignment checking does not take into consideration the possibility that a variable
may be definitely assigned at the end of the switch if it is definitely assigned at the
end of every switch section. For example:

int x;
bool b = B();
switch(b) {
case true : x = 1; break;
case false: x = 2; break;
}
Console.WriteLine(x); // Error: x is not definitely assigned

In those rare cases, you can always put an unnecessary default switch label on one of
the switch sections to make the definite assignment checker happy.

5.3.3.7 while Statements
For a while statement stmt of the form:

while (expr) while-body

v•	 has the same definite assignment state at the beginning of expr as at the beginning
of stmt.

If •	 v is definitely assigned at the end of expr, then it is definitely assigned on the control
flow transfer to while-body and to the end point of stmt.

If •	 v has the state “definitely assigned after true expression” at the end of expr, then it is
definitely assigned on the control flow transfer to while-body, but not definitely assigned
at the end point of stmt.

If •	 v has the state “definitely assigned after false expression” at the end of expr, then it is
definitely assigned on the control flow transfer to the end point of stmt, but not definitely
assigned on the control flow transfer to while-body.

5.3.3.8 do Statements
For a do statement stmt of the form:

do do-body while (expr) ;

v•	 has the same definite assignment state on the control flow transfer from the beginning
of stmt to do-body as at the beginning of stmt.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

182

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

v•	 has the same definite assignment state at the beginning of expr as at the end point of
do-body.

If •	 v is definitely assigned at the end of expr, then it is definitely assigned on the control
flow transfer to the end point of stmt.

If •	 v has the state “definitely assigned after false expression” at the end of expr, then it is
definitely assigned on the control flow transfer to the end point of stmt.

5.3.3.9 for Statements
Definite assignment checking for a for statement of the form:

for (for-initializer ; for-condition ; for-iterator) embedded-statement

is done as if the statement were written:

{
for-initializer ;
while (for-condition) {
 embedded-statement ;
 for-iterator ;
}

}

If the for-condition is omitted from the for statement, then evaluation of definite assign-
ment proceeds as if for-condition were replaced with true in the above expansion.

5.3.3.10 break, continue, and goto Statements
The definite assignment state of v on the control flow transfer caused by a break, continue,
or goto statement is the same as the definite assignment state of v at the beginning of the
statement.

5.3.3.11 throw Statements
For a statement stmt of the form:

throw expr ;

the definite assignment state of v at the beginning of expr is the same as the definite assign-
ment state of v at the beginning of stmt.

5.3.3.12 return Statements
For a statement stmt of the form:

return expr ;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

183

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

The definite assignment state of •	 v at the beginning of expr is the same as the definite
assignment state of v at the beginning of stmt.

If •	 v is an output parameter, then it must be definitely assigned either

After - expr or

At the end of the - finally block of a try-finally or try-catch-finally that encloses
the return statement.

For a statement stmt of the form:

return ;

If •	 v is an output parameter, then it must be definitely assigned either

Before - stmt or

At the end of the - finally block of a try-finally or try-catch-finally that encloses
the return statement.

5.3.3.13 try-catch Statements

n
n  BILL WAGNER Starting here, you see how any of the nonstructured statements

(e.g., throw, catch, goto, finally) can complicate both the compiler’s analysis and
your own understanding. Be careful how you use these statements in your regular
logic. The try/finally statement is a simplified special case, but the general cases can
greatly decrease program readability.

For a statement stmt of the form:

try try-block
catch(...) catch-block-1
...
catch(...) catch-block-n

The definite assignment state of •	 v at the beginning of try-block is the same as the definite
assignment state of v at the beginning of stmt.

The definite assignment state of •	 v at the beginning of catch-block-i (for any i) is the same
as the definite assignment state of v at the beginning of stmt.

The definite assignment state of •	 v at the end point of stmt is definitely assigned if (and
only if) v is definitely assigned at the end point of try-block and every catch-block-i (for
every i from 1 to n).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

184

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

5.3.3.14 try-finally Statements
For a try statement stmt of the form:

try try-block finally finally-block

The definite assignment state of •	 v at the beginning of try-block is the same as the definite
assignment state of v at the beginning of stmt.

The definite assignment state of •	 v at the beginning of finally-block is the same as the
definite assignment state of v at the beginning of stmt.

The definite assignment state of •	 v at the end point of stmt is definitely assigned if (and
only if) at least one of the following is true:

v- is definitely assigned at the end point of try-block.

v- is definitely assigned at the end point of finally-block.

If a control flow transfer (for example, a goto statement) is made that begins within try-
block and ends outside of try-block, then v is also considered definitely assigned on that
control flow transfer if v is definitely assigned at the end point of finally-block. (This is not
an “only if”: If v is definitely assigned for another reason on this control flow transfer, then
it is still considered definitely assigned.)

5.3.3.15 try-catch-finally Statements
Definite assignment analysis for a try-catch-finally statement of the form:

try try-block
catch(...) catch-block-1
...
catch(...) catch-block-n
finally finally-block

is done as if the statement were a try-finally statement enclosing a try-catch statement:

try {
try try-block
catch(...) catch-block-1
...
catch(...) catch-block-n

}
finally finally-block

The following example demonstrates how the different blocks of a try statement (§8.10)
affect definite assignment.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

185

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

class A
{
 static void F()
 {
 int i, j;
 try
 {
 goto LABEL;
 // Neither i nor j definitely assigned
 i = 1;
 // i definitely assigned
 }

 catch
 {
 // Neither i nor j definitely assigned
 i = 3;
 // i definitely assigned
 }

 finally
 {
 // Neither i nor j definitely assigned
 j = 5;
 // j definitely assigned
 }
 // i and j definitely assigned
 LABEL: ;
 // j definitely assigned

 }
}

5.3.3.16 foreach Statements
For a foreach statement stmt of the form:

foreach (type identifier in expr) embedded-statement

The definite assignment state of •	 v at the beginning of expr is the same as the state of v at
the beginning of stmt.

The definite assignment state of •	 v on the control flow transfer to embedded-statement or
to the end point of stmt is the same as the state of v at the end of expr.

5.3.3.17 using Statements
For a using statement stmt of the form:

using (resource-acquisition) embedded-statement

The definite assignment state of •	 v at the beginning of resource-acquisition is the same as
the state of v at the beginning of stmt.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

186

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

The definite assignment state of •	 v on the control flow transfer to embedded-statement is
the same as the state of v at the end of resource-acquisition.

5.3.3.18 lock Statements
For a lock statement stmt of the form:

lock (expr) embedded-statement

The definite assignment state of •	 v at the beginning of expr is the same as the state of v at
the beginning of stmt.

The definite assignment state of •	 v on the control flow transfer to embedded-statement is
the same as the state of v at the end of expr.

5.3.3.19 yield Statements
For a yield return statement stmt of the form:

yield return expr ;

The definite assignment state of •	 v at the beginning of expr is the same as the state of v at
the beginning of stmt.

The definite assignment state of •	 v at the end of stmt is the same as the state of v at the
end of expr.

A yield break statement has no effect on the definite assignment state.

5.3.3.20 General Rules for Simple Expressions
The following rule applies to these kinds of expressions: literals (§7.6.1), simple names
(§7.6.2), member access expressions (§7.6.4), non-indexed base access expressions (§7.6.8),
typeof expressions (§7.6.11), and default value expressions (§7.6.13).

The definite assignment state of •	 v at the end of such an expression is the same as the
definite assignment state of v at the beginning of the expression.

5.3.3.21 General Rules for Expressions with Embedded Expressions
The following rules apply to these kinds of expressions: parenthesized expressions (§7.6.3);
element access expressions (§7.6.6); base access expressions with indexing (§7.6.8); incre-
ment and decrement expressions (§7.6.9, §7.7.5); cast expressions (§7.7.6); unary +, -, ~,
* expressions; binary +, -, *, /, %, <<, >>, <, <=, >, >=, ==, !=, is, as, &, |, ^ expressions (§7.8,
§7.9, §7.10, §7.11); compound assignment expressions (§7.17.2); checked and unchecked
expressions (§7.6.12); plus array and delegate creation expressions (§7.6.10).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

187

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

Each of these expressions has one or more subexpressions that are unconditionally evalu-
ated in a fixed order. For example, the binary % operator evaluates the left-hand side of the
operator, then the right-hand side. An indexing operation evaluates the indexed expres-
sion, and then evaluates each of the index expressions, in order from left to right. For an
expression expr that has subexpressions expr1, expr2, ..., exprn, evaluated in that order:

The definite assignment state of •	 v at the beginning of expr1 is the same as the definite
assignment state at the beginning of expr.

The definite assignment state of •	 v at the beginning of expri (i greater than 1) is the same
as the definite assignment state at the end of expri – 1.

The definite assignment state of •	 v at the end of expr is the same as the definite assignment
state at the end of exprn.

5.3.3.22 Invocation Expressions and Object Creation Expressions
For an invocation expression expr of the form:

primary-expression (arg1 , arg2 , ... , argn)

or an object creation expression of the form:

new type (arg1 , arg2 , ... , argn)

For an invocation expression, the definite assignment state of •	 v before primary-expression
is the same as the state of v before expr.

For an invocation expression, the definite assignment state of •	 v before arg1 is the same as
the state of v after primary-expression.

For an object creation expression, the definite assignment state of •	 v before arg1 is the
same as the state of v before expr.

For each argument •	 argi, the definite assignment state of v after argi is determined by the
normal expression rules, ignoring any ref or out modifiers.

For each argument •	 argi for any i greater than 1, the definite assignment state of v before
argi is the same as the state of v after argi – 1.

If the variable •	 v is passed as an out argument (i.e., an argument of the form “out v”) in
any of the arguments, then the state of v after expr is definitely assigned. Otherwise, the
state of v after expr is the same as the state of v after argn.

For array initializers (§7.6.10.4), object initializers (§7.6.10.2), collection initializers •	
(§7.6.10.3), and anonymous object initializers (§7.6.10.6), the definite assignment state is
determined by the expansion that these constructs are defined in terms of.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

188

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

5.3.3.23 Simple Assignment Expressions
For an expression expr of the form w = expr-rhs:

The definite assignment state of •	 v before expr-rhs is the same as the definite assignment
state of v before expr.

If •	 w is the same variable as v, then the definite assignment state of v after expr is definitely
assigned. Otherwise, the definite assignment state of v after expr is the same as the defi-
nite assignment state of v after expr-rhs.

5.3.3.24 && Expressions
For an expression expr of the form expr-first && expr-second:

The definite assignment state of •	 v before expr-first is the same as the definite assignment
state of v before expr.

The definite assignment state of •	 v before expr-second is definitely assigned if the state of
v after expr-first is either definitely assigned or “definitely assigned after true expres-
sion.” Otherwise, it is not definitely assigned.

The definite assignment state of •	 v after expr is determined by:

If the state of - v after expr-first is definitely assigned, then the state of v after expr is
definitely assigned.

Otherwise, if the state of - v after expr-second is definitely assigned, and the state of v
after expr-first is “definitely assigned after false expression,” then the state of v after
expr is definitely assigned.

Otherwise, if the state of - v after expr-second is definitely assigned or “definitely
assigned after true expression,” then the state of v after expr is “definitely assigned
after true expression.”

Otherwise, if the state of - v after expr-first is “definitely assigned after false expres-
sion,” and the state of v after expr-second is “definitely assigned after false expression,”
then the state of v after expr is “definitely assigned after false expression.”

Otherwise, the state of - v after expr is not definitely assigned.

In the example

class A
{
 static void F(int x, int y)
 {
 int i;
 if (x >= 0 && (i = y) >= 0)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

189

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

 {
 // i definitely assigned
 }
 else
 {
 // i not definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if
statement but not in the other. In the if statement in method F, the variable i is definitely
assigned in the first embedded statement because execution of the expression (i = y)
always precedes execution of this embedded statement. In contrast, the variable i is not
definitely assigned in the second embedded statement, because x >= 0 might have tested
false, resulting in the variable i being unassigned.

5.3.3.25 || Expressions
For an expression expr of the form expr-first || expr-second:

The definite assignment state of •	 v before expr-first is the same as the definite assignment
state of v before expr.

The definite assignment state of •	 v before expr-second is definitely assigned if the state of
v after expr-first is either definitely assigned or “definitely assigned after false expres-
sion.” Otherwise, it is not definitely assigned.

The definite assignment statement of •	 v after expr is determined by:

If the state of - v after expr-first is definitely assigned, then the state of v after expr is
definitely assigned.

Otherwise, if the state of - v after expr-second is definitely assigned, and the state of v
after expr-first is “definitely assigned after true expression,” then the state of v after
expr is definitely assigned.

Otherwise, if the state of - v after expr-second is definitely assigned or “definitely
assigned after false expression,” then the state of v after expr is “definitely assigned
after false expression.”

Otherwise, if the state of - v after expr-first is “definitely assigned after true expres-
sion,” and the state of v after expr-second is “definitely assigned after true expression,”
then the state of v after expr is “definitely assigned after true expression.”

Otherwise, the state of - v after expr is not definitely assigned.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

190

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

In the example

class A
{
 static void G(int x, int y)
 {
 int i;
 if (x >= 0 || (i = y) >= 0)
 {
 // i not definitely assigned
 }
 else
 {
 // i definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if
statement but not in the other. In the if statement in method G, the variable i is definitely
assigned in the second embedded statement because execution of the expression (i = y)
always precedes execution of this embedded statement. In contrast, the variable i is not
definitely assigned in the first embedded statement, because x >= 0 might have tested true,
resulting in the variable i being unassigned.

5.3.3.26 ! Expressions
For an expression expr of the form ! expr-operand:

The definite assignment state of •	 v before expr-operand is the same as the definite assign-
ment state of v before expr.

The definite assignment state of •	 v after expr is determined by:

If the state of - v after expr-operand is definitely assigned, then the state of v after expr is
definitely assigned.

If the state of - v after expr-operand is not definitely assigned, then the state of v after
expr is not definitely assigned.

If the state of - v after expr-operand is “definitely assigned after false expression,” then
the state of v after expr is “definitely assigned after true expression.”

If the state of - v after expr-operand is “definitely assigned after true expression,” then
the state of v after expr is “definitely assigned after false expression.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.3		 Definite Assignment

191

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

5.3.3.27 ?? Expressions
For an expression expr of the form expr-first ?? expr-second:

The definite assignment state of •	 v before expr-first is the same as the definite assignment
state of v before expr.

The definite assignment state of •	 v before expr-second is the same as the definite assign-
ment state of v after expr-first.

The definite assignment state of •	 v after expr is determined by:

If - expr-first is a constant expression (§7.19) with value null, then the state of v after
expr is the same as the state of v after expr-second.

Otherwise, the state of •	 v after expr is the same as the definite assignment state of v after
expr-first.

5.3.3.28 ?: Expressions
For an expression expr of the form expr-cond ? expr-true : expr-false:

The definite assignment state of •	 v before expr-cond is the same as the state of v
before expr.

The definite assignment state of •	 v before expr-true is definitely assigned if and only if
the state of v after expr-cond is definitely assigned or “definitely assigned after true
expression.”

The definite assignment state of •	 v before expr-false is definitely assigned if and only if
the state of v after expr-cond is definitely assigned or “definitely assigned after false
expression.”

The definite assignment state of •	 v after expr is determined by:

If - expr-cond is a constant expression (§7.19) with value true, then the state of v after
expr is the same as the state of v after expr-true.

Otherwise, if - expr-cond is a constant expression (§7.19) with value false, then the
state of v after expr is the same as the state of v after expr-false.

Otherwise, if the state of - v after expr-true is definitely assigned and the state of v after
expr-false is definitely assigned, then the state of v after expr is definitely assigned.

Otherwise, the state of - v after expr is not definitely assigned.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5. Variables

192

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

Va
ri

ab
le

s
5.
	

5.3.3.29 Anonymous Functions
For a lambda-expression or anonymous-method-expression expr with a body (either block or
expression) body:

The definite assignment state of an outer variable •	 v before body is the same as the state
of v before expr. That is, definite assignment state of outer variables is inherited from the
context of the anonymous function.

The definite assignment state of an outer variable •	 v after expr is the same as the state of
v before expr.

The example

delegate bool Filter(int i);

void F()
{
 int max;

 // Error: max is not definitely assigned
 Filter f = (int n) => n < max;

 max = 5;
 DoWork(f);
}

generates a compile-time error because max is not definitely assigned where the anony-
mous function is declared. The example

delegate void D();

void F() {
 int n;
 D d = () => { n = 1; };

 d();

 // Error: n is not definitely assigned
 Console.WriteLine(n);
}

also generates a compile-time error because the assignment to n in the anonymous function
has no effect on the definite assignment state of n outside the anonymous function.

5.4 Variable References
A variable-reference is an expression that is classified as a variable. A variable-reference denotes
a storage location that can be accessed both to fetch the current value and to store a new
value.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

5.5		 Atomicity of Variable References

193

Variables
5.	

Variables
5.	

Variables
5.	

Variables
5.	

variable-reference:
expression

In C and C++, a variable-reference is known as an lvalue.

5.5 Atomicity of Variable References
Reads and writes of the following data types are atomic: bool, char, byte, sbyte, short,
ushort, uint, int, float, and reference types. In addition, reads and writes of enum types
with an underlying type in the previous list are also atomic. Reads and writes of other
types, including long, ulong, double, and decimal, as well as user-defined types, are not
guaranteed to be atomic. Aside from the library functions designed for that purpose, there
is no guarantee of atomic read-modify-write, such as in the case of increment.

n
n  ERIC LIPPERT The specification authors make certain assumptions about their

readers—for instance, that the reader who cares about atomicity already knows what
it is. If you’re not one of those readers, the issue here is that if one thread is writing the
long 0x0123456776543210 into a variable currently holding zero, then there might be a
moment in time when another thread could read 0x0123456700000000 from that vari-
able. This assignment is not “atomic” because it could happen in two distinct phases:
first the top 32 bits, then the bottom 32 bits (or vice versa). The C# language guaran-
tees you that this never happens with 32-bit data types, but makes no guarantees
about anything larger.

n
n  JoN SkEET There is often confusion between atomicity and other complicated

aspects of memory models. In particular, just because an assignment is atomic doesn’t
mean it will be necessarily be seen immediately (or, indeed, at all) by other threads,
unless synchronization techniques such as volatile variables, locks, or explicit memory
barriers are involved.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

195

Conversions6.

A conversion enables an expression to be treated as being of a particular type. A conversion
may cause an expression of a given type to be treated as having a different type, or it may
cause an expression without a type to get a type. Conversions can be implicit or explicit,
and this determines whether an explicit cast is required. For instance, the conversion from
type int to type long is implicit, so expressions of type int can implicitly be treated as type
long. The opposite conversion, from type long to type int, is explicit and so an explicit cast
is required.

int a = 123;
long b = a; // Implicit conversion from int to long
int c = (int) b; // Explicit conversion from long to int

Some conversions are defined by the language. Programs may also define their own con-
versions (§6.4).

n
n  ERIC LIPPERT The classification of conversions into “explicit” and “implicit” is

handy when the developer needs to know whether a given conversion might fail at
runtime. None of the implicit conversions ever fail, but explicit conversions might.

Another way of partitioning conversions that this specification does not consider in
depth would be into representation-preserving and representation-changing conver-
sions. For example, an explicit conversion from a base class (Animal) to a derived class
(Giraffe) might fail at runtime if the expression converted is not an instance of
Giraffe. If it does succeed, at least we know that the conversion will result in exactly
the same object. An implicit conversion from int to double, however, always succeeds
but always changes the representation; a brand-new double value is created, which
has a completely different representation than the integer.

This partitioning of conversions will become important when we get to covariant
array conversions.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

196

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

6.1 Implicit Conversions
The following conversions are classified as implicit conversions:

Identity conversions.•	

Implicit numeric conversions.•	

Implicit enumeration conversions.•	

Implicit nullable conversions.•	

Null literal conversions.•	

Implicit reference conversions.•	

Boxing conversions.•	

Implicit dynamic conversions.•	

Implicit constant expression conversions.•	

User-defined implicit conversions.•	

Anonymous function conversions.•	

Method group conversions.•	

Implicit conversions can occur in a variety of situations, including function member invo-
cations (§7.5.4), cast expressions (§7.7.6), and assignments (§7.17).

The predefined implicit conversions always succeed and never cause exceptions to be
thrown. Properly designed user-defined implicit conversions should exhibit these charac-
teristics as well.

For the purposes of conversion, the types object and dynamic are considered equivalent.
However, dynamic conversions (§6.1.8 and §6.2.6) apply only to expressions of type
dynamic (§4.7).

6.1.1 Identity Conversion
An identity conversion converts from any type to the same type. This conversion exists
such that an entity that already has a required type can be said to be convertible to
that type.

Because object and dynamic are considered equivalent, there is an identity conversion
between object and dynamic, and between constructed types that are the same when
replacing all occurrences of dynamic with object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.1		 Implicit Conversions

197

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

n
n  VLADIMIR RESHETNIkoV Thus identity conversion is symmetric: If type T has

an identity conversion to type S, then type S also has an identity conversion to type T.
If two types have an identity conversion between them, they always have identical
runtime representations. For example, List<object[]> and List<dynamic[]> both are
represented as List<object[]> at runtime.

n
n  BILL WAGNER This is an important property of the dynamic type. It means types

such as List<object> and List<dynamic> have an identity conversion. You can convert
a collection of object types to a collection of dynamic types. Furthermore, this identity
relationship does not exist between dynamic and any type derived from object. That is,
List<string> and List<dynamic> do not have the identity conversion.

6.1.2 Implicit Numeric Conversions
The implicit numeric conversions are:

From • sbyte to short, int, long, float, double, or decimal.

From• byte to short, ushort, int, uint, long, ulong, float, double, or decimal.

From• short to int, long, float, double, or decimal.

From• ushort to int, uint, long, ulong, float, double, or decimal.

From• int to long, float, double, or decimal.

From• uint to long, ulong, float, double, or decimal.

From• long to float, double, or decimal.

From• ulong to float, double, or decimal.

From• char to ushort, int, uint, long, ulong, float, double, or decimal.

From• float to double.

Conversions from int, uint, long, or ulong to float and from long or ulong to double may
cause a loss of precision, but will never cause a loss of magnitude. The other implicit
numeric conversions never lose any information.

There are no implicit conversions to the char type, so values of the other integral types do
not automatically convert to the char type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

198

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

6.1.3 Implicit Enumeration Conversions
An implicit enumeration conversion permits the decimal-integer-literal 0 to be converted to
any enum-type and to any nullable-type whose underlying type is an enum-type. In the latter
case, the conversion is evaluated by converting to the underlying enum-type and wrapping
the result (§4.1.10).

n
n  ERIC LIPPERT This issue is particularly important for enums that represent a set

of flags. To be compliant with CLR guidelines, it is a good idea for enum types intended
to be used as flags to be marked with the [Flags] attribute and to have a “None”
value set to zero. But for those that do not meet these criteria, it is nice to be able to
assign zero without having to cast.

Lots more dos and don’ts exist regarding proper use of enumerated types. See Section
4.8 of “Framework Design Guidelines” for details.

The Microsoft implementation of C# allows any constant zero to go to any enum, not
just literal constant zeros. This minor specification violation exists for historical
reasons.

n
n  JoSEPH ALBAHARI The default value for an enum type is 0, so assigning the

literal 0 provides a consistent means of resetting an enum variable to its default value.
For combinable flags-based enums, 0 means “no flags.”

6.1.4 Implicit Nullable Conversions
Predefined implicit conversions that operate on non-nullable value types can also be used
with nullable forms of those types. For each of the predefined implicit identity and numeric
conversions that convert from a non-nullable value type S to a non-nullable value type T,
the following implicit nullable conversions exist:

An implicit conversion from •	 S? to T?.

An implicit conversion from •	 S to T?.

Evaluation of an implicit nullable conversion based on an underlying conversion from S to
T proceeds as follows:

If the nullable conversion is from •	 S? to T?:

If the source value is null (- HasValue property is false), the result is the null value of
type T?.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.1		 Implicit Conversions

199

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

Otherwise, the conversion is evaluated as an unwrapping from - S? to S, followed
by the underlying conversion from S to T, followed by a wrapping (§4.1.10) from
T to T?.

If the nullable conversion is from •	 S to T?, the conversion is evaluated as the underlying
conversion from S to T, followed by a wrapping from T to T?.

6.1.5 Null Literal Conversions
An implicit conversion exists from the null literal to any nullable type. This conversion
produces the null value (§4.1.10) of the given nullable type.

6.1.6 Implicit Reference Conversions
The implicit reference conversions are:

From any • reference-type to object and dynamic.

From any• class-type S to any class-type T, provided S is derived from T.

From any• class-type S to any interface-type T, provided S implements T.

From any• interface-type S to any interface-type T, provided S is derived from T.

From an •	 array-type S with an element type SE to an array-type T with an element type TE,
provided all of the following are true:

S - and T differ only in element type. In other words, S and T have the same number of
dimensions.

Both - SE and TE are reference-types.

An implicit reference conversion exists from - SE to TE.

n
n  BILL WAGNER The fact that both SE and TE must be reference-types means that

array conversion is illegal for arrays of numeric types.

n
n  VLADIMIR RESHETNIkoV Actually, the Microsoft C# compiler does not check

that SE and TE are reference-types; it checks only that the implicit conversion from SE to
TE is classified as an implicit reference conversion. This distinction is quite subtle, but
it allows implicit conversions between arrays of type parameters. Note that in the fol-
lowing example, the type parameter T is not even formally known to be a reference type
(§10.1.5), although it always is a reference type at runtime:

T[] Foo<T,S>(S[] x) where S: class, T
{
 return x;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

200

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

n
n  ERIC LIPPERT Covariant array conversions were a controversial addition to the

CLI and C#. This kind of conversion breaks type safety on arrays. You might assume
that you can put a Turtle into an array of Animals, but it is legal to implicitly convert
an array of Giraffes to an expression typed as being an array of Animals. When you
attempt to add the Turtle to that thing, the runtime environment will disallow the
conversion from Turtle to Giraffe. Thus it is sometimes not legal to put a Turtle into
an array of Animals, and you will not know that fact until runtime. The compiler is
unable to catch this type of error.

On such occasions, it would be useful to characterize conversions as representation-
preserving or representation-changing, rather than implicit or explicit. The CLI rules for
covariant array conversions require that the conversion from the source to the destina-
tion type preserve representation at runtime. For example, converting an array of 10
integers into an array of 10 doubles would end up allocating memory for each double,
so it could not be done cheaply “in place.” By contrast, converting an array of Giraffes
into an array of Animals preserves the representation of every element in the array at
runtime, thereby preserving the representation of the array itself.

Because reference conversions always preserve the representation, the C# language
restricts explicit and implicit covariant array conversions to those where the conver-
sion between the element types is a reference conversion. The CLR additionally allows
other representation-preserving conversions such as int[] to uint[].

From any •	 array-type to System.Array and the interfaces it implements.

From a single-dimensional array type •	 S[] to System.Collections.Generic.IList<T>
and its base interfaces, provided that there is an implicit identity or reference conversion
from S to T.

From any •	 delegate-type to System.Delegate and the interfaces it implements.

From the null literal to any •	 reference-type.

From any •	 reference-type to a reference-type T if it has an implicit identity or reference con-
version to a reference-type T0 and T0 has an identity conversion to T.

n
n  VLADIMIR RESHETNIkoV For example, there is an implicit reference conversion

from List<object> to ICollection<dynamic>.

From any •	 reference-type to an interface or delegate type T if it has an implicit identity or
reference conversion to an interface or delegate type T0 and T0 is variance-convertible
(§13.1.3.2) to T.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.1		 Implicit Conversions

201

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

n
n  VLADIMIR RESHETNIkoV For example, there is an implicit reference conversion

from List<string> to IEnumerable<object>.

Implicit conversions involving type parameters that are known to be reference types. •	
See §6.1.10 for more details on implicit conversions involving type parameters.

The implicit reference conversions are those conversions between reference-types that can be
proven to always succeed and, therefore, require no checks at runtime.

Reference conversions, implicit or explicit, never change the referential identity of the
object being converted. In other words, while a reference conversion may change the type
of the reference, it never changes the type or value of the object being referred to.

6.1.7 Boxing Conversions
A boxing conversion permits a value-type to be implicitly converted to a reference type. A
boxing conversion exists from any non-nullable-value-type to object and dynamic, to
System.ValueType and to any interface-type implemented by the non-nullable-value-type.
Furthermore an enum-type can be converted to the type System.Enum.

A boxing conversion exists from a nullable-type to a reference type, if and only if a boxing
conversion exists from the underlying non-nullable-value-type to the reference type.

A value type has a boxing conversion to an interface type I if it has a boxing conversion to
an interface type I0 and I0 has an identity conversion to I.

A value type has a boxing conversion to an interface type I if it has a boxing conversion to
an interface or delegate type I0 and I0 is variance-convertible (§13.1.3.2) to I.

Boxing a value of a non-nullable-value-type consists of allocating an object instance and
copying the value-type value into that instance. A struct can be boxed to the type System.
ValueType, since that is a base class for all structs (§11.3.2).

Boxing a value of a nullable-type proceeds as follows:

If the source value is null (•	 HasValue property is false), the result is a null reference of
the target type.

Otherwise, the result is a reference to a boxed •	 T produced by unwrapping and boxing
the source value.

Boxing conversions are described further in §4.3.1.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

202

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

6.1.8 Implicit Dynamic Conversions
An implicit dynamic conversion exists from an expression of type dynamic to any type T.
The conversion is dynamically bound (§7.2.2), which means that an implicit conversion
will be sought at runtime from the runtime type of the expression to T. If no conversion is
found, a runtime exception is thrown.

n
n  VLADIMIR RESHETNIkoV This does not imply that an implicit conversion from

type dynamic to any type T exists—which is an important difference in some overload
resolution scenarios:

class A
{
 static void Foo(string x) { }
 static void Foo(dynamic x) { }

 static void Main()
 {
 Foo(null);
 }
}

The overloaded Foo(string x) is better than Foo(dynamic x), because there is an
implicit conversion from string to dynamic, but not from dynamic to string.

Note that this implicit conversion seemingly violates the advice in the beginning of §6.1 that
an implicit conversion should never cause an exception. However, it is not the conversion
itself, but the finding of the conversion, that causes the exception. The risk of runtime excep-
tions is inherent in the use of dynamic binding. If dynamic binding of the conversion is not
desired, the expression can be first converted to object, and then to the desired type.

The following example illustrates implicit dynamic conversions:

object o = "object"
dynamic d = "dynamic";

string s1 = o; // Fails at compile time: no conversion exists
string s2 = d; // Compiles and succeeds at runtime
int i = d; // Compiles but fails at runtime: no conversion exists

The assignments to s2 and i both employ implicit dynamic conversions, where the binding
of the operations is suspended until runtime. At runtime, implicit conversions are sought
from the runtime type of d – string – to the target type. A conversion is found to string
but not to int.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.1		 Implicit Conversions

203

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

6.1.9 Implicit Constant Expression Conversions
An implicit constant expression conversion permits the following conversions:

A •	 constant-expression (§7.19) of type int can be converted to type sbyte, byte, short,
ushort, uint, or ulong, provided the value of the constant-expression is within the range
of the destination type.

n
n  JoN SkEET C#’s approach here is more flexible than Java’s: Java permits implicit

constant expression conversions only as assignment conversions. For example, the
following code is legal in C#, but the equivalent Java code would fail to compile
because the integer expression 10 would not be converted to a byte:

void MethodTakingByte(byte b) { ... }
...
// In another method
MethodTakingByte(10);

A •	 constant-expression of type long can be converted to type ulong, provided the value of
the constant-expression is not negative.

6.1.10 Implicit Conversions Involving Type Parameters
The following implicit conversions exist for a given type parameter T:

From •	 T to its effective base class C, from T to any base class of C, and from T to any inter-
face implemented by C. At runtime, if T is a value type, the conversion is executed as a
boxing conversion. Otherwise, the conversion is executed as an implicit reference con-
version or identity conversion.

From •	 T to an interface type I in T’s effective interface set and from T to any base interface
of I. At runtime, if T is a value type, the conversion is executed as a boxing conversion.
Otherwise, the conversion is executed as an implicit reference conversion or identity
conversion.

From •	 T to a type parameter U, provided T depends on U (§10.1.5). At runtime, if U is a value
type, then T and U are necessarily the same type and no conversion is performed. Other-
wise, if T is a value type, the conversion is executed as a boxing conversion. Otherwise,
the conversion is executed as an implicit reference conversion or identity conversion.

From the null literal to •	 T, provided T is known to be a reference type.

From •	 T to a reference type I if it has an implicit conversion to a reference type S0 and S0

has an identity conversion to S. At runtime, the conversion is executed the same way as
the conversion to S0.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

204

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

From •	 T to an interface type I, if it has an implicit conversion to an interface or delegate
type I0 and I0 is variance-convertible to I (§13.1.3.2). At runtime, if T is a value type, the
conversion is executed as a boxing conversion. Otherwise, the conversion is executed as
an implicit reference conversion or identity conversion.

If T is known to be a reference type (§10.1.5), the conversions above are all classified as
implicit reference conversions (§6.1.6). If T is not known to be a reference type, the conver-
sions above are classified as boxing conversions (§6.1.7).

6.1.11 User-Defined Implicit Conversions
A user-defined implicit conversion consists of an optional standard implicit conversion,
followed by execution of a user-defined implicit conversion operator, followed by another
optional standard implicit conversion. The exact rules for evaluating user-defined implicit
conversions are described in §6.4.4.

6.1.12 Anonymous Function Conversions and Method Group Conversions
Anonymous functions and method groups do not have types in and of themselves, but may
be implicitly converted to delegate types or expression tree types. Anonymous function
conversions are described in more detail in §6.5 and method group conversions in §6.6.

6.2 Explicit Conversions
The following conversions are classified as explicit conversions:

All implicit conversions.•	

Explicit numeric conversions.•	

Explicit enumeration conversions.•	

Explicit nullable conversions.•	

Explicit reference conversions.•	

Explicit interface conversions.•	

Unboxing conversions.•	

Explicit dynamic conversions.•	

User-defined explicit conversions.•	

Explicit conversions can occur in cast expressions (§7.7.6).

The set of explicit conversions includes all implicit conversions. This means that redundant
cast expressions are allowed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.2		 Explicit Conversions

205

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

The explicit conversions that are not implicit conversions are conversions that cannot be
proven to always succeed, conversions that are known to possibly lose information, and
conversions across domains of types sufficiently different to merit explicit notation.

6.2.1 Explicit Numeric Conversions
The explicit numeric conversions are the conversions from a numeric-type to another
numeric-type for which an implicit numeric conversion (§6.1.2) does not already exist:

From • sbyte to byte, ushort, uint, ulong, or char.

From• byte to sbyte and char.

From• short to sbyte, byte, ushort, uint, ulong, or char.

From• ushort to sbyte, byte, short, or char.

From• int to sbyte, byte, short, ushort, uint, ulong, or char.

From• uint to sbyte, byte, short, ushort, int, or char.

From• long to sbyte, byte, short, ushort, int, uint, ulong, or char.

From• ulong to sbyte, byte, short, ushort, int, uint, long, or char.

From• char to sbyte, byte, or short.

From• float to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.

From •	 double to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or
decimal.

From •	 decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or
double.

Because the explicit conversions include all implicit and explicit numeric conversions, it is
always possible to convert from any numeric-type to any other numeric-type using a cast
expression (§7.7.6).

The explicit numeric conversions possibly lose information or possibly cause exceptions to
be thrown. An explicit numeric conversion is processed as follows:

For a conversion from an integral type to another integral type, the processing depends •	
on the overflow checking context (§7.6.12) in which the conversion takes place:

In a - checked context, the conversion succeeds if the value of the source operand is
within the range of the destination type, but throws a System.OverflowException if
the value of the source operand is outside the range of the destination type.

In an - unchecked context, the conversion always succeeds, and proceeds as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

206

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

If the source type is larger than the destination type, then the source value is trun-•	
cated by discarding its “extra” most significant bits. The result is then treated as a
value of the destination type.

If the source type is smaller than the destination type, then the source value is •	
either sign-extended or zero-extended so that it is the same size as the destination
type. Sign-extension is used if the source type is signed; zero-extension is used if
the source type is unsigned. The result is then treated as a value of the destina-
tion type.

If the source type is the same size as the destination type, then the source value is •	
treated as a value of the destination type.

For a conversion from •	 decimal to an integral type, the source value is rounded toward
zero to the nearest integral value, and this integral value becomes the result of the con-
version. If the resulting integral value is outside the range of the destination type, a
System.OverflowException is thrown.

For a conversion from •	 float or double to an integral type, the processing depends on
the overflow checking context (§7.6.12) in which the conversion takes place:

In a - checked context, the conversion proceeds as follows:

If the value of the operand is NaN or infinite, a •	 System.OverflowException
is thrown.

Otherwise, the source operand is rounded toward zero to the nearest integral •	
value. If this integral value is within the range of the destination type, then this
value is the result of the conversion.

Otherwise, a •	 System.OverflowException is thrown.

In an - unchecked context, the conversion always succeeds, and proceeds as follows:

If the value of the operand is NaN or infinite, the result of the conversion is an •	
unspecified value of the destination type.

Otherwise, the source operand is rounded toward zero to the nearest integral •	
value. If this integral value is within the range of the destination type, then this
value is the result of the conversion.

Otherwise, the result of the conversion is an unspecified value of the destina-•	
tion type.

For a conversion from •	 double to float, the double value is rounded to the nearest float
value. If the double value is too small to represent as a float, the result becomes positive
zero or negative zero. If the double value is too large to represent as a float, the result
becomes positive infinity or negative infinity. If the double value is NaN, the result is
also NaN.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.2		 Explicit Conversions

207

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

For a conversion from •	 float or double to decimal, the source value is converted to
decimal representation and rounded to the nearest number after the 28th decimal place
if required (§4.1.7). If the source value is too small to represent as a decimal, the result
becomes zero. If the source value is NaN, infinity, or too large to represent as a decimal,
a System.OverflowException is thrown.

For a conversion from •	 decimal to float or double, the decimal value is rounded to the
nearest double or float value. While this conversion may lose precision, it never causes
an exception to be thrown.

n
n  JoSEPH ALBAHARI The round-to-zero behavior in the real-to-integral conver-

sions is efficient but not always the most useful approach. For instance, under this
scheme, (int) 3.9 evaluates to 3, rather than 4. C# provides no built-in mechanism
for converting to the nearest integer; this capability is left to external libraries. In
Microsoft’s .NET Framework, the static Convert class provides this functionality via
methods such as ToInt32.

6.2.2 Explicit Enumeration Conversions
The explicit enumeration conversions are:

From •	 sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or decimal
to any enum-type.

From any •	 enum-type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float,
double, or decimal.

From any •	 enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any par-
ticipating enum-type as the underlying type of that enum-type, and then performing an
implicit or explicit numeric conversion between the resulting types. For example, given an
enum-type E with an underlying type of int, a conversion from E to byte is processed as an
explicit numeric conversion (§6.2.1) from int to byte, and a conversion from byte to E is
processed as an implicit numeric conversion (§6.1.2) from byte to int.

6.2.3 Explicit Nullable Conversions
Explicit nullable conversions permit predefined explicit conversions that operate on non-
nullable value types to also be used with nullable forms of those types. For each of the
predefined explicit conversions that convert from a non-nullable value type S to a non-
nullable value type T (§6.1.1, §6.1.2, §6.1.3, §6.2.1, and §6.2.2), the following nullable con-
versions exist:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

208

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

An explicit conversion from •	 S? to T?.

An explicit conversion from •	 S to T?.

An explicit conversion from •	 S? to T.

Evaluation of a nullable conversion based on an underlying conversion from S to T pro-
ceeds as follows:

If the nullable conversion is from •	 S? to T?:

If the source value is null (- HasValue property is false), the result is the null value of
type T?.

Otherwise, the conversion is evaluated as an unwrapping from - S? to S, followed by
the underlying conversion from S to T, followed by a wrapping from T to T?.

If the nullable conversion is from •	 S to T?, the conversion is evaluated as the underlying
conversion from S to T followed by a wrapping from T to T?.

If the nullable conversion is from •	 S? to T, the conversion is evaluated as an unwrapping
from S? to S followed by the underlying conversion from S to T.

Note that an attempt to unwrap a nullable value will throw an exception if the value
is null.

6.2.4 Explicit Reference Conversions
The explicit reference conversions are:

From •	 object and dynamic to any other reference-type.

From any •	 class-type S to any class-type T, provided S is a base class of T.

From any •	 class-type S to any interface-type T, provided S is not sealed and provided S does
not implement T.

From any •	 interface-type S to any class-type T, provided T is not sealed or provided T imple-
ments S.

From any •	 interface-type S to any interface-type T, provided S is not derived from T.

From an •	 array-type S with an element type SE to an array-type T with an element type TE,
provided all of the following are true:

S - and T differ only in element type. In other words, S and T have the same number of
dimensions.

Both - SE and TE are reference-types.

An explicit reference conversion exists from - SE to TE.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.2		 Explicit Conversions

209

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

n
n  VLADIMIR RESHETNIkoV The Microsoft C# compiler does not check whether
SE and TE are reference-types; it only checks whether the explicit conversion from SE to
TE is classified as an explicit reference conversion. See the corresponding annotation
in §6.1.6 for details.

From •	 System.Array and the interfaces it implements to any array-type.

From a single-dimensional array type •	 S[] to System.Collections.Generic.IList<T>
and its base interfaces, provided that there is an explicit reference conversion from
S to T.

From •	 System.Collections.Generic.IList<S> and its base interfaces to a single-dimen-
sional array type T[], provided that there is an explicit identity or reference conversion
from S to T.

From •	 System.Delegate and the interfaces it implements to any delegate-type.

From a reference type to a reference type •	 T, if it has an explicit reference conversion to a
reference type T0 and T0 has an identity conversion T.

From a reference type to an interface or delegate type •	 T, if it has an explicit reference
conversion to an interface or delegate type T0 and either T0 is variance-convertible to T or
T is variance-convertible to T0 (§13.1.3.2).

From •	 D<S1...Sn> to a D<T1...Tn>, where D<X1...Xn> is a generic delegate type, D<S1...
Sn> is not compatible with or identical to D<T1...Tn>, and for each type parameter Xi of
D the following holds:

If - Xi is invariant, then Si is identical to Ti.

If - Xi is covariant, then there is an implicit or explicit identity or reference conversion
from Si to Ti.

If - Xi is contravariant, then Si and Ti are either identical or both reference types.

n
n  ERIC LIPPERT The justification of this last point is that you might have a variable

of type Action<S>, where S is a reference type that contains an instance of
Action<object>. You can implicitly convert an Action<object> to Action<T>, where T
is any reference type, so you should be able to explicitly convert Action<S> to Action<T>
for any reference types S and T.

Explicit conversions involving type parameters that are known to be reference types. For •	
more details on explicit conversions involving type parameters, see §6.2.6.

The explicit reference conversions are those conversions between reference types that
require runtime checks to ensure they are correct.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

210

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

For an explicit reference conversion to succeed at runtime, the value of the source operand
must be null, or the actual type of the object referenced by the source operand must be a
type that can be converted to the destination type by an implicit reference conversion
(§6.1.6) or boxing conversion (§6.1.7). If an explicit reference conversion fails, a System.
InvalidCastException is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the
object being converted. In other words, while a reference conversion may change the type
of the reference, it never changes the type or value of the object being referred to.

6.2.5 Unboxing Conversions
An unboxing conversion permits a reference type to be explicitly converted to a value-type.
An unboxing conversion exists from the types object, dynamic, and System.ValueType to
any non-nullable-value-type, and from any interface-type to any non-nullable-value-type that
implements the interface-type. Furthermore, type System.Enum can be unboxed to any
enum-type.

An unboxing conversion exists from a reference type to a nullable-type if an unboxing
conversion exists from the reference type to the underlying non-nullable-value-type of the
nullable-type.

A value type S has an unboxing conversion from an interface type I if it has an unboxing
conversion from an interface type I0 and I0 has an identity conversion to I.

A value type S has an unboxing conversion from an interface type I if it has an unboxing
conversion from an interface or delegate type I0 and either I0 is variance-convertible to I
or I is variance-convertible to I0 (§13.1.3.2).

An unboxing operation consists of first checking that the object instance is a boxed value
of the given value-type, and then copying the value out of the instance. Unboxing a null
reference to a nullable-type produces the null value of the nullable-type. A struct can be
unboxed from the type System.ValueType, since that is a base class for all structs (§11.3.2).

Unboxing conversions are described further in §4.3.2.

6.2.6 Explicit Dynamic Conversions
An explicit dynamic conversion exists from an expression of type dynamic to any type T.
The conversion is dynamically bound (§7.2.2), which means that an explicit conversion
will be sought at runtime from the runtime type of the expression to T. If no conversion is
found, a runtime exception is thrown.

If dynamic binding of the conversion is not desired, the expression can be first converted
to object, and then to the desired type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.2		 Explicit Conversions

211

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

Assume the following class is defined:

class C
{
 int i;

 public C(int i) { this.i = i; }

 public static explicit operator C(string s)
 {
 return new C(int.Parse(s));
 }
}

The following example illustrates explicit dynamic conversions:

object o = "1";
dynamic d = "2";

var c1 = (C)o; // Compiles, but explicit reference conversion fails
var c2 = (C)d; // Compiles and user-defined conversion succeeds

The best conversion of o to C is found at compile time to be an explicit reference conversion.
This fails at runtime, because "1" is not, in fact, a C. The conversion of d to C as an explicit
dynamic conversion, however, is suspended to runtime, where a user-defined conversion
from the runtime type of d – string – to C is found, and succeeds.

6.2.7 Explicit Conversions Involving Type Parameters
The following explicit conversions exist for a given type parameter T:

From the effective base class •	 C of T to T and from any base class of C to T. At runtime, if
T is a value type, the conversion is executed as an unboxing conversion. Otherwise, the
conversion is executed as an explicit reference conversion or identity conversion.

From any interface type to •	 T. At runtime, if T is a value type, the conversion is executed
as an unboxing conversion. Otherwise, the conversion is executed as an explicit refer-
ence conversion or identity conversion.

From •	 T to any interface-type I, provided there is not already an implicit conversion from
T to I. At runtime, if T is a value type, the conversion is executed as a boxing conversion
followed by an explicit reference conversion. Otherwise, the conversion is executed as
an explicit reference conversion or identity conversion.

From a type parameter •	 U to T, provided T depends on U (§10.1.5). At runtime, if U is a
value type, then T and U are necessarily the same type and no conversion is performed.
Otherwise, if T is a value type, the conversion is executed as an unboxing conversion.
Otherwise, the conversion is executed as an explicit reference conversion or identity
conversion.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

212

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

If T is known to be a reference type, all of these conversions are classified as explicit refer-
ence conversions (§6.2.4). If T is not known to be a reference type, these conversions are
classified as unboxing conversions (§6.2.5).

n
n  JoSEPH ALBAHARI The behavior of conversions involving type parameters can

be further illustrated with the following method:

static T Cast<T>(object value) { return (T)value; }

This method can perform a reference conversion or an unboxing, but never a numeric
or user-defined conversion:

string s = Cast<string>("s");
 // Okay - reference conversion
int i = Cast<int>(3);
 // Okay - unboxing
long l = Cast<long>(3);
 // InvalidCastException: attempts
 // an unboxing instead of an
 // int->long numeric conversion

An identical situation arises in the method System.Linq.Enumerable.Cast, which is a
standard query operator in Microsoft’s LINQ implementation.

The above rules do not permit a direct explicit conversion from an unconstrained type
parameter to a non-interface type, which might be surprising. The reason for this rule is to
prevent confusion and make the semantics of such conversions clear. For example, con-
sider the following declaration:

class X<T>
{
 public static long F(T t) {
 return (long)t; // Error
 }
}

If the direct explicit conversion of t to int were permitted, one might easily expect that
X<int>.F(7) would return 7L. However, it would not, because the standard numeric con-
versions are considered only when the types are known to be numeric at binding time. To
make the semantics clear, the above example must instead be written:

class X<T>
{
 public static long F(T t) {
 return (long)(object)t; // Okay, but works only when T is long
 }
}

This code will now compile but executing X<int>.F(7) would then throw an exception at
runtime, because a boxed int cannot be converted directly to a long.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.3		 Standard Conversions

213

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

6.2.8 User-Defined Explicit Conversions
A user-defined explicit conversion consists of an optional standard explicit conversion,
followed by execution of a user-defined implicit or explicit conversion operator, followed
by another optional standard explicit conversion. The exact rules for evaluating user-
defined explicit conversions are described in §6.4.5.

n
n  ERIC LIPPERT The conversions that “sandwich” the user-defined conversion are

explicit conversions and, therefore, might fail themselves. Thus a user-defined explicit
conversion has three potential points of failure at runtime, not just one.

Even so, at least the sandwiching conversions are never user-defined conversions
themselves. For example, if there is a user-defined explicit conversion from X to Y, and
a user-defined explicit conversion from Y to Z, then an attempt to cast X to Z will not
succeed.

That said, the chain of explicit conversions can get quite long in contrived scenarios.
For example, consider a struct Foo with a user-defined explicit conversion from Foo?
to decimal. A cast on an expression of type Foo to type int? will convert Foo to Foo?,
then Foo? to decimal, then decimal to int, and then int to int?.

6.3 Standard Conversions
The standard conversions are those predefined conversions that can occur as part of a user-
defined conversion.

6.3.1 Standard Implicit Conversions
The following implicit conversions are classified as standard implicit conversions:

Identity conversions (§6.1.1).•	

Implicit numeric conversions (§6.1.2).•	

Implicit nullable conversions (§6.1.4).•	

Implicit reference conversions (§6.1.6).•	

Boxing conversions (§6.1.7).•	

Implicit constant expression conversions (§6.1.8).•	

Implicit conversions involving type parameters (§6.1.10).•	

The standard implicit conversions specifically exclude user-defined implicit conversions.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

214

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

6.3.2 Standard Explicit Conversions
The standard explicit conversions are all standard implicit conversions plus the subset of
the explicit conversions for which an opposite standard implicit conversion exists. In other
words, if a standard implicit conversion exists from a type A to a type B, then a standard
explicit conversion exists from type A to type B and from type B to type A.

n
n  VLADIMIR RESHETNIkoV For example, the predefined explicit numeric conver-

sions from double to decimal and from decimal to double are not standard explicit
conversions.

6.4 User-Defined Conversions
C# allows the predefined implicit and explicit conversions to be augmented by user-defined
conversions. User-defined conversions are introduced by declaring conversion operators
(§10.10.3) in class and struct types.

n
n  BILL WAGNER Conversions, in general, imply that multiple types are somehow

interchangeable. That notion, in turn, implies that one of more of the types may not be
necessary. As you write more conversion methods, consider whether you might have
created multiple types that serve the same purpose.

When you write conversions for reference types, be sure to preserve the property that
the result of a reference conversion always refers to the same object as the source.

6.4.1 Permitted User-Defined Conversions
C# permits only certain user-defined conversions to be declared. In particular, it is not pos-
sible to redefine an already existing implicit or explicit conversion.

For a given source type S and target type T, if S or T are nullable types, let S0 and T0 refer to
their underlying types; otherwise, S0 and T0 are equal to S and T, respectively. A class or
struct is permitted to declare a conversion from a source type S to a target type T only if all
of the following are true:

S•	 0 and T0 are different types.

Either •	 S0 or T0 is the class or struct type in which the operator declaration takes place.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.4		 User-Defined Conversions

215

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

Neither •	 S0 nor T0 is an interface-type.

Excluding user-defined conversions, a conversion does not exist from •	 S to T or from
T to S.

The restrictions that apply to user-defined conversions are discussed further in §10.10.3.

6.4.2 Lifted Conversion operators
Given a user-defined conversion operator that converts from a non-nullable value type S
to a non-nullable value type T, a lifted conversion operator exists that converts from S? to
T?. This lifted conversion operator performs an unwrapping from S? to S, followed by the
user-defined conversion from S to T, followed by a wrapping from T to T?, except that a
null-valued S? converts directly to a null-valued T?.

A lifted conversion operator has the same implicit or explicit classification as its underly-
ing user-defined conversion operator. The term “user-defined conversion” applies to the
use of both user-defined and lifted conversion operators.

6.4.3 Evaluation of User-Defined Conversions
A user-defined conversion converts a value from its type, called the source type, to another
type, called the target type. Evaluation of a user-defined conversion centers on finding the
most specific user-defined conversion operator for the particular source and target types.
This determination is broken into several steps:

Finding the set of classes and structs from which user-defined conversion operators will •	
be considered. This set consists of the source type and its base classes and the target type
and its base classes (with the implicit assumptions that only classes and structs can
declare user-defined operators, and that non-class types have no base classes). For the
purposes of this step, if either the source or target type is a nullable-type, their underlying
type is used instead.

From that set of types, determining which user-defined and lifted conversion operators •	
are applicable. For a conversion operator to be applicable, it must be possible to perform
a standard conversion (§6.3) from the source type to the operand type of the operator,
and it must be possible to perform a standard conversion from the result type of the
operator to the target type.

From the set of applicable user-defined operators, determining which operator is unam-•	
biguously the most specific. In general terms, the most specific operator is the operator
whose operand type is “closest” to the source type and whose result type is “closest” to
the target type. User-defined conversion operators are preferred over lifted conversion
operators. The exact rules for establishing the most specific user-defined conversion
operator are defined in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

216

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Once a most specific user-defined conversion operator has been identified, the actual exe-
cution of the user-defined conversion involves up to three steps:

First, if required, performing a standard conversion from the source type to the operand •	
type of the user-defined or lifted conversion operator.

Next, invoking the user-defined or lifted conversion operator to perform the •	
conversion.

Finally, if required, performing a standard conversion from the result type of the user-•	
defined or lifted conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined or
lifted conversion operator. In other words, a conversion from type S to type T will never
first execute a user-defined conversion from S to X and then execute a user-defined conver-
sion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in
the following sections. The definitions make use of the following terms:

If a standard implicit conversion (§6.3.1) exists from a type •	 A to a type B, and if neither
A nor B is an interface-type, then A is said to be encompassed by B, and B is said to encom-
pass A.

The •	 most encompassing type in a set of types is the one type that encompasses all other
types in the set. If no single type encompasses all other types, then the set has no most
encompassing type. In more intuitive terms, the most encompassing type is the “larg-
est” type in the set—the one type to which each of the other types can be implicitly
converted.

The •	 most encompassed type in a set of types is the one type that is encompassed by all
other types in the set. If no single type is encompassed by all other types, then the set
has no most encompassed type. In more intuitive terms, the most encompassed type is
the “smallest” type in the set—the one type that can be implicitly converted to each of
the other types.

n
n  BILL WAGNER The more conversion operators you write, the more likely it

becomes that you will introduce ambiguities among conversions. Those ambiguities
will make your class more difficult to use.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.4		 User-Defined Conversions

217

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

6.4.4 User-Defined Implicit Conversions
A user-defined implicit conversion from type S to type T is processed as follows:

Determine the types •	 S0 and T0. If S and T are nullable types, S0 and T0 are their underlying
types; otherwise, S0 and T0 are equal to S and T, respectively.

Find the set of types, •	 D, from which user-defined conversion operators will be consid-
ered. This set consists of S0 (if S0 is a class or struct), the base classes of S0 (if S0 is a class),
and T0 (if T0 is a class or struct).

Find the set of applicable user-defined and lifted conversion operators, •	 U. This set con-
sists of the user-defined and lifted implicit conversion operators declared by the classes
or structs in D that convert from a type encompassing S to a type encompassed by T. If U
is empty, the conversion is undefined and a compile-time error occurs.

Find the most specific source type, •	 SX, of the operators in U:

If any of the operators in - U convert from S, then SX is S.

Otherwise, - SX is the most encompassed type in the combined set of source types of the
operators in U. If exactly one most encompassed type cannot be found, then the con-
version is ambiguous and a compile-time error occurs.

Find the most specific target type, •	 TX, of the operators in U:

If any of the operators in - U convert to T, then TX is T.

Otherwise, - TX is the most encompassing type in the combined set of target types of the
operators in U. If exactly one most encompassing type cannot be found, then the con-
version is ambiguous and a compile-time error occurs.

Find the most specific conversion operator:•	

If - U contains exactly one user-defined conversion operator that converts from SX to TX,
then this is the most specific conversion operator.

Otherwise, if - U contains exactly one lifted conversion operator that converts from SX

to TX, then this is the most specific conversion operator.

- Otherwise, the conversion is ambiguous and a compile-time error occurs.

Finally, apply the conversion:•	

If - S is not SX, then a standard implicit conversion from S to SX is performed.

The most specific conversion operator is invoked to convert from - SX to TX.

If - TX is not T, then a standard implicit conversion from TX to T is performed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

218

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

6.4.5 User-Defined Explicit Conversions
A user-defined explicit conversion from type S to type T is processed as follows:

Determine the types •	 S0 and T0. If S or T is a nullable type, S0 and T0 are their respective
underlying types; otherwise, S0 and T0 are equal to S and T, respectively.

Find the set of types, •	 D, from which user-defined conversion operators will be consid-
ered. This set consists of S0 (if S0 is a class or struct), the base classes of S0 (if S0 is a class),
T0 (if T0 is a class or struct), and the base classes of T0 (if T0 is a class).

Find the set of applicable user-defined and lifted conversion operators, •	 U. This set con-
sists of the user-defined and lifted implicit or explicit conversion operators declared by
the classes or structs in D that convert from a type encompassing or encompassed by S
to a type encompassing or encompassed by T. If U is empty, the conversion is undefined
and a compile-time error occurs.

Find the most specific source type, •	 SX, of the operators in U:

If any of the operators in - U convert from S, then SX is S.

Otherwise, if any of the operators in - U convert from types that encompass S, then SX

is the most encompassed type in the combined set of source types of those operators.
If no most encompassed type can be found, then the conversion is ambiguous and a
compile-time error occurs.

Otherwise, - SX is the most encompassing type in the combined set of source types of
the operators in U. If exactly one most encompassing type cannot be found, then the
conversion is ambiguous and a compile-time error occurs.

Find the most specific target type, •	 TX, of the operators in U:

If any of the operators in - U convert to T, then TX is T.

Otherwise, if any of the operators in - U convert to types that are encompassed by T,
then TX is the most encompassing type in the combined set of target types of those
operators. If exactly one most encompassing type cannot be found, then the conver-
sion is ambiguous and a compile-time error occurs.

Otherwise, - TX is the most encompassed type in the combined set of target types of the
operators in U. If no most encompassed type can be found, then the conversion is
ambiguous and a compile-time error occurs.

Find the most specific conversion operator:•	

If - U contains exactly one user-defined conversion operator that converts from SX to TX,
then this is the most specific conversion operator.

Otherwise, if - U contains exactly one lifted conversion operator that converts from SX

to TX, then this is the most specific conversion operator.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.5		 Anonymous Function Conversions

219

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

- Otherwise, the conversion is ambiguous and a compile-time error occurs.

Finally, apply the conversion:•	

If - S is not SX, then a standard explicit conversion from S to SX is performed.

- The most specific user-defined conversion operator is invoked to convert from
SX to TX.

If - TX is not T, then a standard explicit conversion from TX to T is performed.

6.5 Anonymous Function Conversions
An anonymous-method-expression or lambda-expression is classified as an anonymous func-
tion (§7.15). The expression does not have a type but can be implicitly converted to a com-
patible delegate type or expression tree type. Specifically, a delegate type D is compatible
with an anonymous function F provided:

If •	 F contains an anonymous-function-signature, then D and F have the same number of
parameters.

If •	 F does not contain an anonymous-function-signature, then D may have zero or more
parameters of any type, as long as no parameter of D has the out parameter modifier.

If •	 F has an explicitly typed parameter list, each parameter in D has the same type and
modifiers as the corresponding parameter in F.

n
n  VLADIMIR RESHETNIkoV One exception to this rule: If the delegate type D has

a parameter with the params modifier, then the corresponding parameter in F is
allowed (and required) not to have any modifiers.

If •	 F has an implicitly typed parameter list, D has no ref or out parameters.

If •	 D has a void return type and the body of F is an expression, when each parameter of F
is given the type of the corresponding parameter in D, the body of F is a valid expression
(with respect to §7) that would be permitted as a statement-expression (§8.6).

If •	 D has a void return type and the body of F is a statement block, when each parameter
of F is given the type of the corresponding parameter in D, the body of F is a valid state-
ment block (with respect to §8.2) in which no return statement specifies an expression.

If •	 D has a non-void return type and the body of F is an expression, when each parameter
of F is given the type of the corresponding parameter in D, the body of F is a valid expres-
sion (with respect to §7) that is implicitly convertible to the return type of D.

If •	 D has a non-void return type and the body of F is a statement block, when each
parameter of F is given the type of the corresponding parameter in D, the body of F is a

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

220

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

valid statement block (with respect to §8.2) with a non-reachable end point in which
each return statement specifies an expression that is implicitly convertible to the return
type of D.

An expression tree type Expression<D> is compatible with an anonymous function F if the
delegate type D is compatible with F.

n
n  VLADIMIR RESHETNIkoV Only anonymous functions of the form lambda-

expression can have implicit conversions to expression tree types (anonymous-method-
expressions are never convertible to these types). But even existing conversions from
lambda-expressions can fail at compile time.

Certain anonymous functions cannot be converted to expression tree types: Even though
the conversion exists, it fails at compile time. This is the case if the anonymous expression
contains one or more of the following constructs:

Simple or compound assignment operators.•	

A dynamically bound expression.•	

n
n  VLADIMIR RESHETNIkoV The other constructs not supported in the current

implementation include nested anonymous-method-expressions, lambda-expressions with
statement bodies, lambda-expressions with ref or out parameters, base-access, multidi-
mensional array initializers, named and optional parameters, implicit refs, and
pointer operations.

If you need to cast an expression of type dynamic to another type in an expression tree,
you can either use as operator or cast the expression to object first.

The examples that follow use a generic delegate type Func<A,R>, which represents a func-
tion that takes an argument of type A and returns a value of type R:

delegate R Func<A,R>(A arg);

In the assignments

Func<int,int> f1 = x => x + 1; // Okay
Func<int,double> f2 = x => x + 1; // Okay
Func<double,int> f3 = x => x + 1; // Error

the parameter and return types of each anonymous function are determined from the type
of the variable to which the anonymous function is assigned.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.5		 Anonymous Function Conversions

221

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

The first assignment successfully converts the anonymous function to the delegate type
Func<int,int> because, when x is given type int, x + 1 is a valid expression that is implic-
itly convertible to type int.

Likewise, the second assignment successfully converts the anonymous function to the del-
egate type Func<int,double> because the result of x + 1 (of type int) is implicitly convert-
ible to type double.

However, the third assignment generates a compile-time error because, when x is given
type double, the result of x + 1 (of type double) is not implicitly convertible to type int.

Anonymous functions may influence overload resolution and may participate in type
inference. See §7.5 for further details.

6.5.1 Evaluation of Anonymous Function Conversions to Delegate Types
Conversion of an anonymous function to a delegate type produces a delegate instance that
references the anonymous function and the (possibly empty) set of captured outer vari-
ables that are active at the time of the evaluation. When the delegate is invoked, the body
of the anonymous function is executed. The code in the body is executed using the set of
captured outer variables referenced by the delegate.

The invocation list of a delegate produced from an anonymous function contains a single
entry. The exact target object and target method of the delegate are unspecified. In particu-
lar, it is unspecified whether the target object of the delegate is null, the this value of the
enclosing function member, or some other object.

Conversions of semantically identical anonymous functions with the same (possibly
empty) set of captured outer variable instances to the same delegate types are permitted
(but not required) to return the same delegate instance. The term “semantically identical”
is used here to mean that execution of the anonymous functions will, in all cases, produce
the same effects given the same arguments. This rule permits code such as the following to
be optimized.

delegate double Function(double x);

class Test
{
 static double[] Apply(double[] a, Function f) {
 double[] result = new double[a.Length];
 for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
 return result;
 }

 static void F(double[] a, double[] b) {
 a = Apply(a, (double x) => Math.Sin(x));
 b = Apply(b, (double y) => Math.Sin(y));
 ...
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

222

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Since the two anonymous function delegates have the same (empty) set of captured outer
variables, and since the anonymous functions are semantically identical, the compiler is
permitted to have the delegates refer to the same target method. Indeed, the compiler is
permitted to return the very same delegate instance from both anonymous function
expressions.

n
n  JoN SkEET This potential optimization is somewhat dangerous when one consid-

ers the prospect of combining and removing delegates—which is particularly impor-
tant when it comes to events. Consider this piece of code:

button.Click += (sender, args) => Console.WriteLine("Clicked");
button.Click -= (sender, args) => Console.WriteLine("Clicked");

Assuming a simple event implementation, what will be the result? Either the button’s
Click event will have the same event handlers it had before or it will have one addi-
tional event handler. Beware of “optimizations” that change behavior significantly.

n
n  VLADIMIR RESHETNIkoV The Microsoft C# compiler does not cache delegate

instances within generic methods.

6.5.2 Evaluation of Anonymous Function Conversions to Expression Tree Types
Conversion of an anonymous function to an expression tree type produces an expression
tree (§4.6). More precisely, evaluation of the anonymous function conversion leads to the
construction of an object structure that represents the structure of the anonymous function
itself. The precise structure of the expression tree, as well as the exact process for creating
it, are implementation defined.

n
n  VLADIMIR RESHETNIkoV Like a delegate, an expression tree can have a set of

captured outer variables.

6.5.3 Implementation Example
This section describes a possible implementation of anonymous function conversions in
terms of other C# constructs. The implementation described here is based on the same
principles used by the Microsoft C# compiler, but it is by no means a mandated implemen-
tation, nor is it the only one possible. It only briefly mentions conversions to expression
trees, as their exact semantics are outside the scope of this specification.

The remainder of this section gives several examples of code that contains anonymous
functions with different characteristics. For each example, a corresponding translation to

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.5		 Anonymous Function Conversions

223

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

code that uses only other C# constructs is provided. In the examples, the identifier D is
assumed to represent the following delegate type:

public delegate void D();

The simplest form of an anonymous function is one that captures no outer variables:

class Test
{
 static void F() {
 D d = () => { Console.WriteLine("test"); };
 }
}

This can be translated to a delegate instantiation that references a compiler-generated static
method in which the code of the anonymous function is placed:

class Test
{
 static void F() {
 D d = new D(__Method1);
 }

 static void __Method1() {
 Console.WriteLine("test");
 }
}

In the following example, the anonymous function references instance members of this:

class Test
{
 int x;

 void F() {
 D d = () => { Console.WriteLine(x); };
 }
}

This can be translated to a compiler-generated instance method containing the code of the
anonymous function:

class Test
{
 int x;

 void F() {
 D d = new D(__Method1);
 }

 void __Method1() {
 Console.WriteLine(x);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

224

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

In this example, the anonymous function captures a local variable:

class Test
{
 void F() {
 int y = 123;
 D d = () => { Console.WriteLine(y); };
 }
}

The lifetime of the local variable must now be extended to at least the lifetime of the anony-
mous function delegate. This can be achieved by “hoisting” the local variable into a field
of a compiler-generated class. Instantiation of the local variable (§7.15.5.2) then corre-
sponds to creating an instance of the compiler generated class, and accessing the local
variable corresponds to accessing a field in the instance of the compiler-generated class.
Furthermore, the anonymous function becomes an instance method of the compiler-gener-
ated class:

class Test
{
 void F() {
 __Locals1 __locals1 = new __Locals1();
 __locals1.y = 123;
 D d = new D(__locals1.__Method1);
 }

 class __Locals1
 {
 public int y;

 public void __Method1() {
 Console.WriteLine(y);
 }
 }
}

Finally, the following anonymous function captures this as well as two local variables
with different lifetimes:

class Test
{
 int x;

 void F() {
 int y = 123;
 for (int i = 0; i < 10; i++) {
 int z = i * 2;
 D d = () => { Console.WriteLine(x + y + z); };
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.5		 Anonymous Function Conversions

225

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

Here, a compiler-generated class is created for each statement block in which locals are
captured, such that the locals in the different blocks can have independent lifetimes. An
instance of __Locals2, the compiler-generated class for the inner statement block, con-
tains the local variable z and a field that references an instance of __Locals1. An instance
of __Locals1, the compiler-generated class for the outer statement block, contains the
local variable y and a field that references this of the enclosing function member. With
these data structures, it is possible to reach all captured outer variables through an instance
of __Local2, and the code of the anonymous function can thus be implemented as an
instance method of that class.

n
n  BILL WAGNER If F() returned an instance of D, the lives of all the variables this

function captures would be extended.

class Test
{
 void F() {
 __Locals1 __locals1 = new __Locals1();
 __locals1.__this = this;
 __locals1.y = 123;
 for (int i = 0; i < 10; i++) {
 __Locals2 __locals2 = new __Locals2();
 __locals2.__locals1 = __locals1;
 __locals2.z = i * 2;
 D d = new D(__locals2.__Method1);
 }
 }

 class __Locals1
 {
 public Test __this;
 public int y;
 }

 class __Locals2
 {
 public __Locals1 __locals1;
 public int z;

 public void __Method1() {
 Console.WriteLine(__locals1.__this.x + __locals1.y + z);
 }
 }
}

The same technique applied here to capture local variables can also be used when convert-
ing anonymous functions to expression trees: References to the compiler-generated objects
can be stored in the expression tree, and access to the local variables can be represented as
field accesses on these objects. The advantage of this approach is that it allows the “lifted”
local variables to be shared between delegates and expression trees.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

226

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

n
n  ERIC LIPPERT A downside of this implementation technique (and a disadvan-

tage shared by many implementations of many languages that have similar closure
semantics) is that two different anonymous functions in the same method that are
closed over two different local variables cause the lifetimes of both variables to be
extended to match the lifetime of the longest-lived delegate.

Suppose you have two local variables, expensive and cheap, and two delegates, one
closed over each variable:

D longlived = ()=>cheap;
D shortlived = ()=>expensive;

The lifetime of expensive is at least as long as the lifetime of the object referred to by
longlived, even though expensive is not actually used by longlived. A more sophis-
ticated implementation would partition closed-over variables into separate compiler-
generated classes and avoid this problem.

6.6 Method Group Conversions
An implicit conversion (§6.1) exists from a method group (§7.1) to a compatible delegate
type. Given a delegate type D and an expression E that is classified as a method group, an
implicit conversion exists from E to D if E contains at least one method that is applicable in
its normal form (§7.5.3.1) to an argument list constructed by use of the parameter types and
modifiers of D, as described in the following.

The compile-time application of a conversion from a method group E to a delegate type D
is described in the following. Note that the existence of an implicit conversion from E to
D does not guarantee that the compile-time application of the conversion will succeed
without error.

n
n  VLADIMIR RESHETNIkoV In particular, it is possible that overload resolution

will pick the best function member containing a delegate type in its signature, while
an implicit conversion from a method group, provided as the corresponding argu-
ment, to that delegate type will result in a compile-time error. This situation may
occur, for instance, because overload resolution cannot find the single best method in
that group. Even if the best method is found, constraints on its type parameters might
be violated, or the method might not be compatible with the delegate type, or it
might be an instance method referenced in a static context.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.6		 Method Group Conversions

227

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

A single method •	 M is selected corresponding to a method invocation (§7.6.5.1) of the form
E(A), with the following modifications:

The argument list - A is a list of expressions, each classified as a variable and with the
type and modifier (ref or out) of the corresponding parameter in the formal- parameter-
list of D.

- The candidate methods considered are only those methods that are applicable in
their normal form (§7.5.3.1), not those applicable only in their expanded form.

If the algorithm of §7.6.5.1 produces an error, then a compile-time error occurs. Other-•	
wise, the algorithm produces a single best method M having the same number of param-
eters as D and the conversion is considered to exist.

The selected method •	 M must be compatible (§15.2) with the delegate type D; otherwise, a
compile-time error occurs.

If the selected method •	 M is an instance method, the instance expression associated with
E determines the target object of the delegate.

If the selected method •	 M is an extension method, which is denoted by means of a member
access on an instance expression, that instance expression determines the target object
of the delegate.

The result of the conversion is a value of type •	 D—namely, a newly created delegate that
refers to the selected method and target object.

Note that this process can lead to the creation of a delegate to an extension method, if the
algorithm of §7.6.5.1 fails to find an instance method but succeeds in processing the invoca-
tion of E(A) as an extension method invocation (§7.6.5.2). A delegate thus created captures
the extension method as well as its first argument.

n
n  VLADIMIR RESHETNIkoV If the first parameter of an extension method con-

verted to a delegate type is of a value type or type parameter not known to be a refer-
ence type (§10.1.5), a compile-time error occurs.

If an instance method declared in System.Nullable<T> is converted to a delegate type,
a compile-time error occurs as well.

The following example demonstrates method group conversions:

delegate string D1(object o);

delegate object D2(string s);

delegate object D3();

delegate string D4(object o, params object[] a);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6. Conversions

228

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

Co
nv

er
si

on
s

6.
	

delegate string D5(int i);

class Test
{
 static string F(object o) {...}

 static void G() {
 D1 d1 = F; // Okay
 D2 d2 = F; // Okay
 D3 d3 = F; // Error: not applicable
 D4 d4 = F; // Error: not applicable in normal form
 D5 d5 = F; // Error: applicable but not compatible

 }
}

The assignment to d1 implicitly converts the method group F to a value of type D1.

The assignment to d2 shows how it is possible to create a delegate to a method that has less
derived (contravariant) parameter types and a more derived (covariant) return type.

The assignment to d3 shows how no conversion exists if the method is not applicable.

The assignment to d4 shows how the method must be applicable in its normal form.

The assignment to d5 shows how parameter and return types of the delegate and method
are allowed to differ only for reference types.

As with all other implicit and explicit conversions, the cast operator can be used to explic-
itly perform a method group conversion. Thus the example

object obj = new EventHandler(myDialog.OkClick);

could instead be written

object obj = (EventHandler)myDialog.OkClick;

Method groups may influence overload resolution, and participate in type inference. See
§7.5 for further details.

The runtime evaluation of a method group conversion proceeds as follows:

If the method selected at compile time is an instance method, or if it is an extension •	
method that is accessed as an instance method, the target object of the delegate is deter-
mined from the instance expression associated with E:

- The instance expression is evaluated. If this evaluation causes an exception, no fur-
ther steps are executed.

If the instance expression is of a - reference-type, the value computed by the instance
expression becomes the target object. If the selected method is an instance method

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

6.6		 Method Group Conversions

229

Conversions
6.	

Conversions
6.	

Conversions
6.	

Conversions
6.	

and the target object is null, a System.NullReferenceException is thrown and no
further steps are executed.

If the instance expression is of a - value-type, a boxing operation (§4.3.1) is performed
to convert the value to an object, and this object becomes the target object.

Otherwise, the selected method is part of a static method call, and the target object of the •	
delegate is null.

A new instance of the delegate type •	 D is allocated. If there is not enough memory avail-
able to allocate the new instance, a System.OutOfMemoryException is thrown and no
further steps are executed.

n
n  JoN SkEET The fact that the specification explicitly states that a new instance is

created at this point prevents a potential optimization. The Microsoft C# compiler is
able to cache delegates created via anonymous functions if they don’t capture any
variables (including this). The same sort of caching would be feasible for delegates
created via any method group conversion that selects a static method—but the speci-
fication prohibits it.

The new delegate instance is initialized with a reference to the method that was deter-•	
mined at compile time and a reference to the target object computed above.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

231

Expressions7.

An expression is a sequence of operators and operands. This chapter defines the syntax,
order of evaluation of operands and operators, and meaning of expressions.

7.1 Expression Classifications
An expression is classified as one of the following:

A value. Every value has an associated type.•	

A variable. Every variable has an associated type—namely, the declared type of the •	
variable.

n
n  VLADIMIR RESHETNIkoV Types of local variables and lambda expression

parameters can be inferred by the compiler in many cases, and do not always need to
be explicitly specified in declarations.

A namespace. An expression with this classification can only appear as the left-hand side •	
of a member-access (§7.6.4). In any other context, an expression classified as a namespace
causes a compile-time error.

A type. An expression with this classification can only appear as the left-hand side of a •	
member-access (§7.6.4), or as an operand for the as operator (§7.10.11), the is operator
(§7.10.10), or the typeof operator (§7.6.11). In any other context, an expression classified
as a type causes a compile-time error.

n
n  VLADIMIR RESHETNIkoV If an expression is classified as a type and appears as

the left-hand side of a member-access, it never denotes an array or pointer type. If the
expression denotes a type parameter, it always leads to a compile-time error later.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

232

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

A method group, which is a set of overloaded methods resulting from a member lookup •	
(§7.4). A method group may have an associated instance expression and an associated
type argument list. When an instance method is invoked, the result of evaluating the
instance expression becomes the instance represented by this (§7.6.7). A method group
is permitted in an invocation-expression (§7.6.5), in a delegate-creation-expression (§7.6.10.5),
and as the left-hand side of an is operator, and can be implicitly converted to a compat-
ible delegate type (§6.6). In any other context, an expression classified as a method group
causes a compile-time error.

n
n  ERIC LIPPERT That a method group is legal on the left-hand side of an is opera-

tor is a bit of a misleading feature. The result of the is evaluation will always be false,
even if the method group is convertible to the type on the right-hand side.

n
n  VLADIMIR RESHETNIkoV A method group on the left-hand side of an is opera-

tor cannot be used in expression trees.

A null literal. An expression with this classification can be implicitly converted to a refer-•	
ence type or nullable type.

An anonymous function. An expression with this classification can be implicitly con-•	
verted to a compatible delegate type or expression tree type.

n
n  ERIC LIPPERT Method groups, anonymous functions, and the null literal are all

expressions that have no type. These unusual expressions can be used only when the
type can be figured out from the context.

A property access. Every property access has an associated type—namely, the type of •	
the property. Furthermore, a property access may have an associated instance expres-
sion. When an accessor (the get or set block) of an instance property access is invoked,
the result of evaluating the instance expression becomes the instance represented by
this (§7.6.7).

An event access. Every event access has an associated type—namely, the type of the •	
event. Furthermore, an event access may have an associated instance expression. An
event access may appear as the left-hand operand of the += and -= operators (§7.17.3).
In any other context, an expression classified as an event access causes a compile-time
error.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.1		 Expression Classifications

233

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

An indexer access. Every indexer access has an associated type—namely, the element •	
type of the indexer. Furthermore, an indexer access has an associated instance expres-
sion and an associated argument list. When an accessor (the get or set block) of an
indexer access is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§7.6.7), and the result of evaluating the argument list
becomes the parameter list of the invocation.

Nothing. This occurs when the expression is an invocation of a method with a return •	
type of void. An expression classified as nothing is only valid in the context of a
statement-expression (§8.6).

The final result of an expression is never a namespace, type, method group, or event access.
Rather, as noted above, these categories of expressions are intermediate constructs that are
permitted only in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invo-
cation of the get-accessor or the set-accessor. The particular accessor is determined by the
context of the property or indexer access: If the access is the target of an assignment, the
set-accessor is invoked to assign a new value (§7.17.1). Otherwise, the get-accessor is invoked
to obtain the current value (§7.1.1).

7.1.1 Values of Expressions
Most of the constructs that involve an expression ultimately require the expression to
denote a value. In such cases, if the actual expression denotes a namespace, a type, a
method group, or nothing, a compile-time error occurs. However, if the expression denotes
a property access, an indexer access, or a variable, the value of the property, indexer, or
variable is implicitly substituted:

The value of a variable is simply the value currently stored in the storage location iden-•	
tified by the variable. A variable must be considered definitely assigned (§5.3) before its
value can be obtained; otherwise, a compile-time error occurs.

The value of a property access expression is obtained by invoking the •	 get-accessor of the
property. If the property has no get-accessor, a compile-time error occurs. Otherwise, a
function member invocation (§7.5.4) is performed, and the result of the invocation
becomes the value of the property access expression.

The value of an indexer access expression is obtained by invoking the •	 get-accessor of the
indexer. If the indexer has no get-accessor, a compile-time error occurs. Otherwise, a func-
tion member invocation (§7.5.4) is performed with the argument list associated with the
indexer access expression, and the result of the invocation becomes the value of the
indexer access expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

234

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  VLADIMIR RESHETNIkoV If a property or indexer has a get-accessor, but the

accessor has an accessibility modifier and is not accessible in the current context, a
compile-time error occurs.

7.2 Static and Dynamic Binding
The process of determining the meaning of an operation based on the type or value of
constituent expressions (arguments, operands, receivers) is often referred to as binding.
For instance, the meaning of a method call is determined based on the type of the receiver
and arguments. The meaning of an operator is determined based on the type of its
operands.

In C#, the meaning of an operation is usually determined at compile time, based on the
compile-time type of its constituent expressions. Likewise, if an expression contains an
error, the error is detected and reported by the compiler. This approach is known as static
binding.

However, if an expression is a dynamic expression (i.e., has the type dynamic), this indicates
that any binding that it participates in should be based on its runtime type (i.e., the actual
type of the object it denotes at runtime) rather than the type it has at compile time. The
binding of such an operation is therefore deferred until the time where the operation is to
be executed during the running of the program. This is referred to as dynamic binding.

When an operation is dynamically bound, little or no checking is performed by the com-
piler. Instead, if the runtime binding fails, errors are reported as exceptions at runtime.

The following operations in C# are subject to binding:

Member access: •	 e.M

Method invocation: •	 e.M(e1,...,en)

Delegate invocation:•	 e(e1,...,en)

Element access: •	 e[e1,...,en]

Object creation: •	 new C(e1,...,en)

Overloaded unary operators: •	 +, -, !, ~, ++, --, true, false

Overloaded binary operators: •	 +, -, *, /, %, &, &&, |, ||, ??, ^, <<, >>, ==,!=, >, <, >=, <=

Assignment operators: •	 =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

Implicit and explicit conversions•	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.2		 Static and Dynamic Binding

235

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

When no dynamic expressions are involved, C# defaults to static binding, which means
that the compile-time types of constituent expressions are used in the selection process.
However, when one of the constituent expressions in the operations listed above is a
dynamic expression, the operation is instead dynamically bound.

7.2.1 Binding Time
Static binding takes place at compile time, whereas dynamic binding takes place at
runtime. In the following sections, the term binding time refers to either compile time
or runtime, depending on when the binding takes place.

The following example illustrates the notions of static and dynamic binding and of bind-
ing time:

object o = 5;
dynamic d = 5;

Console.WriteLine(5); // Static binding to Console.WriteLine(int)
Console.WriteLine(o); // Static binding to Console.WriteLine(object)
Console.WriteLine(d); // Dynamic binding to Console.WriteLine(int)

The first two calls are statically bound: The overload of Console.WriteLine is picked based
on the compile-time type of their argument. Thus the binding time is compile time.

The third call is dynamically bound: The overload of Console.WriteLine is picked based
on the runtime type of its argument. This happens because the argument is a dynamic
expression—its compile-time type is dynamic. Thus the binding time for the third call is
runtime.

n
n  BILL WAGNER Many people confuse dynamic binding with type inference. Type

inference is statically bound. The compiler determines the type at compile time. For
example:

var i = 5; // i is an int (Compiler performs type inference)
Console.WriteLine(i); // Static binding to Console.WriteLine(int)

The compiler infers that i is an integer. All binding on the variable i uses static
binding.

7.2.2 Dynamic Binding
The purpose of dynamic binding is to allow C# programs to interact with dynamic objects—
that is, objects that do not follow the normal rules of the C# type system. Dynamic objects
may be objects from other programming languages with different type systems, or they
may be objects that are programmatically set up to implement their own binding semantics
for different operations.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

236

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  ERIC LIPPERT The primary motivating examples of such objects are (1) objects

from dynamic languages such as IronPython, IronRuby, JScript, and so on; (2) objects
from “expando” object models that emphasize addition of new properties at runtime,
such as the Internet Explorer Document Object Model and other markup-based object
models; and (3) legacy COM objects, such as the Microsoft Office object model. The
intention here is to make it easier for professional C# developers to interoperate with
these systems; our intention is not at all to make C# into a dynamic language like
JScript.

The mechanism by which a dynamic object implements its own semantics is implementa-
tion defined. A given interface—again, implementation defined—is implemented by
dynamic objects to signal to the C# runtime that they have special semantics. Thus, when-
ever operations on a dynamic object are dynamically bound, their own binding semantics,
rather than those of C# as specified in this document, take over.

n
n  ERIC LIPPERT The mechanism actually chosen for the Microsoft implementation

of this feature is the same mechanism used by IronPython and the other DLR lan-
guages to make their dynamic analysis and dispatch efficient. A dynamic operation
compiles into a call to methods of DLR objects, which then use a special runtime ver-
sion of the C# expression binder to build expression trees representing the dynamic
operation. These expression trees are then compiled, cached, and reused the next time
the call site is executed.

While the purpose of dynamic binding is to allow interoperation with dynamic objects, C#
allows dynamic binding on all objects, whether they are dynamic or not. This allows for a
smoother integration of dynamic objects, as the results of operations on them may not
themselves be dynamic objects, but are still of a type unknown to the programmer at com-
pile time. Also, dynamic binding can help eliminate error-prone reflection-based code even
when no objects involved are dynamic objects.

n
n  ERIC LIPPERT C# already supported a form of dynamic method dispatch: Virtual

methods are technically a form of dynamic dispatch because the runtime type of the
receiver is used to determine precisely which method to call. Although we do not
intend to make C# a dynamic language (as I noted earlier), there is at least one pro-
gramming problem where dynamic dispatch comes in handy: the “multiple virtual
dispatch” problem. This problem arises when you want to choose which method to call
based on the runtime types of many of the arguments, not just the receiver. (It is not
difficult to implement “double virtual” dispatch with the visitor pattern, but it becomes
awkward to implement runtime dispatching on methods with many argument types.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.2		 Static and Dynamic Binding

237

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The following sections describe for each construct in the language exactly when dynamic
binding is applied, which kind of compile-time checking (if any) is applied, and what the
compile-time result and expression classification are.

7.2.3 Types of Constituent Expressions
When an operation is statically bound, the type of a constituent expression (e.g., a receiver,
an argument, an index or an operand) is always considered to be the compile-time type of
that expression.

When an operation is dynamically bound, the type of a constituent expression is deter-
mined in different ways depending on the compile-time type of the constituent
expression:

A constituent expression of compile-time type •	 dynamic is considered to have the type of
the actual value that the expression evaluates to at runtime.

n
n  BILL WAGNER The rule that expressions of compile-time type dynamic use the

actual runtime type leads to surprising behavior, such as the following compiler
error:

public class Base
{
 public Base(dynamic parameter)
 {
 }
}

public class Derived : Base
{
 public Derived(dynamic parameter) : base(parameter)
 {
 }
}

Dynamic dispatch is not allowed during construction, so you must force static dis-
patch to the base constructor call.

A constituent expression whose compile-time type is a type parameter is considered to •	
have the type which the type parameter is bound to at runtime.

Otherwise, the constituent expression is considered to have its compile-time type. •	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

238

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.3 operators
Expressions are constructed from operands and operators. The operators of an expression
indicate which operations to apply to the operands. Examples of operators include +, -, *,
/, and new. Examples of operands include literals, fields, local variables, and expressions.

There are three kinds of operators:

Unary operators. The unary operators take one operand and use either prefix notation •	
(such as –x) or postfix notation (such as x++).

Binary operators. The binary operators take two operands and all use infix notation •	
(such as x + y).

Ternary operator. Only one ternary operator, •	 ?:, exists; it takes three operands and uses
infix notation (c? x: y).

The order of evaluation of operators in an expression is determined by the precedence and
associativity of the operators (§7.3.1).

Operands in an expression are evaluated from left to right. For example, in F(i) + G(i++)
* H(i), method F is called using the old value of i, then method G is called with the old
value of i, and, finally, method H is called with the new value of i. This is separate from
and unrelated to operator precedence.

Certain operators can be overloaded. Operator overloading permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a
user-defined class or struct type (§7.3.2).

7.3.1 operator Precedence and Associativity
When an expression contains multiple operators, the precedence of the operators controls
the order in which the individual operators are evaluated. For example, the expression
x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than the
binary + operator. The precedence of an operator is established by the definition of its asso-
ciated grammar production. For example, an additive-expression consists of a sequence of
multiplicative-expressions separated by + or - operators, thus giving the + and - operators
lower precedence than the *, /, and % operators.

The following table summarizes all operators in order of precedence from highest to
lowest:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.3		 operators

239

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Section Category operators

7.6 Primary x.y f(x) a[x] x++ x-- new
typeof default checked unchecked delegate

7.7 Unary + - ! ~ ++x --x (T)x

7.8 Multiplicative * / %

7.8 Additive + -

7.9 Shift << >>

7.10 Relational and type
testing

< > <= >= is as

7.10 Equality == !=

7.11 Logical AND &

7.11 Logical XOR ^

7.11 Logical OR |

7.11 Conditional AND &&

7.12 Conditional OR ||

7.12 Null coalescing ??

7.14 Conditional ?:

7.17,
7.15

Assignment and
lambda expression

= *= /= %= += -= <<= >>= &= ^= |=
=>

When an operand occurs between two operators with the same precedence, the associativ-
ity of the operators controls the order in which the operations are performed:

Except for the assignment operators, all binary operators are •	 left-associative, meaning
that operations are performed from left to right. For example, x + y + z is evaluated as
(x + y) + z.

The assignment operators and the conditional operator (•	 ?:) are right-associative, mean-
ing that operations are performed from right to left. For example, x = y = z is evaluated
as x = (y = z).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

240

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Precedence and associativity can be controlled using parentheses. For example, x + y * z
first multiplies y by z and then adds the result to x, but (x + y) * z first adds x and y and
then multiplies the result by z.

n
n  CHRIS SELLS I’m not a big fan of programs that rely on operator precedence to

execute correctly. When the order of execution is in doubt, wrap your expressions in
parentheses. The parentheses will not affect the compiled output (except that you
might have fixed a bug), but they make the code much easier to understand for the
human readers.

n
n  JESSE LIBERTy I see no harm in going even further and always wrapping expres-

sions in parentheses. You may not be in doubt what is intended, but the poor program-
mer who has to maintain your code ought not have to look up the precedence to make
sense of the code. If the number of parentheses becomes confusing in itself, consider
breaking your statement into multiple statements using interim temporary variables.

n
n  ERIC LIPPERT The relationship between precedence, associativity, parentheses,

and order of execution can be confusing. Operands are always evaluated on a strictly
left-to-right basis. The way that the results of those evaluations are combined is
affected by precedence, associativity, and parentheses. It is emphatically not the case
that y and z are evaluated before x. Yes, the multiplication is computed before the
addition, but the evaluation of x occurs before the multiplication.

7.3.2 operator overloading
All unary and binary operators have predefined implementations that are automatically
available in any expression. In addition to the predefined implementations, user-defined
implementations can be introduced by including operator declarations in classes and
structs (§10.10). User-defined operator implementations always take precedence over pre-
defined operator implementations: Only when no applicable user-defined operator imple-
mentations exist will the predefined operator implementations be considered, as described
in §7.3.3 and §7.3.4.

The overloadable unary operators are:

+ - ! ~ ++ -- true false

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.3		 operators

241

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Although true and false are not used explicitly in expressions (and therefore are not
included in the precedence table in §7.3.1), they are considered operators because they are
invoked in several expression contexts: boolean expressions (§7.20) and expressions involv-
ing the conditional (§7.14), and conditional logical operators (§7.12).

The overloadable binary operators are:

+ - * / % & | ^ << >> == != > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to over-
load member access, method invocation, or the =, &&, ||, ??, ?:, =>, checked, unchecked,
new, typeof, default, as, and is operators.

When a binary operator is overloaded, the corresponding assignment operator, if any, is
also implicitly overloaded. For example, an overload of operator * is also an overload of
operator *=. This is described further in §7.17.2. Note that the assignment operator itself (=)
cannot be overloaded. An assignment always performs a simple bitwise copy of a value
into a variable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversions
(§6.4).

Element access, such as a[x], is not considered an overloadable operator. Instead, user-
defined indexing is supported through indexers (§10.9).

In expressions, operators are referenced using operator notation, and in declarations, oper-
ators are referenced using functional notation. The following table shows the relationship
between operator and functional notations for unary and binary operators. In the first
entry, op denotes any overloadable unary prefix operator. In the second entry, op denotes
the unary postfix ++ and -- operators. In the third entry, op denotes any overloadable
binary operator.

operator Notation Functional Notation

op x operator op(x)

x op operator op(x)

x op y operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of
the class or struct type that contains the operator declaration. Thus it is not possible for a
user-defined operator to have the same signature as a predefined operator.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

242

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

User-defined operator declarations cannot modify the syntax, precedence, or associativity
of an operator. For example, the / operator is always a binary operator, always has the
precedence level specified in §7.3.1, and is always left-associative.

While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than those that are intuitively expected are
strongly discouraged. For example, an implementation of operator == should compare the
two operands for equality and return an appropriate bool result.

n
n  BILL WAGNER In addition to following this rule, you should limit the use of

user-defined operators to those times when the operation will be obvious to the vast
majority of the developers who use your code.

n
n  ERIC LIPPERT The overloadable operators are all mathematical or logical in

nature. If you are building a library of mathematical objects such as matrices, vectors,
and so on, by all means create user-defined operators. But please resist the temptation
to make “cute” operators, such as “a Customer plus an Order produces an Invoice.”

The descriptions of individual operators in §7.6 through §7.12 specify the predefined
implementations of the operators and any additional rules that apply to each operator. The
descriptions make use of the terms unary operator overload resolution, binary operator
overload resolution, and numeric promotion, definitions of which are found in the follow-
ing sections.

7.3.3 Unary operator overload Resolution
An operation of the form op x or x op, where op is an overloadable unary operator, and x is
an expression of type X, is processed as follows:

The set of candidate user-defined operators provided by •	 X for the operation operator
op(x) is determined using the rules of §7.3.5.

If the set of candidate user-defined operators is not empty, then this becomes the set of •	
candidate operators for the operation. Otherwise, the predefined unary operator op
implementations, including their lifted forms, become the set of candidate operators for
the operation. The predefined implementations of a given operator are specified in the
description of the operator (§7.6 and §7.7).

The overload resolution rules of §7.5.3 are applied to the set of candidate operators to •	
select the best operator with respect to the argument list (x), and this operator becomes

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.3		 operators

243

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

the result of the overload resolution process. If overload resolution fails to select a single
best operator, a binding-time error occurs.

7.3.4 Binary operator overload Resolution
An operation of the form x op y, where op is an overloadable binary operator, x is an expres-
sion of type X, and y is an expression of type Y, is processed as follows:

The set of candidate user-defined operators provided by •	 X and Y for the operation
operator op(x, y) is determined. The set consists of the union of the candidate operators
provided by X and the candidate operators provided by Y, each determined using the
rules of §7.3.5. If X and Y are the same type, or if X and Y are derived from a common base
type, then shared candidate operators occur in the combined set only once.

If the set of candidate user-defined operators is not empty, then this becomes the set of •	
candidate operators for the operation. Otherwise, the predefined binary operator op
implementations, including their lifted forms, become the set of candidate operators for
the operation. The predefined implementations of a given operator are specified in the
description of the operator (§7.8 through §7.12).

The overload resolution rules of §7.5.3 are applied to the set of candidate operators to •	
select the best operator with respect to the argument list (x, y), and this operator
becomes the result of the overload resolution process. If overload resolution fails to
select a single best operator, a binding-time error occurs.

7.3.5 Candidate User-Defined operators
Given a type T and an operation operator op(A), where op is an overloadable operator
and A is an argument list, the set of candidate user-defined operators provided by T for
operator op(A) is determined as follows:

Determine the type •	 T0. If T is a nullable type, T0 is its underlying type; otherwise, T0 is
equal to T.

For all •	 operator op declarations in T0 and all lifted forms of such operators, if at least one
operator is applicable (§7.5.3.1) with respect to the argument list A, then the set of candi-
date operators consists of all such applicable operators in T0.

Otherwise, if •	 T0 is object, the set of candidate operators is empty.

Otherwise, the set of candidate operators provided by •	 T0 is the set of candidate operators
provided by the direct base class of T0, or the effective base class of T0 if T0 is a type
parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

244

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.3.6 Numeric Promotions
Numeric promotion consists of automatically performing certain implicit conversions of
the operands of the predefined unary and binary numeric operators. Numeric promotion
is not a distinct mechanism, but rather an effect of applying overload resolution to the
predefined operators. Numeric promotion specifically does not affect evaluation of user-
defined operators, although user-defined operators can be implemented to exhibit similar
effects.

As an example of numeric promotion, consider the predefined implementations of the
binary * operator:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (§7.5.3) are applied to this set of operators, the effect is to
select the first of the operators for which implicit conversions exist from the operand types.
For example, for the operation b * s, where b is a byte and s is a short, overload resolution
selects operator *(int, int) as the best operator. Thus the effect is that b and s are con-
verted to int, and the type of the result is int. Likewise, for the operation i * d, where i is
an int and d is a double, overload resolution selects operator *(double, double) as the
best operator.

7.3.6.1 Unary Numeric Promotions
Unary numeric promotion occurs for the operands of the predefined +, –, and ~ unary
operators. Unary numeric promotion simply consists of converting operands of type sbyte,
byte, short, ushort, or char to type int. Additionally, for the unary – operator, unary
numeric promotion converts operands of type uint to type long.

7.3.6.2 Binary Numeric Promotions
Binary numeric promotion occurs for the operands of the predefined +, –, *, /, %, &, |, ^, ==,
!=, >, <, >=, and <= binary operators. Binary numeric promotion implicitly converts both
operands to a common type which, in case of the nonrelational operators, also becomes the
result type of the operation. Binary numeric promotion consists of applying the following
rules, in the order they appear here:

If either operand is of type •	 decimal, the other operand is converted to type decimal, or
a binding-time error occurs if the other operand is of type float or double.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.3		 operators

245

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Otherwise, if either operand is of type •	 double, the other operand is converted to type
double.

Otherwise, if either operand is of type •	 float, the other operand is converted to type
float.

Otherwise, if either operand is of type •	 ulong, the other operand is converted to type
ulong, or a binding-time error occurs if the other operand is of type sbyte, short, int,
or long.

Otherwise, if either operand is of type •	 long, the other operand is converted to
type long.

Otherwise, if either operand is of type •	 uint and the other operand is of type sbyte,
short, or int, both operands are converted to type long.

Otherwise, if either operand is of type •	 uint, the other operand is converted to
type uint.

Otherwise, both operands are converted to type •	 int.

Note that the first rule disallows any operations that mix the decimal type with the double
and float types. The rule follows from the fact that there are no implicit conversions
between the decimal type and the double and float types.

Also note that it is not possible for an operand to be of type ulong when the other operand
is of a signed integral type. The reason is that no integral type exists that can represent the
full range of ulong as well as the signed integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand
to a type that is compatible with the other operand.

In the example

decimal AddPercent(decimal x, double percent)
{
 return x * (1.0 + percent / 100.0);
}

a binding-time error occurs because a decimal cannot be multiplied by a double. The error
is resolved by explicitly converting the second operand to decimal, as follows:

decimal AddPercent(decimal x, double percent)
{
 return x * (decimal)(1.0 + percent / 100.0);
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

246

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  JoSEPH ALBAHARI The predefined operators described in this section always

promote the 8- and 16-bit integral types—namely, short, ushort, sbyte, and byte. A
common trap is assigning the result of a calculation on these types back to an 8- or
16-bit integral:

byte a = 1, b = 2;
byte c = a + b; // Compile-time error

In this case, the variables a and b are promoted to int, which requires an explicit cast
to byte for the code to compile:

byte a = 1, b = 2;
byte c = (byte)(a + b);

7.3.7 Lifted operators
Lifted operators permit predefined and user-defined operators that operate on non-
nullable value types to also be used with nullable forms of those types. Lifted operators are
constructed from predefined and user-defined operators that meet certain requirements, as
described in the following list:

For the unary operators•	
+ ++ - -- ! ~

a lifted form of an operator exists if the operand and result types are both non- nullable
value types. The lifted form is constructed by adding a single ? modifier to the oper-
and and result types. The lifted operator produces a null value if the operand is null.
Otherwise, the lifted operator unwraps the operand, applies the underlying operator,
and wraps the result.

For the binary operators•	
+ - * / % & | ^ << >>

a lifted form of an operator exists if the operand and result types are all non-nullable
value types. The lifted form is constructed by adding a single ? modifier to each oper-
and and result type. The lifted operator produces a null value if one or both operands
are null (an exception being the & and | operators of the bool? type, as described in
§7.11.3). Otherwise, the lifted operator unwraps the operands, applies the underlying
operator, and wraps the result.

For the equality operators•	
== !=

a lifted form of an operator exists if the operand types are both non-nullable value
types and if the result type is bool. The lifted form is constructed by adding a single

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.4		 Member Lookup

247

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

? modifier to each operand type. The lifted operator considers two null values equal,
and a null value unequal to any non-null value. If both operands are non-null, the
lifted operator unwraps the operands and applies the underlying operator to produce
the bool result.

For the relational operators•	

< > <= >=

a lifted form of an operator exists if the operand types are both non-nullable value
types and if the result type is bool. The lifted form is constructed by adding a single ?
modifier to each operand type. The lifted operator produces the value false if one or
both operands are null. Otherwise, the lifted operator unwraps the operands and
applies the underlying operator to produce the bool result.

n
n  BILL WAGNER The default value of any nullable type is neither greater than nor

less than any nullable type containing a value.

7.4 Member Lookup
Member lookup is the process whereby the meaning of a name in the context of a type is
determined. A member lookup can occur as part of evaluating a simple-name (§7.6.2) or a
member-access (§7.6.4) in an expression. If the simple-name or member-access occurs as the
primary-expression of an invocation-expression (§7.6.5.1), the member is said to be invoked.

If a member is a method or event, or if it is a constant, field, or property of either a delegate
type (§15) or the type dynamic (§4.7), then the member is said to be invocable.

Member lookup considers not only the name of a member, but also the number of type
parameters the member has and whether the member is accessible. For the purposes of
member lookup, generic methods and nested generic types have the number of type
parameters indicated in their respective declarations and all other members have zero
type parameters.

n
n  VLADIMIR RESHETNIkoV The result of member lookup never contains opera-

tors, indexers, explicitly implemented interface members, static constructors, instance
constructors, destructors (finalizers), or compiler-generated members. Although a
type parameter contributes to the declaration space of its declaring type, it is not a
member of that type and, therefore, cannot be a result of member lookup.

Member lookup returns both static and instance members, regardless of the form of
access.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

248

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

A member lookup of a name N with K type parameters in a type T is processed as follows:

First, a set of accessible members named •	 N is determined:

If - T is a type parameter, then the set is the union of the sets of accessible members
named N in each of the types specified as a primary constraint or secondary constraint
(§10.1.5) for T, along with the set of accessible members named N in object.

Otherwise, the set consists of all accessible (§3.5) members named - N in T, including
inherited members and the accessible members named N in object. If T is a con-
structed type, the set of members is obtained by substituting type arguments as
described in §10.3.2. Members that include an override modifier are excluded from
the set.

Next, if •	 K is zero, all nested types whose declarations include type parameters are
removed. If K is not zero, all members with a different number of type parameters
are removed. Note that when K is zero, methods having type parameters are not removed,
since the type inference process (§7.5.2) might be able to infer the type arguments.

Next, if the member is •	 invoked, all non-invocable members are removed from the set.

n
n  VLADIMIR RESHETNIkoV This rule allows you to invoke an extension method

even if a non-invocable instance member with the same name exists in the type T. For
example, you can invoke extension method Count() on a collection even if it has an
instance property Count of type int.

Next, members that are hidden by other members are removed from the set. For every •	
member S.M in the set, where S is the type in which the member M is declared, the fol-
lowing rules are applied:

If - M is a constant, field, property, event, or enumeration member, then all members
declared in a base type of S are removed from the set.

If - M is a type declaration, then all nontypes declared in a base type of S are removed
from the set, and all type declarations with the same number of type parameters as M
declared in a base type of S are removed from the set.

If - M is a method, then all nonmethod members declared in a base type of S are removed
from the set.

n
n  VLADIMIR RESHETNIkoV Any members removed from the set on this step can

still cause other members to be removed from the set. Thus the order in which the
members are processed is not important.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.4		 Member Lookup

249

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Next, interface members that are hidden by class members are removed from the set. •	
This step has an effect only if T is a type parameter and T has both an effective base class
other than object and a non-empty effective interface set (§10.1.5). For every member
S.M in the set, where S is the type in which the member M is declared, the following rules
are applied if S is a class declaration other than object:

If - M is a constant, field, property, event, enumeration member, or type declaration,
then all members declared in an interface declaration are removed from the set.

If - M is a method, then all nonmethod members declared in an interface declaration are
removed from the set, and all methods with the same signature as M declared in an
interface declaration are removed from the set.

Finally, having removed hidden members, the result of the lookup is determined:•	

- If the set consists of a single member that is not a method, then this member is the
result of the lookup.

- Otherwise, if the set contains only methods, then this group of methods is the result
of the lookup.

Otherwise, the lookup is ambiguous, and a binding-time error occurs.-

n
n  VLADIMIR RESHETNIkoV The Microsoft C# compiler is more lenient in the last

case. If the set contains both methods and nonmethods, then a warning CS0467 is
issued, all nonmethods are discarded, and the group of remaining methods becomes
the result of the lookup. This behavior is useful in some COM interoperability
scenarios.

For member lookups in types other than type parameters and interfaces, and member
lookups in interfaces that are strictly single-inheritance (each interface in the inheritance
chain has exactly zero or one direct base interface), the effect of the lookup rules is simply
that derived members hide base members with the same name or signature. Such single-
inheritance lookups are never ambiguous. The ambiguities that can possibly arise from
member lookups in multiple-inheritance interfaces are described in §13.2.5.

7.4.1 Base Types
For purposes of member lookup, a type T is considered to have the following base types:

If •	 T is object, then T has no base type.

If •	 T is an enum-type, the base types of T are the class types System.Enum,
System.ValueType, and object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

250

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

If •	 T is a struct-type, the base types of T are the class types System.ValueType and
object.

If •	 T is a class-type, the base types of T are the base classes of T, including the class type
object.

If •	 T is an interface-type, the base types of T are the base interfaces of T and the class type
object.

n
n  ERIC LIPPERT This point ensures that it is legal to call ToString() and the other

members of System.Object on a value of interface type. At runtime, any value of the
interface type will be either null or something that inherits from System.Object, so
this is a reasonable choice.

If •	 T is an array-type, the base types of T are the class types System.Array and object.

If •	 T is a delegate-type, the base types of T are the class types System.Delegate and
object.

7.5 Function Members
Function members are members that contain executable statements. Function members are
always members of types and cannot be members of namespaces. C# defines the following
categories of function members:

Methods•	

Properties•	

Events•	

Indexers•	

User-defined operators•	

Instance constructors•	

Static constructors•	

Destructors•	

Except for destructors and static constructors (which cannot be invoked explicitly), the
statements contained in function members are executed through function member
invocations. The actual syntax for writing a function member invocation depends on the
particular function member category.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

251

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The argument list (§7.5.1) of a function member invocation provides actual values or vari-
able references for the parameters of the function member.

Invocations of generic methods may employ type inference to determine the set of type
arguments to pass to the method. This process is described in §7.5.2.

Invocations of methods, indexers, operators, and instance constructors employ overload
resolution to determine which of a candidate set of function members to invoke. This pro-
cess is described in §7.5.3.

Once a particular function member has been identified at binding-time, possibly through
overload resolution, the actual runtime process of invoking the function member is
described in §7.5.4.

The following table summarizes the processing that takes place in constructs involving the
six categories of function members that can be explicitly invoked. In the following table,
e, x, y, and value indicate expressions classified as variables or values, T indicates an
expression classified as a type, F is the simple name of a method, and P is the simple name
of a property.

Construct Example Description

Method invocation F(x, y) Overload resolution is applied to select
the best method F in the containing class
or struct. The method is invoked with the
argument list (x, y). If the method is not
static, the instance expression is this.

T.F(x, y) Overload resolution is applied to select
the best method F in the class or struct T.
A binding-time error occurs if the method
is not static. The method is invoked
with the argument list (x, y).

e.F(x, y) Overload resolution is applied to select
the best method F in the class, struct, or
interface given by the type of e. A
binding-time error occurs if the method is
static. The method is invoked with the
instance expression e and the argument
list (x, y).

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

252

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Construct Example Description

Property access P The get accessor of the property P in the
containing class or struct is invoked. A
compile-time error occurs if P is write-
only. If P is not static, the instance
expression is this.

P = value The set accessor of the property P in the
containing class or struct is invoked with
the argument list (value). A compile-time
error occurs if P is read-only. If P is not
static, the instance expression is this.

T.P The get accessor of the property P in the
class or struct T is invoked. A compile-
time error occurs if P is not static or if P
is write-only.

T.P = value The set accessor of the property P in
the class or struct T is invoked with the
argument list (value). A compile-time
error occurs if P is not static or if P is
read-only.

e.P The get accessor of the property P in the
class, struct, or interface given by the
type of e is invoked with the instance
expression e. A binding-time error occurs
if P is static or if P is write-only.

e.P = value The set accessor of the property P in the
class, struct, or interface given by the
type of e is invoked with the instance
expression e and the argument list
(value). A binding-time error occurs if P
is static or if P is read-only.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

253

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Construct Example Description

Event access E += value The add accessor of the event E in the
containing class or struct is invoked. If E is
not static, the instance expression is this.

E -= value The remove accessor of the event E in the
containing class or struct is invoked. If E is
not static, the instance expression is this.

T.E += value The add accessor of the event E in the class
or struct T is invoked. A binding-time
error occurs if E is not static.

T.E -= value The remove accessor of the event E in the
class or struct T is invoked. A binding-time
error occurs if E is not static.

e.E += value The add accessor of the event E in the
class, struct, or interface given by the
type of e is invoked with the instance
expression e. A binding-time error occurs
if E is static.

e.E -= value The remove accessor of the event E in
the class, struct, or interface given by the
type of e is invoked with the instance
expression e. A binding-time error occurs
if E is static.

Indexer access e[x, y] Overload resolution is applied to select
the best indexer in the class, struct, or
interface given by the type of e. The get
accessor of the indexer is invoked with the
instance expression e and the argument
list (x, y). A binding-time error occurs if
the indexer is write-only.

e[x, y] = value Overload resolution is applied to select
the best indexer in the class, struct, or
interface given by the type of e. The set
accessor of the indexer is invoked with the
instance expression e and the argument
list (x, y, value). A binding-time error
occurs if the indexer is read-only.

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

254

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Construct Example Description

Operator invocation -x Overload resolution is applied to select
the best unary operator in the class or
struct given by the type of x. The selected
operator is invoked with the argument
list (x).

x + y Overload resolution is applied to select
the best binary operator in the classes or
structs given by the types of x and y. The
selected operator is invoked with the
argument list (x, y).

Instance constructor
invocation

new T(x, y) Overload resolution is applied to select
the best instance constructor in the class or
struct T. The instance constructor is
invoked with the argument list (x, y).

7.5.1 Argument Lists
Every function member and delegate invocation includes an argument list that provides
actual values or variable references for the parameters of the function member. The syntax
for specifying the argument list of a function member invocation depends on the function
member category:

For instance constructors, methods, indexers, and delegates, the arguments are specified •	
as an argument-list, as described below. For indexers, when invoking the set accessor,
the argument list additionally includes the expression specified as the right operand of
the assignment operator.

n
n  VLADIMIR RESHETNIkoV This additional argument does not participate in

overload resolution for indexers.

For properties, the argument list is empty when invoking the •	 get accessor, and consists
of the expression specified as the right operand of the assignment operator when invok-
ing the set accessor.

For events, the argument list consists of the expression specified as the right operand of •	
the += or -= operator.

For user-defined operators, the argument list consists of the single operand of the unary •	
operator or the two operands of the binary operator.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

255

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The arguments of properties (§10.7), events (§10.8), and user-defined operators (§10.10)
are always passed as value parameters (§10.6.1.1). The arguments of indexers (§10.9) are
always passed as value parameters (§10.6.1.1) or parameter arrays (§10.6.1.4). Reference
and output parameters are not supported for these categories of function members.

The arguments of an instance constructor, method, indexer, or delegate invocation are
specified as an argument-list:

argument-list:
argument
argument-list , argument

argument:
argument-nameopt argument-value

argument-name:
identifier :

argument-value:
expression
ref variable-reference
out variable-reference

An argument-list consists of one or more arguments, separated by commas. Each argument
consists of an optional argument-name followed by an argument-value. An argument with an
argument-name is referred to as a named argument, whereas an argument without an
argument-name is a positional argument. It is an error for a positional argument to appear
after a named argument in an argument-list.

The argument-value can take one of the following forms:

An •	 expression, indicating that the argument is passed as a value parameter (§10.6.1.1).

The keyword •	 ref followed by a variable-reference (§5.4), indicating that the argument is
passed as a reference parameter (§10.6.1.2). A variable must be definitely assigned (§5.3)
before it can be passed as a reference parameter.

The keyword •	 out followed by a variable-reference (§5.4), indicating that the argument, is
passed as an output parameter (§10.6.1.3). A variable is considered definitely assigned
(§5.3) following a function member invocation in which the variable is passed as an
output parameter.

7.5.1.1 Corresponding Parameters
For each argument in an argument list, there has to be a corresponding parameter in the
function member or delegate being invoked.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

256

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The parameter list used in the following is determined as follows:

For virtual methods and indexers defined in classes, the parameter list is picked from •	
the most specific declaration or override of the function member, starting with the static
type of the receiver, and searching through its base classes.

n
n  ERIC LIPPERT These rules address the unfortunate (and, one hopes, unlikely)

situation where you have a virtual method—say, void M(int x, int y)—and an
overriding method—say, void M(int y, int x). Does the method call M(y:1, x:2)
actually call M(1, 2) or M(2, 1)? Parameter names are not part of the signature of a
method and, therefore, can change when overloaded.

For interface methods and indexers, the parameter list is picked from the most specific •	
definition of the member, starting with the interface type and searching through the base
interfaces. If no unique parameter list is found, a parameter list with inaccessible names
and no optional parameters is constructed, so that invocations cannot use named param-
eters or omit optional arguments.

For partial methods, the parameter list of the defining partial method declaration •	
is used.

For all other function members and delegates, there is only a single parameter list, which •	
is the one used.

The position of an argument or parameter is defined as the number of arguments or param-
eters preceding it in the argument list or parameter list.

The corresponding parameters for function member arguments are established as
follows:

Arguments in the •	 argument-list of instance constructors, methods, indexers, and
delegates:

- A positional argument where a fixed parameter occurs at the same position in the
parameter list corresponds to that parameter.

- A positional argument of a function member with a parameter array invoked in its
normal form corresponds to the parameter array, which must occur at the same posi-
tion in the parameter list.

- A positional argument of a function member with a parameter array invoked in its
expanded form, where no fixed parameter occurs at the same position in the param-
eter list, corresponds to an element in the parameter array.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

257

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

- A named argument corresponds to the parameter of the same name in the
parameter list.

For indexers, when invoking the - set accessor, the expression specified as the right
operand of the assignment operator corresponds to the implicit value parameter of
the set accessor declaration.

For properties, when invoking the •	 get accessor, there are no arguments. When invoking
the set accessor, the expression specified as the right operand of the assignment opera-
tor corresponds to the implicit value parameter of the set accessor declaration.

For user-defined unary operators (including conversions), the single operand corre-•	
sponds to the single parameter of the operator declaration.

For user-defined binary operators, the left operand corresponds to the first parameter, •	
and the right operand corresponds to the second parameter of the operator
declaration.

7.5.1.2 Runtime Evaluation of Argument Lists
During the runtime processing of a function member invocation (§7.5.4), the expressions
or variable references of an argument list are evaluated in order, from left to right, as
follows:

For a value parameter, the argument expression is evaluated and an implicit conversion •	
(§6.1) to the corresponding parameter type is performed. The resulting value becomes
the initial value of the value parameter in the function member invocation.

For a reference or output parameter, the variable reference is evaluated and the resulting •	
storage location becomes the storage location represented by the parameter in the func-
tion member invocation. If the variable reference given as a reference or output param-
eter is an array element of a reference-type, a runtime check is performed to ensure that
the element type of the array is identical to the type of the parameter. If this check fails,
a System.ArrayTypeMismatchException is thrown.

Methods, indexers, and instance constructors may declare their rightmost parameter to be
a parameter array (§10.6.1.4). Such function members are invoked either in their normal
form or in their expanded form depending on which is applicable (§7.5.3.1):

When a function member with a parameter array is invoked in its normal form, the argu-•	
ment given for the parameter array must be a single expression that is implicitly con-
vertible (§6.1) to the parameter array type. In this case, the parameter array acts precisely
like a value parameter.

When a function member with a parameter array is invoked in its expanded form, the •	
invocation must specify zero or more positional arguments for the parameter array,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

258

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

where each argument is an expression that is implicitly convertible (§6.1) to the element
type of the parameter array. In this case, the invocation creates an instance of the param-
eter array type with a length corresponding to the number of arguments, initializes the
elements of the array instance with the given argument values, and uses the newly cre-
ated array instance as the actual argument.

The expressions of an argument list are always evaluated in the order they are written.
Thus the example

class Test
{
 static void F(int x, int y = -1, int z = -2)
 {
 System.Console.WriteLine("x = {0}, y = {1}, z = {2}", x, y, z);
 }

 static void Main()
 {
 int i = 0;
 F(i++, i++, i++);
 F(z: i++, x: i++);
 }
}

produces the output

x = 0, y = 1, z = 2
x = 4, y = -1, z = 3

The array covariance rules (§12.5) permit a value of an array type A[] to be a reference to
an instance of an array type B[], provided an implicit reference conversion exists from B to
A. Because of these rules, when an array element of a reference-type is passed as a reference
or output parameter, a runtime check is required to ensure that the actual element type of
the array is identical to that of the parameter. In the example

class Test
{
 static void F(ref object x) {...}

 static void Main()
 {
 object[] a = new object[10];
 object[] b = new string[10];
 F(ref a[0]); // Okay
 F(ref b[1]); // ArrayTypeMismatchException
 }
}

the second invocation of F causes a System.ArrayTypeMismatchException to be thrown
because the actual element type of b is string and not object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

259

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

When a function member with a parameter array is invoked in its expanded form, the
invocation is processed exactly as if an array creation expression with an array initializer
(§7.6.10.4) was inserted around the expanded parameters. For example, given the
declaration

void F(int x, int y, params object[] args);

the following invocations of the expanded form of the method

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

F(10, 20, new object[] { });
F(10, 20, new object[] { 30, 40 });
F(10, 20, new object[] { 1, "hello", 3.0 });

In particular, note that an empty array is created when there are zero arguments given for
the parameter array.

When arguments are omitted from a function member with corresponding optional param-
eters, the default arguments of the function member declaration are implicitly passed.
Because these are always constant, their evaluation will not impact the evaluation order of
the remaining arguments.

7.5.2 Type Inference
When a generic method is called without specifying type arguments, a type inference pro-
cess attempts to infer type arguments for the call. The presence of type inference allows a
more convenient syntax to be used for calling a generic method, and allows the program-
mer to avoid specifying redundant type information. For example, given the method
declaration

class Chooser
{
 static Random rand = new Random();

 public static T Choose<T>(T first, T second)
 {
 return (rand.Next(2) == 0) ? first : second;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

260

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

it is possible to invoke the Choose method without explicitly specifying a type argument:

int i = Chooser.Choose(5, 213); // Calls Choose<int>
string s = Chooser.Choose("foo", "bar"); // Calls Choose<string>

Through type inference, the type arguments int and string are determined from the argu-
ments to the method.

n
n  JoN SkEET On occasion, I have attempted to work through the type inference

algorithm for specific cases that have not behaved as I expected. I’ve nearly always
regretted it, coming out of the process more confused than before. It feels somewhat
like entering a labyrinth, hoping to find the treasure (appropriate type arguments) in
the center, but usually encountering a minotaur on the way. I am in awe of those who
can not only navigate through the algorithm, but also implement it in a compiler.

n
n  CHRIS SELLS If understanding your code feels like navigating a labyrinth, you’re

doing something wrong.

Type inference occurs as part of the binding-time processing of a method invocation
(§7.6.5.1) and takes place before the overload resolution step of the invocation. When a
particular method group is specified in a method invocation, and no type arguments are
specified as part of the method invocation, type inference is applied to each generic method
in the method group. If type inference succeeds, then the inferred type arguments are used
to determine the types of arguments for subsequent overload resolution. If overload reso-
lution chooses a generic method as the one to invoke, then the inferred type arguments are
used as the actual type arguments for the invocation. If type inference for a particular
method fails, that method does not participate in overload resolution. The failure of type
inference, in and of itself, does not cause a binding-time error. However, it often leads to a
binding-time error when overload resolution then fails to find any applicable methods.

n
n  ERIC LIPPERT The type inference algorithm is not guaranteed to produce an

applicable candidate. (Of course, overload resolution will weed out the nonapplicable
candidates.) The type inference algorithm is designed to answer one question: Given
only the arguments and the formal parameter types, what is the best possible type argu-
ment that can be inferred for each type parameter? If the best possible inference pro-
duces an inapplicable candidate, then we do not backtrack and try to guess what the
user “really” meant so that inference can choose a different value.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

261

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  MAREk SAFAR When type inference succeeds but overloads resolution fails, the

culprit might be an inferred type parameter that uses constraints. The type inference
algorithm ignores type parameter constraints, leaving it to overload resolution to ver-
ify the best candidate.

If the supplied number of arguments is different than the number of parameters in the
method, then inference immediately fails. Otherwise, assume that the generic method has
the following signature:

Tr M<X1...Xn>(T1 x1 ... Tm xm)

With a method call of the form M(E1 ...Em), the task of type inference is to find unique
type arguments S1...Sn for each of the type parameters X1...Xn so that the call M<S1...
Sn>(E1...Em)becomes valid.

n
n  VLADIMIR RESHETNIkoV Although it is not indicated explicitly here, the signa-

ture can have ref/out parameters.

During the process of inference, each type parameter Xi is either fixed to a particular type Si

or unfixed with an associated set of bounds. Each of the bounds is some type T. Initially each
type variable Xi is unfixed with an empty set of bounds.

Type inference takes place in phases. Each phase will try to infer type arguments for more
type variables based on the findings of the previous phase. The first phase makes some
initial inferences of bounds, whereas the second phase fixes type variables to specific types
and infers further bounds. The second phase may have to be repeated a number of times.

Note: Type inference takes place in more situations than just when a generic method is
called. Type inference for conversion of method groups is described in §7.5.2.13 and find-
ing the best common type of a set of expressions is described in §7.5.2.14.

n
n  ERIC LIPPERT The language design team occasionally is asked, “Why did you

invent your own type inference algorithm instead of using a Hindley–Milner-style
algorithm?” The short answer is that (1) Hindley–Milner-style algorithms are difficult
to adapt to languages with class-based inheritance and covariant types, and (2) back-
tracking algorithms can potentially take a very long time to execute.

Our type inference algorithm was designed to handle inheritance and type variance.
Because every iteration of the second phase either “fixes” an additional type parame-
ter to its inferred type or fails if it is unable to do so, it is clear that the type inference
process terminates in fairly short order.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

262

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  PETER SESToFT Although probably not intended to, the previous annotation

may leave the impression that a type inference algorithm for a Hindley–Milner-style
type system (that is, ML let polymorphism) must use backtracking. In particular, the
Damas–Milner algorithm (1978) does not use backtracking. That said, use of back-
tracking would be overkill for C# type inference, because in C# all type parameters
must be explicitly specified. In contrast, the Damas–Milner algorithm will invent
enough type parameters to find the most general (“principal”) type for a given expres-
sion. That problem is known to be complete for exponential time.

7.5.2.1 The First Phase
For each of the method arguments Ei:

If •	 Ei is an anonymous function, an explicit parameter type inference (§7.5.2.7) is made from
Ei to Ti.

Otherwise, if •	 Ei has a type U and xi is a value parameter, then a lower-bound inference is
made from U to Ti.

Otherwise, if •	 Ei has a type U and xi is a ref or out parameter, then an exact inference is
made from U to Ti.

Otherwise, no inference is made for this argument.•	

7.5.2.2 The Second Phase
The second phase proceeds as follows:

All •	 unfixed type variables Xi that do not depend on (§7.5.2.5) any Xj are fixed (§7.5.2.10).

If no such type variables exist, all •	 unfixed type variables Xi are fixed for which both of the
following hold:

There is at least one type variable - Xj that depends on Xi.

X- i has a non-empty set of bounds.

If no such type variables exist and there are still •	 unfixed type variables, type inference
fails.

Otherwise, if no further •	 unfixed type variables exist, type inference succeeds.

Otherwise, for all arguments •	 Ei with corresponding parameter type Ti where the output
types (§7.5.2.4) contain unfixed type variables Xj but the input types (§7.5.2.3) do not, an
output type inference (§7.5.2.6) is made from Ei to Ti. Then the second phase is repeated.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

263

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.5.2.3 Input Types
If E is a method group or implicitly typed anonymous function and T is a delegate type or
expression tree type, then all the parameter types of T are input types of E with type T.

7.5.2.4 Output Types
If E is a method group or an anonymous function and T is a delegate type or expression tree
type, then the return type of T is an output type of E with type T.

7.5.2.5 Dependence
An unfixed type variable Xi depends directly on an unfixed type variable Xj if for some argu-
ment Ek with type Tk Xj occurs in an input type of Ek with type Tk and Xi occurs in an output
type of Ek with type Tk.

Xj depends on Xi if Xj depends directly on Xi or if Xi depends directly on Xk and Xk depends
on Xj. Thus “depends on” is the transitive but not reflexive closure of “depends directly on.”

n
n  VLADIMIR RESHETNIkoV A type parameter could possibly directly or indirectly

depend on itself.

7.5.2.6 Output Type Inferences
An output type inference is made from an expression E to a type T in the following way:

If •	 E is an anonymous function with inferred return type U (§7.5.2.12) and T is a delegate
type or expression tree type with return type Tb, then a lower-bound inference (§7.5.2.9) is
made from U to Tb.

Otherwise, if •	 E is a method group and T is a delegate type or expression tree type with
parameter types T1...Tk and return type Tb, and overload resolution of E with the types
T1...Tk yields a single method with return type U, then a lower-bound inference is made
from U to Tb.

n
n  VLADIMIR RESHETNIkoV This step applies only if all method type parameters

occurring in the delegate parameter types are already fixed. Overload resolution does
not try to select the best method based on incomplete type information.

Otherwise, if •	 E is an expression with type U, then a lower-bound inference is made from
U to T.

Otherwise, no inferences are made.•	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

264

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.5.2.7 Explicit Parameter Type Inferences
An explicit parameter type inference is made from an expression E to a type T in the follow-
ing way:

If •	 E is an explicitly typed anonymous function with parameter types U1...Uk and T is a
delegate type or expression tree type with parameter types V1...Vk, then for each Ui an
exact inference (§7.5.2.8) is made from Ui to the corresponding Vi.

7.5.2.8 Exact Inferences
An exact inference from a type U to a type V is made as follows:

If •	 V is one of the unfixed Xi, then U is added to the set of exact bounds for Xi.

Otherwise, sets •	 V1...Vk and U1...Uk are determined by checking if any of the following
cases apply:

V - is an array type V1[...] and U is an array type U1[...] of the same rank.

V - is the type V1? and U is the type U1?.

V- is a constructed type C<V1...Vk> and U is a constructed type C<U1...Uk>.

If any of these cases apply, then an - exact inference is made from each Ui to the corre-
sponding Vi.

Otherwise, no inferences are made.•	

7.5.2.9 Lower-Bound Inferences
A lower-bound inference from a type U to a type V is made as follows:

If •	 V is one of the unfixed Xi, then U is added to the set of lower bounds for Xi.

Otherwise, sets •	 U1...Uk and V1...Vk are determined by checking if any of the following
cases apply:

V - is an array type V1[...]and U is an array type U1[...] (or a type parameter whose
effective base type is U1[...]) of the same rank.

V- is one of IEnumerable<V1>, ICollection<V1>, or IList<V1> and U is a one- dimensional
array type U1[] (or a type parameter whose effective base type is U1[]).

n
n  VLADIMIR RESHETNIkoV Of course, this bullet (and the corresponding bullet in

the next paragraph) mentions interfaces from namespace System.Collections.
Generic.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

265

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

V - is the type V1? and U is the type U1?.

V- is a constructed class, struct, interface, or delegate type C<V1...Vk> and there is a
unique type C<U1...Uk> such that U (or, if U is a type parameter, its effective base class
or any member of its effective interface set) is identical to, inherits from (directly or
indirectly), or implements (directly or indirectly) C<U1...Uk>.

(The “uniqueness” restriction means that in the case interface C<T>{} class U:
C<X>, C<Y>{}, then no inference is made when inferring from U to C<T> because U1
could be X or Y.)

n
n  VLADIMIR RESHETNIkoV The same inference rule applies to constructed enum

types. Although enum types cannot have type parameters in their declarations, they
can still be generic if nested within a generic class or struct type.

If any of these cases apply, then an inference is made from each Ui to the corresponding Vi

as follows:

If •	 Ui is not known to be a reference type, then an exact inference is made.

Otherwise, if • U is an array type, then a lower-bound inference is made.

Otherwise, if• V is C<V1...Vk>, then inference depends on the i-th type parameter of C:

If it is covariant, then a - lower-bound inference is made.

If it is contravariant, then an - upper-bound inference is made.

If it is invariant, then an - exact inference is made.

Otherwise, no inferences are made.•	

7.5.2.10 Upper-Bound Inferences
An upper-bound inference from a type U to a type V is made as follows:

If •	 V is one of the unfixed Xi, then U is added to the set of upper bounds for Xi.

Otherwise, sets •	 V1...Vk and U1...Uk are determined by checking if any of the following
cases apply:

U - is an array type U1[...] and V is an array type V1[...] of the same rank.

U - is one of IEnumerable<Ue>, ICollection<Ue>, or IList<Ue> and V is a one- dimensional
array type Ve[].

U - is the type U1? and V is the type V1?.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

266

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

U - is constructed class, struct, interface, or delegate type C<U1...Uk> and V is a class,
struct, interface, or delegate type that is identical to, inherits from (directly or indi-
rectly), or implements (directly or indirectly) a unique type C<V1...Vk>.

(The “uniqueness” restriction means that if we have interface C<T>{} class V<Z>:
C<X<Z>>, C<Y<Z>>{}, then no inference is made when inferring from C<U1> to V<Q>.
Inferences are not made from U1 to either X<Q> or Y<Q>.)

If any of these cases apply, then an inference is made from each Ui to the corresponding Vi

as follows:

If •	 Ui is not known to be a reference type, then an exact inference is made.

Otherwise, if • V is an array type, then an upper-bound inference is made.

Otherwise, if• U is C<U1...Uk>, then inference depends on the i-th type parameter of C:

If it is covariant, then an - upper-bound inference is made.

If it is contravariant, then a - lower-bound inference is made.

If it is invariant, then an - exact inference is made.

Otherwise, no inferences are made. •	

n
n  VLADIMIR RESHETNIkoV So, no inferences are ever made for method type

parameters that do not appear in the parameter types of the generic method. For
example, no inferences are made for parameters that appear only in constraints:

using System.Collections.Generic;

class C
{
 static void Foo<T,U>(T x) where T : IEnumerable<U> { }

 static void Main()
 {
 Foo(new List<int>());
 // Error CS0411: The type arguments for method
 // 'C.Foo<T,U>(T)' cannot be inferred from the
 // usage.
 }
}

7.5.2.11 Fixing
An unfixed type variable Xi with a set of bounds is fixed as follows:

The set of •	 candidate types Uj starts out as the set of all types in the set of bounds for Xi.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

267

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  ERIC LIPPERT This condition illustrates a subtle design point of C#. When faced

with the need to choose a “best type” given a set of types, we always choose one of
the types in the set. That is, if asked to choose the best type in {Cat, Dog, Goldfish},
we fail to find a best type; we never say, “The common base type Animal is the best
we can do given those three choices” because Animal is not one of the choices in the
first place.

We then examine each bound for •	 Xi in turn: For each bound U of Xi, all types Uj that are
not identical to U are removed from the candidate set. For each lower bound U of Xi, all
types Uj to which there is not an implicit conversion from U are removed from the candi-
date set. For each upper bound U of Xi, all types Uj from which there is not an implicit
conversion to U are removed from the candidate set.

If among the remaining candidate types •	 Uj there is a unique type V from which there is
an implicit conversion to all the other candidate types, then Xi is fixed to V.

Otherwise, type inference fails.•	

n
n  ERIC LIPPERT In C# 2.0, the generic method type inference algorithm failed if

two distinct bounds were computed for the same type parameter. In C# 3.0, we have
situations such as the Join method, which must infer the type of the “key” upon
which the two collections are joined. If the key in one collection is, say, int, and the
corresponding key in the other collection is int?, then we have two distinct types.
Because every int may be converted to int?, however, we could allow the ambiguity
and resolve it by picking the more general of the two types. C# 4.0 supports generic
variance, which complicates the situation further; now we might have upper, lower,
and exact bounds on a type parameter.

7.5.2.12 Inferred Return Type
The inferred return type of an anonymous function F is used during type inference and
overload resolution. The inferred return type can only be determined for an anonymous
function where all parameter types are known, either because they are explicitly given,
provided through an anonymous function conversion, or inferred during type inference on
an enclosing generic method invocation. The inferred return type is determined as
follows:

If the body of •	 F is an expression, then the inferred return type of F is the type of that
expression.

If the body of •	 F is a block and the set of expressions in the block’s return statements has
a best common type T (§7.5.2.14), then the inferred return type of F is T.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

268

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  VLADIMIR RESHETNIkoV Even return statements in unreachable code are

included in the set and participate in calculation of the inferred return type. This has
a surprising consequence, in that removing unreachable code can change the program
behavior.

Otherwise, a return type cannot be inferred for •	 E.

As an example of type inference involving anonymous functions, consider the Select
extension method declared in the System.Linq.Enumerable class:

namespace System.Linq
{
 public static class Enumerable
 {
 public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source,
 Func<TSource, TResult> selector)
 {
 foreach (TSource element in source)
 yield return selector(element);
 }
 }
}

Assuming the System.Linq namespace was imported with a using clause, and given a
class Customer with a Name property of type string, the Select method can be used to
select the names of a list of customers:

List<Customer> customers = GetCustomerList();
IEnumerable<string> names = customers.Select(c => c.Name);

The extension method invocation (§7.6.5.2) of Select is processed by rewriting the invoca-
tion to a static method invocation:

IEnumerable<string> names = Enumerable.Select(customers, c => c.Name);

Since type arguments were not explicitly specified, type inference is used to infer the type
arguments. First, the customers argument is related to the source parameter, inferring T to
be Customer. Then, using the anonymous function type inference process described above,
c is given type Customer, and the expression c.Name is related to the return type of the
selector parameter, inferring S to be string. Thus the invocation is equivalent to

Sequence.Select<Customer,string>(customers, (Customer c) => c.Name)

and the result is of type IEnumerable<string>.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

269

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The following example demonstrates how anonymous function type inference allows type
information to “flow” between arguments in a generic method invocation. Given the
method

static Z F<X,Y,Z>(X value, Func<X,Y> f1, Func<Y,Z> f2) {
 return f2(f1(value));
}

type inference for the invocation

double seconds = F("1:15:30", s => TimeSpan.Parse(s), t => t.TotalSeconds);

proceeds as follows: First, the argument "1:15:30" is related to the value parameter, infer-
ring X to be string. Then, the parameter of the first anonymous function, s, is given the
inferred type string, and the expression TimeSpan.Parse(s) is related to the return type of
f1, inferring Y to be System.TimeSpan. Finally, the parameter of the second anonymous
function, t, is given the inferred type System.TimeSpan, and the expression t.TotalSeconds
is related to the return type of f2, inferring Z to be double. Thus the result of the invocation
is of type double.

7.5.2.13 Type Inference for Conversion of Method Groups
Similar to calls of generic methods, type inference must also be applied when a method
group M containing a generic method is converted to a given delegate type D (§6.6). Given
a method

Tr M<X1...Xn>(T1 x1 ... Tm xm)

and the method group M being assigned to the delegate type D, the task of type inference is
to find type arguments S1...Sn so that the expression

M<S1...Sn>

becomes compatible (§15.1) with D.

Unlike the type inference algorithm for generic method calls, in this case there are only
argument types—no argument expressions. In particular, there are no anonymous functions
and hence no need for multiple phases of inference.

Instead, all Xi are considered unfixed, and a lower-bound inference is made from each argu-
ment type Uj of D to the corresponding parameter type Tj of M. If for any of the Xi no bounds
were found, type inference fails. Otherwise, all Xi are fixed to corresponding Si, which are
the result of type inference.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

270

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.5.2.14 Finding the Best Common Type of a Set of Expressions
In some cases, a common type needs to be inferred for a set of expressions. In particular,
the element types of implicitly typed arrays and the return types of anonymous functions
with block bodies are found in this way.

Intuitively, given a set of expressions E1...Em, this inference should be equivalent to calling
a method

Tr M<X>(X x1 ... X xm)

with Ei as arguments.

More precisely, the inference starts out with an unfixed type variable X. Output type infer-
ences are then made from each Ei to X. Finally, X is fixed and, if successful, the resulting type
S is the resulting best common type for the expressions. If no such S exists, the expressions
have no best common type.

7.5.3 overload Resolution
Overload resolution is a binding-time mechanism for selecting the best function member
to invoke given an argument list and a set of candidate function members. Overload reso-
lution selects the function member to invoke in the following distinct contexts within C#:

Invocation of a method named in an •	 invocation-expression (§7.6.5.1).

Invocation of an instance constructor named in an •	 object-creation-expression (§7.6.10.1).

Invocation of an indexer accessor through an •	 element-access (§7.6.6).

Invocation of a predefined or user-defined operator referenced in an expression (§7.3.3 •	
and §7.3.4).

n
n  VLADIMIR RESHETNIkoV The same rules govern selection of an attribute

instance constructor in an attribute specification, invocation of an instance constructor
in a constructor-initializer, and invocation of an indexer through a base-access.

Each of these contexts defines the set of candidate function members and the list of argu-
ments in its own unique way, as described in detail in the sections listed above. For exam-
ple, the set of candidates for a method invocation does not include methods marked
override (§7.4), and methods in a base class are not candidates if any method in a derived
class is applicable (§7.6.5.1).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

271

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Once the candidate function members and the argument list have been identified, the
selection of the best function member is the same in all cases:

Given the set of applicable candidate function members, the best function member in •	
that set is located. If the set contains only one function member, then that function mem-
ber is the best function member. Otherwise, the best function member is the one function
member that is better than all other function members with respect to the given argu-
ment list, provided that each function member is compared to all other function mem-
bers using the rules in §7.5.3.2. If there is not exactly one function member that is better
than all other function members, then the function member invocation is ambiguous
and a binding-time error occurs.

The following sections define the exact meanings of the terms applicable function member
and better function member.

n
n  BILL WAGNER This section gets very complicated. As you read it, remember that

every additional overload you create may contribute to the possible ambiguity in
overload resolution. You should limit yourself to the number of overloads that truly
make it easier on your users. That approach will keep matters as simple as possible for
users of your class and help them ensure that they get the right method.

7.5.3.1 Applicable Function Member

n
n  VLADIMIR RESHETNIkoV This section also governs applicability of delegates

(§7.6.5.3).

A function member is said to be an applicable function member with respect to an argu-
ment list A when all of the following are true:

Each argument in •	 A corresponds to a parameter in the function member declaration as
described in §7.5.1.1, and any parameter to which no argument corresponds is an
optional parameter.

For each argument in •	 A, the parameter passing mode of the argument (i.e., value, ref, or
out) is identical to the parameter passing mode of the corresponding parameter, and

- For a value parameter or a parameter array, an implicit conversion (§6.1) exists from
the argument to the type of the corresponding parameter, or

For a - ref or out parameter, the type of the argument is identical to the type of the
corresponding parameter. After all, a ref or out parameter is an alias for the argu-
ment passed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

272

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

A function member that includes a parameter array, if the function member is applicable
by the above rules, is said to be applicable in its normal form. If a function member that
includes a parameter array is not applicable in its normal form, the function member may
instead be applicable in its expanded form:

The expanded form is constructed by replacing the parameter array in the function •	
member declaration with zero or more value parameters of the element type of the
parameter array such that the number of arguments in the argument list A matches the
total number of parameters. If A has fewer arguments than the number of fixed param-
eters in the function member declaration, the expanded form of the function member
cannot be constructed and is thus not applicable.

Otherwise, the expanded form is applicable if for each argument in •	 A the parameter
passing mode of the argument is identical to the parameter passing mode of the corre-
sponding parameter, and

- For a fixed value parameter or a value parameter created by the expansion, an implicit
conversion (§6.1) exists from the type of the argument to the type of the correspond-
ing parameter, or

For a - ref or out parameter, the type of the argument is identical to the type of the
corresponding parameter.

7.5.3.2 Better Function Member
For the purposes of determining the better function member, a stripped-down argument
list A is constructed containing just the argument expressions themselves in the order they
appear in the original argument list.

Parameter lists for each of the candidate function members are constructed in the follow-
ing way:

The expanded form is used if the function member was applicable only in the •	
expanded form.

Optional parameters with no corresponding arguments are removed from the parame-•	
ter list.

The parameters are reordered so that they occur at the same position as the correspond-•	
ing argument in the argument list.

Given an argument list A with a set of argument expressions { E1, E2, …, EN } and two appli-
cable function members MP and MQ with parameter types { P1, P2, …, PN } and { Q1, Q2, …,
QN }, MP is defined to be a better function member than MQ if

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

273

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

For each argument, the implicit conversion from •	 EX to QX is not better than the implicit
conversion from EX to PX, and

For at least one argument, the conversion from •	 EX to PX is better than the conversion from
EX to QX.

When performing this evaluation, if MP or MQ is applicable in its expanded form, then PX or
QX refers to a parameter in the expanded form of the parameter list.

In case the parameter type sequences {P1, P2, …, PN} and {Q1, Q2, …, QN} are equivalent (i.e.,
each Pi has an identity conversion to the corresponding Qi), the following tie-breaking rules
are applied, in order, to determine the better function member:

If •	 MP is a nongeneric method and MQ is a generic method, then MP is better than MQ.

Otherwise, if •	 MP is applicable in its normal form and MQ has a params array and is appli-
cable only in its expanded form, then MP is better than MQ.

Otherwise, if •	 MP has more declared parameters than MQ, then MP is better than MQ. This
can occur if both methods have params arrays and are applicable only in their expanded
forms.

Otherwise, if all parameters of •	 MP have a corresponding argument whereas default argu-
ments need to be substituted for at least one optional parameter in MQ, then MP is better
than MQ.

Otherwise, if •	 MP has more specific parameter types than MQ, then MP is better than MQ. Let
{R1, R2, …, RN} and {S1, S2, …, SN} represent the uninstantiated and unexpanded param-
eter types of MP and MQ. MP’s parameter types are more specific than MQ’s if, for each
parameter, RX is not less specific than SX, and, for at least one parameter, RX is more
specific than SX:

- A type parameter is less specific than a nontype parameter.

- Recursively, a constructed type is more specific than another constructed type (with
the same number of type arguments) if at least one type argument is more specific
and no type argument is less specific than the corresponding type argument in
the other.

- An array type is more specific than another array type (with the same number of
dimensions) if the element type of the first is more specific than the element type
of the second.

Otherwise, if one member is a non-lifted operator and the other is a lifted operator, the •	
non-lifted one is better.

Otherwise, neither function member is better.•	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

274

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.5.3.3 Better Conversion from Expression
Given an implicit conversion C1 that converts from an expression E to a type T1, and an
implicit conversion C2 that converts from an expression E to a type T2, C1 is a better conver-
sion than C2 if at least one of the following holds:

E•	 has a type S and an identity conversion exists from S to T1 but not from S to T2.

E•	 is not an anonymous function and T1 is a better conversion target than T2 (§7.5.3.5).

E•	 is an anonymous function, T1 is either a delegate type D1 or an expression tree type
Expression<D1>, T2 is either a delegate type D2 or an expression tree type Expression<D2>
and one of the following holds:

D - 1 is a better conversion target than D2.

D - 1 and D2 have identical parameter lists, and one of the following holds:

D•	 1 has a return type Y1, and D2 has a return type Y2, an inferred return type X exists
for E in the context of that parameter list (§7.5.2.12), and the conversion from X to
Y1 is better than the conversion from X to Y2.

D•	 1 has a return type Y, and D2 is void returning.

7.5.3.4 Better Conversion from Type
Given a conversion C1 that converts from a type S to a type T1, and a conversion C2 that
converts from a type S to a type T2, C1 is a better conversion than C2 if at least one of the fol-
lowing holds:

An identity conversion exists from •	 S to T1 but not from S to T2.

T•	 1 is a better conversion target than T2 (§7.5.3.5).

7.5.3.5 Better Conversion Target
Given two different types T1 and T2, T1 is a better conversion target than T2 if at least one of
the following holds:

An implicit conversion from •	 T1 to T2 exists, and no implicit conversion from T2 to T1
exists.

T•	 1 is a signed integral type and T2 is an unsigned integral type. Specifically:

T- 1 is sbyte and T2 is byte, ushort, uint, or ulong.

T- 1 is short and T2 is ushort, uint, or ulong.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

275

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

T - 1 is int and T2 is uint, or ulong.

T- 1 is long and T2 is ulong.

7.5.3.6 Overloading in Generic Classes
While signatures as declared must be unique, it is possible that substitution of type argu-
ments might result in identical signatures. In such cases, the tie-breaking rules of overload
resolution above will pick the most specific member.

The following examples show overloads that are valid and invalid according to this rule:

interface I1<T> {...}

interface I2<T> {...}

class G1<U>
{
 int F1(U u); // Overload resolution for G<int>.F1
 int F1(int i); // will pick nongeneric

 void F2(I1<U> a); // Valid overload
 void F2(I2<U> a);
}

class G2<U,V>
{
 void F3(U u, V v); // Valid, but overload resolution for
 void F3(V v, U u); // G2<int,int>.F3 will fail

 void F4(U u, I1<V> v); // Valid, but overload resolution for
 void F4(I1<V> v, U u); // G2<I1<int>,int>.F4 will fail

 void F5(U u1, I1<V> v2); // Valid overload
 void F5(V v1, U u2);

 void F6(ref U u); // Valid overload
 void F6(out V v);
}

7.5.4 Compile-Time Checking of Dynamic overload Resolution
For most dynamically bound operations, the set of possible candidates for resolution is
unknown at compile time. In certain cases, however, the candidate set is known at com-
pile time:

Static method calls with dynamic arguments.•	

Instance method calls where the receiver is not a dynamic expression.•	

Indexer calls where the receiver is not a dynamic expression.•	

Constructor calls with dynamic arguments.•	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

276

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

In these cases, a limited compile-time check is performed for each candidate to see if any
of them could possibly apply at runtime. This check consists of the following steps:

Partial type inference: Any type argument that does not depend directly or indirectly on •	
an argument of type dynamic is inferred using the rules of §7.5.2. The remaining type
arguments are unknown.

Partial applicability check: Applicability is checked according to §7.5.3.1, but ignoring •	
parameters whose types are unknown.

If no candidate passes this test, a compile-time error occurs.

7.5.5 Function Member Invocation
This section describes the process that takes place at runtime to invoke a particular func-
tion member. It is assumed that a binding-time process has already determined the particu-
lar member to invoke, possibly by applying overload resolution to a set of candidate
function members.

For purposes of describing the invocation process, function members are divided into two
categories:

Static function members. These are instance constructors, static methods, static property •	
accessors, and user-defined operators. Static function members are always nonvirtual.

Instance function members. These are instance methods, instance property accessors, •	
and indexer accessors. Instance function members are either nonvirtual or virtual, and
are always invoked on a particular instance. The instance is computed by an instance
expression, and it becomes accessible within the function member as this (§7.6.7).

The runtime processing of a function member invocation consists of the following steps,
where M is the function member and, if M is an instance member, E is the instance
expression:

If •	 M is a static function member:

- The argument list is evaluated as described in §7.5.1.

M - is invoked.

If •	 M is an instance function member declared in a value-type:

E - is evaluated. If this evaluation causes an exception, then no further steps are
executed.

If - E is not classified as a variable, then a temporary local variable of E’s type is created
and the value of E is assigned to that variable. E is then reclassified as a reference to
that temporary local variable. The temporary variable is accessible as this within M,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.5		 Function Members

277

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

but not in any other way. Thus, only when E is a true variable is it possible for the
caller to observe the changes that M makes to this.

n
n  ERIC LIPPERT This point illustrates yet another way in which the combination of

mutability and copy-by-value semantics can lead to trouble. For example, a readonly
field is not classified as a variable after the constructor runs. Therefore, an attempt to
call a method that mutates the contents of a readonly field of value type succeeds but
actually mutates a copy! Avoid these problems by avoiding mutable value types
altogether.

- The argument list is evaluated as described in §7.5.1.

M - is invoked. The variable referenced by E becomes the variable referenced by this.

If •	 M is an instance function member declared in a reference-type:

E - is evaluated. If this evaluation causes an exception, then no further steps are
executed.

- The argument list is evaluated as described in §7.5.1.

If the type of - E is a value-type, a boxing conversion (§4.3.1) is performed to convert E
to type object, and E is considered to be of type object in the following steps. In this
case, M could only be a member of System.Object.

The value of - E is checked to see if it is valid. If the value of E is null, a System.
NullReferenceException is thrown and no further steps are executed.

- The function member implementation to invoke is determined:

If the binding-time type of •	 E is an interface, the function member to invoke is the
implementation of M provided by the runtime type of the instance referenced by E.
This function member is determined by applying the interface mapping rules
(§13.4.4) to determine the implementation of M provided by the runtime type of the
instance referenced by E.

Otherwise, if •	 M is a virtual function member, the function member to invoke is the
implementation of M provided by the runtime type of the instance referenced by E.
This function member is determined by applying the rules for determining the
most derived implementation (§10.6.3) of M with respect to the runtime type of the
instance referenced by E.

Otherwise, •	 M is a nonvirtual function member, and the function member to invoke
is M itself.

The function member implementation determined in the step above is invoked. The •	
object referenced by E becomes the object referenced by this.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

278

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.5.5.1 Invocations on Boxed Instances
A function member implemented in a value-type can be invoked through a boxed instance
of that value-type in the following situations:

When the function member is an •	 override of a method inherited from type object and
is invoked through an instance expression of type object.

When the function member is an implementation of an interface function member and •	
is invoked through an instance expression of an interface-type.

When the function member is invoked through a delegate.•	

In these situations, the boxed instance is considered to contain a variable of the value-type,
and this variable becomes the variable referenced by this within the function member
invocation. In particular, when a function member is invoked on a boxed instance, it is pos-
sible for the function member to modify the value contained in the boxed instance.

7.6 Primary Expressions
Primary expressions include the simplest forms of expressions.

primary-expression:
primary-no-array-creation-expression
array-creation-expression

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
anonymous-object-creation-expression
typeof-expression
checked-expression
unchecked-expression
default-value-expression
anonymous-method-expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

279

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Primary expressions are divided between array-creation-expressions and primary-no-array-
creation-expressions. Treating array-creation-expression in this way, rather than listing it along
with the other simple expression forms, enables the grammar to disallow potentially con-
fusing code such as

object o = new int[3][1];

which would otherwise be interpreted as

object o = (new int[3])[1];

7.6.1 Literals
A primary-expression that consists of a literal (§2.4.4) is classified as a value.

7.6.2 Simple Names
A simple-name consists of an identifier, optionally followed by a type argument list:

simple-name:
identifier type-argument-listopt

A simple-name is either of the form I or of the form I<A1, ..., AK>, where I is a single identifier
and <A1, ..., AK> is an optional type-argument-list. When no type-argument-list is specified,
consider K to be zero. The simple-name is evaluated and classified as follows:

If •	 K is zero and the simple-name appears within a block, and if the block’s (or an enclosing
block’s) local variable declaration space (§3.3) contains a local variable, parameter, or
constant with name I, then the simple-name refers to that local variable, parameter,
or constant and is classified as a variable or value.

n
n  VLADIMIR RESHETNIkoV This rule also applies if the simple-name appears

within a constructor-initializer and matches a name of the containing constructor’s
parameter.

If •	 K is zero and the simple-name appears within the body of a generic method declaration
and if that declaration includes a type parameter with name I, then the simple-name
refers to that type parameter.

n
n  VLADIMIR RESHETNIkoV This condition always leads to a compile-time error

later.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

280

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Otherwise, for each instance type •	 T (§10.3.1), starting with the instance type of the imme-
diately enclosing type declaration and continuing with the instance type of each enclos-
ing class or struct declaration (if any):

If - K is zero and the declaration of T includes a type parameter with name I, then the
simple-name refers to that type parameter.

n
n  VLADIMIR RESHETNIkoV This condition always leads to a compile-time error

later.

Otherwise, if a member lookup (§7.4) of - I in T with K type arguments produces a
match:

If •	 T is the instance type of the immediately enclosing class or struct type and the
lookup identifies one or more methods, the result is a method group with an asso-
ciated instance expression of this. If a type argument list was specified, it is used
in calling a generic method (§7.6.5.1).

Otherwise, if •	 T is the instance type of the immediately enclosing class or struct
type, if the lookup identifies an instance member, and if the reference occurs within
the block of an instance constructor, an instance method, or an instance accessor, the
result is the same as a member access (§7.6.4) of the form this.I. This can only
happen when K is zero.

Otherwise, the result is the same as a member access (§7.6.4) of the form •	 T.I or
T.I<A1, ..., AK>. In this case, it is a binding-time error for the simple-name to refer to
an instance member.

Otherwise, for each namespace •	 N, starting with the namespace in which the simple-name
occurs, continuing with each enclosing namespace (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

If - K is zero and I is the name of a namespace in N, then:

If the location where the •	 simple-name occurs is enclosed by a namespace declaration
for N and the namespace declaration contains an extern-alias-directive or using-alias-
directive that associates the name I with a namespace or type, then the simple-name
is ambiguous and a compile-time error occurs.

Otherwise, the •	 simple-name refers to the namespace named I in N.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

281

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Otherwise, if - N contains an accessible type having name I and K type parameters,
then:

If •	 K is zero and the location where the simple-name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern-alias-directive or
using-alias-directive that associates the name I with a namespace or type, then the
simple-name is ambiguous and a compile-time error occurs.

Otherwise, the •	 namespace-or-type-name refers to the type constructed with the given
type arguments.

Otherwise, if the location where the - simple-name occurs is enclosed by a namespace
declaration for N:

If •	 K is zero and the namespace declaration contains an extern-alias-directive or using-
alias-directive that associates the name I with an imported namespace or type, then
the simple-name refers to that namespace or type.

Otherwise, if the namespaces imported by the •	 using-namespace-directives of the
namespace declaration contain exactly one type having name I and K type param-
eters, then the simple-name refers to that type constructed with the given type
arguments.

Otherwise, if the namespaces imported by the •	 using-namespace-directives of the
namespace declaration contain more than one type having name I and K type
parameters, then the simple-name is ambiguous and an error occurs.

Note that this entire step is exactly parallel to the corresponding step in the processing of
a namespace-or-type-name (§3.8).

Otherwise, the •	 simple-name is undefined and a compile-time error occurs.

7.6.2.1 Invariant Meaning in Blocks
For each occurrence of a given identifier as a simple-name in an expression or declarator,
within the local variable declaration space (§3.3) immediately enclosing that occurrence,
every other occurrence of the same identifier as a simple-name in an expression or declara-
tor must refer to the same entity. This rule ensures that the meaning of a name is always the
same within a given block, switch block, for statement, foreach statement, using-
statement, or anonymous function.

n
n  ERIC LIPPERT One of the more subtle desirable consequences of this rule is that

it becomes safer to undertake refactorings that involve moving around local variable
declarations. Any such refactoring that would cause a simple name to change its
semantics will be caught by the compiler.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

282

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The example

class Test
{
 double x;

 void F(bool b) {
 x = 1.0;
 if (b) {
 int x;
 x = 1;
 }
 }
}

results in a compile-time error because x refers to different entities within the outer block
(the extent of which includes the nested block in the if statement). In contrast, the
example

class Test
{
 double x;

 void F(bool b) {
 if (b) {
 x = 1.0;
 }
 else {
 int x;
 x = 1;
 }
 }
}

is permitted because the name x is never used in the outer block.

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid
for the same identifier to have one meaning as a simple name and another meaning as the
right operand of a member access (§7.6.4). For example:

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

283

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The example above illustrates a common pattern of using the names of fields as parameter
names in an instance constructor. In the example, the simple names x and y refer to the
parameters, but that does not prevent the member access expressions this.x and this.y
from accessing the fields.

7.6.3 Parenthesized Expressions
A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
(expression)

A parenthesized-expression is evaluated by evaluating the expression within the parentheses.
If the expression within the parentheses denotes a namespace or type, a compile-time error
occurs. Otherwise, the result of the parenthesized-expression is the result of the evaluation of
the contained expression.

7.6.4 Member Access
A member-access consists of a primary-expression, a predefined-type, or a qualified-alias-
member, followed by a “.” token, followed by an identifier, optionally followed by a type-
argument-list.

member-access:
primary-expression . identifier type-argument-listopt
predefined-type . identifier type-argument-listopt
qualified-alias-member . identifier type-argument-listopt

predefined-type: one of
bool byte char decimal double float int long
object sbyte short string uint ulong ushort

The qualified-alias-member production is defined in §9.7.

A member-access is either of the form E.I or of the form E.I<A1, ..., AK>, where E is a
primary-expression, I is a single identifier, and <A1, ..., AK> is an optional type-argument-list.
When no type-argument-list is specified, consider K to be zero.

A member-access with a primary-expression of type dynamic is dynamically bound (§7.2.2). In
this case the compiler classifies the member access as a property access of type dynamic.
The rules below to determine the meaning of the member-access are then applied at runtime,
using the runtime type instead of the compile-time type of the primary-expression. If this
runtime classification leads to a method group, then the member access must be the
primary-expression of an invocation-expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

284

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The member-access is evaluated and classified as follows:

If •	 K is zero, E is a namespace, and E contains a nested namespace with name I, then the
result is that namespace.

Otherwise, if •	 E is a namespace and E contains an accessible type having name I and
K type parameters, then the result is that type constructed with the given type
arguments.

If •	 E is a predefined-type or a primary-expression classified as a type, if E is not a type param-
eter, and if a member lookup (§7.4) of I in E with K type parameters produces a match,
then E.I is evaluated and classified as follows:

If - I identifies a type, then the result is that type constructed with the given type
arguments.

If - I identifies one or more methods, then the result is a method group with no associ-
ated instance expression. If a type argument list was specified, it is used in calling a
generic method (§7.6.5.1).

If - I identifies a static property, then the result is a property access with no associ-
ated instance expression.

If - I identifies a static field:

If the field is •	 readonly and the reference occurs outside the static constructor of the
class or struct in which the field is declared, then the result is a value—namely, the
value of the static field I in E.

Otherwise, the result is a variable—namely, the static field •	 I in E.

If - I identifies a static event:

If the reference occurs within the class or struct in which the event is declared, and •	
the event was declared without event-accessor-declarations (§10.8), then E.I is pro-
cessed exactly as if I were a static field.

Otherwise, the result is an event access with no associated instance expression.•	

If - I identifies a constant, then the result is a value—namely, the value of that
constant.

If - I identifies an enumeration member, then the result is a value—namely, the value
of that enumeration member.

Otherwise, - E.I is an invalid member reference, and a compile-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

285

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

If •	 E is a property access, indexer access, variable, or value, the type of which is T, and a
member lookup (§7.4) of I in T with K type arguments produces a match, then E.I is
evaluated and classified as follows:

First, if - E is a property or indexer access, then the value of the property or indexer
access is obtained (§7.1.1) and E is reclassified as a value.

If - I identifies one or more methods, then the result is a method group with an associ-
ated instance expression of E. If a type argument list was specified, it is used in calling
a generic method (§7.6.5.1).

If - I identifies an instance property, then the result is a property access with an associ-
ated instance expression of E.

If - T is a class-type and I identifies an instance field of that class-type:

If the value of •	 E is null, then a System.NullReferenceException is thrown.

Otherwise, if the field is •	 readonly and the reference occurs outside an instance
constructor of the class in which the field is declared, then the result is a value—
namely, the value of the field I in the object referenced by E.

Otherwise, the result is a variable—namely, the field •	 I in the object referenced
by E.

If - T is a struct-type and I identifies an instance field of that struct-type:

If •	 E is a value, or if the field is readonly and the reference occurs outside an instance
constructor of the struct in which the field is declared, then the result is a value—
namely, the value of the field I in the struct instance given by E.

Otherwise, the result is a variable—namely, the field •	 I in the struct instance given
by E.

If - I identifies an instance event:

If the reference occurs within the class or struct in which the event is declared, and •	
the event was declared without event-accessor-declarations (§10.8), and the reference
does not occur as the left-hand side of a += or –= operator, then E.I is processed
exactly as if I was an instance field.

Otherwise, the result is an event access with an associated instance expression •	
of E.

Otherwise, an attempt is made to process•	 E.I as an extension method invocation
(§7.6.5.2). If this fails, E.I is an invalid member reference, and a binding-time error
occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

286

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  PETER SESToFT The two bulleted points stating “if the field is readonly . . . then

the result is a value“ have a slightly surprising effect when the field has struct type,
and that struct has a mutable field (not a recommended combination—see other anno-
tations on this point). Consider the following example:

struct S {
 public int x;
 public void SetX() { x = 2; }
}
class C {
 static S s;
 public static void M() { s.SetX(); }
}

As expected, after the call s.SetX() the struct’s field s.x will have the value 2. Now
if we add a readonly modifier to the declaration of field s, then suddenly the call
s.SetX() has no effect! That is, s in the method call is now a value, not a variable,
per the rules given earlier; therefore SetX() is executed on a copy of field s, not on
field s itself. Somewhat strangely, if instead s were a local variable of struct type
declared in a using statement (§8.13), which also has the effect of making s immu-
table, then s.SetX() updates s.x as expected.

7.6.4.1 Identical Simple Names and Type Names
In a member access of the form E.I, if E is a single identifier, and if the meaning of E as a
simple-name (§7.6.2) is a constant, field, property, local variable, or parameter with the same
type as the meaning of E as a type-name (§3.8), then both possible meanings of E are permit-
ted. The two possible meanings of E.I are never ambiguous, since I must necessarily be a
member of the type E in both cases. In other words, the rule simply permits access to the
static members and nested types of E where a compile-time error would otherwise have
occurred. For example:

struct Color
{
 public static readonly Color White = new Color(...);
 public static readonly Color Black = new Color(...);

 public Color Complement() {...}
}

class A
{
 public Color Color; // Field Color of type Color

 void F() {
 Color = Color.Black; // References Color.Black static member

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

287

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

 Color = Color.Complement(); // Invokes Complement() on Color field
 }

 static void G() {
 Color c = Color.White; // References Color.White static member
 }
}

Within the A class, those occurrences of the Color identifier that reference the Color type
are underlined, and those that reference the Color field are not underlined.

7.6.4.2 Grammar Ambiguities
The productions for simple-name (§7.6.2) and member-access (§7.6.4) can give rise to ambi-
guities in the grammar for expressions. For example, the statement

F(G<A,B>(7));

could be interpreted as a call to F with two arguments, G < A and B > (7). Alternatively,
it could be interpreted as a call to F with one argument, which is a call to a generic method G
with two type arguments and one regular argument.

If a sequence of tokens can be parsed (in context) as a simple-name (§7.6.2), member-access
(§7.6.4), or pointer-member-access (§18.5.2) ending with a type-argument-list (§4.4.1), the token
immediately following the closing > token is examined. If it is one of

()] } : ; , . ? == != | ^

then the type-argument-list is retained as part of the simple-name, member-access, or pointer-
member-access, and any other possible parse of the sequence of tokens is discarded. Other-
wise, the type-argument-list is not considered to be part of the simple-name, member-access, or
pointer-member-access, even if there is no other possible parsing of the sequence of tokens.
Note that these rules are not applied when parsing a type-argument-list in a namespace-or-
type-name (§3.8). The statement

F(G<A,B>(7));

will, according to this rule, be interpreted as a call to F with one argument, which is a call
to a generic method G with two type arguments and one regular argument. The
statements

F(G < A, B > 7);
F(G < A, B >> 7);

will each be interpreted as a call to F with two arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

288

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The statement

x = F < A > +y;

will be interpreted as including a less than operator, greater than operator, and unary plus
operator, as if the statement had been written x = (F < A) > (+y), instead of as a simple-name
with a type-argument-list followed by a binary plus operator. In the statement

x = y is C<T> + z;

the tokens C<T> are interpreted as a namespace-or-type-name with a type-argument-list.

7.6.5 Invocation Expressions
An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression (argument-listopt)

An invocation-expression is dynamically bound (§7.2.2) if at least one of the following holds:

The •	 primary-expression has compile-time type dynamic.

At least one argument of the optional •	 argument-list has compile-time type dynamic and
the primary-expression does not have a delegate type.

n
n  VLADIMIR RESHETNIkoV One exception to this rule: ref/out arguments of

type dynamic do not cause dynamic binding.

If an invocation-expression is dynamically bound and its primary-expression denotes a
method group that resulted from a base-access, then a compile-time error (CS1971)
occurs.

In this case the compiler classifies the invocation-expression as a value of type dynamic. The
rules below to determine the meaning of the invocation-expression are then applied at run-
time, using the runtime type instead of the compile-time type of those of the primary-
expression and arguments that have the compile-time type dynamic. If the primary-expression
does not have compile-time type dynamic, then the method invocation undergoes a limited
compile-time check as described in §7.5.4.

The primary-expression of an invocation-expression must be a method group or a value of a
delegate-type. If the primary-expression is a method group, the invocation-expression is a
method invocation (§7.6.5.1). If the primary-expression is a value of a delegate-type, the
invocation-expression is a delegate invocation (§7.6.5.3). If the primary-expression is neither a
method group nor a value of a delegate-type, a binding-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

289

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The optional argument-list (§7.5.1) provides values or variable references for the parameters
of the method.

The result of evaluating an invocation-expression is classified as follows:

If the •	 invocation-expression invokes a method or delegate that returns void, the result is
nothing. An expression that is classified as nothing is permitted only in the context of a
statement-expression (§8.6) or as the body of a lambda-expression (§7.15). Otherwise, a bind-
ing-time error occurs.

Otherwise, the result is a value of the type returned by the method or delegate.•	

7.6.5.1 Method Invocations
For a method invocation, the primary-expression of the invocation-expression must be a
method group. The method group identifies the one method to invoke or the set of over-
loaded methods from which to choose a specific method to invoke. In the latter case, deter-
mination of the specific method to invoke is based on the context provided by the types of
the arguments in the argument-list.

The binding-time processing of a method invocation of the form M(A), where M is a method
group (possibly including a type-argument-list) and A is an optional argument-list, consists
of the following steps:

The set of candidate methods for the method invocation is constructed. For each method •	
F associated with the method group M:

If - F is nongeneric, F is a candidate when:

M•	 has no type argument list, and

F•	 is applicable with respect to A (§7.5.3.1).

If - F is generic and M has no type argument list, F is a candidate when:

Type inference (§7.5.2) succeeds, inferring a list of type arguments for the call, and•	

Once the inferred type arguments are substituted for the corresponding method •	
type parameters, all constructed types in the parameter list of F satisfy their con-
straints (§4.4.4), and the parameter list of F is applicable with respect to A
(§7.5.3.1).

n
n  VLADIMIR RESHETNIkoV Note that only constraints on constructed types

appearing in the parameter list are checked during this step. Constraints on the generic
method itself are checked later, during the final validation.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

290

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

If - F is generic and M includes a type argument list, F is a candidate when:

F•	 has the same number of method type parameters as were supplied in the type
argument list, and

Once the type arguments are substituted for the corresponding method type •	
parameters, all constructed types in the parameter list of F satisfy their constraints
(§4.4.4), and the parameter list of F is applicable with respect to A (§7.5.3.1).

The set of candidate methods is reduced to contain only methods from the most derived •	
types: For each method C.F in the set, where C is the type in which the method F is
declared, all methods declared in a base type of C are removed from the set. Further-
more, if C is a class type other than object, all methods declared in an interface type are
removed from the set. (This latter rule takes effect only when the method group was the
result of a member lookup on a type parameter having an effective base class other than
object and a non-empty effective interface set.)

n
n  VLADIMIR RESHETNIkoV This rule implies that an applicable method from the

most derived type is selected, even if a method with better parameter types exists in a
base type, and even if the selected method from the most derived type will not pass
the final validation. Also remember that all overrides were removed before this step,
during member lookup (§7.4).

class Base
{
 public virtual void Foo(int x) { }
}

class Derived : Base
{
 public override void Foo(int x) { }

 static void Foo(object x) { }

 static void Main()
 {
 var d = new Derived();
 d.Foo(1);
 // Error CS0176: Member 'Derived.Foo(object)'
 // cannot be accessed with an instance reference;
 // qualify it with a type name instead
 }
}

If the resulting set of candidate methods is empty, then further processing along the fol-•	
lowing steps are abandoned, and instead an attempt is made to process the invocation
as an extension method invocation (§7.6.5.2). If this fails, then no applicable methods
exist, and a binding-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

291

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The best method of the set of candidate methods is identified using the overload resolu-•	
tion rules of §7.5.3. If a single best method cannot be identified, the method invocation
is ambiguous, and a binding-time error occurs. When performing overload resolution,
the parameters of a generic method are considered after substituting the type arguments
(supplied or inferred) for the corresponding method type parameters.

Final validation of the chosen best method is performed:•	

- The method is validated in the context of the method group: If the best method is a
static method, the method group must have resulted from a simple-name or a member-
access through a type. If the best method is an instance method, the method group
must have resulted from a simple-name, a member-access through a variable or value,
or a base-access. If neither of these requirements is true, a binding-time error occurs.

n
n  VLADIMIR RESHETNIkoV If the best method is an instance method, and the

method group has resulted from a simple-name, then the simple-name must not appear
in a static context (i.e., in static members, nested types, instance fields, or field-like
event initializers or constructor-initializers); otherwise, a binding-time error occurs.

- If the best method is a generic method, the type arguments (supplied or inferred) are
checked against the constraints (§4.4.4) declared on the generic method. If any type
argument does not satisfy the corresponding constraint(s) on the type parameter, a
binding-time error occurs.

n
n  VLADIMIR RESHETNIkoV If this check succeeds, it automatically guarantees

that all constraints on all constructed types in the return type and the body of the
method are also satisfied.

n
n  ERIC LIPPERT The rule described above has provoked much debate: Why does

the compiler go through all the work of type inference, overload resolution, and elimi-
nation of inapplicable candidates, only to then say, “I’ve chosen a method that doesn’t
work after all”? Why not simply say that methods that don’t satisfy their constraints
are not even candidates? The reason is subtle but important: A fundamental design
principle of C# is that the language does not second-guess the user. If the best possible
choice implied by the arguments and parameter types is invalid, then either the user
intended the best choice to be used but made some sort of mistake, or the user intended
the compiler to choose something else. The safest thing to do is assume the former,
rather than possibly guessing wrong.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

292

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Once a method has been selected and validated at binding time by the above steps, the
actual runtime invocation is processed according to the rules of function member invoca-
tion described in §7.5.4.

n
n  BILL WAGNER The following paragraph is key: Extension methods cannot

replace behavior defined by a type author.

The intuitive effect of the resolution rules described above is as follows: To locate the par-
ticular method invoked by a method invocation, start with the type indicated by the
method invocation and proceed up the inheritance chain until at least one applicable,
accessible, non-override method declaration is found. Then perform type inference and
overload resolution on the set of applicable, accessible, non-override methods declared in
that type and invoke the method thus selected. If no method is found, try instead to pro-
cess the invocation as an extension method invocation.

n
n  ERIC LIPPERT Under this design, even if a “better” method might be found in a

base class, any applicable method in a derived class gets priority. The reasoning for
this design is twofold.

First, the implementers of the derived class presumably have better information about
the desired semantics of this operation on their class than the implementers of the base
class did; the derived class exists because it added some functionality or specialization
to the base class.

Second, this design avoids one of the “brittle base class” family of problems. Suppose
you have code that relies on a call to a method in a derived class. If overload resolution
is choosing that method today, then a change to the base class tomorrow should not
cause overload resolution to silently and suddenly start choosing the base class
method upon recompilation.

Of course, this scheme also introduces the opposite scenario: If you depend on over-
load resolution to choose a method of the base class, then someone who adds a method
to a more derived class can silently change the choice overload resolution upon recom-
pilation as well. However, this “brittle derived class” problem is rarely an issue in real
production code; most of the time, you want the more derived method chosen for the
reasons given above.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

293

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  JoN SkEET While I follow Eric’s reasoning for the most part, this design permits

an unfortunate situation to occur. If a derived class introduces a new overload of a
base class method and overrides the base class method, then clearly that derived class is
aware of the base class method—and yet that override is still not considered when
selecting the method, until the algorithm reaches the base class. For example, consider
the following methods in a derived class, with a base class declaring the obvious vir-
tual method:

public void Foo(object x) { ... }
public override void Foo(int y) { ... }

A call to Foo(10) on an expression of the derived type will pick the first method—
contrary to the expectations of every non-Microsoft developer I’ve ever presented this
design to.

7.6.5.2 Extension Method Invocations
In a method invocation (§7.5.5.1) of one of the forms

expr . identifier ()
expr . identifier (args)
expr . identifier < typeargs > ()
expr . identifier < typeargs > (args)

if the normal processing of the invocation finds no applicable methods, an attempt is made
to process the construct as an extension method invocation. If expr or any of the args has
compile-time type dynamic, extension methods will not apply.

n
n  VLADIMIR RESHETNIkoV The last rule does not apply to ref/out arguments of

type dynamic.

The objective is to find the best type-name C, so that the corresponding static method invo-
cation can take place:

C . identifier (expr)
C . identifier (expr , args)
C . identifier < typeargs > (expr)
C . identifier < typeargs > (expr , args)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

294

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

An extension method Ci.Mj is eligible if:

C•	 i is a nongeneric, non-nested class.

The name of •	 Mj is identifier.

M•	 j is accessible and applicable when applied to the arguments as a static method as
shown above.

An implicit identity, reference, or boxing conversion exists from •	 expr to the type of the
first parameter of Mj.

n
n  ERIC LIPPERT This rule ensures that making a method that extends double does

not also extend int. It also ensures that no extension methods are defined on anony-
mous functions or method groups.

The search for C proceeds as follows:

Starting with the closest enclosing namespace declaration, continuing with each enclos-•	
ing namespace declaration, and ending with the containing compilation unit, successive
attempts are made to find a candidate set of extension methods:

- If the given namespace or compilation unit directly contains nongeneric type declara-
tions Ci with eligible extension methods Mj, then the set of those extension methods is
the candidate set.

- If namespaces imported by using namespace directives in the given namespace or
compilation unit directly contain nongeneric type declarations Ci with eligible exten-
sion methods Mj, then the set of those extension methods is the candidate set.

If no candidate set is found in any enclosing namespace declaration or compilation unit, •	
a compile-time error occurs.

Otherwise, overload resolution is applied to the candidate set as described in (§7.5.3). If •	
no single best method is found, a compile-time error occurs.

C•	 is the type within which the best method is declared as an extension method.

Using C as a target, the method call is then processed as a static method invocation
(§7.5.4).

n
n  BILL WAGNER This processing is somewhat complicated, and it reinforces the

recommendation that you should not create duplicate extension methods in different
namespaces.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

295

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  PETER SESToFT It is tempting to think of an extension method as just a funny

sort of nonvirtual instance method that is called only when no suitable ordinary
instance method is available. Unfortunately, an extension method SetX(this S s) on
a struct type S is not quite the same as an instance method on S, because the call
s.SetX() will be transformed to the call SetX(s) that passes struct s by value, hence
copying it. Any side effect will happen on the copy, not on the original struct s—yet
another reason never to have mutable fields in struct types.

n
n  JoN SkEET One of the issues with extension methods is just how easy it is to

accidentally import more than you expect or want. I would prefer this process to be
more explicit, such as with a new type of using directive:

using static System.Linq.Enumerable;

This would allow class libraries to expose extension methods without adding to
IntelliSense confusion for users who didn’t want to use them. Additionally, it would
provide a note to code maintainers warning them that they should expect to see cer-
tain extension methods used within this compilation unit.

The preceding rules mean that instance methods take precedence over extension methods,
that extension methods available in inner namespace declarations take precedence over
extension methods available in outer namespace declarations, and that extension methods
declared directly in a namespace take precedence over extension methods imported into
that same namespace with a using namespace directive. For example:

public static class E
{
 public static void F(this object obj, int i) { }

 public static void F(this object obj, string s) { }
}

class A { }

class B
{
 public void F(int i) { }
}

class C
{
 public void F(object obj) { }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

296

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

class X
{
 static void Test(A a, B b, C c) {
 a.F(1); // E.F(object, int)
 a.F("hello"); // E.F(object, string)

 b.F(1); // B.F(int)
 b.F("hello"); // E.F(object, string)

 c.F(1); // C.F(object)
 c.F("hello"); // C.F(object)
 }
}

In the example, B’s method takes precedence over the first extension method, and C’s
method takes precedence over both extension methods.

public static class C
{
 public static void F(this int i) {

Console.WriteLine("C.F({0})", i);
}

 public static void G(this int i) {
Console.WriteLine("C.G({0})", i);

}
 public static void H(this int i) {
 Console.WriteLine("C.H({0})", i);
 }
 }

namespace N1
{
 public static class D
 {
 public static void F(this int i) {
 Console.WriteLine("D.F({0})", i);
 }
 public static void G(this int i) {
 Console.WriteLine("D.G({0})", i);
 }
 }
}

namespace N2
{
 using N1;

 public static class E
 {
 public static void F(this int i) {
 Console.WriteLine("E.F({0})", i);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

297

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

 class Test
 {
 static void Main(string[] args)
 {
 1.F();
 2.G();
 3.H();
 }
 }
}

The output of this example is

E.F(1)
D.G(2)
C.H(3)

D.G takes precedence over C.G, and E.F takes precedence over both D.F and C.F.

n
n  JoSEPH ALBAHARI One reason for instance methods having higher precedence

than extension methods is to ensure that the introduction of extension methods into a
program or framework doesn’t break existing code.

n
n  ERIC LIPPERT The way C# looks for extension methods gives rise to a variation

on the “brittle derived class” problem mentioned earlier. If you rely on invocation
processing to choose an extension method, but someone introduces an identically
named instance method upon the class, then the extension method will no longer be
called upon recompilation.

This behavior is not really a problem—it’s usually exactly what you want. The method
on the class has far more information about the internal structure of the class than the
static extension method does, so it should be given precedence.

The Microsoft C# compiler does not give a warning that an extension method exists
that would be an alternative to the instance method chosen. If the compiler gave such
a warning, there would be no easy way to “fix” the warning other than by putting a
#pragma directive around it to turn the warning off.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

298

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  JoN SkEET I think in this case a warning would actually be the most appropriate

course of action, so as to alert developers to the possibility that a method with the
same name but a different meaning would now be called with no changes (beyond
recompilation) of client code. In many cases—where the whole codebase relying on an
extension method can be recompiled, so binary compatibility is not required—the
method could be removed entirely or renamed. In other cases it could be converted
into a non-extension method, allowing binary compatibility with old code. It feels
wrong to completely ignore this change in the results of member lookup.

7.6.5.3 Delegate Invocations
For a delegate invocation, the primary-expression of the invocation-expression must be a value
of a delegate-type. Furthermore, considering the delegate-type to be a function member with
the same parameter list as the delegate-type, the delegate-type must be applicable (§7.5.3.1)
with respect to the argument-list of the invocation-expression.

The runtime processing of a delegate invocation of the form D(A), where D is a primary-
expression of a delegate-type and A is an optional argument-list, consists of the following
steps:

D•	 is evaluated. If this evaluation causes an exception, no further steps are executed.

The value of •	 D is checked to be valid. If the value of D is null, a System.NullReference-
Exception is thrown and no further steps are executed.

Otherwise, •	 D is a reference to a delegate instance. Function member invocations (§7.5.4)
are performed on each of the callable entities in the invocation list of the delegate. For
callable entities consisting of an instance and instance method, the instance for the invo-
cation is the instance contained in the callable entity.

7.6.6 Element Access
An element-access consists of a primary-no-array-creation-expression, followed by a “[” token,
followed by an argument-list, followed by a “]” token. The argument-list consists of one or
more arguments, separated by commas.

element-access:
primary-no-array-creation-expression [argument-list]

The argument-list of an element-access is not allowed to contain ref or out arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

299

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

An element-access is dynamically bound (§7.2.2) if at least one of the following holds:

The •	 primary-no-array-creation-expression has compile-time type dynamic.

At least one expression of the •	 argument-list has compile-time type dynamic and the
primary-no-array-creation-expression does not have an array type.

In this case the compiler classifies the element-access as a value of type dynamic. The rules
below to determine the meaning of the element-access are then applied at runtime, using the
runtime type instead of the compile-time type of those of the primary-no-array-creation-
expression and argument-list expressions that have the compile-time type dynamic. If the
primary-no-array-creation-expression does not have compile-time type dynamic, then the ele-
ment access undergoes a limited compile time check as described in §7.5.4.

If the primary-no-array-creation-expression of an element-access is a value of an array-type, the
element-access is an array access (§7.6.6.1). Otherwise, the primary-no-array-creation- expression
must be a variable or value of a class, struct, or interface type that has one or more indexer
members, in which case the element-access is an indexer access (§7.6.6.2).

7.6.6.1 Array Access
For an array access, the primary-no-array-creation-expression of the element-access must be a
value of an array-type. Furthermore, the argument-list of an array access is not allowed to
contain named arguments. The number of expressions in the argument-list must be the
same as the rank of the array-type, and each expression must be of type int, uint, long, or
ulong, or must be implicitly convertible to one or more of these types.

The result of evaluating an array access is a variable of the element type of the array—namely,
the array element selected by the value(s) of the expression(s) in the argument-list.

n
n  JoN SkEET The fact that the result is a variable is important here: It means you

can use array elements as ref or out arguments in method calls. In the face of array
covariance, the actual type of the storage location is validated before the method is
called.

The runtime processing of an array access of the form P[A], where P is a primary-no-array-
creation-expression of an array-type and A is an argument-list, consists of the following steps:

P•	 is evaluated. If this evaluation causes an exception, no further steps are executed.

The index expressions of the •	 argument-list are evaluated in order, from left to right. Fol-
lowing evaluation of each index expression, an implicit conversion (§6.1) to one of the
following types is performed: int, uint, long, ulong. The first type in this list for which

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

300

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

an implicit conversion exists is chosen. For instance, if the index expression is of type
short, then an implicit conversion to int is performed, since implicit conversions
from short to int and from short to long are possible. If evaluation of an index expres-
sion or the subsequent implicit conversion causes an exception, then no further index
expressions are evaluated and no further steps are executed.

The value of •	 P is checked to be valid. If the value of P is null, a System.NullReference-
Exception is thrown and no further steps are executed.

The value of each expression in the •	 argument-list is checked against the actual bounds of
each dimension of the array instance referenced by P. If one or more values are out of
range, a System.IndexOutOfRangeException is thrown and no further steps are
executed.

The location of the array element given by the index expression(s) is computed, and this •	
location becomes the result of the array access.

7.6.6.2 Indexer Access
For an indexer access, the primary-no-array-creation-expression of the element-access must be
a variable or value of a class, struct, or interface type, and this type must implement one or
more indexers that are applicable with respect to the argument-list of the element-access.

The binding-time processing of an indexer access of the form P[A], where P is a primary-no-
array-creation-expression of a class, struct, or interface type T, and A is an argument-list, con-
sists of the following steps:

The set of indexers provided by •	 T is constructed. The set consists of all indexers declared
in T or a base type of T that are not override declarations and are accessible in the current
context (§3.5).

The set is reduced to those indexers that are applicable and not hidden by other index-•	
ers. The following rules are applied to each indexer S.I in the set, where S is the type in
which the indexer I is declared:

If - I is not applicable with respect to A (§7.5.3.1), then I is removed from the set.

If - I is applicable with respect to A (§7.5.3.1), then all indexers declared in a base type
of S are removed from the set.

If - I is applicable with respect to A (§7.5.3.1) and S is a class type other than object, all
indexers declared in an interface are removed from the set.

If the resulting set of candidate indexers is empty, then no applicable indexers exist, and •	
a binding-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

301

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The best indexer of the set of candidate indexers is identified using the overload resolu-•	
tion rules of §7.5.3. If a single best indexer cannot be identified, the indexer access is
ambiguous, and a binding-time error occurs.

The index expressions of the •	 argument-list are evaluated in order, from left to right. The
result of processing the indexer access is an expression classified as an indexer access.
The indexer access expression references the indexer determined in the step above, and
has an associated instance expression of P and an associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of either
the get-accessor or the set-accessor of the indexer. If the indexer access is the target of an
assignment, the set-accessor is invoked to assign a new value (§7.17.1). In all other cases, the
get-accessor is invoked to obtain the current value (§7.1.1).

n
n  VLADIMIR RESHETNIkoV If the corresponding accessor is missing or is not

accessible, a compile-time error occurs.

7.6.7 this Access
A this-access consists of the reserved word this.

this-access:
this

A this-access is permitted only in the block of an instance constructor, an instance method,
or an instance accessor. It has one of the following meanings:

When •	 this is used in a primary-expression within an instance constructor of a class, it is
classified as a value. The type of the value is the instance type (§10.3.1) of the class within
which the usage occurs, and the value is a reference to the object being constructed.

When •	 this is used in a primary-expression within an instance method or instance accessor
of a class, it is classified as a value. The type of the value is the instance type (§10.3.1) of
the class within which the usage occurs, and the value is a reference to the object for
which the method or accessor was invoked.

When •	 this is used in a primary-expression within an instance constructor of a struct, it is
classified as a variable. The type of the variable is the instance type (§10.3.1) of the struct
within which the usage occurs, and the variable represents the struct being constructed.
The this variable of an instance constructor of a struct behaves exactly the same as an
out parameter of the struct type—in particular, this means that the variable must be
definitely assigned in every execution path of the instance constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

302

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

When •	 this is used in a primary-expression within an instance method or instance accessor
of a struct, it is classified as a variable. The type of the variable is the instance type
(§10.3.1) of the struct within which the usage occurs.

If the method or accessor is not an iterator (§10.14), the - this variable represents the
struct for which the method or accessor was invoked, and behaves exactly the same
as a ref parameter of the struct type.

If the method or accessor is an iterator, the - this variable represents a copy of the struct
for which the method or accessor was invoked, and behaves exactly the same as a
value parameter of the struct type.

n
n  JoN SkEET The ability to write

this = new CustomStruct(...);

in a method within a value type always feels deeply wrong to me. Given that structs
should almost always be immutable in the first place, I wonder how many justifiable
uses this has found in the global corpus of C# code.

Use of this in a primary-expression in a context other than the ones listed above is a
compile-time error. In particular, it is not possible to refer to this in a static method, a static
property accessor, or in a variable-initializer of a field declaration.

7.6.8 Base Access
A base-access consists of the reserved word base followed by either a “.” token and an iden-
tifier or an argument-list enclosed in square brackets:

base-access:
base . identifier
base [argument-list]

A base-access is used to access base class members that are hidden by similarly named
members in the current class or struct. A base-access is permitted only in the block of an
instance constructor, an instance method, or an instance accessor. When base.I occurs in a
class or struct, I must denote a member of the base class of that class or struct. Likewise,
when base[E] occurs in a class, an applicable indexer must exist in the base class.

At binding time, base-access expressions of the form base.I and base[E] are evaluated
exactly as if they were written ((B)this).I and ((B)this)[E], where B is the base class of
the class or struct in which the construct occurs. Thus base.I and base[E] correspond to
this.I and this[E], except this is viewed as an instance of the base class.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

303

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  VLADIMIR RESHETNIkoV If a base-access of the latter form is dynamically dis-

patched (i.e., if it has an argument of type dynamic), a compile-time error (CS1972)
occurs.

When a base-access references a virtual function member (a method, property, or indexer),
the determination of which function member to invoke at runtime (§7.5.4) is changed. The
function member that is invoked is determined by finding the most derived implementa-
tion (§10.6.3) of the function member with respect to B (instead of with respect to the run-
time type of this, as would be usual in a non-base access). Thus, within an override of a
virtual function member, a base-access can be used to invoke the inherited implementation
of the function member. If the function member referenced by a base-access is abstract, a
binding-time error occurs.

n
n  ERIC LIPPERT In the Microsoft C# 2.0 compiler and above, base calls to virtual

methods are code generated as nonvirtual calls to the specific method known at com-
pile time to be on a base class. If you do an end-run around the compiler by swapping
in a new version of a library that has a new virtual override “in the middle” without
recompiling the code that makes the base call, that code will continue to call the spe-
cific method identified at compile time. In short, base calls do not use virtual dispatch.

It is not legal for a lambda expression converted to an expression tree type to contain
a base access.

7.6.9 Postfix Increment and Decrement operators
post-increment-expression:

primary-expression ++

post-decrement-expression:
primary-expression --

The operand of a postfix increment or decrement operation must be an expression classi-
fied as a variable, a property access, or an indexer access. The result of the operation is a
value of the same type as the operand.

If the primary-expression has the compile-time type dynamic, then the operator is dynami-
cally bound (§7.2.2), the post-increment-expression or post-decrement-expression has the com-
pile-time type dynamic, and the following rules are applied at runtime using the runtime
type of the primary-expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

304

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

If the operand of a postfix increment or decrement operation is a property or indexer access,
the property or indexer must have both a get and a set accessor. If this is not the case, a
binding-time error occurs.

Unary operator overload resolution (§7.3.3) is applied to select a specific operator imple-
mentation. Predefined ++ and -- operators exist for the following types: sbyte, byte, short,
ushort, int, uint, long, ulong, char, float, double, decimal, and any enum type. The pre-
defined ++ operators return the value produced by adding 1 to the operand, and the
predefined -- operators return the value produced by subtracting 1 from the operand. In a
checked context, if the result of this addition or subtraction is outside the range of the result
type and the result type is an integral type or enum type, a System.OverflowException is
thrown.

The runtime processing of a postfix increment or decrement operation of the form x++ or
x-- consists of the following steps:

If •	 x is classified as a variable:

x- is evaluated to produce the variable.

The value of - x is saved.

The selected operator is invoked with the saved value of - x as its argument.

The value returned by the operator is stored in the location given by the evaluation -
of x.

The saved value of - x becomes the result of the operation.

If •	 x is classified as a property or indexer access:

The instance expression (if - x is not static) and the argument list (if x is an indexer
access) associated with x are evaluated, and the results are used in the subsequent get
and set accessor invocations.

The - get accessor of x is invoked and the returned value is saved.

The selected operator is invoked with the saved value of - x as its argument.

The - set accessor of x is invoked with the value returned by the operator as its value
argument.

n
n  VLADIMIR RESHETNIkoV If either the get-accessor or the set-accessor is missing

or is not accessible, a compile-time error occurs.

The saved value of - x becomes the result of the operation.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

305

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The ++ and -- operators also support prefix notation (§7.7.5). Typically, the result of x++ or
x-- is the value of x before the operation, whereas the result of ++x or --x is the value of x
after the operation. In either case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix or
prefix notation. It is not possible to have separate operator implementations for the two
notations.

7.6.10 The new operator
The new operator is used to create new instances of types.

There are three forms of new expressions:

Object creation expressions are used to create new instances of class types and value •	
types.

Array creation expressions are used to create new instances of array types.•	

Delegate creation expressions are used to create new instances of delegate types.•	

The new operator implies creation of an instance of a type, but does not necessarily imply
dynamic allocation of memory. In particular, instances of value types require no additional
memory beyond the variables in which they reside, and no dynamic allocations occur
when new is used to create instances of value types.

7.6.10.1 Object Creation Expressions
An object-creation-expression is used to create a new instance of a class-type or a value-type.

object-creation-expression:
new type (argument-listopt) object-or-collection-initializeropt
new type object-or-collection-initializer

object-or-collection-initializer:
object-initializer
collection-initializer

The type of an object-creation-expression must be a class-type, a value-type, or a type-parameter.
The type cannot be an abstract class-type.

The optional argument-list (§7.5.1) is permitted only if the type is a class-type or a struct-type.

An object creation expression can omit the constructor argument list and enclosing paren-
theses provided it includes an object initializer or collection initializer. Omitting the con-
structor argument list and enclosing parentheses is equivalent to specifying an empty
argument list.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

306

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Processing of an object creation expression that includes an object initializer or collection
initializer consists of first processing the instance constructor and then processing the
member or element initializations specified by the object initializer (§7.6.10.2) or collection
initializer (§7.6.10.3).

If any of the arguments in the optional argument-list has the compile-time type dynamic,
then the object-creation-expression is dynamically bound (§7.2.2) and the following rules are
applied at runtime using the runtime type of those arguments of the argument-list that have
the compile-time type dynamic. However, the object creation undergoes a limited compile-
time check, as described in §7.5.4.

The binding-time processing of an object-creation-expression of the form new T(A), where T is
a class-type or a value-type and A is an optional argument-list, consists of the following
steps:

If •	 T is a value-type and A is not present:

The - object-creation-expression is a default constructor invocation. The result of the
object-creation-expression is a value of type T—namely, the default value for T as defined
in §4.1.1.

Otherwise, if •	 T is a type-parameter and A is not present:

If no value type constraint or constructor constraint (§10.1.5) has been specified for - T,
a binding-time error occurs.

The result of the - object-creation-expression is a value of the runtime type that the type
parameter has been bound to—namely, the result of invoking the default constructor
of that type. The runtime type may be a reference type or a value type.

Otherwise, if •	 T is a class-type or a struct-type:

If - T is an abstract class-type, a compile-time error occurs.

- The instance constructor to invoke is determined using the overload resolution rules
of §7.5.3. The set of candidate instance constructors consists of all accessible instance
constructors declared in T that are applicable with respect to A (§7.5.3.1). If the set of
candidate instance constructors is empty, or if a single best instance constructor can-
not be identified, a binding-time error occurs.

The result of the - object-creation-expression is a value of type T—namely, the value pro-
duced by invoking the instance constructor determined in the step above.

Otherwise, the •	 object-creation-expression is invalid, and a binding-time error occurs.

Even if the object-creation-expression is dynamically bound, the compile-time type is still T.

The runtime processing of an object-creation-expression of the form new T(A), where T is class-
type or a struct-type and A is an optional argument-list, consists of the following steps:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

307

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

If •	 T is a class-type:

A new instance of class - T is allocated. If there is not enough memory available to
allocate the new instance, a System.OutOfMemoryException is thrown and no further
steps are executed.

- All fields of the new instance are initialized to their default values (§5.2).

- The instance constructor is invoked according to the rules of function member invo-
cation (§7.5.4). A reference to the newly allocated instance is automatically passed to
the instance constructor and the instance can be accessed from within that construc-
tor as this.

If •	 T is a struct-type:

An instance of type - T is created by allocating a temporary local variable. Since an
instance constructor of a struct-type is required to definitely assign a value to each
field of the instance being created, no initialization of the temporary variable is
necessary.

- The instance constructor is invoked according to the rules of function member invo-
cation (§7.5.4). A reference to the newly allocated instance is automatically passed to
the instance constructor and the instance can be accessed from within that construc-
tor as this.

7.6.10.2 Object Initializers
An object initializer specifies values for zero or more fields or properties of an object.

object-initializer:
{ member-initializer-listopt }
{ member-initializer-list , }

member-initializer-list:
member-initializer
member-initializer-list , member-initializer

member-initializer:
identifier = initializer-value

initializer-value:
expression
object-or-collection-initializer

An object initializer consists of a sequence of member initializers, enclosed by { and }
tokens and separated by commas. Each member initializer must name an accessible field
or property of the object being initialized, followed by an equals sign and an expression,
object initializer, or collection initializer. It is an error for an object initializer to include

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

308

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

more than one member initializer for the same field or property. It is not possible for the
object initializer to refer to the newly created object it is initializing.

A member initializer that specifies an expression after the equals sign is processed in the
same way as an assignment (§7.17.1) to the field or property.

A member initializer that specifies an object initializer after the equals sign is a nested
object initializer—that is, an initialization of an embedded object. Instead of assigning a
new value to the field or property, the assignments in the nested object initializer are treated
as assignments to members of the field or property. Nested object initializers cannot be
applied to properties with a value type, or to read-only fields with a value type.

A member initializer that specifies a collection initializer after the equals sign is an initial-
ization of an embedded collection. Instead of assigning a new collection to the field or
property, the elements given in the initializer are added to the collection referenced by the
field or property. The field or property must be of a collection type that satisfies the require-
ments specified in §7.6.10.3.

The following class represents a point with two coordinates:

public class Point
{
 int x, y;

 public int X { get { return x; } set { x = value; } }
 public int Y { get { return y; } set { y = value; } }
}

An instance of Point can be created and initialized as follows:

Point a = new Point { X = 0, Y = 1 };

which has the same effect as

Point __a = new Point();
__a.X = 0;
__a.Y = 1;
Point a = __a;

where __a is an otherwise invisible and inaccessible temporary variable. The following
class represents a rectangle created from two points:

public class Rectangle
{
 Point p1, p2;

 public Point P1 { get { return p1; } set { p1 = value; } }
 public Point P2 { get { return p2; } set { p2 = value; } }
}

An instance of Rectangle can be created and initialized as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

309

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Rectangle r = new Rectangle {
 P1 = new Point { X = 0, Y = 1 },
 P2 = new Point { X = 2, Y = 3 }
};

which has the same effect as

Rectangle __r = new Rectangle();
Point __p1 = new Point();
__p1.X = 0;
__p1.Y = 1;
__r.P1 = __p1;
Point __p2 = new Point();
__p2.X = 2;
__p2.Y = 3;
__r.P2 = __p2;
Rectangle r = __r;

where __r, __p1, and __p2 are temporary variables that are otherwise invisible and
inaccessible.

n
n  JoSEPH ALBAHARI The use of a hidden temporary variable eliminates the pos-

sibility of ending up with a partially initialized object, should an exception be thrown
during initialization. Instead, the newly constructed object is completely abandoned:

Point p = null;
int zero = 0;
try { p = new Point { X = 3, Y = 4 / zero }; }
 // Throws DivideByZeroException
catch { Console.WriteLine (p == null); }
 // True

n
n  ERIC LIPPERT The use of a hidden temporary variable also makes it clear what

the definite assignment rules are. The second line here is not equivalent to the first:

Point p1 = new Point(); p1.Y = p1.X; // Legal
Point p2 = new Point() { Y = p2.X }; // Not legal; p2 is not assigned yet

If Rectangle’s constructor allocates the two embedded Point instances:

public class Rectangle
{
 Point p1 = new Point();
 Point p2 = new Point();
 public Point P1 { get { return p1; } }
 public Point P2 { get { return p2; } }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

310

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The following construct can be used to initialize the embedded Point instances instead of
assigning new instances:

Rectangle r = new Rectangle {
 P1 = { X = 0, Y = 1 },
 P2 = { X = 2, Y = 3 }
};

which has the same effect as

Rectangle __r = new Rectangle();
__r.P1.X = 0;
__r.P1.Y = 1;
__r.P2.X = 2;
__r.P2.Y = 3;
Rectangle r = __r;

7.6.10.3 Collection Initializers
A collection initializer specifies the elements of a collection.

collection-initializer:
{ element-initializer-list }
{ element-initializer-list , }

element-initializer-list:
element-initializer
element-initializer-list , element-initializer

element-initializer:
non-assignment-expression
{ expression-list }

expression-list:
expression
expression-list , expression

A collection initializer consists of a sequence of element initializers, enclosed by { and }
tokens and separated by commas. Each element initializer specifies an element to be added
to the collection object being initialized, and consists of a list of expressions enclosed by {
and } tokens and separated by commas. A single-expression element initializer can be
written without braces, but cannot then be an assignment expression, to avoid ambiguity
with member initializers. The non-assignment-expression production is defined in §7.18.

The following is an example of an object creation expression that includes a collection
initializer:

List<int> digits = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

311

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The collection object to which a collection initializer is applied must be of a type that imple-
ments System.Collections.IEnumerable or a compile-time error occurs. For each speci-
fied element in order, the collection initializer invokes an Add method on the target object
with the expression list of the element initializer as the argument list, applying normal
overload resolution for each invocation. Thus the collection object must contain an appli-
cable Add method for each element initializer.

n
n  ERIC LIPPERT The rule here is a bit odd: A collection initializer is valid only

when the object implements IEnumerable and has an Add method. Notice that we
never call any method of IEnumerable in a collection initializer! So why do we require
it? The C# design team did a survey of existing objects and made the following discov-
eries. First, almost all objects that have an Add method either are collections or are
implementing some kind of arithmetic. We explicitly did not want this design to be a
syntactic sugar for arithmetic—just collection creation. Second, of those objects that
were collections, there was no one common interface with an Add method imple-
mented by all of them. Third, all of the collections implemented IEnumerable, but
none of the arithmetic objects did. For all these reasons, we decided to use the exis-
tence of IEnumerable plus an Add method as our touchstone for whether a collection
initializer is valid.

The following class represents a contact with a name and a list of phone numbers:

public class Contact
{
 string name;
 List<string> phoneNumbers = new List<string>();

 public string Name { get { return name; } set { name = value; } }

 public List<string> PhoneNumbers { get { return phoneNumbers; } }
}

A List<Contact> can be created and initialized as follows:

var contacts = new List<Contact> {
 new Contact {
 Name = "Chris Smith",
 PhoneNumbers = { "206-555-0101", "425-882-8080" }
 },
 new Contact {
 Name = "Bob Harris",
 PhoneNumbers = { "650-555-0199" }
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

312

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

which has the same effect as

var __clist = new List<Contact>();
Contact __c1 = new Contact();
__c1.Name = "Chris Smith";
__c1.PhoneNumbers.Add("206-555-0101");
__c1.PhoneNumbers.Add("425-882-8080");
__clist.Add(__c1);
Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
__c2.PhoneNumbers.Add("650-555-0199");
__clist.Add(__c2);
var contacts = __clist;

where __clist, __c1, and __c2 are temporary variables that are otherwise invisible and
inaccessible.

7.6.10.4 Array Creation Expressions
An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt
new array-type array-initializer
new rank-specifier array-initializer

An array creation expression of the first form allocates an array instance of the type that
results from deleting each of the individual expressions from the expression list. For exam-
ple, the array creation expression new int[10, 20] produces an array instance of type
int[,], and the array creation expression new int[10][,] produces an array of type int[]
[,]. Each expression in the expression list must be of type int, uint, long, or ulong, or
implicitly convertible to one or more of these types. The value of each expression deter-
mines the length of the corresponding dimension in the newly allocated array instance.
Since the length of an array dimension must be non-negative, it is a compile-time error to
have a constant-expression with a negative value in the expression list.

Except in an unsafe context (§18.1), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each expression
in the expression list must be a constant, and the rank and dimension lengths specified by
the expression list must match those of the array initializer.

In an array creation expression of the second or third form, the rank of the specified array
type or rank specifier must match that of the array initializer. The individual dimension

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

313

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

lengths are inferred from the number of elements in each of the corresponding nesting
levels of the array initializer. Thus the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}}

exactly corresponds to

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}}

An array creation expression of the third form is referred to as an implicitly typed array
creation expression. It is similar to the second form, except that the element type of the
array is not explicitly given, but determined as the best common type (§7.5.2.14) of the set
of expressions in the array initializer. For a multidimensional array—that is, one where the
rank-specifier contains at least one comma—this set comprises all expressions found in nested
array-initializers.

Array initializers are described further in §12.6.

The result of evaluating an array creation expression is classified as a value—namely, a
reference to the newly allocated array instance. The runtime processing of an array cre-
ation expression consists of the following steps:

The dimension length expressions of the •	 expression-list are evaluated in order, from left
to right. Following evaluation of each expression, an implicit conversion (§6.1) to one of
the following types is performed: int, uint, long, ulong. The first type in this list for
which an implicit conversion exists is chosen. If evaluation of an expression or the sub-
sequent implicit conversion causes an exception, then no further expressions are evalu-
ated and no further steps are executed.

The computed values for the dimension lengths are validated as follows. If one or more •	
of the values are less than zero, a System.OverflowException is thrown and no further
steps are executed.

An array instance with the given dimension lengths is allocated. If there is not enough •	
memory available to allocate the new instance, a System.OutOfMemoryException is
thrown and no further steps are executed.

All elements of the new array instance are initialized to their default values (§5.2).•	

If the array creation expression contains an array initializer, then each expression in the •	
array initializer is evaluated and assigned to its corresponding array element. The eval-
uations and assignments are performed in the order the expressions are written in the
array initializer—in other words, elements are initialized in increasing index order, with
the rightmost dimension increasing first. If evaluation of a given expression or the sub-
sequent assignment to the corresponding array element causes an exception, then no
further elements are initialized (and the remaining elements will thus have their default
values).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

314

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

An array creation expression permits instantiation of an array with elements of an array
type, but the elements of such an array must be manually initialized. For example, the
statement

int[][] a = new int[100][];

creates a single-dimensional array with 100 elements of type int[]. The initial value of
each element is null. It is not possible for the same array creation expression to also instan-
tiate the subarrays, and the statement

int[][] a = new int[100][5]; // Error

results in a compile-time error. Instantiation of the subarrays must instead be performed
manually, as in

int[][] a = new int[100][];
for (int i = 0; i < 100; i++) a[i] = new int[5];

n
n  BILL WAGNER The comment below violates an FxCop rule, but does explain

under which conditions you should violate that rule.

When an array of arrays has a “rectangular” shape—that is, when the subarrays are all of
the same length—it is more efficient to use a multi-dimensional array. In the example
above, instantiation of the array of arrays creates 101 objects—one outer array and
100 subarrays. In contrast,

int[,] = new int[100, 5];

creates only a single object—that is, a two-dimensional array—and accomplishes the allo-
cation in a single statement.

n
n  PETER SESToFT It is somewhat dubious for a language specification to contain

statements about efficiency, which is a matter dealing with implementation, not
semantics. Indeed, whereas it may be faster to allocate (and subsequently manage) a
single block of 500 integers than 100 blocks of 5 integers, a matrix multiplication algo-
rithm that works on the “slow” array-of-arrays representation may be faster than one
that works on the “efficient” rectangular array representation—probably thanks to a
combination of JIT-compiler cleverness and modern CPU architecture.

The following are examples of implicitly typed array creation expressions:

var a = new[] { 1, 10, 100, 1000 }; // int[]
var b = new[] { 1, 1.5, 2, 2.5 }; // double[]
var c = new[,] { { "hello", null }, { "world", "!" } }; // string[,]
var d = new[] { 1, "one", 2, "two" }; // Error

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

315

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The last expression causes a compile-time error because neither int nor string is implic-
itly convertible to the other, so there is no best common type. An explicitly typed array
creation expression must be used in this case—for example, specifying the type to be
object[]. Alternatively, one of the elements can be cast to a common base type, which
would then become the inferred element type.

Implicitly typed array creation expressions can be combined with anonymous object ini-
tializers (§7.6.10.6) to create anonymously typed data structures. For example:

var contacts = new[] {
 new {
 Name = "Chris Smith",
 PhoneNumbers = new[] { "206-555-0101", "425-882-8080" }
 },
 new {
 Name = "Bob Harris",
 PhoneNumbers = new[] { "650-555-0199" }
 }
};

7.6.10.5 Delegate Creation Expressions
A delegate-creation-expression is used to create a new instance of a delegate-type.

delegate-creation-expression:
new delegate-type (expression)

The argument of a delegate creation expression must be a method group, an anonymous
function, or a value of either the compile-time type dynamic or a delegate-type. If the argu-
ment is a method group, it identifies the method and, for an instance method, the object for
which to create a delegate. If the argument is an anonymous function, it directly defines the
parameters and method body of the delegate target. If the argument is a value, it identifies
a delegate instance of which to create a copy.

If the expression has the compile-time type dynamic, the delegate-creation-expression is dynam-
ically bound (§7.2.2), and the rules below are applied at runtime using the runtime type of
the expression. Otherwise, the rules are applied at compile time.

The binding-time processing of a delegate-creation-expression of the form new D(E), where D
is a delegate-type and E is an expression, consists of the following steps:

If •	 E is a method group, the delegate creation expression is processed in the same way as
a method group conversion (§6.6) from E to D.

If •	 E is an anonymous function, the delegate creation expression is processed in the same
way as an anonymous function conversion (§6.5) from E to D.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

316

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

If •	 E is a value, E must be compatible (§15.1) with D, and the result is a reference to a newly
created delegate of type D that refers to the same invocation list as E. If E is not compat-
ible with D, a compile-time error occurs.

The runtime processing of a delegate-creation-expression of the form new D(E), where D is a
delegate-type and E is an expression, consists of the following steps:

If •	 E is a method group, the delegate creation expression is evaluated as a method group
conversion (§6.6) from E to D.

If •	 E is an anonymous function, the delegate creation is evaluated as an anonymous func-
tion conversion from E to D (§6.5).

If •	 E is a value of a delegate-type:

E - is evaluated. If this evaluation causes an exception, no further steps are executed.

If the value of - E is null, a System.NullReferenceException is thrown and no further
steps are executed.

A new instance of the delegate type - D is allocated. If there is not enough memory
available to allocate the new instance, a System.OutOfMemoryException is thrown
and no further steps are executed.

- The new delegate instance is initialized with the same invocation list as the delegate
instance given by E.

The invocation list of a delegate is determined when the delegate is instantiated and then
remains constant for the entire lifetime of the delegate. In other words, it is not possible to
change the target callable entities of a delegate once it has been created. When two dele-
gates are combined or one is removed from another (§15.1), a new delegate results; no
existing delegate has its contents changed.

It is not possible to create a delegate that refers to a property, indexer, user-defined opera-
tor, instance constructor, destructor, or static constructor.

As described above, when a delegate is created from a method group, the formal parame-
ter list and return type of the delegate determine which of the overloaded methods to
select. In the example

delegate double DoubleFunc(double x);

class A
{
 DoubleFunc f = new DoubleFunc(Square);

 static float Square(float x) {
 return x * x;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

317

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

 static double Square(double x) {
 return x * x;
 }
}

the A.f field is initialized with a delegate that refers to the second Square method because
that method exactly matches the formal parameter list and return type of DoubleFunc. Had
the second Square method not been present, a compile-time error would have occurred.

7.6.10.6 Anonymous Object Creation Expressions
An anonymous-object-creation-expression is used to create an object of an anonymous type.

anonymous-object-creation-expression:
new anonymous-object-initializer

anonymous-object-initializer:
{ member-declarator-listopt }
{ member-declarator-list , }

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
simple-name
member-access
base-access
identifier = expression

n
n  VLADIMIR RESHETNIkoV A base-access can be a member-declarator only if it is of

the form base.identifier; that is, no base indexer access is allowed here.

An anonymous object initializer declares an anonymous type and returns an instance of
that type. An anonymous type is a nameless class type that inherits directly from object.
The members of an anonymous type are a sequence of read-only properties inferred from
the anonymous object initializer used to create an instance of the type. Specifically, an
anonymous object initializer of the form

new { p1 = e1 , p2 = e2 , ... pn = en }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

318

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

declares an anonymous type of the form

class __Anonymous1
{
 private readonly T1 f1 ;
 private readonly T2 f2 ;
 ...
 private readonly Tn fn ;

 public __Anonymous1(T1 a1, T2 a2,..., Tn an) {
 f1 = a1 ;
 f2 = a2 ;
 ...
 fn = an ;
 }

 public T1 p1 { get { return f1 ; } }
 public T2 p2 { get { return f2 ; } }
 ...
 public Tn pn { get { return fn ; } }

 public override bool Equals(object o) { ... }
 public override int GetHashCode() { ... }
}

where each Tx is the type of the corresponding expression ex. The expression used in a
member-declarator must have a type. Thus it is a compile-time error for an expression in
a member-declarator to be null or an anonymous function. It is also a compile-time error for
the expression to have an unsafe type.

n
n  ERIC LIPPERT The actual code generated by the Microsoft implementation for an

anonymous type is somewhat more complex than this discussion suggests because of
the desire (mentioned later) to have structurally equivalent anonymous types be rep-
resented by the same type throughout a program. Because the field types could be
protected nested types, it becomes difficult to figure out where exactly to generate the
anonymous class so that it can be effectively shared among different derived types.
For this reason, the Microsoft implementation actually generates a generic class and
then constructs it with the appropriate type arguments.

The name of an anonymous type is automatically generated by the compiler and cannot be
referenced in program text.

n
n  JoN SkEET Oxymoronic as it sounds, I would dearly love to see named anony-

mous types: classes that are as easy to express as anonymous types and that possess
the same properties of immutability, natural equality, and type and name safety of
properties— but with a name. Although many tools can “expand” anonymous types
into equivalent normal classes, the concise expression of the type is lost at that point.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

319

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Within the same program, two anonymous object initializers that specify a sequence of
properties of the same names and compile-time types in the same order will produce
instances of the same anonymous type.

In the example

var p1 = new { Name = "Lawnmower", Price = 495.00 };
var p2 = new { Name = "Shovel", Price = 26.95 };
p1 = p2;

the assignment on the last line is permitted because p1 and p2 are of the same anonymous
type.

The Equals and GetHashcode methods on anonymous types override the methods inher-
ited from object, and are defined in terms of the Equals and GetHashcode of the properties,
so that two instances of the same anonymous type are equal if and only if all their proper-
ties are equal.

A member declarator can be abbreviated to a simple name (§7.5.2), a member access
(§7.5.4), or a base access (§7.6.8). This is called a projection initializer and is shorthand for
a declaration of and assignment to a property with the same name. Specifically, member
declarators of the forms

identifier expr . identifier

are precisely equivalent to the following, respectively:

identifier = identifier identifier = expr . identifier

Thus, in a projection initializer, the identifier selects both the value and the field or property
to which the value is assigned. Intuitively, a projection initializer projects not just a value,
but also the name of the value.

7.6.11 The typeof operator
The typeof operator is used to obtain the System.Type object for a type.

typeof-expression:
typeof (type)
typeof (unbound-type-name)
typeof (void)

unbound-type-name:
identifier generic-dimension-specifieropt
identifier :: identifier generic-dimension-specifieropt

unbound-type-name . identifier generic-dimension-specifieropt

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

320

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

generic-dimension-specifier:
< commasopt >

commas:
,
commas ,

The first form of typeof-expression consists of a typeof keyword followed by a parenthe-
sized type. The result of an expression of this form is the System.Type object for the indi-
cated type. There is only one System.Type object for any given type. This means that for a
type T, typeof(T) == typeof(T) is always true. The type cannot be dynamic.

The second form of typeof-expression consists of a typeof keyword followed by a parenthe-
sized unbound-type-name. An unbound-type-name is very similar to a type-name (§3.8) except
that an unbound-type-name contains generic-dimension-specifiers whereas a type-name con-
tains type-argument-lists. When the operand of a typeof-expression is a sequence of tokens
that satisfies the grammars of both unbound-type-name and type-name—namely, when it
contains neither a generic-dimension-specifier nor a type-argument-list—the sequence of
tokens is considered to be a type-name. The meaning of an unbound-type-name is determined
as follows:

Convert the sequence of tokens to a •	 type-name by replacing each generic-dimension- specifier
with a type-argument-list having the same number of commas and the keyword object
as each type-argument.

Evaluate the resulting •	 type-name, while ignoring all type parameter constraints.

The •	 unbound-type-name resolves to the unbound generic type associated with the result-
ing constructed type (§4.4.3).

The result of the typeof-expression is the System.Type object for the resulting unbound
generic type.

The third form of typeof-expression consists of a typeof keyword followed by a parenthe-
sized void keyword. The result of an expression of this form is the System.Type object that
represents the absence of a type. The type object returned by typeof(void) is distinct from
the type object returned for any type. This special type object is useful in class libraries that
allow reflection onto methods in the language, where those methods wish to have a way to
represent the return type of any method, including void methods, with an instance of
System.Type.

The typeof operator can be used on a type parameter. The result is the System.Type object
for the runtime type that was bound to the type parameter. The typeof operator can also
be used on a constructed type or an unbound generic type (§4.4.3). The System.Type object
for an unbound generic type is not the same as the System.Type object of the instance type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

321

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The instance type is always a closed constructed type at runtime, so its System.Type object
depends on the runtime type arguments in use, while the unbound generic type has no
type arguments.

The example

using System;

class X<T>
{
 public static void PrintTypes() {
 Type[] t = {
 typeof(int),
 typeof(System.Int32),
 typeof(string),
 typeof(double[]),
 typeof(void),
 typeof(T),
 typeof(X<T>),
 typeof(X<X<T>>),
 typeof(X<>)
 };
 for (int i = 0; i < t.Length; i++) {
 Console.WriteLine(t[i]);
 }
 }
}

class Test
{
 static void Main() {
 X<int>.PrintTypes();
 }
}

produces the following output:

System.Int32
System.Int32
System.String
System.Double[]
System.Void
System.Int32
X`1[System.Int32]
X`1[X`1[System.Int32]]
X`1[T]

Note that int and System.Int32 are the same type.

Also note that the result of typeof(X<>) does not depend on the type argument, but the
result of typeof(X<T>) does.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

322

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.6.12 The checked and unchecked operators
The checked and unchecked operators are used to control the overflow checking context for
integral-type arithmetic operations and conversions.

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the
unchecked operator evaluates the contained expression in an unchecked context. A checked-
expression or unchecked-expression corresponds exactly to a parenthesized-expression (§7.6.3),
except that the contained expression is evaluated in the given overflow checking context.

n
n  JoN SkEET In most cases, overflow indicates an error—but in my experience,

most developers (including myself) usually build without the checking feature on by
default. Obviously, this approach has a performance penalty, but that’s usually prefer-
able to silently corrupted data. It would possibly make sense to make /checked+ the
default for debug builds and /checked- the default for release builds—although I’m
generally wary of behavioral changes between debug and release. This would be a
little like the behavior of cross-thread exceptions in Windows Forms.

One situation where unchecked overflow behavior is almost always appropriate is
in GetHashCode implementations, where the magnitude of the value generated doesn’t
really matter; in essence, it’s just an arbitrary bit pattern.

The overflow checking context can also be controlled through the checked and unchecked
statements (§8.11).

The following operations are affected by the overflow checking context established by the
checked and unchecked operators and statements:

The predefined •	 ++ and -- unary operators (§7.6.9 and §7.7.5), when the operand is of an
integral type.

The predefined •	 - unary operator (§7.7.2), when the operand is of an integral type.

The predefined •	 +, -, *, and / binary operators (§7.8), when both operands are of integral
types.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

323

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Explicit numeric conversions (§6.2.1) from one integral type to another integral type, or •	
from float or double to an integral type.

When one of the above operations produces a result that is too large to represent in the
destination type, the context in which the operation is performed controls the resulting
behavior:

In a •	 checked context, if the operation is a constant expression (§7.19), a compile-time
error occurs. Otherwise, when the operation is performed at runtime, a System.
OverflowException is thrown.

In an •	 unchecked context, the result is truncated by discarding any high-order bits that
do not fit in the destination type.

For nonconstant expressions (expressions that are evaluated at runtime) that are not
enclosed by any checked or unchecked operators or statements, the default overflow check-
ing context is unchecked unless external factors (such as compiler switches and execution
environment configuration) call for checked evaluation.

For constant expressions (expressions that can be fully evaluated at compile time), the
default overflow checking context is always checked. Unless a constant expression is
explicitly placed in an unchecked context, overflows that occur during the compile-time
evaluation of the expression always cause compile-time errors.

The body of an anonymous function is not affected by checked or unchecked contexts in
which the anonymous function occurs.

In the example

class Test
{
 static readonly int x = 1000000;
 static readonly int y = 1000000;

 static int F() {
 return checked(x * y); // Throws OverflowException
 }

 static int G() {
 return unchecked(x * y); // Returns -727379968
 }

 static int H() {
 return x * y; // Depends on default
 }
}

no compile-time errors are reported since neither of the expressions can be evaluated at
compile time. At runtime, the F method throws a System.OverflowException and the G

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

324

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

method returns –727379968 (the lower 32 bits of the out-of-range result). The behavior of
the H method depends on the default overflow checking context for the compilation, but it
is either the same as F or the same as G.

In the example

class Test
{
 const int x = 1000000;
 const int y = 1000000;

 static int F() {
 return checked(x * y); // Compile error, overflow
 }

 static int G() {
 return unchecked(x * y); // Returns -727379968
 }

 static int H() {
 return x * y; // Compile error, overflow
 }
}

the overflows that occur when evaluating the constant expressions in F and H cause com-
pile-time errors to be reported because the expressions are evaluated in a checked context.
An overflow also occurs when evaluating the constant expression in G, but since the evalu-
ation takes place in an unchecked context, the overflow is not reported.

The checked and unchecked operators affect the overflow checking context only for those
operations that are textually contained within the “(” and “)” tokens. The operators have
no effect on function members that are invoked as a result of evaluating the contained
expression. In the example

class Test
{
 static int Multiply(int x, int y) {
 return x * y;
 }

 static int F() {
 return checked(Multiply(1000000, 1000000));
 }
}

the use of checked in F does not affect the evaluation of x * y in Multiply, so x * y is evalu-
ated in the default overflow checking context.

The unchecked operator is convenient when writing constants of the signed integral types
in hexadecimal notation. For example:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.6		 Primary Expressions

325

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

class Test
{
 public const int AllBits = unchecked((int)0xFFFFFFFF);

 public const int HighBit = unchecked((int)0x80000000);
}

Both of the hexadecimal constants above are of type uint. Because the constants are out-
side the int range, without the unchecked operator, the casts to int would produce com-
pile-time errors.

The checked and unchecked operators and statements allow programmers to control cer-
tain aspects of some numeric calculations. However, the behavior of some numeric opera-
tors depends on their operands’ data types. For example, multiplying two decimals always
results in an exception on overflow even within an explicitly unchecked construct. Similarly,
multiplying two floats never results in an exception on overflow even within an explicitly
checked construct. In addition, other operators are never affected by the mode of checking,
whether default or explicit.

7.6.13 Default Value Expressions
A default value expression is used to obtain the default value (§5.2) of a type. Typically a
default value expression is used for type parameters, since it may not be known if the type
parameter is a value type or a reference type. (No conversion exists from the null literal to
a type parameter unless the type parameter is known to be a reference type.)

default-value-expression:
default (type)

If the type in a default-value-expression evaluates at runtime to a reference type, the result is
null converted to that type. If the type in a default-value-expression evaluates at runtime to a
value type, the result is the value-type’s default value (§4.1.2).

A default-value-expression is a constant expression (§7.19) if the type is a reference type or a
type parameter that is known to be a reference type (§10.1.5). In addition, a default-value-
expression is a constant expression if the type is one of the following value types: sbyte,
byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, bool, or any
enumeration type.

n
n  JoSEPH ALBAHARI A default value expression is particularly useful with generic

type parameters. Microsoft’s LINQ implementation makes extensive use of this con-
struct, in operators such as FirstOrDefault, SingleOrDefault, and DefaultIfEmpty.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

326

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.6.14 Anonymous Method Expressions
An anonymous-method-expression is one of two ways of defining an anonymous function.
These are further described in §7.15.

7.7 Unary operators
The +, -, !, ~, ++, --, and cast operators are called the unary operators.

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

If the operand of a unary-expression has the compile-time type dynamic, it is dynamically
bound (§7.2.2). In this case, the compile-time type of the unary-expression is dynamic, and
the resolution described below will take place at runtime using the runtime type of the
operand.

7.7.1 Unary Plus operator
For an operation of the form +x, unary operator overload resolution (§7.3.3) is applied to
select a specific operator implementation. The operand is converted to the parameter type
of the selected operator, and the type of the result is the return type of the operator. The
predefined unary plus operators are listed here:

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is simply the value of the operand.

n
n  ERIC LIPPERT The unary plus operator is the world’s least useful operator. It is

included for completeness, so that you can write int x = -30; int y = +40; should
you wish to emphasize that the value is positive for readability purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.7		 Unary operators

327

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.7.2 Unary Minus operator
For an operation of the form –x, unary operator overload resolution (§7.3.3) is applied to
select a specific operator implementation. The operand is converted to the parameter type
of the selected operator, and the type of the result is the return type of the operator. The
predefined negation operators are identified here:

Integer negation:•	

int operator –(int x);
long operator –(long x);

The result is computed by subtracting x from zero. If the value of x is the smallest repre-
sentable value of the operand type (−231 for int or −263 for long), then the mathematical
negation of x is not representable within the operand type. If this occurs within a checked
context, a System.OverflowException is thrown; if it occurs within an unchecked con-
text, the result is the value of the operand and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type long, and
the type of the result is long. An exception is the rule that permits the int value
−2147483648 (−231) to be written as a decimal integer literal (§2.4.4.2).

If the operand of the negation operator is of type ulong, a compile-time error occurs. An
exception is the rule that permits the long value −9223372036854775808 (−263) to be writ-
ten as a decimal integer literal (§2.4.4.2).

Floating point negation:•	
float operator –(float x);
double operator –(double x);

The result is the value of x with its sign inverted. If x is NaN, the result is also NaN.

Decimal negation:•	
decimal operator –(decimal x);

The result is computed by subtracting x from zero. Decimal negation is equivalent to
using the unary minus operator of type System.Decimal.

7.7.3 Logical Negation operator
For an operation of the form !x, unary operator overload resolution (§7.3.3) is applied to
select a specific operator implementation. The operand is converted to the parameter type
of the selected operator, and the type of the result is the return type of the operator. Only
one predefined logical negation operator exists:

bool operator !(bool x);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

328

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

This operator computes the logical negation of the operand: If the operand is true, the
result is false. If the operand is false, the result is true.

7.7.4 Bitwise Complement operator
For an operation of the form ~x, unary operator overload resolution (§7.3.3) is applied to
select a specific operator implementation. The operand is converted to the parameter type
of the selected operator, and the type of the result is the return type of the operator. The
predefined bitwise complement operators are listed here:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

For each of these operators, the result of the operation is the bitwise complement of x.

Every enumeration type E implicitly provides the following bitwise complement
operator:

E operator ~(E x);

n
n  BILL WAGNER This operator will often create an invalid value for the

enumeration.

The result of evaluating ~x, where x is an expression of an enumeration type E with an
underlying type U, is exactly the same as evaluating (E)(~(U)x).

7.7.5 Prefix Increment and Decrement operators
pre-increment-expression:

++ unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation must be an expression classified
as a variable, a property access, or an indexer access. The result of the operation is a value
of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access,
the property or indexer must have both a get and a set accessor. If this is not the case, a
binding-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.7		 Unary operators

329

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Unary operator overload resolution (§7.3.3) is applied to select a specific operator imple-
mentation. Predefined ++ and -- operators exist for the following types: sbyte, byte, short,
ushort, int, uint, long, ulong, char, float, double, decimal, and any enum type. The pre-
defined ++ operators return the value produced by adding 1 to the operand, and the
predefined -- operators return the value produced by subtracting 1 from the operand. In a
checked context, if the result of this addition or subtraction is outside the range of the result
type and the result type is an integral type or enum type, a System.OverflowException is
thrown.

The runtime processing of a prefix increment or decrement operation of the form ++x or
--x consists of the following steps:

If •	 x is classified as a variable:

x - is evaluated to produce the variable.

The selected operator is invoked with the value of - x as its argument.

- The value returned by the operator is stored in the location given by the evaluation
of x.

- The value returned by the operator becomes the result of the operation.

If •	 x is classified as a property or indexer access:

The instance expression (if - x is not static) and the argument list (if x is an indexer
access) associated with x are evaluated, and the results are used in the subsequent get
and set accessor invocations.

The - get accessor of x is invoked.

The selected operator is invoked with the value returned by the - get accessor as its
argument.

The - set accessor of x is invoked with the value returned by the operator as its value
argument.

n
n  VLADIMIR RESHETNIkoV If either the get-accessor or set-accessor is missing or is

not accessible, a compile-time error occurs.

- The value returned by the operator becomes the result of the operation.

The ++ and -- operators also support postfix notation (§7.6.9). Typically, the result of x++
or x-- is the value of x before the operation, whereas the result of ++x or --x is the value of
x after the operation. In either case, x itself has the same value after the operation.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

330

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  ERIC LIPPERT Note the weasel word “typically” in the specification. Indeed, this

is almost always the case, but the specification does not require that to be the case. The
value of x after the operation could be any old thing; someone could be mutating x on
another thread, x could be a property that returns random values when you call its
getter, and so on.

Consider this code:

index = 0; value = this.arr[index++];

I often hear this code described as follows: “This gets the element at index zero and
then increments index to one; the increment happens after the array lookup because
the ++ comes after the index.” If you read the specification carefully, you’ll see that this
statement is completely wrong. The correct order of events is (1) remember the current
value of index, (2) increment index, and (3) do the array lookup using the remembered
value. The increment happens before the lookup, not after it.

An operator ++ or operator -- implementation can be invoked using either postfix or
prefix notation. It is not possible to have separate operator implementations for the two
notations.

7.7.6 Cast Expressions
A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of the form (T)E, where T is a type and E is a unary-expression, performs an
explicit conversion (§6.2) of the value of E to type T. If no explicit conversion exists from E
to T, a binding-time error occurs. Otherwise, the result is the value produced by the explicit
conversion. The result is always classified as a value, even if E denotes a variable.

n
n  ERIC LIPPERT The cast operator is a bit of an odd duck, both because of its

unusual syntax and because of its semantics. A cast operator is usually used to mean
either (1) I claim that at runtime the value will not be of the cast type; do whatever it
takes to make me a new value of the required type; or (2) I claim that at runtime the
value will be of the cast type; verify my claim by throwing an exception if I’m wrong.
The attentive reader will note that these are opposites. Though it’s a neat trick to have
one operator do two opposite things, as a result, it’s easy to get confused about what
the cast operator is actually doing.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.8		 Arithmetic operators

331

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the
expression (x)–y could be interpreted either as a cast-expression (a cast of –y to type x) or as
an additive-expression combined with a parenthesized-expression (which computes the value
x – y).

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more
tokens (§2.3.3) enclosed in parentheses is considered the start of a cast-expression only if at
least one of the following conditions is true:

The sequence of tokens is correct grammar for a •	 type, but not for an expression.

The sequence of tokens is correct grammar for a •	 type, and the token immediately follow-
ing the closing parentheses is the token “~”, the token “!”, the token “(”, an identifier
(§2.4.1), a literal (§2.4.4), or any keyword (§2.4.3) except as and is.

The term “correct grammar” above means only that the sequence of tokens must conform
to the particular grammatical production. It specifically does not consider the actual mean-
ing of any constituent identifiers. For example, if x and y are identifiers, then x.y is correct
grammar for a type, even if x.y doesn’t actually denote a type.

From the disambiguation rule it follows that, if x and y are identifiers, (x)y, (x)(y), and
(x)(-y) are cast-expressions, but (x)-y is not, even if x identifies a type. However, if x is a
keyword that identifies a predefined type (such as int), then all four forms are cast-
expressions (because such a keyword could not possibly be an expression by itself).

7.8 Arithmetic operators
The *, /, %, +, and – operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

If an operand of an arithmetic operator has the compile-time type dynamic, then the expres-
sion is dynamically bound (§7.2.2). In this case the compile-time type of the expression is
dynamic, and the resolution described below will take place at runtime using the runtime
type of those operands that have the compile-time type dynamic.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

332

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  PETER SESToFT When a value of a simple type such as double is assigned to a

variable of type dynamic, it must typically be boxed (stored as an object in the heap) at
runtime. Thus arithmetic computations with operands of type dynamic are likely to be
slower than those with simple compile-time types. For instance, this loop is roughly
six times slower (on Microsoft .NET 4.0) than if sum were declared to have type
double:

dynamic sum = 0;
for (int i=0; i<count; i++)
 sum += (i + 1.0) * i;

Actually, this is very fast compared to arithmetics in some other dynamically typed
languages.

7.8.1 Multiplication operator
For an operation of the form x * y, binary operator overload resolution (§7.3.4) is applied
to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the
product of x and y.

Integer multiplication:•	
int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

In a checked context, if the product is outside the range of the result type, a System.
OverflowException is thrown. In an unchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

Floating point multiplication:•	
float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEEE 754 arithmetic. The following
table lists the results of all possible combinations of non-zero finite values, zeros, infini-
ties, and NaNs. In the table, x and y are positive finite values; z is the result of x * y. If
the result is too large for the destination type, z is infinity. If the result is too small for the
destination type, z is zero.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.8		 Arithmetic operators

333

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

+y –y +0 –0 +∞ –∞ NaN

+x +z –z +0 –0 +∞ –∞ NaN

–x –z +z –0 +0 –∞ +∞ NaN

+0 +0 –0 +0 –0 NaN NaN NaN

–0 –0 +0 –0 +0 NaN NaN NaN

+∞ +∞ –∞ NaN NaN +∞ –∞ NaN

–∞ –∞ +∞ NaN NaN –∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Decimal multiplication:•	
decimal operator *(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, a System.Overflow-
Exception is thrown. If the result value is too small to represent in the decimal format,
the result is zero. The scale of the result, before any rounding, is the sum of the scales of
the two operands.

Decimal multiplication is equivalent to using the multiplication operator of type
System.Decimal.

n
n  PETER SESToFT Where the text says “IEEE 754 floating point” here and else-

where in this chapter, it would be more precise to say “IEEE 754 binary floating point,”
because the 2008 version of that IEEE standard describes binary as well as decimal
floating point, and those are very different things!

Also, the following rule is prescribed by the IEEE 754 binary floating point standard,
and respected by the current Microsoft and Mono C# implementations: Whenever one
or more operands is a NaN, the result is a NaN, and the NaN payload of the result equals
the payload of one of the NaN operands. The NaN payload of a 64-bit double consists of
its 51 least significant bits (so a double can represent 251—roughly 2*101—different
NaNs). The NaN payload of a 32-bit float consists of its 22 least significant bits (so a
float can represent 222—roughly 4*106—different NaNs).

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

334

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The NaN payload preservation is important for efficient scientific computing. For this
approach to really work, in addition to the arithmetic operators, the mathematical
functions in System.Math should respect IEEE binary floating point as well. In the cur-
rent implementations, they mostly do so.

double The .NET library provides a method System.Double.IsNan(d) to test whether a
is a NaN.

For type double, it also provides methods DoubleToInt64Bits and Int64BitsToDouble
that can be used to get and set NaN payload bits:

public static long GetNanPayload(double d) {
 return System.BitConverter.DoubleToInt64Bits(d) & 0x0007FFFFFFFFFFFF;
}

public static double MakeNanPayload(long nanbits) {
 nanbits &= 0x0007FFFFFFFFFFFF;
 nanbits |= System.BitConverter.DoubleToInt64Bits(Double.NaN);
 return System.BitConverter.Int64BitsToDouble(nanbits);
}

Strangely, the .NET library has no corresponding methods for type float, but one can
use unsafe pointer conversions to achieve the same effect. For the gory details, see an
annotation on §18.4.

7.8.2 Division operator
For an operation of the form x / y, binary operator overload resolution (§7.3.4) is applied
to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient
of x and y.

Integer division:•	
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown.

The division rounds the result toward zero. Thus the absolute value of the result is the
largest possible integer that is less than or equal to the absolute value of the quotient of
the two operands. The result is zero or positive when the two operands have the same
sign and zero or negative when the two operands have opposite signs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.8		 Arithmetic operators

335

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

If the left operand is the smallest representable int or long value and the right operand is
–1, an overflow occurs. In a checked context, this causes a System.ArithmeticException
(or a subclass thereof) to be thrown. In an unchecked context, it is implementation-defined
as to whether a System.ArithmeticException (or a subclass thereof) is thrown or the
overflow goes unreported with the resulting value being that of the left operand.

Floating point division:•	
float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following
table lists the results of all possible combinations of non-zero finite values, zeros, infini-
ties, and NaNs. In the table, x and y are positive finite values; z is the result of x / y. If
the result is too large for the destination type, z is infinity. If the result is too small for the
destination type, z is zero.

+y –y +0 –0 +∞ –∞ NaN

+x +z –z +∞ –∞ +0 –0 NaN

–x –z +z –∞ +∞ –0 +0 NaN

+0 +0 –0 NaN NaN +0 –0 NaN

–0 –0 +0 NaN NaN –0 +0 NaN

+∞ +∞ –∞ +∞ –∞ NaN NaN NaN

–∞ –∞ +∞ –∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Decimal division:•	
decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. If
the resulting value is too large to represent in the decimal format, a System.Overflow-
Exception is thrown. If the result value is too small to represent in the decimal format,
the result is zero. The scale of the result is the smallest scale that will preserve a result
equal to the nearest representable decimal value to the true mathematical result.

Decimal division is equivalent to using the division operator of type System.Decimal.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

336

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.8.3 Remainder operator
For an operation of the form x % y, binary operator overload resolution (§7.3.4) is applied
to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the
remainder of the division between x and y.

Integer remainder:•	
int operator %(int x, int y);
uint operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

The result of x % y is the value produced by x – (x / y) * y. If y is zero, a System.
DivideByZeroException is thrown.

n
n  ERIC LIPPERT Consider this code:

static bool IsOdd(int x) { return x%2 == 1; }

Is it correct? No! By the sentence above, this is the same as

static bool IsOdd(int x) { return x-(x/2)*2 == 1; }

which is false if x is -1. The correct code is

static bool IsOdd(int x) { return x%2 != 0; }

If the left operand is the smallest int or long value and the right operand is -1, a Sys-
tem.OverflowException is thrown. In no case does x % y throw an exception where x / y
would not throw an exception.

Floating point remainder:•	
float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of non-zero finite val-
ues, zeros, infinities, and NaNs. In the table, x and y are positive finite values; z is the
result of x % y and is computed as x – n * y, where n is the largest possible integer that
is less than or equal to x / y. This method of computing the remainder is analogous to
that used for integer operands, but differs from the IEEE 754 definition (in which n is
the integer closest to x / y).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.8		 Arithmetic operators

337

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

+y –y +0 –0 +∞ –∞ NaN

+x +z +z NaN NaN x x NaN

–x –z –z NaN NaN –x –x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

–0 –0 –0 NaN NaN –0 –0 NaN

+∞ NaN NaN NaN NaN NaN NaN NaN

–∞ NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Decimal remainder:•	
decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown.
The scale of the result, before any rounding, is the larger of the scales of the two oper-
ands, and the sign of the result, if non-zero, is the same as that of x.

Decimal remainder is equivalent to using the remainder operator of type System.
Decimal.

n
n  CHRIS SELLS The “remainder” operator is also known as “modulo” in other

computer languages, sometimes denoted as “mod.” If you’re really a geek, you’ll find
yourself using “modulo” in (loosely) human sentences instead of the phrase “except
for,” as in “Modulo testing, debugging, and documentation, we’re ready to ship!”

7.8.4 Addition operator
For an operation of the form x + y, binary operator overload resolution (§7.3.4) is applied
to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types,
the predefined addition operators compute the sum of the two operands. When one or

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

338

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

both operands are of type string, the predefined addition operators concatenate the string
representation of the operands.

Integer addition:•	
int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y);

In a checked context, if the sum is outside the range of the result type, a System.
OverflowException is thrown. In an unchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

Floating point addition:•	
float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEEE 754 arithmetic. The following table
lists the results of all possible combinations of non-zero finite values, zeros, infinities,
and NaNs. In the table, x and y are non-zero finite values; z is the result of x + y. If x and
y have the same magnitude but opposite signs, z is positive zero. If x + y is too large to
represent in the destination type, z is an infinity with the same sign as x + y.

y +0 –0 +∞ –∞ NaN

x z x x +∞ –∞ NaN

+0 y +0 +0 +∞ –∞ NaN

–0 y +0 –0 +∞ –∞ NaN

+∞ +∞ +∞ +∞ +∞ NaN NaN

–∞ –∞ –∞ –∞ NaN –∞ NaN

NaN NaN NaN NaN NaN NaN NaN

Decimal addition:•	

decimal operator +(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, a System.Overflow-
Exception is thrown. The scale of the result, before any rounding, is the larger of the
scales of the two operands.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.8		 Arithmetic operators

339

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Decimal addition is equivalent to using the addition operator of type System.Decimal.

Enumeration addition. Every enumeration type implicitly provides the following pre-•	
defined operators, where E is the enum type and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

At runtime, these operators are evaluated exactly as (E)((U)x + (U)y).

n
n  BILL WAGNER Once again, addition on enumerations may not result in a valid

enumeration member. The same is true for all of the arithmetic operators.

String concatenation:•	

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

These overloads of the binary + operator perform string concatenation. If an operand of
string concatenation is null, an empty string is substituted. Otherwise, any non-string
argument is converted to its string representation by invoking the virtual ToString
method inherited from type object. If ToString returns null, an empty string is
substituted.

using System;

class Test
{
 static void Main() {
 string s = null;
 Console.WriteLine("s = >" + s + "<"); // Displays s = ><
 int i = 1;
 Console.WriteLine("i = " + i); // Displays i = 1
 float f = 1.2300E+15F;
 Console.WriteLine("f = " + f); // Displays f = 1.23E+15
 decimal d = 2.900m;
 Console.WriteLine("d = " + d); // Displays d = 2.900
 }
}

The result of the string concatenation operator is a string that consists of the characters
of the left operand followed by the characters of the right operand. The string concate-
nation operator never returns a null value. A System.OutOfMemoryException may be
thrown if there is not enough memory available to allocate the resulting string.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

340

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  JoN SkEET It’s slightly surprising that the .NET System.String type doesn’t

have an overload for + that would be used in this situation, until you consider the
optimizations available to the compiler because it has visibility of more code. An
expression such as a+b+c+d doesn’t have to result in three intermediate strings being
produced: A single call to String.Concat(a, b, c, d) allows the concatenation to be
performed more efficiently.

Delegate combination. Every delegate type implicitly provides the following predefined •	
operator, where D is the delegate type:

D operator +(D x, D y);

The binary + operator performs delegate combination when both operands are of some
delegate type D. (If the operands have different delegate types, a binding-time error
occurs.) If the first operand is null, the result of the operation is the value of the second
operand (even if that is also null). Otherwise, if the second operand is null, then the
result of the operation is the value of the first operand. Otherwise, the result of the
operation is a new delegate instance that, when invoked, invokes the first operand and
then invokes the second operand. For examples of delegate combination, see §7.8.5 and
§15.4. Since System.Delegate is not a delegate type, operator + is not defined for it.

7.8.5 Subtraction operator
For an operation of the form x – y, binary operator overload resolution (§7.3.4) is applied
to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y from x.

Integer subtraction:•	

int operator –(int x, int y);
uint operator –(uint x, uint y);
long operator –(long x, long y);
ulong operator –(ulong x, ulong y);

In a checked context, if the difference is outside the range of the result type, a System.
OverflowException is thrown. In an unchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

Floating point subtraction:•	

float operator –(float x, float y);
double operator –(double x, double y);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.8		 Arithmetic operators

341

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The difference is computed according to the rules of IEEE 754 arithmetic. The following
table lists the results of all possible combinations of non-zero finite values, zeros, infini-
ties, and NaNs. In the table, x and y are non-zero finite values; z is the result of x – y. If
x and y are equal, z is positive zero. If x – y is too large to represent in the destination
type, z is an infinity with the same sign as x – y.

y +0 –0 +∞ –∞ NaN

x z x x –∞ +∞ NaN

+0 –y +0 +0 –∞ +∞ NaN

–0 –y –0 +0 –∞ +∞ NaN

+∞ +∞ +∞ +∞ NaN +∞ NaN

–∞ –∞ –∞ –∞ –∞ NaN NaN

NaN NaN NaN NaN NaN NaN NaN

Decimal subtraction:•	
decimal operator –(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, a System.Overflow-
Exception is thrown. The scale of the result, before any rounding, is the larger of the
scales of the two operands.

Decimal subtraction is equivalent to using the subtraction operator of type System.
Decimal.

Enumeration subtraction. Every enumeration type implicitly provides the following •	
predefined operator, where E is the enum type and U is the underlying type of E:
U operator –(E x, E y);

This operator is evaluated exactly as (U)((U)x – (U)y). In other words, the operator
computes the difference between the ordinal values of x and y, and the type of the result
is the underlying type of the enumeration.

E operator –(E x, U y);

This operator is evaluated exactly as (E)((U)x – y). In other words, the operator sub-
tracts a value from the underlying type of the enumeration, yielding a value of the
enumeration.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

342

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Delegate removal. Every delegate type implicitly provides the following predefined •	
operator, where D is the delegate type:
D operator –(D x, D y);

The binary – operator performs delegate removal when both operands are of some del-
egate type D. If the operands have different delegate types, a binding-time error occurs.
If the first operand is null, the result of the operation is null. Otherwise, if the second
operand is null, then the result of the operation is the value of the first operand. Other-
wise, both operands represent invocation lists (§15.1) having one or more entries, and
the result is a new invocation list consisting of the first operand’s list with the second
operand’s entries removed from it, provided the second operand’s list is a proper con-
tiguous sublist of the first’s. (To determine sublist equality, corresponding entries are
compared as for the delegate equality operator (§7.10.8).) Otherwise, the result is the
value of the left operand. Neither of the operands’ lists is changed in the process. If the
second operand’s list matches multiple sublists of contiguous entries in the first oper-
and’s list, the rightmost matching sublist of contiguous entries is removed. If removal
results in an empty list, the result is null. For example:

delegate void D(int x);

class C
{
 public static void M1(int i) { /* ... */ }
 public static void M2(int i) { /* ... */ }
}

class Test
{
 static void Main() {
 D cd1 = new D(C.M1);
 D cd2 = new D(C.M2);
 D cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1; // => M1 + M2 + M2

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1 + cd2; // => M2 + M1

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd2 + cd2; // => M1 + M1

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd2 + cd1; // => M1 + M2

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1 + cd1; // => M1 + M2 + M2 + M1
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.9		 Shift operators

343

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.9 Shift operators
The << and >> operators are used to perform bit shifting operations.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression right-shift additive-expression

If an operand of a shift-expression has the compile-time type dynamic, then the expression is
dynamically bound (§7.2.2). In this case, the compile-time type of the expression is dynamic,
and the resolution described below will take place at runtime using the runtime type of
those operands that have the compile-time type dynamic.

For an operation of the form x << count or x >> count, binary operator overload resolution
(§7.3.4) is applied to select a specific operator implementation. The operands are converted
to the parameter types of the selected operator, and the type of the result is the return type
of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be
the class or struct containing the operator declaration, and the type of the second operand
must always be int.

The predefined shift operators are listed below.

Shift left:•	
int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x are discarded, the remaining
bits are shifted left, and the low-order empty bit positions are set to zero.

Shift right:•	
int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

344

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

When x is of type int or long, the low-order bits of x are discarded, the remaining bits
are shifted right, and the high-order empty bit positions are set to zero if x is non-nega-
tive and set to 1 if x is negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits
are shifted right, and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

When the type of •	 x is int or uint, the shift count is given by the low-order five bits of
count. In other words, the shift count is computed from count & 0x1F.

When the type of •	 x is long or ulong, the shift count is given by the low-order six bits of
count. In other words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operators simply return the value of x.

n
n  JoN SkEET Masking the shift count may be efficient, but it can make for some

very confusing behavior:

for (int i = 0; i < 40; i++)
{
 Console.WriteLine(int.MaxValue >> i);
}

This code prints values that are halved on each iteration—until they cycle back to int.
MaxValue after reaching 0.

Shift operations never cause overflows and produce the same results in checked and
unchecked contexts.

When the left operand of the >> operator is of a signed integral type, the operator performs
an arithmetic shift right wherein the value of the most significant bit (the sign bit) of the
operand is propagated to the high-order empty bit positions. When the left operand of the
>> operator is of an unsigned integral type, the operator performs a logical shift right
wherein high-order empty bit positions are always set to zero. To perform the opposite
operation of that inferred from the operand type, explicit casts can be used. For example,
if x is a variable of type int, the operation unchecked((int)((uint)x >> y)) performs a
logical shift right of x.

7.10 Relational and Type-Testing operators
The ==, !=, <, >, <=, >=, is, and as operators are called the relational and type-testing
operators.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.10		 Relational and Type-Testing operators

345

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The is operator is described in §7.10.10 and the as operator is described in §7.10.11.

The ==, !=, <, >, <=, and >= operators are comparison operators.

If an operand of a comparison operator has the compile-time type dynamic, then the expres-
sion is dynamically bound (§7.2.2). In this case, the compile-time type of the expression is
dynamic, and the resolution described below will take place at runtime using the runtime
type of those operands that have the compile-time type dynamic.

For an operation of the form x op y, where op is a comparison operator, overload resolution
(§7.3.4) is applied to select a specific operator implementation. The operands are converted
to the parameter types of the selected operator, and the type of the result is the return type
of the operator.

The predefined comparison operators are described in the following sections. All pre-
defined comparison operators return a result of type bool, as described in the following
table.

operation Result

x == y true if x is equal to y, false otherwise

x != y true if x is not equal to y, false otherwise

x < y true if x is less than y, false otherwise

x > y true if x is greater than y, false otherwise

x <= y true if x is less than or equal to y, false otherwise

x >= y true if x is greater than or equal to y, false otherwise

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

346

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.10.1 Integer Comparison operators
The predefined integer comparison operators are listed here:

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Each of these operators compares the numeric values of the two integer operands and
returns a bool value that indicates whether the particular relation is true or false.

7.10.2 Floating Point Comparison operators
The predefined floating point comparison operators are listed here:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.10		 Relational and Type-Testing operators

347

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

These operators compare the operands according to the rules of the IEEE 754 standard:

If either operand is NaN, the result is •	 false for all operators except !=, for which the
result is true. For any two operands, x != y always produces the same result as !(x ==
y). However, when one or both operands are NaN, the <, >, <=, and >= operators do not
produce the same results as the logical negation of the opposite operator. For example,
if either of x and y is NaN, then x < y is false, but !(x >= y) is true.

When neither operand is NaN, the operators compare the values of the two floating •	
point operands with respect to the ordering

–∞ < –max < ... < –min < –0.0 == +0.0 < +min < ... < +max < +∞

where min and max are, respectively, the smallest and largest positive finite values that
can be represented in the given floating point format. Notable effects of this ordering are
as follows:

- Negative and positive zeros are considered equal.

- A negative infinity is considered less than all other values, but equal to another nega-
tive infinity.

- A positive infinity is considered greater than all other values, but equal to another
positive infinity.

n
n  PETER SESToFT It also holds that positive and negative zero are equal by
Object.Equals, so their hashcodes as computed by Object.GetHashCode should be
equal as well. Unfortunately, this is not the case in all current implementations.

n
n  JoSEPH ALBAHARI Two NaN values, although unequal according to the ==

operator, are equal according to the Equals method:

double x = double.NaN;
Console.WriteLine(x == x); // False
Console.WriteLine(x != x); // True
Console.WriteLine(x.Equals(x)); // True

In general, a type’s Equals method follows the principle that an object must equal
itself. Without this assumption, lists and dictionaries could not operate, because there
would be no means for testing element membership. The == and != operators, how-
ever, are not obliged to follow this principle.

n
n  PETER SESToFT Even NaNs that have different payloads (see the annotation on

§7.8.1) are equal by Object.Equals.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

348

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.10.3 Decimal Comparison operators
The predefined decimal comparison operators are listed here:

bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compares the numeric values of the two decimal operands and
returns a bool value that indicates whether the particular relation is true or false. Each
decimal comparison is equivalent to using the corresponding relational or equality opera-
tor of type System.Decimal.

7.10.4 Boolean Equality operators
The predefined boolean equality operators are listed here:

bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);

The result of == is true if both x and y are true or if both x and y are false. Otherwise, the
result is false.

The result of != is false if both x and y are true or if both x and y are false. Otherwise, the
result is true. When the operands are of type bool, the != operator produces the same
result as the ^ operator.

7.10.5 Enumeration Comparison operators
Every enumeration type implicitly provides the following predefined comparison
operators:

bool operator ==(E x, E y);
bool operator !=(E x, E y);
bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E
with an underlying type U, and op is one of the comparison operators, is exactly the same
as evaluating ((U)x) op ((U)y). In other words, the enumeration type comparison opera-
tors simply compare the underlying integral values of the two operands.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.10		 Relational and Type-Testing operators

349

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.10.6 Reference Type Equality operators
The predefined reference type equality operators are listed here:

bool operator ==(object x, object y);
bool operator !=(object x, object y);

The operators return the result of comparing the two references for equality or non-
equality.

Since the predefined reference type equality operators accept operands of type object,
they apply to all types that do not declare applicable operator == and operator != mem-
bers. Conversely, any applicable user-defined equality operators effectively hide the pre-
defined reference type equality operators.

The predefined reference type equality operators require one of the following:

Both operands are a value of a type known to be a •	 reference-type or the literal null. Fur-
thermore, an explicit reference conversion (§6.2.4) exists from the type of either operand
to the type of the other operand.

One operand is a value of type •	 T, where T is a type-parameter and the other operand is the
literal null. Furthermore, T does not have the value type constraint.

Unless one of these conditions are true, a binding-time error occurs. Notable implications
of these rules are as follows:

It is a binding-time error to use the predefined reference type equality operators to com-•	
pare two references that are known to be different at binding time. For example, if the
binding-time types of the operands are two class types A and B, and if neither A nor B
derives from the other, then it would be impossible for the two operands to reference the
same object. Thus the operation is considered a binding-time error.

The predefined reference type equality operators do not permit value type operands to •	
be compared. Therefore, unless a struct type declares its own equality operators, it is not
possible to compare values of that struct type.

The predefined reference type equality operators never cause boxing operations to occur •	
for their operands. It would be meaningless to perform such boxing operations, since
references to the newly allocated boxed instances would necessarily differ from all other
references.

If an operand of a type parameter type •	 T is compared to null, and the runtime type of T
is a value type, the result of the comparison is false.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

350

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The following example checks whether an argument of an unconstrained type parameter
type is null.

class C<T>
{
 void F(T x) {
 if (x == null) throw new ArgumentNullException();
 ...
 }
}

The x == null construct is permitted even though T could represent a value type, and the
result is simply defined to be false when T is a value type.

n
n  BILL WAGNER If C.F() is called with default(int?), it will throw an exception.

A nullable type is considered equal to null if HasValue is false.

For an operation of the form x == y or x != y, if any applicable operator == or operator !=
exists, the operator overload resolution (§7.3.4) rules will select that operator instead of the
predefined reference type equality operator. However, it is always possible to select the
predefined reference type equality operator by explicitly casting one or both of the oper-
ands to type object. The example

using System;

class Test
{
 static void Main()
 {
 string s = "Test";
 string t = string.Copy(s);
 Console.WriteLine(s == t);
 Console.WriteLine((object)s == t);
 Console.WriteLine(s == (object)t);
 Console.WriteLine((object)s == (object)t);
 }
}

produces the output

True
False
False
False

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.10		 Relational and Type-Testing operators

351

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The s and t variables refer to two distinct string instances containing the same characters.
The first comparison outputs True because the predefined string equality operator (§7.10.7)
is selected when both operands are of type string. The remaining comparisons all output
False because the predefined reference type equality operator is selected when one or both
of the operands are of type object.

Note that the above technique is not meaningful for value types. The example

class Test
{
 static void Main()
 {
 int i = 123;
 int j = 123;
 System.Console.WriteLine((object)i == (object)j);
 }
}

outputs False because the casts create references to two separate instances of boxed int
values.

7.10.7 String Equality operators
The predefined string equality operators are listed here:

bool operator ==(string x, string y);
bool operator !=(string x, string y);

Two string values are considered equal when one of the following is true:

Both values are •	 null.

Both values are non-null references to string instances that have identical lengths and •	
identical characters in each character position.

The string equality operators compare string values rather than string references. When two
separate string instances contain the exact same sequence of characters, the values of the
strings are equal, but the references are different. As described in §7.10.6, the reference type
equality operators can be used to compare string references instead of string values.

7.10.8 Delegate Equality operators
Every delegate type implicitly provides the following predefined comparison operators:

bool operator ==(System.Delegate x, System.Delegate y);
bool operator !=(System.Delegate x, System.Delegate y);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

352

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Two delegate instances are considered equal in the following circumstances:

If either of the delegate instances is •	 null, they are equal if and only if both are null.

If the delegates have different runtime types, they are never equal.•	

If both of the delegate instances have an invocation list (§15.1), those instances are equal •	
if and only if their invocation lists are the same length, and each entry in one’s invoca-
tion list is equal (as defined below) to the corresponding entry, in order, in the other’s
invocation list.

The following rules govern the equality of invocation list entries:

If two invocation list entries both refer to the same static method, then the entries are •	
equal.

If two invocation list entries both refer to the same non-static method on the same target •	
object (as defined by the reference equality operators), then the entries are equal.

Invocation list entries produced from evaluation of semantically identical•	 anonymous-
function-expressions with the same (possibly empty) set of captured outer variable
instances are permitted (but not required) to be equal.

7.10.9 Equality operators and null
The == and != operators permit one operand to be a value of a nullable type and the other
to be the null literal, even if no predefined or user-defined operator (in unlifted or lifted
form) exists for the operation.

For an operation of one of the forms

x == null null == x x != null null != x

where x is an expression of a nullable type, if operator overload resolution (§7.2.4) fails to
find an applicable operator, the result is instead computed from the HasValue property of
x. Specifically, the first two forms are translated into !x.HasValue, and last two forms are
translated into x.HasValue.

7.10.10 The is operator
The is operator is used to dynamically check if the runtime type of an object is compat-
ible with a given type. The result of the operation E is T, where E is an expression and T
is a type, is a boolean value indicating whether E can successfully be converted to type T
by a reference conversion, a boxing conversion, or an unboxing conversion. The opera-
tion is evaluated as follows, after type arguments have been substituted for all type
parameters:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.10		 Relational and Type-Testing operators

353

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

If •	 E is an anonymous function, a compile-time error occurs.

If •	 E is a method group or the null literal, of if the type of E is a reference type or a nullable
type and the value of E is null, the result is false.

Otherwise, let •	 D represent the dynamic type of E as follows:

If the type of - E is a reference type, D is the runtime type of the instance reference
by E.

If the type of - E is a nullable type, D is the underlying type of that nullable type.

If the type of - E is a non-nullable value type, D is the type of E.

The result of the operation depends on •	 D and T as follows:

If - T is a reference type, the result is true if D and T are the same type, if D is a reference
type and an implicit reference conversion from D to T exists, or if D is a value type and
a boxing conversion from D to T exists.

If - T is a nullable type, the result is true if D is the underlying type of T.

If - T is a non-nullable value type, the result is true if D and T are the same type.

- Otherwise, the result is false.

Note that user-defined conversions are not considered by the is operator.

7.10.11 The as operator
The as operator is used to explicitly convert a value to a given reference type or nullable
type. Unlike a cast expression (§7.7.6), the as operator never throws an exception. Instead,
if the indicated conversion is not possible, the resulting value is null.

In an operation of the form E as T, E must be an expression and T must be a reference type,
a type parameter known to be a reference type, or a nullable type. Furthermore, at least one
of the following must be true, or otherwise a compile-time error occurs:

An identity (§6.1.1), implicit nullable (§6.1.4), implicit reference (§6.1.6), boxing (§6.1.7), •	
explicit nullable (§6.2.3), explicit reference (§6.2.4), or unboxing (§6.2.5) conversion exists
from E to T.

The type of •	 E or T is an open type.

E•	 is the null literal.

If the compile-time type of E is not dynamic, the operation E as T produces the same
result as

E is T ? (T)(E) : (T)null

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

354

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

except that E is evaluated only once. The compiler can be expected to optimize E as T to
perform at most one dynamic type check as opposed to the two dynamic type checks
implied by the expansion above.

If the compile-time type of E is dynamic, unlike the cast operator, the as operator is not
dynamically bound (§7.2.2). Therefore the expansion in this case is

E is T ? (T)(object)(E) : (T)null

Note that some conversions, such as user-defined conversions, are not possible with the as
operator and should instead be performed using cast expressions.

In the example

class X
{

 public string F(object o) {
 return o as string;

//Okay: string is a reference type
 }

 public T G<T>(object o) where T: Attribute {
 return o as T;

// Okay: T has a class constraint
 }

 public U H<U>(object o) {
 return o as U;

// Error: U is unconstrained
 }
}

the type parameter T of G is known to be a reference type, because it has the class con-
straint. The type parameter U of H is not known, however; hence the use of the as operator
in H is disallowed.

n
n  CHRIS SELLS If you’re using FxCop (and you should be!) out of the box, it

doesn’t like it when you do this:

if(x is Foo) { ((Foo)x).DoFoo(); }

Instead, it prefers that you do this:

Foo foo = x as Foo;
if(foo != null) { foo.DoFoo(); }

Why? Because is, as, and casting are all essentially the same underlying .NET opera-
tion, so it’s better that you perform the operation once, check the result for null, and
then do something with the non-null result than that you perform the operation twice.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.11		 Logical operators

355

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  JoSEPH ALBAHARI Although Chris is technically right, this is a micro-

optimization. Reference conversions are cheap.

n
n  CHRIS SELLS Although Joseph is absolutely right, I was talking more about

keeping FxCop off my back than optimizing for performance.

n
n  JoSEPH ALBAHARI Some people prefer the as operator over the cast operator as

a matter of style. An advantage of the as operator is that its use makes it clear that the
conversion is not a numeric or user-defined conversion. The problem with universally
favoring the as operator for reference conversions, however, is that it’s not always
desirable to have a failed conversion evaluate to null. To illustrate, consider the out-
come of the following code if the object referenced by s is not a string:

int length1 = ((string) s).Length; // Throws InvalidCastException
int length2 = (s as string).Length; // Throws NullReferenceException

The first line throws a usefully populated InvalidCastException, whereas the second
line throws an (ambiguous) NullReferenceException. (Was s null or the wrong type?)

n
n  JoN SkEET The as operator is almost always used with a nullity test afterward—

to the extent that it almost deserves its own statement type:

// Would be equivalent to the code in Chris's annotation
asif (Foo foo = x)
{
 foo.DoFoo();
}

Having a whole extra kind of statement would probably be overkill—but the clumsi-
ness of the current pattern is irritating.

7.11 Logical operators
The &, ^, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

356

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

If an operand of a logical operator has the compile-time type dynamic, then the expression
is dynamically bound (§7.2.2). In this case, the compile-time type of the expression is
dynamic, and the resolution described below will take place at runtime using the runtime
type of those operands that have the compile-time type dynamic.

For an operation of the form x op y, where op is one of the logical operators, overload reso-
lution (§7.3.4) is applied to select a specific operator implementation. The operands are
converted to the parameter types of the selected operator, and the type of the result is the
return type of the operator.

The predefined logical operators are described in the following sections.

7.11.1 Integer Logical operators
The predefined integer logical operators are listed here:

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator com-
putes the bitwise logical OR of the two operands, and the ^ operator computes the bitwise
logical exclusive OR of the two operands. No overflows are possible from these operations.

7.11.2 Enumeration Logical operators
Every enumeration type E implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.11		 Logical operators

357

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The result of evaluating x op y, where x and y are expressions of an enumeration type E
with an underlying type U, and op is one of the logical operators, is exactly the same as
evaluating (E)((U)x op (U)y). In other words, the enumeration type logical operators sim-
ply perform the logical operation on the underlying type of the two operands.

7.11.3 Boolean Logical operators
The predefined boolean logical operators are listed here:

bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator ^(bool x, bool y);

The result of x & y is true if both x and y are true. Otherwise, the result is false.

The result of x | y is true if either x or y is true. Otherwise, the result is false.

The result of x ̂ y is true if x is true and y is false, or if x is false and y is true. Otherwise,
the result is false. When the operands are of type bool, the ^ operator computes the same
result as the != operator.

7.11.4 Nullable Boolean Logical operators
The nullable boolean type bool? can represent three values: true, false, and null. It is
conceptually similar to the three-valued type used for boolean expressions in SQL. To
ensure that the results produced by the & and | operators for bool? operands are consistent
with SQL’s three-valued logic, the following predefined operators are provided:

bool? operator &(bool? x, bool? y);
bool? operator |(bool? x, bool? y);

The following table lists the results produced by these operators for all combinations of the
values true, false, and null.

x y x & y x | y

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

null null null null

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

358

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.12 Conditional Logical operators
The && and || operators are called the conditional logical operators. They are also called
the “short-circuiting” logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The && and || operators are conditional versions of the & and | operators:

The operation •	 x && y corresponds to the operation x & y, except that y is evaluated only
if x is not false.

The operation •	 x || y corresponds to the operation x | y, except that y is evaluated only
if x is not true.

If an operand of a conditional logical operator has the compile-time type dynamic, then the
expression is dynamically bound (§7.2.2). In this case, the compile-time type of the expres-
sion is dynamic, and the resolution described below will take place at runtime using the
runtime type of those operands that have the compile-time type dynamic.

An operation of the form x && y or x || y is processed by applying overload resolution
(§7.3.4) as if the operation was written x & y or x | y. Then,

If overload resolution fails to find a single best operator, or if overload resolution selects •	
one of the predefined integer logical operators, a binding-time error occurs.

Otherwise, if the selected operator is one of the predefined boolean logical operators •	
(§7.11.3) or nullable boolean logical operators (§7.11.4), the operation is processed as
described in §7.12.1.

Otherwise, the selected operator is a user-defined operator, and the operation is pro-•	
cessed as described in §7.12.2.

It is not possible to directly overload the conditional logical operators. However, because
the conditional logical operators are evaluated in terms of the regular logical operators,
overloads of the regular logical operators are, with certain restrictions, also considered
overloads of the conditional logical operators. This situation is described further in
§7.12.2.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.12		 Conditional Logical operators

359

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.12.1 Boolean Conditional Logical operators
When the operands of && or || are of type bool, or when the operands are of types that do
not define an applicable operator & or operator | but do define implicit conversions to
bool, the operation is processed as follows:

The operation •	 x && y is evaluated as x ? y : false. In other words, x is first evaluated and
converted to type bool. Then, if x is true, y is evaluated and converted to type bool, and
this becomes the result of the operation. Otherwise, the result of the operation is false.

The operation •	 x || y is evaluated as x ? true : y. In other words, x is first evaluated and
converted to type bool. Then, if x is true, the result of the operation is true. Otherwise,
y is evaluated and converted to type bool, and this becomes the result of the operation.

7.12.2 User-Defined Conditional Logical operators
When the operands of && or || are of types that declare an applicable user-defined
operator & or operator |, both of the following must be true, where T is the type in which
the selected operator is declared:

The return type and the type of each parameter of the selected operator must be •	 T. In
other words, the operator must compute the logical AND or the logical OR of two operands
of type T, and must return a result of type T.

T•	 must contain declarations of operator true and operator false.

A binding-time error occurs if either of these requirements is not satisfied. Otherwise, the
&& or || operation is evaluated by combining the user-defined operator true or operator
false with the selected user-defined operator:

The operation •	 x && y is evaluated as T.false(x) ? x : T.&(x, y), where T.false(x) is an
invocation of the operator false declared in T, and T.&(x, y) is an invocation of the
selected operator &. In other words, x is first evaluated and operator false is invoked
on the result to determine if x is definitely false. Then, if x is definitely false, the result of
the operation is the value previously computed for x. Otherwise, y is evaluated, and the
selected operator & is invoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

The operation •	 x || y is evaluated as T.true(x) ? x : T.|(x, y), where T.true(x) is an
invocation of the operator true declared in T, and T.|(x, y) is an invocation of the
selected operator |. In other words, x is first evaluated and operator true is invoked on
the result to determine if x is definitely true. Then, if x is definitely true, the result of the
operation is the value previously computed for x. Otherwise, y is evaluated, and the
selected operator | is invoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

360

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

In either of these operations, the expression given by x is evaluated only once, and the
expression given by y is either not evaluated or evaluated exactly once.

For an example of a type that implements operator true and operator false, see §11.4.2.

7.13 The Null Coalescing operator
The ?? operator is called the null coalescing operator.

null-coalescing-expression:
conditional-or-expression
conditional-or-expression ?? null-coalescing-expression

A null coalescing expression of the form a ?? b requires a to be of a nullable type or refer-
ence type. If a is non-null, the result of a ?? b is a; otherwise, the result is b. The operation
evaluates b only if a is null.

The null coalescing operator is right-associative, meaning that operations are grouped
from right to left. For example, an expression of the form a ?? b ?? c is evaluated as a ?? (b
?? c). In general terms, an expression of the form E1 ?? E2 ?? ... ?? EN returns the first of the
operands that is non-null, or returns null if all operands are null.

The type of the expression a ?? b depends on which implicit conversions are available on
the operands. In order of preference, the type of a ?? b is A0, A, or B, where A is the type of a
(provided that a has a type), B is the type of b (provided that b has a type), and A0 is the
underlying type of A if A is a nullable type, or A otherwise. Specifically, a ?? b is processed
as follows:

If •	 A exists and is not a nullable type or a reference type, a compile-time error occurs.

If •	 b is a dynamic expression, the result type is dynamic. At runtime, a is first evaluated.
If a is not null, a is converted to a dynamic type, and this becomes the result. Otherwise,
b is evaluated, and the outcome becomes the result.

Otherwise, if •	 A exists and is a nullable type and an implicit conversion exists from b to
A0, the result type is A0. At runtime, a is first evaluated. If a is not null, a is unwrapped to
type A0, and it becomes the result. Otherwise, b is evaluated and converted to type A0,
and it becomes the result.

Otherwise, if •	 A exists and an implicit conversion exists from b to A, the result type is A.
At runtime, a is first evaluated. If a is not null, a becomes the result. Otherwise, b is
evaluated and converted to type A, and it becomes the result.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.14		 Conditional operator

361

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Otherwise, if •	 b has a type B and an implicit conversion exists from a to B, the result type
is B. At runtime, a is first evaluated. If a is not null, a is unwrapped to type A0 (if A exists
and is nullable) and converted to type B, and it becomes the result. Otherwise, b is
evaluated and becomes the result.

Otherwise, •	 a and b are incompatible, and a compile-time error occurs.

n
n  ERIC LIPPERT These conversion rules considerably complicate the transforma-

tion of a null coalescing operator into an expression tree. In some cases, the compiler
must emit an additional expression tree lambda specifically to handle the conversion
logic.

n
n  CHRIS SELLS The ?? operator is useful for setting default values for reference

types or nullable value types. For example:

Foo f1 = ...;
Foo f2 = f1 ?? new Foo(...);
int? i1 = ...;
int i2 = i1 ?? 452;

7.14 Conditional operator
The ?: operator is called the conditional operator or, sometimes, the ternary operator.

conditional-expression:
null-coalescing-expression
null-coalescing-expression ? expression : expression

A conditional expression of the form b ? x : y first evaluates the condition b. Then, if b is
true, x is evaluated and becomes the result of the operation. Otherwise, y is evaluated
and becomes the result of the operation. A conditional expression never evaluates both x
and y.

The conditional operator is right-associative, meaning that operations are grouped from
right to left. For example, an expression of the form a ? b : c ? d : e is evaluated as a ? b :
(c ? d : e).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

362

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  JoN SkEET I find myself using multiple conditional operators occasionally. It

looks odd at first, but can be very readable when laid out appropriately. In some ways,
this is the closest C# gets to the pattern matching of languages such as F#.

return firstCondition ? firstValue :
 secondCondition ? secondValue :
 thirdCondition ? thirdValue :
 fallbackValue;

The first operand of the ?: operator must be an expression that can be implicitly converted
to bool, or an expression of a type that implements operator true. If neither of these
requirements is satisfied, a compile-time error occurs.

n
n  PETER SESToFT In particular, because there is no implicit conversion from the

nullable type bool? to bool, the first operand of the conditional operator cannot have
type bool?.

The second and third operands, x and y, of the ?: operator control the type of the condi-
tional expression.

If •	 x has type X and y has type Y, then

If an implicit conversion (§6.1) exists from - X to Y, but not from Y to X, then Y is the type
of the conditional expression.

If an implicit conversion (§6.1) exists from - Y to X, but not from X to Y, then X is the type
of the conditional expression.

- Otherwise, no expression type can be determined, and a compile-time error occurs.

If only one of •	 x and y has a type, and both x and y are implicitly convertible to that type,
then that is the type of the conditional expression.

Otherwise, no expression type can be determined, and a compile-time error occurs.•	

n
n  ERIC LIPPERT The Microsoft C# compiler actually implements a slightly differ-

ent algorithm: It checks for conversions from the expressions to the types, not from
types to types. In most cases, the difference does not matter and it would break existing
code to change it now.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.14		 Conditional operator

363

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  PETER SESToFT Despite the point made in Eric’s annotation, there’s a small

incompatibility between Microsoft’s C# 4.0 compiler and previous versions: The com-
piler cannot infer the type of the conditional expression in the right-hand side below,
complaining that “there is no implicit conversion between ‘<null>’ and ‘<null>’”:

int? x = args.Length>0 ? null : null;

The C# 2.0 compiler would accept this expression. The C# 4.0 compiler’s message
hints at the possible existence of a “null type” inside the compiler, or at least in the
minds of those who wrote the error message. Given the extremely contrived piece of
code, the incompatibility is nothing to lose sleep over.

n
n  VLADIMIR RESHETNIkoV A notion of “null type” existed in earlier versions of

the C# specification, but was eliminated in C# 3.0, which resulted in a slightly different
behavior in corner cases. Currently, null literal is an expression that has no type.

The runtime processing of a conditional expression of the form b ? x : y consists of the fol-
lowing steps:

First, •	 b is evaluated, and the bool value of b is determined:

If an implicit conversion from the type of - b to bool exists, then this implicit conver-
sion is performed to produce a bool value.

Otherwise, the - operator true defined by the type of b is invoked to produce a bool
value.

If the •	 bool value produced by the step above is true, then x is evaluated and converted
to the type of the conditional expression, and this becomes the result of the conditional
expression.

Otherwise, •	 y is evaluated and converted to the type of the conditional expression, and
this becomes the result of the conditional expression.

n
n  BILL WAGNER To me, both the null coalescing operator and the conditional oper-

ator are like strong spices: When used sparingly, they are great enhancers. Chris points
out usages where the null coalescing operator creates clearer code than the equivalent
if-then-else statements. Like strong spices, overuse is painful and ruins what could
otherwise be very pleasant.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

364

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.15 Anonymous Function Expressions
An anonymous function is an expression that represents an “in-line” method definition.
An anonymous function does not have a value or type in and of itself, but is convertible to
a compatible delegate or expression tree type. The evaluation of an anonymous function
conversion depends on the target type of the conversion: If it is a delegate type, the conver-
sion evaluates to a delegate value referencing the method that the anonymous function
defines. If it is an expression tree type, the conversion evaluates to an expression tree that
represents the structure of the method as an object structure.

For historical reasons, there are two syntactic flavors of anonymous functions—namely,
lambda-expressions and anonymous-method-expressions. For almost all purposes, lambda-
expressions are more concise and expressive than anonymous-method-expressions, which
remain in the language to ensure backward compatibility.

lambda-expression:
anonymous-function-signature => anonymous-function-body

anonymous-method-expression:
delegate explicit-anonymous-function-signatureopt block

anonymous-function-signature:
explicit-anonymous-function-signature
implicit-anonymous-function-signature

explicit-anonymous-function-signature:
(explicit-anonymous-function-parameter-listopt)

explicit-anonymous-function-parameter-list:
explicit-anonymous-function-parameter
explicit-anonymous-function-parameter-list , explicit-anonymous-function-parameter

explicit-anonymous-function-parameter:
anonymous-function-parameter-modifieropt type identifier

anonymous-function-parameter-modifier:
ref
out

implicit-anonymous-function-signature:
(implicit-anonymous-function-parameter-listopt)
implicit-anonymous-function-parameter

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.15		 Anonymous Function Expressions

365

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

implicit-anonymous-function-parameter-list:
implicit-anonymous-function-parameter
implicit-anonymous-function-parameter-list , implicit-anonymous-function-
parameter

implicit-anonymous-function-parameter:
identifier

anonymous-function-body:
expression
block

The => operator has the same precedence as assignment (=) and is right-associative.

The parameters of an anonymous function in the form of a lambda-expression can be explic-
itly or implicitly typed. In an explicitly typed parameter list, the type of each parameter is
explicitly stated. In an implicitly typed parameter list, the types of the parameters are
inferred from the context in which the anonymous function occurs—specifically, when the
anonymous function is converted to a compatible delegate type or expression tree type,
that type provides the parameter types (§6.5).

n
n  BILL WAGNER In general, your anonymous functions will be more resilient if

you rely on implicit typing.

In an anonymous function with a single, implicitly typed parameter, the parentheses may
be omitted from the parameter list. In other words, an anonymous function of the form

(param) => expr

can be abbreviated as

param => expr

The parameter list of an anonymous function in the form of an anonymous-method-expression
is optional. If given, the parameters must be explicitly typed. If not, the anonymous function
is convertible to a delegate with any parameter list not containing out parameters.

Some examples of anonymous functions follow below:

x => x + 1 // Implicitly typed, expression body
x => { return x + 1; } // Implicitly typed, statement body
(int x) => x + 1 // Explicitly typed, expression body
(int x) => { return x + 1; } // Explicitly typed, statement body
(x, y) => x * y // Multiple parameters
() => Console.WriteLine() // No parameters
delegate (int x) { return x + 1; } // Anonymous method expression
delegate { return 1 + 1; } // Parameter list omitted

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

366

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The behavior of lambda-expressions and anonymous-method-expressions is the same except for
the following points:

The •	 anonymous-method-expressions permit the parameter list to be omitted entirely, yield-
ing convertibility to delegate types of any list of value parameters.

The •	 lambda-expressions permit parameter types to be omitted and inferred, whereas the
anonymous-method-expressions require parameter types to be explicitly stated.

The body of a •	 lambda-expression can be an expression or a statement block, whereas the
body of an anonymous-method-expression must be a statement block.

Since only •	 lambda-expressions can have an expression body, no anonymous-method- expression
can be successfully converted to an expression tree type (§4.6).

n
n  BILL WAGNER This point is important for building queries that rely on expres-

sion trees, such as those in Linq2SQL and Entity Framework.

7.15.1 Anonymous Function Signatures
The optional anonymous-function-signature of an anonymous function defines the names
and optionally the types of the formal parameters for the anonymous function. The scope
of the parameters of the anonymous function is the anonymous-function-body (§3.7). Together
with the parameter list (if given), the anonymous-method-body constitutes a declaration space
(§3.3). It is thus a compile-time error for the name of a parameter of the anonymous func-
tion to match the name of a local variable, local constant, or parameter whose scope
includes the anonymous-method-expression or lambda-expression.

If an anonymous function has an explicit-anonymous-function-signature, then the set of com-
patible delegate types and expression tree types is restricted to those that have the same
parameter types and modifiers in the same order. In contrast to method group conversions
(§6.6), contravariance of anonymous function parameter types is not supported. If an
anonymous function does not have an anonymous-function-signature, then the set of com-
patible delegate types and expression tree types is restricted to those that have no out
parameters.

Note that an anonymous-function-signature cannot include attributes or a parameter array.
Nevertheless, an anonymous-function-signature may be compatible with a delegate type
whose parameter list contains a parameter array.

Note also that conversion to an expression tree type, even if compatible, may still fail at
compile time (§4.6).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.15		 Anonymous Function Expressions

367

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  ERIC LIPPERT This is a subtle point. If you have two overloads—say, void
M(Expression<Func<Giraffe>> f) and void M(Func<Animal> f)—and a call
M(()=>myGiraffes[++i]), then the expression tree overload is chosen as the better
overload. In this situation, a compile-time error occurs because the increment operator
is illegal inside an expression tree.

7.15.2 Anonymous Function Bodies
The body (expression or block) of an anonymous function is subject to the following rules:

If the anonymous function includes a signature, the parameters specified in the signa-•	
ture are available in the body. If the anonymous function has no signature, it can be
converted to a delegate type or expression type having parameters (§6.5), but the param-
eters cannot be accessed in the body.

Except for •	 ref or out parameters specified in the signature (if any) of the nearest enclos-
ing anonymous function, it is a compile-time error for the body to access a ref or out
parameter.

When the type of •	 this is a struct type, it is a compile-time error for the body to access
this. This is true whether the access is explicit (as in this.x) or implicit (as in x where x
is an instance member of the struct). This rule simply prohibits such access and does not
affect whether member lookup results in a member of the struct.

The body has access to the outer variables (§7.15.5) of the anonymous function. Access •	
to an outer variable will reference the instance of the variable that is active at the time
the lambda-expression or anonymous-method-expression is evaluated (§7.15.6).

It is a compile-time error for the body to contain a •	 goto statement, break statement, or
continue statement whose target is outside the body or within the body of a contained
anonymous function.

A •	 return statement in the body returns control from an invocation of the nearest enclos-
ing anonymous function, not from the enclosing function member. An expression spec-
ified in a return statement must be implicitly convertible to the return type of the
delegate type or expression tree type to which the nearest enclosing lambda-expression or
anonymous-method-expression is converted (§6.5).

It is explicitly unspecified whether there is any way to execute the block of an anonymous
function other than through evaluation and invocation of the lambda-expression or
anonymous-method-expression. In particular, the compiler may choose to implement an
anonymous function by synthesizing one or more named methods or types. The names of
any such synthesized elements must be of a form reserved for compiler use.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

368

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.15.3 overload Resolution
Anonymous functions in an argument list participate in type inference and overload reso-
lution. Please refer to §7.4.2.3 for the exact rules.

The following example illustrates the effect of anonymous functions on overload
resolution.

class ItemList<T>: List<T>
{
 public int Sum(Func<T,int> selector) {
 int sum = 0;
 foreach (T item in this) sum += selector(item);
 return sum;
 }

 public double Sum(Func<T,double> selector) {
 double sum = 0;
 foreach (T item in this) sum += selector(item);
 return sum;
 }
}

The ItemList<T> class has two Sum methods. Each takes a selector argument, which
extracts the value to sum over from a list item. The extracted value can be either an int or
a double, and the resulting sum is likewise either an int or a double.

The Sum methods could, for example, be used to compute sums from a list of detail lines in
an order.

class Detail
{
 public int UnitCount;
 public double UnitPrice;
 ...
}

void ComputeSums() {
 ItemList<Detail> orderDetails = GetOrderDetails(...);
 int totalUnits = orderDetails.Sum(d => d.UnitCount);
 double orderTotal = orderDetails.Sum(d => d.UnitPrice * d.UnitCount);
 ...
}

In the first invocation of orderDetails.Sum, both Sum methods are applicable because the
anonymous function d => d.UnitCount is compatible with both Func<Detail,int> and
Func<Detail,double>. However, overload resolution picks the first Sum method because the
conversion to Func<Detail,int> is better than the conversion to Func<Detail,double>.

In the second invocation of orderDetails.Sum, only the second Sum method is applicable
because the anonymous function d => d.UnitPrice * d.UnitCount produces a value of type
double. Thus overload resolution picks the second Sum method for that invocation.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.15		 Anonymous Function Expressions

369

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.15.4 Anonymous Functions and Dynamic Binding
An anonymous function cannot be a receiver, argument, or operand of a dynamically
bound operation.

7.15.5 outer Variables
Any local variable, value parameter, or parameter array whose scope includes the lambda-
expression or anonymous-method-expression is called an outer variable of the anonymous
function. In an instance function member of a class, the this value is considered a value
parameter and is an outer variable of any anonymous function contained within the func-
tion member.

n
n  BILL WAGNER This is the formal definition of how closures are implemented in

C#. It’s a great addition.

7.15.5.1 Captured Outer Variables
When an outer variable is referenced by an anonymous function, the outer variable is said
to have been captured by the anonymous function. Ordinarily, the lifetime of a local vari-
able is limited to execution of the block or statement with which it is associated (§5.1.7).
However, the lifetime of a captured outer variable is extended at least until the delegate or
expression tree created from the anonymous function becomes eligible for garbage
collection.

n
n  BILL WAGNER In the next example, notice that x has a longer life than you would

expect, because it is captured by the anonymous method result. If x were an expensive
resource, that behavior should be avoided by limiting the lifetime of the anonymous
method.

In the example

using System;

delegate int D();

class Test
{
 static D F() {
 int x = 0;
 D result = () => ++x;
 return result;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

370

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

 static void Main() {
 D d = F();
 Console.WriteLine(d());
 Console.WriteLine(d());
 Console.WriteLine(d());
 }
}

the local variable x is captured by the anonymous function, and the lifetime of x is extended
at least until the delegate returned from F becomes eligible for garbage collection (which
doesn’t happen until the very end of the program). Since each invocation of the anony-
mous function operates on the same instance of x, the output of the example is

1
2
3

When a local variable or a value parameter is captured by an anonymous function, the
local variable or parameter is no longer considered to be a fixed variable (§18.3), but instead
is considered to be a moveable variable. Thus any unsafe code that takes the address of a
captured outer variable must first use the fixed statement to fix the variable.

Note that unlike an uncaptured variable, a captured local variable can be simultaneously
exposed to multiple threads of execution.

7.15.5.2 Instantiation of Local Variables
A local variable is considered to be instantiated when execution enters the scope of the
variable. For example, when the following method is invoked, the local variable x is instan-
tiated and initialized three times—once for each iteration of the loop:

static void F() {
 for (int i = 0; i < 3; i++) {
 int x = i * 2 + 1;
 ...
 }
}

However, moving the declaration of x outside the loop results in a single instantiation
of x:

static void F() {
 int x;
 for (int i = 0; i < 3; i++) {
 x = i * 2 + 1;
 ...
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.15		 Anonymous Function Expressions

371

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

When not captured, there is no way to observe exactly how often a local variable is instan-
tiated: Because the lifetimes of the instantiations are disjoint, it is possible for each
instantiation to simply use the same storage location. However, when an anonymous
function captures a local variable, the effects of instantiation become apparent.

The example

using System;

delegate void D();

class Test
{
 static D[] F() {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++) {
 int x = i * 2 + 1;
 result[i] = () => { Console.WriteLine(x); };
 }
 return result;
 }

 static void Main() {
 foreach (D d in F()) d();
 }
}

produces the following output:

1
3
5

However, when the declaration of x is moved outside the loop

static D[] F() {
 D[] result = new D[3];
 int x;
 for (int i = 0; i < 3; i++) {
 x = i * 2 + 1;
 result[i] = () => { Console.WriteLine(x); };
 }
 return result;
}

the output is

5
5
5

If a for loop declares an iteration variable, that variable itself is considered to be declared
outside of the loop. Thus, if the example is changed to capture the iteration variable itself,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

372

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

static D[] F() {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++) {
 result[i] = () => { Console.WriteLine(i); };
 }
 return result;
}

only one instance of the iteration variable is captured, which produces the following
output:

3
3
3

n
n  ERIC LIPPERT This behavior— that anonymous functions capture loop variables,

not the current value of that variable—is the cause of the single most common incor-
rect “I think I found a bug in the compiler” report we get. For a future version of this
specification, we are considering moving the formal definition of the foreach loop
variable to the inside of the loop, so that an anonymous function inside the loop would
capture a new variable every time through the loop. That would technically be a
breaking change, but it would bring the language in line with what most people think
its behavior ought to be. It’s hard to think of a situation in which you want to capture
the loop variable as a variable, rather than as a value.

It is possible for anonymous function delegates to share some captured variables, yet have
separate instances of others. For example, if F is changed to

D[] result = new D[3];
int x = 0;
for (int i = 0; i < 3; i++) {
 int y = 0;
 result[i] = () => { Console.WriteLine("{0} {1}", ++x, ++y); };
}
return result;
}

the three delegates capture the same instance of x but separate instances of y, and the
output is

1 1
2 1
3 1

Separate anonymous functions can capture the same instance of an outer variable. In the
example

using System;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

373

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

delegate void Setter(int value);

delegate int Getter();

class Test
{
 static void Main() {
 int x = 0;
 Setter s = (int value) => { x = value; };
 Getter g = () => { return x; };
 s(5);
 Console.WriteLine(g());
 s(10);
 Console.WriteLine(g());
 }
}

the two anonymous functions capture the same instance of the local variable x, and they
can “communicate” through that variable. The output of the example is

5
10

7.15.6 Evaluation of Anonymous Function Expressions
An anonymous function F must always be converted to a delegate type D or an expres-
sion tree type E, either directly or through the execution of a delegate creation expression
new D(F). This conversion determines the result of the anonymous function, as described
in §6.5.

7.16 Query Expressions
Query expressions provide a language-integrated syntax for queries that is similar to rela-
tional and hierarchical query languages such as SQL and XQuery.

query-expression:
from-clause query-body

from-clause:
from typeopt identifier in expression

query-body:
query-body-clausesopt select-or-group-clause query-continuationopt

query-body-clauses:
query-body-clause
query-body-clauses query-body-clause

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

374

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

query-body-clause:
from-clause
let-clause
where-clause
join-clause
join-into-clause
orderby-clause

let-clause:
let identifier = expression

where-clause:
where boolean-expression

join-clause:
join typeopt identifier in expression on expression equals expression

join-into-clause:
join typeopt identifier in expression on expression equals expression into identifier

orderby-clause:
orderby orderings

orderings:
ordering
orderings , ordering

ordering:
expression ordering-directionopt

ordering-direction:
ascending
descending

select-or-group-clause:
select-clause
group-clause

select-clause:
select expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

375

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

group-clause:
group expression by expression

query-continuation:
into identifier query-body

A query expression begins with a from clause and ends with either a select or group
clause. The initial from clause can be followed by zero or more from, let, where, join, or
orderby clauses. Each from clause is a generator introducing a range variable that ranges
over the elements of a sequence. Each let clause introduces a range variable representing
a value computed by means of previous range variables. Each where clause is a filter that
excludes items from the result. Each join clause compares specified keys of the source
sequence with keys of another sequence, yielding matching pairs. Each orderby clause
reorders items according to specified criteria. The final select or group clause specifies the
shape of the result in terms of the range variables. Finally, an into clause can be used to
“splice” queries by treating the results of one query as a generator in a subsequent query.

n
n  ERIC LIPPERT Why is the query syntax in C# “from...where…select,” rather

than the order more familiar to SQL developers: “select…from…where”? Although
the SQL order has the benefits of being familiar to SQL developers and natural to
English speakers, it causes many problems for the language and IDE designers that
are not present in the C# order.

First, IntelliSense is difficult to use with the SQL order because of the scoping rules.
Imagine you’re designing an IDE for the “select first” syntax. The user has just typed
“select”: Now what? You don’t know which data source the user is projecting from,
so you cannot produce a sensible list of helpful options. Nor can you provide any help
for “where.” In the C# system, the “from” comes before the “select”; thus, by the time
the user types ”where” or “select,” the IDE knows type information about the data
source.

Second, the C# order is the order in which operations are actually performed by the
code: First a collection is identified, then the filter is run over the collection, and then
the results of the filter are projected. This order helps give a sense of how data flows
through the system.

n
n  CHRIS SELLS Now that I’ve seen both orders “select-from” in SQL and

“from-select” in LINQ, LINQ makes much more sense to me and I’m frustrated that
SQL doesn’t allow the “from-select” style.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

376

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

7.16.1 Ambiguities in Query Expressions
Query expressions contain a number of “contextual keywords”—that is, identifiers that
have special meaning in a given context. Specifically these are from, where, join, on, equals,
into, let, orderby, ascending, descending, select, group, and by. To avoid ambiguities in
query expressions caused by mixed use of these identifiers as keywords or simple names,
these identifiers are considered keywords when occurring anywhere within a query
expression.

For this purpose, a query expression is any expression that starts with “from identifier”
followed by any token except “;”, “=”, or “,”.

To use these words as identifiers within a query expression, they can be prefixed with
“@� (§2.4.2).

7.16.2 Query Expression Translation
The C# language does not specify the execution semantics of query expressions. Rather,
query expressions are translated into invocations of methods that adhere to the query
expression pattern (§7.16.3). Specifically, query expressions are translated into invocations of
methods named Where, Select, SelectMany, Join, GroupJoin, OrderBy, OrderByDescending,
ThenBy, ThenByDescending, GroupBy, and Cast. These methods are expected to have par-
ticular signatures and result types, as described in §7.16.3. These methods can be instance
methods of the object being queried or extension methods that are external to the object,
and they implement the actual execution of the query.

The translation from query expressions to method invocations is a syntactic mapping that
occurs before any type binding or overload resolution has been performed. The translation
is guaranteed to be syntactically correct, but is not guaranteed to produce semantically
correct C# code. Following translation of query expressions, the resulting method invoca-
tions are processed as regular method invocations, and this may in turn uncover errors—
for example, if the methods do not exist, if arguments have wrong types, or if the methods
are generic and type inference fails.

n
n  BILL WAGNER This entire section is a great way to understand how query expres-

sions are translated into method calls and possibly extension method calls.

n
n  JoN SkEET The fact that query expressions could be introduced into C# with such

a small addition to the specification is a source of wonder to me. Whereas some features,
such as generics, affected nearly every area of the language, query expressions are amaz-
ingly self-contained—especially considering the expressive power they provide.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

377

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

A query expression is processed by repeatedly applying the following translations until no
further reductions are possible. The translations are listed in order of application: Each sec-
tion assumes that the translations in the preceding sections have been performed exhaus-
tively; once exhausted, a section will not later be revisited in the processing of the same
query expression.

Assignment to range variables is not allowed in query expressions. However, a C# imple-
mentation is permitted to not always enforce this restriction, since this may sometimes not
be possible with the syntactic translation scheme presented here.

Certain translations inject range variables with transparent identifiers denoted by *. The
special properties of transparent identifiers are discussed further in §7.16.2.7.

n
n  CHRIS SELLS As much as I like the C# 3.0 query syntax, sometimes it’s difficult

to keep the translations in my head. Don’t feel bad if you occasionally feel the need to
write out your queries using the method call syntax. Also, any query methods that
you implement yourself will not have language constructs, so sometimes you won’t
have any choice except to use the method call syntax.

Further, it’s completely okay if your peers are writing queries like this:

var duluthians = from c in Customers
 where c.City == "Duluth" select c;

and you write your queries like this:

 var duluthians = Customers.Where(c => c.City == "Duluth");

The second syntax requires no mental translation and works for all extension meth-
ods, not just the ones that have been translated into keywords. For example:

var tenDuluthites = Customers.Where(c => c.City == "Duluth").Take(10);

versus

var tenDuluthites = (from c in Customers where c.City ==
 "Duluth” select c).Take(10);

I’m a simple man, so I prefer the syntax style that always works over what the cool
kids are doing these days.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

378

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

n
n  JoN SkEET While additional query methods on IEnumerable<T> are unlikely to

be supported by query expressions, one of the beautiful aspects of their definition is
the neutrality involved: There’s nothing in the specification to dictate what the types
should be. This has allowed other frameworks (such as Reactive Extensions and Paral-
lel Extensions) to write query methods against new types and still take advantage of
query expression syntax.

7.16.2.1 select and GroupBy Clauses with Continuations
A query expression with a continuation

from ... into x ...

is translated into

from x in (from ...) ...

The translations in the following sections assume that queries have no into continuations.

The example

from c in customers
group c by c.Country into g
select new { Country = g.Key, CustCount = g.Count() }

is translated into

from g in
 from c in customers
 group c by c.Country
select new { Country = g.Key, CustCount = g.Count() }

the final translation of which is

customers.
GroupBy(c => c.Country).
Select(g => new { Country = g.Key, CustCount = g.Count() })

n
n  JoSEPH ALBAHARI The purpose of a query continuation is to allow further

clauses after a select or group clause (which would otherwise terminate the query).
After a query continuation, the former range variable, and any variables that were
introduced through join or let clauses, are out of scope. In contrast, a let clause acts
like a nondestructive select: It keeps the former range variable, and other query vari-
ables, in scope.

The identifier introduced by a query continuation can be the same as the preceding
range variable.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

379

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

7.16.2.2 Explicit Range Variable Types
A from clause that explicitly specifies a range variable type

from T x in e

is translated into

from x in (e) . Cast < T > ()

A join clause that explicitly specifies a range variable type

join T x in e on k1 equals k2

is translated into

join x in (e) . Cast < T > () on k1 equals k2

The translations in the following sections assume that queries have no explicit range vari-
able types.

The example

from Customer c in customers
where c.City == "London"
select c

is translated into

from c in customers.Cast<Customer>()
where c.City == "London"
select c

the final translation of which is

customers.
Cast<Customer>().
Where(c => c.City == "London")

Explicit range variable types are useful for querying collections that implement the non-
generic IEnumerable interface, but not the generic IEnumerable<T> interface. In the exam-
ple above, this would be the case if customers were of type ArrayList.

7.16.2.3 Degenerate Query Expressions
A query expression of the form

from x in e select x

is translated into

(e) . Select (x => x)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

380

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The example

from c in customers
select c

is translated into

customers.Select(c => c)

A degenerate query expression is one that trivially selects the elements of the source. A
later phase of the translation removes degenerate queries introduced by other translation
steps by replacing them with their source. It is important, however, to ensure that the result
of a query expression is never the source object itself, as that would reveal the type and
identity of the source to the client of the query. Therefore this step protects degenerate
queries written directly in source code by explicitly calling Select on the source. It is then
up to the implementers of Select and other query operators to ensure that these methods
never return the source object itself.

7.16.2.4 from, let, where, join, and orderby Clauses

n
n  JoSEPH ALBAHARI The cumbersome-looking translations in this section are

what make query syntax really useful: They eliminate the need to write out cumber-
some queries by hand. Without this problem, there might have been little justification
for introducing query expression syntax into C# 3.0, given the capabilities of lambda
expressions and extension methods.

The common theme in the more complex translations is the process of projecting into
a temporary anonymous type so as to keep the former range variable in scope follow-
ing a let, from, or join clause.

A query expression with a second from clause followed by a select clause

from x1 in e1
from x2 in e2
select v

is translated into

(e1) . SelectMany(x1 => e2 , (x1 , x2) => v)

A query expression with a second from clause followed by something other than a select
clause

from x1 in e1
from x2 in e2
...

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

381

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

is translated into

from * in (e1) . SelectMany(x1 => e2 , (x1 , x2) => new { x1 , x2 })

A query expression with a let clause

from x in e
let y = f
...

is translated into

from * in (e) . Select (x => new { x , y = f })
...

A query expression with a where clause

from x in e
where f
...

is translated into

from x in (e) . Where (x => f)
...

A query expression with a join clause without an into followed by a select clause

from x1 in e1
join x2 in e2 on k1 equals k2
select v

is translated into

(e1) . Join(e2 , x1 => k1 , x2 => k2 , (x1 , x2) => v)

A query expression with a join clause without an into followed by something other than
a select clause

from x1 in e1
join x2 in e2 on k1 equals k2
...

is translated into

from * in (e1) . Join(e2 , x1 => k1 , x2 => k2 , (x1 , x2) => new { x1 , x2 })
...

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

382

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

A query expression with a join clause with an into followed by a select clause

from x1 in e1
join x2 in e2 on k1 equals k2 into g
select v

is translated into

(e1) . GroupJoin(e2 , x1 => k1 , x2 => k2 , (x1 , g) => v)

A query expression with a join clause with an into followed by something other than a
select clause

from x1 in e1
join x2 in e2 on k1 equals k2 into g
...

is translated into

from * in (e1) . GroupJoin(e2 , x1 => k1 , x2 => k2 , (x1 , g) => new { x1 , g })

A query expression with an orderby clause

from x in e
orderby k1 , k2 , ... , kn
...

is translated into

from x in (e) .
OrderBy (x => k1) .
ThenBy (x => k2) .
... .
ThenBy (x => kn)
...

If an ordering clause specifies a descending direction indicator, an invocation of
OrderByDescending or ThenByDescending is produced instead.

The following translations assume that there are no let, where, join, or orderby clauses,
and no more than the one initial from clause in each query expression.

The example

from c in customers
from o in c.Orders
select new { c.Name, o.OrderID, o.Total }

is translated into

customers.
SelectMany(c => c.Orders, (c,o) => new { c.Name, o.OrderID, o.Total })

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

383

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

is translated into

from * in customers.
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

the final translation of which is

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.OrderID, x.o.Total })

where x is a compiler-generated identifier that is otherwise invisible and inaccessible.

The example

from o in orders
let t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
where t >= 1000
select new { o.OrderID, Total = t }

is translated into

from * in orders.
 Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) })
where t >= 1000
select new { o.OrderID, Total = t }

the final translation of which is

orders.
Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) }).
Where(x => x.t >= 1000).
Select(x => new { x.o.OrderID, Total = x.t })

where x is a compiler-generated identifier that is otherwise invisible and inaccessible.

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

384

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

is translated into

customers.Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c.Name, o.OrderDate, o.Total })

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID into co
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

is translated into

from * in customers.
 GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
 (c, co) => new { c, co })
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

the final translation of which is

customers.
GroupJoin(orders, c => c.CustomerID, o => o.CustomerID, (c, co) => new { c, co }).
Select(x => new { x, n = x.co.Count() }).
Where(y => y.n >= 10).
Select(y => new { y.x.c.Name, OrderCount = y.n)

where x and y are compiler-generated identifiers that are otherwise invisible and
inaccessible.

The example

from o in orders
orderby o.Customer.Name, o.Total descending
select o

has the final translation

orders.
OrderBy(o => o.Customer.Name).
ThenByDescending(o => o.Total)

7.16.2.5 select Clauses
A query expression of the form

from x in e select v

is translated into

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

385

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

(e) . Select (x => v)

except when v is the identifier x, the translation is simply

(e)

For example,

from c in customers.Where(c => c.City == "London")
select c

is simply translated into

customers.Where(c => c.City == "London")

7.16.2.6 GroupBy Clauses
A query expression of the form

from x in e group v by k

is translated into

(e) . GroupBy (x => k , x => v)

except when v is the identifier x, the translation is

(e) . GroupBy (x => k)

The example

from c in customers
group c.Name by c.Country

is translated into

customers.
GroupBy(c => c.Country, c => c.Name)

7.16.2.7 Transparent Identifiers
Certain translations inject range variables with transparent identifiers denoted by *. Trans-
parent identifiers are not a proper language feature; they exist only as an intermediate step
in the query expression translation process.

When a query translation injects a transparent identifier, further translation steps propa-
gate the transparent identifier into anonymous functions and anonymous object initializ-
ers. In those contexts, transparent identifiers have the following behavior:

When a transparent identifier occurs as a parameter in an anonymous function, the •	
members of the associated anonymous type are automatically in scope in the body of the
anonymous function.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

386

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

When a member with a transparent identifier is in scope, the members of that member •	
are in scope as well.

When a transparent identifier occurs as a member declarator in an anonymous object •	
initializer, it introduces a member with a transparent identifier.

In the translation steps described above, transparent identifiers are always introduced
together with anonymous types, with the intent of capturing multiple range variables as
members of a single object. An implementation of C# is permitted to use a different mecha-
nism than anonymous types to group together multiple range variables. The following
translation examples assume that anonymous types are used, and show how transparent
identifiers can be translated away.

The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.Total }

is translated into

from * in customers.
SelectMany(c => c.Orders, (c,o) => new { c, o })

orderby o.Total descending
select new { c.Name, o.Total }

which is further translated into

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(* => o.Total).
Select(* => new { c.Name, o.Total })

which, when transparent identifiers are erased, is equivalent to

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.Total })

where x is a compiler-generated identifier that is otherwise invisible and inaccessible.

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.16		 Query Expressions

387

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

is translated into

from * in customers.
 Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o })
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

which is further reduced to

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o }).
Join(details, * => o.OrderID, d => d.OrderID, (*, d) => new { *, d }).
Join(products, * => d.ProductID, p => p.ProductID, (*, p) => new { *, p }).
Select(* => new { c.Name, o.OrderDate, p.ProductName })

the final translation of which is

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o }).
Join(details, x => x.o.OrderID, d => d.OrderID, (x, d) => new { x, d }).
Join(products, y => y.d.ProductID, p => p.ProductID, (y, p) => new { y, p }).
Select(z => new { z.y.x.c.Name, z.y.x.o.OrderDate, z.p.ProductName })

where x, y, and z are compiler-generated identifiers that are otherwise invisible and
inaccessible.

7.16.3 The Query Expression Pattern
The query expression pattern establishes a pattern of methods that types can implement to
support query expressions. Because query expressions are translated to method invoca-
tions by means of a syntactic mapping, types have considerable flexibility in how they
implement the query expression pattern. For example, the methods of the pattern can be
implemented as instance methods or as extension methods because the two have the same
invocation syntax, and the methods can request delegates or expression trees because
anonymous functions are convertible to both.

The recommended shape of a generic type C<T> that supports the query expression pattern
is shown below. A generic type is used to illustrate the proper relationships between
parameter and result types, but it is possible to implement the pattern for nongeneric types
as well.

class C<T> : C
{

 public C<T> Where(Func<T,bool> predicate);

 public C<U> Select<U>(Func<T,U> selector);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

388

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

 public C<V> SelectMany<U,V>(Func<T,C<U>> selector,
 Func<T,U,V> resultSelector);

 public C<V> Join<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,U,V> resultSelector);

 public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,C<U>,V> resultSelector);

 public O<T> OrderBy<K>(Func<T,K> keySelector);

 public O<T> OrderByDescending<K>(Func<T,K> keySelector);

 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);

 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
 Func<T,E> elementSelector);
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector);

 public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

The methods above use the generic delegate types Func<T1, R> and Func<T1, T2, R>, but
they could equally well have used other delegate or expression tree types with the same
relationships in parameter and result types.

Notice the recommended relationship between C<T> and O<T>, which ensures that the
ThenBy and ThenByDescending methods are available only on the result of an OrderBy or
OrderByDescending. Also notice the recommended shape of the result of GroupBy—a
sequence of sequences, where each inner sequence has an additional Key property.

n
n  BILL WAGNER ThenBy will often have better performance than OrderBy, because

it needs to sort only inner sequences that have more than one value.

The System.Linq namespace provides an implementation of the query operator pattern for
any type that implements the System.Collections.Generic.IEnumerable<T> interface.

n
n  BILL WAGNER There is also an implementation for any type that implements
IQueryable<T>.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.17		 Assignment operators

389

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  ERIC LIPPERT This signature for Join is one of the primary motivators of the

“accumulate bounds and then fix to the best one” part of the method type inference
algorithm. If the inner key is, say, of type int, and the outer key of type int?, then
rather than having type inference fail due to the “contradiction,” it is better to simply
pick the more general of the two types. Because every int is an int?, the type infer-
ence algorithm would choose int? for K.

7.17 Assignment operators
The assignment operators assign a new value to a variable, a property, an event, or an
indexer element.

assignment:
unary-expression assignment-operator expression

assignment-operator:
=
+=
-=
*=
/=
%=
&=
|=
^=
<<=
right-shift-assignment

The left operand of an assignment must be an expression classified as a variable, a property
access, an indexer access, or an event access.

The = operator is called the simple assignment operator. It assigns the value of the right
operand to the variable, property, or indexer element given by the left operand. The left
operand of the simple assignment operator may not be an event access (except as described
in §10.8.1). The simple assignment operator is described in §7.17.1.

The assignment operators other than the = operator are called the compound assignment
operators. These operators perform the indicated operation on the two operands, and then
assign the resulting value to the variable, property, or indexer element given by the left
operand. The compound assignment operators are described in §7.17.2.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

390

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The += and -= operators with an event access expression as the left operand are called the
event assignment operators. No other assignment operator is valid with an event access as
the left operand. The event assignment operators are described in §7.17.3.

The assignment operators are right-associative, meaning that operations are grouped from
right to left. For example, an expression of the form a = b = c is evaluated as a = (b = c).

7.17.1 Simple Assignment
The = operator is called the simple assignment operator.

If the left operand of a simple assignment is of the form E.P or E[Ei], where E has the
compile-time type dynamic, then the assignment is dynamically bound (§7.2.2). In this case,
the compile-time type of the assignment expression is dynamic, and the resolution described
below will take place at runtime based on the runtime type of E.

In a simple assignment, the right operand must be an expression that is implicitly convert-
ible to the type of the left operand. The operation assigns the value of the right operand to
the variable, property, or indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The
result has the same type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must have a set
accessor. If this is not the case, a binding-time error occurs.

The runtime processing of a simple assignment of the form x = y consists of the following
steps:

If •	 x is classified as a variable:

x - is evaluated to produce the variable.

y - is evaluated and, if required, converted to the type of x through an implicit conver-
sion (§6.1).

If the variable given by - x is an array element of a reference-type, a runtime check is
performed to ensure that the value computed for y is compatible with the array
instance of which x is an element. The check succeeds if y is null, or if an implicit
reference conversion (§6.1.6) exists from the actual type of the instance referenced by
y to the actual element type of the array instance containing x. Otherwise, a System.
ArrayTypeMismatchException is thrown.

The value resulting from the evaluation and conversion of - y is stored into the location
given by the evaluation of x.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.17		 Assignment operators

391

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

If •	 x is classified as a property or indexer access:

The instance expression (if - x is not static) and the argument list (if x is an indexer
access) associated with x are evaluated, and the results are used in the subsequent set
accessor invocation.

y - is evaluated and, if required, converted to the type of x through an implicit conver-
sion (§6.1).

The - set accessor of x is invoked with the value computed for y as its value
argument.

The array covariance rules (§12.5) permit a value of an array type A[] to be a reference to
an instance of an array type B[], provided an implicit reference conversion exists from B to
A. Because of these rules, assignment to an array element of a reference-type requires a run-
time check to ensure that the value being assigned is compatible with the array instance. In
the example

string[] sa = new string[10];
object[] oa = sa;

oa[0] = null; // Okay
oa[1] = "Hello"; // Okay
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes a System.ArrayTypeMismatchException to be thrown because
an instance of ArrayList cannot be stored in an element of a string[].

n
n  BILL WAGNER This point implies that array assignment does not copy the array,

but rather adds a new reference to the same storage.

When a property or indexer declared in a struct-type is the target of an assignment, the
instance expression associated with the property or indexer access must be classified as a
variable. If the instance expression is classified as a value, a binding-time error occurs.
Because of §7.6.4, the same rule also applies to fields.

Given the declarations:

struct Point
{
 int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

392

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

 public int X
 {
 get { return x; }
 set { x = value; }
 }

 public int Y
 {
 get { return y; }
 set { y = value; }
 }
}

struct Rectangle
{
 Point a, b;

 public Rectangle(Point a, Point b)
 {
 this.a = a;
 this.b = b;
 }

 public Point A
 {
 get { return a; }
 set { a = value; }
 }

 public Point B
 {
 get { return b; }
 set { b = value; }
 }
}

in the example

 Point p = new Point();
 p.X = 100;
 p.Y = 100;
 Rectangle r = new Rectangle();
 r.A = new Point(10, 10);
 r.B = p;

the assignments to p.X, p.Y, r.A, and r.B are permitted because p and r are variables. How-
ever, in the example

 Rectangle r = new Rectangle();
 r.A.X = 10;
 r.A.Y = 10;
 r.B.X = 100;
 r.B.Y = 100;

the assignments are all invalid because r.A and r.B are not variables.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.17		 Assignment operators

393

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

n
n  JoSEPH ALBAHARI An early release of the C# 1.0 compiler allowed assignments

such as r.A.X = 10—but they failed silently because r.A returns a copy of a Point (i.e.,
a value) rather than a variable. People found this behavior confusing, so the condition
was detected and reported as an error.

n
n  BILL WAGNER This discussion highlights yet another reason why structs should

be immutable.

7.17.2 Compound Assignment
If the left operand of a compound assignment is of the form E.P or E[Ei], where E has the
compile-time type dynamic, then the assignment is dynamically bound (§7.2.2). In this case,
the compile-time type of the assignment expression is dynamic, and the resolution described
below will take place at runtime based on the runtime type of E.

An operation of the form x op= y is processed by applying binary operator overload resolu-
tion (§7.3.4) as if the operation was written x op y. Then,

If the return type of the selected operator is •	 implicitly convertible to the type of x, the
operation is evaluated as x = x op y, except that x is evaluated only once.

Otherwise, if the selected operator is a predefined operator, if the return type of the •	
selected operator is explicitly convertible to the type of x, and if y is implicitly convertible
to the type of x or the operator is a shift operator, then the operation is evaluated as x =
(T)(x op y), where T is the type of x, except that x is evaluated only once.

Otherwise, the compound assignment is invalid, and a binding-time error occurs.•	

n
n  PETER SESToFT The condition of y being implicitly convertible to the type of x

in the second item means that the compound operators are more restrictive in C# than
in the C, C++, and Java programming languages. In those languages, the assignment
x+=0.9 is legal even if variable x has integer type. When x is non-negative, the assign-
ment has no effect; when x is negative, it adds 1 to x. In C#, the assignment is rejected—
wisely, in my opinion.

n
n  VLADIMIR RESHETNIkoV A curious consequence of these rules is that the

expression x <<= null is legal if the variable x has type int. Of course, it will always
throw an exception at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

394

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

The term “evaluated only once” means that in the evaluation of x op y, the results of any
constituent expressions of x are temporarily saved and then reused when performing the
assignment to x. For example, in the assignment A()[B()] += C(), where A is a method
returning int[], and B and C are methods returning int, the methods are invoked only
once, in the order A, B, C.

When the left operand of a compound assignment is a property access or an indexer access,
the property or indexer must have both a get accessor and a set accessor. If this is not the
case, a binding-time error occurs.

The second rule above permits x op= y to be evaluated as x = (T)(x op y) in certain contexts.
The rule exists such that the predefined operators can be used as compound operators
when the left operand is of type sbyte, byte, short, ushort, or char. Even when both argu-
ments are of one of those types, the predefined operators produce a result of type int, as
described in §7.3.6.2. Thus, without a cast, it would not be possible to assign the result to
the left operand.

The intuitive effect of the rule for predefined operators is simply that x op= y is permitted
if both x op y and x = y are permitted. In the example

 byte b = 0;
 char ch = '\0';
 int i = 0;

 b += 1; // Okay
 b += 1000; // Error: b = 1000 not permitted
 b += i; // Error: b = i not permitted
 b += (byte)i; // Okay

 ch += 1; // Error: ch = 1 not permitted
 ch += (char)1; // Okay

the intuitive reason for each error is that a corresponding simple assignment would also
have been an error.

This also means that compound assignment operations support lifted operations. In the
example

 int? i = 0;
 i += 1; // Ok

the lifted operator +(int?,int?) is used.

7.17.3 Event Assignment
If the left operand of a += or -= operator is classified as an event access, then the expression
is evaluated as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.19		 Constant Expressions

395

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

The instance expression, if any, of the event access is evaluated.•	

The right operand of the •	 += or -= operator is evaluated, and, if required, converted to the
type of the left operand through an implicit conversion (§6.1).

An event accessor of the event is invoked, with argument list consisting of the right •	
operand, after evaluation and, if necessary, conversion. If the operator was +=, the add
accessor is invoked; if the operator was -=, the remove accessor is invoked.

An event assignment expression does not yield a value. Thus an event assignment expres-
sion is valid only in the context of a statement-expression (§8.6).

7.18 Expression
An expression is either a non-assignment-expression or an assignment.

expression:
non-assignment-expression
assignment

non-assignment-expression:
conditional-expression
lambda-expression
query-expression

7.19 Constant Expressions
A constant-expression is an expression that can be fully evaluated at compile time.

constant-expression:
expression

A constant expression must be the null literal or a value with one of the following types:
sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, bool,
string, or any enumeration type. Only the following constructs are permitted in constant
expressions:

Literals (including the •	 null literal).

References to •	 const members of class and struct types.

References to members of enumeration types.•	

References to •	 const parameters or local variables.

Parenthesized subexpressions, which are themselves constant expressions.•	

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7. Expressions

396

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Ex
pr

es
si

on
s

7.
	

Cast expressions, provided the target type is one of the types listed above.•	

checked•	 and unchecked expressions.

Default value expressions.•	

The predefined •	 +, –, !, and ~ unary operators.

The predefined •	 +, –, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and >= binary operators,
provided each operand is of a type listed above.

The •	 ?: conditional operator.

The following conversions are permitted in constant expressions:

Identity conversions.•	

Numeric conversions.•	

Enumeration conversions.•	

Constant expression conversions.•	

Implicit and explicit reference conversions, provided that the source of the conversions •	
is a constant expression that evaluates to the null value.

Other conversions, including boxing, unboxing, and implicit reference conversions of non-
null values, are not permitted in constant expressions. For example:

class C {
 const object i = 5; // Error: boxing conversion not permitted
 const object str = "hello"; // Error: implicit reference conversion
}

In this example, the initialization of i is an error because a boxing conversion is required.
The initialization of str is an error because an implicit reference conversion from a non-
null value is required.

Whenever an expression fulfills the requirements listed above, the expression is evaluated
at compile time. This is true even if the expression is a subexpression of a larger expression
that contains nonconstant constructs.

The compile-time evaluation of constant expressions uses the same rules as runtime evalu-
ation of nonconstant expressions, except that where runtime evaluation would have
thrown an exception, compile-time evaluation causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that
occur in integral-type arithmetic operations and conversions during the compile-time eval-
uation of the expression always cause compile-time errors (§7.19).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

7.20		 Boolean Expressions

397

Expressions
7.	

Expressions
7.	

Expressions
7.	

Expressions
7.	

Constant expressions occur in the contexts listed below. In these contexts, a compile-time
error occurs if an expression cannot be fully evaluated at compile time.

Constant declarations (§10.4).•	

Enumeration member declarations (§14.3).•	

case•	 labels of a switch statement (§8.7.2).

goto•	 case statements (§8.9.3).

Dimension lengths in an array creation expression (§7.6.10.4) that includes an •	
initializer.

Attributes (§17).•	

An implicit constant expression conversion (§6.1.8) permits a constant expression of type
int to be converted to sbyte, byte, short, ushort, uint, or ulong, provided the value of the
constant expression is within the range of the destination type.

7.20 Boolean Expressions
A boolean-expression is an expression that yields a result of type bool, either directly or
through application of operator true in certain contexts as specified in the following.

boolean-expression:
expression

The controlling conditional expression of an if-statement (§8.7.1), while-statement (§8.8.1),
do-statement (§8.8.2), or for-statement (§8.8.3) is a boolean-expression. The controlling condi-
tional expression of the ?: operator (§7.14) follows the same rules as a boolean-expression,
but for reasons of operator precedence is classified as a conditional-or-expression.

A boolean-expression is required to be implicitly convertible to bool or of a type that imple-
ments operator true. If neither requirement is satisfied, a binding-time error occurs.

When a boolean expression cannot be implicitly converted to bool but does implement
operator true, then following evaluation of the expression, the operator true implemen-
tation provided by that type is invoked to produce a bool value.

The DBBool struct type in §11.4.2 provides an example of a type that implements operator
true and operator false.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

399

Statements8.

C# provides a variety of statements. Most of these statements will be familiar to developers
who have programmed in C and C++.

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement
yield-statement

The embedded-statement nonterminal is used for statements that appear within other state-
ments. The use of embedded-statement rather than statement excludes the use of declaration
statements and labeled statements in these contexts. The example

void F(bool b) {
 if (b)
 int i = 44;
}

results in a compile-time error because an if statement requires an embedded-statement
rather than a statement for its if branch. If this code were permitted, then the variable i

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

400

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

would be declared, but it could never be used. Note, however, that by placing i’s declara-
tion in a block, the example is valid.

8.1 End Points and Reachability
Every statement has an end point. In intuitive terms, the end point of a statement is the
location that immediately follows the statement. The execution rules for composite state-
ments (statements that contain embedded statements) specify the action that is taken when
control reaches the end point of an embedded statement. For example, when control
reaches the end point of a statement in a block, control is transferred to the next statement
in the block.

If a statement can possibly be reached by execution, the statement is said to be reachable.
Conversely, if there is no possibility that a statement will be executed, the statement is said
to be unreachable.

In the example

void F() {
 Console.WriteLine("reachable");
 goto Label;
 Console.WriteLine("unreachable");
 Label:
 Console.WriteLine("reachable");
}

the second invocation of Console.WriteLine is unreachable because there is no possibility
that the statement will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is spe-
cifically not an error for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler per-
forms flow analysis according to the reachability rules defined for each statement. The flow
analysis takes into account the values of constant expressions (§7.19) that control the behav-
ior of statements, but the possible values of nonconstant expressions are not considered. In
other words, for purposes of control flow analysis, a nonconstant expression of a given
type is considered to have any possible value of that type.

In the example

void F() {
 const int i = 1;
 if (i == 2) Console.WriteLine("unreachable");
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.1		 End Points and Reachability

401

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

the boolean expression of the if statement is a constant expression because both operands
of the == operator are constants. As the constant expression is evaluated at compile time,
producing the value false, the Console.WriteLine invocation is considered unreachable.
However, if i is changed to be a local variable

void F() {
 int i = 1;
 if (i == 2) Console.WriteLine("reachable");
}

the Console.WriteLine invocation is considered reachable, even though, in reality, it will
never be executed.

n
n  ERIC LIPPERT Many other expressions that humans know will always be false

are not considered to be false by the flow analyzer. For example, if we replaced the
condition of the if statement above with (i * 0 == 0), then the consequence would
be reachable according to the specification—even though you and I know that it will
not be reachable in practice.

The block of a function member is always considered reachable. By successively evaluating
the reachability rules of each statement in a block, the reachability of any given statement
can be determined.

In the example

void F(int x) {
 Console.WriteLine("start");
 if (x < 0) Console.WriteLine("negative");
}

the reachability of the second Console.WriteLine is determined as follows:

The first •	 Console.WriteLine expression statement is reachable because the block of the
F method is reachable.

The end point of the first •	 Console.WriteLine expression statement is reachable because
that statement is reachable.

The •	 if statement is reachable because the end point of the first Console.WriteLine
expression statement is reachable.

The second •	 Console.WriteLine expression statement is reachable because the boolean
expression of the if statement does not have the constant value false.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

402

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

There are two situations in which it is a compile-time error for the end point of a statement
to be reachable:

Because the •	 switch statement does not permit a switch section to “fall through” to the
next switch section, it is a compile-time error for the end point of the statement list of a
switch section to be reachable. If this error occurs, it is typically an indication that a
break statement is missing.

It is a compile-time error for the end point of the block of a function member that com-•	
putes a value to be reachable. If this error occurs, it typically is an indication that a
return statement is missing.

n
n  BILL WAGNER The rules for reachable code are designed to err on the side of

assuming code is reachable. For example, the following example does not generate
any warnings for unreachable code:

public class Program
{
 public static int counter = 5;

 static void Main(string[] args)
 {
 if (counter == 6)
 Console.WriteLine("weird");
 else
 Console.WriteLine("normal");
 }
}

It’s obvious to human readers that “weird” will never appear on your console. The
language rules do not follow the same reasoning.

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is
allowed.

block:
{ statement-listopt }

A block consists of an optional statement-list (§8.2.1), enclosed in braces. If the statement list
is omitted, the block is said to be empty.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.2		 Blocks

403

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

A block may contain declaration statements (§8.5). The scope of a local variable or constant
declared in a block is the block.

Within a block, the meaning of a name used in an expression context must always be the
same (§7.6.2.1).

A block is executed as follows:

If the block is empty, control is transferred to the end point of the block.•	

If the block is not empty, control is transferred to the statement list. When and if con-•	
trol reaches the end point of the statement list, control is transferred to the end point
of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the state-
ment list is reachable.

A block that contains one or more yield statements (§8.14) is called an iterator block. Itera-
tor blocks are used to implement function members as iterators (§10.14). Some additional
restrictions apply to iterator blocks:

It is a compile-time error for a •	 return statement to appear in an iterator block (but yield
return statements are permitted).

It is a compile-time error for an iterator block to contain an unsafe context (§18.1). An •	
iterator block always defines a safe context, even when its declaration is nested in an
unsafe context.

8.2.1 Statement Lists
A statement list consists of one or more statements written in sequence. Statement lists
occur in blocks (§8.2) and in switch-blocks (§8.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if con-
trol reaches the end point of a statement, control is transferred to the next statement. When
and if control reaches the end point of the last statement, control is transferred to the end
point of the statement list.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

404

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

A statement in a statement list is reachable if at least one of the following is true:

The statement is the first statement and the statement list itself is reachable.•	

The end point of the preceding statement is reachable.•	

The statement is a labeled statement and the label is referenced by a reachable •	 goto
statement.

n
n  VLADIMIR RESHETNIkoV This rule is not applied when the goto statement is

placed inside a try or catch block of a try statement that includes a finally block,
and the labeled statement is outside the try statement, and the end point of the
finally block is unreachable. For example:

class C
{
 static void Main()
 {
 int x;
 try
 {
 goto A; // Reachable statement
 }
 finally
 {
 throw new System.Exception();
 }
 A: x.ToString(); // Unreachable statement
 }

}

The end point of a statement list is reachable if the end point of the last statement in the list
is reachable.

8.3 The Empty Statement
An empty-statement does nothing.

empty-statement:
;

An empty statement is used when there are no operations to perform in a context where a
statement is required.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.3		 The Empty Statement

405

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

n
n  JoN SkEET Given how easy it is to miss an empty statement when reading code,

I wonder whether something larger might be useful for this relatively rare require-
ment. For example, the following code is legal but probably not what’s intended:

while (text.IndexOf("xx") != -1);
{
 text = text.Replace("xx", "x");
}

The empty statement for the while loop is fairly well camouflaged. If you had to write
something like “void;” when you actually wanted an empty statement, the compiler
could flag “accidentally empty” statements like the previous example as errors.

n
n  JESSE LIBERTy Jon’s example shows why empty statements should be rare, and

called out (though not necessarily with comments). The problem in his example code
can be rectified by following the best practice of empty statements existing either on a
line by themselves or, even better, within full braces:

while (text.IndexOf("xx") != -1)
{
 ;
}

{
 text = text.Replace("xx", "x");
}

No programmer can now miss that the while loop has an empty statement. The pur-
pose of the next set of braces is no more (or less) ambiguous than it was, but the white
space helped avoid the confusion.

Execution of an empty statement simply transfers control to the end point of the statement.
Thus the end point of an empty statement is reachable if the empty statement is
reachable.

An empty statement can be used when writing a while statement with a null body:

bool ProcessMessage() {...}

void ProcessMessages() {
 while (ProcessMessage())
 ;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

406

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

Also, an empty statement can be used to declare a label just before the closing “}” of
a block:

void F() {
 ...

 if (done) goto exit;
 ...

 exit: ;
}

8.4 Labeled Statements
A labeled-statement permits a statement to be prefixed by a label. Labeled statements are
permitted in blocks, but are not permitted as embedded statements.

labeled-statement:
identifier : statement

A labeled statement declares a label with the name given by the identifier. The scope of a
label is the whole block in which the label is declared, including any nested blocks. It is a
compile-time error for two labels with the same name to have overlapping scopes.

A label can be referenced from goto statements (§8.9.3) within the scope of the label. This
means that goto statements can transfer control within blocks and out of blocks, but never
into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The
example

int F(int x) {
 if (x >= 0) goto x;
 x = -x;
 x: return x;
}

is valid and uses the name x as both a parameter and a label.

Execution of a labeled statement corresponds exactly to execution of the statement follow-
ing the label.

In addition to the reachability provided by normal flow of control, a labeled statement is
reachable if the label is referenced by a reachable goto statement. (Exception: If a goto
statement is inside a try that includes a finally block, and the labeled statement is outside
the try, and the end point of the finally block is unreachable, then the labeled statement
is not reachable from that goto statement.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.5		 Declaration Statements

407

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

n
n  ERIC LIPPERT For example, the finally block might always throw an exception,

in which case there would be a reachable goto targeting a potentially unreachable
label.

n
n  PETER SESToFT See also the annotations in the discussion of the goto statement

in §8.9.3.

8.5 Declaration Statements
A declaration-statement declares a local variable or constant. Declaration statements are
permitted in blocks, but are not permitted as embedded statements.

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

8.5.1 Local Variable Declarations
A local-variable-declaration declares one or more local variables.

local-variable-declaration:
local-variable-type local-variable-declarators

local-variable-type:
type
var

local-variable-declarators:
local-variable-declarator
local-variable-declarators , local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

408

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

The local-variable-type of a local-variable-declaration either directly specifies the type of the
variables introduced by the declaration, or indicates with the identifier var that the type
should be inferred based on an initializer. The type is followed by a list of local-variable-
declarators, each of which introduces a new variable. A local-variable-declarator consists of an
identifier that names the variable, optionally followed by an “=” token and a local-variable-
initializer that gives the initial value of the variable.

In the context of a local variable declaration, the identifier var acts as a contextual keyword
(§2.4.3).When the local-variable-type is specified as var and no type named var is in scope,
the declaration is an implicitly typed local variable declaration, whose type is inferred
from the type of the associated initializer expression. Implicitly typed local variable decla-
rations are subject to the following restrictions:

The • local-variable-declaration cannot include multiple local-variable-declarators.

The• local-variable-declarator must include a local-variable-initializer.

The• local-variable-initializer must be an expression.

The initializer • expression must have a compile-time type.

The initializer• expression cannot refer to the declared variable itself.

n
n  ERIC LIPPERT In an early design for this feature, it was legal to have multiple

declarators.

var a = 1, b = 2.5;

When C# developers were shown this code, roughly half said that it should have the
same semantics as

double a = 1, b = 2.5;

The other half said that it should have the same semantics as

int a = 1; double b = 2.5;

Both sides thought that their interpretation was the “obviously correct” one.

When faced with a syntax that admits two incompatible “obviously correct” interpre-
tations, often the best thing to do is to disallow the syntax entirely rather than to breed
confusion.

n
n  CHRIS SELLS I think multiple variable declarations in the same statement just to

reuse the type name should be illegal, too.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.5		 Declaration Statements

409

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

n
n  ERIC LIPPERT This constraint stands in contrast to an explicitly typed local vari-

able declaration, which does permit an initializer to reference itself.

For example, int j = M(out j); is strange, but legal. If this expression were var j =
M(out j), then overload resolution could not determine the type returned by M, and
hence the type of j, until the type of the argument was known. Of course, the type of
the argument is exactly what we are trying to determine.

Rather than attempting to solve this “chicken and egg” problem, the language speci-
fication simply makes this case illegal.

The following are examples of incorrect implicitly typed local variable declarations:

var x; // Error: no initializer to infer type from
var y = {1, 2, 3}; // Error: array initializer not permitted
var z = null; // Error: null does not have a type
var u = x => x + 1; // Error: anonymous functions do not have a type
var v = v++; // Error: initializer cannot refer to variable itself

The value of a local variable is obtained in an expression using a simple-name (§7.6.2), and
the value of a local variable is modified using an assignment (§7.17). A local variable must
be definitely assigned (§5.3) at each location where its value is obtained.

n
n  CHRIS SELLS I really love implicitly typed local variable declarations when the

type is anonymous (in which case, you have to use them) or when the type of the vari-
able is made explicit as part of the statement that initializes it, but not because you’re
too lazy to type!

For example:

var a = new { Name = "Bob", Age = 42 }; // Good
var b = 1; // Good
var v = new Person(); // Good
var d = GetPerson(); // BAD!

The compiler is perfectly happy with d as an implicitly typed variable, but pity the
poor human reader!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

410

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

n
n  ERIC LIPPERT I generally agree with the annotation above but would make

one additional point: var works well when the writer of the code is attempting to
communicate “the storage type of this variable is unimportant; what is important is
the meaning of the variable, not its implementation details.” For example, I’ll often
write code like “var attributes = ParseMethodAttributes();”—I am saying here
that it doesn’t matter whether what comes back is AttributeSyntax[] or
List<AttributeSyntax>. What matters is that the collection of attributes has been
parsed.

n
n  BILL WAGNER I freely admit to being guilty of using var extensively. In fact, my

habit is to use implicitly typed variables for almost everything except simple types. I
find that it’s much more important to have a semantic understanding of a variable
rather than a syntactic understanding of a variable. In Chris’s example, GetPerson()
would logically return a Person, or an IPerson, or something derived from Person or
from implementing IPerson. In all those cases, I’m fine with that bit of ambiguity. I
understand the concept of “a variable that represents something person-like” without
knowing its exact type.

The scope of a local variable declared in a local-variable-declaration is the block in which the
declaration occurs. It is an error to refer to a local variable in a textual position that pre-
cedes the local-variable-declarator of the local variable. Within the scope of a local variable, it
is a compile-time error to declare another local variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple dec-
larations of single variables with the same type. Furthermore, a variable initializer in a
local variable declaration corresponds exactly to an assignment statement that is inserted
immediately after the declaration.

The example

void F() {
 int x = 1, y, z = x * 2;
}

corresponds exactly to

void F() {
 int x; x = 1;
 int y;
 int z; z = x * 2;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.5		 Declaration Statements

411

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

In an implicitly typed local variable declaration, the type of the local variable being declared
is taken to be the same as the type of the expression used to initialize the variable. For
example:

var i = 5;
var s = "Hello";
var d = 1.0;
var numbers = new int[] {1, 2, 3};
var orders = new Dictionary<int,Order>();

The implicitly typed local variable declarations above are precisely equivalent to the fol-
lowing explicitly typed declarations:

int i = 5;
string s = "Hello";
double d = 1.0;
int[] numbers = new int[] {1, 2, 3};
Dictionary<int,Order> orders = new Dictionary<int,Order>();

n
n  PETER SESToFT Whereas it is possible to declare local (compile-time) con-

stants, one cannot declare a read-only local variable or read-only method parameter
in C#, unlike Standard ML’s and Scala’s val, F#’s let, and Java’s final. Being an old
functional programmer, I find this a bit sad; often I just want to name a value, not
declare a mutable variable. The using statement (§8.13) does allow me to declare an
immutable local variable, but that’s cumbersome and unidiomatic (and hence con-
fusing to most C# developers), and it works only for local variables, not for method
parameters.

8.5.2 Local Constant Declarations
A local-constant-declaration declares one or more local constants.

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

The type of a local-constant-declaration specifies the type of the constants introduced by the
declaration. The type is followed by a list of constant-declarators, each of which introduces

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

412

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

a new constant. A constant-declarator consists of an identifier that names the constant,
followed by an “=” token, followed by a constant-expression (§7.19) that gives the value of
the constant.

The type and constant-expression of a local constant declaration must follow the same rules
as those of a constant member declaration (§10.4).

The value of a local constant is obtained in an expression using a simple-name (§7.6.2).

The scope of a local constant is the block in which the declaration occurs. It is an error to
refer to a local constant in a textual position that precedes its constant-declarator. Within the
scope of a local constant, it is a compile-time error to declare another local variable or con-
stant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple dec-
larations of single constants with the same type.

8.6 Expression Statements
An expression-statement evaluates a given expression. The value computed by the expres-
sion, if any, is discarded.

expression-statement:
statement-expression ;

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

Not all expressions are permitted as statements. In particular, expressions such as x + y and
x == 1 that merely compute a value (which will be discarded) are not permitted as
statements.

Execution of an expression-statement evaluates the contained expression and then transfers
control to the end point of the expression-statement. The end point of an expression-statement
is reachable if that expression-statement is reachable.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.7		 Selection Statements

413

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

n
n  JoN SkEET Occasionally, someone suggests that methods should be allowed to

declare themselves as never-ending; that is, they never return normally. With this
scheme, the only way in which they could terminate would be via an exception. An
obvious example of such a method would be Assert.Fail in a unit testing library.

If such a feature ever appeared, the end point of expression statements that invoked
such methods would be unreachable. Just occasionally, this syntax would avoid the
need for a “dummy” return or throw statement that you know will never be executed.
I suspect the extra complexity (in terms of both the language and the implementation)
is greater than the slight benefit afforded.

n
n  ERIC LIPPERT The committee that standardizes the ECMAScript language has in

the past proposed a “never” type that has the semantics Jon is describing. I agree that
it would be nice to have in C#, but at this point the cost probably outweighs the rela-
tively small benefits.

8.7 Selection Statements
Selection statements select one of a number of possible statements for execution based on
the value of some expression.

selection-statement:
if-statement
switch-statement

8.7.1 The if Statement
The if statement selects a statement for execution based on the value of a boolean
expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

An else part is associated with the lexically nearest preceding if that is allowed by the
syntax. Thus an if statement of the form

if (x) if (y) F(); else G();

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

414

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

is equivalent to

if (x) {
 if (y) {
 F();
 }
 else {
 G();
 }
}

An if statement is executed as follows:

The •	 boolean-expression (§7.20) is evaluated.

If the boolean expression yields •	 true, control is transferred to the first embedded state-
ment. When and if control reaches the end point of that statement, control is transferred
to the end point of the if statement.

If the boolean expression yields •	 false and if an else part is present, control is trans-
ferred to the second embedded statement. When and if control reaches the end point of
that statement, control is transferred to the end point of the if statement.

If the boolean expression yields •	 false and if an else part is not present, control is trans-
ferred to the end point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is reach-
able and the boolean expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if state-
ment is reachable and the boolean expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its embed-
ded statements is reachable. In addition, the end point of an if statement with no else part
is reachable if the if statement is reachable and the boolean expression does not have the
constant value true.

8.7.2 The switch Statement
The switch statement selects for execution a statement list having an associated switch
label that corresponds to the value of the switch expression.

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.7		 Selection Statements

415

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

A switch-statement consists of the keyword switch, followed by a parenthesized expression
(called the switch expression), followed by a switch-block. The switch-block consists of zero
or more switch-sections, enclosed in braces. Each switch-section consists of one or more
switch-labels followed by a statement-list (§8.2.1).

The governing type of a switch statement is established by the switch expression.

If the type of the switch expression is •	 sbyte, byte, short, ushort, int, uint, long, ulong,
bool, char, string, or an enum-type, or if it is the nullable type corresponding to one of
these types, then that is the governing type of the switch statement.

Otherwise, exactly one user-defined implicit conversion (§6.4) must exist from the type •	
of the switch expression to one of the following possible governing types: sbyte, byte,
short, ushort, int, uint, long, ulong, char, string, or, a nullable type corresponding to
one of those types.

Otherwise, if no such implicit conversion exists, or if more than one such implicit con-•	
version exists, a compile-time error occurs.

The constant expression of each case label must denote a value that is implicitly convert-
ible (§6.1) to the governing type of the switch statement. A compile-time error occurs if two
or more case labels in the same switch statement specify the same constant value.

There can be at most one default label in a switch statement.

A switch statement is executed as follows:

The switch expression is evaluated and converted to the governing type.•	

If one of the constants specified in a •	 case label in the same switch statement is equal to
the value of the switch expression, control is transferred to the statement list following
the matched case label.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

416

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

If none of the constants specified in •	 case labels in the same switch statement is equal to
the value of the switch expression, and if a default label is present, control is transferred
to the statement list following the default label.

If none of the constants specified in •	 case labels in the same switch statement is equal to
the value of the switch expression, and if no default label is present, control is trans-
ferred to the end point of the switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error
occurs. This is known as the “no fall through” rule. The example

switch (i) {
case 0:
 CaseZero();
 break;
case 1:
 CaseOne();
 break;
default:
 CaseOthers();
 break;
}

is valid because no switch section has a reachable end point. Unlike C and C++, execution
of a switch section is not permitted to “fall through” to the next switch section, and the
example

switch (i) {
case 0:
 CaseZero();
case 1:
 CaseZeroOrOne();
default:
 CaseAny();
}

results in a compile-time error. When execution of a switch section is to be followed by
execution of another switch section, an explicit goto case or goto default statement must
be used:

switch (i) {
case 0:
 CaseZero();
 goto case 1;
case 1:
 CaseZeroOrOne();
 goto default;
default:
 CaseAny();
 break;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.7		 Selection Statements

417

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

Multiple labels are permitted in a switch section. The example

switch (i) {
case 0:
 CaseZero();
 break;
case 1:
 CaseOne();
 break;
case 2:
default:
 CaseTwo();
 break;
}

is valid. The example does not violate the “no fall through” rule because the labels case 2:
and default: are part of the same switch section.

The “no fall through” rule prevents a common class of bugs that occur in C and C++ when
break statements are accidentally omitted. In addition, because of this rule, the switch sec-
tions of a switch statement can be arbitrarily rearranged without affecting the behavior of
the statement. For example, the sections of the switch statement above can be reversed
without affecting the behavior of the statement:

switch (i) {
default:
 CaseAny();
 break;
case 1:
 CaseZeroOrOne();
 goto default;
case 0:
 CaseZero();
 goto case 1;
}

The statement list of a switch section typically ends in a break, goto case, or goto default
statement, but any construct that renders the end point of the statement list unreachable is
permitted. For example, a while statement controlled by the boolean expression true is
known to never reach its end point. Likewise, a throw or return statement always transfers
control elsewhere and never reaches its end point. Thus the following example is valid:

switch (i) {
case 0:
 while (true) F();
case 1:
 throw new ArgumentException();
case 2:
 return;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

418

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

n
n  JoN SkEET I wonder whether it might have been wise for the C# designers to

have redesigned switch/case from scratch. The scoping rules for variables introduced
in cases are somewhat surprising, and the break statement feels wrong, too. I believe
developers think of cases as blocks—so why not enforce that?

case 0:
{
 // Code for case 0 goes here, with no need for a break
}

Likewise, it would probably have been more readable to allow a comma-separated list
of expressions for multiple cases to match a single block, rather than repeating whole
case labels.

The governing type of a switch statement may be the type string. For example:

void DoCommand(string command) {
 switch (command.ToLower()) {
 case "run":
 DoRun();
 break;
 case "save":
 DoSave();
 break;
 case "quit":
 DoQuit();
 break;
 default:
 InvalidCommand(command);
 break;
 }
}

Like the string equality operators (§7.10.7), the switch statement is case sensitive and will
execute a given switch section only if the switch expression string exactly matches a case
label constant.

When the governing type of a switch statement is string, the value null is permitted as a
case label constant.

The statement-lists of a switch-block may contain declaration statements (§8.5). The scope of
a local variable or constant declared in a switch block is the switch block.

n
n  BILL WAGNER This idea suggests that implicit braces surround each switch

block.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.7		 Selection Statements

419

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

Within a switch block, the meaning of a name used in an expression context must always
be the same (§7.6.2.1).

The statement list of a given switch section is reachable if the switch statement is reachable
and at least one of the following is true:

The switch expression is a nonconstant value.•	

The switch expression is a constant value that matches a •	 case label in the switch
section.

The switch expression is a constant value that doesn’t match any •	 case label, and the
switch section contains the default label.

A •	 switch label of the switch section is referenced by a reachable goto case or goto
default statement.

n
n  VLADIMIR RESHETNIkoV This rule is not applied when the goto case or goto
default statement is inside a try or catch block of a try statement that includes a
finally block, and the switch label is outside the try statement, and the end point of
the finally block is unreachable.

The end point of a switch statement is reachable if at least one of the following is true:

The •	 switch statement contains a reachable break statement that exits the switch
statement.

n
n  VLADIMIR RESHETNIkoV This rule is not applied when the break statement is

inside a try or catch block of a try statement that includes a finally block, and the
target of the break statement is outside the try statement, and the end point of the
finally block is unreachable.

The •	 switch statement is reachable, the switch expression is a nonconstant value, and no
default label is present.

The •	 switch statement is reachable, the switch expression is a constant value that doesn’t
match any case label, and no default label is present.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

420

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

8.8 Iteration Statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

8.8.1 The while Statement
The while statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expression) embedded-statement

A while statement is executed as follows:

The •	 boolean-expression (§7.20) is evaluated.

If the boolean expression yields •	 true, control is transferred to the embedded statement.
When and if control reaches the end point of the embedded statement (possibly from
execution of a continue statement), control is transferred to the beginning of the while
statement.

If the boolean expression yields •	 false, control is transferred to the end point of the while
statement.

Within the embedded statement of a while statement, a break statement (§8.9.1) may be
used to transfer control to the end point of the while statement (thus ending iteration of
the embedded statement), and a continue statement (§8.9.2) may be used to transfer con-
trol to the end point of the embedded statement (thus performing another iteration of the
while statement).

The embedded statement of a while statement is reachable if the while statement is reach-
able and the boolean expression does not have the constant value false.

The end point of a while statement is reachable if at least one of the following is true:

The •	 while statement contains a reachable break statement that exits the while
statement.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.8		 Iteration Statements

421

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

n
n  VLADIMIR RESHETNIkoV This rule is not applied when the break statement is

inside a try or catch block of a try statement that includes a finally block, and the
target of the break statement is outside the try statement, and the end point of the
finally block is unreachable.

The •	 while statement is reachable and the boolean expression does not have the constant
value true.

8.8.2 The do Statement
The do statement conditionally executes an embedded statement one or more times.

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows:

Control is transferred to the embedded statement.•	

When and if control reaches the end point of the embedded statement (possibly from •	
execution of a continue statement), the boolean-expression (§7.20) is evaluated. If the bool-
ean expression yields true, control is transferred to the beginning of the do statement.
Otherwise, control is transferred to the end point of the do statement.

Within the embedded statement of a do statement, a break statement (§8.9.1) may be used
to transfer control to the end point of the do statement (thus ending iteration of the embed-
ded statement), and a continue statement (§8.9.2) may be used to transfer control to the
end point of the embedded statement.

The embedded statement of a do statement is reachable if the do statement is reachable.

The end point of a do statement is reachable if at least one of the following is true:

The •	 do statement contains a reachable break statement that exits the do statement.

n
n  VLADIMIR RESHETNIkoV This rule is not applied when the break statement is

inside a try or catch block of a try statement that includes a finally block, and the
target of the break statement is outside the try statement, and the end point of the
finally block is unreachable.

The end point of the embedded statement is reachable and the boolean expression does •	
not have the constant value true.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

422

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

8.8.3 The for Statement
The for statement evaluates a sequence of initialization expressions and then, while a con-
dition is true, repeatedly executes an embedded statement and evaluates a sequence of
iteration expressions.

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

The for-initializer, if present, consists of either a local-variable-declaration (§8.5.1) or a list of
statement-expressions (§8.6) separated by commas. The scope of a local variable declared by
a for-initializer starts at the local-variable-declarator for the variable and extends to the end of
the embedded statement. The scope includes the for-condition and the for-iterator.

The for-condition, if present, must be a boolean-expression (§7.20).

The for-iterator, if present, consists of a list of statement-expressions (§8.6) separated by
commas.

A for statement is executed as follows:

If a •	 for-initializer is present, the variable initializers or statement expressions are executed
in the order they are written. This step is performed only once.

If a •	 for-condition is present, it is evaluated.

If the •	 for-condition is not present or if the evaluation yields true, control is transferred to
the embedded statement. When and if control reaches the end point of the embedded
statement (possibly from execution of a continue statement), the expressions of the for-
iterator, if any, are evaluated in sequence, and then another iteration is performed, start-
ing with evaluation of the for-condition in the step above.

If the •	 for-condition is present and the evaluation yields false, control is transferred to the
end point of the for statement.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.8		 Iteration Statements

423

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

Within the embedded statement of a for statement, a break statement (§8.9.1) may be used
to transfer control to the end point of the for statement (thus ending iteration of the embed-
ded statement), and a continue statement (§8.9.2) may be used to transfer control to the
end point of the embedded statement (thus executing the for-iterator and performing
another iteration of the for statement, starting with the for-condition).

The embedded statement of a for statement is reachable if one of the following is true:

The •	 for statement is reachable and no for-condition is present.

The •	 for statement is reachable and a for-condition is present and does not have the con-
stant value false.

The end point of a for statement is reachable if at least one of the following is true:

The •	 for statement contains a reachable break statement that exits the for statement.

n
n  VLADIMIR RESHETNIkoV This rule is not applied when the break statement is

inside a try or catch block of a try statement that includes a finally block, and the
target of the break statement is outside the try statement, and the end point of the
finally block is unreachable.

The •	 for statement is reachable and a for-condition is present and does not have the con-
stant value true.

8.8.4 The foreach Statement
The foreach statement enumerates the elements of a collection, executing an embedded
statement for each element of the collection.

foreach-statement:
foreach (local-variable-type identifier in expression) embedded-statement

The type and identifier of a foreach statement declare the iteration variable of the state-
ment. If the var identifier is given as the local-variable-type, and no type named var is in
scope, the iteration variable is said to be an implicitly typed iteration variable, and its type
is taken to be the element type of the foreach statement, as specified below. The iteration
variable corresponds to a read-only local variable with a scope that extends over the
embedded statement. During execution of a foreach statement, the iteration variable rep-
resents the collection element for which an iteration is currently being performed. A
compile-time error occurs if the embedded statement attempts to modify the iteration vari-
able (via assignment or the ++ and -- operators) or pass the iteration variable as a ref or
out parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

424

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

n
n  CHRIS SELLS For readability, foreach statements should be preferred over for

statements.

n
n  JoN SkEET The fact that there is one iteration variable (which is read-only and

yet magically changes its value on each iteration) causes one of the most common
problems with captured variables. The code below looks like it would print “a”, “b”,
“c”, “d” but it actually prints “d” four times.

List<Action> actions = new List<Action>();
foreach (string value in new[] { "a", "b", "c", "d" })
{
 actions.Add(() => Console.WriteLine(value));
}
foreach (Action action in actions)
{
 action();
}

The solution is usually to introduce an extra variable inside the body of the foreach
statement that takes a copy of the iteration variable’s current value. That way each
delegate will capture a different variable. In this case, the first loop would become

foreach (string value in new[] { "a", "b", "c", "d" })
{
 String copy = value;
 actions.Add(() => Console.WriteLine(copy));
}

n
n  PETER SESToFT The foreach statement might have been defined differently to

avoid the variable capture problem discussed in Jon Skeet’s comment: Simply move
the declaration V v inside the while loop in the try-while-finally expansion shown
later in this section. Indeed, in the original C# language specification, the declaration
appeared inside the while loop, but during standardization of C# 2.0 it turned out that
declaring v outside the loop was closer to the truth, at least in Microsoft’s implementa-
tion, and the standard was changed accordingly.

The compile-time processing of a foreach statement first determines the collection type,
enumerator type, and element type of the expression. This determination proceeds as
follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.8		 Iteration Statements

425

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

If the type •	 X of expression is an array type, then there is an implicit reference conversion
from X to the System.Collections.IEnumerable interface (since System.Array imple-
ments this interface). The collection type is the System.Collections.IEnumerable inter-
face, the enumerator type is the System.Collections.IEnumerator interface, and the
element type is the element type of the array type X.

If the type •	 X of expression is dynamic, then there is an implicit conversion from expression
to the System.Collections.IEnumerable interface (§6.1.8). The collection type is the
System.Collections.IEnumerable interface and the enumerator type is the System.
Collections.IEnumerator interface. If the var identifier is given as the local-variable-type,
then the element type is dynamic; otherwise, it is object.

Otherwise, determine whether the type •	 X has an appropriate GetEnumerator method:

Perform member lookup on the type - X with identifier GetEnumerator and no type
arguments. If the member lookup does not produce a match, or if it produces an
ambiguity or a match that is not a method group, check for an enumerable interface
as described below. It is recommended that a warning be issued if member lookup
produces anything except a method group or no match.

n
n  ERIC LIPPERT This “pattern”-based approach was specified so that back in the

days before the generic IEnumerable<T> was available, collection authors could pro-
vide stronger type annotations on their enumerator objects.

Implementations of nongeneric IEnumerable always end up boxing every member of
a collection of integers because the return type of the Current property is object. A
provider of a collection of integers could provide non-interface-based GetEnumerator,
MoveNext, and Current implementations such that Current returns an unboxed
integer.

Of course, in a world with generic IEnumerable<T>, all of this effort becomes unneces-
sary. The vast majority of iterated collections will implement this interface.

- Perform overload resolution using the resulting method group and an empty argu-
ment list. If overload resolution results in no applicable methods, results in an ambi-
guity, or results in a single best method but that method is either static or not public,
check for an enumerable interface as described below. It is recommended that a warn-
ing be issued if overload resolution produces anything except an unambiguous
public instance method or no applicable methods.

If the return type - E of the GetEnumerator method is not a class, struct, or interface
type, an error is produced and no further steps are taken.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

426

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

Member lookup is performed on - E with the identifier Current and no type argu-
ments. If the member lookup produces no match, the result is an error, or the result is
anything except a public instance property that permits reading, an error is pro-
duced and no further steps are taken.

Member lookup is performed on - E with the identifier MoveNext and no type argu-
ments. If the member lookup produces no match, the result is an error, or the result is
anything except a method group, an error is produced and no further steps are
taken.

- Overload resolution is performed on the method group with an empty argument list.
If overload resolution results in no applicable methods, results in an ambiguity, or
results in a single best method but that method is either static or not public, or its
return type is not bool, an error is produced and no further steps are taken.

The - collection type is X, the enumerator type is E, and the element type is the type of
the Current property.

Otherwise, check for an enumerable interface:•	

If there is exactly one type - T such that there is an implicit conversion from X to the
interface System.Collections.Generic.IEnumerable<T>, then the collection type is
this interface, the enumerator type is the interface System.Collections.Generic.
IEnumerator<T>, and the element type is T.

Otherwise, if there is more than one such type - T, then an error is produced and no
further steps are taken.

Otherwise, if there is an implicit conversion from - X to the System.Collections.
IEnumerable interface, then the collection type is this interface, the enumerator type
is the interface System.Collections.IEnumerator, and the element type is object.

Otherwise, an error is produced and no further steps are taken.-

n
n  PETER SESToFT Sadly, the compile-time processing of the foreach statement

means that it is rather dynamically typed. For instance, for an arbitrary non-sealed
class C and interface I, the following is type correct and causes no compiler warnings
or errors:

C[] xs = ...;
foreach (I x in xs)
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.8		 Iteration Statements

427

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

In fact, just recently I fell into this trap when removing a seemingly irrelevant interface
I from the interface list of a class C. The project went through the build stage without
errors, but at runtime the application crashed with an InvalidCastException because
I had overlooked several foreach statements. Actually, this behavior should be
expected, because there might be some subclass of C that implements interface I. What
is perhaps more surprising is that I and C can be swapped in the preceding code with
the same result.

The above steps, if successful, unambiguously produce a collection type C, enumerator
type E, and element type T. A foreach statement of the form

foreach (V v in x) embedded-statement

is then expanded to:

{
 E e = ((C)(x)).GetEnumerator();
 try {
 V v;
 while (e.MoveNext()) {
 v = (V)(T)e.Current;
 embedded-statement
 }
 }
 finally {
 ... // Dispose of e
 }
}

The variable e is not visible to or accessible to the expression x, the embedded state-
ment, or any other source code of the program. The variable v is read-only in the embed-
ded statement. If there is not an explicit conversion (§6.2) from T (the element type) to V
(the local-variable-type in the foreach statement), an error is produced and no further
steps are taken. If x has the value null, a System.NullReferenceException is thrown at
runtime.

n
n  MAREk SAFAR The foreach statement is a classic example of language evolu-

tion. C# 1.0 did not have the generic IEnumerable<T> and explicit conversion had to be
used from element type to local variable. C# 2.0 introduced a generic version of the
foreach statement with an element of a generic type. C# 3.0 brought this structure
back to where it should have been at the beginning by introducing implicitly typed
iteration variable, which changes explicit conversion to be implicit and avoids any
InvalidCastException during execution.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

428

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

An implementation is permitted to implement a given foreach statement differently—for
example, for performance reasons—as long as the behavior is consistent with the above
expansion.

The body of the finally block is constructed according to the following steps:

If there is an implicit conversion from •	 E to the System.IDisposable interface, then

If - E is a non-nullable value type, then the finally clause is expanded to the semantic
equivalent of
finally {
 ((System.IDisposable)e).Dispose();
}

Otherwise, the - finally clause is expanded to the semantic equivalent of
finally {
 if (e != null) ((System.IDisposable)e).Dispose();
}

except that if E is a value type, or a type parameter instantiated to a value type, then
the cast of e to System.IDisposable will not cause boxing to occur.

Otherwise, if •	 E is a sealed type, then the finally clause is expanded to an empty block:
finally {
}

Otherwise, the •	 finally clause is expanded to

finally {
 System.IDisposable d = e as System.IDisposable;
 if (d != null) d.Dispose();
}

The local variable d is not visible to or accessible to any user code. In particular, it does
not conflict with any other variable whose scope includes the finally block.

n
n  JoN SkEET The fact that the foreach statement disposes of its iterator makes the

iterator blocks in C# 2.0 vastly more useful than they otherwise would be: It is entirely
reasonable to acquire a resource to iterate over, and then dispose of that resource when
either the iterator has been exhausted or the caller breaks out of the loop for some
reason.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.9		 Jump Statements

429

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

The order in which foreach traverses the elements of an array is as follows: For single-
dimensional arrays, elements are traversed in increasing index order, starting with index 0
and ending with index Length – 1. For multi-dimensional arrays, elements are traversed
such that the indices of the rightmost dimension are increased first, then the next left
dimension, and so on to the left.

The following example prints out each value in a two-dimensional array, in element
order:

using System;

class Test
{
 static void Main()
 {
 double[,] values = {
 {1.2, 2.3, 3.4, 4.5},
 {5.6, 6.7, 7.8, 8.9}
 };

 foreach (double elementValue in values)
 Console.Write("{0} ", elementValue);

 Console.WriteLine();
 }
}

The output produced is as follows:

1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9

In the example

int[] numbers = { 1, 3, 5, 7, 9 };
foreach (var n in numbers) Console.WriteLine(n);

the type of n is inferred to be int, the element type of numbers.

8.9 Jump Statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

430

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

The location to which a jump statement transfers control is called the target of the jump
statement.

When a jump statement occurs within a block, and the target of that jump statement is
outside that block, the jump statement is said to exit the block. While a jump statement
may transfer control out of a block, it can never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements.
In the absence of such try statements, a jump statement unconditionally transfers control
from the jump statement to its target. In the presence of such intervening try statements,
execution is more complex. If the jump statement exits one or more try blocks with associ-
ated finally blocks, control is initially transferred to the finally block of the innermost
try statement. When and if control reaches the end point of a finally block, control is
transferred to the finally block of the next enclosing try statement. This process is
repeated until the finally blocks of all intervening try statements have been executed.

In the example

using System;

class Test
{
 static void Main()
 {
 while (true)
 {
 try
 {
 try
 {
 Console.WriteLine("Before break");
 break;
 }
 finally
 {
 Console.WriteLine("Innermost finally block");
 }
 }
 finally
 {
 Console.WriteLine("Outermost finally block");
 }
 }
 Console.WriteLine("After break");
 }
}

the finally blocks associated with two try statements are executed before control is trans-
ferred to the target of the jump statement.

The output produced is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.9		 Jump Statements

431

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

Before break
Innermost finally block
Outermost finally block
After break

8.9.1 The break Statement
The break statement exits the nearest enclosing switch, while, do, for, or foreach
statement.

break-statement:
break ;

The target of a break statement is the end point of the nearest enclosing switch, while, do,
for, or foreach statement. If a break statement is not enclosed by a switch, while, do, for,
or foreach statement, a compile-time error occurs.

When multiple switch, while, do, for, or foreach statements are nested within each other,
a break statement applies only to the innermost statement. To transfer control across mul-
tiple nesting levels, a goto statement (§8.9.3) must be used.

A break statement cannot exit a finally block (§8.10). When a break statement occurs
within a finally block, the target of the break statement must be within the same finally
block; otherwise, a compile-time error occurs.

A break statement is executed as follows:

If the •	 break statement exits one or more try blocks with associated finally blocks, con-
trol is initially transferred to the finally block of the innermost try statement. When
and if control reaches the end point of a finally block, control is transferred to the
finally block of the next enclosing try statement. This process is repeated until the
finally blocks of all intervening try statements have been executed.

Control is transferred to the target of the •	 break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of a
break statement is never reachable.

n
n  JESSE LIBERTy Whenever you see unconditional transfer or (especially) exit

from within the flow of a method, treat it as a volatile explosive (that is, run screaming
from the room).

While a case can be made for break, continue, and goto statements, it is rare that you
can’t rewrite or refactor them out of existence. The resulting code is very likely to be
easier to read, understand, and maintain.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

432

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

8.9.2 The continue Statement
The continue statement starts a new iteration of the nearest enclosing while, do, for, or
foreach statement.

continue-statement:
continue ;

The target of a continue statement is the end point of the embedded statement of the near-
est enclosing while, do, for, or foreach statement. If a continue statement is not enclosed
by a while, do, for, or foreach statement, a compile-time error occurs.

When multiple while, do, for, or foreach statements are nested within each other, a con-
tinue statement applies only to the innermost statement. To transfer control across multi-
ple nesting levels, a goto statement (§8.9.3) must be used.

A continue statement cannot exit a finally block (§8.10). When a continue statement
occurs within a finally block, the target of the continue statement must be within the
same finally block; otherwise, a compile-time error occurs.

A continue statement is executed as follows:

If the •	 continue statement exits one or more try blocks with associated finally blocks,
control is initially transferred to the finally block of the innermost try statement. When
and if control reaches the end point of a finally block, control is transferred to the
finally block of the next enclosing try statement. This process is repeated until the
finally blocks of all intervening try statements have been executed.

Control is transferred to the target of the •	 continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end point
of a continue statement is never reachable.

n
n  PETER SESToFT Some languages—notably the Java programming language—

have generalized versions of the break and continue statements, where a target label
specifies which of multiple enclosing loops should be exited or resumed. The same
effect can be obtained in C# using the goto statement. Moreover, although the general-
ized break and continue statements are disciplined versions of goto, they are almost
as difficult to understand as goto statements and, in my opinion, detrimental to read-
ability even in short programs. See examples 78 and 79 in my book Java Precisely, sec-
ond edition.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.9		 Jump Statements

433

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

8.9.3 The goto Statement
The goto statement transfers control to a statement that is marked by a label.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

The target of a goto identifier statement is the labeled statement with the given label. If a
label with the given name does not exist in the current function member, or if the goto
statement is not within the scope of the label, a compile-time error occurs. This rule per-
mits the use of a goto statement to transfer control out of a nested scope, but not into a
nested scope. In the example

using System;

class Test
{
 static void Main(string[] args) {
 string[,] table = {
 {"Red", "Blue", "Green"},
 {"Monday", "Wednesday", "Friday"}
 };

 foreach (string str in args) {
 int row, colm;
 for (row = 0; row <= 1; ++row)
 for (colm = 0; colm <= 2; ++colm)
 if (str == table[row,colm])
 goto done;

 Console.WriteLine("{0} not found", str);
 continue;
 done:
 Console.WriteLine("Found {0} at [{1}][{2}]", str, row, colm);
 }
 }
}

a goto statement is used to transfer control out of a nested scope.

The target of a goto case statement is the statement list in the immediately enclosing
switch statement (§8.7.2), which contains a case label with the given constant value. If the
goto case statement is not enclosed by a switch statement, if the constant-expression is not
implicitly convertible (§6.1) to the governing type of the nearest enclosing switch state-
ment, or if the nearest enclosing switch statement does not contain a case label with the
given constant value, a compile-time error occurs.

The target of a goto default statement is the statement list in the immediately enclosing
switch statement (§8.7.2), which contains a default label. If the goto default statement is

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

434

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

not enclosed by a switch statement, or if the nearest enclosing switch statement does not
contain a default label, a compile-time error occurs.

A goto statement cannot exit a finally block (§8.10). When a goto statement occurs within
a finally block, the target of the goto statement must be within the same finally block;
otherwise, a compile-time error occurs.

n
n  BILL WAGNER These rules make goto a little less than pure evil in C#, but I’ve

yet to see a good use for it.

A goto statement is executed as follows:

If the •	 goto statement exits one or more try blocks with associated finally blocks, con-
trol is initially transferred to the finally block of the innermost try statement. When
and if control reaches the end point of a finally block, control is transferred to the
finally block of the next enclosing try statement. This process is repeated until
the finally blocks of all intervening try statements have been executed.

Control is transferred to the target of the •	 goto statement.

Because a goto statement unconditionally transfers control elsewhere, the end point of a
goto statement is never reachable.

n
n  CHRIS SELLS Please don’t use labels or goto statements. I’ve never read any

code that wasn’t more readable without them.

n
n  CHRISTIAN NAGEL Although goto statements make sense within switch state-

ments as explicit fall-through options, you shouldn’t use them in other scenarios.

n
n  PETER SESToFT Don Knuth’s 1974 paper “Structured Programming with go to

Statements” throws a lot of light on alternatives to the goto statement and identifies
sensible uses of the goto statement. In the end, Knuth does conclude that “we should,
indeed, abolish go to . . . , at least as an experiment in training people to formulate
their abstractions more carefully.” Just the acknowledgments list of that paper pres-
ents a “who’s who” of programming language pioneers.

The best reason for including goto in C# probably is that you may want to generate
code that uses goto—for instance, parsers, lexers, automata, statecharts, virtual
machines, and similar programs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.9		 Jump Statements

435

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

8.9.4 The return Statement
The return statement returns control to the caller of the function member in which the
return statement appears.

return-statement:
return expressionopt ;

A return statement with no expression can be used only in a function member that does
not compute a value—that is, a method with the return type void, the set accessor of a
property or indexer, the add and remove accessors of an event, an instance constructor, a
static constructor, or a destructor.

A return statement with an expression can only be used in a function member that com-
putes a value—that is, a method with a non-void return type, the get accessor of a property
or indexer, or a user-defined operator. An implicit conversion (§6.1) must exist from the
type of the expression to the return type of the containing function member.

n
n  VLADIMIR RESHETNIkoV If the return statement is within an anonymous func-

tion, the rules from §6.5 are applied instead.

It is a compile-time error for a return statement to appear in a finally block (§8.10).

A return statement is executed as follows:

If the •	 return statement specifies an expression, the expression is evaluated and the
resulting value is converted to the return type of the containing function member by an
implicit conversion. The result of the conversion becomes the value returned to the
caller.

If the •	 return statement is enclosed by one or more try blocks with associated finally
blocks, control is initially transferred to the finally block of the innermost try state-
ment. When and if control reaches the end point of a finally block, control is transferred
to the finally block of the next enclosing try statement. This process is repeated until
the finally blocks of all enclosing try statements have been executed.

Control is returned to the caller of the containing function member.•	

Because a return statement unconditionally transfers control elsewhere, the end point of a
return statement is never reachable.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

436

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

8.9.5 The throw Statement
The throw statement throws an exception.

throw-statement:
throw expressionopt ;

A throw statement with an expression throws the value produced by evaluating the expres-
sion. The expression must denote a value of the class type System.Exception, of a class
type that derives from System.Exception or of a type parameter type that has System.
Exception (or a subclass thereof) as its effective base class. If evaluation of the expression
produces null, a System.NullReferenceException is thrown instead.

n
n  PETER SESToFT For this reason, an exception thrown in C# is never null and,

therefore, the try-catch matching of an exception (on its class) described in §8.10
makes sense. In fact, the .NET/CLI intermediate language instruction called throw
behaves like the C# throw statement in this respect. Thus, even if the exception was
thrown by code written in another .NET/CLI language, it would be non-null when
handled by the try-catch statement.

A throw statement with no expression can be used only in a catch block, in which case that
statement rethrows the exception that is currently being handled by that catch block.

n
n  VLADIMIR RESHETNIkoV A throw statement with no expression is not allowed

in a finally block or anonymous function that is nested inside the nearest enclosing
catch block:

delegate void F();
class Program
{
 static void Main()
 {
 try
 {
 }
 catch
 {
 F f = () => { throw; }; // Error CS0156
 try
 {
 }
 finally
 {
 throw; // Error CS0724
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.9		 Jump Statements

437

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

Because a throw statement unconditionally transfers control elsewhere, the end point of
a throw statement is never reachable.

When an exception is thrown, control is transferred to the first catch clause in an enclos-
ing try statement that can handle the exception. The process that takes place from the
point of the exception being thrown to the point of transferring control to a suitable
exception handler is known as exception propagation. Propagation of an exception con-
sists of repeatedly evaluating the following steps until a catch clause that matches the
exception is found. In this description, the throw point is initially the location at which
the exception is thrown.

In the current function member, each •	 try statement that encloses the throw point is
examined. For each statement S, starting with the innermost try statement and ending
with the outermost try statement, the following steps are evaluated:

If the - try block of S encloses the throw point and if S has one or more catch clauses,
the catch clauses are examined in order of appearance to locate a suitable handler
for the exception. The first catch clause that specifies the exception type or a base
type of the exception type is considered a match. A general catch clause (§8.10) is
considered a match for any exception type. If a matching catch clause is located,
the exception propagation is completed by transferring control to the block of that
catch clause.

Otherwise, if the - try block or a catch block of S encloses the throw point and if S
has a finally block, control is transferred to the finally block. If the finally block
throws another exception, processing of the current exception is terminated. Other-
wise, when control reaches the end point of the finally block, processing of the
current exception is continued.

If an exception handler was not located in the current function member invocation, the •	
function member invocation is terminated. The steps above are then repeated for the
caller of the function member with a throw point corresponding to the statement from
which the function member was invoked.

If the exception processing terminates all function member invocations in the current •	
thread, indicating that the thread has no handler for the exception, then the thread is
itself terminated. The impact of such termination is implementation-defined.

n
n  BILL WAGNER This process implies that you should do some basic cleanup in the

topmost methods for all your threads. Otherwise, the behavior of your application
will be undefined in the face of exceptions that will cause threads to be terminated.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

438

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

8.10 The try Statement
The try statement provides a mechanism for catching exceptions that occur during execu-
tion of a block. Furthermore, the try statement provides the ability to specify a block of
code that is always executed when control leaves the try statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseopt
specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (class-type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:

A •	 try block followed by one or more catch blocks.

A •	 try block followed by a finally block.

A •	 try block followed by one or more catch blocks followed by a finally block.

When a catch clause specifies a class-type, the type must be System.Exception, a type that
derives from System.Exception, or a type parameter type that has System.Exception (or a
subclass thereof) as its effective base class.

When a catch clause specifies both a class-type and an identifier, an exception variable of the
given name and type is declared. The exception variable corresponds to a local variable

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.10		 The try Statement

439

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

with a scope that extends over the catch block. During execution of the catch block, the
exception variable represents the exception currently being handled. For purposes of
definite assignment checking, the exception variable is considered definitely assigned in its
entire scope.

Unless a catch clause includes an exception variable name, it is impossible to access the
exception object in the catch block.

A catch clause that specifies neither an exception type nor an exception variable name is
called a general catch clause. A try statement can have only one general catch clause, and
if one is present it must be the last catch clause.

Some programming languages may support exceptions that are not representable as an
object derived from System.Exception, although such exceptions could never be gener-
ated by C# code. A general catch clause may be used to catch such exceptions. Thus a
general catch clause is semantically different from one that specifies the type System.
Exception, in that the former may also catch exceptions from other languages.

n
n  ERIC LIPPERT In the current Microsoft implementation of C# and the CLR, by

default a thrown object that does not derive from Exception is converted into a
RuntimeWrappedException object. As a consequence, catch(Exception e) catches all
exceptions.

If you want to disable this behavior and use the C# 1.0 semantics, whereby non-
Exception objects thrown by other languages are not caught in this manner, then use
the following assembly attribute:

[assembly:System.Runtime.CompilerServices.RuntimeCompatibility(WrapNonExceptionThrows
= false)]

To locate a handler for an exception, catch clauses are examined in lexical order. A com-
pile-time error occurs if a catch clause specifies a type that is the same as, or is derived
from, a type that was specified in an earlier catch clause for the same try block. Without
this restriction, it would be possible to write unreachable catch clauses.

Within a catch block, a throw statement (§8.9.5) with no expression can be used to rethrow
the exception that was caught by the catch block. Assignments to an exception variable do
not alter the exception that is rethrown.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

440

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

In the example

using System;

class Test
{
 static void F() {
 try {
 G();
 }
 catch (Exception e) {
 Console.WriteLine("Exception in F: " + e.Message);
 e = new Exception("F");
 throw; // Rethrow
 }
 }

 static void G() {
 throw new Exception("G");
 }

 static void Main() {
 try {
 F();
 }
 catch (Exception e) {
 Console.WriteLine("Exception in Main: " + e.Message);
 }
 }
}

the method F catches an exception, writes some diagnostic information to the console,
alters the exception variable, and rethrows the exception. The exception that is rethrown is
the original exception, so the output produced is

Exception in F: G
Exception in Main: G

If the first catch block had thrown e instead of rethrowing the current exception, the out-
put produced would be as follows:

Exception in F: G
Exception in Main: F

It is a compile-time error for a break, continue, or goto statement to transfer control out of
a finally block. When a break, continue, or goto statement occurs in a finally block, the
target of the statement must be within the same finally block; otherwise, a compile-time
error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.10		 The try Statement

441

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

It is a compile-time error for a return statement to occur in a finally block.

A try statement is executed as follows:

Control is transferred to the •	 try block.

When and if control reaches the end point of the •	 try block:

If the - try statement has a finally block, the finally block is executed.

Control is transferred to the end point of the - try statement.

If an exception is propagated to the •	 try statement during execution of the try block:

The - catch clauses, if any, are examined in order of appearance to locate a suitable
handler for the exception. The first catch clause that specifies the exception type or a
base type of the exception type is considered a match. A general catch clause is con-
sidered a match for any exception type. If a matching catch clause is located:

If the matching •	 catch clause declares an exception variable, the exception object is
assigned to the exception variable.

Control is transferred to the matching •	 catch block.

When and if control reaches the end point of the •	 catch block:

If the - try statement has a finally block, the finally block is executed.

Control is transferred to the end point of the - try statement.

If an exception is propagated to the •	 try statement during execution of the
catch block:

If the - try statement has a finally block, the finally block is executed.

The exception is propagated to the next enclosing - try statement.

If the - try statement has no catch clauses or if no catch clause matches the
exception:

If the •	 try statement has a finally block, the finally block is executed.

The exception is propagated to the next enclosing •	 try statement.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

442

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

n
n  ERIC LIPPERT If the call stack includes code protected by try-catch blocks writ-

ten in other languages (such as Visual Basic), the runtime environment may execute
an “exception filter” to see whether a given catch block is appropriate for the thrown
exception. As a consequence, user code may execute after an exception is thrown but
before the associated finally block is executed. If your exception-handling code
depends on the global state being made consistent by a finally block before any other
user code runs, then you should take appropriate measures to ensure that your code
catches the exception before the runtime environment executes user-defined exception
filters that may be on the stack.

The statements of a finally block are always executed when control leaves a try state-
ment. This is true whether the control transfer occurs as a result of normal execution; as a
result of executing a break, continue, goto, or return statement; or as a result of propagat-
ing an exception out of the try statement.

If an exception is thrown during execution of a finally block and is not caught within the
same finally block, the exception is propagated to the next enclosing try statement. If
another exception was in the process of being propagated, that exception is lost. The pro-
cess of propagating an exception is discussed further in the description of the throw state-
ment (§8.9.5).

n
n  BILL WAGNER This behavior makes it very important to write finally clauses

defensively to avoid raising a second exception.

n
n  JoN SkEET It would be nice if we didn’t have to write finally clauses defen-

sively, of course. The concept of one error being caused by another is already part of
the .NET framework with the idea of an “inner exception.” Even so, the idea that two
exceptions are likely to be related, but neither was known to cause the other, doesn’t
have a common representation at the moment. Likewise, there’s the generally thorny
question of which exceptions a method might throw. Java tried to tackle this problem
with “checked exceptions”—mostly unsuccessfully, in my view.

It sometimes feels as if we (as an industry) are getting quite good at success scenarios,
but we still have a long way to go when it comes to error handling.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.12		 The lock Statement

443

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

The try block of a try statement is reachable if the try statement is reachable.

A catch block of a try statement is reachable if the try statement is reachable.

The finally block of a try statement is reachable if the try statement is reachable.

The end point of a try statement is reachable if both of the following are true:

The end point of the •	 try block is reachable or the end point of at least one catch block
is reachable.

If a •	 finally block is present, the end point of the finally block is reachable.

8.11 The checked and unchecked Statements
The checked and unchecked statements are used to control the overflow checking context
for integral-type arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes all expressions in the block to be evaluated in a checked con-
text. The unchecked statement causes all expressions in the block to be evaluated in an
unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and
unchecked operators (§7.6.12), except that they operate on blocks instead of expressions.

8.12 The lock Statement
The lock statement obtains the mutual-exclusion lock for a given object, executes a state-
ment, and then releases the lock.

lock-statement:
lock (expression) embedded-statement

The expression of a lock statement must denote a value of a type known to be a reference-
type. No implicit boxing conversion (§6.1.7) is ever performed for the expression of a lock

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

444

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

statement, and thus it is a compile-time error for the expression to denote a value of a
value-type.

A lock statement of the form

lock (x) ...

where x is an expression of a reference-type, is precisely equivalent to

bool __lockWasTaken = false;
try {
 System.Threading.Monitor.Enter(x, __lockWasTaken);
 ...
}
finally {
 if (__lockWasTaken)System.Threading.Monitor.Exit(x);
}

except that x is evaluated only once.

n
n  BILL WAGNER The lock() statement provides additional compiler checks

against trying to lock a value type.

While a mutual-exclusion lock is held, code executing in the same execution thread can
also obtain and release the lock. However, code executing in other threads is blocked from
obtaining the lock until the lock is released.

Locking System.Type objects so as to synchronize access to static data is not recommended.
Other code might lock on the same type, which can result in deadlock. A better approach
is to synchronize access to static data by locking a private static object. For example:

class Cache
{
 private static readonly object synchronizationObject = new object();

 public static void Add(object x) {
 lock (Cache.synchronizationObject) {
 ...
 }
 }

 public static void Remove(object x) {
 lock (Cache.synchronizationObject) {
 ...
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.13		 The using Statement

445

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

n
n  JoSEPH ALBAHARI A good policy, when writing libraries for public consump-

tion, is to make static functions thread-safe from the outset (typically, by implement-
ing locking within your functions, as in this example). It’s much more difficult (or even
impossible) for consumers to lock around calling your static methods or properties,
because they won’t know from which other locations your functions are called.

8.13 The using Statement
The using statement obtains one or more resources, executes a statement, and then dis-
poses of the resource.

n
n  ERIC LIPPERT As the specification explicitly calls out here, the point of a using

statement is to ensure the acquisition of and timely disposal of a resource. Typically,
this will consist of some unmanaged resource from the operating system, such as a file
handle. It is polite to stop using resources as soon as possible; some other program
might want to read that file when you’re done with it. I recommend against the use of
using statements to enforce program invariants. For example, one sometimes sees
code like this:

using(new TemporarilyStopReportingErrors()) AttemptSomething();

Here TemporarilyStopReportingErrors is a type whose constructor turns off error
reporting as a side effect and whose disposal method turns it back on. I consider this
(unfortunately widespread) practice to be an abuse of the using statement; a program
side effect is not a resource, and causing global side effects in constructors and dispos-
ers seems like a bad idea. I would write this code using a try-finally construct
instead.

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

A resource is a class or struct that implements System.IDisposable, which includes a single
parameterless method named Dispose. Code that is using a resource can call Dispose to
indicate that the resource is no longer needed. If Dispose is not called, then automatic dis-
posal eventually occurs as a consequence of garbage collection.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

446

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

n
n  JoSEPH ALBAHARI Calling Dispose doesn’t influence garbage collection in any

way: An object becomes eligible for automatic garbage collection when (and only
when) no other object refers to it. Likewise, garbage collection doesn’t influence dis-
posal: The garbage collector will not call Dispose unless you write a finalizer (destruc-
tor) that explicitly makes this call.

The two activities most commonly performed within a Dispose method are releasing
unmanaged resources and calling Dispose on other referenced or “owned” objects. It
is also possible to release unmanaged resources from within a finalizer, although such
an operation means waiting an indeterminate amount of time for the garbage collector
to fire. This is why IDisposable exists.

If the form of resource-acquisition is local-variable-declaration, then the type of the local-vari-
able-declaration must be either dynamic or a type that can be implicitly converted to System.
IDisposable. If the form of resource-acquisition is expression, then this expression must be
implicitly convertible to System.IDisposable.

Local variables declared in a resource-acquisition are read-only, and must include an initial-
izer. A compile-time error occurs if the embedded statement attempts to modify these local
variables (via assignment or the ++ and -- operators), take the address of them, or pass
them as ref or out parameters.

A using statement is translated into three parts: acquisition, usage, and disposal. Usage of
the resource is implicitly enclosed in a try statement that includes a finally clause. This
finally clause disposes of the resource. If a null resource is acquired, then no call to Dispose
is made, and no exception is thrown. If the resource is of type dynamic, it is dynamically con-
verted through an implicit dynamic conversion (§6.1.8) to IDisposable during acquisition to
ensure that the conversion is successful before the usage and disposal take place.

A using statement of the form

using (ResourceType resource = expression) statement

corresponds to one of three possible expansions. When ResourceType is a non-nullable
value type, the expansion is

{
 ResourceType resource = expression;
 try {
 statement;
 }
 finally {
 ((IDisposable)resource).Dispose();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.13		 The using Statement

447

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

Otherwise, when ResourceType is a nullable value type or a reference type other than
dynamic, the expansion is

{
 ResourceType resource = expression;
 try {
 statement;
 }
 finally {
 if (resource != null) ((IDisposable)resource).Dispose();
 }
}

Otherwise, when ResourceType is dynamic, the expansion is

{
 ResourceType resource = expression;
 IDisposable d = (IDisposable)resource;
 try {
 statement;
 }
 finally {
 if (d != null) d.Dispose();
 }
}

In either expansion, the resource variable is read-only in the embedded statement, and the
d variable is inaccessible in, and invisible to, the embedded statement.

n
n  PETER SESToFT Thanks to the above rule, the using statement could also be (ab)

used to declare read-only local variables, in this style:

using (MyClass v = ...)
using (MyStruct s = ...) {
 ...
}

In fact, this is the only way to declare an immutable local variable in C#, but it is ugly
and strange. Moreover, it works only for types MyClass and MyStruct that implement
interface IDisposable, and not for int and string, for example. What is perhaps puz-
zling from a language design point of view is that unlike a read-only field (§10.5.2 and
§7.6.4) of struct type, an immutable resource variable s of struct type MyStruct is
treated like a variable, not a value. Thus a method call s.SetX() acts on the struct
stored in s, not on a copy of it. All in all, this behavior shows that the machinery for
declaring immutable local variables and parameters in C# exists, but alas not in a
usable form.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

448

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

An implementation is permitted to implement a given using statement differently—for
example, for performance reasons—as long as the behavior is consistent with the above
expansion.

A using statement of the form

using (expression) statement

has the same three possible expansions, but in this case ResourceType is implicitly the
compile-time type of the expression, and the resource variable is inaccessible in, and
invisible to, the embedded statement.

n
n  JoN SkEET I normally insist on braces around everything—and this preference

usually extends to using statements, too. However, if you acquire multiple resources
of different types (necessitating multiple using statements), you can nest them with
only one set of braces:

using (TextWriter output = File.CreateText("log.txt"))
using (TextReader input = File.OpenText("log.txt")) {
 // Copy contents from one to the other
}

This can dramatically reduce the level of indentation required, making the code much
more readable.

When a resource-acquisition takes the form of a local-variable-declaration, it is possible to
acquire multiple resources of a given type. A using statement of the form

using (ResourceType r1 = e1, r2 = e2, ..., rN = eN) statement

is precisely equivalent to a sequence of nested using statements:

using (ResourceType r1 = e1)
 using (ResourceType r2 = e2)
 ...
 using (ResourceType rN = eN)
 statement

The example below creates a file named log.txt and writes two lines of text to the file. The
example then opens that same file for reading and copies the contained lines of text to the
console.

using System;
using System.IO;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.14		 The yield Statement

449

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

class Test
{
 static void Main() {
 using (TextWriter w = File.CreateText("log.txt")) {
 w.WriteLine("This is line one");
 w.WriteLine("This is line two");
 }

 using (TextReader r = File.OpenText("log.txt")) {
 string s;
 while ((s = r.ReadLine()) != null) {
 Console.WriteLine(s);
 }

 }
 }
}

Since the TextWriter and TextReader classes implement the IDisposable interface, the
example can use using statements to ensure that the underlying file is properly closed fol-
lowing the write or read operations.

n
n  CHRIS SELLS You should almost always wrap a using block around any resource

you acquire that implements IDisposable (unless you’re keeping that object between
method invocations). Although the .NET garbage collector does a wonderful job with
releasing memory resources, all other resources are yours to manage. Likewise, the
compiler does a wonderful job of generating the proper disposing code for you, but
only when you wrap your resource allocations in using blocks.

8.14 The yield Statement

n
n  BILL WAGNER The yield return and yield break statements seem to be two of

the most under-appreciated statements in the C# language. They are incredibly useful
whenever you are writing algorithms that work on sequences of data. Generating
sequences, filtering sequences, combining sequences, and other algorithms are all
built using these statements. In fact, most of LINQ to Objects is built using the yield
statement.

If you’re not already familiar with these techniques, you should spend the time to
make this technique part of your everyday development practices.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

450

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

n
n  CHRIS SELLS I agree with Bill. I didn’t appreciate just how useful yield return

was until I saw someone write code like this:

IEnumerable<int> GetSomeNumbers() {
 yield return 1;
 yield return 2;
 yield return 3;
}

If you can get your head around that and what the compiler is doing for you to make
that happen, you’ll find yourself using this feature a lot more.

The yield statement is used in an iterator block (§8.2) to yield a value to the enumerator
object (§10.14.4) or enumerable object (§10.14.5) of an iterator or to signal the end of the
iteration.

yield-statement:
yield return expression ;
yield break ;

Note that yield is not a reserved word; it has special meaning only when used immedi-
ately before a return or break keyword. In other contexts, yield can be used as an
identifier.

There are several restrictions on where a yield statement can appear, as described in the
following list:

It is a compile-time error for a •	 yield statement (of either form) to appear outside a
method-body, operator-body, or accessor-body.

It is a compile-time error for a •	 yield statement (of either form) to appear inside an
anonymous function.

It is a compile-time error for a •	 yield statement (of either form) to appear in the finally
clause of a try statement.

It is a compile-time error for a •	 yield return statement to appear anywhere in a try state-
ment that contains any catch clauses.

The following example shows some valid and invalid uses of yield statements.

delegate IEnumerable<int> D();

IEnumerator<int> GetEnumerator() {
 try {
 yield return 1; // Okay
 yield break; // Okay
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8.14		 The yield Statement

451

Statem
ents

8.	
Statem

ents
8.	

Statem
ents

8.	
Statem

ents
8.	

 finally {
 yield return 2; // Error: yield in finally
 yield break; // Error: yield in finally
 }

 try {
 yield return 3; // Error: yield return in try...catch
 yield break; // Okay
 }
 catch {
 yield return 4; // Error: yield return in try...catch
 yield break; // Okay
 }

 D d = delegate {
 yield return 5; // Error: yield in an anonymous function
 };
}

int MyMethod() {
 yield return 1; // Error: wrong return type for an
 // iterator block
}

An implicit conversion (§6.1) must exist from the type of the expression in the yield return
statement to the yield type (§10.14.3) of the iterator.

A yield return statement is executed as follows:

The expression given in the statement is evaluated, implicitly converted to the yield •	
type, and assigned to the Current property of the enumerator object.

Execution of the iterator block is suspended. If the •	 yield return statement is within one
or more try blocks, the associated finally blocks are not executed at this time.

The •	 MoveNext method of the enumerator object returns true to its caller, indicating that
the enumerator object successfully advanced to the next item.

The next call to the enumerator object’s MoveNext method resumes execution of the iterator
block from where it was last suspended.

A yield break statement is executed as follows:

If the •	 yield break statement is enclosed by one or more try blocks with associated
finally blocks, control is initially transferred to the finally block of the innermost try
statement. When and if control reaches the end point of a finally block, control is trans-
ferred to the finally block of the next enclosing try statement. This process is repeated
until the finally blocks of all enclosing try statements have been executed.

Control is returned to the caller of the iterator block. This is either the •	 MoveNext method
or the Dispose method of the enumerator object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

8. Statements

452

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

St
at

em
en

ts
8.
	

St
at

em
en

ts

8.
	

Because a yield break statement unconditionally transfers control elsewhere, the end point
of a yield break statement is never reachable.

n
n  CHRIS SELLS I sometimes forget that yield return is not the same as return, in

that the code after a yield return can be executed. For example, the code after the
first return here can never be executed:

int F() {
 return 1;
 return 2; // Can never be executed
}

In contrast, the code after the first yield return here can be executed:

IEnumerable<int> F() {
 yield return 1;
 yield return 2; // Can be executed
}

This often bites me in an if statement:

IEnumerable<int> F() {
 if(...) { yield return 1; } // I mean this to be the only
 // thing returned
 yield return 2; // Oops!
}

In these cases, remembering that yield return is not “final” like return is helpful.

n
n  CHRISTIAN NAGEL Since C# 1.0, it has been easy to use iterators (the foreach

statement). Since C# 2.0, it has been easy to create iterators (the yield statement).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

453

Namespaces9.

C# programs are organized using namespaces. Namespaces are used both as an “internal”
organization system for a program and as an “external” organization system—a way of
presenting program elements that are exposed to other programs.

Using directives (§9.4) are provided to facilitate the use of namespaces.

n
n  BILL WAGNER As you read this, remember that namespaces are a logical organi-

zation: Multiple namespaces can, and often do, occur in one assembly, and a single
namespace may be declared in many different assemblies.

9.1 Compilation Units
A compilation-unit defines the overall structure of a source file. A compilation unit consists
of zero or more using-directives followed by zero or more global-attributes followed by zero
or more namespace-member-declarations.

compilation-unit:
extern-alias-directivesopt using-directivesopt global-attributesopt
 namespace-member-declarationsopt

A C# program consists of one or more compilation units, each contained in a separate
source file. When a C# program is compiled, all of the compilation units are processed
together. Thus compilation units can depend on each other, possibly in a circular fashion.

n
n  CHRIS SELLS This feature alone makes C# about ten times easier to work with

than either C or C++.

The using-directives of a compilation unit affect the global-attributes and namespace-member-
declarations of that compilation unit, but have no effect on other compilation units.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

454

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

n
n  JoN SkEET Most of the time I think I like this feature—but just occasionally,

when I want to whip up a quick program to test just a few lines of code, I’d rather not
have to import a bunch of namespaces. It would be interesting to know what the effect
of having “project-level” using directives (like assembly references) would have been
in an alternative reality.

n
n  ERIC LIPPERT Jon’s point is well taken: The “ceremony” needed to write any C#

program is disporportionately large if the program is very short. Although C# is not
intended to be a “scripting” language per se, there is something nice about the prop-
erty that a one-line program is actually one line in, say, JScript.

The global-attributes (§17) of a compilation unit permit the specification of attributes for the
target assembly and module. Assemblies and modules act as physical containers for types.
An assembly may consist of several physically separate modules.

The namespace-member-declarations of each compilation unit of a program contribute mem-
bers to a single declaration space called the global namespace. For example:

File A.cs:

class A {}

File B.cs:

class B {}

The two compilation units contribute to the single global namespace—in this case, declar-
ing two classes with the fully qualified names A and B. Because the two compilation units
contribute to the same declaration space, it would have been an error if each contained a
declaration of a member with the same name.

9.2 Namespace Declarations
A namespace-declaration consists of the keyword namespace, followed by a namespace name
and body, optionally followed by a semicolon.

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.2		 Namespace Declarations

455

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

qualified-identifier:
identifier
qualified-identifier . identifier

namespace-body:
{ extern-alias-directivesopt using-directivesopt namespace-member-declarationsopt }

A namespace-declaration may occur as a top-level declaration in a compilation-unit or as a
member declaration within another namespace-declaration. When a namespace-declaration
occurs as a top-level declaration in a compilation-unit, the namespace becomes a member of
the global namespace. When a namespace-declaration occurs within another namespace-
declaration, the inner namespace becomes a member of the outer namespace. In either case,
the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly public and the declaration of a namespace cannot include any
access modifiers.

Within a namespace-body, the optional using-directives import the names of other namespaces
and types, allowing them to be referenced directly instead of through qualified names. The
optional namespace-member-declarations contribute members to the declaration space of the
namespace. Note that all using-directives must appear before any member declarations.

The qualified-identifier of a namespace-declaration may be a single identifier or a sequence of
identifiers separated by “.” tokens. The latter form permits a program to define a nested
namespace without lexically nesting several namespace declarations. For example,

namespace N1.N2
{
 class A { }

 class B { }
}

is semantically equivalent to

namespace N1
{
 namespace N2
 {
 class A { }

 class B { }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

456

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

Namespaces are open-ended, and two namespace declarations with the same fully quali-
fied name contribute to the same declaration space (§3.3). In the example

namespace N1.N2
{
 class A { }
}

namespace N1.N2
{
 class B { }
}

the two namespace declarations contribute to the same declaration space—in this case
declaring two classes with the fully qualified names N1.N2.A and N1.N2.B. Because the two
declarations contribute to the same declaration space, it would have been an error if each
contained a declaration of a member with the same name.

9.3 Extern Aliases
An extern-alias-directive introduces an identifier that serves as an alias for a namespace. The
specification of the aliased namespace is external to the source code of the program and
also applies to nested namespaces of the aliased namespace.

extern-alias-directives:
extern-alias-directive
extern-alias-directives extern-alias-directive

extern-alias-directive:
extern alias identifier ;

The scope of an extern-alias-directive extends over the using-directives, global-attributes,
and namespace-member-declarations of its immediately containing compilation unit or
namespace body.

Within a compilation unit or namespace body that contains an extern-alias-directive, the
identifier introduced by the extern-alias-directive can be used to reference the aliased
namespace. It is a compile-time error for the identifier to be the word global.

An extern-alias-directive makes an alias available within a particular compilation unit or
namespace body, but it does not contribute any new members to the underlying declara-
tion space. In other words, an extern-alias-directive is not transitive, but rather affects only
the compilation unit or namespace body in which it occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.4		 Using Directives

457

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

The following program declares and uses two extern aliases, X and Y, each of which repre-
sents the root of a distinct namespace hierarchy:

extern alias X;
extern alias Y;

class Test
{
 X::N.A a;
 X::N.B b1;
 Y::N.B b2;
 Y::N.C c;
}

The program declares the existence of the extern aliases X and Y, but the actual definitions
of the aliases are external to the program. The identically named N.B classes can now be
referenced as X.N.B and Y.N.B, or, using the namespace alias qualifier, X::N.B and Y::N.B.
An error occurs if a program declares an extern alias for which no external definition is
provided.

9.4 Using Directives
Using directives facilitate the use of namespaces and types defined in other namespaces.
Using directives impact the name resolution process of namespace-or-type-names (§3.8) and
simple-names (§7.6.2), but unlike declarations, using directives do not contribute new mem-
bers to the underlying declaration spaces of the compilation units or namespaces within
which they are used.

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (§9.4.1) introduces an alias for a namespace or type.

A using-namespace-directive (§9.4.2) imports the type members of a namespace.

The scope of a using-directive extends over the namespace-member-declarations of its imme-
diately containing compilation unit or namespace body. The scope of a using-directive spe-
cifically does not include its peer using-directives. Thus peer using-directives do not affect
one another, and the order in which they are written is insignificant.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

458

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

9.4.1 Using Alias Directives
A using-alias-directive introduces an identifier that serves as an alias for a namespace or
type within the immediately enclosing compilation unit or namespace body.

using-alias-directive:
using identifier = namespace-or-type-name ;

Within member declarations in a compilation unit or namespace body that contains a
using-alias-directive, the identifier introduced by the using-alias-directive can be used to refer-
ence the given namespace or type. For example:

namespace N1.N2
{
 class A { }
}

namespace N3
{
 using A = N1.N2.A;

 class B : A { }
}

In this example, within the member declarations in the N3 namespace, A is an alias for
N1.N2.A, and thus class N3.B derives from class N1.N2.A. The same effect can be obtained
by creating an alias R for N1.N2 and then referencing R.A:

namespace N3
{
 using R = N1.N2;

 class B : R.A { }
}

The identifier of a using-alias-directive must be unique within the declaration space of the
compilation unit or namespace that immediately contains the using-alias-directive. For
example:

namespace N3
{
 class A { }
}

namespace N3
{
 using A = N1.N2.A; // Error: A already exists
}

In this example, N3 already contains a member A, so it is a compile-time error for a using-
alias-directive to use that identifier. Likewise, it is a compile-time error for two or more

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.4		 Using Directives

459

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

using-alias-directives in the same compilation unit or namespace body to declare aliases by
the same name.

A using-alias-directive makes an alias available within a particular compilation unit or
namespace body, but it does not contribute any new members to the underlying declara-
tion space. In other words, a using-alias-directive is not transitive, but rather affects only the
compilation unit or namespace body in which it occurs. In the example

namespace N3
{
 using R = N1.N2;
}

namespace N3
{
 class B : R.A { } // Error: R unknown
}

the scope of the using-alias-directive that introduces R extends only to member declarations
in the namespace body in which it is contained, so R is unknown in the second namespace
declaration. However, placing the using-alias-directive in the containing compilation unit
causes the alias to become available within both namespace declarations:

using R = N1.N2;

namespace N3
{
 class B: R.A {}
}

namespace N3
{
 class C: R.A {}
}

Just like regular members, names introduced by using-alias-directives are hidden by simi-
larly named members in nested scopes. In the example

using R = N1.N2;

namespace N3
{
 class R {}

 class B: R.A {} // Error: R has no member A
}

the reference to R.A in the declaration of B causes a compile-time error because R refers to
N3.R, not N1.N2.

The order in which using-alias-directives are written has no significance, and resolution
of the namespace-or-type-name referenced by a using-alias-directive is not affected by the

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

460

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

using-alias-directive itself or by other using-directives in the immediately containing compila-
tion unit or namespace body. In other words, the namespace-or-type-name of a using-alias-
directive is resolved as if the immediately containing compilation unit or namespace body
had no using-directives. A using-alias-directive may, however, be affected by extern-alias-
directives in the immediately containing compilation unit or namespace body. In the
example

namespace N1.N2 { }

namespace N3
{
 extern alias E;

 using R1 = E.N; // Okay

 using R2 = N1; // Okay

 using R3 = N1.N2; // Okay

 using R4 = R2.N2; // Error: R2 unknown
}

the last using-alias-directive results in a compile-time error because it is not affected by the
first using-alias-directive. The first using-alias-directive does not result in an error since the
scope of the extern alias E includes the using-alias-directive.

A using-alias-directive can create an alias for any namespace or type, including the namespace
within which it appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing
that namespace or type through its declared name. For example, given

namespace N1.N2
{
 class A { }
}

namespace N3
{
 using R1 = N1;
 using R2 = N1.N2;

 class B
 {
 N1.N2.A a; // Refers to N1.N2.A
 R1.N2.A b; // Refers to N1.N2.A
 R2.A c; // Refers to N1.N2.A
 }
}

the names N1.N2.A, R1.N2.A, and R2.A are equivalent and all refer to the class whose fully
qualified name is N1.N2.A.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.4		 Using Directives

461

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

Using aliases can name a closed constructed type, but cannot name an unbound generic
type declaration without supplying type arguments. For example:

namespace N1
{
 class A<T>
 {
 class B {}
 }
}

namespace N2
{
 using W = N1.A; // Error: cannot name unbound generic type

 using X = N1.A.B; // Error, cannot name unbound generic type

 using Y = N1.A<int>; // Okay: can name closed constructed type

 using Z<T> = N1.A<T>; // Error: using alias cannot have type parameters
}

9.4.2 Using Namespace Directives
A using-namespace-directive imports the types contained in a namespace into the immedi-
ately enclosing compilation unit or namespace body, enabling the identifier of each type to
be used without qualification.

using-namespace-directive:
using namespace-name ;

Within member declarations in a compilation unit or namespace body that contains a
using-namespace-directive, the types contained in the given namespace can be referenced
directly. For example:

 namespace N1.N2
 {
 class A { }
 }

 namespace N3
 {
 using N1.N2;

 class B : A { }
 }

In this example, within the member declarations in the N3 namespace, the type members
of N1.N2 are directly available, and thus class N3.B derives from class N1.N2.A.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

462

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

A using-namespace-directive imports the types contained in the given namespace, but spe-
cifically does not import nested namespaces. In the example

namespace N1.N2
{
 class A { }
}

namespace N3
{
 using N1;

 class B : N2.A { } // Error: N2 unknown
}

the using-namespace-directive imports the types contained in N1, but not the namespaces
nested in N1. Thus the reference to N2.A in the declaration of B results in a compile-time
error because no members named N2 are in scope.

Unlike a using-alias-directive, a using-namespace-directive may import types whose identifiers
are already defined within the enclosing compilation unit or namespace body. In effect,
names imported by a using-namespace-directive are hidden by similarly named members in
the enclosing compilation unit or namespace body. For example:

namespace N1.N2
{
 class A { }

 class B { }
}

namespace N3
{
 using N1.N2;

 class A { }
}

Here, within the member declarations in the N3 namespace, A refers to N3.A rather than
N1.N2.A.

When more than one namespace imported by using-namespace-directives in the same com-
pilation unit or namespace body contain types by the same name, references to that name
are considered ambiguous. In the example

namespace N1
{
 class A { }
}

namespace N2
{
 class A { }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.5		 Namespace Members

463

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

namespace N3
{
 using N1;

 using N2;

 class B : A { } // Error: A is ambiguous
}

both N1 and N2 contain a member A, and because N3 imports both, referencing A in N3 is a
compile-time error. In this situation, the conflict can be resolved either through qualifica-
tion of references to A or by introducing a using-alias-directive that picks a particular A. For
example:

namespace N3
{
 using N1;

 using N2;

 using A = N1.A;

 class B : A { } // A means N1.A
}

Like a using-alias-directive, a using-namespace-directive does not contribute any new mem-
bers to the underlying declaration space of the compilation unit or namespace, but rather
affects only the compilation unit or namespace body in which it appears.

The namespace-name referenced by a using-namespace-directive is resolved in the same way
as the namespace-or-type-name referenced by a using-alias-directive. Thus using-namespace-
directives in the same compilation unit or namespace body do not affect one another and
can be written in any order.

9.5 Namespace Members
A namespace-member-declaration is either a namespace-declaration (§9.2) or a type-declaration
(§9.6).

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

464

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

A compilation unit or a namespace body can contain namespace-member-declarations, and
such declarations contribute new members to the underlying declaration space of the con-
taining compilation unit or namespace body.

9.6 Type Declarations
A type-declaration is a class-declaration (§10.1), a struct-declaration (§11.1), an interface-
declaration (§13.1), an enum-declaration (§14.1), or a delegate-declaration (§15.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as a top-level declaration in a compilation unit or as a member
declaration within a namespace, class, or struct.

When a type declaration for a type T occurs as a top-level declaration in a compilation unit,
the fully qualified name of the newly declared type is simply T. When a type declaration
for a type T occurs within a namespace, class, or struct, the fully qualified name of the
newly declared type is N.T, where N is the fully qualified name of the containing namespace,
class, or struct.

A type declared within a class or struct is called a nested type (§10.3.8).

The permitted access modifiers and the default access for a type declaration depend on the
context in which the declaration takes place (§3.5.1):

Types declared in compilation units or namespaces can have •	 public or internal access.
The default is internal access.

Types declared in classes can have •	 public, protected internal, protected, internal, or
private access. The default is private access.

Types declared in structs can have •	 public, internal, or private access. The default is
private access.

9.7 Namespace Alias Qualifiers
The namespace alias qualifier :: makes it possible to guarantee that type name lookups
are unaffected by the introduction of new types and members. The namespace alias

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9.7		 Namespace Alias Qualifiers

465

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

N
am

espaces
9.	

qualifier always appears between two identifiers, referred to as the left-hand and right-
hand identifiers. Unlike the regular . qualifier, the left-hand identifier of the :: qualifier is
looked up only as an extern or using alias.

A qualified-alias-member is defined as follows:

qualified-alias-member:
identifier :: identifier type-argument-listopt

A qualified-alias-member can be used as a namespace-or-type-name (§3.8) or as the left operand
in a member-access (§7.6.4).

A qualified-alias-member has one of two forms:

N::I<A•	 1, ..., AK>, where N and I represent identifiers, and <A1, ..., AK> is a type argument
list. (K is always at least one.)

N::I•	 , where N and I represent identifiers. (In this case, K is considered to be zero.)

Using this notation, the meaning of a qualified-alias-member is determined as follows:

If •	 N is the identifier global, then the global namespace is searched for I:

If the global namespace contains a namespace named- I and K is zero, then the
qualified-alias-member refers to that namespace.

Otherwise, if the global namespace contains a nongeneric type named - I and K is zero,
then the qualified-alias-member refers to that type.

Otherwise, if the global namespace contains a type named- I that has K type parame-
ters, then the qualified-alias-member refers to that type constructed with the given type
arguments.

Otherwise, the - qualified-alias-member is undefined and a compile-time error occurs.

Otherwise, starting with the namespace declaration (§9.2) immediately containing the •	
qualified-alias-member (if any), continuing with each enclosing namespace declaration (if
any), and ending with the compilation unit containing the qualified-alias-member, the fol-
lowing steps are evaluated until an entity is located:

If the namespace declaration or compilation unit contains a - using-alias-directive that
associates N with a type, then the qualified-alias-member is undefined and a compile-
time error occurs.

Otherwise, if the namespace declaration or compilation unit contains an - extern-alias-
directive or using-alias-directive that associates N with a namespace, then:

If the namespace associated with •	 N contains a namespace named I and K is zero,
then the qualified-alias-member refers to that namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

9. Namespaces

466

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

N
am

es
pa

ce
s

9.
	

Otherwise, if the namespace associated with •	 N contains a nongeneric type named I
and K is zero, then the qualified-alias-member refers to that type.

Otherwise, if the namespace associated with •	 N contains a type named I that has
K type parameters, then the qualified-alias-member refers to that type constructed
with the given type arguments.

Otherwise, the •	 qualified-alias-member is undefined and a compile-time error
occurs.

Otherwise, the •	 qualified-alias-member is undefined and a compile-time error occurs.

Note that using the namespace alias qualifier with an alias that references a type causes a
compile-time error. Also note that if the identifier N is global, then lookup is performed in
the global namespace, even if there is a using alias associating global with a type or
namespace.

9.7.1 Uniqueness of Aliases
Each compilation unit and namespace body has a separate declaration space for extern
aliases and using aliases. Thus, while the name of an extern alias or using alias must be
unique within the set of extern aliases and using aliases declared in the immediately con-
taining compilation unit or namespace body, an alias is permitted to have the same name
as a type or namespace as long as it is used only with the :: qualifier.

In the example

namespace N
{
 public class A { }

 public class B { }
}

namespace N
{
 using A = System.IO;

 class X
 {
 A.Stream s1; // Error: A is ambiguous

 A::Stream s2; // Okay
 }
}

the name A has two possible meanings in the second namespace body because both the
class A and the using alias A are in scope. For this reason, use of A in the qualified name
A.Stream is ambiguous and causes a compile-time error to occur. However, use of A with
the :: qualifier is not an error because A is looked up only as a namespace alias.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

467

Classes10.

A class is a data structure that may contain data members (constants and fields), function
members (methods, properties, events, indexers, operators, instance constructors, destruc-
tors, and static constructors), and nested types. Class types support inheritance, a mecha-
nism whereby a derived class can extend and specialize a base class.

10.1 Class Declarations
A class-declaration is a type-declaration (§9.6) that declares a new class.

class-declaration:
attributesopt class-modifiersopt partialopt class identifier type-parameter-listopt
 class-baseopt type-parameter-constraints-clausesopt class-body ;opt

A class-declaration consists of an optional set of attributes (§17), followed by an optional set
of class-modifiers (§10.1.1), followed by an optional partial modifier, followed by the key-
word class and an identifier that names the class, followed by an optional type-parameter-
list (§10.1.3), followed by an optional class-base specification (§10.1.4), followed by an
optional set of type-parameter-constraints-clauses (§10.1.5), followed by a class-body (§10.1.6),
optionally followed by a semicolon.

A class declaration cannot supply type-parameter-constraints-clauses unless it also supplies a
type-parameter-list.

A class declaration that supplies a type-parameter-list is a generic class declaration. Addi-
tionally, any class nested inside a generic class declaration or a generic struct declaration is
itself a generic class declaration, since type parameters for the containing type must be
supplied to create a constructed type.

10.1.1 Class Modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

468

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

class-modifier:
new
public
protected
internal
private
abstract
sealed
static

It is a compile-time error for the same modifier to appear multiple times in a class
declaration.

The new modifier is permitted on nested classes. It specifies that the class hides an inherited
member by the same name, as described in §10.3.4. It is a compile-time error for the new
modifier to appear on a class declaration that is not a nested class declaration.

The public, protected, internal, and private modifiers control the accessibility of the
class. Depending on the context in which the class declaration occurs, some of these modi-
fiers may not be permitted (§3.5.1).

The abstract, sealed, and static modifiers are discussed in the following sections.

10.1.1.1 Abstract Classes
The abstract modifier is used to indicate that a class is incomplete and that it is intended
to be used only as a base class. An abstract class differs from a nonabstract class in the fol-
lowing ways:

An abstract class cannot be instantiated directly, and it is a compile-time error to use the •	
new operator on an abstract class. While it is possible to have variables and values whose
compile-time types are abstract, such variables and values will necessarily either be null
or contain references to instances of nonabstract classes derived from the abstract types.

An abstract class is permitted (but not required) to contain abstract members.•	

An abstract class cannot be sealed.•	

When a nonabstract class is derived from an abstract class, the nonabstract class must
include actual implementations of all inherited abstract members, thereby overriding those
abstract members. In the example

abstract class A
{
 public abstract void F();
}

abstract class B: A

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.1		 Class Declarations

469

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

{
 public void G() {}
}

class C: B
{
 public override void F() {
 // Actual implementation of F
 }
}

the abstract class A introduces an abstract method F. Class B introduces an additional
method G, but since it doesn’t provide an implementation of F, B must also be declared
abstract. Class C overrides F and provides an actual implementation. Since there are no
abstract members in C, C is permitted (but not required) to be nonabstract.

10.1.1.2 Sealed Classes
The sealed modifier is used to prevent derivation from a class. A compile-time error occurs
if a sealed class is specified as the base class of another class.

A sealed class cannot also be an abstract class.

The sealed modifier is primarily used to prevent unintended derivation, but it also enables
certain runtime optimizations. In particular, because a sealed class is known to never have
any derived classes, it is possible to transform virtual function member invocations on
sealed class instances into nonvirtual invocations.

n
n  JoN SkEET The choice to make classes unsealed (but methods nonvirtual) by

default has always been a hotly disputed one. I agree with the maxim “Design for
inheritance or prohibit it,” but there are arguments both ways. The odd point is how
powerful a default is: Even though I usually choose to seal classes if I think about it, it’s
all too easy to ignore the choice entirely. It obviously doesn’t affect what can be
expressed, but I’m certain it affects the code that is actually produced.

n
n  JESSE LIBERTy I will take the risk of disagreeing with Jon.

It is demonstrably false that you can accurately anticipate what will be needed even
months in advance. Thus good programming practice would dictate letting your
design emerge, building little or nothing before it is explicitly needed, and avoiding
closing off avenues you believe you’ll never need.

Sealed is a minefield laid down to state, “You’ll never need to go here.” I don’t think
you can know that or should presume to try.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

470

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.1.1.3 Static Classes
The static modifier is used to mark the class being declared as a static class. A static class
cannot be instantiated, cannot be used as a type, and can contain only static members. Only
a static class can contain declarations of extension methods (§10.6.9).

A static class declaration is subject to the following restrictions:

A static class may not include a •	 sealed or abstract modifier. Note, however, that since
a static class cannot be instantiated or derived from, it behaves as if it was both sealed
and abstract.

A static class may not include a •	 class-base specification (§10.1.4) and cannot explicitly
specify a base class or a list of implemented interfaces. A static class implicitly inherits
from type object.

A static class can only contain static members (§10.3.7). Note that constants and nested •	
types are classified as static members.

A static class cannot have members with •	 protected or protected internal declared
accessibility.

It is a compile-time error to violate any of these restrictions.

A static class has no instance constructors. It is not possible to declare an instance con-
structor in a static class, and no default instance constructor (§10.11.4) is provided for a
static class.

The members of a static class are not automatically static, and the member declarations
must explicitly include a static modifier (except for constants and nested types). When a
class is nested within a static outer class, the nested class is not a static class unless it explic-
itly includes a static modifier.

n
n  MAREk SAFAR A sealed class with a private constructor had to be used to simu-

late static classes in C# 1.0.That is no longer needed, as static classes offer a more ele-
gant way to express this intention, plus the benefit of many compiler checks for
operations that are not allowed in a static context.

10.1.1.3.1 Referencing Static Class Types

A namespace-or-type-name (§3.8) is permitted to reference a static class if

The •	 namespace-or-type-name is the T in a namespace-or-type-name of the form T.I, or

The •	 namespace-or-type-name is the T in a typeof-expression (§7.5.11) of the form
typeof(T).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.1		 Class Declarations

471

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

A primary-expression (§7.5) is permitted to reference a static class if

The •	 primary-expression is the E in a member-access (§7.5.4) of the form E.I.

In any other context, it is a compile-time error to reference a static class. For example, it is
an error for a static class to be used as a base class, a constituent type (§10.3.8) of a member,
a generic type argument, or a type parameter constraint. Likewise, a static class cannot be
used in an array type, a pointer type, a new expression, a cast expression, an is expression,
an as expression, a sizeof expression, or a default value expression.

10.1.2 partial Modifier
The partial modifier is used to indicate that this class-declaration is a partial type decla-
ration. Multiple partial type declarations with the same name within an enclosing
namespace or type declaration combine to form one type declaration, following the rules
specified in §10.2.

Having the declaration of a class distributed over separate segments of program text can
be useful if these segments are produced or maintained in different contexts. For instance,
one part of a class declaration may be machine generated, whereas the other is authored
manually. Textual separation of the two prevents updates by one from conflicting with
updates by the other.

n
n  CHRIS SELLS I love partial classes’ ability to split that part that’s machine gener-

ated from the part that’s human generated. Unfortunately, you can abuse partial
classes by splitting a class across more than two files. As a reader of code, I find this
practice extremely difficult to follow, and I strongly discourage it.

10.1.3 Type Parameters
A type parameter is a simple identifier that denotes a placeholder for a type argument sup-
plied to create a constructed type. A type parameter is a formal placeholder for a type that
will be supplied later. By contrast, a type argument (§4.4.1) is the actual type that is substi-
tuted for the type parameter when a constructed type is created.

type-parameter-list:
< type-parameters >

type-parameters:
attributesopt type-parameter
type-parameters , attributesopt type-parameter

type-parameter:
identifier

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

472

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Each type parameter in a class declaration defines a name in the declaration space (§3.3) of
that class. Thus it cannot have the same name as another type parameter or a member
declared in that class. A type parameter also cannot have the same name as the type itself.

10.1.4 Class Base Specification
A class declaration may include a class-base specification, which defines the direct base
class of the class and the interfaces (§13) directly implemented by the class.

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

The base class specified in a class declaration can be a constructed class type (§4.4). A base
class cannot be a type parameter on its own, although it can involve the type parameters
that are in scope.

class Extend<V>: V {} // Error: type parameter used as base class

n
n  BILL WAGNER I wish this restriction could be removed. It would be a great way

to create mixins. I realize it’s a very difficult problem because V may contain any arbi-
trary methods and properties. Depending on any concrete type used for V in a closed
generic type, Extend<V> may not compile.

10.1.4.1 Base Classes
When a class-type is included in the class-base, it specifies the direct base class of the class
being declared. If a class declaration has no class-base, or if the class-base lists only interface
types, the direct base class is assumed to be object. A class inherits members from its direct
base class, as described in §10.3.3.

In the example

class A {}

class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does
not explicitly specify a direct base class, its direct base class is implicitly object.

For a constructed class type, if a base class is specified in the generic class declaration, the
base class of the constructed type is obtained by substituting, for each type-parameter in

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.1		 Class Declarations

473

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

the base class declaration, the corresponding type-argument of the constructed type.
Given the generic class declarations

class B<U,V> {...}

class G<T>: B<string,T[]> {...}

the base class of the constructed type G<int> would be B<string,int[]>.

The direct base class of a class type must be at least as accessible as the class type itself
(§3.5.2). For example, it is a compile-time error for a public class to derive from a private
or internal class.

The direct base class of a class type must not be any of the following types: System.Array,
System.Delegate, System.MulticastDelegate, System.Enum, or System.ValueType. Fur-
thermore, a generic class declaration cannot use System.Attribute as a direct or indirect
base class.

While determining the meaning of the direct base class specification A of a class B, the direct
base class of B is temporarily assumed to be object. Intuitively, this ensures that the mean-
ing of a base class specification cannot recursively depend on itself. The example

class A<T> {
 public class B{}
}

class C : A<C.B> {}

is in error since in the base class specification A<C.B>, the direct base class of C is considered
to be object; hence (by the rules of §3.8), C is not considered to have a member B.

The base classes of a class type are the direct base class and its base classes. In other words,
the set of base classes is the transitive closure of the direct base class relationship. Referring
to the example above, the base classes of B are A and object. In the example

class A {...}

class B<T>: A {...}

class C<T>: B<IComparable<T>> {...}

class D<T>: C<T[]> {...}

the base classes of D<int> are C<int[]>, B<IComparable<int[]>>, A, and object.

Except for class object, every class type has exactly one direct base class. The object class
has no direct base class and is the ultimate base class of all other classes.

When a class B derives from a class A, it is a compile-time error for A to depend on B. A class
directly depends on its direct base class (if any) and directly depends on the class within
which it is immediately nested (if any). Given this definition, the complete set of classes

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

474

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

upon which a class depends is the reflexive and transitive closure of the directly depends
on relationship.

n
n  VLADIMIR RESHETNIkoV For the purposes of this rule, type arguments, if any,

are ignored. For instance, although A<T> and A<A<T>> are different types, the following
declaration is still invalid:

class A<T> : A<A<T>> { }

Conversely, it is perfectly valid for a class to appear within a type argument for a con-
structed type specified as its base class:

class A<T> { }
class B : A<B[]> { } // Okay

The example

class A: A {}

is erroneous because the class depends on itself. Likewise, the example

class A: B {}

class B: C {}

class C: A {}

is in error because the classes circularly depend on themselves. Finally, the example

class A: B.C {}

class B: A
{
 public class C {}
}

results in a compile-time error because A depends on B.C (its direct base class), which
depends on B (its immediately enclosing class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example

class A
{
 class B: A {}
}

B depends on A (because A is both its direct base class and its immediately enclosing class),
but A does not depend on B (because B is neither a base class nor an enclosing class of A).
Thus the example is valid.

It is not possible to derive from a sealed class. In the example

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.1		 Class Declarations

475

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

sealed class A {}

class B: A {} // Error: cannot derive from a sealed class

class B is in error because it attempts to derive from the sealed class A.

10.1.4.2 Interface Implementations
A class-base specification may include a list of interface types, in which case the class is said
to directly implement the given interface types. Interface implementations are discussed
further in §13.4.

10.1.5 Type Parameter Constraints
Generic type and method declarations can optionally specify type parameter constraints
by including type-parameter-constraints-clauses.

type-parameter-constraints-clauses:
type-parameter-constraints-clause
type-parameter-constraints-clauses type-parameter-constraints-clause

type-parameter-constraints-clause:
where type-parameter : type-parameter-constraints

type-parameter-constraints:
primary-constraint
secondary-constraints
constructor-constraint
primary-constraint , secondary-constraints
primary-constraint , constructor-constraint
secondary-constraints , constructor-constraint
primary-constraint , secondary-constraints , constructor-constraint

primary-constraint:
class-type
class
struct

secondary-constraints:
interface-type
type-parameter
secondary-constraints , interface-type
secondary-constraints , type-parameter

constructor-constraint:
new ()

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

476

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Each type-parameter-constraints-clause consists of the token where, followed by the name of
a type parameter, followed by a colon and the list of constraints for that type parameter.
There can be at most one where clause for each type parameter, and the where clauses can
be listed in any order. Like the get and set tokens in a property accessor, the where token
is not a keyword.

The list of constraints given in a where clause can include any of the following components,
in this order: a single primary constraint, one or more secondary constraints, and the con-
structor constraint, new().

A primary constraint can be a class type or the reference type constraint class or the value
type constraint struct. A secondary constraint can be a type-parameter or interface-type.

The reference type constraint specifies that a type argument used for the type parameter
must be a reference type. All class types, interface types, delegate types, array types, and
type parameters known to be a reference type (as defined below) satisfy this constraint.

The value type constraint specifies that a type argument used for the type parameter must
be a non-nullable value type. All non-nullable struct types, enum types, and type param-
eters having the value type constraint satisfy this constraint. Although it is classified as a
value type, a nullable type (§4.1.10) does not satisfy the value type constraint. A type
parameter having the value type constraint cannot also have the constructor-constraint.

n
n  BILL WAGNER At one point, I found this set of constraints very limiting. I wanted

to do meta-programming with generics, being able to specify any arbitrary set of
members as constraints—things like other constructor signatures, or operators. Now
that C# 3.0 has lambdas and more natural support for the use of methods as parame-
ters, that feeling is gone. By specifying delegate signatures as type parameters, or as
parameters to methods, C# programmers can achieve almost anything.

Pointer types are never allowed to be type arguments and are not considered to satisfy
either the reference type or value type constraints.

If a constraint is a class type, an interface type, or a type parameter, that type specifies a
minimal “base type” that every type argument used for that type parameter must support.
Whenever a constructed type or generic method is used, the type argument is checked
against the constraints on the type parameter at compile time. The type argument supplied
must satisfy the conditions described in §4.4.4.

A class-type constraint must satisfy the following rules:

The type must be a class type.•	

The type must not be •	 sealed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.1		 Class Declarations

477

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

The type must not be one of the following types: •	 System.Array, System.Delegate,
System.Enum, or System.ValueType.

n
n  JoN SkEET I know of no reason to prohibit System.Enum or System.Delegate as

the type here—although it would certainly be more friendly to be able to write “where
T : enum” than “where T : struct, Enum”, which would be the most common use.
Although C# is specified separately from the CLI, you might suspect that this is a CLI
limitation—but it’s not. Indeed, ECMA-335 explicitly lists this and other constraints
that are prohibited in C#. Perhaps this restriction will be removed from a future ver-
sion of the language; there are plenty of situations where it would be useful.

The type must not be •	 object. Because all types derive from object, such a constraint
would have no effect if it were permitted.

At most one constraint for a given type parameter can be a class type.•	

A type specified as an interface-type constraint must satisfy the following rules:

The type must be an interface type.•	

A type must not be specified more than once in a given •	 where clause.

In either case, the constraint can involve any of the type parameters of the associated type
or method declaration as part of a constructed type, and can involve the type being
declared.

Any class or interface type specified as a type parameter constraint must be at least as
accessible (§3.5.4) as the generic type or method being declared.

A type specified as a type-parameter constraint must satisfy the following rules:

The type must be a type parameter.•	

A type must not be specified more than once in a given •	 where clause.

In addition, there must be no cycles in the dependency graph of type parameters, where
dependency is a transitive relation defined as follows:

If a type parameter •	 T is used as a constraint for type parameter S, then S depends on T.

If a type parameter •	 S depends on a type parameter T and T depends on a type parameter
U, then S depends on U.

Given this relation, it is a compile-time error for a type parameter to depend on itself
(directly or indirectly).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

478

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Any constraints must be consistent among dependent type parameters. If type parameter
S depends on type parameter T, then

T•	 must not have the value type constraint. Otherwise, T is effectively sealed so S would
be forced to be the same type as T, eliminating the need for two type parameters.

If •	 S has the value type constraint, then T must not have a class-type constraint.

If •	 S has a class-type constraint A and T has a class-type constraint B, then there must be an
identity conversion or implicit reference conversion from A to B or an implicit reference
conversion from B to A.

If •	 S also depends on type parameter U and U has a class-type constraint A and T has a
class-type constraint B, then there must be an identity conversion or implicit reference
conversion from A to B or an implicit reference conversion from B to A.

It is valid for S to have the value type constraint and T to have the reference type constraint.
Effectively, this limits T to the types System.Object, System.ValueType, System.Enum, and
any interface type.

If the where clause for a type parameter includes a constructor constraint (which has the
form new()), it is possible to use the new operator to create instances of the type (§7.6.10.1).
Any type argument used for a type parameter with a constructor constraint must have a
public parameterless constructor (this constructor implicitly exists for any value type) or
be a type parameter having the value type constraint or constructor constraint (see
§10.1.5 for details).

The following are examples of constraints:

interface IPrintable
{
 void Print();
}

interface IComparable<T>
{
 int CompareTo(T value);
}

interface IKeyProvider<T>
{
 T GetKey();
}

class Printer<T> where T: IPrintable {...}

class SortedList<T> where T: IComparable<T> {...}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.1		 Class Declarations

479

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

class Dictionary<K,V>
 where K: IComparable<K>
 where V: IPrintable, IKeyProvider<K>, new()
{
 ...
}

The following example is in error because it causes a circularity in the dependency graph
of the type parameters:

class Circular<S,T>
 where S: T
 where T: S // Error: circularity in dependency graph
{
 ...
}

The following examples illustrate additional invalid situations:

class Sealed<S,T>
 where S: T
 where T: struct // Error: T is sealed
{
 ...
}

class A {...}

class B {...}

class Incompat<S,T>
 where S: A, T
 where T: B // Error: incompatible class-type constraints
{
 ...
}

class StructWithClass<S,T,U>
 where S: struct, T
 where T: U
 where U: A // Error: A incompatible with struct
{
 ...
}

The effective base class of a type parameter T is defined as follows:

If •	 T has no primary constraints or type parameter constraints, its effective base class is
object.

If •	 T has the value type constraint, its effective base class is System.ValueType.

If •	 T has a class-type constraint C but no type-parameter constraints, its effective base
class is C.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

480

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

If •	 T has no class-type constraint but has one or more type-parameter constraints, its effec-
tive base class is the most encompassed type (§6.4.2) in the set of effective base classes
of its type-parameter constraints. The consistency rules ensure that such a most encom-
passed type exists.

If •	 T has both a class-type constraint and one or more type-parameter constraints, its effec-
tive base class is the most encompassed type (§6.4.2) in the set consisting of the class-type
constraint of T and the effective base classes of its type-parameter constraints. The consis-
tency rules ensure that such a most encompassed type exists.

If •	 T has the reference type constraint but no class-type constraints, its effective base class
is object.

For the purpose of these rules, if T has a constraint V that is a value-type, use instead the
most specific base type of V that is a class-type. This can never happen in an explicitly given
constraint, but may occur when the constraints of a generic method are implicitly inherited
by an overriding method declaration or an explicit implementation of an interface
method.

These rules ensure that the effective base class is always a class-type.

n
n  ERIC LIPPERT For example, suppose you have

class B<T> { public virtual void M<U>() where U : T {} }
class D : B<DateTime> { public override void M<V>() }

Then the effective base class of V is the class type System.ValueType, not the struct
type DateTime. Similarly, if instead of DateTime, we had DateTime[], then the effective
base class would be the class type System.Array, not the array type DateTime[].

The effective interface set of a type parameter T is defined as follows:

If •	 T has no secondary-constraints, its effective interface set is empty.

If •	 T has interface-type constraints but no type-parameter constraints, its effective interface
set is its set of interface-type constraints.

If •	 T has no interface-type constraints but has type-parameter constraints, its effective inter-
face set is the union of the effective interface sets of its type-parameter constraints.

If •	 T has both interface-type constraints and type-parameter constraints, its effective inter-
face set is the union of its set of interface-type constraints and the effective interface sets
of its type-parameter constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.2		 Partial Types

481

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

A type parameter is known to be a reference type if it has the reference type constraint or
its effective base class is not object or System.ValueType.

Values of a constrained type parameter type can be used to access the instance members
implied by the constraints. In the example

interface IPrintable
{
 void Print();
}

class Printer<T> where T: IPrintable
{
 void PrintOne(T x) {
 x.Print();
 }
}

the methods of IPrintable can be invoked directly on x because T is constrained to always
implement IPrintable.

10.1.6 Class Body
The class-body of a class defines the members of that class.

class-body:
{ class-member-declarationsopt }

10.2 Partial Types
A type declaration can be split across multiple partial type declarations. The type declara-
tion is constructed from its parts by following the rules in this section, whereupon it is
treated as a single declaration during the remainder of the compile-time and runtime pro-
cessing of the program.

A class-declaration, struct-declaration, or interface-declaration represents a partial type declara-
tion if it includes a partial modifier. Note that partial is not a keyword, and acts as a
modifier only if it appears immediately before one of the keywords class, struct, or
interface in a type declaration, or before the type void in a method declaration. In other
contexts, it can be used as a normal identifier.

Each part of a partial type declaration must include a partial modifier. It must have the
same name and be declared in the same namespace or type declaration as the other parts.
The partial modifier indicates that additional parts of the type declaration may exist else-
where, but the existence of such additional parts is not a requirement; it is valid for a type
with a single declaration to include the partial modifier.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

482

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

All parts of a partial type must be compiled together such that the parts can be merged at
compile time into a single type declaration. Partial types specifically do not allow already
compiled types to be extended.

Nested types may be declared in multiple parts by using the partial modifier. Typically,
the containing type is declared using partial as well, and each part of the nested type is
declared in a different part of the containing type.

The partial modifier is not permitted on delegate or enum declarations.

n
n  BILL WAGNER This feature was clearly added to support code generators, but it

has many other uses. I’ve put nested classes in separate compilation units, and broken
apart classes on other logical boundaries. However, in the general case, splitting
classes simply to let multiple developers work on the same class is not advised.

n
n  BRAD ABRAMS The traditional model employed by visual software design tools

is to provide some user interface that developers use to express their intent; the tool
then generates source code based on that intent. This approach is a time-tested and
widely applicable model. The data design time, ASP.NET design time, and WinForms
design time, for example, all use this basic model. However, this model does present
some challenges—namely, developers often need to tweak, modify, or extend the code
generated by the tool. Editing the generated code directly is a popular solution, but it
has the major disadvantage of making the visual design tool unusable. Subclassing
from the generated code is another approach, but it is often complicated by type issues.
Partial types and methods allow for a class to be partially generated by a design tool
and partially customized to better suit a given scenario.

10.2.1 Attributes
The attributes of a partial type are determined by combining, in an unspecified order, the
attributes of each of the parts. If an attribute is placed on multiple parts, it is equivalent to
specifying the attribute multiple times on the type. For example, the two parts

[Attr1, Attr2("hello")]
partial class A {}

[Attr3, Attr2("goodbye")]
partial class A {}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.2		 Partial Types

483

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

are equivalent to the following declaration:

[Attr1, Attr2("hello"), Attr3, Attr2("goodbye")]
class A {}

Attributes on type parameters may be combined in a similar fashion.

10.2.2 Modifiers
When a partial type declaration includes an accessibility specification (the public,
protected, internal, and private modifiers), it must agree with all other parts that include
an accessibility specification. If no part of a partial type includes an accessibility specifica-
tion, the type is given the appropriate default accessibility (§3.5.1).

If one or more partial declarations of a nested type include a new modifier, no warning is
reported if the nested type hides an inherited member (§3.7.1.2).

If one or more partial declarations of a class include an abstract modifier, the class is con-
sidered abstract (§10.1.1.1). Otherwise, the class is considered nonabstract.

If one or more partial declarations of a class include a sealed modifier, the class is consid-
ered sealed (§10.1.1.2). Otherwise, the class is considered unsealed.

Note that a class cannot be both abstract and sealed.

When the unsafe modifier is used on a partial type declaration, only that particular part is
considered an unsafe context (§18.1).

10.2.3 Type Parameters and Constraints
If a generic type is declared in multiple parts, each part must state the type parameters.
Each part must have the same number of type parameters, and the same name for each
type parameter, in order.

When a partial generic type declaration includes constraints (where clauses), the constraints
must agree with all other parts that include constraints. Specifically, each part that includes
constraints must have constraints for the same set of type parameters, and for each type
parameter the sets of primary, secondary, and constructor constraints must be equivalent.
Two sets of constraints are equivalent if they contain the same members. If no part of a
partial generic type specifies type parameter constraints, the type parameters are consid-
ered unconstrained.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

484

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The example

partial class Dictionary<K,V>
 where K: IComparable<K>
 where V: IKeyProvider<K>, IPersistable
{
 ...
}

partial class Dictionary<K,V>
 where V: IPersistable, IKeyProvider<K>
 where K: IComparable<K>
{
 ...
}

partial class Dictionary<K,V>
{
 ...
}

is correct because those parts that include constraints (the first two) effectively specify the
same set of primary, secondary, and constructor constraints for the same set of type param-
eters, respectively.

n
n  BILL WAGNER When possible, I prefer specifying the type parameters and con-

straints on all copies. This technique improves readability.

10.2.4 Base Class
When a partial class declaration includes a base class specification, it must agree with all
other parts that include a base class specification. If no part of a partial class includes a base
class specification, the base class becomes System.Object (§10.1.4.1).

10.2.5 Base Interfaces
The set of base interfaces for a type declared in multiple parts is the union of the base inter-
faces specified on each part. A particular base interface may be named only once on each
part, but it is permitted for multiple parts to name the same base interface(s). There must
be only one implementation of the members of any given base interface.

In the example

partial class C: IA, IB {...}

partial class C: IC {...}

partial class C: IA, IB {...}

the set of base interfaces for class C is IA, IB, and IC.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.2		 Partial Types

485

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

Typically, each part provides an implementation of the interface(s) declared on that part;
however, this is not a requirement. A part may provide the implementation for an interface
declared on a different part:

partial class X
{
 int IComparable.CompareTo(object o) {...}
}

partial class X: IComparable
{
 ...
}

10.2.6 Members
With the exception of partial methods (§10.2.7), the set of members of a type declared in
multiple parts is simply the union of the set of members declared in each part. The bodies of
all parts of the type declaration share the same declaration space (§3.3), and the scope of each
member (§3.7) extends to the bodies of all the parts. The accessibility domain of any member
always includes all the parts of the enclosing type; a private member declared in one part is
freely accessible from another part. It is a compile-time error to declare the same member in
more than one part of the type, unless that member is a type with the partial modifier.

n
n  BILL WAGNER Logically, you can think of the following example as one long

source file, except you don’t know the order in which the class contents are
combined.

partial class A
{
 int x; // Error: cannot declare x more than once

 partial class Inner // Okay: Inner is a partial type
 {
 int y;
 }
}

partial class A
{
 int x; // Error: cannot declare x more than once

 partial class Inner // Okay: Inner is a partial type
 {
 int z;
 }
}

The ordering of members within a type is rarely significant to C# code, but may be signifi-
cant when interfacing with other languages and environments. In these cases, the ordering
of members within a type declared in multiple parts is undefined.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

486

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  JoN SkEET One area where ordering is important in C# is static and instance

variable initializers: They are guaranteed to be executed in the “textual order” (§10.5.5)
in which they appear in the class. This is no great loss, as relying on such ordering is
usually a bad idea: A class that breaks when you just reorder declarations is too brittle
to start with.

It wouldn’t be unreasonable to expect that members declared within the same part
are handled in the obvious order, although the specification doesn’t explicitly
guarantee it.

10.2.7 Partial Methods
Partial methods can be defined in one part of a type declaration and implemented in
another. The implementation is optional; if no part implements the partial method, the
partial method declaration and all calls to it are removed from the type declaration result-
ing from the combination of the parts.

n
n  VLADIMIR RESHETNIkoV A partial method can be declared only in a partial

class or partial struct. It cannot be declared in a nonpartial type or in an interface.

Partial methods cannot define access modifiers, but are implicitly private. Their return
type must be void, and their parameters cannot have the out modifier. The identifier
partial is recognized as a special keyword in a method declaration only if it appears right
before the void type; otherwise, it can be used as a normal identifier. A partial method can-
not explicitly implement interface methods.

There are two kinds of partial method declarations: If the body of the method declaration
is a semicolon, the declaration is said to be a defining partial method declaration. If the
body is given as a block, the declaration is said to be an implementing partial method
declaration. Across the parts of a type declaration, there can be only one defining partial
method declaration with a given signature, and there can be only one implementing par-
tial method declaration with a given signature. If an implementing partial method decla-
ration is given, a corresponding defining partial method declaration must exist, and the
declarations must match as specified in the following:

The declarations must have the same modifiers (although not necessarily in the same •	
order), method name, number of type parameters, and number of parameters.

Corresponding parameters in the declarations must have the same modifiers (although •	
not necessarily in the same order) and the same types (modulo differences in type
parameter names).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.2		 Partial Types

487

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

Corresponding type parameters in the declarations must have the same constraints •	
(modulo differences in type parameter names).

An implementing partial method declaration can appear in the same part as the corre-
sponding defining partial method declaration.

Only a defining partial method participates in overload resolution. Thus, whether or not
an implementing declaration is given, invocation expressions may resolve to invocations
of the partial method. Because a partial method always returns void, such invocation
expressions will always be expression statements. Furthermore, because a partial method
is implicitly private, such statements will always occur within one of the parts of the type
declaration within which the partial method is declared.

If no part of a partial type declaration contains an implementing declaration for a given
partial method, any expression statement invoking it is simply removed from the com-
bined type declaration. Thus the invocation expression, including any constituent expres-
sions, has no effect at runtime. The partial method itself is also removed and will not be a
member of the combined type declaration.

If an implementing declaration exists for a given partial method, the invocations of the
partial methods are retained. The partial method gives rise to a method declaration similar
to the implementing partial method declaration except for the following:

The •	 partial modifier is not included.

The attributes in the resulting method declaration are the combined attributes of the •	
defining and the implementing partial method declaration in unspecified order. Dupli-
cates are not removed.

The attributes on the parameters of the resulting method declaration are the combined •	
attributes of the corresponding parameters of the defining and the implementing partial
method declaration in unspecified order. Duplicates are not removed.

If a defining declaration but not an implementing declaration is given for a partial method
M, the following restrictions apply:

It is a compile-time error to create a delegate to method (§7.6.10.5).•	

It is a compile-time error to refer to •	 M inside an anonymous function that is converted to
an expression tree type (§6.5.2).

Expressions occurring as part of an invocation of •	 M do not affect the definite assignment
state (§5.3), which can potentially lead to compile-time errors.

M•	 cannot be the entry point for an application (§3.1).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

488

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Partial methods are useful for allowing one part of a type declaration to customize the
behavior of another part—for example, one that is generated by a tool. Consider the fol-
lowing partial class declaration:

partial class Customer
{
 string name;

 public string Name {

 get { return name; }

 set {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }

 }

 partial void OnNameChanging(string newName);

 partial void OnNameChanged();
}

If this class is compiled without any other parts, the defining partial method declarations
and their invocations will be removed, and the resulting combined class declaration will
be equivalent to the following:

class Customer
{
 string name;

 public string Name {

 get { return name; }

 set { name = value; }
 }
}

Assume that another part is given, however, which provides implementing declarations of
the partial methods:

partial class Customer
{
 partial void OnNameChanging(string newName)
 {
 Console.WriteLine("Changing " + name + " to " + newName);
 }

 partial void OnNameChanged()
 {
 Console.WriteLine("Changed to " + name);
 }
}

Then the resulting combined class declaration will be equivalent to the following:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.2		 Partial Types

489

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

class Customer
{
 string name;

 public string Name {

 get { return name; }

 set {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }

 }

 void OnNameChanging(string newName)
 {
 Console.WriteLine("Changing " + name + " to " + newName);
 }

 void OnNameChanged()
 {
 Console.WriteLine("Changed to " + name);
 }
}

n
n  CHRIS SELLS Before the introduction of partial methods, the pattern was to use

virtual methods like so:

class Base {
 public void Foo() { HelpWithFoo(); ... }
 // Dynamically bound
 protected virtual void HelpWithFoo() {}
 // Do nothing in the base
}
class Derived : Base {
 protected override void HelpWithFoo() { ... }
}

This approach required machine-generated code to use less efficient dynamically
bound virtual methods to “call over” to the other part of the partial class, even though
the implementation was available at compile time. With partial methods, the pattern
becomes the more efficient:

partial class MyClass { // Machine generated
 public void Foo() { HelpWithFoo(); ... }
 // Statically bound
 partial void HelpWithFoo();
 // Declare the partial method
}
partial class MyClass { // Human generated
 partial void HelpWithFoo() { ... }
 // Implement the partial method
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

490

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  ERIC LIPPERT Chris’s point is well taken. I would add that there are more costs

to consider than the extra couple of nanoseconds required to perform the virtual call.
Suppose you have a machine-generated class with potentially hundreds of points of
extensibility, where the machine-generated code wants to call a helper method defined
in the user-generated side. If the author of the user-generated side wants to implement
only one of those hundreds, all the code for the call sites and all the metadata for the
methods are still generated. Partial methods are truly “pay for play”: You take on the
additional code size only for the extensibility points you actually use.

10.2.8 Name Binding
Although each part of an extensible type must be declared within the same namespace, the
parts are typically written within different namespace declarations. Thus different using
directives (§9.4) may be present for each part. When interpreting simple names (§7.5.2)
within one part, only the using directives of the namespace declaration(s) enclosing that
part are considered. This may result in the same identifier having different meanings in
different parts:

namespace N
{
 using List = System.Collections.ArrayList;

 partial class A
 {
 List x; // x has type System.Collections.ArrayList
 }
}

namespace N
{
 using List = Widgets.LinkedList;

 partial class A
 {
 List y; // y has type Widgets.LinkedList
 }
}

10.3 Class Members
The members of a class consist of the members introduced by its class-member-declarations
and the members inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

491

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

The members of a class type are divided into the following categories:

Constants, which represent constant values associated with the class (§10.4).•	

Fields, which are the variables of the class (§10.5).•	

Methods, which implement the computations and actions that can be performed by the •	
class (§10.6).

Properties, which define named characteristics and the actions associated with reading •	
and writing those characteristics (§10.7).

Events, which define notifications that can be generated by the class (§10.8).•	

Indexers, which permit instances of the class to be indexed in the same way (syntacti-•	
cally) as arrays (§10.9).

Operators, which define the expression operators that can be applied to instances of the •	
class (§10.10).

Instance constructors, which implement the actions required to initialize instances of the •	
class (§10.11).

Destructors, which implement the actions to be performed before instances of the class •	
are permanently discarded (§10.13).

Static constructors, which implement the actions required to initialize the class itself •	
(§10.12).

Types, which represent the types that are local to the class (§10.3.8).•	

Members that can contain executable code are collectively known as the function members
of the class type. The function members of a class type are the methods, properties,
events, indexers, operators, instance constructors, destructors, and static constructors of
that class type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

492

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

A class-declaration creates a new declaration space (§3.3), and the class-member-declarations
immediately contained by the class-declaration introduce new members into this declara-
tion space. The following rules apply to class-member-declarations:

Instance constructors, destructors, and static constructors must have the same name as •	
the immediately enclosing class. All other members must have names that differ from
the name of the immediately enclosing class.

The names of constants, fields, properties, events, or types must differ from the names •	
of all other members declared in the same class.

The name of a method must differ from the names of all other nonmethods declared in •	
the same class. In addition, the signature (§3.6) of a method must differ from the signa-
tures of all other methods declared in the same class, and two methods declared in the
same class may not have signatures that differ solely by ref and out.

The signature of an instance constructor must differ from the signatures of all other •	
instance constructors declared in the same class, and two constructors declared in the
same class may not have signatures that differ solely by ref and out.

The signature of an indexer must differ from the signatures of all other indexers declared •	
in the same class.

The signature of an operator must differ from the signatures of all other operators •	
declared in the same class.

The inherited members of a class type (§10.3.3) are not part of the declaration space of a
class. Thus a derived class is allowed to declare a member with the same name or signature
as an inherited member (which, in effect, hides the inherited member).

10.3.1 The Instance Type
Each class declaration has an associated bound type (§4.4.3), known as the instance type.
For a generic class declaration, the instance type is formed by creating a constructed type
(§4.4) from the type declaration, with each of the supplied type arguments being the cor-
responding type parameter. Since the instance type uses the type parameters, it can be
used only where the type parameters are in scope—that is, inside the class declaration. The
instance type is the type of this for code written inside the class declaration. For non-
generic classes, the instance type is simply the declared class. The following shows several
class declarations along with their instance types:

class A<T> // Instance type: A<T>
{
 class B {} // Instance type: A<T>.B

 class C<U> {} // Instance type: A<T>.C<U>
}

class D {} // Instance type: D

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

493

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.3.2 Members of Constructed Types
The non-inherited members of a constructed type are obtained by substituting, for each
type-parameter in the member declaration, the corresponding type-argument of the con-
structed type. The substitution process is based on the semantic meaning of type declara-
tions, and is not simply textual substitution.

For example, given the generic class declaration

class Gen<T,U>
{

 public T[,] a;

 public void G(int i, T t, Gen<U,T> gt) {...}

 public U Prop { get {...} set {...} }

 public int H(double d) {...}
}

the constructed type Gen<int[],IComparable<string>> has the following members:

public int[,][] a;

public void G(int i, int[] t, Gen<IComparable<string>,int[]> gt) {...}

public IComparable<string> Prop { get {...} set {...} }

public int H(double d) {...}

The type of the member a in the generic class declaration Gen is “two-dimensional array of
T,” so the type of the member a in the constructed type above is “two-dimensional array
of one-dimensional array of int,” or int[,][].

Within instance function members, the type of this is the instance type (§10.3.1) of the
containing declaration.

n
n  JoN SkEET This treatment of generics via substitution leads to obvious tricky

situations. What would the following code do?

public class Puzzle<T> {
 public void Method(int i) {}
 public void Method(T t) {}
}
...
new Puzzle<int>().Method(10);

The “substitution” results in two methods with exactly the same signature—so which
one is called by the Method(10) expression? I readily admit that I wouldn’t know the
answer without looking it up or trying it. I strongly suggest that such ambiguity should
be avoided wherever possible. In my experience, it’s most likely to occur with a pair of
indexers that can look an item up either by position (an int) or key (a type parameter).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

494

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  ERIC LIPPERT In an early design of generics in C# 2.0, the language designers

considered making it illegal to even declare a class that could possibly be constructed so
as to produce a signature ambiguity like the one Jon describes. Unfortunately, that
restriction then makes illegal certain patterns that seem obviously desirable:

class C<T> { public C(T t) { ... } public C(Stream serializedState) { ... } }

Should it be illegal to declare C<T> just because someone might someday make a
C<Stream>? This seems like overkill.

Even so, it is an extremely poor programming practice to create types that can have
ambiguous signatures under construction and then actually make such construc-
tions. Doing so can, in some contrived cases, expose implementation-defined behav-
ior in the CLR.

All members of a generic class can use type parameters from any enclosing class, either
directly or as part of a constructed type. When a particular closed constructed type (§4.4.2)
is used at runtime, each use of a type parameter is replaced with the actual type argument
supplied to the constructed type. For example:

class C<V>
{
 public V f1;
 public C<V> f2 = null;

 public C(V x) {
 this.f1 = x;
 this.f2 = this;
 }
}

class Application
{
 static void Main() {
 C<int> x1 = new C<int>(1);
 Console.WriteLine(x1.f1); // Prints 1

 C<double> x2 = new C<double>(3.1415);
 Console.WriteLine(x2.f1); // Prints 3.1415
 }
}

10.3.3 Inheritance
A class inherits the members of its direct base class type. Inheritance means that a class
implicitly contains all members of its direct base class type, except for the instance con-
structors, destructors, and static constructors of the base class. Some important aspects of
inheritance are profiled here:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

495

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

Inheritance is transitive. If •	 C is derived from B, and B is derived from A, then C inherits
the members declared in B as well as the members declared in A.

A derived class •	 extends its direct base class. A derived class can add new members to
those it inherits, but it cannot remove the definition of an inherited member.

Instance constructors, destructors, and static constructors are not inherited, but all other •	
members are, regardless of their declared accessibility (§3.5). However, depending on their
declared accessibility, inherited members might not be accessible in a derived class.

n
n  JoN SkEET Occasionally, developers ask why instance constructors aren’t inher-

ited. My view is that only the particular class knows which information it needs to
create a valid instance. For example, if instance constructors were inherited, all classes
would have to have a parameterless constructor (because object does). What would
it mean to create a new FileStream without specifying a filename or handle?

A derived class can •	 hide (§3.7.1.2) inherited members by declaring new members with
the same name or signature. Note, however, that hiding an inherited member does not
remove that member—it merely makes that member inaccessible directly through the
derived class.

An instance of a class contains a set of all instance fields declared in the class and its base •	
classes, and an implicit conversion (§6.1.6) exists from a derived class type to any of its
base class types. Thus a reference to an instance of some derived class can be treated as
a reference to an instance of any of its base classes.

A class can declare virtual methods, properties, and indexers, and derived classes can •	
override the implementation of these function members. This enables classes to exhibit
polymorphic behavior wherein the actions performed by a function member invocation
varies depending on the runtime type of the instance through which that function mem-
ber is invoked.

The inherited members of a constructed class type are the members of the immediate base
class type (§10.1.4.1), which is found by substituting the type arguments of the constructed
type for each occurrence of the corresponding type parameters in the base-class-specification.
These members, in turn, are transformed by substituting, for each type-parameter in the
member declaration, the corresponding type-argument of the base-class-specification.

class B<U>
{
 public U F(long index) {...}
}

class D<T>: B<T[]>
{
 public T G(string s) {...}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

496

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

In the above example, the constructed type D<int> has a non-inherited member public int
G(string s) obtained by substituting the type argument int for the type parameter T.
D<int> also has an inherited member from the class declaration B. This inherited member
is determined by first determining the base class type B<int[]> of D<int> by substituting
int for T in the base class specification B<T[]>. Then, as a type argument to B, int[] is sub-
stituted for U in public U F(long index), yielding the inherited member public int[]
F(long index).

10.3.4 The new Modifier
A class-member-declaration is permitted to declare a member with the same name or signa-
ture as an inherited member. When this occurs, the derived class member is said to hide the
base class member. Hiding an inherited member is not considered an error, but it does
cause the compiler to issue a warning. To suppress the warning, the declaration of the
derived class member can include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in §3.7.1.2.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a
warning to that effect is issued. This warning is suppressed by removing the new
modifier.

10.3.5 Access Modifiers
A class-member-declaration can have any one of the five possible kinds of declared accessibil-
ity (§3.5.1): public, protected internal, protected, internal, or private. Except for the
protected internal combination, it is a compile-time error to specify more than one access
modifier. When a class-member-declaration does not include any access modifiers, private is
assumed.

10.3.6 Constituent Types
Types that are used in the declaration of a member are called the constituent types of that
member. Possible constituent types are the type of a constant, field, property, event, or
indexer; the return type of a method or operator; and the parameter types of a method,
indexer, operator, or instance constructor. The constituent types of a member must be at
least as accessible as that member itself (§3.5.4).

10.3.7 Static and Instance Members
Members of a class are either static members or instance members. Generally speaking, it
is useful to think of static members as belonging to class types and instance members as
belonging to objects (instances of class types).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

497

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

When a field, method, property, event, operator, or constructor declaration includes a
static modifier, it declares a static member. In addition, a constant or type declaration
implicitly declares a static member. Static members have the following characteristics:

When a static member •	 M is referenced in a member-access (§7.6.4) of the form E.M, E must
denote a type containing M. It is a compile-time error for E to denote an instance.

A static field identifies exactly one storage location to be shared by all instances of a •	
given closed class type. No matter how many instances of a given closed class type are
created, there is only ever one copy of a static field.

A static function member (method, property, event, operator, or constructor) does not •	
operate on a specific instance, and it is a compile-time error to refer to this in such a
function member.

When a field, method, property, event, indexer, constructor, or destructor declaration does
not include a static modifier, it declares an instance member. (An instance member is
sometimes called a nonstatic member.) Instance members have the following
characteristics:

When an instance member •	 M is referenced in a member-access (§7.6.4) of the form E.M, E
must denote an instance of a type containing M. It is a binding-time error for E to denote
a type.

Every instance of a class contains a separate set of all instance fields of the class.•	

An instance function member (method, property, indexer, instance constructor, or •	
destructor) operates on a given instance of the class, and this instance can be accessed as
this (§7.6.7).

The following example illustrates the rules for accessing static and instance members:

class Test
{
 int x;
 static int y;

 void F() {
 x = 1; // Okay: same as this.x = 1
 y = 1; // Okay: same as Test.y = 1
 }

 static void G() {
 x = 1; // Error: cannot access this.x
 y = 1; // Okay: same as Test.y = 1
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

498

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 static void Main() {
 Test t = new Test();
 t.x = 1; // Okay
 t.y = 1; // Error: cannot access static
 // member through instance
 Test.x = 1; // Error: cannot access instance member
 // through type
 Test.y = 1; // Okay
 }
}

The F method shows that in an instance function member, a simple-name (§7.6.2) can be
used to access both instance members and static members. The G method shows that in a
static function member, it is a compile-time error to access an instance member through a
simple-name. The Main method shows that in a member-access (§7.6.4), instance members
must be accessed through instances, and static members must be accessed through types.

10.3.8 Nested Types
A type declared within a class or struct declaration is called a nested type. A type that is
declared within a compilation unit or namespace is called a non-nested type.

n
n  JoN SkEET I’ve heard the phrase “top-level type” used more often than “non-

nested type”—and I’ve no doubt spread this nonstandard terminology myself. Con-
sidering that the vast majority of types are non-nested, it feels like the descriptive term
should be something positive, rather than just an absence of nesting. That’s my excuse,
anyway, and others are welcome to borrow it.

In the example

using System;

class A
{
 class B
 {
 static void F() {
 Console.WriteLine("A.B.F");
 }
 }
}

class B is a nested type because it is declared within class A, and class A is a non-nested type
because it is declared within a compilation unit.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

499

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

n
n  BRAD ABRAMS I am not a big fan of publicly accessible nested types in a

reusable library. Discoverability for nested types isn’t great. Even more importantly,
we already have a group mechanism—namespaces—that should be used to indicate
related types.

10.3.8.1 Fully Qualified Names
The fully qualified name (§3.8.1) for a nested type is S.N, where S is the fully qualified
name of the type in which type N is declared.

10.3.8.2 Declared Accessibility
Non-nested types can have public or internal declared accessibility and have internal
declared accessibility by default. Nested types can have these forms of declared accessibil-
ity as well, plus one or more additional forms of declared accessibility, depending on
whether the containing type is a class or struct:

A nested type that is declared in a class can have any of five forms of declared accessibil-•	
ity (public, protected internal, protected, internal, or private) and, like other class
members, defaults to private declared accessibility.

A nested type that is declared in a struct can have any of three forms of declared acces-•	
sibility (public, internal, or private) and, like other struct members, defaults to
private declared accessibility.

The example

public class List
{
 // Private data structure
 private class Node
 {
 public object Data;
 public Node Next;

 public Node(object data, Node next) {
 this.Data = data;
 this.Next = next;
 }
 }

 private Node first = null;
 private Node last = null;

 // Public interface
 public void AddToFront(object o) {...}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

500

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 public void AddToBack(object o) {...}

 public object RemoveFromFront() {...}

 public object RemoveFromBack() {...}

 public int Count { get {...} }
}

declares a private nested class Node.

10.3.8.3 Hiding
A nested type may hide (§3.7.1) a base member. The new modifier is permitted on nested
type declarations so that hiding can be expressed explicitly. The example

class Base
{
 public static void M() {
 Console.WriteLine("Base.M");
 }
}

class Derived: Base
{
 new public class M
 {
 public static void F() {
 Console.WriteLine("Derived.M.F");
 }
 }
}

class Test
{
 static void Main() {
 Derived.M.F();
 }
}

shows a nested class M that hides the method M defined in Base.

10.3.8.4 this Access
A nested type and its containing type do not have a special relationship with regard to
this-access (§7.6.7). Specifically, this within a nested type cannot be used to refer
to instance members of the containing type. In cases where a nested type needs access to
the instance members of its containing type, access can be provided by providing the

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

501

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

this for the instance of the containing type as a constructor argument for the nested
type. The following example

using System;

class C
{
 int i = 123;

 public void F() {
 Nested n = new Nested(this);
 n.G();
 }

 public class Nested
 {
 C this_c;

 public Nested(C c) {
 this_c = c;
 }

 public void G() {
 Console.WriteLine(this_c.i);
 }
 }
}

class Test
{
 static void Main() {
 C c = new C();
 c.F();
 }
}

shows this technique. An instance of C creates an instance of Nested and passes its own
this to Nested’s constructor to provide subsequent access to C’s instance members.

n
n  JoN SkEET This section of the specification may seem strange at first sight:

Why bother to specify what you can’t do? Why would anyone expect to be able to
get at an instance of the containing type from an instance of a nested type? Well, in
Java, that’s exactly how inner classes do work. To achieve C#-like nested type behav-
ior, you need to declare the nested type as static—which is nothing like a static
class in C#!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

502

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.3.8.5 Access to Private and Protected Members of the Containing Type
A nested type has access to all of the members that are accessible to its containing type,
including members of the containing type that have private and protected declared
accessibility. The example

using System;

class C
{
 private static void F() {
 Console.WriteLine("C.F");
 }

 public class Nested
 {
 public static void G() {
 F();
 }
 }
}

class Test
{
 static void Main() {
 C.Nested.G();
 }
}

shows a class C that contains a nested class Nested. Within Nested, the method G calls the
static method F defined in C, and F has private declared accessibility.

n
n  JoN SkEET Again, this behavior is different from that in Java, where an outer

type has access to the private members of a nested type, but not vice versa. I find the
C# approach to be more sensible. It also allows for some nice patterns, such as creating
an abstract class with a private constructor: All the derived classes have to be nested
within the abstract class. Oddly enough, I find the main use case for this behavior is
emulating Java enums.

A nested type also may access protected members defined in a base type of its containing
type. In the example

using System;

class Base
{
 protected void F() {
 Console.WriteLine("Base.F");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

503

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

class Derived: Base
{
 public class Nested
 {
 public void G() {
 Derived d = new Derived();
 d.F(); // Okay
 }
 }
}

class Test
{
 static void Main() {
 Derived.Nested n = new Derived.Nested();
 n.G();
 }
}

the nested class Derived.Nested accesses the protected method F defined in Derived’s
base class, Base, by calling through an instance of Derived.

10.3.8.6 Nested Types in Generic Classes
A generic class declaration can contain nested type declarations. The type parameters of
the enclosing class can be used within the nested types. A nested type declaration can con-
tain additional type parameters that apply only to the nested type.

Every type declaration contained within a generic class declaration is implicitly a generic
type declaration. When writing a reference to a type nested within a generic type, the con-
taining constructed type, including its type arguments, must be named. However, from
within the outer class, the nested type can be used without qualification; the instance type
of the outer class can be implicitly used when constructing the nested type. The following
example shows three different—and correct—ways to refer to a constructed type created
from Inner; the first two are equivalent:

class Outer<T>
{
 class Inner<U>
 {
 public static void F(T t, U u) {...}
 }

 static void F(T t) {
 Outer<T>.Inner<string>.F(t, "abc"); // These two statements
 Inner<string>.F(t, "abc"); // have the same effect

 Outer<int>.Inner<string>.F(3, "abc"); // This type is different

 Outer.Inner<string>.F(t, "abc"); // Error: Outer needs type arg
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

504

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Although it is bad programming style, a type parameter in a nested type can hide a mem-
ber or type parameter declared in the outer type:

class Outer<T>
{
 class Inner<T> // Valid: hides Outer's T
 {
 public T t; // Refers to Inner's T
 }
}

10.3.9 Reserved Member Names
To facilitate the underlying C# runtime implementation, for each source member declara-
tion that is a property, event, or indexer, the implementation must reserve two method
signatures based on the kind of the member declaration, its name, and its type. It is a
compile-time error for a program to declare a member whose signature matches one of
these reserved signatures, even if the underlying runtime implementation does not make
use of these reservations.

The reserved names do not introduce declarations; thus they do not participate in member
lookup. However, a declaration’s associated reserved method signatures do participate in
inheritance (§10.3.3) and can be hidden with the new modifier (§10.3.4).

The reservation of these names serves three purposes:

It allows the underlying implementation to use an ordinary identifier as a method name •	
for get or set access to the C# language feature.

It allows other languages to interoperate use of an ordinary identifier as a method name •	
for get or set access to the C# language feature.

It helps ensure that the source accepted by one conforming compiler is accepted by •	
another, by making the specifics of reserved member names consistent across all C#
implementations.

The declaration of a destructor (§10.13) also causes a signature to be reserved (§10.3.9.4).

10.3.9.1 Member Names Reserved for Properties
For a property P (§10.7) of type T, the following signatures are reserved:

T get_P();
void set_P(T value);

Both signatures are reserved, even if the property is read-only or write-only.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.3		 Class Members

505

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

n
n  BILL WAGNER Even though you could write methods that are named
get_<something> and set_<something>, if <something> is not a property name, this
technique is not recommended. Avoiding it will minimize the need to update the code
in the future.

In the example

using System;

class A
{
 public int P {
 get { return 123; }
 }
}

class B: A
{
 new public int get_P() {
 return 456;
 }

 new public void set_P(int value) {
 }
}

class Test
{
 static void Main() {
 B b = new B();
 A a = b;
 Console.WriteLine(a.P);
 Console.WriteLine(b.P);
 Console.WriteLine(b.get_P());
 }
}

a class A defines a read-only property P, thus reserving signatures for get_P and set_P
methods. The class B derives from A and hides both of these reserved signatures. The exam-
ple produces the following output:

123
123
456

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

506

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.3.9.2 Member Names Reserved for Events
For an event E (§10.8) of delegate type T, the following signatures are reserved:

void add_E(T handler);
void remove_E(T handler);

10.3.9.3 Member Names Reserved for Indexers
For an indexer (§10.9) of type T with parameter-list L, the following signatures are
reserved:

T get_Item(L);
void set_Item(L, T value);

Both signatures are reserved, even if the indexer is read-only or write-only. Furthermore,
the member name Item is reserved.

10.3.9.4 Member Names Reserved for Destructors
For a class containing a destructor (§10.13), the following signature is reserved:

void Finalize();

10.4 Constants
A constant is a class member that represents a constant value—a value that can be
computed at compile time. A constant-declaration introduces one or more constants of a
given type.

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected
internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.4		 Constants

507

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

constant-declarator:
identifier = constant-expression

A constant-declaration may include a set of attributes (§17), a new modifier (§10.3.4), and a
valid combination of the four access modifiers (§10.3.5). The attributes and modifiers apply
to all of the members declared by the constant-declaration. Even though constants are con-
sidered static members, a constant-declaration neither requires nor allows a static modifier.
It is an error for the same modifier to appear multiple times in a constant declaration.

The type of a constant-declaration specifies the type of the members introduced by the dec-
laration. The type is followed by a list of constant-declarators, each of which introduces a
new member. A constant-declarator consists of an identifier that names the member, followed
by an “=” token, followed by a constant-expression (§7.19) that gives the value of the
member.

The type specified in a constant declaration must be either sbyte, byte, short, ushort, int,
uint, long, ulong, char, float, double, decimal, bool, string, an enum-type, or a reference-
type. Each constant-expression must yield a value of the target type or of a type that can be
converted to the target type by an implicit conversion (§6.1).

n
n  JoN SkEET The inclusion of decimal here is interesting when targeting the Com-

mon Language Infrastructure. All of the other types have literal representations within
the CLI, whereas decimal doesn’t. The Microsoft C# compiler achieves the appropri-
ate behavior by creating a static read-only field declaration, albeit decorated with
DecimalConstantAttribute. A similar attribute exists for DateTime, but C# doesn’t
allow DateTime constants.

The type of a constant must be at least as accessible as the constant itself (§3.5.4).

The value of a constant is obtained in an expression using a simple-name (§7.6.2) or a
member-access (§7.6.4).

A constant can itself participate in a constant-expression. Thus a constant may be used in any
construct that requires a constant-expression. Examples of such constructs include case
labels, goto case statements, enum member declarations, attributes, and other constant
declarations.

As described in §7.19, a constant-expression is an expression that can be fully evaluated at
compile time. Since the only way to create a non-null value of a reference-type other than
string is to apply the new operator, and since the new operator is not permitted in a
constant-expression, the only possible value for constants of reference-types other than
string is null.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

508

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

When a symbolic name for a constant value is desired, but when the type of that value is
not permitted in a constant declaration, or when the value cannot be computed at compile
time by a constant-expression, a readonly field (§10.5.2) may be used instead.

A constant declaration that declares multiple constants is equivalent to multiple declara-
tions of single constants with the same attributes, modifiers, and type. For example,

class A
{
 public const double X = 1.0, Y = 2.0, Z = 3.0;
}

is equivalent to

class A
{
 public const double X = 1.0;
 public const double Y = 2.0;
 public const double Z = 3.0;
}

n
n  CHRIS SELLS From a readability point of view, I find multiple declarations on

the same line—whether constants or nonconstants, static or instance, fields or local
variables—to be difficult to decipher. I prefer to place only a single declaration on each
line, ideally keeping the locality of reference in mind.

Constants are permitted to depend on other constants within the same program as long as
the dependencies are not of a circular nature. The compiler automatically arranges to eval-
uate the constant declarations in the appropriate order. In the example

class A
{
 public const int X = B.Z + 1;
 public const int Y = 10;
}

class B
{
 public const int Z = A.Y + 1;
}

the compiler first evaluates A.Y, then evaluates B.Z, and finally evaluates A.X, producing
the values 10, 11, and 12, in that order. Constant declarations may depend on constants
from other programs, but such dependencies are only possible in one direction. Referring
to the example above, if A and B were declared in separate programs, it would be possible
for A.X to depend on B.Z, but B.Z could then not simultaneously depend on A.Y.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.5		 Fields

509

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.5 Fields
A field is a member that represents a variable associated with an object or class. A field-
declaration introduces one or more fields of a given type.

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly
volatile

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

A field-declaration may include a set of attributes (§17), a new modifier (§10.3.4), a valid com-
bination of the four access modifiers (§10.3.5), and a static modifier (§10.5.1). In addition,
a field-declaration may include a readonly modifier (§10.5.2) or a volatile modifier (§10.5.3),
but not both. The attributes and modifiers apply to all of the members declared by the field-
declaration. It is an error for the same modifier to appear multiple times in a field
declaration.

The type of a field-declaration specifies the type of the members introduced by the declara-
tion. The type is followed by a list of variable-declarators, each of which introduces a new

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

510

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

member. A variable-declarator consists of an identifier that names that member, optionally
followed by an “=” token and a variable-initializer (§10.5.5) that gives the initial value of that
member.

The type of a field must be at least as accessible as the field itself (§3.5.4).

The value of a field is obtained in an expression using a simple-name (§7.6.2) or a member-
access (§7.6.4). The value of a non-read-only field is modified using an assignment (§7.17).
The value of a non-read-only field can be both obtained and modified using postfix incre-
ment and decrement operators (§7.6.9) and prefix increment and decrement operators
(§7.7.5).

A field declaration that declares multiple fields is equivalent to multiple declarations of
single fields with the same attributes, modifiers, and type. For example,

class A
{
 public static int X = 1, Y, Z = 100;
}

is equivalent to

class A
{
 public static int X = 1;
 public static int Y;
 public static int Z = 100;
}

10.5.1 Static and Instance Fields
When a field declaration includes a static modifier, the fields introduced by the declara-
tion are static fields. When no static modifier is present, the fields introduced by the
declaration are instance fields. Static fields and instance fields are two of the several kinds of
variables (§5) supported by C#, and at times they are referred to as static variables and
instance variables, respectively.

A static field is not part of a specific instance; instead, it is shared among all instances of a
closed type (§4.4.2). No matter how many instances of a closed class type are created, there
is only ever one copy of a static field for the associated application domain.

For example:

class C<V>
{
 static int count = 0;

 public C() {
 count++;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.5		 Fields

511

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 public static int Count {
 get { return count; }
 }
}

class Application
{
 static void Main() {
 C<int> x1 = new C<int>();
 Console.WriteLine(C<int>.Count); // Prints 1

 C<double> x2 = new C<double>();
 Console.WriteLine(C<int>.Count); // Prints 1

 C<int> x3 = new C<int>();
 Console.WriteLine(C<int>.Count); // Prints 2
 }
}

An instance field belongs to an instance. Specifically, every instance of a class contains a
separate set of all the instance fields of that class.

When a field is referenced in a member-access (§7.6.4) of the form E.M, if M is a static field, E
must denote a type containing M; if M is an instance field, E must denote an instance of a
type containing M.

The differences between static and instance members are discussed further in §10.3.7.

10.5.2 Read-only Fields
When a field-declaration includes a readonly modifier, the fields introduced by the declara-
tion are read-only fields. Direct assignments to readonly fields can occur only as part of
that declaration or in an instance constructor or static constructor in the same class. (A
readonly field can be assigned to multiple times in these contexts.) Specifically, direct
assignments to a readonly field are permitted only in the following contexts:

In the •	 variable-declarator that introduces the field (by including a variable-initializer in the
declaration).

For an instance field, in the instance constructors of the class that contains the field •	
declaration; for a static field, in the static constructor of the class that contains the
field declaration. These are also the only contexts in which it is valid to pass a readonly
field as an out or ref parameter.

Attempting to assign to a readonly field or pass it as an out or ref parameter in any other
context is a compile-time error.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

512

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  VLADIMIR RESHETNIkoV Only instance readonly fields of the this object

can be assigned in instance constructors, but not fields of any other objects of the
same type:

class A
{
 readonly int x;

 A(A a)
 {
 this.x = 1; // Okay
 a.x = 1; // Error CS0191: A read-only field
 // cannot be assigned to
 }
}

Also, a readonly field cannot be assigned to (or passed as a ref or out parameter) in
an anonymous function, even if the function is located within a constructor.

10.5.2.1 Using Static Read-only Fields for Constants
A static readonly field is useful when a symbolic name for a constant value is desired, but
when the type of the value is not permitted in a const declaration, or when the value can-
not be computed at compile time. In the example

public class Color
{
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);
 public static readonly Color Red = new Color(255, 0, 0);
 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 private byte red, green, blue;

 public Color(byte r, byte g, byte b) {
 red = r;
 green = g;
 blue = b;
 }
}

the Black, White, Red, Green, and Blue members cannot be declared as const members
because their values cannot be computed at compile time. Declaring them as static
readonly instead has much the same effect.

10.5.2.2 Versioning of Constants and Static Read-only Fields
Constants and readonly fields have different binary versioning semantics. When an expres-
sion references a constant, the value of the constant is obtained at compile time, but when

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.5		 Fields

513

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

an expression references a readonly field, the value of the field is not obtained until run-
time. Consider an application that consists of two separate programs:

using System;

namespace Program1
{
 public class Utils
 {
 public static readonly int X = 1;
 }
}

namespace Program2
{
 class Test
 {
 static void Main() {
 Console.WriteLine(Program1.Utils.X);
 }
 }
}

The Program1 and Program2 namespaces denote two programs that are compiled sepa-
rately. Because Program1.Utils.X is declared as a static readonly field, the value output
by the Console.WriteLine statement is not known at compile time, but rather is obtained
at runtime. Thus, if the value of X is changed and Program1 is recompiled, the Console.
WriteLine statement will output the new value even if Program2 isn’t recompiled. How-
ever, had X been a constant, the value of X would have been obtained at the time Program2
was compiled, and would remain unaffected by changes in Program1 until Program2 is
recompiled.

n
n  BILL WAGNER This discussion justifies why readonly should often be preferred

to const.

n
n  JoN SkEET While I largely agree with Bill that readonly should usually be pre-

ferred, there is a benefit to const in some situations. Expressions that are built up of
constants can be evaluated at compile time, rather than being recomputed on every
access. For cases computing a string constant, this practice can avoid new strings being
created each time the expression is evaluated, too. Some numbers really are natural
constants: the number of milliseconds in a second, or the minimum value of an int,
for example. When there is absolutely no chance that a value will ever change, const
makes sense. When there is any doubt at all, readonly is safer.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

514

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.5.3 Volatile Fields
When a field-declaration includes a volatile modifier, the fields introduced by that declara-
tion are volatile fields.

For non-volatile fields, optimization techniques that reorder instructions can lead to unex-
pected and unpredictable results in multithreaded programs that access fields without
synchronization, such as that provided by the lock-statement (§8.12). These optimizations
can be performed by the compiler, by the runtime system, or by hardware. For volatile
fields, such reordering optimizations are restricted:

A read of a volatile field is called a •	 volatile read. A volatile read has “acquire semantics”;
that is, it is guaranteed to occur prior to any references to memory that occur after it in
the instruction sequence.

A write of a volatile field is called a •	 volatile write. A volatile write has “release seman-
tics”; that is, it is guaranteed to happen after any memory references prior to the write
instruction in the instruction sequence.

These restrictions ensure that all threads will observe volatile writes performed by any
other thread in the order in which they were performed. A conforming implementation is
not required to provide a single total ordering of volatile writes as seen from all threads of
execution. The type of a volatile field must be one of the following:

A •	 reference-type.

The type •	 byte, sbyte, short, ushort, int, uint, char, float, bool, System.IntPtr, or
System.UIntPtr.

An •	 enum-type having an enum base type of byte, sbyte, short, ushort, int, or uint.

The example

using System;
using System.Threading;

class Test
{
 public static int result;
 public static volatile bool finished;

 static void Thread2() {
 result = 143;
 finished = true;
 }

 static void Main() {
 finished = false;

 // Run Thread2() in a new thread
 new Thread(new ThreadStart(Thread2)).Start();

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.5		 Fields

515

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 // Wait for Thread2 to signal that it has a
 // result by setting finished to true
 for (;;) {
 if (finished) {
 Console.WriteLine("result = {0}", result);
 return;
 }
 }
 }
}

produces the following output:

result = 143

In this example, the method Main starts a new thread that runs the method Thread2. This
method stores a value into a non-volatile field called result, then stores true into the
volatile field finished. The main thread waits for the field finished to be set to true,
then reads the field result. Since finished has been declared volatile, the main thread
must read the value 143 from the field result. If the field finished had not been declared
as volatile, then it would be permissible for the store to result to be visible to the
main thread after the store to finished, and hence for the main thread to read the value
0 from the field result. Declaring finished as a volatile field prevents any such
inconsistency.

n
n  JoSEPH ALBAHARI Fields that are always accessed within a lock statement

(§8.12) do not need to be declared with the volatile keyword. As a consequence,
the runtime must ensure that any ordering optimization of fields used between
Monitor.Enter and Monitor.Exit does not extend outside the scope of these
statements.

n
n  JoN SkEET Lock-free concurrent code is hard to get right. The precise guaran-

tees of volatility are hard to reason about, making it far from obvious that code is
truly correct when reading it. I tend to leave the details of low-level lock-free code to
the experts, instead preferring to build on higher-level libraries written by experts.
It’s still important that the specification details the behavior for those experts’ benefit,
of course.

10.5.4 Field Initialization
The initial value of a field, whether it be a static field or an instance field, is the default
value (§5.2) of the field’s type. It is not possible to observe the value of a field before

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

516

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

this default initialization has occurred; thus a field is never “uninitialized.” The
example

using System;

class Test
{
 static bool b;
 int i;

 static void Main() {
 Test t = new Test();
 Console.WriteLine("b = {0}, i = {1}", b, t.i);
 }
}

produces the output

b = False, i = 0

because b and i are both automatically initialized to default values.

10.5.5 Variable Initializers
Field declarations may include variable-initializers. For static fields, variable initializers cor-
respond to assignment statements that are executed during class initialization. For instance
fields, variable initializers correspond to assignment statements that are executed when an
instance of the class is created.

The example

using System;

class Test
{
 static double x = Math.Sqrt(2.0);
 int i = 100;
 string s = "Hello";

 static void Main() {
 Test a = new Test();
 Console.WriteLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s);
 }
}

produces the output

x = 1.4142135623731, i = 100, s = Hello

because an assignment to x occurs when static field initializers execute, and assignments
to i and s occur when the instance field initializers execute.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.5		 Fields

517

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

The default value initialization described in §10.5.4 occurs for all fields, including fields
that have variable initializers. Thus, when a class is initialized, all static fields in that class
are first initialized to their default values, and then the static field initializers are executed
in textual order. Likewise, when an instance of a class is created, all instance fields in that
instance are first initialized to their default values, and then the instance field initializers
are executed in textual order.

It is possible for static fields with variable initializers to be observed in their default value
state, but this is strongly discouraged as a matter of style. The example

using System;

class Test
{
 static int a = b + 1;
 static int b = a + 1;

 static void Main() {
 Console.WriteLine("a = {0}, b = {1}", a, b);
 }
}

exhibits this behavior. Despite the circular definitions of a and b, the program is valid. It
results in the output

a = 1, b = 2

because the static fields a and b are initialized to 0 (the default value for int) before
their initializers are executed. When the initializer for a runs, the value of b is zero, so a
is initialized to 1. When the initializer for b runs, the value of a is already 1, so b is initial-
ized to 2.

n
n  BILL WAGNER This case is easier to understand when static variables are declared

in partial classes in multiple source units. Furthermore, because you don’t know in
which order the source units will be included, you cannot know which variable will
be initialized first.

10.5.5.1 Static Field Initialization
The static field variable initializers of a class correspond to a sequence of assignments that
are executed in the textual order in which they appear in the class declaration. If a static
constructor (§10.12) exists in the class, execution of the static field initializers occurs imme-
diately prior to executing that static constructor. Otherwise, the static field initializers are

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

518

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

executed at an implementation-dependent time prior to the first use of a static field of that
class. The example

using System;

class Test
{
 static void Main() {
 Console.WriteLine("{0} {1}", B.Y, A.X);
 }

 public static int F(string s) {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 public static int X = Test.F("Init A");
}

class B
{
 public static int Y = Test.F("Init B");
}

might produce either this output:

Init A
Init B
1 1

or this output:

Init B
Init A
1 1

The variation is possible because the execution of X’s initializer and Y’s initializer could
occur in either order; they are constrained only to occur before the references to those
fields. However, in the example

using System;

class Test
{
 static void Main() {
 Console.WriteLine("{0} {1}", B.Y, A.X);
 }

 public static int F(string s) {
 Console.WriteLine(s);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.5		 Fields

519

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 return 1;
 }
}

class A
{
 static A() {}

 public static int X = Test.F("Init A");
}

class B
{
 static B() {}

 public static int Y = Test.F("Init B");
}

the output must be

Init B
Init A
1 1

because the rules for when static constructors execute (as defined in §10.12) provide that
B’s static constructor (and hence B’s static field initializers) must run before A’s static con-
structor and field initializers.

10.5.5.2 Instance Field Initialization
The instance field variable initializers of a class correspond to a sequence of assignments
that are executed immediately upon entry to any one of the instance constructors (§10.11.1)
of that class. The variable initializers are executed in the textual order in which they appear
in the class declaration. The class instance creation and initialization process is described
further in §10.11.

A variable initializer for an instance field cannot reference the instance being created. Thus
it is a compile-time error to reference this in a variable initializer, because it is a compile-
time error for a variable initializer to reference any instance member through a simple-name.
In the example

class A
{
 int x = 1;
 int y = x + 1; // Error: reference to instance member of this
}

the variable initializer for y results in a compile-time error because it references a member
of the instance being created.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

520

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.6 Methods
A method is a member that implements a computation or action that can be performed by
an object or class. Methods are declared using method-declarations:

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt partialopt return-type member-name
 type-parameter-listopt (formal-parameter-listopt)
 type-parameter-constraints-clausesopt

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

return-type:
type
void

member-name:
identifier
interface-type . identifier

method-body:
block
;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

521

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

A method-declaration may include a set of attributes (§17) and a valid combination of the four
access modifiers (§10.3.5) and the new (§10.3.4), static (§10.6.2), virtual (§10.6.3), override
(§10.6.4), sealed (§10.6.5), abstract (§10.6.6), and extern (§10.6.7) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

The declaration includes a valid combination of access modifiers (§10.3.5).•	

The declaration does not include the same modifier multiple times.•	

The declaration includes at most one of the following modifiers: •	 static, virtual, and
override.

The declaration includes at most one of the following modifiers: •	 new and override.

If the declaration includes the •	 abstract modifier, then the declaration does not include
any of the following modifiers: static, virtual, sealed, or extern.

If the declaration includes the •	 private modifier, then the declaration does not include
any of the following modifiers: virtual, override, or abstract.

If the declaration includes the •	 sealed modifier, then the declaration also includes the
override modifier.

If the declaration includes the •	 partial modifier, then it does not include any of the
following modifiers: new, public, protected, internal, private, virtual, sealed,
override, abstract, or extern.

The return-type of a method declaration specifies the type of the value computed and
returned by the method. The return-type is void if the method does not return a value. If the
declaration includes the partial modifier, then the return type must be void.

The member-name specifies the name of the method. Unless the method is an explicit inter-
face member implementation (§13.4.1), the member-name is simply an identifier. For an
explicit interface member implementation, the member-name consists of an interface-type
followed by a “.” and an identifier.

The optional type-parameter-list specifies the type parameters of the method (§10.1.3). If a
type-parameter-list is specified, the method is a generic method. If the method has an extern
modifier, a type-parameter-list cannot be specified.

The optional formal-parameter-list specifies the parameters of the method (§10.6.1).

The optional type-parameter-constraints-clauses specify constraints on individual type
parameters (§10.1.5) and may be specified only if a type-parameter-list is also supplied, and
if the method does not have an override modifier.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

522

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The return-type and each of the types referenced in the formal-parameter-list of a method
must be at least as accessible as the method itself (§3.5.4).

For abstract and extern methods, the method-body consists simply of a semicolon. For
partial methods, the method-body may consist of either a semicolon or a block. For all other
methods, the method-body consists of a block, which specifies the statements to execute when
the method is invoked.

The name, the type parameter list, and the formal parameter list of a method define the
signature (§3.6) of the method. Specifically, the signature of a method consists of its name,
the number of type parameters, and the number, modifiers, and types of its formal param-
eters. For these purposes, any type parameter of the method that occurs in the type of a
formal parameter is identified not by its name, but rather by its ordinal position in the type
argument list of the method. The return type is not part of a method’s signature, nor are the
names of the type parameters or the formal parameters.

The name of a method must differ from the names of all other nonmethods declared in the
same class. In addition, the signature of a method must differ from the signatures of all
other methods declared in the same class, and two methods declared in the same class may
not have signatures that differ solely by ref and out.

The method’s type-parameters are in scope throughout the method-declaration, and can be
used to form types throughout that scope in return-type, method-body, and type-parameter-
constraints-clauses but not in attributes.

All formal parameters and type parameters must have different names.

10.6.1 Method Parameters
The parameters of a method, if any, are declared by the method’s formal-parameter-list.

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier default-argumentopt

default-argument:
= expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

523

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

parameter-modifier:
ref
out
this

parameter-array:
attributesopt params array-type identifier

The formal parameter list consists of one or more comma-separated parameters, of which
only the last may be a parameter-array.

A fixed-parameter consists of an optional set of attributes (§17); an optional ref, out, or this
modifier; a type; an identifier; and an optional default-argument. Each fixed-parameter declares
a parameter of the given type with the given name. The this modifier designates the
method as an extension method and is allowed only on the first parameter of a static
method. Extension methods are further described in §10.6.9.

A fixed-parameter with a default-argument is known as an optional parameter, whereas a
fixed-parameter without a default-argument is a required parameter. A required parameter
may not appear after an optional parameter in a formal-parameter-list.

n
n  CHRISTIAN NAGEL Attention must be paid to optional parameters in regard to

versioning. The compiler takes default arguments and adds them to the caller in the
assembly of the caller. If the default argument changes to a new value with a new ver-
sion of the code, the caller still contains the old value if the code is not recompiled.

A ref or out parameter cannot have a default-argument. The expression in a default-argument
must be one of the following:

A •	 constant-expression.

An expression of the form •	 new S(), where S is a value type.

An expression of the form •	 default(S), where S is a value type.

The expression must be implicitly convertible by an identity or nullable conversion to the
type of the parameter.

If optional parameters occur in an implementing partial method declaration (§10.2.7), in an
explicit interface member implementation (§13.4.1), or in a single-parameter indexer dec-
laration (§10.9), the compiler should give a warning, since these members can never be
invoked in a way that permits arguments to be omitted.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

524

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

A parameter-array consists of an optional set of attributes (§17), a params modifier, an array-
type, and an identifier. A parameter array declares a single parameter of the given array type
with the given name. The array-type of a parameter array must be a single-dimensional
array type (§12.1). In a method invocation, a parameter array permits either a single argu-
ment of the given array type or zero or more arguments of the array element type to be
specified. Parameter arrays are described further in §10.6.1.4.

A parameter-array may occur after an optional parameter, but cannot have a default value—
the omission of arguments for a parameter-array would instead result in the creation of an
empty array.

The following example illustrates different kinds of parameters:

public void M(
 ref int i,
 decimal d,
 bool b = false,
 bool? n = false,
 string s = "Hello",
 object o = null,
 T t = default(T),
 params int[] a
) { }

In the formal-parameter-list for M, i is a required ref parameter; d is a required value param-
eter; b, s, o, and t are optional value parameters; and a is a parameter array.

A method declaration creates a separate declaration space for parameters, type parameters,
and local variables. Names are introduced into this declaration space by the type parame-
ter list and the formal parameter list of the method and by local variable declarations in the
block of the method. It is an error for two members of a method declaration space to have
the same name. It is an error for the method declaration space and the local variable decla-
ration space of a nested declaration space to contain elements with the same name.

A method invocation (§7.6.5.1) creates a copy, specific to that invocation, of the formal
parameters and local variables of the method, and the argument list of the invocation
assigns values or variable references to the newly created formal parameters. Within the
block of a method, formal parameters can be referenced by their identifiers in simple-name
expressions (§7.6.2).

There are four kinds of formal parameters:

Value parameters, which are declared without any modifiers.•	

Reference parameters, which are declared with the •	 ref modifier.

Output parameters, which are declared with the •	 out modifier.

Parameter arrays, which are declared with the •	 params modifier.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

525

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

As described in §3.6, the ref and out modifiers are part of a method’s signature, but the
params modifier is not.

10.6.1.1 Value Parameters
A parameter declared with no modifiers is a value parameter. A value parameter corre-
sponds to a local variable that gets its initial value from the corresponding argument sup-
plied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method
invocation must be an expression that is implicitly convertible (§6.1) to the formal param-
eter type.

A method is permitted to assign new values to a value parameter. Such assignments affect
only the local storage location represented by the value parameter; they have no effect on
the actual argument given in the method invocation.

10.6.1.2 Reference Parameters
A parameter declared with a ref modifier is a reference parameter. Unlike a value param-
eter, a reference parameter does not create a new storage location. Instead, a reference
parameter represents the same storage location as the variable given as the argument in the
method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a
method invocation must consist of the keyword ref followed by a variable-reference (§5.3.3)
of the same type as the formal parameter. A variable must be definitely assigned before it
can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

A method declared as an iterator (§10.14) cannot have reference parameters.

The example

using System;

class Test
{
 static void Swap(ref int x, ref int y) {
 int temp = x;
 x = y;
 y = temp;
 }

 static void Main() {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine("i = {0}, j = {1}", i, j);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

526

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

produces the following output:

i = 2, j = 1

For the invocation of Swap in Main, x represents i and y represents j. Thus the invocation
has the effect of swapping the values of i and j.

In a method that takes reference parameters, it is possible for multiple names to represent
the same storage location. In the example

class A
{
 string s;

 void F(ref string a, ref string b) {
 s = "One";
 a = "Two";
 b = "Three";
 }

 void G() {
 F(ref s, ref s);
 }
}

the invocation of F in G passes a reference to s for both a and b. Thus, for that invocation,
the names s, a, and b all refer to the same storage location, and the three assignments all
modify the instance field s.

10.6.1.3 Output Parameters
A parameter declared with an out modifier is an output parameter. Similar to a reference
parameter, an output parameter does not create a new storage location. Instead, an output
parameter represents the same storage location as the variable given as the argument in the
method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method
invocation must consist of the keyword out followed by a variable-reference (§5.3.3) of the
same type as the formal parameter. A variable need not be definitely assigned before it can
be passed as an output parameter, but following an invocation where a variable was passed
as an output parameter, the variable is considered definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered
unassigned and must be definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method
returns.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

527

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

A method declared as a partial method (§10.2.7) or an iterator (§10.14) cannot have output
parameters.

Output parameters are typically used in methods that produce multiple return values.

n
n  BILL WAGNER Of course, you could create a struct or class to return the mul-

tiple values, and that would obviate the need for output parameters. In addition, the
new Tuple<> generic classes can be used to return multiple values.

n
n  JoN SkEET One example of Bill’s point could have been int.TryParse in the

.NET Framework. It effectively returns two values: the parsed integer and a boolean
flag to indicate whether the operation was successful. Nullable value types in C#
already provide exactly this combination, so the current method signature of this:

bool TryParse(string s, out int result)

could have instead been this:

int? TryParse(string s)

The same is true of similar calls such as decimal.TryParse and so on.

 For example:

using System;

class Test
{
 static void SplitPath(string path, out string dir, out string name) {
 int i = path.Length;
 while (i > 0) {
 char ch = path[i – 1];
 if (ch == '\\' || ch == '/' || ch == ':') break;
 i--;
 }
 dir = path.Substring(0, i);
 name = path.Substring(i);
 }

 static void Main() {
 string dir, name;
 SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
 Console.WriteLine(dir);
 Console.WriteLine(name);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

528

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The example produces the following output:

c:\Windows\System\
hello.txt

Note that the dir and name variables can be unassigned before they are passed to
SplitPath, and that they are considered definitely assigned following the call.

10.6.1.4 Parameter Arrays
A parameter declared with a params modifier is a parameter array. If a formal parameter
list includes a parameter array, it must be the last parameter in the list and it must be of a
single-dimensional array type. For example, the types string[] and string[][] can be
used as the type of a parameter array, but the type string[,] cannot. It is not possible to
combine the params modifier with the modifiers ref and out.

A parameter array permits arguments to be specified in one of two ways in a method
invocation:

The argument given for a parameter array can be a single expression that is implicitly •	
convertible (§6.1) to the parameter array type. In this case, the parameter array acts pre-
cisely like a value parameter.

Alternatively, the invocation can specify zero or more arguments for the parameter array, •	
where each argument is an expression that is implicitly convertible (§6.1) to the element
type of the parameter array. In this case, the invocation creates an instance of the param-
eter array type with a length corresponding to the number of arguments, initializes the
elements of the array instance with the given argument values, and uses the newly cre-
ated array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is
precisely equivalent to a value parameter (§10.6.1.1) of the same type.

The example

using System;

class Test
{
 static void F(params int[] args) {
 Console.Write("Array contains {0} elements:", args.Length);
 foreach (int i in args)
 Console.Write(" {0}", i);
 Console.WriteLine();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

529

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 static void Main() {
 int[] arr = {1, 2, 3};
 F(arr);
 F(10, 20, 30, 40);
 F();
 }
}

produces the following output:

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

The first invocation of F simply passes the array a as a value parameter. The second invoca-
tion of F automatically creates a four-element int[] with the given element values and
passes that array instance as a value parameter. Likewise, the third invocation of F creates
a zero-element int[] and passes that instance as a value parameter. The second and third
invocations are precisely equivalent to writing

F(new int[] {10, 20, 30, 40});
F(new int[] {});

When performing overload resolution, a method with a parameter array may be applicable
either in its normal form or in its expanded form (§7.5.3.1). The expanded form of a method
is available only if the normal form of the method is not applicable and only if a method
with the same signature as the expanded form is not already declared in the same type.

The example

using System;

class Test
{
 static void F(params object[] a) {
 Console.WriteLine("F(object[])");
 }

 static void F() {
 Console.WriteLine("F()");
 }

 static void F(object a0, object a1) {
 Console.WriteLine("F(object,object)");
 }

 static void Main() {
 F();
 F(1);
 F(1, 2);
 F(1, 2, 3);
 F(1, 2, 3, 4);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

530

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

produces the following output:

F();
F(object[]);
F(object,object);
F(object[]);
F(object[]);

n
n  BILL WAGNER The more methods you create that could possibly be suitable

methods, the more trouble you create for your users. More compiler ambiguity creates
more ambiguity for your client developers as well.

In the example, two of the possible expanded forms of the method with a parameter array
are already included in the class as regular methods. These expanded forms are, therefore,
not considered when performing overload resolution, and the first and third method invo-
cations select the regular methods. When a class declares a method with a parameter array,
it is not uncommon to also include some of the expanded forms as regular methods. By
doing so, it is possible to avoid the allocation of an array instance that occurs when an
expanded form of a method with a parameter array is invoked.

When the type of a parameter array is object[], a potential ambiguity arises between the
normal form of the method and the expended form for a single object parameter. The
reason for the ambiguity is that an object[] is itself implicitly convertible to type object.
The ambiguity presents no problem, however, since it can be resolved by inserting a cast if
needed.

The example

using System;

class Test
{
 static void F(params object[] args) {
 foreach (object o in args) {
 Console.Write(o.GetType().FullName);
 Console.Write(" ");
 }
 Console.WriteLine();
 }

 static void Main() {
 object[] a = {1, "Hello", 123.456};
 object o = a;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

531

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 F(a);
 F((object)a);
 F(o);
 F((object[])o);
 }
}

produces the following output:

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

In the first and last invocations of F, the normal form of F is applicable because an implicit
conversion exists from the argument type to the parameter type (both are of type object[]).
Thus overload resolution selects the normal form of F, and the argument is passed as a
regular value parameter. In the second and third invocations, the normal form of F is not
applicable because no implicit conversion exists from the argument type to the parameter
type (type object cannot be implicitly converted to type object[]). However, the expanded
form of F is applicable, so it is selected by overload resolution. As a result, a one-element
object[] is created by the invocation, and the single element of the array is initialized with
the given argument value (which itself is a reference to an object[]).

10.6.2 Static and Instance Methods
When a method declaration includes a static modifier, that method is said to be a
static method. When no static modifier is present, the method is said to be an instance
method.

A static method does not operate on a specific instance, and it is a compile-time error to
refer to this in a static method.

An instance method operates on a given instance of a class, and that instance can be
accessed as this (§7.6.7).

When a method is referenced in a member-access (§7.6.4) of the form E.M, if M is a static
method, E must denote a type containing M; if M is an instance method, E must denote an
instance of a type containing M.

The differences between static and instance members are discussed further in §10.3.7.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

532

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.6.3 Virtual Methods
When an instance method declaration includes a virtual modifier, that method is said to
be a virtual method. When no virtual modifier is present, the method is said to be a non-
virtual method.

n
n  BILL WAGNER You can create virtual generic methods, even in a nongeneric

class. When you do so, any overrides must also be generic. You cannot override a
particular instantiation.

n
n  JoN SkEET Private methods cannot be virtual, even though there is one corner

case where it would make sense: A nested class derived from its own container class
could override it (with another private method). While it’s a tiny bit inelegant for
this possibility to be forbidden by the specification, it means that methods that are
accidentally private and virtual can be treated as errors—and this is a far more com-
mon case.

The implementation of a nonvirtual method is invariant: The implementation is the same
whether the method is invoked on an instance of the class in which it is declared or an
instance of a derived class. In contrast, the implementation of a virtual method can be
superseded by derived classes. The process of superseding the implementation of an inher-
ited virtual method is known as overriding that method (§10.6.4).

In a virtual method invocation, the runtime type of the instance for which that invocation
takes place determines the actual method implementation to invoke. In a nonvirtual
method invocation, the compile-time type of the instance is the determining factor. In pre-
cise terms, when a method named N is invoked with an argument list A on an instance with
a compile-time type C and a runtime type R (where R is either C or a class derived from C),
the invocation is processed as follows:

First, overload resolution is applied to •	 C, N, and A to select a specific method M from the
set of methods declared in and inherited by C. This is described in §7.6.5.1.

Then, if •	 M is a nonvirtual method, M is invoked.

Otherwise, •	 M is a virtual method, and the most derived implementation of M with respect
to R is invoked.

For every virtual method declared in or inherited by a class, there exists a most derived
implementation of the method with respect to that class. The most derived implementation
of a virtual method M with respect to a class R is determined as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

533

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

If •	 R contains the introducing virtual declaration of M, then it is the most derived imple-
mentation of M.

Otherwise, if •	 R contains an override of M, then it is the most derived implementa-
tion of M.

Otherwise, the most derived implementation of •	 M with respect to R is the same as the
most derived implementation of M with respect to the direct base class of R.

The following example illustrates the differences between virtual and nonvirtual methods:

using System;

class A
{
 public void F() { Console.WriteLine("A.F"); }

 public virtual void G() { Console.WriteLine("A.G"); }
}

class B: A
{
 new public void F() { Console.WriteLine("B.F"); }

 public override void G() { Console.WriteLine("B.G"); }
}

class Test
{
 static void Main() {
 B b = new B();
 A a = b;
 a.F();
 b.F();
 a.G();
 b.G();
 }
}

In the example, A introduces a nonvirtual method F and a virtual method G. The class B
introduces a new non-virtual method F, thus hiding the inherited F, and also overrides the
inherited method G. The example produces the following output:

A.F
B.F
B.G
B.G

Notice that the statement a.G() invokes B.G, not A.G. This outcome occurs because the
runtime type of the instance (which is B), not the compile-time type of the instance (which
is A), determines the actual method implementation to invoke.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

534

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Because methods are allowed to hide inherited methods, it is possible for a class to contain
several virtual methods with the same signature. This does not present an ambiguity prob-
lem, since all but the most derived method are hidden. In the example

using System;

class A
{
 public virtual void F() { Console.WriteLine("A.F"); }
}

class B: A
{
 public override void F() { Console.WriteLine("B.F"); }
}

class C: B
{
 new public virtual void F() { Console.WriteLine("C.F"); }
}

class D: C
{
 public override void F() { Console.WriteLine("D.F"); }
}

class Test
{
 static void Main() {
 D d = new D();
 A a = d;
 B b = d;
 C c = d;
 a.F();
 b.F();
 c.F();
 d.F();
 }
}

the C and D classes contain two virtual methods with the same signature: the one intro-
duced by A and the one introduced by C. The method introduced by C hides the method
inherited from A. Thus the override declaration in D overrides the method introduced by C,
and it is not possible for D to override the method introduced by A. The example produces
the following output:

B.F
B.F
D.F
D.F

Note that it is possible to invoke the hidden virtual method by accessing an instance of D
through a less derived type in which the method is not hidden.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

535

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.6.4 override Methods
When an instance method declaration includes an override modifier, the method is said to
be an override method. An override method overrides an inherited virtual method with the
same signature. Whereas a virtual method declaration introduces a new method, an over-
ride method declaration specializes an existing inherited virtual method by providing a
new implementation of that method.

The method overridden by an override declaration is known as the overridden base
method. For an override method M declared in a class C, the overridden base method is
determined by examining each base class type of C, starting with the direct base class type
of C and continuing with each successive direct base class type, until in a given base class
type at least one accessible method is located that has the same signature as M after substi-
tution of type arguments. For the purposes of locating the overridden base method, a
method is considered accessible if it is public, if it is protected, if it is protected internal,
or if it is internal and declared in the same program as C.

A compile-time error occurs unless all of the following are true for an override
declaration:

An overridden base method can be located as described above.•	

There is exactly one such overridden base method. This restriction has effect only if the •	
base class type is a constructed type where the substitution of type arguments makes the
signature of two methods the same.

The overridden base method is a virtual, abstract, or override method. In other words, •	
the overridden base method cannot be static or non-virtual.

The overridden base method is not a sealed method.•	

The override method and the overridden base method have the same return type.•	

The override declaration and the overridden base method have the same declared acces-•	
sibility. In other words, an override declaration cannot change the accessibility of the
virtual method. However, if the overridden base method is protected internal and it
is declared in a different assembly than the assembly containing the override method,
then the override method’s declared accessibility must be protected.

The override declaration does not specify type–parameter–constraints–clauses. Instead, •	
the constraints are inherited from the overridden base method. Note that constraints
that are type parameters in the overridden method may be replaced by type arguments
in the inherited constraint. This can lead to constraints that are not legal when explicitly
specified, such as value types or sealed types.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

536

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The following example demonstrates how the overriding rules work for generic classes:

abstract class C<T>
{
 public virtual T F() {...}

 public virtual C<T> G() {...}

 public virtual void H(C<T> x) {...}
}

class D: C<string>
{
 public override string F() {...} // Okay

 public override C<string> G() {...} // Okay

 public override void H(C<T> x) {...} // Error: should be C<string>
}

class E<T,U>: C<U>
{
 public override U F() {...} // Okay

 public override C<U> G() {...} // Okay

 public override void H(C<T> x) {...} // Error: should be C<U>
}

An override declaration can access the overridden base method using a base-access (§7.6.8).
In the example

class A
{
 int x;

 public virtual void PrintFields() {
 Console.WriteLine("x = {0}", x);
 }
}

class B: A
{
 int y;

 public override void PrintFields() {
 base.PrintFields();
 Console.WriteLine("y = {0}", y);
 }
}

the base.PrintFields() invocation in B invokes the PrintFields method declared in A. A
base-access disables the virtual invocation mechanism and simply treats the base method as
a non-virtual method. Had the invocation in B been written ((A)this).PrintFields(), it

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

537

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

would recursively invoke the PrintFields method declared in B, not the one declared in A,
since PrintFields is virtual and the runtime type of ((A)this) is B.

Only by including an override modifier can a method override another method. In all
other cases, a method with the same signature as an inherited method simply hides the
inherited method. In the example

class A
{
 public virtual void F() {}
}

class B: A
{
 public virtual void F() {} // Warning: hiding inherited F()
}

the F method in B does not include an override modifier and, therefore, does not override
the F method in A. Rather, the F method in B hides the method in A, and a warning is
reported because the declaration does not include a new modifier.

In the example

class A
{
 public virtual void F() {}
}

class B: A
{
 new private void F() {} // Hides A.F within body of B
}

class C: B
{
 public override void F() {} // Okay: overrides A.F
}

the F method in B hides the virtual F method inherited from A. Since the new F in B has
private access, its scope includes only the class body of B and does not extend to C. There-
fore, the declaration of F in C is permitted to override the F inherited from A.

10.6.5 Sealed Methods
When an instance method declaration includes a sealed modifier, that method is said to be
a sealed method. If an instance method declaration includes the sealed modifier, it must
also include the override modifier. Use of the sealed modifier prevents a derived class
from further overriding the method.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

538

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

In the example

using System;

class A
{
 public virtual void F() {
 Console.WriteLine("A.F");
 }

 public virtual void G() {
 Console.WriteLine("A.G");
 }
}

class B: A
{
 sealed override public void F() {
 Console.WriteLine("B.F");
 }

 override public void G() {
 Console.WriteLine("B.G");
 }
}

class C: B
{
 override public void G() {
 Console.WriteLine("C.G");
 }
}

the class B provides two override methods: an F method that has the sealed modifier and
a G method that does not. Class B’s use of the sealed modifier prevents class C from further
overriding F.

n
n  CHRIS SELLS When I want to derive from a class, it drives me crazy if that class

is sealed or if a method is sealed, because those restrictions limit how I can use the
class.

When I want to build a base class, I want it to be as locked down as possible so that I
can test the possible derivation scenarios I want to support. I don’t want to be trapped
into supporting something crazy that some customer has done and that I never
intended.

As with all things in software design, the use of the sealed modifier involves a bal-
ance. I tend to avoid the use of the sealed keyword unless I have to use it. If customers
get crazy, well, that’s what keeps things interesting.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

539

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.6.6 Abstract Methods
When an instance method declaration includes an abstract modifier, that method is said
to be an abstract method. Although an abstract method is implicitly also a virtual method,
it cannot have the modifier virtual.

An abstract method declaration introduces a new virtual method but does not provide an
implementation of that method. Instead, nonabstract derived classes are required to pro-
vide their own implementation by overriding that method. Because an abstract method
provides no actual implementation, the method-body of an abstract method simply consists
of a semicolon.

Abstract method declarations are permitted only in abstract classes (§10.1.1.1).

In the example

public abstract class Shape
{
 public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse: Shape
{
 public override void Paint(Graphics g, Rectangle r) {
 g.DrawEllipse(r);
 }
}

public class Box: Shape
{
 public override void Paint(Graphics g, Rectangle r) {
 g.DrawRect(r);
 }
}

the Shape class defines the abstract notion of a geometrical shape object that can paint itself.
The Paint method is abstract because there is no meaningful default implementation. The
Ellipse and Box classes are concrete Shape implementations. Because these classes are
nonabstract, they are required to override the Paint method and provide an actual
implementation.

It is a compile-time error for a base-access (§7.6.8) to reference an abstract method. In the
example

abstract class A
{
 public abstract void F();
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

540

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

class B: A
{
 public override void F() {
 base.F(); // Error: base.F is abstract
 }
}

a compile-time error is reported for the base.F() invocation because it references an
abstract method.

An abstract method declaration is permitted to override a virtual method. This allows an
abstract class to force reimplementation of the method in derived classes, and makes the
original implementation of the method unavailable. In the example

using System;

class A
{
 public virtual void F() {
 Console.WriteLine("A.F");
 }
}

abstract class B: A
{
 public abstract override void F();
}

class C: B
{
 public override void F() {
 Console.WriteLine("C.F");
 }
}

class A declares a virtual method, class B overrides this method with an abstract method,
and class C overrides the abstract method to provide its own implementation.

n
n  MAREk SAFAR There are no visibility restrictions on abstract methods except

that they cannot be private. That access choice can cause trouble when someone acci-
dentally declares an internal abstract method within a public abstract class; such
a class, even though it is declared public, cannot be used outside the class assembly.

10.6.7 External Methods
When a method declaration includes an extern modifier, that method is said to be an
external method. External methods are implemented externally, typically using a language

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

541

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

other than C#. Because an external method declaration provides no actual implementation,
the method-body of an external method simply consists of a semicolon. An external method
may not be generic.

The extern modifier is typically used in conjunction with the DllImport attribute (§17.5.1),
allowing external methods to be implemented by Dynamic Link Libraries (DLLs). The
execution environment may support other mechanisms whereby implementations of exter-
nal methods can be provided.

When an external method includes a DllImport attribute, the method declaration must
also include a static modifier. This example demonstrates the use of the extern modifier
and the DllImport attribute:

using System.Text;
using System.Security.Permissions;
using System.Runtime.InteropServices;

class Path
{
 [DllImport("kernel32", SetLastError=true)]
 static extern bool CreateDirectory(string name, SecurityAttribute sa);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool RemoveDirectory(string name);

 [DllImport("kernel32", SetLastError=true)]
 static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool SetCurrentDirectory(string name);
}

10.6.8 Partial Methods
When a method declaration includes a partial modifier, that method is said to be a
partial method. Partial methods can be declared only as members of partial types
(§10.2) and are subject to a number of restrictions. Partial methods are further described
in §10.2.7.

10.6.9 Extension Methods
When the first parameter of a method includes the this modifier, that method is said to be
an extension method. Extension methods can be declared only in nongeneric, non-nested
static classes. The first parameter of an extension method can have no modifiers other than
this, and the parameter type cannot be a pointer type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

542

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  PETER SESToFT The parameter type also cannot be dynamic (although that

would really just mean object). But it can be T, where T is a type parameter of the
extension method, like so:

public static void Foo<T>(this T x) { ... }

This is potentially useful, especially if T has a type constraint and there are more
parameters whose type involves T.

The following is an example of a static class that declares two extension methods:

using System;
public static class Extensions
{
 public static int ToInt32(this string s) {
 return Int32.Parse(s);
 }

 public static T[] Slice<T>(this T[] source, int index, int count) {
 if (index < 0 || count < 0 || source.Length - index < count)
 throw new ArgumentException();
 T[] result = new T[count];
 Array.Copy(source, index, result, 0, count);
 return result;
 }
}

An extension method is a regular static method. In addition, where its enclosing static class
is in scope, an extension method can be invoked using instance method invocation syntax
(§7.6.5.2), using the receiver expression as the first argument.

The following program uses the extension methods declared above:

static class Program
{
 static void Main() {
 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in strings.Slice(1, 2)) {
 Console.WriteLine(s.ToInt32());
 }
 }
}

The Slice method is available on the string[], and the ToInt32 method is available on
string, because they have been declared as extension methods. The meaning of the pro-
gram is the same as the following, using ordinary static method calls:

static class Program
{
 static void Main() {

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.6		 Methods

543

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in Extensions.Slice(strings, 1, 2)) {
 Console.WriteLine(Extensions.ToInt32(s));
 }
 }
}

n
n  PETER SESToFT The Slice extension method is generic: It works on any array

of T, regardless of which type parameter T is. You can also define generic extension
methods that involve type bounds (method IsSorted below) and extension methods
that work on particular type instances of a generic type (method ConcatWith). The lat-
ter also shows that an extension method may, of course, have default arguments
(§10.6.1):

public static bool IsSorted<T>(this IEnumerable<T> xs)
 where T : IComparable<T>
{ ... }

public static string ConcatWith(this IEnumerable<String> xs, string glue = ", ")
{ ... }

n
n  CHRIS SELLS On the one hand, extension methods are a great way to add meth-

ods that a type designer forgot, while still keeping the syntax as if the designer had
your every whim in mind. On the other hand, these methods are easy to abuse. I saw
an extension method on object in an experimental system once, and it became an
ongoing joke in our group to see if we could top it for confusing design.

n
n  PETER SESToFT Here’s a shot at a most widely applicable extension method.

Any attempt at calling a nonexistent method toString, with lowercase t, on any
object, with any number of arguments of any type, will call this instead:

public static string toString(this object x, params object[] args) {
 return "Make that ToString(), mate!";
}

Extension methods are non-virtual and do not override anything; hence one cannot
replace the ToString method (with uppercase T) of an existing type YourType by
declaring an extension method. The following declaration is legal but has no effect. A
call o.ToString() will pick up Object.ToString() or some method that overrides or
hides it, not this one:

public static string ToString(this YourType x) { ... }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

544

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.6.10 Method Body
The method-body of a method declaration consists of either a block or a semicolon.

Abstract and external method declarations do not provide a method implementation, so
their method bodies simply consist of a semicolon. For any other method, the method body
is a block (§8.2) that contains the statements to execute when that method is invoked.

When the return type of a method is void, return statements (§8.9.4) in that method’s body
are not permitted to specify an expression. If execution of the method body of a void
method completes normally (that is, if control flows off the end of the method body), that
method simply returns to its caller.

When the return type of a method is not void, each return statement in that method’s
body must specify an expression that is implicitly convertible to the return type. The end
point of the method body of a value-returning method must not be reachable. In other
words, in a value-returning method, control is not permitted to flow off the end of the
method body.

In the example

class A
{
 public int F() {} // Error: return value required

 public int G() {
 return 1;
 }

 public int H(bool b) {
 if (b) {
 return 1;
 }
 else {
 return 0;
 }
 }
}

the value-returning F method results in a compile-time error because control can flow off
the end of the method body. The G and H methods are correct because all possible execution
paths end in a return statement that specifies a return value.

10.6.11 Method overloading
The method overload resolution rules are described in §7.5.2.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

545

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.7 Properties
A property is a member that provides access to a characteristic of an object or a class.
Examples of properties include the length of a string, the size of a font, the caption of a
window, the name of a customer, and so on. Properties are a natural extension of fields—
both are named members with associated types, and the syntax for accessing fields and
properties is the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their
values are read or written. Properties thus provide a mechanism for associating actions
with the reading and writing of an object’s attributes; furthermore, they permit such attri-
butes to be computed.

Properties are declared using property-declarations:

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

member-name:
identifier
interface-type . identifier

A property-declaration may include a set of attributes (§17), a valid combination of the four
access modifiers (§10.3.5), and the new (§10.3.4), static (§10.6.2), virtual (§10.6.3),
override (§10.6.4), sealed (§10.6.5), abstract (§10.6.6), and extern (§10.6.7) modifiers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

546

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Property declarations are subject to the same rules as method declarations (§10.6) with
regard to valid combinations of modifiers.

The type of a property declaration specifies the type of the property introduced by the dec-
laration, and the member-name specifies the name of the property. Unless the property is an
explicit interface member implementation, the member-name is simply an identifier. For
an explicit interface member implementation (§13.4.1), the member-name consists of an
interface-type followed by a “.” and an identifier.

The type of a property must be at least as accessible as the property itself (§3.5.4).

The accessor-declarations, which must be enclosed in “{” and “}” tokens, declare the acces-
sors (§10.7.2) of the property. The accessors specify the executable statements associated
with reading and writing the property.

Even though the syntax for accessing a property is the same as that for a field, a property
is not classified as a variable. Thus it is not possible to pass a property as a ref or out
argument.

When a property declaration includes an extern modifier, the property is said to be an
external property. Because an external property declaration provides no actual implemen-
tation, each of its accessor-declarations consists of a semicolon.

10.7.1 Static and Instance Properties
When a property declaration includes a static modifier, the property is said to be a static
property. When no static modifier is present, the property is said to be an instance
property.

A static property is not associated with a specific instance, and it is a compile-time error to
refer to this in the accessors of a static property.

An instance property is associated with a given instance of a class, and that instance can be
accessed as this (§7.6.7) in the accessors of that property.

When a property is referenced in a member-access (§7.6.4) of the form E.M, if M is a static
property, E must denote a type containing M; if M is an instance property, E must denote an
instance of a type containing M.

The differences between static and instance members are discussed further in §10.3.7.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

547

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.7.2 Accessors
The accessor-declarations of a property specify the executable statements associated with
reading and writing that property.

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt
set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt accessor-modifieropt get accessor-body

set-accessor-declaration:
attributesopt accessor-modifieropt set accessor-body

accessor-modifier:
protected
internal
private
protected internal
internal protected

accessor-body:
block
;

The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or
both. Each accessor declaration consists of the token get or set followed by an optional
accessor-modifier and an accessor-body.

The use of accessor-modifiers is governed by the following restrictions:

An •	 accessor-modifier may not be used in an interface or in an explicit interface member
implementation.

For a property or indexer that has no •	 override modifier, an accessor-modifier is permitted
only if the property or indexer has both a get and set accessor, and then is permitted
on only one of those accessors.

For a property or indexer that includes an •	 override modifier, an accessor must match
the accessor-modifier, if any, of the accessor being overridden.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

548

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The •	 accessor-modifier must declare an accessibility that is strictly more restrictive than the
declared accessibility of the property or indexer itself. To be precise:

If the property or indexer has a declared accessibility of - public, the accessor-modifier
may be either protected internal, internal, protected, or private.

If the property or indexer has a declared accessibility of - protected internal, the
accessor-modifier may be either internal, protected, or private.

If the property or indexer has a declared accessibility of - internal or protected, the
accessor-modifier must be private.

If the property or indexer has a declared accessibility of - private, no accessor-modifier
may be used.

For abstract and extern properties, the accessor-body for each accessor specified is simply
a semicolon. A non-abstract, non-extern property may be an automatically implemented
property, in which case both get and set accessors must be given, both with a semicolon
body (§10.7.3). For the accessors of any other non-abstract, non-extern property, the
accessor-body is a block that specifies the statements to be executed when the corresponding
accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the property
type. Except as the target of an assignment, when a property is referenced in an expression,
the get accessor of the property is invoked to compute the value of the property (§7.1.1).
The body of a get accessor must conform to the rules for value-returning methods described
in §10.6.10. In particular, all return statements in the body of a get accessor must specify
an expression that is implicitly convertible to the property type. Furthermore, the end point
of a get accessor must not be reachable.

A set accessor corresponds to a method with a single value parameter of the property type
and a void return type. The implicit parameter of a set accessor is always named value.
When a property is referenced as the target of an assignment (§7.17) or as the operand of
++ or -- (§7.6.9, §7.7.5), the set accessor is invoked with an argument (whose value is that
of the right-hand side of the assignment or the operand of the ++ or -- operator) that pro-
vides the new value (§7.17.1). The body of a set accessor must conform to the rules for
void methods described in §10.6.10. In particular, return statements in the set accessor
body are not permitted to specify an expression. Since a set accessor implicitly has a
parameter named value, it is a compile-time error for a local variable or constant declara-
tion in a set accessor to have that name.

Based on the presence or absence of the get and set accessors, a property is classified as
follows:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

549

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

A property that includes both a •	 get accessor and a set accessor is said to be a read-write
property.

A property that has only a •	 get accessor is said to be a read-only property. It is a compile-
time error for a read-only property to be the target of an assignment.

A property that has only a •	 set accessor is said to be a write-only property. Except as the
target of an assignment, it is a compile-time error to reference a write-only property in
an expression.

In the example

public class Button: Control
{
 private string caption;

 public string Caption {
 get {
 return caption;
 }
 set {
 if (caption != value) {
 caption = value;
 Repaint();
 }
 }
 }

 public override void Paint(Graphics g, Rectangle r) {
 // Painting code goes here
 }
}

the Button control declares a public Caption property. The get accessor of the Caption
property returns the string stored in the private caption field. The set accessor checks
whether the new value is different from the current value, and if so, it stores the new value
and repaints the control. Properties often follow the pattern shown above: The get accessor
simply returns a value stored in a private field, and the set accessor modifies that private
field and then performs any additional actions required to fully update the state of the
object.

Given the Button class above, the following is an example of use of the Caption property:

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor is invoked by assigning a value to the property, and the get accessor
is invoked by referencing the property in an expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

550

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The get and set accessors of a property are not distinct members, and it is not possible to
declare the accessors of a property separately. As such, it is not possible for the two acces-
sors of a read-write property to have different accessibility. The example

class A
{
 private string name;

 public string Name { // Error: duplicate member name
 get { return name; }
 }

 public string Name { // Error: duplicate member name
 set { name = value; }
 }
}

does not declare a single read-write property. Rather, it declares two properties with the
same name, one read-only and one write-only. Since two members declared in the same
class cannot have the same name, the example causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the
derived property hides the inherited property with respect to both reading and writing. In
the example

class A
{
 public int P {
 set {...}
 }
}

class B: A
{
 new public int P {
 get {...}
 }
}

the P property in B hides the P property in A with respect to both reading and writing. Thus,
in the statements

B b = new B();
b.P = 1; // Error: B.P is read-only
((A)b).P = 1; // Okay: reference to A.P

the assignment to b.P causes a compile-time error to be reported, since the read-only P
property in B hides the write-only P property in A. Note, however, that a cast can be used
to access the hidden P property.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

551

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

Unlike public fields, properties provide a separation between an object’s internal state and
its public interface. Consider the following example:

class Label
{
 private int x, y;
 private string caption;

 public Label(int x, int y, string caption) {
 this.x = x;
 this.y = y;
 this.caption = caption;
 }

 public int X {
 get { return x; }
 }

 public int Y {
 get { return y; }
 }

 public Point Location {
 get { return new Point(x, y); }
 }

 public string Caption {
 get { return caption; }
 }
}

Here, the Label class uses two int fields, x and y, to store its location. The location is pub-
licly exposed both as an X and a Y property and as a Location property of type Point. If, in
a future version of Label, it becomes more convenient to store the location as a Point inter-
nally, the change can be made without affecting the public interface of the class:

class Label
{
 private Point location;
 private string caption;

 public Label(int x, int y, string caption) {
 this.location = new Point(x, y);
 this.caption = caption;
 }

 public int X {
 get { return location.x; }
 }

 public int Y {
 get { return location.y; }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

552

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 public Point Location {
 get { return location; }
 }

 public string Caption {
 get { return caption; }
 }
}

Had x and y instead been public readonly fields, it would have been impossible to make
such a change to the Label class.

Exposing state through properties is not necessarily any less efficient than exposing fields
directly. In particular, when a property is non-virtual and contains only a small amount of
code, the execution environment may replace calls to accessors with the actual code of the
accessors. This process is known as inlining, and it makes property access as efficient as
field access, yet preserves the increased flexibility of properties.

Since invoking a get accessor is conceptually equivalent to reading the value of a field, it
is considered bad programming style for get accessors to have observable side effects. In
the example

class Counter
{
 private int next;

 public int Next {
 get { return next++; }
 }
}

the value of the Next property depends on the number of times the property has previously
been accessed. Thus accessing the property produces an observable side effect, and the
property should be implemented as a method instead.

The “no side effects” convention for get accessors doesn’t mean that get accessors should
always be written to simply return values stored in fields. Indeed, get accessors often com-
pute the value of a property by accessing multiple fields or invoking methods. However, a
properly designed get accessor performs no actions that cause observable changes in the
state of the object.

Properties can be used to delay initialization of a resource until the moment it is first refer-
enced. For example:

using System.IO;

public class Console
{
 private static TextReader reader;
 private static TextWriter writer;
 private static TextWriter error;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

553

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 public static TextReader In {
 get {
 if (reader == null) {
 reader = new StreamReader(Console.OpenStandardInput());
 }
 return reader;
 }
 }

 public static TextWriter Out {
 get {
 if (writer == null) {
 writer = new StreamWriter(Console.OpenStandardOutput());
 }
 return writer;
 }
 }

 public static TextWriter Error {
 get {
 if (error == null) {
 error = new StreamWriter(Console.OpenStandardError());
 }
 return error;
 }
 }
}

The Console class contains three properties—In, Out, and Error—that represent the stan-
dard input, output, and error devices, respectively. By exposing these members as proper-
ties, the Console class can delay their initialization until they are actually used. For example,
upon first referencing the Out property, as in

Console.Out.WriteLine("hello, world");

the underlying TextWriter for the output device is created. But if the application makes no
reference to the In and Error properties, then no objects are created for those devices.

10.7.3 Automatically Implemented Properties

n
n  JoN SkEET An early draft of the C# 3.0 specification referred to these properties

as “automatic properties.” This name was around for just long enough to stick, and is
now much more widely used in the community than the full name.

When a property is specified as an automatically implemented property, a hidden backing
field is automatically available for the property, and the accessors are implemented to read
from and write to that backing field.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

554

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The example

public class Point {
 public int X { get; set; } // Automatically implemented
 public int Y { get; set; } // Automatically implemented
}

is equivalent to the following declaration:

public class Point {
 private int x;
 private int y;
 public int X { get { return x; } set { x = value; } }
 public int Y { get { return y; } set { y = value; } }
}

Because the backing field is inaccessible, it can be read and written only through the prop-
erty accessors, even within the containing type. This means that automatically imple-
mented read-only or write-only properties do not make sense and, therefore, are disallowed.
It is possible to set the access level of each accessor differently. Thus the effect of a read-
only property with a private backing field can be mimicked like this:

public class ReadOnlyPoint {
 public int X { get; private set; }
 public int Y { get; private set; }
 public ReadOnlyPoint(int x, int y) { X = x; Y = y; }
}

n
n  BILL WAGNER While the properties are read-only, the underlying backing store

is not. Code inside ReadOnlyPoint does not have to obey the rules of immutability.

n
n  JoN SkEET While this behavior mimics the effect of a read-only property to

other types, it’s not the same as the property (or, indeed, the backing field) being
genuinely read-only. I would welcome the ability to specify read-only properties,
perhaps in this form:

public int X { get; readonly set; }

This code would result in a read-only field being produced; use of the setter would be
permitted only within the constructor, where it would be compiled into direct writes
to the backing field. It’s unfortunate that creating a genuinely immutable type is cur-
rently more long-winded than creating a mutable one.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

555

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

n
n  PETER SESToFT Automatically implemented properties are great because the

properties can be used in object initializers (§7.6.10.2). Object initializers are particu-
larly great for classical values such as coordinate pairs and triples, complex numbers,
and similar items—that is, struct values. In general, however, we prefer structs to have
immutable fields because they are copied on assignment and during parameter pass-
ing. For this reason, I whole-heartedly support Jon’s wish for a terse notation for read-
only fields with automatically implemented accessors, with the proviso that the set
accessor can be used in the constructor and in object initializers.

This restriction also means that definite assignment of struct types with auto-implemented
properties can be achieved only using the standard constructor of the struct, since assign-
ing to the property itself requires the struct to be definitely assigned. This means that user-
defined constructors must call the default constructor.

10.7.4 Accessibility
If an accessor has an accessor-modifier, the accessibility domain (§3.5.2) of the accessor is
determined using the declared accessibility of the accessor-modifier. If an accessor does not
have an accessor-modifier, the accessibility domain of the accessor is determined from the
declared accessibility of the property or indexer.

The presence of an accessor-modifier never affects member lookup (§7.3) or overload resolu-
tion (§7.5.3). The modifiers on the property or indexer always determine which property
or indexer is bound to, regardless of the context of the access.

Once a particular property or indexer has been selected, the accessibility domains of the
specific accessors involved are used to determine whether that usage is valid:

If the usage is as a value (§7.1.1), the •	 get accessor must exist and be accessible.

If the usage is as the target of a simple assignment (§7.17.1), the •	 set accessor must exist
and be accessible.

If the usage is as the target of compound assignment (§7.17.2) or as the target of the •	 ++
or -- operators (§7.5.9, §7.6.5), both the get accessor and the set accessor must exist and
be accessible.

In the following example, the property A.Text is hidden by the property B.Text, even in
contexts where only the set accessor is called. In contrast, the property B.Count is not
accessible to class M, so the accessible property A.Count is used instead.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

556

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

class A
{
 public string Text {
 get { return "hello"; }
 set { }
 }

 public int Count {
 get { return 5; }
 set { }
 }
}

class B: A
{
 private string text = "goodbye";
 private int count = 0;

 new public string Text {
 get { return text; }
 protected set { text = value; }
 }

 new protected int Count {
 get { return count; }
 set { count = value; }
 }
}

class M
{
 static void Main() {
 B b = new B();
 b.Count = 12; // Calls A.Count set accessor
 int i = b.Count; // Calls A.Count get accessor
 b.Text = "howdy"; // Error: B.Text set accessor is not accessible
 string s = b.Text; // Calls B.Text get accessor
 }
}

An accessor that is used to implement an interface may not have an accessor-modifier. If only
one accessor is used to implement an interface, the other accessor may be declared with an
accessor-modifier:

public interface I
{
 string Prop { get; }
}

public class C: I
{
 public Prop {
 get { return "April"; } // Must not have a modifier here
 internal set {...} // Okay, because I.Prop has no set accessor
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.7		 Properties

557

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.7.5 Virtual, Sealed, override, and Abstract Accessors
A virtual property declaration specifies that the accessors of the property are virtual. The
virtual modifier applies to both accessors of a read-write property—it is not possible for
only one accessor of a read-write property to be virtual.

An abstract property declaration specifies that the accessors of the property are virtual,
but does not provide an actual implementation of the accessors. Instead, non-abstract
derived classes are required to provide their own implementation for the accessors by
overriding the property. Because an accessor for an abstract property declaration pro-
vides no actual implementation, its accessor-body simply consists of a semicolon.

A property declaration that includes both the abstract and override modifiers specifies
that the property is abstract and overrides a base property. The accessors of such a property
are also abstract.

Abstract property declarations are permitted only in abstract classes (§10.1.1.1). The acces-
sors of an inherited virtual property can be overridden in a derived class by including a
property declaration that specifies an override directive. This is known as an overriding
property declaration. An overriding property declaration does not declare a new property.
Instead, it simply specializes the implementations of the accessors of an existing virtual
property.

An overriding property declaration must specify the exact same accessibility modifiers,
type, and name as the inherited property. If the inherited property has only a single acces-
sor (i.e., if the inherited property is read-only or write-only), the overriding property must
include only that accessor. If the inherited property includes both accessors (i.e., if the
inherited property is read-write), the overriding property can include either a single acces-
sor or both accessors.

An overriding property declaration may include the sealed modifier. Use of this modifier
prevents a derived class from further overriding the property. The accessors of a sealed
property are also sealed.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and
abstract accessors behave exactly like virtual, sealed, override, and abstract methods. Spe-
cifically, the rules described in §10.6.3, §10.6.4, §10.6.5, and §10.6.6 apply as if accessors
were methods of a corresponding form:

A •	 get accessor corresponds to a parameterless method with a return value of the prop-
erty type and the same modifiers as the containing property.

A •	 set accessor corresponds to a method with a single value parameter of the property
type, a void return type, and the same modifiers as the containing property.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

558

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

In the example

abstract class A
{
 int y;

 public virtual int X {
 get { return 0; }
 }

 public virtual int Y {
 get { return y; }
 set { y = value; }
 }

 public abstract int Z { get; set; }
}

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract
read-write property. Because Z is abstract, the containing class A must also be declared as
abstract.

A class that derives from A is show below:

class B: A
{
 int z;

 public override int X {
 get { return base.X + 1; }
 }

 public override int Y {
 set { base.Y = value < 0? 0: value; }
 }

 public override int Z {
 get { return z; }
 set { z = value; }
 }
}

Here, the declarations of X, Y, and Z are overriding property declarations. Each property
declaration exactly matches the accessibility modifiers, type, and name of the correspond-
ing inherited property. The get accessor of X and the set accessor of Y use the base key-
word to access the inherited accessors. The declaration of Z overrides both abstract
accessors—thus there are no outstanding abstract function members in B, and B is permit-
ted to be a nonabstract class.

When a property is declared as an override, any overridden accessors must be accessible
to the overriding code. In addition, the declared accessibility of both the property or
indexer itself, and of the accessors, must match that of the overridden member and acces-
sors. For example:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.8		 Events

559

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

public class B
{
 public virtual int P {
 protected set {...}
 get {...}
 }
}

public class D: B
{
 public override int P {
 protected set {...} // Must specify protected here
 get {...} // Must not have a modifier here
 }
}

10.8 Events
An event is a member that enables an object or class to provide notifications. Clients can
attach executable code for events by supplying event handlers.

Events are declared using event-declarations:

event-declaration:
attributesopt event-modifiersopt event type variable-declarators ;
attributesopt event-modifiersopt event type member-name
 { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

560

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt add block

remove-accessor-declaration:
attributesopt remove block

An event-declaration may include a set of attributes (§17), a valid combination of the four
access modifiers (§10.3.5), and the new (§10.3.4), static (§10.6.2), virtual (§10.6.3),
override (§10.6.4), sealed (§10.6.5), abstract (§10.6.6), and extern (§10.6.7) modifiers.

Event declarations are subject to the same rules as method declarations (§10.6) with regard
to valid combinations of modifiers.

The type of an event declaration must be a delegate-type (§4.2), and that delegate-type must be
at least as accessible as the event itself (§3.5.4).

An event declaration may include event-accessor-declarations. However, if it does not, for
non-extern, non-abstract events, the compiler supplies them automatically (§10.8.1); for
extern events, the accessors are provided externally.

An event declaration that omits event-accessor-declarations defines one or more events—one
for each of the variable-declarators. The attributes and modifiers apply to all of the members
declared by such an event-declaration.

It is a compile-time error for an event-declaration to include both the abstract modifier and
brace-delimited event-accessor-declarations.

When an event declaration includes an extern modifier, the event is said to be an external
event. Because an external event declaration provides no actual implementation, it is an
error for it to include both the extern modifier and event-accessor-declarations.

An event can be used as the left-hand operand of the += and -= operators (§7.17.3). These
operators are used, respectively, to attach event handlers to or to remove event handlers
from an event, and the access modifiers of the event control the contexts in which such
operations are permitted.

Since += and -= are the only operations that are permitted on an event outside the type that
declares the event, external code can add and remove handlers for an event, but cannot in
any other way obtain or modify the underlying list of event handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.8		 Events

561

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

In an operation of the form x += y or x -= y, when x is an event and the reference takes place
outside the type that contains the declaration of x, the result of the operation has type void
(as opposed to having the type of x, with the value of x after the assignment). This rule
prohibits external code from indirectly examining the underlying delegate of an event.

The following example shows how event handlers are attached to instances of the
Button class:

public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
 public event EventHandler Click;
}

public class LoginDialog: Form
{
 Button OkButton;
 Button CancelButton;

 public LoginDialog() {
 OkButton = new Button(...);
 OkButton.Click += new EventHandler(OkButtonClick);
 CancelButton = new Button(...);
 CancelButton.Click += new EventHandler(CancelButtonClick);
 }

 void OkButtonClick(object sender, EventArgs e) {
 // Handle OkButton.Click event
 }

 void CancelButtonClick(object sender, EventArgs e) {
 // Handle CancelButton.Click event
 }
}

Here, the LoginDialog instance constructor creates two Button instances and attaches
event handlers to the Click events.

n
n  CHRISTIAN NAGEL Memory leaks often result from wrong usage of events. If

client objects attach to events but do not detach from them, and the reference to the
client object is no longer used, the client object still cannot be reclaimed by the garbage
collector because the reference by the publisher remains. This can be avoided by (1)
detaching of events when the client object is no longer used, (2) a custom implementa-
tion of the add and remove accessors using the WeakReference class holding the del-
egate, or (3) the Weak Event pattern that is used by WPF with the IWeakEventListener
interface.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

562

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  JoN SkEET I tend to think of (and explain) events as being like properties:

They’re a pair of methods (add and remove) that the compiler knows how to call
using a shorthand (+= and -=). Events are more restrictive than properties in that the
type has to be a delegate type, and there must always be both add and remove meth-
ods; there is no such thing as an “add-only” event in the way that you can have a
read-only property. Other than those points, the similarities are strong—and yet prop-
erties are generally very well understood, whereas events cause heaps of confusion. I
surmise that field-like events are the source of this problem.

10.8.1 Field-like Events
Within the program text of the class or struct that contains the declaration of an event,
certain events can be used like fields. To be used in this way, an event must not be abstract
or extern, and must not explicitly include event-accessor-declarations. Such an event can be
used in any context that permits a field. The field contains a delegate (§15), which refers to
the list of event handlers that have been added to the event. If no event handlers have been
added, the field contains null.

n
n  JoN SkEET If automatically implemented properties had been present in C#

from the start, I believe it would have made more sense for field-like events to be
called “automatically implemented events” with a syntax like this:

public event EventHandler Click { add; remove; }

This might have created less confusion around what an event really is.

In the example

public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
 public event EventHandler Click;

 protected void OnClick(EventArgs e) {
 if (Click != null) Click(this, e);
 }

 public void Reset() {
 Click = null;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.8		 Events

563

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

Click is used as a field within the Button class. As the example demonstrates, the field can
be examined, modified, and used in delegate invocation expressions. The OnClick method
in the Button class “raises” the Click event. The notion of raising an event is precisely
equivalent to invoking the delegate represented by the event—thus there are no special
language constructs for raising events. Note that the delegate invocation is preceded by a
check that ensures the delegate is non-null.

Outside the declaration of the Button class, the Click member can be used only on the left-
hand side of the += and –= operators, as in

b.Click += new EventHandler(...);

which appends a delegate to the invocation list of the Click event, and

b.Click –= new EventHandler(...);

which removes a delegate from the invocation list of the Click event.

When compiling a field-like event, the compiler automatically creates storage to hold the
delegate, and creates accessors for the event that add or remove event handlers to the del-
egate field. The addition and removal operations are thread safe, and may (but are not
required to) be done while holding the lock (§8.12) on the containing object for an instance
event, or the type object (§7.6.10.6) for a static event.

Thus an instance event declaration of the form

class X
{
 public event D Ev;
}

will be compiled to something equivalent to

class X
{
 private D __Ev; // Field to hold the delegate

 public event D Ev {
 add {
 /* Add the delegate in a thread-safe way */
 }

 remove {
 /* Remove the delegate in a thread-safe way */
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

564

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Within the class X, references to Ev on the left-hand side of the += and –= operators cause
the add and remove accessors to be invoked. All other references to Ev are compiled to
reference the hidden field __Ev instead. The name “__Ev” is arbitrary; the hidden field
could have any name or no name at all.

10.8.2 Event Accessors
Event declarations typically omit event-accessor-declarations, as in the Button example
above. One situation for doing so involves the case in which the storage cost of one field
per event is not acceptable. In such cases, a class can include event-accessor-declarations and
use a private mechanism for storing the list of event handlers.

The event-accessor-declarations of an event specify the executable statements associated with
adding and removing event handlers.

The accessor declarations consist of an add-accessor-declaration and a remove-accessor-
declaration. Each accessor declaration consists of the token add or remove followed by a
block. The block associated with an add-accessor-declaration specifies the statements to exe-
cute when an event handler is added, and the block associated with a remove-accessor-
declaration specifies the statements to execute when an event handler is removed.

Each add-accessor-declaration and remove-accessor-declaration corresponds to a method with
a single value parameter of the event type and a void return type. The implicit parameter
of an event accessor is named value. When an event is used in an event assignment, the
appropriate event accessor is used. Specifically, if the assignment operator is +=, then
the add accessor is used; if the assignment operator is -=, then the remove accessor is
used. In either case, the right-hand operand of the assignment operator is used as the
argument to the event accessor. The block of an add-accessor-declaration or a remove-
accessor-declaration must conform to the rules for void methods described in §10.6.10. In
particular, return statements in such a block are not permitted to specify an expression.

Since an event accessor implicitly has a parameter named value, it is a compile-time error
for a local variable or constant declared in an event accessor to have that name.

In the example

class Control: Component
{
 // Unique keys for events
 static readonly object mouseDownEventKey = new object();
 static readonly object mouseUpEventKey = new object();

 // Return event handler associated with key
 protected Delegate GetEventHandler(object key) {...}

 // Add event handler associated with key
 protected void AddEventHandler(object key, Delegate handler) {...}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.8		 Events

565

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 // Remove event handler associated with key
 protected void RemoveEventHandler(object key, Delegate handler) {...}

 // MouseDown event
 public event MouseEventHandler MouseDown {
 add { AddEventHandler(mouseDownEventKey, value); }
 remove { RemoveEventHandler(mouseDownEventKey, value); }
 }

 // MouseUp event
 public event MouseEventHandler MouseUp {
 add { AddEventHandler(mouseUpEventKey, value); }
 remove { RemoveEventHandler(mouseUpEventKey, value); }
 }

 // Invoke the MouseUp event
 protected void OnMouseUp(MouseEventArgs args) {
 MouseEventHandler handler;
 handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey);
 if (handler != null)
 handler(this, args);
 }
}

the Control class implements an internal storage mechanism for events. The
AddEventHandler method associates a delegate value with a key, the GetEventHandler
method returns the delegate currently associated with a key, and the RemoveEventHandler
method removes a delegate as an event handler for the specified event. Presumably, the
underlying storage mechanism is designed such that there is no cost for associating a null
delegate value with a key, and thus unhandled events consume no storage.

10.8.3 Static and Instance Events
When an event declaration includes a static modifier, the event is said to be a static event.
When no static modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is a compile-time error to
refer to this in the accessors of a static event.

An instance event is associated with a given instance of a class, and this instance can be
accessed as this (§7.6.7) in the accessors of that event.

When an event is referenced in a member-access (§7.6.4) of the form E.M, if M is a static event,
E must denote a type containing M; if M is an instance event, E must denote an instance of a
type containing M.

The differences between static and instance members are discussed further in §10.3.7.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

566

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.8.4 Virtual, Sealed, override, and Abstract Accessors
A virtual event declaration specifies that the accessors of that event are virtual. The
virtual modifier applies to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but does
not provide an actual implementation of the accessors. Instead, non-abstract derived
classes are required to provide their own implementation for the accessors by overriding
the event. Because an abstract event declaration provides no actual implementation, it
cannot provide brace-delimited event-accessor-declarations.

An event declaration that includes both the abstract and override modifiers specifies that
the event is abstract and overrides a base event. The accessors of such an event are also
abstract.

Abstract event declarations are permitted only in abstract classes (§10.1.1.1).

The accessors of an inherited virtual event can be overridden in a derived class by includ-
ing an event declaration that specifies an override modifier. This is known as an overrid-
ing event declaration. An overriding event declaration does not declare a new event.
Instead, it simply specializes the implementations of the accessors of an existing virtual
event.

An overriding event declaration must specify the exact same accessibility modifiers, type,
and name as the overridden event.

An overriding event declaration may include the sealed modifier. Use of this modifier
prevents a derived class from further overriding the event. The accessors of a sealed event
are also sealed.

It is a compile-time error for an overriding event declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and
abstract accessors behave exactly like virtual, sealed, override, and abstract methods. Spe-
cifically, the rules described in §10.6.3, §10.6.4, §10.6.5, and §10.6.6 apply as if accessors
were methods of a corresponding form. Each accessor corresponds to a method with a
single value parameter of the event type, a void return type, and the same modifiers as the
containing event.

10.9 Indexers
An indexer is a member that enables an object to be indexed in the same way as an array.
Indexers are declared using indexer-declarations:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.9		 Indexers

567

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new
public
protected
internal
private
virtual
sealed
override
abstract
extern

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

An indexer-declaration may include a set of attributes (§17), a valid combination of the four
access modifiers (§10.3.5), and the new (§10.3.4), virtual (§10.6.3), override (§10.6.4),
sealed (§10.6.5), abstract (§10.6.6), and extern (§10.6.7) modifiers.

Indexer declarations are subject to the same rules as method declarations (§10.6) with
regard to valid combinations of modifiers, with the one exception being that the static
modifier is not permitted on an indexer declaration.

The modifiers virtual, override, and abstract are mutually exclusive except in one case.
The abstract and override modifiers may be used together so that an abstract indexer can
override a virtual one.

The type of an indexer declaration specifies the element type of the indexer introduced by
the declaration. Unless the indexer is an explicit interface member implementation, the
type is followed by the keyword this. For an explicit interface member implementation,
the type is followed by an interface-type, a “.”, and the keyword this. Unlike other mem-
bers, indexers do not have user-defined names.

The formal-parameter-list specifies the parameters of the indexer. The formal parameter list
of an indexer corresponds to that of a method (§10.6.1), except that at least one parameter
must be specified, and that the ref and out parameter modifiers are not permitted.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

568

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The type of an indexer and each of the types referenced in the formal-parameter-list must be
at least as accessible as the indexer itself (§3.5.4).

The accessor-declarations (§10.7.2), which must be enclosed in “{” and “}” tokens, declare
the accessors of the indexer. The accessors specify the executable statements associated
with reading and writing indexer elements.

Even though the syntax for accessing an indexer element is the same as that for an array
element, an indexer element is not classified as a variable. Thus it is not possible to pass an
indexer element as a ref or out argument.

The formal parameter list of an indexer defines the signature (§3.6) of the indexer. Specifi-
cally, the signature of an indexer consists of the number and types of its formal parameters.
The element type and names of the formal parameters are not part of an indexer’s
signature.

The signature of an indexer must differ from the signatures of all other indexers declared
in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

A property is identified by its name, whereas an indexer is identified by its signature.•	

A property is accessed through a •	 simple-name (§7.6.2) or a member-access (§7.6.4), whereas
an indexer element is accessed through an element-access (§7.6.6.2).

A property can be a •	 static member, whereas an indexer is always an instance
member.

A •	 get accessor of a property corresponds to a method with no parameters, whereas a get
accessor of an indexer corresponds to a method with the same formal parameter list as
the indexer.

A •	 set accessor of a property corresponds to a method with a single parameter named
value, whereas a set accessor of an indexer corresponds to a method with the same
formal parameter list as the indexer, plus an additional parameter named value.

It is a compile-time error for an indexer accessor to declare a local variable with the same •	
name as an indexer parameter.

In an overriding property declaration, the inherited property is accessed using the syn-•	
tax base.P, where P is the property name. In an overriding indexer declaration, the
inherited indexer is accessed using the syntax base[E], where E is a comma-separated
list of expressions.

Aside from these differences, all rules defined in §10.7.2 and §10.7.3 apply to indexer acces-
sors as well as to property accessors.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.9		 Indexers

569

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

n
n  JoN SkEET I find it odd that events can be static (but almost never are) but index-

ers can’t. For example, it might have made sense for Encoding.GetEncoding(string)
to be present as a static indexer. Indeed, I’d expect static indexers to primarily act as
factory members for the type they’re declared in. A method is a perfectly adequate
alternative in most places, but the prohibition is a little strange.

When an indexer declaration includes an extern modifier, the indexer is said to be an
external indexer. Because an external indexer declaration provides no actual implementa-
tion, each of its accessor-declarations consists of a semicolon.

The example below declares a BitArray class that implements an indexer for accessing the
individual bits in the bit array.

using System;

class BitArray
{
 int[] bits;
 int length;

 public BitArray(int length) {
 if (length < 0) throw new ArgumentException();
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length {
 get { return length; }
 }

 public bool this[int index] {
 get {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 return (bits[index >> 5] & 1 << index) != 0;
 }
 set {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 if (value) {
 bits[index >> 5] |= 1 << index;
 }
 else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

570

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

An instance of the BitArray class consumes substantially less memory than a correspond-
ing bool[] (since each value of the former occupies only one bit instead of the latter’s one
byte), but it permits the same operations as a bool[].

The following CountPrimes class uses a BitArray and the classical “sieve” algorithm to
compute the number of primes between 1 and a given maximum:

class CountPrimes
{
 static int Count(int max) {
 BitArray flags = new BitArray(max + 1);
 int count = 1;
 for (int i = 2; i <= max; i++) {
 if (!flags[i]) {
 for (int j = i * 2; j <= max; j += i) flags[j] = true;
 count++;
 }
 }
 return count;
 }

 static void Main(string[] args) {
 int max = int.Parse(args[0]);
 int count = Count(max);
 Console.WriteLine("Found {0} primes between 1 and {1}", count, max);
 }
}

Note that the syntax for accessing elements of the BitArray is precisely the same as for a
bool[].

The following example shows a 26 × 10 grid class that has an indexer with two parameters.
The first parameter is required to be an uppercase or lowercase letter in the range A–Z, and
the second is required to be an integer in the range 0–9.

using System;

class Grid
{
 const int NumRows = 26;
 const int NumCols = 10;

 int[,] cells = new int[NumRows, NumCols];

 public int this[char c, int col] {
 get {
 c = Char.ToUpper(c);
 if (c < 'A' || c > 'Z') {
 throw new ArgumentException();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.10		 operators

571

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 if (col < 0 || col >= NumCols) {
 throw new IndexOutOfRangeException();
 }
 return cells[c - 'A', col];
 }

 set {
 c = Char.ToUpper(c);
 if (c < 'A' || c > 'Z') {
 throw new ArgumentException();
 }
 if (col < 0 || col >= NumCols) {
 throw new IndexOutOfRangeException();
 }
 cells[c - 'A', col] = value;
 }
 }
}

10.9.1 Indexer overloading
The indexer overload resolution rules are described in §7.5.2.

10.10 operators
An operator is a member that defines the meaning of an expression operator that can be
applied to instances of the class. Operators are declared using operator-declarations:

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public
static
extern

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

572

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

unary-operator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator:
+
-
*
/
%
&
|
^
<<
right-shift
==
!=
>
<
>=
<=

conversion-operator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)

operator-body:
block
;

There are three categories of overloadable operators: unary operators (§10.10.1), binary
operators (§10.10.2), and conversion operators (§10.10.3).

When an operator declaration includes an extern modifier, the operator is said to be an
external operator. Because an external operator provides no actual implementation, its
operator-body consists of a semicolon. For all other operators, the operator-body consists of a
block, which specifies the statements to execute when the operator is invoked. The block of
an operator must conform to the rules for value-returning methods described in §10.6.10.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.10		 operators

573

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

The following rules apply to all operator declarations:

An operator declaration must include both a •	 public and a static modifier.

The parameter(s) of an operator must be value parameters. It is a compile-time error for •	
an operator declaration to specify ref or out parameters.

The signature of an operator (§10.10.1, §10.10.2, §10.10.3) must differ from the signatures •	
of all other operators declared in the same class.

All types referenced in an operator declaration must be at least as accessible as the •	
operator itself (§3.5.4).

It is an error for the same modifier to appear multiple times in an operator declaration.•	

Each operator category imposes additional restrictions, as described in the following
sections.

Like other members, operators declared in a base class are inherited by derived classes.
Because operator declarations always require the class or struct in which the operator
is declared to participate in the signature of the operator, it is not possible for an operator
declared in a derived class to hide an operator declared in a base class. Thus the new modi-
fier is never required, and therefore never permitted, in an operator declaration.

Additional information on unary and binary operators can be found in §7.3.

Additional information on conversion operators can be found in §6.4.

10.10.1 Unary operators
The following rules apply to unary operator declarations, where T denotes the instance
type of the class or struct that contains the operator declaration:

A unary •	 +, -, !, or ~ operator must take a single parameter of type T or T? and can return
any type.

A unary •	 ++ or -- operator must take a single parameter of type T or T? and must return
that same type or a type derived from it.

A unary •	 true or false operator must take a single parameter of type T or T? and must
return type bool.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, --, true, or
false) and the type of the single formal parameter. The return type is not part of a unary
operator’s signature, nor is the name of the formal parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

574

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The true and false unary operators require pairwise declaration. A compile-time error
occurs if a class declares one of these operators without also declaring the other. The true
and false operators are described further in §7.12.2 and §7.20.

The following example shows an implementation and subsequent usage of operator ++ for
an integer vector class:

public class IntVector
{
 public IntVector(int length) {...}

 public int Length {...} // Read-only property

 public int this[int index] {...} // Read-write indexer

 public static IntVector operator ++(IntVector iv) {
 IntVector temp = new IntVector(iv.Length);
 for (int i = 0; i < iv.Length; i++)
 temp[i] = iv[i] + 1;
 return temp;
 }
}

class Test
{
 static void Main() {
 IntVector iv1 = new IntVector(4); // Vector of 4 x 0
 IntVector iv2;

 iv2 = iv1++; // iv2 contains 4 x 0, iv1 contains 4 x 1
 iv2 = ++iv1; // iv2 contains 4 x 2, iv1 contains 4 x 2
 }
}

Note how the operator method returns the value produced by adding 1 to the operand, just
like the postfix increment and decrement operators (§7.6.9) and the prefix increment and
decrement operators (§7.7.5). Unlike in C++, this method need not modify the value of its
operand directly. In fact, modifying the operand value would violate the standard seman-
tics of the postfix increment operator.

10.10.2 Binary operators
The following rules apply to binary operator declarations, where T denotes the instance
type of the class or struct that contains the operator declaration:

A binary nonshift operator must take two parameters, at least one of which must have •	
type T or T?, and can return any type.

A binary •	 << or >> operator must take two parameters, the first of which must have type
T or T? and the second of which must have type int or int?, and can return any type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.10		 operators

575

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

The signature of a binary operator consists of the operator token (+, -, *, /, %, &, |, ^, <<, >>,
==, !=, >, <, >=, or <=) and the types of the two formal parameters. The return type and the
names of the formal parameters are not part of a binary operator’s signature.

Certain binary operators require pairwise declaration. For every declaration of either oper-
ator of a pair, there must be a matching declaration of the other operator of the pair. Two
operator declarations match when they have the same return type and the same type for
each parameter. The following operators require pairwise declaration:

operator•	 == and operator !=

operator•	 > and operator <

operator•	 >= and operator <=

n
n  ERIC LIPPERT It is tempting to make a comparison operator on class Clothing

that can represent Socks, Shoes, Shirt, Tie, and Hat, and then define a user-defined
comparison that makes Socks < Shoes, Shirt < Tie, and everything else equal. The
hope is that sorting an array of these items will produce a sensible ordering—that
Socks always go on before Shoes, Shirts go on before Ties, but everything else can be
in any order. But this comparison is not logically consistent: If Hat equals Socks, Hat
equals Shoes, and Socks is smaller than Shoes then logically Hat must be smaller than
Hat, which is nonsensical. Most sorting algorithms are written with the assumption
that the comparison operator defines a total ordering; some algorithms crash, run for-
ever, or give nonsensical results when given a broken comparison operator. If you
want to implement a partial order sort, it is wise to do it via some mechanism other than
overloading the comparison operators.

10.10.3 Conversion operators
A conversion operator declaration introduces a user-defined conversion (§6.4), which aug-
ments the predefined implicit and explicit conversions.

A conversion operator declaration that includes the implicit keyword introduces a user-
defined implicit conversion. Implicit conversions can occur in a variety of situations,
including function member invocations, cast expressions, and assignments. This is
described further in §6.1.

n
n  BILL WAGNER Implicit conversions should always succeed and never lose infor-

mation because they will be called automatically, without the client coders knowing it.
Implicit conversions should never involve expensive operations for the same reason.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

576

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

n
n  JoN SkEET As noted in §6.1.2, some implicit conversions from integral types to
float or double can lose information. That possibility shouldn’t be used as an excuse
for your own user-defined implicit conversions losing information, though.

A conversion operator declaration that includes the explicit keyword introduces a user-
defined explicit conversion. Explicit conversions can occur in cast expressions, and are
described further in §6.2.

n
n  BILL WAGNER In contrast to implicit conversions, explicit conversions can fail,

or can lose information, because the user must explicitly ask for the conversion.

A conversion operator converts from a source type, indicated by the parameter type of the
conversion operator, to a target type, indicated by the return type of the conversion
operator.

For a given source type S and target type T, if S or T are nullable types, let S0 and T0 refer to
their underlying types; otherwise, S0 and T0 are equal to S and T, respectively. A class or
struct is permitted to declare a conversion from a source type S to a target type T only if all
of the following are true:

S•	 0 and T0 are different types.

Either •	 S0 or T0 is the class or struct type in which the operator declaration takes place.

Neither •	 S0 nor T0 is an interface-type.

Excluding user-defined conversions, a conversion does not exist from •	 S to T or from
T to S.

For the purposes of these rules, any type parameters associated with S or T are considered
to be unique types that have no inheritance relationship with other types, and any con-
straints on those type parameters are ignored.

In the example

class C<T> {...}

class D<T>: C<T>

 public static implicit operator C<int>(D<T> value) {...} // Okay

 public static implicit operator C<string>(D<T> value) {...} // Okay

 public static implicit operator C<T>(D<T> value) {...} // Error
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.10		 operators

577

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

the first two operator declarations are permitted because, for the purposes of §10.9.3, T has
no relationship to int and string, respectively; in both cases, they are considered unique
types. However, the third operator is an error because C<T> is the base class of D<T>.

From the second rule, it follows that a conversion operator must convert either to or from
the class or struct type in which the operator is declared. For example, it is possible for a
class or struct type C to define a conversion from C to int and from int to C, but not from
int to bool.

It is not possible to directly redefine a predefined conversion. Thus conversion operators
are not allowed to convert from or to object because implicit and explicit conversions
already exist between object and all other types. Likewise, neither the source nor the tar-
get types of a conversion can be a base type of the other, since a conversion would then
already exist.

However, it is possible to declare operators on generic types that, for particular type argu-
ments, specify conversions that already exist as predefined conversions. In the example

struct Convertible<T>
{
 public static implicit operator Convertible<T>(T value) {...}

 public static explicit operator T(Convertible<T> value) {...}
}

when type object is specified as a type argument for T, the second operator declares a
conversion that already exists (an implicit, and therefore also an explicit, conversion exists
from any type to type object).

In cases where a predefined conversion exists between two types, any user-defined conver-
sions between those types are ignored. Specifically:

If a predefined implicit conversion (§6.1) exists from type •	 S to type T, all user-defined
conversions (implicit or explicit) from S to T are ignored.

If a predefined explicit conversion (§6.2) exists from type •	 S to type T, any user-defined
explicit conversions from S to T are ignored. Furthermore:

If - T is an interface type, user-defined implicit conversions from S to T are ignored.

Otherwise, user-defined implicit conversions from - S to T are still considered.

For all types except object, the operators declared by the Convertible<T> type above do
not conflict with predefined conversions. For example:

void F(int i, Convertible<int> n) {
 i = n; // Error
 i = (int)n; // User-defined explicit conversion
 n = i; // User-defined implicit conversion
 n = (Convertible<int>)i; // User-defined implicit conversion
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

578

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

However, for type object, predefined conversions hide the user-defined conversions in all
cases but one:

void F(object o, Convertible<object> n) {
 o = n; // Predefined boxing conversion
 o = (object)n; // Predefined boxing conversion
 n = o; // User-defined implicit conversion
 n = (Convertible<object>)o; // Predefined unboxing conversion
}

User-defined conversions are not allowed to convert from or to interface-types. In particular,
this restriction ensures that no user-defined transformations occur when converting to an
interface-type, and that a conversion to an interface-type succeeds only if the object being
converted actually implements the specified interface-type.

The signature of a conversion operator consists of the source type and the target type.
(Note that this is the only form of member for which the return type participates in the
signature.) The implicit or explicit classification of a conversion operator is not part of
the operator’s signature. Thus a class or struct cannot declare both an implicit and an
explicit conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw excep-
tions and never lose information. If a user-defined conversion can give rise to exceptions
(for example, because the source argument is out of range) or loss of information (such as
discarding high-order bits), then that conversion should be defined as an explicit
conversion.

In the example

using System;

public struct Digit
{
 byte value;

 public Digit(byte value) {
 if (value < 0 || value > 9) throw new ArgumentException();
 this.value = value;
 }

 public static implicit operator byte(Digit d) {
 return d.value;
 }

 public static explicit operator Digit(byte b) {
 return new Digit(b);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.11		 Instance Constructors

579

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

the conversion from Digit to byte is implicit because it never throws exceptions or loses
information, but the conversion from byte to Digit is explicit because Digit can represent
only a subset of the possible values of a byte.

10.11 Instance Constructors
An instance constructor is a member that implements the actions required to initialize an
instance of a class. Instance constructors are declared using constructor-declarations:

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected
internal
private
extern

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

constructor-body:
block
;

A constructor-declaration may include a set of attributes (§17), a valid combination of the four
access modifiers (§10.3.5), and an extern (§10.6.7) modifier. A constructor declaration is not
permitted to include the same modifier multiple times.

The identifier of a constructor-declarator must name the class in which the instance construc-
tor is declared. If any other name is specified, a compile-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

580

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The optional formal-parameter-list of an instance constructor is subject to the same rules as
the formal-parameter-list of a method (§10.6). The formal parameter list defines the signature
(§3.6) of an instance constructor and governs the process whereby overload resolution
(§7.5.2) selects a particular instance constructor in an invocation.

Each of the types referenced in the formal-parameter-list of an instance constructor must be
at least as accessible as the constructor itself (§3.5.4).

The optional constructor-initializer specifies another instance constructor to invoke before
executing the statements given in the constructor-body of this instance constructor. This is
described further in §10.11.1.

When a constructor declaration includes an extern modifier, the constructor is said to be
an external constructor. Because an external constructor declaration provides no actual
implementation, its constructor-body consists of a semicolon. For all other constructors, the
constructor-body consists of a block that specifies the statements to initialize a new instance
of the class. This corresponds exactly to the block of an instance method with a void return
type (§10.6.10).

Instance constructors are not inherited. Thus a class has no instance constructors other
than those actually declared in the class. If a class contains no instance constructor declara-
tions, a default instance constructor is automatically provided (§10.11.4).

Instance constructors are invoked by object-creation-expressions (§7.6.10.1) and through con-
structor-initializers.

10.11.1 Constructor Initializers
All instance constructors (except those for class object) implicitly include an invocation of
another instance constructor immediately before the constructor-body. The constructor to
implicitly invoke is determined by the constructor-initializer:

An instance constructor initializer of the form •	 base(argument-listopt) causes an instance
constructor from the direct base class to be invoked. That constructor is selected using
argument-list and the overload resolution rules of §7.5.3. The set of candidate instance
constructors consists of all accessible instance constructors contained in the direct base
class, or the default constructor (§10.11.4) if no instance constructors are declared in the
direct base class. If this set is empty, or if a single best instance constructor cannot be
identified, a compile-time error occurs.

An instance constructor initializer of the form •	 this(argument-listopt) causes an instance
constructor from the class itself to be invoked. The constructor is selected using
argument-list and the overload resolution rules of §7.5.3. The set of candidate instance

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.11		 Instance Constructors

581

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

constructors consists of all accessible instance constructors declared in the class itself. If
this set is empty, or if a single best instance constructor cannot be identified, a compile-
time error occurs. If an instance constructor declaration includes a constructor initializer
that invokes the constructor itself, a compile-time error occurs.

n
n  VLADIMIR RESHETNIkoV An argument in a constructor-initializer can be of type
dynamic only if the argument has a ref or out modifier; otherwise, a compile-time
error occurs (CS1975). Thus a constructor-initializer is never dynamically dispatched.

If an instance constructor has no constructor initializer, a constructor initializer of the form
base() is implicitly provided. Thus an instance constructor declaration of the form

C(...) {...}

is exactly equivalent to

C(...): base() {...}

The scope of the parameters given by the formal-parameter-list of an instance constructor
declaration includes the constructor initializer of that declaration. Thus a constructor ini-
tializer is permitted to access the parameters of the constructor. For example:

class A
{
 public A(int x, int y) {}
}

class B: A
{
 public B(int x, int y): base(x + y, x - y) {}
}

An instance constructor initializer cannot access the instance being created. Therefore it is
a compile-time error to reference this in an argument expression of the constructor initial-
izer, as is it a compile-time error for an argument expression to reference any instance
member through a simple-name.

10.11.2 Instance Variable Initializers
When an instance constructor has no constructor initializer, or it has a constructor initial-
izer of the form base(...), that constructor implicitly performs the initializations specified
by the variable-initializers of the instance fields declared in its class. This corresponds to a
sequence of assignments that are executed immediately upon entry to the constructor and
before the implicit invocation of the direct base class constructor. The variable initializers
are executed in the textual order in which they appear in the class declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

582

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.11.3 Constructor Execution
Variable initializers are transformed into assignment statements, and these assignment
statements are executed before the invocation of the base class instance constructor. This
ordering ensures that all instance fields are initialized by their variable initializers before
any statements that have access to that instance are executed.

Given the example

using System;

class A
{
 public A() {
 PrintFields();
 }

 public virtual void PrintFields() {}

}

class B: A
{
 int x = 1;
 int y;

 public B() {
 y = -1;
 }

 public override void PrintFields() {
 Console.WriteLine("x = {0}, y = {1}", x, y);
 }
}

when new B() is used to create an instance of B, the following output is produced:

x = 1, y = 0

The value of x is 1 because the variable initializer is executed before the base class instance
constructor is invoked. However, the value of y is 0 (the default value of an int) because
the assignment to y is not executed until after the base class constructor returns.

It is useful to think of instance variable initializers and constructor initializers as state-
ments that are automatically inserted before the constructor-body. The example

using System;
using System.Collections;

class A
{
 int x = 1, y = -1, count;

 public A() {
 count = 0;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.11		 Instance Constructors

583

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 public A(int n) {
 count = n;
 }
}

class B: A
{
 double sqrt2 = Math.Sqrt(2.0);
 ArrayList items = new ArrayList(100);
 int max;

 public B(): this(100) {
 items.Add("default");
 }

 public B(int n): base(n – 1) {
 max = n;
 }
}

contains several variable initializers; it also contains constructor initializers of both forms
(base and this). The example corresponds to the code shown below, where each comment
indicates an automatically inserted statement (the syntax used for the automatically
inserted constructor invocations isn’t valid, but merely serves to illustrate the
mechanism).

using System.Collections;

class A
{
 int x, y, count;

 public A() {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = 0;
 }

 public A(int n) {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = n;
 }
}

class B: A
{
 double sqrt2;
 ArrayList items;
 int max;

 public B(): this(100) {
 B(100); // Invoke B(int) constructor
 items.Add("default");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

584

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 public B(int n): base(n – 1) {
 sqrt2 = Math.Sqrt(2.0); // Variable initializer
 items = new ArrayList(100); // Variable initializer
 A(n – 1); // Invoke A(int) constructor
 max = n;
 }
}

10.11.4 Default Constructors
If a class contains no instance constructor declarations, a default instance constructor is
automatically provided. That default constructor simply invokes the parameterless con-
structor of the direct base class. If the direct base class does not have an accessible param-
eterless instance constructor, a compile-time error occurs. If the class is abstract, then the
declared accessibility for the default constructor is protected. Otherwise, the declared
accessibility for the default constructor is public. Thus the default constructor is always of
the form

protected C(): base() {}

or

public C(): base() {}

where C is the name of the class.

In the example

class Message
{
 object sender;
 string text;
}

a default constructor is provided because the class contains no instance constructor decla-
rations. Thus the example is precisely equivalent to

class Message
{
 object sender;
 string text;

 public Message(): base() {}
}

10.11.5 Private Constructors
When a class T declares only private instance constructors, it is not possible for classes
outside the program text of T to derive from T or to directly create instances of T. Thus, if a

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.11		 Instance Constructors

585

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

class contains only static members and isn’t intended to be instantiated, adding an empty
private instance constructor will prevent instantiation. For example:

public class Trig
{
 private Trig() {} // Prevent instantiation

 public const double PI = 3.14159265358979323846;

 public static double Sin(double x) {...}
 public static double Cos(double x) {...}
 public static double Tan(double x) {...}
}

The Trig class groups related methods and constants, but is not intended to be instantiated.
Therefore it declares a single empty private instance constructor. At least one instance con-
structor must be declared to suppress the automatic generation of a default constructor.

n
n  BILL WAGNER If a class is not meant to be instantiated, it would be better to

make it a static class. However, if you are implementing the singleton pattern, a
private constructor ensures that only your factory method can create the singleton
object.

n
n  JoSEPH ALBAHARI If the goal is simply to prevent instantiation, an easier option

is to declare the class as static.

Private constructors also have a subtler purpose, which relies on the fact that a private
constructor can still be invoked from static members of the same class. Sometimes
exposing static methods as the only public means of instantiating a class offers certain
advantages. For example, with immutable objects, this approach can be used to imple-
ment a transparent object caching system.

10.11.6 optional Instance Constructor Parameters
The this(...) form of constructor initializer is commonly used in conjunction with over-
loading to implement optional instance constructor parameters. In the example

class Text
{
 public Text(): this(0, 0, null) {}

 public Text(int x, int y): this(x, y, null) {}

 public Text(int x, int y, string s) {
 // Actual constructor implementation
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

586

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

the first two instance constructors merely provide the default values for the missing argu-
ments. Both use a this(...) constructor initializer to invoke the third instance constructor,
which actually does the work of initializing the new instance. The effect is that of optional
constructor parameters:

Text t1 = new Text(); // Same as Text(0, 0, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

10.12 Static Constructors
A static constructor is a member that implements the actions required to initialize a closed
class type. Static constructors are declared using static-constructor-declarations:

static-constructor-declaration:
attributesopt static-constructor-modifiers identifier () static-constructor-body

static-constructor-modifiers:
externopt static
static externopt

static-constructor-body:
block
;

A static-constructor-declaration may include a set of attributes (§17) and an extern modifier
(§10.6.7).

The identifier of a static-constructor-declaration must name the class in which the static con-
structor is declared. If any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an extern modifier, the static constructor is
said to be an external static constructor. Because an external static constructor declaration
provides no actual implementation, its static-constructor-body consists of a semicolon. For
all other static constructor declarations, the static-constructor-body consists of a block that
specifies the statements to execute to initialize the class. This corresponds exactly to the
method-body of a static method with a void return type (§10.6.10).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a closed class type executes at most once in a given application
domain. The execution of a static constructor is triggered by the first of the following events
to occur within an application domain:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.12		 Static Constructors

587

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

An instance of the class type is created.•	

Any of the static members of the class type are referenced.•	

n
n  JoN SkEET It’s very possible for the presence of an empty static constructor to

affect the behavior of the code, as it can change the point at which static field initial-
izers are executed. If you choose to take advantage of this behavior, I would highly
recommend that you at least include a comment in the static constructor to explain
why and how you’re relying on its presence, to avoid it being removed by an eager
maintainer at a later date.

If a class contains the Main method (§3.1) in which execution begins, the static constructor
for that class executes before the Main method is called.

To initialize a new closed class type, first a new set of static fields (§10.5.1) for that particu-
lar closed type is created. Each of the static fields is initialized to its default value (§5.2).
Next, the static field initializers (§10.4.5.1) are executed for those static fields. Finally, the
static constructor is executed.

The example

using System;

class Test
{
 static void Main()
 {
 A.F();
 B.F();
 }
}

class A
{
 static A()
 {
 Console.WriteLine("Init A");
 }
 public static void F()
 {
 Console.WriteLine("A.F");
 }
}

class B
{
 static B()
 {
 Console.WriteLine("Init B");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

588

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 public static void F()
 {
 Console.WriteLine("B.F");
 }
}

must produce the output

Init A
A.F
Init B
B.F

because the execution of A’s static constructor is triggered by the call to A.F, and the execu-
tion of B’s static constructor is triggered by the call to B.F.

It is possible to construct circular dependencies that allow static fields with variable initial-
izers to be observed in their default value state.

The example

using System;

class A
{
 public static int X;

 static A()
 {
 X = B.Y + 1;
 }
}

class B
{
 public static int Y = A.X + 1;

 static B() { }

 static void Main()
 {
 Console.WriteLine("X = {0}, Y = {1}", A.X, B.Y);
 }
}

produces the following output:

X = 1, Y = 2

To execute the Main method, the system first runs the initializer for B.Y, prior to class B’s
static constructor. Y’s initializer causes A’s static constructor to be run because the value of
A.X is referenced. The static constructor of A, in turn, proceeds to compute the value of X,
and in doing so fetches the default value of Y, which is zero. A.X is thus initialized to 1. The

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.13		 Destructors

589

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

process of running A’s static field initializers and static constructor then completes, return-
ing to the calculation of the initial value of Y, the result of which becomes 2.

Because the static constructor is executed exactly once for each closed constructed class
type, it is a convenient place to enforce runtime checks on the type parameter that cannot
be checked at compile-time via constraints (§10.1.5). For example, the following type uses
a static constructor to enforce that the type argument is an enum:

class Gen<T> where T : struct
{
 static Gen()
 {
 if (!typeof(T).IsEnum)
 {
 throw new ArgumentException("T must be an enum");
 }
 }
}

10.13 Destructors
A destructor is a member that implements the actions required to destruct an instance of a
class. A destructor is declared using a destructor-declaration:

destructor-declaration:
attributesopt externopt ~ identifier () destructor-body

destructor-body:
block
;

A destructor-declaration may include a set of attributes (§17).

The identifier of a destructor-declarator must name the class in which the destructor is
declared. If any other name is specified, a compile-time error occurs.

When a destructor declaration includes an extern modifier, the destructor is said to be an
external destructor. Because an external destructor declaration provides no actual imple-
mentation, its destructor-body consists of a semicolon. For all other destructors, the
destructor-body consists of a block that specifies the statements to execute to destruct an
instance of the class. A destructor-body corresponds exactly to the method-body of an instance
method with a void return type (§10.6.10).

Destructors are not inherited. Thus a class has no destructors other than the one which may
be declared in that class.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

590

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Since a destructor is required to have no parameters, it cannot be overloaded, so a class can
have, at most, one destructor.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance
becomes eligible for destruction when it is no longer possible for any code to use that
instance. Execution of the destructor for the instance may occur at any time after the
instance becomes eligible for destruction. When an instance is destructed, the destructors
in that instance’s inheritance chain are called, in order, from most derived to least derived.
A destructor may be executed on any thread. For further discussion of the rules that gov-
ern when and how a destructor is executed, see §3.9.

n
n  ERIC LIPPERT Clearly, code running in a destructor is running in a potentially

very different environment than code anywhere else in your program. It is a really bad
idea to do anything complicated, dangerous, side-effecting, or lengthy. In particular,
the following code, which produces a complicated side effect of writing to the console
is for pedagogic purposes, is not an example of what you should do in a real
destructor.

The example

using System;

class A
{
 ~A()
 {
 Console.WriteLine("A's destructor");
 }
}

class B : A
{
 ~B()
 {
 Console.WriteLine("B's destructor");
 }
}

class Test
{
 static void Main()
 {
 B b = new B();
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.13		 Destructors

591

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

produces the output

B's destructor
A's destructor

since destructors in an inheritance chain are called in order, from most derived to least
derived.

n
n  ERIC LIPPERT Traditionally, the term “destructor” refers to a deterministic

cleanup method and a “finalizer” refers to a nondeterministic cleanup method called
by a garbage collector. “Destructor” is a bit of an unfortunate misnomer in C#; ideally
these methods would be called “finalizers” and the Dispose method of IDisposable
would be called a “destructor.”

Destructors are implemented by overriding the virtual method Finalize on System.
Object. C# programs are not permitted to override this method or call it (or overrides of it)
directly. For instance, the program

class A
{
 override protected void Finalize() { } // Error

 public void F()
 {
 this.Finalize(); // Error
 }
}

contains two errors.

The compiler behaves as if this method, and overrides of it, do not exist at all. Thus the
program

class A
{
 void Finalize() { } // Permitted
}

is valid, and the method shown hides System.Object’s Finalize method.

For a discussion of the behavior when an exception is thrown from a destructor,
see §16.3.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

592

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.14 Iterators
A function member (§7.5) implemented using an iterator block (§8.2) is called an iterator.

An iterator block may be used as the body of a function member as long as the return type
of the corresponding function member is one of the enumerator interfaces (§10.14.1) or one
of the enumerable interfaces (§10.14.2). It can occur as a method-body, operator-body, or
accessor-body, whereas events, instance constructors, static constructors, and destructors
cannot be implemented as iterators.

When a function member is implemented using an iterator block, it is a compile-time error
for the formal parameter list of the function member to specify any ref or out
parameters.

10.14.1 Enumerator Interfaces
The enumerator interfaces are the nongeneric interface System.Collections.IEnumerator
and all instantiations of the generic interface System.Collections.Generic.IEnumerator<T>.
For the sake of brevity, in this chapter these interfaces are referenced as IEnumerator and
IEnumerator<T>, respectively.

n
n  JoN SkEET I wish the “enumerable” and “enumerator” terminology had been

“iterable” and “iterator,” including IIterable<T> and IIterator<T> interfaces. Admit-
tedly, the double-I part is ugly, but it would have kept more lexical space between
iterators and enumerations. It’s bizarrely long-winded to enumerate over an
enumeration.

10.14.2 Enumerable Interfaces
The enumerable interfaces are the nongeneric interface System.Collections.IEnumerable
and all instantiations of the generic interface System.Collections.Generic.IEnumerable<T>.
For the sake of brevity, in this chapter these interfaces are referenced as IEnumerable and
IEnumerable<T>, respectively.

10.14.3 yield Type
An iterator produces a sequence of values, all of the same type. This type is called the yield
type of the iterator.

The yield type of an iterator that returns •	 IEnumerator or IEnumerable is object.

The yield type of an iterator that returns •	 IEnumerator<T> or IEnumerable<T> is T.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

593

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

10.14.4 Enumerator objects
When a function member returning an enumerator interface type is implemented using an
iterator block, invoking the function member does not immediately execute the code in the
iterator block. Instead, an enumerator object is created and returned. This object encapsu-
lates the code specified in the iterator block, and execution of the code in the iterator block
occurs when the enumerator object’s MoveNext method is invoked. An enumerator object
has the following characteristics:

It implements •	 IEnumerator and IEnumerator<T>, where T is the yield type of the
iterator.

It implements •	 System.IDisposable.

It is initialized with a copy of the argument values (if any) and instance value passed to •	
the function member.

It has four potential states—•	 before, running, suspended, and after—and is initially in the
before state.

n
n  JoN SkEET The fact that none of the code within an iterator block runs until the

first call to MoveNext() is irritating. It means that if you need to check any parameter
values, you should really use two methods: a normal method that performs the appro-
priate validation and calls the second method, which is then implemented with an
iterator block. Ideally, some construct would be available to indicate a section of
the iterator block that should be executed immediately, before constructing the state
machine.

An enumerator object is typically an instance of a compiler-generated enumerator class
that encapsulates the code in the iterator block and implements the enumerator interfaces,
but other methods of implementation are possible. If an enumerator class is generated by
the compiler, that class will be nested, directly or indirectly, in the class containing the
function member; it will have private accessibility; and it will have a name reserved for
compiler use (§2.4.2).

An enumerator object may implement more interfaces than those specified above.

The following sections describe the exact behavior of the MoveNext, Current, and Dispose
members of the IEnumerable and IEnumerable<T> interface implementations provided by
an enumerator object.

Note that enumerator objects do not support the IEnumerator.Reset method. Invoking
this method causes a System.NotSupportedException to be thrown.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

594

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.14.4.1 The MoveNext Method
The MoveNext method of an enumerator object encapsulates the code of an iterator block.
Invoking the MoveNext method executes code in the iterator block and sets the Current
property of the enumerator object as appropriate. The precise action performed by MoveNext
depends on the state of the enumerator object when MoveNext is invoked:

If the state of the enumerator object is •	 before, invoking MoveNext:

Changes the state to - running.

Initializes the parameters (including - this) of the iterator block to the argument val-
ues and instance value saved when the enumerator object was initialized.

- Executes the iterator block from the beginning until execution is interrupted (as
described below).

If the state of the enumerator object is •	 running, the result of invoking MoveNext is
unspecified.

If the state of the enumerator object is •	 suspended, invoking MoveNext:

Changes the state to - running.

Restores the values of all local variables and parameters (including - this) to the val-
ues saved when execution of the iterator block was last suspended. Note that the
contents of any objects referenced by these variables may have changed since the
previous call to MoveNext.

Resumes execution of the iterator block immediately following the - yield return
statement that caused the suspension of execution and continues until execution is
interrupted (as described below).

If the state of the enumerator object is •	 after, invoking MoveNext returns false.

When MoveNext executes the iterator block, execution can be interrupted in four ways: by
a yield return statement, by a yield break statement, by encountering the end of the itera-
tor block, and by an exception being thrown and propagated out of the iterator block.

When a •	 yield return statement is encountered (§8.14):

- The expression given in the statement is evaluated, implicitly converted to the yield
type, and assigned to the Current property of the enumerator object.

- Execution of the iterator body is suspended. The values of all local variables and
parameters (including this) are saved, as is the location of this yield return statement.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

595

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

If the yield return statement is within one or more try blocks, the associated finally
blocks are not executed at this time.

The state of the enumerator object is changed to - suspended.

The - MoveNext method returns true to its caller, indicating that the iteration success-
fully advanced to the next value.

When a •	 yield break statement is encountered (§8.14):

If the - yield break statement is within one or more try blocks, the associated finally
blocks are executed.

The state of the enumerator object is changed to - after.

The - MoveNext method returns false to its caller, indicating that the iteration is
complete.

When the end of the iterator body is encountered:•	

The state of the enumerator object is changed to - after.

The - MoveNext method returns false to its caller, indicating that the iteration is
complete.

When an exception is thrown and propagated out of the iterator block:•	

Appropriate - finally blocks in the iterator body will have been executed by the
exception propagation.

The state of the enumerator object is changed to - after.

The exception propagation continues to the caller of the - MoveNext method.

10.14.4.2 The Current Property
An enumerator object’s Current property is affected by yield return statements in the
iterator block.

When an enumerator object is in the suspended state, the value of Current is the value set
by the previous call to MoveNext. When an enumerator object is in the before, running, or
after states, the result of accessing Current is unspecified.

For an iterator with a yield type other than object, the result of accessing Current through
the enumerator object’s IEnumerable implementation corresponds to accessing Current
through the enumerator object’s IEnumerator<T> implementation and casting the result to
object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

596

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

10.14.4.3 The Dispose Method
The Dispose method is used to clean up the iteration by bringing the enumerator object to
the after state.

If the state of the enumerator object is •	 before, invoking Dispose changes the state to
after.

If the state of the enumerator object is •	 running, the result of invoking Dispose is
unspecified.

If the state of the enumerator object is •	 suspended, invoking Dispose:

Changes the state to - running.

Executes any - finally blocks as if the last executed yield return statement were a
yield break statement. If this causes an exception to be thrown and propagated out
of the iterator body, the state of the enumerator object is set to after and the exception
is propagated to the caller of the Dispose method.

Changes the state to - after.

If the state of the enumerator object is •	 after, invoking Dispose has no effect.

10.14.5 Enumerable objects
When a function member returning an enumerable interface type is implemented using an
iterator block, invoking the function member does not immediately execute the code in the
iterator block. Instead, an enumerable object is created and returned. The enumerable
object’s GetEnumerator method returns an enumerator object that encapsulates the code
specified in the iterator block, and execution of the code in the iterator block occurs when
the enumerator object’s MoveNext method is invoked. An enumerable object has the follow-
ing characteristics:

It implements •	 IEnumerable and IEnumerable<T>, where T is the yield type of the
iterator.

It is initialized with a copy of the argument values (if any) and instance value passed to •	
the function member.

An enumerable object is typically an instance of a compiler-generated enumerable class
that encapsulates the code in the iterator block and implements the enumerable interfaces,
but other methods of implementation are possible. If an enumerable class is generated by
the compiler, that class will be nested, directly or indirectly, in the class containing the
function member, it will have private accessibility, and it will have a name reserved for
compiler use (§2.4.2).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

597

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

An enumerable object may implement more interfaces than those specified above. In par-
ticular, an enumerable object may also implement IEnumerator and IEnumerator<T>,
enabling it to serve as both an enumerable and an enumerator. In that type of implementa-
tion, the first time an enumerable object’s GetEnumerator method is invoked, the enumer-
able object itself is returned. Subsequent invocations of the enumerable object’s
GetEnumerator, if any, return a copy of the enumerable object. Thus each returned enu-
merator has its own state and changes in one enumerator will not affect another.

10.14.5.1 The GetEnumerator Method
An enumerable object provides an implementation of the GetEnumerator methods of the
IEnumerable and IEnumerable<T> interfaces. The two GetEnumerator methods share a
common implementation that acquires and returns an available enumerator object. The
enumerator object is initialized with the argument values and instance value saved when
the enumerable object was initialized, but otherwise the enumerator object functions as
described in §10.14.4.

10.14.6 Implementation Example
This section describes a possible implementation of iterators in terms of standard C# con-
structs. The implementation described here is based on the same principles used by the
Microsoft C# compiler, but it is by no means a mandated implementation or the only one
possible.

n
n  BILL WAGNER As you look at this example, notice that the compiler is simply

creating all the code you would generate if you were to create your own nested enu-
merator class. The iterator method saves you from a great deal of repeated work, and
it improves the readability of your code.

The following Stack<T> class implements its GetEnumerator method using an iterator. The
iterator enumerates the elements of the stack in top to bottom order.

using System;
using System.Collections;
using System.Collections.Generic;

class Stack<T> : IEnumerable<T>
{
 T[] items;
 int count;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

598

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 public void Push(T item)
 {
 if (items == null)
 {
 items = new T[4];
 }
 else if (items.Length == count)
 {
 T[] newItems = new T[count * 2];
 Array.Copy(items, 0, newItems, 0, count);
 items = newItems;
 }
 items[count++] = item;
 }

 public T Pop()
 {
 T result = items[--count];
 items[count] = default(T);
 return result;
 }

 public IEnumerator<T> GetEnumerator()
 {
 for (int i = count - 1; i >= 0; --i) yield return items[i];
 }
}

The GetEnumerator method can be translated into an instantiation of a compiler-generated
enumerator class that encapsulates the code in the iterator block, as shown in the following
example:

class Stack<T>: IEnumerable<T>
{
 ...

 public IEnumerator<T> GetEnumerator() {
 return new __Enumerator1(this);
 }

 class __Enumerator1: IEnumerator<T>, IEnumerator
 {
 int __state;
 T __current;
 Stack<T> __this;
 int i;

 public __Enumerator1(Stack<T> __this) {
 this.__this = __this;
 }

 public T Current {
 get { return __current; }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

599

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 object IEnumerator.Current {
 get { return __current; }
 }

 public bool MoveNext() {
 switch (__state) {
 case 1: goto __state1;
 case 2: goto __state2;
 }
 i = __this.count - 1;
 __loop:
 if (i < 0) goto __state2;
 __current = __this.items[i];
 __state = 1;
 return true;
 __state1:
 --i;
 goto __loop;
 __state2:
 __state = 2;
 return false;
 }

 public void Dispose() {
 __state = 2;
 }

 void IEnumerator.Reset() {
 throw new NotSupportedException();
 }
 }
}

In the preceding translation, the code in the iterator block is turned into a state machine
and placed in the MoveNext method of the enumerator class. Furthermore, the local vari-
able i is turned into a field in the enumerator object so it can continue to exist across invo-
cations of MoveNext.

The following example prints a simple multiplication table of the integers 1 through 10.
The FromTo method in the example returns an enumerable object and is implemented using
an iterator.

using System;
using System.Collections.Generic;

class Test
{
 static IEnumerable<int> FromTo(int from, int to)
 {
 while (from <= to) yield return from++;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

600

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 static void Main()
 {
 IEnumerable<int> e = FromTo(1, 10);
 foreach (int x in e)
 {
 foreach (int y in e)
 {
 Console.Write("{0,3} ", x * y);
 }
 Console.WriteLine();
 }
 }
}

The FromTo method can be translated into an instantiation of a compiler-generated enu-
merable class that encapsulates the code in the iterator block, as shown in the following
example:

using System;
using System.Threading;
using System.Collections;
using System.Collections.Generic;

class Test
{
 ...

 static IEnumerable<int> FromTo(int from, int to) {
 return new __Enumerable1(from, to);
 }

 class __Enumerable1:
 IEnumerable<int>, IEnumerable,
 IEnumerator<int>, IEnumerator
 {
 int __state;
 int __current;
 int __from;
 int from;
 int to;
 int i;

 public __Enumerable1(int __from, int to) {
 this.__from = __from;
 this.to = to;
 }

 public IEnumerator<int> GetEnumerator() {
 __Enumerable1 result = this;
 if (Interlocked.CompareExchange(ref __state, 1, 0) != 0) {
 result = new __Enumerable1(__from, to);
 result.__state = 1;
 }
 result.from = result.__from;
 return result;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

601

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 IEnumerator IEnumerable.GetEnumerator() {
 return (IEnumerator)GetEnumerator();
 }

 public int Current {
 get { return __current; }
 }

 object IEnumerator.Current {
 get { return __current; }
 }

 public bool MoveNext() {
 switch (__state) {
 case 1:
 if (from > to) goto case 2;
 __current = from++;
 __state = 1;
 return true;
 case 2:
 __state = 2;
 return false;
 default:
 throw new InvalidOperationException();
 }
 }

 public void Dispose() {
 __state = 2;
 }

 void IEnumerator.Reset() {
 throw new NotSupportedException();
 }
 }
}

The enumerable class implements both the enumerable interfaces and the enumerator
interfaces, enabling it to serve as both an enumerable and an enumerator. The first time the
GetEnumerator method is invoked, the enumerable object itself is returned. Subsequent
invocations of the enumerable object’s GetEnumerator, if any, return a copy of the enumer-
able object. Thus each returned enumerator has its own state and changes in one enumera-
tor will not affect another. The Interlocked.CompareExchange method is used to ensure
thread-safe operation.

The from and to parameters are turned into fields in the enumerable class. Because from is
modified in the iterator block, an additional __from field is introduced to hold the initial
value given to from in each enumerator.

The MoveNext method throws an InvalidOperationException if it is called when __state
is 0. This protects against use of the enumerable object as an enumerator object without
first calling GetEnumerator.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

602

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

The following example shows a simple tree class. The Tree<T> class implements its
GetEnumerator method using an iterator. The iterator enumerates the elements of the tree
in infix order.

using System;
using System.Collections.Generic;

class Tree<T> : IEnumerable<T>
{
 T value;
 Tree<T> left;
 Tree<T> right;

 public Tree(T value, Tree<T> left, Tree<T> right)
 {
 this.value = value;
 this.left = left;
 this.right = right;
 }

 public IEnumerator<T> GetEnumerator() {
 if (left != null) foreach (T x in left) yield x;
 yield value;
 if (right != null) foreach (T x in right) yield x;
 }
}

class Program
{
 static Tree<T> MakeTree<T>(T[] items, int left, int right)
 {
 if (left > right) return null;
 int i = (left + right) / 2;
 return new Tree<T>(items[i],
 MakeTree(items, left, i - 1),
 MakeTree(items, i + 1, right));
 }

 static Tree<T> MakeTree<T>(params T[] items)
 {
 return MakeTree(items, 0, items.Length - 1);
 }

 // The output of the program is:
 // 1 2 3 4 5 6 7 8 9
 // Mon Tue Wed Thu Fri Sat Sun

 static void Main()
 {
 Tree<int> ints = MakeTree(1, 2, 3, 4, 5, 6, 7, 8, 9);
 foreach (int i in ints) Console.Write("{0} ", i);
 Console.WriteLine();

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

603

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 Tree<string> strings = MakeTree(
 "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun");
 foreach (string s in strings) Console.Write("{0} ", s);
 Console.WriteLine();
 }
}

The GetEnumerator method can be translated into an instantiation of a compiler-generated
enumerator class that encapsulates the code in the iterator block, as shown in the following
example:

class Tree<T>: IEnumerable<T>
{
 ...

 public IEnumerator<T> GetEnumerator() {
 return new __Enumerator1(this);
 }

 class __Enumerator1 : IEnumerator<T>, IEnumerator
 {
 Node<T> __this;
 IEnumerator<T> __left, __right;
 int __state;
 T __current;

 public __Enumerator1(Node<T> __this) {
 this.__this = __this;
 }

 public T Current {
 get { return __current; }
 }

 object IEnumerator.Current {
 get { return __current; }
 }

 public bool MoveNext() {
 try {
 switch (__state) {

 case 0:
 __state = -1;
 if (__this.left == null)
 goto __yield_value;
 __left = __this.left.GetEnumerator();
 goto case 1;

 case 1:
 __state = -2;
 if (!__left.MoveNext())
 goto __left_dispose;
 __current = __left.Current;
 __state = 1;
 return true;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10. Classes

604

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

Cl
as

se
s

10
.	

 __left_dispose:
 __state = -1;
 __left.Dispose();

 __yield_value:
 __current = __this.value;
 __state = 2;
 return true;

 case 2:
 __state = -1;
 if (__this.right == null) goto __end;
 __right = __this.right.GetEnumerator();
 goto case 3;

 case 3:
 __state = -3;
 if (!__right.MoveNext()) goto __right_dispose;
 __current = __right.Current;
 __state = 3;
 return true;

 __right_dispose:
 __state = -1;
 __right.Dispose();

 __end:
 __state = 4;
 break;

 }
 }
 finally {
 if (__state < 0) Dispose();
 }
 return false;
 }

 public void Dispose() {
 try {
 switch (__state) {

 case 1:
 case -2:
 __left.Dispose();
 break;

 case 3:
 case -3:
 __right.Dispose();
 break;

 }
 }
 finally {
 __state = 4;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

10.14		 Iterators

605

Classes
10.	

Classes
10.	

Classes
10.	

Classes
10.	

 void IEnumerator.Reset() {
 throw new NotSupportedException();
 }
 }
}

The compiler generated temporaries used in the foreach statements are lifted into the
__left and __right fields of the enumerator object. The __state field of the enumerator
object is carefully updated so that the Dispose() method will be called correctly if an
exception is thrown. Note that it is not possible to write the translated code with simple
foreach statements.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

607

Structs11.

Structs are similar to classes in that they represent data structures that can contain data
members and function members. However, unlike classes, structs are value types and do
not require heap allocation. A variable of a struct type directly contains the data of the
struct, whereas a variable of a class type contains a reference to the data, the latter known
as an object.

n
n  ERIC LIPPERT The statement that “structs do not require heap allocation” is not

the statement “all instances of all structs are always allocated on the stack.” First, the
second statement is not true: The memory for a DateTime field of a Customer class will
be allocated on the heap along with the rest of the memory of the Customer class. Sec-
ond, whether a local variable of value type is allocated by changing the stack register
in the CPU is an implementation detail of a particular version of the framework. The
specification is pointing out the opportunity for an optimization here, not stating that
a particular allocation pattern is required.

Structs are particularly useful for small data structures that have value semantics. Complex
numbers, points in a coordinate system, or key–value pairs in a dictionary are all good
examples of structs. Key to these data structures is that they have few data members, that
they do not require use of inheritance or referential identity, and that they can be conve-
niently implemented using value semantics where assignment copies the value instead of
the reference.

As described in §4.1.4, the simple types provided by C#, such as int, double, and bool, are,
in fact, all struct types. Just as these predefined types are structs, so it is also possible to use
structs and operator overloading to implement new “primitive” types in the C# language.
Two examples of such types are given at the end of this chapter (§11.4).

n
n  BILL WAGNER All simple types are immutable. Any structs you create should

also be immutable.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

608

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

n
n  JoN SkEET While I have always appreciated the ability to create user-defined

value types, I’ve almost never found myself needing to do so. When it’s appropriate,
though it can be extremely useful. For example, I’m currently involved in porting a
date/time API from Java, and we have three different value types all wrapping just a
long. In the Java code, these are often represented as plain long values for efficiency—
but using different types with different operations (and operators) available has made
the C# code vastly more readable.

11.1 Struct Declarations
A struct-declaration is a type-declaration (§9.6) that declares a new struct:

struct-declaration:
attributesopt struct-modifiersopt partialopt struct identifier type-parameter-listopt
 struct-interfacesopt type-parameter-constraints-clausesopt struct-body ;opt

A struct-declaration consists of an optional set of attributes (§17), followed by an optional set
of struct-modifiers (§11.1.1), followed by an optional partial modifier, followed by the key-
word struct and an identifier that names the struct, followed by an optional type-parameter-
list specification (§10.1.3), followed by an optional struct-interfaces specification (§11.1.2),
followed by an optional type-parameters-constraints-clauses specification (§10.1.5), followed
by a struct-body (§11.1.4), optionally followed by a semicolon.

11.1.1 Struct Modifiers
A struct-declaration may optionally include a sequence of struct modifiers:

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in a struct
declaration.

The modifiers of a struct declaration have the same meaning as those of a class declaration
(§10.1).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.2		 Struct Members

609

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

11.1.2 partial Modifier
The partial modifier indicates that this struct-declaration is a partial type declaration. Mul-
tiple partial struct declarations with the same name within an enclosing namespace or type
declaration combine to form one struct declaration, following the rules specified in §10.2.

11.1.3 Struct Interfaces
A struct declaration may include a struct-interfaces specification, in which case the struct is
said to directly implement the given interface types.

struct-interfaces:
: interface-type-list

Interface implementations are discussed further in §13.4.

11.1.4 Struct Body
The struct-body of a struct defines the members of the struct.

struct-body:
{ struct-member-declarationsopt }

11.2 Struct Members
The members of a struct consist of the members introduced by its struct-member-declarations
and the members inherited from the type System.ValueType.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

Except for the differences noted in §11.3, the descriptions of class members provided in
§10.3 through §10.14 apply to struct members as well.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

610

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

11.3 Class and Struct Differences
Structs differ from classes in several important ways:

Structs are value types (§11.3.1).•	

All struct types implicitly inherit from the class •	 System.ValueType (§11.3.2).

Assignment to a variable of a struct type creates a •	 copy of the value being assigned
(§11.3.3).

The default value of a struct is the value produced by setting all value type fields to their •	
default values and all reference type fields to null (§11.3.4).

Boxing and unboxing operations are used to convert between a struct type and •	 object
(§11.3.5).

The meaning of •	 this is different for structs (§7.6.7).

Instance field declarations for a struct are not permitted to include variable initializers •	
(§11.3.7).

A struct is not permitted to declare a parameterless instance constructor (§11.3.8).•	

A struct is not permitted to declare a destructor (§11.3.9).•	

n
n  JESSE LIBERTy Note that these differences are semantically significant, unlike

the trivial differences between structs and classes in C++.

11.3.1 Value Semantics
Structs are value types (§4.1) and are said to have value semantics. Classes, in contrast, are
reference types (§4.2) and are said to have reference semantics.

n
n  BILL WAGNER The statement below that a variable of a struct type directly con-

taining the data of the struct is one of those correct but misleading specification state-
ments. A struct may contain members of reference types. The data of the struct is a
reference to the class type. For example:

struct Message
{
 int code;
 string message;
 // message contains a reference to a string
 // object, not the characters in the message
}

Assignment copies the reference to message, not the characters themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.3		 Class and Struct Differences

611

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

A variable of a struct type directly contains the data of the struct, whereas a variable of a
class type contains a reference to the data, the latter known as an object. When a struct B
contains an instance field of type A and A is a struct type, it is a compile-time error for A to
depend on B. A struct X directly depends on a struct Y if X contains an instance field of type
Y. Given this definition, the complete set of structs upon which a struct depends is the
transitive closure of the directly depends on relationship. For example,

struct Node
{
 int data;

 Node next; // Error: Node directly depends on itself

}

is an error because Node contains an instance field of its own type. Another example

struct A { B b; }

struct B { C c; }

struct C { A a; }

is an error because each of the types A, B, and C depend on each other.

With classes, it is possible for two variables to reference the same object, and thus possible
for operations on one variable to affect the object referenced by the other variable. With
structs, each of the variables has its own copy of the data (except in the case of ref and out
parameter variables), and it is not possible for operations on one to affect the others. Fur-
thermore, because structs are not reference types, it is not possible for values of a struct
type to be null.

Given the declaration

struct Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

the code fragment

Point a = new Point(10, 10);
Point b = a;
a.x = 100;
System.Console.WriteLine(b.x);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

612

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

outputs the value 10. The assignment of a to b creates a copy of the value, and b is thus
unaffected by the assignment to a.x. Had Point instead been declared as a class, the output
would be 100 because a and b would reference the same object.

11.3.2 Inheritance
All struct types implicitly inherit from the class System.ValueType, which in turn inherits
from class object. A struct declaration may specify a list of implemented interfaces, but it
is not possible for a struct declaration to specify a base class.

Struct types are never abstract and are always implicitly sealed. The abstract and sealed
modifiers are, therefore, not permitted in a struct declaration.

Since inheritance isn’t supported for structs, the declared accessibility of a struct member
cannot be protected or protected internal.

Function members in a struct cannot be abstract or virtual, and the override modifier is
allowed only to override methods inherited from System.ValueType.

11.3.3 Assignment
Assignment to a variable of a struct type creates a copy of the value being assigned. This
differs from assignment to a variable of a class type, which copies the reference but not the
object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the
result of a function member, a copy of the struct is created. A struct may be passed by refer-
ence to a function member using a ref or out parameter.

n
n  ERIC LIPPERT Another way of looking at this issue is that ref and out

parameters create an alias to variables. Rather than thinking, “I’m going to use a
ref parameter to pass this struct by reference,” I prefer to think, “I’m going to use
a ref parameter to make this parameter an alias for the variable that contains this
struct.”

When a property or indexer of a struct is the target of an assignment, the instance expres-
sion associated with the property or indexer access must be classified as a variable. If the
instance expression is classified as a value, a compile-time error occurs. This is described
in further detail in §7.17.1.

11.3.4 Default Values
As described in §5.2, several kinds of variables are automatically initialized to their default
values when they are created. For variables of class types and other reference types, this

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.3		 Class and Struct Differences

613

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

default value is null. However, since structs are value types that cannot be null, the default
value of a struct is the value produced by setting all value type fields to their default value
and all reference type fields to null.

Referring to the Point struct declared above, the example

Point[] a = new Point[100];

initializes each Point in the array to the value produced by setting the x and y fields
to zero.

The default value of a struct corresponds to the value returned by the default constructor
of the struct (§4.1.2). Unlike a class, a struct is not permitted to declare a parameterless
instance constructor. Instead, every struct implicitly has a parameterless instance construc-
tor, which always returns the value that results from setting all value type fields to their
default value and all reference type fields to null.

Structs should be designed to consider the default initialization state a valid state. In the
example

using System;

struct KeyValuePair
{
 string key;
 string value;

 public KeyValuePair(string key, string value) {
 if (key == null || value == null)
 throw new ArgumentException();
 this.key = key;
 this.value = value;
 }
}

the user-defined instance constructor protects against null values only where it is explicitly
called. In cases where a KeyValuePair variable is subject to default value initialization, the
key and value fields will be null, and the struct must be prepared to handle this state.

11.3.5 Boxing and Unboxing

n
n  BILL WAGNER Since the introduction of C# 2.0, you have often been able to avoid

boxing and unboxing by using generics.

A value of a class type can be converted to type object or to an interface type that is
implemented by the class simply by treating the reference as another type at compile time.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

614

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

Likewise, a value of type object or a value of an interface type can be converted back to
a class type without changing the reference (but, of course, a runtime type check is
required in this case).

Since structs are not reference types, these operations are implemented differently for
struct types. When a value of a struct type is converted to type object or to an interface
type that is implemented by the struct, a boxing operation takes place. Likewise, when a
value of type object or a value of an interface type is converted back to a struct type, an
unboxing operation takes place. A key difference from the same operations on class types
is that boxing and unboxing copy the struct value either into or out of the boxed instance.
Thus, following a boxing or unboxing operation, changes made to the unboxed struct are
not reflected in the boxed struct.

n
n  ERIC LIPPERT This is yet another reason why value types should be immutable:

If a change is impossible, then the fact that changes made to an unboxed struct are not
reflected in the boxed struct becomes irrelevant. Rather than dealing with the unex-
pected and confusing semantics, avoid them altogether.

When a struct type overrides a virtual method inherited from System.Object (such as
Equals, GetHashCode, or ToString), invocation of the virtual method through an instance
of the struct type does not cause boxing to occur. This is true even when the struct is used
as a type parameter and the invocation occurs through an instance of the type parameter
type. For example:

using System;

struct Counter
{
 int value;

 public override string ToString() {
 value++;
 return value.ToString();
 }
}

class Program
{
 static void Test<T>() where T: new() {
 T x = new T();
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 }

 static void Main() {
 Test<Counter>();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.3		 Class and Struct Differences

615

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

The output of this program is

1
2
3

Although it is bad style for ToString to have side effects, the example demonstrates that
no boxing occurred for the three invocations of x.ToString().

Similarly, boxing never implicitly occurs when accessing a member on a constrained type
parameter. For example, suppose an interface ICounter contains a method Increment that
can be used to modify a value. If ICounter is used as a constraint, the implementation of
the Increment method is called with a reference to the variable that Increment was called
on—never a boxed copy.

using System;

interface ICounter
{
 void Increment();
}

struct Counter: ICounter
{
 int value;

 public override string ToString() {
 return value.ToString();
 }

 void ICounter.Increment() {
 value++;
 }
}

class Program
{
 static void Test<T>() where T: ICounter, new() {
 T x = new T();
 Console.WriteLine(x);
 x.Increment();
 // Modify x
 Console.WriteLine(x);
 ((ICounter)x).Increment();
 // Modify boxed copy of x
 Console.WriteLine(x);
 }

 static void Main() {
 Test<Counter>();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

616

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

The first call to Increment modifies the value in the variable x. This is not equivalent to the
second call to Increment, which modifies the value in a boxed copy of x. Thus the output
of the program is

0
1
1

For further details on boxing and unboxing, see §4.3.

11.3.6 Meaning of this
Within an instance constructor or instance function member of a class, this is classified as
a value. Thus, while this can be used to refer to the instance for which the function mem-
ber was invoked, it is not possible to assign to this in a function member of a class.

Within an instance constructor of a struct, this corresponds to an out parameter of the
struct type; within an instance function member of a struct, this corresponds to a ref
parameter of the struct type. In both cases, this is classified as a variable, and it is possible
to modify the entire struct for which the function member was invoked by assigning to
this or by passing this as a ref or out parameter.

n
n  VLADIMIR RESHETNIkoV Anonymous functions and query expressions inside

structs cannot access this or instance members of this.

11.3.7 Field Initializers
As described in §11.3.4, the default value of a struct consists of the value that results from
setting all value type fields to their default values and all reference type fields to null. For
this reason, a struct does not permit instance field declarations to include variable initial-
izers. This restriction applies only to instance fields. Static fields of a struct are permitted
to include variable initializers.

The example

struct Point
{
 public int x = 1; // Error: initializer not permitted
 public int y = 1; // Error: initializer not permitted
}

is in error because the instance field declarations include variable initializers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.3		 Class and Struct Differences

617

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

n
n  JoSEPH ALBAHARI The following pattern provides a work-around, giving X a

default value of 1:

struct Point
{
 bool initialized; // Default value false
 int x;
 public int X {
 get {
 if (!initialized) { x = 1; initialized = true; }
 return x;
 }
 }
}

n
n  ERIC LIPPERT A more terse version of Joseph’s technique would be to hide the

flag in a nullable and use the null coalescing operator:

struct Point
{
 private int? x; // Default value is null
 public int X { get { return x ?? 1; }}
}

Because a nullable int is actually implemented as a struct containing an int and a
bool, this is essentially the same technique, just a bit more concise.

11.3.8 Constructors
Unlike a class, a struct is not permitted to declare a parameterless instance constructor.
Instead, every struct implicitly has a parameterless instance constructor, which always
returns the value that results from setting all value type fields to their default values and
all reference type fields to null (§4.1.2). A struct can declare instance constructors having
parameters. For example:

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

618

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

Given the above declaration, the statements

Point p1 = new Point();

Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero.

A struct instance constructor is not permitted to include a constructor initializer of the form
base(...).

If the struct instance constructor doesn’t specify a constructor initializer, the this variable
corresponds to an out parameter of the struct type; similar to an out parameter, this must
be definitely assigned (§5.3) at every location where the constructor returns. If the struct
instance constructor specifies a constructor initializer, the this variable corresponds to a
ref parameter of the struct type; similar to a ref parameter, this is considered definitely
assigned on entry to the constructor body. Consider the instance constructor implementa-
tion below:

struct Point
{
 int x, y;

 public int X {
 set { x = value; }
 }

 public int Y {
 set { y = value; }
 }

 public Point(int x, int y) {
 X = x; // Error: this is not yet definitely assigned
 Y = y; // Error: this is not yet definitely assigned
 }
}

No instance member function (including the set accessors for the properties X and Y) can
be called until all fields of the struct being constructed have been definitely assigned. Note,
however, that if Point were a class instead of a struct, the instance constructor implementa-
tion would be permitted.

n
n  ERIC LIPPERT The specification does not mention that the way to make this work

is to simply force a call to the default constructor to ensure that the fields are
initialized:

public Point(int x, int y) : this() { // Struct is guaranteed to be initialized

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.4		 Struct Examples

619

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

11.3.9 Destructors
A struct is not permitted to declare a destructor.

11.3.10 Static Constructors
Static constructors for structs follow most of the same rules as for classes. The execution of
a static constructor for a struct type is triggered by the first of the following events to occur
within an application domain:

A static member of the struct type is referenced.•	

An explicitly declared constructor of the struct type is called.•	

The creation of default values (§11.3.4) of struct types does not trigger the static construc-
tor. (An example of this is the initial value of elements in an array.)

11.4 Struct Examples
The following shows two significant examples of using struct types to create types that
can be used similarly to the built-in types of the language, but with modified semantics.

n
n  BILL WAGNER These examples are not as compelling now that nullable types

have been added to the language and the framework. Even so, I find that I still create
struct types for holding instances of types when I create very large collections of data
values.

11.4.1 Database Integer Type
The DBInt struct below implements an integer type that can represent the complete set of
values of the int type, plus an additional state that indicates an unknown value. A type
with these characteristics is commonly used in databases.

using System;

public struct DBInt
{
 // The Null member represents an unknown DBInt value.

 public static readonly DBInt Null = new DBInt();

 // When the defined field is true, this DBInt represents a
 // known value that is stored in the value field. When
 // the defined field is false, this DBInt represents an
 // unknown value, and the value field is 0.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

620

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

 int value;
 bool defined;

 // Private instance constructor.
 // Creates a DBInt with a known value.

 DBInt(int value) {
 this.value = value;
 this.defined = true;
 }

 // The IsNull property is true if this
 // DBInt represents an unknown value.

 public bool IsNull { get { return !defined; } }

 // The Value property is the known value of this DBInt,
 // or 0 if this DBInt represents an unknown value.

 public int Value { get { return value; } }

 // Implicit conversion from int to DBInt.

 public static implicit operator DBInt(int x) {
 return new DBInt(x);
 }

 // Explicit conversion from DBInt to int. Throws an
 // exception if the given DBInt represents an unknown value.

 public static explicit operator int(DBInt x) {
 if (!x.defined) throw new InvalidOperationException();
 return x.value;
 }

 public static DBInt operator +(DBInt x) {
 return x;
 }

 public static DBInt operator -(DBInt x) {
 return x.defined ? -x.value : Null;
 }

 public static DBInt operator +(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value + y.value: Null;
 }

 public static DBInt operator -(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value - y.value: Null;
 }

 public static DBInt operator *(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value * y.value: Null;
 }

 public static DBInt operator /(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value / y.value: Null;
 }

 public static DBInt operator %(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value % y.value: Null;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.4		 Struct Examples

621

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

 public static DBBool operator ==(DBInt x, DBInt y) {
 return x.defined &&
 y.defined? x.value == y.value: DBBool.Null;
 }

 public static DBBool operator !=(DBInt x, DBInt y) {
 return x.defined &&
 y.defined? x.value != y.value: DBBool.Null;
 }

 public static DBBool operator >(DBInt x, DBInt y) {
 return x.defined &&
 y.defined? x.value > y.value: DBBool.Null;
 }

 public static DBBool operator <(DBInt x, DBInt y) {
 return x.defined &&
 y.defined? x.value < y.value: DBBool.Null;
 }

 public static DBBool operator >=(DBInt x, DBInt y) {
 return x.defined &&
 y.defined? x.value >= y.value: DBBool.Null;
 }

 public static DBBool operator <=(DBInt x, DBInt y) {
 return x.defined &&
 y.defined? x.value <= y.value: DBBool.Null;
 }

 public override bool Equals(object obj) {
 if (!(obj is DBInt)) return false;
 DBInt x = (DBInt)obj;
 return value == x.value && defined == x.defined;
 }

 public override int GetHashCode() {
 return value;
 }

 public override string ToString() {
 return defined? value.ToString():"DBInt.Null";
 }
}

n
n  CHRISTIAN NAGEL In the namespace System.Data.SqlTypes, the .NET contains

mapping structs such as SqlBoolean and SqlInt32 that are somewhat similar to the
examples DBInt and DBBool here. These types have been available since .NET 1.0 and
have been created to allow for a null value, as it is possible with the native database
types. Given that nullable types have been available since .NET 2.0, creation of custom
types can be avoided and int? and bool? used instead.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

622

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

11.4.2 Database Boolean Type
The DBBool struct below implements a three-valued logical type. The possible values of
this type are DBBool.True, DBBool.False, and DBBool.Null, where the Null member indi-
cates an unknown value. Such three-valued logical types are commonly used in
databases.

using System;

public struct DBBool
{
 // The three possible DBBool values.

 public static readonly DBBool Null = new DBBool(0);
 public static readonly DBBool False = new DBBool(-1);
 public static readonly DBBool True = new DBBool(1);

 // Private field that stores –1, 0, 1 for False, Null, True.

 sbyte value;

 // Private instance constructor.
 // The value parameter must be –1, 0, or 1.

 DBBool(int value) {
 this.value = (sbyte)value;
 }

 // Properties to examine the value of a DBBool. Return true
 // if this DBBool has the given value, false otherwise.

 public bool IsNull { get { return value == 0; } }

 public bool IsFalse { get { return value < 0; } }

 public bool IsTrue { get { return value > 0; } }

 // Implicit conversion from bool to DBBool. Maps true to
 // DBBool.True and false to DBBool.False.

 public static implicit operator DBBool(bool x) {
 return x? True: False;
 }

 // Explicit conversion from DBBool to bool.
 // Throws an exception if the given DBBool
 // is Null; otherwise, returns true or false.

 public static explicit operator bool(DBBool x) {
 if (x.value == 0) throw new InvalidOperationException();
 return x.value > 0;
 }

 // Equality operator. Returns Null if either operand is Null;
 // otherwise, returns True or False.

 public static DBBool operator ==(DBBool x, DBBool y) {
 if (x.value == 0 || y.value == 0) return Null;
 return x.value == y.value? True: False;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11.4		 Struct Examples

623

Structs
11.	

Structs
11.	

Structs
11.	

Structs
11.	

 // Inequality operator. Returns Null if either operand is Null;
 // otherwise, returns True or False.

 public static DBBool operator !=(DBBool x, DBBool y) {
 if (x.value == 0 || y.value == 0) return Null;
 return x.value != y.value? True: False;
 }

 // Logical negation operator. Returns True if the operand is
 // False, Null if the operand is Null,
 // or False if the operand is True.

 public static DBBool operator !(DBBool x) {
 return new DBBool(-x.value);
 }

 // Logical AND operator. Returns False if either operand is False;
 // otherwise, Null if either operand is Null; otherwise, True.

 public static DBBool operator &(DBBool x, DBBool y) {
 return new DBBool(x.value < y.value? x.value: y.value);
 }

 // Logical OR operator. Returns True if either operand is True;
 // otherwise, Null if either operand is Null; otherwise, False.

 public static DBBool operator |(DBBool x, DBBool y) {
 return new DBBool(x.value > y.value? x.value: y.value);
 }

 // Definitely true operator. Returns true if the
 // operand is True, false otherwise.

 public static bool operator true(DBBool x) {
 return x.value > 0;
 }
 // Definitely false operator. Returns true if the
 // operand is False, false otherwise.

 public static bool operator false(DBBool x) {
 return x.value < 0;
 }

 public override bool Equals(object obj) {
 if (!(obj is DBBool)) return false;
 return value == ((DBBool)obj).value;
 }

 public override int GetHashCode() {
 return value;
 }

 public override string ToString() {
 if (value > 0) return "DBBool.True";
 if (value < 0) return "DBBool.False";
 return "DBBool.Null";
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

11. Structs

624

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

St
ru

ct
s

11
.	

n
n  CHRIS SELLS When .NET was first introduced, user-defined value types were an

important differentiator of this system from Java. In practice, I find these types mostly
used as an optimization after profiling has revealed the garbage collector overworking
itself toward no worthy goal.

n
n  ERIC LIPPERT The fact that some local variables of value type can be cheaply

allocated on the stack does not automatically make them “higher performance” than
reference types. Heap allocation is somewhat more expensive than stack allocation, but
still pretty cheap. The real cost savings typically come through the deallocation: The
fewer objects that are allocated on the heap, the less potential garbage the garbage col-
lector has to identify and compact. Even so, any cost savings in allocation and dealloca-
tion is often eaten up by the need to copy value types by value. Processors are optimized
for copying things whose size approximates the size of a reference. Value types can be
of an odd size and copied a lot, which can in some cases increase the total cost.

My advice is to make the value-versus-reference choice based on whether copy-by-
value or copy-by-reference makes more sense, then do performance testing with a
profiler. Only change a reference type to a value type (or vice versa) if you have good,
empirical, repeatable data that indicates that doing so makes a measurable and impor-
tant difference.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

625

Arrays12.

An array is a data structure that contains a number of variables that are accessed through
computed indices. The variables contained in an array, also called the elements of the array,
are all of the same type, and this type is called the element type of the array.

An array has a rank that determines the number of indices associated with each array ele-
ment. The rank of an array is also referred to as the dimensions of the array. An array with
a rank of 1 is called a single-dimensional array. An array with a rank greater than 1 is
called a multi-dimensional array. Specific-sized multi-dimensional arrays are often
referred to as two-dimensional arrays, three-dimensional arrays, and so on.

Each dimension of an array has an associated length that is an integral number greater
than or equal to zero. The dimension lengths are not part of the type of the array, but rather
are established when an instance of the array type is created at runtime. The length of a
dimension determines the valid range of indices for that dimension: For a dimension of
length N, indices can range from 0 to N – 1 inclusive. The total number of elements in an
array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array Types
An array type is written as a non-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12. Arrays

626

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

A non-array-type is any type that is not itself an array-type.

The rank of an array type is given by the leftmost rank-specifier in the array-type: A rank-
specifier indicates that the array is an array with a rank of one plus the number of “,”
tokens in the rank-specifier.

The element type of an array type is the type that results from deleting the leftmost rank-
specifier:

An array type of the form •	 T[R] is an array with rank R and a non-array element type T.

An array type of the form •	 T[R][R1]...[RN] is an array with rank R and an element type
T[R1]...[RN].

In effect, the rank-specifiers are read from left to right before the final non-array element type.
The type int[][,,][,] is a single-dimensional array of three-dimensional arrays of two-
dimensional arrays of int.

n
n  ERIC LIPPERT The fact that the rank specifiers of arrays-of-arrays are read “back-

ward” is frequently confusing to people. In reality, this scheme has the nice property
that the indexing operations go in the same order as the declarations; you would index
that complicated array as arr[a][b,c,d][e,f].

At runtime, a value of an array type can be null or a reference to an instance of that
array type.

12.1.1 The System.Array Type
The type System.Array is the abstract base type of all array types. An implicit reference
conversion (§6.1.6) exists from any array type to System.Array, and an explicit refer-
ence conversion (§6.2.4) exists from System.Array to any array type. Note that System.
Array is not itself an array-type. Rather, it is a class-type from which all array-types are
derived.

At runtime, a value of type System.Array can be null or a reference to an instance of any
array type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.1		 Array Types

627

A
rrays

12.	
A

rrays
12.	

A
rrays

12.	
A

rrays
12.	

12.1.2 Arrays and the Generic IList Interface
A one-dimensional array T[] implements the interface System.Collections.Generic.
IList<T> (IList<T> for short) and its base interfaces. Accordingly, there is an implicit
conversion from T[] to IList<T> and its base interfaces. In addition, if there is an
implicit reference conversion from S to T, then S[] implements IList<T> and there is
an implicit reference conversion from S[] to IList<T> and its base interfaces (§6.1.6). If
there is an explicit reference conversion from S to T, then there is an explicit reference
conversion from S[] to IList<T> and its base interfaces (§6.2.4). For example:

using System.Collections.Generic;

class Test
{
 static void Main() {
 string[] sa = new string[5];
 object[] oa1 = new object[5];
 object[] oa2 = sa;

 IList<string> lst1 = sa; // Okay
 IList<string> lst2 = oa1; // Error: cast needed
 IList<object> lst3 = sa; // Okay
 IList<object> lst4 = oa1; // Okay

 IList<string> lst5 = (IList<string>)oa1; // Exception
 IList<string> lst6 = (IList<string>)oa2; // Okay
 }
}

The assignment lst2 = oa1 generates a compile-time error since the conversion from
object[] to IList<string> is an explicit conversion, not implicit. The cast (IList<string>)
oa1 will cause an exception to be thrown at runtime since oa1 references an object[] and
not a string[]. However, the cast (IList<string>)oa2 will not cause an exception to be
thrown since oa2 references a string[].

Whenever there is an implicit or explicit reference conversion from S[] to IList<T>, there
is also an explicit reference conversion from IList<T> and its base interfaces to S[]
(§6.2.4).

When an array type S[] implements IList<T>, some of the members of the implemented
interface may throw exceptions. The precise behavior of the implementation of the inter-
face is beyond the scope of this specification.

n
n  ERIC LIPPERT It’s interesting to consider the counterfactual world in which the

CLR had generic types in version 1. In that counterfactual world, there would proba-
bly be generic array types Array<T>, Array2<T>, and so on. In this world, declarations
of complicated array types become more clear: An Array<Array2<int>> is a one-
dimensional array where every element is a two-dimensional array of integers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12. Arrays

628

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

n
n  BILL WAGNER The fact that an array T[] implements the IList<T> by throwing

exceptions for some methods is one of those troubling real-world problems for which
there isn’t a good solution. IList<T> has methods that add or remove elements. Arrays
have a fixed size, however, and cannot support some of those methods. Even so, you
want to use the random access to elements that exists in the IList<T> interface.

12.2 Array Creation
Array instances are created by array-creation-expressions (§7.6.10.4) or by field or local vari-
able declarations that include an array-initializer (§12.6).

When an array instance is created, the rank and length of each dimension are established
and then remain constant for the entire lifetime of the instance. In other words, it is not
possible to change the rank of an existing array instance, nor is it possible to resize its
dimensions.

An array instance is always of an array type. The System.Array type is an abstract type that
cannot be instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default
values (§5.2).

12.3 Array Element Access
Array elements are accessed using element-access expressions (§7.6.6.1) of the form A[I1, I2,
..., IN], where A is an expression of an array type and each IX is an expression of type int,
uint, long, or ulong, or can be implicitly converted to one or more of these types. The result
of an array element access is a variable—namely, the array element selected by the
indices.

The elements of an array can be enumerated using a foreach statement (§8.8.4).

12.4 Array Members
Every array type inherits the members declared by the System.Array type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.5		 Array Covariance

629

A
rrays

12.	
A

rrays
12.	

A
rrays

12.	
A

rrays
12.	

12.5 Array Covariance
For any two reference-types A and B, if an implicit reference conversion (§6.1.6) or explicit
reference conversion (§6.2.4) exists from A to B, then the same reference conversion also
exists from the array type A[R] to the array type B[R], where R is any given rank-specifier
(but the same for both array types). This relationship is known as array covariance. Array
covariance, in particular, means that a value of an array type A[R] may actually be a refer-
ence to an instance of an array type B[R], provided an implicit reference conversion exists
from B to A.

Because of array covariance, assignments to elements of reference type arrays include a
runtime check that ensures the value being assigned to the array element is actually of
a permitted type (§7.17.1). For example:

class Test
{
 static void Fill(object[] array, int index, int count, object value) {
 for (int i = index; i < index + count; i++)

 array[i] = value;
 }

 static void Main() {
 string[] strings = new string[100];
 Fill(strings, 0, 100, "Undefined");
 Fill(strings, 0, 10, null);
 Fill(strings, 90, 10, 0);
 }
}

The assignment to array[i] in the Fill method implicitly includes a runtime check that
ensures the object referenced by value is either null or an instance that is compatible with
the actual element type of array. In Main, the first two invocations of Fill succeed, but the
third invocation causes a System.ArrayTypeMismatchException to be thrown upon execut-
ing the first assignment to array[i]. The exception occurs because a boxed int cannot be
stored in a string array.

n
n  ERIC LIPPERT This is my candidate for “worst feature” of C#. It allows assign-

ments to fail at runtime without any indication in the source code that such failure is
possible. It imposes a performance cost on extremely common code to make a rare
scenario go quickly; accessing an array of unsealed reference type safely happens
much more often than covariant array conversions do. I much prefer the type-safe
covariance that has been added to IEnumerable<T>.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12. Arrays

630

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

n
n  CHRIS SELLS I find myself using arrays so seldomly—even single-dimensional

arrays, let alone multi-dimensional or jagged arrays—that the strange corner cases
don’t tend to matter much. Given the availability of List<T>, Dictionary<K, V>, and
IEnumerable<T>, I’d be a happy guy without arrays at all.

n
n  PETER SESToFT The necessity for the runtime check that Eric laments stems

from the array type being covariant in the element type (Student[] being a subtype of
Person[] when Student is a subtype of Person). This array covariance design weak-
ness is shared with the Java programming language, where the situation is even worse:
Because Java implements generics by erasure, there is no type object representing a
generic type parameter at runtime, so the check cannot be performed if the array was
created as new T[...] for some type parameter T, or as new Stack<Person>[...].
Hence Java must forbid the creation of an array whose element type is a type param-
eter or a type constructed as a type instance of a generic type. In C#, type parameters
and constructed types are represented faithfully at runtime, so these restrictions on
array creation do not exist.

In the Scala language, which was born with generic types, the array type is invariant
in the element type and the runtime check is not needed (but is likely to be performed
anyway, when Scala is compiled to Java bytecode).

n
n  BILL WAGNER Eric’s comments go a long way toward explaining why the safe

covariance and contravariance added for generics in C# 4.0 are so important. Improv-
ing both speed and correctness with the same change is generally rare.

Array covariance specifically does not extend to arrays of value-types. For example, no
conversion exists that permits an int[] to be treated as an object[].

12.6 Array Initializers
Array initializers may be specified in field declarations (§10.5), local variable declarations
(§8.5.1), and array creation expressions (§7.6.10.4):

array-initializer:
{ variable-initializer-listopt }
{ variable-initializer-list , }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12.6		 Array Initializers

631

A
rrays

12.	
A

rrays
12.	

A
rrays

12.	
A

rrays
12.	

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

An array initializer consists of a sequence of variable initializers, enclosed by “{”and “}”
tokens and separated by “,” tokens. Each variable initializer is an expression or, in the case
of a multi-dimensional array, a nested array initializer.

The context in which an array initializer is used determines the type of the array being
initialized. In an array creation expression, the array type immediately precedes the initial-
izer, or is inferred from the expressions in the array initializer. In a field or variable declara-
tion, the array type is the type of the field or variable being declared. When an array
initializer is used in a field or variable declaration, such as

int[] a = {0, 2, 4, 6, 8};

it is simply shorthand for an equivalent array creation expression:

int[] a = new int[] {0, 2, 4, 6, 8};

For a single-dimensional array, the array initializer must consist of a sequence of expres-
sions that are assignment compatible with the element type of the array. The expressions
initialize array elements in increasing order, starting with the element at index 0. The num-
ber of expressions in the array initializer determines the length of the array instance being
created. For example, the array initializer above creates an int[] instance of length 5 and
then initializes the instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

For a multi-dimensional array, the array initializer must have as many levels of nesting as
there are dimensions in the array. The outermost nesting level corresponds to the leftmost
dimension and the innermost nesting level corresponds to the rightmost dimension. The
length of each dimension of the array is determined by the number of elements at the cor-
responding nesting level in the array initializer. For each nested array initializer, the num-
ber of elements must be the same as the other array initializers at the same level. The
example

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

creates a two-dimensional array with a length of 5 for the leftmost dimension and a length
of 2 for the rightmost dimension:

int[,] b = new int[5, 2];

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

12. Arrays

632

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

A
rr

ay
s

12
.	

It then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

If a dimension other than the rightmost is given with length 0, the subsequent dimensions
are assumed to also have length 0. The example

int[,] c = {};

creates a two-dimensional array with a length of 0 for both the leftmost and rightmost
dimensions:

int[,] c = new int[0, 0];

When an array creation expression includes both explicit dimension lengths and an array
initializer, the lengths must be constant expressions and the number of elements at each
nesting level must match the corresponding dimension length. Here are some examples:

int i = 3;
int[] x = new int[3] {0, 1, 2}; // Okay
int[] y = new int[i] {0, 1, 2}; // Error: i not a constant
int[] z = new int[3] {0, 1, 2, 3}; // Error: length/initializer mismatch

Here, the initializer for y results in a compile-time error because the dimension length
expression is not a constant, and the initializer for z results in a compile-time error because
the length and the number of elements in the initializer do not agree.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

633

Interfaces13.

An interface defines a contract. A class or struct that implements an interface must adhere
to its contract. An interface may inherit from multiple base interfaces, and a class or struct
may implement multiple interfaces.

n
n  BILL WAGNER Interfaces work best when they are small in scope and few in

number. Larger interfaces create more work for implementers. Larger numbers of
interfaces provide more opportunities for ambiguity and collisions.

n
n  ERIC LIPPERT The trope that interfaces are contracts is undoubtedly both useful

and frequently stated. It’s worth pointing out an interface is actually a pretty weak
way to represent a contract. All an interface tells you is which methods are available,
what their names are, which types they take, and which types they return. Nothing
whatsoever about the semantics of the operation is represented in the contract: that
an object complying with this contract must be disposed aggressively, that Drive()
throws an exception if not called after StartEngine(), that the first parameter must
be null and the second parameter must be non-zero, and so on. All that stuff goes in
the documentation, not somewhere that an analysis tool can dig into. The new code
contract system that ships with version 4.0 of the CLR enables you both to specify
contracts in more detail than interfaces do alone and to do interesting analysis on
these contracts at compile time.

Interfaces can contain methods, properties, events, and indexers. The interface itself does
not provide implementations for the members that it defines. The interface merely speci-
fies the members that must be supplied by classes or structs that implement the interface.

13.1 Interface Declarations
An interface-declaration is a type-declaration (§9.6) that declares a new interface type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

634

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

interface-declaration:
 attributesopt interface-modifiersopt partialopt interface
 identifier variant-type-parameter-listopt interface-baseopt
 type-parameter-constraints-clausesopt interface-body ;opt

An interface-declaration consists of an optional set of attributes (§17), followed by an optional
set of interface-modifiers (§13.1.1), followed by an optional partial modifier, followed by
the keyword interface and an identifier that names the interface, followed by an optional
variant-type-parameter-list specification (§13.1.3), followed by an optional interface-base spec-
ification (§13.1.4), followed by an optional type-parameter-constraints-clauses specification
(§10.1.5), followed by an interface-body (§13.1.5), optionally followed by a semicolon.

13.1.1 Interface Modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in an interface
declaration.

The new modifier is permitted only on interfaces defined within a class. It specifies that the
interface hides an inherited member by the same name, as described in §10.3.4.

The public, protected, internal, and private modifiers control the accessibility of the
interface. Depending on the context in which the interface declaration occurs, only some of
these modifiers may be permitted (§3.5.1).

13.1.2 partial Modifier
The partial modifier indicates that this interface-declaration is a partial type declaration.
Multiple partial interface declarations with the same name within an enclosing namespace
or type declaration combine to form one interface declaration, following the rules specified
in §10.2.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.1		 Interface Declarations

635

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

13.1.3 Variant Type Parameter Lists
Variant type parameter lists can occur only on interface and delegate types. The difference
from ordinary type-parameter-lists is the optional variance-annotation on each type
parameter.

variant-type-parameter-list:
 < variant-type-parameters >

variant-type-parameters:
 attributesopt variance-annotationopt type-parameter
 variant-type-parameters , attributesopt variance-annotationopt type-parameter

variance-annotation:
 in
 out

If the variance annotation is out, the type parameter is said to be covariant. If the vari-
ance annotation is in, the type parameter is said to be contravariant. If there is no
variance annotation, the type parameter is said to be invariant.

n
n  ERIC LIPPERT Covariance is the property that a mapping from a type argument

to a generic type preserves assignment compatibility. For example, a string may be
assigned to a variable of type object. A mapping from T to IEnumerable<T> preserves
the assignment compatibility; an IEnumerable<string> can be assigned to a variable
of IEnumerable<object>. Thus the nomenclature that “the type parameter is covari-
ant” is a shorthand; the thing that is actually covariant is the relationship between the
type argument and the constructed type. Properly we ought to say, “The mapping
from —any reference type T to IEnumerable<T> is covariant in T” but that is rather a
mouthful compared to simply saying, “T is covariant,” and understanding that the
longer statement is what is meant by it.

In the example

interface C<out X, in Y, Z>
{
 X M(Y y);

 Z P { get; set; }
}

X is covariant, Y is contravariant, and Z is invariant.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

636

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

13.1.3.1 Variance Safety
The occurrence of variance annotations in the type parameter list of a type restricts the
places where types can occur within the type declaration.

A type T is output-unsafe if one of the following holds:

T•	 is a contravariant type parameter.

T•	 is an array type with an output-unsafe element type.

T•	 is an interface or delegate type S<A1,... AK> constructed from a generic type S<X1, ..
XK> where for at least one Ai one of the following holds:

X- i is covariant or invariant and Ai is output-unsafe.

X- i is contravariant or invariant and Ai is input-safe.

A type T is input-unsafe if one of the following holds:

T•	 is a covariant type parameter.

T•	 is an array type with an input-unsafe element type.

T•	 is an interface or delegate type S<A1,... AK> constructed from a generic type S<X1, ..
XK> where for at least one Ai one of the following holds:

X- i is covariant or invariant and Ai is input-unsafe.

X- i is contravariant or invariant and Ai is output-unsafe.

Intuitively, an output-unsafe type is prohibited in an output position, and an input-unsafe
type is prohibited in an input position.

A type is output-safe if it is not output-unsafe, and input-safe if it is not input-unsafe.

13.1.3.2 Variance Conversion
The purpose of variance annotations is to provide for more lenient (but still type-safe)
conversions to interface and delegate types. To this end, the definitions of implicit (§6.1)
and explicit conversions (§6.2) make use of the notion of variance convertibility, which is
defined as follows:

A type T<A1, ..., An> is variance convertible to a type T<B1, ..., Bn> if T is either an
interface or a delegate type declared with the variant type parameters T<X1, ..., Xn>, and
for each variant type parameter Xi one of the following holds:

X•	 i is covariant and an implicit reference or identity conversion exists from Ai to Bi.

X•	 i is contravariant and an implicit reference or identity conversion exists from Bi
to Ai.

X•	 i is invariant and an identity conversion exists from Ai to Bi.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.1		 Interface Declarations

637

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

n
n  JoN SkEET I suspect many developers will never need to declare their own

variant interfaces or delegates. In fact, my guess is that a lot of the time we won’t
even notice when we’re using variance—it will just mean code that we would intui-
tively expect to work will now do so, even though it would have failed to compile
in C# 3.0.

13.1.4 Base Interfaces
An interface can inherit from zero or more interface types, which are called the explicit
base interfaces of the interface. When an interface has one or more explicit base interfaces,
then in the declaration of that interface, the interface identifier is followed by a colon and
a comma-separated list of base interface types.

interface-base:
: interface-type-list

For a constructed interface type, the explicit base interfaces are formed by taking the
explicit base interface declarations on the generic type declaration, and substituting, for
each type-parameter in the base interface declaration, the corresponding type-argument of the
constructed type.

The explicit base interfaces of an interface must be at least as accessible as the interface
itself (§3.5.4). For example, it is a compile-time error to specify a private or internal inter-
face in the interface-base of a public interface.

It is a compile-time error for an interface to directly or indirectly inherit from itself.

n
n  VLADIMIR RESHETNIkoV For the purposes of this rule, type arguments (if any)

are ignored. For instance, although I<T> and I<I<T>> are different types, the following
declaration is still invalid:

interface I<T> : I<I<T>> { }

Conversely, it is perfectly valid for an interface to appear within a type argument for
its base interface:

interface IA<T> { }
interface IB : IA<IB[]> { } // Okay

The base interfaces of an interface are the explicit base interfaces and their base interfaces.
In other words, the set of base interfaces is the complete transitive closure of the explicit

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

638

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

base interfaces, their explicit base interfaces, and so on. An interface inherits all members
of its base interfaces. In the example

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

interface IListBox : IControl
{
 void SetItems(string[] items);
}

interface IComboBox : ITextBox, IListBox { }

the base interfaces of IComboBox are IControl, ITextBox, and IListBox.

In other words, the IComboBox interface above inherits members SetText and SetItems as
well as Paint.

Every base interface of an interface must be output-safe (§13.1.3.1). A class or struct that
implements an interface also implicitly implements all of the interface’s base interfaces.

n
n  ERIC LIPPERT “Inheritance” is an unfortunate choice of words for interfaces.

One normally thinks of inheritance from a base as sharing implementation, which
interfaces plainly do not do. I prefer to think of interfaces as contracts that may specify
other contracts that must also be fulfilled, rather than as contracts that “inherit” other
contracts.

n
n  JESSE LIBERTy A naming convention has arisen of prefixing all interfaces with

the letter “I” (IControl, IWriteable, IClaudius). There is no compelling reason to do
so, yet it has persisted for at least a decade as a last remnant of “Hungarian” notation.
Removing the “I”, in the end, makes for more readable code.

13.1.5 Interface Body
The interface-body of an interface defines the members of the interface.

interface-body:
 { interface-member-declarationsopt }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.2		 Interface Members

639

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

13.2 Interface Members
The members of an interface are the members inherited from the base interfaces and the
members declared by the interface itself.

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface
must be methods, properties, events, or indexers. An interface cannot contain constants,
fields, operators, instance constructors, destructors, or types, nor can an interface contain
static members of any kind.

All interface members implicitly have public access. It is a compile-time error for interface
member declarations to include any modifiers. In particular, interfaces members cannot be
declared with the modifiers abstract, public, protected, internal, private, virtual,
override, or static.

n
n  JoN SkEET It would occasionally be nice to be able to create an internal interface

with internal members that could be implemented implicitly by internal methods.
Currently an internal interface forces implementing types either to expose public
methods or to use explicit interface implementation; in some cases, neither of these
choices is particularly pleasant.

The example

public delegate void StringListEvent(IStringList sender);

public interface IStringList
{
 void Add(string s);

 int Count { get; }

 event StringListEvent Changed;

 string this[int index] { get; set; }
}

declares an interface that contains one each of the possible kinds of members: a method, a
property, an event, and an indexer.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

640

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

An interface-declaration creates a new declaration space (§3.3), and the interface-member-
declarations immediately contained by the interface-declaration introduce new members into
this declaration space. The following rules apply to interface-member-declarations:

The name of a method must differ from the names of all properties and events declared •	
in the same interface. In addition, the signature (§3.6) of a method must differ from the
signatures of all other methods declared in the same interface, and two methods declared
in the same interface may not have signatures that differ solely by ref and out.

The name of a property or event must differ from the names of all other members •	
declared in the same interface.

The signature of an indexer must differ from the signatures of all other indexers declared •	
in the same interface.

The inherited members of an interface are specifically not part of the declaration space of
the interface. Thus an interface is allowed to declare a member with the same name or
signature as an inherited member. When this occurs, the derived interface member is said
to hide the base interface member. Hiding an inherited member is not considered an error,
but it does cause the compiler to issue a warning. To suppress the warning, the declaration
of the derived interface member must include a new modifier to indicate that the derived
member is intended to hide the base member. This topic is discussed further in §3.7.1.2.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a
warning is issued to that effect. This warning is suppressed by removing the new
modifier.

Note that the members in class object are not, strictly speaking, members of any interface
(§13.2). However, the members in class object are available via member lookup in any
interface type (§7.4).

13.2.1 Interface Methods
Interface methods are declared using interface-method-declarations:

interface-method-declaration:
 attributesopt newopt return-type identifier type-parameter-list
 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

The attributes, return-type, identifier, and formal-parameter-list of an interface method decla-
ration have the same meaning as those of a method declaration in a class (§10.6). An inter-
face method declaration is not permitted to specify a method body, so the declaration
always ends with a semicolon.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.2		 Interface Members

641

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

n
n  VLADIMIR RESHETNIkoV In contrast to class or struct method declarations,

the identifier of an interface-method-declaration can be the same as the name of the enclos-
ing interface declaration. The same applies to interface-property-declarations and
interface-event-declarations.

Each formal parameter type of an interface method must be input-safe (§13.1.3.1), and the
return type must be either void or output-safe. Furthermore, each class type constraint,
interface type constraint, and type parameter constraint on any type parameter of the
method must be input-safe.

These rules ensure that any covariant or contravariant usage of the interface remains type-
safe. For example,

interface I<out T> { void M<U>() where U : T; }

is illegal because the usage of T as a type parameter constraint on U is not input-safe.

Were this restriction not in place, it would be possible to violate type safety in the following
manner:

class B {}
class D : B {}
class E : B {}
class C : I<D> { public void M<U>() {...} }
...
I b = new C();
b.M<E>();

This is actually a call to C.M<E>. That call requires that E derive from D, however, so type
safety would be violated here.

13.2.2 Interface Properties
Interface properties are declared using interface-property-declarations:

interface-property-declaration:
 attributesopt newopt type identifier { interface-accessors }

interface-accessors:
 attributesopt get ;
 attributesopt set ;
 attributesopt get ; attributesopt set ;
 attributesopt set ; attributesopt get ;

The attributes, type, and identifier of an interface property declaration have the same mean-
ing as those of a property declaration in a class (§10.7).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

642

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

The accessors of an interface property declaration correspond to the accessors of a class
property declaration (§10.7.2), except that the accessor body must always be a semicolon.
Thus the accessors simply indicate whether the property is read-write, read-only, or
write-only.

The type of an interface property must be output-safe if there is a get accessor, and must
be input-safe if there is a set accessor.

13.2.3 Interface Events
Interface events are declared using interface-event-declarations:

interface-event-declaration:
 attributesopt newopt event type identifier ;

The attributes, type, and identifier of an interface event declaration have the same meaning
as those of an event declaration in a class (§10.8).

The type of an interface event must be input-safe.

13.2.4 Interface Indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributesopt newopt type this [formal-parameter-list] { interface-accessors }

The attributes, type, and formal-parameter-list of an interface indexer declaration have the
same meaning as those of an indexer declaration in a class (§10.9).

The accessors of an interface indexer declaration correspond to the accessors of a class
indexer declaration (§10.9), except that the accessor body must always be a semicolon. Thus
the accessors simply indicate whether the indexer is read-write, read-only, or write-only.

All the formal parameter types of an interface indexer must be input-safe. In addition, any
out or ref formal parameter types must also be output-safe. Note that even out parameters
are required to be input-safe, due to a limitation of the underlying execution platform.

The type of an interface indexer must be output-safe if there is a get accessor, and must be
input-safe if there is a set accessor.

13.2.5 Interface Member Access
Interface members are accessed through member access (§7.6.4) and indexer access
(§7.6.6.2) expressions of the form I.M and I[A], where I is an interface type; M is a method,
property, or event of that interface type; and A is an indexer argument list.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.2		 Interface Members

643

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has
exactly zero or one direct base interface), the effects of the member lookup (§7.4), method
invocation (§7.6.5.1), and indexer access (§7.6.6.2) rules are exactly the same as for classes
and structs: More derived members hide less derived members with the same name or
signature. However, for multiple-inheritance interfaces, ambiguities can occur when two
or more unrelated base interfaces declare members with the same name or signature. This
section shows several examples of such situations. In all cases, explicit casts can be used to
resolve the ambiguities.

In the example

interface IList
{
 int Count { get; set; }
}

interface ICounter
{
 void Count(int i);
}

interface IListCounter : IList, ICounter { }

class C
{
 void Test(IListCounter x)
 {
 x.Count(1); // Error
 x.Count = 1; // Error
 ((IList)x).Count = 1; // Okay: invokes IList.Count.set
 ((ICounter)x).Count(1); // Okay: invokes ICounter.Count
 }
}

the first two statements cause compile-time errors because the member lookup (§7.4) of
Count in IListCounter is ambiguous. As illustrated by the example, the ambiguity is
resolved by casting x to the appropriate base interface type. Such casts have no runtime
costs—they merely consist of viewing the instance as a less derived type at compile time.

In the example

interface IInteger
{
 void Add(int i);
}

interface IDouble
{
 void Add(double d);
}

interface INumber : IInteger, IDouble { }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

644

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

class C
{
 void Test(INumber n)
 {
 n.Add(1); // Invokes IInteger.Add
 n.Add(1.0); // Only IDouble.Add is applicable
 ((IInteger)n).Add(1); // Only IInteger.Add is a candidate
 ((IDouble)n).Add(1); // Only IDouble.Add is a candidate
 }
}

the invocation n.Add(1) selects IInteger.Add by applying the overload resolution rules of
§7.5.3. Similarly, the invocation n.Add(1.0) selects IDouble.Add. When explicit casts are
inserted, there is only one candidate method and, therefore, no ambiguity.

In the example

interface IBase
{
 void F(int i);
}

interface ILeft: IBase
{
 new void F(int i);
}

interface IRight: IBase
{
 void G();
}

interface IDerived: ILeft, IRight {}

class A
{
 void Test(IDerived d) {
 d.F(1); // Invokes ILeft.F
 ((IBase)d).F(1); // Invokes IBase.F
 ((ILeft)d).F(1); // Invokes ILeft.F
 ((IRight)d).F(1); // Invokes IBase.F
 }
}

the IBase.F member is hidden by the ILeft.F member. The invocation d.F(1) thus selects
ILeft.F, even though IBase.F appears to not be hidden in the access path that leads
through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member
is hidden in any access path, it is hidden in all access paths. Because the access path from
IDerived to ILeft to IBase hides IBase.F, the member is also hidden in the access path
from IDerived to IRight to IBase.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

645

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

13.3 Fully Qualified Interface Member Names
An interface member is sometimes referred to by its fully qualified name. The fully quali-
fied name of an interface member consists of the name of the interface in which the mem-
ber is declared, followed by a dot, followed by the name of the member. The fully qualified
name of a member references the interface in which the member is declared. For example,
given the declarations

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

the fully qualified name of Paint is IControl.Paint and the fully qualified name of
SetText is ITextBox.SetText.

In the example above, it is not possible to refer to Paint as ITextBox.Paint.

When an interface is part of a namespace, the fully qualified name of an interface member
includes the namespace name. For example:

namespace System
{
 public interface ICloneable
 {
 object Clone();
 }
}

Here, the fully qualified name of the Clone method is System.ICloneable.Clone.

13.4 Interface Implementations
Interfaces may be implemented by classes and structs. To indicate that a class or struct
directly implements an interface, the interface identifier is included in the base class list of
the class or struct. For example:

interface ICloneable
{
 object Clone();
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

646

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

interface IComparable
{
 int CompareTo(object other);
}

class ListEntry : ICloneable, IComparable
{
 public object Clone() {...}

 public int CompareTo(object other) {...}
}

n
n  JoN SkEET It bugs me that the interface implementation is usually so totally

implicit. There’s no indication that the CompareTo and Clone methods have anything
to do with the interfaces for which they’re providing implementations. When overrid-
ing virtual methods inherited from a base class, the override modifier makes this
behavior obvious: Anyone refactoring a class and wanting to rename a method is
informed that it’s linked to a method elsewhere. No such indication is given for
interfaces.

Unfortunately, the design of interface implementation wouldn’t quite be consistent
with adding a modifier to the declaration. The code declaring a method doesn’t neces-
sarily even know that it may be used to implement an interface:

interface IFoo { void Foo(); }
class Base
{
 public void Foo();
}
// IFoo.Foo is implemented by Base.Foo
class Derived : Base, IFoo { }

This is probably the most pragmatic approach to interfaces, but from a purity (or con-
trol freak) standpoint, it feels slightly wrong.

A class or struct that directly implements an interface also directly implements all of the
interface’s base interfaces implicitly. This is true even if the class or struct doesn’t explicitly
list all base interfaces in the base class list. For example:

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

647

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

class TextBox : ITextBox
{
 public void Paint() {...}

 public void SetText(string text) {...}
}

Here, class TextBox implements both IControl and ITextBox.

When a class C directly implements an interface, all classes derived from C also implement
the interface implicitly. The base interfaces specified in a class declaration can be con-
structed interface types (§4.4). A base interface cannot be a type parameter on its own,
although it can involve the type parameters that are in scope. The following code illus-
trates how a class can implement and extend constructed types:

class C<U, V> { }

interface I1<V> { }

class D : C<string, int>, I1<string> { }

class E<T> : C<int, T>, I1<T> { }

The base interfaces of a generic class declaration must satisfy the uniqueness rule described
in §13.4.2.

13.4.1 Explicit Interface Member Implementations
For purposes of implementing interfaces, a class or struct may declare explicit interface
member implementations. An explicit interface member implementation is a method,
property, event, or indexer declaration that references a fully qualified interface member
name. For example:

interface IList<T>
{
 T[] GetElements();
}

interface IDictionary<K,V>
{
 V this[K key];

 void Add(K key, V value);
}

class List<T>: IList<T>, IDictionary<int,T>
{
 T[] IList<T>.GetElements() {...}

 T IDictionary<int,T>.this[int index] {...}

 void IDictionary<int,T>.Add(int index, T value) {...}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

648

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

Here IDictionary<int,T>.this and IDictionary<int,T>.Add are explicit interface mem-
ber implementations.

In some cases, the name of an interface member may not be appropriate for the implement-
ing class, in which case the interface member may be implemented using explicit interface
member implementation. A class implementing a file abstraction, for example, would
likely implement a Close member function that has the effect of releasing the file resource,
and implement the Dispose method of the IDisposable interface using explicit interface
member implementation:

interface IDisposable
{
 void Dispose();
}

class MyFile : IDisposable
{
 void IDisposable.Dispose()
 {
 Close();
 }

 public void Close()
 {
 // Do what's necessary to close the file
 System.GC.SuppressFinalize(this);
 }
}

It is not possible to access an explicit interface member implementation through its fully
qualified name in a method invocation, property access, or indexer access. An explicit
interface member implementation can be accessed only through an interface instance, and
is in that case referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include access
modifiers, and it is a compile-time error to include the modifiers abstract, virtual,
override, or static.

Explicit interface member implementations have different accessibility characteristics than
other members. Because explicit interface member implementations are never accessible
through their fully qualified names in a method invocation or a property access, they are,
in a sense, private. However, because they can be accessed through an interface instance,
they are, in a sense, also public.

n
n  VLADIMIR RESHETNIkoV For the purposes of accessibility constraints checking

(see §3.5.4), explicit interface implementations are considered private.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

649

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Explicit interface member implementations serve two primary purposes:

Because explicit interface member implementations are not accessible through class or •	
struct instances, they allow interface implementations to be excluded from the public
interface of a class or struct. This is particularly useful when a class or struct implements
an internal interface that is of no interest to a consumer of that class or struct.

Explicit interface member implementations allow disambiguation of interface members •	
with the same signature. Without explicit interface member implementations, it would
be impossible for a class or struct to have different implementations of interface mem-
bers with the same signature and return type, as would it be impossible for a class or
struct to have any implementation at all of interface members with the same signature
but with different return types.

n
n  JoN SkEET The somewhat canonical example of this second case is
IEnumerable<T>, which extends the contract of IEnumerable. That means implementa-
tions have to provide two methods:

IEnumerator GetEnumerator()

IEnumerator<T> GetEnumerator()

This is typically done by explicitly implementing the nongeneric IEnumerable.
GetEnumerator() to call the generic version—which works because IEnumerator<T>
and IEnumerator have the same kind of relationship.

For an explicit interface member implementation to be valid, the class or struct must name
an interface in its base class list that contains a member whose fully qualified name, type,
and parameter types exactly match those of the explicit interface member implementation.
Thus, in the following class

class Shape: ICloneable
{
 object ICloneable.Clone() {...}

 int IComparable.CompareTo(object other) {...} // Invalid
}

the declaration of IComparable.CompareTo results in a compile-time error because
IComparable is not listed in the base class list of Shape and is not a base interface
of ICloneable. Likewise, in the declarations

class Shape: ICloneable
{
 object ICloneable.Clone() {...}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

650

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

class Ellipse: Shape
{
 object ICloneable.Clone() {...} // Invalid
}

the declaration of ICloneable.Clone in Ellipse results in a compile-time error because
ICloneable is not explicitly listed in the base class list of Ellipse.

The fully qualified name of an interface member must reference the interface in which the
member was declared. Thus, in the declarations

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

class TextBox: ITextBox
{
 void IControl.Paint() {...}

 void ITextBox.SetText(string text) {...}
}

the explicit interface member implementation of Paint must be written as IControl.
Paint.

13.4.2 Uniqueness of Implemented Interfaces
The interfaces implemented by a generic type declaration must remain unique for all pos-
sible constructed types. Without this rule, it would be impossible to determine the correct
method to call for certain constructed types. For example, suppose a generic class declara-
tion were permitted to be written as follows:

interface I<T>
{
 void F();
}

class X<U,V>: I<U>, I<V> // Error: I<U> and I<V> conflict
{
 void I<U>.F() {...}
 void I<V>.F() {...}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

651

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Were this permitted, it would be impossible to determine which code would execute in the
following case:

I<int> x = new X<int,int>();
x.F();

To determine if the interface list of a generic type declaration is valid, the following steps
are performed:

Let •	 L be the list of interfaces directly specified in a generic class, struct, or interface dec-
laration C.

Add to •	 L any base interfaces of the interfaces already in L.

Remove any duplicates from •	 L.

If any possible constructed type created from •	 C would, after type arguments are substi-
tuted into L, cause two interfaces in L to be identical, then the declaration of C is invalid.
Constraint declarations are not considered when determining all possible constructed
types.

In the class declaration X above, the interface list L consists of I<U> and I<V>. The declara-
tion is invalid because any constructed type with U and V being the same type would cause
these two interfaces to be identical types.

It is possible for interfaces specified at different inheritance levels to unify:

interface I<T>
{
 void F();
}

class Base<U>: I<U>
{
 void I<U>.F() {...}
}

class Derived<U,V>: Base<U>, I<V> // Okay
{
 void I<V>.F() {...}
}

This code is valid even though Derived<U,V> implements both I<U> and I<V>. The code

I<int> x = new Derived<int,int>();
x.F();

invokes the method in Derived, since Derived<int,int> effectively reimplements I<int>
(§13.4.6).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

652

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

n
n  ERIC LIPPERT Although it is not legal to create classes such that two interfaces

can become identical under construction, it is possible in C# 4.0 to create classes that
are ambiguous in various, more subtle ways thanks to generic covariance and contra-
variance. Imagine, for example, a base class that implements IEnumerable<object>
and a derived class that implements IEnumerable<string>. These were incompatible
types in C# 3.0, but that is no longer the case. Because IEnumerable<string> is now
convertible to IEnumerable<object>, it’s not entirely clear which implementation will
be called when a method of IEnumerable<object> is invoked on the derived class.
These sorts of bizarre scenarios tend to expose implementation-defined behavior of
the runtime and should be avoided whenever possible.

13.4.3 Implementation of Generic Methods
When a generic method implicitly implements an interface method, the constraints given
for each method type parameter must be equivalent in both declarations (after any inter-
face type parameters are replaced with the appropriate type arguments), where method
type parameters are identified by ordinal positions, left to right.

When a generic method explicitly implements an interface method, however, no con-
straints are allowed on the implementing method. Instead, the constraints are inherited
from the interface method:

interface I<A, B, C>
{
 void F<T>(T t) where T : A;
 void G<T>(T t) where T : B;
 void H<T>(T t) where T : C;
}

class C : I<object, C, string>
{
 public void F<T>(T t) {...} // Okay
 public void G<T>(T t) where T : C {...} // Okay
 public void H<T>(T t) where T : string {...} // Error
}

The method C.F<T> implicitly implements I<object,C,string>.F<T>. In this case, C.F<T>
is not required (nor permitted) to specify the constraint T: object since object is an implicit
constraint on all type parameters. The method C.G<T> implicitly implements
I<object,C,string>.G<T> because the constraints match those in the interface, after the
interface type parameters are replaced with the corresponding type arguments. The con-
straint for method C.H<T> is an error because sealed types (string in this case) cannot be
used as constraints. Omitting the constraint would also be an error since constraints of

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

653

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

implicit interface method implementations are required to match. Thus it is impossible to
implicitly implement I<object,C,string>.H<T>. This interface method can be imple-
mented only using an explicit interface member implementation:

class C: I<object,C,string>
{
 ...

 public void H<U>(U u) where U: class {...}

 void I<object,C,string>.H<T>(T t) {
 string s = t; // Okay
 H<T>(t);
 }
}

In this example, the explicit interface member implementation invokes a public method
having strictly weaker constraints. Note that the assignment from t to s is valid since
T inherits a constraint of T: string, even though this constraint is not expressible in
source code.

13.4.4 Interface Mapping
A class or struct must provide implementations of all members of the interfaces that are
listed in the base class list of the class or struct. The process of locating implementations of
interface members in an implementing class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of
each interface specified in the base class list of C. The implementation of a particular inter-
face member I.M, where I is the interface in which the member M is declared, is determined
by examining each class or struct S, starting with C and repeating for each successive base
class of C, until a match is located:

If •	 S contains a declaration of an explicit interface member implementation that matches
I and M, then this member is the implementation of I.M.

Otherwise, if •	 S contains a declaration of a nonstatic public member that matches M, then
this member is the implementation of I.M. If more than one member matches, it is
unspecified which member is the implementation of I.M. This situation can occur only
if S is a constructed type where the two members as declared in the generic type have
different signatures, but the type arguments make their signatures identical.

A compile-time error occurs if implementations cannot be located for all members of all
interfaces specified in the base class list of C. Note that the members of an interface include
those members that are inherited from base interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

654

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

For purposes of interface mapping, a class member A matches an interface member
B when:

A•	 and B are methods, and the name, type, and formal parameter lists of A and B are
identical.

A•	 and B are properties, the name and type of A and B are identical, and A has the same
accessors as B (A is permitted to have additional accessors if it is not an explicit interface
member implementation).

A•	 and B are events, and the name and type of A and B are identical.

A•	 and B are indexers, the type and formal parameter lists of A and B are identical, and A
has the same accessors as B (A is permitted to have additional accessors if it is not an
explicit interface member implementation).

Notable implications of the interface mapping algorithm are as follows:

Explicit interface member implementations take precedence over other members in the •	
same class or struct when determining the class or struct member that implements an
interface member.

Neither non-public nor static members participate in interface mapping.•	

In the example

interface ICloneable
{
 object Clone();
}

class C : ICloneable
{
 object ICloneable.Clone() {...}

 public object Clone() {...}
}

the ICloneable.Clone member of C becomes the implementation of Clone in ICloneable
because explicit interface member implementations take precedence over other members.

If a class or struct implements two or more interfaces containing a member with the same
name, type, and parameter types, it is possible to map each of those interface members
onto a single class or struct member. For example:

interface IControl
{
 void Paint();
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

655

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

interface IForm
{
 void Paint();
}

class Page : IControl, IForm
{
 public void Paint() {...}
}

Here, the Paint methods of both IControl and IForm are mapped onto the Paint method
in Page. It is, of course, also possible to have separate explicit interface member implemen-
tations for the two methods.

If a class or struct implements an interface that contains hidden members, then some mem-
bers must necessarily be implemented through explicit interface member implementations.
For example:

interface IBase
{
 int P { get; }
}

interface IDerived : IBase
{
 new int P();
}

An implementation of this interface would require at least one explicit interface member
implementation, and would take one of the following forms:

class C : IDerived
{
 int IBase.P { get {...} }

 int IDerived.P() {...}
}

class C : IDerived
{
 public int P { get {...} }

 int IDerived.P() {...}
}

class C : IDerived
{
 int IBase.P { get {...} }

 public int P() {...}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

656

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

When a class implements multiple interfaces that have the same base interface, there can
be only one implementation of the base interface. In the example

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

interface IListBox : IControl
{
 void SetItems(string[] items);
}

class ComboBox : IControl, ITextBox, IListBox
{
 void IControl.Paint() {...}

 void ITextBox.SetText(string text) {...}

 void IListBox.SetItems(string[] items) {...}
}

it is not possible to have separate implementations for the IControl named in the base
class list, the IControl inherited by ITextBox, and the IControl inherited by IListBox.
Indeed, there is no notion of a separate identity for these interfaces. Rather, the implemen-
tations of ITextBox and IListBox share the same implementation of IControl, and
ComboBox is simply considered to implement three interfaces: IControl, ITextBox, and
IListBox.

The members of a base class participate in interface mapping. In the example

interface Interface1
{
 void F();
}

class Class1
{
 public void F() { }

 public void G() { }
}

class Class2 : Class1, Interface1
{
 new public void G() { }
}

the method F in Class1 is used in Class2’s implementation of Interface1.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

657

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

13.4.5 Interface Implementation Inheritance
A class inherits all interface implementations provided by its base classes.

n
n  BILL WAGNER Eric’s earlier comment about “inheritance” being an unfortunate

word choice is even more true in this section. Interface methods behave differently
than either virtual or non-virtual methods declared in base classes. It can take some
time to get your mind around exactly which method is the best choice when multiple
classes in a hierarchy declare implementation of an interface. As you read this section,
you’ll see many different rules for selecting the best method when that method is
defined in an interface.

Without explicitly reimplementing an interface, a derived class cannot in any way alter
the interface mappings it inherits from its base classes. For example, in the
declarations

interface IControl
{
 void Paint();
}

class Control : IControl
{
 public void Paint() {...}
}

class TextBox : Control
{
 new public void Paint() {...}
}

the Paint method in TextBox hides the Paint method in Control, but it does not alter the
mapping of Control.Paint onto IControl.Paint, and calls to Paint through class instances
and interface instances will have the following effects:

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // Invokes Control.Paint();
t.Paint(); // Invokes TextBox.Paint();
ic.Paint(); // Invokes Control.Paint();
it.Paint(); // Invokes Control.Paint();

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

658

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

However, when an interface method is mapped onto a virtual method in a class, it is pos-
sible for derived classes to override the virtual method and alter the implementation of the
interface. For example, after rewriting the declarations above to

interface IControl
{
 void Paint();
}

class Control: IControl
{
 public virtual void Paint() {...}
}

class TextBox: Control
{
 public override void Paint() {...}
}

the following effects will now be observed:

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // Invokes Control.Paint();
t.Paint(); // Invokes TextBox.Paint();
ic.Paint(); // Invokes Control.Paint();
it.Paint(); // Invokes TextBox.Paint();

Since explicit interface member implementations cannot be declared as virtual, it is not
possible to override an explicit interface member implementation. However, it is perfectly
valid for an explicit interface member implementation to call another method, and that
other method can be declared as virtual to allow derived classes to override it. For
example:

interface IControl
{
 void Paint();
}

class Control: IControl
{
 void IControl.Paint() { PaintControl(); }

 protected virtual void PaintControl() {...}
}

class TextBox: Control
{
 protected override void PaintControl() {...}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

659

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Here, classes derived from Control can specialize the implementation of IControl.Paint
by overriding the PaintControl method.

13.4.6 Interface Reimplementation
A class that inherits an interface implementation is permitted to reimplement the interface
by including it in the base class list.

A reimplementation of an interface follows exactly the same interface mapping rules as an
initial implementation of an interface. Thus the inherited interface mapping has no effect
whatsoever on the interface mapping established for the reimplementation of the interface.
For example, in the declarations

interface IControl
{
 void Paint();
}

class Control: IControl
{
 void IControl.Paint() {...}
}

class MyControl: Control, IControl
{
 public void Paint() {}
}

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn’t affect
the reimplementation in MyControl, which maps IControl.Paint onto MyControl.Paint.

Inherited public member declarations and inherited explicit interface member declarations
participate in the interface mapping process for reimplemented interfaces. For example:

interface IMethods
{
 void F();
 void G();
 void H();
 void I();
}

class Base: IMethods
{
 void IMethods.F() {}
 void IMethods.G() {}
 public void H() {}
 public void I() {}
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13. Interfaces

660

In
te

rf
ac

es

13
.	

In
te

rf
ac

es

13
.	

In
te

rf
ac

es
13

.	
In

te
rf

ac
es

13

.	

class Derived: Base, IMethods
{
 public void F() {}

 void IMethods.H() {}
}

Here, the implementation of IMethods in Derived maps the interface methods onto
Derived.F, Base.IMethods.G, Derived.IMethods.H, and Base.I.

When a class implements an interface, it implicitly also implements all of that interface’s
base interfaces. Likewise, a reimplementation of an interface is also implicitly a reimple-
mentation of all of the interface’s base interfaces. For example:

interface IBase
{
 void F();
}

interface IDerived: IBase
{
 void G();
}

class C: IDerived
{
 void IBase.F() {...}

 void IDerived.G() {...}
}

class D: C, IDerived
{
 public void F() {...}

 public void G() {...}
}

Here, the reimplementation of IDerived also reimplements IBase, mapping IBase.F
onto D.F.

n
n  JoN SkEET While this sort of thing is genuinely useful on certain occasions, it

should typically be avoided because it is a source of great confusion. Usually, every
call using the same method name and the same argument list on the same object
should result in the same method being invoked. There are any number of ways to
stray from this happy situation, and they should all be used with extreme caution, and
only where absolutely necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

13.4		 Interface Implementations

661

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

Interfaces
13.	

13.4.7 Abstract Classes and Interfaces
Like a nonabstract class, an abstract class must provide implementations of all members of
the interfaces that are listed in the base class list of the class. However, an abstract class is
permitted to map interface methods onto abstract methods. For example:

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 public abstract void F();
 public abstract void G();
}

Here, the implementation of IMethods maps F and G onto abstract methods, which must be
overridden in nonabstract classes that derive from C.

Note that explicit interface member implementations cannot be abstract, but explicit inter-
face member implementations are, of course, permitted to call abstract methods. For
example:

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 void IMethods.F() { FF(); }

 void IMethods.G() { GG(); }

 protected abstract void FF();

 protected abstract void GG();
}

Here, nonabstract classes that derive from C would be required to override FF and GG, thus
providing the actual implementation of IMethods.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

663

Enums14.

An enum type is a distinct value type (§4.1) that declares a set of named constants.

n
n  JoN SkEET Notably, these “named constants” are effectively just numbers. They

cannot express behavior, contrary to almost everything else in C#. This is one of the
very few areas where Java is more expressive than C#. In Java, enums have a lot more
power: An enum can declare methods and then override them for specific values, for
example. While it’s possible to emulate some of the features of Java enums within C#,
language (and framework) support in a future version would be extremely welcome.

The example

enum Color
{
 Red,
 Green,
 Blue
}

declares an enum type named Color with members Red, Green, and Blue.

14.1 Enum Declarations
An enum declaration declares a new enum type. An enum declaration begins with the
keyword enum, and defines the name, accessibility, underlying type, and members of
the enum.

enum-declaration:
 attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-base:
 : integral-type

enum-body:
 { enum-member-declarationsopt }
 { enum-member-declarations , }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14. Enums

664

En
um

s
14

.	
En

um
s

14
.	

En
um

s
14

.	
En

um
s

14
.	

Each enum type has a corresponding integral type called the underlying type of the enum
type. This underlying type must be able to represent all the enumerator values defined in
the enumeration. An enum declaration may explicitly declare an underlying type of byte,
sbyte, short, ushort, int, uint, long, or ulong. Note that char cannot be used as an under-
lying type. An enum declaration that does not explicitly declare an underlying type has an
underlying type of int.

n
n  JoN SkEET This is one of the only places in the language where you cannot

replace the “shorthand” version of a type with its full equivalent. For example, you
cannot declare the Color enum as follows:

enum Color: System.Int64 { ... }

The example

enum Color : long
{
 Red,
 Green,
 Blue
}

declares an enum with an underlying type of long. A developer might choose to use an
underlying type of long, as in the example, to enable the use of values that are in the range
of long but not in the range of int, or to preserve this option for the future.

14.2 Enum Modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in an enum
declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14.3		 Enum Members

665

Enum
s

14.	
Enum

s
14.	

Enum
s

14.	
Enum

s
14.	

The modifiers of an enum declaration have the same meaning as those of a class declara-
tion (§10.1.1). Note, however, that the abstract and sealed modifiers are not permitted in
an enum declaration. Enums cannot be abstract and do not permit derivation.

14.3 Enum Members
The body of an enum type declaration defines zero or more enum members, which are the
named constants of the enum type. No two enum members can have the same name.

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

n
n  VLADIMIR RESHETNIkoV In the Microsoft implementation of C#, an enum

member cannot have the name value__, because this name is reserved for the internal
representation of enums.

Each enum member has an associated constant value. The type of this value is the under-
lying type for the containing enum. The constant value for each enum member must be in
the range of the underlying type for the enum. The example

enum Color : uint
{
 Red = -1,
 Green = -2,
 Blue = -3
}

results in a compile-time error because the constant values -1, -2, and –3 are not in the
range of the underlying integral type uint.

Multiple enum members may share the same associated value. The example

enum Color
{
 Red,
 Green,
 Blue,

 Max = Blue
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14. Enums

666

En
um

s
14

.	
En

um
s

14
.	

En
um

s
14

.	
En

um
s

14
.	

shows an enum in which two enum members—Blue and Max—have the same associated
value.

The associated value of an enum member is assigned either implicitly or explicitly. If the
declaration of the enum member has a constant-expression initializer, the value of that con-
stant expression, implicitly converted to the underlying type of the enum, is the associated
value of the enum member. If the declaration of the enum member has no initializer, its
associated value is set implicitly, as follows:

If the enum member is the first enum member declared in the enum type, its associated •	
value is 0.

Otherwise, the associated value of the enum member is obtained by increasing the asso-•	
ciated value of the textually preceding enum member by 1. This increased value must
be within the range of values that can be represented by the underlying type; otherwise,
a compile-time error occurs.

n
n  JoN SkEET Using the default values is almost always the wrong thing to do for

a [Flags] enum where typically values should be 1, 2, 4, 8, and so on—often with a
“None” value for 0. The language could have helped to avoid developers from acci-
dentally using inappropriate values, but it’s hard to judge how well this goal could be
achieved without adding more complexity than is merited.

n
n  BILL WAGNER I would prefer to see the following example implemented using

extension methods. “Color.Red.StringFromColor()” just reads better to me than
“StringFromColor(Color.Red)”.

That technique also starts to address Jon’s comment about not being able to express
behavior.

The example

using System;

enum Color
{
 Red,
 Green = 10,
 Blue
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14.3		 Enum Members

667

Enum
s

14.	
Enum

s
14.	

Enum
s

14.	
Enum

s
14.	

class Test
{
 static void Main()
 {
 Console.WriteLine(StringFromColor(Color.Red));
 Console.WriteLine(StringFromColor(Color.Green));
 Console.WriteLine(StringFromColor(Color.Blue));
 }

 static string StringFromColor(Color c)
 {
 switch (c)
 {
 case Color.Red:
 return String.Format("Red = {0}", (int)c);

 case Color.Green:
 return String.Format("Green = {0}", (int)c);

 case Color.Blue:
 return String.Format("Blue = {0}", (int)c);

 default:
 return "Invalid color";
 }
 }
}

prints out the enum member names and their associated values. The output is

Red = 0
Green = 10
Blue = 11

for the following reasons:

The enum member •	 Red is automatically assigned the value zero (since it has no initial-
izer and is the first enum member).

The enum member •	 Green is explicitly given the value 10.

The enum member •	 Blue is automatically assigned the value 1 greater than the member
that textually precedes it.

The associated value of an enum member may not, directly or indirectly, use the value of
its own associated enum member. Other than this circularity restriction, enum member
initializers may freely refer to other enum member initializers, regardless of their textual
position. Within an enum member initializer, values of other enum members are always
treated as having the type of their underlying type, so that casts are not necessary when
referring to other enum members.

The example

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14. Enums

668

En
um

s
14

.	
En

um
s

14
.	

En
um

s
14

.	
En

um
s

14
.	

enum Circular
{
 A = B,
 B
}

results in a compile-time error because the declarations of A and B are circular. A depends
on B explicitly, and B depends on A implicitly.

Enum members are named and scoped in a manner exactly analogous to fields within
classes. The scope of an enum member is the body of its containing enum type. Within that
scope, enum members can be referred to by their simple names. From all other code, the
name of an enum member must be qualified with the name of its enum type. Enum mem-
bers do not have any declared accessibility—an enum member is accessible if its contain-
ing enum type is accessible.

14.4 The System.Enum Type
The type System.Enum is the abstract base class of all enum types (this is distinct and differ-
ent from the underlying type of the enum type), and the members inherited from System.
Enum are available in any enum type. A boxing conversion (§4.3.1) exists from any enum
type to System.Enum, and an unboxing conversion (§4.3.2) exists from System.Enum to any
enum type.

Note that System.Enum is not itself an enum-type. Rather, it is a class-type from which all
enum-types are derived. The type System.Enum inherits from the type System.ValueType
(§4.1.1), which in turn inherits from type object. At runtime, a value of type System.Enum
can be null or a reference to a boxed value of any enum type.

14.5 Enum Values and operations
Each enum type defines a distinct type; an explicit enumeration conversion (§6.2.2) is
required to convert between an enum type and an integral type, or between two enum
types. The set of values that an enum type can take on is not limited by its enum members.
In particular, any value of the underlying type of an enum can be cast to the enum type,
and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum
member initializers; see §14.3). The value of an enum member declared in enum type E
with associated value v is (E)v.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

14.5		 Enum Values and operations

669

Enum
s

14.	
Enum

s
14.	

Enum
s

14.	
Enum

s
14.	

The following operators can be used on values of enum types: ==, !=, <, >, <=, >= (§7.10.5),
binary + (§7.8.4), binary - (§7.8.5), ^, &, | (§7.11.2), ~ (§7.7.4), and ++ and -- (§7.6.9 and
§7.7.5).

n
n  JoN SkEET Some of these operators really make sense just for enums decorated

with [Flags], but the language does not enforce this limitation in any sense.

Every enum type automatically derives from the class System.Enum (which, in turn, derives
from System.ValueType and object). Thus inherited methods and properties of this class
can be used on values of an enum type.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

671

Delegates15.

Delegates enable scenarios that other languages—such as C++, Pascal, and Modula—have
addressed with function pointers. Unlike C++ function pointers, however, delegates are
fully object oriented. Also, unlike C++ pointers to member functions, delegates encapsu-
late both an object instance and a method.

n
n  BILL WAGNER I experience a strange sense of amazement upon reading this

small chapter in the language specification. Delegates have been part of C# since the
1.0 release. At that time, most of the C# community (including me) saw delegates as a
little extra ceremony around events. Ten years later, I can’t imagine the C# language
without delegates. They are something most of us use every day in LINQ queries,
function composition, closures, and more. Delegates and the concept of treating code
as data are an integral part of so much of the modern .NET ecosystem that I can’t
imagine programming in a language that does not allow me to express the concept of
functions (and actions) as data.

A delegate declaration defines a class that is derived from the class System.Delegate. A
delegate instance encapsulates an invocation list, which is a list of one or more methods,
each of which is referred to as a callable entity. For instance methods, a callable entity con-
sists of an instance and a method on that instance. For static methods, a callable entity
consists of just a method. Invoking a delegate instance with an appropriate set of argu-
ments causes each of the delegate’s callable entities to be invoked with the given set of
arguments.

An interesting and useful property of a delegate instance is that it does not know or care
about the classes of the methods it encapsulates; all that matters is that those methods be
compatible (§15.1) with the delegate’s type. This makes delegates perfectly suited for
“anonymous” invocation.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15. Delegates

672

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

n
n  ERIC LIPPERT Delegates are typically quite confusing the first time a developer

encounters them. I like to think of a delegate type as something akin to an interface
with exactly one method on it; an instance of a delegate type is an object that imple-
ments this method.

15.1 Delegate Declarations
A delegate-declaration is a type-declaration (§9.6) that declares a new delegate type.

delegate-declaration:
attributesopt delegate-modifiersopt delegate return-type
 identifier variant-type-parameter-listopt
 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in a delegate
declaration.

The new modifier is permitted only on delegates declared within another type, in which
case it specifies that such a delegate hides an inherited member by the same name, as
described in §10.3.4.

The public, protected, internal, and private modifiers control the accessibility of the
delegate type. Depending on the context in which the delegate declaration occurs, some of
these modifiers may not be permitted (§3.5.1).

The delegate’s type name is identifier.

The optional formal-parameter-list specifies the parameters of the delegate, and the return-
type indicates the return type of the delegate.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15.1		 Delegate Declarations

673

D
elegates

15.	
D

elegates
15.	

D
elegates

15.	
D

elegates
15.	

The optional variant-type-parameter-list (§13.1.3) specifies the type parameters to the dele-
gate itself.

The return type of a delegate type must be either void or output-safe (§13.1.3.1).

All of the formal parameter types of a delegate type must be input-safe. Additionally, any
out or ref parameter types must be output-safe. Note that even out parameters are required
to be input-safe, due to a limitation of the underlying execution platform.

n
n  ERIC LIPPERT The limitation mentioned here is that out parameters are actually

implemented as ref parameters behind the scenes: You can both read and write out
parameters. The rule enforced by the compiler is that an out parameter must be writ-
ten to before it is read from, but that is a rule of the C# language, not of the runtime. If
out parameters were truly “write-only” and this restriction was enforced by the run-
time, then they could, in theory, be made covariant. Keep that point in mind the next
time you design a new type system.

Delegate types in C# are name equivalent, not structurally equivalent. Specifically, two dif-
ferent delegate types that have the same parameter lists and return type are considered
different delegate types. However, instances of two distinct but structurally equivalent
delegate types may compare as equal (§7.9.8).

For example:

delegate int D1(int i, double d);

class A
{
 public static int M1(int a, double b) {...}
}

class B
{
 delegate int D2(int c, double d);

 public static int M1(int f, double g) {...}

 public static void M2(int k, double l) {...}

 public static int M3(int g) {...}

 public static void M4(int g) {...}
}

The delegate types D1 and D2 are both compatible with the methods A.M1 and B.M1, since
they have the same return type and parameter list; however, these delegate types are two
different types, so they are not interchangeable. The delegate types D1 and D2 are

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15. Delegates

674

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

incompatible with the methods B.M2, B.M3, and B.M4, since they have different return types
or parameter lists.

n
n  ERIC LIPPERT When you’re designing a new type system, you don’t know

exactly how it will be used in the future. One might imagine future scenarios involv-
ing different categories of delegates (such as “delegate to method with observable side
effects” or “delegate to method that can be called concurrently”). It would then make
sense to disallow assignments between these categories. In practice, as it turned out,
structural typing on delegates is very useful; there is really no semantic difference
between Predicate<int> and Func<int, bool> that needs to be enforced by the run-
time. If we were to do it all over again, delegate types would be more structurally
compatible than they are today.

Like other generic type declarations, type arguments must be given to create a constructed
delegate type. The parameter types and return type of a constructed delegate type are cre-
ated by substituting, for each type parameter in the delegate declaration, the correspond-
ing type argument of the constructed delegate type. The resulting return type and parameter
types are used in determining which methods are compatible with a constructed delegate
type. For example:

delegate bool Predicate<T>(T value);

class X
{
 static bool F(int i) {...}

 static bool G(string s) {...}
}

The delegate type Predicate<int> is compatible with the method X.F and the delegate
type Predicate<string> is compatible with the method X.G.

The only way to declare a delegate type is via a delegate-declaration. A delegate type is a
class type that is derived from System.Delegate. Delegate types are implicitly sealed, so it
is not permissible to derive any type from a delegate type. It is also not permissible to
derive a non-delegate class type from System.Delegate. Note that System.Delegate is not
itself a delegate type; it is a class type from which all delegate types are derived.

C# provides special syntax for delegate instantiation and invocation. Except for instantia-
tion, any operation that can be applied to a class or class instance can also be applied to a
delegate class or instance, respectively. In particular, it is possible to access members of the
System.Delegate type via the usual member access syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15.1		 Delegate Declarations

675

D
elegates

15.	
D

elegates
15.	

D
elegates

15.	
D

elegates
15.	

The set of methods encapsulated by a delegate instance is called an invocation list. When
a delegate instance is created (§15.2) from a single method, it encapsulates that method,
and its invocation list contains only one entry. However, when two non-null delegate
instances are combined, their invocation lists are concatenated—in the order left operand
then right operand—to form a new invocation list, which contains two or more entries.

n
n  JoN SkEET This single-cast/multicast duality is terribly awkward in some

ways—and wonderfully useful in others. For example, it makes sense to talk about
“the target” of a single-cast delegate, whereas each entry in the invocation list for a
multicast delegate may have a separate target. This rarely presents a practical prob-
lem, but can make hard to describe delegates both simply and accurately.

Delegates are combined using the binary + (§7.8.4) and += operators (§7.17.2). A delegate
can be removed from a combination of delegates by using the binary - (§7.8.5) and
-= operators (§7.17.2). Delegates can also be compared for equality (§7.10.8).

The following example shows the instantiation of a number of delegates, and their corre-
sponding invocation lists:

delegate void D(int x);

class C
{
 public static void M1(int i) {...}
 public static void M2(int i) {...}

}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1); // M1
 D cd2 = new D(C.M2); // M2
 D cd3 = cd1 + cd2; // M1 + M2
 D cd4 = cd3 + cd1; // M1 + M2 + M1
 D cd5 = cd4 + cd3; // M1 + M2 + M1 + M1 + M2
 }

}

When cd1 and cd2 are instantiated, they each encapsulate one method. When cd3 is
instantiated, it has an invocation list of two methods, M1 and M2, in that order. cd4’s invo-
cation list contains M1, M2, and M1, in that order. Finally, cd5’s invocation list contains M1,
M2, M1, M1, and M2, in that order. For more examples of combining (as well as removing)
delegates, see §15.4.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15. Delegates

676

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

15.2 Delegate Compatibility
A method or delegate M is compatible with a delegate type D if all of the following
are true:

D•	 and M have the same number of parameters, and each parameter in D has the same ref
or out modifiers as the corresponding parameter in M.

For each value parameter (a parameter with no •	 ref or out modifier), an identity conver-
sion (§6.1.1) or implicit reference conversion (§6.1.6) exists from the parameter type in D
to the corresponding parameter type in M.

For each •	 ref or out parameter, the parameter type in D is the same as the parameter
type in M.

An identity or implicit reference conversion exists from the return type of •	 M to the return
type of D.

15.3 Delegate Instantiation
An instance of a delegate is created by a delegate-creation-expression (§7.6.10.5) or a conver-
sion to a delegate type. The newly created delegate instance then refers to either

The static method referenced in the •	 delegate-creation-expression, or

The target object (which cannot be •	 null) and instance method referenced in the delegate-
creation-expression, or

Another delegate.•	

For example:

delegate void D(int x);

class C
{
 public static void M1(int i) {...}
 public void M2(int i) {...}
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1); // Static method
 C t = new C();
 D cd2 = new D(t.M2); // Instance method
 D cd3 = new D(cd2); // Another delegate
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15.4		 Delegate Invocation

677

D
elegates

15.	
D

elegates
15.	

D
elegates

15.	
D

elegates
15.	

Once instantiated, delegate instances always refer to the same target object and method.
Remember, when two delegates are combined, or one is removed from another, a new
delegate results with its own invocation list; the invocation lists of the delegates combined
or removed remain unchanged.

15.4 Delegate Invocation
C# provides special syntax for invoking a delegate. When a non-null delegate instance
whose invocation list contains one entry is invoked, it invokes the one method with the
same arguments it was given, and returns the same value as the referred to method. (See
§7.6.5.3 for detailed information on delegate invocation.) If an exception occurs during the
invocation of such a delegate, and that exception is not caught within the method that was
invoked, the search for an exception catch clause continues in the method that called the
delegate, as if that method had directly called the method to which that delegate referred.

Invocation of a delegate instance whose invocation list contains multiple entries proceeds
by invoking each of the methods in the invocation list, synchronously, in order. Each
method so called is passed the same set of arguments as was given to the delegate instance.
If such a delegate invocation includes reference parameters (§10.6.1.2), each method invo-
cation will occur with a reference to the same variable; changes to that variable by one
method in the invocation list will be visible to methods further down the invocation list. If
the delegate invocation includes output parameters or a return value, their final value will
come from the invocation of the last delegate in the list.

If an exception occurs during processing of the invocation of such a delegate, and that
exception is not caught within the method that was invoked, the search for an exception
catch clause continues in the method that called the delegate, and any methods further
down the invocation list are not invoked.

n
n  BILL WAGNER This behavior is why, in the general case, you should strive to cre-

ate methods that implement delegates that do not throw exceptions under any cir-
cumstances. It introduces errors from which you likely cannot safely recover. This
consideration is less important when you know your delegate will be used in a single-
cast scenario only.

n
n  CHRISTIAN NAGEL There’s a way to deal with exceptions that are thrown from

handler methods that are referenced by the delegate. Instead of invoking the delegate
instance directly, the GetInvocationList method of the delegate can be used to invoke
each delegate of the invocation list separately. This invocation can be guarded from a
try-catch block. In case of an exception, one way to deal with the failing handler
method is to remove it from the invocation list.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15. Delegates

678

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

Attempting to invoke a delegate instance whose value is null results in an exception of
type System.NullReferenceException.

n
n  JoN SkEET In some ways, this outcome makes perfect sense; in other ways, it’s

inconsistent with a null reference’s status as the normal representation of an empty
invocation list. This confusion could perhaps have been avoided by each delegate type
having a static Invoke method—perhaps even an extension method—that could have
performed the appropriate nullity check. This solution would be more elegant than
the C# compiler automatically performing a null check on each invocation expression.
Admittedly, things get more complicated when the delegate type has a non-void
return type or uses an out parameter.

Whatever the best solution would have been, it’s undeniably a pain in the neck to
have to check for nullity everywhere that you want to invoke a delegate.

n
n  ERIC LIPPERT A common pattern for “thread-safe” delegates is to do something

like this:

var temp = this.mydelegate;
if (temp != null) temp();

instead of the more obvious solution:

if (this.mydelegate != null) this.mydelegate();

The former is safer because if mydelegate can be changed on another thread, then it
might be changed to null between the test and the invocation. Moreover, this approach
eliminates only one race. Suppose we are using the former code. The temporary caches
the current value of mydelegate. On that other thread, mydelegate is set to null, and
the global state that the previous contents of mydelegate needs to execute successfully
is destroyed. But it is the previous contents that are about to be invoked! If your del-
egates (particularly delegates associated with events) are susceptible to this problem,
then some other mechanism must be implemented to ensure that nothing bad hap-
pens if this race occurs. Probably the best thing to do is to write the code to ensure that
if a “stale” delegate is invoked, nothing bad happens.

The following example shows how to instantiate, combine, remove, and invoke delegates:

using System;

delegate void D(int x);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15.4		 Delegate Invocation

679

D
elegates

15.	
D

elegates
15.	

D
elegates

15.	
D

elegates
15.	

class C
{
 public static void M1(int i)
 {
 Console.WriteLine("C.M1: " + i);
 }

 public static void M2(int i)
 {
 Console.WriteLine("C.M2: " + i);
 }

 public void M3(int i)
 {
 Console.WriteLine("C.M3: " + i);
 }
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1);
 cd1(-1); // Call M1

 D cd2 = new D(C.M2);
 cd2(-2); // Call M2

 D cd3 = cd1 + cd2;
 cd3(10); // Call M1 then M2

 cd3 += cd1;
 cd3(20); // Call M1, M2, then M1

 C c = new C();
 D cd4 = new D(c.M3);
 cd3 += cd4;
 cd3(30); // Call M1, M2, M1, then M3

 cd3 -= cd1; // Remove last M1
 cd3(40); // Call M1, M2, then M3

 cd3 -= cd4;
 cd3(50); // Call M1 then M2

 cd3 -= cd2;
 cd3(60); // Call M1

 cd3 -= cd2; // Impossible removal is benign
 cd3(60); // Call M1

 cd3 -= cd1; // Invocation list is empty so cd3 is null

 // cd3(70); // System.NullReferenceException thrown

 cd3 -= cd1; // Impossible removal is benign
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

15. Delegates

680

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

D
el

eg
at

es

15
.	

As shown in the statement cd3 += cd1;, a delegate can be present in an invocation list
multiple times. In this case, it is simply invoked once per occurrence. In such an invocation
list, when that delegate is removed, the last occurrence in the invocation list is the one actu-
ally removed.

Immediately prior to the execution of the final statement cd3 -= cd1;, the delegate cd3
refers to an empty invocation list. Attempting to remove a delegate from an empty list (or
to remove a nonexistent delegate from a non-empty list) is not an error.

The output produced is

C.M1: -1
C.M2: -2
C.M1: 10
C.M2: 10
C.M1: 20
C.M2: 20
C.M1: 20
C.M1: 30
C.M2: 30
C.M1: 30
C.M3: 30
C.M1: 40
C.M2: 40
C.M3: 40
C.M1: 50
C.M2: 50
C.M1: 60
C.M1: 60

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

681

Exceptions16.

Exceptions in C# provide a structured, uniform, and type-safe way of handling both
system-level and application-level error conditions. The exception mechanism in C# is
quite similar to that of C++, with a few important differences.

n
n  ERIC LIPPERT The guidance on system-level and application-level exceptions

used to be that all application exceptions should be derived from Application-
Exception. This turned out to be a bad idea, and we no longer recommend this
approach: Whether an exception comes from an application or the framework class
library is almost always irrelevant.

In C#, all exceptions must be represented by an instance of a class type derived from •	
System.Exception. In C++, any value of any type can be used to represent an
exception.

n
n  ERIC LIPPERT In the first version of the CLR, it was possible to throw a non-

exception and catch it in C# using the empty catch clause. This made for some confus-
ing exception-handling code in C# programs that needed to catch non-exception
exceptions. In newer versions of the CLR, a thrown object that is not an exception is
automatically wrapped in an exception object that can be caught normally.

In C#, a •	 finally block (§8.10) can be used to write termination code that executes in
both normal execution and exceptional conditions. Such code is difficult to write in
C++ without duplicating code.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

16. Exceptions

682

Ex
ce

pt
io

ns
16

.	
Ex

ce
pt

io
ns

16

.	
Ex

ce
pt

io
ns

16
.	

Ex
ce

pt
io

ns

16
.	

n
n  ERIC LIPPERT One occasionally hears the myth that “the finally block always

executes.” Of course, it doesn’t. The finally block does not execute if (1) the
try-protected region goes into an infinite loop, (2) the program is terminated before
the finally block runs, via a “fail fast” condition or an administrator killing the pro-
cess, or (3) someone kicks the power cord out of the wall. Indeed, there are times when
you do not want finally blocks to run. If the exception is indicative of program state
being so messed up that running finally blocks will make the situation worse, then
sometimes the right thing to do is to simply fail fast and take the process down before
any more harm can be done.

In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences •	
have well-defined exception classes and are on a par with application-level error
conditions.

n
n  BILL WAGNER This point highlights an important advantage—namely, that C#

exceptions have a great deal in common with C++ exceptions. That commonality
enables the C# community to leverage all the work done by the C++ community (nota-
bly Dave Abrahams and Herb Sutter) to define a set of practices that make code more
robust in the face of exceptions.

n
n  CHRIS SELLS The value of having a single unified way to communicate and

handle errors is one of the big advantages that .NET provides, but it’s sometimes for-
gotten. When I see a .NET design that communicates errors in some other way, I
assume it’s wrong until I can be shown otherwise. I can think of only one such occa-
sion—and that was something I designed myself, so I’m hardly an unbiased judge.

n
n  PETER SESToFT One big exception (sorry) to Chris’s rule is numeric code, where

NaNs are used to report and propagate errors, and to encode information about the
error in the NaN payload bits (see the annotation in §7.8.1). Throwing an exception
may be three to four orders of magnitude slower than propagating a NaN. The speed
is, of course, immaterial if the program must terminate with an error report even when
just one exception is thrown. In some contexts, however, a numeric “error” may sim-
ply represent the absence of an input, so millions or billions of “errors” may happen
during a computation; in that case, the cost matters.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

16.2		 The System.Exception Class

683

Exceptions
16.	

Exceptions
16.	

Exceptions
16.	

Exceptions
16.	

16.1 Causes of Exceptions
Exceptions can be thrown in two different ways.

A •	 throw statement (§8.9.5) throws an exception immediately and unconditionally. Con-
trol never reaches the statement immediately following the throw.

Certain exceptional conditions that arise during the processing of C# statements and •	
expression cause an exception in certain circumstances when the operation cannot be
completed normally. For example, an integer division operation (§7.8.2) throws a
System.DivideByZeroException if the denominator is zero. See §16.4 for a list of the
various exceptions that can occur in this way.

n
n  CHRISTIAN NAGEL When throwing exceptions, you should not throw an excep-

tion of type Exception, but rather throw an exception of a type that derives from the
Exception class.

16.2 The System.Exception Class
The System.Exception class is the base type of all exceptions. This class has a few notable
properties that all exceptions share:

Message•	 is a read-only property of type string that contains a human-readable descrip-
tion of the reason for the exception.

InnerException•	 is a read-only property of type Exception. If its value is non-null, it
refers to the exception that caused the current exception—that is, the current exception
was raised in a catch block handling the InnerException. Otherwise, its value is null,
indicating that this exception was not caused by another exception. The number of
exception objects chained together in this manner can be arbitrary.

The value of these properties can be specified in calls to the instance constructor for
System.Exception.

n
n  ERIC LIPPERT From this description, it sounds like exceptions are immutable

objects, which they are not. Every time you throw a particular instance of an exception
object, the call stack captured by that exception is reset. For example, if you create one
exception instance and then throw it from multiple threads, the call stack of the excep-
tion will be observed to change on all threads that handle it, which is likely to be
confusing. Create a new exception every time you need one.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

16. Exceptions

684

Ex
ce

pt
io

ns
16

.	
Ex

ce
pt

io
ns

16

.	
Ex

ce
pt

io
ns

16
.	

Ex
ce

pt
io

ns

16
.	

16.3 How Exceptions Are Handled
Exceptions are handled by a try statement (§8.10).

When an exception occurs, the system searches for the nearest catch clause that can handle
the exception, as determined by the runtime type of the exception. First, the current method
is searched for a lexically enclosing try statement, and the associated catch clauses of the
try statement are considered in order. If that fails, the method that called the current
method is searched for a lexically enclosing try statement that encloses the point of the call
to the current method. This search continues until a catch clause is found that can handle
the current exception, by naming an exception class that is of the same class, or a base class,
of the runtime type of the exception being thrown. A catch clause that doesn’t name an
exception class can handle any exception.

Once a matching catch clause is found, the system prepares to transfer control to the first
statement of the catch clause. Before execution of the catch clause begins, the system first
executes, in order, any finally clauses that were associated with try statements more
nested than the one that caught the exception.

If no matching catch clause is found, one of two things occurs:

If the search for a matching •	 catch clause reaches a static constructor (§10.12) or static
field initializer, then a System.TypeInitializationException is thrown at the point that
triggered the invocation of the static constructor. The inner exception of the System.
TypeInitializationException contains the exception that was originally thrown.

If the search for matching •	 catch clauses reaches the code that initially started the
thread, then execution of the thread is terminated. The impact of such termination is
implementation-defined.

n
n  ERIC LIPPERT In earlier versions of the CLR, the implementation-defined behav-

ior was to take down the application if the unhandled exception occurred on the main
thread. If it appeared on a worker thread, then the policy was to kill the worker thread
but keep running the main thread. This turned out to be a bad policy, because applica-
tions with buggy code on the worker thread would gradually lose all of their worker
threads and be left with a running application that was doing no work, to the confu-
sion of its users. The new policy is more aggressive: An unhandled exception on any
thread takes down the application. Failing catestrophically is often a better policy than
continuing on as if nothing had happened; if you fail noisily enough times, then even-
tually someone figures out there is a problem and fixes it.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

16.4		 Common Exception Classes

685

Exceptions
16.	

Exceptions
16.	

Exceptions
16.	

Exceptions
16.	

Exceptions that occur during destructor execution are worth special mention. If an excep-
tion occurs during destructor execution and that exception is not caught, then the execu-
tion of that destructor is terminated and the destructor of the base class (if any) is called. If
there is no base class (as in the case of the object type) or if there is no base class destructor,
then the exception is discarded.

n
n  CHRISTIAN NAGEL The C# compiler creates a finalizer from a destructor. Within

the finalizer, a try-finally block is added where the finalizer from the base class is
called in the finally block.

16.4 Common Exception Classes
The following exceptions are thrown by certain C# operations.

Exception Description

System.ArithmeticException A base class for exceptions that occur during
arithmetic operations, such as System.
DivideByZeroException and System.
OverflowException.

System.ArrayTypeMismatchException Thrown when a store into an array fails
because the actual type of the stored element is
incompatible with the actual type of the array.

System.DivideByZeroException Thrown when an attempt to divide an integral
value by zero occurs.

System.IndexOutOfRangeException Thrown when an attempt to index an array via
an index that is less than zero or outside the
bounds of the array occurs.

System.InvalidCastException Thrown when an explicit conversion from a
base type or interface to a derived type fails at
runtime.

System.NullReferenceException Thrown when a null reference is used in a way
that causes the referenced object to be required.

System.OutOfMemoryException Thrown when an attempt to allocate memory
(via new) fails.

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

16. Exceptions

686

Ex
ce

pt
io

ns
16

.	
Ex

ce
pt

io
ns

16

.	
Ex

ce
pt

io
ns

16
.	

Ex
ce

pt
io

ns

16
.	

Exception Description

System.OverflowException Thrown when an arithmetic operation in a
checked context overflows.

System.StackOverflowException Thrown when the execution stack is exhausted
by having too many pending method calls;
typically indicative of very deep or
unbounded recursion.

System.TypeInitializationException Thrown when a static constructor throws an
exception, and no catch clauses exists to
catch it.

n
n  JoN SkEET This table does not list the most commonly encountered exceptions,

but rather the exceptions that can occur naturally within the execution environment
as the result of C# operations. You should very rarely (if ever) explicitly throw these
exceptions yourself. By contrast, the more commonly encountered exceptions such as
System.ArgumentException and its subclasses aren’t listed here—they’re thrown by a
higher level of code, whether system libraries or application code.

n
n  ERIC LIPPERT I categorize exceptions as fatal, boneheaded, vexing, and exogenous.

Fatal exceptions you neither throw nor catch; they include out of memory, thread
abort, and so on. You did not cause the problem and you cannot fix it; the exception is
just the mechanism by which you are notified that the world is about to end.

Boneheaded exceptions are avoidable and, therefore, are thrown only by buggy pro-
grams; they include null dereferenced, invalid argument, and so on. Never catch them;
catching a boneheaded exception is hiding someone’s bug. Instead, fix the bug.

Vexing exceptions are exceptions that you have to handle because the API is designed
to communicate facts via exceptions. For example, previous versions of the frame-
work lacked an “Is this string a legal GUID?” method; to answer that question, you
might try to call the GUID constructor and catch the vexing exception to see if it suc-
ceeded or failed. Try to not write code that throws vexing exceptions.

Exogenous exceptions are those you must catch because they indicate unexpected facts
about the real world: the CD has been removed from the drive, the network router has
been unplugged, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

687

Attributes17.

Much of the C# language enables the programmer to specify declarative information about
the entities defined in the program. For example, the accessibility of a method in a class is
specified by decorating it with the method-modifiers public, protected, internal, and
private.

C# enables programmers to invent new kinds of declarative information, called attributes.
Programmers can then attach attributes to various program entities, and retrieve attribute
information in a runtime environment. For instance, a framework might define a
HelpAttribute attribute that can be placed on certain program elements (such as classes and
methods) to provide a mapping from those program elements to their documentation.

n
n  JESSE LIBERTy A common and powerful use of attributes can be seen through-

out Silverlight and WPF, where attributes are used to indicate the available view states
associated with a class.

Similarly, Test Libraries use attributes to differentiate test methods from supporting
methods. Web services use attributes to designate which methods are exposed to
clients.

Attributes are defined through the declaration of attribute classes (§17.1), which may have
positional and named parameters (§17.1.2). Attributes are attached to entities in a C# pro-
gram using attribute specifications (§17.2), and can be retrieved at runtime as attribute
instances (§17.3).

n
n  ERIC LIPPERT Try to use attributes only to talk about the type itself rather than

representing details about the semantics of that type. For example, suppose you have
a class Book with a property Author. That is part of the semantics of the class: The
class represents books, and books have authors. If you put an AuthorAttribute on
the class Book, that doesn’t represent the author of the book, but rather the author of
the class. A class Television might have a property Obsolete that indicates whether
a particular model is out of production. If you put an ObsoleteAttribute on the
class, it means that the class itself is obsolete, not that it represents an obsolete product.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

688

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

17.1 Attribute Classes
A class that derives from the abstract class System.Attribute, whether directly or indi-
rectly, is an attribute class. The declaration of an attribute class defines a new kind of
attribute that can be placed on a declaration. By convention, attribute classes are named
with a suffix of Attribute. Uses of an attribute may either include or omit this suffix.

17.1.1 Attribute Usage
The attribute AttributeUsage (§17.4.1) is used to describe how an attribute class can
be used.

AttributeUsage has a positional parameter (§17.1.2) that enables an attribute class to
specify the kinds of declarations on which it can be used. The example

using System;

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute: Attribute
{
 ...
}

defines an attribute class named SimpleAttribute that can be placed on class-declarations
and interface-declarations only. The example

[Simple] class Class1 {...}
[Simple] interface Interface1 {...}

shows several uses of the Simple attribute. Although this attribute is defined with the
name SimpleAttribute, when this attribute is used, the Attribute suffix may be omitted,
resulting in the short name Simple. Thus the example above is semantically equivalent to
the following:

[SimpleAttribute] class Class1 {...}
[SimpleAttribute] interface Interface1 {...}

AttributeUsage has a named parameter (§17.1.2) called AllowMultiple, which indicates
whether the attribute can be specified more than once for a given entity. If AllowMultiple
for an attribute class is true, then that attribute class is a multi-use attribute class, and can
be specified more than once on an entity. If AllowMultiple for an attribute class is false or
it is unspecified, then that attribute class is a single-use attribute class, and can be specified
at most once on an entity.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.1		 Attribute Classes

689

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

The example

using System;

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: Attribute
{
 private string name;

 public AuthorAttribute(string name) {
 this.name = name;
 }

 public string Name {
 get { return name; }
 }
}

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Class1
{
 ...
}

shows a class declaration with two uses of the Author attribute.

n
n  CHRIS SELLS For those of you who are reading this example and don’t know

who Brian Kernighan or Dennis Ritchie is: For shame! They are true software
legends.

n
n  JoN SkEET While I agree with Chris, I certainly hope that neither of the esteemed

gentlemen in question would ever write a class named Class1.

AttributeUsage has another named parameter called Inherited, which indicates whether
the attribute, when specified on a base class, is also inherited by classes that derive from
that base class. If Inherited for an attribute class is true, then that attribute is inherited. If
Inherited for an attribute class is false, then that attribute is not inherited. If it is unspeci-
fied, its default value is true.

An attribute class X not having an AttributeUsage attribute attached to it, as in

using System;

class X: Attribute {...}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

690

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

is equivalent to the following:

using System;

[AttributeUsage(
 AttributeTargets.All,
 AllowMultiple = false,
 Inherited = true)
]
class X: Attribute {...}

17.1.2 Positional and Named Parameters

n
n  BILL WAGNER In most cases, using named parameters will result in a clearer,

more easily understood program. Positional parameters should be used only for attri-
butes with one property, where the property is made clear by the attribute name, such
as AuthorAttribute.

Attribute classes can have positional parameters and named parameters. Each public
instance constructor for an attribute class defines a valid sequence of positional parameters
for that attribute class. Each nonstatic public read-write field and property for an attribute
class defines a named parameter for the attribute class.

The example

using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpAttribute: Attribute
{
 public HelpAttribute(string url) { // Positional parameter
 ...
 }

 public string Topic { // Named parameter
 get {...}
 set {...}
 }

 public string Url {
 get {...}
 }
}

defines an attribute class named HelpAttribute that has one positional parameter, url,
and one named parameter, Topic. Although it is nonstatic and public, the property Url
does not define a named parameter, since it is not read-write.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.1		 Attribute Classes

691

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

This attribute class might be used as follows:

[Help("http://www.mycompany.com/.../Class1.htm")]
class Class1
{
 ...
}

[Help("http://www.mycompany.com/.../Misc.htm", Topic = "Class2")]
class Class2
{
 ...
}

17.1.3 Attribute Parameter Types
The types of positional and named parameters for an attribute class are limited to the
attribute parameter types:

One of the following types: •	 bool, byte, char, double, float, int, long, sbyte, short,
string, uint, ulong, ushort.

The type • object.

The type• System.Type.

An enum type, provided it has public accessibility and the types in which it is nested (if •	
any) also have public accessibility (§17.2).

Single-dimensional arrays of the above types.•	

n
n  JoN SkEET Note that decimal cannot be used as a parameter type, even though

you can declare decimal constants. This is one example of CLI rules leaking into C#.

n
n  MAREk SAFAR Although arrays are supported, array covariance is not allowed

for attributes of reference types. Similarly, the C# 4.0 dynamic type cannot be used
where type object is expected.

A constructor argument or public field that does not have one of these types cannot be
used as a positional or named parameter in an attribute specification.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

692

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

17.2 Attribute Specification
Attribute specification is the application of a previously defined attribute to a declaration.
An attribute is a piece of additional declarative information that is specified for a declara-
tion. Attributes can be specified at global scope (to specify attributes on the containing
assembly or module) and for type-declarations (§9.6), class-member-declarations (§10.1.5),
interface-member-declarations (§13.2), struct-member-declarations (§11.2), enum-member-
declarations (§14.3), accessor-declarations (§10.7.2), event-accessor-declarations (§10.8.1), and
formal-parameter-lists (§10.6.1).

Attributes are specified in attribute sections. An attribute section consists of a pair of
square brackets, which surround a comma-separated list of one or more attributes. The
order in which attributes are specified in such a list, and the order in which sections
attached to the same program entity are arranged, is not significant. For instance, the attri-
bute specifications [A][B], [B][A], [A, B], and [B, A] are all equivalent.

global-attributes:
global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target-specifier attribute-list]
[global-attribute-target-specifier attribute-list ,]

global-attribute-target-specifier:
global-attribute-target :

global-attribute-target:
assembly
module

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieropt attribute-list]
[attribute-target-specifieropt attribute-list ,]

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.2		 Attribute Specification

693

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

attribute-target-specifier:
attribute-target :

attribute-target:
field
event
method
param
property
return
type

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
 type-name

attribute-arguments:
(positional-argument-listopt)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
argument-nameopt attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

694

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

An attribute consists of an attribute-name and an optional list of positional and named argu-
ments. The positional arguments (if any) precede the named arguments. A positional
argument consists of an attribute-argument-expression; a named argument consists of a
name, followed by an equal sign, followed by an attribute-argument-expression, which
together are constrained by the same rules as simple assignment. The order of named argu-
ments is not significant.

The attribute-name identifies an attribute class. If the form of attribute-name is type-name,
then this name must refer to an attribute class. Otherwise, a compile-time error occurs. The
example

class Class1 {}

[Class1] class Class2 {} // Error

results in a compile-time error because it attempts to use Class1 as an attribute class when
Class1 is not an attribute class.

Certain contexts permit the specification of an attribute on more than one target. A pro-
gram can explicitly specify the target by including an attribute-target-specifier. When an
attribute is placed at the global level, a global-attribute-target-specifier is required. In all other
locations, a reasonable default is applied, but an attribute-target-specifier can be used to
affirm or override the default in certain ambiguous cases (or to just affirm the default in
non-ambiguous cases). Thus, typically, attribute-target-specifiers can be omitted except at the
global level. The potentially ambiguous contexts are resolved as follows:

An attribute specified at the global scope can apply either to the target assembly or the •	
target module. No default exists for this context, so an attribute-target-specifier is always
required in this context. The presence of the assembly attribute-target-specifier indicates
that the attribute applies to the target assembly; the presence of the module attribute-
target-specifier indicates that the attribute applies to the target module.

An attribute specified on a delegate declaration can apply either to the delegate being •	
declared or to its return value. In the absence of an attribute-target-specifier, the attribute
applies to the delegate. The presence of the type attribute-target-specifier indicates that the
attribute applies to the delegate; the presence of the return attribute-target-specifier indi-
cates that the attribute applies to the return value.

An attribute specified on a method declaration can apply either to the method being •	
declared or to its return value. In the absence of an attribute-target-specifier, the attribute
applies to the method. The presence of the method attribute-target-specifier indicates that
the attribute applies to the method; the presence of the return attribute-target-specifier
indicates that the attribute applies to the return value.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.2		 Attribute Specification

695

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

An attribute specified on an operator declaration can apply either to the operator being •	
declared or to its return value. In the absence of an attribute-target-specifier, the attribute
applies to the operator. The presence of the method attribute-target-specifier indicates that
the attribute applies to the operator; the presence of the return attribute-target-specifier
indicates that the attribute applies to the return value.

An attribute specified on an event declaration that omits event accessors can apply to •	
the event being declared, to the associated field (if the event is not abstract), or to the
associated add and remove methods. In the absence of an attribute-target-specifier, the
attribute applies to the event. The presence of the event attribute-target-specifier indicates
that the attribute applies to the event; the presence of the field attribute-target-specifier
indicates that the attribute applies to the field; and the presence of the method attribute-
target-specifier indicates that the attribute applies to the methods.

An attribute specified on a •	 get accessor declaration for a property or indexer declara-
tion can apply either to the associated method or to its return value. In the absence of
an attribute-target-specifier, the attribute applies to the method. The presence of the
method attribute-target-specifier indicates that the attribute applies to the method;
the presence of the return attribute-target-specifier indicates that the attribute applies
to the return value.

An attribute specified on a •	 set accessor for a property or indexer declaration can apply
either to the associated method or to its lone implicit parameter. In the absence of
an attribute-target-specifier, the attribute applies to the method. The presence of the method
attribute-target-specifier indicates that the attribute applies to the method; the presence of
the param attribute-target-specifier indicates that the attribute applies to the parameter;
and the presence of the return attribute-target-specifier indicates that the attribute applies
to the return value.

An attribute specified on an add or remove accessor declaration for an event declaration •	
can apply either to the associated method or to its lone parameter. In the absence of
an attribute-target-specifier, the attribute applies to the method. The presence of the method
attribute-target-specifier indicates that the attribute applies to the method; the presence of
the param attribute-target-specifier indicates that the attribute applies to the parameter;
and the presence of the return attribute-target-specifier indicates that the attribute applies
to the return value.

In other contexts, inclusion of an attribute-target-specifier is permitted but unnecessary. For
instance, a class declaration may either include or omit the specifier type:

[type: Author("Brian Kernighan")]
class Class1 {}

[Author("Dennis Ritchie")]
class Class2 {}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

696

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

It is an error to specify an invalid attribute-target-specifier. For instance, the specifier param
cannot be used on a class declaration:

[param: Author("Brian Kernighan")] // Error
class Class1 {}

By convention, attribute classes are named with a suffix of Attribute. An attribute-name of
the form type-name may either include or omit this suffix. If an attribute class is found both
with and without this suffix, an ambiguity is present, and a compile-time error results. If
the attribute-name is spelled such that its rightmost identifier is a verbatim identifier (§2.4.2),
then only an attribute without a suffix is matched, thus enabling such an ambiguity to be
resolved. The example

using System;

[AttributeUsage(AttributeTargets.All)]
public class X: Attribute
{}

[AttributeUsage(AttributeTargets.All)]
public class XAttribute: Attribute
{}

[X] // Error: ambiguity
class Class1 {}

[XAttribute] // Refers to XAttribute
class Class2 {}

[@X] // Refers to X
class Class3 {}

[@XAttribute] // Refers to XAttribute
class Class4 {}

shows two attribute classes named X and XAttribute. The attribute [X] is ambiguous, since
it could refer to either X or XAttribute. Using a verbatim identifier allows the exact intent
to be specified in such rare cases. The attribute [XAttribute] is not ambiguous (although
it would be if there was an attribute class named XAttributeAttribute!). If the declaration
for class X is removed, then both attributes refer to the attribute class named XAttribute,
as follows:

using System;

[AttributeUsage(AttributeTargets.All)]
public class XAttribute: Attribute
{}

[X] // Refers to XAttribute
class Class1 {}

[XAttribute] // Refers to XAttribute
class Class2 {}

[@X] // Error: no attribute named "X"
class Class3 {}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.2		 Attribute Specification

697

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

It is a compile-time error to use a single-use attribute class more than once on the same
entity. The example

using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute: Attribute
{
 string value;

 public HelpStringAttribute(string value) {
 this.value = value;
 }

 public string Value {
 get {...}
 }
}

[HelpString("Description of Class1")]
[HelpString("Another description of Class1")]
public class Class1 {}

results in a compile-time error because it attempts to use HelpString, which is a single-use
attribute class, more than once on the declaration of Class1.

An expression E is an attribute-argument-expression if all of the following statements
are true:

The type of •	 E is an attribute parameter type (§17.1.3).

At compile time, the value of •	 E can be resolved to one of the following:

A constant value.-

A - System.Type object.

A one-dimensional array of - attribute-argument-expressions.

For example:

using System;

[AttributeUsage(AttributeTargets.Class)]
public class TestAttribute: Attribute
{
 public int P1 {
 get {...}
 set {...}
 }

 public Type P2 {
 get {...}
 set {...}
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

698

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

 public object P3 {
 get {...}
 set {...}
 }
}

[Test(P1 = 1234, P3 = new int[] {1, 3, 5}, P2 = typeof(float))]
class MyClass {}

A typeof-expression (§7.6.11) used as an attribute argument expression can reference a non-
generic type, a closed constructed type, or an unbound generic type, but it cannot reference
an open type. This is to ensure that the expression can be resolved at compile time.

class A: Attribute
{
 public A(Type t) {...}
}

class G<T>
{
 [A(typeof(T))] T t; // Error: open type in attribute
}

class X
{
 [A(typeof(List<int>))] int x; // Okay: closed constructed type
 [A(typeof(List<>))] int y; // Okay: unbound generic type
}

17.3 Attribute Instances
An attribute instance is an instance that represents an attribute at runtime. An attribute is
defined with an attribute class, positional arguments, and named arguments. An attribute
instance is an instance of the attribute class that is initialized with the positional and named
arguments.

Retrieval of an attribute instance involves both compile-time and runtime processing, as
described in the following sections.

17.3.1 Compilation of an Attribute
The compilation of an attribute with attribute class T, positional-argument-list P, and named-
argument-list N, consists of the following steps:

Follow the compile-time processing steps for compiling an •	 object-creation-expression of
the form new T(P). These steps either result in a compile-time error or determine an
instance constructor C on T that can be invoked at runtime.

If •	 C does not have public accessibility, then a compile-time error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.4		 Reserved Attributes

699

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

For each •	 named-argument Arg in N:

Let - Name be the identifier of the named-argument Arg.

Name - must identify a nonstatic read-write public field or property on T. If T has no
such field or property, then a compile-time error occurs.

Keep the following information for runtime instantiation of the attribute: the attribute •	
class T, the instance constructor C on T, the positional-argument-list P, and the named-
argument-list N.

n
n  MAREk SAFAR The public accessibility restriction is a little bit confusing in this

case. For instance, class attributes are declared lexically outside the class but they can
still use private constants declared within the same class.

17.3.2 Runtime Retrieval of an Attribute Instance
Compilation of an attribute yields an attribute class T, an instance constructor C on T, a
positional-argument-list P, and a named-argument-list N. Given this information, an attribute
instance can be retrieved at runtime using the following steps:

Follow the runtime processing steps for executing an •	 object-creation-expression of the
form new T(P), using the instance constructor C as determined at compile time. These
steps either result in an exception, or produce an instance O of T.

For each •	 named-argument Arg in N, in order:

Let - Name be the identifier of the named-argument Arg. If Name does not identify a non-
static public read-write field or property on O, then an exception is thrown.

Let - Value be the result of evaluating the attribute-argument-expression of Arg.

If - Name identifies a field on O, then set this field to Value.

Otherwise, - Name identifies a property on O. Set this property to Value.

The result is - O, an instance of the attribute class T that has been initialized with the
positional-argument-list P and the named-argument-list N.

17.4 Reserved Attributes
A small number of attributes affect the language in some way. These attributes include:

System.AttributeUsageAttribute•	 (§17.4.1), which is used to describe the ways in which
an attribute class can be used.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

700

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

System.Diagnostics.ConditionalAttribute•	 (§17.4.2), which is used to define condi-
tional methods.

System.ObsoleteAttribute•	 (§17.4.3), which is used to mark a member as obsolete.

17.4.1 The AttributeUsage Attribute
The attribute AttributeUsage is used to describe the manner in which the attribute class
can be used.

A class that is decorated with the AttributeUsage attribute must derive from System.
Attribute, either directly or indirectly. Otherwise, a compile-time error occurs.

namespace System
{
 [AttributeUsage(AttributeTargets.Class)]
 public class AttributeUsageAttribute: Attribute
 {
 public AttributeUsageAttribute(AttributeTargets validOn) {

 ...
}

 public virtual bool AllowMultiple { get {...} set {...} }

 public virtual bool Inherited { get {...} set {...} }

 public virtual AttributeTargets ValidOn { get {...} }
 }

 public enum AttributeTargets
 {
 Assembly = 0x0001,
 Module = 0x0002,
 Class = 0x0004,
 Struct = 0x0008,
 Enum = 0x0010,
 Constructor = 0x0020,
 Method = 0x0040,
 Property = 0x0080,
 Field = 0x0100,
 Event = 0x0200,
 Interface = 0x0400,
 Parameter = 0x0800,
 Delegate = 0x1000,
 ReturnValue = 0x2000,

 All = Assembly | Module | Class | Struct | Enum |
 Constructor | Method | Property | Field | Event |
 Interface | Parameter | Delegate | ReturnValue
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.4		 Reserved Attributes

701

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

17.4.2 The Conditional Attribute
The attribute Conditional enables the definition of conditional methods and conditional
attribute classes.

namespace System.Diagnostics
{
 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class,
 AllowMultiple = true)]
 public class ConditionalAttribute: Attribute
 {
 public ConditionalAttribute(string conditionString) {...}

 public string ConditionString { get {...} }
 }
}

17.4.2.1 Conditional Methods
A method decorated with the Conditional attribute is a conditional method. The Conditional
attribute indicates a condition by testing a conditional compilation symbol. Calls to a con-
ditional method are either included or omitted depending on whether this symbol is defined
at the point of the call. If the symbol is defined, the call is included; otherwise, the call
(including evaluation of the receiver and parameters of the call) is omitted.

A conditional method is subject to the following restrictions:

The conditional method must be a method in a •	 class-declaration or struct-declaration. A
compile-time error occurs if the Conditional attribute is specified on a method in an
interface declaration.

The conditional method must have a return type of •	 void.

The conditional method must not be marked with the •	 override modifier. A conditional
method may be marked with the virtual modifier, however. Overrides of such a method
are implicitly conditional, and must not be explicitly marked with a Conditional
attribute.

The conditional method must not be an implementation of an interface method. Other-•	
wise, a compile-time error occurs.

In addition, a compile-time error occurs if a conditional method is used in a delegate-
creation-expression. The example

#define DEBUG

using System;
using System.Diagnostics;
class Class1

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

702

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

{
 [Conditional("DEBUG")]
 public static void M() {
 Console.WriteLine("Executed Class1.M");
 }
}

class Class2
{
 public static void Test() {
 Class1.M();
 }
}

declares Class1.M as a conditional method. Class2’s Test method calls this method. Since
the conditional compilation symbol DEBUG is defined, if Class2.Test is called, it will call M.
If the symbol DEBUG had not been defined, then Class2.Test would not call Class1.M.

It is important to note that the inclusion or exclusion of a call to a conditional method is
controlled by the conditional compilation symbols at the point of the call. In the example

File class1.cs:

using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public static void F() {
 Console.WriteLine("Executed Class1.F");
 }
}

File class2.cs:

#define DEBUG

class Class2
{
 public static void G() {
 Class1.F(); // F is called
 }
}

File class3.cs:

#undef DEBUG

class Class3
{
 public static void H() {
 Class1.F(); // F is not called
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.4		 Reserved Attributes

703

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

the classes Class2 and Class3 each contain calls to the conditional method Class1.F, which
is conditional based on whether DEBUG is defined. Since this symbol is defined in the con-
text of Class2 but not Class3, the call to F in Class2 is included, while the call to F in
Class3 is omitted.

The use of conditional methods in an inheritance chain can be confusing. Calls made to a
conditional method through base, of the form base.M, are subject to the normal conditional
method call rules. In the example

File class1.cs:

using System;
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public virtual void M() {
 Console.WriteLine("Class1.M executed");
 }
}

File class2.cs:

using System;

class Class2: Class1
{
 public override void M() {
 Console.WriteLine("Class2.M executed");
 base.M(); // base.M is not called!
 }
}

File class3.cs:

#define DEBUG

using System;

class Class3
{
 public static void Test() {
 Class2 c = new Class2();
 c.M(); // M is called
 }
}

Class2 includes a call to the M defined in its base class. This call is omitted because the base
method is conditional based on the presence of the symbol DEBUG, which is undefined.
Thus the method writes to the console “Class2.M executed” only. Judicious use of pp-
declarations can eliminate such problems.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

704

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

17.4.2.2 Conditional Attribute Classes
An attribute class (§17.1) decorated with one or more Conditional attributes is a
conditional attribute class. A conditional attribute class is thus associated with the con-
ditional compilation symbols declared in its Conditional attributes. The example

using System;
using System.Diagnostics;
[Conditional("ALPHA")]
[Conditional("BETA")]
public class TestAttribute : Attribute {}

declares TestAttribute as a conditional attribute class associated with the conditional
compilations symbols ALPHA and BETA.

Attribute specifications (§17.2) of a conditional attribute are included if one or more of its
associated conditional compilation symbols are defined at the point of specification; other-
wise, the attribute specification is omitted.

It is important to note that the inclusion or exclusion of an attribute specification of a con-
ditional attribute class is controlled by the conditional compilation symbols at the point of
the specification. In the example

File test.cs:

using System;
using System.Diagnostics;

[Conditional("DEBUG")]
public class TestAttribute : Attribute {}

File class1.cs:

#define DEBUG

[Test] // TestAttribute is specified
class Class1 {}

File class2.cs:

#undef DEBUG

[Test] // TestAttribute is not specified
class Class2 {}

the classes Class1 and Class2 are each decorated with attribute Test, which is conditional
based on whether DEBUG is defined. Since this symbol is defined in the context of Class1
but not Class2, the specification of the Test attribute on Class1 is included, while the
specification of the Test attribute on Class2 is omitted.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.4		 Reserved Attributes

705

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

n
n  ERIC LIPPERT The conditional attribute clearly has a strong connection to condi-

tional compilation symbols—but it is important to remember that they are very differ-
ent. A common error is to write something like this:

#if DEBUG
int counter;
#endif
[Conditional("DEBUG")] void DoIt(int x) { ... }
...
DoIt(this.counter);

The definition of the field counter is removed from the program entirely if the DEBUG
symbol is not defined. How does the compiler know to remove the call to DoIt?
Because DoIt(int) is conditional and DEBUG is not defined. But how does the compiler
know that DoIt(int) is being called, as opposed to some other overload? Because this
counter is declared as an int—oh, wait, that field definition has been removed. There is no
such field, so compilation will fail in the non-debug build.

17.4.3 The obsolete Attribute
The attribute Obsolete is used to mark types and members of types that should no longer
be used.

namespace System
{
 [AttributeUsage(
 AttributeTargets.Class |
 AttributeTargets.Struct |
 AttributeTargets.Enum |
 AttributeTargets.Interface |
 AttributeTargets.Delegate |
 AttributeTargets.Method |
 AttributeTargets.Constructor |
 AttributeTargets.Property |
 AttributeTargets.Field |
 AttributeTargets.Event,
 Inherited = false)
]
 public class ObsoleteAttribute : Attribute
 {
 public ObsoleteAttribute() {...}

 public ObsoleteAttribute(string message) {...}

 public ObsoleteAttribute(string message, bool error) {...}

 public string Message { get {...} }

 public bool IsError { get {...} }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17. Attributes

706

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

A
tt

ri
bu

te
s

17
.	

If a program uses a type or member that is decorated with the Obsolete attribute, the com-
piler issues a warning or an error. Specifically, the compiler issues a warning if no error
parameter is provided, or if the error parameter is provided and has the value false. The
compiler issues an error if the error parameter is specified and has the value true.

In the example

[Obsolete("This class is obsolete; use class B instead")]
class A
{
 public void F() { }
}

class B
{
 public void F() { }
}

class Test
{
 static void Main()
 {
 A a = new A(); // Warning
 a.F();
 }
}

the class A is decorated with the Obsolete attribute. Each use of A in Main results in a warn-
ing that includes the specified message, “This class is obsolete; use class B instead.”

n
n  JoN SkEET There’s an important lesson in this example: When you make some-

thing obsolete, always give guidance as to the new, preferred way of achieving a simi-
lar effect. Ideally, provide some indication (potentially in the documentation instead
of the attribute message) of why the “old” code is being declared obsolete as well. It’s
extremely annoying when code that has worked for a long time suddenly starts spout-
ing warnings with no good explanation.

n
n  MAREk SAFAR The compiler does not automatically obsolete overrides of vir-

tual methods. Therefore, when a virtual method is marked as Obsolete, every method
that overrides it has to be manually decorated with the Obsolete attribute as well.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

17.5		 Attributes for Interoperation

707

A
ttributes

17.	
A

ttributes
17.	

A
ttributes

17.	
A

ttributes
17.	

17.5 Attributes for Interoperation
Note: This section is applicable only to the Microsoft .NET implementation of C#.

17.5.1 Interoperation with CoM and Win32 Components
The .NET runtime provides a large number of attributes that enable C# programs to
interoperate with components written using COM and Win32 DLLs. For example, the
DllImport attribute can be used on a static extern method to indicate that the imple-
mentation of the method is to be found in a Win32 DLL. These attributes are found in the
System.Runtime.InteropServices namespace, and detailed documentation for these
attributes is found in the .NET runtime documentation.

17.5.2 Interoperation with other .NET Languages

17.5.2.1 The IndexerName Attribute
Indexers are implemented in .NET using indexed properties, and have a name in the .NET
metadata. If no IndexerName attribute is present for an indexer, then the name Item is used
by default. The IndexerName attribute enables a developer to override this default and
specify a different name.

namespace System.Runtime.CompilerServices.CSharp
{
 [AttributeUsage(AttributeTargets.Property)]
 public class IndexerNameAttribute : Attribute
 {
 public IndexerNameAttribute(string indexerName) {...}

 public string Value { get {...} }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

709

Unsafe Code18.

The core C# language, as defined in the preceding chapters, differs notably from C and
C++ in its omission of pointers as a data type. Instead, C# provides references and the abil-
ity to create objects that are managed by a garbage collector. This design, coupled with
other features, makes C# a much safer language than C or C++. In the core C# language, it
is simply not possible to have an uninitialized variable, a “dangling” pointer, or an expres-
sion that indexes an array beyond its bounds. Whole categories of bugs that routinely
plague C and C++ programs are thus eliminated.

While practically every pointer type construct in C or C++ has a reference type counter-
part in C#, there are still some situations in which access to pointer types becomes a
necessity. For example, interfacing with the underlying operating system, accessing a
memory-mapped device, or implementing a time-critical algorithm may not be possible
or practical without access to pointers. To address this need, C# provides the ability to
write unsafe code.

n
n  CHRIS SELLS In all the time since I’ve been programming .NET (starting before

the RTM of 1.0), I’ve never once found a need to write unsafe code. Not once.

In unsafe code, it is possible to declare and operate on pointers, to perform conversions
between pointers and integral types, to take the address of variables, and so forth. In a
sense, writing unsafe code is much like writing C code within a C# program.

Unsafe code is, in fact, a “safe” feature from the perspective of both developers and users.
Unsafe code must be clearly marked with the modifier unsafe, so developers cannot pos-
sibly use unsafe features accidentally, and the execution engine works to ensure that unsafe
code cannot be executed in an untrusted environment.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

710

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

18.1 Unsafe Contexts
The unsafe features of C# are available only in unsafe contexts. An unsafe context is intro-
duced by including an unsafe modifier in the declaration of a type or member or by
employing an unsafe-statement:

A declaration of a class, struct, interface, or delegate may include an •	 unsafe modifier, in
which case the entire textual extent of that type declaration (including the body of the
class, struct, or interface) is considered an unsafe context.

A declaration of a field, method, property, event, indexer, operator, instance constructor, •	
destructor, or static constructor may include an unsafe modifier, in which case the entire
textual extent of that member declaration is considered an unsafe context.

An •	 unsafe-statement enables the use of an unsafe context within a block. The entire textual
extent of the associated block is considered an unsafe context.

The associated grammar extensions are shown below. For brevity, ellipses (...) are used to
represent productions that appear in preceding chapters.

class-modifier:
...
unsafe

struct-modifier:
...
unsafe

interface-modifier:
...
unsafe

delegate-modifier:
...
unsafe

field-modifier:
...
unsafe

method-modifier:
...
unsafe

property-modifier:
...
unsafe

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.1		 Unsafe Contexts

711

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

event-modifier:
...
unsafe

indexer-modifier:
...
unsafe

operator-modifier:
...
unsafe

constructor-modifier:
...
unsafe

destructor-declaration:
attributesopt externopt unsafeopt ~ identifier () destructor-body
attributesopt unsafeopt externopt ~ identifier () destructor-body

static-constructor-modifiers:
externopt unsafeopt static
unsafeopt externopt static
externopt static unsafeopt
unsafeopt static externopt

static externopt unsafeopt
static unsafeopt externopt

embedded-statement:
...
unsafe-statement

unsafe-statement:
unsafe block

In the example

 public unsafe struct Node
 {
 public int Value;
 public Node* Left;
 public Node* Right;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

712

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

the unsafe modifier specified in the struct declaration causes the entire textual extent of the
struct declaration to become an unsafe context. Thus it is possible to declare the Left and
Right fields to be of a pointer type. The example above could also be written as follows:

 public struct Node
 {
 public int Value;
 public unsafe Node* Left;
 public unsafe Node* Right;
 }

Here, the unsafe modifiers in the field declarations cause those declarations to be consid-
ered unsafe contexts.

Other than establishing an unsafe context, thereby permitting the use of pointer types, the
unsafe modifier has no effect on a type or a member. In the example

 public class A
 {
 public unsafe virtual void F() {
 char* p;
 ...
 }
 }

 public class B : A
 {
 public override void F() {
 base.F();
 ...
 }
 }

the unsafe modifier on the F method in A simply causes the textual extent of F to become
an unsafe context in which the unsafe features of the language can be used. In the override
of F in B, there is no need to re-specify the unsafe modifier—unless, of course, the F method
in B itself needs access to unsafe features.

The situation is slightly different when a pointer type is part of the method’s signature:

 public unsafe class A
 {
 public virtual void F(char* p) {...}
 }

 public class B : A
 {
 public unsafe override void F(char* p) {...}
 }

Here, because F’s signature includes a pointer type, it can be written only in an unsafe
context. However, the unsafe context can be introduced either by making the entire class

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.2		 Pointer Types

713

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

unsafe, as is the case in A, or by including an unsafe modifier in the method declaration, as
is the case in B.

18.2 Pointer Types
In an unsafe context, a type (§4) may be a pointer-type as well as a value-type or a reference-
type. However, a pointer-type may also be used in a typeof expression (§7.6.10.6) outside of
an unsafe context, as such usage is not unsafe.

type:
...
pointer-type

A pointer-type is written as an unmanaged-type or the keyword void, followed by a * token:

pointer-type:
unmanaged-type *
void *

unmanaged-type:
type

The type specified before the * in a pointer type is called the referent type of the pointer
type. It represents the type of the variable to which a value of the pointer type points.

Unlike references (values of reference types), pointers are not tracked by the garbage
collector—the garbage collector has no knowledge of pointers and the data to which they
point. For this reason a pointer is not permitted to point to a reference or to a struct that
contains references, and the referent type of a pointer must be an unmanaged-type.

An unmanaged-type is any type that isn’t a reference-type or constructed type, and doesn’t
contain reference-type or constructed type fields at any level of nesting. In other words, an
unmanaged-type is one of the following:

sbyte•	 , byte, short, ushort, int, uint, long, ulong, char, float, double, decimal,
or bool.

Any • enum-type.

Any• pointer-type.

Any user-defined •	 struct-type that is not a constructed type and contains fields of
unmanaged-types only.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

714

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

The intuitive rule for mixing of pointers and references is that referents of references
(objects) are permitted to contain pointers, but referents of pointers are not permitted to
contain references.

Some examples of pointer types are given in the table below:

Example Description

byte* Pointer to byte

char* Pointer to char

int** Pointer to pointer to int

int*[] Single-dimensional array of pointers to int

void* Pointer to unknown type

For a given implementation, all pointer types must have the same size and representation.

Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the
* is written along with the underlying type only, not as a prefix punctuator on each pointer
name. For example:

int* pi, pj; // NOT as int *pi, *pj;

The value of a pointer having type T* represents the address of a variable of type T. The
pointer indirection operator * (§18.5.1) may be used to access this variable. For example,
given a variable P of type int*, the expression *P denotes the int variable found at the
address contained in P.

Like an object reference, a pointer may be null. Applying the indirection operator to a null
pointer results in implementation-defined behavior. A pointer with value null is repre-
sented by all-bits-zero.

The void* type represents a pointer to an unknown type. Because the referent type is
unknown, the indirection operator cannot be applied to a pointer of type void*, nor can
any arithmetic be performed on such a pointer. However, a pointer of type void* can be
cast to any other pointer type (and vice versa).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.2		 Pointer Types

715

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

Pointer types are a separate category of types. Unlike reference types and value types,
pointer types do not inherit from object and no conversions exist between pointer types
and object. In particular, boxing and unboxing (§4.3) are not supported for pointers. How-
ever, conversions are permitted between different pointer types and between pointer types
and the integral types. This is described in §18.4.

A pointer-type cannot be used as a type argument (§4.4), and type inference (§7.5.2) fails on
generic method calls that would have inferred a type argument to be a pointer type.

A pointer-type may be used as the type of a volatile field (§10.5.3).

Although pointers can be passed as ref or out parameters, doing so can cause undefined
behavior, since the pointer may well be set to point to a local variable that no longer exists
when the called method returns, or when the fixed object to which it used to point is no
longer fixed. For example:

using System;

class Test
{
 static int value = 20;

 unsafe static void F(out int* pi1, ref int* pi2)
 {
 int i = 10;
 pi1 = &i;

 fixed (int* pj = &value)
 {
 // ...
 pi2 = pj;
 }
 }

 static void Main()
 {
 int i = 10;
 unsafe
 {
 int* px1;
 int* px2 = &i;

 F(out px1, ref px2);

 Console.WriteLine("*px1 = {0}, *px2 = {1}", *px1, *px2);
 // Undefined behavior
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

716

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

A method can return a value of some type, and that type can be a pointer. For example,
when given a pointer to a contiguous sequence of ints, that sequence’s element count, and
some other int value, the following method returns the address of that value in that
sequence, if a match occurs; otherwise, it returns null:

unsafe static int* Find(int* pi, int size, int value) {
 for (int i = 0; i < size; ++i) {
 if (*pi == value)
 return pi;
 ++pi;
 }
 return null;
}

In an unsafe context, several constructs are available for operating on pointers:

The •	 * operator may be used to perform pointer indirection (§18.5.1).

The • -> operator may be used to access a member of a struct through a pointer (§18.5.2).

The• [] operator may be used to index a pointer (§18.5.3).

The• & operator may be used to obtain the address of a variable (§18.5.4).

The• ++ and -- operators may be used to increment and decrement pointers (§18.5.5).

The• + and - operators may be used to perform pointer arithmetic (§18.5.6).

The• ==, !=, <, >, <=, and => operators may be used to compare pointers (§18.5.7).

The• stackalloc operator may be used to allocate memory from the call stack (§18.7).

The •	 fixed statement may be used to temporarily fix a variable so its address can be
obtained (§18.6).

18.3 Fixed and Moveable Variables
The address-of operator (§18.5.4) and the fixed statement (§18.6) divide variables into two
categories: fixed variables and moveable variables.

Fixed variables reside in storage locations that are unaffected by operation of the garbage
collector. (Examples of fixed variables include local variables, value parameters, and vari-
ables created by dereferencing pointers.) In contrast, moveable variables reside in storage
locations that are subject to relocation or disposal by the garbage collector. (Examples of
moveable variables include fields in objects and elements of arrays.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.4		 Pointer Conversions

717

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

The & operator (§18.5.4) permits the address of a fixed variable to be obtained without
restrictions. However, because a moveable variable is subject to relocation or disposal by
the garbage collector, the address of a moveable variable can be obtained only by using a
fixed statement (§18.6), and that address remains valid only for the duration of that fixed
statement.

In precise terms, a fixed variable is one of the following:

A variable resulting from a •	 simple-name (§7.6.2) that refers to a local variable or a value
parameter, unless the variable is captured by an anonymous function.

A variable resulting from a •	 member-access (§7.6.4) of the form V.I, where V is a fixed vari-
able of a struct-type.

A variable resulting from a •	 pointer-indirection-expression (§18.5.1) of the form *P, a
pointer-member-access (§18.5.2) of the form P->I, or a pointer-element-access (§18.5.3) of
the form P[E].

All other variables are classified as moveable variables.

Note that a static field is classified as a moveable variable. Also note that a ref or out
parameter is classified as a moveable variable, even if the argument given for the param-
eter is a fixed variable. Finally, note that a variable produced by dereferencing a pointer is
always classified as a fixed variable.

18.4 Pointer Conversions
In an unsafe context, the set of available implicit conversions (§6.1) is extended to include
the following implicit pointer conversions:

From any •	 pointer-type to the type void*.

From the •	 null literal to any pointer-type.

Additionally, in an unsafe context, the set of available explicit conversions (§6.2) is extended
to include the following explicit pointer conversions:

From any •	 pointer-type to any other pointer-type.

From •	 sbyte, byte, short, ushort, int, uint, long, or ulong to any pointer-type.

From any •	 pointer-type to sbyte, byte, short, ushort, int, uint, long, or ulong.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

718

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

Finally, in an unsafe context, the set of standard implicit conversions (§6.3.1) includes the
following pointer conversion:

From any •	 pointer-type to the type void*.

Conversions between two pointer types never change the actual pointer value. In other
words, a conversion from one pointer type to another has no effect on the underlying
address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly
aligned for the pointed-to type, the behavior is undefined if the result is dereferenced. In
general, the concept “correctly aligned” is transitive: If a pointer to type A is correctly
aligned for a pointer to type B, which in turn is correctly aligned for a pointer to type C,
then a pointer to type A is correctly aligned for a pointer to type C.

Consider the following case in which a variable having one type is accessed via a pointer
to a different type:

char c = 'A';
char* pc = &c;
void* pv = pc;
int* pi = (int*)pv;
int i = *pi; // Undefined
*pi = 123456; // Undefined

When a pointer type is converted to a pointer to byte, the result points to the lowest
addressed byte of the variable. Successive increments of the result, up to the size of the
variable, yield pointers to the remaining bytes of that variable. For example, the following
method displays each of the eight bytes in a double as a hexadecimal value:

using System;

class Test
{
 unsafe static void Main()
 {
 double d = 123.456e23;
 unsafe
 {
 byte* pb = (byte*)&d;
 for (int i = 0; i < sizeof(double); ++i)
 Console.Write("{0:X2} ", *pb++);
 Console.WriteLine();
 }
 }
}

Of course, the output produced depends on endianness.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.4		 Pointer Conversions

719

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

n
n  PETER SESToFT One use of unsafe code is to perform conversions by reinter-

preting bit patterns that represent primitive data, structs, or references, by unsafely
type-casting pointers. In most cases, the result will be unportable or meaningless.
However, such reinterpretation can be used to portably get and set the NaN payload
bits of IEEE floating point numbers (see the annotation in §7.8.1):

unsafe static int GetNaNPayload(float f) {
 float* p = &f;
 return *((int*)p) & 0x003FFFFF;
}

unsafe static float MakeNaNPayload(int nanbits) {
 float nan = Single.NaN;
 float* p = &nan;
 ((int)p) |= (nanbits & 0x003FFFFF);
 return nan;
}

Unsafe code does not have to be this obscure, but it is likely to be wrong because the
standard sanity checks are turned off.

Mappings between pointers and integers are implementation-defined. However, on
32- and 64-bit CPU architectures with a linear address space, conversions of pointers to or
from integral types typically behave exactly like conversions of uint or ulong values,
respectively, to or from those integral types.

18.4.1 Pointer Arrays
In an unsafe context, arrays of pointers can be constructed. Only some of the conversions
that apply to other array types are allowed on pointer arrays:

The implicit reference conversion (§6.1.6) from any •	 array-type to System.Array and the
interfaces it implements also applies to pointer arrays. However, any attempt to access
the array elements through System.Array or the interfaces it implements will result in
an exception at runtime, as pointer types are not convertible to object.

The implicit and explicit reference conversions (§6.1.6, §6.2.4) from a single-dimensional •	
array type S[] to System.Collections.Generic.IList<T> and its base interfaces never
apply to pointer arrays, since pointer types cannot be used as type arguments, and there
are no conversions from pointer types to non-pointer types.

The explicit reference conversion (§6.2.4) from •	 System.Array and the interfaces it imple-
ments to any array-type applies to pointer arrays.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

720

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

The explicit reference conversions (§6.2.4) from •	 System.Collections.Generic.IList<S>
and its base interfaces to a single-dimensional array type T[] never apply to pointer
arrays, since pointer types cannot be used as type arguments, and there are no conver-
sions from pointer types to non-pointer types.

These restrictions mean that the expansion for the foreach statement over arrays described
in §8.8.4 cannot be applied to pointer arrays. Instead, a foreach statement of the form

foreach (V v in x) embedded-statement

where the type of x is an array type of the form T[,,...,], n is the number of dimensions
minus 1, and T or V is a pointer type, is expanded using nested for loops as follows:

{
 T[,,...,] a = x;
 V v;
 for (int i0 = a.GetLowerBound(0); i0 <= a.GetUpperBound(0); i0++)
 for (int i1 = a.GetLowerBound(1); i1 <= a.GetUpperBound(1); i1++)
 ...
 for (int in = a.GetLowerBound(n); in <= a.GetUpperBound(n); in++) {
 v = (V)a.GetValue(i0,i1,...,in);
 embedded-statement
 }
}

The variables a, i0, i1, … in are not visible to or accessible to x or the embedded-statement
or any other source code of the program. The variable v is read-only in the embedded state-
ment. If there is not an explicit conversion (§18.4) from T (the element type) to V, an error is
produced and no further steps are taken. If x has the value null, a System.NullReference-
Exception is thrown at runtime.

18.5 Pointers in Expressions
In an unsafe context, an expression may yield a result of a pointer type. Outside an unsafe
context, it is a compile-time error for an expression to be of a pointer type. In precise terms,
outside an unsafe context, a compile-time error occurs if any simple-name (§7.6.2), member-
access (§7.6.4), invocation-expression (§7.6.5), or element-access (§7.6.6) is of a pointer type.

In an unsafe context, the primary-no-array-creation-expression (§7.6) and unary-expression
(§7.7) productions permit the following additional constructs:

primary-no-array-creation-expression:
...
pointer-member-access
pointer-element-access
sizeof-expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.5		 Pointers in Expressions

721

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

unary-expression:
...
pointer-indirection-expression
addressof-expression

These constructs are described in the following sections. The precedence and associativity
of the unsafe operators are implied by the grammar.

18.5.1 Pointer Indirection
A pointer-indirection-expression consists of an asterisk (*) followed by a unary-expression.

pointer-indirection-expression:
* unary-expression

The unary * operator denotes pointer indirection and is used to obtain the variable to which
a pointer points. The result of evaluating *P, where P is an expression of a pointer type T*,
is a variable of type T. It is a compile-time error to apply the unary * operator to an expres-
sion of type void* or to an expression that isn’t of a pointer type.

The effect of applying the unary * operator to a null pointer is implementation-defined.
In particular, there is no guarantee that this operation throws a System.Null-
ReferenceException.

If an invalid value has been assigned to the pointer, the behavior of the unary * operator is
undefined. Among the invalid values for dereferencing a pointer by the unary * operator
are an address inappropriately aligned for the type pointed to (see example in §18.4), and
the address of a variable after the end of its lifetime.

For purposes of definite assignment analysis, a variable produced by evaluating an expres-
sion of the form *P is considered initially assigned (§5.3.1).

18.5.2 Pointer Member Access
A pointer-member-access consists of a primary-expression, followed by a “->” token, followed
by an identifier.

pointer-member-access:
primary-expression -> identifier type-argument-listopt

In a pointer member access of the form P->I, P must be an expression of a pointer type
other than void*, and I must denote an accessible member of the type to which P points.

n
n  VLADIMIR RESHETNIkoV You cannot apply pointer-member-access to pointer-to-

pointer types (like int**), because pointers have no members.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

722

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

A pointer member access of the form P->I is evaluated exactly as (*P).I. For a description
of the pointer indirection operator (*), see §18.5.1. For a description of the member access
operator (.), see §7.6.4.

In the example

using System;

struct Point
{
 public int x;
 public int y;

 public override string ToString()
 {
 return "(" + x + "," + y + ")";
 }
}

class Test
{
 static void Main()
 {
 Point point;
 unsafe
 {
 Point* p = &point;
 p->x = 10;
 p->y = 20;
 Console.WriteLine(p->ToString());
 }
 }
}

the -> operator is used to access fields and invoke a method of a struct through a pointer.
Because the operation P->I is precisely equivalent to (*P).I, the Main method could
equally well have been written like this:

class Test
{
 static void Main()
 {
 Point point;
 unsafe
 {
 Point* p = &point;
 (*p).x = 10;
 (*p).y = 20;
 Console.WriteLine((*p).ToString());
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.5		 Pointers in Expressions

723

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

18.5.3 Pointer Element Access
A pointer-element-access consists of a primary-no-array-creation-expression followed by an
expression enclosed in “[” and “]”.

pointer-element-access:
primary-no-array-creation-expression [expression]

In a pointer element access of the form P[E], P must be an expression of a pointer type
other than void*, and E must be an expression that can be implicitly converted to int, uint,
long, or ulong.

A pointer element access of the form P[E] is evaluated exactly as *(P + E). For a description
of the pointer indirection operator (*), see §18.5.1. For a description of the pointer addition
operator (+), see §18.5.6.

In the example

class Test
{
 static void Main()
 {
 unsafe
 {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) p[i] = (char)i;
 }
 }
}

a pointer element access is used to initialize the character buffer in a for loop. Because the
operation P[E] is precisely equivalent to *(P + E), the example could equally well have
been written like this:

class Test
{
 static void Main()
 {
 unsafe
 {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) *(p + i) = (char)i;
 }
 }
}

The pointer element access operator does not check for out-of-bounds errors, and the
behavior when accessing an out-of-bounds element is undefined. This is the same approach
as used in C and C++.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

724

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

18.5.4 The Address-of operator
An addressof-expression consists of an ampersand (&) followed by a unary-expression.

addressof-expression:
& unary-expression

Given an expression E that is of a type T and is classified as a fixed variable (§18.3), the
construct &E computes the address of the variable given by E. The type of the result is T*
and is classified as a value. A compile-time error occurs if E is not classified as a variable, if
E is classified as a read-only local variable, or if E denotes a moveable variable. In the last
case, a fixed statement (§18.6) can be used to temporarily “fix” the variable before obtain-
ing its address. As stated in §7.6.4, outside an instance constructor or static constructor for
a struct or class that defines a readonly field, that field is considered a value, not a variable.
As such, its address cannot be taken. Similarly, the address of a constant cannot be taken.

The & operator does not require its argument to be definitely assigned, but following an &
operation, the variable to which the operator is applied is considered definitely assigned in
the execution path in which the operation occurs. It is the responsibility of the programmer
to ensure that correct initialization of the variable actually does take place in this
situation.

In the example

using System;

class Test
{
 static void Main()
 {
 int i;
 unsafe
 {
 int* p = &i;
 *p = 123;
 }
 Console.WriteLine(i);
 }
}

i is considered definitely assigned following the &i operation used to initialize p. The
assignment to *p in effect initializes i, but the inclusion of this initialization is the respon-
sibility of the programmer, and no compile-time error would occur if the assignment was
removed.

The rules of definite assignment for the & operator exist such that redundant initialization
of local variables can be avoided. For example, many external APIs take a pointer to a
structure that is filled in by the API. Calls to such APIs typically pass the address of a local

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.5		 Pointers in Expressions

725

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

struct variable, and without the rule, redundant initialization of the struct variable would
be required.

18.5.5 Pointer Increment and Decrement
In an unsafe context, the ++ and -- operators (§7.6.9 and §7.7.5) can be applied to pointer
variables of all types except void*. Thus, for every pointer type T*, the following operators
are implicitly defined:

T* operator ++(T* x);
T* operator --(T* x);

The operators produce the same results as x + 1 and x - 1, respectively (§18.5.6). In other
words, for a pointer variable of type T*, the ++ operator adds sizeof(T) to the address
contained in the variable, and the -- operator subtracts sizeof(T) from the address con-
tained in the variable.

If a pointer increment or decrement operation overflows the domain of the pointer type,
the result is implementation-defined, but no exceptions are produced.

18.5.6 Pointer Arithmetic
In an unsafe context, the + and - operators (§7.8.4 and §7.8.5) can be applied to values of all
pointer types except void*. Thus, for every pointer type T*, the following operators are
implicitly defined:

T* operator +(T* x, int y);
T* operator +(T* x, uint y);
T* operator +(T* x, long y);
T* operator +(T* x, ulong y);

T* operator +(int x, T* y);
T* operator +(uint x, T* y);
T* operator +(long x, T* y);
T* operator +(ulong x, T* y);

T* operator –(T* x, int y);
T* operator –(T* x, uint y);
T* operator –(T* x, long y);
T* operator –(T* x, ulong y);

long operator –(T* x, T* y);

Given an expression P of a pointer type T* and an expression N of type int, uint, long, or
ulong, the expressions P + N and N + P compute the pointer value of type T* that results from
adding N * sizeof(T) to the address given by P. Likewise, the expression P - N computes
the pointer value of type T* that results from subtracting N * sizeof(T) from the address
given by P.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

726

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

Given two expressions, P and Q, of a pointer type T*, the expression P – Q computes the dif-
ference between the addresses given by P and Q and then divides that difference by
sizeof(T). The type of the result is always long. In effect, P - Q is computed as ((long)(P)
- (long)(Q)) / sizeof(T).

For example,

using System;

class Test
{

 static void Main()
 {
 unsafe
 {
 int* values = stackalloc int[20];
 int* p = &values[1];
 int* q = &values[15];
 Console.WriteLine("p - q = {0}", p - q);
 Console.WriteLine("q - p = {0}", q - p);
 }
 }
}

produces the following output:

p - q = -14
q - p = 14

If a pointer arithmetic operation overflows the domain of the pointer type, the result is
truncated in an implementation-defined fashion, but no exceptions are produced.

18.5.7 Pointer Comparison
In an unsafe context, the ==, !=, <, >, <=, and => operators (§7.10) can be applied to values
of all pointer types. The pointer comparison operators are:

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);
bool operator <(void* x, void* y);
bool operator >(void* x, void* y);
bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);

Because an implicit conversion exists from any pointer type to the void* type, operands of
any pointer type can be compared using these operators. The comparison operators com-
pare the addresses given by the two operands as if they were unsigned integers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.5		 Pointers in Expressions

727

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

18.5.8 The sizeof operator
The sizeof operator returns the number of bytes occupied by a variable of a given type.
The type specified as an operand to sizeof must be an unmanaged-type (§18.2).

sizeof-expression:
sizeof (unmanaged-type)

The result of the sizeof operator is a value of type int. For certain predefined types, the
sizeof operator yields a constant value as shown in the table below.

Expression Result

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(bool) 1

For all other types, the result of the sizeof operator is implementation-defined and is clas-
sified as a value, not a constant.

The order in which members are packed into a struct is unspecified.

For alignment purposes, there may be unnamed padding at the beginning of a struct,
within a struct, and at the end of the struct. The contents of the bits used as padding are
indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes in
a variable of that type, including any padding.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

728

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

18.6 The fixed Statement
In an unsafe context, the embedded-statement (§8) production permits an additional con-
struct, the fixed statement, which is used to “fix” a moveable variable such that its address
remains constant for the duration of the statement.

embedded-statement:
...
fixed-statement

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = fixed-pointer-initializer

fixed-pointer-initializer:
& variable-reference
expression

Each fixed-pointer-declarator declares a local variable of the given pointer-type and initializes
that local variable with the address computed by the corresponding fixed-pointer-initializer.
A local variable declared in a fixed statement is accessible in any fixed-pointer-initializers
occurring to the right of that variable’s declaration, and in the embedded-statement of the
fixed statement. A local variable declared by a fixed statement is considered read-only. A
compile-time error occurs if the embedded statement attempts to modify this local variable
(via assignment or the ++ and -- operators) or pass it as a ref or out parameter.

A fixed-pointer-initializer can be one of the following:

The token “•	 &” followed by a variable-reference (§5.3.3) to a moveable variable (§18.3) of
an unmanaged type T, provided the type T* is implicitly convertible to the pointer type
given in the fixed statement. In this case, the initializer computes the address of the
given variable, and the variable is guaranteed to remain at a fixed address for the dura-
tion of the fixed statement.

An expression of an •	 array-type with elements of an unmanaged type T, provided the type
T* is implicitly convertible to the pointer type given in the fixed statement. In this case,
the initializer computes the address of the first element in the array, and the entire array
is guaranteed to remain at a fixed address for the duration of the fixed statement. The

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.6		 The fixed Statement

729

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

behavior of the fixed statement is implementation-defined if the array expression is null
or if the array has zero elements.

An expression of type •	 string, provided the type char* is implicitly convertible to the
pointer type given in the fixed statement. In this case, the initializer computes the
address of the first character in the string, and the entire string is guaranteed to remain
at a fixed address for the duration of the fixed statement. The behavior of the fixed
statement is implementation-defined if the string expression is null.

A •	 simple-name or member-access that references a fixed size buffer member of a moveable
variable, provided the type of the fixed size buffer member is implicitly convertible to
the pointer type given in the fixed statement. In this case, the initializer computes a
pointer to the first element of the fixed size buffer (§18.7.2), and the fixed size buffer is
guaranteed to remain at a fixed address for the duration of the fixed statement.

n
n  ERIC LIPPERT This point demonstrates a potentially confusing conflation: The

keyword fixed is used to mean both “fixed in location” and “fixed in size.” Adding
to the confusion is the fact that a fixed-in-size array member must be fixed-in-
location to be used. Try to keep in mind that a fixed-in-size block is not automati-
cally fixed-in-place.

For each address computed by a fixed-pointer-initializer, the fixed statement ensures that
the variable referenced by the address is not subject to relocation or disposal by the gar-
bage collector for the duration of the fixed statement. For example, if the address com-
puted by a fixed-pointer-initializer references a field of an object or an element of an array
instance, the fixed statement guarantees that the containing object instance will not be
relocated or disposed of during the lifetime of the statement.

It is the programmer’s responsibility to ensure that pointers created by fixed statements
do not survive beyond execution of those statements. For example, when pointers created
by fixed statements are passed to external APIs, it is the programmer’s responsibility to
ensure that the APIs retain no memory of these pointers.

n
n  ERIC LIPPERT If you are in the unfortunate position of having to keep a block of

managed memory fixed in place for longer than the duration of a fixed statement,
then you can do so via the GCHandle type. That said, it is best to avoid getting into that
situation in the first place.

Fixed objects may cause fragmentation of the heap (because they cannot be moved). For
that reason, objects should be fixed only when absolutely necessary, and then only for the
shortest amount of time possible.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

730

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

The example

class Test
{
 static int x;
 int y;

 unsafe static void F(int* p)
 {
 *p = 1;
 }

 static void Main()
 {
 Test t = new Test();
 int[] a = new int[10];
 unsafe
 {
 fixed (int* p = &x) F(p);
 fixed (int* p = &t.y) F(p);
 fixed (int* p = &a[0]) F(p);
 fixed (int* p = a) F(p);
 }
 }
}

demonstrates several uses of the fixed statement. The first statement fixes and obtains the
address of a static field, the second statement fixes and obtains the address of an instance
field, and the third statement fixes and obtains the address of an array element. In each
case it would have been an error to use the regular & operator since the variables are all
classified as moveable variables.

The fourth fixed statement in the example above produces a similar result to the third.

This example of the fixed statement uses string:

class Test
{
 static string name = "xx";

 unsafe static void F(char* p)
 {
 for (int i = 0; p[i] != '\0'; ++i)
 Console.WriteLine(p[i]);
 }

 static void Main()
 {
 unsafe
 {
 fixed (char* p = name) F(p);
 fixed (char* p = "xx") F(p);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.6		 The fixed Statement

731

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

In an unsafe context, array elements of single-dimensional arrays are stored in increasing
index order, starting with index 0 and ending with index Length – 1. For multi-dimen-
sional arrays, array elements are stored such that the indices of the rightmost dimension
are increased first, then the next left dimension, and so on to the left. Within a fixed
statement that obtains a pointer p to an array instance a, the pointer values ranging from
p to p + a.Length - 1 represent addresses of the elements in the array. Likewise, the vari-
ables ranging from p[0] to p[a.Length - 1] represent the actual array elements. Given
the way in which arrays are stored, we can treat an array of any dimension as though it
were linear.

For example,

using System;

class Test
{
 static void Main()
 {
 int[, ,] a = new int[2, 3, 4];
 unsafe
 {
 fixed (int* p = a)
 {
 for (int i = 0; i < a.Length; ++i) // Treat as linear
 p[i] = i;
 }
 }

 for (int i = 0; i < 2; ++i)
 for (int j = 0; j < 3; ++j)
 {
 for (int k = 0; k < 4; ++k)
 Console.Write("[{0},{1},{2}] = {3,2} ", i, j, k, a[i, j, k]);
 Console.WriteLine();
 }
 }
}

produces the following output:

[0,0,0] = 0 [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3
[0,1,0] = 4 [0,1,1] = 5 [0,1,2] = 6 [0,1,3] = 7
[0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

732

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

In the example

class Test
{
 unsafe static void Fill(int* p, int count, int value)
 {
 for (; count != 0; count--) *p++ = value;
 }

 static void Main()
 {
 int[] a = new int[100];
 unsafe
 {
 fixed (int* p = a) Fill(p, 100, -1);
 }
 }
}

a fixed statement is used to fix an array so its address can be passed to a method that takes
a pointer.

In the example

unsafe struct Font
{
 public int size;
 public fixed char name[32];
}

class Test
{
 unsafe static void PutString(string s, char* buffer, int bufSize)
 {
 int len = s.Length;
 if (len > bufSize) len = bufSize;
 for (int i = 0; i < len; i++) buffer[i] = s[i];
 for (int i = len; i < bufSize; i++) buffer[i] = (char)0;
 }

 Font f;

 unsafe static void Main()
 {
 Test test = new Test();
 test.f.size = 10;
 fixed (char* p = test.f.name)
 {
 PutString("Times New Roman", p, 32);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.7		 Fixed-Size Buffers

733

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

a fixed statement is used to fix a fixed-size buffer of a struct so that its address can be used
as a pointer.

A char* value produced by fixing a string instance always points to a null-terminated
string. Within a fixed statement that obtains a pointer p to a string instance s, the pointer
values ranging from p to p + s.Length - 1 represent addresses of the characters in the
string, and the pointer value p + s.Length always points to a null character (the character
with value '\0').

Modifying objects of managed type through fixed pointers can result in undefined behav-
ior. For example, because strings are immutable, it is the programmer’s responsibility to
ensure that the characters referenced by a pointer to a fixed string are not modified.

The automatic null-termination of strings is particularly convenient when calling external
APIs that expect “C-style” strings. Note, however, that a string instance is permitted to
contain null characters. If such null characters are present, the string will appear truncated
when treated as a null-terminated char*.

18.7 Fixed-Size Buffers
Fixed-size buffers are used to declare “C style” in-line arrays as members of structs, and
are primarily useful for interfacing with unmanaged APIs.

18.7.1 Fixed-Size Buffer Declarations
A fixed-size buffer is a member that represents storage for a fixed-length buffer of variables
of a given type. A fixed-size buffer declaration introduces one or more fixed-size buffers of
a given element type. Fixed-size buffers are permitted only in struct declarations and can
occur only in unsafe contexts (§18.1).

struct-member-declaration:
…
fixed-size-buffer-declaration

fixed-size-buffer-declaration:
attributesopt fixed-size-buffer-modifiersopt fixed buffer-element-type
 fixed-size-buffer-declarators ;

fixed-size-buffer-modifiers:
fixed-size-buffer-modifier
fixed-size-buffer-modifier fixed-size-buffer-modifiers

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

734

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

fixed-size-buffer-modifier:
new
public
protected
internal
private
unsafe

buffer-element-type:
type

fixed-size-buffer-declarators:
fixed-size-buffer-declarator
fixed-size-buffer-declarator , fixed-size-buffer-declarators

fixed-size-buffer-declarator:
identifier [constant-expression]

A fixed-size buffer declaration may include a set of attributes (§17), a new modifier (§10.2.2),
a valid combination of the four access modifiers (§10.2.3), and an unsafe modifier (§18.1).
The attributes and modifiers apply to all of the members declared by the fixed-size buffer
declaration. It is an error for the same modifier to appear multiple times in a fixed-size buf-
fer declaration.

A fixed-size buffer declaration is not permitted to include the static modifier.

The buffer element type of a fixed-size buffer declaration specifies the element type of the
buffer(s) introduced by the declaration. The buffer element type must be one of the pre-
defined types sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double,
or bool.

The buffer element type is followed by a list of fixed-size buffer declarators, each of which
introduces a new member. A fixed-size buffer declarator consists of an identifier that names
the member, followed by a constant expression enclosed in “[” and “]” tokens. The con-
stant expression denotes the number of elements in the member introduced by that fixed-
size buffer declarator. The type of the constant expression must be implicitly convertible to
type int, and the value must be a non-zero positive integer.

The elements of a fixed-size buffer are guaranteed to be laid out sequentially in memory.

A fixed-size buffer declaration that declares multiple fixed-size buffers is equivalent to
multiple declarations of a single fixed-size buffer with the same attributes and element
types. For example,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.7		 Fixed-Size Buffers

735

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

unsafe struct A
{
 public fixed int x[5], y[10], z[100];
}

is equivalent to

unsafe struct A
{
 public fixed int x[5];
 public fixed int y[10];
 public fixed int z[100];
}

18.7.2 Fixed-Size Buffers in Expressions
Member lookup (§7.3) of a fixed-size buffer member proceeds exactly like member lookup
of a field.

A fixed-size buffer can be referenced in an expression using a simple-name (§7.5.2) or a
member-access (§7.5.4).

When a fixed-size buffer member is referenced as a simple name, the effect is the same as
a member access of the form this.I, where I is the fixed-size buffer member.

In a member access of the form E.I, if E is of a struct type and a member lookup of I in that
struct type identifies a fixed-size member, then E.I is evaluated and classified as follows:

If the expression •	 E.I does not occur in an unsafe context, a compile-time error occurs.

If •	 E is classified as a value, a compile-time error occurs.

Otherwise, if •	 E is a moveable variable (§18.3) and the expression E.I is not a fixed-pointer-
initializer (§18.6), a compile-time error occurs.

Otherwise, •	 E references a fixed variable and the result of the expression is a pointer to
the first element of the fixed-size buffer member I in E. The result is of type S*, where S
is the element type of I, and is classified as a value.

The subsequent elements of the fixed-size buffer can be accessed using pointer operations
from the first element. Unlike access to arrays, access to the elements of a fixed-size buffer
is an unsafe operation and is not range checked.

The following example declares and uses a struct with a fixed-size buffer member:

unsafe struct Font
{
 public int size;
 public fixed char name[32];
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

736

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

class Test
{
 unsafe static void PutString(string s, char* buffer, int bufSize)
 {
 int len = s.Length;
 if (len > bufSize) len = bufSize;
 for (int i = 0; i < len; i++) buffer[i] = s[i];
 for (int i = len; i < bufSize; i++) buffer[i] = (char)0;
 }

 unsafe static void Main()
 {
 Font f;
 f.size = 10;
 PutString("Times New Roman", f.name, 32);
 }
}

18.7.3 Definite Assignment Checking
Fixed-size buffers are not subject to definite assignment checking (§5.3), and fixed-size buf-
fer members are ignored for purposes of definite assignment checking of struct type
variables.

When the outermost containing struct variable of a fixed-size buffer member is a static
variable, an instance variable of a class instance, or an array element, the elements of the
fixed-size buffer are automatically initialized to their default values (§5.2). In all other
cases, the initial content of a fixed-size buffer is undefined.

18.8 Stack Allocation
In an unsafe context, a local variable declaration (§8.5.1) may include a stack allocation
initializer that allocates memory from the call stack.

n
n  ERIC LIPPERT This is a bit overspecific; there is no requirement that a particular

CPU allow allocation of arbitrary memory on its call stack. For example, the CLR could
be implemented on a CPU architecture that keeps two stacks—one for storage of local
variables and one for tracking return addresses. (Such architectures prevent the stack-
rewriting attacks that plagued the x86 architecture.) Really, what we ought to say here
is simply that an immobile local memory store is associated with each method invoca-
tion, and that stackalloc allocates memory out of that store. In a typical implementa-
tion, that store will be the call stack, but that’s an implementation detail.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.8		 Stack Allocation

737

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

local-variable-initializer:
…
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

The unmanaged-type indicates the type of the items that will be stored in the newly allo-
cated location, and the expression indicates the number of these items. Taken together, these
specify the required allocation size. Since the size of a stack allocation cannot be negative,
it is a compile-time error to specify the number of items as a constant-expression that evalu-
ates to a negative value.

A stack allocation initializer of the form stackalloc T[E] requires T to be an unmanaged
type (§18.2) and E to be an expression of type int. The construct allocates E * sizeof(T)
bytes from the call stack and returns a pointer, of type T*, to the newly allocated block. If E
is a negative value, then the behavior is undefined. If E is zero, then no allocation is made,
and the pointer returned is implementation-defined. If there is not enough memory avail-
able to allocate a block of the given size, a System.StackOverflowException is thrown.

The content of the newly allocated memory is undefined.

Stack allocation initializers are not permitted in catch or finally blocks (§8.10).

There is no way to explicitly free memory allocated using stackalloc. All stack allocated
memory blocks created during the execution of a function member are automatically dis-
carded when that function member returns. This corresponds to the alloca function, an
extension commonly found in C and C++ implementations.

In the example

using System;

class Test
{
 static string IntToString(int value)
 {
 int n = value >= 0 ? value : -value;
 unsafe
 {
 char* buffer = stackalloc char[16];
 char* p = buffer + 16;
 do
 {
 *--p = (char)(n % 10 + '0');
 n /= 10;
 } while (n != 0);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

738

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

 if (value < 0) *--p = '-';
 return new string(p, 0, (int)(buffer + 16 - p));
 }
 }

 static void Main()
 {
 Console.WriteLine(IntToString(12345));
 Console.WriteLine(IntToString(-999));
 }
}

a stackalloc initializer is used in the IntToString method to allocate a buffer of 16 char-
acters on the stack. The buffer is automatically discarded when the method returns.

18.9 Dynamic Memory Allocation
Except for the stackalloc operator, C# provides no predefined constructs for managing
non-garbage-collected memory. Such services are typically provided by supporting class
libraries or imported directly from the underlying operating system. For example, the
Memory class below illustrates how the heap functions of an underlying operating system
might be accessed from C#:

using System;
using System.Runtime.InteropServices;

public unsafe class Memory
{
 // Handle for the process heap. This handle is used
 // in all calls to the
 // HeapXXX APIs in the methods below.

 static int ph = GetProcessHeap();

 // Private instance constructor to prevent instantiation.
 private Memory() { }

 // Allocates a memory block of the given size.
 // The allocated memory is
 // automatically initialized to zero.

 public static void* Alloc(int size)
 {
 void* result = HeapAlloc(ph, HEAP_ZERO_MEMORY, size);
 if (result == null) throw new OutOfMemoryException();
 return result;
 }

 // Copies count bytes from src to dst. The source and destination
 // blocks are permitted to overlap.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18.9		 Dynamic Memory Allocation

739

U
nsafe Code

18.	
U

nsafe Code
18.	

U
nsafe Code

18.	
U

nsafe Code
18.	

 public static void Copy(void* src, void* dst, int count)
 {
 byte* ps = (byte*)src;
 byte* pd = (byte*)dst;
 if (ps > pd)
 {
 for (; count != 0; count--) *pd++ = *ps++;
 }
 else if (ps < pd)
 {
 for (ps += count, pd += count; count != 0; count--) *--pd = *--ps;
 }
 }

 // Frees a memory block.

 public static void Free(void* block)
 {
 if (!HeapFree(ph, 0, block)) throw new InvalidOperationException();
 }

 // Reallocates a memory block. If the reallocation
 // request is for a larger size, the additional region of
 // memory is automatically initialized to zero.

 public static void* ReAlloc(void* block, int size)
 {
 void* result = HeapReAlloc(ph, HEAP_ZERO_MEMORY, block, size);
 if (result == null) throw new OutOfMemoryException();
 return result;
 }

 // Returns the size of a memory block.

 public static int SizeOf(void* block)
 {
 int result = HeapSize(ph, 0, block);
 if (result == -1) throw new InvalidOperationException();
 return result;
 }

 // Heap API flags

 const int HEAP_ZERO_MEMORY = 0x00000008;

 // Heap API functions

 [DllImport("kernel32")]
 static extern int GetProcessHeap();

 [DllImport("kernel32")]
 static extern void* HeapAlloc(int hHeap, int flags, int size);

 [DllImport("kernel32")]
 static extern bool HeapFree(int hHeap, int flags, void* block);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

18. Unsafe Code

740

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

U
ns

af
e

Co
de

18

.	
U

ns
af

e
Co

de

18
.	

 [DllImport("kernel32")]
 static extern void* HeapReAlloc(int hHeap, int flags,
 void* block, int size);

 [DllImport("kernel32")]
 static extern int HeapSize(int hHeap, int flags, void* block);
}

An example that uses the Memory class is given below:

class Test
{
 static void Main()
 {
 unsafe
 {
 byte* buffer = (byte*)Memory.Alloc(256);
 try
 {
 for (int i = 0; i < 256; i++) buffer[i] = (byte)i;
 byte[] array = new byte[256];
 fixed (byte* p = array) Memory.Copy(buffer, p, 256);
 }
 finally
 {
 Memory.Free(buffer);
 }
 for (int i = 0; i < 256; i++) Console.WriteLine(array[i]);
 }
 }
}

This example allocates 256 bytes of memory through Memory.Alloc and initializes the
memory block with values increasing from 0 to 255. It then allocates a 256-element byte
array and uses Memory.Copy to copy the contents of the memory block into the byte array.
Finally, the memory block is freed using Memory.Free and the contents of the byte array are
output on the console.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

741

Documentation CommentsA.

C# provides a mechanism for programmers to document their code using a special com-
ment syntax that contains XML text. In source code files, comments having a certain form
can be used to direct a tool to produce XML from those comments and the source code ele-
ments, which they precede. Comments using such syntax are called documentation com-
ments. They must immediately precede a user-defined type (such as a class, delegate, or
interface) or a member (such as a field, event, property, or method). The XML generation
tool is called the documentation generator. (This generator could be, but need not be, the
C# compiler itself.) The output produced by the documentation generator is called the
documentation file. A documentation file is used as input to a documentation viewer—a
tool intended to produce some sort of visual display of type information and its associated
documentation.

This specification suggests a set of tags to be used in documentation comments. Use of
these tags is not required, and other tags may be used if desired, as long the rules of well-
formed XML are followed.

A.1 Introduction
Comments having a special form can be used to direct a tool to produce XML from those
comments and the source code elements, which they precede. Such comments are single-
line comments that start with three slashes (///), or delimited comments that start with a
slash and two stars (/**). They must immediately precede a user-defined type (such as a
class, delegate, or interface) or a member (such as a field, event, property, or method) that
they annotate. Attribute sections (§17.2) are considered part of declarations, so documenta-
tion comments must precede attributes applied to a type or member.

Syntax:

single-line-doc-comment:
/// input-charactersopt

delimited-doc-comment:
/** delimited-comment-textopt */

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

742

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

In a single-line-doc-comment, if there is a whitespace character following the /// characters on
each of the single-line-doc-comments adjacent to the current single-line-doc-comment, then that
whitespace character is not included in the XML output.

In a delimited-doc-comment, if the first non-whitespace character on the second line is an aster-
isk and the same pattern of optional whitespace characters and an asterisk character is
repeated at the beginning of each of the lines within the delimited-doc-comment, then the
characters of the repeated pattern are not included in the XML output. The pattern may
include whitespace characters after, as well as before, the asterisk character.

Example:

/// <summary>Class <c>Point</c> models a point in a two-dimensional
/// plane.</summary>
///
public class Point
{
 /// <summary>method <c>draw</c> renders the point.</summary>
 void draw() {…}
}

The text within documentation comments must be well formed according to the rules of
XML (http://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated
and the documentation file will contain a comment saying that an error was encountered.

Although developers are free to create their own set of tags, a recommended set is defined
in §A.2. Some of the recommended tags have special meanings:

The •	 <param> tag is used to describe parameters. If such a tag is used, the documentation
generator must verify that the specified parameter exists and that all parameters are
described in documentation comments. If such verification fails, the documentation gen-
erator issues a warning.

The •	 cref attribute can be attached to any tag to provide a reference to a code element.
The documentation generator must verify that this code element exists. If the verifica-
tion fails, the documentation generator issues a warning. When looking for a name
described in a cref attribute, the documentation generator must respect namespace vis-
ibility according to using statements appearing within the source code. For code ele-
ments that are generic, the normal generic syntax (i.e., “List<T>”) cannot be used because
it produces invalid XML. Braces can be used instead of brackets (i.e., “List{T}”), or the
XML escape syntax can be used (i.e., “List<T>”).

The •	 <summary> tag is intended to be used by a documentation viewer to display addi-
tional information about a type or member.

The •	 <include> tag includes information from an external XML file.

www.it-ebooks.info

http://www.w3.org/TR/REC-xml
http://www.it-ebooks.info/

ptg

A.2		 Recommended Tags

743

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

Note that the documentation file does not provide full information about the type and
members (for example, it does not contain any type information). To get such information
about a type or member, the documentation file must be used in conjunction with reflec-
tion on the actual type or member.

A.2 Recommended Tags
The documentation generator must accept and process any tag that is valid according to
the rules of XML. The following tags provide commonly used functionality in user docu-
mentation. (Of course, other tags are possible.)

Tag Section Purpose

<c> A.2.1 Set text in a code-like font

<code> A.2.2 Set one or more lines of source code or program output

<example> A.2.3 Indicate an example

<exception> A.2.4 Identifies the exceptions a method can throw

<include> A.2.5 Includes XML from an external file

<list> A.2.6 Create a list or table

<para> A.2.7 Permit structure to be added to text

<param> A.2.8 Describe a parameter for a method or constructor

<paramref> A.2.9 Identify that a word is a parameter name

<permission> A.2.10 Document the security accessibility of a member

<remark> A.2.11 Describe additional information about a type

<returns> A.2.12 Describe the return value of a method

<see> A.2.13 Specify a link

<seealso> A.2.14 Generate a See Also entry

<summary> A.2.15 Describe a type or a member of a type

<value> A.2.16 Describe a property

Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

744

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

Tag Section Purpose

<typeparam> A.2.17 Describe a generic type parameter

<typeparamref> A.2.18 Identify that a word is a type parameter name

A.2.1 <c>
This tag provides a mechanism to indicate that a fragment of text within a description
should be set in a special font such as that used for a block of code. For lines of actual code,
use <code> (§A.2.2).

Syntax:

<c>text</c>

Example:

/// <summary>Class <c>Point</c> models a point in a two-dimensional
/// plane.</summary>
public class Point
{
 // ...
}

A.2.2 <code>
This tag is used to set one or more lines of source code or program output in some special
font. For small code fragments in narrative, use <c> (§A.2.1).

Syntax:

<code>source code or program output</code>

Example:

/// <summary>This method changes the point's location by
/// the given x- and y-offsets.
/// <example>For example:
/// <code>
/// Point p = new Point(3,5);
/// p.Translate(-1,3);
/// </code>
/// results in <c>p</c>'s having the value (2,8).
/// </example>
/// </summary>

public void Translate(int xor, int yor) {
 X += xor;
 Y += yor;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.2		 Recommended Tags

745

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

A.2.3 <example>
This tag allows example code within a comment to specify how a method or other library
member may be used. Ordinarily, this would also involve use of the tag <code> (§A.2.2).

Syntax:

<example>description</example>

Example:

See <code> (§A.2.2) for an example.

A.2.4 <exception>
This tag provides a way to document the exceptions a method can throw.

Syntax:

<exception cref="member">description</exception>

where

cref="member"

The name of a member. The documentation generator checks that the given member
exists and translates member to the canonical element name in the documentation file.

description

A description of the circumstances in which the exception is thrown.

Example:

public class DataBaseOperations
{
 /// <exception cref="MasterFileFormatCorruptException"></exception>
 /// <exception cref="MasterFileLockedOpenException"></exception>
 public static void ReadRecord(int flag) {
 if (flag == 1)
 throw new MasterFileFormatCorruptException();
 else if (flag == 2)
 throw new MasterFileLockedOpenException();
 // …
 }
}

A.2.5 <include>
This tag allows including information from an XML document that is external to the source
code file. The external file must be a well-formed XML document, and an XPath expression
is applied to that document to specify which XML from that document to include. The
<include> tag is then replaced with the selected XML from the external document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

746

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

Syntax:

<include file="filename" path="xpath" />

where

file="filename"

The file name of an external XML file. The file name is interpreted relative to the file
that contains the include tag.

path="xpath"

An XPath expression that selects some of the XML in the external XML file.

Example:

If the source code contained a declaration like this:

/// <include file="docs.xml" path='extradoc/class[@name="IntList"]/*' />
public class IntList { … }

and the external file “docs.xml” had the following contents:

<?xml version="1.0"?>
<extradoc>
 <class name="IntList">
 <summary>
 Contains a list of integers.
 </summary>
 </class>
 <class name="StringList">
 <summary>
 Contains a list of integers.
 </summary>
 </class>
</extradoc>

then the same documentation is output as if the source code contained:

/// <summary>
/// Contains a list of integers.
/// </summary>
public class IntList { … }

A.2.6 <list>
This tag is used to create a list or table of items. It may contain a <listheader> block to
define the heading row of either a table or definition list. (When defining a table, only an
entry for term in the heading need be supplied.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.2		 Recommended Tags

747

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

Each item in the list is specified with an <item> block. When creating a definition list, both
term and description must be specified. However, for a table, bulleted list, or numbered
list, only description need be specified.

Syntax:

<list type="bullet" | "number" | "table">
 <listheader>
 <term>term</term>
 <description>description</description>
 </listheader>
 <item>
 <term>term</term>
 <description>description</description>
 </item>
 …
 <item>
 <term>term</term>
 <description>description</description>
 </item>
</list>

where

term

The term to define, whose definition is in description.

description

Either an item in a bullet or numbered list, or the definition of a term.

Example:

public class MyClass
{
 /// <summary>Here is an example of a bulleted list:
 /// <list type="bullet">
 /// <item>
 /// <description>Item 1.</description>
 /// </item>
 /// <item>
 /// <description>Item 2.</description>
 /// </item>
 /// </list>
 /// </summary>
 public static void Main () {
 // ...
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

748

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

A.2.7 <para>
This tag is for use inside other tags, such as <summary> (§A.2.11) or <returns> (§A.2.12),
and permits structure to be added to text.

Syntax:

<para>content</para>

where

content

The text of the paragraph.

Example:

/// <summary>This is the entry point of the Point class testing program.
/// <para>This program tests each method and operator, and
/// is intended to be run after any nontrivial maintenance has
/// been performed on the Point class.</para></summary>
public static void Main() {
 // ...
}

A.2.8 <param>
This tag is used to describe a parameter for a method, constructor, or indexer.

Syntax:

<param name="name">description</param>

where

name

The name of the parameter.

description

A description of the parameter.

Example:

/// <summary>This method changes the point's location to
/// the given coordinates.</summary>
/// <param name="xor">the new x-coordinate.</param>
/// <param name="yor">the new y-coordinate.</param>
public void Move(int xor, int yor) {
 X = xor;
 Y = yor;
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.2		 Recommended Tags

749

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

A.2.9 <paramref>
This tag is used to indicate that a word is a parameter. The documentation file can be pro-
cessed to format this parameter in some distinct way.

Syntax:

<paramref name="name"/>

where

name

The name of the parameter.

Example:

/// <summary>This constructor initializes the new point to
/// (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
/// <param name="xor">the new point's x-coordinate.</param>
/// <param name="yor">the new point's y-coordinate.</param>
public Point(int xor, int yor) {
 X = xor;
 Y = yor;
}

A.2.10 <permission>
This tag allows the security accessibility of a member to be documented.

Syntax:

<permission cref="member">description</permission>

where

cref="member"

The name of a member. The documentation generator checks that the given code
element exists and translates member to the canonical element name in the documen-
tation file.

description

A description of the access to the member.

Example:

/// <permission cref="System.Security.PermissionSet">Everyone can
/// access this method.</permission>
public static void Test() {
 // ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

750

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

A.2.11 <remark>
This tag is used to specify extra information about a type. (Use <summary> (§A.2.15) to
describe the type itself and the members of a type.)

Syntax:

<remark>description</remark>

where

description

The text of the remark.

Example:

/// <summary>Class <c>Point</c> models a point in a
/// two-dimensional plane.</summary>
/// <remark>Uses polar coordinates</remark>
public class Point
{
 // ...
}

A.2.12 <returns>
This tag is used to describe the return value of a method.

Syntax:

<returns>description</returns>

where

description

A description of the return value.

Example:

/// <summary>Report a point's location as a string.</summary>
/// <returns>A string representing a point's location, in the form (x,y),
/// without any leading, trailing, or embedded whitespace.</returns>
public override string ToString() {
 return "(" + X + "," + Y + ")";
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.2		 Recommended Tags

751

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

A.2.13 <see>
This tag allows a link to be specified within text. Use <seealso> (§A.2.14) to indicate text
that is to appear in a See Also section.

Syntax:

<see cref="member"/>

where

cref="member"

The name of a member. The documentation generator checks that the given code
element exists and changes member to the element name in the generated documenta-
tion file.

Example:

/// <summary>This method changes the point's location to
/// the given coordinates.</summary>
/// <see cref="Translate"/>
public void Move(int xor, int yor) {
 X = xor;
 Y = yor;
}
/// <summary>This method changes the point's location by
/// the given x- and y-offsets.
/// </summary>
/// <see cref="Move"/>
public void Translate(int xor, int yor) {
 X += xor;
 Y += yor;
}

A.2.14 <seealso>
This tag allows an entry to be generated for the See Also section. Use <see> (§A.2.13) to
specify a link from within text.

Syntax:

<seealso cref="member"/>

where

cref="member"

The name of a member. The documentation generator checks that the given code
element exists and changes member to the element name in the generated documenta-
tion file.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

752

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

Example:

/// <summary>This method determines whether two points have the same
/// location.</summary>
/// <seealso cref="operator=="/>
/// <seealso cref="operator!="/>
public override bool Equals(object o) {
 // ...
}

A.2.15 <summary>
This tag can be used to describe a type or a member of a type. Use <remark> (§A.2.11) to
describe the type itself.

Syntax:

<summary>description</summary>

where

description

A summary of the type or member.

Example:

/// <summary>This constructor initializes the new point to (0,0).</summary>
public Point() : this(0,0) {
}

A.2.16 <value>
This tag allows a property to be described.

Syntax:

<value>property description</value>

where

property description

A description for the property.

Example:

/// <value>Property <c>X</c> represents the point's x-coordinate.</value>
public int X
{
 get { return x; }
 set { x = value; }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.2		 Recommended Tags

753

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

A.2.17 <typeparam>
This tag is used to describe a generic type parameter for a class, struct, interface, delegate,
or method.

Syntax:

<typeparam name="name">description</typeparam>

where

name

The name of the type parameter.

description

A description of the type parameter.

Example:

/// <summary>A generic list class.</summary>
/// <typeparam name="T">The type stored by the list.</typeparam>
public class MyList<T> {
 ...
}

A.2.18 <typeparamref>
This tag is used to indicate that a word is a type parameter. The documentation file can be
processed to format this type parameter in some distinct way.

Syntax:

<typeparamref name="name"/>

where

name

The name of the type parameter.

Example:

/// <summary>This method fetches data and returns a
/// list of <typeparamref name="T"> "/>"> .</summary>
/// <param name="string">query to execute</param>

public List<T> FetchData<T>(string query) {
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

754

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

A.3 Processing the Documentation File
The documentation generator generates an ID string for each element in the source code
that is tagged with a documentation comment. This ID string uniquely identifies a source
element. A documentation viewer can use an ID string to identify the corresponding meta-
data or reflection item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it is a
flat list with a generated ID string for each element.

A.3.1 ID String Format
The documentation generator observes the following rules when it generates the ID
strings:

No white space is placed in the string. •	

The first part of the string identifies the kind of member being documented, via a single •	
character followed by a colon. The following table lists the kinds of members defined.

Character Description

E Event

F Field

M Method (including constructors, destructors, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the
error. For example, the documentation generator generates error infor-
mation for links that cannot be resolved.

The second part of the string is the fully qualified name of the element, starting at the •	
root of the namespace. The name of the element, its enclosing type(s), and namespace
are separated by periods. If the name of the item itself has periods, they are replaced by
(U+0023) characters. (It is assumed that no element has this character in its name.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.3		 Processing the Documentation File

755

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

For methods and properties with arguments, the argument list follows, enclosed in •	
parentheses. For those without arguments, the parentheses are omitted. The arguments
are separated by commas. The encoding of each argument is the same as a CLI signa-
ture, as follows:

- Arguments are represented by their documentation name, which is based on their
fully qualified name, modified as follows:

Arguments that represent generic types have an appended “’” character followed •	
by the number of type parameters.

Arguments having the •	 out or ref modifier have an @ following their type name.
Arguments passed by value or via params have no special notation.

Arguments that are arrays are represented as •	 [lowerbound : size , … , lowerbound :
size] where the number of commas is the rank less 1, and the lower bounds and size
of each dimension, if known, are represented in decimal. If a lower bound or size is
not specified, it is omitted. If the lower bound and size for a particular dimension
are omitted, the “:” is omitted as well. Jagged arrays are represented by one “[]”
per level.

Arguments that have pointer types other than void are represented using a •	 * fol-
lowing the type name. A void pointer is represented using a type name of
System.Void.

Arguments that refer to generic type parameters defined on types are encoded •	
using the “`” character followed by the zero-based index of the type parameter.

Arguments that use generic type parameters defined in methods use a double- •	
backtick “``” instead of the “`” used for types.

Arguments that refer to constructed generic types are encoded using the generic •	
type, followed by “{“, followed by a comma-separated list of type arguments,
followed by “}”.

A.3.2 ID String Examples
The following examples each show a fragment of C# code, along with the ID string pro-
duced from each source element capable of having a documentation comment:

Types are represented using their fully qualified name, augmented with generic •	
information:
enum Color { Red, Blue, Green }
namespace Acme
{
 interface IProcess {...}
 struct ValueType {...}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

756

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

 class Widget: IProcess
 {
 public class NestedClass {...}
 public interface IMenuItem {...}
 public delegate void Del(int i);
 public enum Direction { North, South, East, West }
 }
 class MyList<T>
 {
 class Helper<U,V> {...}
 }
}

"T:Color"
"T:Acme.IProcess"
"T:Acme.ValueType"
"T:Acme.Widget"
"T:Acme.Widget.NestedClass"
"T:Acme.Widget.IMenuItem"
"T:Acme.Widget.Del"
"T:Acme.Widget.Direction"
"T:Acme.MyList`1"
"T:Acme.MyList`1.Helper`2"

Fields are represented by their fully qualified name:•	
namespace Acme
{
 struct ValueType
 {
 private int total;
 }
 class Widget: IProcess
 {
 public class NestedClass
 {
 private int value;
 }
 private string message;
 private static Color defaultColor;
 private const double PI = 3.14159;
 protected readonly double monthlyAverage;
 private long[] array1;
 private Widget[,] array2;
 private unsafe int *pCount;
 private unsafe float **ppValues;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.3		 Processing the Documentation File

757

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

"F:Acme.ValueType.total"
"F:Acme.Widget.NestedClass.value"
"F:Acme.Widget.message"
"F:Acme.Widget.defaultColor"
"F:Acme.Widget.PI"
"F:Acme.Widget.monthlyAverage"
"F:Acme.Widget.array1"
"F:Acme.Widget.array2"
"F:Acme.Widget.pCount"
"F:Acme.Widget.ppValues"

Constructors. •	
namespace Acme
{
 class Widget: IProcess
 {
 static Widget() {...}
 public Widget() {...}
 public Widget(string s) {...}
 }
}

"M:Acme.Widget.#cctor"
"M:Acme.Widget.#ctor"
"M:Acme.Widget.#ctor(System.String)"

Destructors.•	
namespace Acme
{
 class Widget: IProcess
 {
 ~Widget() {...}
 }
}

"M:Acme.Widget.Finalize"

Methods.•	
namespace Acme
{
 struct ValueType
 {
 public void M(int i) {...}
 }
 class Widget: IProcess
 {
 public class NestedClass
 {
 public void M(int i) {...}
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

758

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

 public static void M0() {...}
 public void M1(char c, out float f, ref ValueType v) {...}
 public void M2(short[] x1, int[,] x2, long[][] x3) {...}
 public void M3(long[][] x3, Widget[][,,] x4) {...}
 public unsafe void M4(char *pc, Color **pf) {...}
 public unsafe void M5(void *pv, double *[][,] pd) {...}
 public void M6(int i, params object[] args) {...}
 }
 class MyList<T>
 {
 public void Test(T t) { }
 }
 class UseList
 {
 public void Process(MyList<int> list) { }
 public MyList<T> GetValues<T>(T inputValue) { return null; }
 }
}

"M:Acme.ValueType.M(System.Int32)"
"M:Acme.Widget.NestedClass.M(System.Int32)"
"M:Acme.Widget.M0"
"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)"
"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])"
"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])"
"M:Acme.Widget.M4(System.Char*,Color**)"
"M:Acme.Widget.M5(System.Void*,System.Double*[0:,0:][])"
"M:Acme.Widget.M6(System.Int32,System.Object[])"
"M:Acme.MyList`1.Test(`0)"
"M:Acme.UseList.Process(Acme.MyList{System.Int32})"
"M:Acme.UseList.GetValues``(``0)"

Properties and indexers.•	
namespace Acme
{
 class Widget: IProcess
 {
 public int Width { get {...} set {...} }
 public int this[int i] { get {...} set {...} }
 public int this[string s, int i] { get {...} set {...} }
 }
}

"P:Acme.Widget.Width"
"P:Acme.Widget.Item(System.Int32)"
"P:Acme.Widget.Item(System.String,System.Int32)"

Events.•	
namespace Acme
{
 class Widget: IProcess
 {

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.3		 Processing the Documentation File

759

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

 public event Del AnEvent;
 }
}

"E:Acme.Widget.AnEvent"

Unary operators.•	
namespace Acme
{
 class Widget: IProcess
 {
 public static Widget operator+(Widget x) {...}
 }
}

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)"

The complete set of unary operator function names used is as follows: op_UnaryPlus,
op_UnaryNegation, op_LogicalNot, op_OnesComplement, op_Increment, op_Decrement,
op_True, and op_False.

Binary operators.•	
namespace Acme
{
 class Widget: IProcess
 {
 public static Widget operator+(Widget x1, Widget x2) {...}
 }
}

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)"

The complete set of binary operator function names used is as follows: op_Addition,
op_Subtraction, op_Multiply, op_Division, op_Modulus, op_BitwiseAnd, op_BitwiseOr,
op_ExclusiveOr, op_LeftShift, op_RightShift, op_Equality, op_Inequality,
op_LessThan, op_LessThanOrEqual, op_GreaterThan, and op_GreaterThanOrEqual.

Conversion operators have a trailing “•	 ~” followed by the return type.

namespace Acme
{
 class Widget: IProcess
 {
 public static explicit operator int(Widget x) {...}
 public static implicit operator long(Widget x) {...}
 }
}

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32"
"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64"

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

760

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

A.4 An Example

A.4.1 C# Source Code
The following example shows the source code of a Point class:

namespace Graphics
{

 /// <summary>Class <c>Point</c> models a point in a two-dimensional plane.
 /// </summary>
 public class Point
 {
 /// <summary>Instance variable <c>x</c> represents the point's
 /// x-coordinate.</summary>
 private int x;
 /// <summary>Instance variable <c>y</c> represents the point's
 /// y-coordinate.</summary>
 private int y;
 /// <value>Property <c>X</c> represents the point's x-coordinate.</value>
 public int X
 {
 get { return x; }
 set { x = value; }
 }
 /// <value>Property <c>Y</c> represents the point's y-coordinate.</value>
 public int Y
 {
 get { return y; }
 set { y = value; }
 }
 /// <summary>This constructor initializes the new point to
 /// (0,0).</summary>
 public Point() : this(0, 0) { }
 /// <summary>This constructor initializes the new point to
 /// (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
 /// <param><c>xor</c> is the new point's x-coordinate.</param>
 /// <param><c>yor</c> is the new point's y-coordinate.</param>
 public Point(int xor, int yor)
 {
 X = xor;
 Y = yor;
 }
 /// <summary>This method changes the point's location to
 /// the given coordinates.</summary>
 /// <param><c>xor</c> is the new x-coordinate.</param>
 /// <param><c>yor</c> is the new y-coordinate.</param>
 /// <see cref="Translate"/>
 public void Move(int xor, int yor)
 {
 X = xor;
 Y = yor;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.4		 An Example

761

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

 /// <summary>This method changes the point's location by
 /// the given x- and y-offsets.
 /// <example>For example:
 /// <code>
 /// Point p = new Point(3,5);
 /// p.Translate(-1,3);
 /// </code>
 /// results in <c>p</c>'s having the value (2,8).
 /// </example>
 /// </summary>
 /// <param><c>xor</c> is the relative x-offset.</param>
 /// <param><c>yor</c> is the relative y-offset.</param>
 /// <see cref="Move"/>
 public void Translate(int xor, int yor)
 {
 X += xor;
 Y += yor;
 }
 /// <summary>This method determines whether two points have the same
 /// location.</summary>
 /// <param><c>o</c> is the object to be compared to the current object.
 /// </param>
 /// <returns>True if the points have the same location and they have
 /// the exact same type; otherwise, false.</returns>
 /// <seealso cref="operator=="/>
 /// <seealso cref="operator!="/>
 public override bool Equals(object o)
 {
 if (o == null)
 {
 return false;
 }
 if (this == o)
 {
 return true;
 }
 if (GetType() == o.GetType())
 {
 Point p = (Point)o;
 return (X == p.X) && (Y == p.Y);
 }
 return false;
 }
 /// <summary>Report a point's location as a string.</summary>
 /// <returns>A string representing a point's location, in the form (x,y),
 /// without any leading, trailing, or embedded whitespace.</returns>
 public override string ToString()
 {
 return "(" + X + "," + Y + ")";
 }
 /// <summary>This operator determines whether two points have the same
 /// location.</summary>
 /// <param><c>p1</c> is the first point to be compared.</param>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

762

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

 /// <param><c>p2</c> is the second point to be compared.</param>
 /// <returns>True if the points have the same location and they have
 /// the exact same type; otherwise, false.</returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator!="/>
 public static bool operator ==(Point p1, Point p2)
 {
 if ((object)p1 == null || (object)p2 == null)
 {
 return false;
 }

 if (p1.GetType() == p2.GetType())
 {
 return (p1.X == p2.X) && (p1.Y == p2.Y);
 }

 return false;
 }
 /// <summary>This operator determines whether two points have the same
 /// location.</summary>
 /// <param><c>p1</c> is the first point to be compared.</param>
 /// <param><c>p2</c> is the second point to be compared.</param>
 /// <returns>True if the points do not have the same location and the
 /// exact same type; otherwise, false.</returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator=="/>
 public static bool operator !=(Point p1, Point p2)
 {
 return !(p1 == p2);
 }
 /// <summary>This is the entry point of the Point class testing
 /// program.
 /// <para>This program tests each method and operator, and
 /// is intended to be run after any nontrivial maintenance has
 /// been performed on the Point class.</para></summary>
 public static void Main()
 {
 // Class test code goes here
 }
 }
}

A.4.2 Resulting XML
Here is the output produced by one documentation generator when given the source code
for class Point, shown above:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>Point</name>
 </assembly>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.4		 An Example

763

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

 <members>
 <member name="T:Graphics.Point">
 <summary>
 Class <c>Point</c> models a point in a two-dimensional
 plane.
 </summary>
 </member>
 <member name="F:Graphics.Point.x">
 <summary>
 Instance variable <c>x</c> represents the point's
 x-coordinate.
 </summary>
 </member>
 <member name="F:Graphics.Point.y">
 <summary>
 Instance variable <c>y</c> represents the point's
 y-coordinate.
 </summary>
 </member>
 <member name="M:Graphics.Point.#ctor">
 <summary>
 This constructor initializes the new point to
 (0,0).
 </summary>
 </member>
 <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
 <summary>
 This constructor initializes the new point to
 (<paramref name="xor"/>,<paramref name="yor"/>).
 </summary>
 <param>
 <c>xor</c> is the new point's x-coordinate.
 </param>
 <param>
 <c>yor</c> is the new point's y-coordinate.
 </param>
 </member>
 <member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
 <summary>
 This method changes the point's location to
 the given coordinates.
 </summary>
 <param>
 <c>xor</c> is the new x-coordinate.
 </param>
 <param>
 <c>yor</c> is the new y-coordinate.
 </param>
 <see cref="M:Graphics.Point.Translate(System.Int32,System.Int32)"/>
 </member>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

764

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

 <member
 name="M:Graphics.Point.Translate(System.Int32,System.Int32)">
 <summary>
 This method changes the point's location by
 the given x- and y-offsets.
 <example>
 For example:
 <code>
 Point p = new Point(3,5);
 p.Translate(-1,3);
 </code>
 results in <c>p</c>'s having the value (2,8).
 </example>
 </summary>
 <param>
 <c>xor</c> is the relative x-offset.
 </param>
 <param>
 <c>yor</c> is the relative y-offset.
 </param>
 <see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/>
 </member>
 <member name="M:Graphics.Point.Equals(System.Object)">
 <summary>
 This method determines whether two points have the same
 location.
 </summary>
 <param>
 <c>o</c> is the object to be compared to the current
 object.
 </param>
 <returns>
 True if the points have the same location and they have
 the exact same type; otherwise, false.
 </returns>
 <seealso
cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
 <seealso
cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member name="M:Graphics.Point.ToString">
 <summary>Report a point's location as a string.</summary>
 <returns>
 A string representing a point's location, in the form
 (x,y),
 without any leading, trailing, or embedded whitespace.
 </returns>
 </member>
 <member
 name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
 <summary>
 This operator determines whether two points have the
 same
 location.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A.4		 An Example

765

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

D
ocum

entation Com
m

ents
A
.	

Com
m

ents
A
.	

 </summary>
 <param>
 <c>p1</c> is the first point to be compared.
 </param>
 <param>
 <c>p2</c> is the second point to be compared.
 </param>
 <returns>
 True if the points have the same location and they have
 the exact same type; otherwise, false.
 </returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso
 cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member
 name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
 <summary>
 This operator determines whether two points have the
 same
 location.
 </summary>
 <param>
 <c>p1</c> is the first point to be compared.
 </param>
 <param>
 <c>p2</c> is the second point to be compared.
 </param>
 <returns>
 True if the points do not have the same location and
 the
 exact same type; otherwise, false.
 </returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso
cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member name="M:Graphics.Point.Main">
 <summary>
 This is the entry point of the Point class testing
 program.
 <para>
 This program tests each method and operator, and
 is intended to be run after any nontrivial maintenance has
 been performed on the Point class.
 </para>
 </summary>
 </member>
 <member name="P:Graphics.Point.X">
 <value>
 Property <c>X</c> represents the point's
 x-coordinate.
 </value>
 </member>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

A. Documentation Comments

766

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts
A
.	

D
oc

um
en

ta
tio

n C
om

m
en

ts

A
.	

Co
m

m
en

ts

A
.	

 <member name="P:Graphics.Point.Y">
 <value>
 Property <c>Y</c> represents the point's
 y-coordinate.
 </value>
 </member>
 </members>
</doc>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

767

GrammarB.

This appendix contains summaries of the lexical and syntactic grammars found in the
main document, and of the grammar extensions for unsafe code. Grammar productions
appear here in the same order that they appear in the main document.

B.1 Lexical Grammar
input:

input-sectionopt

input-section:
input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

B.1.1 Line Terminators
new-line:

Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

768

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

B.1.2 Comments
comment:

single-line-comment
delimited-comment

single-line-comment:
// input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment:
/* delimited-comment-textopt asterisks /

delimited-comment-text:
delimited-comment-section
delimited-comment-text delimited-comment-section

delimited-comment-section:
/
asterisksopt not-slash-or-asterisk

asterisks:
*
asterisks *

not-slash-or-asterisk:
Any Unicode character except / or *

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.1	 Lexical Grammar

769

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

B.1.3 White Space
whitespace:

Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

B.1.4 Tokens
token:

identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

B.1.5 Unicode Character Escape Sequences
unicode-escape-sequence:

\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

B.1.6 Identifiers
identifier:

available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

identifier-start-character:
letter-character
_ (the underscore character U+005F)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

770

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of class Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

B.1.7 keywords
keyword: one of

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto
if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true
try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.1	 Lexical Grammar

771

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

B.1.8 Literals
literal:

boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

boolean-literal:
true
false

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix: one of
U u L l UL Ul uL ul LU Lu lU lu

hexadecimal-integer-literal:
0x hex-digits integer-type-suffixopt

0X hex-digits integer-type-suffixopt

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

772

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

real-literal:
decimal-digits . decimal-digits exponent-partopt real-type-suffixopt
. decimal-digits exponent-partopt real-type-suffixopt

decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

exponent-part:
e signopt decimal-digits
E signopt decimal-digits

sign: one of
+ -

real-type-suffix: one of
F f D d M m

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character:
Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence:
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-charactersopt "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.1	 Lexical Grammar

773

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal:
@" verbatim-string-literal-charactersopt "

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
Any character except "

quote-escape-sequence:
""

null-literal:
null

B.1.9 operators and Punctuators
operator-or-punctuator: one of

{ } [] () . , : ;
+ - * / % & | ^ ! ~
= < > ? ?? :: ++ -- && ||
-> == != <= >= += -= *= /= %=
&= |= ^= << <<= =>

right-shift:
>|>

right-shift-assignment:
>|>=

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

774

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

B.1.10 Preprocessing Directives
pp-directive:

pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region
pp-pragma

conditional-symbol:
Any identifier-or-keyword except true or false

pp-expression:
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression:
true
false
conditional-symbol
(whitespaceopt pp-expression whitespaceopt)

pp-declaration:
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.1	 Lexical Grammar

775

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

pp-new-line:
whitespaceopt single-line-commentopt new-line

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line
conditional-sectionopt

pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line
conditional-sectionopt

pp-else-section:
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt

pp-endif:
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section:
input-section
skipped-section

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

not-number-sign:
Any input-character except #

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

776

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

pp-diagnostic:
whitespaceopt # whitespaceopt error pp-message
whitespaceopt # whitespaceopt warning pp-message

pp-message:
new-line
whitespace input-charactersopt new-line

pp-region:
pp-start-region conditional-sectionopt pp-end-region

pp-start-region:
whitespaceopt # whitespaceopt region pp-message

pp-end-region:
whitespaceopt # whitespaceopt endregion pp-message

pp-line:
whitespaceopt # whitespaceopt line whitespace line-indicator pp-new-line

line-indicator:
decimal-digits whitespace file-name
decimal-digits
default
hidden

file-name:
" file-name-characters "

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except "

pp-pragma:
whitespaceopt # whitespaceopt pragma whitespace pragma-body pp-new-line

pragma-body:
pragma-warning-body

pragma-warning-body:
warning whitespace warning-action
warning whitespace warning-action whitespace warning-list

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

777

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

warning-action:
disable
restore

warning-list:
decimal-digits
warning-list whitespaceopt , whitespaceopt decimal-digits

B.2 Syntactic Grammar

B.2.1 Basic Concepts
namespace-name:

namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier type-argument-listopt
namespace-or-type-name . identifier type-argument-listopt

qualified-alias-member

B.2.2 Types
type:

value-type
reference-type
type-parameter

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-type

simple-type:
numeric-type
bool

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

778

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte
byte
short
ushort
int
uint
long
ulong
char

floating-point-type:
float
double

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
type

enum-type:
type-name

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
object
dynamic
string

interface-type:
type-name

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

779

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

delegate-type:
type-name

type-argument-list:
< type-arguments >

type-arguments:
type-argument
type-arguments , type-argument

type-argument:
type

type-parameter:
identifier

B.2.3 Variables
variable-reference:

expression

B.2.4 Expressions
argument-list:

argument
argument-list , argument

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

780

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

argument:
argument-nameopt argument-value

argument-name:
identifier :

argument-value:
expression
ref variable-reference
out variable-reference

primary-expression:
primary-no-array-creation-expression
array-creation-expression

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
anonymous-object-creation-expression
typeof-expression
checked-expression
unchecked-expression
default-value-expression
anonymous-method-expression

simple-name:
identifier type-argument-listopt

parenthesized-expression:
(expression)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

781

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

member-access:
primary-expression . identifier type-argument-listopt
predefined-type . identifier type-argument-listopt
qualified-alias-member . identifier type-argument-listopt

predefined-type: one of
bool byte char decimal double float int long
object sbyte short string uint ulong ushort

invocation-expression:
primary-expression (argument-listopt)

element-access:
primary-no-array-creation-expression [argument-list]

this-access:
this

base-access:
base . identifier
base [argument-list]

post-increment-expression:
primary-expression ++

post-decrement-expression:
primary-expression --

object-creation-expression:
new type (argument-listopt) object-or-collection-initializeropt
new type object-or-collection-initializer

object-or-collection-initializer:
object-initializer
collection-initializer

object-initializer:
{ member-initializer-listopt }
{ member-initializer-list , }

member-initializer-list:
member-initializer
member-initializer-list , member-initializer

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

782

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

member-initializer:
identifier = initializer-value

initializer-value:
expression
object-or-collection-initializer

collection-initializer:
{ element-initializer-list }
{ element-initializer-list , }

element-initializer-list:
element-initializer
element-initializer-list , element-initializer

element-initializer:
non-assignment-expression
{ expression-list }

expression-list:
expression
expression-list , expression

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt
new array-type array-initializer
new rank-specifier array-initializer

delegate-creation-expression:
new delegate-type (expression)

anonymous-object-creation-expression:
new anonymous-object-initializer

anonymous-object-initializer:
{ member-declarator-listopt }
{ member-declarator-list , }

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

783

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

member-declarator:
simple-name
member-access
base-access
identifier = expression

typeof-expression:
typeof (type)
typeof (unbound-type-name)
typeof (void)

unbound-type-name:
identifier generic-dimension-specifieropt
identifier :: identifier generic-dimension-specifieropt

unbound-type-name . identifier generic-dimension-specifieropt

generic-dimension-specifier:
< commasopt >

commas:
,
commas ,

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

default-value-expression:
default (type)

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

784

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

cast-expression:
(type) unary-expression

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression right-shift additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

785

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

null-coalescing-expression:
conditional-or-expression
conditional-or-expression ?? null-coalescing-expression

conditional-expression:
null-coalescing-expression
null-coalescing-expression ? expression : expression

lambda-expression:
anonymous-function-signature => anonymous-function-body

anonymous-method-expression:
delegate explicit-anonymous-function-signatureopt block

anonymous-function-signature:
explicit-anonymous-function-signature
implicit-anonymous-function-signature

explicit-anonymous-function-signature:
(explicit-anonymous-function-parameter-listopt)

explicit-anonymous-function-parameter-list:
explicit-anonymous-function-parameter
explicit-anonymous-function-parameter-list , explicit-anonymous-function-parameter

explicit-anonymous-function-parameter:
anonymous-function-parameter-modifieropt type identifier

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

786

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

anonymous-function-parameter-modifier:
ref
out

implicit-anonymous-function-signature:
(implicit-anonymous-function-parameter-listopt)
implicit-anonymous-function-parameter

implicit-anonymous-function-parameter-list:
implicit-anonymous-function-parameter
implicit-anonymous-function-parameter-list ,
 implicit-anonymous-function-parameter

implicit-anonymous-function-parameter:
identifier

anonymous-function-body:
expression
block

query-expression:
from-clause query-body

from-clause:
from typeopt identifier in expression

query-body:
query-body-clausesopt select-or-group-clause query-continuationopt

query-body-clauses:
query-body-clause
query-body-clauses query-body-clause

query-body-clause:
from-clause
let-clause
where-clause
join-clause
join-into-clause
orderby-clause

let-clause:
let identifier = expression

where-clause:
where boolean-expression

join-clause:
join typeopt identifier in expression on expression equals expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

787

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

join-into-clause:
join typeopt identifier in expression on expression equals expression
 into identifier

orderby-clause:
orderby orderings

orderings:
ordering
orderings , ordering

ordering:
expression ordering-directionopt

ordering-direction:
ascending
descending

select-or-group-clause:
select-clause
group-clause

select-clause:
select expression

group-clause:
group expression by expression

query-continuation:
into identifier query-body

assignment:
unary-expression assignment-operator expression

assignment-operator:
=
+=
-=
*=
/=
%=
&=
|=
^=
<<=
right-shift-assignment

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

788

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

expression:
non-assignment-expression
assignment

non-assignment-expression:
conditional-expression
lambda-expression
query-expression

constant-expression:
expression

boolean-expression:
expression

B.2.5 Statements
statement:

labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement
yield-statement

block:
{ statement-listopt }

statement-list:
statement
statement-list statement

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

789

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

empty-statement:
;

labeled-statement:
identifier : statement

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

local-variable-declaration:
local-variable-type local-variable-declarators

local-variable-type:
type
var

local-variable-declarators:
local-variable-declarator
local-variable-declarators , local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

expression-statement:
statement-expression ;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

790

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

selection-statement:
if-statement
switch-statement

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

791

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

while-statement:
while (boolean-expression) embedded-statement

do-statement:
do embedded-statement while (boolean-expression) ;

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

foreach-statement:
foreach (local-variable-type identifier in expression) embedded-statement

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

break-statement:
break ;

continue-statement:
continue ;

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

792

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

return-statement:
return expressionopt ;

throw-statement:
throw expressionopt ;

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseopt
specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (class-type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

checked-statement:
checked block

unchecked-statement:
unchecked block

lock-statement:
lock (expression) embedded-statement

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

793

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

yield-statement:
yield return expression ;
yield break ;

B.2.6 Namespaces
compilation-unit:

extern-alias-directivesopt using-directivesopt global-attributesopt
 namespace-member-declarationsopt

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

qualified-identifier:
identifier
qualified-identifier . identifier

namespace-body:
{ extern-alias-directivesopt using-directivesopt namespace-member-declarationsopt }

extern-alias-directives:
extern-alias-directive
extern-alias-directives extern-alias-directive

extern-alias-directive:
extern alias identifier ;

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

using-alias-directive:
using identifier = namespace-or-type-name ;

using-namespace-directive:
using namespace-name ;

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

794

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

qualified-alias-member:
identifier :: identifier type-argument-listopt

B.2.7 Classes
class-declaration:

attributesopt class-modifiersopt partialopt class identifier type-parameter-listopt
 class-baseopt type-parameter-constraints-clausesopt class-body ;opt

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed
static

type-parameter-list:
< type-parameters >

type-parameters:
attributesopt type-parameter
type-parameters , attributesopt type-parameter

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

795

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

type-parameter:
identifier

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

type-parameter-constraints-clauses:
type-parameter-constraints-clause
type-parameter-constraints-clauses type-parameter-constraints-clause

type-parameter-constraints-clause:
where type-parameter : type-parameter-constraints

type-parameter-constraints:
primary-constraint
secondary-constraints
constructor-constraint
primary-constraint , secondary-constraints
primary-constraint , constructor-constraint
secondary-constraints , constructor-constraint
primary-constraint , secondary-constraints , constructor-constraint

primary-constraint:
class-type
class
struct

secondary-constraints:
interface-type
type-parameter
secondary-constraints , interface-type
secondary-constraints , type-parameter

constructor-constraint:
new ()

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

796

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

class-body:
{ class-member-declarationsopt }

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected
internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

797

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly
volatile

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt partialopt return-type member-name
 type-parameter-listopt
 (formal-parameter-listopt) type-parameter-constraints-clausesopt

method-modifiers:
method-modifier
method-modifiers method-modifier

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

798

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

method-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

return-type:
type
void

member-name:
identifier
interface-type . identifier

method-body:
block
;

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier default-argumentopt

default-argument:
= expression

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

799

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

parameter-modifier:
ref
out
this

parameter-array:
attributesopt params array-type identifier

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

member-name:
identifier
interface-type . identifier

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt
set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt accessor-modifieropt get accessor-body

set-accessor-declaration:
attributesopt accessor-modifieropt set accessor-body

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

800

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

accessor-modifier:
protected
internal
private
protected internal
internal protected

accessor-body:
block
;

event-declaration:
attributesopt event-modifiersopt event type variable-declarators ;
attributesopt event-modifiersopt event type member-name
 { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt add block

remove-accessor-declaration:
attributesopt remove block

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

801

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new
public
protected
internal
private
virtual
sealed
override
abstract
extern

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public
static
extern

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

802

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator:
+
-
*
/
%
&
|
^
<<
right-shift
==
!=
>
<
>=
<=

conversion-operator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)

operator-body:
block
;

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected
internal
private
extern

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

803

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

constructor-body:
block
;

static-constructor-declaration:
attributesopt static-constructor-modifiers identifier () static-constructor-body

static-constructor-modifiers:
externopt static
static externopt

static-constructor-body:
block
;

destructor-declaration:
attributesopt externopt ~ identifier () destructor-body

destructor-body:
block
;

B.2.8 Structs
struct-declaration:

attributesopt struct-modifiersopt partialopt struct identifier type-parameter-listopt
 struct-interfacesopt type-parameter-constraints-clausesopt struct-body ;opt

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public
protected
internal
private

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

804

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

struct-interfaces:
: interface-type-list

struct-body:
{ struct-member-declarationsopt }

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

B.2.9 Arrays
array-type:

non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

array-initializer:
{ variable-initializer-listopt }
{ variable-initializer-list , }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

805

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

B.2.10 Interfaces
interface-declaration:

attributesopt interface-modifiersopt partialopt interface
 identifier variant-type-parameter-listopt interface-baseopt
 type-parameter-constraints-clausesopt interface-body ;opt

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

variant-type-parameter-list:
< variant-type-parameters >

variant-type-parameters:
attributesopt variance-annotationopt type-parameter
variant-type-parameters , attributesopt variance-annotationopt type-parameter

variance-annotation:
in
out

interface-base:
: interface-type-list

interface-body:
{ interface-member-declarationsopt }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

806

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

interface-method-declaration:
attributesopt newopt return-type identifier type-parameter-list
 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

interface-property-declaration:
attributesopt newopt type identifier { interface-accessors }

interface-accessors:
attributesopt get ;
attributesopt set ;
attributesopt get ; attributesopt set ;
attributesopt set ; attributesopt get ;

interface-event-declaration:
attributesopt newopt event type identifier ;

interface-indexer-declaration:
attributesopt newopt type this [formal-parameter-list] { interface-accessors }

B.2.11 Enums
enum-declaration:

attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-base:
: integral-type

enum-body:
{ enum-member-declarationsopt }
{ enum-member-declarations , }

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.2	 Syntactic Grammar

807

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

enum-modifier:
new
public
protected
internal
private

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

B.2.12 Delegates
delegate-declaration:

attributesopt delegate-modifiersopt delegate return-type
 identifier variant-type-parameter-listopt
 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public
protected
internal
private

B.2.13 Attributes
global-attributes:

global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target-specifier attribute-list]
[global-attribute-target-specifier attribute-list ,]

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

808

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

global-attribute-target-specifier:
global-attribute-target :

global-attribute-target:
assembly
module

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieropt attribute-list]
[attribute-target-specifieropt attribute-list ,]

attribute-target-specifier:
attribute-target :

attribute-target:
field
event
method
param
property
return
type

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
type-name

attribute-arguments:
(positional-argument-listopt)
(positional-argument-list , named-argument-list)
(named-argument-list)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.3	 Grammar Extensions for Unsafe Code

809

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
argument-nameopt attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

B.3 Grammar Extensions for Unsafe Code
class-modifier:

...
unsafe

struct-modifier:
...
unsafe

interface-modifier:
...
unsafe

delegate-modifier:
...
unsafe

field-modifier:
...
unsafe

method-modifier:
...
unsafe

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

810

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

property-modifier:
...
unsafe

event-modifier:
...
unsafe

indexer-modifier:
...
unsafe

operator-modifier:
...
unsafe

constructor-modifier:
...
unsafe

destructor-declaration:
attributesopt externopt unsafeopt ~ identifier () destructor-body
attributesopt unsafeopt externopt ~ identifier () destructor-body

static-constructor-modifiers:
externopt unsafeopt static
unsafeopt externopt static
externopt static unsafeopt
unsafeopt static externopt

static externopt unsafeopt
static unsafeopt externopt

embedded-statement:
...
unsafe-statement
fixed-statement

unsafe-statement:
unsafe block

type:
...
pointer-type

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B.3	 Grammar Extensions for Unsafe Code

811

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

G
ram

m
ar

B
.	

pointer-type:
unmanaged-type *
void *

unmanaged-type:
type

primary-no-array-creation-expression:
...
pointer-member-access
pointer-element-access
sizeof-expression

unary-expression:
...
pointer-indirection-expression
addressof-expression

pointer-indirection-expression:
* unary-expression

pointer-member-access:
primary-expression -> identifier type-argument-listopt

pointer-element-access:
primary-no-array-creation-expression [expression]

addressof-expression:
& unary-expression

sizeof-expression:
sizeof (unmanaged-type)

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = fixed-pointer-initializer

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

B. Grammar

812

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

G
ra

m
m

ar
B
.	

G
ra

m
m

ar

B
.	

fixed-pointer-initializer:
& variable-reference
expression

struct-member-declaration:
…
fixed-size-buffer-declaration

fixed-size-buffer-declaration:
attributesopt fixed-size-buffer-modifiersopt fixed buffer-element-type
 fixed-size-buffer-declarators ;

fixed-size-buffer-modifiers:
fixed-size-buffer-modifier
fixed-size-buffer-modifier fixed-size-buffer-modifiers

fixed-size-buffer-modifier:
new
public
protected
internal
private
unsafe

buffer-element-type:
type

fixed-size-buffer-declarators:
fixed-size-buffer-declarator
fixed-size-buffer-declarator , fixed-size-buffer-declarators

fixed-size-buffer-declarator:
identifier [constant-expression]

local-variable-initializer:
…
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

813

ReferencesC.

IEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985.
Available from http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, Reading,
Massachusetts, 2000, ISBN 0-201-616335-5.

www.it-ebooks.info

http://www.ieee.org
http://www.it-ebooks.info/

ptg

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

815

Index

A
\a escape sequence, 81
Abstract accessors, 46, 557–558
Abstract classes

and interfaces, 661
overview, 468–469

Abstract events, 566
Abstract indexers, 567
Abstract methods, 35, 539–540
Access and accessibility

array elements, 628
containing types, 502–503
events, 253
indexers, 253, 300–301
members, 23–24, 107, 496

accessibility domains, 110–113
constraints, 116–117
declared accessibility, 107–109
interface, 642–644
pointer, 721–722
in primary expressions, 283–288
protected, 113–116

nested types, 499–503
pointer elements, 723
primary expression elements, 298–301
properties, 252, 555–556

Accessors
abstract, 46, 557–558
attribute, 695

event, 564–565
property, 43, 46, 547–553

Acquire semantics, 514
Acquisition in using statement, 445–446
add accessors

attributes, 695
events, 49, 564

Add method
IEnumerable, 311
List, 42

AddEventHandler method, 565
Addition operator

described, 15
uses, 337–340

Address-of operator, 724–725
Addresses

fixed variables, 728–733
pointers for, 714, 724–725

after state for enumerator objects, 593–596
Alert escape sequence, 81
Aliases

for namespaces and types, 456–461
qualifiers, 464–466
uniqueness, 466

Alignment enumeration, 58–59
Alloc method, 738
Allocation, stack, 736–738
AllowMultiple parameter, 688

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

816

Ambiguities n Asterisks (*)

Ambiguities
grammar, 287–288
in query expressions, 376

Ampersands (&)
for addresses, 716
in assignment operators, 389
definite assignment rules, 188–189
for logical operators, 355–359
for pointers, 724–725
in preprocessing expressions, 87

AND operators, 15
Angle brackets (<>) for type arguments, 160
Anonymous functions

bodies, 367
conversions, 219–221

evaluation to delegate types, 165–166,
221–222

evaluation to expression tree types, 222
implementation example, 222–226
implicit, 204

definite assignment rules, 192
delegate creation, 61
dynamic binding, 369
evaluation of, 373
expressions, 165–166, 326, 364–366
outer variables, 369–373
overloaded, 368
signatures, 365–366

Anonymous objects, 317–319
AppendFormat method, 31
Applicable function members, 271–272
Application domains, 99
ApplicationExcpetion class, 681
Applications, 4

startup, 99–100
termination, 100–101

Apply method, 60
Arguments, 28. See also Parameters

command-line, 99
for function members, 254–259
type, 161–162
type inference, 259–270

Arithmetic operators, 331–332
addition, 337–340
division, 334–335

multiplication, 332–333
pointer, 725–726
remainder, 336–337
shift, 344
subtraction, 340–342

ArithmeticException class, 335, 685
Arrays and array types, 625

access to, 299–300, 628
content, 13
conversions, 200
covariance, 200, 629–630
creating, 628
description, 8, 155
elements, 53, 171, 628
with foreach, 429
IList interface, 627–628
initializers, 55, 630–632
members, 106, 628
new operator for, 53, 55, 312–315
overview, 53–55
parameter, 31, 528–531
and pointers, 719–720, 730–731
rank specifiers, 625–626
syntactic grammar, 804–805

ArrayTypeMismatchException class
description, 685
type mismatch, 390–391, 629

as operator, 353–355
Assemblies, 4–5
Assignment

in classes vs. structs, 612
definite. See Definite assignment
fixed size buffers, 736

Assignment operators, 16
compound, 393–394
event, 394–395
overview, 389–390
simple, 390–393

Associativity of operators, 238–240
Asterisks (*)

assignment operators, 389
comments, 69–70, 741–742
multiplication, 332–333
pointers, 713–716, 721
transparent identifiers, 385

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

817

At sign characters (@) for identifiers n Box class

At sign characters (@) for identifiers, 72–74
Atomicity of variable references, 193
Attribute class, 62, 688
Attributes, 687

classes, 688–691, 704–705
compilation of, 698–699
compilation units, 454
instances, 698–699
for interoperation, 707
overview, 61–63
parameters for, 690–691
partial types, 482–483
reserved, 699–700

AttributeUsage, 700
Conditional, 701–705
Obsolete, 705–706

sections for, 692
specifications, 692–698
syntactic grammar, 807–809

AttributeUsage attribute, 688–690, 700
Automatic memory management, 132–137
Automatically implemented properties, 548,

553–555

B
\b escape sequence, 81
Backslash characters (\)

for characters, 80–81
escape sequence, 80–81
for strings, 82

Backspace escape sequence, 81
Backtick character (`), 83
Banker’s rounding, 150
Base access, 302–303
Base classes, 22, 25–26

partial types, 484
specifications for, 472–475
type parameter constraints, 476

Base interfaces
inheritance from, 637–638
partial types, 484–485

Base types, 249–250
before state for enumerator objects, 593–596
Better conversions, 274–275
Better function members, 272–273

Binary operators, 238
declarations, 574–575
in ID string format, 759
lifted, 246
numeric promotions, 244–245
overload resolution, 243
overloadable, 241

Binary point types, 9
Bind method, 56
Binding

constituent expressions, 237
dynamic, 166, 234–237
name, 490
static, 234–235
time, 235

BitArray class, 569–570
Bitwise complement operator, 328
Blocks

in declarations, 102–104
definite assignment rules, 179
exiting, 430
in grammar notation, 66
invariant meaning in, 281–283
in methods, 544
reachability of, 401
in statements, 402–404
for unsafe code, 710

Bodies
classes, 481
interfaces, 638
methods, 32–33, 544
struct, 609

Boneheaded exceptions, 686
bool type, 8–9, 150–151
Boolean values

expressions, 397
literals, 76
operators

conditional logical, 359
equality, 348
logical, 357

in struct example, 622–623
Boss class, 47
Bound types, 162
Box class, 539

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

818

Boxed instances n Classes

Boxed instances, invocations on, 278
Boxing, 12, 155–156

in classes vs. structs, 613–616
conversions, 156–158, 201

break statement
definite assignment rules, 182
example, 19
for for statements, 423
overview, 431
for switch, 416–417
for while, 420
yield break, 449–452, 594–595

Brittle base class syndrome, 35, 292
Brittle derived class syndrome, 292, 297
Buffers, fixed-size

declarations, 733–735
definite assignment, 736
in expressions, 735–736

Bugs. See Unsafe code
Button class, 549, 561
byte type, 10

C
<c> tag, 744
Cache class, 444
Callable entities, 671
Candidate user-defined operators, 243
Captured outer variables, 369–370
Carets (^)

in assignment operators, 389
for logical operators, 355–357

Carriage-return characters
escape sequence, 81
as line terminators, 68–69

Case labels, 415–419
Cast expressions, 330–331
cast operator vs. as operator, 355
catch blocks

definite assignment rules, 183–185
for exceptions, 684–685
throw statements, 436–437
try statements, 438–443

char type, 146

Character literals, 80–81
Characters, 9
checked statement

definite assignment rules, 179
example, 20
overview, 443
in primary expressions, 322–325

Chooser class, 259–260
Classes

accessibility, 23
attribute, 688–691, 704–705
base, 25–26, 472–475
bodies, 481
constants for, 506–508
constructors for, 42–43

instance, 579–586
static, 586–589

declarations, 467
base specifications, 472–475
bodies, 481
modifiers, 467–471
partial type, 471
type parameter constraints, 475–481
type parameters, 471–472

defined, 467
destructors for, 50, 589–591
events in, 47–49

accessors, 564–565
declaration, 559–562
field-like, 562–564
instance and static, 565

fields in, 26–27
declarations, 509–510
initializing, 515–516
read-only, 511–513
static and instance, 510–511
variable initializers, 516–519
volatile, 514–515

function members in, 40–50
indexers in, 46–47, 566–571
instance variables in, 170–171
interface implementation by, 57
iterators. See Iterators

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

819

Classes n Comparison operators

members in, 22–23, 106, 490–492
access modifiers for, 496
constituent types for, 496
constructed types, 493–494
inheritance of, 494–496
instance types, 492
nested types for, 498–504
new modifier for, 496
reserved names for, 504–506
static and instance, 496–498

methods in, 28–40
abstract, 539–540
bodies, 544
declaration, 520–522
extension, 541–543
external, 539–540
parameters, 522–531
partial, 541
sealed, 537–538
static and instance, 531
virtual, 532–534

operators in, 49–50
binary, 574–575
conversion, 575–578
declaration, 571–573
unary, 573–574

overview, 21–22
partial types. See Partial types
in program structure, 4–5
properties in, 43–46

accessibility, 555–556
accessors for, 547–553
automatically implemented, 553–555
declarations, 545–546
static and instance, 546

vs. structs, 610–619
syntactic grammar, 794–803
type parameters, 24–25
types, 6–13, 153–154

Classifications, expression, 231–234
Click events, 562–563
Closed types, 162
CLS (Common Language Specification), 9
<code> tag, 744

Collections
for foreach, 425
initializers, 310–312

Colons (:)
alias qualifiers, 464–465
grammar productions, 66
interface identifiers, 637
ternary operators, 191, 361–362
type parameter constraints, 476

Color class, 27, 512
Color enumeration, 58, 664–666
Color struct, 286
COM, interoperation with, 707
Combining delegates, 340, 675
Command-line arguments, 99
Commas (,)

arrays, 54
attributes, 692
collection initializers, 310
ID string format, 755
interface identifiers, 637
method parameter lists, 522
object initializers, 307

Comments, 741
documentation file processing, 754–759
example, 760–766
lexical grammar, 69–70, 768
overview, 741–743
tags, 743–753
XML for, 741–742, 762–765

Commit method, 92
Common Language Specification (CLS), 9
Common types for type inference, 270
CompareExchange method, 600
Comparison operators, 49

booleans, 348
decimal numbers, 348
delegates, 351–352
enumerations, 348
floating point numbers, 346–347
integers, 346
overview, 344–345
pointers, 726
reference types, 349–351
strings, 351

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

820

Compatibility of delegates and methods n Conversions

Compatibility of delegates and methods, 676
Compilation

attributes, 698–699
binding, 235
dynamic overload resolution checking,

275–276
just-in-time, 5

Compilation directives, 90–93
Compilation symbols, 87
Compilation unit productions, 67
Compilation units, 65, 453–454
Compile-time type of instances, 35, 532
Complement operator, 328
Component-oriented programming, 1–2
Compound assignment

operator, 389
process, 393–394

Concatenation, string, 339
Conditional attribute, 701–705
Conditional classes, 704–705
Conditional compilation directives, 90–93
Conditional compilation symbols, 87
Conditional logical operators, 15, 358–360
Conditional methods, 701–703
Conditional operator, 15, 361–363
Console class, 31, 552–553
Constant class, 35–36
Constants, 41

declarations, 411–412, 506–508
enums for. See Enumerations and enum

types
expressions, 203, 395–397
static fields for, 512–513
versioning of, 512–513

Constituent expressions, 237
Constituent types, 496
Constraints

accessibility, 116–117
constructed types, 162–164
partial types, 483–484
type parameters, 475–481

Constructed types, 160–161
bound and unbound, 162
constraints, 162–164
members, 493–494

open and closed, 162
type arguments, 161

Constructors, 41
for classes, 42–43
for classes vs. structs, 617–618
default, 141–142, 584
in ID string format, 757
instance. See Instance constructors
invocation, 254
static, 42, 586–589

Contact class, 311
Contexts

for attributes, 694–696
unsafe, 710–713

Contextual keywords, 75
continue statement

definite assignment rules, 182
for do, 421
example, 19
for for statements, 423
overview, 432
for while, 420

Contracts, interfaces as, 633
Contravariant type parameters, 635
Control class, 564–565
Control-Z character, 68
Conversions, 195

anonymous functions, 165–166, 219–226,
365–366

boxing, 156–158, 201
constant expression, 203
dynamic, 202, 210
enumerations, 198, 207
explicit, 204–213
expressions, 330–331
function members, 274–275
identity, 196–197
implicit, 195–204

standard, 213
user-defined, 217–219

method groups, 226–229
null literal, 199
nullable, 198–199, 207–208, 360–361
numeric, 197, 205–207
as operator for, 353–355

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

821

Conversions n default expressions

operators, 575–578, 759
for pointers, 717–720
reference, 199–201, 208–210
standard, 213–214
type parameters, 203–204, 211–212
unboxing, 158–160, 210
user-defined. See User-defined

conversions
variance, 636

Convert class, 207
Copy method, 739
Counter class, 552
Counter struct, 614
CountPrimes class, 570
Covariance

array, 200, 629–630
type parameters, 635

cref attribute, 742
Critical execution points, 137
.cs extension, 3
Curly braces ({})

arrays, 55
collection initializers, 310
grammar notation, 66
object initializers, 307

Currency type, 150
Current property, 595
Customer class, 488–489

D
Database structure example

boolean type, 622–623
integer type, 619–621

DBBool struct, 622–623
DBInt struct, 619–621
Decimal numbers and type, 9–10

addition, 338–339
comparison operators, 348
division, 335
multiplication, 333
negation, 327
remainder operator, 337
subtraction, 341
working with, 149–150

decimal128 type, 149
Declaration directives, 88–89
Declaration space, 101
Declaration statements, 407–412
Declarations

classes, 467
base specifications, 472–475
bodies, 481
modifiers, 467–471
partial type, 471
type parameter constraints, 475–481
type parameters, 471–472

constants, 411–412, 506–508
definite assignment rules, 180
delegates, 672–675
enums, 59, 663–664
events, 559–562
fields, 509–510
fixed-size buffers, 733–735
indexer, 566–571
instance constructors, 579–580
interfaces, 633–638
methods, 520–522
namespaces, 103, 454–456
operators, 571–573
order, 6, 103
overview, 101–104
parameters, 522–525
pointers, 714
properties, 545–546
property accessors, 547
static constructors, 586–589
struct members, 609
structs, 608–609
types, 10, 464
variables, 175, 407–411

Declared accessibility
nested types, 499–500
overview, 107–109

Decrement operators
pointers, 725
postfix, 303–305
prefix, 328–330

default expressions, 142

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

822

Defaults n DoubleToInt64Bits method

Defaults
constructors, 141–142, 584
switch statement labels, 415–416
values, 141, 175–176

classes vs. structs, 612–613
expressions, 325

#define directive, 87, 89
Defining partial method declarations, 486
Definite assignment, 33, 169, 176–177

fixed size buffers, 736
initially assigned variables, 177
initially unassigned variables, 177
rules for, 178–192

Degenerate query expressions, 379–380
Delegate class, 671
Delegates and delegate type, 671–672

combining, 340, 675
compatible, 676
contents, 13
conversions, 165–166, 221–222
declarations, 672–675
description, 8, 11, 155
equality, 351–352
instantiation, 676–677
invocations, 298, 677–680
members of, 107
new operator for, 315–317
overview, 60–61
removing, 342
syntactic grammar, 807

Delimited comments, 69–70, 741–742
Dependence

on base classes, 473–474
in structures, 611
type inference, 263

Depends on relationships, 473–474, 611
Derived classes, 22, 25–26
Destructors

for classes, 50, 589–591
for classes vs. structs, 619
exceptions for, 685
garbage collection, 132–137
in ID string format, 757

member names reserved for, 506
members, 23

Diagnostic directives, 93–94
Digit struct, 578
Dimensions, array, 11, 54, 625, 631–632
Direct base classes, 472–473
Directives

preprocessing. See Preprocessing
directives

using. See Using directives
Directly depends on relationships,

473–474, 611
Disposal in using statement, 446
Dispose method, 591

for enumerator objects, 596, 604–605
for resources, 445–446

Divide method, 30
DivideByZeroException class, 333–334,

683, 685
Division operator, 334–335
DllImport attribute, 541
DLLs (Dynamic Link Libraries), 541
do statement

definite assignment rules, 181–182
example, 18
overview, 421

Documentation comments, 741
documentation files for, 741, 754

ID string examples, 755–759
ID string format, 754–756

example, 760–766
overview, 741–743
tags for, 743–753
XML files for, 741–742, 762–765

Documentation generators, 741
Documentation viewers, 741
Domains

accessibility, 110–113
application, 99

Double quotes (")
characters, 80
strings, 80

double type, 9–10, 146–149
DoubleToInt64Bits method, 334

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

823

Dynamic binding n Event handlers

Dynamic binding
anonymous functions, 369
overview, 234–237

Dynamic Link Libraries (DLLs), 541
Dynamic memory allocation, 738–740
Dynamic overload resolution, 275–276
dynamic type, 154

conversions, 202, 210
identity conversions, 197
overview, 166–167

E
ECMA-334 standard, 1
EditBox class, 56–57
Effective base classes, 480
Effective interface sets, 480
Elements

array, 53, 171, 628
foreach, 425–427
pointer, 723
primary expression, 298–301

#elif directive, 87–88, 91
Ellipse class, 539
#else directive, 87, 90–93
Embedded statements and expressions

general rules, 186–187
in grammar notation, 66

Empty statements, 404–406
Encompassed types, 216
Encompassing types, 216
End-of-file markers, 68
End points, 400–402
#endif directive, 91
#endregion directive, 94
Entity class, 33–34
Entry class, 5
Entry points, 99
Enumerable interfaces, 592
Enumerable objects for iterators, 596–597
Enumerations and enum types

addition of, 339
comparison operators, 348
conversions

explicit, 207
implicit, 198

declarations, 663–664
description, 8, 11, 663, 668
logical operators, 356–357
members, 106, 665–668
modifiers, 664–665
overview, 58–59
subtraction of, 341
syntactic grammar, 806–807
types for, 151
values and operations, 668–669

Enumerator interfaces, 592
Enumerator objects for iterators, 593–596
Enumerator types for foreach, 425–426
Equal signs (=)

assignment operators, 389
comparisons, 345
operator ==, 49–50
pointers, 726
preprocessing expressions, 87

Equality operators, 15
boolean values, 348
delegates, 351–352
lifted, 246–247
and null, 352
reference types, 349–351
strings, 351

Equals method
on anonymous types, 319
DBBool, 623
DBInt, 621
List, 42
with NaN values, 347
Point, 761

#error directive, 94
Error property, 553
Error strings in ID string format, 754
Escape sequences

characters, 81
lexical grammar, 769
strings, 81
unicode character, 71–72

Evaluate method, 37
Evaluation of user-defined conversions,

215–216
Event handlers, 48, 559, 562

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

824

Events n Expressions

Events, 4
access to, 253
accessors, 564–565
assignment operator, 394–395
declarations, 559–562
example, 42
field-like, 562–564
in ID string format, 754, 758–759
instance and static, 565
interface, 642
member names reserved for, 506
overview, 47–49

Exact parameter type inferences, 264
<example> tag, 745
Exception class, 436, 438, 682–684
Exception propagation, 437
<exception> tag, 745
Exception variables, 438
Exceptions

causes, 683
classes for, 685–686
for delegates, 677
handling, 1, 684–685
overview, 681–682
throwing, 436–437
try statement for, 438–443

Exclamation points (!)
comparisons, 345
definite assignment rules, 190
logical negation, 327
operator !=, 49
pointers, 726
preprocessing expressions, 87

Execution
instance constructors, 582–584
order of, 137–138

Exiting blocks, 430
Exogenous exceptions, 686
Expanded form function members, 272
Explicit base interfaces, 637
Explicit conversions, 204–205

dynamic, 210
enumerations, 207
nullable types, 207–208
numeric, 205–207

reference, 208–210
standard, 214
type parameters, 211–212
unboxing, 210
user-defined, 213, 218–219

Explicit interface member implementations,
57, 647–650

explicit keyword, 576–578
Explicit parameter type inferences, 264
Expression class, 35–37
Expression statements, 17, 179, 412–413
Expressions, 231

anonymous function. See Anonymous
functions

binding, 234–237
boolean, 397
cast, 330–331
classifications, 231–234
constant, 203, 395–397
constituent, 237
definite assignment rules, 186–191
dynamic, 166
fixed-size buffers in, 735–736
function members

argument lists, 254–259
categories, 250–254
invocation, 276–278
overload resolution, 270–275
type inference, 259–270

member lookup, 247–250
operators for, 238

arithmetic. See Arithmetic operators
assignment, 389–395
logical, 355–357
numeric promotions, 244–246
overloading, 240–243
precedence and associativity, 238–240
relational, 345
shift, 343–344
unary, 326–331

overview, 13–16
pointers in, 720–727
preprocessing, 87–88
primary. See Primary expressions

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

825

Expressions n Function members

query, 373–375
ambiguities in, 376
patterns, 387–389
translations in, 376–387

syntactic grammar, 779–788
tree types, 165–166, 222
values of, 233

Extensible Markup Language (XML),
741–742, 762–765

Extension methods
example, 541–543
invocation, 293–297

Extensions class, 542
extern aliases, 456–457
External constructors, 580, 586
External destructors, 589
External events, 560
External indexers, 569
External methods, 539–540
External operators, 572
External properties, 546

F
\f escape sequence, 81
False value, 76
Fatal exceptions, 686
Field-like events, 562–564
Fields, 4

declarations, 509–510
example, 41
in ID string format, 754, 756–757
initializing, 515–516, 616–617
instance, 26–27, 510–511
overview, 26–27
read-only, 27–28, 511–513
static, 510–511
variable initializers, 516–519
volatile, 514–515

Fill method, 629
Filters, 442
Finalize method, 591
Finalizers, 50
finally blocks

definite assignment rules, 184–185
for exceptions, 684
execution, 682

with goto, 434
with try, 438–443

Fixed-size buffers
declarations, 733–735
definite assignment, 736
in expressions, 735–736

fixed statement, 716, 728–733
Fixed variables, 716–717
Fixing type inferences, 266–267
float type, 9–10, 146–149
Floating point numbers

addition, 338
comparison operators, 346–347
division, 334–335
multiplication, 332
NaN payload, 333–334
negation, 327
remainder operator, 336
subtraction, 340–341
types, 9–10, 146–149

for statement
definite assignment rules, 182
example, 19
overview, 422–423

foreach statement
definite assignment rules, 185
example, 19
overview, 423–429

Form feed escape sequence, 81
Forward declarations, 6
Fragmentation, heap, 729
Free method, 739
from clauses, 375, 379–387
FromTo method, 599–600
Fully qualified names

described, 131
interface members, 645
nested types, 499

Function members
argument lists, 254–259
in classes, 40–50
dynamic overload resolution checking,

275–276
overload resolution, 270–275
overview, 250–254
type inference, 259–270

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

826

Function pointers n Hello, World program

Function pointers, 671
Functional notation, 241
Functions, anonymous. See Anonymous

functions

G
Garbage collection, 1

at application termination, 101
for destructors, 50
in memory management, 132–137, 176
and pointers, 713
for variables, 716

GC class, 133, 136
Generic classes and types, 25, 139

anonymous objects, 318
boxing, 156, 613
constraints, 162, 475–477, 483
declarations, 467, 473
delegates, 220
instance type, 492
interfaces, 650–651
member lookup, 247
methods, 521, 532, 652–653
nested, 247, 503
overloading, 275
overriding, 536
query expression patterns, 387
signatures, 28
static fields, 26
type inferences, 259–261, 267
unbound, 160

Generic interface, 627–628
get accessors

for attributes, 695
defined, 45
description, 557
working with, 547–553

GetEnumerator method
for foreach, 425
for iterators, 596–603

GetEventHandler method, 565

GetHashCode method
on anonymous types, 319
comparisons, 347
DBBool, 623
DBInt, 621

GetHourlyRate method, 38
GetInvocationList method, 677
GetNextSerialNo method, 34
GetProcessHeap method, 739
Global declaration space, 101
Global namespace, 105
goto statement

definite assignment rules, 182
example, 19
for switch, 416–417, 419
working with, 433–434

Governing types of switch statements,
415, 418

Grammars, 65
ambiguities, 287–288
lexical. See Lexical grammar
notation, 65–67
syntactic. See Syntactic grammar
for unsafe code, 809–812

Greater than signs (>)
assignment operators, 389
comparisons, 345
pointers, 716, 721–722, 726
shift operators, 343–344

Grid class, 570–571
group clauses, 375, 378, 385

H
Handlers, event, 48, 559, 562
HasValue property, 152
Heap, 7

accessing functions of, 738–740
fragmentation, 729

HeapAlloc method, 739
HeapFree method, 739
HeapReAlloc method, 740
HeapSize method, 740
Hello, World program, 3

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

827

Hello class n Inaccessible members

Hello class, 93
HelpAttribute class, 61–62, 690
HelpStringAttribute class, 697
Hexadecimal escape sequences

for characters, 80
for strings, 83

Hiding
inherited members, 102, 125–127, 495
in multiple-inheritance interfaces, 644
in nesting, 124–127, 500
properties, 550
in scope, 120

Hindley-Milner-style algorithms, 261
Horizontal tab escape sequence, 81

I
IBase interface, 644, 655, 660
ICloneable interface, 645–646, 649, 654
IComboBox interface, 56, 638
IComparable interface, 646
IControl interface, 56–57, 638

implementations, 646
inheritance, 657–659
mapping, 654–656
member implementations, 650
member names, 645
reimplementations, 659–660

ICounter interface, 643
ICounter struct, 615
ID string format

for documentation files, 754–756
examples, 755–759

IDataBound interface, 56–57
Identical simple names and type names,

286–287
Identifiers

interface, 634
lexical grammar, 769–770
rules for, 72–74

Identity conversions, 196–197
IDerived interface, 655
IDictionary interface, 648

IDisposable interface, 136, 428, 445–447,
591, 648

IDouble interface, 644
IEnumerable interface, 311, 427–428, 596–597
IEnumerator interface, 592
#if directive, 87–88, 90–93
if statement

definite assignment rules, 180
example, 18
working with, 413–414

IForm interface, 655
IInteger interface, 643–644
IL (Intermediate Language) instructions, 5
IList interface, 627–628, 643, 647
IListBox interface, 56, 638, 656
IListCounter interface, 643
IMethods interface, 659–661
Implementing partial method

declarations, 486
Implicit conversions, 195–196

anonymous functions and method
groups, 204

boxing, 201
constant expression, 203
dynamic, 202
enumerations, 198
identity, 196
null literal, 199
nullable, 198–199
numeric, 197
operator for, 575–578
standard, 213
type parameters, 203–204
user-defined, 204, 217

implicit keyword, 575–578
Implicitly typed array creation

expressions, 313
Implicitly typed iteration variables, 423, 427
Implicitly typed local variable declarations,

408–409
Importing types, 461–463
In-line methods, 61
In property, 553
Inaccessible members, 107

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

828

<include> tag n Interface sets

<include> tag, 742, 745–746
Increment operators

for pointers, 725
postfix, 303–305
prefix, 328–330

IndexerName Attribute, 707
Indexers

access to, 253, 300–301
declarations, 566–571
example, 42
in ID string format, 758
interface, 642
member names reserved for, 506
overview, 46–47
signatures in, 119

IndexOf method, 39–40
IndexOutOfRangeException class, 300, 685
Indices, array, 53
Indirection, pointer, 716, 721
Inference, type, 259–270
Infinity values, 147–148
Inheritance, 22

from base interfaces, 637–638
in classes, 25–26, 105, 494–496
in classes vs. structs, 612
hiding through, 102, 125–127, 495
interface, 640, 657–659
parameters, 689
properties, 550

Initializers
array, 55, 630–632
field, 515–516, 616–617
in for statements, 422
instance constructors, 580–581
stack allocation, 736–738
variables, 516–519, 581

Initially assigned variables, 169, 177
Initially unassigned variables, 169, 177
Inlining process, 552
InnerException property, 683
Input production, 67
Input-safe types, 636
Input types in type inference, 263
Input-unsafe types, 636

Instance constructors
declarations, 579–580
default, 584
description, 42
execution, 582–584
initializers, 580–581
invocation, 254
optional parameters, 585–586
private, 584–585

Instance events, 565
Instance fields

class, 510–511
example, 26–27
initialization, 515–516, 519
read-only, 511–513

Instance members
class, 496–498
description, 22
protected access for, 113–116

Instance methods, 28, 33–34, 531
Instance properties, 546
Instance types, 492
Instance variables, 170–171, 510–511
Instances, 21–22

attribute, 698–699
type, 153

Instantiation
delegates, 676–677
local variables, 370–373

int type, 9–10
Int64BitsToDouble method, 334
Integers

addition, 338
comparison operators, 346
division, 334
literals, 76–78
logical operators, 356
multiplication, 332
negation, 327
remainder, 336
in struct example, 619–621
subtraction, 340

Integral types, 9–10, 145–146
interface keyword, 634
Interface sets, 480

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

829

Interfaces n Just-In-Time (JIT) compiler

Interfaces, 4, 633
base, 637–638
bodies, 638
declarations, 633–638
enumerable, 592
enumerator, 592
generic, 650–651
implementations, 645–647

abstract classes, 661
base classes, 475
explicit member, 647–650
generic methods, 652–653
inheritance, 657–659
mapping, 653–656
reimplementation, 659–660
uniqueness, 650–652

inheritance from, 637–638
members, 106, 639–640

access to, 642–644
events, 642
fully qualified names, 645
indexers, 642
methods, 640–641
properties, 641–642

modifiers, 634
overview, 56–57
partial types, 484–485
struct, 609
syntactic grammar, 805–806
types, 8, 11–13, 155
variant type parameter lists, 635–637

Intermediate Language (IL) instructions, 5
Internal accessibility, 23, 107
Interning, 84
Interoperation attributes, 707
IntToString method, 737–738
IntVector class, 574
InvalidCastException class, 159, 210, 355, 685
InvalidOperationException class, 152, 600
Invariant meaning in blocks, 281–283
Invariant type parameters, 635
Invocable members, 247–248
Invocation

delegates, 298, 677–680
function members, 276–278

instance constructors, 254
methods, 251
operators, 254

Invocation expressions, 187, 288–298
Invocation lists, 675, 677
Invoked members, 247–248
IronPython, 236
is operator, 352–353
isFalse property, 622
IsNan method, 334
isNull property

DBBool, 622
DBInt, 620

ISO/IEC 23270 standard, 1
IStringList interface, 639
isTrue property, 622
Iteration statements, 420

do, 421
for, 422–423
foreach, 423–429
while, 420–421

Iteration variables in foreach, 423–424
Iterators, 592

blocks, 403
enumerable interfaces, 592
enumerable objects for, 596–597
enumerator interfaces, 592
enumerator objects for, 593–596
implementation example, 597–603
yield type, 592

ITest interface, 119–120
ITextBox interface, 56, 638, 645–647, 650, 656

J
Jagged arrays, 54
JIT (Just-In-Time) compiler, 5
join clauses, 380–384
Jump statements

break, 431
continue, 432
goto, 433–434
overview, 429–431
return, 435
throw, 436–437

Just-In-Time (JIT) compiler, 5

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

830

keyValuePair struct n Local variables

K
KeyValuePair struct, 613
Keywords

lexical grammar, 770
list, 74–75

L
Label class, 551–552
Label declaration space, 102–103
Labeled statements

for goto, 433–434
overview, 406–407
for switch, 181, 415–419

Left-associative operators, 239
Left shift operator, 343–344
Length of arrays, 53, 625, 631–632
Less than signs (<)

assignment operators, 389
comparisons, 345
pointers, 726
shift operators, 343–344

let clauses, 380–384
Lexical grammar, 67, 767

comments, 69–70, 768
identifiers, 769–770
keywords, 770
line terminators, 68–69, 767
literals, 771–773
operators and punctuators, 773
preprocessing directives, 774–777
tokens, 769
unicode character escape sequences, 769
whitespace, 70–71, 769

Lexical structure, 65
grammars, 65–67

lexical. See Lexical grammar
syntactic. See Syntactic grammar

lexical analysis, 67–71
preprocessing directives, 85–87

conditional compilation, 87, 90–93
declaration, 88–89
diagnostic, 93–94
line, 95–96
pragma, 96–97

preprocessing expressions, 87–88
region, 94

programs, 65
tokens, 71

identifiers, 72–74
keywords, 74–75
literals, 76–84
operators, 84–85
unicode character escape sequence,

71–72
Libraries, 4, 541
Lifted conversions, 215
Lifted operators, 246–247
#line directive, 94
#line default directive, 96
Line directives, 95–96
Line-feed characters, 69
#line hidden directive, 96
Line-separator characters, 69
Line terminators, 68–69, 767
List class, 40–50
<list> tag, 746–747
ListChanged method, 48
Lists, statement, 403–404
Literals

boolean, 76
character, 80–81
in constant expressions, 395
conversions, 199
defined, 76
integer, 76–78
lexical grammar, 771–773
null, 84
in primary expressions, 279
real, 78–79
simple values, 144
string, 81–84

Local constant declarations, 17, 411–412
Local variable declaration space, 103
Local variables

declarations, 17, 407–411
instantiation, 370–373
in methods, 32–33
scope, 124–125
working with, 173–175

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

831

lock statement n Methods

lock statement
definite assignment rules, 186
example, 21
overview, 443–445

Logical operators
AND, 15
for boolean values, 357
conditional, 358–360
for enumerations, 356–357
for integers, 356
negation, 327–328
OR, 15
overview, 356–357
shift, 344
XOR, 15

LoginDialog class, 561
long type, 9–10
Lookup, member, 247–250
Lower-bound type inferences, 264–265
lvalues, 193

M
Main method

for startup, 99–100
for static constructors, 587–588

Mappings
interface, 653–656
pointers and integers, 719

Math class, 334
Members, 4, 22–23, 105

access to, 23, 107, 496
accessibility domains, 110–113
constraints, 116–117
declared accessibility, 107–109
interface, 642–644
pointer, 721–722
in primary expressions, 283–288
protected, 113–116

accessibility of, 23–24
array, 106, 628
class, 106, 490–492

access modifiers for, 496
constituent types, 496
constructed types, 493–494
inheritance of, 494–496

instance types, 492
nested types, 498–504
new modifier for, 496
reserved names for, 504–506
static and instance, 496–498

delegate, 107
enumeration, 106, 665–668
function. See Function members
inherited, 102, 105, 125–127, 494–496
interface, 106, 639–640

access to, 642–644
events, 642
explicit implementations, 57, 647–650
fully qualified names, 645
indexers, 642
methods, 640–641
properties, 641–642

lookup, 247–250
namespaces, 105, 463–464
partial types, 485
pointer, 721–722
struct, 105–106, 609

Memory
automatic management of, 132–137, 176
dynamic allocation of, 738–740

Memory class, 738–740
Memory leaks from events, 561
Message property, 683
Metadata, 5
Method group conversions

implicit, 204
overview, 226–229
type inference, 269

Methods, 4, 28
abstract, 35, 539–540
bodies, 32–33, 544
conditional, 701–703
declarations, 520–522
extension, 541–543
external, 539–540
in ID string format, 754, 757–758
instance, 28, 33–34, 531
interface, 640–641
invocations, 251, 288–298
in List, 42

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

832

Methods n Nested members

Methods (continued)
overloading, 38–40
overriding, 35, 535–537
parameters, 29–32

arrays, 528–531
declarations, 522–525
output, 526–527
reference, 525–526
value, 525

partial, 486–490, 541
sealed, 537–538
static, 28, 33–34, 531
virtual, 35–38, 532–534

Minus (-) operator, 327
Minus signs (-)

assignment operators, 389
decrement operator, 303–305, 328–330
pointers, 716, 721–722, 725
subtraction, 340–342

Modifiers
class, 467–471
enums, 664–665
interface, 634
partial types, 483
struct, 609

Modulo operator, 336–337
Most derived method implementation,

532–533
Most encompassing types, 216
Most specific operators, 215
Move method, 760–761
Moveable variables

described, 716–717
fixed addresses for, 728–733

MoveNext method, 426
enumerator objects, 451, 593–595
Stack, 599
Tree, 603–604

Multi-dimensional arrays, 11, 54, 625,
631–632

Multi-use attribute classes, 688
Multiple inheritance, 56–57, 644
Multiple statements, 402–403
Multiplication operator, 15, 332–333
Multiplicative operators, 15
Multiplier class, 60–61

Multiply method, 60
Mutual-exclusion locks, 443–445

N
\n escape sequence, 81
Named constants. See Enumerations and

enum types
Named parameters, 690–691
Names

anonymous types, 318–319
binding, 490
fully qualified, 131

interface members, 645
nested types, 499

hiding, 124–127
methods, 521
reserved, 504–506
simple

in primary expressions, 279–283
and type names, 286–287

variables, 170
namespace keyword, 454
Namespaces, 3–4, 453

aliases, 456–461, 464–466
compilation units, 453–454
declarations, 103, 454–456
using directives in, 457–463
fully qualified names in, 131
in ID string format, 754
members, 105, 463–464
overview, 127–130
purpose, 104
syntactic grammar, 793–794
type declarations, 464

NaN (Not-a-Number) value
causes, 147, 149
exceptions, 682
in floating point comparisons, 347
payload results, 333–334

Negation
logical, 327–328
numeric, 327

Nested array initializers, 631–632
Nested blocks, 104
Nested classes, 468
Nested members, 110–111

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

833

Nested scopes n objects

Nested scopes, 120
Nested types, 498–499

accessibility, 499–503
description, 464
fully qualified names for, 499
in generic classes, 503
member access contained by, 502–503
partial, 482
this access to, 500–501

Nesting
aliases, 460
with break, 431
comments, 70
hiding through, 124–125, 500
object initializers, 308

New line escape sequence, 81
new modifier

class members, 496
classes, 468
delegates, 672
interface members, 640
interfaces, 634

new operator
anonymous objects, 317–319
arrays, 53, 55, 312–315
collection initializers, 310–312
constructors, 43
delegates, 315–317
hidden methods, 126
object initializers, 307–310
objects, 305
structs, 52

No fall through rule, 416–417
No side effects convention, 552
Non-nested types, 498
Non-nullable value type, 152
Non-virtual methods, 35
Nonterminal symbols, 65–66
Normal form function members, 272
Normalization Form C, 73
Not-a-Number (NaN) value

causes, 147, 149
exceptions, 682
in floating point comparisons, 347
payload results, 333–334

Notation, grammar, 65–67

NotSupportedException class, 593
Null coalescing operator, 360–361
Null field for events, 48
Null literals, 84, 152, 199
Null pointers, 714
Null-termination of strings, 733
Null values

for array elements, 54
in classes vs. structs, 613
escape sequence for, 81
garbage collector for, 134

Nullable boolean logical operators, 357
Nullable types, 11–12

contents, 13
conversions

explicit, 207–208
implicit, 198–199
operators, 353–355

description, 8
equality operators with, 352
overview, 151–152

NullReferenceException class
array access, 300
with as operator, 355
delegate creation, 316
delegate invocation, 678
description, 685
foreach statement, 427
throw statement, 436
unboxing conversions, 159

Numeric conversions
explicit, 205–207
implicit, 197

Numeric promotions, 244–246

O
object class, 141, 154
Object variables, 12–13
Objects

creation expressions for
definite assignment rules, 187
new operator, 305–307

deallocating, 22
description, 139
initializers, 307–310
as instance types, 153

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

834

obsolete attribute n Paragraph-separator characters

Obsolete attribute, 705–706
Octal literals, 77
OnChanged method, 42, 48
One-dimensional arrays, 54
Open types, 162
Operands, 13, 238
Operation class, 35–36
Operator notation, 241
Operators, 13, 42, 49, 84–85

arithmetic. See Arithmetic operators
assignment operators, 16, 389

compound, 393–394
event, 394–395
simple, 390–393

binary. See Binary operators
conditional, 361–363
conversion, 575–578, 759
declaration, 571–573
enums, 668–669
in ID string format, 759
invocation, 254
lexical grammar, 773
lifted, 246–247
logical, 355–357
null coalescing, 360–361
numeric promotions, 244–246
operator !=, 49
operator ==, 49–50
overloading, 240–243
overview, 238
precedence and associativity, 238–240
relational. See Relational operators
shift, 343–344
type-testing, 352–353
unary. See Unary operators

Optional parameters, 522, 585–586
Optional symbols in grammar notation, 66
OR operators, 15
Order

declaration, 103
execution, 137–138

orderby clauses, 375, 380–384
Out property, 553
Outer variables, 369–373

OutOfMemoryException class, 313, 316,
339, 685

Output parameters, 30, 173, 526–527
Output-safe types, 636
Output types in type inference, 263
Output-unsafe types, 636
Overflow checking context, 322–325, 443
OverflowException class

addition, 338
arrays, 313
checked operator, 323–324
decimal type, 150
description, 686
division, 335
increment and decrement operators, 329
multiplication, 332–333
remainder operator, 336

Overload resolution
anonymous functions, 368
function members, 270–275

Overloaded operators, 13
purpose, 238
shift, 343

Overloading
indexers, 47
methods, 38–40
operators, 240–243
signatures in, 38, 117–120

Overridden base methods, 535
Override events, 566
Override indexers, 567
Override methods, 535–537
Overriding

event declarations, 566
methods, 35
property accessors, 46, 557
property declarations, 557–558

P
Padding for pointers, 727
Paint method, 56, 539
Pair class, 24
Pair-wise declarations, 575
<para> tag, 748
Paragraph-separator characters, 69

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

835

<param> tag n Positional parameters

<param> tag, 742, 748
Parameter lists, variant type, 635–637
Parameters

anonymous functions, 365
arrays, 528–531
attributes, 690–691
entry points, 99
function member invocations, 255–256
indexers, 46–47, 567–568
instance constructors, 581, 585–586
methods, 29–32

declaration, 522–525
types, 524–531

optional, 585–586
output, 173, 526–527
in overloading, 117–118
reference, 172, 525–526
type. See Type parameters
value, 171, 525

<paramref> tag, 749
params modifier, 31–32, 528–531
Parentheses ()

anonymous functions, 365
in grammar notation, 66
in ID string format, 755
for operator precedence, 240

Parenthesized expressions, 283
Partial methods, 541
partial modifier, 471

interfaces, 634
structs, 609
types, 481–482

Partial types, 471
attributes, 482–483
base classes, 484
base interfaces, 484
members, 485
methods, 486–490
modifiers, 483
name binding, 490
overview, 481–482
type parameters and constraints, 483–484

Patterns, query expression, 387–389
Percent signs (%)

assignment operators, 389
remainder operator, 336–337

Periods (.)
base access, 302
members, 105

<permission> tag, 749
Permitted user-defined conversions, 214–215
Phases, type inference, 262
Plus (+) operator, 326
Plus signs (+)

addition, 337–340
assignment operators, 389
increment operator, 303–305, 328–330
pointers, 725

Point class
base class, 25
coordinates, 308
declaration, 22
instantiated objects, 51
properties, 554
source code, 760–762

Point struct, 611–612
assignment operators, 391–392
default values, 613
field initializers, 616–618
instantiated objects, 51–52

Point3D class, 25
Pointers

arithmetic, 725–726
arrays, 719–720
conversions, 717–720
element access, 723
in expressions, 720–727
for fixed variables, 728–733
function, 671
indirection, 716, 721
member access, 721–722
operators

address-of, 724–725
comparison, 726
increment and decrement, 725
sizeof, 727

types, 713–716
unsafe, 7, 709
variables with, 716–717

Polymorphism, 22, 26
Pop method, 4–5
Positional parameters, 690–691

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

836

Postfix increment and decrement operators n Quotes (',") for characters

Postfix increment and decrement operators,
303–305

#pragma directive, 96
#pragma warning directive, 96–97
Precedence of operators, 13, 238–240
Prefix increment and decrement operators,

328–330
Preprocessing directives

conditional compilation, 87, 90–93
declaration, 88–89
diagnostic, 93–94
lexical grammar, 774–777
line, 95–96
overview, 85–87
pragma, 96–97
preprocessing expressions, 87–88
region, 94

Preprocessing expressions, 87–88
Primary expressions

anonymous method, 326
checked and unchecked operators,

322–325
default value, 325
element access, 298–301
forms of, 278–279
invocation, 288–298
literals in, 279
member access, 283–288
new operator in

anonymous objects, 317–319
arrays, 312–315
collection initializers, 310–312
delegates, 315–317
object initializers, 307–310
objects, 305–307

parenthesized, 283
postfix increment and decrement

operators, 303–305
simple names in, 279–283
this access in, 301–302
typeof operator, 319–322

Primary operators, 14
PrintColor method, 58
Private accessibility, 23–24, 107
Private constructors, 584–585
Productions, grammar, 65

Program class, 47, 602–603, 614–615
Program structure, 4–6
Programs, 4, 65
Projection initializers, 319
Promotions, numeric, 244–246
Propagation, exception, 437
Properties, 4

access to, 252
accessibility, 555–556
automatically implemented, 553–555
declarations, 545–546
example, 42
in ID string format, 754, 758
indexers, 568
interface, 641–642
member names reserved for, 504–505
overview, 43–46
static and instance, 546

Property accessors, 46
declarations, 547
overview, 547–553
types of, 553

Protected accessibility, 23–24
declared, 107
instance members, 113–116
internal, 23–24, 107

Public accessibility, 23–24, 107
Punctuators

lexical grammar, 773
list of, 84–85

PurchaseTransaction class, 92
Push method, 4

Q
Qualifiers, alias, 464–466
Query expressions

ambiguities in, 376
overview, 373–375
patterns, 387–389
translations in, 376–387

Question marks (?)
null coalescing operator, 360–361
ternary operators, 191, 361–362

Quotes (',") for characters, 80–81

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

837

\r escape sequence n Right shift operator

R
\r escape sequence, 81
Range variables, 375, 379
Rank of arrays, 54, 625–626
Reachability

blocks, 401
do statements, 421
for statements, 424
labeled statements, 406–407
overview, 400–402
return statements, 435
statement lists, 403
throw statements, 437
while statements, 420–421

Read-only fields, 27–28, 511–513
Read-only properties, 45, 549–550, 554
Read-write properties, 45, 549–550
readonly modifier, 27, 511
ReadOnlyPoint class, 554
Reads, volatile, 514
Real literals, 78–79
ReAlloc method, 739
Recommended tags for comments, 743–753
Rectangle class, 308–309
Rectangle struct, 392
ref modifier, 30
Reference conversions

explicit, 208–210
implicit, 199–201

Reference parameters, 29–30, 172, 525–526
Reference types, 6–8, 152–153

array, 53, 155
class, 153–154
constraints, 476
delegate, 155
dynamic, 154
equality operators, 349–351
interface, 155
object, 154
string, 154

References, 139
parameter passing by, 29–30
variable, 192–193

Referencing static class types, 470–471
Referent types, pointer, 713

Region directives, 94
Regular string literals, 81–82
Reimplementation, interface, 659–660
Relational operators

booleans, 348
decimal numbers, 348
delegates, 351–352
descriptions, 15
enumerations, 348
integers, 346
lifted, 247
overview, 344–345
reference types, 349–351
strings, 351

Release semantics, 514
Remainder operator, 336–337
<remarks> tag, 750
remove accessors

attributes, 695
events, 49, 564

RemoveEventHandler method, 565
Removing delegates, 342
Required parameters, 522
Reserved attributes, 699–700

AttributeUsage, 700
Conditional, 701–705
Obsolete, 705–706

Reserved names for class members, 504–506
Reset method, 604
Resolution

function members, 270–275
operator overload, 38, 243

Resources, using statement for, 445–449
return statement

definite assignment rules, 182–183
example, 19
methods, 33
overview, 435
with yield, 449–452

Return type
entry points, 100
inferred, 267–269
methods, 28, 521–522

<returns> tag, 750
Right-associative operators, 239
Right shift operator, 343–344

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

838

Rounding n Single-use attribute classes

Rounding, 150
Rules for definite assignment, 178–192
running state for enumerator objects, 593–596
Runtime processes

argument list evaluation, 257–259
array creation, 313
attribute instance retrieval, 699
binding, 235
delegate creation, 316
function member invocations, 276–277
increment and decrement operators, 304
object creation, 306–307
prefix increment and decrement

operations, 329
unboxing conversions, 160

Runtime types, 35, 532
RuntimeWrappedException class, 439

S
sbyte type, 9
Scopes

aliases, 459–460
attributes, 694
vs. declaration space, 101
local variables, 410
for name hiding, 124–127
overview, 120–124

Sealed accessors, 557
Sealed classes, 469, 474–475
Sealed events, 566
Sealed indexers, 567
Sealed methods, 537–538
sealed modifier, 469, 537–538
Sections for attributes, 692
<see> tag, 751
<seealso> tag, 751–752
select clauses, 375, 378, 384–385
Selection statements, 413

if, 413–414
switch, 414–419

Semicolons (;)
accessors, 548
interface identifiers, 642
method bodies, 544
namespace declarations, 454

Sequences in query expressions, 375
set accessors

for attributes, 695
defined, 45
description, 557
working with, 547–550

SetItems method, 56
SetNextSerialNo method, 34
SetText method, 56
Shape class, 539
Shift operators

described, 15
overview, 343–344

Short-circuiting logical operators, 358
short type, 9–10, 144
ShowHelp method, 62
Side effects

with accessors, 552
and execution order, 137–138

Signatures
anonymous functions, 365–366
indexers, 568
methods, 28, 521
operators

binary, 575
conversion, 578
unary, 573

in overloading, 38, 117–120
Signed integrals, 8–9
Simple assignment

definite assignment rules, 188
operator, 389
overview, 390–393

Simple expression assignment rules, 186
Simple names

in primary expressions, 279–283
and type names, 286–287

Simple types, 8, 140–144
Single-dimensional arrays

defined, 625
example, 54
initializers, 631

Single-line comments, 69–70, 741–742
Single quotes (') for characters, 80–81
Single-use attribute classes, 688

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

839

Sizeof method n Strings

SizeOf method, 739
sizeof operator, 727
Slashes (/)

assignment operators, 389
comments, 69–70, 741–742
division, 334–335

Slice method, 542–543
Source files

compilation, 6
described, 65
Point class, 760–762

Source types in conversions, 215
SplitPath method, 527
SqlBoolean struct, 621
SqlInt32 struct, 621
Square brackets ([])

arrays, 11, 54
attributes, 692
indexers, 46
pointers, 716, 723

Square method, 60
Squares class, 33
Stack

allocation, 736–738
values on, 7

Stack class, 4–5, 597–598
stackalloc operator, 716, 736–738
StackOverflowException class, 686, 737
Standard conversions, 213–214
Startup, application, 99–100
Statement lists, 403–404
Statements, 399–400

blocks in, 402–404
checked and unchecked, 443
declaration, 407–412
definite assignment rules, 179
empty, 404–406
end points and reachability, 400–402
expression, 17, 179, 412–413
in grammar notation, 66
iteration, 420

do, 421
for, 422–423
foreach, 423–429
while, 420–421

jump, 429–431
break, 431
continue, 432
goto, 433–434
return, 435
throw, 436–437

labeled, 406–407
lock, 443–445
overview, 16–21
selection, 413

if, 413–414
switch, 414–419

syntactic grammar, 788–793
try, 438–443
using, 445–449
yield, 449–452

States, definite assignment, 178
Static binding, 234–235
Static classes, 470–471
Static constructors, 42

in classes vs. structs, 619
overview, 586–589

Static events, 565
Static fields, 26, 510–511

for constants, 512–513
initialization, 515–519
read-only, 511–513

Static members, 22, 496–498
Static methods, 28

garbage collection, 133
vs. instance, 33–34, 531

static modifier, 470–471
Static properties, 546
Static variables, 170, 510–511
Status codes, termination, 100
String class, 39–40, 154
string type, 9, 154
StringFromColor method, 667
StringListEvent method, 639
Strings

concatenation, 339
equality operators, 351
literals, 81–84
null-termination, 733
switch governing type, 418

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

840

Structs n Tokens

Structs
assignment, 612
boxing and unboxing, 613–616
vs. classes, 610–619
constructors, 617–618
declarations, 608–609
default values, 612–613
destructors, 619
examples

database boolean type, 622–623
database integer type, 619–621

field initializers in, 616–617
inheritance, 612
instance variables, 171
interface implementation by, 57
members, 105–106, 609
overview, 50–53, 607
syntactic grammar, 803–804
this access in, 616
types, 6, 8, 10–11, 143
value semantics, 610–612

Subtraction operator, 340–342
Suffixes, numeric, 76–79
<summary> tag, 742, 752
SuppressFinalize method, 101
suspended state, 593–596
Swap method, 29
switch statement

definite assignment rules, 180
example, 18
overview, 414–419
reachability, 402

Syntactic grammar, 67
arrays, 804–805
attributes, 807–809
basic concepts, 777
classes, 794–803
delegates, 807
enums, 806–807
expressions, 779–788
interfaces, 805–806
namespaces, 793–794
statements, 788–793
structs, 803–804

types, 777–779
variables, 779

System-level exceptions, 682
System namespace, 143

T
\t escape sequence, 81
Tab escape sequence, 81
Tags for comments, 743–753
Target types in conversions, 215
Targets

goto, 433–434
jump, 430

Terminal symbols, 65–66
Termination, application, 100–101
Terminators, line, 68–69, 767
Ternary operators, 238, 361–363
TextReader class, 449
TextWriter class, 449
this access

classes vs. structs, 616
indexers, 46
instance constructors, 585–586
nested types, 500–501
overview, 301–302
properties, 546
static methods, 33

Thread-safe delegates, 677
Three-dimensional arrays, 54
Throw points, 437
throw statement

definite assignment rules, 182
example, 20
for exceptions, 683
overview, 436–437

Tildes (~)
bitwise complement, 328
conversion, 759

Time, binding, 235
ToInt32 method, 542
Tokens, 71

identifiers, 72–74
keywords, 74–75

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

841

Tokens n Unbound types

lexical grammar, 769
literals, 76–84
operators, 84–85
unicode character escape sequence, 71–72

ToString method, 339
and boxing, 614–615
DBBool, 623
DBInt, 621
Point, 761–762

Translate method, 761
Translations in query expressions, 376–387
Transparent identifiers in query expressions,

377, 385–387
Tree class, 602–603
Tree types, expression, 165–166
Trig class, 585
True value, 76
try statement

definite assignment rules, 183–185
example, 20
for exceptions, 684–685
with goto, 434
overview, 438–443

TryParse method, 527
Two-dimensional arrays

allocating, 54
initializers, 631

Type casts, 59
Type inference, 259–270
Type names, 127–130

fully qualified, 131
identical, 286–287

Type parameters, 139
class declarations, 24–25, 471–472
constraints, 475–481
conversions, 211–212
implicit conversions, 203–204
overview, 164–165
partial types, 483–484

Type-safe design, 1
Type testing operators

as, 353–355
described, 15
is, 352–353

TypeInitializationException class, 684, 686
typeof operator

pointers with, 713
primary expressions, 319–322

<typeparam> tag, 753
<typeparamref> tag, 753
Types

aliases for, 456–461
attribute parameter, 691
boxing and unboxing, 156–158
constructed, 160–164, 493–494
declarations, 10, 464
dynamic, 166–167
in ID string format, 754–756
importing, 461–463
instance, 492
nested, 464, 498–504
nullable. See Nullable types
overview, 6–13, 139
partial. See Partial types
pointer. See Pointers
reference. See Reference types
syntactic grammar, 777–779
underlying, 58–59, 151
value. See Value types

U
uint type, 10
ulong type, 10
Unary operators, 326

cast expressions, 330–331
described, 14, 238
in ID string format, 759
lifted, 246
minus, 327
numeric promotions, 244
overload resolution, 242–243
overloadable, 240–241
overview, 573–574
plus, 326
prefix increment and decrement, 328–330

Unassigned variables, 177
Unbound types, 160, 162

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

842

Unboxing conversions n Value types

Unboxing conversions
described, 210
overview, 158–160

Unboxing operations
in classes vs. structs, 613–616
example, 12

unchecked statement
definite assignment rules, 179
example, 20
overview, 443
in primary expressions, 322–325

#undef directive, 87–89
Undefined conditional compilation

symbols, 87
Underlying types

enums, 58–59, 664
nullable, 151

Underscore characters (_) for identifiers,
72–74

Unicode characters
escape sequence, 71–72
lexical grammar, 67, 769
for strings, 9

Unicode Normalization Form C, 73
Unified type system, 1
Uniqueness

aliases, 466
interface implementations, 650–652

Unmanaged types, 713
Unreachable statements, 400
Unsafe code, 709

contexts in, 710–713
dynamic memory allocation, 738–740
fixed-size buffers, 733–736
fixed statement, 728–733
grammar extensions for, 809–812
pointers

arrays, 719–720
conversions, 717–720
in expressions, 720–727
support for, 7
types, 713–716

stack allocation, 736–738
unsafe modifier, 710–713

Unsigned integrals, 8–10
Unwrapping non-nullable value types, 152
Upper-bound type inferences, 265–266
User-defined conversions, 214

evaluation, 215–216
explicit, 213, 218–219
implicit, 204, 217
lifted operators, 215
overview, 575–578
permitted, 214–215

User-defined operators
candidate, 243
conditional logical, 359–360

ushort type, 10
Using directives

for aliases, 458–461
definite assignment rules, 185–186
example, 21
for importing types, 461–463
overview, 445–449, 457
purpose, 3

V
\v escape sequence, 81
Value method, 620
Value parameters, 29, 171, 525
Value property, 152
<value> tag, 752
Value types

bool, 150–151
constraints, 476
contents, 13
decimal, 149–150
default constructors, 141–142
described, 8
enumeration, 151
floating point, 146–149
integral, 145–146
nullable, 151–152
overview, 140–141
simple, 143–144
storing, 7
struct, 143

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

843

Values n Write method

Values
array types, 626
classes vs. structs, 610–612
default, 141

classes vs. structs, 612–613
initialization, 175–176

enums, 668–669
expressions, 233
fields, 510–511
local constants, 412
variables, 169, 175–176, 408–409

ValueType class, 141, 612
VariableReference class, 35–36
Variables, 169

anonymous functions, 369–373
array elements, 171
declarations, 175, 407–411
default values, 175–176
definite assignment. See Definite

assignment
fixed addresses for, 728–733
fixed and moveable, 716–717
initializers, 516–519, 581
instance, 170–171, 510–511
local, 173–175
in methods, 32–33
names, 170
output parameters, 173
overview, 12–13
query expressions, 375, 379
reference parameters, 172
references, 192–193
scope, 124–125, 410
static, 170, 510–511
syntactic grammar, 779
value parameters, 171

Variant type parameter lists, 635–637
Verbatim identifiers, 74
Verbatim string literals, 81–83
Versioning

of constants, 512–513
described, 1

Vertical bars (|)
assignment operators, 389
definite assignment rules, 189–190

logical operators, 355–359
preprocessing expressions, 87

Vertical tab escape sequence, 81
Vexing exceptions, 686
Viewers, documentation, 741
Virtual accessors, 46, 557–559
Virtual events, 566
Virtual indexers, 567
Virtual methods

description, 236
overview, 35–38
working with, 532–534

Visibility in scope, 120, 124
void type and values

entry point method, 100
events, 564
pointers, 714
return, 28, 33
with typeof, 320

Volatile fields, 514–515

W
WaitForPendingFinalizers method, 136
#warning directive, 94
warnings, preprocessing directives,

96–97
where clauses

query expressions, 380–384
type parameter constraints, 163, 476

while statement
definite assignment rules, 181
example, 18
overview, 420–421

Whitespace
in comments, 742
defined, 70–71
in ID string format, 754
lexical grammar, 769

Win32 component interoperability, 707
workCompleted method, 47
Worker class, 47–48
Wrapping non-nullable value types, 152
Write method, 31

www.it-ebooks.info

http://www.it-ebooks.info/

ptg

844

Write-only properties n zero values

Write-only properties, 45, 549–550, 554
WriteLine method, 3, 31, 136
Writes, volatile, 514

X
\x escape sequence, 80
XAttribute class, 696–697
XML (Extensible Markup Language),

741–742, 762–765
XOR operators, 15

Y
yield statement

definite assignment rules, 186
example, 20
overview, 449–452
yield break, 594–595
yield return, 594–595

Yield type iterators, 592

Z
Zero values, 146–148

www.it-ebooks.info

http://www.it-ebooks.info/

	The C# Programming Language
	Contents
	Foreword
	Preface
	1 Introduction
	1.1 Hello, World
	1.2 Program Structure
	1.3 Types and Variables
	1.4 Expressions
	1.5 Statements
	1.6 Classes and Objects
	1.7 Structs
	1.8 Arrays
	1.9 Interfaces
	1.10 Enums
	1.11 Delegates
	1.12 Attributes

	2 Lexical Structure
	2.1 Programs
	2.2 Grammars
	2.3 Lexical Analysis
	2.4 Tokens
	2.5 Preprocessing Directives

	3 Basic Concepts
	3.1 Application Start-up
	3.2 Application Termination
	3.3 Declarations
	3.4 Members
	3.5 Member Access
	3.6 Signatures and Overloading
	3.7 Scopes
	3.8 Namespace and Type Names
	3.9 Automatic Memory Management
	3.10 Execution Order

	4 Types
	4.1 Value Types
	4.2 Reference Types
	4.3 Boxing and Unboxing
	4.4 Constructed Types
	4.5 Type Parameters
	4.6 Expression Tree Types
	4.7 The dynamic Type

	5 Variables
	5.1 Variable Categories
	5.2 Default Values
	5.3 Definite Assignment
	5.4 Variable References
	5.5 Atomicity of Variable References

	6 Conversions
	6.1 Implicit Conversions
	6.2 Explicit Conversions
	6.3 Standard Conversions
	6.4 User-Defined Conversions
	6.5 Anonymous Function Conversions
	6.6 Method Group Conversions

	7 Expressions
	7.1 Expression Classifications
	7.2 Static and Dynamic Binding
	7.3 Operators
	7.4 Member Lookup
	7.5 Function Members
	7.6 Primary Expressions
	7.7 Unary Operators
	7.8 Arithmetic Operators
	7.9 Shift Operators
	7.10 Relational and Type-Testing Operators
	7.11 Logical Operators
	7.12 Conditional Logical Operators
	7.13 The Null Coalescing Operator
	7.14 Conditional Operator
	7.15 Anonymous Function Expressions
	7.16 Query Expressions
	7.17 Assignment Operators
	7.18 Expression
	7.19 Constant Expressions
	7.20 Boolean Expressions

	8 Statements
	8.1 End Points and Reachability
	8.2 Blocks
	8.3 The Empty Statement
	8.4 Labeled Statements
	8.5 Declaration Statements
	8.6 Expression Statements
	8.7 Selection Statements
	8.8 Iteration Statements
	8.9 Jump Statements
	8.10 The try Statement
	8.11 The checked and unchecked Statements
	8.12 The lock Statement
	8.13 The using Statement
	8.14 The yield Statement

	9 Namespaces
	9.1 Compilation Units
	9.2 Namespace Declarations
	9.3 Extern Aliases
	9.4 Using Directives
	9.5 Namespace Members
	9.6 Type Declarations
	9.7 Namespace Alias Qualifiers

	10 Classes
	10.1 Class Declarations
	10.2 Partial Types
	10.3 Class Members
	10.4 Constants
	10.5 Fields
	10.6 Methods
	10.7 Properties
	10.8 Events
	10.9 Indexers
	10.10 Operators
	10.11 Instance Constructors
	10.12 Static Constructors
	10.13 Destructors
	10.14 Iterators

	11 Structs
	11.1 Struct Declarations
	11.2 Struct Members
	11.3 Class and Struct Differences
	11.4 Struct Examples

	12 Arrays
	12.1 Array Types
	12.2 Array Creation
	12.3 Array Element Access
	12.4 Array Members
	12.5 Array Covariance
	12.6 Array Initializers

	13 Interfaces
	13.1 Interface Declarations
	13.2 Interface Members
	13.3 Fully Qualified Interface Member Names
	13.4 Interface Implementations

	14 Enums
	14.1 Enum Declarations
	14.2 Enum Modifiers
	14.3 Enum Members
	14.4 The System.Enum Type
	14.5 Enum Values and Operations

	15 Delegates
	15.1 Delegate Declarations
	15.2 Delegate Compatibility
	15.3 Delegate Instantiation
	15.4 Delegate Invocation

	16 Exceptions
	16.1 Causes of Exceptions
	16.2 The System.Exception Class
	16.3 How Exceptions Are Handled
	16.4 Common Exception Classes

	17 Attributes
	17.1 Attribute Classes
	17.2 Attribute Specification
	17.3 Attribute Instances
	17.4 Reserved Attributes
	17.5 Attributes for Interoperation

	18 Unsafe Code
	18.1 Unsafe Contexts
	18.2 Pointer Types
	18.3 Fixed and Moveable Variables
	18.4 Pointer Conversions
	18.5 Pointers in Expressions
	18.6 The fixed Statement
	18.7 Fixed-Size Buffers
	18.8 Stack Allocation
	18.9 Dynamic Memory Allocation

	A: Documentation Comments
	A.1 Introduction
	A.2 Recommended Tags
	A.3 Processing the Documentation File
	A.4 An Example

	B: Grammar
	B.1 Lexical Grammar
	B.2 Syntactic Grammar
	B.3 Grammar Extensions for Unsafe Code

	C: References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

