
The ChucK Audio Programming

Language

“A Strongly-timed and On-the-fly

Environ/mentality”

Ge Wang

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

Advisor: Perry R. Cook

September 2008



c© Copyright by Ge Wang, 2008.

All Rights Reserved



iii

Abstract

The computer has long been considered an extremely attractive tool for creating,

manipulating, and analyzing sound. Its precision, possibilities for new timbres, and

potential for fantastical automation make it a compelling platform for expression

and experimentation - but only to the extent that we are able to express to the

computer what to do, and how to do it. To this end, the programming language

has served as perhaps the most general, and yet most precise and intimate interface

between humans and computers. Furthermore, “domain-specific” languages can

bring additional expressiveness, conciseness, and perhaps even different ways of

thinking to their users.

This thesis argues for the philosophy, design, and development of ChucK, a

general-purpose programming language tailored for computer music. The goal is to

create a language that is “expressive” and “easy to write and read” with respect

to time and parallelism, and to provide a platform for precise synthesis/analysis

and rapid experimentation in computer audio. In particular, ChucK provides a

syntax for representing information flow, a new time-based concurrent programming

model that allows programmers to flexibly and precisely control the flow of time

in code (we call this “strongly-timed”), and facilities to develop programs “on-

the-fly” - as they run. A ChucKian approach to “live coding” as a new musical

performance paradigm is also described, which motivates the Audicle, a specialized

graphical environment designed to facilitate on-the-fly programming, to visualize

and monitor ChucK programs in real-time, and to provide a platform for building

highly customizable user interfaces.

In addition to presenting aspects of the ChucK programming language, a his-

tory of music and programming is provided (Chapter 2), and the various aspects



iv

of the ChucK language are evaluated in the context of computer music research,

performance, and pedagogy (Chapter 6). As part of an extensive case study, the

thesis discusses ChucK as a primary teaching and development tool in the Princeton

Laptop Orchestra (PLOrk), which continues to be a powerful platform for deploying

ChucK for teaching topics ranging from programming to sound synthesis, and for

crafting new instruments, compositions, and performances for computer-mediated

ensembles. Additional applications are also described, including classrooms, live

coding “arenas”, compositions and performances, user studies, and integrations of

ChucK into other software systems.

The contributions of this work include the following. 1) A time-based pro-

gramming mechanism (both language and underlying implementation) for ultra-

precise audio synthesis, naturally extensible to real-time audio analysis. 2) A non-

preemptive, time/event-based concurrent programming model that provides fun-

damental flexibility and readability without incurring many of the difficulties of

programming concurrency. 3) A ChucKian approach to writing code and designing

audio programs on-the-fly. This rapid prototyping mentality has potentially wide

ramifications in the way we think about coding audio, in designing/testing soft-

ware (particular for real-time audio), as well as new paradigms and practices in

computer-mediated live performance. 4) The Audicle as a new type of audio pro-

gramming environment. 4) Extended case studies of using, teaching, composing,

and performing with ChucK, most prominently in the Laptop Orchestra. These

show the power of teaching programming via music, and vice versa - and how these

two disciplines can reinforce each other.



v

Acknowledgments

In developing the works described in this dissertation (as well as the document

itself), I am indebted to a great many people for teaching, helping, guiding, and

encouraging me throughout. I am deeply grateful to Perry Cook for his teaching,

mentorship, friendship, and for granting me the freedom to explore new (sometimes

crazy-seeming) directions while providing the guidance and encouragement to help

me to see things through. Immense gratitude to Dan Trueman for his always con-

siderate and generous help and guidance, and (to both Dan and Perry) for trust

and confidence in me to help develop the laptop orchestra. I have also been amaz-

ingly fortunate to work with Paul Lansky, Ken Steiglitz, Brian Kernighan, and

Andrew Appel. I thank them for guidance from and to many directions. Very spe-

cial thanks to Roger Dannenberg who has always provided invaluable guidance and

support throughout my graduate career. Also, deep thanks to Melissa Lawson, our

Graduate Coordinator, for taking care of all of us graduate students since before

we arrived.

Many aspects of the work in this thesis have benefited immensely from people

working hard together. It continues to be my immense honor to work with peers

and fellow students and soundlab folks Ajay Kapur, Ari Lazier, Philip Davidson,

Spencer Salazar, Adam Tindale, Paul Botelho, Matt Hoffman, Jeff Bernstein on ev-

erything from ChucK, the Audicle, PLOrk, visualization. controllers, to networked

concerts. I am truly grateful to Ananya Misra. Together weve helped to create and

pulled through many projects, demos, papers, and presentations. I am incredibly

honored to work with Scott Smallwood, whether it is surviving PLOrk or compos-

ing/performing together. Heartiest thanks to comrade Rebecca Fiebrink, for being

amazing in everything we do.



vi

I have also been fortunate to collaborate with many great mentors and colleagues

outside of Princeton. My profound thanks to Jon Appleton for his unfaltering

support and friendship. Also to Larry Polansky and Kui Dong for their confidence

and encouragement, and for inviting me to teach the graduate seminar at Dartmouth

in 2007. To the graduate students in the Dartmouth Electro-acoustic Music program

for a great experience. To Yuri Spitsyn for his friendship, guidance, and for just

being great. Special thanks to Gary Scavone for being a great colleague (even though

we rarely see each other in person), George Tzanetakis for endlessly fascinating

discussions on software design for audio systems, Georg Essl for his always generous

advice and encouragement, and for being a wonderful colleague and friend, Nic

Collins and Shawn Decker for great encouragement and interest in this work, Brad

Garton for crazy and wonderful ideas and support. Intense thanks to Max Mathews

and John Chowning for continued inspiration and encouragement, as well as to Chris

Chafe, Julius Smith, Jonathan Berger, Chryssie Nanou, Rob Hamilton, Debbie

Barney, Nette Worthey, Mario Champagne, Jonathan Abel, Bret Ascarelli, Jieun Oh

(for profound and mutual support), and the amazing 2007-2008 MA/MST students,

as well as everyone else at CCRMA and the Stanford Music Department for their

deep support and belief in me (as I try to concurrently do my best as a new faculty

member while finishing this dissertation). I profusely thank the ChucK users and

developers communities, especially Kassen and Kijjaz, as well as Nick Collins, Alex

McLean, and other fellow live coders and colleagues at TOPLAP. I leave out many

wonderful folks to whom I am indebted and whom I keep at heart.

Finally, thanks to my grandparents who are responsible for the good in me, my

parents for standing behind me and encouraging my interests, to Manman for her

sacrifices and undying support.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction and Motivation 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 “A New Way of Thinking about Audio Programming” . . . . . . . 4

1.3 The ChucKian approach . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A History of Music and Programming 8

2.1 Early Eras: Before Computers . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Computer Age (Part I): Early Languages and Rise of MUSIC-N 10

2.2.1 MUSIC I (and II, III, ...) . . . . . . . . . . . . . . . . . . . . 11

2.2.2 The CARL System (or ”UNIX for Music”) . . . . . . . . . . 15

2.2.3 Cmix, CLM, Csound . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The Computer Age (Part II): Real-time Systems and New Approaches 19

2.3.1 Graphical Music Programming: Max/MSP + Pure Data . . 19

2.3.2 Programming Libraries for Sound Synthesis . . . . . . . . . 21

2.3.3 Nyquist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



CONTENTS viii

2.3.4 SuperCollider . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Graphical vs. Text-based . . . . . . . . . . . . . . . . . . . . 26

2.4 Additional Music Programming Languages . . . . . . . . . . . . . . 27

2.5 The Computer Age (Part III): New Language Explorations . . . . . 27

2.5.1 Custom Music Programming Software . . . . . . . . . . . . 29

2.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 ChucK 32

3.1 Language Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Two Observations . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Core Language Features . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 ChucK Operator (=>) . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 ChucKian Time . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Concurrency Based on Shreds . . . . . . . . . . . . . . . . . 42

3.2.4 Synthesis and Analysis . . . . . . . . . . . . . . . . . . . . . 45

3.3 Language Specification . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Types, Values, Variables . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Control Structures . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.5 Manipulating Time . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.7 Concurrency, Processes, and Shreds . . . . . . . . . . . . . . 54

3.3.8 Programming with Events . . . . . . . . . . . . . . . . . . . 59

3.3.9 Unit Generators . . . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS ix

3.3.10 Unit Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 System Design and Implementation . . . . . . . . . . . . . . . . . . 69

3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 ChucK Virtual Machine + Shreduler . . . . . . . . . . . . . 71

3.4.4 Audio Computation . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Time and Programming . . . . . . . . . . . . . . . . . . . . 76

3.5.2 Dynamic, Precise Control Rate . . . . . . . . . . . . . . . . 77

3.5.3 Multiple Concurrent Control Rates . . . . . . . . . . . . . . 80

3.6 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 On-the-fly Programming 82

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 A ChucKian Approach . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 External Interface . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Internal Semantics . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 An On-the-fly Aesthetic . . . . . . . . . . . . . . . . . . . . . . . . 90

5 The Audicle 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2 Related Environments . . . . . . . . . . . . . . . . . . . . . 97

5.2 Audicle Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Faces of the Audicle . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CONTENTS x

5.3.1 The ShrEditor . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 VM-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Shredder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.4 Time and Timing . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.5 Tabula Rasa . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Audicle Implementation . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 miniAudicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Applications and Evaluations 111

6.1 Evolution of ChucK . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Teaching ChucK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Princeton Laptop Orchestra . . . . . . . . . . . . . . . . . . 118

6.2.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . 127

6.2.4 Additional Courses . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 ChucK in Performance and Research . . . . . . . . . . . . . . . . . 131

6.3.1 Performance in Laptop Orchestra . . . . . . . . . . . . . . . 131

6.3.2 S.M.E.L.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3.3 ChucK for TAPESTREA . . . . . . . . . . . . . . . . . . . . 145

6.4 Additional and Potential Applications . . . . . . . . . . . . . . . . . 146

7 Conclusion 150

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 Exploring Analysis, Rapid Prototyping, Learning . . . . . . 151



CONTENTS xi

7.2.2 Worlds for Collaborative Social Audio Programming . . . . 153

7.2.3 Planned Language Features . . . . . . . . . . . . . . . . . . 154

7.2.4 Laptop Orchestras . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.5 ChucK and the Mobile Phone . . . . . . . . . . . . . . . . . 157

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 160



List of Figures

1.1 Some ChucKian things... . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Another conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The IBM 360, released in 1965, with human operators. . . . . . . . 11

2.2 A simple Max/MSP patch which synthesizes the vowel ahh. . . . . 22

2.3 SuperCollider programming environment in action. . . . . . . . . . 25

3.1 Relative emphasis between three design goals. . . . . . . . . . . . . 35

3.2 A statement using the ChucK operator, here connecting the output

of ’foo’ to ’dac’ (both are audio processing elements). . . . . . . . . 37

3.3 A statement that uses the ChucK operator to connect three audio

elements together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Two different syntaxes for invoking the same nested function calls. . 38

3.5 A ChucK program to generate a sine wave, changing its frequency of

oscillation every 100 milliseconds. . . . . . . . . . . . . . . . . . . . 40

3.6 complex values, real/imaginary components. . . . . . . . . . . . . . 48

3.7 polar values, magnitude/phase components. . . . . . . . . . . . . . 48

3.8 Some operations on complex and polar types in ChucK. . . . . . . . 48

xii



LIST OF FIGURES xiii

3.9 Examples of basic operations on time and dur. . . . . . . . . . . . 50

3.10 Example of constructing the notions of a quarter and a whole with

durations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 Some examples of using the dur type. . . . . . . . . . . . . . . . . 51

3.12 Some examples of advancing time with durations in ChucK. . . . . 52

3.13 A short program demonstrating time and dur types. . . . . . . . . 52

3.14 A sound generating program that randomizes frequencies every 100

milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.15 Defining a function, then sporking that function on a new shred. . 55

3.16 Defining a function, sporking two copies of it on new shreds.. . . . . 56

3.17 Example showing the yield() function, which relinquishes the VM

without advancing time. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.18 Attempts to open a MIDI device, and exits if the operation fails. . . 57

3.19 Prints out the current shred’s id. . . . . . . . . . . . . . . . . . . . 58

3.20 Operations using static members of the Machine class. . . . . . . . 58

3.21 Passing arguments to shreds via Machine. . . . . . . . . . . . . . . 58

3.22 Loops through shred arguments and prints each. . . . . . . . . . . . 58

3.23 Code snippet to wait on an Event, and printing a debug message. . 59

3.24 An example that sporks four shreds, and invokes them via signal()

and broadcast(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.25 A program to open a MIDI device, wait on incoming messages, and

print them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.26 A OpenSoundControl receiver. . . . . . . . . . . . . . . . . . . . . . 63

3.27 Defining and using a Event subclass. . . . . . . . . . . . . . . . . . 64

3.28 Setting up a unit generator network with feedback. . . . . . . . . . 65



LIST OF FIGURES xiv

3.29 Dynamically connecting/disconnecting unit generators. . . . . . . . 66

3.30 Asserting/reading control values. . . . . . . . . . . . . . . . . . . . 67

3.31 The ChucK Run-time. . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.32 Phases in the ChucK compiler. . . . . . . . . . . . . . . . . . . . . 71

3.33 ChucK shred and primary components. . . . . . . . . . . . . . . . . 71

3.34 Single-shredded shreduling algorithm. . . . . . . . . . . . . . . . . . 73

3.35 Multi-shredded shreduling algorithm, with messaging . . . . . . . . 74

3.36 An envelope follower (and simple onset detector), based on a leaky

integrator. (author: Perry Cook) . . . . . . . . . . . . . . . . . . . 77

3.37 Constructing a classic Karplus and Strong plucked string model. . . 78

3.38 A concurrent program framework for singing synthesis, naturally bal-

ancing source generation, musical parameters, and interpolation in

three shreds. (author: Perry Cook) . . . . . . . . . . . . . . . . . . 79

4.1 An article about live coding, published in Zeitwissen in 2006. . . . . 84

4.2 “external” ChucK shell commands for on-the-fly adding/replacing of

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 “internal” ChucK shell commands for on-the-fly adding/replacing of

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Two methods to “synch” with a later time . . . . . . . . . . . . . . 89

4.5 “synching” to some absolute time . . . . . . . . . . . . . . . . . . . 89

4.6 Define a period; synchronize to next period boundary . . . . . . . . 90

4.7 synchronize to period boundary, plus offset . . . . . . . . . . . . . . 90

4.8 no synchronization, following statements happen immediately in ChucK

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 An on-the-fly programmer/performer and code projection . . . . . . 92



LIST OF FIGURES xv

4.10 An on-the-fly programmer/performer and code projection (close-up) 92

4.11 A schematic for a double-projection, on-the-fly duet . . . . . . . . . 93

4.12 A On-the-fly Programming collage, prepared for Art Gallery perfor-

mance at SIGGRAPH 2006. . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Completing the loop. The Audicle strives to bridge runtime interac-

tions with development-time elements. . . . . . . . . . . . . . . . . 95

5.2 The Audicle Console. The cube interface (left) can be used to graphi-

cally navigate the AudiCube. The command line prompt on the right

accept text commands. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 The ShrEditor: a version-tracking on-the-fly editing interface . . . . 101

5.4 ”Grapes” represent running shreds, grouped by revision . . . . . . . 101

5.5 One can drag revisions to split text buffers . . . . . . . . . . . . . . 102

5.6 Many on-the-fly coding buffers . . . . . . . . . . . . . . . . . . . . . 102

5.7 VMSpace: Audicle face to visualize real-time audio and spectra . . 103

5.8 The Shredder: visualizing active and deactivated shreds (the latter

ascending towards viewer. . . . . . . . . . . . . . . . . . . . . . . . 105

5.9 The Shredder: an Audicle face to visualize and monitor shreds . . . 105

5.10 The Shredder: a top-down view . . . . . . . . . . . . . . . . . . . . 106

5.11 Time ’n’ Timing (TNT): Audicle face to visualize relative timing

between shreds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.12 miniAudicle: a lightweight integrated development environment for

ChucK and on-the-fly programming. . . . . . . . . . . . . . . . . . 109

6.1 Timeline: evolution of ChucK, 2002-2004. . . . . . . . . . . . . . . 114

6.2 Timeline: evolution of ChucK, 2005. . . . . . . . . . . . . . . . . . 115



LIST OF FIGURES xvi

6.3 Timeline: evolution of ChucK, 2006. . . . . . . . . . . . . . . . . . 116

6.4 Timeline: evolution of ChucK, 2006-2008. . . . . . . . . . . . . . . 117

6.5 PLOrk class in session. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 PLOrk setup (individual stations). . . . . . . . . . . . . . . . . . . 120

6.7 PLOrk setup (minus humans). . . . . . . . . . . . . . . . . . . . . . 121

6.8 PLOrk in action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.9 PLOrk rack: audio interface, amplifiers, power conditioner, Teabox. 123

6.10 PLOrk setup, onstage at Taplin Auditorium, Princeton. . . . . . . . 126

6.11 Visualizing sound in real-time. . . . . . . . . . . . . . . . . . . . . . 130

6.12 A on-the-fly programming schematic. . . . . . . . . . . . . . . . . . 132

6.13 The score for On-the-fly Counterpoint. . . . . . . . . . . . . . . . . 133

6.14 Network configuration (partial ensemble). . . . . . . . . . . . . . . . 134

6.15 Non-Specific Gamelan Takio Fusion performed in PLOrk. . . . . . . 134

6.16 Non-Specific Groove: a network-synchronized colorful step sequencer

implemented in the Audicle. The green highlight moves across the

squares in real-time, as coordinated by the ensemble’s master ma-

chine. Each color is associated with a different sound. All sound

synthesis and networking written in ChucK. . . . . . . . . . . . . . 135

6.17 A possible sequence of suggested colors (texture) and density consti-

tute the score, which the conductor visually conveys to the ensemble. 136

6.18 CliX in performance: the orchestra surrounds the audience (below)

from around the balcony at Chancellor Green Library; conductor

guides the direction of the performance. . . . . . . . . . . . . . . . . 136

6.19 A interface for On The Floor, built in the Audicle, sound synthesis

in ChucK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



LIST OF FIGURES xvii

6.20 ChucK ChucK Rocket: game board as seen by one of the players. . 139

6.21 ChucK ChucK Rocket: from another viewpoint. . . . . . . . . . . . 139

6.22 Crystalis: keyboard and trackpad mappings. . . . . . . . . . . . . . 141

6.23 TBA: orchestral live coding. . . . . . . . . . . . . . . . . . . . . . . 142

6.24 PLOrk Beat Science: Rebecca Fiebrink and Ge Wang. . . . . . . . 143

6.25 PLOrk Beat Science: 1 flute, 2 humans, 5 laptops, 5 TriggerFingers,

30 audio channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.26 PLOrk Beat Science: floor plan. . . . . . . . . . . . . . . . . . . . . 144

6.27 Mahadevibot: musical robotic, playing with a human performer; var-

ious software components implemented in ChucK. . . . . . . . . . . 147

6.28 Networked Audio Performances: Gigapop Ritual (2003, left) between

McGill University and Princeton University; right: performance be-

tween CCRMA and Banff with a distributed St. Lawrence String

Quartet using JackTrip. ChucK was not used in these instances (both

used C/C++ based software). However, networked audio may be a

potential application of ChucK in the future. . . . . . . . . . . . . . 148

7.1 Future work: an denizen in the envisioned collaborative social audio

programming virtual world. . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Future work: many entities collaboratively live coding in same virtual

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Laptop Orchestras: PLOrk, SLOrk – and hopefully beyond! . . . . 158



Figure 1.1: Some ChucKian things...

Chapter 1

Introduction and Motivation

“The old computing is about what computers can do. The new computing is about

what people can do.” - Ben Shneiderman

1.1 Problem Statement

The computer has long been considered an extremely attractive tool for creating

and manipulating sound. Its precision, possibilities for new timbres, and potential

for fantastical automation make it a compelling platform for experimenting with

and making music - but only to the extent that we can actually tell a computer

what to do, and how to do it.

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

A program is a sequence of instructions for a computer. A programming lan-

guage is a collection of syntactic and semantic rules for specifying these instructions,

and eventually for providing the translation from human-written programs to the

corresponding instructions computers carry out. In the history of computing, many

interfaces have been designed to instruct computers, but none have been as fun-

damental (or perhaps as enduring) as programming languages. Unlike most other

classes of human-computer interfaces, programming languages don’t directly per-

form any specific “end-use” task (such as word processing or video editing), but

instead allow us to build software that might perform almost any custom function.

The programming language acts as a mediator between human intention and the

corresponding bits and instructions that make sense to a computer. It is the most

general and yet the most intimate and precise tool for instructing computers. [85]

Programs exist on many levels, ranging from assembler code (extremely low

level) to high-level scripting languages that often embody more human-readable

structures, such as those resembling spoken languages or graphical representation

of familiar objects. Domain-specific languages retain general programmability while

providing additional abstractions tailored to the domain (e.g. sound synthesis).

Yet, even within the domain of audio programming, there is a staggeringly vast

range of tasks that one may wish to perform (or investigate), ranging from methods

for sound synthesis, physical modeling of real-time world artifacts and spaces (e.g.,

musical instruments, environmental sounds), analysis and information retrieval of

sound and music, to mapping and crafting of new controllers and interfaces (both

software and physical) for music, algorithmic/generative processes for automated

or semi-automatic composition and accompaniment, real-time music performance,

to many others. Moreover, within each of these areas, there lies truly unbounded



CHAPTER 1. INTRODUCTION AND MOTIVATION 3

variation in programming approaches, styles, and demands on the tools (e.g., ability

to create/run real-time programs).

Furthermore, audio programming, in both computational acoustics research and

in music composition and performance, is necessarily an experimental and empirical

process requiring rapid experimentation, verification/rejection/workshoping of new

ideas and approaches, and both short-term and sustained prototyping. Thus it can

be greatly aided by the ability to tune, or even write, parts of the software system

“on-the-fly”, as it runs. We believe that rapid prototyping, in and of itself, can be a

useful approach to programming audio with its unique benefits (and different ways

of thinking about a problem).

In the face of such a wide gamut of possibilities and demands, how do we go

about thinking about and designing a general programming tool to address these

aspects of expressive programmability, rapid prototyping, readability? This is the

problem statement, and this dissertation addresses its various facets in terms of

a new programming language, called ChucK, and chronicles its design, ideas, and

applications.

Finally, in addition to our desire to address the problem stated above, we are

also motivated in providing new tools for computer science and computer music

pedagogy, and for performance paradigms and ensemble use. We believe an audio-

centric language such as ChucK should be conducive to both novices learning about

the domain, as well as to experts wishing to effectively craft software that is expres-

sive and readable (to themselves and to others), and supporting clear and concise

representation of sonic ideas and algorithms that is hopefully also easy to maintain.



CHAPTER 1. INTRODUCTION AND MOTIVATION 4

1.2 “A New Way of Thinking about Audio Pro-

gramming”

The great computer scientist Alan Perlis once said that “a programming language

that doesn’t change the way you think is not worth learning.” Indeed, we are mo-

tivated in the design of ChucK to investigate new ways of thinking about pro-

gramming sound and music, particular from looking at it from a human-centric

perspective (e.g., as opposed to a machine-centric one). As we posited above, a

programming language is a highly general and yet highly intimate human-computer

interaction (HCI) device.

PL == HCI Device
Figure 1.2: A conjecture.

If that is the case, then perhaps we can think of the task of programming lan-

guage design as HCI design – loosely speaking. We say loosely because while the

process embodies the high level principle of designing for humans, we do not nec-

essarily employ any specific theory from the field of human-computer interaction.

Sometimes it is the holistic sum of the features, feel, or even “vibe” that makes

a programming system appealing, inviting, and ultimately useful. So, much of

the design process also tends to be holistic in the same sense, which in retrospect

for ChucK, remains to be the right decision (we believe). Through this process,

we have produced several interesting paradigms and principles that are potentially

useful for audio programming, and constructed a practical language that employs

these ideas. In addition, the entirety of the programming language and its runtime



CHAPTER 1. INTRODUCTION AND MOTIVATION 5

system presents a new way of thinking about developing software for sound synthe-

sis, analysis, composition, and live performance. For example, chapter 4 (On-the-fly

Programming) discusses another “equivalence” in the context of writing code live

for musical performance and experimentation:

Code == Musical instrument

Figure 1.3: Another conjecture.

1.3 The ChucKian approach

A central tenet of the ChucKian solution to audio programming is to expose and

delegate programmability/control over time (at vastly different granularities) in

cooperation with a time-based concurrent programming model. This gives rise to

our notion of a “strongly-timed” audio programming language – one in which the

programming has intimate, precise, and modular control over time as it relates to

digital audio [87, 88, 91].

In more concrete terms, this entails making time itself both computable and

directly controllable, at any granularity. Programmers specify the exact “pattern”

with which computation is performed in time by embedded explicit timing infor-

mation within the code. Based on this semantic, the language’s runtime system

ensures properties of determinism and precision between the program and time.

Furthermore, programmers can specify concurrent code modules, each of which

independently controlling their own computations over time but can also be syn-

chronized to other modules via time and other synchronization mechanisms (e.g.,

events and condition variables).



CHAPTER 1. INTRODUCTION AND MOTIVATION 6

In short, the design of ChucK strives to “hide the mundane aspects of pro-

gramming, and expose true control”. Additional, ChucK provides an approach

for on-the-fly programming, where the programmer is enabled and encouraged to

develop/test/prototype programs on-the-fly. This style of development has led to

applications in prototyping, to teaching,to live musical performance where the au-

dience observes the “live code” as musical gestures.

In turn, on-the-fly programming and our interests in exploring ChucK’s peda-

gogical potentials has led to investigations of empowering the programmer, as well as

the observers (e.g., students, colleagues, audience) through visualization of real-time

audio programs and the act of on-the-fly programming. This motivated the Audicle

as platform as a real-time program monitor that endeavors to provide feedback to

the ChucK programmer [90].

Putting these elements together, this thesis aims to address the intersection

of computer science and music, of technology and art, and of computing and the

humans that interact with it.

1.4 Roadmap

In the rest of this document, we explore the history of programming languages for

sound/music (Chapter 2). We chronicle the design of ChucK, an audio programming

language, and introduce a new way of thinking about music programming, as well

as present some of its ramifications (Chapter 3). We discuss the practice of “on-the-

fly programming”, a new way of rapidly prototyping for experimentation and for

live musical performance (Chapter 4). The Audicle, a graphical programming envi-

ronment for visualizing ChucK in real-time and for aiding on-the-fly programming,



CHAPTER 1. INTRODUCTION AND MOTIVATION 7

is presented in Chapter 5. We then look at the various applications of ChucK in

practical contexts, including in performance ensembles such as the Princeton Lap-

top Orchestra, in classrooms teaching computer science side-by-side with music and

sound synthesis/analysis, and in several other arenas (Chapter 6). The conclusion

addresses potential future directions.



Chapter 2

A History of Music and

Programming

2.1 Early Eras: Before Computers

The idea of using general-purpose programming computational automata to make

music can be traced back to as early as 1843. Ada Lovelace, while working with

Charles Babbage, wrote about the applications of the theoretical Analytical Engine,

the successor to Babbage’s famous Difference Engine. The original Difference En-

gine was chiefly a ”calculating machine” whereas the Analytic Engine (which was

never built) was to contain mechanisms for decision and looping, both fundamental

to true programmability. Lady Lovelace rightly viewed the Analytical Engine as

a general-purpose computer, suited for ”developping [sic] and tabulating any func-

tion whatever... the engine [is] the material expression of any indefinite function

of any degree of generality and complexity.” She further predicted the following:

”Supposing, for instance, that the fundamental relations of pitched sounds in the

8



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 9

science of harmony and of musical composition were susceptible of such expression

and adaptations, the engine might compose elaborate and scientific pieces of music

of any degree of complexity or extent.”

Lady Lovelace’s prediction was made more than a hundred years before the first

computer-generated sound. But semi-programmable music-making machines ap-

peared in various forms before the realization of a practical computer. For example,

the player piano, popularized in the early 20th century, is an augmented piano that

”plays itself” according to rolls of paper (called piano rolls) with perforations rep-

resenting the patterns to be played. These interchangeable piano rolls can be seen

as simple programs that explicitly specify musical scores.

As electronic music evolved, analog synthesizers gained popularity (around the

1960s). They supported interconnecting and interchangeable sound processing mod-

ules. There is a level of programmability involved, and this block-based paradigm

influenced later design of digital synthesis systems. For the rest of this chapter,

however, we are going to focus on programming as specifying computations to make

sound and music.

As we step into to the digital age, we divide our discussion into three overlap-

ping eras of programming and programming systems for music. They loosely follow

a chronological order, but more importantly each age embodies common themes

in how programmers and composers interact with the computer to make sound.

Furthermore, we should keep a few overall trends in mind. One crucial trend in

this context is that as computers increased in computational power and storage,

programming languages tended to become increasingly high-level, abstracting more

details of the underlying system. This, as we shall see, greatly impacted the evolu-

tion of how we program music.



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 10

2.2 The Computer Age (Part I): Early Languages

and Rise of MUSIC-N

Our first era of computer-based music programming systems paralleled the age of

mainframes (the first generations of ”modern” computers in use from 1950 to the late

1970s) and the beginning of personal workstations (mid 1970s). The mainframes

were gigantic, often taking up rooms or even entire floors. Early models had no

monitors or screens, programs had to be submitted via punch cards, and the results

delivered as printouts. Computing resources were severely constrained. It was

difficult even to gain access to a mainframe - they were not commodity items and

were centralized and available mostly at academic and research institutions (in 1957

the hourly cost to access a mainframe was $200!). Furthermore, the computational

speed of these early computers were many orders of magnitude (factors of millions

or more) slower than today’s machines and were greatly limited in memory (e.g. 192

kilobytes in 1957 compared to gigabytes today) [47, 12]. However, the mainframes

were the pioneering computers and the people who used them made the most of

their comparatively meager resources. Programs were carefully designed and tuned

to yield the highest efficiency.

Sound generation on these machines became a practical reality with the advent

of the first digital-to-analog converters (or DAC’s), which converted digital audio

samples (essentially sequences of numbers) that were generated via computation,

to time-varying analog voltages, which can be amplified to drive loudspeakers or be

recorded to persistent media (e.g. magnetic tape).



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 11

Figure 2.1: The IBM 360, released in 1965, with human operators.

2.2.1 MUSIC I (and II, III, ...)

The earliest programming environment for sound synthesis, called MUSIC, appeared

in 1957 [46]. It was not quite a full programming language as we might think of

today, but more of an ”acoustic compiler”, developed by Max Mathews at AT&T

Bell Laboratories. Not only were MUSIC (or MUSIC I, as it was later referred to)

and its early descendants the first music programming languages widely adopted

by researchers and composers, they also introduced several key concepts and ideas

which still directly influence languages and systems today.

MUSIC I and its direct descendants (typically referred to as MUSIC-N lan-

guages), at their core, provided a model for specifying sound synthesis modules,



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 12

their connections, and time-varying control. This model eventually gave rise, in

MUSIC III, to the concept of unit generators, or UGen’s for short. UGen’s are

atomic, often predefined, building blocks for generating or processing audio signals.

In addition to audio input and/or output, a UGen may support a number of control

inputs that control parameters associated with the UGen.

An example of a UGen is an oscillator, which outputs a periodic waveform (e.g.

a sinusoid) at a particular fundamental frequency. Such an oscillator might include

control inputs that dictate the frequency and phase of the signal being generated.

Other examples of UGens include filters, gain amplifiers, and envelope generators.

The latter, when triggered, produce amplitude contours over time. If we multiply

the output of a sine wave oscillator with that of an envelope generator, we can pro-

duce a third audio signal: a sine wave with time-varying amplitude. In connecting

these unit generators in an ordered manner, we create a so-called instrument or

patch (the term comes from analog synthesizers that may be configured by connect-

ing components using patch cables), which determines the audible qualities (e.g.

timbre) of a sound. In MUSIC-N parlance, a collection of instruments is an or-

chestra. In order to use the orchestra to create music, a programmer could craft a

different type of input that contained time-stamped note sequences or control signal

changes, called a score. The relationship: the orchestra determines how sounds are

generated, whereas the score dictates (to the orchestra) what to play and when.

These two ideas - the unit generator, and the notion of an orchestra vs. a score as

programs - have been highly influential to the design of music programming systems

and, in turn, to how computer music is programmed today (but we get ahead of

ourselves).

In those early days, the programming languages themselves were implemented as



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 13

low-level assembly instructions (essentially human-readable machine code), which

effectively coupled a language to the particular hardware platform it was imple-

mented on. As new generations of machines (invariably each with a different set

of assembly instructions) were introduced, new languages or at least new imple-

mentations had to be created for each architecture. After creating MUSIC I, Max

Mathews soon created MUSIC II (for the IBM 740), MUSIC III in 1959 (for the

IBM 7094), and MUSIC IV (also for the 7094, but recoded in a new assembly

language). Bell Labs shared its source code with computer music researchers at

Princeton University - which at the time also housed a 7094 - and many of the

additions to MUSIC IV were later released by Godfrey Winham and Hubert Howe

as MUSIC IV-B.

Around the same time, John Chowning, then a graduate student at Stanford

University, traveled to Bell Labs to meet Max Mathews, who gave Chowning a copy

of MUSIC IV. Copy in this instance meant a box containing about 3000 punch cards,

along with a note saying ”Good luck!”. John Chowning and colleagues were able to

get MUSIC IV running on a computer that shared the same storage with a second

computer that performed the digital-to-analog conversion. In doing so, they created

one of the world’s earliest integrated computer music systems. Several years later,

Chowning (who had graduated by then and join the faculty at Stanford), Andrew

Moore, and their colleagues completed a rewrite of MUSIC IV, called MUSIC 10

(named after the PDP-10 computer on which it ran), as well as a program called

SCORE (which generated note lists for MUSIC 10).

It is worthwhile to pause here and reflect how composers had to work with com-

puters during this period. The composer / programmer would design their software

(usually away from the computer), create punch cards specifying the instructions,



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 14

and submit them as jobs during scheduled mainframe access time (also referred to

as batch-processing) - sometimes traveling far to reach the computing facility. The

process was extremely time-consuming. A minute of audio might take several hours

or more to compute, and turn-around times of several weeks were not uncommon.

Furthermore, there was no way to know ahead of time whether the result would

sound anything like what was intended. After a job was complete, the generated

audio would be stored on computer tape and then be digital-to-analog converted,

usually by another computer. Only then could the composer actually hear the

result. It would typically take many such iterations to complete a piece of music.

In 1968, MUSIC V broke the mold by being the first computer music program-

ming system to be implemented in FORTRAN, a high-level general-purpose pro-

gramming language (often considered the first). This meant MUSIC V could be

ported to any computer system that ran FORTRAN, which greatly helped both

its widespread use in the computer music community and its further development.

While MUSIC V was the last and most mature of the Max Mathews / Bell Labs

synthesis languages of the era, it endures as possibly the single most influential com-

puter music language. Direct descendants include MUSIC 360 (for the IBM 360)

and MUSIC 11 (for the PDP-11) by Barry Vercoe and colleagues at MIT [82], and

later cmusic by F. Richard Moore. These and other systems added much syntactic

and logical flexibility, but at heart remained true to the principles of MUSIC-N

languages: connection of unit generators, and the separate treatment of sound syn-

thesis (orchestra) and musical organization (score). Less obviously, MUSIC V also

provided the model for many later computer music programming languages and

environments.



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 15

2.2.2 The CARL System (or ”UNIX for Music”)

The 1970s and 80s witnessed sweeping revolutions to the world of computing. The

C programming language, one of the most popular in use, was developed in 1972.

The 70s was also a decade of maturation for the modern operating system, which

includes time-sharing of central resources (e.g. CPU time and memory) by multiple

users, the factoring of runtime functionalities between a privileged kernel mode

vs. a more protected user mode, as well as clear process boundaries that protect

applications from each other. From the ashes of the titanic Multics operating system

project arose the simpler and more practical UNIX, with support for multi-tasking of

programs, multi-user, inter-process communication, and a sizable collection of small

programs that can be invoked and interconnected from a command line prompt.

Eventually implemented in the C language, UNIX can be ported with relative ease

to any new hardware platform for which there is a C compiler.

Building on the ideas championed by UNIX, F. Richard Moore, Gareth Loy,

and others at the Computer Audio Research Laboratory (CARL) at University of

California at San Diego developed and distributed an open-source, portable system

for signal processing and music synthesis, called the CARL System [44, 55]. Unlike

previous computer music systems, CARL was not a single piece of software, but

a collection of small, command line programs that could send data to each other.

The ”distributed” approach was modeled after UNIX and its collection of inter-

connectible programs, primarily for text-processing. As in UNIX, a CARL process

(a running instance of a program) can send its output to another process via the

pipe (|), except instead of text, CARL processes send and receive audio data (as

sequences of floating point samples, called floatsam). For example, the command:

> wave -waveform sine -frequency 440Hz | spect



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 16

invokes the wave program, and generates a sine wave at 440Hz, which is then

”piped” (|) to the spect program, a spectrum analyzer. In addition to audio data,

CARL programs could send side-channel information, which allowed potentially

global parameters (such as sample rate) to propagate through the system. Complex

tasks could be scripted as sequences of commands. The CARL System was imple-

mented in the C programming language, which ensured a large degree of portability

between generations of hardware. Additionally, the CARL framework was straight-

forward to extend - one could implement a C program that adhered to the CARL

application programming interface (or API) in terms of data input/output. The

resulting program could then be added to the collection and be available for imme-

diate use.

In a sense, CARL approached the idea of digital music synthesis from a divide-

and-conquer perspective. Instead of a monolithic program, it provided a flat hier-

archy of small software tools. The system attracted a wide range of composers and

computer music researchers who used CARL to write music and contributed to its

development. Gareth Loy implemented packages for FFT (Fast Fourier Transform)

analysis, reverberation, spatialization, and a music programming language named

Player. Richard Moore contributed the cmusic programming language. Mark Dol-

son contributed programs for phase vocoding, pitch detection, sample-rate conver-

sion, and more. Julius O. Smith developed a package for filter design and a general

filter program. Over time, the CARL Software Distribution consisted of over one

hundred programs. While the system was modular and flexible for many audio

tasks, the architecture was not intended for real-time use. Perhaps mainly for this

reason, the CARL System is no longer widely used in its entirety. However, thanks

to the portability of C and to the fact CARL was open source, much of the im-



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 17

plementation has made its way into countless other digital audio environments and

classrooms.

2.2.3 Cmix, CLM, Csound

Around the same time, the popularity and portability of C gave rise to another

unique programming system: Paul Lansky’s Cmix [59, 38]. Cmix wasn’t directly

descended from MUSIC-N languages; in fact it’s not a programming language, but

a C library of useful signal processing and sound manipulation routines, unified by

a well-defined API. Lansky authored the initial implementation in the mid-1980s to

flexibly mix sound files (hence the name Cmix) at arbitrary points. It was partly

intended to alleviate the inflexibility and large turnaround time for synthesis via

batch processing. Over time, many more signal processing directives and macros

were added. With Cmix, programmers could incorporate sound processing function-

alities into their own C programs for sound synthesis. Additionally, a score could

be specified in the Cmix scoring language, called MINC (which stands for ”MINC

Is Not C!”). MINC’s syntax resembled that of C and proved to be one of the most

powerful scoring tools of the era, due to its support for control structures (such as

loops). Cmix is still distributed and widely used today, primarily in the form of

RTCmix (the RT stands for real-time), an extension developed by Brad Garton and

David Topper [28].

Common Lisp Music (or CLM) is a sound synthesis language written by Bill

Schottstaedt at Stanford University in the late 1980s [67]. CLM descends from

the MUSIC-N family and employs a Lisp-based syntax for defining the instruments

and score and provides a collection of functions that create and manipulate sound.

Due to the naturally recursive nature of LisP (which stands for List Processing),



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 18

many hierarchical musical structures turned out to be straightforward to represent

using code. A more recent (and very powerful) LisP-based programming language

is Nyquist [20], authored by Roger Dannenberg. (Nyquist is discussed below; both

CLM and Nyquist are freely available)

Today, the most widely used direct descendent of MUSIC-N is Csound, originally

authored by Barry Vercoe and colleagues at MIT Media Labs in the late 1980s [81, 5,

83]. It supports unit generators as opcodes, objects that generate or process audio.

It embraces the instrument vs. score paradigm: the instruments are defined in

orchestra (.orc) files, while the score in .sco files. Furthermore, Csound supports the

notion of separate audio and control rates. The audio rate (synonymous with sample

rate) refers to the rate at which audio samples are processed through the system. On

the other hand, control rate dictates how frequently control signals are calculated

and propagated through the system. In other words, audio rate (abbreviated as ar

in Csound) is associated with sound, whereas control rate (abbreviated as kr) deals

with signals that control sound (i.e. changing the center frequency of a resonant

filter or the frequency of an oscillator). The audio rate is typically higher (for

instance 44100 Hz for CD quality audio) than the control rate, which usually is

adjusted to be lower by at least an order of magnitude. The chief reason for this

separation is computational efficiency. Audio must be computed sample-for-sample

at the desired sample rate. However, for a great majority of synthesis tasks, it

makes little perceptual difference if control is asserted at a lower rate, say on the

order of 2000Hz. This notion of audio rate vs. control rate is widely adopted across

nearly all synthesis systems.

This first era of computer music programming pioneered how composers could

interact with the digital computer to specify and generate music. Its mode of work-



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 19

ing was associated with the difficulties of early mainframes: offline programming,

submitting batch jobs, waiting for audio to generate, and transferring to persis-

tent media for playback or preservation. It paralleled developments in computers

as well as general-purpose programming languages. We examined the earliest mu-

sic languages in the MUSIC-N family as well as some direct descendants. It is

worth noting that several of the languages discussed in this section have since been

augmented with real-time capabilities. In addition to RTCMix, Csound now also

supports real-time audio.

2.3 The Computer Age (Part II): Real-time Sys-

tems and New Approaches

This second era of computer programming for music partially overlaps with the first.

The chief difference is that the mode of interaction moved from offline programming

and batch processing to real-time sound synthesis systems, often controlled by ex-

ternal musical controllers. By the early 1980s, computers have become fast enough

and small enough to allow workstation desktops to outperform the older, gargantuan

mainframes. As personal computers began to proliferate, so did new programming

tools and applications for music generation.

2.3.1 Graphical Music Programming: Max/MSP + Pure

Data

We now arrive at one of the most popular computer music programming environ-

ment to this day: Max and later Max/MSP [60]. Miller S. Puckett implemented



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 20

the first version of Max (when it was called Patcher) at IRCAM in Paris in the

mid-1980s as a programming environment for making interactive computer music.

At this stage, the program did not generate or process audio samples; its primary

purpose was to provide a graphical representation for routing and manipulating sig-

nals for controlling external sound synthesis workstations in real-time. Eventually,

Max evolved at IRCAM to take advantage of DSP hardware on NeXT computers

(as Max/FTS, FTS stands for ”faster than sound”), and was later released in 1990

as a commercial product by Opcode Systems as Max/Opcode. In 1996, Puckette

released a completely redesigned and open source environment called Pure Data

(PD) [61]. At the time, Pure Data processed audio data whereas Max was pri-

marily designed for control (MIDI). PD’s audio signal processing capabilities then

made their way into Max as a major add-on called MSP (MSP either stands for

Max Signal Processing or for Miller S. Puckett), authored by Dave Zicarelli. Cycling

’74, Zicarelli’s Company, distributes the current commercial version of Max/MSP.

Meanwhile, IRCAM currently maintains jMax [23] as freely available and new im-

plementation of the original Max software.

The modern-day Max/MSP supports a graphical patching environment and a

collection containing thousands of objects, ranging from signal generators, to filters,

to operators, and user interface elements. Using the Max import API, third party

developers can implement external objects as extensions to the environment. De-

spite its graphical approach, Max descends from MUSIC-V (in fact Max is named

after the father of MUSIC-N, Max Mathews) and embodies a similarly modular

approach to sound synthesis. A simple Max/MSP example is shown in Figure 2.2.

Max offers two modes of operation. In edit mode, a user can create objects,

represented by on-screen boxes containing the object type as well as any initial



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 21

arguments. An important distinction is made between objects that generate or pro-

cess audio and control rate objects (the presence of a ~ at the end of the object

name implies audio rate). The user can then interconnect objects by creating con-

nections from the outlets of certain objects to the inlets of others. Depending on

its type, an object may support a number of inlets, each of which is well-defined

in its interpretation of the incoming signal. Max also provides dozens of additional

widgets, including message boxes, sliders, graphs, knobs, buttons, sequencers, and

meters. Events can be manually generated by a bang widget. All of these widgets

can be connected to and from other objects. When Max is in run mode, the patch

topology is fixed and cannot be modified, but the various on-screen widgets can be

manipulated interactively. This highlights a wonderful duality: a Max patch is at

once a program and (potentially) a graphical user interface.

Max/MSP has been an extremely popular programming environment for real-

time synthesis, particularly for building interactive performance systems. Con-

trollers both commodity (MIDI devices) and custom as well as sensors (such as

motion tracking) can be mapped to sound synthesis parameters using Max/MSP.

The visual aspect of the environment lends itself well to monitoring and fine-tuning

patches. Max/MSP can be used to render sequences or scores, though due to the

lack of detailed timing constructs (the graphical paradigm is better at representing

what than when), this can be less straightforward.

2.3.2 Programming Libraries for Sound Synthesis

So far, we have discussed mostly standalone programming environments, each of

which provides a specialized language syntax and semantics. In contrast to such

languages or environments, a library provides a set of specialized functionalities for



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 22

Figure 2.2: A simple Max/MSP patch which synthesizes the vowel ahh.

an existing, possibly more general-purpose language. For example, the Synthesis

Toolkit (STK) [17] is a collection of building blocks for real-time sound synthesis

and physical modeling, for the C++ programming language. STK was authored and

released by Perry Cook in the early 1990’s, with later contributions by Bill Butnam

and Gary Scavone. JSyn [9], released around the same time, is a collection of real-

time sound synthesis objects for the Java programming language. In each case, the

library provides an API, with which a programmer can write synthesis programs

in the host language (e.g. C++ and Java). For example, STK provides an object

definition called Mandolin, which is a physical model for a plucked string instrument.



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 23

It defines the data types which internally comprise such an object, as well as publicly

accessible functionalities that can be invoked to control the Mandolin’s parameters

in real-time (e.g. frequency, pluck position, instrument body size, etc.). Using

this definition, the programmer can create instances of Mandolin, control their

characteristics via code, and generate audio from the Mandolin instances in real-

time. While the host languages are not specifically designed for sound, these libraries

allow the programmer to take advantage of language features and existing libraries

(of which there is a huge variety for C++ and Java). This also allows integration

with C++ and Java applications that desire real-time sound synthesis.

2.3.3 Nyquist

Nyquist is an interactive programming language based on Lisp for sound synthesis

and music composition [20, 19, 75], and is a culmination of ideas explored in earlier

systems such as Arctic [22] and Canon [18]. While adopting familiar elements

of audio programming found in earlier MUSIC-N languages, Nyquist (along with

SuperCollider, below) is among the first music composition and sound synthesis

languages to remove the distinction between the “orchestra” (sound synthesis) and

the “score” (musical events): both can be implemented in the same framework.

This tighter integration allows both synthesis and musical entities to be specified

using a shared “mindset”, favoring the high customizability of code over the ease

and simplicity of data (e.g., note lists).

In Nyquist, the composer specifies sound, transformations, and music by com-

bining expressions, leveraging both audio building blocks as well as the full array

of features in the general purpose Lisp language and environment. Additionally,

Nyquist supports a wide array of advanced ideas. These include “behavioral ab-



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 24

straction”, which allows programmers to specify appropriate underlying behaviors

in different contexts while maintaining a unified high-level interface. Nyquist also

supports the ability to work in both quantitative and perceptual attack times, as

well as an advanced abstract time-warping of compound events [19]. At a more

basic level, Nyquist offers temporal operators such as sim (for simultaneous signals

and events) and seq (for sequential evaluation).

While Nyquist is not a real-time programming environment (it is interactive), it

provides a powerful and intrinsically different way of thinking about programming

audio and composing music. Nyquist is in wide use today, including as the primary

plug-in programming engine in the open source audio editor Audacity. [49].

2.3.4 SuperCollider

SuperCollider is a text-based audio synthesis language and environment [50, 51].

It is highly powerful as a programming language, and the implementation of the

synthesis engine is highly optimized. It combines many of the previous ideas in com-

puter music language design while making some fundamental changes and additions.

SuperCollider, like languages before it, supports the notion of unit generators for

signal processing (audio and control). However, like Nyquist, there is no longer

a distinction between the orchestra and score. Furthermore, the language, which

in parts resembles the Smalltalk and C programming languages, is object-oriented

and provides a wide array of expressive programming constructs for sound synthe-

sis and user interface programming. This makes SuperCollider suitable not only for

implementing synthesis programs, but also for building large interactive systems for

sound synthesis, algorithmic composition, and for audio research.



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 25

At the time of this writing, there have been three major version changes in Super-

Collider. The third and latest (often abbreviated SC3) makes an explicit distinction

between the language (front-end) and synthesis engine (back-end). These loosely

coupled components communicate via OpenSoundControl (OSC), a standard for

sending control messages for sound over the network. One immediate impact of this

new architecture is that programmers can essentially use any front-end language, as

long as it conforms to the protocol required by the synthesis server (called scsynth

in SuperCollider).

Figure 2.3: SuperCollider programming environment in action.



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 26

2.3.5 Graphical vs. Text-based

It is worthwhile to pause here and reflect on the differences between the graphical

programming environments of Max/MSP and PD vs. the text-based languages and

libraries such as Csound, SuperCollider, STK, and Nyquist (as well as ChucK).

The visual representation presents the dataflow directly, in a what-you-see-is-what-

you-get sort of way. Text-based systems lack this representation and understanding

of the syntax and semantics is required to make sense of the programs. However,

many tasks, such as specifying complex logical behavior, are more easily expressed

in text-based code.

Ultimately it’s important to keep in mind that most synthesis and musical tasks

can be implemented in any of these languages. This is the idea of universality:

two constructs (or languages) can be considered equivalent if we can emulate the

behavior of one using the other, and vice versa. However, certain types of tasks may

be more easily specified in a particular language than in others. This brings us back

to the idea of the programming language as a tool, and perhaps more importantly,

as a way of thinking. In general, a tool is useful if it does at least one thing better

than any other tool (for example, a hammer or a screwdriver). Computer music

programming languages are by necessity more general, but differing paradigms (and

syntaxes) lend themselves to different tasks (and no single environment ”does it

best” in every aspect: it’s important to choose the right tools for the tasks at hand).

In the end, it’s also a matter of personal preference - some like the directness of

graphical languages whereas others prefer the feel and expressiveness of text-based

code. It’s often a combination of choosing the right tool for the task and finding

what the programmer is comfortable working in.



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 27

2.4 Additional Music Programming Languages

Formula, short for Forth Music Language, is a programming for computing control

signals to synthesizers based on concurrent processes operating in a unified environ-

ment that can be scheduled at runtime. [2]. Variously processes can be specified to

compute pitch sequences as well as control for parameters such as volume, duration,

and articulation. Unlike the languages discussed above, Formula computes control

signals and does not directly generate or synthesize audio.

Haskore is a set of modules in the Haskell programming language created for

expressing musical structures in a high-level declarative style of functional program-

ming. Like Formula, it is more of a language for describing music (in Haskore’s case,

mostly Western music), not sound. [30]. An advantage of Haskell (and by extension,

Haskore) is that objects in the language simultaneously represent abstract (musical)

ideas as well as their concrete representation, leading to provable property which

can be reasoned about, a result of the programming system.

Formes provides an object-oriented, hierarchical event-based approach to dealing

with time [13] and is based on the Lisp programming language. It was not designed

to compute audio directly but rather time-oriented control information for the Chant

synthesis system.

2.5 The Computer Age (Part III): New Language

Explorations

With the growth of low-cost, high performance computers, the real-time and in-

teractive music programming paradigms are more alive than ever and expanding



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 28

with the continued invention and refinement of new interfaces for musical expres-

sion. Alongside the continuing trend of explosive growth in computing power is

the desire to find new ways to leverage programming for real-time interaction. If

the second era of programming and music evolved from computer becoming com-

modities, then this third era is the result of programming itself becoming pervasive.

With the ubiquity of hardware and the explosion of new high-level general-purpose

programming tools (and people willing to use them), more composers and musicians

are crafting not only software to create music, but also new software to create newer

and more custom software for music.

As part of this new age of exploration, a recent movement has been taking shape.

This is the rise of dynamic languages and consequently of using the act of program-

ming itself as a musical instrument. This, in a way, can be seen as a subsidiary

of real-time interaction, but with respect to programming music, this idea is fun-

damentally powerful. For the first time in history, we have commodity computing

machines that can generate sound and music in real-time (and in abundance) from

our program specifications. One of the areas investigated in our third age of pro-

gramming and music is the possibilities of changing the program itself in real-time

as it’s running. Given the infinite expressiveness of programming languages, might

we not leverage code to create music on-the-fly?

The idea of run-time modification of programs to make music (interchangeably

called live coding, on-the-fly programming, interactive programming) is not an en-

tirely new one. As early as the beginning of the 80s, researchers such as Ron Kuivila

and groups like the Hub have experimented with runtime modifiable music systems.

The Hierarchical Music Scoring Language (HMSL) is a Forth-based language, au-

thored by Larry Polansky, Phil Burk, and others in the 1980s, whose stack-based



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 29

syntax encourages runtime programming [10]. These are the forerunners of live cod-

ing. The fast computers of today enable an additional key component: real-time

sound synthesis.

2.5.1 Custom Music Programming Software

An incredibly vibrant and wonderful aspect of the era is the proliferation of cus-

tom, ”home-brew” sound programming software. The explosion of new high-level,

general-purpose, programming platforms has enabled and encouraged programmers

and composers to build systems very much tailored to their liking. Alex McLean

performs via live coding using the high-level scripting language Perl [52], while de-

velopers such as Andrew Sorensen and Andrew Brown have recently explored live

coding environments based on Scheme [8]. Similar frameworks have been developed

in Python, various dialects of Lisp, Forth, Ruby, and others. Some systems make

sound while others visualize it. Many systems send network message (in Open-

SoundControl) to synthesis engines such as SuperCollider Server, PD, Max, and

ChucK. In this way, musicians and composers can leverage the expressiveness of

the front-end language to make music while gaining the functionalities of synthesis

languages. Many descriptions of systems and ideas can be found through TOPLAP

(which usually stands for Transnational Organisation for the Proliferation of Live

Audio Programming), a collective of programmers, composers, and performers ex-

ploring live programming to create music. [74]

This third era is promising because it enables and encourages new compositional

and performance possibilities not only to professional musicians, researchers, and

academics, but also to anyone willing to learn and explore programming and music.

Indeed, the homebrew aesthetic has encouraged personal empowerment and artis-



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 30

tic independence from established traditions and trends. Also, the new dynamic

environments for programming are changing how we approach more traditional

computer music composition by providing more rapid experimentation and more

immediate feedback. This era is young but growing rapidly and the possibilities are

truly fascinating. Where will it take programming and music in the future?

2.6 Future Directions

What does the future hold for programming and music? As Lady Ada Lovelace fore-

saw the computing machine as a programming tool for creating precise, arbitrarily

complex, and ”scientific” music, what might we imagine about the ways music will

be made decades and beyond from now?

Several themes and trends pervade the development of programming languages

and systems for music. The movement towards increasingly more real-time, dy-

namic, and networked programming of sound and music continues; it has been

taking place in parallel with the proliferation and geometric growth of commodity

computing resources until recent times. New trends are emerging. At the time of

this writing (between 2006 and 2008), the focus in the design of commodity machines

is shifting to distributed, multi-core processing units. We may soon have machines

with hundreds (or many more) cores as part of a single computer. How might these

potentially massive parallel architectures impact the way we think about and pro-

gram software (in everything from commercial data-processing to sound synthesis to

musical performance)? What new programming paradigms will have to be invented

to take advantage of these and other new computing technology such as quantum

computers, and (for now) theoretical computing machines? An equally essential



CHAPTER 2. A HISTORY OF MUSIC AND PROGRAMMING 31

question: how can we better make use of the machines we have?

Finally, let’s think back to Ada Lovelace’s question from the beginning of this

chapter, and ponder the following: ”Supposing, for instance, that the engine were

susceptible of such expression and adaptations, might not the human compose elab-

orate and scientific pieces of music of any degree of complexity or extent?”

It’s always the right time to imagine what new possibilities await us.



Chapter 3

ChucK

3.1 Language Design

The chapter presents the language design behind the ChucK programming language

and its primary features, followed by describing its instantiation in the form of the

language specification. In the context of the design, this chapter then addresses the

implementation of the language, as well as some useful properties it offers.

3.1.1 Two Observations

As we formulate the problem statement, we observe two important commonalities

that pervade the gamut of audio programming. The first is that time is intimately

connected with sound and central to how sound and music programs are created

and reasoned about. This may seem like an obvious point - as sound and music

is intrinsically time-based - yet we also feel that control over time in programming

languages is often under-represented (or sometimes over-represented). Low level

languages like C/C++ and Java have no inherent notion of time and allow for

32



CHAPTER 3. CHUCK 33

data types to be built to represent time, which can be cumbersome to implement

and use. High level computer music languages tend to abstract time too much,

often embodying a more declarative style and connect things in a way that assumes

quasi-parallel modules, (e.g., similar to analog synthesizers) while hiding much of the

internal scheduling. Timing is also typically broken up into two or more distinct,

internally maintained rates (e.g., audio rate and control rate, the latter is often

arbitrarily imposed on the programmer). The main problem with the existing type

of programming model is that the programmer knows what, but does not always

know when.

The second observation is two-fold: 1) sound and music is often the simultane-

ity of many parallel processes and thus a programming language for music/sound

must provide a concurrent programming model that can easily and fundamentally

capture parallel processes. 2) The ability to program parallel structure must be

both intimately connected to time, and yet at the same time it must be provided

in such way that it operates independently of time. In other words, this function-

ality must be “orthogonal” to time to provide the maximal degree of freedom and

expressiveness.

From these two observations, the ChucKian insight is to expose and delegate

programmability/control over time (at various granularities) in cooperation with a

time-based concurrent programming model. In particular, this entails making time

itself both computable and directly controllable and at any granularity. Program-

mers specify the algorithm, logic, or pattern with which computation is performed

in time by embedded explicit timing information within the code. Based on this

semantic, the language’s runtime system ensures properties of determinism and

precision between the program and time. Furthermore, programmers can specify



CHAPTER 3. CHUCK 34

concurrent code modules, each of which independently controlling their own com-

putations over time and can also be synchronized to other modules via time and

other synchronization mechanisms (e.g., condition variables).

3.1.2 Design Goals

Based on the observations in the proceeding section, a greater set of primary design

goals of the language can be summarized as follows:

• Flexibility: allow the programmer to naturally express ideas in code, and to

flexibly create, edit, and maintain audio programs.

• Time: allow the programmer to program the passage of time, and to control

and reason about time with precision and arbitrarily large or small granularity.

• Concurrency: allow the programmer to write parallel modules that share

both data and time, and that can be precisely synchronized; provide a con-

current programming model for audio, minimizing the hassle and complexity

of (preemptive) concurrent programming.

• Readability: provide/maintain a strong correspondence between code struc-

ture and timing.

• A do-it-yourself language: combine the expressiveness of lower-level lan-

guages and the ease of high-level computer music languages. Support high-

level musical concepts, precise low-level timing, and the creation of “white-

box” unit generators, all directly in the language.

• Rapid prototyping: allow programs to be created and edited as they run,

for rapid experimentation and performance.



CHAPTER 3. CHUCK 35

• Pedagogy: make audio programming more accessible; observation: many

people are willing to learn to program in order to make music – this is an

opportunity to teach programming more effectively and also to people who

would otherwise never learn to program.

flexibility

readability performance

Figure 3.1: Relative emphasis between three design goals.

As seen in Figure 3.1, top priority was given to the flexibility and readability.

While performance is a highly important consideration, it was not our top priority.

We designed the language to provide maximal control for the programmer, and

tailored the system performance around the design.

3.2 Core Language Features

With the design goals outlined above, we present four key ideas that form the

foundation of ChucK. The goal is to design a “natural” audio programming language

(1) to concurrently and accurately represent complex audio synthesis, (2) to enable

fine-grain, flexible control over time, (3) to provide the capability to operate on



CHAPTER 3. CHUCK 36

multiple, dynamic and simultaneous control rates, and (4) to make possible an

on-the-fly style of programming. The central ideas are as follows.

• A unifying, massively overloaded operator.

• A precise timing model that unifies high-level and low-level timing, is straight-

forward to write as well as reason about from code.

• A precise concurrent programming model that supports arbitrarily fine gran-

ularity, as well as multiple, simultaneous, and dynamic control rates.

• A programming paradigm and run-time environment that allow on-the-fly pro-

gramming, enabling dynamically modifiable programs for performance and ex-

perimentation.

3.2.1 ChucK Operator (=>)

ChucK is a strongly-typed, imperative programming language. Its syntax and se-

mantics are governed by a statically-compilable, run-time changeable type system.

The heart of ChucK’s language syntax is based around the ChucK operator

(written as =>). This left-to-right operator, originates from the slang term “to

chuck”, meaning to throw an entity into or at another entity. The language uses

this notion to help express sequential operations and data flow. => (and related

operators) form the “syntactic glue” that binds ChucK code elements together.

=> is a massively overloaded operator. That is, the action and behavior of

=> depends on the context - in particular, what is being chucked and what is

chucked to (see Figure 3.2). In this code fragment, we omit the declaration of the

’foo’ variable. But assuming we declared foo as a Unit Generator (an audio signal

processing element), then the behavior of => in this context would be to connect

the output of ’foo’ into the input of ’dac’ (another Unit Generator).



CHAPTER 3. CHUCK 37

// connecting 'foo' to 'dac'
foo => dac;

Figure 3.2: A statement using the ChucK operator, here connecting the output of
’foo’ to ’dac’ (both are audio processing elements).

A slightly more complex example can be seen in Figure 3.3. This code fragment

constructs a simple synthesis instrument using a series of Unit Generators (their

declarations are omitted for the moment): a white noise generator, a filter of some

type, and the audio output. Notice that the single line captures the flow of the

signals from left to right - the same order as ChucKian programmers read and type.

// connect 'noise' to 'filter' to 'dac'
noise => filter => dac;

Figure 3.3: A statement that uses the ChucK operator to connect three audio
elements together.

A ChucK statement can be composed of any appropriate types of objects (includ-

ing user-defined), unit generators, operations, values, and variables. The semantic

of the statement depends on the types of the objects, and the overloading of the

ChucK operator on those types.

In addition to performing connections of Unit Generators, the ChucK operator

can be employed in a variety of contexts, ranging from time advancement (see sec-

tions on time and concurrency below), function invocation, assignment, and more.

For example, Figure 3.4 demonstrates two different syntaxes to achieving the same

nested function calls, both valid in ChucK. Note the “un-nesting” effect of using

=> can lead to more linear and streamlined representations. In this case, the pro-

grammer might think of values as passing through a sequence of transformations,

from left to right.



CHAPTER 3. CHUCK 38

// nested function calls
Math.fabs( Math.min( a, b ) );

// same function calls via =>
( a, b ) => Math.min => Math.fabs;

Figure 3.4: Two different syntaxes for invoking the same nested function calls.

Furthermore, there is a greater family of “ChucK operators”, ranging from +=>

(plus chuck), %=> (modulo chuck), =< (unchuck), to the more recent =ˆ (up-

chuck), introduced as part of the ChucK Unit Analyzer framework [93].

3.2.2 ChucKian Time

The solution in ChucK is to make time itself computable, and also allow a program

to be “self-aware” in the sense that it always knows where it is in time, and can

control its own progress over time. Furthermore, if many programs can share a

central notion of time, then it is possible to synchronize parallel code solely and

naturally based on time. This gives rise to our notion of a strongly-timed audio

programming language – one in which programs has intimate, precise, and modular

control over their own timing. With respect to synthesis and analysis, an immediate

ramification is that control can be asserted at any unit generator at any time and

at any rate. In order to make this happen:

• ChucK provides time and dur as native types in the language (for time and

duration).

• The language allows well-defined arithmetic on time and duration (Table 3.1)

• The model provides a deterministic and total mapping of code to time to audio

synthesis. It is natural to reason about and specify timing from anywhere in

a program.



CHAPTER 3. CHUCK 39

• The language provides now, a special keyword (of type time) that holds the

current ChucK time. It has a granularity that is orders of magnitude finer

than sample-rate, providing a precise way to talk about time in an immediate

and explicit sense.

• ChucK offers a globally consistent means to advance time from anywhere in

the program flow – by duration (D +=> now;), or by absolute time (T =>

now;)

Table 3.1 shows the resulting types of performing various arithmetic on time

and dur types, and whether the operations are commutable by type.

type op type result type commute

dur + dur → dur X
dur - dur → dur

dur * float → dur X
dur / float → dur

dur / dur → float

time + dur → time X
time - dur → time

time - time → dur

Table 3.1: Arithmetic operations on time, dur, and float types, and the resulting
types.

As an example, consider the following program (Figure 3.5), which creates a

patch consisting a sine wave generator, and changes its frequency of oscillation

randomly every 100 millisecond.

In reading this (or any ChucK) code, it is often helpful follow the code sequential

and through the various control structures (e.g., for/while loops, if/else statements),

and noting the points at which ChucKian time is advanced. For example, line 02

instantiates a SinOsc (sine wave generator) called foo, and connects it to the dac



CHAPTER 3. CHUCK 40

#01 // synthesis patch
#02 SinOsc foo => dac;
#03
#04 // infinite time loop
#05 while( true )
#06 {
#07    // randomly choose a frequency
#08    Std.rand2f( 30, 1000 ) => foo.freq;
#09    // advance time
#10    100::ms => now;
#11 }

Figure 3.5: A ChucK program to generate a sine wave, changing its frequency of
oscillation every 100 milliseconds.

(abstraction for audio output). The program flow enters the while loop on line 05,

randomly chooses a frequency between 30 and 1000 Hz for the sine wave (line 08).

The program advances time by 100 milliseconds on line 10, before returning to check

the loop conditional again on line 05. So what really happens on line 10? By chuck-

ing the duration 100::ms to the special ChucKian time variable now, the program

flow pauses and returns control to the ChucK virtual machine and synthesis engine,

which generates audio corresponding to 100 milliseconds (precisely, to the nearest

sample), before returning control back to our program. In this sense, advancing

time in ChucK is similar to a sleep call found in many languages. The difference

is that here the the language guarantees precision to the nearest sample, allowing

one to specify complex timing process with high precision. Furthermore, the same

method of reading the code can be applied to more complex ChucK programs, to

reason about the timing in a straightforward way.

The code above describes one of two ways to “advance time” in ChucK. In the

first method (chuck-to-now) the programmer can allow time to advance by explicitly

chucking a duration value or a time value to now, as shown above. This allows for



CHAPTER 3. CHUCK 41

a natural programming approach that embeds the timing control directly in the

language, giving the programmer the ability to perform computations at arbitrary

points in time, and to “move forward” in ChucK time in a precise manner. The

second method to advance time in ChucK is by waiting on one or more event(s).

An event could represent synchronous software triggers, as well as asynchronous

message over MIDI, OpenSoundControl [96], and HID input devices. User code

execution will resume when the synchronization condition is fulfilled; while the event

is waited upon, the virtual machine is free to schedule audio synthesis and other

computations. Wait-on-event is similar in spirit to chuck-to-now, except events have

no pre-computable time of arrival.

In summary, the timing mechanism moves the primary control over time from

inside opaque unit generators to the code directly. The result is that the compu-

tation is explicitly tied to time. The programmer not only knows what is to be

computed, but also precisely when, relative to ChucK time. This global control

over time enables programs to specify arbitrarily complex timing, allowing a pro-

grammer / composer to “sculpt” a sound or passage into perfection by operating

on it at any temporal granularity.

An important point to note is that all synthesis systems, at some level, have to

be sample-synchronous (samples precisely synchronized with time) – or else DSP

just doesn’t happen. The question is: at what level does the language expose the

ability to control timing? In ChucK, precise control over time is available at all

levels to the programmer.

We are not the first to address this issue of enabling low-level timing in a high-

level audio programming language. Chronic [6, 7] and its temporal type constructors

was the first attempt we are aware of to make arbitrary sub-control rate timing



CHAPTER 3. CHUCK 42

transparent and programmable for synthesis. While the mechanisms of Chronic are

very different from ChucK’s, one aim is the same: to free programmers from having

to implement “black-box”, opaque unit generators (in a lower-level language, such

as C/C++) when a new lower-level feature is desired. In a sense Chronic “zooms

out” and deals time in a global, non-real-time way. On the other hand, ChucK

zooms in and operates at a specific point in time, in an immediate manner.

Thus far, we have discussed programming ChucK using one path of execution,

controlling it through time. However, time alone is not enough, since audio and

music is the simultaneity of many parallel processes. We also need concurrency

in order to expressively capture parallelism. ChucK is a concurrent programming

language, and allows multiple independent paths of computation to be executed

in parallel. The flexibility and power of the timing mechanism is greatly extended

by ChucKs concurrency model, which allows multiple, precisely timed paths of

computation.

3.2.3 Concurrency Based on Shreds

The ChucK programming language natively enables the chuckist to write code that

operates either in series or in parallel via ChucK’s concurrency model. It is also this

mechanism that provides fine-grain, multiple, and simultaneous control rates. To

this end, ChucK introduces a primitive called shreds. A shred, much like a thread,

is an independent, lightweight process, which operates concurrently and can share

data with other shreds. However, unlike traditional threads, whose execution is

interleaved in a non-deterministic manner by a preemptive scheduler, a shred is

a deterministic piece of computation that has sample-accurate control over audio



CHAPTER 3. CHUCK 43

timing, and is naturally synchronized with all other shreds via the same timing

mechanism.

ChucK shreds are programmed in much the same spirit that traditional threads

are, with the exception of several key differences:

• A ChucK shred cannot be preempted by another. This not only enables a

single shred to be locally deterministic, but also an entire set of shreds to be

globally deterministic in their timing and order of execution.

• A ChucK shred must voluntarily relinquish the processor for other shreds

to run (In this they are like non-preemptive threads). But it does not do

so with yield(). Shreds, by design, directly use ChucK’s timing mechanism:

when a shred advances time or waits for an event, it is, in effect, shreduled

by the shreduler (which interacts with the audio engine), and relinquishes the

processor. This is powerful in that it can naturally synchronize shreds to each

other by time, without using any traditional synchronization primitives.

• ChucK shreds are implemented completely as user-level primitives. The en-

tire virtual machine runs in user-space. User-level parallelism has significant

performance benefits over kernel threads [3], finding that “even fine-grain pro-

cesses can achieve good performance if the cost of creation and managing par-

allelism is low.” Indeed, ChucK shreds are lightweight - each only contains

minimal state. The cost of context switching between ChucK shreds is also

very low since no kernel interaction is required. Furthermore, a user-level

shreduler is more easily modifiable.

An advantage of the shred approach is that the programmer has complete con-

trol over timing and the interaction of shreds. We gain the performance advantages



CHAPTER 3. CHUCK 44

from user-level parallelism. Furthermore, real-time scheduling optimizations (Dan-

nenberg 1988) can be readily implemented by the shreduler without any kernel

modifications. One potential drawback is that a single shred could hang the ChucK

virtual machine (along with all other active shreds) if it fails to relinquish the proces-

sor. However, there are ways to alleviate this drawback. For example, any hanging

shreds can easily by identified by the ChucK Virtual Machine, as the currently run-

ning thread, and the ChucK timing semantic makes it easy to locate and correct

such issues for the programmer. On-the-fly programming allows for hanging shreds

to be removed/corrected during run-time without stopping or restarting the system.

Multi-shredded programs, while no more computationally powerful than single-

shredded programs (conjecture: it should be possible to implement one term in

terms of the other), can make the task of managing concurrency and timing much

easier (and more enjoyable), just as threads make concurrent programming manage-

able, and potentially increase throughput. In this sense, shreds are more powerful

programming constructs. We argue that the flexibility of shreds to empower the

programmer to do deterministic, precisely timed, concurrent audio programming

significantly outweighs the potential drawbacks.

In a high level sense, the idea of concurrency in ChucK is similar to the idea of

mixing independent “tracks” of audio samples in CMix [38] (and other languages).

Lanskys original idea was to provide a programming environment where the com-

poser can deal with and perfect individual parts independently [59]. ChucK extends

this idea by allowing full programmability for each shred.

Aside from asynchronous input events (e.g., incoming HID, MIDI, OSC mes-

sages), a ChucK program can completely deterministic in nature - there is no pre-

emptive background processing, nor any implicit scheduling. The order that shreds



CHAPTER 3. CHUCK 45

and the virtual machine subsystem executes are completely determined by the tim-

ing and synchronization specified in the shreds. This makes it easy to reason about

the global sequence of operations and timing in ChucK. The concurrency model

also enables multiple shreds to run at arbitrary control rates.

This yields a programming model in which multiple concurrent shreds construct

and control a global unit generator network over time. A scheduler (or shreduler)

uses the timing information to serialize the shreds and the audio computation in a

globally synchronous manner. It is completely deterministic (real-time input aside)

and the synthesized audio is guaranteed to be correct, even when real-time isn’t

feasible.

3.2.4 Synthesis and Analysis

In tandem with audio synthesis, ChucK also provides the means to specify and

perform precisely-timed and concurrent audio analysis. This both leverages the

synthesis framework and extend it with a set of syntactic operators and semantics

specifically tailor for analysis [93]. At this time of this writing, we’ve only begun to

explore the possibilities. (See Unit Analyzers in the Language Specification section,

as well as the Future Work section in the Conclusions chapter).

3.3 Language Specification

The section describes salient language specifications of ChucK, and provides a by-

example view of programming in ChucK.



CHAPTER 3. CHUCK 46

3.3.1 Types, Values, Variables

ChucK is a strongly-typed language, meaning that types are resolved at compile-

time. However, it is not quite statically-typed, because the compiler/type system

is a part of the ChucK virtual machine, and is a runtime component. This type

system helps to impose precision and clarity in the code, and naturally lends to

organization of complex programs. At the same time, it is also dynamic in that

changes to the type system can take place (in a well-defined manner) at runtime.

This dynamic aspect forms the basis for on-the-fly programming.

As in other strongly-typed programming languages, we can think of a type as

associated behaviors of data. (For example, an ’int’ is a type that means integer,

and adding two integer is defined to produce a third integer representing the sum.)

Classes and objects allow us to extend the type system with our own custom types,

but we won’t cover them in this section. We will focus mainly on primitive types

here, and leave the discussion of more complex types for classes and objects.

Primitive Types

The primitive, or intrinsic types are those which are simple datatypes (they have

no additional data attributes). Objects are not primitive types. Primitive types

are passed by value. Primitive types cannot be extended. The primitive types in

ChucK are:

• int : integer (signed)

• float : floating point number (in ChucK, a float is by default double-precision)

• time : ChucKian time

• dur : ChucKian duration

• void : (no type)



CHAPTER 3. CHUCK 47

• complex : complex number in rectangular form a + bi (see below)

• polar : complex number in polar form (see below)

All other types are derived from Object, either as part of the ChucK standard

library, or as a new custom class.

Reference Types

Reference types are types which inherit from the object class. Some default reference

types include:

• Object : base type that all classes inherit from (directly or indirectly)

• (array) : N-dimensional ordered set of data

• Event : fundamental, extendable, synchronization mechanism

• UGen : extendable unit generator base class

• UAna : extendable unit analyzer base class (inherits UGen)

ChucK supports the ability extend the type system with additional classes, in-

cluding polymorphic inheritance.

Complex Types

Two special primitive types are available to to represent complex data, such as

the output of an FFT: complex and polar. A complex number of the form a + bi

can be declared, where the #(...) syntax explicitly denotes a complex number in

rectangular form, and can be used in arithmetic calculations. The (floating point)

real and imaginary parts of a complex number can be accessed with the .re and

.im components of a complex number. (Figure 3.6).



CHAPTER 3. CHUCK 48

#(5,-1.5) => complex cmp; // 5 - 1.5i
#(2,3) + #(5,6) + cmp => complex sum; // 12 + 7.5i

#(2.0,3.5) => complex cmp;
cmp.re => float x; // x is 2.0
cmp.im => float y; // y is 3.5

Figure 3.6: complex values, real/imaginary components.

The polar type offers an equivalent, alternative representation of complex num-

bers in terms of a magnitude and phase value. The magnitude and phase values

can be accessed via .mag and .phase. (Figure 3.7)

(2,.5*pi) => polar pol; // polar
pol.mag => float m; // m is 2
pol.phase => float p; // p is .5?

Figure 3.7: polar values, magnitude/phase components.

Polar and complex representations can be cast to each other and have operations

performed on this. (Figure 3.8).

// polar
%(2,.5*pi) => polar pol;
// complex
#(3, 4) => complex cmp;
// casting
pol $ complex + #(10, 3) + cmp => complex cmp2;
// casting
cmp $ polar + %(10, .25*pi) - pol => polar pol2;

Figure 3.8: Some operations on complex and polar types in ChucK.

3.3.2 Arrays

Arrays are used represent N-dimensional ordered sets of data (of the same type).

Some notes on array in ChucK can be found below.



CHAPTER 3. CHUCK 49

• arrays can be indexed by integer (0-indexed).

• any array can also be used as an associative map, indexed by strings.

• it is important to note that the integer-indexed portion and the associative

portion of an array are stored in separate namespaces

• arrays are objects (see objects and classes), and will behave similarly under

reference assignment and other operations common to objects.

3.3.3 Operators

In addition to the ChucK operator (=>) and standard operators for arithmetic,

binary, and logical operations, there exists a family of extended ChucK operators,

including the UpChucK (=ˆ, see Unit Analyzers), the UnChucK (=<), and a variety

of operate-and-assign operators (e.g., +=> for incrementing a variable by an amount

with assignment).

3.3.4 Control Structures

ChucK employs many standard control structures found in procedural programming

languages, including if, else, for, while, and introducing additional control struc-

tures such as until (the semantic opposite of while), and repeat, which evaluates

the conditional as an integrer only once and repeats the body that number of times.

3.3.5 Manipulating Time

Notions of time and concurrency are central to understanding and working with

ChucK. The main points of time in ChucK are summarized below.

• time and duration are native types in the language



CHAPTER 3. CHUCK 50

• the now keyword holds the current logical ChucK time

• time is advanced (and can only be advanced) by explicitly manipulating now

Time and duration are native types in ChucK. time represents an absolute point

in time (from the beginning of ChucK time), and dur represents a duration (with

the same logical units as time). See Figure 3.9 for some basic examples.

// duration of one second
1::second => dur foo;

// a point in time (duration 'foo' after 'now')
now + foo => time later;

Figure 3.9: Examples of basic operations on time and dur.

Durations can be used to construct new durations, which then be used to induc-

tively construct yet other durations. For example, see Figure 3.10.

// .5 second is a quarter
.5::second => dur quarter;

// 4 quarters is whole
4::quarter => dur whole;

Figure 3.10: Example of constructing the notions of a quarter and a whole with
durations.

By default, ChucK provides these preset duration values:

• samp : duration of 1 sample in ChucK time

• ms : duration of 1 millisecond

• second : duration of 1 second

• minute : 1 minute

• hour : 1 hour



CHAPTER 3. CHUCK 51

• day : 1 day

• week : 1 week

Use these to represent any duration. See Figure 3.11 for some examples of using

durations.

// the duration of half a sample
.5::samp => dur foo;

// 20 weeks
20::week => dur waithere;

// use in combination
2::minute + 30::second => dur bar;

// same value as above
2.5::minute => dur bar;

Figure 3.11: Some examples of using the dur type.

Advancing Time

Advancing time allows other shreds (processes) to run and allows audio to be com-

puted in a controlled manner. There are three ways of advancing time in ChucK:

• chucking (+=>, or the more common shorthand, =>) a duration to now: this

will advance time by that duration.

• chucking (=>) a time to now: this will advance time to that point. (note that

the desired time must be later than or equal to the current time)

• chucking (=>) an Event to now: time will advance until the event is triggered.

(also see the section Programming with Events)

See Figure 3.12 for examples of advancing time by chucking a duration to now.



CHAPTER 3. CHUCK 52

// advance time by 1 second
1::second => now;

// advance time by 100 millisecond
100::ms => now;

// advance time by 1 samp (duration of a sample)
1::samp => now;

// advance time by less than 1 samp
.024::samp => now;

Figure 3.12: Some examples of advancing time with durations in ChucK.

A time chucked to now will have ChucK wait until the appointed time. ChucK

should never miss an appointment (unless it crashes)! Again, the time chucked

to now must be greater than or equal to now, otherwise an exception is thrown.

Figure 3.13 shows an example of time and duration in action.

// compute value that represents "5 seconds after now"
now + 5::second => time later;

// while we are not at later yet...
while( now < later )
{
    // print out value of now
    <<< now >>>;

    // advance time by 1 second
    1::second => now;
}

Figure 3.13: A short program demonstrating time and dur types.

Figure 3.14 shows another simple example, note how one might follow the code

from top to bottom and through the control structures, much like how control flows

as the computer executes the code.



CHAPTER 3. CHUCK 53

// our patch: sine oscillator to dac
SinOsc s => dac;

// infinite time loop
while( true )
{
    // randomly choose frequency from 30 to 1000
    Std.rand2f( 30, 1000 ) => s.freq;

    // advance time by 100 millisecond
    100::ms => now;
}

Figure 3.14: A sound generating program that randomizes frequencies every 100
milliseconds.

Furthermore, there are no restrictions (other than underlying floating point pre-

cision) on how much time is advanced. So it is possible to advance time by a

microsecond, a samp, 2 hours, or 10 years. The system will behave accordingly and

deterministically. This mechanism allows time to be controlled at any desired rate,

according to any programmable pattern. With respect to audio programming, it is

possible to control any unit generator (or unit analyzer) at literally any rate, even

sub-sample rate.

Alternately, time can be advanced by chucking an Event to now, the difference

being that with events, the programmer does not specify the duration to wait ahead

of time, but rather allows the ChucK virtual machine to move forward in time, while

waiting for a particular type of event to occur. See the Event subsection below for

more details.

3.3.6 Functions

Functions in ChucK are similar to those found in other procedural programming

languages, such as Java, C, and C++, and will not be discussed here. For more



CHAPTER 3. CHUCK 54

details see the full current language specification [84].

3.3.7 Concurrency, Processes, and Shreds

ChucK is able to run many processes concurrently (the process behave as if they

are running in parallel). As mentioned above, a ChucKian process is called a shred.

To spork a shred means creating and adding a new process to the virtual machine.

Shreds may be sporked from a variety of places, and may themselves spork new

shreds.

ChucK supports sample-synchronous, non-preemptive concurrency. Any num-

ber of programs/shreds can be automatically shreduled and synchronized using the

programmer-specified timing directives (e.g., chucking a duration to now). The

concurrency is ’sample-synchronous’, meaning that inter-process audio timing is

guaranteed to be precise to the sample. Note that any given shred does not nec-

essarily need to know about other shreds - it only has to deal with time locally.

The virtual machine will make sure things happen correctly ”across the board”.

Concurrency - like timing - is deterministic in ChucK.

The simplest way to to run shreds concurrently is to specify them on the com-

mand line, running any number of chuck programs in sample-synchronous concur-

rency: %> chuck foo.ck bar.ck boo.ck

Sporking Shreds (in code)

New ChucK shreds can also be sporked, or spawned, from within ChucK programs.

To spork a shred, use the spork ˜ operator, which has the following properties.

• the spork keyword dynamically sporks shred from a function call.



CHAPTER 3. CHUCK 55

• this operation is sample-synchronous, the new shred is shreduled to execute

immediately.

• the parent shred continues to execute, until time is advanced or until it explic-

itly yields.

• when a parent shred exits, all child shreds also exit.

• sporking a functions returns reference to the new shred.

Figure 3.15 shows an example that defines a function, and then sporks a new

shred to start executing at the defined function. A slightly more involved example

can be found in Figure 3.16.

// define function go()
fun void go()
{
    // (code goes here)
}

// spork a new shred to start running from go()
spork ~ go();

// spork another, store reference to new shred
spork ~ go() => Shred @ offspring;

// ... more code

Figure 3.15: Defining a function, then sporking that function on a new shred.

The ’me’ keyword

The me keyword (of type Shred) refers to the current shred. Basic functions

common to all shreds include yield(), exit(), and id().

For example, it is sometimes useful to suspend the current shred without ad-

vancing time, and run others shreds shreduled at the current time. me.yield()



CHAPTER 3. CHUCK 56

// define function
fun void foo( string s )
{
    // infinite time loop
    while( true )
    {
        // print s
        <<< s >>>;
        // advance time
        500::ms => now;
    }
}
   
// spork shred, passing in "you" as argument
spork ~ foo( "you" );
// advance time by 250 ms
250::ms => now;
// spork another shred
spork ~ foo( "me" );

// infinite time loop - to keep child shreds around
while( true ) 1::second => now;

Figure 3.16: Defining a function, sporking two copies of it on new shreds..

achieves exactly that. This is often useful for allowing a newly sporked shred to

have chance to run without advancing time. (Figure 3.17)

It may also be useful to exit the current shred. This can be done by invoking

me.exit(). For example if a MIDI device fails to open, the programmer might exit

the current shred (Figure 3.18).

The programmer can get the shred id via id() (Figure 3.19).

Machine.add( string path ) takes the path to a chuck program, and sporks

it. Unlike spork , there is no parent-child relationship between the shred that calls

the function and the new shred that is added. This is useful for dynamically run-

ning stored programs. Similarly, one can remove shreds from the virtual machine.

(Figure 3.20)



CHAPTER 3. CHUCK 57

// spork shred
spork ~ go();

// suspend the current shred...
// (give other shreds a chance to run at 'now')
me.yield();

Figure 3.17: Example showing the yield() function, which relinquishes the VM
without advancing time.

// make a MidiIn object
MidiIn min;

// try to open device 0
if( !min.open( 0 ) )
{
    // print error message
    <<< "can't open MIDI device..." >>>;
    // exit the current shred
    me.exit();
}

Figure 3.18: Attempts to open a MIDI device, and exits if the operation fails.

Shreds sporked in the same file can share the same global variables. They can

use time and events to synchronize to each other. Shreds sporked from different

files can share data (including events). As of this writing, this is done through a

public class with static data (see classes).

ChucK supports passing arbitrary data from the command line into ChucK

programs using optional command line arguments. An argument is specified by

appending a colon character ”:” to the name of the ChucK program to receive that

argument, followed by the argument itself. Multiple arguments can be specified,

each separated by the colon character. Furthermore, each ChucK program can have

its own set of arguments. Command line arguments can also be used when using on-

the-fly programming facilities of ChucK. Machine.add() and Machine.replace()



CHAPTER 3. CHUCK 58

// print out the shred id
<<< me.id(); >>>;

Figure 3.19: Prints out the current shred’s id.

// add
Machine.add( "foo.ck" ) => int id;

// remove shred with id
Machine.remove( id );

// add
Machine.add( "boo.ck" ) => id;

// replace shred with "bar.ck"
Machine.replace( id, "bar.ck" );

Figure 3.20: Operations using static members of the Machine class.

accept command line arguments in a similar fashion (Figure 3.21).

// run foo; pass "1" and "bar" as command line arguments
Machine.add( "foo.ck:1:bar" ) => int id;

// replace shred with "bar.ck"
// pass "2" and "boo" as command line arguments
Machine.replace( id, "bar.ck:2:boo" );

Figure 3.21: Passing arguments to shreds via Machine.

To access command line arguments within a ChucK program, invoke the me.args()

and me.arg() functions from the shred to which the argument(s) are passed (Figure

3.22).

// print out all arguments
for( int i; i < me.args(); i++ )
    <<< me.arg( i ) >>>;

Figure 3.22: Loops through shred arguments and prints each.



CHAPTER 3. CHUCK 59

3.3.8 Programming with Events

ChucK events are a native class within the ChucK language. We can create an

Event object, and then chuck (=>) that event to now. At this point, the event

places the current shred on the event’s waiting list and suspends the current shred

(letting time advance from that shred’s point of view). When the the event is trig-

gered, one or more of the shreds on its waiting list is shreduled to run immediately.

This trigger may originate from another ChucK shred, or from activities taking

place outside the Virtual Machine (MIDI, OSC, or HID).

Chucking an event to now suspends the current shred, letting time advance. A

simple example is shown in Figure 3.23.

// instantiate an Event
Event e;

// ... (other code possibly)

// wait on the event (to be trigger from elsewhere)
e => now;

// after the event is triggered, print message
<<< "I just woke up" >>>;

Figure 3.23: Code snippet to wait on an Event, and printing a debug message.

Events can be triggered in one of two ways, depending on the desired behavior.

signal() releases the first shred in that event’s queue and shredules it to run at

the current time, respecting the order in which shreds were added to the queue. By

contrast, broadcast() releases all shreds queued by that event, in the order they

were added, and at the same instant in time.

The released shreds are shreduled to run immediately. But of course they will

respect other shreds also shreduled to run at the same time. Furthermore, the



CHAPTER 3. CHUCK 60

shred that called signal() or broadcast() will continue to run until it advances time

itself, or yields the virtual machine without advancing time. For a program that

demonstrates signal() and broadcast(), see Figure 3.24.

MIDI Events

ChucK contains built-in MIDI classes to allow for interaction with MIDI based

software or devices. MidiIn is a subclass of Event, and as such can be ChucKed to

now. Upon the arrival of incoming MIDI messages, MidiIn wakes up the waiting

shred and uses the MidiMsg object to pass back the data.

OSC Events

In addition to MIDI, ChucK has OpenSoundControl (OSC) communication classes

as well. [96] (Figure 3.26) The OscRecv class listens for incoming OSC packets on

the specified port. Each instance of OscRecv can create OscEvent objects using

its event() method to listen for packets at any valid OSC Address pattern. An

OscEvent object can then be ChucKed to now to wait for messages to arrive, after

which the nextMsg() and getFloat—String—Int() methods can be used to fetch

message data.

Events, like any other class, can be subclassed to add functionality and transmit

data; see Figure 3.27 for an example of this.

In addition to MIDI and OSC, ChucK also supports HID’s (Human Interface

Devices, such as computer keyboards, mice, and game controllers). The operation

semantics of HID’s are also event-based and analogous to that of MIDI and OSC,

and will not be covered here.



CHAPTER 3. CHUCK 61

// declare event
Event e;

// function for shred
fun void eventshred( Event event, string msg )
{
    // infinite loop
    while ( true )
    {
        // wait on event
        event => now;
        // print
        <<< msg >>>;
    }
}

// create shreds
spork ~ eventshred ( e, "fee" );
spork ~ eventshred ( e, "fi" );
spork ~ eventshred ( e, "fo" );
spork ~ eventshred ( e, "fum" );

// infinite time loop
while ( true )
{
    // either signal or broadcast
    if( maybe )
    { 
        <<< "signaling..." >>>;
        e.signal();
    }
    else
    { 
        <<< "broadcasting..." >>>;
        e.broadcast();
    }

    // advance time
    0.5::second => now;
}

Figure 3.24: An example that sporks four shreds, and invokes them via signal()
and broadcast().



CHAPTER 3. CHUCK 62

// instantiate MIDI related objects
MidiIn min;
MidiMsg msg;

// open midi receiver, exit on fail
if ( !min.open(0) ) me.exit(); 

// loop
while( true )
{
    // wait on midi event
    min => now;

    // receive midimsg(s)
    while( min.recv( msg ) )
    {
        // print content
        <<< msg.data1, msg.data2, msg.data3 >>>;
    }
}

Figure 3.25: A program to open a MIDI device, wait on incoming messages, and
print them.

3.3.9 Unit Generators

Unit Generators are function generators that output signals that can be used as

audio or control signals. However, in ChucK, there is no fixed control rate. Any

unit generator may be controlled at any rate. Using the timing mechanism, one can

program one’s own control rate, and can dynamically vary the control over time.

Using concurrency, it is possible to have many different parallel controls rates, each

at any granularity. Some additional properties of ChucK unit generators are listed

below.

• All ChucK unit generators are Objects.

• All ChucK unit generators inherit from the UGen class.



CHAPTER 3. CHUCK 63

// patch
SinOsc foo => dac;

// create our OSC receiver
OscRecv recv;
// port 6449
6449 => recv.port;
// start listening (launch thread)
recv.listen();

fun void rateShred()
{ 
    // create an address in the receiver 
    // and store it in a new variable
    recv.event("/synth/control/freq, f") @=> OscEvent freqEvent; 

    // loop
    while ( true )
    { 
        // wait for events to arrive
        freqEvent => now; 

        // grab the next message from the queue
        while( freqEvent.nextMsg() != 0 )
        { 
            // getFloat fetches the expected float
            // as indicated in the type string "f"
            freqEvent.getFloat() => foo.freq;
        }
    }       
}

Figure 3.26: A OpenSoundControl receiver.

• The operation foo => bar, where foo and bar are UGen’s, connects foo to

bar.

• Unit generators are controlled by invoking member functions over time.

• gain(float) (of type float): sets/gets the gain of the UGen’s output.

• last() (of type float): get the last sample computed by the UGen. if UGen has

more than one channel, the average of all components channels are returned.

• channels() (of type int): get the number of channels in the UGen.



CHAPTER 3. CHUCK 64

// extended event
class TheEvent extends Event
{
    int value;
}

// the event
TheEvent e;

// handler
fun int hi( TheEvent event )
{
    while( true )
    {
        // wait on event
        event => now;
        // get the data
        <<< e.value >>>;
    }
}

// spork 4 copies
spork ~ hi( e );
spork ~ hi( e );
spork ~ hi( e );
spork ~ hi( e );

// infinite time loop
while( true )
{
    // set data
    Math.rand2( 0, 5 ) => e.value;
    // signal one waiting shred
    e.signal();
    // advance time
    1::second => now;
}

Figure 3.27: Defining and using a Event subclass.



CHAPTER 3. CHUCK 65

• chan(int) (of type UGen): return reference to nth channel (or null if no such

channel is available).

• op(int) (of type int): set/get operation at the UGen. Values are: 0 : stop -

always output 0; 1 : normal operation, add all inputs (default); 2 : normal

operation, subtract inputs starting from the earliest connected; 3 : normal

operation, multiply all inputs; 4 : normal operation, divide inputs starting

from the earlist connected -1 : passthru - all inputs to the ugen are summed

and passed directly to output

• Three default, global unit generator instances are provided. They are adc,

dac, and blackhole.

In addition to chaining UGen’s together in a feedforward, it is also possible to

introduce feedback in the network. (Figure 3.28; also see the native Karplus-strong

plucked string model example later in this chapter).

// connect adc to delay to dac; (feedforward)
adc => Delay delay => dac;

// delay to gain back to itself (feedback)
delay => Gain g => delay;

Figure 3.28: Setting up a unit generator network with feedback.

UGens and UAnae may be dynamically connected in this fashion into an audio

synthesis/analysis network. It is essential to note that the above only connects

the unit generators/analyzers, but does not actually compute audio, unless time is

advanced. It is also possible to dynamically disconnect unit generators, using the

UnChucK operator (=< or !=>). (Figure 3.29)

In ChucK, parameters of unit generators may be controlled and altered at any

point in time and at any rate (even sub-sample rate). To set the a value for a



CHAPTER 3. CHUCK 66

// connect SinOsc to dac
SinOsc foo => dac;

// let time pass for 1 second
1::second => now;

// disconnect 'foo' from the 'dac'
foo =< dac;

// let time pass for another second (silence)
1::second => now;

// connect again
foo => dac;

// ...

Figure 3.29: Dynamically connecting/disconnecting unit generators.

parameter of a unit generator a value of the proper type should be ChucKed to

the corresponding control function. To read the current value of certain parameters

(not all parameters can be read), we may call an overloaded function of the same

name. Figure 3.30 demonstrates setting/getting control values. Additionally, one

can chain assignments together when assigning a single value to multiple targets.

Note that the parentheses are only needed when the read function is on the very

left.

ChucK supports stereo (default) and multi-channel audio. The dac and the adc

are multi-channel UGens. By default, ChucKing two UGens containing the same

number of channels (e.g. both stereo or both mono) automatically matches the

output channels with the input channels (e.g. left to left, right to right for stereo).

Multichannel UGens mix their output channels when connecting to mono UGens.

Mono UGens split their output channels when connecting to stereo UGens. Stereo

UGens contain the parameters left and right, which allow access to the individual



CHAPTER 3. CHUCK 67

// SinOsc to dac
SinOsc foo => dac;
// TriOsc to dac
TriOsc bar => dac;

// set frequency of foo and then bar
500 => foo.freq => bar.freq;

// set one freq to the other
foo.freq() => bar.freq;
// the above is same as:
bar.freq( foo.freq() );

Figure 3.30: Asserting/reading control values.

channels. It is possible to address channels by index, placing no ceiling on the

number of channels to be used.

At the time of this writing, ChucK provides around 80 Unit Generators, includ-

ing oscillators, noise generator, filters, envelopes, delays, as well as a majority of the

Synthesis Toolkit (STK) ([17]). One idea with ChucK is due to the flexible timing

mechanism, there would be a reduced need to depend on writing plug-ins in another

language (e.g., C++), and implemented ideas directly in the code.

3.3.10 Unit Analyzers

Unit Analyzers (UAnae) are analyis building blocks, similar in concept to unit

generators. They perform analysis functions on audio signals and/or metadata

input, and produce metadata analysis results as output. Unit analyzers can be

linked to each other as well as to unit generators to form analysis/synthesis networks.

Like unit generators, several unit analyzers may run concurrently, each dynamically

controlled at different rates. Because data passed between UAnae is not necessarily

audio samples, and the relationship of UAna computation to time is fundamentally



CHAPTER 3. CHUCK 68

different than that of UGens (e.g., UAnae might compute on blocks of samples, or

on metadata), the connections between UAnae have a different meaning from the

connections between UGens formed with the ChucK operator, =>. This difference

is reflected in the choice of a new connection operator, the upChucK operator: =ˆ.

Another key difference between UGens and UAnae is that UAnae perform analysis

(only) on demand, via the upchuck() function (see below).

Some additional properties of ChucK unit analyzers:

• All ChucK unit analyzers are Objects, extended from unit generators (UGen).

• The operation foo =ˆ yah, where foo and yah are UAnae, connects foo to

yah.

• Unit analyzer parameters and behaviors are controlled by calling / chucking

to member functions over time, just like unit generators.

• Analysis results are stored in objects called UAnaBlob’s. The UAnaBlob

contains a time-stamp indicating when it was computed, and it may store an

array of floats and/or complex values. Each UAna specifies what information

is present in the UAnaBlob it produces.

• All unit analyzers have the function upchuck(), which when called issues a

cascade of analysis computations for the unit analyzer and any ”upstream”

unit analyzers on which its analysis depends. In the example of foo =ˆ

yah, yah.upchuck() will result in foo first performing its analysis (possibly

requesting analysis results from unit analyzers further upstream), then yah,

using foo’s analysis results in its computation. upchuck() returns the analysis

results in the form of a UAnaBlob.

• Unit analyzers are specially integrated into the virtual machine such that each

unit analyzer performs its analysis on its input whenever it or a downstream



CHAPTER 3. CHUCK 69

UAna is upchuck()-ed. Therefore, we have the ability to assert control over

the analysis process at any point in time and at any desired control rate.

3.4 System Design and Implementation

In order to support the features and behaviors of the ChucK language, a variety of

system design decisions were made, as described in this section. The chuck system

includes a dedicated lexer, parser, typing checker/system, and virtual machine em-

ploying a user-level shreduler, which shredules the shreds. We address the salient

components of the system, and outline the central shreduling algorithms.

3.4.1 Architecture

Runtime
Compiler

VM /
Shreduler

Listener

I/O
Manager Audio

Engine

Byte-code
Interpreter

Type
System

global ugen graph

dac

connect / control

new shreds

active
shred

queued shreds

to soundcard

to
Audicle

from
Audicle

from
network

stats

Figure 3.31: The ChucK Run-time.



CHAPTER 3. CHUCK 70

ChucK programs are type-checked, emitted into ChucK shreds (processes) con-

taining byte-code, and then interpreted in the virtual machine. A shreduler shred-

ules the shreds and serializes the order of execution between various shreds and

the audio engine. Under this model, shreds can dynamically connect, disconnect,

and share unit generators in a global network. Additionally, shreds can perform

computations and change the state of any unit generator at precisely any point in

time. Audio is synthesized from the global unit generator graph a sample at time by

sucking samples beginning from dedicated UGen sinks - such as dac. Time as spec-

ified in the shreds is mapped by the system to the audio synthesis stream. When a

shred advances time, it is actually scheduling itself to be woken up after some future

sample. In this sense, the passage of time is data-driven, and guarantees that the

timing in the shreds is bound only to the output and not to any other clocks - and

that the final synthesis is correct and sample-faithful regardless of whether the sys-

tem is running in real-time or not. Additional processes interface with I/O devices

(as necessary) and the runtime compiler. A server listens for incoming network

messages. Various parts of the VM can optionally collect real-time statistics to be

visualized externally in environments such as the Audicle (see Chapter on Audicle).

3.4.2 Compilation

Compilation of a ChucK program follows the standard phases of lexical analysis,

syntax parsing, type checking, and emission into instructions (Figure 3.32). ChucK

is procedural and strongly-typed. Programs are emitted into ChucK virtual ma-

chine instructions, either as part of a new shred, or as globally available routines.

The compiler runs in the same process as the virtual machine, and can compile new

programs on-demand. By default, all operations, including instruction emission,



CHAPTER 3. CHUCK 71

lexer parser

type-
checker emitter

tokens

parse
tree

parse
tree 2

code shreds
(byte-code)

to VM

Figure 3.32: Phases in the ChucK compiler.

take place in main memory. This has the advantage of skipping intermediate steps

of writing instructions to disk, and also many costly load-time memory translations

which would be necessary if the compiler and VM were to run in separate mem-

ory address spaces. The disadvantage of this in real-time is that the compilation

must be relatively fast, which precludes the possibility of many advanced compiler

optimizations.

3.4.3 ChucK Virtual Machine + Shreduler

Shred

memory
stack

operand
stack

sp sp

bytecode

shred-local
storage

parent
shred

children
shredschildren
shredschildren
shreds

Figure 3.33: ChucK shred and primary components.



CHAPTER 3. CHUCK 72

After compilation, a ChucK shred is passed directly to the virtual machine,

where it is shreduled to start execution immediately. Each shred has several com-

ponents (Figure 3.33): (1) bytecode instructions emitted from the source code, (2)

an operand stack for local and temporary calculations (functionally equivalent to

hardware registers), (3) a memory stack to store local variables at various scopes,

i.e., across function calls, (4) references to children shreds (shreds spawned by the

current shred) and a parent shred, if any, and (5) a shred-local view of now -

which is a fractional sample away from the system-wide now and which enables

sub-sample-rate timing.

The state of a shred is completely characterized by the content of its stacks and

their respective stack pointers. It is therefore possible to suspend a shred between

any two instructions. Under normal circumstances, however, a shred is suspended

only after instructions that advance time. Shreds can spawn (or spork, in ChucK

parlance) and remove other shreds.

The shreduler serializes the execution of the shred with the audio engine, and

also maintains the system-wide value of the keyword now. The unit of now is

mapped to the number of samples in the final synthesis that have elapsed since the

beginning of the program.

For a single shred, the shreduling algorithm is illustrated in Figure 3.34. A shred

is initially shreduled to execute immediately - further shreduling beyond this point is

left to the shred. The shreduler checks to see if the shred is shreduled to wake up at

or before the current time (now). If so, the shred resumes execution in the interpreter

until it schedules itself for some future time T. At this point, the shred is suspended

and the wake-up time is set to T. Otherwise, if the shred is not scheduled to wake

up at now, then the shreduler callsthe audio engine, which traverses the global unit



CHAPTER 3. CHUCK 73

yes no
Time

to wake
up shred?

Start

Resume
Shred

Shred
advances

time

Compute
next sample

Traverse
UGen graph

Advance
time by

1 sample

 schedule
(suspend)

shred

Figure 3.34: Single-shredded shreduling algorithm.

generator graph and computes the next sample. The shreduler then advances the

value of now by the duration of 1 sample (called a samp in ChucK), and checks

the wake-up time again. It continues to operate in this fashion, interleaving shred

execution and audio computation in a completely synchronous manner.

Two points should be addressed. It is possible that a shred misbehaves and

never advances time or, in the real-time case, performs enough computation to

delay audio. The Halting Problem [79, 70] tells us that the VM cannot hope to

detect this reliably. However, it is possible for the user to identify this situation

and manually remove a shred from the interpreter. Secondly, the above algorithm

is geared towards causal, immediate mode operations in which time can only be

advanced towards the future. It is conceivable that this same model can be extended

so shreds can also move backwards in time, but that is not discussed here.

For multiple shreds, the mechanism behaves in a similar manner, except the

shreduler has a waiting list of shreds, sorted by requested wake-up time. A more



CHAPTER 3. CHUCK 74

More
shred waiting
to run now?

Start

Run next
shred

Shred
advances

time

Compute
next sample

Traverse
UGen graph

Advance
time by

1 sample

Incoming
message?

Process
message

yes no

no

HaltAny shreds
left?

yes

no

yes

Figure 3.35: Multi-shredded shreduling algorithm, with messaging

comprehensive concurrent shreduling algorithm is shown in Figure 3.35. Before the

system-wide now is advanced to the next sample, all shreds waiting to run at or

before the current time are allowed to execute.

Also, it is possible for a shred to advance time by any amount, even durations less

than that of a sample. To support this, each shred keeps track of a shred-local now,

which is close to the value of the system-wide now, but with some fractional sample

difference. This allows a shred to shredule itself at practically any increment. This

value is compared against the system-wide now when determining when to wake

up a shred. So it is possible for a shred to run any number of times before the

system-wide now is advanced.



CHAPTER 3. CHUCK 75

3.4.4 Audio Computation

Unit generators (and more recently, Unit analyzers) are created, connected, discon-

nected, and controlled from code. However, the actual computation of the audio

takes place separately in the audio engine. When the shreduler decides that it’s

appropriate to compute the next sample and advance time, the audio engine is in-

voked. The global unit generator graph is traversed in depth-first order, starting

from one of several well-known sinks, such as dac. Each unit generator connected

to the dac either directly or indirectly is asked to compute and return the next

sample. The system marks visited nodes so that each unit generator is computed

exactly once for every sample. The output value of of each ugen is stored and can

be recalled, enabling feedback cycles in the graph.

Another well-known sink is the blackhole, which sucks samples like dac, but

does not play them. It is useful for driving standalone unit generators, as well as

analysis networks that require no audio output. For instance, one can connect the

dac to other unit generators, such as FileOut for recording the dac to file. These

unit generators need to be driven by a sample-rate sink but should not be played,

and this is enabled by the blackhole.

3.5 Properties

Now that we have described the design goals, the features of the language, as well

as its implementation, we now discuss some properties of the system as a whole that

may be potentially useful in practice.



CHAPTER 3. CHUCK 76

3.5.1 Time and Programming

The ChucK programmer always codes in “suspended animation”. This property

guarantees that time in ChucK does not change unless the programmer explicitly

advances it. The value of now can remain constant for an arbitrarily long block

of code, which has the programmatic benefits of (1) guaranteeing a deterministic

timing structure to use and reason about the system and (2) giving a simple and

natural mechanism of complete timing control to the programmer. The determin-

istic nature of timing in ChucK also ensures that the program will flow identically

across different executions and machines, free from the underlying hardware tim-

ing (processor, memory, bus) and non-deterministic scheduling delays in the kernel

scheduler. As a consequence, the programmer is responsible for “keeping up with

time”. The programmer is given the responsibility for deciding when to “step out”

of suspended animation and advance time.

Another potentially useful property afforded by the ChucK timing mechanism:

statements that appear in code before the time advancement are guaranteed to

evaluate beforehand (desirable side-effects may remain, such as connections of unit

generators), and those that appear after the time advancement will evaluate only

after the timing or synchronization operation is fulfilled. This method, like the

ChucK operator, encourages a strong sense of order in the program.

In (Figure 3.36) is a program that moves through time, polling the value of an

envelope follower. Note in this code, the programmer has complete control over the

poll rate, and can even throttle it at will.

Additionally, the timing mechanism allows feedback loops with single-sample

delay, enabling clear representation of signal processing networks, such as the classic

Karplus-Strong plucked string physical model [32] (Figure 3.37). Additionally, it’s



CHAPTER 3. CHUCK 77

// patch
adc => Gain g => OnePole p => blackhole;
// square the input
adc => g;
// multiply
3 => g.op;

// set filter pole position
0.99 => p.pole;

// infinite time loop
while( true )
{
    // test
    if( p.last() > 0.01 )
    {
        // detected
        <<< "BANG!!" >>>;
        // wait a bit
        80::ms => now;
    }

    // advance time, also poll rate
    20::ms => now;
}

Figure 3.36: An envelope follower (and simple onset detector), based on a leaky
integrator. (author: Perry Cook)

straightforward to implement various extensions of the model [31, 73] as well as

a number of other physical models directly in the language (and which can be

heard/tested on the spot), making it an ideal teaching tool for these topics.

3.5.2 Dynamic, Precise Control Rate

How a shred advances its way through time can be naturally interpreted as the con-

trol rate in ChucK. Since the amount of time to advance at each point is determined



CHAPTER 3. CHUCK 78

// feedforward
Noise imp => OneZero lowpass => dac;
// feedback
lowpass => Delay delay => lowpass;

// our radius
.99999 => float R;
// our delay order
500 => float L;
// set delay
L::samp => delay.delay;
// set dissipation factor
Math.pow( R, L ) => delay.gain;
// place zero
-1 => lowpass.zero;

// fire excitation
1 => imp.gain;
// for one delay round trip
L::samp => now;
// cease fire
0 => imp.gain;

// advance time
(Math.log(.0001) / Math.log(R))::samp => now;

Figure 3.37: Constructing a classic Karplus and Strong plucked string model.

by the programmer, the control rate can be (1) as rapid (e.g., same or faster than

sample rate) or as low (e.g., milliseconds, days, or even weeks) as the application

desires, and (2) dynamically varying with time (since the programmer can compute

or lookup the value of each time advancement). Additionally, the power of this

dynamic, arbitrary control rate is greatly extended by ChucK’s concurrency model,

which allows multiple independent control flows to coexist in parallel.

It is possible in ChucK to calculate each sample completely from within the lan-

guage (though low-level built-in and add-in ChucK modules may be more suitable

for such low-level tasks). All external events, such as MIDI, input devices, and



CHAPTER 3. CHUCK 79

// synthesis patch
Impulse i => TwoZero t => TwoZero t2 => OnePole p;
// formant filters
p => TwoPole f1 => gain g => JCRev r => dac;
p => TwoPole f2 => g;
p => TwoPole f3 => g;

// ... (omitted: initialization code) ...

spork ~ ramp_stuff(); // interpolate pitch and formants
spork ~ do_impulse(); // voice source

while( true ) // main shred
{
    // set next formant targets
    Std.rand2f( 230.0, 660.0 ) => target_f1freq;
    Std.rand2f( 800.0, 2300.0 ) => target_f2freq;
    Std.rand2f( 1700.0, 3000.0 ) => target_f3freq;
    
    // random walk the scale
    32 + scale[randWalk()] => Std.mtof => freq;
    // set target period
    1.0 / freq  => target_period;
    
    // wait until next note
    Std.rand2f( 0.2, 0.9 )::second => now;
}

// for shred: generate pitched source, with vibrato
fun void do_impulse()
{
    while( true )
    {
        // fire impulse!
        masterGain => i.next;
        modphase + period => modphase;
        // advance time (modulated to achieve vibrato)
        (period + 0.0001*Math.sin(2*pi*modphase*6.0))::second => now;
    }
}

// for shred: to perform interpolation for various parameters
fun void ramp_stuff()
{
    0.10 => float slew;
    while( true )
    {
        (target_period - period) * slew + period => period;
        (target_f1freq - f1freq) * slew + f1freq => f1freq => f1.freq;
        (target_f2freq - f2freq) * slew + f2freq => f2freq => f2.freq;
        (target_f3freq - f3freq) * slew + f3freq => f3freq => f3.freq;
        0.010 :: second => now;
    }
}

Figure 3.38: A concurrent program framework for singing synthesis, naturally bal-
ancing source generation, musical parameters, and interpolation in three shreds.
(author: Perry Cook)



CHAPTER 3. CHUCK 80

other asynchronous events, are internally synchronized at a coarser granularity pro-

portional to a tunable latency (e.g., I/O buffer size), determined by the underlying

hardware and OS. Program logic can be placed at any granularity relative to the

audio. Thus, the same ChucK timing mechanism can be used to build low-level

instruments, as well as high-level compositional elements. The practice of enabling

the programmer to operate on an arbitrarily fine granularity is derived from the

Synthesis Tool Kit (STK) [17], which exposes a manageable programming interface

for efficient single sample operations, with additional levels of internal buffering.

ChucK builds on this notion to support sample-level computations as well as com-

putations at arbitrarily large intervals.

3.5.3 Multiple Concurrent Control Rates

Computer music synthesis and performance is most often the simultaneity of many

parallel sequences of operations, potentially happening at many distinct rates.

Shreds naturally separate each set of independent tasks into concurrent entities

each running on its own control rate. For example, there might be many different

streams of audio samples are being generated at multiple control rates; MIDI mes-

sages arrive periodically (on the order of milliseconds) from a variety of sources,

which control parameters in the synthesis. Concurrently, packets arrive over the

network, while an array of mice and joysticks send serial data over USB. At the

same time, higher-level musical processes compute at yet another range of dura-

tions. It is possible and straightforward to specify such a system in ChucK, via

shreds and time.

ChucK imposes no boundaries on the timing structure of a program - it does not

make any decision about control rate or timing but instead integrates this decision



CHAPTER 3. CHUCK 81

into the language semantics (which the programmer can easily control). This enables

the programmer to create and simultaneously execute any number of shreds - each

potentially running at a different control rate. As example, Figure 3.38 shows

the code framework for a singing synthesizer where the tasks of musical control

(setting vowels, fundamental pitch), source generation (impulse train, modulated

for vibrato), and interpolation (smoothly ramp to parameter targets at arbitrary

granularity) are represented as three concurrent shreds. This example, while simple,

demonstrates the flexibility of shreds and the potential to build and experiment with

more complex systems such as SPASM [15].

3.6 Where to go from here

Based on the ideas explored in this chapter, we next explore two ramifications of

ChucK, On-the-fly Programming and the Audicle.



Chapter 4

On-the-fly Programming

4.1 Motivation

Due to their fundamental expressive power, programming languages and systems

play a pivotal role in the composition, performance, and experimentation of com-

puter audio and electro-acoustic music. Until recently, the design and writing of

computer music programs have been limited to off-line development and prepara-

tion, leaving only the finished program to “go live”. Thus, the gamut of runtime

possibility is prescribed by the functionalities that are pre-determined and pro-

grammed ahead of time. An on-the-fly programmable system provides the ability

to write/modify, compile, execute new/existing code, and then integrate it into a

program while it is running, with precise timing and synchronization. The goal

of on-the-fly programming is to enable programmers/performers/composers to ac-

tively modify their programs on-line without having to stop, code, and restart, for

the purpose of rapid experimentation, pedagogy, and even live performance. For

example, performers could add/change modules in their synthesis or composition

82



CHAPTER 4. ON-THE-FLY PROGRAMMING 83

programs, or modify mappings to their controllers during a live performance. Sim-

ilarly, composers can experiment with their programs on-line, modifying synthesis

components, shaping or perfecting a sound, or changing compositional elements,

without having to restart.

Performers have used runtime programmable elements during live performance

and rehearsal. Examples go back as far as Jim Horton, Tim Perkis, and John

Bischoff of The League of Automatic Composers, who tweaked live electronics with

microcomputers (KIMs) during performance, and George Lewis in creating Voyager

[43], as well as the network group The Hub, who used languages like FORTH to

modify their systems online, to more recent laptop computer musicians who con-

struct and use various on-the-fly tools, including command-line, shell scripts, and

homemade software tools [14]. These include Alex McLeans’s “Hacking Perl in

Nightclubs”, Dave Griffith’s Fluxus, JITLIB for SuperCollider, libraries/systems

for Python, Ruby, and others (see Figure 4.1) [97], as well as many others that can

be found as part of TOPLAP (Terrestrial Organization for the Proliferation of Live

Audio Programming, [74]). As mentioned in the Chapter 2 (A History of Music

Programming), the barrier to entry (socially, economically, as well as psychologi-

cally) has been drastically reduced in recent years, perhaps a sign that computers

have truly become pervasive to the point where they act as nature extensions of

our everyday lives. In the context of music, the computer is simply another conduit

and platform for creating music - no longer as an end, but simply a self-definable

means to achieving musical results.

The features of the programming tool inevitably shape both the means by which

tasks are implemented as well as the end product. By bringing the power and ex-

pressiveness of the programming language into runtime, an on-the-fly programming



CHAPTER 4. ON-THE-FLY PROGRAMMING 84

Figure 4.1: An article about live coding, published in Zeitwissen in 2006.

system has the potential to fundamentally enhance the real-time interaction between

the performer/composer and the systems they create and control. Code becomes

a real-time, expressive instrument [89]. We believe that such a potential is worth

exploring. In this section, we define on-the-fly programming and provide a formal

programming model based on ChucK, leveraging its properties of timing and con-

currency, as well as the ChucK virtual machine. In addition, we discuss an open

on-the-fly programming aesthetic.



CHAPTER 4. ON-THE-FLY PROGRAMMING 85

4.2 Challenges

In order to bring the power and general expressiveness of programming languages

into on-the-fly programming, several fundamental challenges must be addressed.

We have identified the following issues:

• Modularity – code sections must be modular so the programmer can reason

about them or modify them independently. Furthermore, the augmented code

must work together in the same address space and namespace.

• Timing – there must be a strong consistency and notion of time and timing

between the existing and new parts of the program. Sequential on-the-fly code

segments need to start and stop with precision.

• Conciseness and manageability – given the substantial time constraints,

we ask: how can ideas be expressed concisely in code? How do we reason

about time and data flow easily?

• Flexibility – how flexible is the system? Does it allow programmers to take

advantage of the expressive power of programming languages in a real-time set-

ting? Taking these challenges into account, and using the definition provided,

we next look at on-the-fly programming in ChucK.

4.3 A ChucKian Approach

In this section, we describe the ChucKian on-the-fly programming model. We do so

in terms of external and internal semantic. We reason about key properties in the

model and present an example. We show that just as concurrency in ChucK is a

natural extension of the timing mechanism, we can leverage the timing mechanism

and concurrency to address the challenges of on-the-fly programming.



CHAPTER 4. ON-THE-FLY PROGRAMMING 86

4.3.1 External Interface

The on-the-fly programming model, at the high-level, can be described in the fol-

lowing way. A ChucK virtual machine begins execution, generating samples (as

necessary), keeping time, and waiting for incoming shreds. A ChucK shred can be

assimilated on-the-fly int‘o the virtual machine, sharing the memory address space

and global timing mechanism, and is said to be active. Similarly, an active shred

can be dissimilated, or removed from the virtual machine, or it can be suspended or

be replaced by another shred. This interface is designed to be simple, and delegates

the actual timing and synchronization logic to the code within the shred (discussed

in Section 4.1.2), leaving this flexibility to the programmer.

The high level commands to the external interface are listed below. They can be

invoked on the command line, in ChucK programs (as functions calls to the machine

and compiler objects), over the network, via customized graphical interfaces, or by

other appropriate means.

• Execute – begins a new instance of the virtual machine in a new address space.

Typically, this operation is used at the beginning of the session. Multiple

instances of the virtual machine can coexist. The shreduler begins to keep

track of time.

• Add – type-checks and compiles a new shred (from a ChucK source file, a string

containing ChucK code, or a pre-compiled shred). If there are no compilation

errors, the shred is allocated and sporked in the virtual machine with an unique

ID. A new virtual stack is allocated, and the shred is shreduled immediately

to execute from the beginning. When add fails due to compilation errors, the

virtual machine continues to run as before while the programmer can attempt

to debug, correct, and add the code.



CHAPTER 4. ON-THE-FLY PROGRAMMING 87

• Remove – removes a shred by ID or name from the virtual machine. The

shred’s exit point function (if defined) is invoked and the shred and relevant

child objects are garbage collected.

• Replace – invokes a remove operation followed by an add. An option exists

for making the operation atomic.

• Status – queries the status of the virtual machine for the following types of

information: (1) a list of active/suspended shred ID’s, source/filename, dura-

tion since assimilation (spork time), and (2) information on virtual machine

state: currently executing shred, shreduler timeline, and CPU / VM usage by

various parts of the system.

For example, Figures 4.2 and 4.3 show code that adds, replaces, and removes

two shreds using separate methods.

# start VM with “infinite time-loop” 
shell%> + `while(true) 1::second => now;` 
# add foo.ck 
shell%> + foo.ck 
# replace shred 0 with bar.ck 
shell%> = 0 bar.ck 
# remove all shreds 
shell%> --remove.all 

Figure 4.2: “external” ChucK shell commands for on-the-fly adding/replacing of
code

The “code-runs-code” feature is powerful because it allows a program to self-

manage shreds on-the-fly with sample-synchronous precision. Users can also as-

similate shreds that systematically add (potentially many) additional shreds, each

with precise timing. Because the compiler and the virtual machine run in the same

process, much of the intermediate processing can be eliminated. Finally, the ability

to evaluate strings as code at runtime opens the possibility for self-generating on-



CHAPTER 4. ON-THE-FLY PROGRAMMING 88

// add shred from file "foo.ck" 
Machine.add( "foo.ck" ) @=> Shred @ foo;
// advance time by 500 milliseconds 
500::ms => now; 
// replace foo with "bar.ck" 
Machine.replace( foo, "bar.ck" ) @=> Shred @ bar;
// advance time by 2 seconds 
2::second => now;
// remove bar 
Machine.remove( bar ); 

Figure 4.3: “internal” ChucK shell commands for on-the-fly adding/replacing of
code

the-fly programs with fast compilation-to-runtime response. The status feedback

is helpful for quickly surveying the state of the system and is particularly useful

in an on-the-fly setting because it can identify hanging or non-cooperative shreds.

For example, if the system runs a shred containing an infinite loop, it will fail to

yield and cause the virtual machine execution unit to hang indefinitely. However,

the on-the-fly programmer can identify and remove misbehaving shreds from the

virtual machine manually, resulting in reduced interruption to the performance or

session. While this recovery mechanism is far from perfect, it can be far more

advantageous than killing the system and restarting. Additionally, it can help the

composer/performer tune the system by identifying shreds that are taking too much

CPU time and optimize them individually. This high-level semantic uses concurrent

shreds as modules and provide a means of managing them. This has led to new

interfaces for expressive audio coding, in the Audicle and miniAudicle (discussed

in Chapter 5, Audicle). (Furthermore, simple brute force redundancy can help in

performance situations, for example in the form of coding with a partner, or even

simply running two instances of ChucK on multi-core machines!)



CHAPTER 4. ON-THE-FLY PROGRAMMING 89

4.3.2 Internal Semantics

The internal semantics deal with the problem of precise timing between on-the-fly

modules. The goal is to provide a consistent and accurate mechanism for shreds to

synchronize with each other. In our model, the semantics are natural extensions of

the ChucK timing mechanism. By querying and manipulating time using the special

variable now, the programmer can determine the current time, and specify how the

code should respond. By the properties of ChucK timing and concurrency: (1) now

always holds the current ChucK time, (2) changing the value of now advances time

in ChucK and has the side effect of blocking the current shred (allowing audio and

other shreds to compute) until now holds the value that was assigned to it, (3) if t

is of type time, t => now advances time until t equals now, (4) if d is of type dur

(a duration), d +=> now advances time by d. We illustrate this below with some

common code segments that synchronize to time (Figures 4.4 to 4.8).

// let time pass
now + 10::second => time later; 
later => now;

// (or alternately)
10::second +=> now; 

Figure 4.4: Two methods to “synch” with a later time

// synch/advance to time t
t => now;

Figure 4.5: “synching” to some absolute time

The semantic allows programmers to precisely specify many more timing and

synchronization behaviors. These statements can be placed to impose timing at



CHAPTER 4. ON-THE-FLY PROGRAMMING 90

// period to synchronize to
120::ms => dur T;
// advance time by remainder
T – (now % T) +=> now;

Figure 4.6: Define a period; synchronize to next period boundary

// advance time by remainder, plus offset
T – (now % T) + D +=> now;

Figure 4.7: synchronize to period boundary, plus offset

// no code necessary

Figure 4.8: no synchronization, following statements happen immediately in ChucK
time

arbitrary points in the program flow. For the purpose of initial time-based synchro-

nizations in on-the-fly programming, they may be placed near the beginning of a

shred to synchronize to time before moving on.

4.4 An On-the-fly Aesthetic

Our on-the-fly aesthetic is one where the process of on-the-fly programming is con-

veyed to the observer/listener (e.g., in classrooms, studios, and performance venues).

In the classroom, on-the-fly programming can be a powerful vehicle for showing how

to construct a particular algorithm step by step, while maintaining both a visual and

sonic footprint all along the process. Students can immediately hear how modifying

parts of an algorithm can affect the result. In terms of performance, it addresses

two important issues in computer music performance. First, it can be argued that

many technical and aesthetic intentions are often difficult to discern in performance

where they don’t have to be or shouldn’t be. The on-the-fly programming aesthetic



CHAPTER 4. ON-THE-FLY PROGRAMMING 91

help address this concern, for it provides a channel for the audience to see both the

intention and the results. A single performer configuration can be seen in Figures

4.9 and 4.10. A two-performer schematic and realization can be seen in Figures

4.11 and 4.12. In the experience of the author, the two person configuration is

much more enjoyable and fun, for it not alleviates the stress of coding under pres-

sure by naturally load balancing between the players (as one performer “riffs”, the

other might begin coding the next section), but provides much more opportunity

for musical interplay. In the extreme case, live coding of this kind has been carried

out on an orchestral scale, with 15 live coders contributing to a single sonic and

musical entity (this is discussed in Chapter 6, Applications).

The second problem that the on-the-fly aesthetic addresses is the issue of vir-

tuosity in computer music. On-the-fly programming provides a platform where the

performer is able to render various types of mastery and creativity that can be im-

mediately appreciated, or at least perceived. While typing speed may not inspire,

the general expressive power of programming languages opens unlimited possibili-

ties for clever approaches and beautiful design. The timing semantic makes ChucK

code straightforward to follow, allowing the audience to more quickly and easily

appreciate the design and construction of on-the-fly programs.

While this framework has many desirable properties, it is still unpolished and

unwieldy in many respects, because coding inherently takes time. Future work may

look into programming environments that better understand the deep structure of

the program being written and facilitates writing and debugging on-the-fly. The

performance aesthetic may explore visualizations of program state in addition to

code. Also, it would be interesting to investigate reducing the modular granularity,

allowing finer pieces of code to be runtime modified.



CHAPTER 4. ON-THE-FLY PROGRAMMING 92

On-the-fly 
Performer

Code 
Projection

Figure 4.9: An on-the-fly programmer/performer and code projection

Figure 4.10: An on-the-fly programmer/performer and code projection (close-up)



CHAPTER 4. ON-THE-FLY PROGRAMMING 93

  while( 1 ) 
      1::second +=> now;
  ---
  chuck vm %> sporking shred 'foo'

chuck vm status:
---

shred 'foo' : active : 3m5s 
shred 'bar' : suspended : 10m20s

computer

projection

speaker

projector

Figure 4.11: A schematic for a double-projection, on-the-fly duet

http://chuck.cs.princeton.edu/

Figure 4.12: A On-the-fly Programming collage, prepared for Art Gallery perfor-
mance at SIGGRAPH 2006.



Chapter 5

The Audicle

5.1 Introduction

Software environments play a pivotal role in the creation and performance of com-

puter music, not only in terms of providing means of working with sound, but also in

terms of encouraging ways of thinking about how to realize ideas. Development envi-

ronments provide the setting to design/implement audio/music algorithms, whereas

runtime environments realize and render these algorithms into sound (and images),

and allow performers to interact with the system, often in real-time. In this chapter,

we present a new type of audio programming environment that integrates the pro-

grammability of the development environment with the immediate feedback of the

runtime environment. The result, called the Audicle, is an integration of a smart

editor, compiler, virtual machine, and debugger – all running in the same address

space, sharing data, and working together at runtime. We believe these types of

augmentation have the potential to fundamentally enhance the way we write, visu-

alize, and interact with audio programs. This chapter discuss the main components

94



CHAPTER 5. THE AUDICLE 95

of the Audicle, and show that it not only provides a useful class of programming

tools for real-time composition and performances, but also motivates a new type of

on-the-fly programming aesthetic one of visualizing the audio programming process.

5.1.1 Motivation

A perhaps simple but important question to ask here is: why investigate the pro-

gramming environment? We believe that the programming language and the en-

vironment it is used with fundamentally influence how we think about and write

programs. ChucK, as a programming language, provided a new way of reasoning

about time, data-flow, and concurrency in a programming language. The Audicle

is designed to enhance and complement these features, and to make them more

accessible, faster, and perhaps more enjoyable to use.

Debugger

Editor

Compiler

VM

Figure 5.1: Completing the loop. The Audicle strives to bridge runtime interactions
with development-time elements.

The Audicle differs from traditional environments in the following ways. Concep-

tually, it brings the editor and compiler into the runtime environment, in an effort

to support a greater level of interactivity in the programming process (Figure 5.1).

Secondly, it is tightly coupled with a programming language – in this case, ChucK.



CHAPTER 5. THE AUDICLE 96

This coupling leverages and enhances the desirable ChucK properties of precise tim-

ing and concurrency. This is different from systems like Max and Pure Data, where

the environment essentially is the language. The Audicle aims to complement the

language and enhances the ability to rapidly develop and visualize programs both

offline and on-the-fly. Thirdly, the Audicle embodies the aesthetic and mentality of

visualizing the process of programming and the state of the runtime system. The

various goals and considerations in the design are as follows.

• Context-sensitivity. A goal of the environment is to allow code to be clearly

entered and represented. Also, it should have some knowledge of the structure

and revision history of the program as well as runtime information (such as

program state) and use this information to aid the programmer to more easily

write code.

• On-the-fly Programming. On-the-fly programming is the practice of cod-

ing at runtime while the program is running. The Audicle aims to complete

the development/runtime loop by bringing the editor and compiler to the

virtual machine, and vice versa. By making them accessible to each other,

new and faster interfaces and paradigms for runtime audio programming may

emerge.

• Different views. Having different views of the same program can be very

useful to writing and fine-tuning code. The Audicle should allow a program

to be viewed and manipulated in many ways: as concurrent code, syntac-

tic/semantic representations, or in terms of timing and synchronizations. Ad-

ditionally, the Audicle is an observation and visualization of the process of



CHAPTER 5. THE AUDICLE 97

on-the-fly programming, supporting the potential to be useful as a general-

purpose performance or educational tool.

• Minimal. The Audicle provides a minimal interface, and relies on the under-

lying interactions of the language and the multiple viewing models to achieve

a great deal of expressiveness and power, without imposing a particular pro-

gramming style.

5.1.2 Related Environments

An environment, in the context of this investigation, is defined as a comprehensive

software setting in which programming and/or runtime control is carried out and/or

facilitated. There have been many environments developed for programming, per-

formance, and composition, as well as several environments not specifically intended

for audio and music that are also useful to examine.

Development environments provide a setting to write and edit programs at de-

velopment time, and often include a compiler and debugger. Examples include

graphical environments such as Max/MSP [60] and Pure Data [61], integrated de-

velopment environments (IDEs) for text-based languages such as Java and C/C++,

Nyquist [20], and SuperCollider [50], and software frameworks such as Ptolemy [41].

These environments allow code, flow graphs, and other programming constructs to

be entered, compiled, and run (in separate phases).

Runtime environments, on the other hand, provide an engine and a related set

of interface elements for manipulating parameters at runtime (and often in real-

time). The performance mode of Max/MSP, as well as Real-Time CSOUND [83],

and Aura [21]. These environments compute audio in real-time, taking in data from

input devices and UI elements, and may also display graphical or video feedback.



CHAPTER 5. THE AUDICLE 98

On-the-fly environments possess elements of both programming and runtime

systems and most importantly, the runtime capability to modify the structure

and logic of the executing program itself. Several existing environments possess

varying degrees of on-the-fly capabilities. Max and Pd give programmers ability

to change aspects of their patches at runtime. The SuperCollider programming

environment allows for synthesis patches to be sent and added to a server in real-

time, as well as engage in live dynamic coding via libraries like JITLIB [14]. Another

interesting system for runtime graphical and virtual-reality programming is Alice

[58], which allows users to create a virtual world, and to add and modify behaviors

on-the-fly using a high-level scripting language (Python in this case). This rapid-

prototyping graphical environment is notable for having no hard distinction between

development and runtime. Similarly, MATLAB [48], while not intended as a real-

time programming tool, has a command line that directly uses statements from the

language and embodies a similar immediately-run aesthetic.

5.2 Audicle Design

The Audicle is a graphical, on-the-fly audio programming environment based on the

semantics of on-the-fly programming and ChucK’s strongly-timed model. These lan-

guage feature are extendedin the sense they are also visualized. Thus, the Audicle’s

graphical aesthetic is given much consideration in the design: it is to be visually

meaningful, and open to customization. It aims to provide a set of tools and visual-

izations that can be combined into more complex configurations and usages. Much

of the information is conveyed by 3D shapes, which can be viewed from virtually

any viewpoint or distance, and rendered exclusively using 3D graphics (no external



CHAPTER 5. THE AUDICLE 99

windowing system is involved).

The Audicle makes no distinction between development and runtime: all com-

ponents are fully accessible at runtime. This integration is based on the ChucK

compiler and virtual machine augmented with a smart editor and interfaces for

viewing/manipulating concurrency, timing, and system state. The design philoso-

phy favors runtime cohesion of phases and visualizations of system state.

As in ChucK, data-flow and time are fundamentally decoupled. Also, the Au-

dicles architecture adopts a decoupled simulation model for virtual reality [69]. In

this model, the simulation can operate at an arbitrary rate independent of the

graphics rendering-rate, leading to smoother graphics and more flexibility in the

simulation algorithms. In the Audicle, audio synthesis, graphics, and simulation

are loosely-coupled, with the highest priority given to audio computations and the

virtual machine.

5.3 Faces of the Audicle

Out of the desire to provide a simple, graspable virtual environment and interface,

the various facets of the Audicle are mapped and displayed on the faces of a virtual

cube, called the Audicube (though it’s still unclear whether this was a good idea).

At any time, the user can interact with one face, and has the ability to move to

others faces by using hotkeys, graphical interface, and Audicle shell commands.

There is a command-line console (Figure 5.2) that can be invoked to appear over

the currently active face, allowing on-the-fly programming and other commands to

be executed.



CHAPTER 5. THE AUDICLE 100

3 5 6

4

2

current face1

previous face 3

5
2

1

audicle %> face editor;
audicle %> 2::second => dur later;
audicle %> until( now > later ) {
               machine.spork( trigger );
               100::ms +=> now; }
audicle %> _

1

 05:23:004now

Figure 5.2: The Audicle Console. The cube interface (left) can be used to graphi-
cally navigate the AudiCube. The command line prompt on the right accept text
commands.

5.3.1 The ShrEditor

This first face of the Audicle, the ShrEditor, is a place for the programmer to write,

organize, and listen to ChucK programs (Figure 5.3). On can open existing ChucK

programs and/or begin new ones. Code can be run (or sporked) by clicking the

green “S” circle at the top of the buffer. The code runs immediately, allowing the

result to be heard. Parse and semantic errors are displayed in pop-up boxes.

Once a shred is sporked, a numbered circle will appear on the right side of the

buffer window. This is a visual representation of a running version of the shred (the

number is the shred’s ID). Different versions appear under revision tabs, keeping

a revision history that the programmer can revisit (Figure 5.4). When a program

is modified, the ShrEditor will automatically create and track a new version. The

programmer can also drag a version to split it from from the initial buffer (Figure

5.5), and view it in its own buffer window.

When many buffer windows are open, it may be difficult to locate a particular

buffer of code (Figure 5.6). To facilitate this, the ShrEditor allows users to “drag and

throw” buffers, and literally forage through a cluttered environment (this doesn’t

necessarily help the clutter, but can help find a piece of code with less mouse

movements, plus the interaction is potentially cool to look at, especially for live



CHAPTER 5. THE AUDICLE 101

coding audiences).

Figure 5.3: The ShrEditor: a version-tracking on-the-fly editing interface

Figure 5.4: ”Grapes” represent running shreds, grouped by revision

5.3.2 VM-Space

The VM-Space is a useful face for quickly viewing the audio synthesized by ChucK

programs (Figure 5.7). The visualization is based on the sndpeek visualization

software [53]. Stereo and multichannel audio is mixed to mono before being visual-

ized. The blue line above renders the time-domain waveform. The green lines below



CHAPTER 5. THE AUDICLE 102

Figure 5.5: One can drag revisions to split text buffers

Figure 5.6: Many on-the-fly coding buffers

make up a waterfall plot of the short-time fourier transform (STFT). This informa-

tion is useful for debugging sound synthesis algorithms, allowing the programmer

to observe the sound, as well as a visual representation of its spectrum.



CHAPTER 5. THE AUDICLE 103

By clicking on the yellow sphere to the right side of the window, you can change

the type of the transform window (e.g., hann, hamming, blackmann-harris, or rect-

angular). Clicking on the red sphere displays the current window. By clicking and

dragging anywhere within the Audicle window, one can view the Fourier transform

from different angles.

Figure 5.7: VMSpace: Audicle face to visualize real-time audio and spectra

5.3.3 Shredder

The third face of the Audicle, the Shredder, gives a visual representation of the

shreds currently running in the ChucK Virtual Machine, as well as a summary of

statistics about shreds, updated in real-time.

Each shred is visualized as a separate colored sphere. The spheres rotate on

their own, at an angular velocity proportional to the number of virtual machines

instructions executed per second. By clicking and dragging anywhere within the



CHAPTER 5. THE AUDICLE 104

Audicle window, you can change your view of the spheres. When shreds are active

in the virtual machine, their corresponding spheres move in the plane of shredular

existence. Once a shred finished (or is removed from the VM), it leaves and floats

away into the distance (Figure 5.8).

By clicking on the green sphere in the bottom right of the Audicle window, the

programmer can view a textual list of shreds (both active and finished), as well

as real-time statistics about each shred (Figures 5.9 and 5.10). They include the

following information.

• the identification number assigned to the shred by the virtual machine.

• whether a shred is currently waiting or running. (Since the model in ChucK

is to compute between advancing time, it’s extremely rare to “catch” a shred

in a running state – unless it’s failing to advance time in a loop. This can be

useful for identifying hanging shreds.)

• the file or buffer name.

• where the code came from (e.g., from buffer, file, or network).

• number of VM bytecode instructions executed.

• number of times the shred has advanced time, also called activations.

• a ratio of VM instructions execute to activations.

• average control rate (dynamically computed).

5.3.4 Time and Timing

The Time ’n’ Timing (or TnT) face of the Audicle visualizes the real-time temporal

interactions of shreds currently running (Figure 5.11). Each row corresponds to a

shred, and each vertical spike represents when a shred “wakes up”, or is activated,



CHAPTER 5. THE AUDICLE 105

Figure 5.8: The Shredder: visualizing active and deactivated shreds (the latter
ascending towards viewer.

Figure 5.9: The Shredder: an Audicle face to visualize and monitor shreds



CHAPTER 5. THE AUDICLE 106

Figure 5.10: The Shredder: a top-down view

to compute. Using this face, it’s possible to gain an understanding of the relative

timing of shreds, without necessarily having to look at the code.

Figure 5.11: Time ’n’ Timing (TNT): Audicle face to visualize relative timing be-
tween shreds



CHAPTER 5. THE AUDICLE 107

5.3.5 Tabula Rasa

The original design of the Audicle included the Tabula Rasa face. Conceptually,

this face was intended to be a “blank slate” for rendering custom real-time graphics,

as specified in ChucK code. As of this writing, this face is currently unimplemented.

5.4 Audicle Implementation

The Audicles implementation consists of a graphical rendering engine, a low-latency

I/O and networking framework, a minimal windowing system, and internal logic

with interface into the ChucK virtual machine. The implementation (in C/C++,

with some high-level components are written in ChucK) reuses many data structures

from ChucKs compiler and virtual machine. All components run in the same address

space.

The graphics-rendering engine of the Audicle (implemented in the OpenGL API)

runs on Mac OS X, Linux, and Windows. Using 3-D graphics exclusively with real-

time audio synthesis can be highly feasible. With even modest graphics hardware

support, the vast majority of the rendering can take place on the GPU (graphics

processing unit), leaving the vast majority of CPU cycles for audio-related tasks.

Using custom-built, minimal user interface elements, we can handle user-interface

events more efficiently than the windowing sub-system, and with potentially bet-

ter responsiveness. Because the rendering-rate stays relatively constant (at 30+

frame/second), the CPU usage stays constant and is less subject to large bursts due

to user interface processing. Also, 3D graphics is flexible. It can emulate 2D when

needed, and also provides significant viewing freedom.



CHAPTER 5. THE AUDICLE 108

5.5 miniAudicle

While the Audicle presents several useful visualizations and interactions, it can be

somewhat difficult to use for writing code in longer sessions (at the time of this writ-

ing). This motivated the miniAudicle [66], an GUI-oriented, integrated, graphical

environment for developing programs using the ChucK (Figure 5.12). miniAudicle

features a text editor, an embedded virtual machine, a virtual machine monitor, a

stdin/stderr monitor for displaying log and error messages from the virtual machine,

a ChucK shell, and support for on-the-fly programming commands like add, remove

and replace. miniAudicle also supports creation and usage of typical graphical user

interface widgets directly from ChucK code, for modifying program behavior and

parameters at runtime. Currently, the miniAudicle uses the Cocoa API in the Mac

OS X operating system, and WxWidgets under Windows and Linux, to render its

graphical user interface.

5.6 Discussion

The Audicle is intended to be at once a development environment, a runtime en-

vironment, a visualizer, as well as a out-of-the-box on-the-fly programming perfor-

mance platform. As Andrew Appel once noted, it is, in a sense, “program monitor-

ing as performance art”.

On-the-fly programming opens the potential for interesting interactions and vi-

sualizations in the audio programming process. Through the different faces in the

Audicube, the programmer, composer, and performer can develop code in a version-

tracking editor, and simultaneously visualize its behavior in terms of concurrency,

timing, and its runtime interactions with the rest of the system.



CHAPTER 5. THE AUDICLE 109

Figure 5.12: miniAudicle: a lightweight integrated development environment for
ChucK and on-the-fly programming.

The integrated, on-the-fly environment of the Audicle completes the development-

to-runtime loop. The expressive power of coding is made available for runtime

manipulation. In turn, on-the-fly information from runtime aids the development

process, expanding the powers of both. We gain the advantages of immediate feed-

back in an always-modifiable continuum.

Additionally, the Audicle encourages the rapid prototyping of audio program-

ming mentality one involving continuous exploration and experimentation. The

Audicle further motivates the notion of runtime programmability as a new form

of performance aesthetic, where code is used to expressively control audio synthe-

sis/analysis and the process is conveyed to the audience. It also provides a platform

where a degree of virtuosity can evolve. Due to its visual nature and immediate



CHAPTER 5. THE AUDICLE 110

feedback, the Audicle can also be a useful compositional environment, where the

composer can incrementally work on concurrent parts of a program piece. Similarly,

it could function as an educational tool for teaching synthesis, audio programming,

and multimedia. Potentially, the Audicle is the beginning of a new class of envi-

ronments for developing programs on-the-fly, as well as for visualizing the audio

programming process.

We look forward to experimenting with new interfaces for on-the-fly editing and

code control, and new types of visualizations. Also, future work can investigate

the technical and aesthetic aspects of collaborations between remotely connected

Audiclae (plural form of Audicle), as well as devise new on-the-fly programming

systems and environments (see Future Works in the Conclusion chapter).



Chapter 6

Applications and Evaluations

The ChucK programming language has found a variety of applications in sound

design, composition, performance, and pedagogy and continues to explore new areas

of use. This chapter describes a number of endeavors to which ChucK has been

applied, and evaluates the impact and effectiveness in those cases.

To provide a context for applications, for those are are curious, we first trace

the evolution of the ChucK language and its various milestones in development,

usage, pedagogy, and performance. Section 2 discusses using ChucK as a teaching

tool, particularly in the Princeton Laptop Orchestra, at Stanford University, and

other institutions. Section 3 examines ChucK as a software tool for composition and

real-time performance, focusing on works in on-the-fly programming, sound design,

building and testing interactive systems, and again in the context of the laptop

orchestra. Some pieces created using ChucK are described. Feedback from the

community and from students are presented. Finally, Section 4 discussed additional

applications and potential new directions.

111



CHAPTER 6. APPLICATIONS AND EVALUATIONS 112

6.1 Evolution of ChucK

The ChucK programming language has evolved rapidly since its inception in 2002

(Figure 6.1). It was first presented at the 2003 International Computer Music

Conference in Singapore [87]; the first ChucK live coding performance occurred

shortly afterwards; ChucK source code (version 1.1, codename: Frankenstein) was

released under the General Public License (GPL) in Summer of 2004. In the same

year, on-the-fly programming using ChucK and the Audicle were also introduced

[89, 90].

2005 (Figure 6.2) saw a redesign of the language which supported arrays, object-

oriented programming, events, as well as support for Open Sound Control [96],

controller-mapping [94], and human-interface devices (HID). ChucK/Audicle were

being presented in various venues(Vancouver, Barcelona, Rome, Beijing) and the

development team had grown to more than a dozen programmers, testers, and

documenters. Princeton Laptop Orchestra was founded by Dan Trueman and Perry

Cook, and kicked off in the fall of 2005, developed and instructed by Trueman, Cook,

Scott Smallwood, and the author. This provided a intense platform for ChucK

pedagogy, development, as well as deployment in compositions and performances.

From 2006 to 2008 (Figure 6.3 and 6.4), the time of writing this thesis, has seen a

intensified usage of ChucK both at Princeton University, Stanford University (where

the author started on the faculty of the Center for Computer Research for Music

and Acoustics, or CCRMA, in 2007, while continuing to write this document), and

in the community at-large.

New features continued to make their way into the language, and new experi-

ments were carried out, including building graphical interfaces in the Audicle cou-

pled to ChucK code for dealing with topics such as sound synthesis and audio



CHAPTER 6. APPLICATIONS AND EVALUATIONS 113

DSP [16, 72, 57] and networking [94] and the integration of ChucK into audio

analysis/synthesis frameworks, notably TAPESTREA [54]. Live performances took

place at very different scales and venues, ranging from solo and duo performances,

to quartets and orchestras (15 to 20 laptops).

6.2 Teaching ChucK

Many opportunities have been taken to employ and assess ChucK as a pedagogical

tool for teaching sound synthesis/analysis, physical modeling, programming, and

computer-mediated instrument building and performance. As the timelines (Figures

6.1, 6.2, 6.3, 6.4) document, ChucK has been presented in various forums and to

different types of audiences—in conference presentations, workshops, demonstrative

performances, and class. By far, however, our most intense and first-hand user

study and experience with teaching ChucK first came with the Princeton Laptop

Orchestra (PLOrk) [95], and subsequently at CCRMA and in the Stanford Laptop

Orchestra [86]. The results suggest that ChucK is highly effective in teaching both

sound synthesis and programming itself to both seasoned and novice programmers.

This section documents the experiences of teaching ChucK at Princeton and at

other institutions and evaluates the results. We begin with ChucK in the Prince-

ton Laptop Orchestra and then move to other teaching arenas. We examine and

evaluate the laptop orchestra classroom and its new approaches and tools for teach-

ing, especially in the context of using/teaching ChucK. In doing so, we present an

integrated, naturally interdisciplinary teaching/learning environment for computer

science, music, and performance. In such an environment, the learning and in-

ternalization of technical knowledge happens symbiotically with the acquisition of



CHAPTER 6. APPLICATIONS AND EVALUATIONS 114

Fall 2002
Initial design

Spring 2003
Prototype 

implementation

May 2003
Ge's generals 

exam: "ChucK" September 2003
ChucK presented at 

ICMC 2003 in Singapore
November 2003

Perry and Ge debut as 
ChucK Double Projection 

Duet at LITSK 2003 in 
Princeton

Spring 2004
TOPLAP was 

formed

Spring 2004
Audicle design, 
implementation 

beganJune 2004
On-the-fly Programming 

presented, On-the-fly 
Counterpoint performed at 
NIME 2004 in Hamamatsu, 

Japan.

June 2004
chuck-1.0 (frankenstein) 
released on MacOS X, 

Linux, and Win32

Fall 2004
Synthesis Toolkit 
(STK) ported to 

ChucK

October 2004
ChucK presented at ACM 
Multimedia 2004 in New 

York City;

October 2004
ChucK Double Projection 
premiered at FFMup in 

Princeton

November 2004
ChucK mailing lists 
membership: 100

November 2004
Audicle presented at 
ICMC 2004 in Miami

November 2004
Audicle faces: ShrEditor, 

VM-space, Shredder, 
Time/Timing

September 2004
Phil and Ge 

presented ChucK at 
Share in NYC

to 2005

Figure 6.1: Timeline: evolution of ChucK, 2002-2004.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 115

February 2005
ChucK presentation and 

workshop at Transmediale 
2005 in Berlin; 10-person 

TOPLAP live coding 
performance at Club Maria 

(various systems)

May 2005
ChucK workshop at NIME 

2005 in Vancouver, Canada; 
ChucK Controller Mapping 

Techniques presented 
(Ge, Perry, Ananya, 

Ajay, Adam)

August 2005
ChucK redesign;

chuck-1.2 (dracula) released, 
supporting arrays, classes, 

events, OSC, and additional 
new language features

September 2005
Princeton Laptop Orchestra 

(PLOrk) kicked off! 
Semester one, teaching ChucK to 
15 undergraduate freshpersons

September 2005
Designing ChucK and  
Co-Audicle presented 

at ICMC 2005 in 
Barcelona, Spain

September 2005
"Nick Collins vs. Ge 
Wang" Live Coding 
Bout at Off-ICMC in 

Barcelona
October 2005

new Audicle face: 
Elcidua the Dancing 

Dude

October 2005
ChucK/Audicle 

presented at University 
of Rome, Italy

October 2005
ChucK/Audicle presented 
and performed at Central 
Conservatory of China / 

MusicAcoustica 2005 and 
Beijing University

November 2005
Perry + Ge Double 

Projection Duet at FFMup, 
VOMID controller premiers

December 2005
ChucK gained HID support; 

ChucK manual released

Christmas 2005
Audicle (prototype) and 

miniAudicle (OS X) initial 
release

to 2006

to 2004

Figure 6.2: Timeline: evolution of ChucK, 2005.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 116

January 2006
Princeton Laptop Orchestra 

Debut Concert; 7 pieces 
employed ChucK, including On 

the Floor and  Non-Specific 
Gamelan Taiko Fusion

January 2006
new Audicle face: 

Non-Specific Groove

February 2006
Princeton Laptop 

Orchestra 
Semester 2 beganSpring 2006

ChucK integrated into 
Tapestrea; initial 

pieces: Zoo and Loom

February 2006
ChucK/Audicle 

presented at dorkbot-
nyc

February 2006
ChucK add multi-channel 

audio support, 
broadening possibilities, 

including for PLOrk

April 2006
Princeton Laptop 

Orchestra Premiered at 
Richardson Auditorium in 

Princeton

April 2006
Graham Coleman 

presented ChucK at 
dorkbot-atlanta

April 2006
Perry and Ge Double 

Projection Duet 
performed at Penn 

State University, Cross 
Currents Festival

April 2006
Week-long ChucK 

workshop + seminar + 
performance at the School 

of the Art Institute of 
Chicago; ChucK presented 

at dorkbot-chicago

May 2006
Princeton Laptop 

Orchestra Concert: "PLOrk 
in the Round", new ChucK 

pieces: Like a Breeze 
Brings..., Clix, and ChucK 

ChucK Rocket

May 2006
new Audicle faces: Skot 
Machine, ChucK ChucK 

Rocket!!!

May 2006
Princeton Laptop 

Orchestra Performs at 
Dartmouth College

June 2006
ChucK mailing lists 
membership: 350

August 2006
Perry + Ge performs 

"On-the-fly Counterpoint" 
at SIGGRAPH 2006 Art 

Gallery in Boston

to 2005

...

Figure 6.3: Timeline: evolution of ChucK, 2006.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 117

Fall 2006
Perry and Ge directed 

Princeton graduate seminar 
on "Composing for Laptop 
Orchestra".  ChucK heavily 

used as teaching tool

Fall 2006
Ge also taught DSP course at 

Dartmouth Electro-acoustic 
Music Program.  Weekly 

commute

October 2006
PLOrk Debuts in NYC at the Ear to 

the Earth Festival.  New 
environment-oriented works, ChucK 
pieces included Take it for Granite, 

Cirrus Pattern, and Crystalis

November 2006
ChucK workshop, Loom 
premiers at ICMC 2006 

in New Orleans

November 2006
Rebecca and Ge 

developed and premiered 
PLOrk Beat Science

November 2006
PLOrktastic Chamber 

Music premiers in 
Princeton at ffmup

January 2007
Rebecca and Ge developed 
SMELT, a toolkit for building 

new instruments from the 
physical laptop

January 2007
PLOrk Winter 

Concert, 10 works 
used ChucK February 2007

4th PLOrk semester 
began, with guest 

director Luke Dubois

2006 continued

to be continued...

April 2007
Rebecca and Ge developed 
the Unit Analyzer (UAna) for 

combining audio analysis 
and synthesis in ChucKMay 2007

PLOrk Spring Concert, 
performance of TBA, premier 

of orchestral live coding
Fall 2007

Ge started on the faculty at 
Stanford University/CCRMA; 

continuing to work on this 
document...Spring 2008

Stanford Laptop Orchestra 
was founded.

Figure 6.4: Timeline: evolution of ChucK, 2006-2008.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 118

aesthetic and artistic awareness; there is only one explicit goal: learn to make com-

pelling computer-mediated music together in an academic setting; all other learning

happens ”along the way”. We believe this is an exciting new environment where

the learning of interdisciplinary knowledge is not only natural, but also inevitable

(and fun).

6.2.1 Princeton Laptop Orchestra

In fall of 2005, PLOrk commenced in its inaugural semester, instructed by Dan

Trueman, Perry Cook, Scott Smallwood, and the author [78, 77, 71, 95]. This

first-of-its-kind ensemble and course consisted of 15 independent laptop/six-channel

speaker array stations programmed and controlled by 15 undergraduates freshmen,

to whom we taught Max/MSP and ChucK. The students entered the class with no

prior programming experience. However, over the following 4 months, we covered

topics ranging from sound synthesis/design to programming to controller mapping

and live computer-mediated performances. The students were “hooked” on ChucK

from the beginning, and while we did cover advanced topics (such as object-oriented

programming), all the students internalized the language to the point they can

comfortably focus on creating compositions and performances.

For example, an early assignment (3rd week) asked the students to build a gen-

erative drum machine using ChucK, employing the timing and concurrency mech-

anisms in the language, and perform it using high-level on-the-fly programming

(controlling existing component programs in real-time). We were extremely pleased

to discover the students delivered quality works that demonstrated both techni-

cal comprehension and creative zeal. Subsequent assignments, including trio/duo

performances, creating a soundscape, met with similar enthusiasm and success. De-



CHAPTER 6. APPLICATIONS AND EVALUATIONS 119

Figure 6.5: PLOrk class in session.

tailed descriptions of representative ChucK assignments are reproduced in the next

section.

Much of the success was undoubtedly due to the sheer creative will and energy

of the students (they all were fantastic), at the same time it also proved that ChucK

can be a viable and beneficial teaching tool. Below is a highly encouraging quote

(reproduced from the README to the drum machine assignment) from Anna, a

student in the first PLOrk class (and a world-class cellist):

... However, when everything worked the way it was supposed to, when

my spontaneous arrangement of computer lingo transformed into a mu-

sical composition, it was a truly amazing experience. The ability to



CHAPTER 6. APPLICATIONS AND EVALUATIONS 120

control duration and pitch with loops, integers, and frequency notation

sent me on a serious power trip.

Pillow and Mat

6-channel 
Hemispherical 

Speaker

Laptop 
and Rack

PLOrkers
(at ease)

Figure 6.6: PLOrk setup (individual stations).

It wasn’t all smooth sailing, of course, a multitude of bugs/features were dis-

covered, and a lot of on-the-fly fixing took place. But no one got discouraged, and

we introduced a lot of features and bug fixes (and new bugs) as a result. Also,

we taught using Max/MSP at the same time, which turned out to be pedagogi-

cally fruitful, since it exposed two drastically different paradigms. This was also

practically because Max and ChucK tended to crash in different places, and having

options for the task-at-hand is usually good.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 121

Figure 6.7: PLOrk setup (minus humans).

6.2.2 Assignments

Play with ChucK!

In this first assignment, the goal was to ease everyone into the language and envi-

ronment and to give them a creative space in which to experiment. The assignment

read thus:

1. Run the examples given (don’t hesitate to post/email questions).

2. Open up a few programs (try using TextEdit on OS X, or WordPad on Win-

dows) and get a general idea of the code. Try modifying some of the param-

eters, save the file (perhaps under a different name), and run it with ChucK.

Does the result sound simlilar to what you expected?



CHAPTER 6. APPLICATIONS AND EVALUATIONS 122

3. Create two ChucK programs (of arbitrary length), either using one of the

examples as a model or starting from scratch; One program should generate

sound(s) or music that is “rhythmic”. the other program should generate

sound(s) or music that has little or no “rhythm”. you define what “rhythmic”

means. We will play these programs together in class.

4. Turn in the programs with a short README file that explains the 2 programs

you have created and any interesting experience or problems you encountered

in their making.

PLOrkers
(in position)

Perry
(at ease)

Figure 6.8: PLOrk in action.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 123

Drum Machine

This second assignment turned out to be successful in allowing the participants to

understand the main ideas of the language (time and concurrency) while operating

within a familiar and creative framework.

1. Create a drum machine using multiple shreds - play them using on-the-fly

commands

(a) Experiment with playing the OTF examples using on-the-flly program-

ming commands (+, -, =, –, etc)

(b) Find drum samples (or samples of other percussive sounds) that you like;

each sample should only be a single strike (and not a loop); you may to

Figure 6.9: PLOrk rack: audio interface, amplifiers, power conditioner, Teabox.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 124

edit them (audacity or other sound editor); this need not take a long

time, but do pay attention to individual and collective quality and feel

of the sounds, as that will make a big difference in the final result.

(c) Put these files in a folder (your chuck programs will refer to these files)

(d) If possible, credit the source of the sample in your README

(e) Make a shred for each drum sound (feel free to base on the examples)

(f) Choose a tempo that all shreds should agree on (.5::second => T;)

(g) Synchronize to this period at top of each file (T - (now % T) => now;) in

certain cases, it might make sense to control more than one drum sound

in a shred (like if two sounds always go together). In general, however,

you should split up the drum machine so that you can independently

control each component.

(h) (optional) Add additional parts (drone, melody, bassline, etc) if you like,

but that is not required - focus on getting the percussive parts done first.

(i) Practice playing the drum machine you created using on-the-flly pro-

gramming commands (+, -, =, –, etc)

(j) Have fun!

2. Write a short README text file that describes what you did and any inter-

esting problems or challenges you encountered

Soundscape

• Create/compose an ambient soundscape using ChucK. (This will further aug-

ment your arsenal of sounds for your final projects) The soundscape should be



CHAPTER 6. APPLICATIONS AND EVALUATIONS 125

coherent and consistent within SOME unified environment/idea/framework of

your choosing, for example:

• Cities of Earth 2049

• The Deep Ocean

• Violent industrialization

• Post-apocalypse landscape

• Charlie and The Chocolate/Hoagie Factory

• Dream of fields (and waterfalls and bees and birds and winds)

• (dream up your own)

• Guidelines:

– at least 10 different components

• can be mixture of synthesized or processed sounds

• can be long or short in duration (a mixture is often good)

• soundfiles: use only short soundfiles (shorter than 5 seconds)

• layer the soundscape in separate chuck programs

• use OTF to control the content and the texture of the world you

create

– try to identify places in your programs where functions might be helpful

(and use them)

– score/script a 4-10 composition using these sounds (in text/graph/timeline

or whatever else)

– in your README, describe the unified environment/idea behind your

soundscape



CHAPTER 6. APPLICATIONS AND EVALUATIONS 126

• Optional:

• interlocking rhythms

• harmonic and melodic ideas

• controllable via MIDI

15 laptops,
90 independently 

addressable 
speakers

Wireless LAN Conducting Area 
(optional)

Figure 6.10: PLOrk setup, onstage at Taplin Auditorium, Princeton.

Trio and Duo Performance

Twice in that first semester of the laptop orchestra, the students formed trio and

duo ensembles to create and perform a computer-mediated work. The first occas-

sion was in class, the second took place in the PLOrk Debut Concert in January

2006, in Taplin Auditorium in Princeton University. A great variety of software and



CHAPTER 6. APPLICATIONS AND EVALUATIONS 127

hardware devices were employed, ranging from sensors (FSR’s, floor tiles, accelerom-

eters, light sensors), WACOM tablets [45], MIDI-based keyboards and drumpads,

to software for sound synthesis, controller mapping, live audio processing of voice

and acoustic instruments, on-the-fly programming, and networking via OSC. It was

intense but since no one was killed, it was also immensely rewarding.

6.2.3 Results and Evaluation

The following results and observations were concluded from teaching ChucK in

PLOrk:

• Every student became avid and skillful ChucK programmers. As mentioned

before, advanced topics such as object-oriented programming and networking

were not included in the main ChucK curriculum, though several students

learned about them for various projects. Several students still actively use

ChucK. Some of the initial students are now Juniors and graduating Seniors,

still using ChucK, taking PLOrk again. One is completing his 7th semester

in PLOrk, writing his senior thesis in Music using ChucK.

• The language was straightforward to learn, and can be highly effective in

teaching programming concepts as well as sound synthesis. In fact, the two re-

inforced each other. Perhaps having a immediately perceivable audio/musical

feedback when programming allowed the student to more easily focus the task

as hand, instead of programming for programming’s sake.

• No prior programming experience was required. Nearly all students came into

the class without such experience and all become adept in programming.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 128

• ChucK’s time and concurrency model was natural to understand. Mandatory

manipulation of time in the language in order to generate sound was strong and

useful mechanism which provides a crucial understanding of the relationship

between time and sound in programming.

• The non-preemptive concurrent programming model was highly amenable to

expressing parallelism without having to worry nearly as much about race

conditions, deadlock, and nondeterminism. Coupled with the timing mecha-

nism, it made the topic of concurrency manageable to teach and learn in an

introductory course.

• Finally, we were able to teach the language without sacrificing flexibility or

programming concepts. We covered the basics of procedural programming

plus ChucK timing, concurrency, and sound synthesis. We believe this rein-

forces useful programming concepts and habits.

Here is an e-mail from one of the students after taking PLOrk:

“Computer Science 126 is ridiculously easy after all my chuck ex-

perience... I finished our first programming assignment in like twenty

minutes. Just thought you, Skot, PRC, and D. True would like to know

that PLOrk really did teach us at least a little valuable QR.” — Brandon

Additionally, we found the order of the presented topics to be reasonable and

effective:

1. types, variables, values

2. operators



CHAPTER 6. APPLICATIONS AND EVALUATIONS 129

3. control structures

4. importance of time in audio programming

5. functions

6. concurrency

7. event-driven programming

8. (advanced topics) object-oriented programming

9. (advanced topics) networking

Additional Feedback

Here are some additional quotes reproduced from README files turned in with

assignments.

“It was so exciting to figure out how to control the exact rhythm

produced by the shred, and I started working out rhythmic patterns

on scrap paper in the form of music notation and then transferring it

mathematically to the shred composition itself.

I really like the on-the-fly command system as well. It may have

driven my roommate crazy, but I was definitely jamming the whole way

through. The only real problem with this assignment was knowing when

to stop and get on with the rest of my work. This is so much better

than memorizing French verbs.” — Anna

“This project was extremely fun. I did not use delay statements;

instead I used IF statements with each measure being 16 beats. This



CHAPTER 6. APPLICATIONS AND EVALUATIONS 130

way I could choose which sounds to play at what times and it is much

easier. I decided to use bongos, because they sound wicked. I put

together some rhythms, played them together, found out that they were

not synchronized, decided that it sound way better that way, and so

on and so forth. There weren’t any troubles at all creating these files.

There are 11 in total.” — Bryan

Figure 6.11: Visualizing sound in real-time.

6.2.4 Additional Courses

At the time of this writing (2008), several institutions have adopted ChucK into their

teaching curriculum, including Princeton University (in Computer Science and Mu-

sic), California Institute of the Arts, George Institute of Technology, McGill Univer-

sity, University of Victoria, UC Santa Barbara, and others. At Stanford University,



CHAPTER 6. APPLICATIONS AND EVALUATIONS 131

several full courses have used ChucK as the primary software platform, including

“Fundamentals of Computer-Generated Sound”, “Compositional Algorithms”, and

“Composing, Coding, and Performance with Laptop Orchestra”.

6.3 ChucK in Performance and Research

6.3.1 Performance in Laptop Orchestra

Here are some pieces composed, implemented, and performed in ChucK, including

some interfaces built using the Audicle and ChucK.

On-the-fly Counterpoint This piece (Figures 6.12, 6.13) is a study of the tech-

nical and aesthetic aspects of on-the-fly audio programming for synthesis and per-

formance. The performers (Perry and Ge) use the new ChucK synthesis language,

which supports real-time, sample-synchronous, concurrent audio programming, and

a highly “on-the-fly” style of programming, in which the composer — performer

—programmer augments and modifies multiple programs while they are running,

without stopping or restarting.

“On-the-fly Counterpoint” begins with a blank ChucK program. As part of the

performance, we project the entire process on the screen for the audience to see and

follow. We construct the counterpoint piece-by-piece in real-time, using the facets

of concurrent audio programming and on-the-fly programming in ChucK. Contra-

puntal simultaneities can be separated and compartmentalized into autonomous,

concurrent entities. We can program and reason about each entity independently,

as well as interact with other entities and with the program as a whole.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 132

This is part of our ongoing investigation into using code as an interactive and

expressive musical instrument.

  while( 1 ) 
      1::second +=> now;
  ---
  chuck vm %> sporking shred 'foo'

chuck vm status:
---

shred 'foo' : active : 3m5s 
shred 'bar' : suspended : 10m20s

computer

projection

speaker

projector

duo schematic

onstage

Figure 6.12: A on-the-fly programming schematic.

Non-Specific Gamelan Taiko Fusion Composer: Perry Cook and Ge Wang;

conductor: Perry Cook. This piece is an experiment in human controlled, but ma-

chine synchronized (Figure 6.14) percussion ensemble performance. Various percus-

sive sounds are temporally positioned by PLOrk members, and the piece gradually

transitions from tuned bell timbres to drums as the texture and density grows. The



CHAPTER 6. APPLICATIONS AND EVALUATIONS 133

Figure 6.13: The score for On-the-fly Counterpoint.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 134

interface consists of a networked step sequencer implemented in the Audicle with

ChucK as the audio engine (Figures 6.15, 6.16, 6.17).

mothership

clients

wireless 
access point

mothership tightly 
synchronizes hosts:
centralized timing

human assert musical 
control at each client; 
decentralized input

OSC messages over 
high-performance LAN

Figure 6.14: Network configuration (partial ensemble).

Interface

Conductor

Figure 6.15: Non-Specific Gamelan Takio Fusion performed in PLOrk.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 135

now

palette

Figure 6.16: Non-Specific Groove: a network-synchronized colorful step sequencer
implemented in the Audicle. The green highlight moves across the squares in real-
time, as coordinated by the ensemble’s master machine. Each color is associated
with a different sound. All sound synthesis and networking written in ChucK.

CliX Composer and conductor: Ge Wang. In this piece, human operators type

to make sounds, while their machines synthesize, synchronize, and spatialize the

audio. Every key on the computer keyboard (upper/lower-case letters, numbers,

symbols) is mapped to a distinct pitch (using the key’s ASCII representation) and

when pressed, emits a clicking sound that is synchronized in time to a common

pulse. A (human) conductor coordinates frequency range, texture, movement, and

timing (Figure 6.18).

On the Floor Composer: Scott Smallwood. The program notes read thus: You

will notice when you walk into a casino that the machines are all tuned to the

same key: a c-major chord. This chord floats around the space, in and out of every



CHAPTER 6. APPLICATIONS AND EVALUATIONS 136

time
goto next line

goto next line

Figure 6.17: A possible sequence of suggested colors (texture) and density constitute
the score, which the conductor visually conveys to the ensemble.

Figure 6.18: CliX in performance: the orchestra surrounds the audience (below)
from around the balcony at Chancellor Green Library; conductor guides the direc-
tion of the performance.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 137

Figure 6.19: A interface for On The Floor, built in the Audicle, sound synthesis in
ChucK.

crevice, constantly arppeggiating, humming, droning, twittering echoing, sometimes

incorporating snippets of melody. This happy drone soothes the nervous customers

as they slowly drop their money into the machines. They create a sea of c-major,

each and every one of them, pressing buttons on the machines, credit after credit, all

day and all night. The virtual gambling interface was implemented in the Audicle

(Figure 6.19).

a breeze brings... Composer: Scott Smallwood. This prelude came about as a

result of several mornings of hacking in ChucK. As I listened to the wind chimes

outside my door, I began to realize that they were influencing the intuitive process

of my experimentations. Before long I had created some algorithmic instruments

that sounded rather nice together. This piece grows slowly out of the acoustic



CHAPTER 6. APPLICATIONS AND EVALUATIONS 138

soundscape of the space, and then slowly subsides back into it, like a very slow

breeze.

ChucK ChucK Rocket!!! Composers: Scott Smallwood and Ge Wang (addi-

tional graphics and animation programming by Ananya Misra). This game piece is

a study that reflects our interest in creating games scenarios in which the sounds

produced are part of an interactive sound composition. In this game, based on Chu

Chu Rocket, mice are released onto a large grid. Each player has a piece of this

grid, and is able to cause the running mice to change direction by placing arrows

in their path, and they are also able to place objects in their path, which make

sound when the mice run over them. Thus, a player can create a kind of instrument

with their piece of the grid, trapping groups of mice into loops that contain sound

objects of their choosing. They can also send mice to and receive mice from their

neighbors through network portals, thus the mice are shared throughout the entire

group. The interface was implemented in the Audicle, with ChucK as the audio

engine (Figures 6.20 and 6.21).

Take it for Granite Composer: Perry Cook. This sonic landscape was mined

from recordings of stone sculptor Jonathan Shor’s working of a large piece of granite.

Perry recorded him drilling, placing shims, tapping the shims, and the wonderful

sound of millions of years of energy being released as the stones split. The PLOrk

players manipulate these sounds via a ChucK program that allows them to change

proporties of the sounds. Eventually, a rhythmic pattern emerges (the striking)

wherein the individual laptop orchestra players control both texture and synchro-

nization.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 139

Mouse
Sound object

Teleport to 
adjacent machine

Arrow

Figure 6.20: ChucK ChucK Rocket: game board as seen by one of the players.

Figure 6.21: ChucK ChucK Rocket: from another viewpoint.

Crystalis Composer: Ge Wang. This is a sonic rumination of crystal caves in

the clouds, where the only sounds are those of the wind and the resonances of the

crystals. It uses two simple instruments called the crystalis (based the Banded

Waveguide synthesis technique [25]) and wind-o-lin. These instruments make use of



CHAPTER 6. APPLICATIONS AND EVALUATIONS 140

the laptop keyboard (which controls pitch and resonance) and the trackpad (which

the players “bow” in various patterns to generate sound). See instrument instruc-

tions (Figure 6.22).

TBA Composer: Ge Wang. On-the-fly programming, or live coding, is the prac-

tice of writing code in real-time to create music. This piece is our first attempt at

large-scale, group live coding (15 humans/laptops) to create a single sound world.

Players, divided into squadrons, follow instructions from a conducting live coder,

who issues directives both in the form of code fragments (in the ChucK language)

and sentence fragments (in the English language). In keeping with the crucial live

coding tenet of revealing the process to the audience, the conducting machine will

be projected 1) for all to observe and 2) as a means of instructing the ensemble.

Players begin with a simple code template (in the miniAudicle environment),

which they modify over the course of the performance to create and sculpt sound.

Operations include code modifications, adding code (+) to be rendered into sound,

or replacing existing code (=) with updates. “Rally points” are set throughout the

template to coordinate group coding bombardments. The piece alternates between

detailed code changes and sections in which players are encouraged to improvise.

In on-the-fly programming, the code is the instrument; and it is played via the act

of programming. Also, we never really know what’s going to happen next (expect

glorious disasters). Until it is performed, the piece remains TBA to all, including

the players (Figure 6.23).

PLOrk Beat Science Composers: Rebecca Fiebrink and Ge Wang. PLOrk Beat

Science (PBS) is an electro-acoustic structured improvisation for 1 flute, 2 humans,

5 laptops, 5 pressure-sensitive finger drum pads, and 30 audio channels distributed



CHAPTER 6. APPLICATIONS AND EVALUATIONS 141

A

Z

Q

X C V B

S D F G

W E R T

The Crystalis & Wind-o-lin
A laptop crystal bowing aparatus + "wind" instrument by Ge Wang

C D E

F A

B C+1 D+1

G

< >

1 2 3 4 5 6 7 8 9 0

1 2 4 8 16 320.50.250.1250.0625

Pitch

Resonance (wind only)

Register

lower raise

Keyboard Control

Trackpad / Mouse

put energy into one of four systems
(by direction and at the pitch specified by

the keyboard controls above)

N

circling circling
(N times)

spiral
(outward)

spiral
(inward)

oscillate figure 8

press and hold up to 
4 (depending on number
of output audio channels) 
pitches from above, then
initiate 'bowing' pattern.

general instructions

Figure 6.22: Crystalis: keyboard and trackpad mappings.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 142

Figure 6.23: TBA: orchestral live coding.

among 5 hemispherical speakers. PBS was first created and performed in 2006 as a

Princeton Laptop Orchestra (PLOrk) chamber piece, by Rebecca Fiebrink and Ge

Wang. Drawing from our work with PLOrk and taking inspiration (and 2/3 of our

name) from Tabla Beat Science, PLOrk Beat Science reflects our interest in explor-

ing new hybrid performances involving live acoustic instruments (flute, processed)

in electronic chamber music settings (via laptops and hemispherical speakers, which

radiate sound outwards from each localized instrument), creating crazy interactive

beat machines, crafting new performance software and expressive controller map-

pings, and simply making music together (Figure 6.24, 6.25, 6.26).

Joy of Chant Composers: Rebecca Fiebrink, Ge Wang, and Perry Cook. A choir

of simple (but glorious) singing synthesis models is controlled in real-time by players

wielding joysticks and playing the laptop keyboard.

6.3.2 S.M.E.L.T.

The Small Musically Expressive Laptop Toolkit (S.M.E.L.T.) is an open-source

toolkit to facilitate rapid development of and experimentation with expressive musi-

cal interfaces built on the laptop’s native physical input capabilities (e.g., keyboard,



CHAPTER 6. APPLICATIONS AND EVALUATIONS 143

Figure 6.24: PLOrk Beat Science: Rebecca Fiebrink and Ge Wang.

6-channel 
hemispherical 

speaker

"score"

TriggerFinger 
controllers

machines are 
tightly 

synchronized via 
closed network

1 flute, 2 humans, 
5 laptops, and 30 
audio channels

PLOrk Beat Science

Figure 6.25: PLOrk Beat Science: 1 flute, 2 humans, 5 laptops, 5 TriggerFingers,
30 audio channels.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 144

stage front
(audience also can be situated 

around the setup)

all equipment shown will be provided by performer

7' to 9'

power requirement: one 120V AC outlet with extension cord

hemispherical 
speaker

plork station:
rack and laptop

subwoofer

performers' mat

mic/stand 
for flute

PLOrk Beat Science (stage plan)
Rebecca Fiebrink and Ge Wang

Figure 6.26: PLOrk Beat Science: floor plan.



CHAPTER 6. APPLICATIONS AND EVALUATIONS 145

mouse, motion sensing, microphone). [27] It’s implemented in ChucK, and is based

much on work with the Princeton Laptop Orchestra.

The code is freely available (http://smelt.cs.princeton.edu/), and has served as

the starting point for a large number of projects involving physical interaction,

instrument building, and sound mapping. It also serves as a useful resource for

empirical teaching.

6.3.3 ChucK for TAPESTREA

TAPESTREA (or taps) is a unified framework for interactively analyzing, trans-

forming and synthesizing complex sounds [54] - being developed at Princeton Uni-

versity, led by Ananya Misra. Given one or more recordings, it provides well-defined

means to: 1) identify points of interest in the sound and extract them into reusable

template, 2) transform sound components independently of the background and/or

other events, 3) continually resynthesize the background texture in a perceptually

convincing manner, 4) controllably place event templates over backgrounds, using

a novel graphical user interface and/or scripts written in the ChucK language, and

5) leverage similarity based retrieval to locate other interesting sound components.

Taps provides a new way to completely transform a sound scene, dynamically gen-

erate soundscapes of unlimited length, and compose and design sound by combining

elements from different recordings.

Currently, taps provides a TAPESTREA-specific API for ChucK, in addition to

making the full language available to the user. In this case, ChucK presents the

ability to describe temporally precise and concurrent control over the transforma-

tion and synthesis. For example, TAPESTREA uses Spectral Modeling Synthesis

[68] to model deterministic components of a sound, and then allowing the user to



CHAPTER 6. APPLICATIONS AND EVALUATIONS 146

then control parameters such as frequency warping, time stretching, and event den-

sity to greatly transform the sound templates. Using ChucK, one can script, to a

highly precise degree, how these parameters might vary over time as well as simply

specifying parameters such as tuning. The API couples these parameter values to

graphical user interface elements (e.g., sliders), allowing code to control multiple

elements accurately and concurrently, and in tandem with human interaction, mak-

ing to amenable to experimentation, composition, teaching, and perhaps even live

performance.

6.4 Additional and Potential Applications

Here we wrap up by describing some ongoing as well as planned applications us-

ing ChucK. Potential future directions for the ChucK programming language and

environment themselves are discussed in the Conclusions chapter.

Writing “White-box” Unit Generators/Analyzers. Since the ChucK pro-

grammer is able to talk about time in a globally consistent and arbitrarily fine

level, it is possible to construct unit generators and analyzers directly in ChucK.

This greatly reduces the need to go outside the language when implementing, re-

fining, and expanding low-level functionality. This may be especially beneficial for

working with algorithms that are well-known in general, but have a large degree of

low-level variability (these include Linear Predictive Coding [56], granular synthesis

[63], Format Wave Functions (FOF’s) [65], and other classes of audio algorithms

[64, 16]). The determinism and precision provided by ChucK can also benefit re-

search in new algorithms, both in terms being able to express arbitrarily complex

and low-level timing, and by provide a rapid-protoptyping environment for exper-



CHAPTER 6. APPLICATIONS AND EVALUATIONS 147

imentation (“Hide the mundane, reveal true control”). Furthermore, writing unit

generators “in-language” can yield new unit modules that are immediately amenable

for open-source distribution and exchange.

Musical Robots and Affective Computing. ChucK is currently being used

for research in musically intelligent musical robots as well as in the related area of

affective computing [33, 35, 34], where machines endeavor to discern emotion and

musical meaning associated via various sensory modalities (e.g., audio, vision, mo-

tion tracking). Figure 6.27 shows Ajay Kapur playing the e-sitar with Mahadevibot,

a musical drumming robot.

Figure 6.27: Mahadevibot: musical robotic, playing with a human performer; vari-
ous software components implemented in ChucK.

Networked Performance is concerned with the technological, aesthetic, and

musical aspects of distributive, live, and high-quality audio over networks [11, 37, 36]

(Figure 6.28). This is a growing area of research and it’d be potentially interesting



CHAPTER 6. APPLICATIONS AND EVALUATIONS 148

to explore ChucK as an additional tool for implementing both underlying systems

for networked audio, as well as “client-side” networked musical instruments.

Figure 6.28: Networked Audio Performances: Gigapop Ritual (2003, left) between
McGill University and Princeton University; right: performance between CCRMA
and Banff with a distributed St. Lawrence String Quartet using JackTrip. ChucK
was not used in these instances (both used C/C++ based software). However,
networked audio may be a potential application of ChucK in the future.

Audio Mosaicing can be described as the concatenation of segment of sounds,

whereby the segments are choosing by some metric (e.g., distance in feature space)

in relation to a input sound stream. This can interpreted as a data-driven granular

synthesis. The MoSievius project [39] explores using ChucK as the sonic engine,

both for feature extraction and low-level synthesis.

Feature-based Synthesis (FBS) is a promising technique in development for

sonic modeling, representation, compression, as well as an evaluation tool for a va-

riety of MIR tasks [29]. Given a set of feature values and a choice of synthesis

algorithm, FBS seeks to find parameters for the synthesis algorithm to manifest

those feature values, through various learning and searching subsystems. The cur-

rently implementation of FBS exists as a C++ library. It’d be interesting to explore



CHAPTER 6. APPLICATIONS AND EVALUATIONS 149

the usage of ChucK to aid in rapid prototyping of various parts of the system, and

perhaps to implement new components.

Transmission and Archival of Audio Algorithms. Since ChucK has no de-

pendencies on system timing, audio synthesis is guaranteed to be computed in a

deterministic way. A consistent and precise notion of time combined with explicit

readability allow ChucK to precisely specify synthesis algorithms, for education and

for archiving.



Chapter 7

Conclusion

7.1 Contributions

The contributions of this work includes the following. 1) A time-baesd program-

ming mechanism (both language and underlying implementation) for ultra-precise

audio synthesis and real-time audio analysis. This timing mechanism unifies timing

across an immense range of granularities, using the same model to drive ultra-precise

DSP-level processes, as well as interactive control interactions, to higher level sonic

and musical structures, to still higher-yet processes dealing with timing at the order

of days, weeks, and even years. 2) A non-preemptive, time/event-based concur-

rent programming model provides fundamental flexibility and readability without

incurring many of the difficulties of programming parallelism. This allows straight-

forward representation/coding of parallelism, amenable to teaching concurrency in

introductory computer music/programming courses, and equally effective for expert

programmers. 3) A ChucKian approach to writing coding, designing audio programs

on-the-fly. This rapid prototyping mentality has wide ramifications in the way we

150



CHAPTER 7. CONCLUSION 151

think about coding audio, in designing/testing software (particular for real-time

audio), as well as new paradigms and practices in computer-mediated live perfor-

mance. 4). Extended case studies of using, teaching, composing, and performing

with ChucK, most prominently in the Laptop Orchestra. These show the power

of teaching programming via music, and vice versa - and how these two disciplines

can reinforce each other, making learning fun (and nearly inevitable). Overall, the

contribution is the “holistic” sum of a set of ideas, approaches, and a programming

language platform to serve a diverse user community.

7.2 Future Work

In this penultimate section, we explore and discuss some potential future direc-

tions for the ChucK programming language, environment, and intrinsic applica-

tions. Some of these are already underway at the time of this writing. All of these

await new research and (we believe) hold good potentials for continuing to provide

new ways of thinking about audio, music, and programming.

7.2.1 Exploring Analysis, Rapid Prototyping, Learning

At the time of this writing, we’ve only laid a small part of the groundwork for

specifying precise, real-time audio analysis in ChucK, and are continuing to inves-

tigate new possibilities. Recent years have seen a proliferation of general tools and

frameworks to perform audio analysis, particularly in the area of music information

retrieval (MIR). Commonly used tools specialized for MIR include MARSYAS [80],

CLAM [1], SndObj [40], MATLAB/Octave [48], M2K [24], and jAudio [16] / jMIR



CHAPTER 7. CONCLUSION 152

[17]. These tools support feature extraction from audio files, and classification and

learning from these features.

These are primarily libraries and frameworks; as such, they offer programmabil-

ity at a different level than languages such as ChucK. As far as we can tell, there

is no high-level language specialized for analysis tasks, much less one focused on

support for real-time combined analysis and synthesis. Therefore, we feel that a

ChucK-oriented programming model can be potentially interesting in its own right,

and may serve as a complimentary tool to existing systems. Rapid prototyping

tools have an established role in MIR. M2K, for example, has been developed for

this purpose. It provides a graphical patching environment for feature extractors,

classifiers, and other modules. Dataflow and functionality in M2K itineraries are

determined by connections between built-in and user-created objects, implemented

in Java. MARSYAS also provides support for rapid prototyping, via Python and

MARSYAS Scripting Language [3]. Our approach differs from these in that we hope

to enable rapid experimentation from a single, unified high-level programming plat-

form with low-level control, further reducing turnaround time and itself enabling

(and even suggesting) new algorithms and applications.

The goals of creating such a language framework including enabling more people

to experiment with, prototype, and create new tools and systems. This has the

potential of greatly reduce the need to develop plug-ins in other languages (e.g.,

C/C++) or to write custom low-level modules from scratch. Using this combined

analysis/synthesis framework, programmers should be able to rapidly prototype

and implement analysis and synthesis tasks and perhaps even do so on-the-fly.

Like the synthesis framework, the written analysis/synthesis code should represent

the underlying algorithms and dataflow precisely and clearly. Overall, the goal is to



CHAPTER 7. CONCLUSION 153

present language that meets these criteria and that can be equally suitable for audio

research (e.g., synthesis, spectral processing, feature extraction, machine learning,

music information retrieval), pedagogy, composition, and musical performance.

A vast array of potential current and future work exists for this, including new

language syntax and semantics for performing audio analysis, as well as language

and library support for performing feature extraction and state of the art machine

learning algorithms. Some overarching goals including 1) providing a flexible, ex-

pressive MIR rapid prototyping workbench for use in research and teaching and

2) exploring the tight coupling of MIR, synthesis, live performance. In keeping

with the philosophical motivations of this thesis, we hope to continue to encourage

different ways to think about audio programming for audio and synthesis.

7.2.2 Worlds for Collaborative Social Audio Programming

Another exciting future area of research to investigate the social aspects of collabora-

tive social audio programming, by leveraging the strongly-timed, concurrent aspects

of ChucK, with on-the-fly programming, and computer-simulated worlds. The idea

would be to create a collaborative, massively multi-user interaction space based

around the ChucK language (possibly extending the Audicle into a Co-Audicle).

On-the-fly programming views code as an expressive musical instrument and the

act of programming as performance. This framework, combined with todays fast

networks and existing research in audio over networks [11, 36, 4] provide a unique

opportunity to extend this practice to let many composers, audio researchers, in-

structors, students, and musicians, share and interact in a common audio program-

ming virtual world (Figures 7.1 and 7.2), where the exchange of ideas takes place

via code, graphics, text, and live audio. We believe this has the potential to en-



CHAPTER 7. CONCLUSION 154

Figure 7.1: Future work: an denizen in the envisioned collaborative social audio
programming virtual world.

hance and transform the manner in which we conduct audio research and engage in

computer music pedagogy. (Also, it could potentially be a great deal of fun.)

Figure 7.2: Future work: many entities collaboratively live coding in same virtual
space.

7.2.3 Planned Language Features

Optimization

As noted in Chapter 3, priority was given to try to maximize flexibility and read-

ability first of all, and designing for high performance and throughput only when it

didn’t conflict with the former (subscribing to the rule of thumb told to the author



CHAPTER 7. CONCLUSION 155

by his College CS professor Owen Astrachan: “Make it work, make it right, make it

fast, and make it small – in that order”. Truly, the rapid advancements in comput-

ing power have afforded this tradeoff, and in many ways, we are still trying to make

parts of the language work (and hoping to get some thing right in the process).

At the same time, we have been investigating various potential optimizations that

would both offer significant higher throughput without sacrificing the flexibility and

precision of the language.

One such potential optimization is block processing of audio samples. Currently,

the sample-at-a-time audio synthesis network provides immense control over time

and granularity, but incurs large performance overheads from repeated function

calls as well as being difficult in taking advantage of vectorization and processor

pipelining. One potential solution to this issue to implement adaptive block process-

ing, whereby the synthesis/analysis engine works closely at runtime with the ChucK

shreduler and perform audio computations in block sizes that are appropriate with

the current time-based shreduling. Two issues will need to be further addressed

in such an architecture. One is detecting feedback loops in the audio network, the

UGen’s in the loop may still need to compute one sample at the time for single-

sample feedback (though presence of delay elements may relax this requirement).

The second issue is to define a “maximum block size” to allow existing “best effort”

asynchronous input to be processes (e.g., MIDI, HID, and OSC).

Taking advantage of Multi-core Processors

At the time of this writing (2006-2008), a focus in computer architecture design

is dramatically shifting from clock speed on a single CPU to multiple symmetrical

cores, with the potential to ramp up to orders of 128 or perhaps much higher number



CHAPTER 7. CONCLUSION 156

of cores. The current architecture of ChucK places all audio computations as well as

language computations on the same kernel thread, managing the shred-based user-

level concurrency entirely in the ChucK virtual machine. This makes it difficult

to take advantage of many cores. This is an issue that applies to most current

computer music programming systems (as well as software systems in general), and

likely new underlying architectures (or even end-programmer syntax and semantics)

will need to address this issue. One perception of the problem is that currently the

computing community at large hasn’t yet produced an agreed-upon generalized

lower-level programming paradigm/language (e.g., at the C/C++ level) that can

easily, flexibly, and efficiently specify multi-core friendly programs. At the ChucK

system level, interesting questions likely lie at the intersection of concurrent low-

level implementation and the semantics of the ChucK language. In any case, this

remains an open issue that has great ramifications on the future of computing and

programming for music, in ChucK and more broadly.

Graphics

In terms of underlying language support, another area well worth investigating is

graphics programming. To be able to specify real-time graphics, image, and even

video processing in the same strongly-timed framework for audio can potentially lead

to incredible possibilities. This combined approach has long been demonstrated to

be compelling [42, 62]. The current plan is to both investigate more tight-coupled

communications between ChucK and graphical programming environments such as

Processing, as well as providing “in-language” support and API for sound-coupled

graphics.



CHAPTER 7. CONCLUSION 157

7.2.4 Laptop Orchestras

Since the beginning, ChucK (for better or for worse) has served as a primary soft-

ware platform for teaching, audio programming, instrument building, and live per-

formance in the Princeton Laptop Orchestra and later in the Stanford Laptop Or-

chestra (Figure 7.3). Our hopes as researchers in the emerging medium of the laptop

orchestra are to continue investigating its musical, sonic, and pedagogically poten-

tial and helping others interested to do the same. In Dan Trueman’s dissertation

[76], the notion of making electronic chamber music was postulated, directly prog-

nosticating and leading to the instantiation of the laptop orchestra. It is the hope

of the author and other laptop orchestra progenitors that the laptop orchestra will

proliferate as a sustained artistic medium, providing an established (and yet open)

platform for music-making. We look forward to intensely investigating how ChucK

might be better used in these contexts, possibly combined with other aforemen-

tioned ideas such as collaborative social programming and audio over networks. At

the same time, may ChucK be one of many potential tools in the software palette

of the laptop orchestra.

7.2.5 ChucK and the Mobile Phone

In recent years, the mobile phone has firmly established itself as the single piece of

technology that transcends nearly every cultural, social, and economical barrier [26].

It’s perhaps paradoxical that the modern mobile phone are simply smaller computers

in every sense, and yet it presents a fundamentally different set of interaction, sonic,

and technology parameters. It would be incredibly exciting to continue to explore

its possibilities. In early 2008, the first mobile phone orchestra (that we are aware

of), MoPhO, was founded at Stanford University’s CCRMA [92], though not yet



CHAPTER 7. CONCLUSION 158

Stanford Laptop Orchestra

Princeton Laptop Orchestra

Figure 7.3: Laptop Orchestras: PLOrk, SLOrk – and hopefully beyond!

using ChucK on the phones as of yet. The next steps would be investigate ChucK

as well as audio programming in general on and for mobile devices. Compared to

the laptop orchestra, this is even more nascent, and potentially exciting indeed.

7.3 Concluding Remarks

In this thesis, we presented the ChucK programming language, in terms of ideas,

design goals, language specifications, implementation, and the various paradigms

and ways of thinking associate with the language. Additionally, we examined several

core applications of the language, and evaluated ChucK as a programming tool as

well as an instrument and pedagogical vehicle. While much has been investigated,



CHAPTER 7. CONCLUSION 159

perhaps even more remains to be discovered and investigated. It is the hope of the

author, the ChucK development team, and the ChucK community at large, that

this investigation continues, remembering that while technology is central to what

we do, it is what we do with technology that truly matters.

Thank you for reading.



Bibliography

[1] Xavier Amatrian, Pau Arumi, and Miguel Ramirez. CLAM, Yet Another Li-

brary For Audio and Music Processing. In ACM Conference on Object-Oriented

Programming, 2002.

[2] David Anderson and Ron Kuivila. Formula: A Programming Language for

Expressive Computer Music. IEEE Computer, 24(7):12–21, 1991.

[3] Thomas Anderson, Brian Bershad, Edward Lazowska, and Henry Levy. Sched-

uler Activations: Effective Kernel Support for the User-level Management of

Parallelism. ACM Transactions on Computer Systems, 10(1):53–79, 1992.

[4] Alvaro Barbosa. Computer-Supported Cooperative Work for Music Applica-

tions. PhD thesis, Music Technology Group, Pompeu Fabra University, 2006.

[5] Richard Boulanger. The Csound Book. MIT Press, 2000.

[6] Eli Brandt. Temporal Type Constructors for Computer Music Programming.

In International Computer Music Conference, 2000.

[7] Eli Brandt. Implementing Temporal Type Constructors for Music Program-

ming. In International Computer Music Conference, 2001.

160



BIBLIOGRAPHY 161

[8] Andrew Brown and Andrew Sorensen. Dynamic Media Arts Programming in

Impromptu. In ACM SIGCHI Conference on Creativity and Cognition, 2007.

[9] Phil Burk. JSyn - A Real-time Synthesis API for Java. In International Com-

puter Music Conference, 1998.

[10] Phil Burk, Larry Polansky, and David Rosenboom. HSML: A Theoretical

Overview. Perspectives of New Music, 28(2), 1990.

[11] Chris Chafe, Scott Wilson, Randall Leitstikow, Dave Chisholm, and Gary Scav-

one. A Simplified Approach to High Quality Music and Sound Over IP. In

Digital Audio Effects, 2000.

[12] John Chowning. Keynote: International Computer Music Conference 2007.

Keynote Address, August 2007.

[13] Pierre Cointe and Xavier Rodet. Formes: An Object and Time Oriented Sys-

tem for Music Composition and Synthesis. In ACM Symposium on LISP and

Functional Programming, 1984.

[14] Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live Coding

Techniques for Laptop Performance. Organised Sound, 8(3):321–330, 2003.

[15] Perry R. Cook. Identification of Control Parameters in an Articulatory Vocal

Tract Model with Applications to the Synthesis of Singing. PhD thesis, Stanford

University, 1991.

[16] Perry R. Cook. Real Sound Synthesis for Interative Applications. A. K. Peters,

2002.



BIBLIOGRAPHY 162

[17] Perry R. Cook and Gary Scavone. The Synthesis Toolkit (STK). In Interna-

tional Computer Music Conference, Beijing, China, 1999.

[18] Roger Dannenberg. The Canon Score Language. Computer Music Journal,

13(1):47–56, 1989.

[19] Roger Dannenberg. Abstract Time Warping of Compound Events and Signals.

Computer Music Journal, 21(3):61–70, 1997.

[20] Roger Dannenberg. Machine Tongues XIX: Nyquist, a Language for Composi-

tion and Sound Synthesis. Computer Music Journal, 21(3):50–60, 1997.

[21] Roger Dannenberg and Eli Brandt. A Flexible Real-Time Software Synthesis

System. In International Computer Music Conference, 1996.

[22] Roger Dannenberg, P. McAvinney, and D. Rubine. Arctic: A Functional Lan-

guage for Real-Time Control. Computer Music Journal, 10(4):67–78, 1986.

[23] F. Dechelle, R. Borghesi, M. Ceccco, E. Maggi, B. Rovan, and N. Schnell.

jMax: A New Java-based Editing and Control System for Real-time Musical

Applications. Computer Music Journal, 23(3):50–58, 1998.

[24] Stephen Downie. International Music Information Retrieval Evaluation Lab-

oratory (IMIRSEL): Introducing M2K and D2K. Handout at International

Conference on Music Information Retrieval, 2004.

[25] Georg Essl, Stefania Serafin, Perry R. Cook, and Julius O. Smith. Musicial

Applications of Banded Waveguides. Computer Music Journal, 18(1):51–63,

2004.



BIBLIOGRAPHY 163

[26] Georg Essl, Ge Wang, and Michael Rohs. Developements and Challenges of

Turning Mobile Phones in Generic Music Performance Platforms. In Mobile

Music Workshop, Vienna, Austria, 2008.

[27] Rebecca Fiebrink, Ge Wang, and Perry R. Cook. Don’t Forget the Laptop:

Using Native Input Capabilities for Expressive Musical Control. In Interna-

tional Conference on New Interfaces for Musical Expression, pages 164–167,

New York City, U.S.A., 2007.

[28] Brad Garton and David Topper. RTcmix Online Documentation.

http://rtcmix.org/.

[29] Matt Hoffman and Perry R. Cook. Feature-based Synthesis: A Tool for Eval-

uating, Designing, and Interacting with Music IR Systems. In International

Conference on Music Information Retrieval, 2006.

[30] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore Music

Notation - An Algebra of Music. Journal of Functional Programming, 6(3):465–

483, 1996.

[31] David A. Jaffe and Julius O. Smith. Extensions of the Karplus-Strong Plucked

String Algorithm. Computer Music Journal, 7(2):56–69, 1983.

[32] Kevin Kaplus and Alex Strong. Digital Synthesis of Plucked String and Drum

Timbres. Computer Music Journal, 7(2):43–55, 1983.

[33] Ajay Kapur. A History of Robotic Musical Instruments. In International

Computer Music Conference, 2005.



BIBLIOGRAPHY 164

[34] Ajay Kapur, Adam R. Tindale, Manjinder S. Benning, and Peter F. Driessen.

The KiOm: A Paradigm for Collaborative Controller Design. In International

Computer Music Conference, 2006.

[35] Ajay Kapur, George Tzanetakis, Naznin Virji-Babul, Ge Wang, and Perry R.

Cook. A Framework for Sonification of VICON Motion Capture Data. In

International Conference on Digital Audio Effects, Madrid, Spain, 2005.

[36] Ajay Kapur, Ge Wang, Philip Davidson, and Perry R. Cook. Interactive Net-

work Media: A Dream Worth Dreaming? Organised Sound, 10(3):209–219,

2005.

[37] Ajay Kapur, Ge Wang, Philip Davidson, Perry R. Cook, Dan Trueman,

Tae Hong Park, and Manjul Bhargava. The Gigapop Ritual: A Live Net-

worked Performance for Two Electronic Dholaks, Digital Spoon, DigitalDoo, 6

String Electric Violin, Rbow, Sitar, Tabla, and Bass Guitar. In International

Conference on New Interfaces for Musical Expression, Montreal, Canada, 2003.

[38] Paul Lansky. CMIX Program Documentation. Princeton, NJ, U.S.A., 1987.

[39] Ari Lazier and Perry R. Cook. MoSievius: Feature-based Interactive Audio

Mosaicing. In International Conference on Digital Audio Effects, London, UK,

2003.

[40] Victor Lazzarini. The Sound Object Library. Organised Sound, 5(1):35–49,

2000.

[41] Edward A. Lee. Overview of the Ptolemy Project. Technical Memorandum

UCB/ERL M03/25, U. C. Berkeley, 2003.



BIBLIOGRAPHY 165

[42] Golan Levin. Painterly Interfaces for Audiovisual Performance. Master’s the-

sis, Massachusetts Insititute of Technology, 1994.

[43] George Lewis. Too Many Notes: Computers, Complexity and Culture in Voy-

ager. Leonardo Music Journal, 10:33–39, 2000.

[44] Gareth Loy. The CARL System: Premises, History, and Fate. Computer Music

Journal, 26(4):52–60, 2002.

[45] Wacom Co. Ltd. Wacom. http://www.wacom.com/.

[46] Max Mathews. The Technology of Computer Music. MIT Press, 1969.

[47] Max Mathews. Keynote: International Computer Music Conference 2006.

Keynote Address, November 2006.

[48] Mathworks. MATLAB Documentation.

[49] Dominic Mazzoni and Roger Dannenberg. Audacity: Free Audio Editor and

Recorder. http://audacity.sourceforge.net/, 2008.

[50] James McCartney. SuperCollider: A New Real-time Synthesis Language. In

International Computer Music Conference, 1996.

[51] James McCartney. Rethinking the Computer Music Programming Language:

SuperCollider. Computer Music Journal, 26(4):61–68, 2002.

[52] Alex McLean. Hacking Perl in Nightclubs. O’Reily Media Inc.

http://www.perl.com/pub/a/2004/08/31/livecode.html, 2004.



BIBLIOGRAPHY 166

[53] Ananya Misra, Ge Wang, and Perry R. Cook. SndTools: Real-time Audio DSP

and 3D Visualization. In International Computer Music Conference, Barcelona,

Spain, 2005.

[54] Ananya Misra, Ge Wang, and Perry R. Cook. Musical Tapestry: Re-composing

Natural Sounds. Journal of New Music Research, 2008.

[55] F. Richard Moore. The Computer Audio Research Laboratory at UCSD. Com-

puter Music Journal, 6(1):18–29, 1982.

[56] James A. Moorer. The Use of Linear Prediction of Speech in Computer Music

Applications. Journal of the Audio Engineering Society, 27(3):134–140, 1979.

[57] Alan Oppenheim, Alan Willsky, and S Hamid Nawab. Signals and Systems.

Prentice Hall, 2002.

[58] Randy Pausch, Tommy Burnett, A. C. Capeheart, Matthew Conway, Dennis

Cosgrove, Rob DeLine, Jim Durbin, Rich Gossweiler, Shuichi Kogai, and Jeff

White. Alice: Rapid Prototyping System for Virtual Reality. IEEE Computer

Graphics and Applications, 1995.

[59] Stephen T. Pope. Machine Tongues XV: Three Packages for Software Sound

Synthesis. Computer Music Journal, 17(2):23–54, 1993.

[60] Miller Puckett. Combining Event and Signal Processing in the MAX Graphical

Programming Environment. Computer Music Journal, 15(3):68–77, 1991.

[61] Miller Puckett. Pure Data. In International Computer Music Conference, 1996.

[62] Casey Reas and Ben Fry. Processing: A Programming Handbook for Visual

Designers and Artists. MIT Press, 2007.



BIBLIOGRAPHY 167

[63] Curtis Roads. Foundations of Computer Music, chapter Granular Synthesis of

Sound. MIT Press, 1985.

[64] Curtis Roads. Computer Music Tutorial. MIT Press, 1999.

[65] Xavier Rodet, Yves Potard, and Jean-Baptiste Barriere. The CHANT Project:

From the Synthesis of the Singing Voice to Synthesis in General. Computer

Music Journal, 8(3):15–31, 1984.

[66] Spencer Salazar, Ge Wang, and Perry R. Cook. miniAudicle and ChucK Shell:

New Interfaces for ChucK Development and Performance. In International

Computer Music Conference, New Orleans, U.S.A., 2006.

[67] Bill Schottstaedt. Machine Tongues XVII: CLM: Music V Meets Common Lisp.

Computer Music Journal, 18(2):3–37, 1994.

[68] Xavier Serra and Julius O. Smith. Spectral Modeling Synthesis. In Interna-

tional Computer Music Conference, 1989.

[69] Chris Shaw, Jiandong Liang, Mark Green, and Yunqi Sun. The Decoupled

Simulation Model for Virtual Reality System. In ACM SIGCHI Human Factors

in Computer Systems Conference, 1992.

[70] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing,

2006.

[71] Scott Smallwood, Dan Trueman, Perry R. Cook, and Ge Wang. Composing

for Laptop Orchestra. Computer Music Journal, 32(1):9–25, 2008.

[72] Julius O. Smith. Online Publications. http://ccrma.stanford.edu/˜jos/.



BIBLIOGRAPHY 168

[73] Ken Steiglitz. A Digital Signal Processing Primer: With Applications to Digital

Audio and Computer Music. Prentice Hall, 1996.

[74] TOPLAP. Temporary Organization for the Proliferation of Live Audio Pro-

gramming, 2004.

[75] David S. Touretzky. LISP: A Gental Introduction to Symbolic Computation.

Harper and Row, 1984.

[76] Dan Trueman. Reinventing the Violin. PhD thesis, Princeton University, 1999.

[77] Dan Trueman. Why a Laptop Orchestra? Organised Sound, 12(2):171–179,

2007.

[78] Dan Trueman, Perry R. Cook, Scott Smallwood, and Ge Wang. PLOrk: Prince-

ton Laptop Orchestra, Year 1. In International Computer Music Conference,

New Orleans, U.S.A., 2006.

[79] Alan Turing. On Computer Numbers, with an Application to the Entschei-

dungsproblem. In London Mathematical Society, pages 230–265, 1936.

[80] George Tzanetakis and Perry R. Cook. MARSYAS: A Framework for Audio

Analysis. Organised Sound, 4(3):169–175, 2000.

[81] Barry Vercoe. CSOUND: A Manual for the Audio Processing System and

Supporting Programs. MIT Media Lab.

[82] Barry Vercoe. Reference Manual for the MUSIC 11 Sound Synthesis Language.

MIT Experimental Music Studio.



BIBLIOGRAPHY 169

[83] Barry Vercoe and Dan Ellis. Real-Time Csound: Software Synthesis with

Sensing and Control. In International Workshop on Memory Management,

1990.

[84] Ge Wang. The ChucK Language Specification, online

http://chuck.cs.princeton.edu/doc/language/, 2004-2008.

[85] Ge Wang. Cambridge Companion to Electronic Music, chapter 5: A History of

Music and Programming. Cambridge University Press, 2008.

[86] Ge Wang. Stanford Laptop Orchestra (SLOrk), homepage

http://slork.stanford.edu/, 2008.

[87] Ge Wang and Perry R. Cook. ChucK: A Concurrent, On-the-fly Audio Pro-

gramming Language. In International Computer Music Conference, Singapore,

2003.

[88] Ge Wang and Perry R. Cook. ChucK: A Programming Language for On-the-fly,

Real-time Audio Synthesis and Multimedia. In ACM Multimedia, New York

City, U.S.A., 2004.

[89] Ge Wang and Perry R. Cook. On-the-fly Programming: Using Code as an

Expressive Musical Instrument. In International Conference on New Interfaces

for Musical Expression, Hamamatsu, Japan, 2004.

[90] Ge Wang and Perry R. Cook. The Audicle: A Context-sensitive, On-the-

fly Audio Programming Environ/mentality. In International Computer Music

Conference, Miami, U.S.A., 2004.



BIBLIOGRAPHY 170

[91] Ge Wang, Perry R. Cook, and Ananya Misra. Designing and Implementing the

ChucK Programming Language. In International Computer Music Conference,

Barcelona, Spain, 2005.

[92] Ge Wang, Georg Essl, and Henri Pentinnen. MoPhO: Do Mobile Phones Dream

of Electric Orchestras? In International Computer Music Conference, Belfast,

Ireland, 2008.

[93] Ge Wang, Rebecca Fiebrink, and Perry R. Cook. Combining Analysis and

Synthesis in the ChucK Programming Language. In International Computer

Music Conference, Copenhagen, Denmark, 2007.

[94] Ge Wang, Ananya Misra, Ajay Kapur, and Perry R. Cook. Yeah ChucK It!

=> Dynamic, Controllable Interface Mapping. In International Conference on

New Interfaces for Musical Expression, Vancouver, BC, 2005.

[95] Ge Wang, Dan Trueman, Scott Smallwood, and Perry R. Cook. The Laptop

Orchestra as Classroom. Computer Music Journal, 32(1):26–37, 2008.

[96] Matt Wright and Adrian Freed. Open Sound Control: A New Protocol for

Communicating with Sound Synthesizers. In International Computer Music

Conference, 1997.

[97] Zeitwissen. Elektronische Musik: Tanz den Maschinencode. Zeitwissen,

page 96, 2006.

‘


