
1

Common Lisp The Language
Second Edition

Guy L. Steele Jr.
Thinking Machines Corporation
with contributions by
Scott E. Fahlman
Carnegie-Mellon University
Richard P. Gabriel
Lucid, Inc.
Stanford University
David A. Moon
Symbolics, Incorporated
Daniel L. Weinreb
Symbolics, Incorporated
and with contributions to the second edition by
Kent M. Pitman
Symbolics, Incorporated
Richard C. Waters
Massachusetts Institute of Technology
Jon L White
Lucid, Inc.

c© 1984, 1989 Guy L. Steele Jr. All rights reserved.

To be published by Digital Press.

2

Would it be wonderful if, under the pressure of all these difficulties, the
Convention should have been forced into some deviations from that artificial
structure and regular symmetry which an abstract view of the subject might
lead an ingenious theorist to bestow on a constitution planned in his closet
or in his imagination?

—James Madison, The Federalist
No. 37, January 11, 1788

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Notational Conventions . 4

1.2.1 Decimal Numbers . 4
1.2.2 Nil, False, and the Empty List 4
1.2.3 Evaluation, Expansion, and Equivalence 5
1.2.4 Errors . 6
1.2.5 Descriptions of Functions and Other Entities 7
1.2.6 The Lisp Reader . 10
1.2.7 Overview of Syntax . 10

2 Data Types 13
2.1 Numbers . 16

2.1.1 Integers . 17
2.1.2 Ratios . 18
2.1.3 Floating-Point Numbers 19
2.1.4 Complex Numbers . 23

2.2 Characters . 24
2.2.1 Standard Characters 25
2.2.2 Line Divisions . 26
2.2.3 Non-standard Characters 27

2.3 Symbols . 27
2.4 Lists and Conses . 30
2.5 Arrays . 32

2.5.1 Vectors . 33
2.5.2 Strings . 34
2.5.3 Bit-Vectors . 35

2.6 Hash Tables . 35

v

vi CONTENTS

2.7 Readtables . 36
2.8 Packages . 36
2.9 Pathnames . 36
2.10 Streams . 36
2.11 Random-States . 37
2.12 Structures . 37
2.13 Functions . 37
2.14 Unreadable Data Objects . 38
2.15 Overlap, Inclusion, and Disjointness of Types 38

3 Scope and Extent 43

4 Type Specifiers 51
4.1 Type Specifier Symbols . 51
4.2 Type Specifier Lists . 51
4.3 Predicating Type Specifiers 52
4.4 Type Specifiers That Combine 53
4.5 Type Specifiers That Specialize 54
4.6 Type Specifiers That Abbreviate 62
4.7 Defining New Type Specifiers 63
4.8 Type Conversion Function . 65
4.9 Determining the Type of an Object 67
4.10 Type Upgrading . 68

5 Program Structure 71
5.1 Forms . 71

5.1.1 Self-Evaluating Forms 72
5.1.2 Variables . 72
5.1.3 Special Operators . 74
5.1.4 Macros . 76
5.1.5 Function Calls . 77

5.2 Functions . 77
5.2.1 Named Functions . 78
5.2.2 Lambda-Expressions 78

5.3 Top-Level Forms . 86
5.3.1 Defining Named Functions 87
5.3.2 Declaring Global Variables and Named Constants . . . 88
5.3.3 Control of Time of Evaluation 91

CONTENTS vii

6 Predicates 97
6.1 Logical Values . 98
6.2 Data Type Predicates . 98

6.2.1 General Type Predicates 98
6.2.2 Specific Data Type Predicates 101

6.3 Equality Predicates . 106
6.4 Logical operators . 113

7 Control Structure 117
7.1 Constants and Variables . 118

7.1.1 Reference . 119
7.1.2 Assignment . 125

7.2 Generalized Variables . 128
7.3 Function Invocation . 151
7.4 Simple Sequencing . 153
7.5 Establishing New Variable Bindings 154
7.6 Conditionals . 162
7.7 Blocks and Exits . 166
7.8 Iteration . 168

7.8.1 Indefinite Iteration . 168
7.8.2 General Iteration . 169
7.8.3 Simple Iteration Constructs 173
7.8.4 Mapping . 176
7.8.5 The “Program Feature” 178

7.9 Structure Traversal and Side Effects 183
7.10 Multiple Values . 185

7.10.1 Constructs for Handling Multiple Values 185
7.10.2 Rules Governing the Passing of Multiple Values 189

7.11 Dynamic Non-Local Exits . 192

8 Macros 201
8.1 Macro Definition . 202
8.2 Macro Expansion . 210
8.3 Destructuring . 212
8.4 Compiler Macros . 213
8.5 Environments . 215

viii CONTENTS

9 Declarations 225
9.1 Declaration Syntax . 225
9.2 Declaration Specifiers . 232
9.3 Type Declaration for Forms 246

10 Symbols 249
10.1 The Property List . 250
10.2 The Print Name . 254
10.3 Creating Symbols . 254

11 Packages 259
11.1 Consistency Rules . 261
11.2 Package Names . 262
11.3 Translating Strings to Symbols 263
11.4 Exporting and Importing Symbols 265
11.5 Name Conflicts . 268
11.6 Built-in Packages . 271
11.7 Package System Functions and Variables 274

12 Numbers 291
12.1 Precision, Contagion, and Coercion 292
12.2 Predicates on Numbers . 295
12.3 Comparisons on Numbers . 296
12.4 Arithmetic Operations . 299
12.5 Irrational and Transcendental Functions 302

12.5.1 Exponential and Logarithmic Functions 303
12.5.2 Trigonometric and Related Functions 306
12.5.3 Branch Cuts, Principal Values, and Boundary Condi-

tions in the Complex Plane 312
12.6 Type Conversions and Component Extractions on Numbers . . 360
12.7 Logical Operations on Numbers 367
12.8 Byte Manipulation Functions 372
12.9 Random Numbers . 375
12.10 Implementation Parameters 379

13 Characters 383
13.1 Character Attributes . 383
13.2 Predicates on Characters . 385

CONTENTS ix

13.3 Character Construction and Selection 390
13.4 Character Conversions . 390

14 Sequences 393
14.1 Simple Sequence Functions . 398
14.2 Concatenating, Mapping, and Reducing Sequences 400
14.3 Modifying Sequences . 404
14.4 Searching Sequences for Items 410
14.5 Sorting and Merging . 413

15 Lists 417
15.1 Conses . 417
15.2 Lists . 420
15.3 Alteration of List Structure 429
15.4 Substitution of Expressions 430
15.5 Using Lists as Sets . 432
15.6 Association Lists . 437

16 Hash Tables 441
16.1 Hash Table Functions . 442
16.2 Primitive Hash Function . 447

17 Arrays 449
17.1 Array Creation . 449
17.2 Array Access . 454
17.3 Array Information . 455
17.4 Functions on Arrays of Bits 460
17.5 Fill Pointers . 462
17.6 Changing the Dimensions of an Array 464

18 Strings 469
18.1 String Access . 470
18.2 String Comparison . 470
18.3 String Construction and Manipulation 473

19 Structures 477
19.1 Introduction to Structures . 477
19.2 How to Use Defstruct . 480
19.3 Using the Automatically Defined Constructor Function 484

x CONTENTS

19.4 Defstruct Slot-Options . 485
19.5 Defstruct Options . 486
19.6 By-Position Constructor Functions 493
19.7 Structures of Explicitly Specified Representational Type . . . 497

19.7.1 Unnamed Structures 497
19.7.2 Named Structures . 498
19.7.3 Other Aspects of Explicitly Specified Structures 500

20 Evaluator 503
20.1 Run-Time Evaluation of Forms 503
20.2 The Top-Level Loop . 507

21 Streams 511
21.1 Standard Streams . 511
21.2 Creating New Streams . 514
21.3 Operations on Streams . 518

22 Input/Output 523
22.1 Printed Representation of Lisp Objects 524

22.1.1 What the Read Function Accepts 526
22.1.2 Parsing of Numbers and Symbols 536
22.1.3 Macro Characters . 546
22.1.4 Standard Dispatching Macro Character Syntax 554
22.1.5 The Readtable . 563
22.1.6 What the Print Function Produces 573

22.2 Input Functions . 591
22.2.1 Input from Character Streams 591
22.2.2 Input from Binary Streams 601

22.3 Output Functions . 602
22.3.1 Output to Character Streams 602
22.3.2 Output to Binary Streams 606
22.3.3 Formatted Output to Character Streams 606

22.4 Querying the User . 640

23 File System Interface 645
23.1 File Names . 646

23.1.1 Pathnames . 647
23.1.2 Case Conventions . 652

CONTENTS xi

23.1.3 Structured Directories 655
23.1.4 Extended Wildcards 658
23.1.5 Logical Pathnames . 664
23.1.6 Pathname Functions 674

23.2 Opening and Closing Files . 683
23.3 Renaming, Deleting, and Other File Operations 689
23.4 Loading Files . 693
23.5 Accessing Directories . 700

24 Miscellaneous Features 703
24.1 The Compiler . 703

24.1.1 Compiler Diagnostics 711
24.1.2 Compiled Functions . 712
24.1.3 Compilation Environment 713
24.1.4 Similarity of Constants 719

24.2 Debugging Tools . 722
24.3 Environment Inquiries . 729

24.3.1 Time Functions . 729
24.3.2 Other Environment Inquiries 733
24.3.3 Справочные функции о среде 733

24.4 Identity Function . 735

25 Loop 737

26 Цикл loop 739
26.1 Introduction . 739
26.2 Введение . 739
26.3 How the Loop Facility Works 740
26.4 Как работает Loop . 740
26.5 Parsing Loop Clauses . 742
26.6 Парсинг выражений Loop . 742

26.6.1 Order of Execution . 743
26.6.2 Порядок вычисления 743
26.6.3 Kinds of Loop Clauses 745
26.6.4 Разновидности Loop выражений 745
26.6.5 Loop Syntax . 750
26.6.6 Синтаксис Loop . 750

26.7 User Extensibility . 752

xii CONTENTS

26.8 Пользовательские расширения 752
26.9 Loop Constructs . 752
26.10 Конструкции Loop . 752
26.11 Iteration Control . 754
26.12 Управление итерациями . 754
26.13 End-Test Control . 766
26.14 Проверка завершения . 766
26.15 Value Accumulation . 770
26.16 Variable Initializations . 776
26.17 Инициализация переменных 776
26.18 Conditional Execution . 780
26.19 Условное выполнение . 780
26.20 Unconditional Execution . 786
26.21 Безусловное выполнение . 786
26.22 Miscellaneous Features . 789
26.23 Дополнительные возможности 789

26.23.1 Data Types . 790
26.23.2 Типы данных . 790
26.23.3 Destructuring . 791

27 Pretty Printing 797
27.1 Introduction . 797
27.2 Pretty Printing Control Variables 798
27.3 Dynamic Control of the Arrangement of Output 799
27.4 Format Directive Interface . 812
27.5 Compiling Format Control Strings 815
27.6 Pretty Printing Dispatch Tables 816

28 Common Lisp Object System 821
28.1 Programmer Interface Concepts 821

28.1.1 Error Terminology . 822
28.1.2 Classes . 825
28.1.3 Inheritance . 830
28.1.4 Integrating Types and Classes 833
28.1.5 Determining the Class Precedence List 835
28.1.6 Generic Functions and Methods 838
28.1.7 Method Selection and Combination 845
28.1.8 Meta-objects . 853

CONTENTS xiii

28.1.9 Object Creation and Initialization 854
28.1.10 Redefining Classes . 864
28.1.11 Changing the Class of an Instance 867
28.1.12 Reinitializing an Instance 869

28.2 Functions in the Programmer Interface 869

29 Conditions 923
29.1 Introduction . 923
29.2 Changes in Terminology . 925
29.3 Survey of Concepts . 926

29.3.1 Signaling Errors . 926
29.3.2 Trapping Errors . 929
29.3.3 Handling Conditions 930
29.3.4 Object-Oriented Basis of Condition Handling 931
29.3.5 Restarts . 933
29.3.6 Anonymous Restarts 934
29.3.7 Named Restarts . 936
29.3.8 Restart Functions . 937
29.3.9 Comparison of Restarts and Catch/Throw 937
29.3.10 Generalized Restarts 939
29.3.11 Interactive Condition Handling 940
29.3.12 Serious Conditions . 940
29.3.13 Non-Serious Conditions 941
29.3.14 Condition Types . 942
29.3.15 Signaling Conditions 942
29.3.16 Resignaling Conditions 943
29.3.17 Condition Handlers . 943
29.3.18 Printing Conditions 944

29.4 Program Interface to the Condition System 946
29.4.1 Signaling Conditions 946
29.4.2 Assertions . 949
29.4.3 Exhaustive Case Analysis 952
29.4.4 Handling Conditions 955
29.4.5 Defining Conditions . 958
29.4.6 Creating Conditions 961
29.4.7 Establishing Restarts 962
29.4.8 Finding and Manipulating Restarts 971
29.4.9 Warnings . 973

xiv CONTENTS

29.4.10 Restart Functions . 974
29.4.11 Debugging Utilities . 975

29.5 Predefined Condition Types 977

30 Metaobject Protocol 987
30.1 Concepts . 987

30.1.1 Introduction . 987
30.1.2 Введение . 987
30.1.3 Inheritance Structure of Metaobject Classes 993
30.1.4 Processing of the User Interface Macros 998
30.1.5 Subprotocols . 1008

30.2 Generic Functions and Methods Dictionary 1017
30.2.1 Initialization of Class Metaobjects 1044
30.2.2 Initialization of Generic Function Metaobjects 1048
30.2.3 Initialization of Method Metaobjects 1051
30.2.4 Initialization of Slot Definition Metaobjects 1054
30.2.5 Readers for Class Metaobjects 1062
30.2.6 Readers for Generic Function Metaobjects 1065
30.2.7 Readers for Method Metaobjects 1067
30.2.8 Readers for Slot Definition Metaobjects 1069

Bibliography 1096

Index 1097
X3J13 Votes . 1097
Symbols . 1101

Preface SECOND EDITION

Common Lisp has succeeded. Since publication of the first edition of this
book in 1984, many implementors have used it as a de facto standard for
Lisp implementation. As a result, it is now much easier to port large Lisp
programs from one implementation to another. Common Lisp has proved to
be a useful and stable platform for rapid prototyping and systems delivery
in artificial intelligence and other areas. With experience gained in using
Common Lisp for so many applications, implementors found no shortage of
opportunities for innovation. One of the important characteristics of Lisp is
its good support for experimental extension of the language; while Common
Lisp has been stable, it has not stagnated.

The 1984 definition of Common Lisp was imperfect and incomplete. In
some cases this was inadvertent: some odd boundary situation was over-
looked and its consequences not specified, or different passages were in con-
flict, or some property of Lisp was so well-known and traditionally relied
upon that I forgot to write it down. In other cases the informal committee
that was defining Common Lisp could not settle on a solution, and therefore
agreed to leave some important aspect of the language unspecified rather
than choose a less than satisfactory definition. An example is error handling;
1984 Common Lisp had plenty of ways to signal errors but no way for a
program to trap or process them.

Over the next year I collected reports of errors in the book and gaps in
the language. In December 1985, a group of implementors and users met in
Boston to discuss the state of Common Lisp. I prepared two lists for this
meeting, one of errata and clarifications that I thought would be relatively
uncontroversial (boy, was I wrong!) and one of more substantial changes I
thought should be considered and perhaps voted upon. Others also brought
proposals to discuss. It became clear to everyone that there was now enough
interest in Common Lisp, and dependence on its stability, that a more formal

xv

xvi PREFACE (SECOND EDITION)

mechanism was needed for managing changes to the language.
This realization led to the formation of X3J13, a subcommittee of ANSI

committee X3, to produce a formal American National Standard for Com-
mon Lisp. That process is nearing completion. X3J13 has completed the
bulk of its technical work in rectifying the 1984 definition and codifying ex-
tensions to that definition that have received widespread use and approval. A
draft standard is now being prepared; it will probably be available in 1990.
There will then be a period (required by ANSI) for public review. X3J13
must then consider the comments it receives and respond appropriately. If
the comments result in substantial changes to the draft standard, multiple
public review periods may be required before the draft can be approved as
an American National Standard.

Fortunately, X3J13 has done an outstanding job of documenting its work.
For every change that came to a formal vote, a document was prepared that
described the problem to be solved and one or more solutions. For each
solution there is a detailed proposal for changing the language; a rationale;
test cases that distinguish the proposal from the status quo or from other
proposals for solving that problem; discussions of current practice, cost to
implementors, cost to users, cost of not adopting the proposal, benefits of
adoption, aesthetic criteria; and any relevant informal discussion that may
have preceded creation of the formal proposal. All of these proposal docu-
ments were made available on-line as well as in paper form. By my count,
by June 1989 some 186 such proposals were approved as language changes.
(This count does not include many proposals that came before the committee
but were rejected.)

The purpose of this second edition is to bridge the gap between the first
edition and the forthcoming ANSI standard for Common Lisp. Because of
the requirement for formal public review, it will be some time yet before the
ANSI standard is final. This book in no way resembles the forthcoming stan-
dard (which is being written independently by Kathy Chapman of Digital
Equipment Corporation with assistance from the X3J13 Drafting Subcom-
mittee).

I have incorporated into this second edition a great deal of material based
on the votes of X3J13, in order to give the reader a picture of where the
language is heading. My purpose here is not simply to quote the X3J13
documents verbatim but to paraphrase them and relate them to the structure
of the first edition. A single vote by X3J13 may be discussed in many parts
of this book, and a single passage of this book may be affected by many of

PREFACE (SECOND EDITION) xvii

the votes.
I wish to be very clear: this book is not an official document of X3J13,

though it is based on publicly available material produced by X3J13. In
no way does this book constitute a definitive description of the forthcoming
ANSI standard. The committee’s decisions have been remarkably stable
(it has rescinded earlier decisions only two or three times), and I do not
expect radical changes in direction. Nevertheless, it is quite probable that
the draft standard will be substantively revised in response to editorial review
or public comment. I have therefore reported here on the actions of X3J13
not to inscribe them in stone, but to make clear how the language of the
first edition is likely to change. I have tried to be careful in my wording
to avoid saying “the language has been changed” and to state simply that
“X3J13 voted at such-and-so time to make the following change.”

Until the day when an official ANSI Common Lisp standard emerges, it
is likely that the 1984 definition of Common Lisp will continue to be used
widely. This book has been designed to be used as a reference both to the
1984 definition and to the language as modified by the actions of X3J13.

It contains the entire text of the first edition of Common Lisp: The
Language, with corrections and minor editorial changes; however, more than
half of the material in this edition is new. All new material is identified by
solid lines in the left margin. Dotted lines in the left margin indicate material
from the first edition that applies to the 1984 definition but that has been
modified by a vote of X3J13. Modifications to these outmoded passages are
explained by preceding or following text (which will have a solid line in the
margin). In summary:

• To use the 1984 language definition, read all material that does not
have a solid line in the margin.

• To use the updated language definition, read everything, but be wary
of material with a dotted line in the margin.

At the end of the book is an index of the X3J13 votes, ordered by the com-
mittee’s internal code names (included to ease cross-reference to the X3J13
documents, which may be useful during the public review periods). Refer-
ences to this list of votes appear as numbers in angle brackets; thus “〈14〉”
refers to the vote on issue number 14, whereas “[14]” refers to reference 14 in
the bibliography.

xviii PREFACE (SECOND EDITION)

I have kept changes to the wording of the first-edition material to a min-
imum. Obvious spelling and typographical errors have been corrected, and
the entire text has been edited to a uniform style of spelling and punctua-
tion. (Note in particular that the first edition used the spelling “signalling”
but this edition, in deference to the style decision of the X3J13 Drafting
Subcommittee, uses “signaling.”) A few minor changes were made to accom-
modate typographical or layout constraints. (For example, the word “also”
has been deleted from the first sentence of chapter 1, partly to make that
paragraph look better and partly to allow a better page break at the bottom
of page 2.) In a very few cases the first edition contained substantive errors
that I could not in good conscience correct silently; these have been flagged
by paragraphs beginning with the phrase Notice of correction.

The chapter and section numbering of this edition matches that of the
first edition, with the exception that a new section 7.9 has been interpolated.
Four new chapters (26–29) describe substantial changes approved by X3J13:
an extended loop macro, a pretty printer interface, the Common Lisp Object
System, and the Common Lisp Condition System.

X3J13, in the course of its work, formed a subcommittee to study whether
additional means of iteration should be standardized for use in Common
Lisp, for a great deal of existing practice in this area was not included in
the first edition because of lack of agreement in 1984. The X3J13 Iteration
Subcommittee produced reports on three possible facilities. One (loop) was
approved for inclusion in the forthcoming draft standard and is described in
chapter 26.

X3J13 expressed interest in the other two approaches (series and genera-
tors), but the consensus as of January 1989 was that these other approaches
were not yet sufficiently mature or in sufficiently widespread use to warrant
inclusion in the draft Common Lisp standard at that time. However, the
subcommittee was directed to continue work on these approaches and X3J13
is open to the possibility of standardizing them at a later date. Please note
that I do not wish the prejudge the question of whether X3J13 will ever
choose to make the other two proposals the subject of standardization. Nev-
ertheless, I have chosen to include them in the second edition, in cooperation
with Dr. Richard C. Waters, as appendices ?? and ??, in order to make these
ideas available to the Lisp community. In my judgement these proposals ad-
dress an area of language design not otherwise covered by Common Lisp and
are likely to have practical value even if they are never adopted as part of a
formal standard.

PREFACE (SECOND EDITION) xix

Some new material in this book has nothing to do with the work of
X3J13. In many places I have added explanations, clarifications, new exam-
ples, warnings, and tips on writing portable code. Appendix ?? contains a
piece of code that may help in understanding the backquote syntax.

This second edition, unlike the first edition, also includes a few diagrams
to pep up the text. However, there are absolutely no new jokes, and very
few outright lies.

xx PREFACE (SECOND EDITION)

Acknowledgments SECOND
EDITION

First and foremost, I must thank the many people in the Lisp community who
have worked so hard to specify, implement, and use Common Lisp. Some of
these have volunteered many hours of effort as members of ANSI committee
X3J13. Others have made presentations or proposals to X3J13, and yet
others have sent suggestions and corrections to the first edition directly to
me. This book builds on their efforts as well as mine.

An early draft of this book was made available to all members of X3J13 for
their criticism. I have also worked with the many public documents that have
been written during the course of the committee’s work (which is not over
yet). It is my hope that this book is an accurate reflection of the committee’s
actions as of October 1989. Nevertheless, any errors or inconsistencies are my
responsibility. The fact that I have made a draft available to certain persons,
received feedback from them, or thanked them in these acknowledgments
does not necessarily imply that any one of them or any of the institutions
with which they are affiliated endorse this book or anything of its contents.

Digital Press and I gave permission to X3J13 to use any or all parts of
the first edition in the production of an ANSI Common Lisp standard. Con-
versely, in writing this book I have worked with publicly available documents
produced by X3J13 in the course of its work, and in some cases as a courtesy
have obtained the consent of the authors of those documents to quote them
extensively. This common ancestry will result in similarities between this
book and the emerging ANSI Common Lisp standard (that is the purpose,
after all). Nevertheless, this second edition has no official connection what-
soever with X3J13 or ANSI, nor is it endorsed by either of those institutions.

The following persons have been members of X3J13 or involved in its
activities at one time or another: Jim Allard, Dave Andre, Jim Antonisse,

xxi

xxii ACKNOWLEDGMENTS (SECOND EDITION)

William Arbaugh, John Aspinall, Bob Balzer, Gerald Barber, Richard Bar-
ber, Kim Barrett, David Bartley, Roger Bate, Alan Bawden, Michael Beck-
erle, Paul Beiser, Eric Benson, Daniel Bobrow, Mary Boelk, Skona Brit-
tain, Gary Brown, Tom Bucken, Robert Buckley, Gary Byers, Dan Carnese,
Bob Cassels, Jérôme Chailloux, Kathy Chapman, Thomas Christaller, Will
Clinger, Peter Coffee, John Cugini, Pavel Curtis, Doug Cutting, Christo-
pher Dabrowski, Jeff Dalton, Linda DeMichiel, Fred Discenzo, Jerry Dug-
gan, Patrick Dussud, Susan Ennis, Scott Fahlman, Jogn Fitch, John Foder-
aro, Richard Gabriel, Steven Gadol, Nick Gall, Oscar Garcia, Robert Gian-
siracusa, Brad Goldstein, David Gray, Richard Greenblatt, George Had-
den, Steve Haflich, Dave Henderson, Carl Hewitt, Carl Hoffman, Cheng Hu,
Masayuki Ida, Takayasu Ito, Sonya Keene, James Kempf, Gregory Jennings,
Robert Kerns, Gregor Kiczales, Kerry Kimbrough, Dieter Kolb, Timothy
Koschmann, Ed Krall, Fritz Kunze, Aaron Larson, Joachim Laubsch, Kevin
Layer, Michael Levin, Ray Lim, Thom Linden, David Loeffler, Sandra Loose-
more, Barry Margolin, Larry Masinter, David Matthews, Robert Mathis,
John McCarthy, Chris McConnell, Rob McLachlan, Jay Mendelsohn, Martin
Mikelsons, Tracey Miles, Richard Mlyarnik, David Moon, Jarl Nilsson, Leo
Noordhulsen, Ronald Ohlander, Julian Padget, Jeff Peck, Jan Pedersen, Bob
Pellegrino, Crispin Perdue, Dan Pierson, Kent Pitman, Dexter Pratt, Chris-
tian Quiennec, B. Raghavan, Douglas Rand, Jonathan Rees, Chris Richard-
son, Jeff Rininger, Walter van Roggen, Jeffrey Rosenking, Don Sakahara,
William Scherlis, David Slater, James Smith, Alan Snyder, Angela Sodan,
Richard Soley, S. Sridhar, Bill St. Clair, Philip Stanhope, Guy Steele, Herbert
Stoyan, Hiroshi Torii, Dave Touretzky, Paul Tucker, Rick Tucker, Thomas
Turba, David Unietis, Mary Van Deusen, Ellen Waldrum, Richard Waters,
Allen Wechsler, Mark Wegman, Jon L White, Skef Wholey, Alexis Wieland,
Martin Yonke, Bill York, Taiichi Yuasa, Gail Zacharias, and Jan Zubkoff.

I must express particular gratitude and appreciation to a number of people
for their exceptional efforts:

Larry Masinter, chairman of the X3J13 Cleanup Subcommittee, devel-
oped the standard format for documenting all proposals to be voted upon.
The result has been an outstanding technical and historical record of all the
actions taken by X3J13 to rectify and improve Common Lisp.

Sandra Loosemore, chairwoman of the X3J13 Compiler Subcommittee,
produced many proposals for clarifying the semantics of the compilation pro-
cess. She has been a diligent stickler for detail and has helped to clarify many
parts of Common Lisp left vague in the first edition.

ACKNOWLEDGMENTS (SECOND EDITION) xxiii

Jon L White, chairman of the X3J13 Iteration Subcommittee, supervised
the consideration of several controversial proposals, one of which (loop) was
eventually adopted by X3J13.

Thom Linden, chairman of the X3J13 Character Subcommittee, led a
team in grappling with the difficult problem of accommodating various char-
acter sets in Common Lisp. One result is that Common Lisp will be more
attractive for international use.

Kent Pitman, chairman of the X3J13 Error Handling Subcommittee,
plugged the biggest outstanding hole in Common Lisp as described by the
first edition.

Kathy Chapman, chairwoman of the X3J13 Drafting Subcommittee, and
principal author of the draft standard, has not only written a great deal of
text but also insisted on coherent and consistent terminology and pushed the
rest of the committee forward when necessary.

Robert Mathis, chairman of X3J13, has kept administrative matters flow-
ing smoothly during technical controversies.

Mary Van Deusen, secretary of X3J13, kept excellent minutes that were
a tremendous aid to me in tracing the history of a number of complex dis-
cussions.

Jan Zubkoff, X3J13 meeting and mailing organizer, knows what’s going
on, as always. She is a master of organization and of physical arrangements.
Moreover, she once again pulled me out of the fire at the last minute.

Dick Gabriel, international representative for X3J13, has kept informa-
tion flowing smoothly between Europe, Japan, and the United States. He
provided a great deal of the energy and drive for the completion of the Com-
mon Lisp Object System specification. He has also provided me with a great
deal of valuable advice and has been on call for last-minute consultation at
all hours during the final stages of preparation for this book.

David Moon has consistently been a source of reason, expert knowledge,
and careful scrutiny. He has read the first edition and the X3J13 proposals
perhaps more carefully than anyone else.

David Moon, Jon L White, Gregor Kiczales, Robert Mathis, Mary Boelk
provided extensive feedback on an early draft of this book. I thank them as
well as the many others who commented in one way or another on the draft.

I wish to thank the authors of large proposals to X3J13 that have made
material available for more or less wholesale inclusion in this book as distinct
chapters. This material was produced primarily for the use of X3J13 in its
work. It has been included here on a non-exclusive basis with the consent of

xxiv ACKNOWLEDGMENTS (SECOND EDITION)

the authors.
The author of the chapter on loop (Jon L White) notes that the chapter

is based on documentation written at Lucid, Inc., by Molly M. Miller, Sonia
Orin Lyris, and Kris Dinkel. Glenn Burke, Scott Fahlman, Colin Meldrum,
David Moon, Cris Perdue, and Dick Waters contributed to the design of the
loop macro.

The authors of the Common Lisp Object System specification (Daniel
G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon) wish to thank Patrick Dussud, Kenneth Kahn,
Jim Kempf, Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L
White for their contributions.

The author of the chapter on Conditions (Kent M. Pitman) notes that
there is a paper [38] containing background information about the design of
the condition system, which is based on the condition system of the Symbolics
Lisp Machines [49]. The members of the X3J13 Error Handling Subcommit-
tee were Andy Daniels and Kent Pitman. Richard Mlynarik and David A.
Moon made major design contributions. Useful comments, questions, sugges-
tions, and criticisms were provided by Paul Anagnostopoulos, Alan Bawden,
William Chiles, Pavel Curtis, Mary Fontana, Dick Gabriel, Dick King, Susan
Lander, David D. Loeffler, Ken Olum, David C. Plummer, Alan Snyder, Eric
Weaver, and Daniel L. Weinreb. The Condition System was designed specif-
ically to accommodate the needs of Common Lisp. The design is, however,
most directly based on the “New Error System” (NES) developed at Sym-
bolics by David L. Andre, Bernard S. Greenberg, Mike McMahon, David A.
Moon, and Daniel L. Weinreb. The NES was in turn based on experiences
with the original Lisp Machine error system (developed at MIT), which was
found to be inadequate for the needs of the modern Lisp Machine environ-
ments. Many aspects of the NES were inspired by the (PL/I) condition
system used by the Honeywell Multics operating system. Henry Lieberman
provided conceptual guidance and encouragement in the design of the NES. A
reimplementation of the NES for non-Symbolics Lisp Machine dialects (MIT,
LMI, and TI) was done at MIT by Richard M. Stallman. During the process
of that reimplementation, some conceptual changes were made which have
significantly influenced the Common Lisp Condition System.

As for the smaller but no less important proposals, Larry Masinter de-
serves recognition as an author of over half of them. He has worked inde-
fatigably to write up proposals and to polish drafts by other authors. Kent
Pitman, David Moon, and Sandra Loosemore have also been notably prolific,

ACKNOWLEDGMENTS (SECOND EDITION) xxv

as well as Jon L White, Dan Pierson, Walter van Roggen, Skona Brittain,
Scott Fahlman, and myself. Other authors of proposals include David An-
dre, John Aspinall, Kim Barrett, Eric Benson, Daniel Bobrow, Bob Cassels,
Kathy Chapman, William Clinger, Pavel Curtis, Doug Cutting, Jeff Dal-
ton, Linda DiMichiel, Richard Gabriel, Steven Haflich, Sonya Keene, James
Kempf, Gregor Kiczales, Dieter Kolb, Barry Margolin, Chris McConnell, Jeff
Peck, Jan Pedersen, Crispin Perdue, Jonathan Rees, Don Sakahara, David
Touretzky, Richard Waters, and Gail Zacharias.

I am grateful to Donald E. Knuth and his colleagues for producing the
TEX text formatting system [28], which was used to produce and typeset the
manuscript. Knuth did an especially good job of publishing the program
for TEX [29]; I had to consult the code about eight times while debugging
particularly complicated macros. Thanks to the extensive indexing and cross-
references, in each case it took me less than five minutes to find the relevant
fragment of that 500-page program.

I also owe a debt to Leslie Lamport, author of the LATEX macro pack-
age [30] for TEX, within which I implemented the document style for this
book.

Blue Sky Research sells and supports Textures, an implementation of
TEX for Apple Macintosh computers; Gayla Groom and Barry Smith of Blue
Sky Research provided excellent technical support when I needed it. Other
software tools that were invaluable in preparing this book were QuicKeys
(sold by CE Software, Inc.), which provides keyboard macros; Gōfer (sold
by Microlytics, Inc.), which performs rapid text searches in multiple files;
Symantec Utilities for Macintosh (sold by Symantec Corporation), which
saved me from more than one disk crash; and the PostScript language and
compatible fonts (sold by Adobe Systems Incorporated).

Some of this software (such as LATEX) I obtained for free and some I
bought, but all have proved to be useful tools of excellent quality. I am
grateful to these developers for creating them.

Electronic mail has been indispensible to the writing of this book, as well
to as the work of X3J13. (It is a humbling experience to publish a book and
then for the next five years to receive at least one electronic mail message a
week, if not twenty, pointing out some mistake or defect.) Kudos to those
develop and maintain the Internet, which arose from the Arpanet and other
networks.

Chase Duffy, George Horesta, and Will Buddenhagen of Digital Press
have given me much encouragement and support. David Ford designed the

xxvi ACKNOWLEDGMENTS (SECOND EDITION)

book and provided specifications that I could code into TEX. Alice Cheyer
and Kate Schmit edited the copy for style and puzzled over the more obscure
jokes with great patience. Marilyn Rowland created the index; Tim Evans
and I did some polishing. Laura Fillmore and her colleagues at Editorial,
Inc., have tirelessly and meticulously checked one draft after another and
has kept the paperwork flowing smoothly during the last hectic weeks of
proofreading, page makeup, and typesetting.

Thinking Machines Corporation has supported all my work with X3J13.
I thank all my colleagues there for their encouragement and help.

Others who provided indispensible encouragement and support include
Guy and Nalora Steele; David Steele; Cordon and Ruth Kerns; David, Patri-
cia, Tavis, Jacob, Nicholas, and Daniel Auwerda; Donald and Denise Kerns;
and David, Joyce, and Christine Kerns.

Most of the writing of this book took place between 10 P.M. and 3
A.M. (I’m not as young as I used to be). I am grateful to Barbara, Ju-
lia, Peter, and Matthew for putting up with it, and for their love.

Guy L. Steele Jr.
Lexington, Massachusetts
All Saints’ Day, 1989

Acknowledgments FIRST
EDITION (1984)

Common Lisp was designed by a diverse group of people affiliated with many
institutions.

Contributors to the design and implementation of Common Lisp and to
the polishing of this book are hereby gratefully acknowledged:

Paul AnagnostopoulosDigital Equipment Corporation
Dan Aronson Carnegie-Mellon University
Alan Bawden Massachusetts Institute of Technology
Eric Benson University of Utah, Stanford University, and Symbolics,

Incorporated
Jon Bentley Carnegie-Mellon University and Bell Laboratories
Jerry Boetje Digital Equipment Corporation
Gary Brooks Texas Instruments
Rodney A. Brooks Stanford University
Gary L. Brown Digital Equipment Corporation
Richard L. Bryan Symbolics, Incorporated
Glenn S. Burke Massachusetts Institute of Technology
Howard I. Cannon Symbolics, Incorporated
George J. Carrette Massachusetts Institute of Technology
Robert Cassels Symbolics, Incorporated
Monica Cellio Carnegie-Mellon University
David Dill Carnegie-Mellon University
Scott E. Fahlman Carnegie-Mellon University
Richard J. FatemanUniversity of California, Berkeley
Neal Feinberg Carnegie-Mellon University
Ron Fischer Rutgers University
John Foderaro University of California, Berkeley

xxvii

xxviii ACKNOWLEDGMENTS (FIRST EDITION, 1984)

Steve Ford Texas Instruments

ACKNOWLEDGMENTS (FIRST EDITION, 1984) xxix

Richard P. Gabriel Stanford University and Lawrence Livermore National
Laboratory

Joseph Ginder Carnegie-Mellon University and Perq Systems Corp.
Bernard S. GreenbergSymbolics, Incorporated
Richard Greenblatt Lisp Machines Incorporated (LMI)
Martin L. Griss University of Utah and Hewlett-Packard Incorporated
Steven Handerson Carnegie-Mellon University
Charles L. Hedrick Rutgers University
Gail Kaiser Carnegie-Mellon University
Earl A. Killian Lawrence Livermore National Laboratory
Steve Krueger Texas Instruments
John L. Kulp Symbolics, Incorporated
Jim Large Carnegie-Mellon University
Rob Maclachlan Carnegie-Mellon University
William Maddox Carnegie-Mellon University
Larry M. Masinter Xerox Corporation, Palo Alto Research Center
John McCarthy Stanford University
Michael E. McMahonSymbolics, Incorporated
Brian Milnes Carnegie-Mellon University
David A. Moon Symbolics, Incorporated
Beryl Morrison Digital Equipment Corporation
Don Morrison University of Utah
Dan Pierson Digital Equipment Corporation
Kent M. Pitman Massachusetts Institute of Technology
Jonathan Rees Yale University
Walter van Roggen Digital Equipment Corporation
Susan Rosenbaum Texas Instruments
William L. Scherlis Carnegie-Mellon University
Lee Schumacher Carnegie-Mellon University
Richard M. StallmanMassachusetts Institute of Technology
Barbara K. Steele Carnegie-Mellon University
Guy L. Steele Jr. Carnegie-Mellon University and Tartan Laboratories

Incorporated
Peter Szolovits Massachusetts Institute of Technology
William vanMelle Xerox Corporation, Palo Alto Research Center
Ellen Waldrum Texas Instruments
Allan C. Wechsler Symbolics, Incorporated
Daniel L. Weinreb Symbolics, Incorporated

xxx ACKNOWLEDGMENTS (FIRST EDITION, 1984)

Jon L White Xerox Corporation, Palo Alto Research Center
Skef Wholey Carnegie-Mellon University

Richard Zippel Massachusetts Institute of Technology
Leonard Zubkoff Carnegie-Mellon University and Tartan Laboratories

Incorporated

Some contributions were relatively small; others involved enormous expendi-
tures of effort and great dedication. A few of the contributors served more as
worthy adversaries than as benefactors (and do not necessarily endorse the fi-
nal design reported here), but their pointed criticisms were just as important
to the polishing of Common Lisp as all the positively phrased suggestions.
All of the people named above were helpful in one way or another, and I am
grateful for the interest and spirit of cooperation that allowed most decisions
to be made by consensus after due discussion.

Considerable encouragement and moral support were also provided by:

Norma Abel Digital Equipment Corporation
Roger Bate Texas Instruments
Harvey Cragon Texas Instruments
Dennis Duncan Digital Equipment Corporation
Sam Fuller Digital Equipment Corporation
A. Nico Habermann Carnegie-Mellon University
Berthold K. P. Horn Massachusetts Institute of Technology
Gene Kromer Texas Instruments
Gene Matthews Texas Instruments
Allan Newell Carnegie-Mellon University
Dana Scott Carnegie-Mellon University
Harry Tennant Texas Instruments
Patrick H. Winston Massachusetts Institute of Technology
Lowell Wood Lawrence Livermore National Laboratory
William A. Wulf Carnegie-Mellon University and Tartan Laboratories

Incorporated

I am very grateful to each of them.
Jan Zubkoff of Carnegie-Mellon University provided a great deal of orga-

nization, secretarial support, and unfailing good cheer in the face of adversity.
The development of Common Lisp would most probably not have been

possible without the electronic message system provided by the ARPANET.

ACKNOWLEDGMENTS (FIRST EDITION, 1984) xxxi

Design decisions were made on several hundred distinct points, for the most
part by consensus, and by simple majority vote when necessary. Except for
two one-day face-to-face meetings, all of the language design and discussion
was done through the ARPANET message system, which permitted effortless
dissemination of messages to dozens of people, and several interchanges per
day. The message system also provided automatic archiving of the entire
discussion, which has proved invaluable in the preparation of this reference
manual. Over the course of thirty months, approximately 3000 messages
were sent (an average of three per day), ranging in length from one line to
twenty pages. Assuming 5000 characters per printed page of text, the entire
discussion totaled about 1100 pages. It would have been substantially more
difficult to have conducted this discussion by any other means, and would
have required much more time.

The ideas in Common Lisp have come from many sources and been pol-
ished by much discussion. I am responsible for the form of this book, and for
any errors or inconsistencies that may remain; but the credit for the design
and support of Common Lisp lies with the individuals named above, each of
whom has made significant contributions.

The organization and content of this book were inspired in large part by
the MacLISP Reference Manual by David A. Moon and others [33], and by
the LISP Machine Manual (fourth edition) by Daniel Weinreb and David
Moon [55], which in turn acknowledges the efforts of Richard Stallman, Mike
McMahon, Alan Bawden, Glenn Burke, and “many people too numerous to
list.”

I thank Phyllis Keenan, Chase Duffy, Virginia Anderson, John Osborn,
and Jonathan Baker of Digital Press for their help in preparing this book
for publication. Jane Blake did an admirable job of copy-editing. James
Gibson and Katherine Downs of Waldman Graphics were most cooperative
in typesetting this book from my on-line manuscript files.

I am grateful to Carnegie-Mellon University and to Tartan Laboratories
Incorporated for supporting me in the writing of this book over the last three
years.

Part of the work on this book was done in conjunction with the Carnegie-
Mellon University Spice Project, an effort to construct an advanced scien-
tific software development environment for personal computers. The Spice
Project is supported by the Defense Advanced Research Projects Agency, De-
partment of Defense, ARPA Order 3597, monitored by the Air Force Avion-
ics Laboratory under contract F33615-78-C-1551. The views and conclusions

xxxii ACKNOWLEDGMENTS (FIRST EDITION, 1984)

contained in this book are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Most of the writing of this book took place between midnight and 5 A.M.
I am grateful to Barbara, Julia, and Peter for putting up with it, and for
their love.

Guy L. Steele Jr.
Pittsburgh, Pennsylvania
March 1984

Chapter 1

Introduction

Common Lisp is a new dialect of Lisp, a successor to MacLisp [33, 37],
influenced strongly by Zetalisp [55, 34] and to some extent by Scheme [46]
and Interlisp [50].

1.1 Purpose

Common Lisp is intended to meet these goals:

Commonality Common Lisp originated in an attempt to focus the work of
several implementation groups, each of which was constructing succes-
sor implementations of MacLisp for different computers. These imple-
mentations had begun to diverge because of the differences in the im-
plementation environments: microcoded personal computers (Zetalisp,
Spice Lisp), commercial timeshared computers (NIL—the “New Imple-
mentation of Lisp”), and supercomputers (S-1 Lisp). While the differ-
ences among the several implementation environments of necessity will
continue to force certain incompatibilities among the implementations,
Common Lisp serves as a common dialect to which each implementa-
tion makes any necessary extensions.

Portability Common Lisp intentionally excludes features that cannot be
implemented easily on a broad class of machines. On the one hand,
features that are difficult or expensive to implement on hardware with-
out special microcode are avoided or provided in a more abstract and

1

2 CHAPTER 1. INTRODUCTION

efficiently implementable form. (Examples of this are the invisible for-
warding pointers and locatives of Zetalisp. Some of the problems that
they solve are addressed in different ways in Common Lisp.) On the
other hand, features that are useful only on certain “ordinary” or “com-
mercial” processors are avoided or made optional. (An example of this
is the type declaration facility, which is useful in some implementations
and completely ignored in others. Type declarations are completely
optional and for correct programs affect only efficiency, not seman-
tics.) Common Lisp is designed to make it easy to write programs
that depend as little as possible on machine-specific characteristics,
such as word length, while allowing some variety of implementation
techniques.

Consistency Most Lisp implementations are internally inconsistent in that
by default the interpreter and compiler may assign different semantics
to correct programs. This semantic difference stems primarily from
the fact that the interpreter assumes all variables to be dynamically
scoped, whereas the compiler assumes all variables to be local unless
explicitly directed otherwise. This difference has been the usual prac-
tice in Lisp for the sake of convenience and efficiency but can lead to
very subtle bugs. The definition of Common Lisp avoids such anomalies
by explicitly requiring the interpreter and compiler to impose identical
semantics on correct programs so far as possible.

Expressiveness Common Lisp culls what experience has shown to be the
most useful and understandable constructs from not only MacLisp but
also Interlisp, other Lisp dialects, and other programming languages.
Constructs judged to be awkward or less useful have been excluded.
(An example is the store construct of MacLisp.)

Compatibility Unless there is a good reason to the contrary, Common Lisp
strives to be compatible with Lisp Machine Lisp, MacLisp, and In-
terlisp, roughly in that order.

Efficiency Common Lisp has a number of features designed to facilitate
the production of high-quality compiled code in those implementations
whose developers care to invest effort in an optimizing compiler. One
implementation of Common Lisp, namely S-1 Lisp, already has a com-
piler that produces code for numerical computations that is competitive

1.1. PURPOSE 3

in execution speed to that produced by a Fortran compiler [11]. The S-1
Lisp compiler extends the work done in MacLisp to produce extremely
efficient numerical code [19].

Power Common Lisp is a descendant of MacLisp, which has traditionally
placed emphasis on providing system-building tools. Such tools may
in turn be used to build the user-level packages such as Interlisp pro-
vides; these packages are not, however, part of the Common Lisp core
specification. It is expected such packages will be built on top of the
Common Lisp core.

Stability It is intended that Common Lisp will change only slowly and with
due deliberation. The various dialects that are supersets of Common
Lisp may serve as laboratories within which to test language extensions,
but such extensions will be added to Common Lisp only after careful
examination and experimentation.

The goals of Common Lisp are thus very close to those of Standard Lisp
[31] and Portable Standard Lisp [51]. Common Lisp differs from Standard
Lisp primarily in incorporating more features, including a richer and more
complicated set of data types and more complex control structures.

This book is intended to be a language specification rather than an
implementation specification (although implementation notes are scattered
throughout the text). It defines a set of standard language concepts and
constructs that may be used for communication of data structures and al-
gorithms in the Common Lisp dialect. This set of concepts and constructs
is sometimes referred to as the “core Common Lisp language” because it
contains conceptually necessary or important features. It is not necessarily
implementationally minimal. While many features could be defined in terms
of others by writing Lisp code, and indeed may be implemented that way,
it was felt that these features should be conceptually primitive so that there
might be agreement among all users as to their usage. (For example, bignums
and rational numbers could be implemented as Lisp code given operations on
fixnums. However, it is important to the conceptual integrity of the language
that they be regarded by the user as primitive, and they are useful enough
to warrant a standard definition.)

For the most part, this book defines a programming language, not a
programming environment. A few interfaces are defined for invoking such
standard programming tools as a compiler, an editor, a program trace facility,

4 CHAPTER 1. INTRODUCTION

and a debugger, but very little is said about their nature or operation. It is
expected that one or more extensive programming environments will be built
using Common Lisp as a foundation, and will be documented separately.

There are now many implementations of Common Lisp, some pro-
grammed by research groups in universities and some by companies that sell
them commercially, and a number of useful programming environments have
indeed grown up around these implementations. What is more, all the goals
stated above have been achieved, most notably that of portability. Moving
large bodies of Lisp code from one computer to another is now routine.

1.2 Notational Conventions

A number of special notational conventions are used throughout this book
for the sake of conciseness.

1.2.1 Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit
indication to the contrary. (Decimal notation is normally taken for granted,
of course. Unfortunately, for certain other dialects of Lisp, MacLisp in partic-
ular, the default notation for numbers is octal (base 8) rather than decimal,
and so the use of decimal notation for describing Common Lisp is, taken in
its historical context, a bit unusual!)

1.2.2 Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent
both the empty list and the “false” value for Boolean tests. An empty list may,
of course, also be written (); this normally denotes the same object as nil.
(It is possible, by extremely perverse manipulation of the package system,
to cause the sequence of letters nil to be recognized not as the symbol that
represents the empty list but as another symbol with the same name. This
obscure possibility will be ignored in this book.) These two notations may
be used interchangeably as far as the Lisp system is concerned. However,
as a matter of style, this book uses the notation () when it is desirable to
emphasize the use of an empty list, and uses the notation nil when it is
desirable to emphasize the use of the Boolean “false”. The notation ’nil

1.2. NOTATIONAL CONVENTIONS 5

(note the explicit quotation mark) is used to emphasize the use of a symbol.
For example:

(defun three () 3) ;Emphasize empty parameter list
(append ’() ’()) ⇒ ();Emphasize use of empty lists
(not nil) ⇒ t ;Emphasize use as Boolean “false”
(get ’nil ’color) ;Emphasize use as a symbol

Any data object other than nil is construed to be Boolean “not false”,
that is, “true”. The symbol t is conventionally used to mean “true” when no
other value is more appropriate. When a function is said to “return false” or
to “be false” in some circumstance, this means that it returns nil. However,
when a function is said to “return true” or to “be true” in some circumstance,
this means that it returns some value other than nil, but not necessarily t.

1.2.3 Evaluation, Expansion, and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of
code normally results in a data object called the value produced by the code.
The symbol ⇒ is used in examples to indicate evaluation. For example,

(+ 4 5) ⇒ 9

means “the result of evaluating the code (+ 4 5) is (or would be, or would
have been) 9.”

The symbol → is used in examples to indicate macro expansion. For
example,

(push x v) → (setf v (cons x v))

means “the result of expanding the macro-call form (push x v) is (setf
v (cons x v)).” This implies that the two pieces of code do the same thing;
the second piece of code is the definition of what the first does.

The symbol ≡ is used in examples to indicate code equivalence. For
example,

(gcd x (gcd y z)) ≡ (gcd (gcd x y) z)

means “the value and effects of evaluating the form (gcd x (gcd y z))
are always the same as the value and effects of (gcd (gcd x y) z) for any
values of the variables x, y, and z.” This implies that the two pieces of code
do the same thing; however, neither directly defines the other in the way
macro expansion does.

6 CHAPTER 1. INTRODUCTION

1.2.4 Errors

When this book specifies that it “is an error” for some situation to occur, this
means that:

• No valid Common Lisp program should cause this situation to occur.

• If this situation occurs, the effects and results are completely undefined
as far as adherence to the Common Lisp specification is concerned.

• No Common Lisp implementation is required to detect such an error.
Of course, implementors are encouraged to provide for detection of such
errors wherever reasonable.

This is not to say that some particular implementation might not define
the effects and results for such a situation; the point is that no program
conforming to the Common Lisp specification may correctly depend on such
effects or results.

On the other hand, if it is specified in this book that in some situation
“an error is signaled,” this means that:

• If this situation occurs, an error will be signaled (see error and cerror).

• Valid Common Lisp programs may rely on the fact that an error will
be signaled.

• Every Common Lisp implementation is required to detect such an error.

In places where it is stated that so-and-so “must” or “must not” or “may
not” be the case, then it “is an error” if the stated requirement is not met.
For example, if an argument “must be a symbol,” then it “is an error” if the
argument is not a symbol. In all cases where an error is to be signaled, the
word “signaled” is always used explicitly in this book.

X3J13 has adopted a more elaborate terminology for errors, and has made
some effort to specify the type of error to be signaled in situations where
signaling is appropriate. This effort was not complete as of September 1989,
and I have made little attempt to incorporate the new error terminology
or error type specifications in this book. However, the new terminology is
described and used in the specification of the Common Lisp Object System
appearing in chapter 28; this gives the flavor of how erroneous situations will
be described, and appropriate actions prescribed, in the forthcoming ANSI
Common Lisp standard.

1.2. NOTATIONAL CONVENTIONS 7

Table 1.1: Sample Function Description
[Function] sample-function arg1 arg2 &optional arg3 arg4

The function sample-function adds together arg1 and arg2, and then mul-
tiplies the result by arg3. If arg3 is not provided or is nil, the multiplication
isn’t done. sample-function then returns a list whose first element is this
result and whose second element is arg4 (which defaults to the symbol foo).
For example:

(sample-function 3 4) ⇒ (7 foo)
(sample-function 1 2 2 ’bar) ⇒ (6 bar)

In general, (sample-function x y) ≡ (list (+ x y) ’foo).

Table 1.2: Sample Variable Description
[Variable] *sample-variable*

The variable *sample-variable* specifies how many times the special op-
erator sample-special-form should iterate. The value should always be a
non-negative integer or nil (which means iterate indefinitely many times).
The initial value is 0 (meaning no iterations).

Table 1.3: Sample Constant Description
[Constant] sample-constant

The named constant sample-constant has as its value the height of the ter-
minal screen in furlongs times the base-2 logarithm of the implementation’s
total disk capacity in bytes, as a floating-point number.

1.2.5 Descriptions of Functions and Other Entities

Functions, variables, named constants, special operators, and macros are
described using a distinctive typographical format. Table 1.1 illustrates the
manner in which Common Lisp functions are documented. The first line
specifies the name of the function, the manner in which it accepts arguments,
and the fact that it is a function. If the function takes many arguments,
then the names of the arguments may spill across two or three lines. The
paragraphs following this standard header explain the definition and uses of
the function and often present examples or related functions.

Sometimes two or more related functions are explained in a single com-

8 CHAPTER 1. INTRODUCTION

Table 1.4: Sample Special Operator Description
[Special operator] sample-special-form [name] ({var}*) {form}+

This evaluates each form in sequence as an implicit progn, and does this as
many times as specified by the global variable *sample-variable*. Each
variable var is bound and initialized to 43 before the first iteration, and
unbound after the last iteration. The name name, if supplied, may be used
in a return-from form to exit from the loop prematurely. If the loop ends
normally, sample-special-form returns nil. For example:

(setq *sample-variable* 3)
(sample-special-form () form1 form2)

This evaluates form1, form2, form1, form2, form1, form2 in that order.

Table 1.5: Sample Macro Description
[Macro] sample-macro var [[declaration* | doc-string]] {tag | statement}*

This evaluates the statements as a prog body, with the variable var bound
to 43.

(sample-macro x (return (+ x x))) ⇒ 86
(sample-macro var . body) → (prog ((var 43)) . body)

bined description. In this situation the headers for all the functions appear
together, followed by the combined description.

In general, actual code (including actual names of functions) appears in
this typeface: (cons a b). Names that stand for pieces of code (metavari-
ables) are written in italics. In a function description, the names of the
parameters appear in italics for expository purposes. The word &optional
in the list of parameters indicates that all arguments past that point are
optional; the default values for the parameters are described in the text. Pa-
rameter lists may also contain&rest, indicating that an indefinite number of
arguments may appear, or &key, indicating that keyword arguments are ac-
cepted. (The &optional/&rest/&key syntax is actually used in Common
Lisp function definitions for these purposes.)

Table 1.2 illustrates the manner in which a global variable is documented.
The first line specifies the name of the variable and the fact that it is a vari-

1.2. NOTATIONAL CONVENTIONS 9

able. Purely as a matter of convention, all global variables used by Common
Lisp have names beginning and ending with an asterisk.

Table 1.3 illustrates the manner in which a named constant is docu-
mented. The first line specifies the name of the constant and the fact that it
is a constant. (A constant is just like a global variable, except that it is an
error ever to alter its value or to bind it to a new value.)

Tables 1.4 and 1.5 illustrate the documentation of special operators and
macros, which are closely related in purpose. These are very different from
functions. Functions are called according to a single, specific, consistent
syntax; the &optional/&rest/&key syntax specifies how the function uses
its arguments internally but does not affect the syntax of a call. In contrast,
each special operator or macro can have its own idiosyncratic syntax. It is
by special operators and macros that the syntax of Common Lisp is defined
and extended.

In the description of a special operator or macro, an italicized word names
a corresponding part of the form that invokes the special operator or macro.
Parentheses stand for themselves and should be written as such when invok-
ing the special operator or macro. Brackets, braces, stars, plus signs, and
vertical bars are metasyntactic marks. Brackets, [and], indicate that what
they enclose is optional (may appear zero times or one time in that place);
the square brackets should not be written in code. Braces, { and }, sim-
ply parenthesize what they enclose but may be followed by a star, {}*, or
a plus sign, {}+; a star indicates that what the braces enclose may appear
any number of times (including zero, that is, not at all), whereas a plus sign
indicates that what the braces enclose may appear any non-zero number of
times (that is, must appear at least once). Within braces or brackets, a ver-
tical bar, |, separates mutually exclusive choices. In summary, the notation
{x}* means zero or more occurrences of x, the notation {x}+ means one or
more occurrences of x, and the notation [x] means zero or one occurrence
of x. These notations are also used for syntactic descriptions expressed as
BNF-like productions, as in table 22.3.

Double brackets, [[and]], indicate that any number of the alternatives
enclosed may be used, and those used may occur in any order, but each
alternative may be used at most once unless followed by a star. For example,

p [[x | {y}* | z]] q

means that at most one x, any number of y ’s, and at most one z may appear
between the mandatory occurrences of p and q, and those that appear may

10 CHAPTER 1. INTRODUCTION

be in any order.
A downward arrow, ↓, indicates a form of syntactic indirection that helps

to make [[]] notation more readable. If X is some non-terminal symbol
occurring on the left-hand side of some BNF production, then the right-hand
side of that production is to be textually substituted for any occurrence of
↓X. Thus the two fragments

p [[↓xyz-mixture]] q
xyz-mixture ::= x | {y}* | z

are together equivalent to the previous example.
In the last example in table 1.5, notice the use of dot notation. The dot

appearing in the expression (sample-macro var . body) means that the
name body stands for a list of forms, not just a single form, at the end of a
list. This notation is often used in examples.

In the heading line in table 1.5, notice the use of [[]] notation to indicate
that any number of declarations may appear but at most one documentation
string (which may appear before, after, or somewhere in the middle of any
declarations).

1.2.6 The Lisp Reader

The term “Lisp reader” refers not to you, the reader of this book, nor to some
person reading Lisp code, but specifically to a Lisp procedure, namely the
function read, which reads characters from an input stream and interprets
them by parsing as representations of Lisp objects.

1.2.7 Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp.
The complete syntax is explained in detail in chapter 22, but a quick summary
here may be useful:

(A left parenthesis begins a list of items. The list may contain any
number of items, including zero. Lists may be nested. For example,
(cons (car x) (cdr y)) is a list of three things, of which the last two
are themselves lists.

) A right parenthesis ends a list of items.

1.2. NOTATIONAL CONVENTIONS 11

’ An acute accent (also called single quote or apostrophe) followed by
an expression form is an abbreviation for (quote form). Thus ’foo
means (quote foo) and ’(cons ’a ’b) means (quote (cons (quote
a) (quote b))).

; Semicolon is the comment character. It and all characters up to the
end of the line are discarded.

" Double quotes surround character strings:
"This is a thirty-nine-character string."

\ Backslash is an escape character. It causes the next character to be
treated as a letter rather than for its usual syntactic purpose. For
example, A\(B denotes a symbol whose name consists of the three
characters A, (, and B. Similarly, "\"" denotes a character string
containing one character, a double quote, because the first and third
double quotes serve to delimit the string, and the second double quote
serves as the contents of the string. The backslash causes the second
double quote to be taken literally and prevents it from being interpreted
as the terminating delimiter of the string.

| Vertical bars are used in pairs to surround the name (or part of the
name) of a symbol that has many special characters in it. It is roughly
equivalent to putting a backslash in front of every character so sur-
rounded. For example, |A(B)|, A|(|B|)|, and A\(B\) all mean the
symbol whose name consists of the four characters A, (, B, and).

The number sign signals the beginning of a complicated syntactic struc-
ture. The next character designates the precise syntax to follow. For
example, #o105 means 1058 (105 in octal notation); #x105 means
10516 (105 in hexadecimal notation); #b1011 means 10112 (1011 in
binary notation); #\L denotes a character object for the character L;
and #(a b c) denotes a vector of three elements a, b, and c. A partic-
ularly important case is that #’fn means (function fn), in a manner
analogous to ’form meaning (quote form).

‘ Grave accent (“backquote”) signals that the next expression is a tem-
plate that may contain commas. The backquote syntax represents a
program that will construct a data structure according to the template.

12 CHAPTER 1. INTRODUCTION

, Commas are used within the backquote syntax.

: Colon is used to indicate which package a symbol belongs to. For ex-
ample, network:reset denotes the symbol named reset in the package
named network. A leading colon indicates a keyword, a symbol that
always evaluates to itself. x The colon character is not actually part of
the print name of the symbol. This is all explained in chapter 11; until
you read that, just keep in mind that a symbol notated with a leading
colon is in effect a constant that evaluates to itself.

Brackets, braces, question mark, and exclamation point (that is, [,], {,
}, ?, and !) are not used for any purpose in standard Common Lisp syntax.
These characters are explicitly reserved to the user, primarily for use asmacro
characters for user-defined lexical syntax extensions (see section 22.1.3).

All code in this book is written using lowercase letters. Common Lisp is
generally insensitive to the case in which code is written. Internally, names of
symbols are ordinarily converted to and stored in uppercase form. There are
ways to force case conversion on output if desired; see *print-case*. In this
book, wherever an interactive exchange between a user and the Lisp system
is shown, the input is exhibited with lowercase letters and the output with
uppercase letters.

readtable-case settings allow the names of symbols to be case-sensitive.
The default behavior, however, is as described in the previous paragraph.
In any event, only uppercase letters appear in the internal print names of
symbols naming the standard Common Lisp facilities described in this book.

Chapter 2

Data Types

Common Lisp provides a variety of types of data objects. It is important
to note that in Lisp it is data objects that are typed, not variables. Any
variable can have any Lisp object as its value. (It is possible to make an
explicit declaration that a variable will in fact take on one of only a limited
set of values. However, such a declaration may always be omitted, and the
program will still run correctly. Such a declaration merely constitutes advice
from the user that may be useful in gaining efficiency. See declare.)

In Common Lisp, a data type is a (possibly infinite) set of Lisp objects.
Many Lisp objects belong to more than one such set, and so it doesn’t always
make sense to ask what is the type of an object; instead, one usually asks
only whether an object belongs to a given type. The predicate typep may
be used to ask whether an object belongs to a given type, and the function
type-of returns a type to which a given object belongs.

The data types defined in Common Lisp are arranged into a hierarchy
(actually a partial order) defined by the subset relationship. Certain sets
of objects, such as the set of numbers or the set of strings, are interesting
enough to deserve labels. Symbols are used for most such labels (here, and
throughout this book, the word “symbol” refers to atomic symbols, one kind of
Lisp object, elsewhere known as literal atoms). See chapter 4 for a complete
description of type specifiers.

The set of all objects is specified by the symbol t. The empty data type,
which contains no objects, is denoted by nil.

The following categories of Common Lisp objects are of particular inter-
est: numbers, characters, symbols, lists, arrays, structures, and functions.
There are others as well. Some of these categories have many subdivisions.

13

14 CHAPTER 2. DATA TYPES

There are also standard types defined to be the union of two or more of
these categories. The categories listed above, while they are data types, are
neither more nor less “real” than other data types; they simply constitute a
particularly useful slice across the type hierarchy for expository purposes.

Here are brief descriptions of various Common Lisp data types. The
remaining sections of this chapter go into more detail and also describe no-
tations for objects of each type. Descriptions of Lisp functions that operate
on data objects of each type appear in later chapters.

• Numbers are provided in various forms and representations. Common
Lisp provides a true integer data type: any integer, positive or negative,
has in principle a representation as a Common Lisp data object, subject
only to total memory limitations (rather than machine word width).
A true rational data type is provided: the quotient of two integers, if
not an integer, is a ratio. Floating-point numbers of various ranges and
precisions are also provided, as well as Cartesian complex numbers.

• Characters represent printed glyphs such as letters or text formatting
operations. Strings are one-dimensional arrays of characters. Com-
mon Lisp provides for a rich character set, including ways to represent
characters of various type styles.

• Symbols (sometimes called atomic symbols for emphasis or clarity) are
named data objects. Lisp provides machinery for locating a symbol
object, given its name (in the form of a string). Symbols have property
lists, which in effect allow symbols to be treated as record structures
with an extensible set of named components, each of which may be any
Lisp object. Symbols also serve to name functions and variables within
programs.

• Lists are sequences represented in the form of linked cells called conses.
There is a special object (the symbol nil) that is the empty list. All
other lists are built recursively by adding a new element to the front
of an existing list. This is done by creating a new cons, which is an
object having two components called the car and the cdr. The car may
hold anything, and the cdr is made to point to the previously existing
list. (Conses may actually be used completely generally as two-element
record structures, but their most important use is to represent lists.)

15

• Arrays are dimensioned collections of objects. An array can have any
non-negative number of dimensions and is indexed by a sequence of
integers. A general array can have any Lisp object as a component;
other types of arrays are specialized for efficiency and can hold only
certain types of Lisp objects. It is possible for two arrays, possibly
with differing dimension information, to share the same set of elements
(such that modifying one array modifies the other also) by causing one
to be displaced to the other. One-dimensional arrays of any kind are
called vectors. One-dimensional arrays of characters are called strings.
One-dimensional arrays of bits (that is, of integers whose values are 0
or 1) are called bit-vectors.

• Hash tables provide an efficient way of mapping any Lisp object (a key)
to an associated object.

• Readtables are used to control the built-in expression parser read.

• Packages are collections of symbols that serve as name spaces. The
parser recognizes symbols by looking up character sequences in the
current package.

• Pathnames represent names of files in a fairly implementation-
independent manner. They are used to interface to the external file
system.

• Streams represent sources or sinks of data, typically characters or bytes.
They are used to perform I/O, as well as for internal purposes such as
parsing strings.

• Random-states are data structures used to encapsulate the state of the
built-in random-number generator.

• Structures are user-defined record structures, objects that have named
components. The defstruct facility is used to define new structure
types. Some Common Lisp implementations may choose to imple-
ment certain system-supplied data types, such as bignums, readtables,
streams, hash tables, and pathnames, as structures, but this fact will be
invisible to the user.

16 CHAPTER 2. DATA TYPES

• Conditions are objects used to affect control flow in certain conven-
tional ways by means of signals and handlers that intercept those sig-
nals. In particular, errors are signaled by raising particular conditions,
and errors may be trapped by establishing handlers for those condi-
tions.

• Classes determine the structure and behavior of other objects, their
instances. Every Common Lisp data object belongs to some class. (In
some ways the CLOS class system is a generalization of the system of
type specifiers of the first edition of this book, but the class system
augments the type system rather than supplanting it.)

• Methods are chunks of code that operate on arguments satisfying a
particular pattern of classes. Methods are not functions; they are not
invoked directly on arguments but instead are bundled into generic
functions.

• Generic functions are functions that contain, among other information,
a set of methods. When invoked, a generic function executes a subset
of its methods. The subset chosen for execution depends in a specific
way on the classes or identities of the arguments to which it is applied.

These categories are not always mutually exclusive. The required re-
lationships among the various data types are explained in more detail in
section 2.15.

2.1 Numbers

Several kinds of numbers are defined in Common Lisp. They are divided into
integers ; ratios ; floating-point numbers, with names provided for up to four
different floating-point representations; reals and complex numbers.

The number data type encompasses all kinds of numbers. For conve-
nience, there are names for some subclasses of numbers as well. Integers and
ratios are of type rational. Rational numbers and floating-point numbers
are of type real. Real numbers and complex numbers are of type number.

Although the names of these types were chosen with the terminology of
mathematics in mind, the correspondences are not always exact. Integers and
ratios model the corresponding mathematical concepts directly. Numbers of

2.1. NUMBERS 17

type float may be used to approximate real numbers, both rational and
irrational. The real type includes all Common Lisp numbers that represent
mathematical real numbers, though there are mathematical real numbers
(irrational numbers) that do not have an exact Common Lisp representation.
Only real numbers may be ordered using the <, >, <=, and >= functions.

2.1.1 Integers

The integer data type is intended to represent mathematical integers. Unlike
most programming languages, Common Lisp in principle imposes no limit on
the magnitude of an integer; storage is automatically allocated as necessary
to represent large integers.

In every Common Lisp implementation there is a range of integers that are
represented more efficiently than others; each such integer is called a fixnum,
and an integer that is not a fixnum is called a bignum. Common Lisp is
designed to hide this distinction as much as possible; the distinction between
fixnums and bignums is visible to the user in only a few places where the
efficiency of representation is important. Exactly which integers are fixnums
is implementation-dependent; typically they will be those integers in the
range −2n to 2n − 1, inclusive, for some n not less than 15. See most-
positive-fixnum and most-negative-fixnum.

fixnummust be a supertype of the type (signed-byte 16), and addition-
ally that the value of array-dimension-limit must be a fixnum (implying
that the implementor should choose the range of fixnums to be large enough
to accommodate the largest size of array to be supported).

Rationale: This specification allows programmers to declare variables in portable
code to be of type fixnum for efficiency. Fixnums are guaranteed to encompass
at least the set of 16-bit signed integers (compare this to the data type short
int in the C programming language). In addition, any valid array index must be
a fixnum, and therefore variables used to hold array indices (such as a dotimes
variable) may be declared fixnum in portable code.

Integers are ordinarily written in decimal notation, as a sequence of deci-
mal digits, optionally preceded by a sign and optionally followed by a decimal
point. For example:

18 CHAPTER 2. DATA TYPES

0 ;Zero
-0 ;This always means the same as 0
+6 ;The first perfect number
28 ;The second perfect number

1024. ;Two to the tenth power
-1 ;eπi

15511210043330985984000000. ;25 factorial (25!), probably a bignum

Integers may be notated in radices other than ten. The notation

#nnrddddd or #nnRddddd

means the integer in radix-nn notation denoted by the digits ddddd. More
precisely, one may write #, a non-empty sequence of decimal digits repre-
senting an unsigned decimal integer n, r (or R), an optional sign, and a
sequence of radix-n digits, to indicate an integer written in radix n (which
must be between 2 and 36, inclusive). Only legal digits for the specified radix
may be used; for example, an octal number may contain only the digits 0
through 7. For digits above 9, letters of the alphabet of either case may be
used in order. Binary, octal, and hexadecimal radices are useful enough to
warrant the special abbreviations #b for #2r, #o for #8r, and #x for
#16r. For example:

#2r11010101 ;Another way of writing 213 decimal
#b11010101 ;Ditto

#b+11010101 ;Ditto
#o325 ;Ditto, in octal radix
#xD5 ;Ditto, in hexadecimal radix

#16r+D5 ;Ditto
#o-300 ;Decimal -192, written in base 8

#3r-21010 ;Same thing in base 3
#25R-7H ;Same thing in base 25

#xACCEDED ;181202413, in hexadecimal radix

2.1.2 Ratios

A ratio is a number representing the mathematical ratio of two integers.
Integers and ratios collectively constitute the type rational. The canonical
representation of a rational number is as an integer if its value is integral,

2.1. NUMBERS 19

and otherwise as the ratio of two integers, the numerator and denominator,
whose greatest common divisor is 1, and of which the denominator is positive
(and in fact greater than 1, or else the value would be integral). A ratio is
notated with / as a separator, thus: 3/5. It is possible to notate ratios in
non-canonical (unreduced) forms, such as 4/6, but the Lisp function prin1
always prints the canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such
that the denominator evenly divides the numerator, then the result is imme-
diately converted to the equivalent integer. This is called the rule of rational
canonicalization.

Rational numbers may be written as the possibly signed quotient of deci-
mal numerals: an optional sign followed by two non-empty sequences of digits
separated by a /. This syntax may be described as follows:

ratio ::= [sign] {digit}+ / {digit}+

The second sequence may not consist entirely of zeros. For example:

2/3 ;This is in canonical form
4/6 ;A non-canonical form for the same number
-17/23 ;A not very interesting ratio
-30517578125/32768 ;This is (−5/2)15
10/5 ;The canonical form for this is 2

To notate rational numbers in radices other than ten, one uses the same
radix specifiers (one of #nnR, #O, #B, or #X) as for integers. For
example:

#o-101/75 ;Octal notation for -65/61
#3r120/21 ;Ternary notation for 15/7
#Xbc/ad ;Hexadecimal notation for 188/173
#xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

2.1.3 Floating-Point Numbers

Common Lisp allows an implementation to provide one or more kinds of
floating-point number, which collectively make up the type float. Now a
floating-point number is a (mathematical) rational number of the form s ·
f · be−p, where s is +1 or −1, the sign; b is an integer greater than 1, the

20 CHAPTER 2. DATA TYPES

base or radix of the representation; p is a positive integer, the precision (in
base-b digits) of the floating-point number; f is a positive integer between
bp−1 and bp− 1 (inclusive), the significand ; and e is an integer, the exponent.
The value of p and the range of e depends on the implementation and on
the type of floating-point number within that implementation. In addition,
there is a floating-point zero; depending on the implementation, there may
also be a “minus zero.” If there is no minus zero, then 0.0 and -0.0 are both
interpreted as simply a floating-point zero.

Implementation note: The form of the above description should not be con-
strued to require the internal representation to be in sign-magnitude form. Two’s-
complement and other representations are also acceptable. Note that the radix of
the internal representation may be other than 2, as on the IBM 360 and 370, which
use radix 16; see float-radix.

Floating-point numbers may be provided in a variety of precisions and
sizes, depending on the implementation. High-quality floating-point software
tends to depend critically on the precise nature of the floating-point arith-
metic and so may not always be completely portable. As an aid in writing
programs that are moderately portable, however, certain definitions are made
here:

• A short floating-point number (type short-float) is of the representa-
tion of smallest fixed precision provided by an implementation.

• A long floating-point number (type long-float) is of the representation
of the largest fixed precision provided by an implementation.

• Intermediate between short and long formats are two others, arbitrarily
called single and double (types single-float and double-float).

The precise definition of these categories is implementation-dependent.
However, the rough intent is that short floating-point numbers be precise to
at least four decimal places (but also have a space- efficient representation);
single floating-point numbers, to at least seven decimal places; and double
floating-point numbers, to at least fourteen decimal places. It is suggested
that the precision (measured in bits, computed as p log2 b) and the exponent
size (also measured in bits, computed as the base-2 logarithm of 1 plus the
maximum exponent value) be at least as great as the values in table 2.1.

2.1. NUMBERS 21

Table 2.1: Recommended Minimum Floating-Point Precision and Exponent
Size
Format Minimum Precision Minimum Exponent Size
Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

Floating-point numbers are written in either decimal fraction or comput-
erized scientific notation: an optional sign, then a non-empty sequence of
digits with an embedded decimal point, then an optional decimal exponent
specification. If there is no exponent specifier, then the decimal point is re-
quired, and there must be digits after it. The exponent specifier consists of an
exponent marker, an optional sign, and a non-empty sequence of digits. For
preciseness, here is a modified-BNF description of floating-point notation.

floating-point-number ::= [sign] {digit}* decimal-point {digit}+ [exponent]
| [sign] {digit}+ [decimal-point {digit}*] exponent

sign ::= + | -
decimal-point ::= .
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
exponent ::= exponent-marker [sign] {digit}+
exponent-marker ::= e | s | f | d | l | E | S | F | D | L

If no exponent specifier is present, or if the exponent marker e (or E) is
used, then the precise format to be used is not specified. When such a
representation is read and converted to an internal floating-point data object,
the format specified by the variable *read-default-float-format* is used;
the initial value of this variable is single-float.

The letters s, f, d, and l (or their respective uppercase equivalents) ex-
plicitly specify the use of short, single, double, and long format, respectively.

Examples of floating-point numbers:

0.0 ;Floating-point zero in default format
0E0 ;Also floating-point zero in default format
-.0 ;This may be a zero or a minus zero,

; depending on the implementation
0. ;The integer zero, not a floating-point zero!

22 CHAPTER 2. DATA TYPES

0.0s0 ;A floating-point zero in short format
0s0 ;Also a floating-point zero in short format
3.1415926535897932384d0 ;A double-format approximation to π
6.02E+23 ;Avogadro’s number, in default format
602E+21 ;Also Avogadro’s number, in default format
3.010299957f-1 ;log10 2, in single format
-0.000000001s9 ;eπi in short format, the hard way

The internal format used for an external representation depends only on
the exponent marker and not on the number of decimal digits in the external
representation.

While Common Lisp provides terminology and notation sufficient to ac-
commodate four distinct floating-point formats, not all implementations will
have the means to support that many distinct formats. An implementation is
therefore permitted to provide fewer than four distinct internal floating-point
formats, in which case at least one of them will be “shared” by more than
one of the external format names short, single, double, and long according to
the following rules:

• If one internal format is provided, then it is considered to be single,
but serves also as short, double, and long. The data types short-float,
single-float, double-float, and long-float are considered to be iden-
tical. An expression such as (eql 1.0s0 1.0d0) will be true in such
an implementation because the two numbers 1.0s0 and 1.0d0 will be
converted into the same internal format and therefore be considered to
have the same data type, despite the differing external syntax. Simi-
larly, (typep 1.0L0 ’short-float) will be true in such an implemen-
tation. For output purposes all floating-point numbers are assumed to
be of single format and thus will print using the exponent letter E or
F.

• If two internal formats are provided, then either of two correspondences
may be used, depending on which is the more appropriate:

– One format is short ; the other is single and serves also as double
and long. The data types single-float, double-float, and long-
float are considered to be identical, but short-float is distinct.
An expression such as (eql 1.0s0 1.0d0) will be false, but (eql
1.0f0 1.0d0) will be true. Similarly, (typep 1.0L0 ’short-float)

2.1. NUMBERS 23

will be false, but (typep 1.0L0 ’single-float) will be true. For
output purposes all floating-point numbers are assumed to be of
short or single format.

– One format is single and serves also as short ; the other is double
and serves also as long. The data types short-float and single-
float are considered to be identical, and the data types double-
float and long-float are considered to be identical. An expression
such as (eql 1.0s0 1.0d0) will be false, as will (eql 1.0f0 1.0d0);
but (eql 1.0d0 1.0L0) will be true. Similarly, (typep 1.0L0
’short-float) will be false, but (typep 1.0L0 ’double-float)
will be true. For output purposes all floating-point numbers are
assumed to be of single or double format.

• If three internal formats are provided, then either of two correspon-
dences may be used, depending on which is the more appropriate:

– One format is short ; another format is single; and the third format
is double and serves also as long. Similar constraints apply.

– One format is single and serves also as short ; another is double;
and the third format is long.

Implementation note: It is recommended that an implementation provide as
many distinct floating-point formats as feasible, using table 2.1 as a guideline. Ide-
ally, short-format floating-point numbers should have an “immediate” representa-
tion that does not require heap allocation; single-format floating-point numbers
should approximate IEEE proposed standard single-format floating-point num-
bers; and double-format floating-point numbers should approximate IEEE pro-
posed standard double-format floating-point numbers [23, 17, 16].

2.1.4 Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with
a real part and an imaginary part, each of which is a non-complex number
(integer, ratio, or floating-point number). It should be emphasized that the
parts of a complex number are not necessarily floating-point numbers; in
this, Common Lisp is like PL/I and differs from Fortran. However, both

24 CHAPTER 2. DATA TYPES

parts must be of the same type: either both are rational, or both are of the
same floating-point format.

Complex numbers may be notated by writing the characters#C followed
by a list of the real and imaginary parts. If the two parts as notated are not
of the same type, then they are converted according to the rules of floating-
point contagion as described in chapter 12. (Indeed, #C(a b) is equivalent
to #,(complex a b); see the description of the function complex.) For
example:

#C(3.0s1 2.0s-1) ;Real and imaginary parts are short format
#C(5 -3) ;A Gaussian integer
#C(5/3 7.0) ;Will be converted internally to #C(1.66666 7.0)
#C(0 1) ;The imaginary unit, that is, i

The type of a specific complex number is indicated by a list of the word
complex and the type of the components; for example, a specialized repre-
sentation for complex numbers with short floating-point parts would be of
type (complex short-float). The type complex encompasses all complex
representations.

A complex number of type (complex rational), that is, one whose com-
ponents are rational, can never have a zero imaginary part. If the result of
a computation would be a complex rational with a zero imaginary part, the
result is immediately converted to a non-complex rational number by taking
the real part. This is called the rule of complex canonicalization. This rule
does not apply to floating-point complex numbers; #C(5.0 0.0) and 5.0 are
different.

2.2 Characters
Characters are represented as data objects of type character.

A character object can be notated by writing #\ followed by the char-
acter itself. For example, #\g means the character object for a lowercase
g. This works well enough for printing characters. Non-printing characters
have names, and can be notated by writing #\ and then the name; for exam-
ple, #\Space (or #\SPACE or #\space or #\sPaCE) means the space
character. The syntax for character names after #\ is the same as that for
symbols. However, only character names that are known to the particular
implementation may be used.

2.2. CHARACTERS 25

2.2.1 Standard Characters

Common Lisp defines a standard character set (subtype standard-char) for
two purposes. Common Lisp programs that are written in the standard char-
acter set can be read by any Common Lisp implementation; and Common
Lisp programs that use only standard characters as data objects are most
likely to be portable. The Common Lisp character set consists of a space
character #\Space, a newline character #\Newline, and the following
ninety-four non-blank printing characters or their equivalents:

! " # $ % & ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
‘ a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

The Common Lisp standard character set is apparently equivalent to
the ninety-five standard ASCII printing characters plus a newline character.
Nevertheless, Common Lisp is designed to be relatively independent of the
ASCII character encoding. For example, the collating sequence is not speci-
fied except to say that digits must be properly ordered, the uppercase letters
must be properly ordered, and the lowercase letters must be properly ordered
(see char< for a precise specification). Other character encodings, particu-
larly EBCDIC, should be easily accommodated (with a suitable mapping of
printing characters).

Of the ninety-four non-blank printing characters, the following are used
in only limited ways in the syntax of Common Lisp programs:

[] { } ? ! ^ _ ~ $ %

The following characters are called semi-standard :

#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout

Not all implementations of Common Lisp need to support them; but those
implementations that use the standard ASCII character set should support
them, treating them as corresponding respectively to the ASCII characters
BS (octal code 010), HT (011), LF (012), FF (014), CR (015), and DEL
(177). These characters are not members of the subtype standard-char
unless synonymous with one of the standard characters specified above. For
example, in a given implementation it might be sensible for the implementor
to define #\Linefeed or #\Return to be synonymous with #\Newline,
or #\Tab to be synonymous with #\Space.

26 CHAPTER 2. DATA TYPES

2.2.2 Line Divisions

The treatment of line divisions is one of the most difficult issues in designing
portable software, simply because there is so little agreement among operat-
ing systems. Some use a single character to delimit lines; the recommended
ASCII character for this purpose is the line feed character LF (also called
the new line character, NL), but some systems use the carriage return char-
acter CR. Much more common is the two-character sequence CR followed by
LF. Frequently line divisions have no representation as a character but are
implicit in the structuring of a file into records, each record containing a line
of text. A deck of punched cards has this structure, for example.

Common Lisp provides an abstract interface by requiring that there be
a single character, #\Newline, that within the language serves as a line
delimiter. (The language C has a similar requirement.) An implementa-
tion of Common Lisp must translate between this internal single-character
representation and whatever external representation(s) may be used.

Implementation note: How the character called #\Newline is represented
internally is not specified here, but it is strongly suggested that the ASCII LF
character be used in Common Lisp implementations that use the ASCII character
encoding. The ASCII CR character is a workable, but in most cases inferior,
alternative.

The requirement that a line division be represented as a single character
has certain consequences. A character string written in the middle of a
program in such a way as to span more than one line must contain exactly
one character to represent each line division. Consider this code fragment:

(setq a-string "This string
contains
forty-two characters.")

Between g and c there must be exactly one character, #\Newline; a
two-character sequence, such as #\Return and then #\Newline, is not
acceptable, nor is the absence of a character. The same is true between s
and f.

When the character #\Newline is written to an output file, the Com-
mon Lisp implementation must take the appropriate action to produce a line
division. This might involve writing out a record or translating #\Newline
to a CR/LF sequence.

2.3. SYMBOLS 27

Implementation note: If an implementation uses the ASCII character encod-
ing, uses the CR/LF sequence externally to delimit lines, uses LF to represent
#\Newline internally, and supports #\Return as a data object corresponding
to the ASCII character CR, the question arises as to what action to take when the
program writes out #\Return followed by #\Newline. It should first be noted
that #\Return is not a standard Common Lisp character, and the action to be
taken when#\Return is written out is therefore not defined by the Common Lisp
language. A plausible approach is to buffer the #\Return character and suppress
it if and only if the next character is #\Newline (the net effect is to generate a
CR/LF sequence). Another plausible approach is simply to ignore the difficulty
and declare that writing #\Return and then #\Newline results in the sequence
CR/CR/LF in the output.

2.2.3 Non-standard Characters

Any implementation may provide additional characters, whether printing
characters or named characters. Some plausible examples:

#\π #\α #\Break #\Home-Up #\Escape

The use of such characters may render Common Lisp programs non-
portable.

2.3 Symbols
Symbols are Lisp data objects that serve several purposes and have several
interesting characteristics. Every object of type symbol has a name, called
its print name. Given a symbol, one can obtain its name in the form of a
string. Conversely, given the name of a symbol as a string, one can obtain the
symbol itself. (More precisely, symbols are organized into packages, and all
the symbols in a package are uniquely identified by name. See chapter 11.)

Symbols have a component called the property list, or plist. By convention
this is always a list whose even-numbered components (calling the first com-
ponent zero) are symbols, here functioning as property names, and whose
odd-numbered components are associated property values. Functions are
provided for manipulating this property list; in effect, these allow a symbol
to be treated as an extensible record structure.

28 CHAPTER 2. DATA TYPES

Symbols are also used to represent certain kinds of variables in Lisp pro-
grams, and there are functions for dealing with the values associated with
symbols in this role.

A symbol can be notated simply by writing its name. If its name is
not empty, and if the name consists only of uppercase alphabetic, numeric,
or certain pseudo-alphabetic special characters (but not delimiter characters
such as parentheses or space), and if the name of the symbol cannot be
mistaken for a number, then the symbol can be notated by the sequence of
characters in its name. Any uppercase letters that appear in the (internal)
name may be written in either case in the external notation (more on this
below). For example:

FROBBOZ ;The symbol whose name is FROBBOZ
frobboz ;Another way to notate the same symbol
fRObBoz ;Yet another way to notate it
unwind-protect;A symbol with a - in its name
+$;The symbol named +$
1+ ;The symbol named 1+
+1 ;This is the integer 1, not a symbol
pascal_style ;This symbol has an underscore in its name
b^2-4*a*c ;This is a single symbol!

; It has several special characters in its name
file.rel.43 ;This symbol has periods in its name
/usr/games/zork;This symbol has slashes in its name

In addition to letters and numbers, the following characters are normally
considered to be alphabetic for the purposes of notating symbols:

+ - * / @ $ % ^ & _ = < > ~ .

Some of these characters have conventional purposes for naming things;
for example, symbols that name special variables generally have names be-
ginning and ending with *. The last character listed above, the period, is
considered alphabetic provided that a token does not consist entirely of peri-
ods. A single period standing by itself is used in the notation of conses and
dotted lists; a token consisting of two or more periods is syntactically illegal.
(The period also serves as the decimal point in the notation of numbers.)

The following characters are also alphabetic by default but are explic-
itly reserved to the user for definition as reader macro characters (see sec-

2.3. SYMBOLS 29

tion 22.1.3) or any other desired purpose and therefore should not be used
routinely in names of symbols:

? ! [] { }

A symbol may have uppercase letters, lowercase letters, or both in its
print name. However, the Lisp reader normally converts lowercase letters to
the corresponding uppercase letters when reading symbols. The net effect is
that most of the time case makes no difference when notating symbols. Case
does make a difference internally and when printing a symbol. Internally
the symbols that name all standard Common Lisp functions, variables, and
keywords have uppercase names; their names appear in lowercase in this
book for readability. Typing such names with lowercase letters works because
the function read will convert lowercase letters to the equivalent uppercase
letters.

readtable-case, which controls whether read will alter the case of letters
read as part of the name of a symbol.

If a symbol cannot be simply notated by the characters of its name be-
cause the (internal) name contains special characters or lowercase letters,
then there are two “escape” conventions for notating them. Writing a \
character before any character causes the character to be treated itself as
an ordinary character for use in a symbol name; in particular, it suppresses
internal conversion of lowercase letters to their uppercase equivalents. If any
character in a notation is preceded by \, then that notation can never be
interpreted as a number. For example:

\(;The symbol whose name is (
\+1 ;The symbol whose name is +1
\1 ;Also the symbol whose name is +1
\frobboz ;The symbol whose name is fROBBOZ
3.14159265\s0 ;The symbol whose name is 3.14159265s0
3.14159265\S0 ;A different symbol, whose name is 3.14159265S0
3.14159265s0 ;A short-format floating-point approximation to π
APL\\360 ;The symbol whose name is APL\360
apl\\360 ;Also the symbol whose name is APL\360
\(b^2\)\ -\ 4*a*c;The name is (B^2) - 4*A*C;

; it has parentheses and two spaces in it
\(\b^2\)\ -\ 4*\a*\c;The name is (b^2) - 4*a*c;

; the letters are explicitly lowercase

30 CHAPTER 2. DATA TYPES

It may be tedious to insert a \ before every delimiter character in the
name of a symbol if there are many of them. An alternative convention
is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol’s name, as if \
had been written before each one, excepting only | itself and \, which must
nevertheless be preceded by \. For example:

|"| ;The same as writing \"
|(b^2) - 4*a*c| ;The name is (b^2) - 4*a*c
|frobboz| ;The name is frobboz, not FROBBOZ
|APL\360| ;The name is APL360, because the \ quotes the 3
|APL\\360| ;The name is APL\360
|apl\\360| ;The name is apl\360
|\|\|| ;Same as \|\|: the name is ||
|(B^2) - 4*A*C|;The name is (B^2) - 4*A*C;

; it has parentheses and two spaces in it
|(b^2) - 4*a*c| ;The name is (b^2) - 4*a*c

2.4 Lists and Conses

A cons is a record structure containing two components called the car and
the cdr. Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose
cdr component is a list. A list is therefore a chain of conses linked by their
cdr components and terminated by nil, the empty list. The car components
of the conses are called the elements of the list. For each element of the list
there is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by
blank space (space, tab, or return characters) and surrounded by parentheses.

(a b c) ;A list of three symbols
(2.0s0 (a 1) #*) ;A list of three things: a short floating-point

; number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with
no elements.

A dotted list is one whose last cons does not have nil for its cdr, rather
some other data object (which is also not a cons, or the first-mentioned

2.4. LISTS AND CONSES 31

cons would not be the last cons of the list). Such a list is called “dotted”
because of the special notation used for it: the elements of the list are written
between parentheses as before, but after the last element and before the right
parenthesis are written a dot (surrounded by blank space) and then the cdr
of the last cons. As a special case, a single cons is notated by writing the car
and the cdr between parentheses and separated by a space-surrounded dot.
For example:

(a . 4) ;A cons whose car is a symbol
; and whose cdr is an integer

(a b c . d) ;A dotted list with three elements whose last cons
; has the symbol d in its cdr

It is legitimate to write something like (a b . (c d)); this means the
same as (a b c d). The standard Lisp output routines will never print a list
in the first form, however; they will avoid dot notation wherever possible.

Often the term list is used to refer either to true lists or to dotted lists.
When the distinction is important, the term “true list” will be used to refer to
a list terminated by nil. Most functions advertised to operate on lists expect
to be given true lists. Throughout this book, unless otherwise specified, it is
an error to pass a dotted list to a function that is specified to require a list
as an argument.

Implementation note: Implementors are encouraged to use the equivalent of
the predicate endp wherever it is necessary to test for the end of a list. Whenever
feasible, this test should explicitly signal an error if a list is found to be terminated
by a non-nil atom. However, such an explicit error signal is not required, because
some such tests occur in important loops where efficiency is important. In such
cases, the predicate atom may be used to test for the end of the list, quietly
treating any non-nil list-terminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other
conses transitively accessible to it through car and cdr links until non-conses
are reached; these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they
are simply useful points of view about structures of conses. There are yet
other terms, such as association list. None of these are true Lisp data types.
Conses are a data type, and nil is the sole object of type null. The Lisp
data type list is taken to mean the union of the cons and null data types,
and therefore encompasses both true lists and dotted lists.

32 CHAPTER 2. DATA TYPES

2.5 Arrays

An array is an object with components arranged according to a Cartesian
coordinate system. In general, these components may be any Lisp data
objects.

The number of dimensions of an array is called its rank (this terminology
is borrowed from APL); the rank is a non-negative integer. Likewise, each
dimension is itself a non-negative integer. The total number of elements in
the array is the product of all the dimensions.

An implementation of Common Lisp may impose a limit on the rank of
an array, but this limit may not be smaller than 7. Therefore, any Common
Lisp program may assume the use of arrays of rank 7 or less. (A program
may determine the actual limit on array ranks for a given implementation
by examining the constant array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no
elements, and any attempt to access an element is in error. However, other
properties of the array, such as the dimensions themselves, may be used.
If the rank is zero, then there are no dimensions, and the product of the
dimensions is then by definition 1. A zero-rank array therefore has a single
element.

An array element is specified by a sequence of indices. The length of
the sequence must equal the rank of the array. Each index must be a non-
negative integer strictly less than the corresponding array dimension. Array
indexing is therefore zero-origin, not one-origin as in (the default case of)
Fortran.

As an example, suppose that the variable foo names a 3-by-5 array. Then
the first index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3,
or 4. One may refer to array elements using the function aref; for example,
(aref foo 2 1) refers to element (2, 1) of the array. Note that aref takes a
variable number of arguments: an array, and as many indices as the array
has dimensions. A zero-rank array has no dimensions, and therefore aref
would take such an array and no indices, and return the sole element of the
array.

In general, arrays can be multidimensional, can share their contents with
other array objects, and can have their size altered dynamically (either en-
larging or shrinking) after creation. A one-dimensional array may also have
a fill pointer.

Multidimensional arrays store their components in row-major order; that

2.5. ARRAYS 33

is, internally a multidimensional array is stored as a one-dimensional array,
with the multidimensional index sets ordered lexicographically, last index
varying fastest. This is important in two situations: (1) when arrays with
different dimensions share their contents, and (2) when accessing very large
arrays in a virtual-memory implementation. (The first situation is a matter
of semantics; the second, a matter of efficiency.)

An array that is not displaced to another array, has no fill pointer, and
is not to have its size adjusted dynamically after creation is called a simple
array. The user may provide declarations that certain arrays will be simple.
Some implementations can handle simple arrays in an especially efficient
manner; for example, simple arrays may have a more compact representation
than non-simple arrays.

If one or more of the :adjustable, :fill-pointer, and :displaced-to ar-
guments is true whenmake-array is called, then whether the resulting array
is simple is unspecified; but if all three arguments are false, then the resulting
array is guaranteed to be simple.

2.5.1 Vectors

One-dimensional arrays are called vectors in Common Lisp and constitute
the type vector (which is therefore a subtype of array). Vectors and lists are
collectively considered to be sequences. They differ in that any component
of a one-dimensional array can be accessed in constant time, whereas the
average component access time for a list is linear in the length of the list; on
the other hand, adding a new element to the front of a list takes constant
time, whereas the same operation on an array takes time linear in the length
of the array.

A general vector (a one-dimensional array that can have any data object
as an element but that has no additional paraphernalia) can be notated by
notating the components in order, separated by whitespace and surrounded
by #(and). For example:

#(a b c) ;A vector of length 3
#() ;An empty vector
#(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50

Note that when the function read parses this syntax, it always constructs
a simple general vector.

34 CHAPTER 2. DATA TYPES

Rationale: Many people have suggested that brackets be used to notate vectors,
as [a b c] instead of #(a b c). This notation would be shorter, perhaps more read-
able, and certainly in accord with cultural conventions in other parts of computer
science and mathematics. However, to preserve the usefulness of the user-definable
macro-character feature of the function read, it is necessary to leave some char-
acters to the user for this purpose. Experience in MacLisp has shown that users,
especially implementors of languages for use in artificial intelligence research, of-
ten want to define special kinds of brackets. Therefore Common Lisp avoids using
brackets and braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays
for efficiency in the case where all the components are of the same specialized
(typically numeric) type. All implementations provide specialized arrays for
the cases when the components are characters (or rather, a special subset of
the characters); the one-dimensional instances of this specialization are called
strings. All implementations are also required to provide specialized arrays
of bits, that is, arrays of type (array bit); the one-dimensional instances of
this specialization are called bit-vectors.

2.5.2 Strings

base-string ≡ (vector base-char)
simple-base-string ≡ (simple-array base-char (*))

An implementation may support other string subtypes as well. All Com-
mon Lisp functions that operate on strings treat all strings uniformly; note,
however, that it is an error to attempt to insert an extended character into
a base string.

The type string is therefore a subtype of the type vector.
A string can be written as the sequence of characters contained in the

string, preceded and followed by a " (double quote) character. Any " or \
character in the sequence must additionally have a \ character before it.

For example:

"Foo" ;A string with three characters in it
"" ;An empty string
"\"APL\\360?\" he cried." ;A string with twenty characters
"|x| = |-x|" ;A ten-character string

2.6. HASH TABLES 35

Notice that any vertical bar | in a string need not be preceded by a \.
Similarly, any double quote in the name of a symbol written using vertical-
bar notation need not be preceded by a \. The double-quote and vertical-bar
notations are similar but distinct: double quotes indicate a character string
containing the sequence of characters, whereas vertical bars indicate a symbol
whose name is the contained sequence of characters.

The characters contained by the double quotes, taken from left to right,
occupy locations within the string with increasing indices. The leftmost
character is string element number 0, the next one is element number 1, the
next one is element number 2, and so on.

Note that the function prin1 will print any character vector (not just a
simple one) using this syntax, but the function read will always construct a
simple string when it reads this syntax.

2.5.3 Bit-Vectors

A bit-vector can be written as the sequence of bits contained in the string,
preceded by #*; any delimiter character, such as whitespace, will terminate
the bit-vector syntax. For example:

#*10110 ;A five-bit bit-vector; bit 0 is a 1
#* ;An empty bit-vector

The bits notated following the #*, taken from left to right, occupy loca-
tions within the bit-vector with increasing indices. The leftmost notated bit
is bit-vector element number 0, the next one is element number 1, and so on.

The function prin1 will print any bit-vector (not just a simple one) using
this syntax, but the function read will always construct a simple bit-vector
when it reads this syntax.

2.6 Hash Tables

Hash tables provide an efficient way of mapping any Lisp object (a key)
to an associated object. They are provided as primitives of Common Lisp
because some implementations may need to use internal storage management
strategies that would make it very difficult for the user to implement hash
tables in a portable fashion. Hash tables are described in chapter 16.

36 CHAPTER 2. DATA TYPES

2.7 Readtables

A readtable is a data structure that maps characters into syntax types for
the Lisp expression parser. In particular, a readtable indicates for each char-
acter with syntax macro character what its macro definition is. This is a
mechanism by which the user may reprogram the parser to a limited but
useful extent. See section 22.1.5.

2.8 Packages

Packages are collections of symbols that serve as name spaces. The parser
recognizes symbols by looking up character sequences in the current package.
Packages can be used to hide names internal to a module from other code.
Mechanisms are provided for exporting symbols from a given package to the
primary “user” package. See chapter 11.

2.9 Pathnames

Pathnames are the means by which a Common Lisp program can interface to
an external file system in a reasonably implementation-independent manner.
See section 23.1.1.

2.10 Streams

A stream is a source or sink of data, typically characters or bytes. Nearly
all functions that perform I/O do so with respect to a specified stream. The
function open takes a pathname and returns a stream connected to the file
specified by the pathname. There are a number of standard streams that are
used by default for various purposes. See chapter 21.

There are subtypes of type stream: broadcast-stream,
concatenated-stream, echo-stream, synonym-stream, string-
stream, file-stream, and two-way-stream are disjoint subtypes of
stream. Note particularly that a synonym stream is always and only of
type synonym-stream, regardless of the type of the stream for which it is
a synonym.

2.11. RANDOM-STATES 37

2.11 Random-States
An object of type random-state is used to encapsulate state information
used by the pseudo-random number generator. For more information about
random-state objects, see section 12.9.

2.12 Structures
Structures are instances of user-defined data types that have a fixed number
of named components. They are analogous to records in Pascal. Structures
are declared using the defstruct construct; defstruct automatically defines
access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a
structure type may specify a print procedure to use for objects of that type
(see the :print-function option to defstruct). The default notation for
structures is

#S(structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2

...)

where#S indicates structure syntax, structure-name is the name (a sym-
bol) of the structure type, each slot-name is the name (also a symbol) of a
component, and each corresponding slot-value is the representation of the
Lisp object in that slot.

2.13 Functions
The type function is to be disjoint from cons and symbol, and so a list
whose car is lambda is not, properly speaking, of type function, nor is
any symbol. However, standard Common Lisp functions that accept func-
tional arguments will accept a symbol or a list whose car is lambda and
automatically coerce it to be a function; such standard functions include
funcall, apply, and mapcar. Such functions do not, however, accept a
lambda-expression as a functional argument; therefore one may not write

(mapcar ’(lambda (x y) (sqrt (* x y))) p q)

38 CHAPTER 2. DATA TYPES

but instead one must write something like

(mapcar #’(lambda (x y) (sqrt (* x y))) p q)

This change makes it impermissible to represent a lexical closure as a list
whose car is some special marker.

The value of a function special operator will always be of type function.

2.14 Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects
cannot necessarily be reliably reconstructed from a printed representation,
and so they are usually printed in a format informative to the user but not
acceptable to the read function: #<useful information>. The Lisp
reader will signal an error on encountering #<.

As a hypothetical example, an implementation might print

#<stack-pointer si:rename-within-new-definition-maybe #o311037552>

for an implementation-specific “internal stack pointer” data type whose
printed representation includes the name of the type, some information about
the stack slot pointed to, and the machine address (in octal) of the stack slot.

See print-unreadable-object, a macro that prints an object using #<
syntax.

2.15 Overlap, Inclusion, and Disjointness of
Types

The Common Lisp data type hierarchy is tangled and purposely left some-
what open-ended so that implementors may experiment with new data types
as extensions to the language. This section explicitly states all the defined
relationships between types, including subtype/supertype relationships, dis-
jointness, and exhaustive partitioning. The user of Common Lisp should not
depend on any relationships not explicitly stated here. For example, it is
not valid to assume that because a number is not complex and not rational
that it must be a float, because implementations are permitted to provide
yet other kinds of numbers.

2.15. OVERLAP, INCLUSION, AND DISJOINTNESS OF TYPES 39

First we need some terminology. If x is a supertype of y, then any object
of type y is also of type x, and y is said to be a subtype of x. If types x and
y are disjoint, then no object (in any implementation) may be both of type
x and of type y. Types a1 through an are an exhaustive union of type x if
each aj is a subtype of x, and any object of type x is necessarily of at least
one of the types aj; a1 through an are furthermore an exhaustive partition if
they are also pairwise disjoint.

• The type t is a supertype of every type whatsoever. Every object is of
type t.

• The type nil is a subtype of every type whatsoever. No object is of
type nil.

• The types cons, symbol, array, number, character, hash-table,
readtable, package, pathname, stream, random-state, and any
single other type created by defstruct or defclass are pairwise disjoint.

Type function is disjoint from the types cons, symbol, array, num-
ber, and character.

The type compiled-function is a subtype of function; implementa-
tions are free to define other subtypes of function.

• The types real and complex are pairwise disjoint subtypes of num-
ber.

Rationale: It might be thought that real and complex should form an exhaustive
partition of the type number. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system.

• The types rational and float are pairwise disjoint subtypes of real.

Rationale: It might be thought that rational and float should form an exhaustive
partition of the type real. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system.

• The types integer and ratio are disjoint subtypes of rational.

40 CHAPTER 2. DATA TYPES

Rationale: It might be thought that integer and ratio should form an exhaustive
partition of the type rational. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp rational number
system.

Types fixnum and bignum do in fact form an exhaustive partition of the
type integer; more precisely, they voted to specify that the type bignum is
by definition equivalent to (and integer (not fixnum)). This is consistent
with the first edition text in section 2.1.1.

I interpret this to mean that implementators could still experiment with
such extensions as adding explicit representations of infinity, but such infini-
ties would necessarily be of type bignum.

• The types short-float, single-float, double-float, and long-float are
subtypes of float. Any two of them must be either disjoint or identical;
if identical, then any other types between them in the above ordering
must also be identical to them (for example, if single-float and long-
float are identical types, then double-float must be identical to them
also).

• The type null is a subtype of symbol; the only object of type null is
nil.

• The types cons and null form an exhaustive partition of the type list.

• The type standard-char is a subtype of base-char. The types base-
char and extended-char form an exhaustive partition of character.

• The type string is a subtype of vector; it is the union of all types
(vector c) such that c is a subtype of character.

• The type bit-vector is a subtype of vector, for bit-vector means
(vector bit).

• The types (vector t), string, and bit-vector are disjoint.

• The type vector is a subtype of array; for all types x, the type (vector
x) is the same as the type (array x (*)).

2.15. OVERLAP, INCLUSION, AND DISJOINTNESS OF TYPES 41

• The type simple-array is a subtype of array.

• The types simple-vector, simple-string, and simple-bit-vector are
disjoint subtypes of simple-array, for they mean (simple-array t
(*)), the union of all types (simple-array c (*)) such that c is a
subtype of character, and (simple-array bit (*)), respectively.

• The type simple-vector is a subtype of vector and indeed is a subtype
of (vector t).

• The type simple-string is a subtype of string. (Note that although
string is a subtype of vector, simple-string is not a subtype of
simple-vector.)

Rationale: The hypothetical name simple-general-vector would have been
more accurate than simple-vector, but in this instance euphony and user conve-
nience were deemed more important to the design of Common Lisp than a rigid
symmetry.

• The type simple-bit-vector is a subtype of bit-vector. (Note that
although bit-vector is a subtype of vector, simple-bit-vector is not
a subtype of simple-vector.)

• The types vector and list are disjoint subtypes of sequence.

• The types random-state, readtable, package, pathname, stream,
and hash-table are pairwise disjoint.

random-state, readtable, package, pathname, stream, and hash-
table are pairwise disjoint from a number of other types as well; see note
above.

• The types two-way-stream, echo-stream, broadcast-stream, file-
stream, synonym-stream, string-stream, and concatenated-
stream are disjoint subtypes of stream.

• Any two types created by defstruct are disjoint unless one is a super-
type of the other by virtue of the :include option.

42 CHAPTER 2. DATA TYPES

Chapter 3

Scope and Extent

In describing various features of the Common Lisp language, the notions of
scope and extent are frequently useful. These notion arise when some object
or construct must be referred to from some distant part of a program. Scope
refers to the spatial or textual region of the program within which references
may occur. Extent refers to the interval of time during which references may
occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There
is no way to refer to this parameter from any other place but within the body
of the defun. Similarly, the extent of the parameter x (for any particular
call to copy-cell) is the interval from the time the function is invoked to the
time it is exited. (In the general case, the extent of a parameter may last
beyond the time of function exit, but that cannot occur in this simple case.)

Within Common Lisp, a referenceable entity is established by the exe-
cution of some language construct, and the scope and extent of the entity
are described relative to the construct and the time (during execution of
the construct) at which the entity is established. For the purposes of this
discussion, the term “entity” refers not only to Common Lisp data objects,
such as symbols and conses, but also to variable bindings (both ordinary and
special), catchers, and go targets. It is important to distinguish between an
entity and a name for the entity. In a function definition such as

(defun foo (x y) (* x (+ y 1)))

43

44 CHAPTER 3. SCOPE AND EXTENT

there is a single name, x, used to refer to the first parameter of the
procedure whenever it is invoked; however, a new binding is established on
every invocation. A binding is a particular parameter instance. The value
of a reference to the name x depends not only on the scope within which
it occurs (the one in the body of foo in the example occurs in the scope of
the function definition’s parameters) but also on the particular binding or
instance involved. (In this case, it depends on the invocation during which
the reference is made). More complicated examples appear at the end of this
chapter.

There are a few kinds of scope and extent that are particularly useful in
describing Common Lisp:

• Lexical scope. Here references to the established entity can occur only
within certain program portions that are lexically (that is, textually)
contained within the establishing construct. Typically the construct
will have a part designated the body, and the scope of all entities es-
tablished will be (or include) the body.

Example: the names of parameters to a function normally are lexically
scoped.

• Indefinite scope. References may occur anywhere, in any program.

• Dynamic extent. References may occur at any time in the interval
between establishment of the entity and the explicit disestablishment of
the entity. As a rule, the entity is disestablished when execution of the
establishing construct completes or is otherwise terminated. Therefore
entities with dynamic extent obey a stack-like discipline, paralleling the
nested executions of their establishing constructs.

Example: the with-open-file construct opens a connection to a file
and creates a stream object to represent the connection. The stream
object has indefinite extent, but the connection to the open file has dy-
namic extent: when control exits the with-open-file construct, either
normally or abnormally, the stream is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

• Indefinite extent. The entity continues to exist as long as the possibility
of reference remains. (An implementation is free to destroy the entity if

45

it can prove that reference to it is no longer possible. Garbage collection
strategies implicitly employ such proofs.)

Example: most Common Lisp data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function
have indefinite extent. (By contrast, in Algol the bindings of lexically
scoped parameters of a procedure have dynamic extent.) The function
definition

(defun compose (f g)
#’(lambda (x)

(funcall f (funcall g x))))

when given two arguments, immediately returns a function as its value.
The parameter bindings for f and g do not disappear because the re-
turned function, when called, could still refer to those bindings. There-
fore

(funcall (compose #’sqrt #’abs) -9.0)

produces the value 3.0. (An analogous procedure would not necessarily
work correctly in typical Algol implementations or, for that matter, in
most Lisp dialects.)

In addition to the above terms, it is convenient to define dynamic scope
to mean indefinite scope and dynamic extent. Thus we speak of “special”
variables as having dynamic scope, or being dynamically scoped, because
they have indefinite scope and dynamic extent: a special variable can be
referred to anywhere as long as its binding is currently in effect.

The term “dynamic scope” is a misnomer. Nevertheless it is both tradi-
tional and useful.

The above definitions do not take into account the possibility of shadow-
ing. Remote reference of entities is accomplished by using names of one kind
or another. If two entities have the same name, then the second may shadow
the first, in which case an occurrence of the name will refer to the second
and cannot refer to the first.

In the case of lexical scope, if two constructs that establish entities with
the same name are textually nested, then references within the inner con-
struct refer to the entity established by the inner one; the inner one shadows

46 CHAPTER 3. SCOPE AND EXTENT

the outer one. Outside the inner construct but inside the outer one, references
refer to the entity established by the outer construct. For example:

(defun test (x z)
(let ((z (* x 2))) (print z))
z)

The binding of the variable z by the let construct shadows the parameter
binding for the function test. The reference to the variable z in the print
form refers to the let binding. The reference to z at the end of the function
refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap,
then one interval will necessarily be nested within the other one. This is a
property of the design of Common Lisp.

Implementation note: Behind the assertion that dynamic extents nest properly
is the assumption that there is only a single program or process. Common Lisp does
not address the problems of multiprogramming (timesharing) or multiprocessing
(more than one active processor) within a single Lisp environment. The documen-
tation for implementations that extend Common Lisp for multiprogramming or
multiprocessing should be very clear on what modifications are induced by such
extensions to the rules of extent and scope. Implementors should note that Com-
mon Lisp has been carefully designed to allow special variables to be implemented
using either the “deep binding” technique or the “shallow binding” technique, but
the two techniques have different semantic and performance implications for mul-
tiprogramming and multiprocessing.

A reference by name to an entity with dynamic extent will always refer
to the entity of that name that has been most recently established that has
not yet been disestablished. For example:

(defun fun1 (x)
(catch ’trap (+ 3 (fun2 x))))

(defun fun2 (y)
(catch ’trap (* 5 (fun3 y))))

(defun fun3 (z)
(throw ’trap z))

47

Consider the call (fun1 7). The result will be 10. At the time the
throw is executed, there are two outstanding catchers with the name trap:
one established within procedure fun1, and the other within procedure fun2.
The latter is the more recent, and so the value 7 is returned from the catch
form in fun2. Viewed from within fun3, the catch in fun2 shadows the one
in fun1. Had fun2 been defined as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one
in fun1 would not be shadowed. The result would then have been 7.

As a rule, this book simply speaks of the scope or extent of an entity; the
possibility of shadowing is left implicit.

• Variable bindings normally have lexical scope and indefinite extent.

• Variable bindings for which there is a dynamic-extent declaration
also have lexical scope and indefinite extent, but objects that are the
values of such bindings may have dynamic extent. (The declaration
is the programmer’s guarantee that the program will behave correctly
even if certain of the data objects have only dynamic extent rather than
the usual indefinite extent.)

• Bindings of variable names to symbol macros by symbol-macrolet
have lexical scope and indefinite extent.

• Variable bindings that are declared to be special have dynamic scope
(indefinite scope and dynamic extent).

• Bindings of function names established, for example, by flet and labels
have lexical scope and indefinite extent.

• Bindings of function names for which there is a dynamic-extent decla-
ration also have lexical scope and indefinite extent, but function objects
that are the values of such bindings may have dynamic extent.

• Bindings of function names to macros as established by macrolet have
lexical scope and indefinite extent.

• Condition handlers and restarts have dynamic scope (see chapter 29).

48 CHAPTER 3. SCOPE AND EXTENT

• A catcher established by a catch or unwind-protect special operator
has dynamic scope.

• An exit point established by a block construct has lexical scope and
dynamic extent. (Such exit points are also established by do, prog,
and other iteration constructs.)

• The go targets established by a tagbody, named by the tags in the
tagbody, and referred to by go have lexical scope and dynamic extent.
(Such go targets may also appear as tags in the bodies of do, prog,
and other iteration constructs.)

• Named constants such as nil and pi have indefinite scope and indefinite
extent.

The rules of lexical scoping imply that lambda-expressions appearing in
the function construct will, in general, result in “closures” over those non-
special variables visible to the lambda-expression. That is, the function repre-
sented by a lambda-expression may refer to any lexically apparent non-special
variable and get the correct value, even if the construct that established the
binding has been exited in the course of execution. The compose example
shown earlier in this chapter provides one illustration of this. The rules also
imply that special variable bindings are not “closed over” as they may be in
certain other dialects of Lisp.

Constructs that use lexical scope effectively generate a new name for each
established entity on each execution. Therefore dynamic shadowing cannot
occur (though lexical shadowing may). This is of particular importance when
dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (= x 0)

(funcall f)
(block here
(+ 5 (contorted-example g

#’(lambda ()
(return-from here 4))

(- x 1))))))

Consider the call (contorted-example nil nil 2). This produces the
result 4. During the course of execution, there are three calls on contorted-
example, interleaved with two establishments of blocks:

49

(contorted-example nil nil 2)

(block here1 ...)

(contorted-example nil #’(lambda () (return-from here1 4)) 1)

(block here2 ...)

(contorted-example #’(lambda () (return-from here1 4))
#’(lambda () (return-from here2 4))
0)

(funcall f)
where f ⇒ #’(lambda () (return-from here1 4))

(return-from here1 4)

At the time the funcall is executed there are two block exit points out-
standing, each apparently named here. In the trace above, these exit points
are distinguished for expository purposes by subscripts. The return-from
form executed as a result of the funcall operation refers to the outer out-
standing exit point (here1), not the inner one (here2). This is a consequence
of the rules of lexical scoping: it refers to that exit point textually visible at
the point of execution of the function construct (here abbreviated by the
#’ syntax) that resulted in creation of the function object actually invoked
by the funcall.

If, in this example, one were to change the form (funcall f) to (funcall
g), then the value of the call (contorted-example nil nil 2) would be
9. The value would change because the funcall would cause the execution
of (return-from here2 4), thereby causing a return from the inner exit
point (here2). When that occurs, the value 4 is returned from the middle
invocation of contorted-example, 5 is added to that to get 9, and that
value is returned from the outer block and the outermost call to contorted-
example. The point is that the choice of exit point returned from has
nothing to do with its being innermost or outermost; rather, it depends on
the lexical scoping information that is effectively packaged up with a lambda-
expression when the function construct is executed.

This function contorted-example works only because the function
named by f is invoked during the extent of the exit point. Block exit points

50 CHAPTER 3. SCOPE AND EXTENT

are like non-special variable bindings in having lexical scope, but they differ
in having dynamic extent rather than indefinite extent. Once the flow of
execution has left the block construct, the exit point is disestablished. For
example:

(defun illegal-example ()
(let ((y (block here #’(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the follow-
ing incorrect reasoning: the let statement binds the variable y to the value
of the block construct; this value is a function resulting from the lambda-
expression. Because y is not a number, it is invoked on the value 5. The
return-from should then return this value from the exit point named here,
thereby exiting from the block again and giving y the value 5 which, being
a number, is then returned as the value of the call to illegal-example.

The argument fails only because exit points are defined in Common Lisp
to have dynamic extent. The argument is correct up to the execution of the
return-from. The execution of the return-from is an error, however, not
because it cannot refer to the exit point, but because it does correctly refer
to an exit point and that exit point has been disestablished.

Chapter 4

Type Specifiers

In Common Lisp, types are named by Lisp objects, specifically symbols
and lists, called type specifiers. Symbols name predefined classes of objects,
whereas lists usually indicate combinations or specializations of simpler types.
Symbols or lists may also be abbreviations for types that could be specified
in other ways.

4.1 Type Specifier Symbols
The type symbols defined by the system include those shown in table 4.1. In
addition, when a structure type is defined using defstruct, the name of the
structure type becomes a valid type symbol.

4.2 Type Specifier Lists
If a type specifier is a list, the car of the list is a symbol, and the rest of the
list is subsidiary type information. In many cases a subsidiary item may be
unspecified. The unspecified subsidiary item is indicated by writing *. For
example, to completely specify a vector type, one must mention the type of
the elements and the length of the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write

(vector double-float *)

51

52 CHAPTER 4. TYPE SPECIFIERS

Table 4.1: Standard Type Specifier Symbols

array fixnum package simple-string
atom float pathname simple-vector
bignum function random-state single-float
bit hash-table ratio standard-char
bit-vector integer rational stream
character keyword readtable string

list sequence
compiled-function long-float short-float symbol
complex nil signed-byte t
cons null simple-array unsigned-byte
double-float number simple-bit-vector vector

To leave the element type unspecified, one would write

(vector * 100)

One may also leave both length and element type unspecified:

(vector * *)

Suppose that two type specifiers are the same except that the first has a *
where the second has a more explicit specification. Then the second denotes
a subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end,
such items may simply be dropped rather than writing an explicit * for each
one. If dropping all occurrences of * results in a singleton list, then the
parentheses may be dropped as well (the list may be replaced by the symbol
in its car). For example, (vector double-float *) may be abbreviated to
(vector double-float), and (vector * *) may be abbreviated to (vector)
and then to simply vector.

4.3 Predicating Type Specifiers
A type specifier list (satisfies predicate-name) denotes the set of all ob-
jects that satisfy the predicate named by predicate-name, which must be

4.4. TYPE SPECIFIERS THAT COMBINE 53

a symbol whose global function definition is a one-argument predicate. (A
name is required; lambda-expressions are disallowed in order to avoid scoping
problems.) For example, the type (satisfies numberp) is the same as the
type number. The call (typep x ’(satisfies p)) results in applying p to x
and returning t if the result is true and nil if the result is false.

It is not a good idea for a predicate appearing in a satisfies type specifier
to cause any side effects when invoked.

4.4 Type Specifiers That Combine

The following type specifier lists define a type in terms of other types or
objects.

(member object1 object2 ...) This denotes the set containing precisely
those objects named. An object is of this type if and only if it is eql
to one of the specified objects.

(eql object) It may be used as a parameter specializer for CLOS methods
(see section 28.1.6 and find-method). It denotes the set of the one
object named; an object is of this type if and only if it is eql to object.
While (eql object) denotes the same type as (member object), only
(eql object) may be used as a CLOS parameter specializer.

(not type) This denotes the set of all those objects that are not of the
specified type.

(and type1 type2 ...) This denotes the intersection of the specified types.

When typep processes an and type specifier, it always tests each of
the component types in order from left to right and stops processing as
soon as one component of the intersection has been found to which the
object in question does not belong. In this respect an and type specifier
is similar to an executable and form. The purpose of this similarity
is to allow a satisfies type specifier to depend on filtering by previous
type specifiers. For example, suppose there were a function primep
that takes an integer and says whether it is prime. Suppose also that it
is an error to give any object other than an integer to primep. Then
the type specifier

54 CHAPTER 4. TYPE SPECIFIERS

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep
will not be invoked unless the object in question has already been de-
termined to be an integer.

(or type1 type2 ...) This denotes the union of the specified types. For
example, the type list by definition is the same as (or null cons).
Also, the value returned by the function position is always of type (or
null (integer 0 *)) (either nil or a non-negative integer).

As for and, when typep processes an or type specifier, it always tests
each of the component types in order from left to right and stops pro-
cessing as soon as one component of the union has been found to which
the object in question belongs.

4.5 Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by sym-
bols. These specializations may be reflected by more efficient representations
in the underlying implementation. As an example, consider the type (array
short-float). Implementation A may choose to provide a specialized repre-
sentation for arrays of short floating-point numbers, and implementation B
may choose not to.

If you should want to create an array for the express purpose of hold-
ing only short-float objects, you may optionally specify to make-array the
element type short-float. This does not require make-array to create an
object of type (array short-float); it merely permits it. The request is con-
strued to mean “Produce the most specialized array representation capable of
holding short-floats that the implementation can provide.” Implementation
A will then produce a specialized array of type (array short-float), and
implementation B will produce an ordinary array of type (array t).

If one were then to ask whether the array were actually of type (ar-
ray short-float), implementation A would say “yes,” but implementation
B would say “no.” This is a property of make-array and similar functions:
what you ask for is not necessarily what you get.

X3J13 voted in January 1989 to eliminate the differing treatment of types
when used “for discrimination” rather than “for declaration” on the grounds

4.5. TYPE SPECIFIERS THAT SPECIALIZE 55

that implementors have not treated the distinction consistently and (which
is more important) users have found the distinction confusing.

As a consequence of this change, the behavior of typep and subtypep on
array and complex type specifiers must be modified. See the descriptions
of those functions. In particular, under their new behavior, implementation
B would say “yes,” agreeing with implementation A, in the discussion above.

Note that the distinction between declaration and discrimination remains
useful, if only so that we may remark that the specialized (list) form of the
function type specifier may still be used only for declaration and not for
discrimination.

X3J13 voted in June 1988 to clarify that while the specialized form of
the function type specifier (a list of the symbol function possibly followed
by argument and value type specifiers) may be used only for declaration, the
symbol form (simply the name function) may be used for discrimination.

The valid list-format names for data types are as follows:

(array element-type dimensions) This denotes the set of specialized ar-
rays whose elements are all members of the type element-type and
whose dimensions match dimensions. For declaration purposes, this
type encompasses those arrays that can result by specifying element-
type as the element type to the function make-array; this may be dif-
ferent from what the type means for discrimination purposes. element-
type must be a valid type specifier or unspecified. dimensions may be a
non-negative integer, which is the number of dimensions, or it may be a
list of non-negative integers representing the length of each dimension
(any dimension may be unspecified instead), or it may be unspecified.
For example:

(array integer 3) ;Three-dimensional arrays of integers
(array integer (* * *)) ;Three-dimensional arrays of integers
(array * (4 5 6)) ;4-by-5-by-6 arrays
(array character (3 *)) ;Two-dimensional arrays of characters

; that have exactly three rows
(array short-float ()) ;Zero-rank arrays of short-format

; floating-point numbers

Note that (array t) is a proper subset of (array *). The reason is
that (array t) is the set of arrays that can hold any Common Lisp

56 CHAPTER 4. TYPE SPECIFIERS

object (the elements are of type t, which includes all objects). On the
other hand, (array *) is the set of all arrays whatsoever, including,
for example, arrays that can hold only characters. Now (array char-
acter) is not a subset of (array t); the two sets are in fact disjoint
because (array character) is not the set of all arrays that can hold
characters but rather the set of arrays that are specialized to hold pre-
cisely characters and no other objects. To test whether an array foo
can hold a character, one should not use

(typep foo ’(array character))

but rather

(subtypep ’character (array-element-type foo))

See array-element-type. X3J13 voted in January 1989 to change
typep and subtypep so that the specialized array type specifier
means the same thing for discrimination as for declaration: it encom-
passes those arrays that can result by specifying element-type as the
element type to the function make-array. Under this interpretation
(array character) might be the same type as (array t) (although
it also might not be the same). See upgraded-array-element-type.
However,

(typep foo ’(array character))

is still not a legitimate test of whether the array foo can hold a char-
acter; one must still say

(subtypep ’character (array-element-type foo))

to determine that question.

X3J13 also voted in January 1989 to specify that within the lexical
scope of an array type declaration, it is an error for an array element,
when referenced, not to be of the exact declared element type. A com-
piler may, for example, treat every reference to an element of a declared
array as if the reference were surrounded by a the form mentioning the
declared array element type (not the upgraded array element type).
Thus

4.5. TYPE SPECIFIERS THAT SPECIALIZE 57

(defun snarf-hex-digits (the-array)
(declare (type (array (unsigned-byte 4) 1) the-array))
(do ((j (- (length array) 1) (- j 1))

(val 0 (logior (ash val 4)
(aref the-array j))))

((< j 0) val)))

may be treated as

(defun snarf-hex-digits (the-array)
(declare (type (array (unsigned-byte 4) 1) the-array))
(do ((j (- (length array) 1) (- j 1))

(val 0 (logior (ash val 4)
(the (unsigned-byte 4)

(aref the-array j)))))
((< j 0) val)))

The declaration amounts to a promise by the user that the aref will
never produce a value outside the interval 0 to 15, even if in that
particular implementation the array element type (unsigned-byte 4)
is upgraded to, say, (unsigned-byte 8). If such upgrading does occur,
then values outside that range may in fact be stored in the-array, as
long as the code in snarf-hex-digits never sees them.

As a general rule, a compiler would be justified in transforming

(aref (the (array elt-type ...) a) ...)

into

(the elt-type (aref (the (array elt-type ...) a) ...)

It may also make inferences involving more complex functions, such as
position or find. For example, find applied to an array always returns
either nil or an object whose type is the element type of the array.

X3J13 voted in January 1989 to change typep and subtypep so that
the specialized array type specifier means the same thing for discrim-
ination as for declaration: it encompasses those arrays that can result

58 CHAPTER 4. TYPE SPECIFIERS

by specifying element-type as the element type to the function make-
array. Under this interpretation (array character) might be the
same type as (array t) (although it also might not be the same). See
upgraded-array-element-type. However,

(typep foo ’(array character))

is still not a legitimate test of whether the array foo can hold a char-
acter; one must still say

(subtypep ’character (array-element-type foo))

to determine that question.

As a general rule, a compiler would be justified in transforming

(aref (the (array elt-type ...) a) ...)

into

(the elt-type (aref (the (array elt-type ...) a) ...)

It may also make inferences involving more complex functions, such as
position or find. For example, find applied to an array always returns
either nil or an object whose type is the element type of the array.

(simple-array element-type dimensions) This is equivalent to (array
element-type dimensions) except that it additionally specifies that
objects of the type are simple arrays (see section 2.5).

(vector element-type size) This denotes the set of specialized one-
dimensional arrays whose elements are all of type element-type and
whose lengths match size. This is entirely equivalent to (array
element-type (size)). For example:

(vector double-float) ;Vectors of double-format
; floating-point numbers

(vector * 5) ;Vectors of length 5
(vector t 5) ;General vectors of length 5
(vector (mod 32) *) ;Vectors of integers between 0 and 31

4.5. TYPE SPECIFIERS THAT SPECIALIZE 59

Type string is the union of one or more specialized vector types, the
types of whose elements are subtypes of the type character.

(simple-vector size) This is the same as (vector t size) except that it
additionally specifies that its elements are simple general vectors.

(complex type) Every element of this type is a complex number whose
real part and imaginary part are each of type type. For declaration
purposes, this type encompasses those complex numbers that can result
by giving numbers of the specified type to the function complex; this
may be different from what the type means for discrimination purposes.
As an example, Gaussian integers might be described as (complex
integer), even in implementations where giving two integers to the
function complex results in an object of type (complex rational).

X3J13 voted in January 1989 to change typep and subtypep so
that the specialized complex type specifier means the same thing for
discrimination purposes as for declaration purposes. See upgraded-
complex-part-type.

(function (arg1-type arg2-type ...) value-type) This type may be used
only for declaration and not for discrimination; typep will signal an
error if it encounters a specifier of this form. Every element of this type
is a function that accepts arguments at least of the types specified by
the argj-type forms and returns a value that is a member of the types
specified by the value-type form. The &optional, &rest, and &key
markers may appear in the list of argument types. The value-type may
be a values type specifier in order to indicate the types of multiple
values.

The arg-type that follows a &rest marker indicates the type of each
actual argument that would be gathered into the list for a &rest pa-
rameter, and not the type of the&rest parameter itself (which is always
list). Thus one might declare the function gcd to be of type (func-
tion (&rest integer) integer), or the function aref to be of type
(function (array &rest fixnum) t).

A declaration specifier of the form

(ftype (function (arg1-type arg2-type ... argn-type) value-type) fname)

60 CHAPTER 4. TYPE SPECIFIERS

implies that any function call of the form

(fname arg1 arg2 ...)

within the scope of the declaration can be treated as if it were rewritten
to use the-forms in the following manner:

(the value-type
(fname (the arg1-type arg1)

(the arg2-type arg2)
...
(the argn-type argn)))

That is, it is an error for any of the actual arguments not to be of its
specified type arg-type or for the result not to be of the specified type
value-type. (In particular, if any argument is not of its specified type,
then the result is not guaranteed to be of the specified type—if indeed
a result is returned at all.)

Similarly, a declaration specifier of the form

(type (function (arg1-type arg2-type ... argn-type) value-type) var)

is interpreted to mean that any reference to the variable var will find
that its value is a function, and that it is an error to call this function
with any actual argument not of its specified type arg-type. Also, it is
an error for the result not to be of the specified type value-type. For
example, a function call of the form

(funcall var arg1 arg2 ...)

could be rewritten to use the-forms as well. If any argument is not of
its specified type, then the result is not guaranteed to be of the specified
type—if indeed a result is returned at all.

Thus, a type or ftype declaration specifier describes type requirements
imposed on calls to a function as opposed to requirements imposed on
the definition of the function. This is analogous to the treatment of type
declarations of variables as imposing type requirements on references

4.5. TYPE SPECIFIERS THAT SPECIALIZE 61

to variables, rather than on the contents of variables. See the vote of
X3J13 on type declaration specifiers in general, discussed in section 9.2.

In the same manner as for variable type declarations in general, if two or
more of these declarations apply to the same function call (which can
occur if declaration scopes are suitably nested), then they all apply;
in effect, the types for each argument or result are intersected. For
example, the code fragment

(locally (declare (ftype (function (biped) digit)
butcher-fudge))

(locally (declare (ftype (function (featherless) opposable)
butcher-fudge))

(butcher-fudge sam)))

may be regarded as equivalent to

(the opposable
(the digit (butcher-fudge (the featherless

(the biped sam)))))

or to

(the (and opposable digit)
(butcher-fudge (the (and featherless biped) sam)))

That is, sam had better be both featherless and a biped, and the
result of butcher-fudge had better be both opposable and a digit;
otherwise the code is in error. Therefore a compiler may generate code
that relies on these type assumptions, for example.

(values value1-type value2-type ...) This type specifier is extremely re-
stricted: it may be used only as the value-type in a function type
specifier or in a the special operator. It is used to specify individual
types when multiple values are involved. The &optional, &rest, and
&key markers may appear in the value-type list; they thereby indicate
the parameter list of a function that, when given to multiple-value-
call along with the values, would be suitable for receiving those values.

62 CHAPTER 4. TYPE SPECIFIERS

4.6 Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other
type specifiers that would be far too verbose to write out explicitly (using,
for example, member).

(integer low high) Denotes the integers between low and high. The limits
low and high must each be an integer, a list of an integer, or unspecified.
An integer is an inclusive limit, a list of an integer is an exclusive limit,
and * means that a limit does not exist and so effectively denotes minus
or plus infinity, respectively. The type fixnum is simply a name for
(integer smallest largest) for implementation-dependent values of
smallest and largest (seemost-negative-fixnum andmost-positive-
fixnum). The type (integer 0 1) is so useful that it has the special
name bit.

(mod n) Denotes the set of non-negative integers less than n. This is equiv-
alent to (integer 0 n− 1) or to (integer 0 (n)).

(signed-byte s) Denotes the set of integers that can be represented in
two’s-complement form in a byte of s bits. This is equivalent to (inte-
ger −2s−1 2s−1 − 1). Simply signed-byte or (signed-byte *) is the
same as integer.

(unsigned-byte s) Denotes the set of non-negative integers that can be
represented in a byte of s bits. This is equivalent to (mod 2s), that is,
(integer 0 2s − 1). Simply unsigned-byte or (unsigned-byte *) is
the same as (integer 0 *), the set of non-negative integers.

(rational low high) Denotes the rationals between low and high. The lim-
its low and high must each be a rational, a list of a rational, or unspec-
ified. A rational is an inclusive limit, a list of a rational is an exclusive
limit, and * means that a limit does not exist and so effectively denotes
minus or plus infinity, respectively.

(float low high) Denotes the set of floating-point numbers between low
and high. The limits low and high must each be a floating-point num-
ber, a list of a floating-point number, or unspecified; a floating-point

4.7. DEFINING NEW TYPE SPECIFIERS 63

number is an inclusive limit, a list of a floating-point number is an ex-
clusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively.
In a similar manner, one may use:

(short-float low high)
(single-float low high)
(double-float low high)
(long-float low high)

In this case, if a limit is a floating-point number (or a list of one), it
must be one of the appropriate format.

(real low high) Denotes the real numbers between low and high. The lim-
its low and high must each be a real, a list of a real, or unspecified.
A real is an inclusive limit, a list of a real is an exclusive limit, and *
means that a limit does not exist and so effectively denotes minus or
plus infinity, respectively.

(base-string size) Means the same as (vector base-char size): the set
of base strings of the indicated size.

(simple-base-string size) Means the same as (simple-array base-char
(size)): the set of simple base strings of the indicated size.

(bit-vector size) Means the same as (array bit (size)): the set of bit-
vectors of the indicated size.

(simple-bit-vector size) This means the same as (simple-array bit
(size)): the set of bit-vectors of the indicated size.

4.7 Defining New Type Specifiers
New type specifiers can come into existence in two ways. First, defining a
new structure type with defstruct automatically causes the name of the
structure to be a new type specifier symbol. Second, the deftype special
operator can be used to define new type-specifier abbreviations.
[Macro] deftype name lambda-list [[{declaration}* | doc-string]] {form}*
This is very similar to a defmacro form: name is the symbol that iden-

tifies the type specifier being defined, lambda-list is a lambda-list (and may

64 CHAPTER 4. TYPE SPECIFIERS

contain &optional and &rest markers), and the forms constitute the body
of the expander function. If we view a type specifier list as a list containing
the type specifier name and some argument forms, the argument forms (un-
evaluated) are bound to the corresponding parameters in lambda-list. Then
the body forms are evaluated as an implicit progn, and the value of the last
form is interpreted as a new type specifier for which the original specifier was
an abbreviation. The name is returned as the value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an
&optional parameter, the default value is *, not nil.

If the optional documentation string doc-string is present, then it is at-
tached to the name as a documentation string of type type; see documen-
tation.

Here are some examples of the use of deftype:

(deftype mod (n) ‘(integer 0 (,n)))

(deftype list () ’(or null cons))

(deftype square-matrix (&optional type size)
"SQUARE-MATRIX includes all square two-dimensional arrays."
‘(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (* *))

(deftype square-matrix (&optional type size)
"SQUARE-MATRIX includes all square two-dimensional arrays."
‘(array ,type (,size ,size)))

(square-matrix short-float 7) означает (array short-float (7 7))

(square-matrix bit) означает (array bit (* *))

If the type name defined by deftype is used simply as a type specifier
symbol, it is interpreted as a type specifier list with no argument forms.
Thus, in the example above, square-matrix would mean (array * (* *)),
the set of two-dimensional arrays. This would unfortunately fail to convey
the constraint that the two dimensions be the same; (square-matrix bit)
has the same problem. A better definition is

4.8. TYPE CONVERSION FUNCTION 65

(defun equidimensional (a)
(or (< (array-rank a) 2)

(apply #’= (array-dimensions a))))

(deftype square-matrix (&optional type size)
‘(and (array ,type (,size ,size))

(satisfies equidimensional)))

The body of the expander function defined by deftype is implicitly en-
closed in a block construct whose name is the same as the name of the
defined type. Therefore return-from may be used to exit from the func-
tion.

While defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts; deftype must define the expander
function within the enclosing lexical environment, not within the global en-
vironment.

4.8 Type Conversion Function

The following function may be used to convert an object to an equivalent
object of another type.

[Function] coerce object result-type

The result-type must be a type specifier; the object is converted to an
“equivalent” object of the specified type. If the coercion cannot be performed,
then an error is signaled. In particular, (coerce x ’nil) always signals an
error. If object is already of the specified type, as determined by typep, then
it is simply returned. It is not generally possible to convert any object to be
of any type whatsoever; only certain conversions are permitted:

• Any sequence type may be converted to any other sequence type, pro-
vided the new sequence can contain all actual elements of the old se-
quence (it is an error if it cannot). If the result-type is specified as
simply array, for example, then (array t) is assumed. A special-
ized type such as string or (vector (complex short-float)) may
be specified; of course, the result may be of either that type or some
more general type, as determined by the implementation. Elements

66 CHAPTER 4. TYPE SPECIFIERS

of the new sequence will be eql to corresponding elements of the old
sequence. If the sequence is already of the specified type, it may be
returned without copying it; in this, (coerce sequence type) differs
from (concatenate type sequence), for the latter is required to copy
the argument sequence. In particular, if one specifies sequence, then
the argument may simply be returned if it already is a sequence.

(coerce ’(a b c) ’vector) ⇒ #(a b c)

coerce should signal an error if the new sequence type specifies the
number of elements and the old sequence has a different length.

If the result-type is string then it is understood to mean (vector
character), and simple-string is understood to mean (simple-array
character (*)).

• Any non-complex number can be converted to a short-float, single-
float, double-float, or long-float. If simply float is specified, and
object is not already a float of some kind, then the object is converted
to a single-float.

(coerce 0 ’short-float) ⇒ 0.0S0
(coerce 3.5L0 ’float) ⇒ 3.5L0
(coerce 7/2 ’float) ⇒ 3.5

• Any number can be converted to a complex number. If the number is
not already complex, then a zero imaginary part is provided by coerc-
ing the integer zero to the type of the given real part. (If the given
real part is rational, however, then the rule of canonical representation
for complex rationals will result in the immediate re-conversion of the
result from type complex back to type rational.)

(coerce 4.5s0 ’complex) ⇒ #C(4.5S0 0.0S0)
(coerce 7/2 ’complex) ⇒ 7/2
(coerce #C(7/2 0) ’(complex double-float))
⇒ #C(3.5D0 0.0D0)

• Any object may be coerced to type t.

4.9. DETERMINING THE TYPE OF AN OBJECT 67

(coerce x ’t) ≡ (identity x) ≡ x

• A symbol or lambda-expression can be converted to a function. A
symbol is coerced to type function as if by applying symbol-function
to the symbol; an error is signaled if the predicate fboundp is not true
of the symbol or if the symbol names a macro or special operator. A
list x whose car is the symbol lambda is coerced to a function as if by
execution of (eval ‘#’,x), that is, of (eval (list ’function x)).

Coercions from floating-point numbers to rationals and from ratios to in-
tegers are purposely not provided because of rounding problems. The func-
tions rational, rationalize, floor, ceiling, truncate, and round may be
used for such purposes. Similarly, coercions from characters to integers are
purposely not provided; char-code or char-int may be used explicitly to
perform such conversions.

4.9 Determining the Type of an Object
The following function may be used to obtain a type specifier describing the
type of a given object.

[Function] type-of object

There are the following constraints on type-of:

• Let x be an object such that (typep x type) is true and type is one
of the following:

array float package sequence
bit-vector function pathname short-float
character hash-table random-state single-float
complex integer ratio stream
condition long-float rational string
cons null readtable symbol
double-float number restart vector

Then (subtypep (type-of x) type)) must return the values t and t;
that is, type-of applied to x must return either type itself or a subtype
of type that subtypep can recognize in that implementation.

68 CHAPTER 4. TYPE SPECIFIERS

• For any object x, (subtypep (type-of x) (class-of x)) must produce
the values t and t.

• For every object x, (typep x (type-of x)) must be true. (This implies
that type-of can never return nil, for no object is of type nil.)

• type-of never returns t and never uses a satisfies, and, or, not, or
values type specifier in its result.

• For objects of CLOS metaclass structure-class or of standard-class,
type-of returns the proper name of the class returned by class-of if it
has a proper name, and otherwise returns the class itself. In particu-
lar, for any object created by a defstruct constructor function, where
the defstruct had the name name and no :type option, type-of will
return name.

As an example, (type-of "acetylcholinesterase") may return string
or simple-string or (simple-string 20), but not array or simple-vector.
As another example, it is permitted for (type-of 1729) to return integer
or fixnum (if it is indeed a fixnum) or (signed-byte 16) or (integer 1729
1729) or (integer 1685 1750) or even (mod 1730), but not rational or
number, because

(typep (+ (expt 9 3) (expt 10 3)) ’integer)

is true, integer is in the list of types mentioned above, and

(subtypep (type-of (+ (expt 1 3) (expt 12 3))) ’integer)

would be false if type-of were to return rational or number.

4.10 Type Upgrading

There are functions by which a program can determine, in a given Common
Lisp implementation, how that implementation will upgrade a type when con-
structing an array specialized to contain elements of that type, or a complex
number specialized to contain parts of that type.

4.10. TYPE UPGRADING 69

[Function] upgraded-array-element-type type

A type specifier is returned, indicating the element type of the most
specialized array representation capable of holding items of the specified ar-
gument type. The result is necessarily a supertype of the given type. Further-
more, if a type A is a subtype of type B, then (upgraded-array-element-
type A) is a subtype of (upgraded-array-element-type B).

The manner in which an array element type is upgraded depends only on
the element type as such and not on any other property of the array such as
size, rank, adjustability, presence or absence of a fill pointer, or displacement.

Rationale: If upgrading were allowed to depend on any of these properties, all of
which can be referred to, directly or indirectly, in the language of type specifiers,
then it would not be possible to displace an array in a consistent and dependable
manner to another array created with the same :element-type argument but
differing in one of these properties.

Note that upgraded-array-element-type could be defined as

(defun upgraded-array-element-type (type)
(array-element-type (make-array 0 :element-type type)))

but this definition has the disadvantage of allocating an array and then
immediately discarding it. The clever implementor surely can conjure up a
more practical approach.

[Function] upgraded-complex-part-type type

A type specifier is returned, indicating the element type of the most
specialized complex number representation capable of having parts of the
specified argument type. The result is necessarily a supertype of the given
type. Furthermore, if a type A is a subtype of type B, then (upgraded-
complex-part-type A) is a subtype of (upgraded-complex-part-type
B).

70 CHAPTER 4. TYPE SPECIFIERS

Chapter 5

Program Structure

In chapter 2 the syntax was sketched for notating data objects in Common
Lisp. The same syntax is used for notating programs because all Common
Lisp programs have a representation as Common Lisp data objects.

Lisp programs are organized as forms and functions. Forms are evaluated
(relative to some context) to produce values and side effects. Functions are
invoked by applying them to arguments. The most important kind of form
performs a function call; conversely, a function performs computation by
evaluating forms.

In this chapter, forms are discussed first and then functions. Finally,
certain “top level” special operators are discussed; the most important of
these is defun, whose purpose is to define a named function.

5.1 Forms

The standard unit of interaction with a Common Lisp implementation is the
form, which is simply a data object meant to be evaluated as a program to
produce one or more values (which are also data objects). One may request
evaluation of any data object, but only certain ones are meaningful. For
instance, symbols and lists are meaningful forms, while arrays normally are
not. Examples of meaningful forms are 3, whose value is 3, and (+ 3 4),
whose value is 7. We write 3 ⇒ 3 and (+ 3 4) ⇒ 7 to indicate these facts.
(⇒ means “evaluates to.”)

Meaningful forms may be divided into three categories: self-evaluating
forms, such as numbers; symbols, which stand for variables; and lists. The

71

72 CHAPTER 5. PROGRAM STRUCTURE

lists in turn may be divided into three categories: special operators, macro
calls, and function calls.

All standard Common Lisp data objects other than symbols and lists
(including defstruct structures defined without the :type option) are self-
evaluating.

5.1.1 Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms.
When such an object is evaluated, that object (or possibly a copy in the case
of numbers or characters) is returned as the value of the form. The empty
list (), which is also the false value nil, is also a self-evaluating form: the
value of nil is nil. Keywords (symbols written with a leading colon) also
evaluate to themselves: the value of :start is :start.

It is an error to destructively modify any object that appears as a constant
in executable code, whether as a self-evaluating form or within a quote
special operator.

5.1.2 Variables

Symbols are used as names of variables in Common Lisp programs. When a
symbol is evaluated as a form, the value of the variable it names is produced.
For example, after doing (setq items 3), which assigns the value 3 to the
variable named items, then items ⇒ 3. Variables can be assigned to, as
by setq, or bound, as by let. Any program construct that binds a variable
effectively saves the old value of the variable and causes it to have a new
value, and on exit from the construct the old value is reinstated.

There are actually two kinds of variables in Common Lisp, called lexical
(or static) variables and special (or dynamic) variables. At any given time
either or both kinds of variable with the same name may have a current value.
Which of the two kinds of variable is referred to when a symbol is evaluated
depends on the context of the evaluation. The general rule is that if the
symbol occurs textually within a program construct that creates a binding
for a variable of the same name, then the reference is to the variable specified
by the binding; if no such program construct textually contains the reference,
then it is taken to refer to the special variable of that name.

The distinction between the two kinds of variable is one of scope and ex-
tent. A lexically bound variable can be referred to only by forms occurring at

5.1. FORMS 73

any place textually within the program construct that binds the variable. A
dynamically bound (special) variable can be referred to at any time from the
time the binding is made until the time evaluation of the construct that binds
the variable terminates. Therefore lexical binding of variables imposes a spa-
tial limitation on occurrences of references (but no temporal limitation, for
the binding continues to exist as long as the possibility of reference remains).
Conversely, dynamic binding of variables imposes a temporal limitation on
occurrences of references (but no spatial limitation). For more information
on scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of
that variable is called the global value of the (special) variable. A global
value can be given to a variable only by assignment, because a value given
by binding is by definition not global.

It is possible for a special variable to have no value at all, in which case
it is said to be unbound. By default, every global variable is unbound unless
and until explicitly assigned a value, except for those global variables defined
in this book or by the implementation already to have values when the Lisp
system is first started. It is also possible to establish a binding of a special
variable and then cause that binding to be valueless by using the function
makunbound. In this situation the variable is also said to be “unbound,”
although this is a misnomer; precisely speaking, it is bound but valueless. It
is an error to refer to a variable that is unbound.

Reading an unbound variable or an undefined function must be detected
in the highest safety setting (see the safety quality of the optimize decla-
ration specifier) but the effect is undefined in any other safety setting. That
is, reading an unbound variable should signal an error and reading an un-
defined function should signal an error. (“Reading a function” includes both
references to the function using the function special operator, such as f in
(function f), and references to the function in a call, such as f in (f x y).)

For the case of inline functions (in implementations where they are sup-
ported), a permitted point of view is that performing the inlining constitutes
the read of the function, so that an fboundp check need not be done at
execution time. Put another way, the effect of the application of fmakun-
bound to a function name on potentially inlined references to that function
is undefined.

When an unbound variable is detected an error of type unbound-
variable is signaled, and the name slot of the unbound-variable condition
is initialized to the name of the offending variable.

74 CHAPTER 5. PROGRAM STRUCTURE

When an undefined function is detected an error of type undefined-
function is signaled, and the name slot of the undefined-function condi-
tion is initialized to the name of the offending function.

The condition type unbound-slot, which inherits from cell-error, has
an additional slot instance, which can be initialized using the :instance key-
word to make-condition. The function unbound-slot-instance accesses
this slot.

The type of error signaled by the default primary method for the CLOS
slot-unbound generic function is unbound-slot. The instance slot of
the unbound-slot condition is initialized to the offending instance and the
name slot is initialized to the name of the offending variable.

Certain global variables are reserved as “named constants.” They have a
global value and may not be bound or assigned to. For example, the symbols
t and nil are reserved. One may not assign a value to t or nil, and one
may not bind t or nil. The global value of t is always t, and the global
value of nil is always nil. Constant symbols defined by defconstant also
become reserved and may not be further assigned to or bound (although
they may be redefined, if necessary, by using defconstant again). Keyword
symbols, which are notated with a leading colon, are reserved and may never
be assigned to or bound; a keyword always evaluates to itself.

5.1.3 Special Operators

If a list is to be evaluated as a form, the first step is to examine the first
element of the list. If the first element is one of the symbols appearing in
table 5.1, then the list is called a special operator. (This use of the word
“special” is unrelated to its use in the phrase “special variable.”)

Special operators are generally environment and control constructs. Ev-
ery special operator has its own idiosyncratic syntax. An example is the if
special operator: (if p (+ x 4) 5) in Common Lisp means what “if p then
x+4 else 5” means in Algol.

The evaluation of a special operator normally produces a value or values,
but the evaluation may instead call for a non-local exit; see return-from,
go, and throw.

The set of special operators is fixed in Common Lisp; no way is provided
for the user to define more. The user can create new syntactic constructs,
however, by defining macros.

5.1. FORMS 75

Table 5.1: Names of All Common Lisp Special Operators
block if progv
catch labels quote

let return-from
declare let* setq
eval-when macrolet tagbody
flet multiple-value-call the
function multiple-value-prog1 throw
go progn unwind-protect

symbol-macrolet
locally load-time-value

The set of special operators in Common Lisp is purposely kept very small
because any program-analyzing program must have special knowledge about
every type of special operator. Such a program needs no special knowledge
about macros because it is simple to expand the macro and operate on the re-
sulting expansion. (This is not to say that many such programs, particularly
compilers, will not have such special knowledge. A compiler may be able to
produce much better code if it recognizes such constructs as typecase and
multiple-value-bind and gives them customized treatment.)

An implementation is free to implement as a macro any construct de-
scribed herein as a special operator. Conversely, an implementation is free to
implement as a special operator any construct described herein as a macro
if an equivalent macro definition is also provided. The practical consequence
is that the predicates macro-function and special-operator-p may both
be true of the same symbol. It is recommended that a program-analyzing
program process a form that is a list whose car is a symbol as follows:

1. If the program has particular knowledge about the symbol, process the
form using special-purpose code. All of the symbols listed in table 5.1
should fall into this category.

2. Otherwise, if macro-function is true of the symbol, apply either
macroexpand ormacroexpand-1, as appropriate, to the entire form
and then start over.

3. Otherwise, assume it is a function call.

76 CHAPTER 5. PROGRAM STRUCTURE

5.1.4 Macros

If a form is a list and the first element is not the name of a special form,
it may be the name of a macro; if so, the form is said to be a macro call.
A macro is essentially a function from forms to forms that will, given a call
to that macro, compute a new form to be evaluated in place of the macro
call. (This computation is sometimes referred to as macro expansion.) For
example, the macro named return will take a form such as (return x) and
from that form compute a new form (return-from nil x). We say that the
old form expands into the new form. The new form is then evaluated in place
of the original form; the value of the new form is returned as the value of the
original form.

Macro calls, and subforms of macro calls, need not be proper lists, but
that use of dotted forms requires the macro definition to use “. var ” or
“&rest var ” in order to match them properly. It is then the responsibility
of the macro definition to recognize and appropriately handle such dotted
forms or subforms.

There are a number of standard macros in Common Lisp, and the user
can define more by using defmacro.

Macros provided by a Common Lisp implementation as described herein
may expand into code that is not portable among differing implementations.
That is, a macro call may be implementation-independent because the macro
is defined in this book, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros
defined in this book, as far as is possible, in such a way that the expansion will
not contain any implementation-dependent special operators, nor contain as forms
data objects that are not considered to be forms in Common Lisp. The purpose
of this restriction is to ensure that the expansion can be processed by a program-
analyzing program in an implementation-independent manner. There is no problem
with a macro expansion containing calls to implementation-dependent functions.
This restriction is not a requirement of Common Lisp; it is recognized that certain
complex macros may be able to expand into significantly more efficient code in
certain implementations by using implementation-dependent special operators in
the macro expansion.

5.2. FUNCTIONS 77

5.1.5 Function Calls

If a list is to be evaluated as a form and the first element is not a symbol
that names a special operator or macro, then the list is assumed to be a
function call. The first element of the list is taken to name a function. Any
and all remaining elements of the list are forms to be evaluated; one value
is obtained from each form, and these values become the arguments to the
function. The function is then applied to the arguments. The functional
computation normally produces a value, but it may instead call for a non-
local exit; see throw. A function that does return may produce no value or
several values; see values. If and when the function returns, whatever values
it returns become the values of the function-call form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The
symbol + names the addition function, not a special operator or macro.
Therefore the two forms 3 and (* 4 5) are evaluated to produce arguments.
The form 3 evaluates to 3, and the form (* 4 5) is a function call (to
the multiplication function). Therefore the forms 4 and 5 are evaluated,
producing arguments 4 and 5 for the multiplication. The multiplication
function calculates the number 20 and returns it. The values 3 and 20
are then given as arguments to the addition function, which calculates and
returns the number 23. Therefore we say (+ 3 (* 4 5)) ⇒ 23.

While the arguments in a function call are always evaluated in strict
left-to-right order, whether the function to be called is determined before or
after argument evaluation is unspecified. Programs are in error that rely on
a particular order of evaluation of the first element of a function call relative
to the argument forms.

5.2 Functions

There are two ways to indicate a function to be used in a function-call form.
One is to use a symbol that names the function. This use of symbols to name
functions is completely independent of their use in naming special and lexical
variables. The other way is to use a lambda-expression, which is a list whose
first element is the symbol lambda. A lambda-expression is not a form; it
cannot be meaningfully evaluated. Lambda-expressions and symbols, when
used in programs as names of functions, can appear only as the first element
of a function-call form, or as the second element of the function special

78 CHAPTER 5. PROGRAM STRUCTURE

operator. Note that symbols and lambda-expressions are treated as names
of functions in these two contexts. This should be distinguished from the
treatment of symbols and lambda-expressions as function objects, that is,
objects that satisfy the predicate functionp, as when giving such an object
to apply or funcall to be invoked.

5.2.1 Named Functions

A name can be given to a function in one of two ways. A global name can be
given to a function by using the defun construct. A local name can be given
to a function by using the flet or labels special operator. When a function
is named, a lambda-expression is effectively associated with that name along
with information about the entities that are lexically apparent at that point.
If a symbol appears as the first element of a function-call form, then it refers
to the definition established by the innermost flet or labels construct that
textually contains the reference, or to the global definition (if any) if there
is no such containing construct.

5.2.2 Lambda-Expressions

A lambda-expression is a list with the following syntax:

(lambda lambda-list . body)

The first element must be the symbol lambda. The second element must
be a list. It is called the lambda-list, and specifies names for the parameters of
the function. When the function denoted by the lambda-expression is applied
to arguments, the arguments are matched with the parameters specified by
the lambda-list. The body may then refer to the arguments by using the
parameter names. The body consists of any number of forms (possibly zero).
These forms are evaluated in sequence, and the results of the last form only
are returned as the results of the application (the value nil is returned if there
are zero forms in the body). The complete syntax of a lambda-expression is:

(lambda ({var}*
[&optional {var | (var [initform [svar]])}*]
[&rest var]
[&key {var | ({var | (keyword var)} [initform [svar]])}* [&allow-other-keys]]
[&aux {var | (var [initform])}*])

5.2. FUNCTIONS 79

[[{declaration}* | documentation-string]]
{form}*)

Each element of a lambda-list is either a parameter specifier or a lambda-
list keyword ; lambda-list keywords begin with &. (Note that lambda-list
keywords are not keywords in the usual sense; they do not belong to the key-
word package. They are ordinary symbols each of whose names begins with
an ampersand. This terminology is unfortunately confusing but is retained
for historical reasons.)

Keyword in the preceding specification of a lambda-list may be any sym-
bol whatsoever, not just a keyword symbol in the keyword package. See
below.

A lambda-list has five parts, any or all of which may be empty:

• Specifiers for the required parameters. These are all the parameter
specifiers up to the first lambda-list keyword; if there is no such lambda-
list keyword, then all the specifiers are for required parameters.

• Specifiers for optional parameters. If the lambda-list keyword &op-
tional is present, the optional parameter specifiers are those following
the lambda-list keyword &optional up to the next lambda-list key-
word or the end of the list.

• A specifier for a rest parameter. The lambda-list keyword &rest, if
present, must be followed by a single rest parameter specifier, which
in turn must be followed by another lambda-list keyword or the end of
the lambda-list.

• Specifiers for keyword parameters. If the lambda-list keyword &key
is present, all specifiers up to the next lambda-list keyword or the end
of the list are keyword parameter specifiers. The keyword parame-
ter specifiers may optionally be followed by the lambda-list keyword
&allow-other-keys.

• Specifiers for aux variables. These are not really parameters. If the
lambda-list keyword&aux is present, all specifiers after it are auxiliary
variable specifiers.

When the function represented by the lambda-expression is applied to
arguments, the arguments and parameters are processed in order from left

80 CHAPTER 5. PROGRAM STRUCTURE

to right. In the simplest case, only required parameters are present in the
lambda-list; each is specified simply by a name var for the parameter variable.
When the function is applied, there must be exactly as many arguments
as there are parameters, and each parameter is bound to one argument.
Here, and in general, the parameter is bound as a lexical variable unless a
declaration has been made that it should be a special binding; see defvar,
proclaim, and declare.

In the more general case, if there are n required parameters (n may be
zero), there must be at least n arguments, and the required parameters are
bound to the first n arguments. The other parameters are then processed
using any remaining arguments.

If optional parameters are specified, then each one is processed as follows.
If any unprocessed arguments remain, then the parameter variable var is
bound to the next remaining argument, just as for a required parameter.
If no arguments remain, however, then the initform part of the parameter
specifier is evaluated, and the parameter variable is bound to the resulting
value (or to nil if no initform appears in the parameter specifier). If another
variable name svar appears in the specifier, it is bound to true if an argument
was available, and to false if no argument remained (and therefore initform
had to be evaluated). The variable svar is called a supplied-p parameter; it
is bound not to an argument but to a value indicating whether or not an
argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there
may or may not be a rest parameter. If there is a rest parameter, it is bound
to a list of all as-yet-unprocessed arguments. (If no unprocessed arguments
remain, the rest parameter is bound to the empty list.) If there is no rest
parameter and there are no keyword parameters, then there should be no
unprocessed arguments (it is an error if there are).

If a function has a rest parameter and is called using apply, then the
list to which the rest parameter is bound is permitted, but not required,
to share top-level list structure with the list that was the last argument to
apply. Programmers should be careful about performing side effects on the
top-level list structure of a rest parameter.

This was the result of a rather long discussion within X3J13 and the wider
Lisp community. To set it in its historical context, I must remark that in Lisp
Machine Lisp the list to which a rest parameter was bound had only dynamic
extent; this in conjunction with the technique of “cdr-coding” permitted a
clever stack-allocation technique with very low overhead. However, the early

5.2. FUNCTIONS 81

designers of Common Lisp, after a great deal of debate, concluded that it
was dangerous for cons cells to have dynamic extent; as an example, the
“obvious” definition of the function list

(defun list (&rest x) x)

could fail catastrophically. Therefore the first edition simply implied that
the list for a rest parameter, like all other lists, would have indefinite extent.
This still left open the flip side of the question, namely, Is the list for a rest
parameter guaranteed fresh? This is the question addressed by the X3J13
vote. If it is always freshly consed, then it is permissible to destroy it, for
example by giving it to nconc. However, the requirement always to cons
fresh lists could impose an unacceptable overhead in many implementations.
The clarification approved by X3J13 specifies that the programmer may not
rely on the list being fresh; if the function was called using apply, there is
no way to know where the list came from.

Next, any keyword parameters are processed. For this purpose the same
arguments are processed that would be made into a list for a rest parameter.
(Indeed, it is permitted to specify both &rest and &key. In this case the
remaining arguments are used for both purposes; that is, all remaining argu-
ments are made into a list for the &rest parameter and are also processed
for the &key parameters. This is the only situation in which an argument
is used in the processing of more than one parameter specifier.) If &key is
specified, there must remain an even number of arguments; these are consid-
ered as pairs, the first argument in each pair being interpreted as a keyword
name and the second as the corresponding value.

A keyword in a lambda-list may be any symbol whatsoever, not just a
keyword symbol in the keyword package. If, after &key, a variable appears
alone or within only one set of parentheses (possibly with an initform and
a svar), then the behavior is as before: a keyword symbol with the same
name as the variable is used as the keyword-name when matching arguments
to parameter specifiers. Only a parameter specifier of the form ((keyword
var) ...) can cause the keyword-name not to be a keyword symbol, by spec-
ifying a symbol not in the keyword package as the keyword. For example:

(defun wager (&key ((secret password) nil) amount)
(format nil "You ~A $~D"

(if (eq password ’joe-sent-me) "win" "lose")
amount))

82 CHAPTER 5. PROGRAM STRUCTURE

(wager :amount 100) ⇒ "You lose $100"
(wager :amount 100 ’secret ’joe-sent-me) ⇒ "You win $100"

The secret word could be made even more secret in this example by
placing it in some other obscure package, so that one would have to write

(wager :amount 100 ’obscure:secret ’joe-sent-me) ⇒ "You win $100"

to win anything.
In each keyword parameter specifier must be a name var for the parameter

variable. If an explicit keyword is specified, then that is the keyword name
for the parameter. Otherwise the name var serves to indicate the keyword
name, in that a keyword with the same name (in the keyword package) is
used as the keyword. Thus

(defun foo (&key radix (type ’integer)) ...)

means exactly the same as

(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effec-
tively processed from left to right. For each keyword parameter specifier,
if there is an argument pair whose keyword name matches that specifier’s
keyword name (that is, the names are eq), then the parameter variable for
that specifier is bound to the second item (the value) of that argument pair.
If more than one such argument pair matches, it is not an error; the leftmost
argument pair is used. If no such argument pair exists, then the initform for
that specifier is evaluated and the parameter variable is bound to that value
(or to nil if no initform was specified). The variable svar is treated as for
ordinary optional parameters: it is bound to true if there was a matching
argument pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by
any parameter specifier, unless at least one of the following two conditions is
met:

• &allow-other-keys was specified in the lambda-list.

• Somewhere among the keyword argument pairs is a pair whose keyword
is :allow-other-keys and whose value is not nil.

5.2. FUNCTIONS 83

If either condition obtains, then it is not an error for an argument pair to
match no parameter specified, and the argument pair is simply ignored (but
such an argument pair is accessible through the &rest parameter if one was
specified). The purpose of these mechanisms is to allow sharing of argument
lists among several functions and to allow either the caller or the called
function to specify that such sharing may be taking place.

After all parameter specifiers have been processed, the auxiliary variable
specifiers (those following the lambda-list keyword&aux) are processed from
left to right. For each one, the initform is evaluated and the variable var
bound to that value (or to nil if no initform was specified). Nothing can
be done with &aux variables that cannot be done with the special operator
let*:

(lambda (x y &aux (a (car x)) (b 2) c) ...)
≡ (lambda (x y) (let* ((a (car x)) (b 2) c) ...))

Which to use is purely a matter of style.
Whenever any initform is evaluated for any parameter specifier, that form

may refer to any parameter variable to the left of the specifier in which the
initform appears, including any supplied-p variables, and may rely on the
fact that no other parameter variable has yet been bound (including its own
parameter variable).

Once the lambda-list has been processed, the forms in the body of the
lambda-expression are executed. These forms may refer to the arguments
to the function by using the names of the parameters. On exit from the
function, either by a normal return of the function’s value(s) or by a non-
local exit, the parameter bindings, whether lexical or special, are no longer in
effect. (The bindings are not necessarily permanently discarded, for a lexical
binding can later be reinstated if a “closure” over that binding was created,
perhaps by using function, and saved before the exit occurred.)
Examples of &optional and &rest parameters:

((lambda (a b) (+ a (* b 3))) 4 5) ⇒ 19
((lambda (a &optional (b 2)) (+ a (* b 3))) 4 5) ⇒ 19
((lambda (a &optional (b 2)) (+ a (* b 3))) 4) ⇒ 10
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))
⇒ (2 nil 3 nil nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))
6)
⇒ (6 t 3 nil nil)

84 CHAPTER 5. PROGRAM STRUCTURE

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))
6 3)
⇒ (6 t 3 t nil)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))
6 3 8)
⇒ (6 t 3 t (8))

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))
6 3 8 9 10 11)
⇒ (6 t 3 t (8 9 10 11))

Examples of &key parameters:

((lambda (a b &key c d) (list a b c d)) 1 2)
⇒ (1 2 nil nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6)
⇒ (1 2 6 nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8)
⇒ (1 2 nil 8)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6 :d 8)
⇒ (1 2 6 8)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8 :c 6)
⇒ (1 2 6 8)

((lambda (a b &key c d) (list a b c d)) :a 1 :d 8 :c 6)
⇒ (:a 1 6 8)

((lambda (a b &key c d) (list a b c d)) :a :b :c :d)
⇒ (:a :b :d nil)

Examples of mixtures:

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))

1) ⇒ (1 3 nil 1 ())

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))

1 2) ⇒ (1 2 nil 1 ())

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))

:c 7) ⇒ (:c 7 nil :c ())

5.2. FUNCTIONS 85

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))

1 6 :c 7) ⇒ (1 6 7 1 (:c 7))

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))

1 6 :d 8) ⇒ (1 6 nil 8 (:d 8))

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))

1 6 :d 8 :c 9 :d 10) ⇒ (1 6 9 8 (:d 8 :c 9 :d 10))

All lambda-list keywords are permitted, but not terribly useful, in
lambda-expressions appearing explicitly as the first element of a function-
call form. They are extremely useful, however, in functions given global
names by defun.

All symbols whose names begin with & are conventionally reserved for
use as lambda-list keywords and should not be used as variable names. Im-
plementations of Common Lisp are free to provide additional lambda-list
keywords.

[Constant] lambda-list-keywords

The value of lambda-list-keywords is a list of all the lambda-list key-
words used in the implementation, including the additional ones used only
by defmacro. This list must contain at least the symbols &optional,
&rest, &key, &allow-other-keys, &aux, &body, &whole, and &en-
vironment.

As an example of the use of &allow-other-keys and :allow-other-keys,
consider a function that takes two keyword arguments of its own and also
accepts additional keyword arguments to be passed to make-array:

(defun array-of-strings (str dims &rest keyword-pairs
&key (start 0) end &allow-other-keys)

(apply #’make-array dims
:initial-element (subseq str start end)
:allow-other-keys t
keyword-pairs))

86 CHAPTER 5. PROGRAM STRUCTURE

This function takes a string and dimensioning information and returns
an array of the specified dimensions, each of whose elements is the specified
string. However, :start and :end keyword arguments may be used in the
usual manner (see chapter 14) to specify that a substring of the given string
should be used. In addition, the presence of &allow-other-keys in the
lambda-list indicates that the caller may specify additional keyword argu-
ments; the &rest argument provides access to them. These additional key-
word arguments are fed to make-array. Now, make-array normally does
not allow the keywords :start and :end to be used, and it would be an error
to specify such keyword arguments to make-array. However, the presence
in the call tomake-array of the keyword argument :allow-other-keys with
a non-nil value causes any extraneous keyword arguments, including :start
and :end, to be acceptable and ignored.

[Constant] lambda-parameters-limit

The value of lambda-parameters-limit is a positive integer that is the
upper exclusive bound on the number of distinct parameter names that may
appear in a single lambda-list. This bound depends on the implementation
but will not be smaller than 50. Implementors are encouraged to make
this limit as large as practicable without sacrificing performance. See call-
arguments-limit.

5.3 Top-Level Forms
The standard way for the user to interact with a Common Lisp implemen-
tation is via a read-eval-print loop: the system repeatedly reads a form from
some input source (such as a keyboard or a disk file), evaluates it, and then
prints the value(s) to some output sink (such as a display screen or another
disk file). Any form (evaluable data object) is acceptable; however, certain
special operators are specifically designed to be convenient for use as top-level
forms, rather than as forms embedded within other forms in the way that (+
3 4) is embedded within (if p (+ 3 4) 6). These top-level special operators
may be used to define globally named functions, to define macros, to make
declarations, and to define global values for special variables.

While defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts. All defining forms that create func-
tional objects from code appearing as argument forms must ensure that such

5.3. TOP-LEVEL FORMS 87

argument forms refer to the enclosing lexical environment. Compilers must
handle defining forms properly in all situations, not just top-level contexts.
However, certain compile-time side effects of these defining forms are per-
formed only when the defining forms occur at top level (see section 24.1).

Macros are usually defined by using the special operator defmacro. This
facility is fairly complicated; it is described in chapter 8.

5.3.1 Defining Named Functions

The defun special operator is the usual means of defining named functions.
[Macro] defun name lambda-list [[{declaration}* | doc-string]] {form}*
Evaluating a defun form causes the symbol name to be a global name

for the function specified by the lambda-expression

(lambda lambda-list {declaration | doc-string}* {form}*)

defined in the lexical environment in which the defun form was executed.
Because defun forms normally appear at top level, this is normally the null
lexical environment.

While defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts; defun must define the function within
the enclosing lexical environment, not within the null lexical environment.

defun can accept any function-name (a symbol or a list whose car is
setf—see section 7.1) as a name. Thus one may write

(defun (setf cadr) ...)

to define a setf expansion function for cadr (although it may be much
more convenient to use defsetf or define-modify-macro).

If the optional documentation string doc-string is present, then it is at-
tached to the name as a documentation string of type function; see docu-
mentation. If doc-string is not followed by a declaration, it may be present
only if at least one form is also specified, as it is otherwise taken to be a
form. It is an error if more than one doc-string is present.

The forms constitute the body of the defined function; they are executed
as an implicit progn.

The body of the defined function is implicitly enclosed in a block con-
struct whose name is the same as the name of the function. Therefore
return-from may be used to exit from the function.

88 CHAPTER 5. PROGRAM STRUCTURE

Other implementation-dependent bookkeeping actions may be taken as
well by defun. The name is returned as the value of the defun form. For
example:

(defun discriminant (a b c)
(declare (number a b c))
"Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b^2-4*a*c is calculated.
If the coefficients a, b, and c are all real (that is,
not complex), then the quadratic equation a*x^2+b*x+c=0
has real, multiple, or complex roots depending on
whether this calculated value is positive, zero, or
negative, respectively." (- (* b b) (* 4 a c)))
⇒ discriminant
and now (discriminant 1 2/3 -2) ⇒ 76/9

It is permissible to use defun to redefine a function, to install a corrected
version of an incorrect definition, for example. It is permissible to redefine
a macro as a function. It is an error to attempt to redefine the name of a
special form (see table 5.1) as a function.

5.3.2 Declaring Global Variables and Named Constants

The defvar and defparameter special operators are the usual means of
specifying globally defined variables. The defconstant special operator is
used for defining named constants.
[Macro] defvar name [initial-value [documentation]]
[Macro] defparameter name initial-value [documentation]
[Macro] defconstant name initial-value [documentation]
defvar is the recommended way to declare the use of a special variable

in a program.

(defvar variable)

proclaims variable to be special (see proclaim), and may perform other
system-dependent bookkeeping actions.

If no initial-value form is provided, defvar does not change the value
of the variable; if no initial-value form is provided and the variable has no
value, defvar does not give it a value.

If a second argument form is supplied,

5.3. TOP-LEVEL FORMS 89

(defvar variable initial-value)

then variable is initialized to the result of evaluating the form initial-
value unless it already has a value. The initial-value form is not evaluated
unless it is used; this fact is useful if evaluation of the initial-value form does
something expensive like creating a large data structure.

X3J13 voted in June 1987 to clarify that evaluation of the initial-value
and the initialization of the variable occur, if at all, at the time the defvar
form is executed, and that the initial-value form is evaluated if and only if
the variable does not already have a value. The initialization is performed
by assignment and thus assigns a global value to the variable unless there
are currently special bindings of that variable. Normally there should not be
any such special bindings.

defvar also provides a good place to put a comment describing the mean-
ing of the variable, whereas an ordinary special proclamation offers the
temptation to declare several variables at once and not have room to de-
scribe them all.

(defvar *visible-windows* 0
"Number of windows at least partially visible on the screen")

defparameter is similar to defvar, but defparameter requires an
initial-value form, always evaluates the form, and assigns the result to the
variable. The semantic distinction is that defvar is intended to declare a
variable changed by the program, whereas defparameter is intended to de-
clare a variable that is normally constant but can be changed (possibly at
run time), where such a change is considered a change to the program. def-
parameter therefore does not indicate that the quantity never changes; in
particular, it does not license the compiler to build assumptions about the
value into programs being compiled.

defconstant is like defparameter but does assert that the value of the
variable name is fixed and does license the compiler to build assumptions
about the value into programs being compiled. (However, if the compiler
chooses to replace references to the name of the constant by the value of the
constant in code to be compiled, perhaps in order to allow further optimiza-
tion, the compiler must take care that such “copies” appear to be eql to the
object that is the actual value of the constant. For example, the compiler
may freely make copies of numbers but must exercise care when the value is
a list.)

90 CHAPTER 5. PROGRAM STRUCTURE

It is an error if there are any special bindings of the variable at the time
the defconstant form is executed (but implementations may or may not
check for this).

Once a name has been declared by defconstant to be constant, any
further assignment to or binding of that special variable is an error. This is
the case for such system-supplied constants as t andmost-positive-fixnum.
A compiler may also choose to issue warnings about bindings of the lexical
variable of the same name.

X3J13 voted in January 1989 to clarify the preceding paragraph by speci-
fying that it is an error to rebind constant symbols as either lexical or special
variables. Consequently, a valid reference to a symbol declared with def-
constant always refers to its global value. (Unfortunately, this violates the
principle of referential transparency, for one cannot always choose names for
lexical variables without regard to surrounding context.)

For any of these constructs, the documentation should be a string. The
string is attached to the name of the variable, parameter, or constant under
the variable documentation type; see the documentation function.

The documentation-string is not evaluated but must appear as a literal
string when the defvar, defparameter, or defconstant form is evaluated.

For example, the form

(defvar *avoid-registers* nil "Compilation control switch #43")

is legitimate, but

(defvar *avoid-registers* nil
(format nil "Compilation control switch #~D"

(incf *compiler-switch-number*)))

is erroneous because the call to format is not a literal string.
(On the other hand, the form

(defvar *avoid-registers* nil
#.(format nil "Compilation control switch #~D"

(incf *compiler-switch-number*)))

might be used to accomplish the same purpose, because the call to format
is evaluated at read time; when the defvar form is evaluated, only the result
of the call to format, a string, appears in the defvar form.)

These constructs are normally used only as top-level forms. The value
returned by each of these constructs is the name declared.

5.3. TOP-LEVEL FORMS 91

5.3.3 Control of Time of Evaluation

[Special operator] eval-when ({situation}*) {form}*

The body of an eval-when form is processed as an implicit progn,
but only in the situations listed. Each situation must be a symbol, either
:compile-toplevel, :load-toplevel, or :execute.

The use of :compile-toplevel and :load-toplevel controls whether and
when processing occurs for top-level forms. The use of :execute controls
whether processing occurs for non-top-level forms.

The eval-when construct may be more precisely understood in terms of
a model of how the file compiler, compile-file, processes forms in a file to
be compiled.

Successive forms are read from the file by the file compiler using read.
These top-level forms are normally processed in what we call “not-compile-
time” mode. There is one other mode, called “compile-time-too” mode, which
can come into play for top-level forms. The eval-when special operator is
used to annotate a program in a way that allows the program doing the
processing to select the appropriate mode.

Processing of top-level forms in the file compiler works as follows:

• If the form is a macro call, it is expanded and the result is processed
as a top-level form in the same processing mode (compile-time-too or
not-compile-time).

• If the form is a progn (or locally) form, each of its body forms is
sequentially processed as top-level forms in the same processing mode.

• If the form is a compiler-let, macrolet, or symbol-macrolet, the
file compiler makes the appropriate bindings and recursively processes
the body forms as an implicit top-level progn with those bindings in
effect, in the same processing mode.

• If the form is an eval-when form, it is handled according to the fol-
lowing table:

92 CHAPTER 5. PROGRAM STRUCTURE

LT CT EX CTTM Action
yes yes – – process body in compile-time-too mode
yes no yes yes process body in compile-time-too mode
yes no – no process body in not-compile-time mode
yes no no – process body in not-compile-time mode
no yes – – evaluate body
no no yes yes evaluate body
no no – no do nothing
no no no – do nothing

In the preceding table the column LT asks whether :load-toplevel is
one of the situations specified in the eval-when form; CT similarly
refers to :compile-toplevel and EX to :execute. The column CTTM
asks whether the eval-when form was encountered while in compile-
time-too mode. The phrase “process body” means to process the body
as an implicit top-level progn in the indicated mode, and “evaluate
body” means to evaluate the body forms sequentially as an implicit
progn in the dynamic execution context of the compiler and in the
lexical environment in which the eval-when appears.

• Otherwise, the form is a top-level form that is not one of the special
cases. If in compile-time-too mode, the compiler first evaluates the
form and then performs normal compiler processing on it. If in not-
compile-time mode, only normal compiler processing is performed (see
section 24.1). Any subforms are treated as non-top-level forms.

Note that top-level forms are guaranteed to be processed in the order in
which they textually appear in the file, and that each top-level form read
by the compiler is processed before the next is read. However, the order of
processing (including, in particular, macro expansion) of subforms that are
not top-level forms is unspecified.

For an eval-when form that is not a top-level form in the file compiler
(that is, either in the interpreter, in compile, or in the file compiler but not
at top level), if the :execute situation is specified, its body is treated as an
implicit progn. Otherwise, the body is ignored and the eval-when form
has the value nil.

For the sake of backward compatibility, a situation may also be compile,
load, or eval. Within a top-level eval-when form these have the same

5.3. TOP-LEVEL FORMS 93

meaning as :compile-toplevel, :load-toplevel, and :execute, respectively;
but their effect is undefined when used in an eval-when form that is not at
top level.

The following effects are logical consequences of the preceding specifica-
tion:

• It is never the case that the execution of a single eval-when expression
will execute the body code more than once.

• The old keyword eval was a misnomer because execution of the body
need not be done by eval. For example, when the function definition

(defun foo () (eval-when (:execute) (print ’foo)))

is compiled the call to print should be compiled, not evaluated at
compile time.

• Macros intended for use in top-level forms should arrange for all side-
effects to be done by the forms in the macro expansion. The macro-
expander itself should not perform the side-effects.

(defmacro foo ()
(really-foo) ;Wrong
‘(really-foo))

(defmacro foo ()
‘(eval-when (:compile-toplevel

:load-toplevel :execute) ;Right
(really-foo)))

Adherence to this convention will mean that such macros will behave
intuitively when called in non-top-level positions.

• Placing a variable binding around an eval-when reliably captures the
binding because the “compile-time-too” mode cannot occur (because
the eval-when could not be a top-level form). For example,

(let ((x 3))
(eval-when (:compile-toplevel :load-toplevel :execute)
(print x)))

94 CHAPTER 5. PROGRAM STRUCTURE

will print 3 at execution (that is, load) time and will not print anything
at compile time. This is important so that expansions of defun and
defmacro can be done in terms of eval-when and can correctly cap-
ture the lexical environment. For example, an implementation might
expand a defun form such as

(defun bar (x) (defun foo () (+ x 3)))

into

(progn (eval-when (:compile-toplevel)
(compiler::notice-function ’bar ’(x)))

(eval-when (:load-toplevel :execute)
(setf (symbol-function ’bar)

#’(lambda (x)
(progn (eval-when (:compile-toplevel)

(compiler::notice-function ’foo
’()))

(eval-when (:load-toplevel :execute)
(setf (symbol-function ’foo)

#’(lambda () (+ x 3)))))))))

which by the preceding rules would be treated the same as

(progn (eval-when (:compile-toplevel)
(compiler::notice-function ’bar ’(x)))

(eval-when (:load-toplevel :execute)
(setf (symbol-function ’bar)

#’(lambda (x)
(progn (eval-when (:load-toplevel :execute)

(setf (symbol-function ’foo)
#’(lambda () (+ x 3)))))))))

Here are some additional examples.

(let ((x 1))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo1) #’(lambda () x))))

5.3. TOP-LEVEL FORMS 95

The eval-when in the preceding expression is not at top level, so only
the :execute keyword is considered. At compile time, this has no effect.
At load time (if the let is at top level), or at execution time (if the let is
embedded in some other form which does not execute until later), this sets
(symbol-function ’foo1) to a function that returns 1.

(eval-when (:execute :load-toplevel :compile-toplevel)
(let ((x 2))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo2) #’(lambda () x)))))

If the preceding expression occurs at the top level of a file to be com-
piled, it has both a compile time and a load-time effect of setting (symbol-
function ’foo2) to a function that returns 2.

(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo3) #’(lambda () 3)))

If the preceding expression occurs at the top level of a file to be compiled,
it has both a compile time and a load-time effect of setting the function cell
of foo3 to a function that returns 3.

(eval-when (:compile-toplevel)
(eval-when (:compile-toplevel)
(print ’foo4)))

The preceding expression always does nothing; it simply returns nil.

(eval-when (:compile-toplevel)
(eval-when (:execute)
(print ’foo5)))

If the preceding form occurs at the top level of a file to be compiled, foo5
is printed at compile time. If this form occurs in a non-top-level position,
nothing is printed at compile time. Regardless of context, nothing is ever
printed at load time or execution time.

(eval-when (:execute :load-toplevel)
(eval-when (:compile-toplevel)
(print ’foo6)))

96 CHAPTER 5. PROGRAM STRUCTURE

If the preceding form occurs at the top level of a file to be compiled, foo6
is printed at compile time. If this form occurs in a non-top-level position,
nothing is printed at compile time. Regardless of context, nothing is ever
printed at load time or execution time.

Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments
and returns nil if the condition is false, or some non-nil value if the condition
is true. One may think of a predicate as producing a Boolean value, where
nil stands for false and anything else stands for true. Conditional control
structures such as cond, if, when, and unless test such Boolean values. We
say that a predicate is true when it returns a non-nil value, and is false when
it returns nil; that is, it is true or false according to whether the condition
being tested is true or false.

By convention, the names of predicates usually end in the letter p (which
stands for “predicate”). Common Lisp uses a uniform convention in hyphen-
ating names of predicates. If the name of the predicate is formed by adding
a p to an existing name, such as the name of a data type, a hyphen is placed
before the final p if and only if there is a hyphen in the existing name. For
example, number begets numberp but standard-char begets standard-
char-p. On the other hand, if the name of a predicate is formed by adding a
prefixing qualifier to the front of an existing predicate name, the two names
are joined with a hyphen and the presence or absence of a hyphen before
the final p is not changed. For example, the predicate string-lessp has no
hyphen before the p because it is the string version of lessp (a MacLisp func-
tion that has been renamed < in Common Lisp). The name string-less-p
would incorrectly imply that it is a predicate that tests for a kind of object
called a string-less, and the name stringlessp would connote a predicate
that tests whether something has no strings (is “stringless”)!

The control structures that test Boolean values only test for whether or
not the value is nil, which is considered to be false. Any other value is

97

98 CHAPTER 6. PREDICATES

considered to be true. Often a predicate will return nil if it “fails” and some
useful value if it “succeeds”; such a function can be used not only as a test but
also for the useful value provided in case of success. An example is member.

If no better non-nil value is available for the purpose of indicating success,
by convention the symbol t is used as the “standard” true value.

6.1 Logical Values
The names nil and t are constants in Common Lisp. Although they are
symbols like any other symbols, and appear to be treated as variables when
evaluated, it is not permitted to modify their values. See defconstant.

[Constant] nil

The value of nil is always nil. This object represents the logical false
value and also the empty list. It can also be written ().

[Constant] t

The value of t is always t.

6.2 Data Type Predicates
Perhaps the most important predicates in Lisp are those that deal with data
types; that is, given a data object one can determine whether or not it belongs
to a given type, or one can compare two type specifiers.

6.2.1 General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then
the typep function is a set membership test, while subtypep is a subset
test.

[Function] typep object type

typep is a predicate that is true if object is of type type, and is false
otherwise. Note that an object can be “of” more than one type, since one type
can include another. The type may be any of the type specifiers mentioned

6.2. DATA TYPE PREDICATES 99

in chapter 4 except that it may not be or contain a type specifier list whose
first element is function or values. A specifier of the form (satisfies fn)
is handled simply by applying the function fn to object (see funcall); the
object is considered to be of the specified type if the result is not nil.

X3J13 voted in January 1989 to change typep to give specialized array
and complex type specifiers the same meaning for purposes of type discrim-
ination as they have for declaration purposes. Of course, this also applies to
such type specifiers as vector and simple-array (see section 4.5). Thus

(typep foo ’(array bignum))

in the first edition asked the question, Is foo an array specialized to hold
bignums? but under the new interpretation asks the question, Could the
array foo have resulted from giving bignum as the :element-type argument
to make-array?

[Function] subtypep type1 type2

The arguments must be type specifiers that are acceptable to typep. The
two type specifiers are compared; this predicate is true if type1 is definitely
a (not necessarily proper) subtype of type2. If the result is nil, however,
then type1 may or may not be a subtype of type2 (sometimes it is impossible
to tell, especially when satisfies type specifiers are involved). A second
returned value indicates the certainty of the result; if it is true, then the first
value is an accurate indication of the subtype relationship. Thus there are
three possible result combinations:

t t type1 is definitely a subtype of type2
nil t type1 is definitely not a subtype of type2
nil nil subtypep could not determine the relationship

X3J13 voted in January 1989 to place certain requirements upon the
implementation of subtypep, for it noted that implementations in many
cases simply “give up” and return the two values nil and nil when in fact
it would have been possible to determine the relationship between the given
types. The requirements are as follows, where it is understood that a type
specifier s involves a type specifier u if either s contains an occurrence of u
directly or s contains a type specifier w defined by deftype whose expansion
involves u.

100 CHAPTER 6. PREDICATES

• subtypep is not permitted to return a second value of nil unless one
or both of its arguments involves satisfies, and, or, not, or member.

• subtypep should signal an error when one or both of its arguments
involves values or the list form of the function type specifier.

• subtypep must always return the two values t and t in the case where
its arguments, after expansion of specifiers defined by deftype, are
equal.

In addition, X3J13 voted to clarify that in some cases the relationships be-
tween types as reflected by subtypep may be implementation-specific. For
example, in an implementation supporting only one type of floating-point
number, (subtypep ’float ’long-float) would return t and t, since the two
types would be identical.

Note that satisfies is an exception because relationships between types
involving satisfies are undecidable in general, but (as X3J13 noted) and,
or, not, and member are merely very messy to deal with. In all likelihood
these will not be addressed unless and until someone is willing to write a
careful specification that covers all the cases for the processing of these type
specifiers by subtypep. The requirements stated above were easy to state
and probably suffice for most cases of interest.

X3J13 voted in January 1989 to change subtypep to give specialized
array and complex type specifiers the same meaning for purposes of type
discrimination as they have for declaration purposes. Of course, this also
applies to such type specifiers as vector and simple-array (see section 4.5).

If A and B are type specifiers (other than *, which technically is not
a type specifier anyway), then (array A) and (array B) represent the
same type in a given implementation if and only if they denote arrays of the
same specialized representation in that implementation; otherwise they are
disjoint. To put it another way, they represent the same type if and only
if (upgraded-array-element-type ’A) and (upgraded-array-element-
type ’B) are the same type. Therefore

(subtypep ’(array A) ’(array B))

is true if and only if (upgraded-array-element-type ’A) is the same
type as (upgraded-array-element-type ’B).

The complex type specifier is treated in a similar but subtly different
manner. If A and B are two type specifiers (but not *, which technically is not

6.2. DATA TYPE PREDICATES 101

a type specifier anyway), then (complex A) and (complex B) represent
the same type in a given implementation if and only if they refer to com-
plex numbers of the same specialized representation in that implementation;
otherwise they are disjoint. Note, however, that there is no function called
make-complex that allows one to specify a particular element type (then
to be upgraded); instead, one must describe specialized complex numbers
in terms of the actual types of the parts from which they were constructed.
There is no number of type (or rather, representation) float as such; there are
only numbers of type single-float, numbers of type double-float, and so on.
Therefore we want (complex single-float) to be a subtype of (complex
float).

The rule, then, is that (complex A) and (complex B) represent the
same type (and otherwise are disjoint) in a given implementation if and only if
either the type A is a subtype of B, or (upgraded-complex-part-type ’A)
and (upgraded-complex-part-type ’B) are the same type. In the latter
case (complex A) and (complex B) in fact refer to the same specialized
representation. Therefore

(subtypep ’(complex A) ’(complex B))

is true if and only if the results of (upgraded-complex-part-type ’A)
and (upgraded-complex-part-type ’B) are the same type.

Under this interpretation

(subtypep ’(complex single-float) ’(complex float))

must be true in all implementations; but

(subtypep ’(array single-float) ’(array float))

is true only in implementations that do not have a specialized array rep-
resentation for single-float elements distinct from that for float elements in
general.

6.2.2 Specific Data Type Predicates

The following predicates test for individual data types.

102 CHAPTER 6. PREDICATES

[Function] null object

null is true if its argument is (), and otherwise is false. This is the same
operation performed by the function not; however, not is normally used to
invert a Boolean value, whereas null is normally used to test for an empty
list. The programmer can therefore express intent by the choice of function
name.

(null x) ≡ (typep x ’null) ≡ (eq x ’())

[Function] symbolp object

symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) ≡ (typep x ’symbol)

[Function] atom object

The predicate atom is true if its argument is not a cons, and otherwise
is false. Note that (atom ’()) is true, because () ≡ nil.

(atom x) ≡ (typep x ’atom) ≡ (not (typep x ’cons))

[Function] consp object

The predicate consp is true if its argument is a cons, and otherwise is
false. Note that the empty list is not a cons, so (consp ’()) ≡ (consp ’nil)
⇒ nil.

(consp x) ≡ (typep x ’cons) ≡ (not (typep x ’atom))

[Function] listp object

listp is true if its argument is a cons or the empty list (), and otherwise
is false. It does not check for whether the list is a “true list” (one terminated
by nil) or a “dotted list” (one terminated by a non-null atom).

(listp x) ≡ (typep x ’list) ≡ (typep x ’(or cons null))

[Function] numberp object

numberp is true if its argument is any kind of number, and otherwise is
false.

6.2. DATA TYPE PREDICATES 103

(numberp x) ≡ (typep x ’number)

[Function] integerp object

integerp is true if its argument is an integer, and otherwise is false.

(integerp x) ≡ (typep x ’integer)

[Function] rationalp object

rationalp is true if its argument is a rational number (a ratio or an
integer), and otherwise is false.

(rationalp x) ≡ (typep x ’rational)

[Function] floatp object

floatp is true if its argument is a floating-point number, and otherwise
is false.

(floatp x) ≡ (typep x ’float)

[Function] realp object

realp is true if its argument is a real number, and otherwise is false.

(realp x) ≡ (typep x ’real)

[Function] complexp object

complexp is true if its argument is a complex number, and otherwise is
false.

(complexp x) ≡ (typep x ’complex)

[Function] characterp object

characterp is true if its argument is a character, and otherwise is false.

(characterp x) ≡ (typep x ’character)

104 CHAPTER 6. PREDICATES

[Function] stringp object

stringp is true if its argument is a string, and otherwise is false.

(stringp x) ≡ (typep x ’string)

[Function] bit-vector-p object

bit-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) ≡ (typep x ’bit-vector)

[Function] vectorp object

vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) ≡ (typep x ’vector)

[Function] simple-vector-p object

vectorp is true if its argument is a simple general vector, and otherwise
is false.

(simple-vector-p x) ≡ (typep x ’simple-vector)

[Function] simple-string-p object

simple-string-p is true if its argument is a simple string, and otherwise
is false.

(simple-string-p x) ≡ (typep x ’simple-string)

[Function] simple-bit-vector-p object

simple-bit-vector-p is true if its argument is a simple bit-vector, and
otherwise is false.

(simple-bit-vector-p x) ≡ (typep x ’simple-bit-vector)

[Function] arrayp object

arrayp is true if its argument is an array, and otherwise is false.

6.2. DATA TYPE PREDICATES 105

(arrayp x) ≡ (typep x ’array)

[Function] packagep object

packagep is true if its argument is a package, and otherwise is false.

(packagep x) ≡ (typep x ’package)

[Function] functionp object

functionp is true if its argument is suitable for applying to arguments,
using for example the funcall or apply function. Otherwise functionp is
false.

functionp is always true of symbols, lists whose car is the symbol
lambda, any value returned by the function special operator, and any
values returned by the function compile when the first argument is nil.
X3J13 voted in June 1988 to define

(functionp x) ≡ (typep x ’function)

Because the vote also specifies that types cons and symbol are disjoint
from the type function, this is an incompatible change; now functionp is
in fact always false of symbols and lists.

[Function] compiled-function-p object

compiled-function-p is true if its argument is any compiled code object,
and otherwise is false.

(compiled-function-p x) ≡ (typep x ’compiled-function)

See also standard-char-p, string-char-p, streamp, random-state-p,
readtablep, hash-table-p, and pathnamep.

106 CHAPTER 6. PREDICATES

6.3 Equality Predicates
Common Lisp provides a spectrum of predicates for testing for equality of two
objects: eq (the most specific), eql, equal, and equalp (the most general).
eq and equal have the meanings traditional in Lisp. eql was added because
it is frequently needed, and equalp was added primarily in order to have a
version of equal that would ignore type differences when comparing numbers
and case differences when comparing characters. If two objects satisfy any
one of these equality predicates, then they also satisfy all those that are more
general.

[Function] eq x y

(eq x y) is true if and only if x and y are the same identical object.
(Implementationally, x and y are usually eq if and only if they address the
same identical memory location.)

It should be noted that things that print the same are not necessarily eq
to each other. Symbols with the same print name usually are eq to each
other because of the use of the intern function. However, numbers with the
same value need not be eq, and two similar lists are usually not eq. For
example:

(eq ’a ’b) is false.
(eq ’a ’a) is true.
(eq 3 3) might be true or false, depending on the implementation.
(eq 3 3.0) is false.
(eq 3.0 3.0) might be true or false, depending on the implementation.
(eq #c(3 -4) #c(3 -4))
might be true or false, depending on the implementation.

(eq #c(3 -4.0) #c(3 -4)) is false.
(eq (cons ’a ’b) (cons ’a ’c)) is false.
(eq (cons ’a ’b) (cons ’a ’b)) is false.
(eq ’(a . b) ’(a . b)) might be true or false.
(progn (setq x (cons ’a ’b)) (eq x x)) is true.
(progn (setq x ’(a . b)) (eq x x)) is true.
(eq #\A #\A) might be true or false, depending on the implementation.
(eq "Foo" "Foo") might be true or false.
(eq "Foo" (copy-seq "Foo")) is false.
(eq "FOO" "foo") is false.

6.3. EQUALITY PREDICATES 107

In Common Lisp, unlike some other Lisp dialects, the implementation is
permitted to make “copies” of characters and numbers at any time. (This
permission is granted because it allows tremendous performance improve-
ments in many common situations.) The net effect is that Common Lisp
makes no guarantee that eq will be true even when both its arguments are
“the same thing” if that thing is a character or number. For example:

(let ((x 5)) (eq x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are
characters or numbers of the same type then their values are compared.
Thus eql tells whether two objects are conceptually the same, whereas eq
tells whether two objects are implementationally identical. It is for this
reason that eql, not eq, is the default comparison predicate for the sequence
functions defined in chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind
of object that is represented in an “immediate” fashion will indeed have like-valued
instances satisfy eq. In some implementations, for example, fixnums and char-
acters happen to “work.” However, no program should depend on this, as other
implementations of Common Lisp might not use an immediate representation for
these data types.

An additional problem with eq is that the implementation is permitted to
“collapse” constants (or portions thereof) appearing in code to be compiled
if they are equal. An object is considered to be a constant in code to be
compiled if it is a self-evaluating form or is contained in a quote form. This is
why (eq "Foo" "Foo") might be true or false; in interpreted code it would
normally be false, because reading in the form (eq "Foo" "Foo") would
construct distinct strings for the two arguments to eq, but the compiler
might choose to use the same identical string or two distinct copies as the
two arguments in the call to eq. Similarly, (eq ’(a . b) ’(a . b)) might
be true or false, depending on whether the constant conses appearing in
the quote forms were collapsed by the compiler. However, (eq (cons ’a ’b)
(cons ’a ’b)) is always false, because every distinct call to the cons function
necessarily produces a new and distinct cons.

X3J13 voted in March 1989 to clarify that eval and compile are not per-
mitted either to copy or to coalesce (“collapse”) constants (see eq) appearing

108 CHAPTER 6. PREDICATES

in the code they process; the resulting program behavior must refer to ob-
jects that are eql to the corresponding objects in the source code. Only the
compile-file/load process is permitted to copy or coalesce constants (see
section 24.1).

[Function] eql x y

The eql predicate is true if its arguments are eq, or if they are numbers
of the same type with the same value, or if they are character objects that
represent the same character. For example:

(eql ’a ’b) is false.
(eql ’a ’a) is true.
(eql 3 3) is true.
(eql 3 3.0) is false.
(eql 3.0 3.0) is true.
(eql #c(3 -4) #c(3 -4)) is true.
(eql #c(3 -4.0) #c(3 -4)) is false.
(eql (cons ’a ’b) (cons ’a ’c)) is false.
(eql (cons ’a ’b) (cons ’a ’b)) is false.
(eql ’(a . b) ’(a . b)) might be true or false.
(progn (setq x (cons ’a ’b)) (eql x x)) is true.
(progn (setq x ’(a . b)) (eql x x)) is true.
(eql #\A #\A) is true.
(eql "Foo" "Foo") might be true or false.
(eql "Foo" (copy-seq "Foo")) is false.
(eql "FOO" "foo") is false.

Normally (eql 1.0s0 1.0d0) would be false, under the assumption that
1.0s0 and 1.0d0 are of distinct data types. However, implementations that
do not provide four distinct floating-point formats are permitted to “collapse”
the four formats into some smaller number of them; in such an implemen-
tation (eql 1.0s0 1.0d0) might be true. The predicate = will compare the
values of two numbers even if the numbers are of different types.

If an implementation supports positive and negative zeros as distinct
values (as in the IEEE proposed standard floating-point format), then (eql
0.0 -0.0) will be false. Otherwise, when the syntax -0.0 is read it will
be interpreted as the value 0.0, and so (eql 0.0 -0.0) will be true. The
predicate= differs from eql in that (= 0.0 -0.0) will always be true, because

6.3. EQUALITY PREDICATES 109

= compares the mathematical values of its operands, whereas eql compares
the representational values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql
and their imaginary parts are eql. For example, (eql #C(4 5) #C(4 5))
is true and (eql #C(4 5) #C(4.0 5.0)) is false. Note that while (eql
#C(5.0 0.0) 5.0) is false, (eql #C(5 0) 5) is true. In the case of (eql
#C(5.0 0.0) 5.0) the two arguments are of different types and so cannot
satisfy eql; that’s all there is to it. In the case of (eql #C(5 0) 5), however,
#C(5 0) is not a complex number but is always automatically reduced by
the rule of complex canonicalization to the integer 5, just as the apparent
ratio 20/4 is always simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of
eq. While eql compares the values of numbers and characters, it does not
compare the contents of strings. To compare the characters of two strings,
one should use equal, equalp, string=, or string-equal.

[Function] equal x y

The equal predicate is true if its arguments are structurally similar (iso-
morphic) objects. A rough rule of thumb is that two objects are equal if
and only if their printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared
as for eq. This method of comparing symbols can violate the rule of thumb
for equal and printed representations, but only in the infrequently occurring
case of two distinct symbols with the same print name.

Certain objects that have components are equal if they are of the same
type and corresponding components are equal. This test is implemented in
a recursive manner and may fail to terminate for circular structures.

For conses, equal is defined recursively as the two car ’s being equal and
the two cdr ’s being equal.

Two arrays are equal only if they are eq, with one exception: strings and
bit-vectors are compared element-by-element. If either argument has a fill
pointer, the fill pointer limits the number of elements examined by equal.
Uppercase and lowercase letters in strings are considered by equal to be
distinct. (In contrast, equalp ignores case distinctions in strings.)

Two pathname objects are equal if and only if all the corresponding com-
ponents (host, device, and so on) are equivalent. (Whether or not uppercase

110 CHAPTER 6. PREDICATES

and lowercase letters are considered equivalent in strings appearing in com-
ponents depends on the file name conventions of the file system.) Pathnames
that are equal should be functionally equivalent.

equal never recursively descends any structure or data type other than
the ones explicitly described above: conses, bit-vectors, strings, and path-
names. Numbers and characters are compared as if by eql, and all other
data objects are compared as if by eq.

(equal ’a ’b) is false.
(equal ’a ’a) is true.
(equal 3 3) is true.
(equal 3 3.0) is false.
(equal 3.0 3.0) is true.
(equal #c(3 -4) #c(3 -4)) is true.
(equal #c(3 -4.0) #c(3 -4)) is false.
(equal (cons ’a ’b) (cons ’a ’c)) is false.
(equal (cons ’a ’b) (cons ’a ’b)) is true.
(equal ’(a . b) ’(a . b)) is true.
(progn (setq x (cons ’a ’b)) (equal x x)) is true.
(progn (setq x ’(a . b)) (equal x x)) is true.
(equal #\A #\A) is true.
(equal "Foo" "Foo") is true.
(equal "Foo" (copy-seq "Foo")) is true.
(equal "FOO" "foo") is false.

To compare a tree of conses using eql (or any other desired predicate) on
the leaves, use tree-equal.

[Function] equalp x y

Two objects are equalp if they are equal; if they are characters and sat-
isfy char-equal, which ignores alphabetic case and certain other attributes
of characters; if they are numbers and have the same numerical value, even
if they are of different types; or if they have components that are all equalp.

Objects that have components are equalp if they are of the same type
and corresponding components are equalp. This test is implemented in
a recursive manner and may fail to terminate for circular structures. For
conses, equalp is defined recursively as the two car ’s being equalp and the
two cdr ’s being equalp.

6.3. EQUALITY PREDICATES 111

Two arrays are equalp if and only if they have the same number of
dimensions, the dimensions match, and the corresponding components are
equalp. The specializations need not match; for example, a string and a
general array that happens to contain the same characters will be equalp
(though definitely not equal). If either argument has a fill pointer, the
fill pointer limits the number of elements examined by equalp. Because
equalp performs element-by-element comparisons of strings and ignores the
alphabetic case of characters, case distinctions are therefore also ignored
when equalp compares strings.

Two symbols can be equalp only if they are eq, that is, the same identical
object.

X3J13 voted in June 1989 to specify that equalp compares components
of hash tables (see below), and to clarify that otherwise equalp never re-
cursively descends any structure or data type other than the ones explicitly
described above: conses, arrays (including bit-vectors and strings), and path-
names. Numbers are compared for numerical equality (see=), characters are
compared as if by char-equal, and all other data objects are compared as if
by eq.

Two hash tables are considered the same by equalp if and only if they
satisfy a four-part test:

• They must be of the same kind; that is, equivalent :test arguments were
given to make-hash-table when the two hash tables were created.

• They must have the same number of entries (see hash-table-count).

• For every entry (key1, value1) in one hash table there must be a cor-
responding entry (key2, value2) in the other, such that key1 and key2
are considered to be the same by the :test function associated with the
hash tables.

• For every entry (key1, value1) in one hash table and its corresponding
entry (key2, value2) in the other, such that key1 and key2 are the
same, equalp must be true of value1 and value2.

The four parts of this test are carried out in the order shown, and if some
part of the test fails, equalp returns nil and the other parts of the test are
not attempted.

If equalp must compare two structures and the defstruct definition for
one used the :type option and the other did not, then equalp returns nil.

112 CHAPTER 6. PREDICATES

If equalp must compare two structures and neither defstruct definition
used the :type option, then equalp returns t if and only if the structures
have the same type (that is, the same defstruct name) and the values of all
corresponding slots (slots having the same name) are equalp.

As part of the X3J13 discussion of this issue the following observations
were made. Object equality is not a concept for which there is a uniquely
determined correct algorithm. The appropriateness of an equality predicate
can be judged only in the context of the needs of some particular program.
Although these functions take any type of argument and their names sound
very generic, equal and equalp are not appropriate for every application.
Any decision to use or not use them should be determined by what they
are documented to do rather than by any abstract characterization of their
function. If neither equal nor equalp is found to be appropriate in a par-
ticular situation, programmers are encouraged to create another operator
that is appropriate rather than blame equal or equalp for “doing the wrong
thing.”

Note that one consequence of the vote to change the rules of floating-point
contagion (described in section 12.1) is to make equalp a true equivalence
relation on numbers.

(equalp ’a ’b) is false.
(equalp ’a ’a) is true.
(equalp 3 3) is true.
(equalp 3 3.0) is true.
(equalp 3.0 3.0) is true.
(equalp #c(3 -4) #c(3 -4)) is true.
(equalp #c(3 -4.0) #c(3 -4)) is true.
(equalp (cons ’a ’b) (cons ’a ’c)) is false.
(equalp (cons ’a ’b) (cons ’a ’b)) is true.
(equalp ’(a . b) ’(a . b)) is true.
(progn (setq x (cons ’a ’b)) (equalp x x)) is true.
(progn (setq x ’(a . b)) (equalp x x)) is true.
(equalp #\A #\A) is true.
(equalp "Foo" "Foo") is true.
(equalp "Foo" (copy-seq "Foo")) is true.
(equalp "FOO" "foo") is true.

6.4. LOGICAL OPERATORS 113

6.4 Logical operators

Common Lisp provides three operators on Boolean values: and, or, and not.
Of these, and and or are also control structures because their arguments are
evaluated conditionally. The function not necessarily examines its single
argument, and so is a simple function.

[Function] not x

not returns t if x is nil, and otherwise returns nil. It therefore inverts
its argument considered as a Boolean value.

null is the same as not; both functions are included for the sake of clarity.
As a matter of style, it is customary to use null to check whether something
is the empty list and to use not to invert the sense of a logical value.
[Macro] and {form}*
(and form1 form2 ...) evaluates each form, one at a time, from left

to right. If any form evaluates to nil, the value nil is immediately returned
without evaluating the remaining forms. If every form but the last evaluates
to a non-nil value, and returns whatever the last form returns. Therefore
in general and can be used both for logical operations, where nil stands for
false and non-nil values stand for true, and as a conditional expression. An
example follows.

(if (and (>= n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo))

(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is
the symbol foo, provided also that n is indeed a valid index for a-simple-
vector. Because and guarantees left-to-right testing of its parts, elt is not
called if n is out of range.

To put it another way, the and special operator does short-circuit Boolean
evaluation, like the and then operator in Ada and what in some Pascal-
like languages is called cand (for “conditional and”); the Lisp and special
operator is unlike the Pascal or Ada and operator, which always evaluates
both arguments.

In the previous example writing

114 CHAPTER 6. PREDICATES

(and (>= n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo)
(princ "Foo!"))

would accomplish the same thing. The difference is purely stylistic. Some
programmers never use expressions containing side effects within and, pre-
ferring to use if or when for that purpose.

From the general definition, one can deduce that (and x) ≡ x. Also,
(and) evaluates to t, which is an identity for this operation.

One can define and in terms of cond in this way:

(and x y z ... w) ≡ (cond ((not x) nil)
((not y) nil)
((not z) nil)
. . .
(t w))

See if and when, which are sometimes stylistically more appropriate than
and for conditional purposes. If it is necessary to test whether a predicate is
true of all elements of a list or vector (element 0 and element 1 and element
2 and . . .), then the function every may be useful.
[Macro] or {form}*
(or form1 form2 ...) evaluates each form, one at a time, from left to

right. If any form other than the last evaluates to something other than nil,
or immediately returns that non-nil value without evaluating the remaining
forms. If every form but the last evaluates to nil, or returns whatever
evaluation of the last of the forms returns. Therefore in general or can be
used both for logical operations, where nil stands for false and non-nil values
stand for true, and as a conditional expression.

To put it another way, the or special operator does short-circuit Boolean
evaluation, like the or else operator in Ada and what in some Pascal-like
languages is called cor (for “conditional or”); the Lisp or special operator is
unlike the Pascal or Ada or operator, which always evaluates both arguments.

From the general definition, one can deduce that (or x) ≡ x. Also, (or)
evaluates to nil, which is the identity for this operation.

One can define or in terms of cond in this way:

(or x y z ... w) ≡ (cond (x) (y) (z) ... (t w))

6.4. LOGICAL OPERATORS 115

See if and unless, which are sometimes stylistically more appropriate
than or for conditional purposes. If it is necessary to test whether a predicate
is true of one or more elements of a list or vector (element 0 or element 1 or
element 2 or . . .), then the function some may be useful.

116 CHAPTER 6. PREDICATES

Chapter 7

Control Structure

Common Lisp provides a variety of special structures for organizing pro-
grams. Some have to do with flow of control (control structures), while
others control access to variables (environment structures). Some of these
features are implemented as special operators; others are implemented as
macros, which typically expand into complex program fragments expressed
in terms of special operators or other macros.

Function application is the primary method for construction of Lisp pro-
grams. Operations are written as the application of a function to its ar-
guments. Usually, Lisp programs are written as a large collection of small
functions, each of which implements a simple operation. These functions
operate by calling one another, and so larger operations are defined in terms
of smaller ones. Lisp functions may call upon themselves recursively, either
directly or indirectly.

Locally defined functions (flet, labels) and macros (macrolet) are quite
versatile. The new symbol macro facility allows even more syntactic flexibil-
ity.

While the Lisp language is more applicative in style than statement-
oriented, it nevertheless provides many operations that produce side effects
and consequently requires constructs for controlling the sequencing of side
effects. The construct progn, which is roughly equivalent to an Algol begin-
end block with all its semicolons, executes a number of forms sequentially,
discarding the values of all but the last. Many Lisp control constructs include
sequencing implicitly, in which case they are said to provide an “implicit
progn.” Other sequencing constructs include prog1 and prog2.

For looping, Common Lisp provides the general iteration facility do as

117

118 CHAPTER 7. CONTROL STRUCTURE

well as a variety of special-purpose iteration facilities for iterating or mapping
over various data structures.

Common Lisp provides the simple one-way conditionals when and un-
less, the simple two-way conditional if, and the more general multi-way
conditionals such as cond and case. The choice of which form to use in any
particular situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines
are provided: block, return, return-from, catch, and throw.

The multiple-value constructs provide an efficient way for a function to
return more than one value; see values.

7.1 Constants and Variables

Because some Lisp data objects are used to represent programs, one cannot
always notate a constant data object in a program simply by writing the
notation for the object unadorned; it would be ambiguous whether a constant
object or a program fragment was intended. The quote special operator
resolves this ambiguity.

There are two kinds of variables in Common Lisp, in effect: ordinary
variables and function names. There are some similarities between the two
kinds, and in a few cases there are similar functions for dealing with them,
for example boundp and fboundp. However, for the most part the two
kinds of variables are used for very different purposes: one to name defined
functions, macros, and special operators, and the other to name data objects.

X3J13 voted in March 1989 to introduce the concept of a function-name,
which may be either a symbol or a two-element list whose first element is the
symbol setf and whose second element is a symbol. The primary purpose of
this is to allow setf expander functions to be CLOS generic functions with
user-defined methods. Many places in Common Lisp that used to require a
symbol for a function name are changed to allow 2-lists as well; for example,
defun is changed so that one may write (defun (setf foo) ...), and the
function special operator is changed to accept any function-name. See also
fdefinition.

By convention, any function named (setf f) should return its first argu-
ment as its only value, in order to preserve the specification that setf returns
its newvalue. See setf.

7.1. CONSTANTS AND VARIABLES 119

Implementations are free to extend the syntax of function-names to in-
clude lists beginning with additional symbols other than setf or lambda.

7.1.1 Reference

The value of an ordinary variable may be obtained simply by writing the
name of the variable as a form to be executed. Whether this is treated as the
name of a special variable or a lexical variable is determined by the presence
or absence of an applicable special declaration; see chapter 9.

The following functions and special operators allow reference to the values
of constants and variables in other ways.
[Special operator] quote object
(quote x) simply returns x. The object is not evaluated and may be any

Lisp object whatsoever. This construct allows any Lisp object to be written
as a constant value in a program. For example:

(setq a 43)
(list a (cons a 3)) ⇒ (43 (43 . 3))
(list (quote a) (quote (cons a 3)) ⇒ (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to
type, a standard abbreviation is defined for them: any form f preceded by a
single quote (’) character is assumed to have (quote) wrapped around it
to make (quote f). For example:

(setq x ’(the magic quote hack))

is normally interpreted by read to mean

(setq x (quote (the magic quote hack)))

See section 22.1.3.
It is an error to destructively modify any object that appears as a constant

in executable code, whether within a quote special operator or as a self-
evaluating form.

See section 24.1 for a discussion of how quoted constants are treated by
the compiler.

X3J13 voted in March 1989 to clarify that eval and compile are not per-
mitted either to copy or to coalesce (“collapse”) constants (see eq) appearing
in the code they process; the resulting program behavior must refer to objects

120 CHAPTER 7. CONTROL STRUCTURE

that are eql to the corresponding objects in the source code. Moreover, the
constraints introduced by the votes on issues and on what kinds of objects
may appear as constants apply only to compile-file (see section 24.1).
[Special operator] function fn
The value of function is always the functional interpretation of fn; fn is

interpreted as if it had appeared in the functional position of a function in-
vocation. In particular, if fn is a symbol, the functional definition associated
with that symbol is returned; see symbol-function. If fn is a lambda-
expression, then a “lexical closure” is returned, that is, a function that when
invoked will execute the body of the lambda-expression in such a way as to
observe the rules of lexical scoping properly.

X3J13 voted in June 1988 to specify that the result of a function special
operator is always of type function. This implies that a form (function fn)
may be interpreted as (the (function fn)).

It is an error to use the function special operator on a symbol that
does not denote a function in the lexical or global environment in which
the special operator appears. Specifically, it is an error to use the function
special operator on a symbol that denotes a macro or special operator. Some
implementations may choose not to signal this error for performance reasons,
but implementations are forbidden to extend the semantics of function in
this respect; that is, an implementation is not allowed to define the failure
to signal an error to be a “useful” behavior.

function accepts any function-name (a symbol or a list whose car is
setf—see section 7.1) as well as lambda-expressions. Thus one may write
(function (setf cadr)) to refer to the setf expansion function for cadr.

For example:

(defun adder (x) (function (lambda (y) (+ x y))))

The result of (adder 3) is a function that will add 3 to its argument:

(setq add3 (adder 3))
(funcall add3 5) ⇒ 8

This works because function creates a closure of the inner lambda-
expression that is able to refer to the value 3 of the variable x even after
control has returned from the function adder.

More generally, a lexical closure in effect retains the ability to refer to
lexically visible bindings, not just values. Consider this code:

7.1. CONSTANTS AND VARIABLES 121

(defun two-funs (x)
(list (function (lambda () x))

(function (lambda (y) (setq x y)))))
(setq funs (two-funs 6))
(funcall (car funs)) ⇒ 6
(funcall (cadr funs) 43) ⇒ 43
(funcall (car funs)) ⇒ 43

The function two-funs returns a list of two functions, each of which refers
to the binding of the variable x created on entry to the function two-funs
when it was called with argument 6. This binding has the value 6 initially,
but setq can alter a binding. The lexical closure created for the first lambda-
expression does not “snapshot” the value 6 for x when the closure is created.
The second function can be used to alter the binding (to 43, in the example),
and this altered value then becomes accessible to the first function.

In situations where a closure of a lambda-expression over the same set
of bindings may be produced more than once, the various resulting closures
may or may not be eq, at the discretion of the implementation. For example:

(let ((x 5) (funs ’()))
(dotimes (j 10)
(push #’(lambda (z)

(if (null z) (setq x 0) (+ x z)))
funs))

funs)

The result of the above expression is a list of ten closures. Each logically
requires only the binding of x. It is the same binding in each case, so the
ten closures may or may not be the same identical (eq) object. On the other
hand, the result of the expression

(let ((funs ’()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z)

(if (null z) (setq x 0) (+ x z))))
funs)))

funs)

122 CHAPTER 7. CONTROL STRUCTURE

is also a list of ten closures. However, in this case no two of the closures
may be eq, because each closure is over a distinct binding of x, and these
bindings can be behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the
simpler expression

(let ((funs ’()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z) (+ x z)))

funs)))
funs)

is a list of ten closures thatmay be pairwise eq. Although one might think
that a different binding of x is involved for each closure (which is indeed the
case), the bindings cannot be distinguished because their values are identical
and immutable, there being no occurrence of setq on x. A compiler would
therefore be justified in transforming the expression to

(let ((funs ’()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 z)))

funs))
funs)

where clearly the closures may be the same after all. The general rule,
then, is that the implementation is free to have two distinct evaluations of
the same function form produce identical (eq) closures if it can prove that
the two conceptually distinct resulting closures must in fact be behaviorally
identical with respect to invocation. This is merely a permitted optimization;
a perfectly valid implementation might simply cause every distinct evaluation
of a function form to produce a new closure object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to
close over any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside
entity. In this important special case, the same “closure” may be used as the
value for all evaluations of the function special operator. Indeed, this value

7.1. CONSTANTS AND VARIABLES 123

need not be a closure object at all; it may be a simple compiled function
containing no environment information. This example is simply a special
case of the foregoing discussion and is included as a hint to implementors
familiar with previous methods of implementing Lisp. The distinction be-
tween closures and other kinds of functions is somewhat pointless, actually,
as Common Lisp defines no particular representation for closures and no way
to distinguish between closures and non-closure functions. All that matters
is that the rules of lexical scoping be obeyed.

Since function forms are so frequently useful but somewhat cumbersome
to type, a standard abbreviation is defined for them: any form f preceded by
#’ (# followed by an apostrophe) is assumed to have (function) wrapped
around it to make (function f). For example,

(remove-if #’numberp ’(1 a b 3))

is normally interpreted by read to mean

(remove-if (function numberp) ’(1 a b 3))

See section 22.1.4.

[Function] symbol-value symbol

symbol-value returns the current value of the dynamic (special) variable
named by symbol. An error occurs if the symbol has no value; see boundp
and makunbound. Note that constant symbols are really variables that
cannot be changed, and so symbol-value may be used to get the value of a
named constant. In particular, symbol-value of a keyword will return that
keyword.

symbol-value cannot access the value of a lexical variable.
This function is particularly useful for implementing interpreters for lan-

guages embedded in Lisp. The corresponding assignment primitive is set;
alternatively, symbol-value may be used with setf.

[Function] symbol-function symbol

symbol-function returns the current global function definition named
by symbol. An error is signalled if the symbol has no function definition; see
fboundp. Note that the definition may be a function or may be an object
representing a special operator or macro. In the latter case, however, it is an

124 CHAPTER 7. CONTROL STRUCTURE

error to attempt to invoke the object as a function. If it is desired to process
macros, special operators, and functions equally well, as when writing an
interpreter, it is best first to test the symbol with macro-function and
special-operator-p and then to invoke the functional value only if these
two tests both yield false.

This function is particularly useful for implementing interpreters for lan-
guages embedded in Lisp.

symbol-function cannot access the value of a lexical function name
produced by flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf
with symbol-function. Performing this operation causes the symbol to have
only the specified definition as its global function definition; any previous
definition, whether as a macro or as a function, is lost. It is an error to
attempt to redefine the name of a special form (see table 5.1).

X3J13 voted in June 1988 to clarify the behavior of symbol-function
in the light of the redefinition of the type function.

• It is permissible to call symbol-function on any symbol for which
fboundp returns true. Note that fboundp must return true for a
symbol naming a macro or a special operator.

• If fboundp returns true for a symbol but the symbol denotes a macro
or special operator, then the value returned by symbol-function is
not well-defined but symbol-function will not signal an error.

• When symbol-function is used with setf the new value must be of
type function. It is an error to set the symbol-function of a symbol
to a symbol, a list, or the value returned by symbol-function on the
name of a macro or a special operator.

[Function] fdefinition function-name

X3J13 voted in March 1989 to add the function fdefinition to the lan-
guage. It is exactly like symbol-function except that its argument may be
any function-name (a symbol or a list whose car is setf—see section 7.1);
it returns the current global function definition named by the argument
function-name. One may use fdefinition with setf to change the current
global function definition associated with a function-name.

7.1. CONSTANTS AND VARIABLES 125

[Function] boundp symbol

boundp is true if the dynamic (special) variable named by symbol has a
value; otherwise, it returns nil.

See also set and makunbound.

[Function] fboundp symbol

fboundp is true if the symbol has a global function definition. Note
that fboundp is true when the symbol names a special operator or macro.
macro-function and special-operator-p may be used to test for these
cases.

Despite the tightening of the definition of the type function, fboundp
must return true when the argument names a special operator or macro.

See also symbol-function and fmakunbound.
fboundp accepts any function-name (a symbol or a list whose car is

setf—see section 7.1). Thus one may write (fboundp ’(setf cadr)) to
determine whether a setf expansion function has been globally defined for
cadr.

[Function] special-operator-p symbol

The function special-operator-p takes a symbol. If the symbol globally
names a special operator, then a non-nil value is returned; otherwise nil is
returned. A returned non-nil value is typically a function of implementation-
dependent nature that can be used to interpret (evaluate) the special oper-
ator.

It is possible for both special-operator-p and macro-function to be
true of a symbol. This is possible because an implementation is permitted to
implement any macro also as a special operator for speed. On the other hand,
the macro definition must be available for use by programs that understand
only the standard special operators listed in table 5.1.

7.1.2 Assignment

The following facilities allow the value of a variable (more specifically, the
value associated with the current binding of the variable) to be altered. Such

126 CHAPTER 7. CONTROL STRUCTURE

alteration is different from establishing a new binding. Constructs for estab-
lishing new bindings of variables are described in section 7.5.
[Special operator] setq {var form}*
The special operator (setq var1 form1 var2 form2 ...) is the “sim-

ple variable assignment statement” of Lisp. First form1 is evaluated and the
result is stored in the variable var1, then form2 is evaluated and the result
stored in var2, and so forth. The variables are represented as symbols, of
course, and are interpreted as referring to static or dynamic instances ac-
cording to the usual rules. Therefore setq may be used for assignment of
both lexical and special variables.

setq returns the last value assigned, that is, the result of the evaluation of
its last argument. As a boundary case, the form (setq) is legal and returns
nil. There must be an even number of argument forms. For example, in

(setq x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq returns (6). Note that the first
assignment is performed before the second form is evaluated, allowing that
form to use the new value of x.

See also the description of setf, the Common Lisp “general assignment
statement” that is capable of assigning to variables, array elements, and other
locations.

Some programmers choose to avoid setq as a matter of style, always
using setf for any kind of structure modification. Others use setq with
simple variable names and setf with all other generalized variables.

If any var refers not to an ordinary variable but to a binding made by
symbol-macrolet, then that var is handled as if setf had been used instead
of setq.
[Macro] psetq {var form}*
A psetq form is just like a setq form, except that the assignments happen

in parallel. First all of the forms are evaluated, and then the variables are
set to the resulting values. The value of the psetq form is nil. For example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a ⇒ 2
b ⇒ 1

7.1. CONSTANTS AND VARIABLES 127

In this example, the values of a and b are exchanged by using parallel
assignment. (If several variables are to be assigned in parallel in the context
of a loop, the do construct may be appropriate.)

See also the description of psetf, the Common Lisp “general parallel as-
signment statement” that is capable of assigning to variables, array elements,
and other locations.

If any var refers not to an ordinary variable but to a binding made by
symbol-macrolet, then that var is handled as if psetf had been used in-
stead of psetq.

[Function] set symbol value

set allows alteration of the value of a dynamic (special) variable. set
causes the dynamic variable named by symbol to take on value as its value.

The value may be any Lisp datum whatsoever.
Only the value of the current dynamic binding is altered; if there are no

bindings in effect, the most global value is altered. For example,

(set (if (eq a b) ’c ’d) ’foo)

will either set c to foo or set d to foo, depending on the outcome of the
test (eq a b).

set returns value as its result.
set cannot alter the value of a local (lexically bound) variable. The spe-

cial operator setq is usually used for altering the values of variables (lexical
or dynamic) in programs. set is particularly useful for implementing inter-
preters for languages embedded in Lisp. See also progv, a construct that
performs binding rather than assignment of dynamic variables.

[Function] makunbound symbol
[Function] fmakunbound symbol

makunbound causes the dynamic (special) variable named by symbol to
become unbound (have no value). fmakunbound does the analogous thing
for the global function definition named by symbol. For example:

(setq a 1)
a ⇒ 1
(makunbound ’a)
a ⇒ causes an error

128 CHAPTER 7. CONTROL STRUCTURE

(defun foo (x) (+ x 1))
(foo 4) ⇒ 5
(fmakunbound ’foo)
(foo 4) ⇒ causes an error

Both functions return symbol as the result value.
fmakunbound accepts any function-name (a symbol or a list whose car

is setf—see section 7.1). Thus one may write (fmakunbound ’(setf cadr))
to remove any global definition of a setf expansion function for cadr.

7.2 Generalized Variables
In Lisp, a variable can remember one piece of data, that is, one Lisp object.
The main operations on a variable are to recover that object and to alter the
variable to remember a new object; these operations are often called access
and update operations. The concept of variables named by symbols can be
generalized to any storage location that can remember one piece of data,
no matter how that location is named. Examples of such storage locations
are the car and cdr of a cons, elements of an array, and components of a
structure.

For each kind of generalized variable, typically there are two functions
that implement the conceptual access and update operations. For a variable,
merely mentioning the name of the variable accesses it, while the setq special
operator can be used to update it. The function car accesses the car of a cons,
and the function rplaca updates it. The function symbol-value accesses
the dynamic value of a variable named by a given symbol, and the function
set updates it.

Rather than thinking about two distinct functions that respectively access
and update a storage location somehow deduced from their arguments, we
can instead simply think of a call to the access function with given arguments
as a name for the storage location. Thus, just as x may be considered a name
for a storage location (a variable), so (car x) is a name for the car of some
cons (which is in turn named by x). Now, rather than having to remember
two functions for each kind of generalized variable (having to remember, for
example, that rplaca corresponds to car), we adopt a uniform syntax for
updating storage locations named in this way, using the setf macro. This is
analogous to the way we use the setq special operator to convert the name

7.2. GENERALIZED VARIABLES 129

of a variable (which is also a form that accesses it) into a form that updates
it. The uniformity of this approach is illustrated in the following table.

Access Function Update Function Update Using setf
x (setq x datum) (setf x datum)
(car x) (rplaca x datum) (setf (car x) datum)
(symbol-value x)(set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to
the corresponding update function.

Given the existence of setf in Common Lisp, it is not necessary to have
setq, rplaca, and set; they are redundant. They are retained in Common
Lisp because of their historical importance in Lisp. However, most other
update functions (such as putprop, the update function for get) have been
eliminated from Common Lisp in the expectation that setf will be uniformly
used in their place.
[Macro] setf {place newvalue}*
(setf place newvalue) takes a form place that when evaluated accesses

a data object in some location and “inverts” it to produce a corresponding
form to update the location. A call to the setf macro therefore expands into
an update form that stores the result of evaluating the form newvalue into
the place referred to by the access form.

If more than one place-newvalue pair is specified, the pairs are processed
sequentially; that is,

(setf place1 newvalue1
place2 newvalue2)
...
placen newvaluen)

is precisely equivalent to

(progn (setf place1 newvalue1)
(setf place2 newvalue2)
...
(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.
The form place may be any one of the following:

130 CHAPTER 7. CONTROL STRUCTURE

• The name of a variable (either lexical or dynamic).

• A function call form whose first element is the name of any one of the
following functions:

aref car svref
nth cdr get
elt caar getf symbol-value
rest cadr gethash symbol-function
first cdar documentation symbol-plist
second cddr fill-pointer macro-function
third caaar caaaar cdaaar
fourth caadr caaadr cdaadr
fifth cadar caadar cdadar
sixth caddr caaddr cdaddr
seventh cdaar cadaar cddaar
eighth cdadr cadadr cddadr
ninth cddar caddar cdddar
tenth cdddr cadddr cddddr
row-major-aref compiler-macro-function

This rule applies only when the function name refers to a global function
definition and not to a locally defined function or macro.

• A function call form whose first element is the name of a selector func-
tion constructed by defstruct.

This rule applies only when the function name refers to a global function
definition and not to a locally defined function or macro.

• A function call form whose first element is the name of any one of the
following functions, provided that the new value

is of the specified type so that it can be used to replace the speci-
fied “location” (which is in each of these cases not truly a generalized
variable):

7.2. GENERALIZED VARIABLES 131

Function Name Required Type
char string-char
schar string-char
bit bit
sbit bit
subseq sequence

X3J13 voted in March 1989 to eliminate the type string-char and to
redefine string to be the union of one or more specialized vector types,
the types of whose elements are subtypes of the type character. In
the preceding table, the type string-char should be replaced by some
such phrase as “the element-type of the argument vector.”

X3J13 voted in March 1989 to clarify that this rule applies only when
the function name refers to a global function definition and not to a
locally defined function or macro.

In the case of subseq, the replacement value must be a sequence whose
elements may be contained by the sequence argument to subseq. (Note
that this is not so stringent as to require that the replacement value be
a sequence of the same type as the sequence of which the subsequence
is specified.) If the length of the replacement value does not equal
the length of the subsequence to be replaced, then the shorter length
determines the number of elements to be stored, as for the function
replace.

• A function call form whose first element is the name of any one of
the following functions, provided that the specified argument to that
function is in turn a place form; in this case the new place has stored
back into it the result of applying the specified “update” function (which
is in each of these cases not a true update function):

Function Name Argument That Is a place Update Function Used
ldb second dpb
mask-field second deposit-field

This rule applies only when the function name refers to a global function
definition and not to a locally defined function or macro.

132 CHAPTER 7. CONTROL STRUCTURE

• A the type declaration form, in which case the declaration is transferred
to the newvalue form, and the resulting setf form is analyzed. For
example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

• A call to apply where the first argument form is of the form #’name ,
that is, (function name), where name is the name of a function, calls
to which are recognized as places by setf. Suppose that the use of setf
with apply looks like this:

(setf (apply #’name x1 x2 ... xn rest) x0)

The setf method for the function name must be such that

(setf (name z1 z2 ... zm) z0)

expands into a store form

(storefn zi1 zi2 ... zik zm)

That is, it must expand into a function call such that all arguments
but the last may be any permutation or subset of the new value z0 and
the arguments of the access form, but the last argument of the storing
call must be the same as the last argument of the access call. See
define-setf-method for more details on accessing and storing forms.

Given this, the setf-of-apply form shown above expands into

(apply #’storefn xi1 xi2 ... xik rest)

As an example, suppose that the variable indexes contains a list of
subscripts for a multidimensional array foo whose rank is not known
until run time. One may access the indicated element of the array by
writing

7.2. GENERALIZED VARIABLES 133

(apply #’aref foo indexes)

and one may alter the value of the indicated element to that of new-
value by writing

(setf (apply #’aref foo indexes) newvalue)

This rule applies only when the function name apply refers to the
global function definition and not to a locally defined function or macro
named apply.

• A macro call, in which case setf expands the macro call and then
analyzes the resulting form.

This step uses macroexpand-1, not macroexpand. This allows the
chance to apply any of the rules preceding this one to any of the inter-
mediate expansions.

• Any form for which a defsetf or define-setf-method declaration has
been made.

This rule applies only when the function name in the form refers to
a global function definition and not to a locally defined function or
macro.

X3J13 voted in March 1989 to add one more rule to the preceding list,
coming after all those listed above:

• Any other list whose first element is a symbol (call it f). In this case,
the call to setf expands into a call to the function named by the list
(setf f) (see section 7.1). The first argument is the new value and
the remaining arguments are the values of the remaining elements of
place. This expansion occurs regardless of whether either f or (setf f)
is defined as a function locally, globally, or not at all. For example,

(setf (f arg1 arg2 ...) newvalue)

expands into a form with the same effect and value as

134 CHAPTER 7. CONTROL STRUCTURE

(let ((#:temp1 arg1) ;Force correct order of evaluation
(#:temp2 arg2)
...
(#:temp0 newvalue))

(funcall (function (setf f))
#:temp0
#:temp1
#:temp2 ...))

By convention, any function named (setf f) should return its first
argument as its only value, in order to preserve the specification that
setf returns its newvalue.

X3J13 voted in March 1989 to add this case as well:

• A variable reference that refers to a symbol macro definition made by
symbol-macrolet, in which case setf expands the reference and then
analyzes the resulting form.

setf carefully arranges to preserve the usual left-to-right order in which
the various subforms are evaluated. On the other hand, the exact expansion
for any particular form is not guaranteed and may even be implementation-
dependent; all that is guaranteed is that the expansion of a setf form will be
an update form that works for that particular implementation, and that the
left-to-right evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue.
Therefore (setf (car x) y) does not expand into precisely (rplaca x y),
but into something more like

(let ((G1 x) (G2 y)) (rplaca G1 G2) G2)

the precise expansion being implementation-dependent.
The user can define new setf expansions by using defsetf.
X3J13 voted in June 1989 to extend the specification of setf to allow a

place whose setf method has more than one store variable (see define-setf-
method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.

A proposal was submitted to X3J13 in September 1989 to add a setf
method for values so that one could in fact write, for example,

7.2. GENERALIZED VARIABLES 135

(setf (values quotient remainder)
(truncate linewidth tabstop))

but unless this proposal is accepted users will have to define a setfmethod
for values themselves (not a difficult task).
[Macro] psetf {place newvalue}*
psetf is like setf except that if more than one place-newvalue pair is

specified, then the assignments of new values to places are done in parallel.
More precisely, all subforms that are to be evaluated are evaluated from left
to right; after all evaluations have been performed, all of the assignments are
performed in an unpredictable order. (The unpredictability matters only if
more than one place form refers to the same place.) psetf always returns
nil.

X3J13 voted in June 1989 to extend the specification of psetf to allow a
place whose setf method has more than one store variable (see define-setf-
method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.
[Macro] shiftf {place}+ newvalue
Each place form may be any form acceptable as a generalized variable to

setf. In the form (shiftf place1 place2 ... placen newvalue), the values
in place1 through placen are accessed and saved, and newvalue is evaluated,
for a total of n+ 1 values in all. Values 2 through n+ 1 are then stored into
place1 through placen, and value 1 (the original value of place1) is returned.
It is as if all the places form a shift register; the newvalue is shifted in from
the right, all values shift over to the left one place, and the value shifted out
of place1 is returned. For example:

(setq x (list ’a ’b ’c)) ⇒ (a b c)

(shiftf (cadr x) ’z) ⇒ b
and now x ⇒ (a z c)

(shiftf (cadr x) (cddr x) ’q) ⇒ z
and now x ⇒ (a (c) . q)

The effect of (shiftf place1 place2 ... placen newvalue) is equivalent
to

136 CHAPTER 7. CONTROL STRUCTURE

(let ((var1 place1)
(var2 place2)
...
(varn placen))

(setf place1 var2)
(setf place2 var3)
...
(setf placen newvalue)
var1)

except that the latter would evaluate any subforms of each place twice,
whereas shiftf takes care to evaluate them only once. For example:

(setq n 0)
(setq x ’(a b c d))
(shiftf (nth (setq n (+ n 1)) x) ’z) ⇒ b

and now x ⇒ (a z c d)
but
(setq n 0)
(setq x ’(a b c d))
(prog1 (nth (setq n (+ n 1)) x)

(setf (nth (setq n (+ n 1)) x) ’z)) ⇒ b
and now x ⇒ (a b z d)

Moreover, for certain place forms shiftfmay be significantly more efficient
than the prog1 version.

X3J13 voted in June 1989 to extend the specification of shiftf to allow a
place whose setf method has more than one store variable (see define-setf-
method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.

Rationale: shiftf and rotatef have been included in Common Lisp as gener-
alizations of two-argument versions formerly called swapf and exchf. The two-
argument versions have been found to be very useful, but the names were easily
confused. The generalization to many argument forms and the change of names
were both inspired by the work of Suzuki [47], which indicates that use of these
primitives can make certain complex pointer-manipulation programs clearer and
easier to prove correct.

7.2. GENERALIZED VARIABLES 137

[Macro] rotatef {place}*
Each place form may be any form acceptable as a generalized variable

to setf. In the form (rotatef place1 place2 ... placen), the values in
place1 through placen are accessed and saved. Values 2 through n and value
1 are then stored into place1 through placen. It is as if all the places form
an end-around shift register that is rotated one place to the left, with the
value of place1 being shifted around the end to placen. Note that (rotatef
place1 place2) exchanges the contents of place1 and place2.

The effect of (rotatef place1 place2 ... placen) is roughly equivalent
to

(psetf place1 place2
place2 place3
...
placen place1)

except that the latter would evaluate any subforms of each place twice,
whereas rotatef takes care to evaluate them only once. Moreover, for certain
place forms rotatef may be significantly more efficient.

rotatef always returns nil.
X3J13 voted in June 1989 to extend the specification of rotatef to allow

a place whose setfmethod has more than one store variable (see define-setf-
method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.

Other macros that manipulate generalized variables include getf, remf,
incf, decf, push, pop, assert, ctypecase, and ccase.

Macros that manipulate generalized variables must guarantee the “ob-
vious” semantics: subforms of generalized-variable references are evaluated
exactly as many times as they appear in the source program, and they are
evaluated in exactly the same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf
of ldb, the generalized variables are both read and written in the same
reference. Preserving the source program order of evaluation and the number
of evaluations is particularly important.

As an example of these semantic rules, in the generalized-variable ref-
erence (setf reference value) the value form must be evaluated after all
the subforms of the reference because the value form appears to the right of
them.

138 CHAPTER 7. CONTROL STRUCTURE

The expansion of these macros must consist of code that follows these
rules or has the same effect as such code. This is accomplished by intro-
ducing temporary variables bound to the subforms of the reference. As an
optimization in the implementation, temporary variables may be eliminated
whenever it can be proved that removing them has no effect on the semantics
of the program. For example, a constant need never be saved in a temporary
variable. A variable, or for that matter any form that does not have side
effects, need not be saved in a temporary variable if it can be proved that its
value will not change within the scope of the generalized-variable reference.

Common Lisp provides built-in facilities to take care of these semantic
complications and optimizations. Since the required semantics can be guar-
anteed by these facilities, the user does not have to worry about writing
correct code for them, especially in complex cases. Even experts can become
confused and make mistakes while writing this sort of code.

X3J13 voted in March 1988 to clarify the preceding discussion about the
order of evaluation of subforms in calls to setf and related macros. The
general intent is clear: evaluation proceeds from left to right whenever possi-
ble. However, the left-to-right rule does not remove the obligation on writers
of macros and define-setf-method to work to ensure left-to-right order of
evaluation.

Let it be emphasized that, in the following discussion, a form is something
whose syntactic use is such that it will be evaluated. A subform means a
form that is nested inside another form, not merely any Lisp object nested
inside a form regardless of syntactic context.

The evaluation ordering of subforms within a generalized variable refer-
ence is determined by the order specified by the second value returned by
get-setf-method. For all predefined generalized variable references (getf,
ldb), this order of evaluation is exactly left-to-right. When a generalized vari-
able reference is derived from a macro expansion, this rule is applied after
the macro is expanded to find the appropriate generalized variable reference.

This is intended to make it clear that if the user writes a defmacro
or define-setf-method macro that doesn’t preserve left-to-right evaluation
order, the order specified in the user’s code holds. For example, given

(defmacro wrong-order (x y) ‘(getf ,y ,x))

then

(push value (wrong-order place1 place2))

7.2. GENERALIZED VARIABLES 139

will evaluate place2 first and then place1 because that is the order they
are evaluated in the macro expansion.

For the macros that manipulate generalized variables (push, pushnew,
getf, remf, incf, decf, shiftf, rotatef, psetf, setf, pop, and those defined
with define-modify-macro) the subforms of the macro call are evaluated
exactly once in left-to-right order, with the subforms of the generalized vari-
able references evaluated in the order specified above.

Each of push, pushnew, getf, remf, incf, decf, shiftf, rotatef, psetf,
and pop evaluates all subforms before modifying any of the generalized vari-
able locations. Moreover, setf itself, in the case when a call on it has more
than two arguments, performs its operation on each pair in sequence. That
is, in

(setf place1 value1 place2 value2 ...)

the subforms of place1 and value1 are evaluated, the location specified
by place1 is modified to contain the value returned by value1, and then the
rest of the setf form is processed in a like manner.

For the macros check-type, ctypecase, and ccase, subforms of the
generalized variable reference are evaluated once per test of a generalized
variable, but they may be evaluated again if the type check fails (in the case
of check-type) or if none of the cases holds (in ctypecase or ccase).

For the macro assert, the order of evaluation of the generalized variable
references is not specified.

Another reason for building in these functions is that the appropriate
optimizations will differ from implementation to implementation. In some
implementations most of the optimization is performed by the compiler, while
in others a simpler compiler is used and most of the optimization is performed
in the macros. The cost of binding a temporary variable relative to the
cost of other Lisp operations may differ greatly between one implementation
and another, and some implementations may find it best never to remove
temporary variables except in the simplest cases.

A good example of the issues involved can be seen in the following
generalized-variable reference:

(incf (ldb byte-field variable))

This ought to expand into something like

140 CHAPTER 7. CONTROL STRUCTURE

(setq variable
(dpb (1+ (ldb byte-field variable))

byte-field
variable))

In this expansion example we have ignored the further complexity of
returning the correct value, which is the incremented byte, not the new value
of variable. Note that the variable byte-field is evaluated twice, and the
variable variable is referred to three times: once as the location in which to
store a value, and twice during the computation of that value.

Now consider this expression:

(incf (ldb (aref byte-fields (incf i))
(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((temp1 (aref byte-fields (incf i)))
(temp2 (determine-words-array)))

(setf (aref temp2 i)
(dpb (1+ (ldb temp1 (aref temp2 i)))

temp1
(aref temp2 i))))

Again we have ignored the complexity of returning the correct value.
What is important here is that the expressions (incf i) and (determine-
words-array) must not be duplicated because each may have a side effect
or be affected by side effects.

X3J13 voted in January 1989 to specify more precisely the order of eval-
uation of subforms when setf is used with an access function that itself takes
a place as an argument, for example, ldb, mask-field, and getf. (The vote
also discussed the function char-bit, but another vote removed that function
from the language.) The setf methods for such accessors produce expansions
that effectively require explicit calls to get-setf-method.

The code produced as the macro expansion of a setf form that itself
admits a generalized variable as an argument must essentially do the following
major steps:

• It evaluates the value-producing subforms, in left-to-right order, and
binds the temporary variables to them; this is called binding the tem-
poraries.

7.2. GENERALIZED VARIABLES 141

• It reads the value from the generalized variable, using the supplied
accessing form, to get the old value; this is called doing the access.
Note that this is done after all the evaluations of the preceding step,
including any side effects they may have.

• It binds the store variable to a new value, and then installs this new
value into the generalized variable using the supplied storing form; this
is called doing the store.

Doing the access for a generalized variable reference is not part of the series
of evaluations that must be done in left-to-right order.

The place-specifier forms ldb, mask-field, and getf admit (other) place
specifiers as arguments. During the setf expansion of these forms, it is neces-
sary to call get-setf-method to determine how the inner, nested generalized
variable must be treated.

In a form such as

(setf (ldb byte-spec place-form) newvalue-form)

the place referred to by the place-form must always be both accessed
and updated; note that the update is to the generalized variable specified by
place-form, not to any object of type integer.

Thus this call to setf should generate code to do the following:

• Evaluate byte-spec and bind into a temporary

• Bind the temporaries for place-form

• Evaluate newvalue-form and bind into the store variable

• Do the access to place-form

• Do the store into place-form with the given bit-field of the accessed
integer replaced with the value in the store variable

If the evaluation of newvalue-form alters what is found in the given place—
such as setting a different bit-field of the integer—then the change of the
bit-field denoted by byte-spec will be to that altered integer, because the
access step must be done after the newvalue-form evaluation. Nevertheless,
the evaluations required for binding the temporaries are done before the
evaluation of the newvalue-form, thereby preserving the required left-to-right
evaluation order.

142 CHAPTER 7. CONTROL STRUCTURE

The treatment of mask-field is similar to that of ldb.
In a form such as:

(setf (getf place-form ind-form) newvalue-form)

the place referred to by the place-form must always be both accessed
and updated; note that the update is to the generalized variable specified by
place-form, not necessarily to the particular list which is the property list in
question.

Thus this call to setf should generate code to do the following:

• Bind the temporaries for place-form

• Evaluate ind-form and bind into a temporary

• Evaluate the newvalue-form and bind into the store variable

• Do the access to place-form

• Do the store into place-form with a possibly new property list obtained
by combining the results of the evaluations and the access

If the evaluation of newvalue-form alters what is found in the given place—
such as setting a different named property in the list—then the change of the
property denoted by ind-form will be to that altered list, because the access
step is done after the newvalue-form evaluation. Nevertheless, the evalua-
tions required for binding the temporaries are done before the evaluation of
the newvalue-form, thereby preserving the required left-to-right evaluation
order.

Note that the phrase “possibly new property list” treats the implementa-
tion of property lists as a “black box”; it can mean that the former property
list is somehow destructively re-used, or it can mean partial or full copying
of it. A side effect may or may not occur; therefore setf must proceed as if
the resultant property list were a different copy needing to be stored back
into the generalized variable.

The Common Lisp facilities provided to deal with these semantic issues
include:

• Built-in macros such as setf and push that follow the semantic rules.

7.2. GENERALIZED VARIABLES 143

• The define-modify-macro macro, which allows new generalized-
variable manipulating macros (of a certain restricted kind) to be defined
easily. It takes care of the semantic rules automatically.

• The defsetf macro, which allows new types of generalized-variable ref-
erences to be defined easily. It takes care of the semantic rules auto-
matically.

• The define-setf-method macro and the get-setf-method function,
which provide access to the internal mechanisms when it is necessary
to define a complicated new type of generalized-variable reference or
generalized-variable-manipulating macro.

Also important are the changes that allow lexical environments to be used
in appropriate ways in setf methods.
[Macro] define-modify-macro name lambda-list function [doc-string]
This macro defines a read-modify-write macro named name. An ex-

ample of such a macro is incf. The first subform of the macro will be a
generalized-variable reference. The function is literally the function to apply
to the old contents of the generalized-variable to get the new contents; it is
not evaluated. lambda-list describes the remaining arguments for the func-
tion; these arguments come from the remaining subforms of the macro after
the generalized-variable reference. lambda-list may contain &optional and
&rest markers. (The &key marker is not permitted here; &rest suffices for
the purposes of define-modify-macro.) doc-string is documentation for
the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following,
except that it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)
doc-string
‘(setf ,reference

(function ,reference ,arg1 ,arg2 ...)))

where arg1, arg2, ..., are the parameters appearing in lambda-list ; appro-
priate provision is made for a &rest parameter.

As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)

144 CHAPTER 7. CONTROL STRUCTURE

An example of a possibly useful macro not predefined in Common Lisp is

(define-modify-macro unionf (other-set &rest keywords) union)

X3J13 voted in March 1988 to specify that define-modify-macro cre-
ates macros that take&environment arguments and perform the equivalent
of correctly passing such lexical environments to get-setf-method in order
to correctly maintain lexical references.
[Macro] defsetf access-fn {update-fn [doc-string] | lambda-list (store-variable) [[{declaration}* | doc-string]] {form}*}
This defines how to setf a generalized-variable reference of the form

(access-fn ...). The value of a generalized-variable reference can always
be obtained simply by evaluating it, so access-fn should be the name of a
function or a macro.

The user of defsetf provides a description of how to store into the
generalized-variable reference and return the value that was stored (because
setf is defined to return this value). The implementation of defsetf takes
care of ensuring that subforms of the reference are evaluated exactly once and
in the proper left-to-right order. In order to do this, defsetf requires that
access-fn be a function or a macro that evaluates its arguments, behaving like
a function. Furthermore, a setf of a call on access-fn will also evaluate all of
access-fn’s arguments; it cannot treat any of them specially. This means that
defsetf cannot be used to describe how to store into a generalized variable
that is a byte, such as (ldb field reference). To handle situations that do
not fit the restrictions imposed by defsetf, use define-setf-method, which
gives the user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form is

(defsetf access-fn update-fn [doc-string])

The update-fn must name a function (or macro) that takes one more
argument than access-fn takes. When setf is given a place that is a call on
access-fn, it expands into a call on update-fn that is given all the arguments
to access-fn and also, as its last argument, the new value (which must be
returned by update-fn as its value). For example, the effect of

(defsetf symbol-value set)

is built into the Common Lisp system. This causes the expansion

(setf (symbol-value foo) fu) → (set foo fu)

7.2. GENERALIZED VARIABLES 145

for example. Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.
The complex form of defsetf looks like

(defsetf access-fn lambda-list (store-variable) . body)

and resembles defmacro. The body must compute the expansion of a
setf of a call on access-fn.

The lambda-list describes the arguments of access-fn. &optional,&rest,
and &key markers are permitted in lambda-list. Optional arguments may
have defaults and “supplied-p” flags. The store-variable describes the value
to be stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for an exten-
sion to multiple store variables that would receive multiple values from the second
subform of setf. The rules given below for coding setf methods discuss the proper
handling of multiple store variables to allow for the possibility that this extension
may be incorporated into Common Lisp in the future.

The body forms can be written as if the variables in the lambda-list were
bound to subforms of the call on access-fn and the store-variable were bound
to the second subform of setf. However, this is not actually the case. Dur-
ing the evaluation of the body forms, these variables are bound to names of
temporary variables, generated as if by gensym or gentemp, that will be
bound by the expansion of setf to the values of those subforms. This binding
permits the body forms to be written without regard for order-of-evaluation
issues. defsetf arranges for the temporary variables to be optimized out
of the final result in cases where that is possible. In other words, an at-
tempt is made by defsetf to generate the best code possible in a particular
implementation.

Note that the code generated by the body forms must include provision
for returning the correct value (the value of store-variable). This is handled
by the body forms rather than by defsetf because in many cases this value
can be returned at no extra cost, by calling a function that simultaneously
stores into the generalized variable and returns the correct value.

An example of the use of the complex form of defsetf:

146 CHAPTER 7. CONTROL STRUCTURE

(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace ,sequence ,new-sequence

:start1 ,start :end1 ,end)
,new-sequence))

X3J13 voted in March 1988 to specify that the body of the expander
function defined by the complex form of defsetf is implicitly enclosed in
a block construct whose name is the same as the name of the access-fn.
Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 to clarify that, while defining forms normally
appear at top level, it is meaningful to place them in non-top-level contexts;
the complex form of defsetf must define the expander function within the
enclosing lexical environment, not within the global environment.

The underlying theory by which setf and related macros arrange to con-
form to the semantic rules given above is that from any generalized-variable
reference one may derive its “setf method,” which describes how to store into
that reference and which subforms of it are evaluated.

Given knowledge of the subforms of the reference, it is possible to avoid
evaluating them multiple times or in the wrong order. A setf method for a
given access form can be expressed as five values:

• A list of temporary variables

• A list of value forms (subforms of the given form) to whose values the
temporary variables are to be bound

• A second list of temporary variables, called store variables

• A storing form

• An accessing form

The temporary variables will be bound to the values of the value forms
as if by let*; that is, the value forms will be evaluated in the order given
and may refer to the values of earlier value forms by using the corresponding
variables.

The store variables are to be bound to the values of the newvalue form,
that is, the values to be stored into the generalized variable. In almost all
cases only a single value is to be stored, and there is only one store variable.

7.2. GENERALIZED VARIABLES 147

The storing form and the accessing form may contain references to the
temporary variables (and also, in the case of the storing form, to the store
variables). The accessing form returns the value of the generalized variable.
The storing form modifies the value of the generalized variable and guarantees
to return the values of the store variables as its values; these are the correct
values for setf to return. (Again, in most cases there is a single store variable
and thus a single value to be returned.) The value returned by the accessing
form is, of course, affected by execution of the storing form, but either of
these forms may be evaluated any number of times and therefore should be
free of side effects (other than the storing action of the storing form).

The temporary variables and the store variables are generated names,
as if by gensym or gentemp, so that there is never any problem of name
clashes among them, or between them and other variables in the program.
This is necessary to make the special operators that do more than one setf in
parallel work properly; these are psetf, shiftf, and rotatef. Computation of
the setf method must always create new variable names; it may not return
the same ones every time.

Some examples of setf methods for particular forms:

• For a variable x:

()
()
(g0001)
(setq x g0001)
x

• For (car exp):

(g0002)
(exp)
(g0003)
(progn (rplaca g0002 g0003) g0003)
(car g0002)

• For (subseq seq s e):

(g0004 g0005 g0006)
(seq s e)
(g0007)

148 CHAPTER 7. CONTROL STRUCTURE

(progn (replace g0004 g0007 :start1 g0005 :end1 g0006)
g0007)

(subseq g0004 g0005 g0006)

[Macro] define-setf-method access-fn lambda-list [[{declaration}* | doc-string]] {form}*

This defines how to setf a generalized-variable reference that is of the
form (access-fn...). The value of a generalized-variable reference can always
be obtained simply by evaluating it, so access-fn should be the name of a
function or a macro.

The lambda-list describes the subforms of the generalized-variable refer-
ence, as with defmacro. The result of evaluating the forms in the body
must be five values representing the setf method, as described above. Note
that define-setf-method differs from the complex form of defsetf in that
while the body is being executed the variables in lambda-list are bound to
parts of the generalized-variable reference, not to temporary variables that
will be bound to the values of such parts. In addition, define-setf-method
does not have defsetf’s restriction that access-fn must be a function or a
function-like macro; an arbitrary defmacro destructuring pattern is permit-
ted in lambda-list.

By definition there are no good small examples of define-setf-method
because the easy cases can all be handled by defsetf. A typical use is to
define the setf method for ldb:

;;; SETF method for the form (LDB bytespec int).
;;; Recall that the int form must itself be suitable for SETF.
(define-setf-method ldb (bytespec int)
(multiple-value-bind (temps vals stores

store-form access-form)
(get-setf-method int) ;Get SETF method for int

(let ((btemp (gensym)) ;Temp var for byte specifier
(store (gensym)) ;Temp var for byte to store
(stemp (first stores))) ;Temp var for int to store

;; Return the SETF method for LDB as five values.
(values (cons btemp temps) ;Temporary variables

(cons bytespec vals) ;Value forms
(list store) ;Store variables

7.2. GENERALIZED VARIABLES 149

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))
,store-form
,store) ;Storing form

‘(ldb ,btemp ,access-form) ;Accessing form
))))

X3J13 voted in March 1988 to specify that the &environment lambda-
list keyword may appear in the lambda-list in the same manner as for def-
macro in order to obtain the lexical environment of the call to the setf
macro. The preceding example should be modified to take advantage of this
new feature. The setf method must accept an &environment parameter,
which will receive the lexical environment of the call to setf; this environment
must then be given to get-setf-method in order that it may correctly use
any locally bound setf method that might be applicable to the place form
that appears as the second argument to ldb in the call to setf.

;;; SETF method for the form (LDB bytespec int).
;;; Recall that the int form must itself be suitable for SETF.
;;; Note the use of an &environment parameter to receive the
;;; lexical environment of the call for use with GET-SETF-METHOD.
(define-setf-method ldb (bytespec int &environment env)
(multiple-value-bind (temps vals stores

store-form access-form)
(get-setf-method int env) ;Get SETF method for int

(let ((btemp (gensym)) ;Temp var for byte specifier
(store (gensym)) ;Temp var for byte to store
(stemp (first stores))) ;Temp var for int to store

;; Return the SETF method for LDB as five values.
(values (cons btemp temps) ;Temporary variables

(cons bytespec vals) ;Value forms
(list store) ;Store variables
‘(let ((,stemp (dpb ,store ,btemp ,access-form)))
,store-form
,store) ;Storing form

‘(ldb ,btemp ,access-form) ;Accessing form
))))

X3J13 voted in March 1988 to specify that the body of the expander
function defined by define-setf-method is implicitly enclosed in a block

150 CHAPTER 7. CONTROL STRUCTURE

construct whose name is the same as the name of the access-fn. Therefore
return-from may be used to exit from the function.

X3J13 voted in March 1989 to clarify that, while defining forms normally
appear at top level, it is meaningful to place them in non-top-level contexts;
define-setf-method must define the expander function within the enclosing
lexical environment, not within the global environment.

X3J13 voted in March 1988 to add an optional environment argument to
get-setf-method. The revised definition and example are as follows.

[Function] get-setf-method form &optional env

get-setf-method returns five values constituting the setf method for
form. The form must be a generalized-variable reference. The env must be
an environment of the sort obtained through the&environment lambda-list
keyword; if env is nil or omitted, the null lexical environment is assumed.
get-setf-method takes care of error checking and macro expansion and
guarantees to return exactly one store variable.

As an example, an extremely simplified version of setf, allowing no more
and no fewer than two subforms, containing no optimization to remove un-
necessary variables, and not allowing storing of multiple values, could be
defined by:

(defmacro setf (reference value &environment env)
(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference env) ;Note use of environment
(declare (ignore access-form))
‘(let* ,(mapcar #’list

(append vars stores)
(append vals (list value)))

,store-form)))

X3J13 voted in March 1988 to add an optional environment argument to
get-setf-method. The revised definition is as follows.

[Function] get-setf-method-multiple-value form &optional env

get-setf-method-multiple-value returns five values constituting the
setf method for form. The form must be a generalized-variable reference.

7.3. FUNCTION INVOCATION 151

The env must be an environment of the sort obtained through the &en-
vironment lambda-list keyword; if env is nil or omitted, the null lexical
environment is assumed.

This is the same as get-setf-method except that it does not check the
number of store variables; use this in cases that allow storing multiple values
into a generalized variable. There are no such cases in standard Common
Lisp, but this function is provided to allow for possible extensions.

X3J13 voted in March 1988 to clarify that a setf method for a functional
name is applicable only when the global binding of that name is lexically
visible. If such a name has a local binding introduced by flet, labels, or
macrolet, then global definitions of setf methods for that name do not
apply and are not visible. All of the standard Common Lisp macros that
modify a setf place (for example, incf, decf, pop, and rotatef) obey this
convention.

7.3 Function Invocation
The most primitive form for function invocation in Lisp of course has no
name; any list that has no other interpretation as a macro call or special
operator is taken to be a function call. Other constructs are provided for less
common but nevertheless frequently useful situations.

[Function] apply function arg &rest more-args

This applies function to a list of arguments. X3J13 voted in June 1988
to allow the function to be only of type symbol or function; a lambda-
expression is no longer acceptable as a functional argument. One must use the
function special operator or the abbreviation#’ before a lambda-expression
that appears as an explicit argument form. The arguments for the function
consist of the last argument to apply appended to the end of a list of all the
other arguments to apply but the function itself; it is as if all the arguments
to apply except the function were given to list* to create the argument list.
For example:

(setq f ’+) (apply f ’(1 2)) ⇒ 3
(setq f #’-) (apply f ’(1 2)) ⇒ -1
(apply #’max 3 5 ’(2 7 3)) ⇒ 7
(apply ’cons ’((+ 2 3) 4)) ⇒

152 CHAPTER 7. CONTROL STRUCTURE

((+ 2 3) . 4) not (5 . 4)
(apply #’+ ’()) ⇒ 0

Note that if the function takes keyword arguments, the keywords as well
as the corresponding values must appear in the argument list:

(apply #’(lambda (&key a b) (list a b)) ’(:b 3)) ⇒ (nil 3)

This can be very useful in conjunction with the &allow-other-keys fea-
ture:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #’make-array size :allow-other-keys t keys)))
(if double (concatenate (type-of v) v v) v)))

(foo 4 :initial-contents ’(a b c d) :double t)
⇒ #(a b c d a b c d)

[Function] funcall fn &rest arguments

(funcall fn a1 a2 ... an) applies the function fn to the arguments a1,
a2, ..., an. The fn may not be a special operator or a macro; this would not
be meaningful.

X3J13 voted in June 1988 to allow the fn to be only of type symbol
or function; a lambda-expression is no longer acceptable as a functional
argument. One must use the function special operator or the abbreviation
#’ before a lambda-expression that appears as an explicit argument form.

For example:

(cons 1 2) ⇒ (1 . 2)
(setq cons (symbol-function ’+))
(funcall cons 1 2) ⇒ 3

The difference between funcall and an ordinary function call is that the
function is obtained by ordinary Lisp evaluation rather than by the special
interpretation of the function position that normally occurs.

[Constant] call-arguments-limit

The value of call-arguments-limit is a positive integer that is the up-
per exclusive bound on the number of arguments that may be passed to a

7.4. SIMPLE SEQUENCING 153

function. This bound depends on the implementation but will not be smaller
than 50. (Implementors are encouraged to make this limit as large as practi-
cable without sacrificing performance.) The value of call-arguments-limit
must be at least as great as that of lambda-parameters-limit. See also
multiple-values-limit.

7.4 Simple Sequencing
Each of the constructs in this section simply evaluates all the argument forms
in order. They differ only in what results are returned.
[Special operator] progn {form}*
The progn construct takes a number of forms and evaluates them se-

quentially, in order, from left to right. The values of all the forms but the
last are discarded; whatever the last form returns is returned by the progn
form. One says that all the forms but the last are evaluated for effect, be-
cause their execution is useful only for the side effects caused, but the last
form is executed for value.

progn is the primitive control structure construct for “compound state-
ments,” such as begin-end blocks in Algol-like languages. Many Lisp con-
structs are “implicit progn” forms: as part of their syntax each allows many
forms to be written that are to be evaluated sequentially, discarding the
results of all forms but the last and returning the results of the last form.

If the last form of the progn returns multiple values, then those multiple
values are returned by the progn form. If there are no forms for the progn,
then the result is nil. These rules generally hold for implicit progn forms as
well.
[Macro] prog1 first {form}*
prog1 is similar to progn, but it returns the value of its first form. All

the argument forms are executed sequentially; the value of the first form is
saved while all the others are executed and is then returned.

prog1 is most commonly used to evaluate an expression with side effects
and to return a value that must be computed before the side effects happen.
For example:

(prog1 (car x) (rplaca x ’foo))

alters the car of x to be foo and returns the old car of x.

154 CHAPTER 7. CONTROL STRUCTURE

prog1 always returns a single value, even if the first form tries to return
multiple values. As a consequence, (prog1 x) and (progn x) may behave
differently if x can produce multiple values. See multiple-value-prog1. A
point of style: although prog1 can be used to force exactly a single value to
be returned, it is conventional to use the function values for this purpose.
[Macro] prog2 first second {form}*
prog2 is similar to prog1, but it returns the value of its second form. All

the argument forms are executed sequentially; the value of the second form
is saved while all the other forms are executed and is then returned. prog2
is provided mostly for historical compatibility.

(prog2 a b c ... z) ≡ (progn a (prog1 b c ... z))

Occasionally it is desirable to perform one side effect, then a value-
producing operation, then another side effect. In such a peculiar case, prog2
is fairly perspicuous. For example:

(prog2 (open-a-file) (process-the-file) (close-the-file))
;value is that of process-the-file

prog2, like prog1, always returns a single value, even if the second form
tries to return multiple values. As a consequence of this, (prog2 x y) and
(progn x y) may behave differently if y can produce multiple values.

7.5 Establishing New Variable Bindings

During the invocation of a function represented by a lambda-expression
(or a closure of a lambda-expression, as produced by function), new
bindings are established for the variables that are the parameters of the
lambda-expression. These bindings initially have values determined by the
parameter-binding protocol discussed in section 5.2.2.

The following constructs may also be used to establish bindings of vari-
ables, both ordinary and functional.
[Special operator] let ({var | (var [value])}*) {declaration}* {form}*
A let form can be used to execute a series of forms with specified variables

bound to specified values.
More precisely, the form

7.5. ESTABLISHING NEW VARIABLE BINDINGS 155

(let ((var1 value1)
(var2 value2)
...
(varm valuem))

declaration1
declaration2
...
declarationp
body1
body2
...
bodyn)

first evaluates the expressions value1, value2, and so on, in that order,
saving the resulting values. Then all of the variables varj are bound to the
corresponding values in parallel; each binding will be a lexical binding unless
there is a special declaration to the contrary. The expressions bodyk are
then evaluated in order; the values of all but the last are discarded (that is,
the body of a let form is an implicit progn). The let form returns what
evaluating bodyn produces (if the body is empty, which is fairly useless, let
returns nil as its value). The bindings of the variables have lexical scope and
indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case
varj is initialized to nil. As a matter of style, it is recommended that varj be
written only when that variable will be stored into (such as by setq) before
its first use. If it is important that the initial value be nil rather than some
undefined value, then it is clearer to write out (varj nil) if the initial value
is intended to mean “false,” or (varj ’()) if the initial value is intended to
be an empty list. Note that the code

(let (x)
(declare (integer x))
(setq x (gcd y z))
...)

is incorrect; although x is indeed set before it is used, and is set to a value
of the declared type integer, nevertheless x momentarily takes on the value
nil in violation of the type declaration.

156 CHAPTER 7. CONTROL STRUCTURE

Declarations may appear at the beginning of the body of a let. See
declare.

See also destructuring-bind.

[Special operator] let* ({var | (var [value])}*) {declaration}* {form}*

let* is similar to let, but the bindings of variables are performed sequen-
tially rather than in parallel. This allows the expression for the value of a
variable to refer to variables previously bound in the let* form.

More precisely, the form

(let* ((var1 value1)
(var2 value2)
...
(varm valuem))

declaration1
declaration2
...
declarationp
body1
body2
...
bodyn)

first evaluates the expression value1, then binds the variable var1 to that
value; then it evaluates value2 and binds var2 ; and so on. The expressions
bodyj are then evaluated in order; the values of all but the last are discarded
(that is, the body of a let* form is an implicit progn). The let* form returns
the results of evaluating bodyn (if the body is empty, which is fairly useless,
let* returns nil as its value). The bindings of the variables have lexical scope
and indefinite extent.

Instead of a list (varj valuej), one may write simply varj. In this case
varj is initialized to nil. As a matter of style, it is recommended that varj be
written only when that variable will be stored into (such as by setq) before
its first use. If it is important that the initial value be nil rather than some
undefined value, then it is clearer to write out (varj nil) if the initial value
is intended to mean “false,” or (varj ’()) if the initial value is intended to
be an empty list.

Declarations may appear at the beginning of the body of a let*. See

7.5. ESTABLISHING NEW VARIABLE BINDINGS 157

declare.
[Special operator] progv symbols values {form}*
progv is a special operator that allows binding one or more dynamic

variables whose names may be determined at run time. The sequence of
forms (an implicit progn) is evaluated with the dynamic variables whose
names are in the list symbols bound to corresponding values from the list
values. (If too few values are supplied, the remaining symbols are bound
and then made to have no value; see makunbound. If too many values are
supplied, the excess values are ignored.) The results of the progv form are
those of the last form. The bindings of the dynamic variables are undone
on exit from the progv form. The lists of symbols and values are computed
quantities; this is what makes progv different from, for example, let, where
the variable names are stated explicitly in the program text.

progv is particularly useful for writing interpreters for languages embed-
ded in Lisp; it provides a handle on the mechanism for binding dynamic
variables.
[Special operator] flet ({(name lambda-list
[[{declaration}* | doc-string]] {form}*)}*)
{declaration}* {form}*
[Special operator] labels ({(name lambda-list
[[{declaration}* | doc-string]] {form}*)}*)
{declaration}* {form}*
[Special operator] macrolet ({(name varlist
[[{declaration}* | doc-string]] {form}*)}*)
{declaration}* {form}*
flet may be used to define locally named functions. Within the body of

the flet form, function names matching those defined by the flet refer to the
locally defined functions rather than to the global function definitions of the
same name.

Any number of functions may be simultaneously defined. Each definition
is similar in format to a defun form: first a name, then a parameter list
(which may contain&optional, &rest, or&key parameters), then optional
declarations and documentation string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))
;; The safesqrt function is used in two places.
(safesqrt (apply #’+ (map ’list #’safesqrt longlist))))

158 CHAPTER 7. CONTROL STRUCTURE

The labels construct is identical in form to the flet construct. These
constructs differ in that the scope of the defined function names for flet en-
compasses only the body, whereas for labels it encompasses the function
definitions themselves. That is, labels can be used to define mutually re-
cursive functions, but flet cannot. This distinction is useful. Using flet one
can locally redefine a global function name, and the new definition can refer
to the global definition; the same construction using labels would not have
that effect.

(defun integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine
(declare (type (integer 0 *) k))
(labels ((expt0 (x k a)

(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)

((evenp k) (expt1 (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))

(expt1 (x k a)
(declare (integer x a) (type (integer 1 *) k))
(cond ((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a))))))
(expt0 n k 1)))

macrolet is similar in form to flet but defines local macros, using the
same format used by defmacro. The names established by macrolet as
names for macros are lexically scoped.

I have observed that, while most Common Lisp users pronounce macro-
let to rhyme with “silhouette,” a small but vocal minority pronounce it to
rhyme with “Chevrolet.” A very few extremists furthermore adjust their
pronunciation of flet similarly: they say “flay.” Hey, hey! Très outré.

Macros often must be expanded at “compile time” (more generally, at a
time before the program itself is executed), and so the run-time values of
variables are not available to macros defined by macrolet.

X3J13 voted in March 1989 to retract the previous sentence and spec-
ify that the macro-expansion functions created by macrolet are defined in
the lexical environment in which the macrolet form appears, not in the
null lexical environment. Declarations, macrolet definitions, and symbol-
macrolet definitions affect code within the expansion functions in a macro-
let, but the consequences are undefined if such code attempts to refer to any

7.5. ESTABLISHING NEW VARIABLE BINDINGS 159

local variable or function bindings that are visible in that lexical environ-
ment.

However, lexically scoped entities are visible within the body of the
macrolet form and are visible to the code that is the expansion of a macro
call. The following example should make this clear:

;;; Example of scoping in macrolet.

(defun foo (x flag)
(macrolet ((fudge (z)

;;The parameters x and flag are not accessible
;; at this point; a reference to flag would be to
;; the global variable of that name.
‘(if flag

(* ,z ,z)
,z)))

;;The parameters x and flag are accessible here.
(+ x
(fudge x)
(fudge (+ x 1)))))

The body of the macrolet becomes

(+ x
(if flag

(* x x)
x))

(if flag
(* (+ x 1) (+ x 1))
(+ x 1)))

after macro expansion. The occurrences of x and flag legitimately refer
to the parameters of the function foo because those parameters are visible
at the site of the macro call which produced the expansion.

The body of each function or expander function defined by flet, labels,
or macrolet is implicitly enclosed in a block construct whose name is the
same as the name of the function. Therefore return-from may be used to
exit from the function.

flet and labels accept any function-name (a symbol or a list whose car
is setf—see section 7.1) as a name for a function to be locally defined. In

160 CHAPTER 7. CONTROL STRUCTURE

this way one can create local definitions for setf expansion functions. (X3J13
explicitly declined to extend macrolet in the same manner.)

X3J13 voted in March 1988 to change flet, labels, andmacrolet to allow
declarations to appear before the body. The new descriptions are therefore
as follows:

[Special operator] symbol-macrolet ({(var expansion)}*)
{declaration}* {form}*

X3J13 voted in June 1988 to adopt the Common Lisp Object System.
Part of this proposal is a general mechanism, symbol-macrolet, for treat-
ing certain variable names as if they were parameterless macro calls. This
facility may be useful independent of CLOS. X3J13 voted in March 1989 to
modify the definition of symbol-macrolet substantially and also voted to
allow declarations before the body of symbol-macrolet but with peculiar
treatment of special and type declarations.

The forms are executed as an implicit progn in a lexical environment that
causes every reference to any defined var to be replaced by the corresponding
expansion. It is as if the reference to the var were a parameterless macro call;
the expansion is evaluated or otherwise processed in place of the reference (in

7.5. ESTABLISHING NEW VARIABLE BINDINGS 161

particular, the expansion form is itself subject to further expansion—this is
one of the changes from the original definition in the CLOS proposal). Note,
however, that the names of such symbol macros occupy the name space of
variables, not the name space of functions; just as one may have a function
(or macro, or special operator) and a variable with the same name without
interference, so one may have an ordinary macro (or function, or special
operator) and a symbol macro with the same name. The use of symbol-
macrolet can therefore be shadowed by let or other constructs that bind
variables; symbol-macrolet does not substitute for all occurrences of a
var as a variable but only for those occurrences that would be construed as
references in the scope of a lexical binding of var as a variable. For example:

(symbol-macrolet ((pollyanna ’goody))
(list pollyanna (let ((pollyanna ’two-shoes)) pollyanna)))
⇒ (goody two-shoes), not (goody goody)

One might think that ’goody simply replaces all occurrences of
pollyanna, and so the value of the let would be goody; but this is not
so. A little reflection shows that under this incorrect interpretation the body
in expanded form would be

(list ’goody (let ((’goody ’two-shoes)) ’goody))

which is syntactically malformed. The correct expanded form is

(list ’goody (let ((pollyanna ’two-shoes)) pollyanna))

because the rebinding of pollyanna by the let form shadows the symbol
macro definition.

The expansion for each var is not evaluated at binding time but only
after it has replaced a reference to the var. The setf macro allows a symbol
macro to be used as a place, in which case its expansion is used; moreover,
setq of a variable that is really a symbol macro will be treated as if setf
had been used. The values of the last form are returned, or nil if there is no
value.

See macroexpand and macroexpand-1; they will expand symbol
macros as well as ordinary macros.

Certain declarations before the body are handled in a peculiar manner;
see section 9.1.
[Macro] define-symbol-macro symbol {form}
The symbol will act as a macro call. A single form constitutes the body

of the expansion. The symbol cannot already be a special variable.

162 CHAPTER 7. CONTROL STRUCTURE

7.6 Conditionals
The traditional conditional construct in Lisp is cond. However, if is much
simpler and is directly comparable to conditional constructs in other pro-
gramming languages, so it is considered to be primitive in Common Lisp and
is described first. Common Lisp also provides the dispatching constructs
case and typecase, which are often more convenient than cond.
[Special operator] if test then [else]
The if special operator corresponds to the if -then-else construct found

in most algebraic programming languages. First the form test is evaluated.
If the result is not nil, then the form then is selected; otherwise the form
else is selected. Whichever form is selected is then evaluated, and if returns
whatever is returned by evaluation of the selected form.

(if test then else) ≡ (cond (test then) (t else))

but if is considered more readable in some situations.
The else form may be omitted, in which case if the value of test is nil then

nothing is done and the value of the if form is nil. If the value of the if form
is important in this situation, then the and construct may be stylistically
preferable, depending on the context. If the value is not important, but only
the effect, then the when construct may be stylistically preferable.
[Macro] when test {form}*
(when test form1 form2 ...) first evaluates test. If the result

is nil, then no form is evaluated, and nil is returned. Otherwise the forms
constitute an implicit progn and are evaluated sequentially from left to right,
and the value of the last one is returned.

(when p a b c) ≡ (and p (progn a b c))
(when p a b c) ≡ (cond (p a b c))
(when p a b c) ≡ (if p (progn a b c) nil)
(when p a b c) ≡ (unless (not p) a b c)

As a matter of style, when is normally used to conditionally produce
some side effects, and the value of the when form is normally not used. If
the value is relevant, then it may be stylistically more appropriate to use
and or if.
[Macro] unless test {form}*
(unless test form1 form2 ...) first evaluates test. If the result is not

nil, then the forms are not evaluated, and nil is returned. Otherwise the

7.6. CONDITIONALS 163

forms constitute an implicit progn and are evaluated sequentially from left
to right, and the value of the last one is returned.

(unless p a b c) ≡ (cond ((not p) a b c))
(unless p a b c) ≡ (if p nil (progn a b c))
(unless p a b c) ≡ (when (not p) a b c)

As a matter of style, unless is normally used to conditionally produce
some side effects, and the value of the unless form is normally not used. If
the value is relevant, then it may be stylistically more appropriate to use if.
[Macro] cond {(test {form}*)}*
A cond form has a number (possibly zero) of clauses, which are lists of

forms. Each clause consists of a test followed by zero or more consequents.
For example:

(cond (test-1 consequent-1-1 consequent-1-2 ...)
(test-2)
(test-3 consequent-3-1 ...)
...)

The first clause whose test evaluates to non-nil is selected; all other
clauses are ignored, and the consequents of the selected clause are evalu-
ated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right.
For each clause, the test is evaluated. If the result is nil, cond advances
to the next clause. Otherwise, the cdr of the clause is treated as a list of
forms, or consequents; these forms are evaluated in order from left to right, as
an implicit progn. After evaluating the consequents, cond returns without
inspecting any remaining clauses. The cond special operator returns the
results of evaluating the last of the selected consequents; if there were no
consequents in the selected clause, then the single (and necessarily non-null)
value of the test is returned. If cond runs out of clauses (every test produced
nil, and therefore no clause was selected), the value of the cond form is nil.

If it is desired to select the last clause unconditionally if all others fail,
the standard convention is to use t for the test. As a matter of style, it is
desirable to write a last clause (t nil) if the value of the cond form is to
be used for something. Similarly, it is in questionable taste to let the last
clause of a cond be a “singleton clause”; an explicit t should be provided.
(Note moreover that (cond ... (x)) may behave differently from (cond ...

164 CHAPTER 7. CONTROL STRUCTURE

(t x)) if x might produce multiple values; the former always returns a single
value, whereas the latter returns whatever values x returns. However, as a
matter of style it is preferable to obtain this behavior by writing (cond ... (t
(values x))), using the values function explicitly to indicate the discarding
of any excess values.) For example:

(setq z (cond (a ’foo) (b ’bar))) ;Possibly confusing
(setq z (cond (a ’foo) (b ’bar) (t nil)));Better
(cond (a b) (c d) (e)) ;Possibly confusing
(cond (a b) (c d) (t e)) ;Better
(cond (a b) (c d) (t (values e))) ;Better (if one value

; needed)
(cond (a b) (c)) ;Possibly confusing
(cond (a b) (t c)) ;Better
(if a b c) ;Also better

A Lisp cond form may be compared to a continued if -then-else as found
in many algebraic programming languages:

(cond (p ...) if p then ...
(q ...) roughly else if q then ...
(r ...) corresponds else if r then ...
... to ...
(t ...)) else ...

[Macro] case keyform {({({key}*) | key} {form}*)}*
case is a conditional that chooses one of its clauses to execute by com-

paring a value to various constants, which are typically keyword symbols,
integers, or characters (but may be any objects). Its form is as follows:

(case keyform
(keylist-1 consequent-1-1 consequent-1-2 ...)
(keylist-2 consequent-2-1 ...)
(keylist-3 consequent-3-1 ...)
...)

Structurally case is much like cond, and it behaves like cond in selecting
one clause and then executing all consequents of that clause. However, case
differs in the mechanism of clause selection.

7.6. CONDITIONALS 165

The first thing case does is to evaluate the form keyform to produce
an object called the key object. Then case considers each of the clauses in
turn. If key is in the keylist (that is, is eql to any item in the keylist) of
a clause, the consequents of that clause are evaluated as an implicit progn;
case returns what was returned by the last consequent (or nil if there are
no consequents in that clause). If no clause is satisfied, case returns nil.

The keys in the keylists are not evaluated; literal key values must appear
in the keylists. It is an error for the same key to appear in more than one
clause; a consequence is that the order of the clauses does not affect the
behavior of the case construct.

Instead of a keylist, one may write one of the symbols t and otherwise.
A clause with such a symbol always succeeds and must be the last clause
(this is an exception to the order-independence of clauses). See also ecase
and ccase, each of which provides an implicit otherwise clause to signal an
error if no clause is satisfied.

If there is only one key for a clause, then that key may be written in place
of a list of that key, provided that no ambiguity results. Such a “singleton key”
may not be nil (which is confusable with (), a list of no keys), t, otherwise,
or a cons.
[Macro] typecase keyform {(type {form}*)}*
typecase is a conditional that chooses one of its clauses by examining

the type of an object. Its form is as follows:

(typecase keyform
(type-1 consequent-1-1 consequent-1-2 ...)
(type-2 consequent-2-1 ...)
(type-3 consequent-3-1 ...)
...)

Structurally typecase is much like cond or case, and it behaves like them
in selecting one clause and then executing all consequents of that clause. It
differs in the mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce
an object called the key object. Then typecase considers each of the clauses
in turn. The type that appears in each clause is a type specifier; it is not
evaluated but is a literal type specifier. The first clause for which the key is
of that clause’s specified type is selected, the consequents of this clause are
evaluated as an implicit progn, and typecase returns what was returned

166 CHAPTER 7. CONTROL STRUCTURE

by the last consequent (or nil if there are no consequents in that clause). If
no clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for type to
indicate that the clause should always be selected. See also etypecase and
ctypecase, each of which provides an implicit otherwise clause to signal
an error if no clause is satisfied.

It is permissible for more than one clause to specify a given type, partic-
ularly if one is a subtype of another; the earliest applicable clause is chosen.
Thus for typecase, unlike case, the order of the clauses may affect the
behavior of the construct. For example:

(typecase an-object
(string ...) ;This clause handles strings
((array t) ...) ;This clause handles general arrays
((array bit) ...) ;This clause handles bit arrays
(array ...) ;This handles all other arrays
((or list number) ...);This handles lists and numbers
(t ...)) ;This handles all other objects

A Common Lisp compiler may choose to issue a warning if a clause cannot
be selected because it is completely shadowed by earlier clauses.

7.7 Blocks and Exits
The block and return-from constructs provide a structured lexical non-
local exit facility. At any point lexically within a block construct, a return-
from with the same name may be used to perform an immediate transfer of
control that exits from the block. In the most common cases this mechanism
is more efficient than the dynamic non-local exit facility provided by catch
and throw, described in section 7.11.
[Special operator] block name {form}*
The block construct executes each form from left to right, returning

whatever is returned by the last form. If, however, a return or return-
from form that specifies the same name is executed during the execution
of some form, then the results specified by the return or return-from are
immediately returned as the value of the block construct, and execution
proceeds as if the block had terminated normally. In this, block differs
from progn; the progn construct has nothing to do with return.

7.7. BLOCKS AND EXITS 167

The name is not evaluated; it must be a symbol. The scope of the name
is lexical; only a return or return-from textually contained in some form
can exit from the block. The extent of the name is dynamic. Therefore it
is only possible to exit from a given run-time incarnation of a block once,
either normally or by explicit return.

The defun form implicitly puts a block around the body of the function
defined; the block has the same name as the function. Therefore one may
use return-from to return prematurely from a function defined by defun.

The lexical scoping of the block name is fully general and has consequences
that may be surprising to users and implementors of other Lisp systems. For
example, the return-from in the following example actually does work in
Common Lisp as one might expect:

(block loser
(catch ’stuff
(mapcar #’(lambda (x) (if (numberp x)

(hairyfun x)
(return-from loser nil)))

items)))

Depending on the situation, a return in Common Lisp may not be simple.
A return can break up catchers if necessary to get to the block in question.
It is possible for a “closure” created by function for a lambda-expression to
refer to a block name as long as the name is lexically apparent.
[Special operator] return-from name [result]
return-from is used to return from a block or from such constructs as

do and prog that implicitly establish a block. The name is not evaluated
and must be a symbol. A block construct with the same name must lex-
ically enclose the occurrence of return-from; whatever the evaluation of
result produces is immediately returned from the block. (If the result form is
omitted, it defaults to nil. As a matter of style, this form ought to be used
to indicate that the particular value returned doesn’t matter.)

The return-from form itself never returns and cannot have a value; it
causes results to be returned from a block construct. If the evaluation of
result produces multiple values, those multiple values are returned by the
construct exited.
[Macro] return [result]
(return form) is identical in meaning to (return-from nil form); it

returns from a block named nil. Blocks established implicitly by iteration

168 CHAPTER 7. CONTROL STRUCTURE

constructs such as do are named nil, so that return will exit properly from
such a construct.

7.8 Iteration

Common Lisp provides a number of iteration constructs. The loop con-
struct provides a trivial iteration facility; it is little more than a progn with
a branch from the bottom back to the top. The do and do* constructs
provide a general iteration facility for controlling the variation of several
variables on each cycle. For specialized iterations over the elements of a list
or n consecutive integers, dolist and dotimes are provided. The tagbody
construct is the most general, permitting arbitrary go statements within it.
(The traditional prog construct is a synthesis of tagbody, block, and let.)
Most of the iteration constructs permit statically defined non-local exits (see
return-from and return).

7.8.1 Indefinite Iteration

The loop construct is the simplest iteration facility. It controls no variables,
and simply executes its body repeatedly.

[Macro] loop {form}*

Each form is evaluated in turn from left to right. When the last form
has been evaluated, then the first form is evaluated again, and so on, in a
never-ending cycle. The loop construct never returns a value. Its execution
must be terminated explicitly, using return or throw, for example.

loop, like most iteration constructs, establishes an implicit block named
nil. Thus return may be used to exit from a loop with specified results.

There is an extension of loop. See chapter 26.

7.8. ITERATION 169

7.8.2 General Iteration

In contrast to loop, do and do* provide a powerful and general mechanism
for repetitively recalculating many variables.
[Macro] do ({(var [init [step]])}*)
(end-test {result}*)
{declaration}* {tag | statement}*
[Macro] do* ({(var [init [step]])}*)
(end-test {result}*)
{declaration}* {tag | statement}*
The do special operator provides a generalized iteration facility, with an

arbitrary number of “index variables.” These variables are bound within the
iteration and stepped in parallel in specified ways. They may be used both
to generate successive values of interest (such as successive integers) or to
accumulate results. When an end condition is met, the iteration terminates
with a specified value.

In general, a do loop looks like this:

(do ((var1 init1 step1)
(var2 init2 step2)
...
(varn initn stepn))
(end-test . result)
{declaration}*
. tagbody)

A do* loop looks exactly the same except that the name do is replaced
by do*.

The first item in the form is a list of zero or more index-variable specifiers.
Each index-variable specifier is a list of the name of a variable var, an initial
value init, and a stepping form step. If init is omitted, it defaults to nil. If
step is omitted, the var is not changed by the do construct between repeti-
tions (though code within the do is free to alter the value of the variable by
using setq).

An index-variable specifier can also be just the name of a variable. In
this case, the variable has an initial value of nil and is not changed between
repetitions. As a matter of style, it is recommended that an unadorned
variable name be written only when that variable will be stored into (such

170 CHAPTER 7. CONTROL STRUCTURE

as by setq) before its first use. If it is important that the initial value be nil
rather than some undefined value, then it is clearer to write out (varj nil) if
the initial value is intended to mean “false,” or (varj ’()) if the initial value
is intended to be an empty list.

X3J13 voted in January 1989 to regularize the binding formats for do,
do*, let, let*, prog, prog*, and compiler-let. In the case of do and
do* the first edition was inconsistent; the formal syntax fails to reflect the
fact that a simple variable name may appear, as described in the preceding
paragraph. The definitions should read

[Macro] do ({var | (var [init [step]])}*)
(end-test {result}*)
{declaration}* {tag | statement}*
[Macro] do* ({var | (var [init [step]])}*)
(end-test {result}*)
{declaration}* {tag | statement}*
for consistency with the reading of the first edition and the X3J13 vote.
Before the first iteration, all the init forms are evaluated, and each var is

bound to the value of its respective init. This is a binding, not an assignment;
when the loop terminates, the old values of those variables will be restored.
For do, all of the init forms are evaluated before any var is bound; hence all
the init forms may refer to the old bindings of all the variables (that is, to
the values visible before beginning execution of the do construct). For do*,
the first init form is evaluated, then the first var is bound to that value, then
the second init form is evaluated, then the second var is bound, and so on;
in general, the initj form can refer to the new binding vark if k < j, and
otherwise to the old binding of vark.

The second element of the loop is a list of an end-testing predicate form
end-test and zero or more result forms. This resembles a cond clause. At
the beginning of each iteration, after processing the variables, the end-test is
evaluated. If the result is nil, execution proceeds with the body of the do (or
do*) form. If the result is not nil, the result forms are evaluated in order as
an implicit progn, and then do returns. do returns the results of evaluating
the last result form. If there are no result forms, the value of do is nil. Note
that this is not quite analogous to the treatment of clauses in a cond form,
because a cond clause with no result forms returns the (non-nil) result of
the test.

At the beginning of each iteration other than the first, the index variables

7.8. ITERATION 171

are updated as follows. All the step forms are evaluated, from left to right,
and the resulting values are assigned to the respective index variables. Any
variable that has no associated step form is not assigned to. For do, all the
step forms are evaluated before any variable is updated; the assignment of
values to variables is done in parallel, as if by psetq. Because all of the step
forms are evaluated before any of the variables are altered, a step form when
evaluated always has access to the old values of all the index variables, even
if other step forms precede it. For do*, the first step form is evaluated, then
the value is assigned to the first var, then the second step form is evaluated,
then the value is assigned to the second var, and so on; the assignment of
values to variables is done sequentially, as if by setq. For either do or do*,
after the variables have been updated, the end-test is evaluated as described
above, and the iteration continues.

If the end-test of a do form is nil, the test will never succeed. There-
fore this provides an idiom for “do forever”: the body of the do is executed
repeatedly, stepping variables as usual. (The loop construct performs a “do
forever” that steps no variables.) The infinite loop can be terminated by the
use of return, return-from, go to an outer level, or throw. For example:

(do ((j 0 (+ j 1)))
(nil) ;Do forever

(format t "~%Input ~D:" j)
(let ((item (read)))
(if (null item) (return) ;Process items until nil seen

(format t "~&Output ~D: ~S" j (process item)))))

The remainder of the do form constitutes an implicit tagbody. Tags may
appear within the body of a do loop for use by go statements appearing in
the body (but such go statements may not appear in the variable specifiers,
the end-test, or the result forms). When the end of a do body is reached, the
next iteration cycle (beginning with the evaluation of step forms) occurs.

An implicit block named nil surrounds the entire do form. A return
statement may be used at any point to exit the loop immediately.

declare forms may appear at the beginning of a do body. They apply to
code in the do body, to the bindings of the do variables, to the init forms,
to the step forms, to the end-test, and to the result forms.

Here are some examples of the use of do:

172 CHAPTER 7. CONTROL STRUCTURE

(do ((i 0 (+ i 1)) ;Sets every null element of a-vector to zero
(n (length a-vector)))
((= i n))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0)))

The construction

(do ((x e (cdr x))
(oldx x x))
((null x))

body)

exploits parallel assignment to index variables. On the first iteration,
the value of oldx is whatever value x had before the do was entered. On
succeeding iterations, oldx contains the value that x had on the previous
iteration.

Very often an iterative algorithm can be most clearly expressed entirely
in the step forms of a do, and the body is empty. For example,

(do ((x foo (cdr x))
(y bar (cdr y))
(z ’() (cons (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #’f foo bar). Note that the step
computation for z exploits the fact that variables are stepped in parallel.
Also, the body of the loop is empty. Finally, the use of nreverse to put
an accumulated do loop result into the correct order is a standard idiom.
Another example:

(defun list-reverse (list)
(do ((x list (cdr x))

(y ’() (cons (car x) y)))
((endp x) y)))

Note the use of endp rather than null or atom to test for the end of a
list; this may result in more robust code.

As an example of nested loops, suppose that env holds a list of conses.
The car of each cons is a list of symbols, and the cdr of each cons is a

7.8. ITERATION 173

list of equal length containing corresponding values. Such a data structure is
similar to an association list but is divided into “frames”; the overall structure
resembles a rib cage. A lookup function on such a data structure might be
(defun ribcage-lookup (sym ribcage)

(do ((r ribcage (cdr r)))
((null r) nil)

(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))

(when (eq (car s) sym)
(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies
of the do loops.)

A do loop may be explained in terms of the more primitive constructs
block, return, let, loop, tagbody, and psetq as follows:
(block nil
(let ((var1 init1)

(var2 init2)
...
(varn initn))

{declaration}*
(loop (when end-test (return (progn . result)))

(tagbody . tagbody)
(psetq var1 step1

var2 step2
...
varn stepn))))

do* is exactly like do except that the bindings and steppings of the
variables are performed sequentially rather than in parallel. It is as if, in the
above explanation, let were replaced by let* and psetq were replaced by
setq.

7.8.3 Simple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each
value taken by a single variable. They are expressible in terms of do, but
capture very common patterns of use.

174 CHAPTER 7. CONTROL STRUCTURE

Both dolist and dotimes perform a body of statements repeatedly. On
each iteration a specified variable is bound to an element of interest that
the body may examine. dolist examines successive elements of a list, and
dotimes examines integers from 0 to n−1 for some specified positive integer
n.

The value of any of these constructs may be specified by an optional result
form, which if omitted defaults to the value nil.

The return statement may be used to return immediately from a dolist
or dotimes form, discarding any following iterations that might have been
performed; in effect, a block named nil surrounds the construct. The body
of the loop is implicitly a tagbody construct; it may contain tags to serve
as the targets of go statements. Declarations may appear before the body
of the loop.
[Macro] dolist (var listform [resultform])
{declaration}* {tag | statement}*
dolist provides straightforward iteration over the elements of a list. First

dolist evaluates the form listform, which should produce a list. It then
executes the body once for each element in the list, in order, with the variable
var bound to the element. Then resultform (a single form, not an implicit
progn) is evaluated, and the result is the value of the dolist form. (When
the resultform is evaluated, the control variable var is still bound and has
the value nil.) If resultform is omitted, the result is nil.

(dolist (x ’(a b c d)) (prin1 x) (princ " ")) ⇒ nil
after printing “a b c d ” (note the trailing space)

An explicit return statement may be used to terminate the loop and
return a specified value.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
[Macro] dotimes (var countform [resultform])
{declaration}* {tag | statement}*
dotimes provides straightforward iteration over a sequence of integers.

The expression (dotimes (var countform resultform) . progbody) eval-
uates the form countform, which should produce an integer. It then performs
progbody once for each integer from zero (inclusive) to count (exclusive), in
order, with the variable var bound to the integer; if the value of countform
is zero or negative, then the progbody is performed zero times. Finally, re-
sultform (a single form, not an implicit progn) is evaluated, and the result

7.8. ITERATION 175

is the value of the dotimes form. (When the resultform is evaluated, the
control variable var is still bound and has as its value the number of times
the body was executed.) If resultform is omitted, the result is nil.

An explicit return statement may be used to terminate the loop and
return a specified value.

Here is an example of the use of dotimes in processing strings:

;;; True if the specified subsequence of the string is a
;;; palindrome (reads the same forwards and backwards).

(defun palindromep (string &optional
(start 0)
(end (length string)))

(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))

(char string (- end k 1)))
(return nil))))

(palindromep "Able was I ere I saw Elba") ⇒ t

(palindromep "A man, a plan, a canal–Panama!") ⇒ nil

(remove-if-not #’alpha-char-p ;Remove punctuation
"A man, a plan, a canal–Panama!")

⇒ "AmanaplanacanalPanama"

(palindromep
(remove-if-not #’alpha-char-p

"A man, a plan, a canal–Panama!")) ⇒ t

(palindromep
(remove-if-not
#’alpha-char-p
"Unremarkable was I ere I saw Elba Kramer, nu?")) ⇒ t

176 CHAPTER 7. CONTROL STRUCTURE

(palindromep
(remove-if-not
#’alpha-char-p
"A man, a plan, a cat, a ham, a yak,

a yam, a hat, a canal–Panama!")) ⇒ t
(palindromep
(remove-if-not
#’alpha-char-p
"Ja-da, ja-da, ja-da ja-da jing jing jing")) ⇒ nil

Altering the value of var in the body of the loop (by using setq, for ex-
ample) will have unpredictable, possibly implementation-dependent results.
A Common Lisp compiler may choose to issue a warning if such a variable
appears in a setq.

See also do-symbols, do-external-symbols, and do-all-symbols.

7.8.4 Mapping

Mapping is a type of iteration in which a function is successively applied to
pieces of one or more sequences. The result of the iteration is a sequence con-
taining the respective results of the function applications. There are several
options for the way in which the pieces of the list are chosen and for what is
done with the results returned by the applications of the function.

The function map may be used to map over any kind of sequence. The
following functions operate only on lists.

[Function] mapcar function list &rest more-lists
[Function] maplist function list &rest more-lists
[Function] mapc function list &rest more-lists
[Function] mapl function list &rest more-lists
[Function] mapcan function list &rest more-lists
[Function] mapcon function list &rest more-lists

For each of these mapping functions, the first argument is a function and
the rest must be lists. The function must take as many arguments as there
are lists.

mapcar operates on successive elements of the lists. First the function
is applied to the car of each list, then to the cadr of each list, and so on.
(Ideally all the lists are the same length; if not, the iteration terminates when

7.8. ITERATION 177

the shortest list runs out, and excess elements in other lists are ignored.) The
value returned by mapcar is a list of the results of the successive calls to
the function. For example:

(mapcar #’abs ’(3 -4 2 -5 -6)) ⇒ (3 4 2 5 6)
(mapcar #’cons ’(a b c) ’(1 2 3)) ⇒ ((a . 1) (b . 2) (c . 3))

maplist is like mapcar except that the function is applied to the lists
and successive cdr ’s of those lists rather than to successive elements of the
lists. For example:

(maplist #’(lambda (x) (cons ’foo x))
’(a b c d))

⇒ ((foo a b c d) (foo b c d) (foo c d) (foo d))

(maplist #’(lambda (x) (if (member (car x) (cdr x)) 0 1)))
’(a b a c d b c))

⇒ (0 0 1 0 1 1 1)
;An entry is 1 if the corresponding element of the input
; list was the last instance of that element in the input list.

mapl and mapc are like maplist and mapcar, respectively, except that
they do not accumulate the results of calling the function.

These functions are used when the function is being called merely for its
side effects rather than for its returned values. The value returned by mapl
or mapc is the second argument, that is, the first sequence argument.

mapcan and mapcon are like mapcar and maplist, respectively, ex-
cept that they combine the results of the function using nconc instead of
list. That is,

(mapcon f x1 ... xn)
≡ (apply #’nconc (maplist f x1 ... xn))

and similarly for the relationship between mapcan and mapcar. Con-
ceptually, these functions allow the mapped function to return a variable
number of items to be put into the output list. This is particularly useful for
effectively returning zero or one item:

(mapcan #’(lambda (x) (and (numberp x) (list x)))
’(a 1 b c 3 4 d 5))

⇒ (1 3 4 5)

178 CHAPTER 7. CONTROL STRUCTURE

In this case the function serves as a filter; this is a standard Lisp idiom
using mapcan. (The function remove-if-not might have been useful in
this particular context, however.) Remember that nconc is a destructive
operation, and therefore so are mapcan and mapcon; the lists returned by
the function are altered in order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping
operation; however, the mapping functions should be used wherever they
naturally apply because this increases the clarity of the code.

The functional argument to a mapping function must be acceptable to
apply; it cannot be a macro or the name of a special operator. Of course,
there is nothing wrong with using a function that has &optional and &rest
parameters as the functional argument.

X3J13 voted in June 1988 to allow the function to be only of type symbol
or function; a lambda-expression is no longer acceptable as a functional
argument. One must use the function special operator or the abbreviation
#’ before a lambda-expression that appears as an explicit argument form.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

7.8.5 The “Program Feature”

Lisp implementations since Lisp 1.5 have had what was originally called
“the program feature,” as if it were impossible to write programs without
it! The prog construct allows one to write in an Algol-like or Fortran-like
statement-oriented style, using go statements that can refer to tags in the
body of the prog. Modern Lisp programming style tends to use prog rather
infrequently. The various iteration constructs, such as do, have bodies with
the characteristics of a prog. (However, the ability to use go statements
within iteration constructs is very seldom called upon in practice.)

Three distinct operations are performed by prog: it binds local variables,
it permits use of the return statement, and it permits use of the go state-
ment. In Common Lisp, these three operations have been separated into
three distinct constructs: let, block, and tagbody. These three constructs
may be used independently as building blocks for other types of constructs.

[Special operator] tagbody {tag | statement}*
The part of a tagbody after the variable list is called the body. An item

in the body may be a symbol or an integer, in which case it is called a tag,
or an item in the body may be a list, in which case it is called a statement.

7.8. ITERATION 179

Each element of the body is processed from left to right. A tag is ignored;
a statement is evaluated, and its results are discarded. If the end of the body
is reached, the tagbody returns nil.

If (go tag) is evaluated, control jumps to the part of the body labelled
with the tag.

The scope of the tags established by a tagbody is lexical, and the extent
is dynamic. Once a tagbody construct has been exited, it is no longer legal
to go to a tag in its body. It is permissible for a go to jump to a tagbody
that is not the innermost tagbody construct containing that go; the tags
established by a tagbody will only shadow other tags of like name.

The lexical scoping of the go targets named by tags is fully general and
has consequences that may be surprising to users and implementors of other
Lisp systems. For example, the go in the following example actually does
work in Common Lisp as one might expect:

(tagbody
(catch ’stuff
(mapcar #’(lambda (x) (if (numberp x)

(hairyfun x)
(go lose)))

items))
(return)

lose
(error "I lost big!"))

Depending on the situation, a go in Common Lisp does not necessarily
correspond to a simple machine “jump” instruction. A go can break up
catchers if necessary to get to the target. It is possible for a “closure” created
by function for a lambda-expression to refer to a go target as long as the
tag is lexically apparent. See chapter 3 for an elaborate example of this.

There are some holes in this specification (and that of go) that leave
some room for interpretation. For example, there is no explicit prohibition
against the same tag appearing more than once in the same tagbody body.
Every implementation I know of will complain in the compiler, if not in the
interpreter, if there is a go to such a duplicated tag; but some implementors
take the position that duplicate tags are permitted provided there is no go
to such a tag. (“If a tree falls in the forest, and there is no one there to
hear it, then no one needs to yell ‘Timber!’ ”) Also, some implementations
allow objects other than symbols, integers, and lists in the body and typically

180 CHAPTER 7. CONTROL STRUCTURE

ignore them. Consequently, some programmers use redundant tags such as
— for formatting purposes, and strings as comments:

(defun dining-philosopher (j)
(tagbody —
think (unless (hungry) (go think))

—
"Can’t eat without chopsticks."
(snatch (chopstick j))
(snatch (chopstick (mod (+ j 1) 5)))
—

eat (when (hungry)
(mapc #’gobble-down

’(twice-cooked-pork kung-pao-chi-ding
wu-dip-har orange-flavor-beef
two-side-yellow-noodles twinkies))

(go eat))
—
"Can’t think with my neighbors’ stomachs rumbling."
(relinquish (chopstick j))
(relinquish (chopstick (mod (+ j 1) 5)))
—
(if (happy) (go think)

(become insurance-salesman))))

In certain implementations of Common Lisp they get away with it. Others
abhor what they view as an abuse of unintended ambiguity in the language
specification. For maximum portability, I advise users to steer clear of these
issues. Similarly, it is best to avoid using nil as a tag, even though it is a
symbol, because a few implementations treat nil as a list to be executed.
To be extra careful, avoid calling from within a tagbody a macro whose
expansion might not be a non-nil list; wrap such a call in (progn ...), or
rewrite the macro to return (progn ...) if possible.
[Macro] prog ({var | (var [init])}*) {declaration}* {tag | statement}*
[Macro] prog* ({var | (var [init])}*) {declaration}* {tag | statement}*
The prog construct is a synthesis of let, block, and tagbody, allowing

bound variables and the use of return and go within a single construct. A
typical prog construct looks like this:

7.8. ITERATION 181

(prog (var1 var2 (var3 init3) var4 (var5 init5))
{declaration}*
statement1

tag1
statement2
statement3
statement4

tag2
statement5
...
)

The list after the keyword prog is a set of specifications for binding var1,
var2, etc., which are temporary variables bound locally to the prog. This
list is processed exactly as the list in a let statement: first all the init forms
are evaluated from left to right (where nil is used for any omitted init form),
and then the variables are all bound in parallel to the respective results. Any
declaration appearing in the prog is used as if appearing at the top of the
let body.

The body of the prog is executed as if it were a tagbody construct; the
go statement may be used to transfer control to a tag.

A prog implicitly establishes a block named nil around the entire prog
construct, so that return may be used at any time to exit from the prog
construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(prog (x y z) ;Initialize x, y, z to nil

(setq y (car w) z (cdr w))
loop

(cond ((null y) (return x))
((null z) (go err)))

rejoin
(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))
(go loop)

err

182 CHAPTER 7. CONTROL STRUCTURE

(cerror "Will self-pair extraneous items"
"Mismatch - gleep! S" y)

(setq z y)
(go rejoin)))

which is accomplished somewhat more perspicuously by

(defun prince-of-clarity (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(do ((y (car w) (cdr y))

(z (cdr w) (cdr z))
(x ’() (cons (cons (car y) (car z)) x)))
((null y) x)

(when (null z)
(cerror "Will self-pair extraneous items"

"Mismatch - gleep! S" y)
(setq z y))))

The prog construct may be explained in terms of the simpler constructs
block, let, and tagbody as follows:

(prog variable-list {declaration}* . body)
≡ (block nil (let variable-list {declaration}* (tagbody . body)))

The prog* special operator is almost the same as prog. The only differ-
ence is that the binding and initialization of the temporary variables is done
sequentially, so that the init form for each one can use the values of previous
ones. Therefore prog* is to prog as let* is to let. For example,

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.
I haven’t seen prog used very much in the last several years. Apparently

splitting it into functional constituents (let, block, tagbody) has been a
success. Common Lisp programmers now tend to use whichever specific
construct is appropriate.
[Special operator] go tag
The (go tag) special operator is used to do a “go to” within a tagbody

construct. The tag must be a symbol or an integer; the tag is not evaluated.

7.9. STRUCTURE TRAVERSAL AND SIDE EFFECTS 183

go transfers control to the point in the body labelled by a tag eql to the one
given. If there is no such tag in the body, the bodies of lexically containing
tagbody constructs (if any) are examined as well. It is an error if there is
no matching tag lexically visible to the point of the go.

The go form does not ever return a value.
As a matter of style, it is recommended that the user think twice before

using a go. Most purposes of go can be accomplished with one of the itera-
tion primitives, nested conditional forms, or return-from. If the use of go
seems to be unavoidable, perhaps the control structure implemented by go
should be packaged as a macro definition.

7.9 Structure Traversal and Side Effects
X3J13 voted in January 1989 to restrict side effects during the course of a
built-in operation that can execute user-supplied code while traversing a data
structure.

Consider the following example:

(let ((x ’(apples peaches pumpkin pie)))
(dolist (z x)
(when (eq z ’peaches)
(setf (cddr x) ’(mango kumquat)))

(format t " S " (car z))))

Depending on the details of the implementation of dolist, this bit of code
could easily print

apples peaches mango kumquat

(which is perhaps what was intended), but it might as easily print

apples peaches pumpkin pie

Here is a plausible implementation of dolist that produces the first result:

(defmacro dolist ((var listform &optional (resultform ”nil))
&body body)

(let ((tailvar (gensym "DOLIST")))
‘(do ((,tailvar ,listform (cdr ,tailvar)))

((null ,tailvar) ,resultform)
(let ((,var (car ,tailvar))) ,@body))

184 CHAPTER 7. CONTROL STRUCTURE

But here is a plausible implementation of dolist that produces the second
result:

(defmacro dolist ((var listform &optional (resultform ”nil))
&body body)

(let ((tailvar (gensym "DOLIST")))
‘(do ((,tailvar ,listform))

((null ,tailvar) ,resultform)
(let ((,var (pop ,tailvar))) ,@body))

The X3J13 recognizes and legitimizes varying implementation practices:
in general it is an error for code executed during a “structure-traversing”
operation to destructively modify the structure in a way that might affect
the ongoing traversal operation. The committee identified in particular the
following special cases.

For list traversal operations, the cdr chain may not be destructively mod-
ified.

For array traversal operations, the array may not be adjusted (see adjust-
array) and its fill pointer, if any, may not be modified.

For hash table operations (such as with-hash-table-iterator and
maphash), new entries may not be added or deleted, except that the very
entry being processed by user code may be changed or deleted.

For package symbol operations (for example, with-package-iterator
and do-symbols), new symbols may not be interned in, nor symbols un-
interned from, the packages being traversed or any packages they use, except
that the very symbol being processed by user code may be uninterned.

X3J13 noted that this vote is intended to clarify restrictions on the use of
structure traversal operations that are not themselves inherently destructive;
for example, it applies to map and dolist. Destructive operators such as
delete require even more complicated restrictions and are addressed by a
separate proposal.

The X3J13 vote did not specify a complete list of the operations to which
these restrictions apply. Table 7.1 shows what I believe to be a complete list
of operations that traverse structures and take user code as a body (in the
case of macros) or as a functional argument (in the case of functions).

In addition, note that user code should not modify list structure that
might be undergoing interpretation by the evaluator, whether explicitly in-
voked via eval or implicitly invoked, for example as in the case of a hook

7.10. MULTIPLE VALUES 185

function (a defstruct print function, the value of *evalhook* or *apply-
hook*, etc.) that happens to be a closure of interpreted code. Similarly,
defstruct print functions and other hooks should not perform side effects on
data structures being printed or being processed by format, or on a string
given to make-string-input-stream. You get the idea; be sensible.

Note that an operation such as mapcar or dolist traverses not only cdr
pointers (in order to chase down the list) but also car pointers (in order
to obtain the elements themselves). The restriction against modification
appears to apply to all these pointers.

7.10 Multiple Values
Ordinarily the result of calling a Lisp function is a single Lisp object. Some-
times, however, it is convenient for a function to compute several objects
and return them. Common Lisp provides a mechanism for handling multi-
ple values directly. This mechanism is cleaner and more efficient than the
usual tricks involving returning a list of results or stashing results in global
variables.

7.10.1 Constructs for Handling Multiple Values

Normally multiple values are not used. Special operators are required both
to produce multiple values and to receive them. If the caller of a function
does not request multiple values, but the called function produces multiple
values, then the first value is given to the caller and all others are discarded;
if the called function produces zero values, then the caller gets nil as a value.

The primary primitive for producing multiple values is values, which
takes any number of arguments and returns that many values. If the last
form in the body of a function is a values with three arguments, then a call
to that function will return three values. Other special forms also produce
multiple values, but they can be described in terms of values. Some built-in
Common Lisp functions, such as floor, return multiple values; those that do
are so documented.

The special operators and macros for receiving multiple values are as
follows:

multiple-value-list
multiple-value-call

186 CHAPTER 7. CONTROL STRUCTURE

multiple-value-prog1
multiple-value-bind
multiple-value-setq

These specify a form to evaluate and an indication of where to put the
values returned by that form.

[Function] values &rest args

All of the arguments are returned, in order, as values. For example:

(defun polar (x y)
(values (sqrt (+ (* x x) (* y y))) (atan y x)))

(multiple-value-bind (r theta) (polar 3.0 4.0)
(vector r theta))
⇒ #(5.0 0.9272952)

The expression (values) returns zero values. This is the standard idiom
for returning no values from a function.

Sometimes it is desirable to indicate explicitly that a function will return
exactly one value. For example, the function

(defun foo (x y)
(floor (+ x y) y))

will return two values because floor returns two values. It may be that
the second value makes no sense, or that for efficiency reasons it is desired
not to compute the second value. The values function is the standard idiom
for indicating that only one value is to be returned, as shown in the following
example.

(defun foo (x y)
(values (floor (+ x y) y)))

This works because values returns exactly one value for each of its argu-
ment forms; as for any function call, if any argument form to values produces
more than one value, all but the first are discarded.

There is absolutely no way in Common Lisp for a caller to distinguish be-
tween returning a single value in the ordinary manner and returning exactly
one “multiple value.” For example, the values returned by the expressions

7.10. MULTIPLE VALUES 187

(+ 1 2) and (values (+ 1 2)) are identical in every respect: the single
value 3.

[Constant] multiple-values-limit

The value of multiple-values-limit is a positive integer that is the up-
per exclusive bound on the number of values that may be returned from a
function. This bound depends on the implementation but will not be smaller
than 20. (Implementors are encouraged to make this limit as large as practi-
cable without sacrificing performance.) See lambda-parameters-limit and
call-arguments-limit.

[Function] values-list list

All of the elements of list are returned as multiple values. For example:

(values-list (list a b c)) ≡ (values a b c)

In general,

(values-list list) ≡ (apply #’values list)

but values-list may be clearer or more efficient.
[Macro] multiple-value-list form
multiple-value-list evaluates form and returns a list of the multiple

values it returned. For example:

(multiple-value-list (floor -3 4)) ⇒ (-1 1)

multiple-value-list and values-list are therefore inverses of each other.
[Special operator] multiple-value-call function {form}*
multiple-value-call first evaluates function to obtain a function and

then evaluates all of the forms. All the values of the forms are gathered
together (not just one value from each) and are all given as arguments to the
function. The result of multiple-value-call is whatever is returned by the
function. For example:

(+ (floor 5 3) (floor 19 4))
≡ (+ 1 4) ⇒ 5

(multiple-value-call #’+ (floor 5 3) (floor 19 4))
≡ (+ 1 2 4 3) ⇒ 10

(multiple-value-list form) ≡ (multiple-value-call #’list form)

188 CHAPTER 7. CONTROL STRUCTURE

[Special operator] multiple-value-prog1 form {form}*
multiple-value-prog1 evaluates the first form and saves all the values

produced by that form. It then evaluates the other forms from left to right,
discarding their values. The values produced by the first form are returned
by multiple-value-prog1. See prog1, which always returns a single value.
[Macro] multiple-value-bind ({var}*) values-form
{declaration}* {form}*
The values-form is evaluated, and each of the variables var is bound to

the respective value returned by that form. If there are more variables than
values returned, extra values of nil are given to the remaining variables. If
there are more values than variables, the excess values are simply discarded.
The variables are bound to the values over the execution of the forms, which
make up an implicit progn. For example:

(multiple-value-bind (x) (floor 5 3) (list x)) ⇒ (1)
(multiple-value-bind (x y) (floor 5 3) (list x y)) ⇒ (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y z))
⇒ (1 2 nil)

[Macro] multiple-value-setq variables form
The variables must be a list of variables. The form is evaluated, and the

variables are set (not bound) to the values returned by that form. If there
are more variables than values returned, extra values of nil are assigned to
the remaining variables. If there are more values than variables, the excess
values are simply discarded.

multiple-value-setq always returns a single value, which is the first
value returned by form, or nil if form produces zero values.

X3J13 voted in March 1989 to specify that if any var refers not to an
ordinary variable but to a binding made by symbol-macrolet, then that
var is handled as if setq were used to assign the appropriate value to it.
[Macro] nth-value n form
X3J13 voted in January 1989 to add a new macro named nth-value. The

argument forms n and form are both evaluated. The value of n must be a
non-negative integer, and the form may produce any number of values. The
integer n is used as a zero-based index into the list of values. Value n of the
form is returned as the single value of the nth-value form; nil is returned
if the form produces no more than n values.

As an example, mod could be defined as

7.10. MULTIPLE VALUES 189

(defun mod (number divisor)
(nth-value 1 (floor number divisor)))

Value number 1 is the second value returned by floor, the first value
being value number 0.

One could define nth-value simply as

(defmacro nth-value (n form)
‘(nth ,n (multiple-value-list form)))

but the clever implementor will doubtless find an implementation tech-
nique for nth-value that avoids constructing an intermediate list of all the
values of the form.

7.10.2 Rules Governing the Passing of Multiple Values

It is often the case that the value of a special operator or macro call is defined
to be the value of one of its subforms. For example, the value of a cond is
the value of the last form in the selected clause.

In most such cases, if the subform produces multiple values, then the
original form will also produce all of those values. This passing back of
multiple values of course has no effect unless eventually one of the special
operators for receiving multiple values is reached.

To be explicit, multiple values can result from a special operator under
precisely these circumstances:

Evaluation and application

• eval returns multiple values if the form given it to evaluate pro-
duces multiple values.

• apply, funcall, and multiple-value-call pass back multiple val-
ues from the function applied or called.

Implicit progn contexts

• The special operator progn passes back multiple values resulting
from evaluation of the last subform. Other situations referred to
as “implicit progn,” where several forms are evaluated and the
results of all but the last form are discarded, also pass back mul-
tiple values from the last form. These situations include the body

190 CHAPTER 7. CONTROL STRUCTURE

of a lambda-expression, in particular those constructed by de-
fun, defmacro, and deftype. Also included are bodies of the
constructs eval-when, progv, let, let*, when, unless, block,
multiple-value-bind, and catch, as well as clauses in such con-
ditional constructs as case, typecase, ecase, etypecase, ccase,
and ctypecase.

X3J13 has voted to add many new constructs to the language that con-
tain implicit progn contexts. I won’t attempt to list them all here. Of
particular interest, however, is locally, which may be regarded as simply a
version of progn that permits declarations before its body. This provides a
useful building block for constructing macros that permit declarations (but
not documentation strings) before their bodies and pass back any multiple
values produced by the last sub-form of a body. (If a body can contain a
documentation string, most likely lambda is the correct building block to
use.)

Conditional constructs

• if passes back multiple values from whichever subform is selected
(the then form or the else form).

• and and or pass back multiple values from the last subform but
not from subforms other than the last.

• cond passes back multiple values from the last subform of the im-
plicit progn of the selected clause. If, however, the clause selected
is a singleton clause, then only a single value (the non-nil pred-
icate value) is returned. This is true even if the singleton clause
is the last clause of the cond. It is not permitted to treat a final
clause (x) as being the same as (t x) for this reason; the latter
passes back multiple values from the form x.

Returning from a block

• The block construct passes back multiple values from its last sub-
form when it exits normally. If return-from (or return) is used
to terminate the block prematurely, then return-from passes
back multiple values from its subform as the values of the termi-
nated block. Other constructs that create implicit blocks, such as

7.10. MULTIPLE VALUES 191

do, dolist, dotimes, prog, and prog*, also pass back multiple
values specified by return-from (or return).

• do passes back multiple values from the last form of the exit
clause, exactly as if the exit clause were a cond clause. Similarly,
dolist and dotimes pass back multiple values from the resultform
if that is executed. These situations are all examples of implicit
uses of return-from.

Throwing out of a catch

• The catch construct returns multiple values if the result form in
a throw exiting from such a catch produces multiple values.

Miscellaneous situations

• multiple-value-prog1 passes back multiple values from its first
subform. However, prog1 always returns a single value.

• unwind-protect returns multiple values if the form it protects
returns multiple values.

• the returns multiple values if the form it contains returns multiple
values.

Among special operators that never pass back multiple values are prog1,
prog2, setq, and multiple-value-setq. The conventional way to force only
one value to be returned from a form x is to write (values x).

The most important rule about multiple values is: No matter how
many values a form produces, if the form is an argument form in
a function call, then exactly one value (the first one) is used.

For example, if you write (cons (floor x)), then cons will always re-
ceive exactly one argument (which is of course an error), even though floor
returns two values. To pass both values from floor to cons, one must write
something like (multiple-value-call #’cons (floor x)). In an ordinary
function call, each argument form produces exactly one argument; if such a
form returns zero values, nil is used for the argument, and if more than one
value, all but the first are discarded. Similarly, conditional constructs such
as if that test the value of a form will use exactly one value, the first one,
from that form and discard the rest; such constructs will use nil as the test
value if zero values are returned.

192 CHAPTER 7. CONTROL STRUCTURE

7.11 Dynamic Non-Local Exits

Common Lisp provides a facility for exiting from a complex process in a non-
local, dynamically scoped manner. There are two classes of special operators
for this purpose, called catch forms and throw forms, or simply catches and
throws. A catch form evaluates some subforms in such a way that, if a throw
form is executed during such evaluation, the evaluation is aborted at that
point and the catch form immediately returns a value specified by the throw.
Unlike block and return (section 7.7), which allow for exiting a block
form from any point lexically within the body of the block, the catch/throw
mechanism works even if the throw form is not textually within the body of
the catch form. The throw need only occur within the extent (time span) of
the evaluation of the body of the catch. This is analogous to the distinction
between dynamically bound (special) variables and lexically bound (local)
variables.

[Special operator] catch tag {form}*

The catch special operator serves as a target for transfer of control by
throw. The form tag is evaluated first to produce an object that names the
catch; it may be any Lisp object. A catcher is then established with the object
as the tag. The forms are evaluated as an implicit progn, and the results of
the last form are returned, except that if during the evaluation of the forms
a throw should be executed such that the tag of the throw matches (is eq to)
the tag of the catch and the catcher is the most recent outstanding catcher
with that tag, then the evaluation of the forms is aborted and the results
specified by the throw are immediately returned from the catch expression.
The catcher established by the catch expression is disestablished just before
the results are returned.

The tag is used to match throws with catches. (catch ’foo form) will
catch a (throw ’foo form) but not a (throw ’bar form). It is an error if
throw is done when there is no suitable catch ready to catch it.

Catch tags are compared using eq, not eql; therefore numbers and char-
acters should not be used as catch tags.

[Special operator] unwind-protect protected-form {cleanup-form}*

Sometimes it is necessary to evaluate a form and make sure that certain
side effects take place after the form is evaluated; a typical example is

7.11. DYNAMIC NON-LOCAL EXITS 193

(progn (start-motor)
(drill-hole)
(stop-motor))

The non-local exit facility of Common Lisp creates a situation in which
the above code won’t work, however: if drill-hole should do a throw to a
catch that is outside of the progn form (perhaps because the drill bit broke),
then (stop-motor) will never be evaluated (and the motor will presumably
be left running). This is particularly likely if drill-hole causes a Lisp error
and the user tells the error-handler to give up and abort the computation.
(A possibly more practical example might be

(prog2 (open-a-file)
(process-file)
(close-the-file))

where it is desired always to close the file when the computation is ter-
minated for whatever reason. This case is so important that Common Lisp
provides the special operator with-open-file for this purpose.)

In order to allow the example hole-drilling program to work, it can be
rewritten using unwind-protect as follows:

;; Stop the motor no matter what (even if it failed to start).

(unwind-protect
(progn (start-motor)

(drill-hole))
(stop-motor))

If drill-hole does a throw that attempts to quit out of the unwind-
protect, then (stop-motor) will be executed.

This example assumes that it is correct to call stop-motor even if the
motor has not yet been started. Remember that an error or interrupt may
cause an exit even before any initialization forms have been executed. Any
state restoration code should operate correctly no matter where in the pro-
tected code an exit occurred. For example, the following code is not correct:

(unwind-protect
(progn (incf *access-count*)

(perform-access))
(decf *access-count*))

194 CHAPTER 7. CONTROL STRUCTURE

If an exit occurs before completion of the incf operation the decf oper-
ation will be executed anyway, resulting in an incorrect value for *access-
count*. The correct way to code this is as follows:

(let ((old-count *access-count*))
(unwind-protect
(progn (incf *access-count*)

(perform-access))
(setq *access-count* old-count)))

As a general rule, unwind-protect guarantees to execute the cleanup-
forms before exiting, whether it terminates normally or is aborted by a throw
of some kind. (If, however, an exit occurs during execution of the cleanup-
forms, no special action is taken. The cleanup-forms of an unwind-protect
are not protected by that unwind-protect, though they may be protected if
that unwind-protect occurs within the protected form of another unwind-
protect.) unwind-protect returns whatever results from evaluation of the
protected-form and discards all the results from the cleanup-forms.

It should be emphasized that unwind-protect protects against all at-
tempts to exit from the protected form, including not only “dynamic exit” fa-
cilities such as throw but also “lexical exit” facilities such as go and return-
from. Consider this situation:

(tagbody
(let ((x 3))
(unwind-protect
(if (numberp x) (go out))
(print x)))

out
...)

When the go is executed, the call to print is executed first, and then the
transfer of control to the tag out is completed.

X3J13 voted in March 1989 to clarify the interaction of unwind-protect
with constructs that perform exits.

Let an exit be a point out of which control can be transferred. For
a throw the exit is the matching catch; for a return-from the exit is the
corresponding block. For a go the exit is the statement within the tagbody
(the one to which the target tag belongs) which is being executed at the time
the go is performed.

7.11. DYNAMIC NON-LOCAL EXITS 195

The extent of an exit is dynamic; it is not indefinite. The extent of an exit
begins when the corresponding form (catch, block, or tagbody statement)
is entered. When the extent of an exit has ended, it is no longer legal to
return from it.

Note that the extent of an exit is not the same thing as the scope or extent
of the designator by which the exit is identified. For example, a block name
has lexical scope but the extent of its exit is dynamic. The extent of a catch
tag could differ from the extent of the exit associated with the catch (which
is exactly what is at issue here). The difference matters when there are
transfers of control from the cleanup clauses of an unwind-protect.

When a transfer of control out of an exit is initiated by throw, return-
from, or go, a variety of events occur before the transfer of control is com-
plete:

• The cleanup clauses of any intervening unwind-protect clauses are
evaluated.

• Intervening dynamic bindings of special variables and catch tags are
undone.

• Intervening exits are abandoned, that is, their extent ends and it is no
longer legal to attempt to transfer control from them.

• The extent of the exit being invoked ends.

• Control is finally passed to the target.

The first edition left the order of these events in some doubt. The imple-
mentation note for throw hinted that the first two processes are interwoven,
but it was unclear whether it is permissible for an implementation to aban-
don all intervening exits before processing any intervening unwind-protect
cleanup clauses.

The clarification adopted by X3J13 is as follows. Intervening exits are
abandoned as soon as the transfer of control is initiated; in the case of a
throw, this occurs at the beginning of the “second pass” mentioned in the
implementation note. It is an error to attempt a transfer of control to an
exit whose dynamic extent has ended.

Next the evaluation of unwind-protect cleanup clauses and the undoing
of dynamic bindings and catch tags are performed together, in the order
corresponding to the reverse of the order in which they were established.

196 CHAPTER 7. CONTROL STRUCTURE

The effect of this is that the cleanup clauses of an unwind-protect will see
the same dynamic bindings of variables and catch tags as were visible when
the unwind-protect was entered. (However, some of those catch tags may
not be useable because they correspond to abandoned exit points.)

Finally control is transferred to the originally invoked exit and simulta-
neously that exit is abandoned.

The effect of this specification is that once a program has attempted
to transfer control to a particular exit, an unwind-protect cleanup form
cannot step in and decide to transfer control to a more recent (nested) exit,
blithely forgetting the original exit request. However, a cleanup form may
restate the request to transfer to the same exit that started the cleanup
process.

Here is an example based on a nautical metaphor. The function gently
moves an oar in the water with low force, but if an oar gets stuck, the caller
will catch a crab. The function row takes a boat, an oar-stroking function,
a stream, and a count; an oar is constructed for the boat and stream and
the oar-stroking function is called :count times. The function life rows a
particular boat. Merriment follows, except that if the oarsman is winded he
must stop to catch his breath.

(defun gently (oar)
(stroke oar :force 0.5)
(when (stuck oar)
(throw ’crab nil)))

(defun row (boat stroke-fn stream &key count)
(let ((oar (make-oar boat stream)))
(loop repeat count do (funcall stroke-fn oar))))

(defun life ()
(catch ’crab
(catch ’breath
(unwind-protect
(row *your-boat* #’gently *query-io* :count 3))
(when (winded) (throw ’breath nil)))

(loop repeat 4 (set-mode :merry))
(dream))))

Suppose that the oar gets stuck, causing gently to call throw with the

7.11. DYNAMIC NON-LOCAL EXITS 197

tag crab. The program is then committed to exiting from the outer catch
(the one with the tag crab). As control breaks out of the unwind-protect
form, the winded test is executed. Suppose it is true; then another call to
throw occurs, this time with the tag breath. The inner catch (the one
with the tag breath) has been abandoned as a result of the first throw
operation (still in progress). The clarification voted by X3J13 specifies that
the program is in error for attempting to transfer control to an abandoned
exit point. To put it in terms of the example: once you have begun to catch
a crab, you cannot rely on being able to catch your breath.

Implementations may support longer extents for exits than is required
by this specification, but portable programs may not rely on such extended
extents.

(This specification is somewhat controversial. An alternative proposal
was that the abandoning of exits should be lumped in with the evaluation
of unwind-protect cleanup clauses and the undoing of dynamic bindings
and catch tags, performing all in reverse order of establishment. X3J13
agreed that this approach is theoretically cleaner and more elegant but also
more stringent and of little additional practical use. There was some concern
that a more stringent specification might be a great added burden to some
implementors and would achieve only a small gain for users.)
[Special operator] throw tag result
The throw special operator transfers control to a matching catch con-

struct. The tag is evaluated first to produce an object called the throw tag;
then the result form is evaluated, and its results are saved (if the result form
produces multiple values, then all the values are saved). The most recent
outstanding catch whose tag matches the throw tag is exited; the saved re-
sults are returned as the value(s) of the catch. A catch matches only if the
catch tag is eq to the throw tag.

In the process, dynamic variable bindings are undone back to the point of
the catch, and any intervening unwind-protect cleanup code is executed.
The result form is evaluated before the unwinding process commences, and
whatever results it produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no
unwinding of the stack is performed, and an error is signalled. When the error
is signalled, the outstanding catchers and the dynamic variable bindings are
those in force at the point of the throw.

Implementation note: These requirements imply that throwing should typically

198 CHAPTER 7. CONTROL STRUCTURE

make two passes over the control stack. In the first pass it simply searches for a
matching catch. In this search every catchmust be considered, but every unwind-
protect should be ignored. On the second pass the stack is actually unwound, one
frame at a time, undoing dynamic bindings and outstanding unwind-protect
constructs in reverse order of creation until the matching catch is reached.

7.11. DYNAMIC NON-LOCAL EXITS 199

Table 7.1: Structure Traversal Operations Subject to Side Effect Restrictions
adjoin maphash reduce
assoc mapl remove
assoc-if maplist remove-duplicates
assoc-if-not member remove-if
count member-if remove-if-not
count-if member-if-not search
count-if-not merge set-difference
delete mismatch set-exclusive-or
delete-duplicates nintersection some
delete-if notany sort
delete-if-not notevery stable-sort
do-all-symbols nset-difference sublis
do-external-symbols nset-exclusive-or subsetp
do-symbols nsublis subst
dolist nsubst subst-if
eval nsubst-if subst-if-not
every nsubst-if-not substitute
find nsubstitute substitute-if
find-if nsubstitute-if substitute-if-not
find-if-not nsubstitute-if-not tree-equal
intersection nunion union
certain loop clauses position with-hash-table-iterator
map position-if with-input-from-string
mapc position-if-not with-output-to-string
mapcan rassoc with-package-iterator
mapcar rassoc-if
mapcon rassoc-if-not

200 CHAPTER 7. CONTROL STRUCTURE

Chapter 8

Macros

The Common Lisp macro facility allows the user to define arbitrary func-
tions that convert certain Lisp forms into different forms before evaluating
or compiling them. This is done at the expression level, not at the character-
string level as in most other languages. Macros are important in the writing
of good code: they make it possible to write code that is clear and elegant
at the user level but that is converted to a more complex or more efficient
internal form for execution.

When eval is given a list whose car is a symbol, it looks for local defini-
tions of that symbol (by flet, labels, and macrolet); if that fails, it looks
for a global definition. If the definition is a macro definition, then the orig-
inal list is said to be a macro call. Associated with the definition will be a
function of two arguments, called the expansion function. This function is
called with the entire macro call as its first argument (the second argument is
a lexical environment); it must return some new Lisp form, called the expan-
sion of the macro call. (Actually, a more general mechanism is involved; see
macroexpand.) This expansion is then evaluated in place of the original
form.

When a function is being compiled, any macros it contains are expanded
at compilation time. This means that a macro definition must be seen by
the compiler before the first use of the macro.

More generally, an implementation of Common Lisp has great latitude in
deciding exactly when to expand macro calls within a program. For exam-
ple, it is acceptable for the defun special operator to expand all macro calls
within its body at the time the defun form is executed and record the fully
expanded body as the body of the function being defined. (An implementa-

201

202 CHAPTER 8. MACROS

tion might even choose always to compile functions defined by defun, even
when operating in an “interpretive” mode.)

Macros should be written so as to depend as little as possible on the
execution environment to produce a correct expansion. To ensure consis-
tent behavior, it is best to ensure that all macro definitions are available,
whether to the interpreter or compiler, before any code containing calls to
those macros is introduced.

In Common Lisp, macros are not functions. In particular, macros cannot
be used as functional arguments to such functions as apply, funcall, or
map; in such situations, the list representing the “original macro call” does
not exist, and cannot exist, because in some sense the arguments have already
been evaluated.

8.1 Macro Definition
The function macro-function determines whether a given symbol is the
name of a macro. The defmacro construct provides a convenient way to
define new macros.

[Function] macro-function symbol &optional env

The first argument must be a symbol. If the symbol has a function defi-
nition that is a macro definition, whether a local one established in the en-
vironment env by macrolet or a global one established as if by defmacro,
then the expansion function (a function of two arguments, the macro-call
form and an environment) is returned. If the symbol has no function defi-
nition, or has a definition as an ordinary function or as a special operator
but not as a macro, then nil is returned. The function macroexpand or
macroexpand-1 is the best way to invoke the expansion function.

It is possible for both macro-function and special-operator-p to be
true of a symbol. This is possible because an implementation is permitted to
implement any macro also as a special operator for speed. On the other hand,
the macro definition must be available for use by programs that understand
only the standard special operators listed in table 5.1.

setf may be used with macro-function to install a macro as a symbol’s
global function definition:

(setf (macro-function symbol) fn)

8.1. MACRO DEFINITION 203

The value installed must be a function that accepts two arguments, an
entire macro call and an environment, and computes the expansion for that
call. Performing this operation causes the symbol to have only that macro
definition as its global function definition; any previous definition, whether
as a macro or as a function, is lost. One cannot use setf to establish a
local macro definition; it is an error to supply a second argument to macro-
function when using it with setf. It is an error to attempt to redefine the
name of a special operator.

See also compiler-macro-function.

[Macro] defmacro name lambda-list [[{declaration}* | doc-string]] {form}*

defmacro is a macro-defining macro that arranges to decompose the
macro-call form in an elegant and useful way. defmacro has essentially
the same syntax as defun: name is the symbol whose macro definition we
are creating, lambda-list is similar in form to a lambda-list, and the forms
constitute the body of the expander function. The defmacro construct
arranges to install this expander function, as the global macro definition of
name.

While defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts. Furthermore, defmacro should define
the expander function within the enclosing lexical environment, not within
the global environment.

The body of the expander function defined by defmacro is implicitly
enclosed in a block construct whose name is the same as the name of the
defined macro. Therefore return-from may be used to exit from the func-
tion.

The name is returned as the value of the defmacro form.
If we view the macro call as a list containing a function name and some

argument forms, in effect the expander function and the list of (unevaluated)
argument forms is given to apply. The parameter specifiers are processed
as for any lambda-expression, using the macro-call argument forms as the
arguments. Then the body forms are evaluated as an implicit progn, and
the value of the last form is returned as the expansion of the macro call.

If the optional documentation string doc-string is present (if not followed
by a declaration, it may be present only if at least one form is also specified,
as it is otherwise taken to be a form), then it is attached to the name as a
documentation string of type function; see documentation.

These three markers are now allowed in other constructs as well.

204 CHAPTER 8. MACROS

&body This is identical in function to &rest, but it informs certain output-
formatting and editing functions that the remainder of the form is
treated as a body and should be indented accordingly. (Only one of
&body or &rest may be used.)

&whole This is followed by a single variable that is bound to the entire macro-
call form; this is the value that the macro definition function receives
as its single argument. &whole and the following variable should ap-
pear first in the lambda-list, before any other parameter or lambda-list
keyword.

&environment This is followed by a single variable that is bound to an environment
representing the lexical environment in which the macro call is to be
interpreted. This environment may not be the complete lexical envi-
ronment; it should be used only with the function macroexpand for
the sake of any local macro definitions that the macrolet construct
may have established within that lexical environment. This is useful
primarily in the rare cases where a macro definition must explicitly ex-
pand any macros in a subform of the macro call before computing its
own expansion.

See lambda-list-keywords.
X3J13 voted in March 1989 to specify that macro environment objects

received with the &environment argument of a macro function have only
dynamic extent. The consequences are undefined if such objects are referred
to outside the dynamic extent of that particular invocation of the macro func-
tion. This allows implementations to use somewhat more efficient techniques
for representing environment objects.

X3J13 voted in March 1989 to clarify the permitted uses of &body,
&whole, and &environment:

• &body may appear at any level of a defmacro lambda-list.

• &whole may appear at any level of a defmacro lambda-list. At inner
levels a &whole variable is bound to that part of the argument that
matches the sub-lambda-list in which &whole appears. No matter
where &whole is used, other parameters or lambda-list keywords may
follow it.

8.1. MACRO DEFINITION 205

• &environment may occur only at the outermost level of a defmacro
lambda-list, and it may occur at most once, but it may occur anywhere
within that lambda-list, even before an occurrence of &whole.

defmacro, unlike any other Common Lisp construct that has a lambda-
list as part of its syntax, provides an additional facility known as destructur-
ing.

See destructuring-bind, which provides the destructuring facility sep-
arately.

Anywhere in the lambda-list where a parameter name may appear, and
where ordinary lambda-list syntax (as described in section 5.2.2) does not
otherwise allow a list, a lambda-list may appear in place of the parameter
name. When this is done, then the argument form that would match the
parameter is treated as a (possibly dotted) list, to be used as an argument
forms list for satisfying the parameters in the embedded lambda-list. As an
example, one could write the macro definition for dolist in this manner:

(defmacro dolist ((var listform &optional resultform)
&rest body)

...)

More examples of embedded lambda-lists in defmacro are shown below.
Another destructuring rule is that defmacro allows any lambda-list

(whether top-level or embedded) to be dotted, ending in a parameter name.
This situation is treated exactly as if the parameter name that ends the list
had appeared preceded by &rest. For example, the definition skeleton for
dolist shown above could instead have been written

(defmacro dolist ((var listform &optional resultform)
. body)

...)

If the compiler encounters a defmacro, the new macro is added to the
compilation environment, and a compiled form of the expansion function is
also added to the output file so that the new macro will be operative at run
time. If this is not the desired effect, the defmacro form can be wrapped in
an eval-when construct.

It is permissible to use defmacro to redefine a macro (for example, to
install a corrected version of an incorrect definition), or to redefine a function
as a macro. It is an error to attempt to redefine the name of a special form

206 CHAPTER 8. MACROS

(see table 5.1) as a macro. Seemacrolet, which establishes macro definitions
over a restricted lexical scope.

See also define-compiler-macro.
Suppose, for the sake of example, that it were desirable to implement

a conditional construct analogous to the Fortran arithmetic IF statement.
(This of course requires a certain stretching of the imagination and suspension
of disbelief.) The construct should accept four forms: a test-value, a neg-
form, a zero-form, and a pos-form. One of the last three forms is chosen
to be executed according to whether the value of the test-form is positive,
negative, or zero. Using defmacro, a definition for such a construct might
look like this:

(defmacro arithmetic-if (test neg-form zero-form pos-form)
(let ((var (gensym)))
‘(let ((,var ,test))
(cond ((< ,var 0) ,neg-form)

((= ,var 0) ,zero-form)
(t ,pos-form)))))

Note the use of the backquote facility in this definition (see section 22.1.3).
Also note the use of gensym to generate a new variable name. This is
necessary to avoid conflict with any variables that might be referred to in
neg-form, zero-form, or pos-form.

If the form is executed by the interpreter, it will cause the function def-
inition of the symbol arithmetic-if to be a macro associated with which is
a two-argument expansion function roughly equivalent to

(lambda (calling-form environment)
(declare (ignore environment))
(let ((var (gensym)))
(list ’let

(list (list ’var (cadr calling-form)))
(list ’cond

(list (list ’< var ’0) (caddr calling-form))
(list (list ’= var ’0) (cadddr calling-form))
(list ’t (fifth calling-form))))))

The lambda-expression is produced by the defmacro declaration. The
calls to list are the (hypothetical) result of the backquote (‘) macro charac-
ter and its associated commas. The precise macro expansion function may

8.1. MACRO DEFINITION 207

depend on the implementation, for example providing some degree of explicit
error checking on the number of argument forms in the macro call.

Now, if eval encounters

(arithmetic-if (- x 4.0)
(- x)
(error "Strange zero")
x)

this will be expanded into something like

(let ((g407 (- x 4.0)))
(cond ((< g407 0) (- x))

((= g407 0) (error "Strange zero"))
(t x)))

and eval tries again on this new form. (It should be clear now that
the backquote facility is very useful in writing macros, since the form to be
returned is normally a complex list structure, typically consisting of a mostly
constant template with a few evaluated forms here and there. The backquote
template provides a “picture” of the resulting code, with places to be filled
in indicated by preceding commas.)

To expand on this example, stretching credibility to its limit, we might
allow the pos-form and zero-form to be omitted, allowing their values to
default to nil, in much the same way that the else form of a Common Lisp
if construct may be omitted:

(defmacro arithmetic-if (test neg-form
&optional zero-form pos-form)

(let ((var (gensym)))
‘(let ((,var ,test))
(cond ((< ,var 0) ,neg-form)

((= ,var 0) ,zero-form)
(t ,pos-form)))))

Then one could write

(arithmetic-if (- x 4.0) (print x))

which would be expanded into something like

208 CHAPTER 8. MACROS

(let ((g408 (- x 4.0)))
(cond ((< g408 0) (print x))

((= g408 0) nil)
(t nil)))

The resulting code is correct but rather silly-looking. One might rewrite
the macro definition to produce better code when pos-form and possibly
zero-form are omitted, or one might simply rely on the Common Lisp imple-
mentation to provide a compiler smart enough to improve the code itself.

Destructuring is a very powerful facility that allows the defmacro
lambda-list to express the structure of a complicated macro-call syntax. If
no lambda-list keywords appear, then the defmacro lambda-list is simply a
list, nested to some extent, containing parameter names at the leaves. The
macro-call form must have the same list structure. For example, consider
this macro definition:

(defmacro halibut ((mouth eye1 eye2)
((fin1 length1) (fin2 length2))
tail)

...)

Now consider this macro call:

(halibut (m (car eyes) (cdr eyes))
((f1 (count-scales f1)) (f2 (count-scales f2)))
my-favorite-tail)

This would cause the expansion function to receive the following values
for its parameters:

Parameter Value
mouth m
eye1 (car eyes)
eye2 (cdr eyes)
fin1 f1
length1 (count-scales f1)
fin2 f2
length2 (count-scales f2)
tail my-favorite-tail

8.1. MACRO DEFINITION 209

The following macro call would be in error because there would be no argu-
ment form to match the parameter length1:

(halibut (m (car eyes) (cdr eyes))
((f1) (f2 (count-scales f2)))
my-favorite-tail)

The following macro call would be in error because a symbol appears in
the call where the structure of the lambda-list requires a list.

(halibut my-favorite-head
((f1 (count-scales f1)) (f2 (count-scales f2)))
my-favorite-tail)

The fact that the value of the variable my-favorite-head might happen
to be a list is irrelevant here. It is the macro call itself whose structure must
match that of the defmacro lambda-list.

The use of lambda-list keywords adds even greater flexibility. For exam-
ple, suppose it is convenient within the expansion function for halibut to
be able to refer to the list whose components are called mouth, eye1, and
eye2 as head. One may write this:

(defmacro halibut ((&whole head mouth eye1 eye2)
((fin1 length1) (fin2 length2))
tail)

Now consider the same valid macro call as before:

(halibut (m (car eyes) (cdr eyes))
((f1 (count-scales f1)) (f2 (count-scales f2)))
my-favorite-tail)

This would cause the expansion function to receive the same values for
its parameters and also a value for the parameter head:

Parameter Value
head (m (car eyes) (cdr eyes))

The stipulation that an embedded lambda-list is permitted only where
ordinary lambda-list syntax would permit a parameter name but not a list
is made to prevent ambiguity. For example, one may not write

210 CHAPTER 8. MACROS

(defmacro loser (x &optional (a b &rest c) &rest z)
...)

because ordinary lambda-list syntax does permit a list following &op-
tional; the list (a b &rest c) would be interpreted as describing an op-
tional parameter named a whose default value is that of the form b, with a
supplied-p parameter named &rest (not legal), and an extraneous symbol c
in the list (also not legal). An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)
...)

The extra set of parentheses removes the ambiguity. However, the def-
inition is now incorrect because a macro call such as (loser (car pool))
would not provide any argument form for the lambda-list (a b &rest c),
and so the default value against which to match the lambda-list would be
nil because no explicit default value was specified. This is in error because
nil is an empty list; it does not have forms to satisfy the parameters a and
b. The fully correct definition would be either

(defmacro loser (x &optional ((a b &rest c) ’(nil nil)) &rest z)
...)

or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)
...)

These differ slightly: the first requires that if the macro call specifies a
explicitly then it must also specify b explicitly, whereas the second does not
have this requirement. For example,

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

8.2 Macro Expansion
The macroexpand function is the conventional means for expanding a
macro call. A hook is provided for a user function to gain control during
the expansion process.

8.2. MACRO EXPANSION 211

[Function] macroexpand form &optional env
[Function] macroexpand-1 form &optional env

If form is a macro call, then macroexpand-1 will expand the macro call
once and return two values: the expansion and t. If form is not a macro call,
then the two values form and nil are returned.

A form is considered to be a macro call only if it is a cons whose car is
a symbol that names a macro. The environment env is similar to that used
within the evaluator (see evalhook); it defaults to a null environment. Any
local macro definitions established within env by macrolet will be consid-
ered. If only form is given as an argument, then the environment is effectively
null, and only global macro definitions (as established by defmacro) will be
considered.

Macro expansion is carried out as follows. Once macroexpand-1 has
determined that a symbol names a macro, it obtains the expansion function
for that macro. The value of the variable *macroexpand-hook* is then
called as a function of three arguments: the expansion function, the form,
and the environment env. The value returned from this call is taken to be
the expansion of the macro call. The initial value of *macroexpand-hook*
is funcall, and the net effect is to invoke the expansion function, giving it
form and env as its two arguments.

X3J13 voted in June 1988 to specify that the value of *macroexpand-
hook* is first coerced to a function before being called as the expansion
interface hook. Therefore its value may be a symbol, a lambda-expression,
or any object of type function.

X3J13 voted in March 1989 to specify that macro environment objects
received by a *macroexpand-hook* function have only dynamic extent.
The consequences are undefined if such objects are referred to outside the dy-
namic extent of that particular invocation of the hook function. This allows
implementations to use somewhat more efficient techniques for representing
environment objects.

X3J13 voted in June 1989 to clarify that, while *macroexpand-hook*
may be useful for debugging purposes, despite the original design intent there
is currently no correct portable way to use it for caching macro expansions.

• Caching by displacement (performing a side effect on the macro-call
form) won’t work because the same (eq) macro-call form may appear
in distinct lexical contexts. In addition, the macro-call form may be a
read-only constant (see quote and also section 24.1).

212 CHAPTER 8. MACROS

• Caching by table lookup won’t work because such a table would have
to be keyed by both the macro-call form and the environment, but
X3J13 voted in March 1989 to permit macro environments to have
only dynamic extent.

• Caching by storing macro-call forms and expansions within the envi-
ronment object itself would work, but there are no portable primitives
that would allow users to do this.

X3J13 also noted that, although there seems to be no correct portable way
to use *macroexpand-hook* to cache macro expansions, there is no re-
quirement that an implementation call the macro expansion function more
than once for a given form and lexical environment.

X3J13 voted in March 1989 to specify that macroexpand-1 will also
expand symbol macros defined by symbol-macrolet; therefore a form may
also be a macro call if it is a symbol. The vote did not address the interac-
tion of this feature with the *macroexpand-hook* function. An obvious
implementation choice is that the hook function is indeed called and given
a special expansion function that, when applied to the form (a symbol) and
env, will produce the expansion, just as for an ordinary macro; but this is
only my suggestion.

The evaluator expands macro calls as if through the use of
macroexpand-1; the point is that eval also uses *macroexpand-hook*.

macroexpand is similar to macroexpand-1, but repeatedly expands
form until it is no longer a macro call. (In effect, macroexpand simply
calls macroexpand-1 repeatedly until the second value returned is nil.)
A second value of t or nil is returned as for macroexpand-1, indicating
whether the original form was a macro call.

[Variable] *macroexpand-hook*

The value of *macroexpand-hook* is used as the expansion interface
hook by macroexpand-1.

8.3 Destructuring
[Macro] destructuring-bind lambda-list expression {declaration}* {form}*
This macro binds the variables specified in lambda-list to the correspond-

ing values in the tree structure resulting from evaluating the expression, then

8.4. COMPILER MACROS 213

executes the forms as an implicit progn.
A destructuring-bind lambda-list may contain the lambda-list key-

words &optional, &rest, &key, &allow-other-keys, and &aux; &body
and &whole may also be used as they are in defmacro, but &environ-
ment may not be used. Nested and dotted lambda-lists are also permitted
as for defmacro. The idea is that a destructuring-bind lambda-list has
the same format as inner levels of a defmacro lambda-list.

If the result of evaluating the expression does not match the destructuring
pattern, an error should be signaled.

8.4 Compiler Macros
X3J13 voted in June 1989 to add a facility for defining compiler macros that
take effect only when compiling code, not when interpreting it.

The purpose of this facility is to permit selective source-code transforma-
tions only when the compiler is processing the code. When the compiler is
about to compile a non-atomic form, it first calls compiler-macroexpand-
1 repeatedly until there is no more expansion (there might not be any to
begin with). Then it continues its remaining processing, which may include
calling macroexpand-1 and so on.

The compiler is required to expand compiler macros. It is unspecified
whether the interpreter does so. The intention is that only the compiler will
do so, but the range of possible “compiled-only” implementation strategies
precludes any firm specification.
[Macro] define-compiler-macro name lambda-list
{declaration | doc-string}* {form}*
This is just like defmacro except the definition is not stored in the symbol

function cell of name and is not seen by macroexpand-1. It is, however,
seen by compiler-macroexpand-1. As with defmacro, the lambda-list
may include &environment and &whole and may include destructuring.
The definition is global. (There is no provision for defining local compiler
macros in the way that macrolet defines local macros.)

A top-level call to define-compiler-macro in a file being compiled by
compile-file has an effect on the compilation environment similar to that of
a call to defmacro, except it is noticed as a compiler macro (see section 24.1).

Note that compiler macro definitions do not appear in information re-
turned by function-information; they are global, and their interaction

214 CHAPTER 8. MACROS

with other lexical and global definitions can be reconstructed by compiler-
macro-function. It is up to code-walking programs to decide whether to
invoke compiler macro expansion.

X3J13 voted in March 1988 to specify that the body of the expander
function defined by defmacro is implicitly enclosed in a block construct
whose name is the same as the name of the defined macro; presumably this
applies also to define-compiler-macro. Therefore return-from may be
used to exit from the function.

[Function] compiler-macro-function name &optional env

The name must be a symbol. If it has been defined as a compiler macro,
then compiler-macro-function returns the macro expansion function; oth-
erwise it returns nil. The lexical environment env may override any global
definition for name by defining a local function or local macro (such as by
flet, labels, or macrolet) in which case nil is returned.

setf may be used with compiler-macro-function to install a function
as the expansion function for the compiler macro name, in the same manner
as for macro-function. Storing the value nil removes any existing compiler
macro definition. As with macro-function, a non-nil stored value must be
a function of two arguments, the entire macro call and the environment. The
second argument to compiler-macro-function must be omitted when it is
used with setf.

[Function] compiler-macroexpand form &optional env
[Function] compiler-macroexpand-1 form &optional env

These are just like macroexpand and macroexpand-1 except that the
expander function is obtained as if by a call to compiler-macro-function
on the car of the form rather than by a call to macro-function. Note
that compiler-macroexpand performs repeated expansion but compiler-
macroexpand-1 performs at most one expansion. Two values are returned,
the expansion (or the original form) and a value that is true if any expansion
occurred and nil otherwise.

There are three cases where no expansion happens:

• There is no compiler macro definition for the car of form.

• There is such a definition but there is also a notinline declaration,
either globally or in the lexical environment env.

8.5. ENVIRONMENTS 215

• A global compiler macro definition is shadowed by a local function or
macro definition (such as by flet, labels, or macrolet).

Note that if there is no expansion, the original form is returned as the first
value, and nil as the second value.

Any macro expansion performed by the function compiler-
macroexpand or by the function compiler-macroexpand-1 is carried
out by calling the function that is the value of *macroexpand-hook*.

A compiler macro may decline to provide any expansion merely by return-
ing the original form. This is useful when using the facility to put “compiler
optimizers” on various function names. For example, here is a compiler macro
that “optimizes” (one would hope) the zero-argument and one-argument cases
of a function called plus:

(define-compiler-macro plus (&whole form &rest args)
(case (length args)
(0 0)
(1 (car args))
(t form)))

8.5 Environments

X3J13 voted in June 1989 to add some facilities for obtaining informa-
tion from environment objects of the kind received as arguments by macro
expansion functions, *macroexpand-hook* functions, and *evalhook*
functions. There is a minimal set of accessors (variable-information,
function-information, and declaration-information) and a constructor
(augment-environment) for environments.

All of the standard declaration specifiers, with the exception of special,
can be defined fairly easily using define-declaration. It also seems to be
able to handle most extended declarations.

The function parse-macro is provided so that users don’t have to write
their own code to destructure macro arguments. This function is not entirely
necessary since X3J13 voted in March 1989 to add destructuring-bind to
the language. However, parse-macro is worth having anyway, since any
program-analyzing program is going to need to define it, and the implemen-
tation isn’t completely trivial even with destructuring-bind to build upon.

216 CHAPTER 8. MACROS

The function enclose allows expander functions to be defined in a non-
null lexical environment, as required by the vote of X3J13 in March 1989 .
It also provides a mechanism by which a program processing the body of an
(eval-when (:compile-toplevel) ...) form can execute it in the enclosing
environment (see issue).

In all of these functions the argument named env is an environment ob-
ject. (It is not required that implementations provide a distinguished rep-
resentation for such objects.) Optional env arguments default to nil, which
represents the local null lexical environment (containing only global defini-
tions and proclamations that are present in the run-time environment). All
of these functions should signal an error of type type-error if the value of
an environment argument is not a syntactic environment object.

The accessor functions variable-information, function-information,
and declaration-information retrieve information about declarations that
are in effect in the environment. Since implementations are permitted to
ignore declarations (except for special declarations and optimize safety
declarations if they ever compile unsafe code), these accessors are required
only to return information about declarations that were explicitly added to
the environment using augment-environment. They might also return in-
formation about declarations recognized and added to the environment by
the interpreter or the compiler, but that is at the discretion of the imple-
mentor. Implementations are also permitted to canonicalize declarations,
so the information returned by the accessors might not be identical to the
information that was passed to augment-environment.

[Function] variable-information variable &optional env

This function returns information about the interpretation of the symbol
variable when it appears as a variable within the lexical environment env.
Three values are returned.

The first value indicates the type of definition or binding for variable in
env :

nil There is no apparent definition or binding for variable.

:special The variable refers to a special variable, either declared or proclaimed.

:lexical The variable refers to a lexical variable.

:symbol-macro The variable refers to a symbol-macrolet binding.

8.5. ENVIRONMENTS 217

:constant Either the variable refers to a named constant defined by defconstant
or the variable is a keyword symbol.

The second value indicates whether there is a local binding of the name.
If the name is locally bound, the second value is true; otherwise, the second
value is nil.

The third value is an a-list containing information about declarations
that apply to the apparent binding of the variable. The keys in the a-list are
symbols that name declaration specifiers, and the format of the corresponding
value in the cdr of each pair depends on the particular declaration name
involved. The standard declaration names that might appear as keys in this
a-list are:

dynamic-extent A non-nil value indicates that the variable has been declared dynamic-
extent. If the value is nil, the pair might be omitted.

ignore A non-nil value indicates that the variable has been declared ignore.
If the value is nil, the pair might be omitted.

type The value is a type specifier associated with the variable by a type
declaration or an abbreviated declaration such as (fixnum variable).
If no explicit association exists, either by proclaim or declare, then
the type specifier is t. It is permissible for implementations to use a
type specifier that is equivalent to or a supertype of the one appearing
in the original declaration. If the value is t, the pair might be omitted.

If an implementation supports additional declaration specifiers that apply to
variable bindings, those declaration names might also appear in the a-list.
However, the corresponding key must not be a symbol that is external in
any package defined in the standard or that is otherwise accessible in the
common-lisp-user package.

The a-list might contain multiple entries for a given key. The conse-
quences of destructively modifying the list structure of this a-list or its el-
ements (except for values that appear in the a-list as a result of define-
declaration) are undefined.

Note that the global binding might differ from the local one and can be
retrieved by calling variable-information with a null lexical environment.

218 CHAPTER 8. MACROS

[Function] function-information function &optional env

This function returns information about the interpretation of the
function-name function when it appears in a functional position within lexi-
cal environment env. Three values are returned.

The first value indicates the type of definition or binding of the function-
name which is apparent in env :

nil There is no apparent definition for function.

:function The function refers to a function.

:macro The function refers to a macro.

:special-form The function refers to a special operator.

Some function-names can refer to both a global macro and a global special
form. In such a case the macro takes precedence and :macro is returned as
the first value.

The second value specifies whether the definition is local or global. If
local, the second value is true; it is nil when the definition is global.

The third value is an a-list containing information about declarations
that apply to the apparent binding of the function. The keys in the a-list are
symbols that name declaration specifiers, and the format of the corresponding
values in the cdr of each pair depends on the particular declaration name
involved. The standard declaration names that might appear as keys in this
a-list are:

dynamic-extent A non-nil value indicates that the function has been declared
dynamic-extent. If the value is nil, the pair might be omitted.

inline The value is one of the symbols inline, notinline, or nil to indicate
whether the function-name has been declared inline, declared notin-
line, or neither, respectively. If the value is nil, the pair might be
omitted.

ftype The value is the type specifier associated with the function-name in
the environment, or the symbol function if there is no functional type
declaration or proclamation associated with the function-name. This
value might not include all the apparent ftype declarations for the
function-name. It is permissible for implementations to use a type

8.5. ENVIRONMENTS 219

specifier that is equivalent to or a supertype of the one that appeared
in the original declaration. If the value is function, the pair might be
omitted.

If an implementation supports additional declaration specifiers that apply to
function bindings, those declaration names might also appear in the a-list.
However, the corresponding key must not be a symbol that is external in
any package defined in the standard or that is otherwise accessible in the
common-lisp-user package.

The a-list might contain multiple entries for a given key. In this case the
value associated with the first entry has precedence. The consequences of
destructively modifying the list structure of this a-list or its elements (except
for values that appear in the a-list as a result of define-declaration) are
undefined.

Note that the global binding might differ from the local one and can be
retrieved by calling function-information with a null lexical environment.

[Function] declaration-information decl-name &optional env

This function returns information about declarations named by the sym-
bol decl-name that are in force in the environment env. Only declarations
that do not apply to function or variable bindings can be accessed with this
function. The format of the information that is returned depends on the
decl-name involved.

It is required that this function recognize optimize and declaration as
decl-names. The values returned for these two cases are as follows:

optimize A single value is returned, a list whose entries are of the form (qual-
ity value), where quality is one of the standard optimization qual-
ities (speed, safety, compilation-speed, space, debug) or some
implementation-specific optimization quality, and value is an integer in
the range 0 to 3 (inclusive). The returned list always contains an entry
for each of the standard qualities and for each of the implementation-
specific qualities. In the absence of any previous declarations, the as-
sociated values are implementation-dependent. The list might contain
multiple entries for a quality, in which case the first such entry specifies
the current value. The consequences of destructively modifying this list
or its elements are undefined.

220 CHAPTER 8. MACROS

declaration A single value is returned, a list of the declaration names that have been
proclaimed as valid through the use of the declaration proclamation.
The consequences of destructively modifying this list or its elements
are undefined.

If an implementation is extended to recognize additional declaration spec-
ifiers in declare or proclaim, it is required that either the declaration-
information function should recognize those declarations also or the im-
plementation should provide a similar accessor that is specialized for that
declaration specifier. If declaration-information is used to return the in-
formation, the corresponding decl-name must not be a symbol that is external
in any package defined in the standard or that is otherwise accessible in the
common-lisp-user package.

[Function] augment-environment env &key :variable :symbol-macro
:function :macro :declare

This function returns a new environment containing the information
present in env augmented with the information provided by the keyword
arguments. It is intended to be used by program analyzers that perform a
code walk.

The arguments are supplied as follows.

:variable The argument is a list of symbols that will be visible as bound
variables in the new environment. Whether each binding is to be inter-
preted as special or lexical depends on special declarations recorded
in the environment or provided in the :declare argument.

:symbol-macro The argument is a list of symbol macro definitions, each
of the form (name definition); that is, the argument is in the same
format as the cadr of a symbol-macrolet special operator. The new
environment will have local symbol-macro bindings of each symbol to
the corresponding expansion, so that macroexpand will be able to
expand them properly. A type declaration in the :declare argument
that refers to a name in this list implicitly modifies the definition as-
sociated with the name. The effect is to wrap a the form mentioning
the type around the definition.

:function The argument is a list of function-names that will be visible as
local function bindings in the new environment.

8.5. ENVIRONMENTS 221

:macro The argument is a list of local macro definitions, each of the form
(name definition). Note that the argument is not in the same format
as the cadr of a macrolet special operator. Each definition must
be a function of two arguments (a form and an environment). The
new environment will have local macro bindings of each name to the
corresponding expander function, which will be returned by macro-
function and used by macroexpand.

:declare The argument is a list of declaration specifiers. Information
about these declarations can be retrieved from the resulting envi-
ronment using variable-information, function-information, and
declaration-information.

The consequences of subsequently destructively modifying the list structure
of any of the arguments to this function are undefined.

An error is signaled if any of the symbols naming a symbol macro in
the :symbol-macro argument is also included in the :variable argument.
An error is signaled if any symbol naming a symbol macro in the :symbol-
macro argument is also included in a special declaration specifier in the
:declare argument. An error is signaled if any symbol naming a macro
in the :macro argument is also included in the :function argument. The
condition type of each of these errors is program-error.

The extent of the returned environment is the same as the extent of the
argument environment env. The result might share structure with env but
env is not modified.

While an environment argument received by an *evalhook* func-
tion is permitted to be used as the environment argument to augment-
environment, the consequences are undefined if an attempt is made to use
the result of augment-environment as the environment argument for eval-
hook. The environment returned by augment-environment can be used
only for syntactic analysis, that is, as an argument to the functions defined
in this section and functions such as macroexpand.
[Macro] define-declaration decl-name lambda-list {form}*
This macro defines a handler for the named declaration. It is the mech-

anism by which augment-environment is extended to support additional
declaration specifiers. The function defined by this macro will be called with
two arguments, a declaration specifier whose car is decl-name and the env ar-
gument to augment-environment. This function must return two values.
The first value must be one of the following keywords:

222 CHAPTER 8. MACROS

:variable The declaration applies to variable bindings.

:function The declaration applies to function bindings.

:declare The declaration does not apply to bindings.

If the first value is :variable or :function then the second value must be a
list, the elements of which are lists of the form (binding-name key value).
If the corresponding information function (either variable-information or
function-information) is applied to the binding-name and the augmented
environment, the a-list returned by the information function as its third value
will contain the value under the specified key.

If the first value is :declare, the second value must be a cons of the form
(key . value). The function declaration-information will return value
when applied to the key and the augmented environment.

define-declaration causes decl-name to be proclaimed to be a declara-
tion; it is as if its expansion included a call (proclaim ’(declaration decl-
name)). As is the case with standard declaration specifiers, the evaluator
and compiler are permitted, but not required, to add information about dec-
laration specifiers defined with define-declaration to the macro expansion
and *evalhook* environments.

The consequences are undefined if decl-name is a symbol that can appear
as the car of any standard declaration specifier.

The consequences are also undefined if the return value from a declara-
tion handler defined with define-declaration includes a key name that is
used by the corresponding accessor to return information about any standard
declaration specifier. (For example, if the first return value from the handler
is :variable, the second return value may not use the symbols dynamic-
extent, ignore, or type as key names.)

The define-declaration macro does not have any special compile-time
side effects (see section 24.1).

[Function] parse-macro name lambda-list body &optional env

This function is used to process a macro definition in the same way as
defmacro and macrolet. It returns a lambda-expression that accepts two
arguments, a form and an environment. The name, lambda-list, and body
arguments correspond to the parts of a defmacro or macrolet definition.

8.5. ENVIRONMENTS 223

The lambda-list argument may include&environment and&whole and
may include destructuring. The name argument is used to enclose the body
in an implicit block and might also be used for implementation-dependent
purposes (such as including the name of the macro in error messages if the
form does not match the lambda-list).

[Function] enclose lambda-expression &optional env

This function returns an object of type function that is equivalent to
what would be obtained by evaluating ‘(function ,lambda-expression) in
a syntactic environment env. The lambda-expression is permitted to reference
only the parts of the environment argument env that are relevant only to
syntactic processing, specifically declarations and the definitions of macros
and symbol macros. The consequences are undefined if the lambda-expression
contains any references to variable or function bindings that are lexically
visible in env, any go to a tag that is lexically visible in env, or any return-
from mentioning a block name that is lexically visible in env.

224 CHAPTER 8. MACROS

Chapter 9

Declarations

Declarations allow you to specify extra information about your program to
the Lisp system. With one exception, declarations are completely optional
and correct declarations do not affect the meaning of a correct program.
The exception is that special declarations do affect the interpretation of
variable bindings and references and so must be specified where appropriate.
All other declarations are of an advisory nature, and may be used by the
Lisp system to aid the programmer by performing extra error checking or
producing more efficient compiled code. Declarations are also a good way to
add documentation to a program.

Note that it is considered an error for a program to violate a declaration
(such as a type declaration), but an implementation is not required to detect
such errors (though such detection, where feasible, is to be encouraged).

9.1 Declaration Syntax

The declare construct is used for embedding declarations within executable
code. Global declarations and declarations that are computed by a program
are established by the proclaim construct.

Macro declaim, which is guaranteed to be recognized appropriately by
the compiler, is often more convenient than proclaim for establishing global
declarations.
[Special operator] declare {decl-spec}*
A declare form is known as a declaration. Declarations may occur only at

the beginning of the bodies of certain special operators; that is, a declaration

225

226 CHAPTER 9. DECLARATIONS

may occur only as a statement of such a special operator, and all statements
preceding it (if any) must also be declare forms (or possibly documentation
strings, in some cases). Declarations may occur in lambda-expressions and
in the forms listed here.

define-setf-method labels
defmacro let
defsetf let*
deftype locally
defun macrolet
do multiple-value-bind
do* prog
do-all-symbols prog*
do-external-symbols with-input-from-string
do-symbols with-open-file
dolist with-open-stream
dotimes with-output-to-string
flet with-conditions-restarts
print-unreadable-object with-standard-io-syntax

defgeneric generic-function
define-method-combinationgeneric-labels
defmethod

symbol-macrolet with-slots
with-accessors

It is an error to attempt to evaluate a declaration. Those special operators
that permit declarations to appear perform explicit checks for their presence.

It is permissible for a macro call to expand into a declaration and be
recognized as such, provided that the macro call appears where a declaration
may legitimately appear. (However, a macro call may not appear in place of
a decl-spec.)

A declaration is recognized only as such if it appears explicitly, as a list
whose car is the symbol declare, in the body of a relevant special operator.
(Note, however, that it is still possible for a macro to expand into a call to
the proclaim function.)

Each decl-spec is a list whose car is a symbol specifying the kind of
declaration to be made. Declarations may be divided into two classes: those

9.1. DECLARATION SYNTAX 227

that concern the bindings of variables, and those that do not. (The special
declaration is the sole exception: it effectively falls into both classes, as
explained below.) Those that concern variable bindings apply only to the
bindings made by the form at the head of whose body they appear. For
example, in
(defun foo (x)
(declare (type float x)) ...
(let ((x ’a)) ...)
...)
the type declaration applies only to the outer binding of x, and not to

the binding made in the let.
Declarations that do not concern themselves with variable bindings are

pervasive, affecting all code in the body of the special operator. As an
example of a pervasive declaration,
(defun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function floor should
not be open-coded but called as an out-of-line subroutine.

Some special operators contain pieces of code that, properly speaking, are
not part of the body of the special operator. Examples of this are initializa-
tion forms that provide values for bound variables, and the result forms of
iteration constructs. In all cases such additional code is within the scope of
any pervasive declarations appearing before the body of the special operator.
Non-pervasive declarations have no effect on such code, except (of course)
in those situations where the code is defined to be within the scope of the
variables affected by such non-pervasive declarations. For example:
(defun few (x &optional (y *print-circle*))
(declare (special *print-circle*))
...)
The reference to *print-circle* in the first line of this example is special

because of the declaration in the second line.
(defun nonsense (k x z)
(foo z x) ;First call to foo
(let ((j (foo k x)) ;Second call to foo

(x (* k k)))
(declare (inline foo) (special x z))
(foo x j z))) ;Third call to foo

228 CHAPTER 9. DECLARATIONS

In this rather nonsensical example, the inline declaration applies to the
second and third calls to foo, but not to the first one. The special declara-
tion of x causes the let form to make a special binding for x and causes the
reference to x in the body of the let to be a special reference. The reference
to x in the second call to foo is also a special reference. The reference to x
in the first call to foo is a local reference, not a special one. The special
declaration of z causes the reference to z in the call to foo to be a special
reference; it will not refer to the parameter to nonsense named z, because
that parameter binding has not been declared to be special. (The special
declaration of z does not appear in the body of the defun, but in an inner
construct, and therefore does not affect the binding of the parameter.)

X3J13 voted in January 1989 to replace the rules concerning the scope of
declarations occurring at the head of a special operator or lambda-expression:

• The scope of a declaration always includes the body forms, as well as
any “stepper” or “result” forms (which are logically part of the body),
of the special operator or lambda-expression.

• If the declaration applies to a name binding, then the scope of the
declaration also includes the scope of the name binding.

Note that the distinction between pervasive and non-pervasive declarations is
eliminated. An important change from the first edition is that “initialization”
forms are specifically not included as part of the body under the first rule; on
the other hand, in many cases initialization forms may fall within the scope
of certain declarations under the second rule.

X3J13 also voted in January 1989 to change the interpretation of type
declarations (see section 9.2).

These changes affect the interpretation of some of the examples from the
first edition.

(defun foo (x)
(declare (type float x)) ...
(let ((x ’a)) ...)
...)

Under the interpretation approved by X3J13, the type declaration applies
to both bindings of x. More accurately, the type declaration is considered to
apply to variable references rather than bindings, and the type declaration
refers to every reference in the body of foo to a variable named x, no matter
to what binding it may refer.

9.1. DECLARATION SYNTAX 229

(defun foo (x y) (declare (notinline floor)) ...)

This example of the use of notinline stands unchanged, but the following
slight extension of it would change:

(defun foo (x &optional (y (floor x)))
(declare (notinline floor)) ...)

Under first edition rules, the notinline declaration would be considered
to apply to the call to floor in the initialization form for y. Under the
interpretation approved by X3J13, the notinline would not apply to that
particular call to floor. Instead the user must write something like

(defun foo (x &optional (y (locally (declare (notinline floor))
(floor x))))

(declare (notinline floor)) ...)

or perhaps

(locally (declare (notinline floor))
(defun foo (x &optional (y (floor x))) ...))

Similarly, the special declaration in

(defun few (x &optional (y *print-circle*))
(declare (special *print-circle*))
...)

is not considered to apply to the reference in the initialization form for y
in few. As for the nonsense example,

(defun nonsense (k x z)
(foo z x) ;First call to foo
(let ((j (foo k x)) ;Second call to foo

(x (* k k)))
(declare (inline foo) (special x z))
(foo x j z))) ;Third call to foo

under the interpretation approved by X3J13, the inline declaration is
no longer considered to apply to the second call to foo, because it is in an
initialization form, which is no longer considered in the scope of the decla-
ration. Similarly, the reference to x in that second call to foo is no longer

230 CHAPTER 9. DECLARATIONS

taken to be a special reference, but a local reference to the second parameter
of nonsense.

locally executes the forms as an implicit progn and returns the value(s)
of the last form.
[Special operator] locally {declaration}* {form}*
This change was made to accommodate the new compilation model for

top-level forms in a file (see section 24.1). When a locally operator ap-
pears at top level, the forms in its body are processed as top-level forms.
This means that one may, for example, meaningfully use locally to wrap
declarations around a defun or defmacro form:

(locally
(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))
(defun foo (x &optional (y (abs x)) (z (sqrt y)))
(bar x y z)))

Without assurance that this works one must write something cumbersome
such as

(defun foo (x &optional (y (locally
(declare (optimize (safety 3)

(space 3)
(debug 3)
(speed 1)))

(abs x)))
(z (locally

(declare (optimize (safety 3)
(space 3)
(debug 3)
(speed 1)))

(sqrt y))))
(locally
(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))
(bar x y z)))

[Function] proclaim decl-spec

The function proclaim takes a decl-spec as its argument and puts it into
effect globally. (Such a global declaration is called a proclamation.) Because

9.1. DECLARATION SYNTAX 231

proclaim is a function, its argument is always evaluated. This allows a
program to compute a declaration and then put it into effect by calling
proclaim.

Any variable names mentioned are assumed to refer to the dynamic values
of the variable. For example, the proclamation

(proclaim ’(type float tolerance))

once executed, specifies that the dynamic value of tolerance should al-
ways be a floating-point number. Similarly, any function-names mentioned
are assumed to refer to the global function definition.

A proclamation constitutes a universal declaration, always in force unless
locally shadowed. For example,

(proclaim ’(inline floor))

advises that floor should normally be open-coded in-line by the compiler
(but in the situation

(defun foo (x y) (declare (notinline floor)) ...)

it will be compiled out-of-line anyway in the body of foo, because of the
shadowing local declaration to that effect).

X3J13 voted in January 1989 to clarify that such shadowing does not
occur in the case of type declarations. If there is a local type declaration for a
special variable and there is also a global proclamation for that same variable,
then the value of the variable within the scope of the local declaration must
be a member of the intersection of the two declared types. This is consistent
with the treatment of nested local type declarations on which X3J13 also
voted in January 1989 .

As a special case (so to speak), proclaim treats a special decl-spec as
applying to all bindings as well as to all references of the mentioned variables.
Notice of correction. In the first edition, this sentence referred to a “special
declaration-form.” That was incorrect; proclaim accepts only a decl-spec,
not a declaration-form.

For example, after

(proclaim ’(special x))

in a function definition such as

232 CHAPTER 9. DECLARATIONS

(defun example (x) ...)

the parameter x will be bound as a special (dynamic) variable rather
than as a lexical (static) variable. This facility should be used with cau-
tion. The usual way to define a globally special variable is with defvar or
defparameter.
[Macro] declaim {decl-spec}*
This macro is syntactically like declare and semantically like proclaim.

It is an executable form and may be used anywhere proclaim may be called.
However, each decl-spec is not evaluated.

If a call to this macro appears at top level in a file being processed by the
file compiler, the proclamations are also made at compile time. As with other
defining macros, it is unspecified whether or not the compile-time side effects
of a declaim persist after the file has been compiled (see section 24.1).

9.2 Declaration Specifiers

Here is a list of valid declaration specifiers for use in declare. A construct
is said to be “affected” by a declaration if it occurs within the scope of a
declaration.

special (special var1 var2 ...) specifies that all of the variables named
are to be considered special. This specifier affects variable bindings but
also pervasively affects references. All variable bindings affected are
made to be dynamic bindings, and affected variable references refer to
the current dynamic binding rather than to the current local binding.
For example:

(defun hack (thing *mod*) ;The binding of the parameter
(declare (special *mod*)) ; *mod* is visible to hack1,
(hack1 (car thing))) ; but not that of thing

(defun hack1 (arg)
(declare (special *mod*)) ;Declare references to *mod*

; within hack1 to be special
(if (atom arg) *mod*

(cons (hack1 (car arg)) (hack1 (cdr arg)))))

9.2. DECLARATION SPECIFIERS 233

Note that it is conventional, though not required, to give special vari-
ables names that begin and end with an asterisk.

A special declaration does not affect bindings pervasively. Inner bind-
ings of a variable implicitly shadow a special declaration and must be
explicitly re-declared to be special. (However, a special proclamation
does pervasively affect bindings; this exception is made for reasons of
convenience and compatibility with MacLisp.) For example:

(proclaim ’(special x)) ;x is always special

(defun example (x y)
(declare (special y))
(let ((y 3) (x (* x 2)))
(print (+ y (locally (declare (special y)) y)))
(let ((y 4)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of
y are special and therefore dynamically scoped, but the middle binding
is lexically scoped. The two arguments to + are different, one being
the value, which is 3, of the lexically bound variable y, and the other
being the value of the special variable named y (a binding of which
happens, coincidentally, to lexically surround it at an outer level). All
the bindings of x and references to x are special, however, because of
the proclamation that x is always special.

As a matter of style, use of special proclamations should be avoided.
The defvar and defparameter macros are the conventional means for
proclaiming special variables in a program.

type (type type var1 var2 ...) affects only variable bindings and specifies
that the variables mentioned will take on values only of the specified
type. In particular, values assigned to the variables by setq, as well as
the initial values of the variables, must be of the specified type.

X3J13 voted in January 1989 to alter the interpretation of type decla-
rations. They are not to be construed to affect “only variable bindings.”
The new rule for a declaration of a variable to have a specified type is
threefold:

234 CHAPTER 9. DECLARATIONS

• It is an error if, during the execution of any reference to that vari-
able within the scope of the declaration, the value of the variable
is not of the declared type.

• It is an error if, during the execution of a setq of that variable
within the scope of the declaration, the new value for the variable
is not of the declared type.

• It is an error if, at any moment that execution enters the scope
of the declaration, the value of the variable is not of the declared
type.

One may think of a type declaration (declare (type face bodoni))
as implicitly changing every reference to bodoni within the scope of
the declaration to (the face bodoni); changing every expression exp
assigned to bodoni within the scope of the declaration to (the face
exp); and implicitly executing (the face bodoni) every time execu-
tion enters the scope of the declaration.

These new rules make type declarations much more useful. Under first
edition rules, a type declaration was useless if not associated with a
variable binding; declarations such as in

(locally
(declare (type (byte 8) x y))
(+ x y))

at best had no effect and at worst were erroneous, depending on one’s
interpretation of the first edition. Under the interpretation approved
by X3J13, such declarations have “the obvious natural interpretation.”

X3J13 noted that if nested type declarations refer to the same variable,
then all of them have effect; the value of the variable must be a member
of the intersection of the declared types.

Nested type declarations could occur as a result of either macro expan-
sion or carefully crafted code. There are three cases. First, the inner
type might be a subtype of the outer one:

(defun compare (apples oranges)
(declare (type number apples oranges))

9.2. DECLARATION SPECIFIERS 235

(cond ((typep apples ’fixnum)
;; The programmer happens to know that, thanks to
;; constraints imposed by the caller, if APPLES
;; is a fixnum, then ORANGES will be also, and
;; therefore wishes to avoid the unnecessary cost
;; of checking ORANGES. Nevertheless the compiler
;; should be informed to allow it to optimize code.
(locally (declare (type fixnum apples oranges)))

;; Maybe the compiler could have figured
;; out by flow analysis that APPLES must
;; be a fixnum here, but it doesn’t hurt
;; to say it explicitly.

(< apples oranges)))
((or (complex apples)

(complex oranges))
(error "Not yet implemented. Sorry."))
...))

This is the case most likely to arise in code written completely by hand.

Second, the outer type might be a subtype of the inner one. In this
case the inner declaration has no additional practical effect, but it is
harmless. This is likely to occur if code declares a variable to be of a
very specific type and then passes it to a macro that then declares it
to be of a less specific type.

Third, the inner and outer declarations might be for types that overlap,
neither being a subtype of the other. This is likely to occur only as
a result of macro expansion. For example, user code might declare a
variable to be of type integer, and a macro might later declare it to be
of type (or fixnum package); in this case a compiler could intersect
the two types to determine that in this instance the variable may hold
only fixnums.

The reader should note that the following code fragment is, perhaps
astonishingly, not in error under the interpretation approved by X3J13:

236 CHAPTER 9. DECLARATIONS

(let ((james .007)
(maxwell 86))

(flet ((spy-swap ()
(rotatef james maxwell)))

(locally (declare (integer maxwell))
(spy-swap)
(view-movie "The Sound of Music")
(spy-swap)
maxwell)))

⇒ 86 (after a couple of hours of Julie Andrews)

The variable maxwell is declared to be an integer over the scope of
the type declaration, not over its extent. Indeed maxwell takes on the
non-integer value .007 while the Trapp family make their escape, but
because no reference to maxwell within the scope of the declaration
ever produces a non-integer value, the code is correct.

Now the assignment tomaxwell during the first call to spy-swap, and
the reference tomaxwell during the second call, do involve non-integer
values, but they occur within the body of spy-swap, which is not in
the scope of the type declaration! One could put the declaration in a
different place so as to include spy-swap in the scope:

(let ((james .007)
(maxwell 86))

(locally (declare (integer maxwell))
(flet ((spy-swap ()

(rotatef james maxwell)))
(spy-swap) ;Bug!
(view-movie "The Sound of Music")
(spy-swap)
maxwell)))

and then the code is indeed in error.

X3J13 also voted in January 1989 to alter the meaning of the function
type specifier when used in type declarations (see section 4.5).

type (type var1 var2 ...) is an abbreviation for (type type var1 var2
...), provided that type is one of the symbols appearing in table 4.1.

9.2. DECLARATION SPECIFIERS 237

Observe that this covers the particularly common case of declaring
numeric variables:

(declare (single-float mass dx dy dz)
(double-float acceleration sum))

In many implementations there is also some advantage to declaring
variables to have certain specialized vector types such as base-string.

ftype (ftype type function-name-1 function-name-2 ...) specifies
that the named functions will be of the functional type type, an ex-
ample of which follows. For example:

(declare (ftype (function (integer list) t) nth)
(ftype (function (number) float) sin cos))

Note that rules of lexical scoping are observed; if one of the functions
mentioned has a lexically apparent local definition (as made by flet or
labels), then the declaration applies to that local definition and not to
the global function definition.

X3J13 voted in March 1989 to extend ftype declaration specifiers to
accept any function-name (a symbol or a list whose car is setf—see
section 7.1). Thus one may write

(declaim (ftype (function (list) t) (setf cadr)))

to indicate the type of the setf expansion function for cadr.

X3J13 voted in January 1989 to alter the meaning of the function
type specifier when used in ftype declarations (see section 4.5).

X3J13 voted in January 1989 to remove this interpretation of the func-
tion declaration specifier from the language. Instead, a declaration specifier

(function var1 var2 ...)

is to be treated simply as an abbreviation for

(type function var1 var2 ...)

238 CHAPTER 9. DECLARATIONS

just as for all other symbols appearing in table 4.1.
X3J13 noted that although function appears in table 4.1, the first edi-

tion also discussed it explicitly, with a different meaning, without noting
whether the differing interpretation was to replace or augment the interpre-
tation regarding table 4.1. Unfortunately there is an ambiguous case: the
declaration

(declare (function foo nil string))

can be construed to abbreviate either

(declare (ftype (function () string) foo))

or

(declare (type function foo nil string))

The latter could perhaps be rejected on semantic grounds: it would be an
error to declare nil, a constant, to be of type function. In any case, X3J13
determined that the ice was too thin here; the possibility of confusion is not
worth the convenience of an abbreviation for ftype declarations. The change
also makes the language more consistent.

inline (inline function1 function2 ...) specifies that it is desirable for
the compiler to open-code calls to the specified functions; that is, the
code for a specified function should be integrated into the calling rou-
tine, appearing in-line in place of a procedure call. This may achieve
extra speed at the expense of debuggability (calls to functions compiled
in-line cannot be traced, for example). This declaration is pervasive.
Remember that a compiler is free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions
mentioned has a lexically apparent local definition (as established by
flet or labels), then the declaration applies to that local definition and
not to the global function definition.

X3J13 voted in October 1988 to clarify that during compilation the in-
line declaration specifier serves two distinct purposes: it indicates not
only that affected calls to the specified functions should be expanded
in-line, but also that affected definitions of the specified functions must
be recorded for possible use in performing such expansions.

9.2. DECLARATION SPECIFIERS 239

Looking at it the other way, the compiler is not required to save func-
tion definitions against the possibility of future expansions unless the
functions have already been proclaimed to be inline. If a function
is proclaimed (or declaimed) inline before some call to that function
but the current definition of that function was established before the
proclamation was processed, it is implementation-dependent whether
that call will be expanded in-line. (Of course, it is implementation-
dependent anyway, because a compiler is always free to ignore inline
declaration specifiers. However, the intent of the committee is clear:
for best results, the user is advised to put any inline proclamation of
a function before any definition of or call to that function.)

Consider these examples:

(defun huey (x) (+ x 100)) ;Compiler need not remember this
(declaim (inline huey dewey))
(defun dewey (y) (huey (sqrt y))) ;Call to huey unlikely to be expanded
(defun louie (z) (dewey (/ z))) ;Call to dewey likely to be expanded

X3J13 voted in March 1989 to extend inline declaration specifiers to
accept any function-name (a symbol or a list whose car is setf—see
section 7.1). Thus one may write (declare (inline (setf cadr))) to
indicate that the setf expansion function for cadr should be compiled
in-line.

notinline (notinline function1 function2 ...) specifies that it is unde-
sirable to compile the specified functions in-line. This declaration is
pervasive. A compiler is not free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions
mentioned has a lexically apparent local definition (as made by flet or
labels), then the declaration applies to that local definition and not to
the global function definition.

X3J13 voted in March 1989 to extend notinline declaration specifiers
to accept any function-name (a symbol or a list whose car is setf—see
section 7.1). Thus one may write (declare (notinline (setf cadr)))
to indicate that the setf expansion function for cadr should not be
compiled in-line.

240 CHAPTER 9. DECLARATIONS

X3J13 voted in January 1989 to clarify that the proper way to define
a function gnards that is not inline by default, but for which a local
declaration (declare (inline gnards)) has half a chance of actually
compiling gnards in-line, is as follows:

(declaim (inline gnards))

(defun gnards ...)

(declaim (notinline gnards))

The point is that the first declamation informs the compiler that the
definition of gnards may be needed later for in-line expansion, and
the second declamation prevents any expansions unless and until it is
overridden.
While an implementation is never required to perform in-line expansion,
many implementations that do support such expansion will not process
inline requests successfully unless definitions are written with these
proclamations in the manner shown above.

ignore (ignore var1 var2 ... varn) affects only variable bindings and
specifies that the bindings of the specified variables are never used. It
is desirable for a compiler to issue a warning if a variable so declared
is ever referred to or is also declared special, or if a variable is lexical,
never referred to, and not declared to be ignored.

optimize (optimize (quality1 value1) (quality2 value2)...) advises
the compiler that each quality should be given attention according to
the specified corresponding value. A quality is a symbol; standard
qualities include speed (of the object code), space (both code size and
run-time space), safety (run-time error checking), and compilation-
speed (speed of the compilation process). X3J13 voted in October
1988 to add the standard quality debug (ease of debugging). Other
qualities may be recognized by particular implementations. A value
should be a non-negative integer, normally in the range 0 to 3. The
value 0 means that the quality is totally unimportant, and 3 that the
quality is extremely important; 1 and 2 are intermediate values, with
1 the “normal” or “usual” value. One may abbreviate (quality 3) to
simply quality. This declaration is pervasive. For example:

9.2. DECLARATION SPECIFIERS 241

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)
(hairy-setup x)
(do ((i 0 (+ i 1))

(z x (cdr z)))
((null z) i)

;; This inner loop really needs to burn.
(declare (optimize speed))
(declare (fixnum i))
)))

declaration (declaration name1 name2 ...) advises the compiler that
each namej is a valid but non-standard declaration name. The purpose
of this is to tell one compiler not to issue warnings for declarations
meant for another compiler or other program processor.

The declaration declaration specifier may be used with declaim as
well as proclaim. The preceding examples would be better written
using declaim, to ensure that the compiler will process them properly.

(declaim (declaration author
target-language
target-machine))

(declaim (target-language ada)
(target-machine IBM-650))

(defun strangep (x)
(declare (author "Harry Tweeker"))
(member x ’(strange weird odd peculiar)))

dynamic-extent (dynamic-extent item1 item2 ... itemn) declares
that certain variables or function-names refer to data objects whose
extents may be regarded as dynamic; that is, the declaration may be
construed as a guarantee on the part of the programmer that the pro-
gram will behave correctly even if the data objects have only dynamic
extent rather than the usual indefinite extent.

242 CHAPTER 9. DECLARATIONS

Each item may be either a variable name or (function f) where f is
a function-name (see section 7.1). (Of course, (function f) may be
abbreviated in the usual way as #’f .)

It is permissible for an implementation simply to ignore this declara-
tion. In implementations that do not ignore it, the compiler (or inter-
preter) is free to make whatever optimizations are appropriate given
this information; the most common optimization is to stack-allocate
the initial value of the object. The data types that can be optimized
in this manner may vary from implementation to implementation.

The meaning of this declaration can be stated more precisely. We say
that object x is an otherwise inaccessible part of y if and only if making
y inaccessible would make x inaccessible. (Note that every object is
an otherwise inaccessible part of itself.) Now suppose that construct
c contains a dynamic-extent declaration for variable (or function) v
(which need not be bound by c). Consider the values w1, . . . ,wn taken
on by v during the course of some execution of c. The declaration
asserts that if some object x is an otherwise inaccessible part of wj
whenever wj becomes the value of v, then just after execution of c
terminates x will be either inaccessible or still an otherwise inaccessible
part of the value of v. If this assertion is ever violated, the consequences
are undefined.

In some implementations, it is possible to allocate data structures in
a way that will make them easier to reclaim than by general-purpose
garbage collection (for example, on the stack or in some temporary
area). The dynamic-extent declaration is designed to give the imple-
mentation the information necessary to exploit such techniques.

For example, in the code fragment

(let ((x (list ’a1 ’b1 ’c1))
(y (cons ’a2 (cons ’b2 (cons ’c2 ’d2)))))

(declare (dynamic-extent x y))
...)

it is not difficult to prove that the otherwise inaccessible parts of x
include the three conses constructed by list, and that the otherwise
inaccessible parts of y include three other conses manufactured by the

9.2. DECLARATION SPECIFIERS 243

three calls to cons. Given the presence of the dynamic-extent decla-
ration, a compiler would be justified in stack-allocating these six conses
and reclaiming their storage on exit from the let form.

Since stack allocation of the initial value entails knowing at the object’s
creation time that the object can be stack-allocated, it is not generally
useful to declare dynamic-extent for variables that have no lexically
apparent initial value. For example,

(defun f ()
(let ((x (list 1 2 3)))
(declare (dynamic-extent x))
...))

would permit a compiler to stack-allocate the list in x. However,

(defun g (x) (declare (dynamic-extent x)) ...)
(defun f () (g (list 1 2 3)))

could not typically permit a similar optimization in f because of the
possibility of later redefinition of g. Only an implementation careful
enough to recompile f if the definition of g were to change incompatibly
could stack-allocate the list argument to g in f.

Other interesting cases are

(declaim (inline g))
(defun g (x) (declare (dynamic-extent x)) ...)
(defun f () (g (list 1 2 3)))

and

(defun f ()
(flet ((g (x) (declare (dynamic-extent x)) ...))
(g (list 1 2 3))))

In each case some compilers might realize the optimization is possible
and others might not.

An interesting variant of this is the so-called stack-allocated rest list,
which can be achieved (in implementations supporting the optimiza-
tion) by

244 CHAPTER 9. DECLARATIONS

(defun f (&rest x)
(declare (dynamic-extent x))
...)

Note here that although the initial value of x is not explicitly present,
nevertheless in the usual implementation strategy the function f is re-
sponsible for assembling the list for x from the passed arguments, so the
f function can be optimized by a compiler to construct a stack-allocated
list instead of a heap-allocated list.

Some Common Lisp functions take other functions as arguments; fre-
quently the argument function is a so-called downward funarg, that is,
a functional argument that is passed only downward and whose extent
may therefore be dynamic.

(flet ((gd (x) (atan (sinh x))))
(declare (dynamic-extent #’gd)) ;mapcar won’t hang on to gd
(mapcar #’gd my-list-of-numbers))

The following three examples are in error, since in each case the value
of x is used outside of its extent.

(length (let ((x (list 1 2 3)))
(declare (dynamic-extent x))
x)) ;Wrong

The preceding code is obviously incorrect, because the cons cells making
up the list in x might be deallocated (thanks to the declaration) before
length is called.

(length (list (let ((x (list 1 2 3)))
(declare (dynamic-extent x))
x))) ;Wrong

In this second case it is less obvious that the code is incorrect, because
one might argue that the cons cells making up the list in x have no
effect on the result to be computed by length. Nevertheless the code
briefly violates the assertion implied by the declaration and is therefore

9.2. DECLARATION SPECIFIERS 245

incorrect. (It is not difficult to imagine a perfectly sensible implemen-
tation of a garbage collector that might become confused by a cons cell
containing a dangling pointer to a list that was once stack-allocated
but then deallocated.)

(progn (let ((x (list 1 2 3)))
(declare (dynamic-extent x))
x) ;Wrong

(print "Six dollars is your change have a nice day NEXT!"))

In this third case it is even less obvious that the code is incorrect,
because the value of x returned from the let construct is discarded right
away by the progn. Indeed it is, but “right away” isn’t fast enough.
The code briefly violates the assertion implied by the declaration and
is therefore incorrect. (If the code is being interpreted, the interpreter
might hang on to the value returned by the let for some time before it
is eventually discarded.)

Here is one last example, one that has little practical import but is
theoretically quite instructive.

(dotimes (j 10)
(declare (dynamic-extent j))
(setq foo 3) ;Correct
(setq foo j)) ;Erroneous—but why? (see text)

Since j is an integer by the definition of dotimes, but eq and eql
are not necessarily equivalent for integers, what are the otherwise in-
accessible parts of j, which this declaration requires the body of the
dotimes not to “save”? If the value of j is 3, and the body does (setq
foo 3), is that an error? The answer is no, but the interesting thing
is that it depends on the implementation-dependent behavior of eq on
numbers. In an implementation where eq and eql are equivalent for
3, then 3 is not an otherwise inaccessible part because (eq j (+ 2 1))
is true, and therefore there is another way to access the object besides
going through j. On the other hand, in an implementation where eq
and eql are not equivalent for 3, then the particular 3 that is the value
of j is an otherwise inaccessible part, but any other 3 is not. Thus
(setq foo 3) is valid but (setq foo j) is erroneous. Since (setq foo j)

246 CHAPTER 9. DECLARATIONS

is erroneous in some implementations, it is erroneous in all portable
programs, but some other implementations may not be able to detect
the error. (If this conclusion seems strange, it may help to replace 3
everywhere in the preceding argument with some obvious bignum such
as 375374638837424898243 and to replace 10 with some even larger
bignum.)

The dynamic-extent declaration should be used with great care. It
makes possible great performance improvements in some situations, but
if the user misdeclares something and consequently the implementation
returns a pointer into the stack (or stores it in the heap), an undefined
situation may result and the integrity of the Lisp storage mechanism
may be compromised. Debugging these situations may be tricky. Users
who have asked for this feature have indicated a willingness to deal with
such problems; nevertheless, I do not encourage casual users to use this
declaration.

An implementation is free to support other (implementation-dependent)
declaration specifiers as well. On the other hand, a Common Lisp com-
piler is free to ignore entire classes of declaration specifiers (for example,
implementation-dependent declaration specifiers not supported by that com-
piler’s implementation), except for the declaration declaration specifier.
Compiler implementors are encouraged, however, to program the compiler
to issue by default a warning if the compiler finds a declaration specifier of
a kind it never uses. Such a warning is required in any case if a declaration
specifier is not one of those defined above and has not been declared in a
declaration declaration.

9.3 Type Declaration for Forms
Frequently it is useful to declare that the value produced by the evaluation
of some form will be of a particular type. Using declare one can declare
the type of the value held by a bound variable, but there is no easy way to
declare the type of the value of an unnamed form. For this purpose the the
special operator is defined; (the type form) means that the value of form
is declared to be of type type.
[Special operator] the value-type form
The form is evaluated; whatever it produces is returned by the the form.

9.3. TYPE DECLARATION FOR FORMS 247

In addition, it is an error if what is produced by the form does not conform to
the data type specified by value-type (which is not evaluated). (A given im-
plementation may or may not actually check for this error. Implementations
are encouraged to make an explicit error check when running interpretively.)
In effect, this declares that the user undertakes to guarantee that the values
of the form will always be of the specified type. For example:

(the string (copy-seq x)) ;The result will be a string
(the integer (+ x 3)) ;The result of + will be an integer
(+ (the integer x) 3) ;The value of x will be an integer
(the (complex rational) (* z 3))
(the (unsigned-byte 8) (logand x mask))

The values type specifier may be used to indicate the types of multiple
values:

(the (values integer integer) (floor x y))
(the (values string t)

(gethash the-key the-string-table))

value-type may be any valid type specifier whatsoever. The point is that
a type specifier need not be one suitable for discrimination but only for
declaration.

In the case that the form produces exactly one value and value-type is
not a values type specifier, one may describe a the form as being entirely
equivalent to

(let ((#1=#:temp form)) (declare (type value-type #1#)) #1#)

A more elaborate expression could be written to describe the case where
value-type is a values type specifier.

248 CHAPTER 9. DECLARATIONS

Chapter 10

Symbols

A Lisp symbol is a data object that has three user-visible components:

• The property list is a list that effectively provides each symbol with
many modifiable named components.

• The print name must be a string, which is the sequence of characters
used to identify the symbol. Symbols are of great use because a symbol
can be located once its name is given (typed, say, on a keyboard). One
may ordinarily not alter a symbol’s print name.

It is an error to alter a print name.

• The package cell must refer to a package object. A package is a data
structure used to locate a symbol once given the symbol’s name. A
symbol is uniquely identified by its name only when considered relative
to a package. A symbol may appear in many packages, but it can be
owned by at most one package. The package cell points to the owner,
if any. Package cells are discussed along with packages in chapter 11.

A symbol may actually have other components for use by the imple-
mentation. One of the more important uses of symbols is as names for
program variables; it is frequently desirable for the implementor to use cer-
tain components of a symbol to implement the semantics of variables. See
symbol-value and symbol-function. However, there are several possible
implementation strategies, and so such possible components are not described
here.

249

250 CHAPTER 10. SYMBOLS

10.1 The Property List

Since its inception, Lisp has associated with each symbol a kind of tabular
data structure called a property list (plist for short). A property list contains
zero or more entries; each entry associates with a key (called the indicator),
which is typically a symbol, an arbitrary Lisp object (called the value or,
sometimes, the property). There are no duplications among the indicators;
a property list may only have one property at a time with a given name. In
this way, given a symbol and an indicator (another symbol), an associated
value can be retrieved.

A property list is very similar in purpose to an association list. The differ-
ence is that a property list is an object with a unique identity; the operations
for adding and removing property-list entries are destructive operations that
alter the property list rather than making a new one. Association lists, on the
other hand, are normally augmented non-destructively (without side effects)
by adding new entries to the front (see acons and pairlis).

A property list is implemented as a memory cell containing a list with
an even number (possibly zero) of elements. (Usually this memory cell is
the property-list cell of a symbol, but any memory cell acceptable to setf
can be used if getf and remf are used.) Each pair of elements in the list
constitutes an entry; the first item is the indicator, and the second is the
value. Because property-list functions are given the symbol and not the list
itself, modifications to the property list can be recorded by storing back into
the property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Properties
are created by using get within a setf form.

Common Lisp does not use a symbol’s property list as extensively as ear-
lier Lisp implementations did. Less-used data, such as compiler, debugging,
and documentation information, is kept on property lists in Common Lisp.

[Function] get symbol indicator &optional default

get searches the property list of symbol for an indicator eq to indicator.
The first argument must be a symbol. If one is found, then the corresponding
value is returned; otherwise default is returned.

If default is not specified, then nil is used for default.
Note that there is no way to distinguish an absent property from one

whose value is default.

10.1. THE PROPERTY LIST 251

(get x y) ≡ (getf (symbol-plist x) y)

Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?").
Then, for example:

(get ’foo ’baz) ⇒ 3
(get ’foo ’hunoz) ⇒ "Huh?"
(get ’foo ’zoo) ⇒ nil

setf may be used with get to create a new property-value pair, possibly
replacing an old pair with the same property name. For example:

(get ’clyde ’species) ⇒ nil
(setf (get ’clyde ’species) ’elephant) ⇒ elephant
and now (get ’clyde ’species) ⇒ elephant

The default argument may be specified to get in this context; it is ignored
by setf but may be useful in such macros as push that are related to setf:

(push item (get sym ’token-stack ’(initial-item)))

means approximately the same as

(setf (get sym ’token-stack ’(initial-item))
(cons item (get sym ’token-stack ’(initial-item))))

which in turn would be treated as simply

(setf (get sym ’token-stack)
(cons item (get sym ’token-stack ’(initial-item))))

X3J13 voted in March 1989 to clarify the permissible side effects of cer-
tain operations; (setf (get symbol indicator) newvalue) is required to
behave exactly the same as (setf (getf (symbol-plist symbol) indicator)
newvalue).

[Function] remprop symbol indicator

This removes from symbol the property with an indicator eq to indicator.
The property indicator and the corresponding value are removed by destruc-
tively splicing the property list. It returns nil if no such property was found,
or non-nil if a property was found.

252 CHAPTER 10. SYMBOLS

(remprop x y) ≡ (remf (symbol-plist x) y)

For example, if the property list of foo is initially

(color blue height 6.3 near-to bar)

then the call

(remprop ’foo ’height)

returns a non-nil value after altering foo’s property list to be

(color blue near-to bar)

X3J13 voted in March 1989 to clarify the permissible side effects of certain
operations; (remprop symbol indicator) is required to behave exactly the
same as (remf (symbol-plist symbol) indicator).

[Function] symbol-plist symbol

This returns the list that contains the property pairs of symbol ; the con-
tents of the property-list cell are extracted and returned.

Note that using get on the result of symbol-plist does not work. One
must give the symbol itself to get or else use the function getf.

setf may be used with symbol-plist to destructively replace the entire
property list of a symbol. This is a relatively dangerous operation, as it may
destroy important information that the implementation may happen to store
in property lists. Also, care must be taken that the new property list is in
fact a list of even length.

[Function] getf place indicator &optional default

getf searches the property list stored in place for an indicator eq to in-
dicator. If one is found, then the corresponding value is returned; otherwise
default is returned. If default is not specified, then nil is used for default.
Note that there is no way to distinguish an absent property from one whose
value is default. Often place is computed from a generalized variable accept-
able to setf.

setf may be used with getf, in which case the place must indeed be
acceptable as a place to setf. The effect is to add a new property-value pair,
or update an existing pair, in the property list kept in the place. The default

10.1. THE PROPERTY LIST 253

argument may be specified to getf in this context; it is ignored by setf but
may be useful in such macros as push that are related to setf. See the
description of get for an example of this.

X3J13 voted in March 1989 to clarify the permissible side effects of certain
operations; setf used with getf is permitted to perform a setf on the place
or on any part, car or cdr, of the top-level list structure held by that place.

X3J13 voted in March 1988 to clarify order of evaluation (see sec-
tion 7.2).

[Macro] remf place indicator

This removes from the property list stored in place the property with
an indicator eq to indicator. The property indicator and the corresponding
value are removed by destructively splicing the property list. remf returns
nil if no such property was found, or some non-nil value if a property was
found. The form place may be any generalized variable acceptable to setf.
See remprop.

X3J13 voted in March 1989 to clarify the permissible side effects of certain
operations; remf is permitted to perform a setf on the place or on any part,
car or cdr, of the top-level list structure held by that place.

X3J13 voted in March 1988 to clarify order of evaluation (see sec-
tion 7.2).

[Function] get-properties place indicator-list

get-properties is like getf, except that the second argument is a list
of indicators. get-properties searches the property list stored in place for
any of the indicators in indicator-list until it finds the first property in the
property list whose indicator is one of the elements of indicator-list. Normally
place is computed from a generalized variable acceptable to setf.

get-properties returns three values. If any property was found, then
the first two values are the indicator and value for the first property whose
indicator was in indicator-list, and the third is that tail of the property list
whose car was the indicator (and whose cadr is therefore the value). If no
property was found, all three values are nil. Thus the third value serves as
a flag indicating success or failure and also allows the search to be restarted,
if desired, after the property was found.

254 CHAPTER 10. SYMBOLS

10.2 The Print Name

Every symbol has an associated string called the print name. This string is
used as the external representation of the symbol: if the characters in the
string are typed in to read (with suitable escape conventions for certain char-
acters), it is interpreted as a reference to that symbol (if it is interned); and if
the symbol is printed, print types out the print name. For more information,
see the sections on the reader (section 22.1.1) and printer (section 22.1.6).

[Function] symbol-name sym

This returns the print name of the symbol sym. For example:

(symbol-name ’xyz) ⇒ "XYZ"

It is an extremely bad idea to modify a string being used as the print name
of a symbol. Such a modification may tremendously confuse the function
read and the package system.

It is an error to modify a string being used as the print name of a symbol.

10.3 Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one
that is indexed by its print name in a catalogue called a package. A request to
locate a symbol with that print name results in the same (eq) symbol. Every
time input is read with the function read, and that print name appears, it is
read as the same symbol. This property of symbols makes them appropriate
to use as names for things and as hooks on which to hang permanent data
objects (using the property list, for example).

Interned symbols are normally created automatically; the first time some-
thing (such as the function read) asks the package system for a symbol with
a given print name, that symbol is automatically created. The function used
to ask for an interned symbol is intern, or one of the functions related to
intern.

Although interned symbols are the most commonly used, they will not
be discussed further here. For more information, see chapter 11.

An uninterned symbol is a symbol used simply as a data object, with
no special cataloguing (it belongs to no particular package). An uninterned

10.3. CREATING SYMBOLS 255

symbol is printed as #: followed by its print name. The following are some
functions for creating uninterned symbols.

[Function] make-symbol print-name

(make-symbol print-name) creates a new uninterned symbol, whose
print name is the string print-name. The value and function bindings will be
unbound and the property list will be empty.

The string actually installed in the symbol’s print-name component may
be the given string print-name or may be a copy of it, at the implementa-
tion’s discretion. The user should not assume that (symbol-name (make-
symbol x)) is eq to x, but also should not alter a string once it has been
given as an argument to make-symbol.

Implementation note: An implementation might choose, for example, to copy
the string to some read-only area, in the expectation that it will never be altered.

[Function] copy-symbol sym &optional copy-props

This returns a new uninterned symbol with the same print name as sym.
X3J13 voted in March 1989 that the print name of the new symbol is

required to be the same only in the sense of string=; in other words, an
implementation is permitted (but not required) to make a copy of the print
name. User programs should not assume that the print names of the old
and new symbols will be eq, although they may happen to be eq in some
implementations.

If copy-props is non-nil, then the initial value and function definition of
the new symbol will be the same as those of sym, and the property list of
the new symbol will be a copy of sym’s.

X3J13 voted in March 1989 to clarify that only the top-level conses of the
property list are copied; it is as if (copy-list (symbol-plist sym)) were
used as the property list of the new symbol.

If copy-props is nil (the default), then the new symbol will be unbound
and undefined, and its property list will be empty.

[Function] gensym &optional x

gensym invents a print name and creates a new symbol with that print
name. It returns the new, uninterned symbol.

256 CHAPTER 10. SYMBOLS

The invented print name consists of a prefix (which defaults to G), fol-
lowed by the decimal representation of a number.

gensym is usually used to create a symbol that should not normally
be seen by the user and whose print name is unimportant except to allow
easy distinction by eye between two such symbols. The optional argument is
rarely supplied. The name comes from “generate symbol,” and the symbols
produced by it are often called “gensyms.”

If it is desirable for the generated symbols to be interned, and yet guar-
anteed to be symbols distinct from all others, then the function gentemp
may be more appropriate to use.

X3J13 voted in March 1989 to alter the specification of gensym so that
supplying an optional argument (whether a string or a number) does not alter
the internal state maintained by gensym. Instead, the internal counter is
made explicitly available as a variable named *gensym-counter*.

If a string argument is given to gensym, that string is used as the prefix;
otherwise “G” is used. If a number is provided, its decimal representation is
used, but the internal counter is unaffected. X3J13 deprecates the use of a
number as an argument.

[Variable] *gensym-counter*

gensym-counter holds the state of the gensym counter; that is, gen-
sym uses the decimal representation of its value as part of the generated
name and then increments its value.

The initial value of this variable is implementation-dependent but will be
a non-negative integer.

The user may assign to or bind this variable at any time, but its value
must always be a non-negative integer.

[Function] gentemp &optional prefix package

gentemp, like gensym, creates and returns a new symbol. gentemp
differs from gensym in that it interns the symbol (see intern) in the package
(which defaults to the current package; see *package*). gentemp guaran-
tees the symbol will be a new one not already existing in the package. It
does this by using a counter as gensym does, but if the generated symbol
is not really new, then the process is repeated until a new one is created.
There is no provision for resetting the gentemp counter. Also, the prefix for

10.3. CREATING SYMBOLS 257

gentemp is not remembered from one call to the next; if prefix is omitted,
the default prefix T is used.

[Function] symbol-package sym

Given a symbol sym, symbol-package returns the contents of the pack-
age cell of that symbol. This will be a package object or nil.

[Function] keywordp object

The argument may be any Lisp object. The predicate keywordp is true
if the argument is a symbol and that symbol is a keyword (that is, belongs
to the keyword package). Keywords are those symbols that are written with
a leading colon. Every keyword is a constant, in the sense that it always
evaluates to itself. See constantp.

258 CHAPTER 10. SYMBOLS

Chapter 11

Packages

One problem with earlier Lisp systems is the use of a single name space for
all symbols. In large Lisp systems, with modules written by many different
programmers, accidental name collisions become a serious problem. Common
Lisp addresses this problem through the package system, derived from an
earlier package system developed for Lisp Machine Lisp [55]. In addition
to preventing name-space conflicts, the package system makes the modular
structure of large Lisp systems more explicit.

A package is a data structure that establishes a mapping from print names
(strings) to symbols. The package thus replaces the “oblist” or “obarray”
machinery of earlier Lisp systems. At any given time one package is current,
and this package is used by the Lisp reader in translating strings into symbols.
The current package is, by definition, the one that is the value of the global
variable *package*. It is possible to refer to symbols in packages other
than the current one through the use of package qualifiers in the printed
representation of the symbol. For example, foo:bar, when seen by the reader,
refers to the symbol whose name is bar in the package whose name is foo.
(Actually, this is true only if bar is an external symbol of foo, that is, a
symbol that is supposed to be visible outside of foo. A reference to an
internal symbol requires the intentionally clumsier syntax foo::bar.)

The string-to-symbol mappings available in a given package are divided
into two classes, external and internal. We refer to the symbols accessible
via these mappings as being external and internal symbols of the package
in question, though really it is the mappings that are different and not the
symbols themselves. Within a given package, a name refers to one symbol
or to none; if it does refer to a symbol, then it is either external or internal

259

260 CHAPTER 11. PACKAGES

in that package, but not both.
External symbols are part of the package’s public interface to other pack-

ages. External symbols are supposed to be chosen with some care and are
advertised to users of the package. Internal symbols are for internal use only,
and these symbols are normally hidden from other packages. Most symbols
are created as internal symbols; they become external only if they appear
explicitly in an export command for the package.

A symbol may appear in many packages. It will always have the same
name wherever it appears, but it may be external in some packages and
internal in others. On the other hand, the same name (string) may refer to
different symbols in different packages.

Normally, a symbol that appears in one or more packages will be owned by
one particular package, called the home package of the symbol; that package
is said to own the symbol. Every symbol has a component called the package
cell that contains a pointer to its home package. A symbol that is owned by
some package is said to be interned. Some symbols are not owned by any
package; such a symbol is said to be uninterned, and its package cell contains
nil.

Packages may be built up in layers. From the point of view of a package’s
user, the package is a single collection of mappings from strings into internal
and external symbols. However, some of these mappings may be established
within the package itself, while other mappings are inherited from other
packages via the use-package construct. (The mechanisms responsible for
this inheritance are described below.) In what follows, we will refer to a
symbol as being accessible in a package if it can be referred to without a
package qualifier when that package is current, regardless of whether the
mapping occurs within that package or via inheritance. We will refer to a
symbol as being present in a package if the mapping is in the package itself
and is not inherited from somewhere else. Thus a symbol present in a package
is accessible, but an accessible symbol is not necessarily present.

A symbol is said to be interned in a package if it is accessible in that
package and also is owned (by either that package or some other package).
Normally all the symbols accessible in a package will in fact be owned by some
package, but the terminology is useful when discussing the pathological case
of an accessible but unowned (uninterned) symbol.

As a verb, to intern a symbol in a package means to cause the symbol to
be interned in the package if it was not already; this process is performed by
the function intern. If the symbol was previously unowned, then the package

11.1. CONSISTENCY RULES 261

it is being interned in becomes its owner (home package); but if the symbol
was previously owned by another package, that other package continues to
own the symbol.

To unintern a symbol from the package means to cause it to be not present
in the package and, additionally, to cause the symbol to be uninterned if
the package was the home package (owner) of the symbol. This process is
performed by the function unintern.

11.1 Consistency Rules

Package-related bugs can be very subtle and confusing: things are not what
they appear to be. The Common Lisp package system is designed with a
number of safety features to prevent most of the common bugs that would
otherwise occur in normal use. This may seem over-protective, but experience
with earlier package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the
following consistency rules, which remain in force as long as the value of
package is not changed by the user:

• Read-read consistency: Reading the same print name always results in
the same (eq) symbol.

• Print-read consistency: An interned symbol always prints as a sequence
of characters that, when read back in, yields the same (eq) symbol.

• Print-print consistency: If two interned symbols are not eq, then their
printed representations will be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit
interning caused by typing in Lisp forms, loading files, etc. This has the
important implication that, as long as the current package is not changed,
results are reproducible regardless of the order of loading files or the exact
history of what symbols were typed in when. The rules can only be violated
by explicit action: changing the value of *package*, forcing some action by
continuing from an error, or calling one of the “dangerous” functions unin-
tern, unexport, shadow, shadowing-import, or unuse-package.

262 CHAPTER 11. PACKAGES

11.2 Package Names
Each package has a name (a string) and perhaps some nicknames. These are
assigned when the package is created, though they can be changed later. A
package’s name should be something long and self-explanatory, like editor;
there might be a nickname that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package
translates a package name or nickname into the associated package. The func-
tion package-name returns the name of a package. The function package-
nicknames returns a list of all nicknames for a package. The function
rename-package removes a package’s current name and nicknames and
replaces them with new ones specified by the user. Package renaming is
occasionally useful when, for development purposes, it is desirable to load
two versions of a package into the same Lisp. One can load the first version,
rename it, and then load the other version, without getting a lot of name
conflicts.

When the Lisp reader sees a qualified symbol, it handles the package-
name part in the same way as the symbol part with respect to capitalization.
Lowercase characters in the package name are converted to corresponding
uppercase characters unless preceded by the escape character \ or surrounded
by | characters. The lookup done by the find-package function is case-
sensitive, like that done for symbols. Note that |Foo|:|Bar| refers to a
symbol whose name is Bar in a package whose name is Foo. By contrast,
|Foo:Bar| refers to a seven-character symbol that has a colon in its name
(as well as two uppercase letters and four lowercase letters) and is interned in
the current package. Following the convention used in this book for symbols,
we show ordinary package names using lowercase letters, even though the
name string is internally represented with uppercase letters.

Most of the functions that require a package-name argument from the user
accept either a symbol or a string. If a symbol is supplied, its print name
will be used; the print name will already have undergone case-conversion by
the usual rules. If a string is supplied, it must be so capitalized as to match
exactly the string that names the package.

X3J13 voted in January 1989 to clarify that one may use either a package
object or a package name (symbol or string) in any of the following situations:

• the :use argument to make-package

• the first argument to package-use-list, package-used-by-list,

11.3. TRANSLATING STRINGS TO SYMBOLS 263

package-name, package-nicknames, in-package, find-package,
rename-package, or delete-package,

• the second argument to intern, find-symbol, unintern, export, un-
export, import, shadowing-import, or shadow

• the first argument, or a member of the list that is the first argument,
to use-package or unuse-package

• the value of the package given to do-symbols, do-external-symbols,
or do-all-symbols

• a member of the package-list given to with-package-iterator

Note that the first argument to make-package must still be a package name
and not an actual package; it makes no sense to create an already existing
package. Similarly, package nicknames must always be expressed as package
names and not as package objects. If find-package is given a package object
instead of a name, it simply returns that package.

11.3 Translating Strings to Symbols
The value of the special variable *package* must always be a package object
(not a name). Whatever package object is currently the value of *package*
is referred to as the current package.

When the Lisp reader has, by parsing, obtained a string of characters
thought to name a symbol, that name is looked up in the current package.
This lookup may involve looking in other packages whose external symbols
are inherited by the current package. If the name is found, the corresponding
symbol is returned. If the name is not found (that is, there is no symbol of
that name accessible in the current package), a new symbol is created for it
and is placed in the current package as an internal symbol. Moreover, the
current package becomes the owner (home package) of the symbol, and so
the symbol becomes interned in the current package. If the name is later
read again while this same package is current, the same symbol will then be
found and returned.

Often it is desirable to refer to an external symbol in some package other
than the current one. This is done through the use of a qualified name,
consisting of a package name, then a colon, then the name of the symbol.

264 CHAPTER 11. PACKAGES

This causes the symbol’s name to be looked up in the specified package, rather
than in the current one. For example, editor:buffer refers to the external
symbol named buffer accessible in the package named editor, regardless of
whether there is a symbol named buffer in the current package. If there
is no package named editor, or if no symbol named buffer is accessible in
editor, or if buffer is an internal symbol in editor, the Lisp reader will
signal a correctable error to ask the user for instructions.

On rare occasions, a user may need to refer to an internal symbol of some
package other than the current one. It is illegal to do this with the colon
qualifier, since accessing an internal symbol of some other package is usually
a mistake. However, this operation is legal if a doubled colon :: is used as
the separator in place of the usual single colon. If editor::buffer is seen,
the effect is exactly the same as reading buffer with *package* temporarily
rebound to the package whose name is editor. This special-purpose qualifier
should be used with caution.

The package named keyword contains all keyword symbols used by the
Lisp system itself and by user-written code. Such symbols must be easily
accessible from any package, and name conflicts are not an issue because these
symbols are used only as labels and never to carry package-specific values
or properties. Because keyword symbols are used so frequently, Common
Lisp provides a special reader syntax for them. Any symbol preceded by
a colon but no package name (for example :foo) is added to (or looked up
in) the keyword package as an external symbol. The keyword package is
also treated specially in that whenever a symbol is added to the keyword
package the symbol is always made external; the symbol is also automatically
declared to be a constant (see defconstant) and made to have itself as its
value. This is why every keyword evaluates to itself. As a matter of style,
keywords should always be accessed using the leading-colon convention; the
user should never import or inherit keywords into any other package. It is
an error to try to apply use-package to the keyword package.

Each symbol contains a package cell that is used to record the home
package of the symbol, or nil if the symbol is uninterned. This cell may be
accessed by using the function symbol-package. When an interned symbol
is printed, if it is a symbol in the keyword package, then it is printed with
a preceding colon; otherwise, if it is accessible (directly or by inheritance) in
the current package, it is printed without any qualification; otherwise, it is
printed with the name of the home package as the qualifier, using : as the
separator if the symbol is external and :: if not.

11.4. EXPORTING AND IMPORTING SYMBOLS 265

A symbol whose package slot contains nil (that is, has no home package) is
printed preceded by #:. It is possible, by the use of import and unintern,
to create a symbol that has no recorded home package but that in fact is
accessible in some package. The system does not check for this pathological
case, and such symbols will always be printed preceded by #:.

In summary, the following four uses of symbol qualifier syntax are defined.

foo:bar When read, looks up BAR among the external symbols of the pack-
age named FOO. Printed when symbol bar is external in its home
package foo and is not accessible in the current package.

foo::bar When read, interns BAR as if FOO were the current package.
Printed when symbol bar is internal in its home package foo and is
not accessible in the current package.

:bar When read, interns BAR as an external symbol in the keyword pack-
age and makes it evaluate to itself. Printed when the home package of
symbol bar is keyword.

#:bar When read, creates a new uninterned symbol named BAR. Printed
when the symbol bar is uninterned (has no home package), even in
the pathological case that bar is uninterned but nevertheless somehow
accessible in the current package.

All other uses of colons within names of symbols are not defined by Com-
mon Lisp but are reserved for implementation-dependent use; this includes
names that end in a colon, contain two or more colons, or consist of just a
colon.

11.4 Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two
ways.

First, any individual symbol may be added to a package by use of the
function import. The form (import ’editor:buffer) takes the external
symbol named buffer in the editor package (this symbol was located when
the form was read by the Lisp reader) and adds it to the current package as
an internal symbol. The symbol is then present in the current package. The

266 CHAPTER 11. PACKAGES

imported symbol is not automatically exported from the current package,
but if it is already present and external, then the fact that it is external is
not changed. After the call to import it is possible to refer to buffer in the
importing package without any qualifier. The status of buffer in the package
named editor is unchanged, and editor remains the home package for this
symbol. Once imported, a symbol is present in the importing package and
can be removed only by calling unintern.

If the symbol is already present in the importing package, import has
no effect. If a distinct symbol with the name buffer is accessible in the
importing package (directly or by inheritance), then a correctable error is
signaled, as described in section 11.5, because import avoids letting one
symbol shadow another.

A symbol is said to be shadowed by another symbol in some package if
the first symbol would be accessible by inheritance if not for the presence of
the second symbol. To import a symbol without the possibility of getting
an error because of shadowing, use the function shadowing-import. This
inserts the symbol into the specified package as an internal symbol, regardless
of whether another symbol of the same name will be shadowed by this action.
If a different symbol of the same name is already present in the package,
that symbol will first be uninterned from the package (see unintern). The
new symbol is added to the package’s shadowing-symbols list. shadowing-
import should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

The second mechanism is provided by the function use-package. This
causes a package to inherit all of the external symbols of some other package.
These symbols become accessible as internal symbols of the using package.
That is, they can be referred to without a qualifier while this package is
current, but they are not passed along to any other package that uses this
package. Note that use-package, unlike import, does not cause any new
symbols to be present in the current package but only makes them accessible
by inheritance. use-package checks carefully for name conflicts between
the newly imported symbols and those already accessible in the importing
package. This is described in detail in section 11.5.

Typically a user, working by default in the user package, will load a
number of packages into Lisp to provide an augmented working environ-
ment, and then call use-package on each of these packages to allow easy
access to their external symbols. unuse-package undoes the effects of a
previous use-package. The external symbols of the used package are no

11.4. EXPORTING AND IMPORTING SYMBOLS 267

longer inherited. However, any symbols that have been imported into the
using package continue to be present in that package.

There is no way to inherit the internal symbols of another package; to
refer to an internal symbol, the user must either make that symbol’s home
package current, use a qualifier, or import that symbol into the current pack-
age.

The distinction between external and internal symbols is a primary means
of hiding names so that one program does not tread on the namespace of
another.

When intern or some other function wants to look up a symbol in a given
package, it first looks for the symbol among the external and internal symbols
of the package itself; then it looks through the external symbols of the used
packages in some unspecified order. The order does not matter; according to
the rules for handling name conflicts (see below), if conflicting symbols appear
in two or more packages inherited by package X, a symbol of this name must
also appear in X itself as a shadowing symbol. Of course, implementations
are free to choose other, more efficient ways of implementing this search, as
long as the user-visible behavior is equivalent to what is described here.

The function export takes a symbol that is accessible in some specified
package (directly or by inheritance) and makes it an external symbol of that
package. If the symbol is already accessible as an external symbol in the
package, export has no effect. If the symbol is directly present in the pack-
age as an internal symbol, it is simply changed to external status. If it is
accessible as an internal symbol via use-package, the symbol is first im-
ported into the package, then exported. (The symbol is then present in the
specified package whether or not the package continues to use the package
through which the symbol was originally inherited.) If the symbol is not
accessible at all in the specified package, a correctable error is signaled that,
upon continuing, asks the user whether the symbol should be imported.

The function unexport is provided mainly as a way to undo erroneous
calls to export. It works only on symbols directly present in the current
package, switching them back to internal status. If unexport is given a
symbol already accessible as an internal symbol in the current package, it
does nothing; if it is given a symbol not accessible in the package at all, it
signals an error.

268 CHAPTER 11. PACKAGES

11.5 Name Conflicts

A fundamental invariant of the package system is that within one package
any particular name can refer to at most one symbol. A name conflict is said
to occur when there is more than one candidate symbol and it is not obvious
which one to choose. If the system does not always choose the same way, the
read-read consistency rule would be violated. For example, some programs
or data might have been read in under a certain mapping of the name to
a symbol. If the mapping changes to a different symbol, and subsequently
additional programs or data are read, then the two programs will not access
the same symbol even though they use the same name. Even if the system did
always choose the same way, a name conflict is likely to result in a mapping
from names to symbols different from what was expected by the user, causing
programs to execute incorrectly. Therefore, any time a name conflict is about
to occur, an error is signaled. The user may continue from the error and tell
the package system how to resolve the conflict.

It may be that the same symbol is accessible to a package through more
than one path. For example, the symbol might be an external symbol of
more than one used package, or the symbol might be directly present in a
package and also inherited from another package. In such cases there is no
name conflict. The same identical symbol cannot conflict with itself. Name
conflicts occur only between distinct symbols with the same name.

The creator of a package can tell the system in advance how to resolve
a name conflict through the use of shadowing. Every package has a list of
shadowing symbols. A shadowing symbol takes precedence over any other
symbol of the same name that would otherwise be accessible to the package.
A name conflict involving a shadowing symbol is always resolved in favor of
the shadowing symbol, without signaling an error (except for one instance
involving import described below). The functions shadow and shadowing-
import may be used to declare shadowing symbols.

Name conflicts are detected when they become possible, that is, when
the package structure is altered. There is no need to check for name conflicts
during every name lookup.

The functions use-package, import, and export check for name con-
flicts. use-package makes the external symbols of the package being used
accessible to the using package; each of these symbols is checked for name
conflicts with the symbols already accessible. import adds a single symbol
to the internals of a package, checking for a name conflict with an exist-

11.5. NAME CONFLICTS 269

ing symbol either present in the package or accessible to it. import signals
a name conflict error even if the conflict is with a shadowing symbol, the
rationale being that the user has given two explicit and inconsistent direc-
tives. export makes a single symbol accessible to all the packages that use
the package from which the symbol is exported. All of these packages are
checked for name conflicts: (export s p) does (find-symbol (symbol-
name s) q) for each package q in (package-used-by-list p). Note that
in the usual case of an export during the initial definition of a package, the
result of package-used-by-list will be nil and the name-conflict checking
will take negligible time.

The function intern, which is the one used most frequently by the Lisp
reader for looking up names of symbols, does not need to do any name-
conflict checking, because it never creates a new symbol if there is already
an accessible symbol with the name given.

shadow and shadowing-import never signal a name-conflict error be-
cause the user, by calling these functions, has specified how any possible
conflict is to be resolved. shadow does name-conflict checking to the extent
that it checks whether a distinct existing symbol with the specified name is
accessible and, if so, whether it is directly present in the package or inherited.
In the latter case, a new symbol is created to shadow it. shadowing-import
does name-conflict checking to the extent that it checks whether a distinct
existing symbol with the same name is accessible; if so, it is shadowed by
the new symbol, which implies that it must be uninterned if it was directly
present in the package.

unuse-package, unexport, and unintern (when the symbol being un-
interned is not a shadowing symbol) do not need to do any name-conflict
checking because they only remove symbols from a package; they do not
make any new symbols accessible.

Giving a shadowing symbol to unintern can uncover a name conflict that
had previously been resolved by the shadowing. If package A uses packages B
and C, A contains a shadowing symbol x, and B and C each contain external
symbols named x, then removing the shadowing symbol x from A will reveal
a name conflict between b:x and c:x if those two symbols are distinct. In
this case unintern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessi-
ble. Package functions always signal name-conflict errors before making any
change to the package structure. When multiple changes are to be made,
however, for example when export is given a list of symbols, it is permissible

270 CHAPTER 11. PACKAGES

for the implementation to process each change separately, so that aborting
from a name conflict caused by the second symbol in the list will not un-
export the first symbol in the list. However, aborting from a name-conflict
error caused by export of a single symbol will not leave that symbol accessi-
ble to some packages and inaccessible to others; with respect to each symbol
processed, export behaves as if it were an atomic operation.

Continuing from a name-conflict error should offer the user a chance to
resolve the name conflict in favor of either of the candidates. The package
structure should be altered to reflect the resolution of the name conflict, via
shadowing-import, unintern, or unexport.

A name conflict in use-package between a symbol directly present in the
using package and an external symbol of the used package may be resolved in
favor of the first symbol by making it a shadowing symbol, or in favor of the
second symbol by uninterning the first symbol from the using package. The
latter resolution is dangerous if the symbol to be uninterned is an external
symbol of the using package, since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited
by the using package from other packages may be resolved in favor of either
symbol by importing it into the using package and making it a shadowing
symbol.

A name conflict in export between the symbol being exported and a
symbol already present in a package that would inherit the newly exported
symbol may be resolved in favor of the exported symbol by uninterning the
other one, or in favor of the already-present symbol by making it a shadowing
symbol.

A name conflict in export or unintern due to a package inheriting two
distinct symbols with the same name from two other packages may be re-
solved in favor of either symbol by importing it into the using package and
making it a shadowing symbol, just as with use-package.

A name conflict in import between the symbol being imported and a
symbol inherited from some other package may be resolved in favor of the
symbol being imported by making it a shadowing symbol, or in favor of
the symbol already accessible by not doing the import. A name conflict in
import with a symbol already present in the package may be resolved by
uninterning that symbol, or by not doing the import.

Good user-interface style dictates that use-package and export, which
can cause many name conflicts simultaneously, first check for all of the name
conflicts before presenting any of them to the user. The user may then choose

11.6. BUILT-IN PACKAGES 271

to resolve all of them wholesale or to resolve each of them individually, the
latter requiring a lot of interaction but permitting different conflicts to be
resolved different ways.

Implementations may offer other ways of resolving name conflicts. For
instance, if the symbols that conflict are not being used as objects but only
as names for functions, it may be possible to “merge” the two symbols by
putting the function definition onto both symbols. References to either sym-
bol for purposes of calling a function would be equivalent. A similar merging
operation can be done for variable values and for things stored on the prop-
erty list. In Lisp Machine Lisp, for example, one can also forward the value,
function, and property cells so that future changes to either symbol will prop-
agate to the other one. Some other implementations are able to do this with
value cells but not with property lists. Only the user can know whether this
way of resolving a name conflict is adequate, because it will work only if the
use of two non-eq symbols with the same name will not prevent the correct
operation of the program. The value of offering symbol merging as a way
of resolving name conflicts is that it can avoid the need to throw away the
whole Lisp world, correct the package-definition forms that caused the error,
and start over from scratch.

11.6 Built-in Packages

common-lisp The package named common-lisp contains the primitives of
the ANSI Common Lisp system (as opposed to a Common Lisp system
based on the 1984 specification). Its external symbols include all of
the user-visible functions and global variables that are present in the
ANSI Common Lisp system, such as car, cdr, and *package*. Note,
however, that the home package of such symbols is not necessarily the
common-lisp package (this makes it easier for symbols such as t and
lambda to be shared between the common-lisp package and another
package, possibly one named lisp). Almost all other packages ought
to use common-lisp so that these symbols will be accessible without
qualification. This package has the nickname cl.

common-lisp-user The common-lisp-user package is, by default, the
current package at the time an ANSI Common Lisp system starts up.
This package uses the common-lisp package and has the nickname

272 CHAPTER 11. PACKAGES

cl-user. It may contain other implementation-dependent symbols and
may use other implementation-specific packages.

keyword This package contains all of the keywords used by built-in or user-
defined Lisp functions. Printed symbol representations that start with
a colon are interpreted as referring to symbols in this package, which
are always external symbols. All symbols in this package are treated as
constants that evaluate to themselves, so that the user can type :foo
instead of ’:foo.

X3J13 voted in January 1989 to modify the requirements on the built-
in packages so as to limit what may appear in the common-lisp package
and to lift the requirement that every implementation have a package named
system. The details are as follows.

Not only must the common-lisp package in any given implementation
contain all the external symbols prescribed by the standard; the common-
lisp package moreover may not contain any external symbol that is not pre-
scribed by the standard. However, the common-lisp package may contain
additional internal symbols, depending on the implementation.

An external symbol of the common-lisp package may not have a func-
tion, macro, or special operator definition, or a top-level value, or a special
proclamation, or a type definition, unless specifically permitted by the stan-
dard. Programmers may validly rely on this fact; for example, fboundp is
guaranteed to be false for all external symbols of the common-lisp package
except those explicitly specified in the standard to name functions, macros,
and special operators. Similarly, boundp will be false of all such external
symbols except those documented to be variables or constants.

Portable programs may use external symbols in the common-lisp pack-
age that are not documented to be constants or variables as names of local
lexical variables with the presumption that the implementation has not pro-
claimed such variables to be special; this legitimizes the common practice of
using such names as list and string as names for local variables.

A valid implementation may initially have properties on any symbol, or
dynamically put new properties on symbols (even user-created symbols), as
long as no property indicator used for this purpose is an external symbol of
any package defined by the standard or a symbol that is accessible from the
common-lisp-user package or any package defined by the user.

This vote eliminates the requirement that every implementation have a
predefined package named system. An implementation may provide any

11.6. BUILT-IN PACKAGES 273

number of predefined packages; these should be described in the documenta-
tion for that implementation.

The common-lisp-user package may contain symbols not described by
the standard and may use other implementation-specific packages.

X3J13 voted in March 1989 to restrict user programs from performing
certain actions that might interfere with built-in facilities or interact badly
with them. Except where explicitly allowed, the consequences are undefined
if any of the following actions are performed on a symbol in the common-
lisp package.

• binding or altering its value (lexically or dynamically)

• defining or binding it as a function

• defining or binding it as a macro

• defining it as a type specifier (defstruct, defclass, deftype)

• defining it as a structure (defstruct)

• defining it as a declaration

• design it as a symbol macro FIXME

• altering its print name

• altering its package

• tracing it

• declaring or proclaiming it special or lexical

• declaring or proclaiming its type or ftype

• removing it from the package common-lisp

X3J13 also voted in June 1989 to add to this list the item

• defining it as a compiler macro

274 CHAPTER 11. PACKAGES

If such a symbol is not globally defined as a variable or a constant, a user
program is allowed to lexically bind it and declare the type of that binding.

If such a symbol is not defined as a function, macro, or special operator,
a user program is allowed to (lexically) bind it as a function and to declare
the ftype of that binding and to trace that binding.

If such a symbol is not defined as a function, macro, or special operator,
a user program is allowed to (lexically) bind it as a macro.

As an example, the behavior of the code fragment

(flet ((open (filename &key direction)
(format t "~%OPEN was called.")
(open filename :direction direction)))

(with-open-file (x "frob" :direction ’:output)
(format t "~%Was OPEN called?")))

is undefined. Even in a “reasonable” implementation, for example, the
macro expansion of with-open-file might refer to the open function and
might not. However, the preceding rules eliminate the burden of deciding
whether an implementation is reasonable. The code fragment violates the
rules; officially its behavior is therefore completely undefined, and that’s
that.

Note that “altering the property list” is not in the list of proscribed ac-
tions, so a user program is permitted to add properties to or remove prop-
erties from symbols in the common-lisp package.

11.7 Package System Functions and Variables

Implementation note: In the past, some Lisp compilers have read the entire file
into Lisp before processing any of the forms. Other compilers have arranged for
the loader to do all of its intern operations before evaluating any of the top-level
forms. Neither of these techniques will work in a straightforward way in Common
Lisp because of the presence of multiple packages.

For the functions described here, all optional arguments named package
default to the current value of *package*. Where a function takes an argu-
ment that is either a symbol or a list of symbols, an argument of nil is treated
as an empty list of symbols. Any argument described as a package name may

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 275

be either a string or a symbol. If a symbol is supplied, its print name will
be used as the package name; if a string is supplied, the user must take care
to specify the same capitalization used in the package name, normally all
uppercase.

[Variable] *package*

The value of this variable must be a package; this package is said to be
the current package. The initial value of *package* is the user package.

The functions load and compile-file rebind *package* to its current
value. If some form in the file changes the value of *package* during loading
or compilation, the old value will be restored when the loading is completed.

[Function] make-package package-name &key :nicknames :use

This creates and returns a new package with the specified package name.
As described above, this argument may be either a string or a symbol. The
:nicknames argument must be a list of strings to be used as alternative
names for the package. Once again, the user may supply symbols in place
of the strings, in which case the print names of the symbols are used. These
names and nicknames must not conflict with any existing package names; if
they do, a correctable error is signaled.

The :use argument is a list of packages or the names (strings or symbols)
of packages whose external symbols are to be inherited by the new package.
These packages must already exist. If not supplied, :use defaults to a list of
one package, the lisp package.
[Macro] in-package name
This macro causes *package* to be set to the package named name,

which must be a symbol or string. The name is not evaluated. An error is
signaled if the package does not already exist. Everything this macro does is
also performed at compile time if the call appears at top level.

in-package returns the new package, that is, the value of *package*
after the operation has been executed.

[Function] find-package name

The name must be a string that is the name or nickname for a package.
This argument may also be a symbol, in which case the symbol’s print name

276 CHAPTER 11. PACKAGES

is used. The package with that name or nickname is returned; if no such
package exists, find-package returns nil. The matching of names observes
case (as in string=).

package argument may be either a package object or a package name (see
section 11.2).

[Function] package-name package

The argument must be a package. This function returns the string that
names that package.

package argument may be either a package object or a package name (see
section 11.2).

package-name returns nil instead of the package if the package has been
removed. See delete-package.

[Function] package-nicknames package

The argument must be a package. This function returns the list of nick-
name strings for that package, not including the primary name.

package argument may be either a package object or a package name (see
section 11.2).

[Function] rename-package package new-name &optional
new-nicknames

The old name and all of the old nicknames of package are eliminated and
are replaced by new-name and new-nicknames. The new-name argument is
a string or symbol; the new-nicknames argument, which defaults to nil, is a
list of strings or symbols.

package argument may be either a package object or a package name (see
section 11.2).

[Function] package-use-list package

A list of other packages used by the argument package is returned.
package argument may be either a package object or a package name (see

section 11.2).

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 277

[Function] package-used-by-list package

A list of other packages that use the argument package is returned.
package argument may be either a package object or a package name (see

section 11.2).

[Function] package-shadowing-symbols package

A list is returned of symbols that have been declared as shadowing sym-
bols in this package by shadow or shadowing-import. All symbols on this
list are present in the specified package.

package argument may be either a package object or a package name (see
section 11.2).

[Function] list-all-packages

This function returns a list of all packages that currently exist in the Lisp
system.

[Function] delete-package package

The delete-package function deletes the specified package from all pack-
age system data structures. The package argument may be either a package
or the name of a package.

If package is a name but there is currently no package of that name, a
correctable error is signaled. Continuing from the error makes no deletion
attempt but merely returns nil from the call to delete-package.

If package is a package object that has already been deleted, no error is
signaled and no deletion is attempted; instead, delete-package immediately
returns nil.

If the package specified for deletion is currently used by other packages,
a correctable error is signaled. Continuing from this error, the effect of
the function unuse-package is performed on all such other packages so as
to remove their dependency on the specified package, after which delete-
package proceeds to delete the specified package as if no other package had
been using it.

If any symbol had the specified package as its home package before the
call to delete-package, then its home package is unspecified (that is, the

278 CHAPTER 11. PACKAGES

contents of its package cell are unspecified) after the delete-package oper-
ation has been completed. Symbols in the deleted package are not modified
in any other way.

The name and nicknames of the package cease to be recognized package
names. The package object is still a package, but anonymous; packagep will
be true of it, but package-name applied to it will return nil.

The effect of any other package operation on a deleted package object
is undefined. In particular, an attempt to locate a symbol within a deleted
package (using intern or find-symbol, for example) will have unspecified
results.

delete-package returns t if the deletion succeeds, and nil otherwise.

[Function] intern string &optional package

The package, which defaults to the current package, is searched for a
symbol with the name specified by the string argument. This search will
include inherited symbols, as described in section 11.4. If a symbol with the
specified name is found, it is returned. If no such symbol is found, one is
created and is installed in the specified package as an internal symbol (as
an external symbol if the package is the keyword package); the specified
package becomes the home package of the created symbol.

X3J13 voted in March 1989 to specify that intern may in effect perform
the search using a copy of the argument string in which some or all of the
implementation-defined attributes have been removed from the characters of
the string. It is implementation-dependent which attributes are removed.

Two values are returned. The first is the symbol that was found or cre-
ated. The second value is nil if no pre-existing symbol was found, and takes
on one of three values if a symbol was found:

:internal The symbol was directly present in the package as an internal symbol.

:external The symbol was directly present as an external symbol.

:inherited The symbol was inherited via use-package (which implies that the
symbol is internal).

package argument may be either a package object or a package name (see
section 11.2).

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 279

[Function] find-symbol string &optional package

This is identical to intern, but it never creates a new symbol. If a
symbol with the specified name is found in the specified package, directly
or by inheritance, the symbol found is returned as the first value and the
second value is as specified for intern. If the symbol is not accessible in the
specified package, both values are nil.

package argument may be either a package object or a package name (see
section 11.2).

[Function] unintern symbol &optional package

If the specified symbol is present in the specified package, it is removed
from that package and also from the package’s shadowing-symbols list if it is
present there. Moreover, if the package is the home package for the symbol,
the symbol is made to have no home package. Note that in some circum-
stances the symbol may continue to be accessible in the specified package
by inheritance. unintern returns t if it actually removed a symbol, and nil
otherwise.

unintern should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

package argument may be either a package object or a package name (see
section 11.2).

[Function] export symbols &optional package

The symbols argument should be a list of symbols, or possibly a single
symbol. These symbols become accessible as external symbols in package
(see section 11.4). export returns t.

By convention, a call to export listing all exported symbols is placed
near the start of a file to advertise which of the symbols mentioned in the
file are intended to be used by other programs.

package argument may be either a package object or a package name (see
section 11.2).

[Function] unexport symbols &optional package

The symbols argument should be a list of symbols, or possibly a single
symbol. These symbols become internal symbols in package. It is an error to

280 CHAPTER 11. PACKAGES

unexport a symbol from the keyword package (see section 11.4). unexport
returns t.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] import symbols &optional package

The argument should be a list of symbols, or possibly a single symbol.
These symbols become internal symbols in package and can therefore be
referred to without having to use qualified-name (colon) syntax. import
signals a correctable error if any of the imported symbols has the same name
as some distinct symbol already accessible in the package (see section 11.4).
import returns t.

If any symbol to be imported has no home package then import sets the
home package of the symbol to the package to which the symbol is being
imported.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] shadowing-import symbols &optional package

This is like import, but it does not signal an error even if the importation
of a symbol would shadow some symbol already accessible in the package. In
addition to being imported, the symbol is placed on the shadowing-symbols
list of package (see section 11.5). shadowing-import returns t.

shadowing-import should be used with caution. It changes the state
of the package system in such a way that the consistency rules do not hold
across the change.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] shadow symbols &optional package

The argument should be a list of symbols, or possibly a single symbol.
The print name of each symbol is extracted, and the specified package is
searched for a symbol of that name. If such a symbol is present in this
package (directly, not by inheritance), then nothing is done. Otherwise, a
new symbol is created with this print name, and it is inserted in the package

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 281

as an internal symbol. The symbol is also placed on the shadowing-symbols
list of the package (see section 11.5). shadow returns t.

shadow should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] use-package packages-to-use &optional package

The packages-to-use argument should be a list of packages or package
names, or possibly a single package or package name. These packages are
added to the use-list of package if they are not there already. All external
symbols in the packages to use become accessible in package as internal sym-
bols (see section 11.4). It is an error to try to use the keyword package.
use-package returns t.

The package argument may be either a package object or a package name
(see section 11.2).

[Function] unuse-package packages-to-unuse &optional package

The packages-to-unuse argument should be a list of packages or package
names, or possibly a single package or package name. These packages are
removed from the use-list of package. unuse-package returns t.

The package argument may be either a package object or a package name
(see section 11.2).
[Macro] defpackage defined-package-name {option}*
This creates a new package, or modifies an existing one, whose name

is defined-package-name. The defined-package-name may be a string or a
symbol; if it is a symbol, only its print name matters, and not what package,
if any, the symbol happens to be in. The newly created or modified package
is returned as the value of the defpackage form.

Each standard option is a list of a keyword (the name of the option) and
associated arguments. No part of a defpackage form is evaluated. Except
for the :size option, more than one option of the same kind may occur within
the same defpackage form.

The standard options for defpackage are as follows. In every case, any
option argument called package-name or symbol-name may be a string or a
symbol; if it is a symbol, only its print name matters, and not what package,
if any, the symbol happens to be in.

282 CHAPTER 11. PACKAGES

(:size integer) This specifies approximately the number of symbols ex-
pected to be in the package. This is purely an efficiency hint to the
storage allocator, so that implementations using hash tables as part
of the package data structure (the usual technique) will not have to
incrementally expand the package as new symbols are added to it (for
example, as a large file is read while “in” that package).

(:nicknames {}* package-name) The specified names become nicknames
of the package being defined. If any of the specified nicknames already
refers to an existing package, a continuable error is signaled exactly as
for the function make-package.

(:shadow {}* symbol-name) Symbols with the specified names are cre-
ated as shadows in the package being defined, just as with the function
shadow.

(:shadowing-import-from package-name {}* symbol-name)
Symbols with the specified names are located in the specified
package. These symbols are imported into the package being defined,
shadowing other symbols if necessary, just as with the function
shadowing-import. In no case will symbols be created in a package
other than the one being defined; a continuable error is signaled if for
any symbol-name there is no symbol of that name accessible in the
package named package-name.

(:use {}* package-name) The package being defined is made to “use” (in-
herit from) the packages specified by this option, just as with the func-
tion use-package. If no :use option is supplied, then option is un-
specified.

(:import-from package-name {}* symbol-name) Symbols with the
specified names are located in the specified package. These symbols
are imported into the package being defined, just as with the function
import. In no case will symbols be created in a package other than
the one being defined; a continuable error is signaled if for any symbol-
name there is no symbol of that name accessible in the package named
package-name.

(:intern {}* symbol-name) Symbols with the specified names are located
or created in the package being defined, just as with the function in-

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 283

tern. Note that the action of this option may be affected by a :use
option, because an inherited symbol will be used in preference to cre-
ating a new one.

(:export {}* symbol-name) Symbols with the specified names are lo-
cated or created in the package being defined and then exported, just
as with the function export. Note that the action of this option may
be affected by a :use, :import-from, or :shadowing-import-from
option, because an inherited or imported symbol will be used in pref-
erence to creating a new one.

The order in which options appear in a defpackage form does not matter;
part of the convenience of defpackage is that it sorts out the options into
the correct order for processing. Options are processed in the following order:

1. :shadow and :shadowing-import-from
2. :use
3. :import-from and :intern
4. :export

Shadows are established first in order to avoid spurious name conflicts when
use links are established. Use links must occur before importing and interning
so that those operations may refer to normally inherited symbols rather than
creating new ones. Exports are performed last so that symbols created by
any of the other options, in particular, shadows and imported symbols, may
be exported. Note that exporting an inherited symbol implicitly imports it
first (see section 11.4).

If no package named defined-package-name already exists, defpackage
creates it. If such a package does already exist, then no new package is
created. The existing package is modified, if possible, to reflect the new
definition. The results are undefined if the new definition is not consistent
with the current state of the package.

An error is signaled if more than one :size option appears. Если опция
:size указана более одного раза сигнализируется ошибка.

An error is signaled if the same symbol-name argument (in the sense of
comparing names with string=) appears more than once among the argu-
ments to all the :shadow, :shadowing-import-from, :import-from, and
:intern options.

284 CHAPTER 11. PACKAGES

An error is signaled if the same symbol-name argument (in the sense of
comparing names with string=) appears more than once among the argu-
ments to all the :intern and :export options.

Other kinds of name conflicts are handled in the same manner that the un-
derlying operations use-package, import, and export would handle them.

Implementations may support other defpackage options. Every imple-
mentation should signal an error on encountering a defpackage option it
does not support.

The function compile-file should treat top-level defpackage forms in
the same way it would treat top-level calls to package-affecting functions (as
described at the beginning of section 11.7).

Here is an example of a call to defpackage that “plays it safe” by using
only strings as names.

(cl:defpackage "MY-VERY-OWN-PACKAGE"
(:size 496)
(:nicknames "MY-PKG" "MYPKG" "MVOP")
(:use "COMMON-LISP")
(:shadow "CAR" "CDR")
(:shadowing-import-from "BRAND-X-LISP" "CONS")
(:import-from "BRAND-X-LISP" "GC" "BLINK-FRONT-PANEL-LIGHTS")
(:export "EQ" "CONS" "MY-VERY-OWN-FUNCTION"))

The preceding defpackage example is designed to operate correctly even
if the package current when the form is read happens not to “use” the
common-lisp package. (Note the use in this example of the nickname cl
for the common-lisp package.) Moreover, neither reading in nor evaluating
this defpackage form will ever create any symbols in the current package.
Note too the use of uppercase letters in the strings.

Here, for the sake of contrast, is a rather similar use of defpackage that
“plays the whale” by using all sorts of permissible syntax.

(defpackage my-very-own-package
(:export :EQ common-lisp:cons my-very-own-function)
(:nicknames "MY-PKG" #:MyPkg)
(:use "COMMON-LISP")
(:shadow "CAR")
(:size 496)
(:nicknames mvop)

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 285

(:import-from "BRAND-X-LISP" "GC" Blink-Front-Panel-Lights)
(:shadow common-lisp::cdr)
(:shadowing-import-from "BRAND-X-LISP" CONS))

This example has exactly the same effect on the newly created package
but may create useless symbols in other packages. The use of explicit package
tags is particularly confusing; for example, this defpackage form will cause
the symbol cdr to be shadowed in the new package; it will not be shadowed
in the package common-lisp. The fact that the name “CDR” was specified
by a package-qualified reference to a symbol in the common-lisp package is
a red herring. The moral is that the syntactic flexibility of defpackage, as
in other parts of Common Lisp, yields considerable convenience when used
with commonsense competence, but unutterable confusion when used with
Malthusian profusion.

Implementation note: An implementation of defpackage might choose to
transform all the package-name and symbol-name arguments into strings at macro
expansion time, rather than at the time the resulting expansion is executed, so that
even if source code is expressed in terms of strange symbols in the defpackage
form, the binary file resulting from compiling the source code would contain only
strings. The purpose of this is simply to minimize the creation of useless symbols
in production code. This technique is permitted as an implementation strategy
but is not a behavior required by the specification of defpackage.

Note that defpackage is not capable by itself of defining mutually re-
cursive packages, for example two packages each of which uses the other.
However, nothing prevents one from using defpackage to perform much of
the initial setup and then using functions such as use-package, import,
and export to complete the links.

The purpose of defpackage is to encourage the user to put the entire
definition of a package and its relationships to other packages in a single
place. It may also encourage the designer of a large system to place the
definitions of all relevant packages into a single file (say) that can be loaded
before loading or compiling any code that depends on those packages. Such
a file, if carefully constructed, can simply be loaded into the common-lisp-
user package.

Implementations and programming environments may also be better able
to support the programming process (if only by providing better error check-
ing) through global knowledge of the intended package setup.

286 CHAPTER 11. PACKAGES

[Function] find-all-symbols string-or-symbol

find-all-symbols searches every package in the Lisp system to find every
symbol whose print name is the specified string. A list of all such symbols
found is returned. This search is case-sensitive. If the argument is a symbol,
its print name supplies the string to be searched for.

[Macro] do-symbols (var [package [result-form]])
{declaration}* {tag | statement}*

do-symbols provides straightforward iteration over the symbols of a
package. The body is performed once for each symbol accessible in the pack-
age, in no particular order, with the variable var bound to the symbol. Then
result-form (a single form, not an implicit progn) is evaluated, and the result
is the value of the do-symbols form. (When the result-form is evaluated, the
control variable var is still bound and has the value nil.) If the result-form
is omitted, the result is nil. return may be used to terminate the iteration
prematurely. If execution of the body affects which symbols are contained in
the package, other than possibly to remove the symbol currently the value of
var by using unintern, the effects are unpredictable.

The package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in March 1988 to specify that the body of a do-symbols
form may be executed more than once for the same accessible symbol, and
users should take care to allow for this possibility.

The point is that the same symbol might be accessible via more than one
chain of inheritance, and it is implementationally costly to eliminate such
duplicates. Here is an example:

(setq *a* (make-package ’a)) ;Implicitly uses package common-lisp
(setq *b* (make-package ’b)) ;Implicitly uses package common-lisp
(setq *c* (make-package ’c :use ’(a b)))

(do-symbols (x *c*) (print x)) ;Symbols in package common-lisp
; might be printed once or twice here

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
Note that the loop construct provides a kind of for clause that can iterate

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 287

over the symbols of a package (see chapter 26).

[Macro] do-external-symbols (var [package [result]])
{declaration}* {tag | statement}*
do-external-symbols is just like do-symbols, except that only the ex-

ternal symbols of the specified package are scanned.
The clarification voted by X3J13 in March 1988 for do-symbols , re-

garding redundant executions of the body for the same symbol, applies also
to do-external-symbols.

The package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Macro] do-all-symbols (var [result-form])
{declaration}* {tag | statement}*
This is similar to do-symbols but executes the body once for every sym-

bol contained in every package. (This will not process every symbol whatso-
ever, because a symbol not accessible in any package will not be processed.
Normally, uninterned symbols are not accessible in any package.) It is not in
general the case that each symbol is processed only once, because a symbol
may appear in many packages.

The clarification voted by X3J13 in March 1988 for do-symbols , re-
garding redundant executions of the body for the same symbol, applies also
to do-all-symbols.

The package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Macro] with-package-iterator (mname package-list {symbol-type}+)
{form}*
The name mname is bound and defined as if by macrolet, with the

body forms as its lexical scope, to be a “generator macro” such that each
invocation of (mname) will return a symbol and that successive invocations
will eventually deliver, one by one, all the symbols from the packages that
are elements of the list that is the value of the expression package-list (which
is evaluated exactly once).

Each element of the package-list value may be either a package or the
name of a package. As a further convenience, if the package-list value is
itself a package or the name of a package, it is treated as if a singleton list

288 CHAPTER 11. PACKAGES

containing that value had been provided. If the package-list value is nil, it
is considered to be an empty list of packages.

At each invocation of the generator macro, there are two possibilities. If
there is yet another unprocessed symbol, then four values are returned: t,
the symbol, a keyword indicating the accessibility of the symbol within the
package (see below), and the package from which the symbol was accessed.
If there are no more unprocessed symbols in the list of packages, then one
value is returned: nil.

When the generator macro returns a symbol as its second value, the
fourth value is always one of the packages present or named in the package-
list value, and the third value is a keyword indicating accessibility: :internal
means present in the package and not exported; :external means present
and exported; and :inherited means not present (thus not shadowed) but
inherited from some package used by the package that is the fourth value.

Each symbol-type in an invocation of with-package-iterator is not eval-
uated. More than one may be present; their order does not matter. They
indicate the accessibility types of interest. A symbol is not returned by the
generator macro unless its actual accessibility matches one of the symbol-
type indicators. The standard symbol-type indicators are :internal, :ex-
ternal, and :inherited, but implementations are permitted to extend the
syntax of with-package-iterator by recognizing additional symbol acces-
sibility types. An error is signaled if no symbol-type is supplied, or if any
supplied symbol-type is not recognized by the implementation.

The order in which symbols are produced by successive invocations of the
generator macro is not necessarily correlated in any way with the order of the
packages in the package-list. When more than one package is in the package-
list, symbols accessible from more than one package may be produced once or
more than once. Even when only one package is specified, symbols inherited
in multiple ways via used packages may be produced once or more than once.

The implicit interior state of the iteration over the list of packages and
the symbols within them has dynamic extent. It is an error to invoke the
generator macro once the with-package-iterator form has been exited.

Any number of invocations of with-package-iterator and related
macros may be nested, and the generator macro of an outer invocation may
be called from within an inner invocation (provided, of course, that its name
is visible or otherwise made available).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

11.7. PACKAGE SYSTEM FUNCTIONS AND VARIABLES 289

Rationale: This facility is a bit more flexible in some ways than do-symbols and
friends. In particular, it makes it possible to implement loop clauses for iterating
over packages in a way that is both portable and efficient (see chapter 26).

290 CHAPTER 11. PACKAGES

Chapter 12

Numbers

Common Lisp provides several different representations for numbers. These
representations may be divided into four categories: integers, ratios, floating-
point numbers, and complex numbers. Many numeric functions will accept
any kind of number; they are generic. Other functions accept only certain
kinds of numbers.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

In general, numbers in Common Lisp are not true objects; eq cannot be
counted upon to operate on them reliably. In particular, it is possible that
the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the imple-
mentor enough design freedom to produce exceptionally efficient numerical code
on conventional architectures. MacLisp requires this freedom, for example, in or-
der to produce compiled numerical code equal in speed to Fortran. Common Lisp
makes this same restriction, if not for this freedom, then at least for the sake of
compatibility.

If two objects are to be compared for “identity,” but either might be a
number, then the predicate eql is probably appropriate; if both objects are
known to be numbers, then = may be preferable.

291

292 CHAPTER 12. NUMBERS

12.1 Precision, Contagion, and Coercion
In general, computations with floating-point numbers are only approximate.
The precision of a floating-point number is not necessarily correlated at all
with the accuracy of that number. For instance, 3.142857142857142857 is a
more precise approximation to π than 3.14159, but the latter is more accu-
rate. The precision refers to the number of bits retained in the representation.
When an operation combines a short floating-point number with a long one,
the result will be a long floating-point number. This rule is made to ensure
that as much accuracy as possible is preserved; however, it is by no means
a guarantee. Common Lisp numerical routines do assume, however, that
the accuracy of an argument does not exceed its precision. Therefore when
two small floating-point numbers are combined, the result will always be a
small floating-point number. This assumption can be overridden by first ex-
plicitly converting a small floating-point number to a larger representation.
(Common Lisp never converts automatically from a larger size to a smaller
one.)

Rational computations cannot overflow in the usual sense (though of
course there may not be enough storage to represent one), as integers and
ratios may in principle be of any magnitude. Floating-point computations
may get exponent overflow or underflow; this is an error.

X3J13 voted in June 1989 to address certain problems relating to floating-
point overflow and underflow, but certain parts of the proposed solution were
not adopted, namely to add the macro without-floating-underflow-traps
to the language and to require certain behavior of floating-point overflow
and underflow. The committee agreed that this area of the language requires
more discussion before a solution is standardized.

For the record, the proposal that was considered and rejected (for the
nonce) introduced a macro without-floating-underflow-traps that would
execute its body in such a way that, within its dynamic extent, a floating-
point underflow must not signal an error but instead must produce either
a denormalized number or zero as the result. The rejected proposal also
specified the following treatment of overflow and underflow:

• A floating-point computation that overflows should signal an error of
type floating-point-overflow.

• Unless the dynamic extent of a use of without-floating-underflow-
traps, a floating-point computation that underflows should signal an

12.1. PRECISION, CONTAGION, AND COERCION 293

error of type floating-point-underflow. A result that can be repre-
sented only in denormalized form must be considered an underflow in
implementations that support denormalized floating-point numbers.

These points refer to conditions floating-point-overflow and floating-
point-underflow that were approved by X3J13 and are described in sec-
tion 29.5.

When rational and floating-point numbers are compared or combined by
a numerical function, the rule of floating-point contagion is followed: when
a rational meets a floating-point number, the rational is first converted to a
floating-point number of the same format. For functions such as + that take
more than two arguments, it may be that part of the operation is carried
out exactly using rationals and then the rest is done using floating-point
arithmetic.

X3J13 voted in January 1989 to apply the rule of floating-point contagion
stated above to the case of combining rational and floating-point numbers.
For comparing, the following rule is to be used instead: When a rational
number and a floating-point number are to be compared by a numerical
function, in effect the floating-point number is first converted to a rational
number as if by the function rational, and then an exact comparison of two
rational numbers is performed. It is of course valid to use a more efficient
implementation than actually calling the function rational, as long as the
result of the comparison is the same. In the case of complex numbers, the
real and imaginary parts are handled separately.

Rationale: In general, accuracy cannot be preserved in combining operations, but
it can be preserved in comparisons, and preserving it makes that part of Common
Lisp algebraically a bit more tractable. In particular, this change prevents the
breakdown of transitivity. Let a be the result of (/ 10.0 single-float-epsilon),
and let j be the result of (floor a). (Note that (= a (+ a 1.0)) is true, by
the definition of single-float-epsilon.) Under the old rules, all of (<= a j),
(< j (+ j 1)), and (<= (+ j 1) a) would be true; transitivity would then imply
that (< a a) ought to be true, but of course it is false, and therefore transitivity
fails. Under the new rule, however, (<= (+ j 1) a) is false.

For functions that are mathematically associative (and possibly commu-
tative), a Common Lisp implementation may process the arguments in any

294 CHAPTER 12. NUMBERS

manner consistent with associative (and possibly commutative) rearrange-
ment. This does not affect the order in which the argument forms are eval-
uated, of course; that order is always left to right, as in all Common Lisp
function calls. What is left loose is the order in which the argument val-
ues are processed. The point of all this is that implementations may differ in
which automatic coercions are applied because of differing orders of argument
processing. As an example, consider this expression:

(+ 1/3 2/3 1.0D0 1.0 1.0E-15)

One implementation might process the arguments from left to right, first
adding 1/3 and 2/3 to get 1, then converting that to a double-precision
floating-point number for combination with 1.0D0, then successively con-
verting and adding 1.0 and 1.0E-15. Another implementation might process
the arguments from right to left, first performing a single-precision floating-
point addition of 1.0 and 1.0E-15 (and probably losing some accuracy in the
process!), then converting the sum to double precision and adding 1.0D0,
then converting 2/3 to double-precision floating-point and adding it, and
then converting 1/3 and adding that. A third implementation might first
scan all the arguments, process all the rationals first to keep that part of
the computation exact, then find an argument of the largest floating-point
format among all the arguments and add that, and then add in all other
arguments, converting each in turn (all in a perhaps misguided attempt to
make the computation as accurate as possible). In any case, all three strate-
gies are legitimate. The user can of course control the order of processing
explicitly by writing several calls; for example:

(+ (+ 1/3 2/3) (+ 1.0D0 1.0E-15) 1.0)

The user can also control all coercions simply by writing calls to coercion
functions explicitly.

In general, then, the type of the result of a numerical function is a floating-
point number of the largest format among all the floating-point arguments to
the function; but if the arguments are all rational, then the result is rational
(except for functions that can produce mathematically irrational results, in
which case a single-format floating-point number may result).

There is a separate rule of complex contagion. As a rule, complex numbers
never result from a numerical function unless one or more of the arguments
is complex. (Exceptions to this rule occur among the irrational and tran-
scendental functions, specifically expt, log, sqrt, asin, acos, acosh, and

12.2. PREDICATES ON NUMBERS 295

atanh; see section 12.5.) When a non-complex number meets a complex
number, the non-complex number is in effect first converted to a complex
number by providing an imaginary part of zero.

If any computation produces a result that is a ratio of two integers such
that the denominator evenly divides the numerator, then the result is imme-
diately converted to the equivalent integer. This is called the rule of rational
canonicalization.

If the result of any computation would be a complex rational with a
zero imaginary part, the result is immediately converted to a non-complex
rational number by taking the real part. This is called the rule of complex
canonicalization. Note that this rule does not apply to complex numbers
whose components are floating-point numbers. Whereas #C(5 0) and 5 are
not distinct values in Common Lisp (they are always eql), #C(5.0 0.0) and
5.0 are always distinct values in Common Lisp (they are never eql, although
they are equalp).

12.2 Predicates on Numbers

Each of the following functions tests a single number for a specific property.
Each function requires that its argument be a number; to call one with a
non-number is an error.

[Function] zerop number

This predicate is true if number is zero (the integer zero, a floating-point
zero, or a complex zero), and is false otherwise. Regardless of whether an
implementation provides distinct representations for positive and negative
floating-point zeros, (zerop -0.0) is always true. It is an error if the argu-
ment number is not a number.

[Function] plusp number

This predicate is true if number is strictly greater than zero, and is false
otherwise. It is an error if the argument number is not a non-complex num-
ber.

296 CHAPTER 12. NUMBERS

[Function] minusp number

This predicate is true if number is strictly less than zero, and is false
otherwise. Regardless of whether an implementation provides distinct rep-
resentations for positive and negative floating-point zeros, (minusp -0.0) is
always false. (The function float-sign may be used to distinguish a negative
zero.) It is an error if the argument number is not a non-complex number.

[Function] oddp integer

This predicate is true if the argument integer is odd (not divisible by 2),
and otherwise is false. It is an error if the argument is not an integer.

[Function] evenp integer

This predicate is true if the argument integer is even (divisible by 2), and
otherwise is false. It is an error if the argument is not an integer.

See also the data-type predicates integerp, rationalp, floatp, com-
plexp, and numberp.

12.3 Comparisons on Numbers
Each of the functions in this section requires that its arguments all be num-
bers; to call one with a non-number is an error. Unless otherwise specified,
each works on all types of numbers, automatically performing any required
coercions when arguments are of different types.

[Function] = number &rest more-numbers
[Function] /= number &rest more-numbers
[Function] < number &rest more-numbers
[Function] > number &rest more-numbers
[Function] <= number &rest more-numbers
[Function] >= number &rest more-numbers

These functions each take one or more arguments. If the sequence of
arguments satisfies a certain condition:

= all the same
/= all different

12.3. COMPARISONS ON NUMBERS 297

< monotonically increasing
> monotonically decreasing
<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be
compared using = and /=, but the others require non-complex arguments.
Two complex numbers are considered equal by = if their real parts are equal
and their imaginary parts are equal according to =. A complex number may
be compared with a non-complex number with = or /=. For example:

(= 3 3) is true. (/= 3 3) is false.
(= 3 5) is false. (/= 3 5) is true.
(= 3 3 3 3) is true. (/= 3 3 3 3) is false.
(= 3 3 5 3) is false. (/= 3 3 5 3) is false.
(= 3 6 5 2) is false. (/= 3 6 5 2) is true.
(= 3 2 3) is false. (/= 3 2 3) is false.
(< 3 5) is true. (<= 3 5) is true.
(< 3 -5) is false. (<= 3 -5) is false.
(< 3 3) is false. (<= 3 3) is true.
(< 0 3 4 6 7) is true. (<= 0 3 4 6 7) is true.
(< 0 3 4 4 6) is false. (<= 0 3 4 4 6) is true.
(> 4 3) is true. (>= 4 3) is true.
(> 4 3 2 1 0) is true. (>= 4 3 2 1 0) is true.
(> 4 3 3 2 0) is false. (>= 4 3 3 2 0) is true.
(> 4 3 1 2 0) is false. (>= 4 3 1 2 0) is false.
(= 3) is true. (/= 3) is true.
(< 3) is true. (<= 3) is true.
(= 3.0 #C(3.0 0.0)) is true. (/= 3.0 #C(3.0 1.0)) is true.
(= 3 3.0) is true. (= 3.0s0 3.0d0) is true.
(= 0.0 -0.0) is true. (= 5/2 2.5) is true.
(> 0.0 -0.0) is false. (= 0 -0.0) is true.

With two arguments, these functions perform the usual arithmetic com-
parison tests. With three or more arguments, they are useful for range checks,
as shown in the following example:

(<= 0 x 9) ;true if x is between 0 and 9, inclusive
(< 0.0 x 1.0) ;true if x is between 0.0 and 1.0, exclusive

298 CHAPTER 12. NUMBERS

(< -1 j (length s)) ;true if j is a valid index for s
(<= 0 j k (- (length s) 1)) ;true if j and k are each valid

;indices for s and j ≤ k

Rationale: The “unequality” relation is called /= rather than<> (the name used
in Pascal) for two reasons. First, /= of more than two arguments is not the same
as the or of < and > of those same arguments. Second, unequality is meaningful
for complex numbers even though < and > are not. For both reasons it would be
misleading to associate unequality with the names of < and >.

[Function] max number &rest more-numbers
[Function] min number &rest more-numbers

The arguments may be any non-complex numbers. max returns the
argument that is greatest (closest to positive infinity). min returns the
argument that is least (closest to negative infinity).

For max, if the arguments are a mixture of rationals and floating-point
numbers, and the largest argument is a rational, then the implementation
is free to produce either that rational or its floating-point approximation;
if the largest argument is a floating-point number of a smaller format than
the largest format of any floating-point argument, then the implementation
is free to return the argument in its given format or expanded to the larger
format. More concisely, the implementation has the choice of returning the
largest argument as is or applying the rules of floating-point contagion, taking
all the arguments into consideration for contagion purposes. Also, if two or
more of the arguments are equal, then any one of them may be chosen as the
value to return. Similar remarks apply to min (replacing “largest argument”
by “smallest argument”).

(max 6 12) ⇒ 12 (min 6 12) ⇒ 6
(max -6 -12) ⇒ -6 (min -6 -12) ⇒ -12
(max 1 3 2 -7) ⇒ 3 (min 1 3 2 -7) ⇒ -7
(max -2 3 0 7) ⇒ 7 (min -2 3 0 7) ⇒ -2
(max 3) ⇒ 3 (min 3) ⇒ 3
(max 5.0 2) ⇒ 5.0 (min 5.0 2) ⇒ 2 or 2.0
(max 3.0 7 1) ⇒ 7 or 7.0 (min 3.0 7 1) ⇒ 1 or 1.0
(max 1.0s0 7.0d0) ⇒ 7.0d0

12.4. ARITHMETIC OPERATIONS 299

(min 1.0s0 7.0d0) ⇒ 1.0s0 or 1.0d0
(max 3 1 1.0s0 1.0d0) ⇒ 3 or 3.0d0
(min 3 1 1.0s0 1.0d0) ⇒ 1 or 1.0s0 or 1.0d0

12.4 Arithmetic Operations
Each of the functions in this section requires that its arguments all be num-
bers; to call one with a non-number is an error. Unless otherwise specified,
each works on all types of numbers, automatically performing any required
coercions when arguments are of different types.

[Function] + &rest numbers

This returns the sum of the arguments. If there are no arguments, the
result is 0, which is an identity for this operation.

[Function] - number &rest more-numbers

The function -, when given one argument, returns the negative of that
argument.

The function -, when given more than one argument, successively sub-
tracts from the first argument all the others, and returns the result. For
example, (- 3 4 5) ⇒ -6.

[Function] * &rest numbers

This returns the product of the arguments. If there are no arguments,
the result is 1, which is an identity for this operation.

[Function] / number &rest more-numbers

The function /, when given more than one argument, successively divides
the first argument by all the others and returns the result.

It is generally accepted that it is an error for any argument other than
the first to be zero.

With one argument, / reciprocates the argument.
It is generally accepted that it is an error in this case for the argument

to be zero.
/ will produce a ratio if the mathematical quotient of two integers is not

an exact integer. For example:

300 CHAPTER 12. NUMBERS

(/ 12 4) ⇒ 3
(/ 13 4) ⇒ 13/4
(/ -8) ⇒ -1/8
(/ 3 4 5) ⇒ 3/20

To divide one integer by another producing an integer result, use one of
the functions floor, ceiling, truncate, or round.

If any argument is a floating-point number, then the rules of floating-point
contagion apply.

[Function] 1+ number
[Function] 1- number

(1+ x) is the same as (+ x 1).
(1- x) is the same as (- x 1). Note that the short name may be confusing:

(1- x) does not mean 1− x; rather, it means x− 1.

Implementation note: Compiler writers are very strongly encouraged to ensure
that (1+ x) and (+ x 1) compile into identical code, and similarly for (1- x) and
(- x 1), to avoid pressure on a Lisp programmer to write possibly less clear code for
the sake of efficiency. This can easily be done as a source-language transformation.

[Macro] incf place [delta]
[Macro] decf place [delta]
The number produced by the form delta is added to (incf) or subtracted

from (decf) the number in the generalized variable named by place, and the
sum is stored back into place and returned. The form place may be any form
acceptable as a generalized variable to setf. If delta is not supplied, then the
number in place is changed by 1. For example:

(setq n 0)
(incf n) ⇒ 1 and now n ⇒ 1
(decf n 3) ⇒ -2 and now n ⇒ -2
(decf n -5) ⇒ 3 and now n ⇒ 3
(decf n) ⇒ 2 and now n ⇒ 2

The effect of (incf place delta) is roughly equivalent to

(setf place (+ place delta))

12.4. ARITHMETIC OPERATIONS 301

except that the latter would evaluate any subforms of place twice, whereas
incf takes care to evaluate them only once. Moreover, for certain place forms
incf may be significantly more efficient than the setf version. X3J13 voted
in March 1988 to clarify order of evaluation (see section 7.2).

[Function] conjugate number

This returns the complex conjugate of number. The conjugate of a non-
complex number is itself. For a complex number z,

(conjugate z) ≡ (complex (realpart z) (- (imagpart z)))

For example:

(conjugate #C(3/5 4/5)) ⇒ #C(3/5 -4/5)
(conjugate #C(0.0D0 -1.0D0)) ⇒ #C(0.0D0 1.0D0)
(conjugate 3.7) ⇒ 3.7

[Function] gcd &rest integers

This returns the greatest common divisor of all the arguments, which
must be integers. The result of gcd is always a non-negative integer. If one
argument is given, its absolute value is returned. If no arguments are given,
gcd returns 0, which is an identity for this operation. For three or more
arguments,

(gcd a b c ... z) ≡ (gcd (gcd a b) c ... z)

Here are some examples of the use of gcd:

(gcd 91 -49) ⇒ 7
(gcd 63 -42 35) ⇒ 7
(gcd 5) ⇒ 5
(gcd -4) ⇒ 4
(gcd) ⇒ 0

[Function] lcm integer &rest more-integers

This returns the least common multiple of its arguments, which must
be integers. The result of lcm is always a non-negative integer. For two
arguments that are not both zero,

302 CHAPTER 12. NUMBERS

(lcm a b) ≡ (/ (abs (* a b)) (gcd a b))

If one or both arguments are zero,

(lcm a 0) ≡ (lcm 0 a) ≡ 0

For one argument, lcm returns the absolute value of that argument. For
three or more arguments,

(lcm a b c ... z) ≡ (lcm (lcm a b) c ... z)

Some examples:

(lcm 14 35) ⇒ 70
(lcm 0 5) ⇒ 0
(lcm 1 2 3 4 5 6) ⇒ 60

(lcm) ⇒ 1.

(lcm) ought to have been defined to return 1.

12.5 Irrational and Transcendental Functions
Common Lisp provides no data type that can accurately represent irrational
numerical values. The functions in this section are described as if the results
were mathematically accurate, but actually they all produce floating-point
approximations to the true mathematical result in the general case. In some
places mathematical identities are set forth that are intended to elucidate the
meanings of the functions; however, two mathematically identical expressions
may be computationally different because of errors inherent in the floating-
point approximation process.

When the arguments to a function in this section are all rational and
the true mathematical result is also (mathematically) rational, then unless
otherwise noted an implementation is free to return either an accurate re-
sult of type rational or a single-precision floating-point approximation. If
the arguments are all rational but the result cannot be expressed as a ra-
tional number, then a single-precision floating-point approximation is always
returned.

If the arguments to a function are all of type (or rational (complex
rational)) and the true mathematical result is (mathematically) a complex

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 303

number with rational real and imaginary parts, then unless otherwise noted
an implementation is free to return either an accurate result of type (or ra-
tional (complex rational)) or a single-precision floating-point approxima-
tion of type single-float (permissible only if the imaginary part of the true
mathematical result is zero) or (complex single-float). If the arguments
are all of type (or rational (complex rational)) but the result cannot be
expressed as a rational or complex rational number, then the returned value
will be of type single-float (permissible only if the imaginary part of the
true mathematical result is zero) or (complex single-float).

The rules of floating-point contagion and complex contagion are effec-
tively obeyed by all the functions in this section except expt, which treats
some cases of rational exponents specially. When, possibly after contagious
conversion, all of the arguments are of the same floating-point or complex
floating-point type, then the result will be of that same type unless otherwise
noted.

Implementation note: There is a “floating-point cookbook” by Cody and
Waite [14] that may be a useful aid in implementing the functions defined in this
section.

12.5.1 Exponential and Logarithmic Functions

Along with the usual one-argument and two-argument exponential and log-
arithm functions, sqrt is considered to be an exponential function, because
it raises a number to the power 1/2.

[Function] exp number

Returns e raised to the power number, where e is the base of the natural
logarithms.

[Function] expt base-number power-number

Returns base-number raised to the power power-number. If the base-
number is of type rational and the power-number is an integer, the cal-
culation will be exact and the result will be of type rational; otherwise a
floating-point approximation may result.

X3J13 voted in March 1989 to clarify that provisions similar to those
of the previous paragraph apply to complex numbers. If the base-number

304 CHAPTER 12. NUMBERS

is of type (complex rational) and the power-number is an integer, the
calculation will also be exact and the result will be of type (or rational
(complex rational)); otherwise a floating-point or complex floating-point
approximation may result.

When power-number is 0 (a zero of type integer), then the result is always
the value 1 in the type of base-number, even if the base-number is zero (of
any type). That is:

(expt x 0) ≡ (coerce 1 (type-of x))

If the power-number is a zero of any other data type, then the result is
also the value 1, in the type of the arguments after the application of the
contagion rules, with one exception: it is an error if base-number is zero when
the power-number is a zero not of type integer.

Implementations of expt are permitted to use different algorithms for
the cases of a rational power-number and a floating-point power-number ; the
motivation is that in many cases greater accuracy can be achieved for the
case of a rational power-number. For example, (expt pi 16) and (expt
pi 16.0) may yield slightly different results if the first case is computed by
repeated squaring and the second by the use of logarithms. Similarly, an
implementation might choose to compute (expt x 3/2) as if it had been
written (sqrt (expt x 3)), perhaps producing a more accurate result than
would (expt x 1.5). It is left to the implementor to determine the best
strategies.

The result of expt can be a complex number, even when neither argument
is complex, if base-number is negative and power-number is not an integer.
The result is always the principal complex value. Note that (expt -8 1/3)
is not permitted to return -2; while -2 is indeed one of the cube roots of -8,
it is not the principal cube root, which is a complex number approximately
equal to #C(1.0 1.73205).

[Function] log number &optional base

Returns the logarithm of number in the base base, which defaults to e,
the base of the natural logarithms. For example:

(log 8.0 2) ⇒ 3.0
(log 100.0 10) ⇒ 2.0

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 305

The result of (log 8 2) may be either 3 or 3.0, depending on the imple-
mentation.

Note that log may return a complex result when given a non-complex
argument if the argument is negative. For example:

(log -1.0) ≡ (complex 0.0 (float pi 0.0))

X3J13 voted in January 1989 to specify certain floating-point behavior
when minus zero is supported. As a part of that vote it approved a mathe-
matical definition of complex logarithm in terms of real logarithm, absolute
value, arc tangent of two real arguments, and the phase function as

Logarithm log |z|+ i phase z

This specifies the branch cuts precisely whether minus zero is supported or
not; see phase and atan.

[Function] sqrt number

Returns the principal square root of number. If the number is not complex
but is negative, then the result will be a complex number. For example:

(sqrt 9.0) ⇒ 3.0
(sqrt -9.0) ⇒ #c(0.0 3.0)

The result of (sqrt 9) may be either 3 or 3.0, depending on the im-
plementation. The result of (sqrt -9) may be either #c(0 3) or #c(0.0
3.0).

X3J13 voted in January 1989 to specify certain floating-point behavior
when minus zero is supported. As a part of that vote it approved a mathe-
matical definition of complex square root in terms of complex logarithm and
exponential functions as

Square root e(log z)/2

This specifies the branch cuts precisely whether minus zero is supported or
not; see phase and atan.

[Function] isqrt integer

Integer square root: the argument must be a non-negative integer, and
the result is the greatest integer less than or equal to the exact positive square
root of the argument. For example:

306 CHAPTER 12. NUMBERS

(isqrt 9) ⇒ 3
(isqrt 12) ⇒ 3
(isqrt 300) ⇒ 17
(isqrt 325) ⇒ 18

12.5.2 Trigonometric and Related Functions

Some of the functions in this section, such as abs and signum, are apparently
unrelated to trigonometric functions when considered as functions of real
numbers only. The way in which they are extended to operate on complex
numbers makes the trigonometric connection clear.

[Function] abs number

Returns the absolute value of the argument. For a non-complex number
x,

(abs x) ≡ (if (minusp x) (- x) x)

and the result is always of the same type as the argument.
For a complex number z, the absolute value may be computed as

(sqrt (+ (expt (realpart z) 2) (expt (imagpart z) 2)))

Implementation note: The careful implementor will not use this formula directly
for all complex numbers but will instead handle very large or very small components
specially to avoid intermediate overflow or underflow.

For example:

(abs #c(3.0 -4.0)) ⇒ 5.0

The result of (abs #c(3 4)) may be either 5 or 5.0, depending on the
implementation.

[Function] phase number

The phase of a number is the angle part of its polar representation as a
complex number. That is,

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 307

(phase z) ≡ (atan (imagpart z) (realpart z))

X3J13 voted in January 1989 to specify certain floating-point behavior
when minus zero is supported; phase is still defined in terms of atan as
above, but thanks to a change in atan the range of phase becomes −π
inclusive to π inclusive. The value −π results from an argument whose real

308 CHAPTER 12. NUMBERS

part is negative and whose imaginary part is minus zero. The phase function
therefore has a branch cut along the negative real axis. The phase of +0+0i
is +0, of +0− 0i is −0, of −0 + 0i is +π, and of −0− 0i is −π.

If the argument is a complex floating-point number, the result is a
floating-point number of the same type as the components of the argument. If
the argument is a floating-point number, the result is a floating-point number
of the same type. If the argument is a rational number or complex rational
number, the result is a single-format floating-point number.

[Function] signum number

By definition,

(signum x) ≡ (if (zerop x) x (/ x (abs x)))

For a rational number, signum will return one of -1, 0, or 1 according
to whether the number is negative, zero, or positive. For a floating-point
number, the result will be a floating-point number of the same format whose
value is −1, 0, or 1. For a complex number z, (signum z) is a complex
number of the same phase but with unit magnitude, unless z is a complex
zero, in which case the result is z. For example:

(signum 0) ⇒ 0
(signum -3.7L5) ⇒ -1.0L0
(signum 4/5) ⇒ 1
(signum #C(7.5 10.0)) ⇒ #C(0.6 0.8)
(signum #C(0.0 -14.7)) ⇒ #C(0.0 -1.0)

For non-complex rational numbers, signum is a rational function, but it
may be irrational for complex arguments.

[Function] sin radians
[Function] cos radians
[Function] tan radians

sin returns the sine of the argument, cos the cosine, and tan the tangent.
The argument is in radians. The argument may be complex.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 309

[Function] cis radians

This computes ei·radians. The name cis means “cos + i sin,” because
eiθ = cos θ+ i sin θ. The argument is in radians and may be any non-complex
number. The result is a complex number whose real part is the cosine of the
argument and whose imaginary part is the sine. Put another way, the result
is a complex number whose phase is the equal to the argument (mod 2π) and
whose magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a
single angle together than to perform two disjoint calculations.

[Function] asin number
[Function] acos number

asin returns the arc sine of the argument, and acos the arc cosine. The
result is in radians. The argument may be complex.

The arc sine and arc cosine functions may be defined mathematically for
an argument z as follows:

Arc sine −i log
(
iz+
√
1− z2

)
Arc cosine −i log

(
z+ i
√
1− z2

)
Note that the result of asin or acos may be complex even if the argument is
not complex; this occurs when the absolute value of the argument is greater
than 1.

Kahan [25] suggests for acos the defining formula

Arc cosine
2 log

(√
1+z
2

+ i
√

1−z
2

)
i

or even the much simpler (π/2)−arcsin z. Both equations are mathematically
equivalent to the formula shown above.

Implementation note: These formulae are mathematically correct, assuming
completely accurate computation. They may be terrible methods for floating-point
computation. Implementors should consult a good text on numerical analysis.
The formulae given above are not necessarily the simplest ones for real-valued
computations, either; they are chosen to define the branch cuts in desirable ways
for the complex case.

310 CHAPTER 12. NUMBERS

[Function] atan y &optional x

An arc tangent is calculated and the result is returned in radians.
With two arguments y and x, neither argument may be complex. The

result is the arc tangent of the quantity y/x. The signs of y and x are used
to derive quadrant information; moreover, x may be zero provided y is not
zero. The value of atan is always between −π (exclusive) and π (inclusive).
The following table details various special cases.

Condition Cartesian Locus Range of Result
y = +0 x > 0 Just above positive x-axis +0
y > 0 x > 0 Quadrant I +0 < result < π/2
y > 0 x = ±0 Positive y-axis π/2
y > 0 x < 0 Quadrant II π/2 < result < π
y = +0 x < 0 Just below negative x-axis π
y = −0 x < 0 Just above negative x-axis π
y < 0 x < 0 Quadrant III −π < result < −π/2
y < 0 x = ±0 Negative y-axis −π/2
y < 0 x > 0 Quadrant IV −π/2 < result < −0
y = −0 x > 0 Just below positive x-axis −0
y = +0 x = +0 Near origin +0
y = −0 x = +0 Near origin −0
y = +0 x = −0 Near origin π
y = −0 x = −0 Near origin −π

Note that the case y = 0, x = 0 is an error in the absence of minus zero,
but the four cases y = ±0, x = ±0 are defined in the presence of minus zero.

With only one argument y, the argument may be complex. The result is
the arc tangent of y, which may be defined by the following formula:

Arc tangent log(1+iy)−log(1−iy)
2i

Implementation note: This formula is mathematically correct, assuming com-
pletely accurate computation. It may be a terrible method for floating-point com-
putation. Implementors should consult a good text on numerical analysis. The
formula given above is not necessarily the simplest one for real-valued computa-
tions, either; it is chosen to define the branch cuts in desirable ways for the complex
case.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 311

For a non-complex argument y, the result is non-complex and lies between
−π/2 and π/2 (both exclusive).

[Constant] pi

This global variable has as its value the best possible approximation to π
in long floating-point format. For example:

(defun sind (x) ;The argument is in degrees
(sin (* x (/ (float pi x) 180))))

An approximation to π in some other precision can be obtained by writing
(float pi x), where x is a floating-point number of the desired precision, or
by writing (coerce pi type), where type is the name of the desired type,
such as short-float.

[Function] sinh number
[Function] cosh number
[Function] tanh number
[Function] asinh number
[Function] acosh number
[Function] atanh number

These functions compute the hyperbolic sine, cosine, tangent, arc sine,
arc cosine, and arc tangent functions, which are mathematically defined for
an argument z as follows:

Hyperbolic sine (ez − e−z)/2
Hyperbolic cosine (ez + e−z)/2
Hyperbolic tangent (ez − e−z)/(ez + e−z)
Hyperbolic arc sine log

(
z+
√
1 + z2

)
Hyperbolic arc cosine log

(
z+ (z+ 1)

√
(z− 1)/(z+ 1)

)
Hyperbolic arc tangent log

(
(1 + z)

√
1/(1− z2)

)
Note that the result of acosh may be complex even if the argument is

not complex; this occurs when the argument is less than 1. Also, the result
of atanh may be complex even if the argument is not complex; this occurs
when the absolute value of the argument is greater than 1.

312 CHAPTER 12. NUMBERS

Implementation note: These formulae are mathematically correct, assuming
completely accurate computation. They may be terrible methods for floating-point
computation. Implementors should consult a good text on numerical analysis.
The formulae given above are not necessarily the simplest ones for real-valued
computations, either; they are chosen to define the branch cuts in desirable ways
for the complex case.

12.5.3 Branch Cuts, Principal Values, and Boundary
Conditions in the Complex Plane

Many of the irrational and transcendental functions are multiply defined in
the complex domain; for example, there are in general an infinite number
of complex values for the logarithm function. In each such case, a principal
value must be chosen for the function to return. In general, such values
cannot be chosen so as to make the range continuous; lines in the domain
called branch cuts must be defined, which in turn define the discontinuities
in the range.

Common Lisp defines the branch cuts, principal values, and boundary
conditions for the complex functions following a proposal for complex func-
tions in APL [36]. The contents of this section are borrowed largely from
that proposal.

Indeed, X3J13 voted in January 1989 to alter the direction of continuity
for the branch cuts of atan, and also to address the treatment of branch cuts
in implementations that have a distinct floating-point minus zero.

The treatment of minus zero centers in two-argument atan. If there is
no minus zero, then the branch cut runs just below the negative real axis as
before, and the range of two-argument atan is (−π, π]. If there is a minus
zero, however, then the branch cut runs precisely on the negative real axis,
skittering between pairs of numbers of the form −x ± 0i, and the range of
two-argument atan is [−π, π].

The treatment of minus zero by all other irrational and transcenden-
tal functions is then specified by defining those functions in terms of two-
argument atan. First, phase is defined in terms of two-argument atan, and
complex abs in terms of real sqrt; then complex log is defined in terms of
phase, abs, and real log; then complex sqrt in terms of complex log; and
finally all others are defined in terms of these.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 313

Kahan [25] treats these matters in some detail and also suggests specific
algorithms for implementing irrational and transcendental functions in IEEE
standard floating-point arithmetic [23].

Remarks in the first edition about the direction of the continuity of branch
cuts continue to hold in the absence of minus zero and may be ignored if minus
zero is supported; since all branch cuts happen to run along the principal
axes, they run between plus zero and minus zero, and so each sort of zero is
associated with the obvious quadrant.

sqrt The branch cut for square root lies along the negative real axis, con-
tinuous with quadrant II. The range consists of the right half-plane,
including the non-negative imaginary axis and excluding the negative
imaginary axis.

X3J13 voted in January 1989 to specify certain floating-point behavior
when minus zero is supported. As a part of that vote it approved a
mathematical definition of complex square root:
√
z = e(log z)/2

This defines the branch cuts precisely, whether minus zero is supported
or not.

phase The branch cut for the phase function lies along the negative real
axis, continuous with quadrant II. The range consists of that portion
of the real axis between −π (exclusive) and π (inclusive).

X3J13 voted in January 1989 to specify certain floating-point behavior
when minus zero is supported. As a part of that vote it approved a
mathematical definition of phase:

phase z = arctan(=z,<z)

where =z is the imaginary part of z and <z the real part of z. This
defines the branch cuts precisely, whether minus zero is supported or
not.

log The branch cut for the logarithm function of one argument (natural
logarithm) lies along the negative real axis, continuous with quadrant
II. The domain excludes the origin. For a complex number z, log z is
defined to be

314 CHAPTER 12. NUMBERS

log z = (log |z|) + i(phase z)

Therefore the range of the one-argument logarithm function is that
strip of the complex plane containing numbers with imaginary parts
between −π (exclusive) and π (inclusive).

The X3J13 vote on minus zero would alter that exclusive bound of −π
to be inclusive if minus zero is supported.

The two-argument logarithm function is defined as logb z =
(log z)/(log b). This defines the principal values precisely. The range
of the two-argument logarithm function is the entire complex plane. It
is an error if z is zero. If z is non-zero and b is zero, the logarithm is
taken to be zero.

exp The simple exponential function has no branch cut.

expt The two-argument exponential function is defined as bx = ex log b. This
defines the principal values precisely. The range of the two-argument
exponential function is the entire complex plane. Regarded as a func-
tion of x, with b fixed, there is no branch cut. Regarded as a function
of b, with x fixed, there is in general a branch cut along the negative
real axis, continuous with quadrant II. The domain excludes the origin.
By definition, 00 = 1. If b = 0 and the real part of x is strictly positive,
then bx = 0. For all other values of x, 0x is an error.

asin The following definition for arc sine determines the range and branch
cuts:

arcsin z = −i log
(
iz+
√
1− z2

)
This is equivalent to the formula

arcsin z =
arcsinh iz

i

recommended by Kahan [25].

The branch cut for the arc sine function is in two pieces: one along the
negative real axis to the left of−1 (inclusive), continuous with quadrant
II, and one along the positive real axis to the right of 1 (inclusive),

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 315

continuous with quadrant IV. The range is that strip of the complex
plane containing numbers whose real part is between −π/2 and π/2.
A number with real part equal to −π/2 is in the range if and only if its
imaginary part is non-negative; a number with real part equal to π/2
is in the range if and only if its imaginary part is non-positive.

acos The following definition for arc cosine determines the range and branch
cuts:

arccos z = −i log
(
z+ i
√
1− z2

)
or, which is equivalent,

arccos z = π
2
− arcsin z

The branch cut for the arc cosine function is in two pieces: one along the
negative real axis to the left of−1 (inclusive), continuous with quadrant
II, and one along the positive real axis to the right of 1 (inclusive),
continuous with quadrant IV. This is the same branch cut as for arc
sine. The range is that strip of the complex plane containing numbers
whose real part is between zero and π. A number with real part equal
to zero is in the range if and only if its imaginary part is non-negative;
a number with real part equal to π is in the range if and only if its
imaginary part is non-positive.

atan The following definition for (one-argument) arc tangent determines the
range and branch cuts:

X3J13 voted in January 1989 to replace the formula shown above with
the formula

arctan z =
log(1 + iz)− log(1− iz)

2i

This is equivalent to the formula

arctan z =
arctanh iz

i

316 CHAPTER 12. NUMBERS

recommended by Kahan [25]. It causes the upper branch cut to be
continuous with quadrant I rather than quadrant II, and the lower
branch cut to be continuous with quadrant III rather than quadrant
IV; otherwise it agrees with the formula of the first edition. Therefore
this change alters the result returned by atan only for arguments on
the positive imaginary axis that are of magnitude greater than 1. The
full description for this new formula is as follows.

The branch cut for the arc tangent function is in two pieces: one along
the positive imaginary axis above i (exclusive), continuous with quad-
rant I, and one along the negative imaginary axis below −i (exclusive),
continuous with quadrant III. The points i and −i are excluded from
the domain. The range is that strip of the complex plane containing
numbers whose real part is between −π/2 and π/2. A number with real
part equal to −π/2 is in the range if and only if its imaginary part is
strictly negative; a number with real part equal to π/2 is in the range if
and only if its imaginary part is strictly positive. Thus the range of the
arc tangent function is not identical to that of the arc sine function.

asinh The following definition for the inverse hyperbolic sine determines the
range and branch cuts:

arcsinh z = log
(
z+
√
1 + z2

)
The branch cut for the inverse hyperbolic sine function is in two pieces:
one along the positive imaginary axis above i (inclusive), continuous
with quadrant I, and one along the negative imaginary axis below −i
(inclusive), continuous with quadrant III. The range is that strip of the
complex plane containing numbers whose imaginary part is between
−π/2 and π/2. A number with imaginary part equal to −π/2 is in
the range if and only if its real part is non-positive; a number with
imaginary part equal to π/2 is in the range if and only if its real part
is non-negative.

acosh The following definition for the inverse hyperbolic cosine determines
the range and branch cuts:

arccosh z = log
(
z+ (z+ 1)

√
(z− 1)/(z+ 1)

)
Kahan [25] suggests the formula

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 317

arccosh z = 2 log
(√

(z+ 1)/2 +
√
(z− 1)/2

)
pointing out that it yields the same principal value but eliminates a
gratuitous removable singularity at z = −1. A proposal was submitted
to X3J13 in September 1989 to replace the formula acosh with that
recommended by Kahan. There is a good possibility that it will be
adopted.

The branch cut for the inverse hyperbolic cosine function lies along
the real axis to the left of 1 (inclusive), extending indefinitely along
the negative real axis, continuous with quadrant II and (between 0
and 1) with quadrant I. The range is that half-strip of the complex
plane containing numbers whose real part is non-negative and whose
imaginary part is between −π (exclusive) and π (inclusive). A number
with real part zero is in the range if its imaginary part is between zero
(inclusive) and π (inclusive).

atanh The following definition for the inverse hyperbolic tangent determines
the range and branch cuts:

WARNING! The formula shown above for hyperbolic arc tangent is
incorrect. It is not a matter of incorrect branch cuts; it simply does
not compute anything like a hyperbolic arc tangent. This unfortunate
error in the first edition was the result of mistranscribing a (correct)
APL formula from Penfield’s paper [36]. The formula should have been
transcribed as

arctanh z = log
(
(1 + z)

√
1/(1− z2)

)
A proposal was submitted to X3J13 in September 1989 to replace the
formula atanh with that recommended by Kahan [25]:

arctanh z =
(log(1 + z)− log(1− z))

2

There is a good possibility that it will be adopted. If it is, the complete
description of the branch cuts of atanh will then be as follows.

The branch cut for the inverse hyperbolic tangent function is in two
pieces: one along the negative real axis to the left of −1 (inclusive),

318 CHAPTER 12. NUMBERS

continuous with quadrant II, and one along the positive real axis to the
right of 1 (inclusive), continuous with quadrant IV. The points −1 and
1 are excluded from the domain. The range is that strip of the complex
plane containing numbers whose imaginary part is between −π/2 and
π/2. A number with imaginary part equal to −π/2 is in the range if
and only if its real part is strictly positive; a number with imaginary
part equal to π/2 is in the range if and only if its real part is strictly
negative. Thus the range of the inverse hyperbolic tangent function is
not the same as that of the inverse hyperbolic sine function.

With these definitions, the following useful identities are obeyed through-
out the applicable portion of the complex domain, even on the branch cuts:

sin iz = i sinh z sinh iz = i sin z arctan iz = i arctanh z
cos iz = cosh z cosh iz = cos z arcsinh iz = i arcsin z
tan iz = i tanh z arcsin iz = i arcsinh z arctanh iz = i arctan z

I thought it would be useful to provide some graphs illustrating the be-
havior of the irrational and transcendental functions in the complex plane.
It also provides an opportunity to show off the Common Lisp code that was
used to generate them.

Imagine the complex plane to be decorated as follows. The real and
imaginary axes are painted with thick lines. Parallels from the axes on both
sides at distances of 1, 2, and 3 are painted with thin lines; these parallels
are doubly infinite lines, as are the axes. Four annuli (rings) are painted
in gradated shades of gray. Ring 1, the inner ring, consists of points whose
radial distances from the origin lie in the range [1/4, 1/2]; ring 2 is in the
radial range [3/4, 1]; ring 3, in the range [π/2, 2]; and ring 4, in the range
[3, π]. Ring j is divided into 2j+1 equal sectors, with each sector painted a
different shade of gray, darkening as one proceeds counterclockwise from the
positive real axis.

We can illustrate the behavior of a numerical function f by considering
how it maps the complex plane to itself. More specifically, consider each
point z of the decorated plane. We decorate a new plane by coloring the
point f(z) with the same color that point z had in the original decorated
plane. In other words, the newly decorated plane illustrates how the f maps
the axes, other horizontal and vertical lines, and annuli.

In each figure we will show only a fragment of the complex plane, with the
real axis horizontal in the usual manner (−∞ to the left, +∞ to the right)

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 319

and the imaginary axis vertical (−∞i below, +∞i above). Each fragment
shows a region containing points whose real and imaginary parts are in the
range [−4.1, 4.1]. The axes of the new plane are shown as very thin lines,
with large tick marks at integer coordinates and somewhat smaller tick marks
at multiples of π/2.

Figure 12.1 shows the result of plotting the identity function (quite lit-
erally); the graph exhibits the decoration of the original plane.

Figures 12.2 through 12.20 show the graphs for the functions sqrt, exp,
log, sin, asin, cos, acos, tan, atan, sinh, asinh, cosh, acosh, tanh,
and atanh, and as a bonus, the graphs for the functions

√
1− z2,

√
1 + z2,

(z−1)/(z+1), and (1+z)/(1−z). All of these are related to the trigonometric
functions in various ways. For example, if f(z) = (z−1)/(z+1), then tanh z =
f(e2z), and if g(z) =

√
1− z2, then cos z = g(sin z). It is instructive to examine

the graph for
√
1− z2 and try to visualize how it transforms the graph for

sin into the graph for cos.
Each figure is accompanied by a commentary on what maps to what and

other interesting features. None of this material is terribly new; much of it
may be found in any good textbook on complex analysis. I believe that the
particular form in which the graphs are presented is novel, as well as the
fact that the graphs have been generated as PostScript [1] code by Common
Lisp code. This PostScript code was then fed directly to the typesetting
equipment that set the pages for this book. Samples of this PostScript code
follow the figures themselves, after which the code for the entire program is
presented.

In the commentaries that accompany the figures I sometimes speak of
mapping the points ±∞ or ±∞i. When I say that function f maps +∞ to
a certain point z, I mean that

z = limx→+∞ f(x+ 0 i)

Similarly, when I say that f maps −∞i to z, I mean that

z = limy→−∞ f(0 + yi)

In other words, I am considering a limit as one travels out along one of the
main axes. I also speak in a similar manner of mapping to one of these
infinities.

320 CHAPTER 12. NUMBERS

Figure 12.1: Initial Decoration of the Complex Plane (Identity Function)

This figure was produced in exactly the same manner as succeeding figures, simply
by plotting the function identity instead of a numerical function. Thus the first
of these figures was produced by the last function of the first edition. I knew it
would come in handy someday!

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 321

Figure 12.2: Illustration of the Range of the Square Root Function

The sqrt function maps the complex plane into the right half of the plane by
slitting it along the negative real axis and then sweeping it around as if half-closing
a folding fan. The fan also shrinks, as if it were made of cotton and had gotten
wetter at the periphery than at the center. The positive real axis is mapped onto
itself. The negative real axis is mapped onto the positive imaginary axis (but if
minus zero is supported, then −x + 0i is mapped onto the positive imaginary axis
and −x − 0i onto the negative imaginary axis, assuming x > 0). The positive
imaginary axis is mapped onto the northeast diagonal, and the negative imaginary
axis onto the southeast diagonal. More generally, lines are mapped to rectangular
hyperbolas (or fragments thereof) centered on the origin; lines through the origin
are mapped to degenerate hyperbolas (perpendicular lines through the origin).

322 CHAPTER 12. NUMBERS

Figure 12.3: Illustration of the Range of the Exponential Function

The exp function maps horizontal lines to radii and maps vertical lines to circles
centered at the origin. The origin is mapped to 1. (It is instructive to compare
this graph with those of other functions that map the origin to 1, for example
(1 + z)/(1− z), cos z, and

√
1− z2.) The entire real axis is mapped to the positive

real axis, with −∞ mapping to the origin and +∞ to itself. The imaginary axis
is mapped to the unit circle with infinite multiplicity (period 2π); therefore the
mapping of the imaginary infinities ±∞i is indeterminate. It follows that the
entire left half-plane is mapped to the interior of the unit circle, and the right half-
plane is mapped to the exterior of the unit circle. A line at any angle other than
horizontal or vertical is mapped to a logarithmic spiral (but this is not illustrated
here).

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 323

Figure 12.4: Illustration of the Range of the Natural Logarithm Function

The log function, which is the inverse of exp, naturally maps radial lines to hori-
zontal lines and circles centered at the origin to vertical lines. The interior of the
unit circle is thus mapped to the entire left half-plane, and the exterior of the unit
circle is mapped to the right half-plane. The positive real axis is mapped to the
entire real axis, and the negative real axis to a horizontal line of height π. The pos-
itive and negative imaginary axes are mapped to horizontal lines of height ±π/2.
The origin is mapped to −∞.

324 CHAPTER 12. NUMBERS

Figure 12.5: Illustration of the Range of the Function (z− 1)/(z+ 1)

A line is a degenerate circle with infinite radius; when I say “circles” here I also
mean lines. Then (z − 1)/(z + 1) maps circles into circles. All circles through −1
become lines; all lines become circles through 1. The real axis is mapped onto
itself: 1 to the origin, the origin to −1, −1 to infinity, and infinity to 1. The
imaginary axis becomes the unit circle; i is mapped to itself, as is −i. Thus the
entire right half-plane is mapped to the interior of the unit circle, the unit circle
interior to the left half-plane, the left half-plane to the unit circle exterior, and the
unit circle exterior to the right half-plane. Imagine the complex plane to be a vast
sea. The Colossus of Rhodes straddles the origin, its left foot on i and its right
foot on −i. It bends down and briefly paddles water between its legs so furiously
that the water directly beneath is pushed out into the entire area behind it; much
that was behind swirls forward to either side; and all that was before is sucked in
to lie between its feet.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 325

Figure 12.6: Illustration of the Range of the Function (1 + z)/(1− z)

The function h(z) = (1 + z)/(1 − z) is the inverse of f(z) = (z − 1)/(z + 1); that
is, h(f(z)) = f(h(z)) = z. At first glance, the graph of h appears to be that of f
flipped left-to-right, or perhaps reflected in the origin, but careful consideration
of the shaded annuli reveals that this is not so; something more subtle is going
on. Note that f(f(z)) = h(h(z)) = g(z) = −1/z. The functions f, g, h, and the
identity function thus form a group under composition, isomorphic to the group of
the cyclic permutations of the points −1, 0, 1, and ∞, as indeed these functions
accomplish the four possible cyclic permutations on those points. This function
group is a subset of the group of bilinear transformations (az + b)/(cz + d), all of
which are conformal (angle-preserving) and map circles onto circles. Now, doesn’t
that tangle of circles through −1 look like something the cat got into?

326 CHAPTER 12. NUMBERS

Figure 12.7: Illustration of the Range of the Sine Function

We are used to seeing sin looking like a wiggly ocean wave, graphed vertically as
a function of the real axis only. Here is a different view. The entire real axis is
mapped to the segment [−1, 1] of the real axis with infinite multiplicity (period 2π).
The imaginary axis is mapped to itself as if by sinh considered as a real function.
The origin is mapped to itself. Horizontal lines are mapped to ellipses with foci at
±1 (note that two horizontal lines equidistant from the real axis will map onto the
same ellipse). Vertical lines are mapped to hyperbolas with the same foci. There
is a curious accident: the ellipse for horizontal lines at distance ±1 from the real
axis appears to intercept the real axis at ±π/2 ≈ ±1.57 . . . but this is not so; the
intercepts are actually at ±(e + 1/e)/2 ≈ ±1.54

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 327

Figure 12.8: Illustration of the Range of the Arc Sine Function

Just as sin grabs horizontal lines and bends them into elliptical loops around the
origin, so its inverse asin takes annuli and yanks them more or less horizontally
straight. Because sine is not injective, its inverse as a function cannot be surjective.
This is just a highfalutin way of saying that the range of the asin function doesn’t
cover the entire plane but only a strip π wide; arc sine as a one-to-many relation
would cover the plane with an infinite number of copies of this strip side by side,
looking for all the world like the tail of a peacock with an infinite number of
feathers. The imaginary axis is mapped to itself as if by asinh considered as a
real function. The real axis is mapped to a bent path, turning corners at ±π/2
(the points to which ±1 are mapped); +∞ is mapped to π/2 −∞i, and −∞ to
−π/2 +∞i.

328 CHAPTER 12. NUMBERS

Figure 12.9: Illustration of the Range of the Cosine Function

We are used to seeing cos looking exactly like sin, a wiggly ocean wave, only
displaced. Indeed the complex mapping of cos is also similar to that of sin, with
horizontal and vertical lines mapping to the same ellipses and hyperbolas with foci
at ±1, although mapping to them in a different manner, to be sure. The entire real
axis is again mapped to the segment [−1, 1] of the real axis, but each half of the
imaginary axis is mapped to the real axis to the right of 1 (as if by cosh considered
as a real function). Therefore ±∞i both map to +∞. The origin is mapped to 1.
Whereas sin is an odd function, cos is an even function; as a result two points in
each annulus, one the negative of the other, are mapped to the same shaded point
in this graph; the shading shown here is taken from points in the original upper
half-plane.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 329

Figure 12.10: Illustration of the Range of the Arc Cosine Function

The graph of acos is very much like that of asin. One might think that our nervous
peacock has shuffled half a step to the right, but the shading on the annuli shows
that we have instead caught the bird exactly in mid-flight while doing a cartwheel.
This is easily understood if we recall that arccos z = (π/2) − arcsin z; negating
arcsin z rotates it upside down, and adding the result to π/2 translates it π/2 to
the right. The imaginary axis is mapped upside down to the vertical line at π/2.
The point +1 is mapped to the origin, and −1 to π. The image of the real axis is
again cranky; +∞ is mapped to +∞i, and −∞ to π −∞i.

330 CHAPTER 12. NUMBERS

Figure 12.11: Illustration of the Range of the Tangent Function

The usual graph of tan as a real function looks like an infinite chorus line of
disco dancers, left hands pointed skyward and right hands to the floor. The tan
function is the quotient of sin and cos but it doesn’t much look like either except
for having period 2π. This goes for the complex plane as well, although the swoopy
loops produced from the annulus between π/2 and 2 look vaguely like those from the
graph of sin inside out. The real axis is mapped onto itself with infinite multiplicity
(period 2π). The imaginary axis is mapped backwards onto [−i, i]: +∞i is mapped
to −i and −∞i to +i. Horizontal lines below or above the real axis become circles
surrounding +i or −i, respectively. Vertical lines become circular arcs from +i
to −i; two vertical lines separated by (2k + 1)π for integer k together become a
complete circle. It seems that two arcs shown hit the real axis at ±π/2 = ±1.57 . . .
but that is a coincidence; they really hit the axis at ± tan 1 = 1.55

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 331

Figure 12.12: Illustration of the Range of the Arc Tangent Function

All I can say is that this peacock is a horse of another color. At first glance, the
axes seem to map in the same way as for asin and acos, but look again: this
time it’s the imaginary axis doing weird things. All infinities map multiply to the
points (2k + 1)π/2; within the strip of principal values we may say that the real
axis is mapped to the interval [−π/2,+π/2] and therefore −∞ is mapped to −π/2
and +∞ to +π/2. The point +i is mapped to +∞i, and −i to −∞i, and so the
imaginary axis is mapped into three pieces: the segment [−∞i,−i] is mapped to
[π/2, π/2−∞i]; the segment [−i, i] is mapped to the imaginary axis [−∞i,+∞i];
and the segment [+i,+∞i] is mapped to [−π/2 +∞i,−π/2].

332 CHAPTER 12. NUMBERS

Figure 12.13: Illustration of the Range of the Hyperbolic Sine Function

It would seem that the graph of sinh is merely that of sin rotated 90 degrees. If
that were so, then we would have sinh z = i sin z. Careful inspection of the shading,
however, reveals that this is not quite the case; in both graphs the lightest and
darkest shades, which initially are adjacent to the positive real axis, remain adjacent
to the positive real axis in both cases. To derive the graph of sinh from sin we
must therefore first rotate the complex plane by −90 degrees, then apply sin, then
rotate the result by 90 degrees. In other words, sinh z = i sin(−i)z; consistently
replacing z with iz in this formula yields the familiar identity sinh iz = i sin z.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 333

Figure 12.14: Illustration of the Range of the Hyperbolic Arc Sine Function

The peacock sleeps. Because arcsinh iz = i arcsin z, the graph of asinh is related
to that of asin by pre- and post-rotations of the complex plane in the same way
as for sinh and sin.

334 CHAPTER 12. NUMBERS

Figure 12.15: Illustration of the Range of the Hyperbolic Cosine Function

The graph of cosh does not look like that of cos rotated 90 degrees; instead it
looks like that of cos unrotated. That is because cosh iz is not equal to i cos z;
rather, cosh iz = cos z. Interpreted, that means that the shading is pre-rotated but
there is no post-rotation.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 335

Figure 12.16: Illustration of the Range of the Hyperbolic Arc Cosine Function

Hmm—I’d rather not say what happened to this peacock. This feather looks a bit
mangled. Actually it is all right—the principal value for acosh is so chosen that
its graph does not look simply like a rotated version of the graph of acos, but if
all values were shown, the two graphs would fill the plane in repeating patterns
related by a rotation.

336 CHAPTER 12. NUMBERS

Figure 12.17: Illustration of the Range of the Hyperbolic Tangent Function

The diagram for tanh is simply that of tan turned on its ear: i tan z = tanh iz.
The imaginary axis is mapped onto itself with infinite multiplicity (period 2π),
and the real axis is mapped onto the segment [−1,+1]: +∞ is mapped to +1, and
−∞ to −1. Vertical lines to the left or right of the real axis are mapped to circles
surrounding −1 or 1, respectively. Horizontal lines are mapped to circular arcs
anchored at −1 and +1; two horizontal lines separated by a distance (2k+ 1)π for
integer k are together mapped into a complete circle. How do we know these really
are circles? Well, tanh z = ((exp 2z)−1)/((exp 2z)+1), which is the composition of
the bilinear transform (z− 1)/(z+1), the exponential exp z, and the magnification
2z. Magnification maps lines to lines of the same slope; the exponential maps
horizontal lines to circles and vertical lines to radial lines; and a bilinear transform
maps generalized circles (including lines) to generalized circles. Q.E.D.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 337

Figure 12.18: Illustration of the Range of the Hyperbolic Arc Tangent Func-
tion

A sleeping peacock of another color: arctanh iz = i arctan z.

338 CHAPTER 12. NUMBERS

Figure 12.19: Illustration of the Range of the Function
√
1− z2

Here is a curious graph indeed for so simple a function! The origin is mapped to
1. The real axis segment [0, 1] is mapped backwards (and non-linearly) into itself;
the segment [1,+∞] is mapped non-linearly onto the positive imaginary axis. The
negative real axis is mapped to the same points as the positive real axis. Both
halves of the imaginary axis are mapped into [1,+∞] on the real axis. Horizontal
lines become vaguely vertical, and vertical lines become vaguely horizontal. Circles
centered at the origin are transformed into Cassinian (half-)ovals; the unit circle
is mapped to a (half-)lemniscate of Bernoulli. The outermost annulus appears to
have its inner edge at π on the real axis and its outer edge at 3 on the imaginary
axis, but this is another accident; the intercept on the real axis, for example, is not
really at π ≈ 3.14 . . . but at

√
1− (3i)2 =

√
10 ≈ 3.16

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 339

Figure 12.20: Illustration of the Range of the Function
√
1 + z2

The graph of q(z) =
√
1 + z2 looks like that of p(z) =

√
1− z2 except for the

shading. You might not expect p and q to be related in the same way that cos and
cosh are, but after a little reflection (or perhaps I should say, after turning it around
in one’s mind) one can see that q(iz) = p(z). This formula is indeed of exactly the
same form as cosh iz = cos z. The function

√
1 + z2 maps both halves of the real

axis into [1,+∞] on the real axis. The segments [0, i] and [0,−i] of the imaginary
axis are each mapped backwards onto segment [0, 1] of the real axis; [i,+∞i] and
[−, −∞i] are each mapped onto the positive imaginary axis (but if minus zero is
supported then opposite sides of the imaginary axis map to opposite halves of the
imaginary axis—for example, q(+0 + 2i) =

√
5i but q(−0 + 2i) = −

√
5i).

340 CHAPTER 12. NUMBERS

Here is a sample of the PostScript code that generated figure 12.1, show-
ing the initial scaling, translation, and clipping parameters; the code for one
sector of the innermost annulus; and the code for the negative imaginary
axis. Comment lines indicate how path or boundary segments were gen-
erated separately and then spliced (in order to allow for the places that a
singularity might lurk, in which case the generating code can “inch up” to
the problematical argument value).

The size of the entire PostScript file for the identity function was about
68 kilobytes (2757 lines, including comments). The smallest files were the
plots for atan and atanh, about 65 kilobytes apiece; the largest were the
plots for sin, cos, sinh, and cosh, about 138 kilobytes apiece.

% PostScript file for plot of function IDENTITY
% Plot is to fit in a region 4.666666666666667 inches square
% showing axes extending 4.1 units from the origin.

40.97560975609756 40.97560975609756 scale
4.1 4.1 translate
newpath
-4.1 -4.1 moveto
4.1 -4.1 lineto
4.1 4.1 lineto
-4.1 4.1 lineto
closepath

clip
% Moby grid for function IDENTITY
% Annulus 0.25 0.5 4 0.97 0.45
% Sector from 4.7124 to 6.2832 (quadrant 3)
newpath
0.0 -0.25 moveto
0.0 -0.375 lineto
%middle radial
0.0 -0.375 lineto
0.0 -0.5 lineto
%end radial
0.0 -0.5 lineto
0.092 -0.4915 lineto
0.1843 -0.4648 lineto
0.273 -0.4189 lineto

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 341

0.3536 -0.3536 lineto
%middle circumferential
0.3536 -0.3536 lineto
0.413 -0.2818 lineto
0.4594 -0.1974 lineto
0.4894 -0.1024 lineto
0.5 0.0 lineto
%end circumferential
0.5 0.0 lineto
0.375 0.0 lineto
%middle radial
0.375 0.0 lineto
0.25 0.0 lineto
%end radial
0.25 0.0 lineto
0.2297 -0.0987 lineto
0.1768 -0.1768 lineto
%middle circumferential
0.1768 -0.1768 lineto
0.0922 -0.2324 lineto
0.0 -0.25 lineto
%end circumferential
closepath

currentgray 0.45 setgray fill setgray

[2598 lines omitted]
% Vertical line from (0.0, -0.5) to (0.0, 0.0)
newpath
0.0 -0.5 moveto
0.0 0.0 lineto

0.05 setlinewidth 1 setlinecap stroke
% Vertical line from (0.0, -0.5) to (0.0, -1.0)
newpath
0.0 -0.5 moveto
0.0 -1.0 lineto

0.05 setlinewidth 1 setlinecap stroke
% Vertical line from (0.0, -2.0) to (0.0, -1.0)
newpath
0.0 -2.0 moveto
0.0 -1.0 lineto

0.05 setlinewidth 1 setlinecap stroke

342 CHAPTER 12. NUMBERS

% Vertical line from (0.0, -2.0) to (0.0, -1.1579208923731617E77)
newpath
0.0 -2.0 moveto
0.0 -6.3553 lineto
0.0 -6.378103166302659 lineto
0.0 -6.378103166302659 lineto
0.0 -6.378103166302659 lineto

0.05 setlinewidth 1 setlinecap stroke
[84 lines omitted]

% End of PostScript file for plot of function IDENTITY

Here is the program that generated the PostScript code for the graphs
shown in figures 12.1 through 12.20. It contains a mixture of fairly general
mechanisms and ad hoc kludges for plotting functions of a single complex
argument while gracefully handling extremely large and small values, branch
cuts, singularities, and periodic behavior. The aim was to provide a simple
user interface that would not require the caller to provide special advice
for each function to be plotted. The file for figure 12.1, for example, was
generated by the call (picture ’identity), which resulted in the writing of
a file named identity-plot.ps.

The program assumes that any periodic behavior will have a period that
is a multiple of 2π; that branch cuts will fall along the real or imaginary axis;
and that singularities or very large or small values will occur only at the ori-
gin, at ±1 or ±i, or on the boundaries of the annuli (particularly those with
radius π/2 or π). The central function is parametric-path, which accepts
four arguments: two real numbers that are the endpoints of an interval of real
numbers, a function that maps this interval into a path in the complex plane,
and the function to be plotted; the task of parametric-path is to generate
PostScript code (a series of lineto operations) that will plot an approxi-
mation to the image of the parametric path as transformed by the function
to be plotted. Each of the functions hline, vline, -hline, -vline, radial,
and circumferential takes appropriate parameters and returns a function
suitable for use as the third argument to parametric-path. There is some
code that defends against errors (by using ignore-errors) and against cer-
tain peculiarities of IEEE floating-point arithmetic (the code that checks for
not-a-number (NaN) results).

The program is offered here without further comment or apology.

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 343

(defparameter units-to-show 4.1)
(defparameter text-width-in-picas 28.0)
(defparameter device-pixels-per-inch 300)
(defparameter pixels-per-unit
(* (/ (/ text-width-in-picas 6)

(* units-to-show 2))
device-pixels-per-inch))

(defparameter big (sqrt (sqrt most-positive-single-float)))
(defparameter tiny (sqrt (sqrt least-positive-single-float)))

(defparameter path-really-losing 1000.0)
(defparameter path-outer-limit (* units-to-show (sqrt 2) 1.1))
(defparameter path-minimal-delta (/ 10 pixels-per-unit))
(defparameter path-outer-delta (* path-outer-limit 0.3))
(defparameter path-relative-closeness 0.00001)
(defparameter back-off-delta 0.0005)

344 CHAPTER 12. NUMBERS

(defun comment-line (stream &rest stuff)
(format stream "~%% ")
(apply #’format stream stuff)
(format t "~%% ")
(apply #’format t stuff))

(defun parametric-path (from to paramfn plotfn)
(assert (and (plusp from) (plusp to)))
(flet ((domainval (x) (funcall paramfn x))

(rangeval (x) (funcall plotfn (funcall paramfn x)))
(losing (x) (or (null x)

(/= (realpart x) (realpart x)) ;NaN?
(/= (imagpart x) (imagpart x)) ;NaN?
(> (abs (realpart x)) path-really-losing)
(> (abs (imagpart x)) path-really-losing))))

(when (> to 1000.0)
(let ((f0 (rangeval from))

(f1 (rangeval (+ from 1)))
(f2 (rangeval (+ from (* 2 pi))))
(f3 (rangeval (+ from 1 (* 2 pi))))
(f4 (rangeval (+ from (* 4 pi)))))

(flet ((close (x y)
(or (< (careful-abs (- x y)) path-minimal-delta)

(< (careful-abs (- x y))
(* (+ (careful-abs x) (careful-abs y))

path-relative-closeness)))))
(when (and (close f0 f2)

(close f2 f4)
(close f1 f3)
(or (and (close f0 f1)

(close f2 f3))
(and (not (close f0 f1))

(not (close f2 f3)))))
(format t "~&Periodicity detected.")
(setq to (+ from (* (signum (- to from)) 2 pi)))))))

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 345

(let ((fromrange (ignore-errors (rangeval from)))
(torange (ignore-errors (rangeval to))))

(if (losing fromrange)
(if (losing torange)

’()
(parametric-path (back-off from to) to paramfn plotfn))

(if (losing torange)
(parametric-path from (back-off to from) paramfn plotfn)
(expand-path (refine-path (list from to) #’rangeval)

#’rangeval))))))

346 CHAPTER 12. NUMBERS

(defun back-off (point other)
(if (or (> point 10.0) (< point 0.1))

(let ((sp (sqrt point)))
(if (or (> point sp other) (< point sp other))

sp
(* sp (sqrt other))))

(+ point (* (signum (- other point)) back-off-delta))))

(defun careful-abs (z)
(cond ((or (> (realpart z) big)

(< (realpart z) (- big))
(> (imagpart z) big)
(< (imagpart z) (- big)))

big)
((complexp z) (abs z))
((minusp z) (- z))
(t z)))

(defparameter max-refinements 5000)

(defun refine-path (original-path rangevalfn)
(flet ((rangeval (x) (funcall rangevalfn x)))
(let ((path original-path))
(do ((j 0 (+ j 1)))

((null (rest path)))
(when (zerop (mod (+ j 1) max-refinements))

(break "Runaway path"))
(let* ((from (first path))

(to (second path))
(fromrange (rangeval from))
(torange (rangeval to))
(dist (careful-abs (- torange fromrange)))
(mid (* (sqrt from) (sqrt to)))
(midrange (rangeval mid)))

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 347

(cond ((or (and (far-out fromrange) (far-out torange))
(and (< dist path-minimal-delta)

(< (abs (- midrange fromrange))
path-minimal-delta)

;; Next test is intentionally asymmetric to
;; avoid problems with periodic functions.
(< (abs (- (rangeval (/ (+ to (* from 1.5))

2.5))
fromrange))

path-minimal-delta)))
(pop path))
((= mid from) (pop path))
((= mid to) (pop path))
(t (setf (rest path) (cons mid (rest path)))))))))

original-path)

(defun expand-path (path rangevalfn)
(flet ((rangeval (x) (funcall rangevalfn x)))
(let ((final-path (list (rangeval (first path)))))
(do ((p (rest path) (cdr p)))

((null p)
(unless (rest final-path)
(break "Singleton path"))

(reverse final-path))
(let ((v (rangeval (car p))))
(cond ((and (rest final-path)

(not (far-out v))
(not (far-out (first final-path)))
(between v (first final-path)

(second final-path)))
(setf (first final-path) v))
((null (rest p)) ;Mustn’t omit last point
(push v final-path))
((< (abs (- v (first final-path))) path-minimal-delta))

348 CHAPTER 12. NUMBERS

((far-out v)
(unless (and (far-out (first final-path))

(< (abs (- v (first final-path)))
path-outer-delta))

(push (* 1.01 path-outer-limit (signum v))
final-path)))

(t (push v final-path))))))))

(defun far-out (x)
(> (careful-abs x) path-outer-limit))

(defparameter between-tolerance 0.000001)

(defun between (p q r)
(let ((px (realpart p)) (py (imagpart p))

(qx (realpart q)) (qy (imagpart q))
(rx (realpart r)) (ry (imagpart r)))

(and (or (<= px qx rx) (>= px qx rx))
(or (<= py qy ry) (>= py qy ry))
(< (abs (- (* (- qx px) (- ry qy))

(* (- rx qx) (- qy py))))
between-tolerance))))

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 349

(defun circle (radius)
#’(lambda (angle) (* radius (cis angle))))

(defun hline (imag)
#’(lambda (real) (complex real imag)))

(defun vline (real)
#’(lambda (imag) (complex real imag)))

(defun -hline (imag)
#’(lambda (real) (complex (- real) imag)))

(defun -vline (real)
#’(lambda (imag) (complex real (- imag))))

(defun radial (phi quadrant)
#’(lambda (rho) (repair-quadrant (* rho (cis phi)) quadrant)))

(defun circumferential (rho quadrant)
#’(lambda (phi) (repair-quadrant (* rho (cis phi)) quadrant)))

;;; Quadrant is 0, 1, 2, or 3, meaning I, II, III, or IV.

(defun repair-quadrant (z quadrant)
(complex (* (+ (abs (realpart z)) tiny)

(case quadrant (0 1.0) (1 -1.0) (2 -1.0) (3 1.0)))
(* (+ (abs (imagpart z)) tiny)

(case quadrant (0 1.0) (1 1.0) (2 -1.0) (3 -1.0)))))

(defun clamp-real (x)
(if (far-out x)

(* (signum x) path-outer-limit)
(round-real x)))

(defun round-real (x)
(/ (round (* x 10000.0)) 10000.0))

(defun round-point (z)
(complex (round-real (realpart z)) (round-real (imagpart z))))

350 CHAPTER 12. NUMBERS

(defparameter hiringshade 0.97)
(defparameter loringshade 0.45)

(defparameter ticklength 0.12)
(defparameter smallticklength 0.09)

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 351

;;; This determines the pattern of lines and annuli to be drawn.
(defun moby-grid (&optional (fn ’sqrt) (stream t))
(comment-line stream "Moby grid for function ~S" fn)
(shaded-annulus 0.25 0.5 4 hiringshade loringshade fn stream)
(shaded-annulus 0.75 1.0 8 hiringshade loringshade fn stream)
(shaded-annulus (/ pi 2) 2.0 16 hiringshade loringshade fn stream)
(shaded-annulus 3 pi 32 hiringshade loringshade fn stream)
(moby-lines :horizontal 1.0 fn stream)
(moby-lines :horizontal -1.0 fn stream)
(moby-lines :vertical 1.0 fn stream)
(moby-lines :vertical -1.0 fn stream)
(let ((tickline 0.015)

(axisline 0.008))
(flet ((tick (n) (straight-line (complex n ticklength)

(complex n (- ticklength))
tickline
stream))

(smalltick (n) (straight-line (complex n smallticklength)
(complex n (- smallticklength))
tickline
stream)))

(comment-line stream "Real axis")
(straight-line #c(-5 0) #c(5 0) axisline stream)
(dotimes (j (floor units-to-show))
(let ((q (+ j 1))) (tick q) (tick (- q))))

(dotimes (j (floor units-to-show (/ pi 2)))
(let ((q (* (/ pi 2) (+ j 1))))
(smalltick q)
(smalltick (- q)))))

(flet ((tick (n) (straight-line (complex ticklength n)
(complex (- ticklength) n)
tickline
stream))

(smalltick (n) (straight-line (complex smallticklength n)
(complex (- smallticklength) n)
tickline
stream)))

352 CHAPTER 12. NUMBERS

(comment-line stream "Imaginary axis")
(straight-line #c(0 -5) #c(0 5) axisline stream)
(dotimes (j (floor units-to-show))
(let ((q (+ j 1))) (tick q) (tick (- q))))

(dotimes (j (floor units-to-show (/ pi 2)))
(let ((q (* (/ pi 2) (+ j 1))))
(smalltick q)
(smalltick (- q)))))))

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 353

(defun straight-line (from to wid stream)
(format stream

"~%newpath ~S ~S moveto ~S ~S lineto ~S ~
setlinewidth 1 setlinecap stroke"
(realpart from)
(imagpart from)
(realpart to)
(imagpart to)
wid))

;;; This function draws the lines for the pattern.
(defun moby-lines (orientation signum plotfn stream)
(let ((paramfn (ecase orientation

(:horizontal (if (< signum 0) #’-hline #’hline))
(:vertical (if (< signum 0) #’-vline #’vline)))))

(flet ((foo (from to other wid)
(ecase orientation
(:horizontal
(comment-line stream

"Horizontal line from (~S, ~S) to (~S, ~S)"
(round-real (* signum from))
(round-real other)
(round-real (* signum to))
(round-real other)))

(:vertical
(comment-line stream

"Vertical line from (~S, ~S) to (~S, ~S)"
(round-real other)
(round-real (* signum from))
(round-real other)
(round-real (* signum to)))))

(postscript-path
stream
(parametric-path from

to
(funcall paramfn other)
plotfn))

(postscript-penstroke stream wid)))

354 CHAPTER 12. NUMBERS

(let* ((thick 0.05)
(thin 0.02))

;; Main axis
(foo 0.5 tiny 0.0 thick)
(foo 0.5 1.0 0.0 thick)
(foo 2.0 1.0 0.0 thick)
(foo 2.0 big 0.0 thick)
;; Parallels at 1 and -1
(foo 2.0 tiny 1.0 thin)
(foo 2.0 big 1.0 thin)
(foo 2.0 tiny -1.0 thin)
(foo 2.0 big -1.0 thin)
;; Parallels at 2, 3, -2, -3
(foo tiny big 2.0 thin)
(foo tiny big -2.0 thin)
(foo tiny big 3.0 thin)
(foo tiny big -3.0 thin)))))

(defun splice (p q)
(let ((v (car (last p)))

(w (first q)))
(and (far-out v)

(far-out w)
(>= (abs (- v w)) path-outer-delta)
;; Two far-apart far-out points. Try to walk around
;; outside the perimeter, in the shorter direction.
(let* ((pdiff (phase (/ v w)))

(npoints (floor (abs pdiff) (asin .2)))
(delta (/ pdiff (+ npoints 1)))
(incr (cis delta)))

(do ((j 0 (+ j 1))
(p (list w "end splice") (cons (* (car p) incr) p)))
((= j npoints) (cons "start splice" p)))))))

;;; This function draws the annuli for the pattern.
(defun shaded-annulus (inner outer sectors firstshade lastshade fn stream)
(assert (zerop (mod sectors 4)))
(comment-line stream "Annulus ~S ~S ~S ~S ~S"

(round-real inner) (round-real outer)
sectors firstshade lastshade)

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 355

(dotimes (jj sectors)
(let ((j (- sectors jj 1)))
(let* ((lophase (+ tiny (* 2 pi (/ j sectors))))

(hiphase (* 2 pi (/ (+ j 1) sectors)))
(midphase (/ (+ lophase hiphase) 2.0))
(midradius (/ (+ inner outer) 2.0))
(quadrant (floor (* j 4) sectors)))

(comment-line stream "Sector from ~S to ~S (quadrant ~S)"
(round-real lophase)
(round-real hiphase)
quadrant)

(let ((p0 (reverse (parametric-path midradius
inner
(radial lophase quadrant)
fn)))

(p1 (parametric-path midradius
outer
(radial lophase quadrant)
fn))

(p2 (reverse (parametric-path midphase
lophase
(circumferential outer

quadrant)
fn)))

(p3 (parametric-path midphase
hiphase
(circumferential outer quadrant)
fn))

(p4 (reverse (parametric-path midradius
outer
(radial hiphase quadrant)
fn)))

(p5 (parametric-path midradius
inner
(radial hiphase quadrant)
fn))

356 CHAPTER 12. NUMBERS

(p6 (reverse (parametric-path midphase
hiphase
(circumferential inner

quadrant)
fn)))

(p7 (parametric-path midphase
lophase
(circumferential inner quadrant)
fn)))

(postscript-closed-path stream
(append
p0 (splice p0 p1) ’("middle radial")
p1 (splice p1 p2) ’("end radial")
p2 (splice p2 p3) ’("middle circumferential")
p3 (splice p3 p4) ’("end circumferential")
p4 (splice p4 p5) ’("middle radial")
p5 (splice p5 p6) ’("end radial")
p6 (splice p6 p7) ’("middle circumferential")
p7 (splice p7 p0) ’("end circumferential")
)))

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 357

(postscript-shade stream
(/ (+ (* firstshade (- (- sectors 1) j))

(* lastshade j))
(- sectors 1)))))))

(defun postscript-penstroke (stream wid)
(format stream "~%~S setlinewidth 1 setlinecap stroke"

wid))

(defun postscript-shade (stream shade)
(format stream "~%currentgray ~S setgray fill setgray"

shade))

(defun postscript-closed-path (stream path)
(unless (every #’far-out (remove-if-not #’numberp path))
(postscript-raw-path stream path)
(format stream "~% closepath")))

(defun postscript-path (stream path)
(unless (every #’far-out (remove-if-not #’numberp path))
(postscript-raw-path stream path)))

;;; Print a path as a series of PostScript "lineto" commands.
(defun postscript-raw-path (stream path)
(format stream "~%newpath")
(let ((fmt "~% ~S ~S moveto"))
(dolist (pt path)
(cond ((stringp pt)

(format stream "~% %~A" pt))
(t (format stream

fmt
(clamp-real (realpart pt))
(clamp-real (imagpart pt)))

(setq fmt "~% ~S ~S lineto"))))))

;;; Definitions of functions to be plotted that are not
;;; standard Common Lisp functions.

(defun one-plus-over-one-minus (x) (/ (+ 1 x) (- 1 x)))

358 CHAPTER 12. NUMBERS

(defun one-minus-over-one-plus (x) (/ (- 1 x) (+ 1 x)))

(defun sqrt-square-minus-one (x) (sqrt (- 1 (* x x))))

(defun sqrt-one-plus-square (x) (sqrt (+ 1 (* x x))))

12.5. IRRATIONAL AND TRANSCENDENTAL FUNCTIONS 359

;;; Because X3J13 voted for a new definition of the atan function,
;;; the following definition was used in place of the atan function
;;; provided by the Common Lisp implementation I was using.

(defun good-atan (x)
(/ (- (log (+ 1 (* x #c(0 1))))

(log (- 1 (* x #c(0 1)))))
#c(0 2)))

;;; Because the first edition had an erroneous definition of atanh,
;;; the following definition was used in place of the atanh function
;;; provided by the Common Lisp implementation I was using.

(defun really-good-atanh (x)
(/ (- (log (+ 1 x))

(log (- 1 x)))
2))

;;; This is the main procedure that is intended to be called by a user.
(defun picture (&optional (fn #’sqrt))
(with-open-file (stream (concatenate ’string

(string-downcase (string fn))
"-plot.ps")

:direction :output)
(format stream "% PostScript file for plot of function ~S~%" fn)
(format stream "% Plot is to fit in a region ~S inches square~%"

(/ text-width-in-picas 6.0))
(format stream

"% showing axes extending ~S units from the origin.~%"
units-to-show)

(let ((scaling (/ (* text-width-in-picas 12) (* units-to-show 2))))
(format stream "~%~S ~:*~S scale" scaling))

(format stream "~%~S ~:*~S translate" units-to-show)
(format stream "~%newpath")
(format stream "~% ~S ~S moveto" (- units-to-show) (- units-to-show))
(format stream "~% ~S ~S lineto" units-to-show (- units-to-show))
(format stream "~% ~S ~S lineto" units-to-show units-to-show)
(format stream "~% ~S ~S lineto" (- units-to-show) units-to-show)
(format stream "~% closepath")
(format stream "~%clip")

360 CHAPTER 12. NUMBERS

(moby-grid fn stream)
(format stream

"~%% End of PostScript file for plot of function ~S"
fn)

(terpri stream)))

12.6 Type Conversions and Component Ex-
tractions on Numbers

While most arithmetic functions will operate on any kind of number, coerc-
ing types if necessary, the following functions are provided to allow specific
conversions of data types to be forced when desired.

[Function] float number &optional other

This converts any non-complex number to a floating-point number. With
no second argument, if number is already a floating-point number, then num-
ber is returned; otherwise a single-float is produced. If the argument other
is provided, then it must be a floating-point number, and number is converted
to the same format as other. See also coerce.

[Function] rational number
[Function] rationalize number

Each of these functions converts any non-complex number to a rational
number. If the argument is already rational, it is returned. The two functions
differ in their treatment of floating-point numbers.

rational assumes that the floating-point number is completely accurate
and returns a rational number mathematically equal to the precise value of
the floating-point number.

rationalize assumes that the floating-point number is accurate only to
the precision of the floating-point representation and may return any rational
number for which the floating-point number is the best available approxima-
tion of its format; in doing this it attempts to keep both numerator and
denominator small.

It is always the case that

(float (rational x) x) ≡ x

12.6. TYPE CONVERSIONS AND COMPONENT EXTRACTIONS ON NUMBERS361

and

(float (rationalize x) x) ≡ x

That is, rationalizing a floating-point number by either method and then
converting it back to a floating-point number of the same format produces the
original number. What distinguishes the two functions is that rational typi-
cally has a simple, inexpensive implementation, whereas rationalize goes to
more trouble to produce a result that is more pleasant to view and simpler
to compute with for some purposes.

[Function] numerator rational
[Function] denominator rational

These functions take a rational number (an integer or ratio) and return
as an integer the numerator or denominator of the canonical reduced form of
the rational. The numerator of an integer is that integer; the denominator
of an integer is 1. Note that

(gcd (numerator x) (denominator x)) ⇒ 1

The denominator will always be a strictly positive integer; the numerator
may be any integer. For example:

(numerator (/ 8 -6)) ⇒ -4
(denominator (/ 8 -6)) ⇒ 3

There is no fix function in Common Lisp because there are several inter-
esting ways to convert non-integral values to integers. These are provided by
the functions below, which perform not only type conversion but also some
non-trivial calculations as well.

[Function] floor number &optional divisor
[Function] ceiling number &optional divisor
[Function] truncate number &optional divisor
[Function] round number &optional divisor

In the simple one-argument case, each of these functions converts its ar-
gument number (which must not be complex) to an integer. If the argument
is already an integer, it is returned directly. If the argument is a ratio or

362 CHAPTER 12. NUMBERS

floating-point number, the functions use different algorithms for the conver-
sion.

floor converts its argument by truncating toward negative infinity; that
is, the result is the largest integer that is not larger than the argument.

ceiling converts its argument by truncating toward positive infinity; that
is, the result is the smallest integer that is not smaller than the argument.

truncate converts its argument by truncating toward zero; that is, the
result is the integer of the same sign as the argument and which has the
greatest integral magnitude not greater than that of the argument.

round converts its argument by rounding to the nearest integer; if number
is exactly halfway between two integers (that is, of the form integer + 0.5),
then it is rounded to the one that is even (divisible by 2).

The following table shows what the four functions produce when given
various arguments.

Argument floor ceiling truncate round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 -2 -2 -2
-2.5 -3 -2 -2 -2
-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate
type of rounding or truncation applied to the result of dividing the number
by the divisor. For example, (floor 5 2) ≡ (floor (/ 5 2)) but is potentially
more efficient. This statement is not entirely accurate; one should instead
say that (values (floor 5 2)) ≡ (values (floor (/ 5 2))), because there
is a second value to consider, as discussed below. In other words, the first
values returned by the two forms will be the same, but in general the second
values will differ. Indeed, we have

(floor 5 2) ⇒ 2 and 1
(floor (/ 5 2)) ⇒ 2 and 1/2

12.6. TYPE CONVERSIONS AND COMPONENT EXTRACTIONS ON NUMBERS363

for this example. The divisor may be any non-complex number.
It is generally accepted that it is an error for the divisor to be zero.
The one-argument case is exactly like the two-argument case where the

second argument is 1.
In other words, the one-argument case returns an integer and fractional

part for the number : (truncate 5.3) ⇒ 5.0 and 0.3, for example. Each
of the functions actually returns two values, whether given one or two ar-
guments. The second result is the remainder and may be obtained using
multiple-value-bind and related constructs. If any of these functions is
given two arguments x and y and produces results q and r, then q · y+ r = x.
The first result q is always an integer. The remainder r is an integer if both
arguments are integers, is rational if both arguments are rational, and is
floating-point if either argument is floating-point. One consequence is that
in the one-argument case the remainder is always a number of the same type
as the argument.

When only one argument is given, the two results are exact; the mathe-
matical sum of the two results is always equal to the mathematical value of
the argument.

[Function] mod number divisor
[Function] rem number divisor

mod performs the operation floor on its two arguments and returns the
second result of floor as its only result. Similarly, rem performs the opera-
tion truncate on its arguments and returns the second result of truncate
as its only result.

mod and rem are therefore the usual modulus and remainder functions
when applied to two integer arguments. In general, however, the arguments
may be integers or floating-point numbers.

(mod 13 4) ⇒ 1 (rem 13 4) ⇒ 1
(mod -13 4) ⇒ 3 (rem -13 4) ⇒ -1
(mod 13 -4) ⇒ -3 (rem 13 -4) ⇒ 1
(mod -13 -4) ⇒ -1 (rem -13 -4) ⇒ -1
(mod 13.4 1) ⇒ 0.4 (rem 13.4 1) ⇒ 0.4
(mod -13.4 1) ⇒ 0.6 (rem -13.4 1) ⇒ -0.4

[Function] ffloor number &optional divisor

364 CHAPTER 12. NUMBERS

[Function] fceiling number &optional divisor
[Function] ftruncate number &optional divisor
[Function] fround number &optional divisor

These functions are just like floor, ceiling, truncate, and round, except
that the result (the first result of two) is always a floating-point number
rather than an integer. It is roughly as if ffloor gave its arguments to floor,
and then applied float to the first result before passing them both back. In
practice, however, ffloor may be implemented much more efficiently. Similar
remarks apply to the other three functions. If the first argument is a floating-
point number, and the second argument is not a floating-point number of
longer format, then the first result will be a floating-point number of the
same type as the first argument. For example:

(ffloor -4.7) ⇒ -5.0 and 0.3
(ffloor 3.5d0) ⇒ 3.0d0 and 0.5d0

[Function] decode-float float
[Function] scale-float float integer
[Function] float-radix float
[Function] float-sign float1 &optional float2
[Function] float-digits float
[Function] float-precision float
[Function] integer-decode-float float

The function decode-float takes a floating-point number and returns
three values.

The first value is a new floating-point number of the same format rep-
resenting the significand; the second value is an integer representing the
exponent; and the third value is a floating-point number of the same format
indicating the sign (−1.0 or 1.0). Let b be the radix for the floating-point
representation; then decode-float divides the argument by an integral power
of b so as to bring its value between 1/b (inclusive) and 1 (exclusive) and
returns the quotient as the first value. If the argument is zero, however, the
result is equal to the absolute value of the argument (that is, if there is a
negative zero, its significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b
must be raised to produce the appropriate power for the division. If the ar-
gument is zero, any integer value may be returned, provided that the identity
shown below for scale-float holds.

12.6. TYPE CONVERSIONS AND COMPONENT EXTRACTIONS ON NUMBERS365

The third value of decode-float is a floating-point number, of the same
format as the argument, whose absolute value is 1 and whose sign matches
that of the argument.

The function scale-float takes a floating-point number f (not necessarily
between 1/b and 1) and an integer k, and returns (* f (expt (float b f)
k)). (The use of scale-floatmay be much more efficient than using exponen-
tiation and multiplication and avoids intermediate overflow and underflow if
the final result is representable.)

Note that

(multiple-value-bind (signif expon sign)
(decode-float f)

(scale-float signif expon))
≡ (abs f)

and

(multiple-value-bind (signif expon sign)
(decode-float f)

(* (scale-float signif expon) sign))
≡ f

The function float-radix returns (as an integer) the radix b of the
floating-point argument.

The function float-sign returns a floating-point number z such that z
and float1 have the same sign and also such that z and float2 have the same
absolute value. The argument float2 defaults to the value of (float 1 float1);
(float-sign x) therefore always produces a 1.0 or -1.0 of appropriate format
according to the sign of x. (Note that if an implementation has distinct
representations for negative zero and positive zero, then (float-sign -0.0)
⇒ -1.0.)

The function float-digits returns, as a non-negative integer, the number
of radix-b digits used in the representation of its argument (including any
implicit digits, such as a “hidden bit”). The function float-precision returns,
as a non-negative integer, the number of significant radix-b digits present in
the argument; if the argument is (a floating-point) zero, then the result is (an
integer) zero. For normalized floating-point numbers, the results of float-
digits and float-precision will be the same, but the precision will be less
than the number of representation digits for a denormalized or zero number.

366 CHAPTER 12. NUMBERS

The function integer-decode-float is similar to decode-float but for
its first value returns, as an integer, the significand scaled so as to be an
integer. For an argument f, this integer will be strictly less than

(expt b (float-precision f))

but no less than

(expt b (- (float-precision f) 1))

except that if f is zero, then the integer value will be zero.
The second value bears the same relationship to the first value as for

decode-float:

(multiple-value-bind (signif expon sign)
(integer-decode-float f)

(scale-float (float signif f) expon))
≡ (abs f)

The third value of integer-decode-float will be 1 or -1.

Rationale: These functions allow the writing of machine-independent, or at least
machine-parameterized, floating-point software of reasonable efficiency.

[Function] complex realpart &optional imagpart

The arguments must be non-complex numbers; a number is returned
that has realpart as its real part and imagpart as its imaginary part, possibly
converted according to the rule of floating-point contagion (thus both com-
ponents will be of the same type). If imagpart is not specified, then (coerce
0 (type-of realpart)) is effectively used. Note that if both the realpart and
imagpart are rational and the imagpart is zero, then the result is just the
realpart because of the rule of canonical representation for complex rationals.
It follows that the result of complex is not always a complex number; it may
be simply a rational.

[Function] realpart number
[Function] imagpart number

These return the real and imaginary parts of a complex number. If number
is a non-complex number, then realpart returns its argument number and

12.7. LOGICAL OPERATIONS ON NUMBERS 367

imagpart returns (* 0 number), which has the effect that the imaginary
part of a rational is 0 and that of a floating-point number is a floating-point
zero of the same format.

A clever way to multiply a complex number z by i is to write

(complex (- (imagpart z)) (realpart z))

instead of (* z #c(0 1)). This cleverness is not always gratuitous; it
may be of particular importance in the presence of minus zero. For example,
if we are using IEEE standard floating-point arithmetic and z = 4 + 0i, the
result of the clever expression is −0 + 4i, a true 90◦ rotation of z, whereas
the result of (* z #c(0 1)) is likely to be

(4 + 0i)(+0 + i) = ((4)(+0)− (+0)(1)) + ((4)(1) + (+0)(+0))i
= ((+0)− (+0)) + ((4) + (+0))i = +0 + 4i

which could land on the wrong side of a branch cut, for example.

12.7 Logical Operations on Numbers
The logical operations in this section require integers as arguments; it is an
error to supply a non-integer as an argument. The functions all treat integers
as if they were represented in two’s- complement notation.

Implementation note: Internally, of course, an implementation of Common Lisp
may or may not use a two’s-complement representation. All that is necessary is
that the logical operations perform calculations so as to give this appearance to
the user.

The logical operations provide a convenient way to represent an infinite
vector of bits. Let such a conceptual vector be indexed by the non-negative
integers. Then bit j is assigned a “weight” 2j. Assume that only a finite
number of bits are 1’s or only a finite number of bits are 0’s. A vector with
only a finite number of one-bits is represented as the sum of the weights of the
one-bits, a positive integer. A vector with only a finite number of zero-bits
is represented as -1 minus the sum of the weights of the zero-bits, a negative
integer.

This method of using integers to represent bit-vectors can in turn be used
to represent sets. Suppose that some (possibly countably infinite) universe

368 CHAPTER 12. NUMBERS

of discourse for sets is mapped into the non-negative integers. Then a set
can be represented as a bit vector; an element is in the set if the bit whose
index corresponds to that element is a one-bit. In this way all finite sets can
be represented (by positive integers), as well as all sets whose complement
are finite (by negative integers). The functions logior, logand, and logxor
defined below then compute the union, intersection, and symmetric difference
operations on sets represented in this way.

[Function] logior &rest integers

This returns the bit-wise logical inclusive or of its arguments. If no argu-
ment is given, then the result is zero, which is an identity for this operation.

[Function] logxor &rest integers

This returns the bit-wise logical exclusive or of its arguments. If no argu-
ment is given, then the result is zero, which is an identity for this operation.

[Function] logand &rest integers

This returns the bit-wise logical and of its arguments. If no argument is
given, then the result is -1, which is an identity for this operation.

[Function] logeqv &rest integers

This returns the bit-wise logical equivalence (also known as exclusive nor)
of its arguments. If no argument is given, then the result is -1, which is an
identity for this operation.

[Function] lognand integer1 integer2
[Function] lognor integer1 integer2
[Function] logandc1 integer1 integer2
[Function] logandc2 integer1 integer2
[Function] logorc1 integer1 integer2
[Function] logorc2 integer1 integer2

These are the other six non-trivial bit-wise logical operations on two ar-
guments. Because they are not associative, they take exactly two arguments
rather than any non-negative number of arguments.

12.7. LOGICAL OPERATIONS ON NUMBERS 369

(lognand n1 n2) ≡ (lognot (logand n1 n2))
(lognor n1 n2) ≡ (lognot (logior n1 n2))
(logandc1 n1 n2) ≡ (logand (lognot n1) n2)
(logandc2 n1 n2) ≡ (logand n1 (lognot n2))
(logorc1 n1 n2) ≡ (logior (lognot n1) n2)
(logorc2 n1 n2) ≡ (logior n1 (lognot n2))

The ten bit-wise logical operations on two integers are summarized in the
following table:

integer1 0 0 1 1
integer2 0 1 0 1 Operation Name
logand 0 0 0 1 and
logior 0 1 1 1 inclusive or
logxor 0 1 1 0 exclusive or
logeqv 1 0 0 1 equivalence (exclusive nor)
lognand 1 1 1 0 not-and
lognor 1 0 0 0 not-or

logandc1 0 1 0 0 and complement of integer1 with integer2
logandc2 0 0 1 0 and integer1 with complement of integer2
logorc1 1 1 0 1 or complement of integer1 with integer2
logorc2 1 0 1 1 or integer1 with complement of integer2

[Function] boole op integer1 integer2
[Constant] boole-clr
[Constant] boole-set
[Constant] boole-1
[Constant] boole-2
[Constant] boole-c1
[Constant] boole-c2
[Constant] boole-and
[Constant] boole-ior
[Constant] boole-xor
[Constant] boole-eqv
[Constant] boole-nand
[Constant] boole-nor
[Constant] boole-andc1

370 CHAPTER 12. NUMBERS

[Constant] boole-andc2
[Constant] boole-orc1
[Constant] boole-orc2

The function boole takes an operation op and two integers, and returns
an integer produced by performing the logical operation specified by op on the
two integers. The precise values of the sixteen constants are implementation-
dependent, but they are suitable for use as the first argument to boole:

integer1 0 0 1 1
integer2 0 1 0 1 Operation Performed

boole-clr 0 0 0 0 always 0
boole-set 1 1 1 1 always 1
boole-1 0 0 1 1 integer1
boole-2 0 1 0 1 integer2
boole-c1 1 1 0 0 complement of integer1
boole-c2 1 0 1 0 complement of integer2
boole-and 0 0 0 1 and
boole-ior 0 1 1 1 inclusive or
boole-xor 0 1 1 0 exclusive or
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 not-and
boole-nor 1 0 0 0 not-or

boole-andc1 0 1 0 0 and complement of integer1 with integer2
boole-andc2 0 0 1 0 and integer1 with complement of integer2
boole-orc1 1 1 0 1 or complement of integer1 with integer2
boole-orc2 1 0 1 1 or integer1 with complement of integer2

boole can therefore compute all sixteen logical functions on two argu-
ments. In general,

(boole boole-and x y) ≡ (logand x y)

and the latter is more perspicuous. However, boole is useful when it is
necessary to parameterize a procedure so that it can use one of several logical
operations.

[Function] lognot integer

This returns the bit-wise logical not of its argument. Every bit of the
result is the complement of the corresponding bit in the argument.

12.7. LOGICAL OPERATIONS ON NUMBERS 371

(logbitp j (lognot x)) ≡ (not (logbitp j x))

[Function] logtest integer1 integer2

logtest is a predicate that is true if any of the bits designated by the 1’s
in integer1 are 1’s in integer2.

(logtest x y) ≡ (not (zerop (logand x y)))

[Function] logbitp index integer

logbitp is true if the bit in integer whose index is index (that is, its
weight is 2index) is a one-bit; otherwise it is false. For example:

(logbitp 2 6) is true
(logbitp 0 6) is false
(logbitp k n) ≡ (ldb-test (byte 1 k) n)

The index must be a non-negative integer.

[Function] ash integer count

This function shifts integer arithmetically left by count bit positions if
count is positive, or right by −count bit positions if count is negative. The
sign of the result is always the same as the sign of integer.

Mathematically speaking, this operation performs the computation
floor(integer · 2count).

Logically, this moves all of the bits in integer to the left, adding zero-bits
at the bottom, or moves them to the right, discarding bits. (In this context
the question of what gets shifted in on the left is irrelevant; integers, viewed
as strings of bits, are “half-infinite,” that is, conceptually extend infinitely far
to the left.) For example:

(logbitp j (ash n k)) ≡ (and (>= j k) (logbitp (- j k) n))

[Function] logcount integer

The number of bits in integer is determined and returned. If integer is
positive, the 1-bits in its binary representation are counted. If integer is neg-
ative, the 0-bits in its two’s-complement binary representation are counted.
The result is always a non-negative integer. For example:

372 CHAPTER 12. NUMBERS

(logcount 13) ⇒ 3 ;Binary representation is ...0001101
(logcount -13) ⇒ 2 ;Binary representation is ...1110011
(logcount 30) ⇒ 4 ;Binary representation is ...0011110
(logcount -30) ⇒ 4 ;Binary representation is ...1100010

The following identity always holds:

(logcount x) ≡ (logcount (- (+ x 1)))
≡ (logcount (lognot x))

[Function] integer-length integer

This function performs the computation

ceiling(log2(if integer < 0 then − integer else integer+ 1))

This is useful in two different ways. First, if integer is non-negative, then its
value can be represented in unsigned binary form in a field whose width in bits
is no smaller than (integer-length integer). Second, regardless of the sign
of integer, its value can be represented in signed binary two’s-complement
form in a field whose width in bits is no smaller than (+ (integer-length
integer) 1). For example:

(integer-length 0) ⇒ 0
(integer-length 1) ⇒ 1
(integer-length 3) ⇒ 2
(integer-length 4) ⇒ 3
(integer-length 7) ⇒ 3
(integer-length -1) ⇒ 0
(integer-length -4) ⇒ 2
(integer-length -7) ⇒ 3
(integer-length -8) ⇒ 3

12.8 Byte Manipulation Functions
Several functions are provided for dealing with an arbitrary-width field of
contiguous bits appearing anywhere in an integer. Such a contiguous set of
bits is called a byte. Here the term byte does not imply some fixed number
of bits (such as eight), rather a field of arbitrary and user-specifiable width.

12.8. BYTE MANIPULATION FUNCTIONS 373

The byte-manipulation functions use objects called byte specifiers to des-
ignate a specific byte position within an integer. The representation of a byte
specifier is implementation-dependent; in particular, it may or may not be a
number. It is sufficient to know that the function byte will construct one,
and that the byte-manipulation functions will accept them. The function
byte accepts two integers representing the position and size of the byte and
returns a byte specifier. Such a specifier designates a byte whose width is
size and whose bits have weights 2position+size−1 through 2position.

[Function] byte size position

byte takes two integers representing the size and position of a byte and
returns a byte specifier suitable for use as an argument to byte-manipulation
functions.

[Function] byte-size bytespec
[Function] byte-position bytespec

Given a byte specifier, byte-size returns the size specified as an integer;
byte-position similarly returns the position. For example:

(byte-size (byte j k)) ≡ j
(byte-position (byte j k)) ≡ k

[Function] ldb bytespec integer

bytespec specifies a byte of integer to be extracted. The result is returned
as a non-negative integer. For example:

(logbitp j (ldb (byte s p) n)) ≡ (and (< j s) (logbitp (+ j p) n))

The name of the function ldb means “load byte.”
If the argument integer is specified by a form that is a place form accept-

able to setf, then setf may be used with ldb to modify a byte within the
integer that is stored in that place. The effect is to perform a dpb operation
and then store the result back into the place.

[Function] ldb-test bytespec integer

ldb-test is a predicate that is true if any of the bits designated by the
byte specifier bytespec are 1’s in integer ; that is, it is true if the designated
field is non-zero.

374 CHAPTER 12. NUMBERS

(ldb-test bytespec n) ≡ (not (zerop (ldb bytespec n)))

[Function] mask-field bytespec integer

This is similar to ldb; however, the result contains the specified byte of
integer in the position specified by bytespec, rather than in position 0 as with
ldb. The result therefore agrees with integer in the byte specified but has
zero-bits everywhere else. For example:

(ldb bs (mask-field bs n)) ≡ (ldb bs n)

(logbitp j (mask-field (byte s p) n))
≡ (and (>= j p) (< j (+ p s)) (logbitp j n))

(mask-field bs n) ≡ (logand n (dpb -1 bs 0))

If the argument integer is specified by a form that is a place form ac-
ceptable to setf, then setf may be used with mask-field to modify a byte
within the integer that is stored in that place. The effect is to perform a
deposit-field operation and then store the result back into the place.

[Function] dpb newbyte bytespec integer

This returns a number that is the same as integer except in the bits
specified by bytespec. Let s be the size specified by bytespec; then the low s
bits of newbyte appear in the result in the byte specified by bytespec. The
integer newbyte is therefore interpreted as being right-justified, as if it were
the result of ldb. For example:

(logbitp j (dpb m (byte s p) n))
≡ (if (and (>= j p) (< j (+ p s)))

(logbitp (- j p) m)
(logbitp j n))

The name of the function dpb means “deposit byte.”

[Function] deposit-field newbyte bytespec integer

This function is to mask-field as dpb is to ldb. The result is an integer
that contains the bits of newbyte within the byte specified by bytespec, and
elsewhere contains the bits of integer. For example:

12.9. RANDOM NUMBERS 375

(logbitp j (deposit-field m (byte s p) n))
≡ (if (and (>= j p) (< j (+ p s)))

(logbitp j m)
(logbitp j n))

Implementation note: If the bytespec is a constant, one may of course construct,
at compile time, an equivalent mask m, for example by computing (deposit-field
-1 bytespec 0). Given this mask m, one may then compute

(deposit-field newbyte bytespec integer)

by computing

(logior (logand newbyte m) (logand integer (lognot m)))

where the result of (lognot m) can of course also be computed at compile
time. However, the following expression may also be used and may require fewer
temporary registers in some situations:

(logxor integer (logand m (logxor integer newbyte)))

A related, though possibly less useful, trick is that

(let ((z (logand (logxor x y) m)))
(setq x (logxor z x))
(setq y (logxor z y)))

interchanges those bits of x and y for which the mask m is 1, and leaves alone
those bits of x and y for which m is 0.

12.9 Random Numbers

The Common Lisp facility for generating pseudo-random numbers has been
carefully defined to make its use reasonably portable. While two implemen-
tations may produce different series of pseudo-random numbers, the distri-
bution of values should be relatively independent of such machine-dependent
aspects as word size.

376 CHAPTER 12. NUMBERS

[Function] random number &optional state

(random n) accepts a positive number n and returns a number of the
same kind between zero (inclusive) and n (exclusive). The number n may
be an integer or a floating-point number. An approximately uniform choice
distribution is used. If n is an integer, each of the possible results occurs with
(approximate) probability 1/n. (The qualifier “approximate” is used because
of implementation considerations; in practice, the deviation from uniformity
should be quite small.)

The argument state must be an object of type random-state; it defaults
to the value of the variable *random-state*. This object is used to maintain
the state of the pseudo-random-number generator and is altered as a side
effect of the random operation.

Implementation note: In general, even if random of zero arguments were de-
fined as in MacLisp, it is not adequate to define (random n) for integral n to be
simply (mod (random) n); this fails to be uniformly distributed if n is larger than
the largest number produced by random, or even if n merely approaches this num-
ber. This is another reason for omitting random of zero arguments in Common
Lisp. Assuming that the underlying mechanism produces “random bits” (possibly
in chunks such as fixnums), the best approach is to produce enough random bits
to construct an integer k some number d of bits larger than (integer-length n)
(see integer-length), and then compute (mod k n). The quantity d should be
at least 7, and preferably 10 or more.

To produce random floating-point numbers in the half-open range [A,B), ac-
cepted practice (as determined by a look through the Collected Algorithms from the
ACM, particularly algorithms 133, 266, 294, and 370) is to compute X ·(B−A)+A,
where X is a floating-point number uniformly distributed over [0.0, 1.0) and com-
puted by calculating a random integer N in the range [0,M) (typically by a
multiplicative-congruential or linear-congruential method mod M) and then set-
ting X = N/M. See also [27]. If one takes M = 2f , where f is the length of
the significand of a floating-point number (and it is in fact common to choose M
to be a power of 2), then this method is equivalent to the following assembly-
language-level procedure. Assume the representation has no hidden bit. Take a
floating-point 0.5, and clobber its entire significand with random bits. Normalize
the result if necessary.

For example, on the DEC PDP-10, assume that accumulator T is completely
random (all 36 bits are random). Then the code sequence

LSH T,-9 ;Clear high 9 bits; low 27 are random
FSC T,128. ;Install exponent and normalize

12.9. RANDOM NUMBERS 377

will produce in T a random floating-point number uniformly distributed over
[0.0, 1.0). (Instead of the LSH instruction, one could do

TLZ T,777000 ;That’s 777000 octal

but if the 36 random bits came from a congruential random-number generator,
the high-order bits tend to be “more random” than the low-order ones, and so the
LSH would be better for uniform distribution. Ideally all the bits would be the
result of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing
with the hidden bit is. The method can be adapted as follows. Take a floating-
point 1.0 and clobber the explicit significand bits with random bits; this produces
a random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0.
In effect, we let the hidden bit creep in and then subtract it away again.

For example, on the DEC VAX, assume that register T is completely random
(but a little less random than on the PDP-10, as it has only 32 random bits). Then
the code sequence

INSV #^X81,#7,#9,T ;Install correct sign bit and exponent
SUBF #^F1.0,T ;Subtract 1.0

will produce in T a random floating-point number uniformly distributed over
[0.0, 1.0). Again, if the low-order bits are not random enough, then the instruction

ROTL #7,T

should be performed first.
Implementors may wish to consult reference [41] for a discussion of some effi-

cient methods of generating pseudo-random numbers.

[Variable] *random-state*

This variable holds a data structure, an object of type random-state,
that encodes the internal state of the random-number generator that ran-
dom uses by default. The nature of this data structure is implementation-
dependent. It may be printed out and successfully read back in, but may
or may not function correctly as a random-number state object in another
implementation. A call to random will perform a side effect on this data
structure. Lambda-binding this variable to a different random-number state
object will correctly save and restore the old state object.

378 CHAPTER 12. NUMBERS

[Function] make-random-state &optional state

This function returns a new object of type random-state, suitable for
use as the value of the variable *random-state*. If state is nil or omitted,
make-random-state returns a copy of the current random-number state
object (the value of the variable *random-state*). If state is a state object,
a copy of that state object is returned. If state is t, then a new state object
is returned that has been “randomly” initialized by some means (such as by
a time-of-day clock).

Rationale: Common Lisp purposely provides no way to initialize a random-
state object from a user-specified “seed.” The reason for this is that the number
of bits of state information in a random-state object may vary widely from one
implementation to another, and there is no simple way to guarantee that any
user-specified seed value will be “random enough.” Instead, the initialization of
random-state objects is left to the implementor in the case where the argument
t is given to make-random-state.

To handle the common situation of executing the same program many times in
a reproducible manner, where that program uses random, the following procedure
may be used:

1. Evaluate (make-random-state t) to create a random-state object.

2. Write that object to a file, using print, for later use.

3. Whenever the program is to be run, first use read to create a copy of the
random-state object from the printed representation in the file. Then use
the random-state object newly created by the read operation to initialize
the random-number generator for the program.

It is for the sake of this procedure for reproducible execution that implementations
are required to provide a read/print syntax for objects of type random-state.

It is also possible to make copies of a random-state object directly without
going through the print/read process, simply by using the make-random-state
function to copy the object; this allows the same sequence of random numbers to
be generated many times within a single program.
Implementation note: A recommended way to implement the type random-
state is effectively to use the machinery for defstruct. The usual structure syntax
may then be used for printing random-state objects; one might look something
like

#S(RANDOM-STATE DATA #(14 49 98436589 786345 8734658324 ...))

12.10. IMPLEMENTATION PARAMETERS 379

where the components are of course completely implementation-dependent.

[Function] random-state-p object

random-state-p is true if its argument is a random-state object, and
otherwise is false.

(random-state-p x) ≡ (typep x ’random-state)

12.10 Implementation Parameters
The values of the named constants defined in this section are implementation-
dependent. They may be useful for parameterizing code in some situations.

[Constant] most-positive-fixnum
[Constant] most-negative-fixnum

The value of most-positive-fixnum is that fixnum closest in value to
positive infinity provided by the implementation.

The value of most-negative-fixnum is that fixnum closest in value to
negative infinity provided by the implementation.

X3J13 voted in January 1989 to specify that fixnum must be a supertype
of the type (signed-byte 16), and additionally that the value of array-
dimension-limit must be a fixnum. This implies that the value of most-
negative-fixnummust be less than or equal to −215, and the value of most-
positive-fixnum must be greater than or equal to both 215−1 and the value
of array-dimension-limit.

[Constant] most-positive-short-float
[Constant] least-positive-short-float
[Constant] least-negative-short-float
[Constant] most-negative-short-float

The value of most-positive-short-float is that short-format floating-
point number closest in value to (but not equal to) positive infinity provided
by the implementation.

The value of least-positive-short-float is that positive short-format
floating-point number closest in value to (but not equal to) zero provided by
the implementation.

380 CHAPTER 12. NUMBERS

The value of least-negative-short-float is that negative short-format
floating-point number closest in value to (but not equal to) zero provided
by the implementation. (Note that even if an implementation supports mi-
nus zero as a distinct short floating-point value, least-negative-short-float
must not be minus zero.)

X3J13 voted in June 1989 to clarify that these definitions are to be taken
quite literally. In implementations that support denormalized numbers, the
values of least-positive-short-float and least-negative-short-float may
be denormalized.

The value of most-negative-short-float is that short-format floating-
point number closest in value to (but not equal to) negative infinity provided
by the implementation.

[Constant] most-positive-single-float
[Constant] least-positive-single-float
[Constant] least-negative-single-float
[Constant] most-negative-single-float
[Constant] most-positive-double-float
[Constant] least-positive-double-float
[Constant] least-negative-double-float
[Constant] most-negative-double-float
[Constant] most-positive-long-float
[Constant] least-positive-long-float
[Constant] least-negative-long-float
[Constant] most-negative-long-float

These are analogous to the constants defined above for short-format
floating-point numbers.

[Constant] least-positive-normalized-short-float
[Constant] least-negative-normalized-short-float

X3J13 voted in June 1989 to add these constants to the language.
The value of least-positive-normalized-short-float is that positive

normalized short-format floating-point number closest in value to (but not
equal to) zero provided by the implementation. In implementations that do
not support denormalized numbers this may be the same as the value of
least-positive-short-float.

12.10. IMPLEMENTATION PARAMETERS 381

The value of least-negative-normalized-short-float is that negative
normalized short-format floating-point number closest in value to (but not
equal to) zero provided by the implementation. (Note that even if an im-
plementation supports minus zero as a distinct short floating-point value,
least-negative-normalized-short-float must not be minus zero.) In im-
plementations that do not support denormalized numbers this may be the
same as the value of least-positive-short-float.

[Constant] least-positive-normalized-single-float
[Constant] least-negative-normalized-single-float
[Constant] least-positive-normalized-double-float
[Constant] least-negative-normalized-double-float
[Constant] least-positive-normalized-long-float
[Constant] least-negative-normalized-long-float

These are analogous to the constants defined above for short-format
floating-point numbers.

[Constant] short-float-epsilon
[Constant] single-float-epsilon
[Constant] double-float-epsilon
[Constant] long-float-epsilon

These constants have as value, for each floating-point format, the smallest
positive floating-point number e of that format such that the expression

(not (= (float 1 e) (+ (float 1 e) e)))

is true when actually evaluated.

[Constant] short-float-negative-epsilon
[Constant] single-float-negative-epsilon
[Constant] double-float-negative-epsilon
[Constant] long-float-negative-epsilon

These constants have as value, for each floating-point format, the smallest
positive floating-point number e of that format such that the expression

(not (= (float 1 e) (- (float 1 e) e)))

is true when actually evaluated.

382 CHAPTER 12. NUMBERS

Chapter 13

Characters

Common Lisp provides a character data type; objects of this type represent
printed symbols such as letters.

In general, characters in Common Lisp are not true objects; eq cannot be
counted upon to operate on them reliably. In particular, it is possible that
the expression

(let ((x z) (y z)) (eq x y))

may be false rather than true, if the value of z is a character.

Rationale: This odd breakdown of eq in the case of characters allows the imple-
mentor enough design freedom to produce exceptionally efficient code on conven-
tional architectures. In this respect the treatment of characters exactly parallels
that of numbers, as described in chapter 12.

If two objects are to be compared for “identity,” but either might be a
character, then the predicate eql is probably appropriate.

13.1 Character Attributes

[Constant] char-code-limit

The value of char-code-limit is a non-negative integer that is the upper
exclusive bound on values produced by the function char-code, which re-
turns the code component of a given character; that is, the values returned by

383

384 CHAPTER 13. CHARACTERS

Table 13.1: Standard Character Labels, Glyphs, and Descriptions
SM05@ commercial at SD13 ‘ grave accent

SP02 ! exclamation mark LA02A capital A LA01 a small a
SP04 " quotation mark LB02 B capital B LB01 b small b
SM01#number sign LC02 C capital C LC01 c small c
SC03 $ dollar sign LD02D capital D LD01 d small d
SM02%percent sign LE02 E capital E LE01 e small e
SM03&ersand LF02 F capital F LF01 f small f
SP05 ’ apostrophe LG02G capital G LG01 g small g
SP06 (left parenthesis LH02H capital H LH01 h small h
SP07) right parenthesis LI02 I capital I LI01 i small i
SM04* asterisk LJ02 J capital J LJ01 j small j
SA01 +plus sign LK02K capital K LK01 k small k
SP08 , comma LL02 L capital L LL01 l small l
SP10 - hyphen or minus signLM02Mcapital M LM01msmall m
SP11 . period or full stop LN02N capital N LN01 n small n
SP12 / solidus LO02 O capital O LO01 o small o
ND100 digit 0 LP02 P capital P LP01 p small p
ND011 digit 1 LQ02 Q capital Q LQ01 q small q
ND022 digit 2 LR02 R capital R LR01 r small r
ND033 digit 3 LS02 S capital S LS01 s small s
ND044 digit 4 LT02 T capital T LT01 t small t
ND055 digit 5 LU02U capital U LU01 u small u
ND066 digit 6 LV02 V capital V LV01 v small v
ND077 digit 7 LW02Wcapital W LW01w small w
ND088 digit 8 LX02X capital X LX01 x small x
ND099 digit 9 LY02 Y capital Y LY01 y small y
SP13 : colon LZ02 Z capital Z LZ01 z small z
SP14 ; semicolon SM06[left square bracket SM11{ left curly bracket
SA03 <less-than sign SM07\ reverse solidus SM13| vertical bar
SA04 =equals sign SM08] right square bracketSM14} right curly bracket
SA05 >greater-than sign SD15 ^ circumflex accent SD19 ~ tilde
SP15 ? question mark SP09 _ low line
The characters in this table plus the space and newline characters make up the
standard Common Lisp character repertoire (type standard-char). The character
labels and character descriptions shown here are taken from ISO standard 6937/2
. The first character of the label categorizes the character as Latin, Numeric, or
Special.

13.2. PREDICATES ON CHARACTERS 385

char-code are non-negative and strictly less than the value of char-code-
limit.

Common Lisp does not at present explicitly guarantee that all integers
between zero and the value of char-code-limit are valid character codes,
and so it is wise in any case for the programmer to assume that the space of
assigned character codes may be sparse.

13.2 Predicates on Characters
The predicate characterpmay be used to determine whether any Lisp object
is a character object.

[Function] standard-char-p char

The argument char must be a character object. standard-char-p is
true if the argument is a “standard character,” that is, an object of type
standard-char.

Note that any character with a non-zero bits or font attribute is non-
standard.

[Function] graphic-char-p char

The argument char must be a character object. graphic-char-p is true
if the argument is a “graphic” (printing) character, and false if it is a “non-
graphic” (formatting or control) character. Graphic characters have a stan-
dard textual representation as a single glyph, such as A or * or =. By
convention, the space character is considered to be graphic. Of the stan-
dard characters all but #\Newline are graphic. The semi-standard charac-
ters #\Backspace, #\Tab, #\Rubout, #\Linefeed, #\Return, and
#\Page are not graphic.

[Function] alpha-char-p char

The argument char must be a character object. alpha-char-p is true if
the argument is an alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any
character with a non-zero bits attribute cannot be alphabetic. Whether a
character is alphabetic may depend on its font number.

386 CHAPTER 13. CHARACTERS

Of the standard characters (as defined by standard-char-p), the letters
A through Z and a through z are alphabetic.

[Function] upper-case-p char
[Function] lower-case-p char
[Function] both-case-p char

The argument char must be a character object.
upper-case-p is true if the argument is an uppercase character, and

otherwise is false.
lower-case-p is true if the argument is a lowercase character, and oth-

erwise is false.
both-case-p is true if the argument is an uppercase character and there

is a corresponding lowercase character (which can be obtained using char-
downcase), or if the argument is a lowercase character and there is a corre-
sponding uppercase character (which can be obtained using char-upcase).

If a character is either uppercase or lowercase, it is necessarily alphabetic
(and therefore is graphic, and therefore has a zero bits attribute). However,
it is permissible in theory for an alphabetic character to be neither uppercase
nor lowercase.

Of the standard characters (as defined by standard-char-p), the letters
A through Z are uppercase and a through z are lowercase.

[Function] digit-char-p char &optional (radix 10)

The argument char must be a character object, and radix must be a non-
negative integer. If char is not a digit of the radix specified by radix, then
digit-char-p is false; otherwise it returns a non-negative integer that is the
“weight” of char in that radix.

Digits are necessarily graphic characters.
Of the standard characters (as defined by standard-char-p), the char-

acters 0 through 9, A through Z, and a through z are digits. The weights
of 0 through 9 are the integers 0 through 9, and of A through Z (and also
a through z) are 10 through 35. digit-char-p returns the weight for one
of these digits if and only if its weight is strictly less than radix. Thus, for
example, the digits for radix 16 are

0 1 2 3 4 5 6 7 8 9 A B C D E F

13.2. PREDICATES ON CHARACTERS 387

Here is an example of the use of digit-char-p:

(defun convert-string-to-integer (str &optional (radix 10))
"Given a digit string and optional radix, return an integer."
(do ((j 0 (+ j 1))

(n 0 (+ (* n radix)
(or (digit-char-p (char str j) radix)

(error "Bad radix-~D digit: ~C"
radix
(char str j))))))

((= j (length str)) n)))

[Function] alphanumericp char

The argument char must be a character object. alphanumericp is true
if char is either alphabetic or numeric. By definition,

(alphanumericp x)
≡ (or (alpha-char-p x) (not (null (digit-char-p x))))

Alphanumeric characters are therefore necessarily graphic (as defined by
the predicate graphic-char-p).

Of the standard characters (as defined by standard-char-p), the char-
acters 0 through 9, A through Z, and a through z are alphanumeric.

[Function] char= character &rest more-characters
[Function] char/= character &rest more-characters
[Function] char< character &rest more-characters
[Function] char> character &rest more-characters
[Function] char<= character &rest more-characters
[Function] char>= character &rest more-characters

The arguments must all be character objects. These functions compare
the objects using the implementation-dependent total ordering on characters,
in a manner analogous to numeric comparisons by = and related functions.

The total ordering on characters is guaranteed to have the following prop-
erties:

• The standard alphanumeric characters obey the following partial or-
dering:

388 CHAPTER 13. CHARACTERS

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z
a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z
0<1<2<3<4<5<6<7<8<9
either 9<A or Z<0
either 9<a or z<0

This implies that alphabetic ordering holds within each case (upper and
lower), and that the digits as a group are not interleaved with letters.
However, the ordering or possible interleaving of uppercase letters and
lowercase letters is unspecified. (Note that both the ASCII and the
EBCDIC character sets conform to this specification. As it happens,
neither ordering interleaves uppercase and lowercase letters: in the
ASCII ordering, 9<A and Z<a, whereas in the EBCDIC ordering
z<A and Z<0.)

The total ordering is not necessarily the same as the total ordering on
the integers produced by applying char-int to the characters (although it is
a reasonable implementation technique to use that ordering).

While alphabetic characters of a given case must be properly ordered,
they need not be contiguous; thus (char<= #\a x #\z) is not a valid
way of determining whether or not x is a lowercase letter. That is why a
separate lower-case-p predicate is provided.

(char= #\d #\d) is true.
(char/= #\d #\d) is false.
(char= #\d #\x) is false.
(char/= #\d #\x) is true.
(char= #\d #\D) is false.
(char/= #\d #\D) is true.
(char= #\d #\d #\d #\d) is true.
(char/= #\d #\d #\d #\d) is false.
(char= #\d #\d #\x #\d) is false.
(char/= #\d #\d #\x #\d) is false.
(char= #\d #\y #\x #\c) is false.
(char/= #\d #\y #\x #\c) is true.
(char= #\d #\c #\d) is false.
(char/= #\d #\c #\d) is false.
(char< #\d #\x) is true.

13.2. PREDICATES ON CHARACTERS 389

(char<= #\d #\x) is true.
(char< #\d #\d) is false.
(char<= #\d #\d) is true.
(char< #\a #\e #\y #\z) is true.
(char<= #\a #\e #\y #\z) is true.
(char< #\a #\e #\e #\y) is false.
(char<= #\a #\e #\e #\y) is true.
(char> #\e #\d) is true.
(char>= #\e #\d) is true.
(char> #\d #\c #\b #\a) is true.
(char>= #\d #\c #\b #\a) is true.
(char> #\d #\d #\c #\a) is false.
(char>= #\d #\d #\c #\a) is true.
(char> #\e #\d #\b #\c #\a) is false.
(char>= #\e #\d #\b #\c #\a) is false.
(char> #\z #\A) may be true or false.
(char> #\Z #\a) may be true or false.

There is no requirement that (eq c1 c2) be true merely because (char=
c1 c2) is true. While eq may distinguish two character objects that char=
does not, it is distinguishing them not as characters, but in some sense on
the basis of a lower-level implementation characteristic. (Of course, if (eq c1
c2) is true, then one may expect (char= c1 c2) to be true.) However, eql
and equal compare character objects in the same way that char= does.

[Function] char-equal character &rest more-characters
[Function] char-not-equal character &rest more-characters
[Function] char-lessp character &rest more-characters
[Function] char-greaterp character &rest more-characters
[Function] char-not-greaterp character &rest more-characters
[Function] char-not-lessp character &rest more-characters

For the standard characters, the ordering is such that A=a, B=b, and
so on, up to Z=z, and furthermore either 9<A or Z<0. For example:

(char-equal #\A #\a) is true.
(char= #\A #\a) is false.
(char-equal #\A #\Control-A) is true.

390 CHAPTER 13. CHARACTERS

13.3 Character Construction and Selection

These functions may be used to extract attributes of a character and to
construct new characters.

[Function] char-code char

The argument char must be a character object. char-code returns the
code attribute of the character object; this will be a non-negative integer less
than the (normal) value of the variable char-code-limit.

This is usually what you need in order to treat a character as an index
into a vector. The length of the vector should then be equal to char-code-
limit. Be careful how you initialize this vector; remember that you cannot
necessarily expect all non-negative integers less than char-code-limit to be
valid character codes.

[Function] code-char code

Returns a character with the code attribute given by code. If no such
character exists and one cannot be created, nil is returned. For example:

(char= (code-char (char-code c)) c)

13.4 Character Conversions

These functions perform various transformations on characters, including
case conversions.

[Function] character object

The function character coerces its argument to be a character if possible;
see coerce.

(character x) ≡ (coerce x ’character)

[Function] char-upcase char

13.4. CHARACTER CONVERSIONS 391

[Function] char-downcase char

The argument char must be a character object. char-upcase attempts to
convert its argument to an uppercase equivalent; char-downcase attempts
to convert its argument to a lowercase equivalent.

[Function] digit-char weight &optional (radix 10)

All arguments must be integers. digit-char determines whether or not
it is possible to construct a character object whose code is such that the
result character has the weight weight when considered as a digit of the
radix radix (see the predicate digit-char-p). It returns such a character if
that is possible, and otherwise returns nil.

digit-char cannot return nil radix is between 2 and 36 inclusive, and
weight is non-negative and less than radix.

If more than one character object can encode such a weight in the given
radix, one will be chosen consistently by any given implementation; moreover,
among the standard characters, uppercase letters are preferred to lowercase
letters. For example:

(digit-char 7) ⇒ #\7
(digit-char 12) ⇒ nil
(digit-char 12 16) ⇒ #\C ;not #\c
(digit-char 6 2) ⇒ nil
(digit-char 1 2) ⇒ #\1

[Function] char-int char

The argument char must be a character object. char-int returns a non-
negative integer encoding the character object.

char-int returns the same integer char-code. Also,

(char= c1 c2) ≡ (= (char-int c1) (char-int c2))

for characters c1 and c2.
This function is provided primarily for the purpose of hashing characters.

[Function] char-name char

The argument char must be a character object. If the character has a
name, then that name (a string) is returned; otherwise nil is returned. All

392 CHAPTER 13. CHARACTERS

characters that are non-graphic (do not satisfy the predicate graphic-char-
p) have names. Graphic characters may or may not have names.

The standard newline and space characters have the respective names
Newline and Space. The semi-standard characters have the names Tab,
Page, Rubout, Linefeed, Return, and Backspace.

Characters that have names can be notated as #\ followed by the name.
(See section 22.1.4.) Although the name may be written in any case, it is
stylish to capitalize it thus: #\Space.

[Function] name-char name

The argument name must be an object coerceable to a string as if by the
function string. If the name is the same as the name of a character object
(as determined by string-equal), that object is returned; otherwise nil is
returned.

Chapter 14

Sequences

The type sequence encompasses both lists and vectors (one-dimensional
arrays). While these are different data structures with different structural
properties leading to different algorithmic uses, they do have a common prop-
erty: each contains an ordered set of elements. Note that nil is considered
to be a sequence of length zero.

Some operations are useful on both lists and arrays because they deal
with ordered sets of elements. One may ask the number of elements, reverse
the ordering, extract a subsequence, and so on. For such purposes Common
Lisp provides a set of generic functions on sequences.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense, and not necessarily in the
technical sense used by CLOS (see chapter 2).

elt reverse map remove
length nreverse some remove-duplicates
subseq concatenate every delete
copy-seq position notany delete-duplicates
fill find notevery substitute
replace sort reduce nsubstitute
count merge search mismatch

Some of these operations come in more than one version. Such versions are
indicated by adding a suffix (or occasionally a prefix) to the basic name of
the operation. In addition, many operations accept one or more optional
keyword arguments that can modify the operation in various ways.

393

394 CHAPTER 14. SEQUENCES

If the operation requires testing sequence elements according to some
criterion, then the criterion may be specified in one of two ways. The basic
operation accepts an item, and elements are tested for being eql to that item.
(A test other than eql can be specified by the :test or :test-not keyword.
It is an error to use both of these keywords in the same call.) The variants
formed by adding -if and -if-not to the basic operation name do not take
an item, but instead a one-argument predicate, and elements are tested for
satisfying or not satisfying the predicate. As an example,

(remove item sequence)

returns a copy of sequence from which all elements eql to item have been
removed;

(remove item sequence :test #’equal)

returns a copy of sequence from which all elements equal to item have
been removed;

(remove-if #’numberp sequence)

returns a copy of sequence from which all numbers have been removed.
If an operation tests elements of a sequence in any manner, the keyword

argument :key, if not nil, should be a function of one argument that will
extract from an element the part to be tested in place of the whole element.
For example, the effect of the MacLisp expression (assq item seq) could be
obtained by

(find item sequence :test #’eq :key #’car)

This searches for the first element of sequence whose car is eq to item.
X3J13 voted in June 1988 to allow the :key function to be only of type sym-
bol or function; a lambda-expression is no longer acceptable as a functional
argument. One must use the function special operator or the abbreviation
#’ before a lambda-expression that appears as an explicit argument form.

For some operations it can be useful to specify the direction in which the
sequence is conceptually processed. In this case the basic operation normally
processes the sequence in the forward direction, and processing in the reverse
direction is indicated by a non-nil value for the keyword argument :from-
end. (The processing order specified by the :from-end is purely conceptual.
Depending on the object to be processed and on the implementation, the

395

actual processing order may be different. For this reason a user-supplied test
function should be free of side effects.)

Many operations allow the specification of a subsequence to be operated
upon. Such operations have keyword arguments called :start and :end.
These arguments should be integer indices into the sequence, with start ≤ end
(it is an error if start > end). They indicate the subsequence starting with
and including element start and up to but excluding element end. The length
of the subsequence is therefore end− start. If start is omitted, it defaults to
zero; and if end is omitted or nil, it defaults to the length of the sequence.
Therefore if both start and end are omitted, the entire sequence is processed
by default. For the most part, subsequence specification is permitted purely
for the sake of efficiency; one could simply call subseq instead to extract
the subsequence before operating on it. Note, however, that operations that
calculate indices return indices into the original sequence, not into the sub-
sequence:

(position #\b "foobar" :start 2 :end 5) ⇒ 3
(position #\b (subseq "foobar" 2 5)) ⇒ 1

If two sequences are involved, then the keyword arguments :start1,
:end1, :start2, and :end2 are used to specify separate subsequences for
each sequence.

X3J13 voted in June 1988 (and further clarification was voted in January
1989) to specify that these rules apply not only to all built-in functions that
have keyword parameters named :start, :start1, :start2, :end, :end1, or
:end2 but also to functions such as subseq that take required or optional
parameters that are documented as being named start or end.

• A “start” argument must always be a non-negative integer and defaults
to zero if not supplied; it is not permissible to pass nil as a “start”
argument.

• An “end” argument must be either a non-negative integer or nil (which
indicates the end of the sequence) and defaults to nil if not supplied;
therefore supplying nil is equivalent to not supplying such an argument.

• If the “end” argument is an integer, it must be no greater than the
active length of the corresponding sequence (as returned by the function
length).

396 CHAPTER 14. SEQUENCES

• The default value for the “end” argument is the active length of the
corresponding sequence.

• The “start” value (after defaulting, if necessary) must not be greater
than the corresponding “end” value (after defaulting, if necessary).

This may be summarized as follows. Let x be the sequence within which
indices are to be considered. Let s be the “start” argument for that sequence
of any standard function, whether explicitly specified or defaulted, through
omission, to zero. Let e be the “end” argument for that sequence of any
standard function, whether explicitly specified or defaulted, through omission
or an explicitly passed nil value, to the active length of x, as returned by
length. Then it is an error if the test (<= 0 s e (length x)) is not true.

For some functions, notably remove and delete, the keyword argument
:count is used to specify how many occurrences of the item should be af-
fected. If this is nil or is not supplied, all matching items are affected.

In the following function descriptions, an element x of a sequence “satisfies
the test” if any of the following holds:

• A basic function was called, testfn was specified by the keyword :test,
and (funcall testfn item (keyfn x)) is true.

• A basic function was called, testfn was specified by the keyword :test-
not, and (funcall testfn item (keyfn x)) is false.

• An -if function was called, and (funcall predicate (keyfn x)) is true.

• An -if-not function was called, and (funcall predicate (keyfn x))
is false.

In each case keyfn is the value of the :key keyword argument (the default
being the identity function). See, for example, remove.

In the following function descriptions, two elements x and y taken from
sequences “match” if either of the following holds:

• testfn was specified by the keyword :test, and (funcall testfn (keyfn
x) (keyfn y)) is true.

• testfn was specified by the keyword :test-not, and (funcall testfn
(keyfn x) (keyfn y)) is false.

397

See, for example, search.
X3J13 voted in June 1988 to allow the testfn or predicate to be only

of type symbol or function; a lambda-expression is no longer acceptable
as a functional argument. One must use the function special operator or
the abbreviation #’ before a lambda-expression that appears as an explicit
argument form.

You may depend on the order in which arguments are given to testfn; this
permits the use of non-commutative test functions in a predictable manner.
The order of the arguments to testfn corresponds to the order in which those
arguments (or the sequences containing those arguments) were given to the
sequence function in question. If a sequence function gives two elements from
the same sequence argument to testfn, they are given in the same order in
which they appear in the sequence.

Whenever a sequence function must construct and return a new vector,
it always returns a simple vector (see section 2.5). Similarly, any strings
constructed will be simple strings.

[Function] complement fn

Returns a function whose value is the same as that of not applied to the
result of applying the function fn to the same arguments. One could define
complement as follows:

(defun complement (fn)
#’(lambda (&rest arguments)

(not (apply fn arguments))))

One intended use of complement is to supplant the use of :test-not
arguments and -if-not functions.

(remove-if-not #’virtuous senators) ≡
(remove-if (complement #’virtuous) senators)

(remove-duplicates telephone-book
:test-not #’mismatch) ≡

(remove-duplicates telephone-book
:test (complement #’mismatch))

398 CHAPTER 14. SEQUENCES

14.1 Simple Sequence Functions
Most of the following functions perform simple operations on a single se-
quence; make-sequence constructs a new sequence.

[Function] elt sequence index

This returns the element of sequence specified by index, which must be
a non-negative integer less than the length of the sequence as returned by
length. The first element of a sequence has index 0.

(Note that elt observes the fill pointer in those vectors that have fill point-
ers. The array-specific function aref may be used to access vector elements
that are beyond the vector’s fill pointer.)

setf may be used with elt to destructively replace a sequence element
with a new value.

[Function] subseq sequence start &optional end

This returns the subsequence of sequence specified by start and end. sub-
seq always allocates a new sequence for a result; it never shares storage with
an old sequence. The result subsequence is always of the same type as the
argument sequence.

setf may be used with subseq to destructively replace a subsequence
with a sequence of new values; see also replace.

[Function] copy-seq sequence

A copy is made of the argument sequence; the result is equalp to the
argument but not eq to it.

(copy-seq x) ≡ (subseq x 0)

but the name copy-seq is more perspicuous when applicable.

[Function] length sequence

The number of elements in sequence is returned as a non-negative integer.
If the sequence is a vector with a fill pointer, the “active length” as specified
by the fill pointer is returned (see section 17.5).

14.1. SIMPLE SEQUENCE FUNCTIONS 399

[Function] reverse sequence

The result is a new sequence of the same kind as sequence, containing the
same elements but in reverse order. The argument is not modified.

[Function] nreverse sequence

The result is a sequence containing the same elements as sequence but in
reverse order. The argument may be destroyed and re-used to produce the
result. The result may or may not be eq to the argument, so it is usually wise
to say something like (setq x (nreverse x)), because simply (nreverse x)
is not guaranteed to leave a reversed value in x. X3J13 voted in March
1989 to clarify the permissible side effects of certain operations. When the
sequence is a list, nreverse is permitted to perform a setf on any part, car
or cdr, of the top-level list structure of that list. When the sequence is an
array, nreverse is permitted to re-order the elements of the given array in
order to produce the resulting array.

[Function] make-sequence type size &key :initial-element

This returns a sequence of type type and of length size, each of whose
elements has been initialized to the :initial-element argument. If specified,
the :initial-element argument must be an object that can be an element of
a sequence of type type. For example:

(make-sequence ’(vector double-float)
100
:initial-element 1d0)

If an :initial-element argument is not specified, then the sequence will
be initialized in an implementation-dependent way.

X3J13 voted in January 1989 to clarify that the type argument must be
a type specifier, and the size argument must be a non-negative integer less
than the value of array-dimension-limit.

X3J13 voted in June 1989 to specify that make-sequence should signal
an error if the sequence type specifies the number of elements and the size
argument is different.

X3J13 voted in March 1989 to specify that if type is string, the result is
the same as if make-string had been called with the same size and :initial-
element arguments.

400 CHAPTER 14. SEQUENCES

14.2 Concatenating, Mapping, and Reducing
Sequences

The functions in this section each operate on an arbitrary number of se-
quences except for reduce, which is included here because of its conceptual
relationship to the mapping functions.

[Function] concatenate result-type &rest sequences

The result is a new sequence that contains all the elements of all the
sequences in order. All of the sequences are copied from; the result does not
share any structure with any of the argument sequences (in this concatenate
differs from append). The type of the result is specified by result-type, which
must be a subtype of sequence, as for the function coerce. It must be
possible for every element of the argument sequences to be an element of a
sequence of type result-type.

If only one sequence argument is provided and it has the type specified by
result-type, concatenate is required to copy the argument rather than simply
returning it. If a copy is not required, but only possibly type conversion, then
the coerce function may be appropriate.

X3J13 voted in June 1989 to specify that concatenate should signal an
error if the sequence type specifies the number of elements and the sum of
the argument lengths is different.

[Function] map result-type function sequence &rest more-sequences

The function must take as many arguments as there are sequences pro-
vided; at least one sequence must be provided. The result of map is a
sequence such that element j is the result of applying function to element
j of each of the argument sequences. The result sequence is as long as the
shortest of the input sequences.

If the function has side effects, it can count on being called first on all
the elements numbered 0, then on all those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type
(which must be a subtype of the type sequence), as for the function coerce.
In addition, one may specify nil for the result type, meaning that no result
sequence is to be produced; in this case the function is invoked only for effect,
and map returns nil. This gives an effect similar to that of mapc.

14.2. CONCATENATING, MAPPING, AND REDUCING SEQUENCES401

X3J13 voted in June 1989 to specify that map should signal an error if
the sequence type specifies the number of elements and the minimum of the
argument lengths is different.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
For example:

(map ’list #’- ’(1 2 3 4)) ⇒ (-1 -2 -3 -4)
(map ’string

#’(lambda (x) (if (oddp x) #\1 #\0))
’(1 2 3 4))
⇒ "1010"

[Function] map-into result-sequence function &rest sequences

Function map-into destructively modifies the result-sequence to contain
the results of applying function to corresponding elements of the argument
sequences in turn; it then returns result-sequence.

The arguments result-sequence and each element of sequences can each be
either a list or a vector (one-dimensional array). The function must accept
at least as many arguments as the number of argument sequences supplied
to map-into. If result-sequence and the other argument sequences are not
all the same length, the iteration terminates when the shortest sequence is
exhausted. If result-sequence is a vector with a fill pointer, the fill pointer is
ignored when deciding how many iterations to perform, and afterwards the
fill pointer is set to the number of times the function was applied.

If the function has side effects, it can count on being called first on all
the elements numbered 0, then on all those numbered 1, and so on.

If result-sequence is longer than the shortest element of sequences, extra
elements at the end of result-sequence are unchanged.

The function map-into differs from map in that it modifies an existing
sequence rather than creating a new one. In addition, map-into can be
called with only two arguments (result-sequence and function), while map
requires at least three arguments.

If result-sequence is nil, map-into immediately returns nil, because nil
is a sequence of length zero.

[Function] some predicate sequence &rest more-sequences
[Function] every predicate sequence &rest more-sequences

402 CHAPTER 14. SEQUENCES

[Function] notany predicate sequence &rest more-sequences
[Function] notevery predicate sequence &rest more-sequences

These are all predicates. The predicate must take as many arguments as
there are sequences provided. The predicate is first applied to the elements
with index 0 in each of the sequences, and possibly then to the elements
with index 1, and so on, until a termination criterion is met or the end of
the shortest of the sequences is reached.

If the predicate has side effects, it can count on being called first on all
the elements numbered 0, then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a non-nil
value; some returns that value. If the end of a sequence is reached, some
returns nil. Thus, considered as a predicate, it is true if some invocation of
predicate is true.

every returns nil as soon as any invocation of predicate returns nil. If the
end of a sequence is reached, every returns a non-nil value. Thus, considered
as a predicate, it is true if every invocation of predicate is true.

notany returns nil as soon as any invocation of predicate returns a non-
nil value. If the end of a sequence is reached, notany returns a non-nil
value. Thus, considered as a predicate, it is true if no invocation of predicate
is true.

notevery returns a non-nil value as soon as any invocation of predicate
returns nil. If the end of a sequence is reached, notevery returns nil. Thus,
considered as a predicate, it is true if not every invocation of predicate is
true.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] reduce function sequence &key :from-end :start :end
:initial-value

The reduce function combines all the elements of a sequence using a
binary operation; for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” us-
ing the function, which must accept two arguments. The reduction is left-
associative, unless the :from-end argument is true (it defaults to nil), in
which case it is right-associative. If an :initial-value argument is given, it
is logically placed before the subsequence (after it if :from-end is true) and
included in the reduction operation.

14.2. CONCATENATING, MAPPING, AND REDUCING SEQUENCES403

If the specified subsequence contains exactly one element and the keyword
argument :initial-value is not given, then that element is returned and the
function is not called. If the specified subsequence is empty and an :initial-
value is given, then the :initial-value is returned and the function is not
called.

If the specified subsequence is empty and no :initial-value is given, then
the function is called with zero arguments, and reduce returns whatever the
function does. (This is the only case where the function is called with other
than two arguments.)

(reduce #’+ ’(1 2 3 4)) ⇒ 10
(reduce #’- ’(1 2 3 4)) ≡ (- (- (- 1 2) 3) 4) ⇒ -8
(reduce #’- ’(1 2 3 4) :from-end t) ;Alternating sum
≡ (- 1 (- 2 (- 3 4))) ⇒ -2

(reduce #’+ ’()) ⇒ 0
(reduce #’+ ’(3)) ⇒ 3
(reduce #’+ ’(foo)) ⇒ foo
(reduce #’list ’(1 2 3 4)) ⇒ (((1 2) 3) 4)
(reduce #’list ’(1 2 3 4) :from-end t) ⇒ (1 (2 (3 4)))
(reduce #’list ’(1 2 3 4) :initial-value ’foo)
⇒ ((((foo 1) 2) 3) 4)

(reduce #’list ’(1 2 3 4)
:from-end t :initial-value ’foo)

⇒ (1 (2 (3 (4 foo))))

If the function produces side effects, the order of the calls to the function
can be correctly predicted from the reduction ordering demonstrated above.

The name “reduce” for this function is borrowed from APL.
X3J13 voted in March 1988 to extend the reduce function to take an

additional keyword argument named :key. As usual, this argument defaults
to the identity function. The value of this argument must be a function that
accepts at least one argument. This function is applied once to each element
of the sequence that is to participate in the reduction operation, in the order
implied by the :from-end argument; the values returned by this function
are combined by the reduction function. However, the :key function is not
applied to the :initial-value argument (if any).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

404 CHAPTER 14. SEQUENCES

14.3 Modifying Sequences
Each of these functions alters the contents of a sequence or produces an
altered copy of a given sequence.

[Function] fill sequence item &key :start :end

The sequence is destructively modified by replacing each element of the
subsequence specified by the :start and :end parameters with the item. The
item may be any Lisp object but must be a suitable element for the sequence.
The item is stored into all specified components of the sequence, beginning at
the one specified by the :start index (which defaults to zero), up to but not
including the one specified by the :end index (which defaults to the length
of the sequence). fill returns the modified sequence. For example:

(setq x (vector ’a ’b ’c ’d ’e)) ⇒ #(a b c d e)
(fill x ’z :start 1 :end 3) ⇒ #(a z z d e)
and now x ⇒ #(a z z d e)

(fill x ’p) ⇒ #(p p p p p)
and now x ⇒ #(p p p p p)

[Function] replace sequence1 sequence2 &key :start1 :end1 :start2 :end2

The sequence sequence1 is destructively modified by copying successive
elements into it from sequence2. The elements of sequence2 must be of a type
that may be stored into sequence1. The subsequence of sequence2 specified
by :start2 and :end2 is copied into the subsequence of sequence1 specified
by :start1 and :end1. (The arguments :start1 and :start2 default to zero.
The arguments :end1 and :end2 default to nil, meaning the end of the
appropriate sequence.) If these subsequences are not of the same length,
then the shorter length determines how many elements are copied; the extra
elements near the end of the longer subsequence are not involved in the
operation. The number of elements copied may be expressed as:

(min (- end1 start1) (- end2 start2))

The value returned by replace is the modified sequence1.
If sequence1 and sequence2 are the same (eq) object and the region be-

ing modified overlaps the region being copied from, then it is as if the entire
source region were copied to another place and only then copied back into

14.3. MODIFYING SEQUENCES 405

the target region. However, if sequence1 and sequence2 are not the same,
but the region being modified overlaps the region being copied from (per-
haps because of shared list structure or displaced arrays), then after the
replace operation the subsequence of sequence1 being modified will have
unpredictable contents.

[Function] remove item sequence &key :from-end :test :test-not :start
:end :count :key
[Function] remove-if predicate sequence &key :from-end :start :end
:count :key
[Function] remove-if-not predicate sequence &key :from-end :start :end
:count :key

The result is a sequence of the same kind as the argument sequence that
has the same elements except that those in the subsequence delimited by
:start and :end and satisfying the test (see above) have been removed. This
is a non-destructive operation; the result is a copy of the input sequence, save
that some elements are not copied. Elements not removed occur in the same
order in the result as they did in the argument.

The :count argument, if supplied, limits the number of elements removed;
if more than :count elements satisfy the test, then of these elements only
the leftmost are removed, as many as specified by :count.

X3J13 voted in January 1989 to clarify that the :count argument must
be either nil or an integer, and that supplying a negative integer produces
the same behavior as supplying zero.

A non-nil :from-end specification matters only when the :count argu-
ment is provided; in that case only the rightmost :count elements satisfying
the test are removed. For example:

(remove 4 ’(1 2 4 1 3 4 5)) ⇒ (1 2 1 3 5)
(remove 4 ’(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 1 3 4 5)
(remove 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)
⇒ (1 2 4 1 3 5)

(remove 3 ’(1 2 4 1 3 4 5) :test #’>) ⇒ (4 3 4 5)
(remove-if #’oddp ’(1 2 4 1 3 4 5)) ⇒ (2 4 4)
(remove-if #’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)
⇒ (1 2 4 1 3 5)

406 CHAPTER 14. SEQUENCES

The result of remove may share with the argument sequence; a list result
may share a tail with an input list, and the result may be eq to the input
sequence if no elements need to be removed.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] delete item sequence &key :from-end :test :test-not
:start :end :count :key
[Function] delete-if predicate sequence &key :from-end
:start :end :count :key
[Function] delete-if-not predicate sequence &key :from-end
:start :end :count :key

This is the destructive counterpart to remove. The result is a sequence
of the same kind as the argument sequence that has the same elements except
that those in the subsequence delimited by :start and :end and satisfying
the test (see above) have been deleted. This is a destructive operation.
The argument sequence may be destroyed and used to construct the result;
however, the result may or may not be eq to sequence. Elements not deleted
occur in the same order in the result as they did in the argument.

The :count argument, if supplied, limits the number of elements deleted;
if more than :count elements satisfy the test, then of these elements only
the leftmost are deleted, as many as specified by :count.

X3J13 voted in January 1989 to clarify that the :count argument must
be either nil or an integer, and that supplying a negative integer produces
the same behavior as supplying zero.

A non-nil :from-end specification matters only when the :count argu-
ment is provided; in that case only the rightmost :count elements satisfying
the test are deleted. For example:

(delete 4 ’(1 2 4 1 3 4 5)) ⇒ (1 2 1 3 5)
(delete 4 ’(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 1 3 4 5)
(delete 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)
⇒ (1 2 4 1 3 5)

(delete 3 ’(1 2 4 1 3 4 5) :test #’>) ⇒ (4 3 4 5)
(delete-if #’oddp ’(1 2 4 1 3 4 5)) ⇒ (2 4 4)
(delete-if #’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)
⇒ (1 2 4 1 3 5)

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

14.3. MODIFYING SEQUENCES 407

X3J13 voted in March 1989 to clarify the permissible side effects of certain
operations. When the sequence is a list, delete is permitted to perform a
setf on any part, car or cdr, of the top-level list structure of that list. When
the sequence is an array, delete is permitted to alter the dimensions of the
given array and to slide some of its elements into new positions without
permuting them in order to produce the resulting array.

Furthermore, (delete-if predicate sequence ...) is required to behave
exactly like

(delete nil sequence
:test #’(lambda (unused item)

(declare (ignore unused))
(funcall predicate item))

...)

[Function] remove-duplicates sequence &key :from-end :test :test-not
:start :end :key
[Function] delete-duplicates sequence &key :from-end :test :test-not
:start :end :key

The elements of sequence are compared pairwise, and if any two match,
then the one occurring earlier in the sequence is discarded (but if the :from-
end argument is true, then the one later in the sequence is discarded). The
result is a sequence of the same kind as the argument sequence with enough
elements removed so that no two of the remaining elements match. The order
of the elements remaining in the result is the same as the order in which they
appear in sequence.

remove-duplicates is the non-destructive version of this operation. The
result of remove-duplicates may share with the argument sequence; a list
result may share a tail with an input list, and the result may be eq to the
input sequence if no elements need to be removed.

delete-duplicates may destroy the argument sequence.
Some examples:

(remove-duplicates ’(a b c b d d e)) ⇒ (a c b d e)
(remove-duplicates ’(a b c b d d e) :from-end t) ⇒ (a b c d e)
(remove-duplicates ’((foo #\a) (bar #\%) (baz #\A))

:test #’char-equal :key #’cadr)
⇒ ((bar #\%) (baz #\A))

408 CHAPTER 14. SEQUENCES

(remove-duplicates ’((foo #\a) (bar #\%) (baz #\A))
:test #’char-equal :key #’cadr :from-end t)

⇒ ((foo #\a) (bar #\%))

These functions are useful for converting a sequence into a canonical form
suitable for representing a set.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
X3J13 voted in March 1989 to clarify the permissible side effects of certain

operations. When the sequence is a list, delete-duplicates is permitted to
perform a setf on any part, car or cdr, of the top-level list structure of that
list. When the sequence is an array, delete-duplicates is permitted to alter
the dimensions of the given array and to slide some of its elements into new
positions without permuting them in order to produce the resulting array.

[Function] substitute newitem olditem sequence &key :from-end :test
:test-not :start :end :count :key
[Function] substitute-if newitem test sequence &key :from-end
:start :end :count :key
[Function] substitute-if-not newitem test sequence &key :from-end :start
:end :count :key

The result is a sequence of the same kind as the argument sequence that
has the same elements except that those in the subsequence delimited by
:start and :end and satisfying the test (see above) have been replaced by
newitem. This is a non-destructive operation; the result is a copy of the input
sequence, save that some elements are changed.

The :count argument, if supplied, limits the number of elements altered;
if more than :count elements satisfy the test, then of these elements only
the leftmost are replaced, as many as specified by :count.

X3J13 voted in January 1989 to clarify that the :count argument must
be either nil or an integer, and that supplying a negative integer produces
the same behavior as supplying zero.

A non-nil :from-end specification matters only when the :count argu-
ment is provided; in that case only the rightmost :count elements satisfying
the test are replaced. For example:

(substitute 9 4 ’(1 2 4 1 3 4 5)) ⇒ (1 2 9 1 3 9 5)
(substitute 9 4 ’(1 2 4 1 3 4 5) :count 1) ⇒ (1 2 9 1 3 4 5)
(substitute 9 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)

14.3. MODIFYING SEQUENCES 409

⇒ (1 2 4 1 3 9 5)
(substitute 9 3 ’(1 2 4 1 3 4 5) :test #’>) ⇒ (9 9 4 9 3 4 5)
(substitute-if 9 #’oddp ’(1 2 4 1 3 4 5)) ⇒ (9 2 4 9 9 4 9)
(substitute-if 9 #’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)
⇒ (1 2 4 1 3 9 5)

The result of substitute may share with the argument sequence; a list
result may share a tail with an input list, and the result may be eq to the
input sequence if no elements need to be changed.

See also subst, which performs substitutions throughout a tree.
X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] nsubstitute newitem olditem sequence &key :from-end :test
:test-not :start :end :count :key
[Function] nsubstitute-if newitem test sequence &key :from-end
:start :end :count :key
[Function] nsubstitute-if-not newitem test sequence &key :from-end
:start :end :count :key

This is the destructive counterpart to substitute. The result is a se-
quence of the same kind as the argument sequence that has the same ele-
ments except that those in the subsequence delimited by :start and :end
and satisfying the test (see above) have been replaced by newitem. This is a
destructive operation. The argument sequence may be destroyed and used to
construct the result; however, the result may or may not be eq to sequence.

See also nsubst, which performs destructive substitutions throughout a
tree. X3J13 voted in January 1989 to restrict user side effects; see sec-
tion 7.9.

X3J13 voted in March 1989 to clarify the permissible side effects of cer-
tain operations. When the sequence is a list, nsubstitute or nsubstitute-if
is required to perform a setf on any car of the top-level list structure of that
list whose old contents must be replaced with newitem but is forbidden to
perform a setf on any cdr of the list. When the sequence is an array, nsub-
stitute or nsubstitute-if is required to perform a setf on any element of the
array whose old contents must be replaced with newitem. These functions,
therefore, may successfully be used solely for effect, the caller discarding
the returned value (though some programmers find this stylistically distaste-
ful).

410 CHAPTER 14. SEQUENCES

14.4 Searching Sequences for Items

Each of these functions searches a sequence to locate one or more elements
satisfying some test.

[Function] find item sequence &key :from-end :test :test-not :start :end
:key
[Function] find-if predicate sequence &key :from-end :start :end :key
[Function] find-if-not predicate sequence &key :from-end :start :end :key

If the sequence contains an element satisfying the test, then the leftmost
such element is returned; otherwise nil is returned.

If :start and :end keyword arguments are given, only the specified sub-
sequence of sequence is searched.

If a non-nil :from-end keyword argument is specified, then the result is
the rightmost element satisfying the test.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] position item sequence &key :from-end :test :test-not
:start :end :key
[Function] position-if predicate sequence &key :from-end :start :end :key
[Function] position-if-not predicate sequence &key :from-end
:start :end :key

If the sequence contains an element satisfying the test, then the index
within the sequence of the leftmost such element is returned as a non-negative
integer; otherwise nil is returned.

If :start and :end keyword arguments are given, only the specified sub-
sequence of sequence is searched. However, the index returned is relative to
the entire sequence, not to the subsequence.

If a non-nil :from-end keyword argument is specified, then the result is
the index of the rightmost element satisfying the test. (The index returned,
however, is an index from the left-hand end, as usual.)

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
Here is a simple piece of code that uses several of the sequence functions,

notably position-if and find-if, to process strings. Note one use of loop as
well.

14.4. SEARCHING SEQUENCES FOR ITEMS 411

(defun debug-palindrome (s)
(flet ((match (x) (char-equal (first x) (third x))))
(let* ((pairs (loop for c across s

for j from 0
when (alpha-char-p c)
collect (list c j)))

(quads (mapcar #’append pairs (reverse pairs)))
(diffpos (position-if (complement #’match) quads)))

(when diffpos
(let* ((diff (elt quads diffpos))

(same (find-if #’match quads
:start (+ diffpos 1))))

(if same
(format nil

"/~A/ (at ~D) is not the reverse of /~A/"
(subseq s (second diff) (second same))
(second diff)
(subseq s (+ (fourth same) 1)

(+ (fourth diff) 1)))
"This palindrome is completely messed up!"))))))

Here is an example of its behavior.

(setq panama ;A putative palindrome?
"A man, a plan, a canoe, pasta, heros, rajahs,
a coloratura, maps, waste, percale, macaroni, a gag,
a banana bag, a tan, a tag, a banana bag again
(or a camel), a crepe, pins, Spam, a rut, a Rolo,
cash, a jar, sore hats, a peon, a canal–Panama!")

(debug-palindrome panama)
⇒ "/wast/ (at 73) is not the reverse of /, pins/"

(replace panama "snipe" :start1 73) ;Repair it
⇒ "A man, a plan, a canoe, pasta, heros, rajahs,

a coloratura, maps, snipe, percale, macaroni, a gag,
a banana bag, a tan, a tag, a banana bag again
(or a camel), a crepe, pins, Spam, a rut, a Rolo,
cash, a jar, sore hats, a peon, a canal–Panama!"

412 CHAPTER 14. SEQUENCES

(debug-palindrome panama) ⇒ nil ;Copacetic—a true palindrome

(debug-palindrome "Rubber baby buggy bumpers")
⇒ "/Rubber / (at 0) is not the reverse of /umpers/"

(debug-palindrome "Common Lisp: The Language")
⇒ "/Commo/ (at 0) is not the reverse of /guage/"

(debug-palindrome "Complete mismatches are hard to find")
⇒
"/Complete mism/ (at 0) is not the reverse of /re hard to find/"

(debug-palindrome "Waltz, nymph, for quick jigs vex Bud")
⇒ "This palindrome is completely messed up!"

(debug-palindrome "Doc, note: I dissent. A fast never
prevents a fatness. I diet on cod.")

⇒nil ;Another winner

(debug-palindrome "Top step’s pup’s pet spot") ⇒ nil

[Function] count item sequence &key :from-end :test :test-not
:start :end :key
[Function] count-if predicate sequence &key :from-end :start :end :key
[Function] count-if-not predicate sequence &key :from-end :start :end :key

The result is always a non-negative integer, the number of elements in
the specified subsequence of sequence satisfying the test.

The :from-end argument does not affect the result returned; it is ac-
cepted purely for compatibility with other sequence functions.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] mismatch sequence1 sequence2 &key :from-end :test :test-not
:key :start1 :start2 :end1 :end2

The specified subsequences of sequence1 and sequence2 are compared
element-wise. If they are of equal length and match in every element, the

14.5. SORTING AND MERGING 413

result is nil. Otherwise, the result is a non-negative integer. This result is
the index within sequence1 of the leftmost position at which the two subse-
quences fail to match; or, if one subsequence is shorter than and a matching
prefix of the other, the result is the index relative to sequence1 beyond the
last position tested.

If a non-nil :from-end keyword argument is given, then one plus the
index of the rightmost position in which the sequences differ is returned. In
effect, the (sub)sequences are aligned at their right-hand ends; then, the last
elements are compared, the penultimate elements, and so on. The index
returned is again an index relative to sequence1.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] search sequence1 sequence2 &key :from-end :test :test-not :key
:start1 :start2 :end1 :end2

A search is conducted for a subsequence of sequence2 that element-wise
matches sequence1. If there is no such subsequence, the result is nil; if
there is, the result is the index into sequence2 of the leftmost element of the
leftmost such matching subsequence.

If a non-nil :from-end keyword argument is given, the index of the
leftmost element of the rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order;
there is no guarantee on the number of times the test is made. For example,
search with a non-nil :from-end argument might actually search a list from
left to right instead of from right to left (but in either case would return the
rightmost matching subsequence, of course). Therefore it is a good idea for
a user-supplied predicate to be free of side effects.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

14.5 Sorting and Merging

These functions may destructively modify argument sequences in order to
put a sequence into sorted order or to merge two already sorted sequences.

[Function] sort sequence predicate &key :key
[Function] stable-sort sequence predicate &key :key

414 CHAPTER 14. SEQUENCES

The sequence is destructively sorted according to an order determined by
the predicate. The predicate should take two arguments, and return non-nil
if and only if the first argument is strictly less than the second (in some
appropriate sense). If the first argument is greater than or equal to the
second (in the appropriate sense), then the predicate should return nil.

The sort function determines the relationship between two elements by
giving keys extracted from the elements to the predicate. The :key argument,
when applied to an element, should return the key for that element. The :key
argument defaults to the identity function, thereby making the element itself
be the key.

The :key function should not have any side effects. A useful example
of a :key function would be a component selector function for a defstruct
structure, used in sorting a sequence of structures.

(sort a p :key s) ≡ (sort a #’(lambda (x y) (p (s x) (s y))))

While the above two expressions are equivalent, the first may be more
efficient in some implementations for certain types of arguments. For ex-
ample, an implementation may choose to apply s to each item just once,
putting the resulting keys into a separate table, and then sort the parallel
tables, as opposed to applying s to an item every time just before applying
the predicate.

If the :key and predicate functions always return, then the sorting op-
eration will always terminate, producing a sequence containing the same
elements as the original sequence (that is, the result is a permutation of se-
quence). This is guaranteed even if the predicate does not really consistently
represent a total order (in which case the elements will be scrambled in some
unpredictable way, but no element will be lost). If the :key function con-
sistently returns meaningful keys, and the predicate does reflect some total
ordering criterion on those keys, then the elements of the result sequence will
be properly sorted according to that ordering.

The sorting operation performed by sort is not guaranteed stable. Ele-
ments considered equal by the predicate may or may not stay in their original
order. (The predicate is assumed to consider two elements x and y to be equal
if (funcall predicate x y) and (funcall predicate y x) are both false.)
The function stable-sort guarantees stability but may be slower than sort
in some situations.

The sorting operation may be destructive in all cases. In the case of an
array argument, this is accomplished by permuting the elements in place. In

14.5. SORTING AND MERGING 415

the case of a list, the list is destructively reordered in the same manner as
for nreverse. Thus if the argument should not be destroyed, the user must
sort a copy of the argument.

Should execution of the :key function or the predicate cause an error, the
state of the list or array being sorted is undefined. However, if the error is
corrected, the sort will, of course, proceed correctly.

Note that since sorting requires many comparisons, and thus many calls
to the predicate, sorting will be much faster if the predicate is a compiled
function rather than interpreted.

An example:

(setq foovector (sort foovector #’string-lessp :key #’car))

If foovector contained these items before the sort

("Tokens" "The Lion Sleeps Tonight")
("Carpenters" "Close to You")
("Rolling Stones" "Brown Sugar")
("Beach Boys" "I Get Around")
("Mozart" "Eine Kleine Nachtmusik" (K 525))
("Beatles" "I Want to Hold Your Hand")

then after the sort foovector would contain

("Beach Boys" "I Get Around")
("Beatles" "I Want to Hold Your Hand")
("Carpenters" "Close to You")
("Mozart" "Eine Kleine Nachtmusik" (K 525))
("Rolling Stones" "Brown Sugar")
("Tokens" "The Lion Sleeps Tonight")

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] merge result-type sequence1 sequence2 predicate &key :key

The sequences sequence1 and sequence2 are destructively merged accord-
ing to an order determined by the predicate. The result is a sequence of type
result-type, which must be a subtype of sequence, as for the function co-
erce. The predicate should take two arguments and return non-nil if and
only if the first argument is strictly less than the second (in some appropriate

416 CHAPTER 14. SEQUENCES

sense). If the first argument is greater than or equal to the second (in the
appropriate sense), then the predicate should return nil.

Themerge function determines the relationship between two elements by
giving keys extracted from the elements to the predicate. The :key function,
when applied to an element, should return the key for that element; the :key
function defaults to the identity function, thereby making the element itself
be the key.

The :key function should not have any side effects. A useful example
of a :key function would be a component selector function for a defstruct
structure, used to merge a sequence of structures.

If the :key and predicate functions always return, then the merging oper-
ation will always terminate. The result of merging two sequences x and y is
a new sequence z, such that the length of z is the sum of the lengths of x and
y, and z contains all the elements of x and y. If x1 and x2 are two elements
of x, and x1 precedes x2 in x, then x1 precedes x2 in z, and similarly for
elements of y. In short, z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate, then
z will also be correctly sorted, as shown in this example.

(merge ’list ’(1 3 4 6 7) ’(2 5 8) #’<) ⇒ (1 2 3 4 5 6 7 8)

If x or y is not so sorted then z will not be sorted, but will nevertheless
be an interleaving of x and y.

The merging operation is guaranteed stable; if two or more elements are
considered equal by the predicate, then the elements from sequence1 will
precede those from sequence2 in the result. (The predicate is assumed to
consider two elements x and y to be equal if (funcall predicate x y) and
(funcall predicate y x) are both false.) For example:

(merge ’string "BOY" "nosy" #’char-lessp) ⇒ "BnOosYy"

The result can not be "BnoOsYy", "BnOosyY", or "BnoOsyY".
The function char-lessp ignores case, and so considers the characters Y and
y to be equal, for example; the stability property then guarantees that the
character from the first argument (Y) must precede the one from the second
argument (y).

X3J13 voted in June 1989 to specify that merge should signal an error
if the sequence type specifies the number of elements and the sum of the
lengths of the two sequence arguments is different.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

Chapter 15

Lists

A cons, or dotted pair, is a compound data object having two components
called the car and cdr. Each component may be any Lisp object. A list is a
chain of conses linked by cdr fields; the chain is terminated by some atom (a
non-cons object). An ordinary list is terminated by nil, the empty list (also
written ()). A list whose cdr chain is terminated by some non-nil atom is
called a dotted list.

The recommended predicate for testing for the end of a list is endp.

15.1 Conses

These are the basic operations on conses viewed as pairs rather than as the
constituents of a list.

[Function] car list

This returns the car of list, which must be a cons or (); that is, list must
satisfy the predicate listp. By definition, the car of () is (). If the cons is
regarded as the first cons of a list, then car returns the first element of the
list. For example:

(car ’(a b c)) ⇒ a

See first. The car of a cons may be altered by using rplaca or setf.

417

418 CHAPTER 15. LISTS

[Function] cdr list

This returns the cdr of list, which must be a cons or (); that is, list must
satisfy the predicate listp. By definition, the cdr of () is (). If the cons is
regarded as the first cons of a list, then cdr returns the rest of the list, which
is a list with all elements but the first of the original list. For example:

(cdr ’(a b c)) ⇒ (b c)

See rest. The cdr of a cons may be altered by using rplacd or setf.

[Function] caar list
[Function] cadr list
[Function] cdar list
[Function] cddr list
[Function] caaar list
[Function] caadr list
[Function] cadar list
[Function] caddr list
[Function] cdaar list
[Function] cdadr list
[Function] cddar list
[Function] cdddr list
[Function] caaaar list
[Function] caaadr list
[Function] caadar list
[Function] caaddr list
[Function] cadaar list
[Function] cadadr list
[Function] caddar list
[Function] cadddr list
[Function] cdaaar list
[Function] cdaadr list
[Function] cdadar list
[Function] cdaddr list
[Function] cddaar list
[Function] cddadr list
[Function] cdddar list

15.1. CONSES 419

[Function] cddddr list

All of the compositions of up to four car and cdr operations are defined
as separate Common Lisp functions. The names of these functions begin
with c and end with r, and in between is a sequence of a and d letters
corresponding to the composition performed by the function. For example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

If the argument is regarded as a list, then cadr returns the second element
of the list, caddr the third, and cadddr the fourth. If the first element of a
list is a list, then caar is the first element of the sublist, cdar is the rest of
that sublist, and cadar is the second element of the sublist, and so on.

As a matter of style, it is often preferable to define a function or macro
to access part of a complicated data structure, rather than to use a long
car/cdr string. For example, one might define a macro to extract the list of
parameter variables from a lambda-expression:

(defmacro lambda-vars (lambda-exp) ‘(cadr ,lambda-exp))

and then use lambda-vars for this purpose instead of cadr. See also
defstruct, which will automatically define new record data types and access
functions for instances of them.

Any of these functions may be used to specify a place for setf.

[Function] cons x y

cons is the primitive function to create a new cons whose car is x and
whose cdr is y. For example:

(cons ’a ’b) ⇒ (a . b)
(cons ’a (cons ’b (cons ’c ’()))) ⇒ (a b c)
(cons ’a ’(b c d)) ⇒ (a b c d)

cons may be thought of as creating a cons, or as adding a new element
to the front of a list.

[Function] tree-equal x y &key :test :test-not

This is a predicate that is true if x and y are isomorphic trees with
identical leaves, that is, if x and y are atoms that satisfy the test (by default

420 CHAPTER 15. LISTS

eql), or if they are both conses and their car ’s are tree-equal and their cdr ’s
are tree-equal. Thus tree-equal recursively compares conses (but not any
other objects that have components). See equal, which does recursively
compare certain other structured objects, such as strings.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

15.2 Lists

The following functions perform various operations on lists.
The list is one of the original Lisp data types. The very name “Lisp” is

an abbreviation for “LISt Processing.”

[Function] endp object

The predicate endp is the recommended way to test for the end of a list.
It is false of conses, true of nil, and an error for all other arguments.

Implementation note: Implementations are encouraged to signal an error, espe-
cially in the interpreter, for a non-list argument. The endp function is defined so
as to allow compiled code to perform simply an atom check or a null check if speed
is more important than safety.

[Function] list-length list

list-length returns, as an integer, the length of list. list-length differs
from length when the list is circular; length may fail to return, whereas
list-length will return nil. For example:

(list-length ’()) ⇒ 0
(list-length ’(a b c d)) ⇒ 4
(list-length ’(a (b c) d)) ⇒ 3
(let ((x (list ’a b c)))
(rplacd (last x) x)
(list-length x)) ⇒ nil

list-length could be implemented as follows:

15.2. LISTS 421

(defun list-length (x)
(do ((n 0 (+ n 2)) ;Counter

(fast x (cddr fast)) ;Fast pointer: leaps by 2
(slow x (cdr slow))) ;Slow pointer: leaps by 1
(nil)

;; If fast pointer hits the end, return the count.
(when (endp fast) (return n))
(when (endp (cdr fast)) (return (+ n 1)))
;; If fast pointer eventually equals slow pointer,
;; then we must be stuck in a circular list.
;; (A deeper property is the converse: if we are
;; stuck in a circular list, then eventually the
;; fast pointer will equal the slow pointer.
;; That fact justifies this implementation.)
(when (and (eq fast slow) (> n 0)) (return nil))))

See length, which will return the length of any sequence.

[Function] nth n list

(nth n list) returns the nth element of list, where the car of the list is
the “zeroth” element. The argument n must be a non-negative integer. If
the length of the list is not greater than n, then the result is (), that is, nil.
(This is consistent with the idea that the car and cdr of () are each ().) For
example:

(nth 0 ’(foo bar gack)) ⇒ foo
(nth 1 ’(foo bar gack)) ⇒ bar
(nth 3 ’(foo bar gack)) ⇒ ()

nth may be used to specify a place to setf; when nth is used in this way,
the argument n must be less than the length of the list.

Note that the arguments to nth are reversed from the order used by most
other sequence selector functions such as elt.

[Function] first list
[Function] second list
[Function] third list
[Function] fourth list

422 CHAPTER 15. LISTS

[Function] fifth list
[Function] sixth list
[Function] seventh list
[Function] eighth list
[Function] ninth list
[Function] tenth list

These functions are sometimes convenient for accessing particular ele-
ments of a list. first is the same as car, second is the same as cadr, third
is the same as caddr, and so on. Note that the ordinal numbering used here
is one-origin, as opposed to the zero-origin numbering used by nth:

(fifth x) ≡ (nth 4 x)

setf may be used with each of these functions to store into the indicated
position of a list.

[Function] rest list

rest means the same as cdr but mnemonically complements first. setf
may be used with rest to replace the cdr of a list with a new value.

[Function] nthcdr n list

(nthcdr n list) performs the cdr operation n times on list, and returns
the result. For example:

(nthcdr 0 ’(a b c)) ⇒ (a b c)
(nthcdr 2 ’(a b c)) ⇒ (c)
(nthcdr 4 ’(a b c)) ⇒ ()

In other words, it returns the nth cdr of the list.

(car (nthcdr n x)) ≡ (nth n x)

The argument n must be a non-negative integer.

[Function] last list &optional (n 1)

last returns the tail of the list consisting of the last n conses of list. The
list may be a dotted list. It is an error if the list is circular.

15.2. LISTS 423

The argument n must be a non-negative integer. If n is zero, then the
atom that terminates the list is returned. If n is not less than the number
of cons cells making up the list, then the list itself is returned.

For example:

(setq x ’(a b c d))
(last x) ⇒ (d)
(rplacd (last x) ’(e f))
x ⇒ ’(a b c d e f)
(last x 3) ⇒ (d e f)
(last ’()) ⇒ ()
(last ’(a b c . d)) ⇒ (c . d)
(last ’(a b c . d) 0) ⇒ d
(last ’(a b c . d) 2) ⇒ (b c . d)
(last ’(a b c . d) 1729) ⇒ (a b c . d)

[Function] list &rest args

list constructs and returns a list of its arguments. For example:

(list 3 4 ’a (car ’(b . c)) (+ 6 -2)) ⇒ (3 4 a b 4)

(list) ⇒ ()
(list (list ’a ’b) (list ’c ’d ’e)) ⇒ ((a b) (c d e))

[Function] list* arg &rest others

list* is like list except that the last cons of the constructed list is “dotted.”
The last argument to list* is used as the cdr of the last cons constructed;
this need not be an atom. If it is not an atom, then the effect is to add
several new elements to the front of a list. For example:

(list* ’a ’b ’c ’d) ⇒ (a b c . d)

This is like

(cons ’a (cons ’b (cons ’c ’d)))

Also:

(list* ’a ’b ’c ’(d e f)) ⇒ (a b c d e f)
(list* x) ≡ x

424 CHAPTER 15. LISTS

[Function] make-list size &key :initial-element

This creates and returns a list containing size elements, each of which
is initialized to the :initial-element argument (which defaults to nil). size
should be a non-negative integer. For example:

(make-list 5) ⇒ (nil nil nil nil nil)
(make-list 3 :initial-element ’rah) ⇒ (rah rah rah)

[Function] append &rest lists

The arguments to append are lists. The result is a list that is the con-
catenation of the arguments. The arguments are not destroyed. For example:

(append ’(a b c) ’(d e f) ’() ’(g)) ⇒ (a b c d e f g)

Note that append copies the top-level list structure of each of its ar-
guments except the last. The function concatenate can perform a similar
operation, but always copies all its arguments. See also nconc, which is like
append but destroys all arguments but the last.

The last argument actually need not be a list but may be any Lisp object,
which becomes the tail end of the constructed list. For example, (append
’(a b c) ’d) ⇒ (a b c . d).

(append x ’()) is an idiom once frequently used to copy the list x, but
the copy-list function is more appropriate to this task.

[Function] copy-list list

This returns a list that is equal to list, but not eq. Only the top level
of list structure is copied; that is, copy-list copies in the cdr direction but
not in the car direction. If the list is “dotted,” that is, (cdr (last list)) is a
non-nil atom, this will be true of the returned list also. See also copy-seq
and copy-tree.

[Function] copy-alist list

copy-alist is for copying association lists. The top level of list structure
of list is copied, just as for copy-list. In addition, each element of list that
is a cons is replaced in the copy by a new cons with the same car and cdr.

15.2. LISTS 425

[Function] copy-tree object

copy-tree is for copying trees of conses. The argument object may be any
Lisp object. If it is not a cons, it is returned; otherwise the result is a new cons
of the results of calling copy-tree on the car and cdr of the argument. In
other words, all conses in the tree are copied recursively, stopping only when
non-conses are encountered. Circularities and the sharing of substructure are
not preserved.

[Function] revappend x y

(revappend x y) is exactly the same as (append (reverse x) y)
except that it is potentially more efficient. Both x and y should be lists. The
argument x is copied, not destroyed. Compare this with nreconc, which
destroys its first argument.

[Function] nconc &rest lists

nconc takes lists as arguments. It returns a list that is the arguments
concatenated together. The arguments are changed rather than copied.
(Compare this with append, which copies arguments rather than destroying
them.) For example:

(setq x ’(a b c))
(setq y ’(d e f))
(nconc x y) ⇒ (a b c d e f)
x ⇒ (a b c d e f)

Note, in the example, that the value of x is now different, since its last
cons has been rplacd’d to the value of y. If one were then to evaluate
(nconc x y) again, it would yield a piece of “circular” list structure, whose
printed representation would be (a b c d e f d e f d e f ...), repeating
forever; if the *print-circle* switch were non-nil, it would be printed as (a
b c . #1=(d e f . #1#)).

The side-effect behavior of nconc is specified by a recursive relationship
outlined in the following table, in which a call to nconc matching the earliest
possible pattern on the left is required to have side-effect behavior equivalent
to the corresponding expression on the right.

426 CHAPTER 15. LISTS

(nconc) nil ;No side effects
(nconc nil . r) (nconc . r)
(nconc x) x
(nconc x y) (let ((p x) (q y))

(rplacd (last p) q)
p)

(nconc x y . r) (nconc (nconc x y) . r)

[Function] nreconc x y

(nreconc x y) is exactly the same as (nconc (nreverse x) y) except
that it is potentially more efficient. Both x and y should be lists. The
argument x is destroyed. Compare this with revappend.

(setq planets ’(jupiter mars earth venus mercury))
(setq more-planets ’(saturn uranus pluto neptune))
(nreconc more-planets planets)

⇒ (neptune pluto uranus saturn jupiter mars earth venus mercury)
and now the value of more-planets is not well defined

(nreconc x y) is permitted and required to have side-effect behavior
equivalent to that of (nconc (nreverse x) y).
[Macro] push item place
The form place should be the name of a generalized variable containing a

list; item may refer to any Lisp object. The item is consed onto the front of
the list, and the augmented list is stored back into place and returned. The
form place may be any form acceptable as a generalized variable to setf. If
the list held in place is viewed as a push-down stack, then push pushes an
element onto the top of the stack. For example:

(setq x ’(a (b c) d))
(push 5 (cadr x)) ⇒ (5 b c) and now x ⇒ (a (5 b c) d)

The effect of (push item place) is roughly equivalent to

(setf place (cons item place))

except that the latter would evaluate any subforms of place twice, while
push takes care to evaluate them only once. Moreover, for certain place
forms push may be significantly more efficient than the setf version.

15.2. LISTS 427

Note that item is fully evaluated before any part of place is evaluated.
[Macro] pushnew item place &key :test :test-not :key
The form place should be the name of a generalized variable containing a

list; item may refer to any Lisp object. If the item is not already a member
of the list (as determined by comparisons using the :test predicate, which
defaults to eql), then the item is consed onto the front of the list, and
the augmented list is stored back into place and returned; otherwise the
unaugmented list is returned. The form place may be any form acceptable
as a generalized variable to setf. If the list held in place is viewed as a set,
then pushnew adjoins an element to the set; see adjoin.

The keyword arguments to pushnew follow the conventions for the
generic sequence functions. See chapter 14. In effect, these keywords are
simply passed on to the adjoin function.

pushnew returns the new contents of the place. For example:

(setq x ’(a (b c) d))
(pushnew 5 (cadr x)) ⇒ (5 b c) and now x ⇒ (a (5 b c) d)
(pushnew ’b (cadr x)) ⇒ (5 b c) and x is unchanged

The effect of

(pushnew item place :test p)

is roughly equivalent to

(setf place (adjoin item place :test p))

except that the latter would evaluate any subforms of place twice, while
pushnew takes care to evaluate them only once. Moreover, for certain place
forms pushnew may be significantly more efficient than the setf version.

Note that item is fully evaluated before any part of place is evaluated.
[Macro] pop place
The form place should be the name of a generalized variable containing

a list. The result of pop is the car of the contents of place, and as a side
effect the cdr of the contents is stored back into place. The form place may
be any form acceptable as a generalized variable to setf. If the list held in
place is viewed as a push-down stack, then pop pops an element from the
top of the stack and returns it. For example:

428 CHAPTER 15. LISTS

(setq stack ’(a b c))
(pop stack) ⇒ a and now stack ⇒ (b c)

The effect of (pop place) is roughly equivalent to

(prog1 (car place) (setf place (cdr place)))

except that the latter would evaluate any subforms of place three times,
while pop takes care to evaluate them only once. Moreover, for certain place
forms pop may be significantly more efficient than the setf version.

[Function] butlast list &optional n

This creates and returns a list with the same elements as list, excepting
the last n elements. n defaults to 1. The argument is not destroyed. If the
list has fewer than n elements, then () is returned. For example:

(butlast ’(a b c d)) ⇒ (a b c)
(butlast ’((a b) (c d))) ⇒ ((a b))
(butlast ’(a)) ⇒ ()
(butlast nil) ⇒ ()

The name is from the phrase “all elements but the last.”

[Function] nbutlast list &optional n

This is the destructive version of butlast; it changes the cdr of the cons
n+1 from the end of the list to nil. n defaults to 1. If the list has fewer than
n elements, then nbutlast returns (), and the argument is not modified.
(Therefore one normally writes (setq a (nbutlast a)) rather than simply
(nbutlast a).) For example:

(setq foo ’(a b c d))
(nbutlast foo) ⇒ (a b c)
foo ⇒ (a b c)
(nbutlast ’(a)) ⇒ ()
(nbutlast ’nil) ⇒ ()

[Function] ldiff list sublist

list should be a list, and sublist should be a sublist of list, that is, one
of the conses that make up list. ldiff (meaning “list difference”) will return

15.3. ALTERATION OF LIST STRUCTURE 429

a new (freshly consed) list, whose elements are those elements of list that
appear before sublist. If sublist is not a tail of list (and in particular if sublist
is nil), then a copy of the entire list is returned. The argument list is not
destroyed. For example:

(setq x ’(a b c d e))
(setq y (cdddr x)) ⇒ (d e)
(ldiff x y) ⇒ (a b c)
but (ldiff ’(a b c d) ’(c d)) ⇒ (a b c d)

since the sublist was not eq to any part of the list.

15.3 Alteration of List Structure
The functions rplaca and rplacd may be used to make alterations in already
existing list structure, that is, to change the car or cdr of an existing cons.
One may also use setf in conjunction with car and cdr.

The structure is not copied but is destructively altered; hence caution
should be exercised when using these functions, as strange side effects can
occur if portions of list structure become shared. The nconc, nreverse,
nreconc, and nbutlast functions, already described, have the same prop-
erty, as do certain of the generic sequence functions such as delete. However,
they are normally not used for this side effect; rather, the list-structure mod-
ification is purely for efficiency, and compatible non-modifying functions are
provided.

[Function] rplaca x y

(rplaca x y) changes the car of x to y and returns (the modified) x. x
must be a cons, but y may be any Lisp object. For example:

(setq g ’(a b c))
(rplaca (cdr g) ’d) ⇒ (d c)
Now g ⇒ (a d c)

[Function] rplacd x y

(rplacd x y) changes the cdr of x to y and returns (the modified) x. x
must be a cons, but y may be any Lisp object. For example:

430 CHAPTER 15. LISTS

(setq x ’(a b c))
(rplacd x ’d) ⇒ (a . d)
Now x ⇒ (a . d)

The functions rplaca and rplacd go back to the earliest origins of Lisp,
along with car, cdr, and cons. Nowadays, however, they seem to be falling
by the wayside. More and more Common Lisp programmers use setf for
nearly all structure modifications: (rplaca x y) is rendered as (setf (car
x) y) or perhaps as (setf (first x) y). Even more likely is that a defstruct
structure or a CLOS class is used in place of a list, if the data structure is at
all complicated; in this case setf is used with a slot accessor.

15.4 Substitution of Expressions

A number of functions are provided for performing substitutions within a
tree. All take a tree and a description of old subexpressions to be replaced
by new ones. They come in non-destructive and destructive varieties and
specify substitution either by two arguments or by an association list.

The naming conventions for these functions and for their keyword argu-
ments generally follow the conventions for the generic sequence functions.
See chapter 14.

[Function] subst new old tree &key :test :test-not :key
[Function] subst-if new test tree &key :key
[Function] subst-if-not new test tree &key :key

(subst new old tree) makes a copy of tree, substituting new for every
subtree or leaf of tree (whether the subtree or leaf is a car or a cdr of its
parent) such that old and the subtree or leaf satisfy the test. It returns the
modified copy of tree. The original tree is unchanged, but the result tree may
share with parts of the argument tree.

For example:

(subst ’tempest ’hurricane
’(shakespeare wrote (the hurricane)))

⇒ (shakespeare wrote (the tempest))

(subst ’foo ’nil ’(shakespeare wrote (twelfth night)))

15.4. SUBSTITUTION OF EXPRESSIONS 431

⇒ (shakespeare wrote (twelfth night . foo) . foo)

(subst ’(a . cons) ’(old . pair)
’((old . spice) ((old . shoes) old . pair) (old . pair))
:test #’equal)

⇒ ((old . spice) ((old . shoes) a . cons) (a . cons))

This function is not destructive; that is, it does not change the car or cdr
of any already existing list structure. One possible definition of subst:

(defun subst (old new tree &rest x &key test test-not key)
(cond ((satisfies-the-test old tree :test test

:test-not test-not :key key)
new)
((atom tree) tree)
(t (let ((a (apply #’subst old new (car tree) x))

(d (apply #’subst old new (cdr tree) x)))
(if (and (eql a (car tree))

(eql d (cdr tree)))
tree
(cons a d))))))

See also substitute, which substitutes for top-level elements of a se-
quence.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] nsubst new old tree &key :test :test-not :key
[Function] nsubst-if new test tree &key :key
[Function] nsubst-if-not new test tree &key :key

nsubst is a destructive version of subst. The list structure of tree is
altered by destructively replacing with new each leaf or subtree of the tree
such that old and the leaf or subtree satisfy the test.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] sublis alist tree &key :test :test-not :key

sublis makes substitutions for objects in a tree (a structure of conses).
The first argument to sublis is an association list. The second argument is
the tree in which substitutions are to be made, as for subst. sublis looks

432 CHAPTER 15. LISTS

at all subtrees and leaves of the tree; if a subtree or leaf appears as a key
in the association list (that is, the key and the subtree or leaf satisfy the
test), it is replaced by the object with which it is associated. This operation
is non-destructive. In effect, sublis can perform several subst operations
simultaneously. For example:

(sublis ’((x . 100) (z . zprime))
’(plus x (minus g z x p) 4 . x))

⇒ (plus 100 (minus g zprime 100 p) 4 . 100)

(sublis ’(((+ x y) . (- x y)) ((- x y) . (+ x y)))
’(* (/ (+ x y) (+ x p)) (- x y))
:test #’equal)

⇒ (* (/ (- x y) (+ x p)) (+ x y))

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] nsublis alist tree &key :test :test-not :key

nsublis is like sublis but destructively modifies the relevant parts of the
tree.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

15.5 Using Lists as Sets
Common Lisp includes functions that allow a list of items to be treated as a
set. There are functions to add, remove, and search for items in a list, based
on various criteria. There are also set union, intersection, and difference
functions.

The naming conventions for these functions and for their keyword argu-
ments generally follow the conventions that apply to the generic sequence
functions. See chapter 14.

[Function] member item list &key :test :test-not :key
[Function] member-if predicate list &key :key
[Function] member-if-not predicate list &key :key

The list is searched for an element that satisfies the test. If none is found,
nil is returned; otherwise, the tail of list beginning with the first element that

15.5. USING LISTS AS SETS 433

satisfied the test is returned. The list is searched on the top level only. These
functions are suitable for use as predicates.

For example:

(member ’snerd ’(a b c d)) ⇒ nil
(member-if #’numberp ’(a #\Space 5/3 foo)) ⇒ (5/3 foo)
(member ’a ’(g (a y) c a d e a f)) ⇒ (a d e a f)

Note, in the last example, that the value returned by member is eq
to the portion of the list beginning with a. Thus rplaca on the result of
member may be used to alter the found list element, if a check is first made
that member did not return nil.

See also find and position.
X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] tailp sublist list

tailp is true if and only if there exists an integer n such that

(eql sublist (nthcdr n list))

list may be a dotted list (implying that implementations must use atom
and not endp to check for the end of the list).

[Function] adjoin item list &key :test :test-not :key

adjoin is used to add an element to a set, provided that it is not already
a member. The equality test defaults to eql.

(adjoin item list) ≡ (if (member item list) list (cons item list))

In general, the test may be any predicate; the item is added to the list
only if there is no element of the list that “satisfies the test.”

adjoin deviates from the usual rules described in chapter 14 for the treat-
ment of arguments named item and :key. If a :key function is specified, it is
applied to item as well as to each element of the list. The rationale is that if
the item is not yet in the list, it soon will be, and so the test is more properly
viewed as being between two elements rather than between a separate item
and an element.

(adjoin item list :key fn)
≡ (if (member (funcall fn item) list :key fn) list (cons item list))

434 CHAPTER 15. LISTS

See pushnew.
X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] union list1 list2 &key :test :test-not :key
[Function] nunion list1 list2 &key :test :test-not :key

union takes two lists and returns a new list containing everything that
is an element of either of the lists. If there is a duplication between two
lists, only one of the duplicate instances will be in the result. If either of the
arguments has duplicate entries within it, the redundant entries may or may
not appear in the result. For example:

(union ’(a b c) ’(f a d))
⇒ (a b c f d) or (b c f a d) or (d f a b c) or ...

(union ’((x 5) (y 6)) ’((z 2) (x 4)) :key #’car)
⇒ ((x 5) (y 6) (z 2)) or ((x 4) (y 6) (z 2)) or ...

There is no guarantee that the order of elements in the result will reflect
the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share
cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the union operation may be
described as follows. For all possible ordered pairs consisting of one element
from list1 and one element from list2, the test is used to determine whether
they “match.” For every matching pair, at least one of the two elements of
the pair will be in the result. Moreover, any element from either list that
matches no element of the other will appear in the result. All this is very
general, but probably not particularly useful unless the test is an equivalence
relation.

The :test-not argument can be useful when the test function is the logical
negation of an equivalence test. A good example of this is the function
mismatch, which is logically inverted so that possibly useful information
can be returned if the arguments do not match. This additional “useful
information” is discarded in the following example; mismatch is used purely
as a predicate.

(union ’(#(a b) #(5 0 6) #(f 3))
’(#(5 0 6) (a b) #(g h))

15.5. USING LISTS AS SETS 435

:test-not
#’mismatch)

⇒ (#(a b) #(5 0 6) #(f 3) #(g h)) ;One possible result
⇒ ((a b) #(f 3) #(5 0 6) #(g h)) ;Another possible result

Using :test-not #’mismatch differs from using :test #’equalp, for
example, because mismatch will determine that #(a b) and (a b) are the
same, while equalp would regard them as not the same.

nunion is the destructive version of union. It performs the same oper-
ation but may destroy the argument lists, perhaps in order to use their cells
to construct the result.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
X3J13 voted in March 1989 to clarify the permissible side effects of certain

operations; nunion is permitted to perform a setf on any part, car or cdr,
of the top-level list structure of any of the argument lists.

[Function] intersection list1 list2 &key :test :test-not :key
[Function] nintersection list1 list2 &key :test :test-not :key

intersection takes two lists and returns a new list containing everything
that is an element of both argument lists. If either list has duplicate entries,
the redundant entries may or may not appear in the result. For example:

(intersection ’(a b c) ’(f a d)) ⇒ (a)

There is no guarantee that the order of elements in the result will reflect
the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share
cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the intersection operation
may be described as follows. For all possible ordered pairs consisting of one
element from list1 and one element from list2, the test is used to determine
whether they “match.” For every matching pair, exactly one of the two
elements of the pair will be put in the result. No element from either list
appears in the result that does not match an element from the other list. All
this is very general, but probably not particularly useful unless the test is an
equivalence relation.

nintersection is the destructive version of intersection. It performs
the same operation, but may destroy list1, perhaps in order to use its cells
to construct the result. (The argument list2 is not destroyed.)

436 CHAPTER 15. LISTS

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
X3J13 voted in March 1989 to clarify the permissible side effects of certain

operations; nintersection is permitted to perform a setf on any part, car
or cdr, of the top-level list structure of any of the argument lists.

[Function] set-difference list1 list2 &key :test :test-not :key
[Function] nset-difference list1 list2 &key :test :test-not :key

set-difference returns a list of elements of list1 that do not appear in
list2. This operation is not destructive.

There is no guarantee that the order of elements in the result will reflect
the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share
cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the set difference operation
may be described as follows. For all possible ordered pairs consisting of one
element from list1 and one element from list2, the test is used to determine
whether they “match.” An element of list1 appears in the result if and only
if it does not match any element of list2. This is very general and permits
interesting applications. For example, one can remove from a list of strings
all those strings containing one of a given list of characters:

;; Remove all flavor names that contain "c" or "w".
(set-difference ’("strawberry" "chocolate" "banana"

"lemon" "pistachio" "rhubarb")
’(#\c #\w)
:test
#’(lambda (s c) (find c s)))

⇒ ("banana" "rhubarb" "lemon") ;One possible ordering

nset-difference is the destructive version of set-difference. This oper-
ation may destroy list1.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] set-exclusive-or list1 list2 &key :test :test-not :key
[Function] nset-exclusive-or list1 list2 &key :test :test-not :key

set-exclusive-or returns a list of elements that appear in exactly one of
list1 and list2. This operation is not destructive.

15.6. ASSOCIATION LISTS 437

There is no guarantee that the order of elements in the result will reflect
the ordering of the arguments in any particular way. The implementation is
therefore free to use any of a variety of strategies. The result list may share
cells with, or be eq to, either of the arguments if appropriate.

In general, the test may be any predicate, and the set-exclusive-or op-
eration may be described as follows. For all possible ordered pairs consisting
of one element from list1 and one element from list2, the test is used to de-
termine whether they “match.” The result contains precisely those elements
of list1 and list2 that appear in no matching pair.

nset-exclusive-or is the destructive version of set-exclusive-or. Both
lists may be destroyed in producing the result.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.
X3J13 voted in March 1989 to clarify the permissible side effects of certain

operations; nset-exclusive-or is permitted to perform a setf on any part,
car or cdr, of the top-level list structure of any of the argument lists.

[Function] subsetp list1 list2 &key :test :test-not :key

subsetp is a predicate that is true if every element of list1 appears in
(“matches” some element of) list2, and false otherwise.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

15.6 Association Lists

An association list, or a-list, is a data structure used very frequently in Lisp.
An a-list is a list of pairs (conses); each pair is an association. The car of a
pair is called the key, and the cdr is called the datum.

An advantage of the a-list representation is that an a-list can be incre-
mentally augmented simply by adding new entries to the front. Moreover,
because the searching function assoc searches the a-list in order, new entries
can “shadow” old entries. If an a-list is viewed as a mapping from keys to
data, then the mapping can be not only augmented but also altered in a
non-destructive manner by adding new entries to the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to
retrieve a key given a datum. For this purpose, the “reverse” searching func-
tion rassoc is provided. Other variants of a-list searches can be constructed
using the function find or member.

438 CHAPTER 15. LISTS

It is permissible to let nil be an element of an a-list in place of a pair.
Such an element is not considered to be a pair but is simply passed over when
the a-list is searched by assoc.

[Function] acons key datum a-list

acons constructs a new association list by adding the pair (key . da-
tum) to the old a-list.

(acons x y a) ≡ (cons (cons x y) a)

[Function] pairlis keys data &optional a-list

pairlis takes two lists and makes an association list that associates ele-
ments of the first list to corresponding elements of the second list. It is an
error if the two lists keys and data are not of the same length. If the optional
argument a-list is provided, then the new pairs are added to the front of it.

The new pairs may appear in the resulting a-list in any order; in partic-
ular, either forward or backward order is permitted. Therefore the result of
the call

(pairlis ’(one two) ’(1 2) ’((three . 3) (four . 19)))

might be

((one . 1) (two . 2) (three . 3) (four . 19))

but could equally well be

((two . 2) (one . 1) (three . 3) (four . 19))

[Function] assoc item a-list &key :test :test-not :key
[Function] assoc-if predicate a-list &key :key
[Function] assoc-if-not predicate a-list &key :key

Each of these searches the association list a-list. The value is the first
pair in the a-list such that the car of the pair satisfies the test, or nil if there
is no such pair in the a-list. For example:

(assoc ’r ’((a . b) (c . d) (r . x) (s . y) (r . z)))
⇒ (r . x)

(assoc ’goo ’((foo . bar) (zoo . goo))) ⇒ nil
(assoc ’2 ’((1 a b c) (2 b c d) (-7 x y z))) ⇒ (2 b c d)

15.6. ASSOCIATION LISTS 439

It is possible to rplacd the result of assoc provided that it is not nil, in
order to “update” the “table” that was assoc’s second argument. (However,
it is often better to update an a-list by adding new pairs to the front, rather
than altering old pairs.) For example:

(setq values ’((x . 100) (y . 200) (z . 50)))
(assoc ’y values) ⇒ (y . 200)
(rplacd (assoc ’y values) 201)
(assoc ’y values) ⇒ (y . 201) now

A typical trick is to say (cdr (assoc x y)). Because the cdr of nil is
guaranteed to be nil, this yields nil if no pair is found or if a pair is found
whose cdr is nil. This is useful if nil serves its usual role as a “default value.”

The two expressions

(assoc item list :test fn)

and

(find item list :test fn :key #’car)

are equivalent in meaning with one important exception: if nil appears
in the a-list in place of a pair, and the item being searched for is nil, find
will blithely compute the car of the nil in the a-list, find that it is equal to
the item, and return nil, whereas assoc will ignore the nil in the a-list and
continue to search for an actual pair (cons) whose car is nil. See find and
position.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] rassoc item a-list &key :test :test-not :key
[Function] rassoc-if predicate a-list &key :key
[Function] rassoc-if-not predicate a-list &key :key

rassoc is the reverse form of assoc; it searches for a pair whose cdr
satisfies the test, rather than the car. If the a-list is considered to be a
mapping, then rassoc treats the a-list as representing the inverse mapping.
For example:

(rassoc ’a ’((a . b) (b . c) (c . a) (z . a))) ⇒ (c . a)

The expressions

440 CHAPTER 15. LISTS

(rassoc item list :test fn)

and

(find item list :test fn :key #’cdr)

are equivalent in meaning, except when the item is nil and nil appears
in place of a pair in the a-list. See the discussion of the function assoc.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

Chapter 16

Hash Tables

A hash table is a Lisp object that can efficiently map a given Lisp object
to another Lisp object. Each hash table has a set of entries, each of which
associates a particular key with a particular value. The basic functions that
deal with hash tables can create entries, delete entries, and find the value that
is associated with a given key. Finding the value is very fast, even if there
are many entries, because hashing is used; this is an important advantage of
hash tables over property lists.

A given hash table can associate only one value with a given key ; if you
try to add a second value, it will replace the first. Also, adding a value to a
hash table is a destructive operation; the hash table is modified. By contrast,
association lists can be augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys
are compared with eq, eql, or equal. In other words, there are hash tables
that hash on Lisp objects (using eq or eql) and there are hash tables that
hash on tree structure (using equal).

Hash tables are created with the functionmake-hash-table, which takes
various options, including which kind of hash table to make (the default being
the eql kind). To look up a key and find the associated value, use gethash.
New entries are added to hash tables using setf with gethash. To remove
an entry, use remhash. Here is a simple example.

(setq a (make-hash-table))
(setf (gethash ’color a) ’brown)
(setf (gethash ’name a) ’fred)
(gethash ’color a) ⇒ brown

441

442 CHAPTER 16. HASH TABLES

(gethash ’name a) ⇒ fred
(gethash ’pointy a) ⇒ nil

In this example, the symbols color and name are being used as keys,
and the symbols brown and fred are being used as the associated values.
The hash table has two items in it, one of which associates from color to
brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Similarly,
values can be any Lisp object.

There is a discrepancy between the preceding description of the size of
a hash table and the description of the :size argument in the specification
below of make-hash-table.

X3J13 voted in June 1989 to regard the latter description as definitive: the
:size argument is approximately the number of entries that can be inserted
without having to enlarge the hash table. This definition is certainly more
convenient for the user.

16.1 Hash Table Functions
This section documents the functions for hash tables, which use objects as
keys and associate other objects with them.

[Function] make-hash-table &key :test :size :rehash-size
:rehash-threshold

This function creates and returns a new hash table. The :test argument
determines how keys are compared; it must be one of the three values #’eq,
#’eql, or #’equal, or one of the three symbols eq, eql, or equal. If no test
is specified, eql is assumed.

X3J13 voted in January 1989 to add a fourth type of hash table: the value
of #’equalp and the symbol equalp are to be additional valid possibilities
for the :test argument.

Note that one consequence of the vote to change the rules of floating-
point contagion (described in section 12.1) is to require =, and therefore also
equalp, to compare the values of numbers exactly and not approximately,
making equalp a true equivalence relation on numbers.

Another valuable use of equalp hash tables is case-insensitive comparison
of keys that are strings.

16.1. HASH TABLE FUNCTIONS 443

The :size argument sets the initial size of the hash table, in entries. (The
actual size may be rounded up from the size you specify to the next “good”
size, for example to make it a prime number.) You won’t necessarily be
able to store precisely this many entries into the table before it overflows and
becomes bigger, but this argument does serve as a hint to the implementation
of approximately how many entries you intend to store.

X3J13 voted in January 1989 to clarify that the :size argument must be
a non-negative integer.

X3J13 voted in June 1989 to regard the preceding description of the :size
argument as definitive: it is approximately the number of entries that can be
inserted without having to enlarge the hash table.

The :rehash-size argument specifies how much to increase the size of the
hash table when it becomes full. This can be an integer greater than zero,
which is the number of entries to add, or it can be a floating-point number
greater than 1, which is the ratio of the new size to the old size. The default
value for this argument is implementation-dependent.

The :rehash-threshold argument specifies how full the hash table can
get before it must grow. It may be any real number between 0 and 1,
inclusive. It indicates the maximum desired level of hash table occupancy.
An implementation is permitted to ignore this argument. The default value
for this argument is implementation-dependent.

An example of the use of make-hash-table:

(make-hash-table :rehash-size 1.5
:size (* number-of-widgets 43))

[Function] hash-table-p object

hash-table-p is true if its argument is a hash table, and otherwise is
false.

(hash-table-p x) ≡ (typep x ’hash-table)

[Function] gethash key hash-table &optional default

gethash finds the entry in hash-table whose key is key and returns the
associated value. If there is no such entry, gethash returns default, which is
nil if not specified.

gethash actually returns two values, the second being a predicate value
that is true if an entry was found, and false if no entry was found.

444 CHAPTER 16. HASH TABLES

setf may be used with gethash to make new entries in a hash table. If
an entry with the specified key already exists, it is removed before the new
entry is added. The default argument may be specified to gethash in this
context; it is ignored by setf but may be useful in such macros as incf that
are related to setf:

(incf (gethash a-key table 0))

means approximately the same as

(setf (gethash a-key table 0)
(+ (gethash a-key table 0) 1))

which in turn would be treated as simply

(setf (gethash a-key table)
(+ (gethash a-key table 0) 1))

[Function] remhash key hash-table

remhash removes any entry for key in hash-table. This is a predicate
that is true if there was an entry or false if there was not.

[Function] maphash function hash-table

For each entry in hash-table, maphash calls function on two arguments:
the key of the entry and the value of the entry; maphash then returns nil.
If entries are added to or deleted from the hash table while a maphash is in
progress, the results are unpredictable, with one exception: if the function
calls remhash to remove the entry currently being processed by the function,
or performs a setf of gethash on that entry to change the associated value,
then those operations will have the intended effect. For example:

;;; Alter every entry in MY-HASH-TABLE, replacing the value with
;;; its square root. Entries with negative values are removed.
(maphash #’(lambda (key val)

(if (minusp val)
(remhash key my-hash-table)
(setf (gethash key my-hash-table) (sqrt val))))

my-hash-table)

16.1. HASH TABLE FUNCTIONS 445

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Function] clrhash hash-table

This removes all the entries from hash-table and returns the hash table
itself.

[Function] hash-table-count hash-table

This returns the number of entries in the hash-table. When a hash table
is first created or has been cleared, the number of entries is zero.
[Macro] with-hash-table-iterator (mname hash-table) {form}*
X3J13 voted in January 1989 to add the macro with-hash-table-

iterator.
The name mname is bound and defined as if by macrolet, with the body

forms as its lexical scope, to be a “generator macro” such that successive
invocations (mname) will return entries, one by one, from the hash table
that is the value of the expression hash-table (which is evaluated exactly
once).

At each invocation of the generator macro, there are two possibilities. If
there is yet another unprocessed entry in the hash table, then three values
are returned: t, the key of the hash table entry, and the associated value of
the hash table entry. On the other hand, if there are no more unprocessed
entries in the hash table, then one value is returned: nil.

The implicit interior state of the iteration over the hash table entries has
dynamic extent. While the name mname has lexical scope, it is an error to
invoke the generator macro once the with-hash-table-iterator form has
been exited.

Invocations of with-hash-table-iterator and related macros may be
nested, and the generator macro of an outer invocation may be called from
within an inner invocation (assuming that its name is visible or otherwise
made available).

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

Rationale: This facility is a bit more flexible than maphash. It makes possible a
portable and efficient implementation of loop clauses for iterating over hash tables
(see chapter 26).

446 CHAPTER 16. HASH TABLES

(setq turtles (make-hash-table :size 9 :test ’eq))
(setf (gethash ’howard-kaylan turtles) ’(musician lead-singer))
(setf (gethash ’john-barbata turtles) ’(musician drummer))
(setf (gethash ’leonardo turtles) ’(ninja leader blue))
(setf (gethash ’donatello turtles) ’(ninja machines purple))
(setf (gethash ’al-nichol turtles) ’(musician guitarist))
(setf (gethash ’mark-volman turtles) ’(musician great-hair))
(setf (gethash ’raphael turtles) ’(ninja cool rude red))
(setf (gethash ’michaelangelo turtles) ’(ninja party-dude orange))
(setf (gethash ’jim-pons turtles) ’(musician bassist))

(with-hash-table-iterator (get-turtle turtles)
(labels ((try (got-one &optional key value)

(when got-one ;Remember, keys may show up in any order
(when (eq (first value) ’ninja)
(format t "~%~:(~A~): ~{~A~^, ~}"

key (rest value)))
(multiple-value-call #’try (get-turtle)))))

(multiple-value-call #’try (get-turtle)))) ;Prints 4 lines
Michaelangelo: PARTY-DUDE, ORANGE
Leonardo: LEADER, BLUE
Raphael: COOL, RUDE, RED
Donatello: MACHINES, PURPLE
⇒ nil

[Function] hash-table-rehash-size hash-table
[Function] hash-table-rehash-threshold hash-table
[Function] hash-table-size hash-table
[Function] hash-table-test hash-table

X3J13 voted in March 1989 to add four accessor functions that return
values suitable for use in a call to make-hash-table in order to produce a
new hash table with state corresponding to the current state of the argument
hash table.

hash-table-rehash-size returns the current rehash size of a hash table.
hash-table-rehash-threshold returns the current rehash threshold.
hash-table-size returns the current size of a hash table.

16.2. PRIMITIVE HASH FUNCTION 447

hash-table-test returns the test used for comparing keys. If the test is
one of the standard test functions, then the result will always be a symbol,
even if the function itself was specified when the hash-table was created. For
example:

(hash-table-test (make-hash-table :test #’equal)) ⇒ equal

Implementations that extend make-hash-table by providing additional
possibilities for the :test argument may determine how the value returned
by hash-table-test is related to such additional tests.

16.2 Primitive Hash Function
The function sxhash is a convenient tool for the user who needs to create
more complicated hashed data structures than are provided by hash-table
objects.

[Function] sxhash object

sxhash computes a hash code for an object and returns the hash code as
a non-negative fixnum. A property of sxhash is that (equal x y) implies
(= (sxhash x) (sxhash y)).

The manner in which the hash code is computed is implementation-
dependent but independent of the particular “incarnation” or “core image.”
Hash values produced by sxhash may be written out to files, for example,
and meaningfully read in again into an instance of the same implementation.

448 CHAPTER 16. HASH TABLES

Chapter 17

Arrays

An array is an object with components arranged according to a rectilinear
coordinate system. In principle, an array in Common Lisp may have any
number of dimensions, including zero. (A zero-dimensional array has exactly
one element.) In practice, an implementation may limit the number of di-
mensions supported, but every Common Lisp implementation must support
arrays of up to seven dimensions. Each dimension is a non-negative integer;
if any dimension of an array is zero, the array has no elements.

An array may be a general array, meaning each element may be any Lisp
object, or it may be a specialized array, meaning that each element must be
of a given restricted type.

17.1 Array Creation
Do not be daunted by the many options of the function make-array. All
that is required to construct an array is a list of the dimensions; most of the
options are for relatively esoteric applications.

[Function] make-array dimensions &key :element-type :initial-element
:initial-contents :adjustable :fill-pointer :displaced-to :displaced-index-offset

This is the primitive function for making arrays. The dimensions argu-
ment should be a list of non-negative integers that are to be the dimensions of
the array; the length of the list will be the dimensionality of the array. Each
dimension must be smaller than array-dimension-limit, and the product
of all the dimensions must be smaller than array-total-size-limit. Note

449

450 CHAPTER 17. ARRAYS

that if dimensions is nil, then a zero-dimensional array is created. For con-
venience when making a one-dimensional array, the single dimension may be
provided as an integer rather than as a list of one integer.

An implementation of Common Lisp may impose a limit on the rank of an
array, but this limit may not be smaller than 7. Therefore, any Common Lisp
program may assume the use of arrays of rank 7 or less. The implementation-
dependent limit on array rank is reflected in array-rank-limit.

The keyword arguments for make-array are as follows:

:element-type This argument should be the name of the type of the ele-
ments of the array; an array is constructed of the most specialized type
that can nevertheless accommodate elements of the given type. The
type t specifies a general array, one whose elements may be any Lisp
object; this is the default type.

X3J13 voted in January 1989 to change typep and subtypep so that
the specialized array type specifier means the same thing for discrim-
ination purposes as for declaration purposes: it encompasses those ar-
rays that can result by specifying element-type as the element type
to the function make-array. Therefore we may say that if type is
the :element-type argument, then the result will be an array of type
(array type); put another way, for any type A,

(typep (make-array ... :element-type ’A ...)
’(array A)))

is always true. See upgraded-array-element-type.

:initial-element This argument may be used to initialize each element of
the array. The value must be of the type specified by the :element-
type argument. If the :initial-element option is omitted, the initial
values of the array elements are undefined (unless the :initial-contents
or :displaced-to option is used). The :initial-element option may
not be used with the :initial-contents or :displaced-to option.

:initial-contents This argument may be used to initialize the contents of
the array. The value is a nested structure of sequences. If the array
is zero-dimensional, then the value specifies the single element. Other-
wise, the value must be a sequence whose length is equal to the first

17.1. ARRAY CREATION 451

dimension; each element must be a nested structure for an array whose
dimensions are the remaining dimensions, and so on. For example:

(make-array ’(4 2 3)
:initial-contents
’(((a b c) (1 2 3))
((d e f) (3 1 2))
((g h i) (2 3 1))
((j k l) (0 0 0))))

The numbers of levels in the structure must equal the rank of the array.
Each leaf of the nested structure must be of the type specified by the
:type option. If the :initial-contents option is omitted, the initial
values of the array elements are undefined (unless the :initial-element
or :displaced-to option is used). The :initial-contents option may
not be used with the :initial-element or :displaced-to option.

:adjustable This argument, if specified and not nil, indicates that it must
be possible to alter the array’s size dynamically after it is created. This
argument defaults to nil.

X3J13 voted in June 1989 to clarify that if this argument is non-nil
then the predicate adjustable-array-p will necessarily be true when
applied to the resulting array; but if this argument is nil (or omitted)
then the resulting array may or may not be adjustable, depending on
the implementation, and therefore adjustable-array-p may be corre-
spondingly true or false of the resulting array. Common Lisp provides
no portable way to create a non-adjustable array, that is, an array for
which adjustable-array-p is guaranteed to be false.

:fill-pointer This argument specifies that the array should have a fill
pointer. If this option is specified and not nil, the array must be
one-dimensional. The value is used to initialize the fill pointer for the
array. If the value t is specified, the length of the array is used; other-
wise the value must be an integer between 0 (inclusive) and the length
of the array (inclusive). This argument defaults to nil.

:displaced-to This argument, if specified and not nil, specifies that the
array will be a displaced array. The argument must then be an array;

452 CHAPTER 17. ARRAYS

make-array will create an indirect or shared array that shares its
contents with the specified array. In this case the :displaced-index-
offset option may be useful. It is an error if the array given as the
:displaced-to argument does not have the same :element-type as
the array being created. The :displaced-to option may not be used
with the :initial-element or :initial-contents option. This argument
defaults to nil.

:displaced-index-offset This argument may be used only in conjunction
with the :displaced-to option. It must be a non-negative integer (it
defaults to zero); it is made to be the index-offset of the created shared
array.

When an array A is given as the :displaced-to argument to make-
array when creating array B, then array B is said to be displaced to
array A. Now the total number of elements in an array, called the total
size of the array, is calculated as the product of all the dimensions
(see array-total-size). It is required that the total size of A be no
smaller than the sum of the total size of B plus the offset n specified
by the :displaced-index-offset argument. The effect of displacing is
that array B does not have any elements of its own but instead maps
accesses to itself into accesses to array A. The mapping treats both
arrays as if they were one-dimensional by taking the elements in row-
major order, and then maps an access to element k of array B to an
access to element k+n of array A.

If make-array is called with each of the :adjustable, :fill-pointer, and
:displaced-to arguments either unspecified or nil, then the resulting array
is guaranteed to be a simple array (see section 2.5).

X3J13 voted in June 1989 to clarify that if one or more of the :ad-
justable, :fill-pointer, and :displaced-to arguments is true, then whether
the resulting array is simple is unspecified.

Here are some examples of the use of make-array:

;;; Create a one-dimensional array of five elements.
(make-array 5)

;;; Create a two-dimensional array, 3 by 4, with four-bit elements.
(make-array ’(3 4) :element-type ’(mod 16))

17.1. ARRAY CREATION 453

;;; Create an array of single-floats.
(make-array 5 :element-type ’single-float))

;;; Making a shared array.
(setq a (make-array ’(4 3)))
(setq b (make-array 8 :displaced-to a

:displaced-index-offset 2))
;;; Now it is the case that:

(aref b 0) ≡ (aref a 0 2)
(aref b 1) ≡ (aref a 1 0)
(aref b 2) ≡ (aref a 1 1)
(aref b 3) ≡ (aref a 1 2)
(aref b 4) ≡ (aref a 2 0)
(aref b 5) ≡ (aref a 2 1)
(aref b 6) ≡ (aref a 2 2)
(aref b 7) ≡ (aref a 3 0)

The last example depends on the fact that arrays are, in effect, stored in
row-major order for purposes of sharing. Put another way, the indices for
the elements of an array are ordered lexicographically.

[Constant] array-rank-limit

The value of array-rank-limit is a positive integer that is the upper
exclusive bound on the rank of an array. This bound depends on the im-
plementation but will not be smaller than 8; therefore every Common Lisp
implementation supports arrays whose rank is between 0 and 7 (inclusive).
(Implementors are encouraged to make this limit as large as practicable with-
out sacrificing performance.)

[Constant] array-dimension-limit

The value of array-dimension-limit is a positive integer that is the up-
per exclusive bound on each individual dimension of an array. This bound
depends on the implementation but will not be smaller than 1024. (Imple-
mentors are encouraged to make this limit as large as practicable without
sacrificing performance.)

454 CHAPTER 17. ARRAYS

X3J13 voted in January 1989 to specify that the value of array-
dimension-limit must be of type fixnum. This in turn implies that all
valid array indices will be fixnums.

[Constant] array-total-size-limit

The value of array-total-size-limit is a positive integer that is the up-
per exclusive bound on the total number of elements in an array. This bound
depends on the implementation but will not be smaller than 1024. (Imple-
mentors are encouraged to make this limit as large as practicable without
sacrificing performance.)

The actual limit on array size imposed by the implementation may vary
according to the :element-type of the array; in this case the value of array-
total-size-limit will be the smallest of these individual limits.

[Function] vector &rest objects

The function vector is a convenient means for creating a simple general
vector with specified initial contents. It is analogous to the function list.

(vector a1 a2 ... an)
≡ (make-array (list n) :element-type t

:initial-contents (list a1 a2 ... an))

17.2 Array Access

The function aref is normally used for accessing an element of an array.
Other access functions, such as svref, char, and bit, may be more efficient
in specialized circumstances.

[Function] aref array &rest subscripts

This accesses and returns the element of array specified by the subscripts.
The number of subscripts must equal the rank of the array, and each subscript
must be a non-negative integer less than the corresponding array dimension.

aref is unusual among the functions that operate on arrays in that it
completely ignores fill pointers. aref can access without error any array
element, whether active or not. The generic sequence function elt, however,

17.3. ARRAY INFORMATION 455

observes the fill pointer; accessing an element beyond the fill pointer with
elt is an error.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

setf may be used with aref to destructively replace an array element with
a new value.

Under some circumstances it is desirable to write code that will extract
an element from an array a given a list z of the indices, in such a way that
the code works regardless of the rank of the array. This is easy using apply:

(apply #’aref a z)

(The length of the list must of course equal the rank of the array.) This
construction may be used with setf to alter the element so selected to some
new value w:

(setf (apply #’aref a z) w)

[Function] svref simple-vector index

The first argument must be a simple general vector, that is, an object
of type simple-vector. The element of the simple-vector specified by the
integer index is returned.

The index must be non-negative and less than the length of the vector.
setf may be used with svref to destructively replace a simple-vector

element with a new value.
svref is identical to aref except that it requires its first argument to be

a simple vector. In some implementations of Common Lisp, svref may be
faster than aref in situations where it is applicable. See also schar and
sbit.

17.3 Array Information

The following functions extract from an array interesting information other
than the elements.

456 CHAPTER 17. ARRAYS

[Function] array-element-type array

array-element-type returns a type specifier for the set of objects that
can be stored in the array. This set may be larger than the set requested
when the array was created; for example, the result of

(array-element-type (make-array 5 :element-type ’(mod 5)))

could be (mod 5), (mod 8), fixnum, t, or any other type of which
(mod 5) is a subtype. See subtypep.

[Function] array-rank array

This returns the number of dimensions (axes) of array. This will be a
non-negative integer. See array-rank-limit.

[Function] array-dimension array axis-number

The length of dimension number axis-number of the array is returned.
array may be any kind of array, and axis-number should be a non-negative
integer less than the rank of array. If the array is a vector with a fill pointer,
array-dimension returns the total size of the vector, including inactive
elements, not the size indicated by the fill pointer. (The function length
will return the size indicated by the fill pointer.)

[Function] array-dimensions array

array-dimensions returns a list whose elements are the dimensions of
array.

[Function] array-total-size array

array-total-size returns the total number of elements in the array, cal-
culated as the product of all the dimensions.

(array-total-size x)
≡ (apply #’* (array-dimensions x))
≡ (reduce #’* (array-dimensions x))

17.3. ARRAY INFORMATION 457

Note that the total size of a zero-dimensional array is 1. The total size
of a one-dimensional array is calculated without regard for any fill pointer.

[Function] array-in-bounds-p array &rest subscripts

This predicate checks whether the subscripts are all legal subscripts for
array. The predicate is true if they are all legal; otherwise it is false. The
subscripts must be integers. The number of subscripts supplied must equal
the rank of the array. Like aref, array-in-bounds-p ignores fill pointers.

[Function] array-row-major-index array &rest subscripts

This function takes an array and valid subscripts for the array and returns
a single non-negative integer less than the total size of the array that identifies
the accessed element in the row-major ordering of the elements. The number
of subscripts supplied must equal the rank of the array. Each subscript must
be a non-negative integer less than the corresponding array dimension. Like
aref, array-row-major-index ignores fill pointers.

A possible definition of array-row-major-index, with no error checking,
would be

(defun array-row-major-index (a &rest subscripts)
(apply #’+ (maplist #’(lambda (x y)

(* (car x) (apply #’* (cdr y))))
subscripts
(array-dimensions a))))

For a one-dimensional array, the result of array-row-major-index al-
ways equals the supplied subscript.

[Function] row-major-aref array index

This allows any array element to be accessed as if the containing array
were one-dimensional. The index must be a non-negative integer less than
the total size of the array. It indexes into the array as if its elements were
arranged one-dimensionally in row-major order. It may be understood in
terms of aref as follows:

458 CHAPTER 17. ARRAYS

(row-major-aref array index) ≡
(aref (make-array (array-total-size array))

:displaced-to array
:element-type (array-element-type array))

index)

In other words, one may treat an array as one-dimensional by creating a
new one-dimensional array that is displaced to the old one and then accessing
the new array. Alternatively, aref may be understood in terms of row-
major-aref:

(aref array i0 i1 ... in−1) ≡
(row-major-aref array

(array-row-major-index array i0 i1 ... in−1)

That is, a multidimensional array access is equivalent to a row-major
access using an equivalent row-major index.

Like aref, row-major-aref completely ignores fill pointers. A call to
row-major-setf is suitable for use as a place for setf.

This operation makes it easier to write code that efficiently processes
arrays of any rank. Suppose, for example, that one wishes to set every
element of an array tennis-scores to zero. One might write

(fill (make-array (array-total-size tennis-scores)
:element-type (array-element-type tennis-scores)
:displaced-to tennis-scores)

0)

Unfortunately, this incurs the overhead of creating a displaced array, and
fill cannot be applied to multidimensional arrays. Another approach would
be to handle each possible rank separately:

(ecase (array-rank tennis-scores)
(0 (setf (aref tennis-scores) 0))
(1 (dotimes (i0 (array-dimension tennis-scores 0))

(setf (aref tennis-scores i0) 0)))
(2 (dotimes (i0 (array-dimension tennis-scores 0))

(dotimes (i1 (array-dimension tennis-scores 1))
(setf (aref tennis-scores i0 i1) 0))))

...

17.3. ARRAY INFORMATION 459

(7 (dotimes (i0 (array-dimension tennis-scores 0))
(dotimes (i1 (array-dimension tennis-scores 1))
(dotimes (i2 (array-dimension tennis-scores 1))
(dotimes (i3 (array-dimension tennis-scores 1))
(dotimes (i4 (array-dimension tennis-scores 1))
(dotimes (i5 (array-dimension tennis-scores 1))
(dotimes (i6 (array-dimension tennis-scores 1))
(setf (aref tennis-scores i0 i1 i2 i3 i4 i5 i6)

0)))))))))
)

It is easy to get tired of writing such code. Furthermore, this approach
is undesirable because some implementations of Common Lisp will in fact
correctly support arrays of rank greater than 7 (though no implementation
is required to do so). A recursively nested loop does the job, but it is still
pretty hairy:

(labels
((grok-any-rank (&rest indices)
(let ((d (- (array-rank tennis-scores) (length indices)))
(if (= d 0)

(setf (apply #’row-major-aref indices) 0)
(dotimes (i (array-dimension tennis-scores (- d 1)))
(apply #’grok-any-rank i indices))))))

(grok-any-rank))

Whether this code is particularly efficient depends on many implementa-
tion parameters, such as how &rest arguments are handled and how cleverly
calls to apply are compiled. How much easier it is to use row-major-aref!

(dotimes (i (array-total-size tennis-scores))
(setf (row-major-aref tennis-scores i) 0))

Surely this code is sweeter than the honeycomb.

[Function] adjustable-array-p array

This predicate is true if the argument (which must be an array) is ad-
justable, and otherwise is false.

460 CHAPTER 17. ARRAYS

X3J13 voted in June 1989 to clarify that adjustable-array-p is true
of an array if and only if adjust-array, when applied to that array, will
return the same array, that is, an array eq to the original array. If the
:adjustable argument to make-array is non-nil when an array is created,
then adjustable-array-p must be true of that array. If an array is created
with the :adjustable argument nil (or omitted), then adjustable-array-
p may be true or false of that array, depending on the implementation.
X3J13 further voted to define the terminology “adjustable array” to mean
precisely “an array of which adjustable-array-p is true.” See make-array
and adjust-array.

[Function] array-displacement array

This returns two values. The first value is the array displaced to and
the second is the displacement. If array is not a displaced array then array-
displacement returns the values nil and 0.

17.4 Functions on Arrays of Bits

The functions described in this section operate only on arrays of bits, that
is, specialized arrays whose elements are all 0 or 1.

[Function] bit bit-array &rest subscripts
[Function] sbit simple-bit-array &rest subscripts

bit is exactly like aref but requires an array of bits, that is, one of type
(array bit). The result will always be 0 or 1. sbit is like bit but additionally
requires that the first argument be a simple array (see section 2.5). Note that
bit and sbit, unlike char and schar, allow the first argument to be an array
of any rank.

setf may be used with bit or sbit to destructively replace a bit-array
element with a new value.

bit and sbit are identical to aref except for the more specific type re-
quirements on the first argument. In some implementations of Common Lisp,
bit may be faster than aref in situations where it is applicable, and sbit may
similarly be faster than bit.

17.4. FUNCTIONS ON ARRAYS OF BITS 461

[Function] bit-and bit-array1 bit-array2 &optional result-bit-array
[Function] bit-ior bit-array1 bit-array2 &optional result-bit-array
[Function] bit-xor bit-array1 bit-array2 &optional result-bit-array
[Function] bit-eqv bit-array1 bit-array2 &optional result-bit-array
[Function] bit-nand bit-array1 bit-array2 &optional result-bit-array
[Function] bit-nor bit-array1 bit-array2 &optional result-bit-array
[Function] bit-andc1 bit-array1 bit-array2 &optional result-bit-array
[Function] bit-andc2 bit-array1 bit-array2 &optional result-bit-array
[Function] bit-orc1 bit-array1 bit-array2 &optional result-bit-array
[Function] bit-orc2 bit-array1 bit-array2 &optional result-bit-array

These functions perform bit-wise logical operations on bit-arrays. All of
the arguments to any of these functions must be bit-arrays of the same rank
and dimensions. The result is a bit-array of matching rank and dimensions,
such that any given bit of the result is produced by operating on correspond-
ing bits from each of the arguments.

If the third argument is nil or omitted, a new array is created to contain
the result. If the third argument is a bit-array, the result is destructively
placed into that array. If the third argument is t, then the first argument is
also used as the third argument; that is, the result is placed back in the first
array.

The following table indicates what the result bit is for each operation as
a function of the two corresponding argument bits.

argument1 0 0 1 1
argument2 0 1 0 1 Operation name

bit-and 0 0 0 1 and
bit-ior 0 1 1 1 inclusive or
bit-xor 0 1 1 0 exclusive or
bit-eqv 1 0 0 1 equivalence (exclusive nor)
bit-nand 1 1 1 0 not-and
bit-nor 1 0 0 0 not-or
bit-andc1 0 1 0 0 and complement of argument1 with argument2
bit-andc2 0 0 1 0 and argument1 with complement of argument2
bit-orc1 1 1 0 1 or complement of argument1 with argument2
bit-orc2 1 0 1 1 or argument1 with complement of argument2

For example:

(bit-and #*1100 #*1010) ⇒ #*1000

462 CHAPTER 17. ARRAYS

(bit-xor #*1100 #*1010) ⇒ #*0110
(bit-andc1 #*1100 #*1010) ⇒ #*0100

See logand and related functions.

[Function] bit-not bit-array &optional result-bit-array

The first argument must be an array of bits. A bit-array of matching
rank and dimensions is returned that contains a copy of the argument with
all the bits inverted. See lognot.

If the second argument is nil or omitted, a new array is created to contain
the result. If the second argument is a bit-array, the result is destructively
placed into that array. If the second argument is t, then the first argument
is also used as the second argument; that is, the result is placed back in the
first array.

17.5 Fill Pointers

Several functions for manipulating a fill pointer are provided in Common Lisp
to make it easy to incrementally fill in the contents of a vector and, more
generally, to allow efficient varying of the length of a vector. For example,
a string with a fill pointer has most of the characteristics of a PL/I varying
string.

The fill pointer is a non-negative integer no larger than the total number
of elements in the vector (as returned by array-dimension); it is the number
of “active” or “filled-in” elements in the vector. The fill pointer constitutes the
“active length” of the vector; all vector elements whose index is less than the
fill pointer are active, and the others are inactive. Nearly all functions that
operate on the contents of a vector will operate only on the active elements.
An important exception is aref, which can be used to access any vector
element whether in the active region of the vector or not. It is important to
note that vector elements not in the active region are still considered part of
the vector.

Implementation note: An implication of this rule is that vector elements outside
the active region may not be garbage-collected.

17.5. FILL POINTERS 463

Only vectors (one-dimensional arrays) may have fill pointers; multidimen-
sional arrays may not. (Note, however, that one can create a multidimen-
sional array that is displaced to a vector that has a fill pointer.)

[Function] array-has-fill-pointer-p array

The argument must be an array. array-has-fill-pointer-p returns t if
the array has a fill pointer, and otherwise returns nil. Note that array-has-
fill-pointer-p always returns nil if the array is not one-dimensional.

[Function] fill-pointer vector

The fill pointer of vector is returned. It is an error if the vector does not
have a fill pointer.

setf may be used with fill-pointer to change the fill pointer of a vector.
The fill pointer of a vector must always be an integer between zero and the
size of the vector (inclusive).

[Function] vector-push new-element vector

vector must be a one-dimensional array that has a fill pointer, and new-
element may be any object. vector-push attempts to store new-element
in the element of the vector designated by the fill pointer, and to increase
the fill pointer by 1. If the fill pointer does not designate an element of the
vector (specifically, when it gets too big), it is unaffected and vector-push
returns nil. Otherwise, the store and increment take place and vector-push
returns the former value of the fill pointer (1 less than the one it leaves in
the vector); thus the value of vector-push is the index of the new element
pushed.

It is instructive to compare vector-push, which is a function, with push,
which is a macro that requires a place suitable for setf. A vector with a fill
pointer effectively contains the place to be modified in its fill-pointer slot.

[Function] vector-push-extend new-element vector &optional extension

vector-push-extend is just like vector-push except that if the fill
pointer gets too large, the vector is extended (using adjust-array) so that
it can contain more elements. If, however, the vector is not adjustable, then
vector-push-extend signals an error.

464 CHAPTER 17. ARRAYS

X3J13 voted in June 1989 to clarify that vector-push-extend regards
an array as not adjustable if and only if adjustable-array-p is false of that
array.

The optional argument extension, which must be a positive integer, is
the minimum number of elements to be added to the vector if it must be
extended; it defaults to a “reasonable” implementation-dependent value.

[Function] vector-pop vector

vector must be a one-dimensional array that has a fill pointer. If the fill
pointer is zero, vector-pop signals an error. Otherwise the fill pointer is
decreased by 1, and the vector element designated by the new value of the
fill pointer is returned.

17.6 Changing the Dimensions of an Array

This function may be used to resize or reshape an array. Its options are
similar to those of make-array.

[Function] adjust-array array new-dimensions &key :element-type
:initial-element :initial-contents :fill-pointer :displaced-to
:displaced-index-offset

adjust-array takes an array and a number of other arguments as for
make-array. The number of dimensions specified by new-dimensions must
equal the rank of array.

adjust-array returns an array of the same type and rank as array, with
the specified new-dimensions. In effect, the array argument itself is modified
to conform to the new specifications, but this may be achieved either by
modifying the array or by creating a new array and modifying the array
argument to be displaced to the new array.

In the simplest case, one specifies only the new-dimensions and possibly
an :initial-element argument. Those elements of array that are still in
bounds appear in the new array. The elements of the new array that are
not in the bounds of array are initialized to the :initial-element; if this
argument is not provided, then the initial contents of any new elements are
undefined.

17.6. CHANGING THE DIMENSIONS OF AN ARRAY 465

If :element-type is specified, then array must be such that it could
have been originally created with that type; otherwise an error is signaled.
Specifying :element-type to adjust-array serves only to require such an
error check.

If :initial-contents or :displaced-to is specified, then it is treated as
for make-array. In this case none of the original contents of array appears
in the new array.

If :fill-pointer is specified, the fill pointer of the array is reset as specified.
An error is signaled if array had no fill pointer already.

X3J13 voted in June 1988 to clarify the treatment of the :fill-pointer
argument as follows.

If the :fill-pointer argument is not supplied, then the fill pointer of the
array is left alone. It is an error to try to adjust the array to a total size
that is smaller than its fill pointer.

If the :fill-pointer argument is supplied, then its value must be either
an integer, t, or nil. If it is an integer, then it is the new value for the fill
pointer; it must be non-negative and no greater than the new size to which
the array is being adjusted. If it is t, then the fill pointer is set equal to the
new size for the array. If it is nil, then the fill pointer is left alone; it is as
if the argument had not been supplied. Again, it is an error to try to adjust
the array to a total size that is smaller than its fill pointer.

An error is signaled if a non-nil :fill-pointer value is supplied and the
array to be adjusted does not already have a fill pointer.

This extended treatment of the :fill-pointer argument to adjust-array
is consistent with the previously existing treatment of the :fill-pointer ar-
gument to make-array.

adjust-array may, depending on the implementation and the arguments,
simply alter the given array or create and return a new one. In the latter
case the given array will be altered so as to be displaced to the new array
and have the given new dimensions.

X3J13 voted in January 1989 to allow adjust-array to be applied to any
array. If adjust-array is applied to an array that was originally created
with :adjustable true, the array returned is eq to its first argument. It is
not specified whether adjust-array returns an array eq to its first argument
for any other arrays. If the array returned by adjust-array is not eq to its
first argument, the original array is unchanged and does not share storage
with the new array.

Under this new definition, it is wise to treat adjust-array in the same

466 CHAPTER 17. ARRAYS

manner as delete and nconc: one should carefully retain the returned value,
for example by writing

(setq my-array (adjust-array my-array ...))

rather than relying solely on a side effect.
If adjust-array is applied to an array that is displaced to another array x,

then afterwards neither array nor the returned result is displaced to x unless
such displacement is explicitly re-specified in the call to adjust-array.

For example, suppose that the 4-by-4 array m looks like this:

#2A((alpha beta gamma delta)
(epsilon zeta eta theta)
(iota kappa lambda mu)
(nu xi omicron pi))

Then the result of

(adjust-array m ’(3 5) :initial-element ’baz)

is a 3-by-5 array with contents

#2A((alpha beta gamma delta baz)
(epsilon zeta eta theta baz)
(iota kappa lambda mu baz))

Note that if array a is created displaced to array b and subsequently
array b is given to adjust-array, array a will still be displaced to array b;
the effects of this displacement and the rule of row-major storage order must
be taken into account.

X3J13 voted in June 1988 to clarify the interaction of adjust-array with
array displacement.

Suppose that an array A is to be adjusted. There are four cases according
to whether or not A was displaced before adjustment and whether or not the
result is displaced after adjustment.

• Suppose A is not displaced either before or after. The dimensions of A
are altered, and the contents are rearranged as appropriate. Additional
elements of A are taken from the :initial-element argument. However,
the use of the :initial-contents argument causes all old contents to be
discarded.

17.6. CHANGING THE DIMENSIONS OF AN ARRAY 467

• Suppose A is not displaced before, but is displaced to array C after.
None of the original contents of A appears in A afterwards; A now
contains (some of) the contents of C, without any rearrangement of C.

• Suppose A is displaced to array B before the call, and is displaced to
array C after the call. (Note that B and C may be the same array.)
The contents of B do not appear in A afterwards (unless such contents
also happen to be in C, as when B and C are the same, for example). If
:displaced-index-offset is not specified in the call to adjust-array,
it defaults to zero; the old offset (into B) is not retained.

• Suppose A is displaced to array B before the call, but is not displaced
afterwards. In this case A gets a new “data region” and (some of)
the contents of B are copied into it as appropriate to maintain the
existing old contents. Additional elements of A are taken from the
:initial-element argument. However, the use of the :initial-contents
argument causes all old contents to be discarded.

If array X is displaced to array Y, and array Y is displaced to array
Z, and array Y is altered by adjust-array, array X must now refer to the
adjusted contents of Y. This means that an implementation may not collapse
the chain to make X refer to Z directly and forget that the chain of reference
passes through array Y. (Caching techniques are of course permitted, as long
as they preserve the semantics specified here.)

If X is displaced to Y, it is an error to adjust Y in such a way that it no
longer has enough elements to satisfy X. This error may be signaled at the
time of the adjustment, but this is not required.

Note that omitting the :displaced-to argument to adjust-array is
equivalent to specifying :displaced-to nil; in either case, the array is not
displaced after the call regardless of whether it was displaced before the call.

468 CHAPTER 17. ARRAYS

Chapter 18

Strings

A string is a specialized vector (one-dimensional array) whose elements are
characters.

X3J13 voted in March 1989 to eliminate the type string-char and to
redefine the type string to be the union of one or more specialized vector
types, the types of whose elements are subtypes of the type character.

Any string-specific function defined in this chapter whose name begins
with the prefix string will accept a symbol instead of a string as an argu-
ment provided that the operation never modifies that argument; the print
name of the symbol is used. In this respect the string-specific sequence oper-
ations are not simply specializations of generic versions; the generic sequence
operations described in chapter 14 never accept symbols as sequences. This
slight inelegance is permitted in Common Lisp in the name of pragmatic
utility. One may get the effect of having a generic sequence function operate
on either symbols or strings by applying the coercion function string to any
argument whose data type is in doubt.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

Also, there is a slight non-parallelism in the names of string functions.
Where the suffixes equalp and eql would be more appropriate, for historical
compatibility the suffixes equal and = are used instead to indicate case-
insensitive and case-sensitive character comparison, respectively.

Any Lisp object may be tested for being a string by the predicate stringp.
Note that strings, like all vectors, may have fill pointers (though such

strings are not necessarily simple). String operations generally operate only

469

470 CHAPTER 18. STRINGS

on the active portion of the string (below the fill pointer). See fill-pointer
and related functions.

18.1 String Access
The following functions access a single character element of a string.

[Function] char string index
[Function] schar simple-string index

The given index must be a non-negative integer less than the length of
string, which must be a string. The character at position index of the string
is returned as a character object.

As with all sequences in Common Lisp, indexing is zero-origin. For ex-
ample:

(char "Floob-Boober-Bab-Boober-Bubs" 0) ⇒ #\F
(char "Floob-Boober-Bab-Boober-Bubs" 1) ⇒ #\l

See aref and elt. In effect,

(char s j) ≡ (aref (the string s) j)

setf may be used with char to destructively replace a character within a
string.

For char, the string may be any string; for schar, it must be a simple
string. In some implementations of Common Lisp, the function schar may
be faster than char when it is applicable.

18.2 String Comparison
The naming conventions for these functions and for their keyword arguments
generally follow the conventions for the generic sequence functions (see chap-
ter 14).

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

18.2. STRING COMPARISON 471

[Function] string= string1 string2 &key :start1 :end1 :start2 :end2

string= compares two strings and is true if they are the same (corre-
sponding characters are identical) but is false if they are not. The function
equal calls string= if applied to two strings.

The keyword arguments :start1 and :start2 are the places in the strings
to start the comparison. The arguments :end1 and :end2 are the places
in the strings to stop comparing; comparison stops just before the position
specified by a limit. The “start” arguments default to zero (beginning of
string), and the “end” arguments (if either omitted or nil) default to the
lengths of the strings (end of string), so that by default the entirety of each
string is examined. These arguments are provided so that substrings can be
compared efficiently.

string= is necessarily false if the (sub)strings being compared are of
unequal length; that is, if

(not (= (- end1 start1) (- end2 start2)))

is true, then string= is false.

(string= "foo" "foo") is true
(string= "foo" "Foo") is false
(string= "foo" "bar") is false
(string= "together" "frog" :start1 1 :end1 3 :start2 2)

is true

X3J13 voted in June 1989 to clarify string coercion (see string).

[Function] string-equal string1 string2 &key :start1 :end1 :start2 :end2

string-equal is just like string= except that differences in case are ig-
nored; two characters are considered to be the same if char-equal is true of
them. For example:

(string-equal "foo" "Foo") is true

X3J13 voted in June 1989 to clarify string coercion (see string).

[Function] string< string1 string2 &key :start1 :end1 :start2 :end2
[Function] string> string1 string2 &key :start1 :end1 :start2 :end2

472 CHAPTER 18. STRINGS

[Function] string<= string1 string2 &key :start1 :end1 :start2 :end2
[Function] string>= string1 string2 &key :start1 :end1 :start2 :end2
[Function] string/= string1 string2 &key :start1 :end1 :start2 :end2

These functions compare the two string arguments lexicographically, and
the result is nil unless string1 is respectively less than, greater than, less
than or equal to, greater than or equal to, or not equal to string2. If the
condition is satisfied, however, then the result is the index within the strings
of the first character position at which the strings fail to match; put another
way, the result is the length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ
the character of a is less than the corresponding character of b according to
the function char<, or if string a is a proper prefix of string b (of shorter
length and matching in all the characters of a).

The keyword arguments :start1 and :start2 are the places in the strings
to start the comparison. The keyword arguments :end1 and :end2 are
the places in the strings to stop comparing; comparison stops just before the
position specified by a limit. The “start” arguments default to zero (beginning
of string), and the “end” arguments (if either omitted or nil) default to the
lengths of the strings (end of string), so that by default the entirety of each
string is examined. These arguments are provided so that substrings can be
compared efficiently. The index returned in case of a mismatch is an index
into string1.

X3J13 voted in June 1989 to clarify string coercion (see string).

[Function] string-lessp string1 string2 &key :start1 :end1 :start2 :end2
[Function] string-greaterp string1 string2 &key :start1 :end1
:start2 :end2
[Function] string-not-greaterp string1 string2 &key :start1 :end1
:start2 :end2
[Function] string-not-lessp string1 string2 &key :start1 :end1
:start2 :end2
[Function] string-not-equal string1 string2 &key :start1 :end1
:start2 :end2

These are exactly like string<, string>, string<=, string>=, and
string/=, respectively, except that distinctions between uppercase and low-
ercase letters are ignored. It is as if char-lessp were used instead of char<
for comparing characters.

18.3. STRING CONSTRUCTION AND MANIPULATION 473

X3J13 voted in June 1989 to clarify string coercion (see string).

18.3 String Construction and Manipulation
Most of the interesting operations on strings may be performed with the
generic sequence functions described in chapter 14. The following functions
perform additional operations that are specific to strings.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

[Function] make-string size &key :initial-element :element-type

This returns a simple string of length size, each of whose characters
has been initialized to the :initial-element argument. If an :initial-
element argument is not specified, then the string will be initialized in an
implementation-dependent way.

The :element-type argument names the type of the elements of the
string; a string is constructed of the most specialized type that can accom-
modate elements of the given type. If :element-type is omitted, the type
character is the default.

X3J13 voted in January 1989 to clarify that the size argument must be
a non-negative integer less than the value of array-dimension-limit.

[Function] string-trim character-bag string
[Function] string-left-trim character-bag string
[Function] string-right-trim character-bag string

string-trim returns a substring of string, with all characters in character-
bag stripped off the beginning and end. The function string-left-trim is sim-
ilar but strips characters off only the beginning; string-right-trim strips off
only the end. The argument character-bag may be any sequence containing
characters. For example:

(string-trim ’(#\Space #\Tab #\Newline) " garbanzo beans
") ⇒ "garbanzo beans"

(string-trim " (*)" " (*three (silly) words*) ")
⇒ "three (silly) words"

474 CHAPTER 18. STRINGS

(string-left-trim " (*)" " (*three (silly) words*) ")
⇒ "three (silly) words*) "

(string-right-trim " (*)" " (*three (silly) words*) ")
⇒ " (*three (silly) words"

If no characters need to be trimmed from the string, then either the
argument string itself or a copy of it may be returned, at the discretion of
the implementation.

X3J13 voted in June 1989 to clarify string coercion (see string).

[Function] string-upcase string &key :start :end
[Function] string-downcase string &key :start :end
[Function] string-capitalize string &key :start :end

string-upcase returns a string just like string with all lowercase char-
acters replaced by the corresponding uppercase characters. More precisely,
each character of the result string is produced by applying the function char-
upcase to the corresponding character of string.

string-downcase is similar, except that uppercase characters are con-
verted to lowercase characters (using char-downcase).

The keyword arguments :start and :end delimit the portion of the string
to be affected. The result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument
require conversion, the result may be either the argument or a copy of it, at
the implementation’s discretion. For example:

(string-upcase "Dr. Livingstone, I presume?")
⇒ "DR. LIVINGSTONE, I PRESUME?"

(string-downcase "Dr. Livingstone, I presume?")
⇒ "dr. livingstone, i presume?"

(string-upcase "Dr. Livingstone, I presume?" :start 6 :end 10)
⇒ "Dr. LiVINGstone, I presume?"

string-capitalize produces a copy of string such that, for every word
in the copy, the first character of the word, if case-modifiable, is uppercase
and any other case-modifiable characters in the word are lowercase. For
the purposes of string-capitalize, a word is defined to be a consecutive
subsequence consisting of alphanumeric characters or digits, delimited at
each end either by a non-alphanumeric character or by an end of the string.
For example:

18.3. STRING CONSTRUCTION AND MANIPULATION 475

(string-capitalize " hello ") ⇒ " Hello "
(string-capitalize

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")
⇒ "Occluded Casements Forestall Inadvertent Defenestration"
(string-capitalize ’kludgy-hash-search) ⇒ "Kludgy-Hash-Search"
(string-capitalize "DON’T!") ⇒ "Don’T!" ;not "Don’t!"
(string-capitalize "pipe 13a, foo16c") ⇒ "Pipe 13a, Foo16c"

X3J13 voted in June 1989 to clarify string coercion (see string).

[Function] nstring-upcase string &key :start :end
[Function] nstring-downcase string &key :start :end
[Function] nstring-capitalize string &key :start :end

These three functions are just like string-upcase, string-downcase,
and string-capitalize but destructively modify the argument string by al-
tering case-modifiable characters as necessary.

The keyword arguments :start and :end delimit the portion of the string
to be affected. The argument string is returned as the result.

[Function] string x

Most of the string functions effectively apply string to such of their
arguments as are supposed to be strings. If x is a string, it is returned. If x
is a symbol, its print name is returned.

In any other situation, an error is signaled.
To convert a sequence of characters to a string, use coerce. (Note that

(coerce x ’string) will not succeed if x is a symbol. Conversely, string will
not convert a list or other sequence to be a string.)

To get the string representation of a number or any other Lisp object,
use prin1-to-string, princ-to-string, or format.

X3J13 voted in June 1989 to specify that the following functions perform
coercion on their string arguments identical to that performed by the function
string.
string= string-equal string-trim
string< string-lessp string-left-trim
string> string-greaterp string-right-trim
string<= string-not-greaterp string-upcase
string>= string-not-lessp string-downcase
string/= string-not-equal string-capitalize

476 CHAPTER 18. STRINGS

Note that nstring-upcase, nstring-downcase, and nstring-capitalize
are absent from this list; because they modify destructively, the argument
must be a string.

As part of the same vote X3J13 specified that string may perform ad-
ditional implementation-dependent coercions but the returned value must
be of type string. Only when no coercion is defined, whether standard or
implementation-dependent, is string required to signal an error, in which
case the error condition must be of type type-error.

Chapter 19

Structures

Common Lisp provides a facility for creating named record structures with
named components. In effect, the user can define a new data type; every data
structure of that type has components with specified names. Constructor,
access, and assignment constructs are automatically defined when the data
type is defined.

This chapter is divided into two parts. The first part discusses the basics
of the structure facility, which is very simple and allows the user to take
advantage of the type-checking, modularity, and convenience of user-defined
record data types. The second part, beginning with section 19.5, discusses a
number of specialized features of the facility that have advanced applications.
These features are completely optional, and you needn’t even know they exist
in order to take advantage of the basics.

19.1 Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the
user to create and use aggregate data types with named elements. These are
like “structures” in PL/I, or “records” in Pascal.

As an example, assume you are writing a Lisp program that deals with
space ships in a two-dimensional plane. In your program, you need to rep-
resent a space ship by a Lisp object of some kind. The interesting things
about a space ship, as far as your program is concerned, are its position (rep-
resented as x and y coordinates), velocity (represented as components along
the x and y axes), and mass.

477

478 CHAPTER 19. STRUCTURES

A ship might therefore be represented as a record structure with five
components: x -position, y-position, x -velocity, y-velocity, and mass. This
structure could in turn be implemented as a Lisp object in a number of
ways. It could be a list of five elements; the x -position could be the car,
the y-position the cadr, and so on. Equally well it could be a vector of
five elements: the x -position could be element 0, the y-position element 1,
and so on. The problem with either of these representations is that the
components occupy places in the object that are quite arbitrary and hard
to remember. Someone looking at (cadddr ship1) or (aref ship1 3) in a
piece of code might find it difficult to determine that this is accessing the
y-velocity component of ship1. Moreover, if the representation of a ship
should have to be changed, it would be very difficult to find all the places in
the code to be changed to match (not all occurrences of cadddr are intended
to extract the y-velocity from a ship).

Ideally components of record structures should have names. One would
like to write something like (ship-y-velocity ship1) instead of (cadddr
ship1). One would also like a more mnemonic way to create a ship than
this:

(list 0 0 0 0 0)

Indeed, one would like ship to be a new data type, just like other Lisp
data types, that one could test with typep, for example. The defstruct
facility provides all of this.

defstruct itself is a macro that defines a structure. For the space ship
example, one might define the structure by saying:

(defstruct ship
x-position
y-position
x-velocity
y-velocity
mass)

This declares that every ship is an object with five named components.
The evaluation of this form does several things:

• It defines ship-x-position to be a function of one argument, a ship,
that returns the x -position of the ship; ship-y-position and the other

19.1. INTRODUCTION TO STRUCTURES 479

components are given similar function definitions. These functions are
called the access functions, as they are used to access elements of the
structure.

• The symbol ship becomes the name of a data type of which instances
of ships are elements. This name becomes acceptable to typep, for
example; (typep x ’ship) is true if x is a ship and false if x is any
object other than a ship.

• A function named ship-p of one argument is defined; it is a predicate
that is true if its argument is a ship and is false otherwise.

• A function called make-ship is defined that, when invoked, will create
a data structure with five components, suitable for use with the access
functions. Thus executing

(setq ship2 (make-ship))

sets ship2 to a newly created ship object. One can specify the initial
values of any desired component in the call to make-ship by using
keyword arguments in this way:

(setq ship2 (make-ship :mass *default-ship-mass*
:x-position 0
:y-position 0))

This constructs a new ship and initializes three of its components. This
function is called the constructor function because it constructs a new
structure.

• The #S syntax can be used to read instances of ship structures, and
a printer function is provided for printing out ship structures. For
example, the value of the variable ship2 shown above might be printed
as

#S(ship x-position 0 y-position 0 x-velocity nil
y-velocity nil mass 170000.0)

480 CHAPTER 19. STRUCTURES

• A function called copy-ship of one argument is defined that, when
given a ship object, will create a new ship object that is a copy of the
given one. This function is called the copier function.

• One may use setf to alter the components of a ship:

(setf (ship-x-position ship2) 100)

This alters the x -position of ship2 to be 100. This works because
defstruct behaves as if it generates an appropriate defsetf form for
each access function.

This simple example illustrates the power of defstruct to provide ab-
stract record structures in a convenient manner. defstruct has many other
features as well for specialized purposes.

19.2 How to Use Defstruct
All structures are defined through the defstruct construct. A call to def-
struct defines a new data type whose instances have named slots.
[Macro] defstruct name-and-options [doc-string] {slot-description}*
This defines a record-structure data type. A general call to defstruct

looks like the following example.

(defstruct (name option-1 option-2 ... option-m)
doc-string
slot-description-1
slot-description-2
...
slot-description-n)

The name must be a symbol; it becomes the name of a new data type
consisting of all instances of the structure. The function typep will accept
and use this name as appropriate. The name is returned as the value of the
defstruct form.

Usually no options are needed at all. If no options are specified, then one
may write simply name instead of (name) after the word defstruct. The
syntax of options and the options provided are discussed in section 19.5.

19.2. HOW TO USE DEFSTRUCT 481

If the optional documentation string doc-string is present, then it is at-
tached to the name as a documentation string of type structure; see doc-
umentation.

Each slot-description-j is of the form

(slot-name default-init
slot-option-name-1 slot-option-value-1
slot-option-name-2 slot-option-value-2
...
slot-option-name-kj slot-option-value-kj)

Each slot-name must be a symbol; an access function is defined for each
slot. If no options and no default-init are specified, then one may write
simply slot-name instead of (slot-name) as the slot description.

default-init form is evaluated only if the corresponding argument is not
supplied to the constructor function. The default-init is a form that is eval-
uated each time its value is to be used as the initial value of the slot.

If no default-init is specified, then the initial contents of the slot are
undefined and implementation-dependent. The available slot-options are de-
scribed in section 19.4.

X3J13 voted in January 1989 to specify that it is an error for two slots to
have the same name; more precisely, no two slots may have names for whose
print names string= would be true. Under this interpretation

(defstruct lotsa-slots slot slot)

obviously is incorrect but the following one is also in error, even assum-
ing that the symbols coin:slot and blot:slot really are distinct (non-eql)
symbols:

(defstruct no-dice coin:slot blot:slot)

To illustrate another case, the first defstruct form below is correct, but
the second one is in error.

(defstruct one-slot slot)
(defstruct (two-slots (:include one-slot)) slot)

Rationale: Print names are the criterion for slot-names being the same, rather
than the symbols themselves, because defstruct constructs names of accessor func-
tions from the print names and interns the resulting new names in the current
package.

482 CHAPTER 19. STRUCTURES

X3J13 recommended that expanding a defstruct form violating this re-
striction should signal an error and noted, with an eye to the Common Lisp
Object System , that the restriction applies only to the operation of the def-
struct macro as such and not to the structure-class or structures defined
with defclass.

X3J13 voted in March 1989 to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level
contexts; defstruct must treat slot default-init forms and any initializa-

19.2. HOW TO USE DEFSTRUCT 483

tion forms within the specification of a by-position constructor function as
occurring within the enclosing lexical environment, not within the global
environment.

defstruct not only defines an access function for each slot, but also ar-
ranges for setf to work properly on such access functions, defines a predicate
named name-p, defines a constructor function named make-name , and
defines a copier function named copy-name . All names of automatically
created functions are interned in whatever package is current at the time
the defstruct form is processed (see *package*). Also, all such functions
may be declared inline at the discretion of the implementation to improve
efficiency; if you do not want some function declared inline, follow the def-
struct form with a notinline declaration to override any automatic inline
declaration.

X3J13 voted in January 1989 to specify that the results of redefining a
defstruct structure (that is, evaluating more than one defstruct structure
for the same name) are undefined.

The problem is that if instances have been created under the old defini-
tion and then remain accessible after the new definition has been evaluated,
the accessors and other functions for the new definition may be incompatible
with the old instances. Conversely, functions associated with the old defi-
nition may have been declared inline and compiled into code that remains
accessible after the new definition has been evaluated; such code may be
incompatible with the new instances.

In practice this restriction affects the development and debugging process
rather than production runs of fully developed code. The defstruct feature
is intended to provide “the most efficient” structure class. CLOS classes
defined by defclass allow much more flexible structures to be defined and
redefined.

Programming environments are allowed and encouraged to permit def-
struct redefinition, perhaps with warning messages about possible interac-
tions with other parts of the programming environment or memory state. It
is beyond the scope of the Common Lisp language standard to define those
interactions except to note that they are not portable.

484 CHAPTER 19. STRUCTURES

19.3 Using the Automatically Defined Con-
structor Function

After you have defined a new structure with defstruct, you can create in-
stances of this structure by using the constructor function. By default, def-
struct defines this function automatically. For a structure named foo, the
constructor function is normally named make-foo; you can specify a differ-
ent name by giving it as the argument to the :constructor option, or specify
that you don’t want a normal constructor function at all by using nil as the
argument (in which case one or more “by-position” constructors should be
requested; see section 19.6).

A call to a constructor function, in general, has the form

(name-of-constructor-function
slot-keyword-1 form-1
slot-keyword-2 form-2
...)

All arguments are keyword arguments. Each slot-keyword should be a
keyword whose name matches the name of a slot of the structure (defstruct
determines the possible keywords simply by interning each slot-name in the
keyword package). All the keywords and forms are evaluated. In short, it is
just as if the constructor function took all its arguments as&key parameters.
For example, the ship structure shown in section 19.1 has a constructor
function that takes arguments roughly as if its definition were

(defun make-ship (&key x-position y-position
x-velocity y-velocity mass)

...)

If slot-keyword-j names a slot, then that element of the created structure
will be initialized to the value of form-j. If no pair slot-keyword-j and form-j
is present for a given slot, then the slot will be initialized by evaluating the
default-init form specified for that slot in the call to defstruct. (In other
words, the initialization specified in the defstruct defers to any specified
in a call to the constructor function.) If the default initialization form is
used, it is evaluated at construction time, but in the lexical environment of
the defstruct form in which it appeared. If the defstruct itself also did not
specify any initialization, the element’s initial value is undefined. You should

19.4. DEFSTRUCT SLOT-OPTIONS 485

always specify the initialization, either in the defstruct or in the call to the
constructor function, if you care about the initial value of the slot.

Each initialization form specified for a defstruct component, when used
by the constructor function for an otherwise unspecified component, is re-
evaluated on every call to the constructor function. It is as if the initialization
forms were used as init forms for the keyword parameters of the constructor
function. For example, if the form (gensym) were used as an initialization
form, either in the constructor-function call or as the default initialization
form in the defstruct form, then every call to the constructor function would
call gensym once to generate a new symbol.

X3J13 voted in October 1988 to clarify that the default value in a def-
struct slot is not evaluated unless it is needed in the creation of a particular
structure instance. If it is never needed, there can be no type-mismatch error,
even if the type of the slot is specified, and no warning should be issued.

For example, in the following sequence only the last form is in error.

(defstruct person (name .007 :type string))

(make-person :name "James")

(make-person) ;Error to give name the value .007

19.4 Defstruct Slot-Options
Each slot-description in a defstruct form may specify one or more slot-
options. A slot-option consists of a pair of a keyword and a value (which is
not a form to be evaluated, but the value itself). For example:

(defstruct ship
(x-position 0.0 :type short-float)
(y-position 0.0 :type short-float)
(x-velocity 0.0 :type short-float)
(y-velocity 0.0 :type short-float)
(mass *default-ship-mass* :type short-float :read-only t))

This specifies that each slot will always contain a short-format floating-
point number, and that the last slot may not be altered once a ship is con-
structed.

The available slot-options are as follows.

486 CHAPTER 19. STRUCTURES

:type The option :type type specifies that the contents of the slot will
always be of the specified data type. This is entirely analogous to the
declaration of a variable or function; indeed, it effectively declares the
result type of the access function. An implementation may or may not
choose to check the type of the new object when initializing or assigning
to a slot. Note that the argument form type is not evaluated; it must
be a valid type specifier.

:read-only The option :read-only x , where x is not nil, specifies that this
slot may not be altered; it will always contain the value specified at
construction time. setf will not accept the access function for this slot.
If x is nil, this slot-option has no effect. Note that the argument form
x is not evaluated.

Note that it is impossible to specify a slot-option unless a default value
is specified first.

19.5 Defstruct Options

The preceding description of defstruct is all that the average user will need
(or want) to know in order to use structures. The remainder of this chapter
discusses more complex features of the defstruct facility.

This section explains each of the options that can be given to defstruct.
A defstruct option may be either a keyword or a list of a keyword and
arguments for that keyword. (Note that the syntax for defstruct options
differs from the pair syntax used for slot-options. No part of any of these
options is evaluated.)

:conc-name This provides for automatic prefixing of names of access func-
tions. It is conventional to begin the names of all the access functions
of a structure with a specific prefix, the name of the structure followed
by a hyphen. This is the default behavior.

The argument to the :conc-name option specifies an alternative prefix
to be used. (If a hyphen is to be used as a separator, it must be specified
as part of the prefix.) If nil is specified as an argument, then no prefix
is used; then the names of the access functions are the same as the
slot-names, and it is up to the user to name the slots reasonably.

19.5. DEFSTRUCT OPTIONS 487

Note that no matter what is specified for :conc-name, with a construc-
tor function one uses slot keywords that match the slot-names, with no
prefix attached. On the other hand, one uses the access-function name
when using setf. Here is an example:

(defstruct door knob-color width material)
(setq my-door

(make-door :knob-color ’red :width 5.0))
(door-width my-door) ⇒ 5.0
(setf (door-width my-door) 43.7)
(door-width my-door) ⇒ 43.7
(door-knob-color my-door) ⇒ red

:constructor This option takes one argument, a symbol, which specifies
the name of the constructor function. If the argument is not provided
or if the option itself is not provided, the name of the constructor is
produced by concatenating the string "MAKE-" and the name of the
structure, putting the name in whatever package is current at the time
the defstruct form is processed (see *package*). If the argument is
provided and is nil, no constructor function is defined.

This option actually has a more general syntax that is explained in
section 19.6.

:copier This option takes one argument, a symbol, which specifies the name
of the copier function. If the argument is not provided or if the option
itself is not provided, the name of the copier is produced by concatenat-
ing the string "COPY-" and the name of the structure, putting the
name in whatever package is current at the time the defstruct form is
processed (see *package*). If the argument is provided and is nil, no
copier function is defined.

The automatically defined copier function simply makes a new struc-
ture and transfers all components verbatim from the argument into the
newly created structure. No attempt is made to make copies of the
components. Corresponding components of the old and new structures
will therefore be eql.

:predicate This option takes one argument, which specifies the name of the
type predicate. If the argument is not provided or if the option itself is

488 CHAPTER 19. STRUCTURES

not provided, the name of the predicate is made by concatenating the
name of the structure to the string "-P", putting the name in whatever
package is current at the time the defstruct form is processed (see
package). If the argument is provided and is nil, no predicate is
defined. A predicate can be defined only if the structure is “named”; if
the :type option is specified and the :named option is not specified,
then the :predicate option must either be unspecified or have the value
nil.

:include This option is used for building a new structure definition as an
extension of an old structure definition. As an example, suppose you
have a structure called person that looks like this:

(defstruct person name age sex)

Now suppose you want to make a new structure to represent an as-
tronaut. Since astronauts are people too, you would like them also
to have the attributes of name, age, and sex, and you would like Lisp
functions that operate on person structures to operate just as well on
astronaut structures. You can do this by defining astronaut with
the :include option, as follows:

(defstruct (astronaut (:include person)
(:conc-name astro-))

helmet-size
(favorite-beverage ’tang))

The :include option causes the structure being defined to have the
same slots as the included structure. This is done in such a way that
the access functions for the included structure will also work on the
structure being defined. In this example, an astronaut will therefore
have five slots: the three defined in person and the two defined in as-
tronaut itself. The access functions defined by the person structure
can be applied to instances of the astronaut structure, and they will
work correctly. Moreover, astronaut will have its own access func-
tions for components defined by the person structure. The following
examples illustrate how you can use astronaut structures:

19.5. DEFSTRUCT OPTIONS 489

(setq x (make-astronaut :name ’buzz
:age 45
:sex t
:helmet-size 17.5))

(person-name x) ⇒ buzz
(astro-name x) ⇒ buzz

(astro-favorite-beverage x) ⇒ tang

The difference between the access functions person-name and astro-
name is that person-name may be correctly applied to any person,
including an astronaut, while astro-name may be correctly applied
only to an astronaut. (An implementation may or may not check for
incorrect use of access functions.)
At most one :include option may be specified in a single defstruct
form. The argument to the :include option is required and must be
the name of some previously defined structure. If the structure being
defined has no :type option, then the included structure must also have
had no :type option specified for it. If the structure being defined has
a :type option, then the included structure must have been declared
with a :type option specifying the same representation type.
If no :type option is involved, then the structure name of the including
structure definition becomes the name of a data type, of course, and
therefore a valid type specifier recognizable by typep; moreover, it
becomes a subtype of the included structure. In the above example,
astronaut is a subtype of person; hence

(typep (make-astronaut) ’person)

is true, indicating that all operations on persons will also work on
astronauts.
The following is an advanced feature of the :include option. Some-
times, when one structure includes another, the default values or slot-
options for the slots that came from the included structure are not what
you want. The new structure can specify default values or slot-options
for the included slots different from those the included structure spec-
ifies, by giving the :include option as

490 CHAPTER 19. STRUCTURES

(:include name slot-description-1 slot-description-2 ...)

Each slot-description-j must have a slot-name or slot-keyword that
is the same as that of some slot in the included structure. If slot-
description-j has no default-init, then in the new structure the slot will
have no initial value. Otherwise its initial value form will be replaced
by the default-init in slot-description-j. A normally writable slot may
be made read-only. If a slot is read-only in the included structure, then
it must also be so in the including structure. If a type is specified for a
slot, it must be the same as, or a subtype of, the type specified in the
included structure. If it is a strict subtype, the implementation may or
may not choose to error-check assignments.

For example, if we had wanted to define astronaut so that the default
age for an astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45)))
helmet-size
(favorite-beverage ’tang))

X3J13 voted in June 1988 to require any structure type created by
defstruct (or defclass) to be disjoint from any of the types cons,
symbol, array, number, character, hash-table, readtable, pack-
age, pathname, stream, and random-state. A consequence of this
requirement is that it is an error to specify any of these types, or any
of their subtypes, to the defstruct :include option. (The first edition
said nothing explicitly about this. Inasmuch as using such a type with
the :include option was not defined to work, one might argue that
such use was an error in Common Lisp as defined by the first edition.)

:print-function This option may be used only if the :type option is not
specified. The argument to the :print-function option should be a
function of three arguments, in a form acceptable to the function spe-
cial operator, to be used to print structures of this type. When a struc-
ture of this type is to be printed, the function is called on three argu-
ments: the structure to be printed, a stream to print to, and an integer
indicating the current depth (to be compared against *print-level*).
The printing function should observe the values of such printer-control
variables as *print-escape* and *print-pretty*.

19.5. DEFSTRUCT OPTIONS 491

If the :print-function option is not specified and the :type option also
not specified, then a default printing function is provided for the struc-
ture that will print out all its slots using#S syntax (see section 22.1.4).

X3J13 voted in January 1989 to specify that user-defined printing
functions for the defstruct :print-function option may print ob-
jects to the supplied stream using write, print1, princ, format, or
print-object and expect circularities to be detected and printed us-
ing #n# syntax (when *print-circle* is non-nil, of course). See
print-circle.

X3J13 voted in January 1989 to clarify that if the :print-function
option is not specified but the :include option is specified, then the
print function is inherited from the included structure type. Thus, for
example, an astronaut will be printed by the same printing function
that is used for person.

X3J13 in the same vote extended the print-function option as follows:
If the print-function option is specified but with no argument, then
the standard default printing function (that uses #S syntax) will be
used. This provides a means of overriding the inheritance rule. For
example, if person and astronaut had been defined as

(defstruct (person
(:print-function ;Special print function
(lambda (p s k)
(format s "<~A, age ~D>"

(person-name p)
(person-age p)))))

name age sex)

(defstruct (astronaut
(:include person)
(:conc-name astro-)
(:print-function)) ;Use default print function

helmet-size
(favorite-beverage ’tang))

then an ordinary person would be printed as “<Joe Schmoe, age
27>” but an astronaut would be printed as, for example,

492 CHAPTER 19. STRUCTURES

#S(ASTRONAUT NAME BUZZ AGE 45 SEX T
HELMET-SIZE 17.5 FAVORITE-BEVERAGE TANG)

using the default #S syntax (yuk).

These changes make the behavior of defstruct with respect to the
:include option a bit more like the behavior of classes in CLOS.

:type The :type option explicitly specifies the representation to be used for
the structure. It takes one argument, which must be one of the types
enumerated below.

Specifying this option has the effect of forcing a specific representation
and of forcing the components to be stored in the order specified in the
defstruct form in corresponding successive elements of the specified
representation. It also prevents the structure name from becoming a
valid type specifier recognizable by typep (see section 19.7).

Normally this option is not specified, in which case the structure is
represented in an implementation-dependent manner.

vector This produces the same result as specifying (vec-
tor t). The structure is represented as a general vector,
storing components as vector elements. The first com-
ponent is vector element 1 if the structure is :named,
and element 0 otherwise.

(vector element-type) The structure is represented as a
(possibly specialized) vector, storing components as vec-
tor elements. Every component must be of a type that
can be stored in a vector of the type specified. The
first component is vector element 1 if the structure is
:named, and element 0 otherwise. The structure may
be :named only if the type symbol is a subtype of the
specified element-type.

list The structure is represented as a list. The first compo-
nent is the cadr if the structure is :named, and the car
if it is :unnamed.

:named The :named option specifies that the structure is “named”; this
option takes no argument. If no :type option is specified, then the

19.6. BY-POSITION CONSTRUCTOR FUNCTIONS 493

structure is always named; so this option is useful only in conjunction
with the :type option. See section 19.7 for a further description of this
option.

:initial-offset This allows you to tell defstruct to skip over a certain num-
ber of slots before it starts allocating the slots described in the body.
This option requires an argument, a non-negative integer, which is the
number of slots you want defstruct to skip. The :initial-offset option
may be used only if the :type option is also specified. See section 19.7.3
for a further description of this option.

19.6 By-Position Constructor Functions

If the :constructor option is given as (:constructor name arglist), then
instead of making a keyword-driven constructor function, defstruct defines
a “positional” constructor function, taking arguments whose meaning is de-
termined by the argument’s position rather than by a keyword. The ar-
glist is used to describe what the arguments to the constructor will be. In
the simplest case something like (:constructor make-foo (a b c)) defines
make-foo to be a three-argument constructor function whose arguments are
used to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux are recognized
in the argument list. They work in the way you might expect, but there are
a few fine points worthy of explanation. Consider this example:

(:constructor create-foo
(a &optional b (c ’sea) &rest d &aux e (f ’eff)))

This defines create-foo to be a constructor of one or more arguments.
The first argument is used to initialize the a slot. The second argument is
used to initialize the b slot. If there isn’t any second argument, then the
default value given in the body of the defstruct (if given) is used instead.
The third argument is used to initialize the c slot. If there isn’t any third
argument, then the symbol sea is used instead. Any arguments following
the third argument are collected into a list and used to initialize the d slot.
If there are three or fewer arguments, then nil is placed in the d slot. The
e slot is not initialized ; its initial value is undefined. Finally, the f slot is
initialized to contain the symbol eff.

494 CHAPTER 19. STRUCTURES

The actions taken in the b and e cases were carefully chosen to allow the
user to specify all possible behaviors. Note that the &aux “variables” can
be used to completely override the default initializations given in the body.

With this definition, one can write

(create-foo 1 2)

instead of

(make-foo :a 1 :b 2)

and of course create-foo provides defaulting different from that of make-
foo.

It is permissible to use the :constructor option more than once, so that
you can define several different constructor functions, each taking different
parameters.

Because a constructor of this type operates By Order of Arguments, it is
sometimes known as a BOA constructor.

X3J13 voted in January 1989 to allow &key and &allow-other-keys
in the parameter list of a “positional” constructor. The initialization of slots
corresponding to keyword parameters is performed in the same manner as
for &optional parameters. A variant of the example shown above illustrates
this:

(:constructor create-foo
(a &optional b (c ’sea)
&key p (q ’cue) ((:why y)) ((:you u) ’ewe)
&aux e (f ’eff)))

The treatment of slots a, b, c, e, and f is the same as in the original
example. In addition, if there is a :p keyword argument, it is used to initialize
the p slot; if there isn’t any :p keyword argument, then the default value
given in the body of the defstruct (if given) is used instead. Similarly, if
there is a :q keyword argument, it is used to initialize the q slot; if there
isn’t any :q keyword argument, then the symbol cue is used instead.

In order thoroughly to flog this presumably already dead horse, we further
observe that if there is a :why keyword argument, it is used to initialize the y
slot; otherwise the default value for slot y is used instead. Similarly, if there
is a :you keyword argument, it is used to initialize the u slot; otherwise the
symbol ewe is used instead.

19.6. BY-POSITION CONSTRUCTOR FUNCTIONS 495

If memory serves me correctly, defstruct was included in the original
design for Common Lisp some time before keyword arguments were approved.
The failure of positional constructors to accept keyword arguments may well
have been an oversight on my part; there is no logical reason to exclude them.
I am grateful to X3J13 for rectifying this.

A remaining difficulty is that the possibility of keyword arguments ren-
ders the term “positional constructor” a misnomer. Worse yet, it ruins the
term “BOA constructor.” I suggest that they continue to be called BOA
constructors, as I refuse to abandon a good pun. (I regret appearing to have
more compassion for puns than for horses.)

As part of the same vote X3J13 also changed defstruct to allow BOA
constructors to have parameters (including supplied-p parameters) that do
not correspond to any slot. Such parameters may be used in subsequent
initialization forms in the parameter list. Consider this example:

(defstruct (ice-cream-factory
(:constructor fabricate-factory
(&key (capacity 5)

location
(local-flavors
(case location
((hawaii) ’(pineapple macadamia guava))
((massachusetts) ’(lobster baked-bean))
((california) ’(ginger lotus avocado

bean-sprout garlic))
((texas) ’(jalapeno barbecue))))

(flavors (subseq (append local-flavors
’(vanilla
chocolate
strawberry
pistachio
maple-walnut
peppermint))

0 capacity)))))
(capacity 3)
(flavors ’(vanilla chocolate strawberry mango)))

The structure type ice-cream-factory has two constructors. The stan-
dard constructor, make-ice-cream-factory, takes two keyword arguments

496 CHAPTER 19. STRUCTURES

named :capacity and :flavors. For this constructor, the default for the ca-
pacity slot is 3 and the default list of flavors is America’s favorite threesome
and a dark horse (not a dead one). The BOA constructor fabricate-factory
accepts four different keyword arguments. The :capacity argument defaults
to 5, and the :flavors argument defaults in a complicated manner based on
the other three. The :local-flavors argument may be specified directly, or
may be allowed to default based on the :location of the factory. Here are
examples of various factories:

(setq houston (fabricate-factory :capacity 4 :location ’texas))
(setq cambridge (fabricate-factory :location ’massachusetts))
(setq seattle (fabricate-factory :local-flavors ’(salmon)))
(setq wheaton (fabricate-factory :capacity 4 :location ’illinois))
(setq pittsburgh (fabricate-factory :capacity 4))
(setq cleveland (make-factory :capacity 4))

(ice-cream-factory-flavors houston)
⇒ (jalapeno barbecue vanilla chocolate)

19.7. STRUCTURES OF EXPLICITLY SPECIFIED REPRESENTATIONAL TYPE497

(ice-cream-factory-flavors cambridge)
⇒ (lobster baked-bean vanilla chocolate strawberry)

(ice-cream-factory-flavors seattle)
⇒ (salmon vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors wheaton)
⇒ (vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors pittsburgh)
⇒ (vanilla chocolate strawberry pistachio)

(ice-cream-factory-flavors cleveland)
⇒ (vanilla chocolate strawberry mango)

19.7 Structures of Explicitly Specified Repre-
sentational Type

Sometimes it is important to have explicit control over the representation of
a structure. The :type option allows one to specify that a structure must
be implemented in a particular way, using a list or a specific kind of vector,
and to specify the exact allocation of structure slots to components of the
representation. A structure may also be “unnamed” or “named,” according
to whether the structure name is stored in (and thus recoverable from) the
structure.

19.7.1 Unnamed Structures

Sometimes a particular data representation is imposed by external require-
ments, and yet it is desirable to document the data format as a defstruct-
style structure. For example, consider expressions built up from numbers,
symbols, and binary operations such as + and *. An operation might be
represented as it is in Lisp, as a list of the operator and the two operands.
This fact can be expressed succinctly with defstruct in this manner: е

(defstruct (binop (:type list))
(operator ’? :type symbol)

498 CHAPTER 19. STRUCTURES

operand-1
operand-2)

This will define a constructor function make-binop and three selec-
tor functions, namely binop-operator, binop-operand-1, and binop-
operand-2. (It will not, however, define a predicate binop-p, for reasons
explained below.)

The effect of make-binop is simply to construct a list of length 3:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)
⇒ (+ x 5)

(make-binop :operand-2 4 :operator ’*)
⇒ (* nil 4)

It is just like the function list except that it takes keyword arguments
and performs slot defaulting appropriate to the binop conceptual data type.
Similarly, the selector functions binop-operator, binop-operand-1, and
binop-operand-2 are essentially equivalent to car, cadr, and caddr, re-
spectively. (They might not be completely equivalent because, for example,
an implementation would be justified in adding error-checking code to ensure
that the argument to each selector function is a length-3 list.)

We speak of binop as being a “conceptual” data type because binop is
not made a part of the Common Lisp type system. The predicate typep
will not recognize binop as a type specifier, and type-of will return list
when given a binop structure. Indeed, there is no way to distinguish a data
structure constructed by make-binop from any other list that happens to
have the correct structure.

There is not even any way to recover the structure name binop from
a structure created by make-binop. This can be done, however, if the
structure is “named.”

19.7.2 Named Structures

A “named” structure has the property that, given an instance of the structure,
the structure name (that names the type) can be reliably recovered. For
structures defined with no :type option, the structure name actually becomes
part of the Common Lisp data-type system. The function type-of, when
applied to such a structure, will return the structure name as the type of the

19.7. STRUCTURES OF EXPLICITLY SPECIFIED REPRESENTATIONAL TYPE499

object; the predicate typep will recognize the structure name as a valid type
specifier.

For structures defined with a :type option, type-of will return a type
specifier such as list or (vector t), depending on the type specified to the
:type option. The structure name does not become a valid type specifier.
However, if the :named option is also specified, then the first component of
the structure (as created by a defstruct constructor function) will always
contain the structure name. This allows the structure name to be recovered
from an instance of the structure and allows a reasonable predicate for the
conceptual type to be defined: the automatically defined name-p predicate
for the structure operates by first checking that its argument is of the proper
type (list, (vector t), or whatever) and then checking whether the first
component contains the appropriate type name.

Consider the binop example shown above, modified only to include the
:named option:

(defstruct (binop (:type list) :named)
(operator ’? :type symbol)
operand-1
operand-2)

As before, this will define a constructor function make-binop and
three selector functions binop-operator, binop-operand-1, and binop-
operand-2. It will also define a predicate binop-p.

The effect of make-binop is now to construct a list of length 4:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)
⇒ (binop + x 5)

(make-binop :operand-2 4 :operator ’*)
⇒ (binop * nil 4)

The structure has the same layout as before except that the structure
name binop is included as the first list element. The selector functions
binop-operator, binop-operand-1, and binop-operand-2 are essentially
equivalent to cadr, caddr, and cadddr, respectively. The predicate binop-
p is more or less equivalent to the following definition.

(defun binop-p (x)
(and (consp x) (eq (car x) ’binop)))

500 CHAPTER 19. STRUCTURES

The name binop is still not a valid type specifier recognizable to typep,
but at least there is a way of distinguishing binop structures from other
similarly defined structures.

19.7.3 Other Aspects of Explicitly Specified Structures

The :initial-offset option allows one to specify that slots be allocated be-
ginning at a representational element other than the first. For example, the
form

(defstruct (binop (:type list) (:initial-offset 2))
(operator ’? :type symbol)
operand-1
operand-2)

would result in the following behavior for make-binop:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)
⇒ (nil nil + x 5)

(make-binop :operand-2 4 :operator ’*)
⇒ (nil nil * nil 4)

The selectors binop-operator, binop-operand-1, and binop-
operand-2 would be essentially equivalent to caddr, cadddr, and car of
cddddr, respectively. Similarly, the form

(defstruct (binop (:type list) :named (:initial-offset 2))
(operator ’? :type symbol)
operand-1
operand-2)

would result in the following behavior for make-binop:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)
⇒ (nil nil binop + x 5)

(make-binop :operand-2 4 :operator ’*)
⇒ (nil nil binop * nil 4)

19.7. STRUCTURES OF EXPLICITLY SPECIFIED REPRESENTATIONAL TYPE501

If the :include is used with the :type option, then the effect is first to
skip over as many representation elements as needed to represent the included
structure, then to skip over any additional elements specified by the :initial-
offset option, and then to begin allocation of elements from that point. For
example:

(defstruct (binop (:type list) :named (:initial-offset 2))
(operator ’? :type symbol)
operand-1
operand-2)

(defstruct (annotated-binop (:type list)
(:initial-offset 3)
(:include binop))

commutative associative identity)

(make-annotated-binop :operator ’*
:operand-1 ’x
:operand-2 5
:commutative t
:associative t
:identity 1)

⇒ (nil nil binop * x 5 nil nil nil t t 1)

The first two nil elements stem from the :initial-offset of 2 in the defini-
tion of binop. The next four elements contain the structure name and three
slots for binop. The next three nil elements stem from the :initial-offset of
3 in the definition of annotated-binop. The last three list elements contain
the additional slots for an annotated-binop.

502 CHAPTER 19. STRUCTURES

Chapter 20

Evaluator

The mechanism that executes Lisp programs is called the evaluator. More
precisely, the evaluator accepts a form and performs the computation speci-
fied by the form. This mechanism is made available to the user through the
function eval.

The evaluator is typically implemented as an interpreter that traverses
the given form recursively, performing each step of the computation as it
goes. An interpretive implementation is not required, however. A permis-
sible alternative approach is for the evaluator first to completely compile
the form into machine-executable code and then invoke the resulting code.
This technique virtually eliminates incompatibilities between interpreted and
compiled code but also renders the evalhook mechanism relatively useless.
Various mixed strategies are also possible. All of these approaches should
produce the same results when executing a correct program but may pro-
duce different results for incorrect programs. For example, the approaches
may differ as to when macro calls are expanded; macro definitions should
not depend on the time at which they are expanded. Implementors should
document the evaluation strategy for each implementation.

20.1 Run-Time Evaluation of Forms

The function eval is the main user interface to the evaluator. Hooks are
provided for user-supplied debugging routines to obtain control during the
execution of an interpretive evaluator. The functions evalhook and apply-
hook provide alternative interfaces to the evaluator mechanism for use by

503

504 CHAPTER 20. EVALUATOR

these debugging routines.

[Function] eval form

The form is evaluated in the current dynamic environment and a null
lexical environment. Whatever results from the evaluation is returned from
the call to eval.

Note that when you write a call to eval two levels of evaluation occur
on the argument form you write. First the argument form is evaluated, as
for arguments to any function, by the usual argument evaluation mechanism
(which involves an implicit use of eval). Then the argument is passed to the
eval function, where another evaluation occurs. For example:

(eval (list ’cdr (car ’((quote (a . b)) c)))) ⇒ b

The argument form (list ’cdr (car ’((quote (a . b)) c))) is evaluated
in the usual way to produce the argument (cdr (quote (a . b))); this is
then given to eval because eval is being called explicitly, and eval evaluates
its argument (cdr (quote (a . b))) to produce b.

If all that is required for some application is to obtain the current dynamic
value of a given symbol, the function symbol-value may be more efficient
than eval.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Variable] *evalhook*
[Variable] *applyhook*

If the value of *evalhook* is not nil, then eval behaves in a special
way. The non-nil value of *evalhook* should be a function that takes
two arguments, a form and an environment; this is called the eval hook
function. When a form is to be evaluated (any form at all, even a number
or a symbol), whether implicitly or via an explicit call to eval, no attempt
is made to evaluate the form. Instead, the hook function is invoked and is
passed the form to be evaluated as its first argument. The hook function is
then responsible for evaluating the form; whatever is returned by the hook
function is assumed to be the result of evaluating the form.

The variable *applyhook* is similar to *evalhook* but is used when a
function is about to be applied to arguments. If the value of *applyhook*
is not nil, then eval behaves in a special way.

20.1. RUN-TIME EVALUATION OF FORMS 505

X3J13 voted in January 1989 to revise the definition of *applyhook*.
Its value should be a function of two arguments, a function and a list of
arguments; no environment information is passed to an apply hook function.

This was simply a flaw in the first edition. Sorry about that.
When a function is about to be applied to a list of arguments, no at-

tempt is made to apply the function. Instead, the hook function is invoked
and is passed the function and the list of arguments as its first and second
arguments. The hook function is then responsible for evaluating the form;
whatever is returned by the hook function is assumed to be the result of
evaluating the form. The apply hook function is used only for application
of ordinary functions within eval. It is not used for applications via ap-
ply or funcall, for applications by such functions as map or reduce, or for
invocation of macro-expansion functions by either eval or macroexpand.

X3J13 voted in June 1988 to specify that the value of *macroexpand-
hook* is first coerced to a function before being called as the expansion
interface hook. This vote made no mention of *evalhook* or *applyhook*,
but this may have been an oversight.

A proposal was submitted to X3J13 in September 1989 to specify that the
value of *evalhook* or *applyhook* is first coerced to a function before
being called. If this proposal is accepted, the value of either variable may be
nil, any other symbol, a lambda-expression, or any object of type function.

The last argument passed to either kind of hook function contains infor-
mation about the lexical environment in an implementation-dependent for-
mat. These arguments are suitable for the functions evalhook, applyhook,
and macroexpand.

When either kind of hook function is invoked, both of the variables *eval-
hook* and *applyhook* are rebound to the value nil around the invocation
of the hook function. This is so that the hook function will not be invoked
recursively on evaluations and applications that occur in the course of execut-
ing the code of the hook function. The functions evalhook and applyhook
are useful for performing recursive evaluations and applications within the
hook function.

The hook feature is provided as an aid to debugging. The step facility is
implemented using this hook.

If a non-local exit causes a throw back to the top level of Lisp, perhaps be-
cause an error could not be corrected, then *evalhook* and *applyhook*
are automatically reset to nil as a safety feature.

506 CHAPTER 20. EVALUATOR

[Function] evalhook form evalhookfn applyhookfn &optional env
[Function] applyhook function args evalhookfn applyhookfn &optional
env

The functions evalhook and applyhook are provided to make it easier
to exploit the hook feature.

In the case of evalhook, the form is evaluated. In the case of apply-
hook, the function is applied to the list of arguments args. In either case,
for the duration of the operation the variable *evalhook* is bound to eval-
hookfn, and *applyhook* is bound to applyhookfn. Furthermore, the env
argument is used as the lexical environment for the operation; env defaults to
the null environment. The check for a hook function is bypassed for the eval-
uation of the form itself (for evalhook) or for the application of the function
to the args itself (for applyhook), but not for subsidiary evaluations and
applications such as evaluations of subforms. It is this one-shot bypass that
makes evalhook and applyhook so useful.

X3J13 voted in January 1989 to eliminate the optional env parameter to
applyhook, because it is not (and cannot) be useful. Any function that can
be applied carries its own environment and does not need another environ-
ment to be specified separately. This was a flaw in the first edition.

Here is an example of a very simple tracing routine that uses just the
evalhook feature.

(defvar *hooklevel* 0)

(defun hook (x)
(let ((*evalhook* ’eval-hook-function))
(eval x)))

(defun eval-hook-function (form &rest env)
(let ((*hooklevel* (+ *hooklevel* 1)))
(format *trace-output* "~%~V@TForm: ~S"

(* *hooklevel* 2) form)
(let ((values (multiple-value-list

(evalhook form
#’eval-hook-function
nil
env))))

(format *trace-output* "~%~V@TValue:~{ ~S~}"

20.2. THE TOP-LEVEL LOOP 507

(* *hooklevel* 2) values)
(values-list values))))

Using these routines, one might see the following interaction:

(hook ’(cons (floor *print-base* 2) ’b))
Form: (CONS (FLOOR *PRINT-BASE* 2) (QUOTE B))
Form: (FLOOR *PRINT-BASE* 3)
Form: *PRINT-BASE*
Value: 10
Form: 3
Value: 3

Value: 3 1
Form: (QUOTE B)
Value: B

Value: (3 . B)
(3 . B)

[Function] constantp object

If the predicate constantp is true of an object, then that object, when
considered as a form to be evaluated, always evaluates to the same thing; it is
a constant. This includes self-evaluating objects such as numbers, characters,
strings, bit-vectors, and keywords, as well as all constant symbols declared
by defconstant, such as nil, t, and pi. In addition, a list whose car is
quote, such as (quote foo), is considered to be a constant.

If constantp is false of an object, then that object, considered as a form,
might or might not always evaluate to the same thing.

20.2 The Top-Level Loop

Normally one interacts with Lisp through a “top-level read-eval-print loop,”
so called because it is the highest level of control and consists of an endless
loop that reads an expression, evaluates it, and prints the results. One has
an effect on the state of the Lisp system only by invoking actions that have
side effects.

The precise nature of the top-level loop for Common Lisp is purposely
not rigorously specified here so that implementors can experiment to improve

508 CHAPTER 20. EVALUATOR

the user interface. For example, an implementor may choose to require line-
at-a-time input, or may provide a fancy editor or complex graphics-display
interface. An implementor may choose to provide explicit prompts for in-
put, or may choose (as MacLisp does) not to clutter up the transcript with
prompts.

The top-level loop is required to trap all throws and recover gracefully.
It is also required to print all values resulting from evaluation of a form,
perhaps on separate lines. If a form returns zero values, as little as possible
should be printed.

The following variables are maintained by the top-level loop as a limited
safety net, in case the user forgets to save an interesting input expression or
output value. (Note that the names of some of these variables violate the
convention that names of global variables begin and end with an asterisk.)
These are intended primarily for user interaction, which is why they have
short names. Use of these variables should be avoided in programs.

[Variable] +
[Variable] ++
[Variable] +++

While a form is being evaluated by the top-level loop, the variable + is
bound to the previous form read by the loop. The variable ++ holds the
previous value of + (that is, the form evaluated two interactions ago), and
+++ holds the previous value of ++.

[Variable] -

While a form is being evaluated by the top-level loop, the variable - is
bound to the form itself; that is, it is the value about to be given to + once
this interaction is done. Notice of correction. In the first edition, the name
of the variable - was inadvertently omitted.

[Variable] *
[Variable] **
[Variable] ***

While a form is being evaluated by the top-level loop, the variable * is
bound to the result printed at the end of the last time through the loop; that
is, it is the value produced by evaluating the form in +. If several values

20.2. THE TOP-LEVEL LOOP 509

were produced, * contains the first value only; * contains nil if zero values
were produced. The variable ** holds the previous value of * (that is, the
result printed two interactions ago), and *** holds the previous value of **.

If the evaluation of + is aborted for some reason, then the values asso-
ciated with *, **, and *** are not updated; they are updated only if the
printing of values is at least begun (though not necessarily completed).

[Variable] /
[Variable] //
[Variable] ///

While a form is being evaluated by the top-level loop, the variable / is
bound to a list of the results printed at the end of the last time through the
loop; that is, it is a list of all values produced by evaluating the form in +.
The value of * should always be the same as the car of the value of /. The
variable // holds the previous value of / (that is, the results printed two
interactions ago), and /// holds the previous value of //. Therefore the
value of ** should always be the same as the car of //, and similarly for
*** and ///.

If the evaluation of + is aborted for some reason, then the values asso-
ciated with /, //, and /// are not updated; they are updated only if the
printing of values is at least begun (though not necessarily completed).

As an example of the processing of these variables, consider the following
possible transcript, where > is a prompt by the top-level loop for user input:

>(cons - -) ;Interaction 1
((CONS - -) CONS - -) ;Cute, huh?

>(values) ;Interaction 2
;Nothing to print

>(cons ’a ’b) ;Interaction 3
(A . B) ;There is a single value

>(hairy-loop)^G ;Interaction 4
QUIT to top level. ;(User aborts the computation.)

>(floor 13 4) ;Interaction 5
3 ;There are two values
1

510 CHAPTER 20. EVALUATOR

At this point we have:

+++ ⇒ (cons ’a ’b) *** ⇒ NIL /// ⇒ ()
++ ⇒ (hairy-loop) ** ⇒ (A . B) // ⇒ ((A . B))
+ ⇒ (floor 13 4) * ⇒ 3 / ⇒ (3 1)

Chapter 21

Streams

Streams are objects that serve as sources or sinks of data. Character streams
produce or absorb characters; binary streams produce or absorb integers.
The normal action of a Common Lisp system is to read characters from a
character input stream, parse the characters as representations of Common
Lisp data objects, evaluate each object (as a form) as it is read, and print
representations of the results of evaluation to an output character stream.

Typically streams are connected to files or to an interactive terminal.
Streams, being Lisp objects, serve as the ambassadors of external devices by
which input/output is accomplished.

A stream, whether a character stream or a binary stream, may be input-
only, output-only, or bidirectional. What operations may be performed on a
stream depends on which of the six types of stream it is.

21.1 Standard Streams

There are several variables whose values are streams used by many functions
in the Lisp system. These variables and their uses are listed here. By con-
vention, variables that are expected to hold a stream capable of input have
names ending with -input, and variables that are expected to hold a stream
capable of output have names ending with -output. Variables expected to
hold a bidirectional stream have names ending with -io.

511

512 CHAPTER 21. STREAMS

[Variable] *standard-input*

In the normal Lisp top-level loop, input is read from *standard-input*
(that is, whatever stream is the value of the global variable *standard-
input*). Many input functions, including read and read-char, take a
stream argument that defaults to *standard-input*.

[Variable] *standard-output*

In the normal Lisp top-level loop, output is sent to *standard-output*
(that is, whatever stream is the value of the global variable *standard-
output*). Many output functions, including print and write-char, take a
stream argument that defaults to *standard-output*.

[Variable] *error-output*

The value of *error-output* is a stream to which error messages should
be sent. Normally this is the same as *standard-output*, but *standard-
output* might be bound to a file and *error-output* left going to the
terminal or to a separate file of error messages.

[Variable] *query-io*

The value of *query-io* is a stream to be used when asking questions
of the user. The question should be output to this stream, and the answer
read from it. When the normal input to a program may be coming from a
file, questions such as “Do you really want to delete all of the files in your
directory?” should nevertheless be sent directly to the user; and the answer
should come from the user, not from the data file. For such purposes *query-
io* should be used instead of *standard-input* and *standard-output*.
query-io is used by such functions as yes-or-no-p.

[Variable] *debug-io*

The value of *debug-io* is a stream to be used for interactive debugging
purposes. This is often the same as the value of *query-io*, but need not
be.

21.1. STANDARD STREAMS 513

[Variable] *terminal-io*

The value of *terminal-io* is ordinarily the stream that connects to the
user’s console. Typically, writing to this stream would cause the output to
appear on a display screen, for example, and reading from the stream would
accept input from a keyboard.

It is intended that standard input functions such as read and read-
char, when used with this stream, would cause “echoing” of the input into
the output side of the stream. (The means by which this is accomplished are
of course highly implementation-dependent.)

[Variable] *trace-output*

The value of *trace-output* is the stream on which the trace function
prints its output.

The variables *standard-input*, *standard-output*, *error-
output*, *trace-output*, *query-io*, and *debug-io* are initially
bound to synonym streams that pass all operations on to the stream that
is the value of *terminal-io*. (See make-synonym-stream.) Thus any
operations performed on those streams will go to the terminal.

X3J13 voted in January 1989 to replace the requirements of the preceding
paragraph with the following new requirements:

The seven standard stream variables, *standard-input*, *standard-
output*, *query-io*, *debug-io*, *terminal-io*, *error-output*, and
trace-output, are initially bound to open streams. (These will be called
the standard initial streams.)

The streams that are the initial values of *standard-input*, *query-
io*, *debug-io*, and *terminal-io* must support input.

The streams that are the initial values of *standard-output*, *error-
output*, *trace-output*, *query-io*, *debug-io*, and *terminal-io*
must support output.

None of the standard initial streams (including the one to which
terminal-io is initially bound) may be a synonym, either directly or indi-
rectly, for any of the standard stream variables except *terminal-io*. For
example, the initial value of *trace-output* may be a synonym stream
for *terminal-io* but not a synonym stream for *standard-output* or
query-io. (These are examples of direct synonyms.) As another example,
query-io may be a two-way stream or echo stream whose input compo-
nent is a synonym for *terminal-io*, but its input component may not be

514 CHAPTER 21. STREAMS

a synonym for *standard-input* or *debug-io*. (These are examples of
indirect synonyms.)

Any or all of the standard initial streams may be direct or indirect syn-
onyms for one or more common implementation-dependent streams. For
example, the standard initial streams might all be synonym streams (or two-
way or echo streams whose components are synonym streams) to a pair of
hidden terminal input and output streams maintained by the implementa-
tion.

Part of the intent of these rules is to ensure that it is always safe to bind
any standard stream variable to the value of any other standard stream vari-
able (that is, unworkable circularities are avoided) without unduly restricting
implementation flexibility.

No user program should ever change the value of *terminal-io*. A
program that wants (for example) to divert output to a file should do so by
binding the value of *standard-output*; that way error messages sent to
error-output can still get to the user by going through *terminal-io*,
which is usually what is desired.

21.2 Creating New Streams

Perhaps the most important constructs for creating new streams are those
that open files; see with-open-file and open. The following functions con-
struct streams without reference to a file system.

[Function] make-synonym-stream symbol

make-synonym-stream creates and returns a synonym stream. Any
operations on the new stream will be performed on the stream that is then
the value of the dynamic variable named by the symbol. If the value of the
variable should change or be bound, then the synonym stream will operate
on the new stream.

The result of make-synonym-stream is always a stream of type
synonym-stream. Note that the type of a synonym stream is always
synonym-stream, regardless of the type of the stream for which it is a
synonym.

21.2. CREATING NEW STREAMS 515

[Function] make-broadcast-stream &rest streams

This returns a stream that works only in the output direction. Any
output sent to this stream will be sent to all of the streams given. The set
of operations that may be performed on the new stream is the intersection
of those for the given streams. The results returned by a stream operation
are the values resulting from performing the operation on the last stream
in streams ; the results of performing the operation on all preceding streams
are discarded. If no streams are given as arguments, then the result is a
“bit sink”; all output to the resulting stream is discarded. The result of
make-broadcast-stream is always a stream of type broadcast-stream.

[Function] make-concatenated-stream &rest streams

This returns a stream that works only in the input direction. Input is
taken from the first of the streams until it reaches end-of-file; then that
stream is discarded, and input is taken from the next of the streams, and so
on. If no arguments are given, the result is a stream with no content; any
input attempt will result in end-of-file. The result of make-concatenated-
stream is always a stream of type concatenated-stream.

[Function] make-two-way-stream input-stream output-stream

This returns a bidirectional stream that gets its input from input-stream
and sends its output to output-stream. The result of make-two-way-
stream is always a stream of type two-way-stream.

[Function] make-echo-stream input-stream output-stream

This returns a bidirectional stream that gets its input from input-stream
and sends its output to output-stream. In addition, all input taken from
input-stream is echoed to output-stream.

Result of make-echo-stream is always a stream of type echo-stream.
X3J13 voted in January 1989 to clarify the interaction of read-char,

unread-char, and peek-char with echo streams. (See the descriptions of
those functions for details.)

X3J13 explicitly noted that the bidirectional streams that are the ini-
tial values of *query-io*, *debug-io*, and *terminal-io*, even though
they may have some echoing behavior, conceptually are not necessarily the

516 CHAPTER 21. STREAMS

products of calls to make-echo-stream and therefore are not subject to the
new rules about echoing on echo streams. Instead, these initial interactive
streams may have implementation-dependent echoing behavior.

[Function] make-string-input-stream string &optional start end

This returns an input stream. The input stream will supply, in order, the
characters in the substring of string delimited by start and end ; after the
last character has been supplied, the stream will then be at end-of-file.

Result of make-string-input-stream is always a stream of type string-
stream.

[Function] make-string-output-stream &key :element-type

This returns an output stream that will accumulate all output given it
for the benefit of the function get-output-stream-string.

The :element-type argument specifies what characters must be accepted
by the created stream. If the :element-type argument is omitted, the cre-
ated stream must accept all characters.

The result of make-string-output-stream is always a stream of type
string-stream.

[Function] get-output-stream-string string-output-stream

Given a stream produced by make-string-output-stream, this returns
a string containing all the characters output to the stream so far. The stream
is then reset; thus each call to get-output-stream-string gets only the
characters since the last such call (or the creation of the stream, if no such
previous call has been made).

[Macro] with-open-stream (var stream) {declaration}* {form}*
The form stream is evaluated and must produce a stream. The variable

var is bound with the stream as its value, and then the forms of the body
are executed as an implicit progn; the results of evaluating the last form
are returned as the value of the with-open-stream form. The stream is
automatically closed on exit from the with-open-stream form, no matter
whether the exit is normal or abnormal; see close. The stream should be
regarded as having dynamic extent.

21.2. CREATING NEW STREAMS 517

The stream created by with-open-stream is always of type file-
stream.
[Macro] with-input-from-string (var string {keyword value}*)
{declaration}* {form}*
The body is executed as an implicit progn with the variable var bound to

a character input stream that supplies successive characters from the value
of the form string. with-input-from-string returns the results from the
last form of the body.

The input stream is automatically closed on exit from the with-input-
from-string form, no matter whether the exit is normal or abnormal. The
stream should be regarded as having dynamic extent.

The stream created by with-input-from-string is always of type
string-stream.

The following keyword options may be used:

:index The form after the :index keyword should be a place
acceptable to setf. If the with-input-from-string form is
exited normally, then the place will have stored into it the
index into the string indicating the first character not read
(the length of the string if all characters were used). The
place is not updated as reading progresses, but only at the
end of the operation.

:start The :start keyword takes an argument indicating, in the
manner usual for sequence functions, the beginning of a sub-
string of string to be used.

:end The :end keyword takes an argument indicating, in the
manner usual for sequence functions, the end of a substring
of string to be used.

Here is an example of the use of with-input-from-string:

(with-input-from-string (s "Animal Crackers" :index j :start 6)
(read s)) ⇒ crackers

As a side effect, the variable j is set to 15.
X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

[Macro] with-output-to-string (var [string [:element-type type]])
{declaration}* {form}*
One may specify nil instead of a string as the string and use the

:element-type argument to specify what characters must be accepted by

518 CHAPTER 21. STREAMS

the created stream. If no string argument is provided, or if it is nil and no
:element-type is specified, the created stream must accept all characters.

If string is specified, it must be a string with a fill pointer; the output is
incrementally appended to the string (as if by use of vector-push-extend).

In this way output cannot be accidentally lost. This change makes with-
output-to-string behave in the same way that format does when given a
string as its first argument.

The stream created by with-output-to-string is always of type string-
stream.

X3J13 voted in January 1989 to restrict user side effects; see section 7.9.

21.3 Operations on Streams

This section contains discussion of only those operations that are common
to all streams. Input and output is rather complicated and is discussed
separately in chapter 22. The interface between streams and the file system
is discussed in chapter 23.

[Function] streamp object

streamp is true if its argument is a stream, and otherwise is false.

(streamp x) ≡ (typep x ’stream)

streamp is unaffected by whether its argument, if a stream, is open or
closed. In either case it returns true.

[Function] open-stream-p stream

X3J13 voted in January 1989 to add the predicate open-stream-p. It is
true if its argument (which must be a stream) is open, and otherwise is false.

A stream is always created open; it remains open until closed with the
close function. The macros with-open-stream, with-input-from-string,
with-output-to-string, and with-open-file automatically close the cre-
ated stream as control leaves their bodies, in effect imposing dynamic extent
on the openness of the stream.

21.3. OPERATIONS ON STREAMS 519

[Function] input-stream-p stream

This predicate is true if its argument (which must be a stream) can handle
input operations, and otherwise is false.

[Function] output-stream-p stream

This predicate is true if its argument (which must be a stream) can handle
output operations, and otherwise is false.

[Function] stream-element-type stream

A type specifier is returned to indicate what objects may be read from or
written to the argument stream, which must be a stream. Streams created
by open will have an element type restricted to a subset of character or
integer, but in principle a stream may conduct transactions using any Lisp
objects.

[Function] close stream &key :abort

The argument must be a stream. The stream is closed. No further in-
put/output operations may be performed on it. However, certain inquiry
operations may still be performed, and it is permissible to close an already
closed stream.

X3J13 voted in January 1989 and revised the vote in March 1989 to
specify that if close is called on an open stream, the stream is closed and
t is returned; but if close is called on a closed stream, it succeeds without
error and returns an unspecified value. (The rationale for not specifying the
value returned for a closed stream is that in some implementations closing
certain streams does not really have an effect on them—for example, closing
the *terminal-io* stream might not “really” close it—and it is not desirable
to force such implementations to keep otherwise unnecessary state. Portable
programs will of course not rely on such behavior.)

X3J13 also voted in January 1989 to specify exactly which inquiry func-
tions may be applied to closed streams:

520 CHAPTER 21. STREAMS

streamp pathname-host namestring
pathname pathname-device file-namestring
truename pathname-directory directory-namestring
merge-pathnames pathname-name host-namestring
open pathname-type enough-namestring
probe-file pathname-version directory

See the individual descriptions of these functions for more information on
how they operate on closed streams.

X3J13 voted in January 1989 to clarify the effect of closing various kinds
of streams. First some terminology:

• A composite stream is one that was returned by a call
to make-synonym-stream, make-broadcast-stream, make-
concatenated-stream, make-two-way-stream, or make-echo-
stream.

• The constituents of a composite stream are the streams that were given
as arguments to the function that constructed it or, in the case of
make-synonym-stream, the stream that is the symbol-value of the
symbol that was given as an argument. (The constituent of a synonym
stream may therefore vary over time.)

• A constructed stream is either a composite stream or one returned by
a call tomake-string-input-stream, make-string-output-stream,
with-input-from-string, or with-output-to-string.

The effect of applying close to a constructed stream is to close that
stream only. No input/output operations are permitted on the constructed
stream once it has been closed (though certain inquiry functions are still
permitted, as described above).

Closing a composite stream has no effect on its constituents; any con-
stituents that are open remain open.

If a stream created by make-string-output-stream is closed, the result
of then applying get-output-stream-string to the stream is unspecified.

If the :abort parameter is not nil (it defaults to nil), it indicates an
abnormal termination of the use of the stream. An attempt is made to
clean up any side effects of having created the stream in the first place. For
example, if the stream performs output to a file that was newly created when

21.3. OPERATIONS ON STREAMS 521

the stream was created, then if possible the file is deleted and any previously
existing file is not superseded.

[Function] broadcast-stream-streams broadcast-stream

The argument must be of type broadcast-stream. A list of the con-
stituent output streams (whether open or not) is returned.

[Function] concatenated-stream-streams concatenated-stream

The argument must be of type concatenated-stream. A list of con-
stituent streams (whether open or not) is returned. This list represents the
ordered set of input streams from which the concatenated stream may yet
read; the stream from which it is currently reading is first in the list. The
list may be empty if no more streams remain to be read.

[Function] echo-stream-input-stream echo-stream
[Function] echo-stream-output-stream echo-stream

The argument must be of type echo-stream. The function echo-
stream-input-stream returns the constituent input stream; echo-stream-
output-stream returns the constituent output stream.

[Function] synonym-stream-symbol synonym-stream

The argument must be of type synonym-stream. This function returns
the symbol for whose value the synonym-stream is a synonym.

[Function] two-way-stream-input-stream two-way-stream
[Function] two-way-stream-output-stream two-way-stream

The argument must be of type two-way-stream. The function two-
way-stream-input-stream returns the constituent input stream; two-
way-stream-output-stream returns the constituent output stream.

[Function] interactive-stream-p stream

X3J13 voted in June 1989 to add the predicate interactive-stream-p,
which returns t if the stream is interactive and otherwise returns nil. A
type-error error is signalled if the argument is not of type stream.

522 CHAPTER 21. STREAMS

The precise meaning of interactive-stream-p is implementation-
dependent and may depend on the underlying operating system. The intent
is to distinguish between interactive and batch (background, command-file)
operations. Some characteristics that might distinguish a stream as interac-
tive:

• The stream is connected to a person (or the equivalent) in such a way
that the program can prompt for information and expect to receive
input that might depend on the prompt.

• The program is expected to prompt for input and to support “normal
input editing protocol” for that operating environment.

• A call to read-char might hang waiting for the user to type something
rather than quickly returning a character or an end-of-file indication.

The value of *terminal-io* might or might not be interactive.

[Function] stream-external-format stream

X3J13 voted in June 1989 to add the function stream-external-format,
which returns a specifier for the implementation-recognized scheme used for
representing characters in the argument stream. See the :external-format
argument to open.

Chapter 22

Input/Output

Common Lisp provides a rich set of facilities for performing input/output.
All input/output operations are performed on streams of various kinds. This
chapter is devoted to stream data transfer operations. Streams are discussed
in chapter 21, and ways of manipulating files through streams are discussed
in chapter 23.

While there is provision for reading and writing binary data, most of the
I/O operations in Common Lisp read or write characters. There are simple
primitives for reading and writing single characters or lines of data. The
format function can perform complex formatting of output data, directed
by a control string in manner similar to a Fortran FORMAT statement or
a PL/I PUT EDIT statement. The most useful I/O operations, however,
read and write printed representations of arbitrary Lisp objects.

Common Lisp содержит богатый функционал для выполнения
операций ввода/вывода. Все эти операции производятся на различного
вида потоках. Данная глава посвящена тому, как оперировать данными
в потоках. Потоки обсуждаются в главе 21, а способы работы с файлами
через потоки в главе 23.

Большинство операций ввода/вывода в Common Lisp’е читают и
записывают буквы, но также есть функции и для бинарных данных.
Есть простые примитивы для чтения и записи одного символа или строк
данных. Функция format может выполнять сложное форматирование
выходных данных, с помощью управляющей строки как в выражении
FORMAT в Fortran’е или в PUT EDIT в PL/I. Однако, самые
полезные операции ввода/вывода читают и записывает выводимые
представления произвольных Lisp’овых объектов.

523

524 CHAPTER 22. INPUT/OUTPUT

22.1 Printed Representation of Lisp Objects

Lisp objects in general are not text strings but complex data structures.
They have very different properties from text strings as a consequence of
their internal representation. However, to make it possible to get at and
talk about Lisp objects, Lisp provides a representation of most objects in
the form of printed text; this is called the printed representation, which is
used for input/output purposes and in the examples throughout this book.
Functions such as print take a Lisp object and send the characters of its
printed representation to a stream. The collection of routines that does this
is known as the (Lisp) printer. The read function takes characters from a
stream, interprets them as a printed representation of a Lisp object, builds
that object, and returns it; the collection of routines that does this is called
the (Lisp) reader.

В общем случае Lisp’овые объекты являются не строками, а
сложными структурами данных. Как следствие их внутреннего
представления, свойства этих объектов очень отличается от свойств
строк. Однако, для того, чтобы можно было повествовать о Lisp’овых
объектах, Lisp большинство объектов отображает в форме текста.
Это называется строковое представление, которое используется для
ввода/вывода, а также в примерах в данной книге. Такие функции, как
print, принимают Lisp’овый объект и посылают строку представления в
поток. Коллекция этих функций называется (Lisp’овым) принтером.
Функция read принимает буквы из потока, интерпретирует их как
представление некоторого Lisp’ового объекта, создаёт этот объект и
возвращает его. Коллекция этих функций называется (Lisp’овым)
считывателем.

Ideally, one could print a Lisp object and then read the printed represen-
tation back in, and so obtain the same identical object. In practice this is
difficult and for some purposes not even desirable. Instead, reading a printed
representation produces an object that is (with obscure technical exceptions)
equal to the originally printed object.

В идеале, можно вывести Lisp’овый объект, а затем прочесть его
обратно и получить идентичный первому объект. На практике это
сделать сложнее, а в некоторых случаях это и не желательно. Вместо
этого, считывание выводимого представления создаёт объект, который
равен equal оригинальному объекту.

Most Lisp objects have more than one possible printed representation.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 525

For example, the integer twenty-seven can be written in any of these ways:

27 27. #o33 #x1B #b11011 #.(* 3 3 3) 81/3

A list of two symbols A and B can be printed in many ways:

(A B) (a b) (a b) (\A |B|)
(|\A|

B
)

The last example, which is spread over three lines, may be ugly, but it
is legitimate. In general, wherever whitespace is permissible in a printed
representation, any number of spaces and newlines may appear.

Большинство Lisp’овых объектов имеют более одного представления.
Например, целое число двадцать семь может быть записано одним из
способов:

27 27. #o33 #x1B #b11011 #.(* 3 3 3) 81/3

Список двух символов A и B может быть записан в виде:

(A B) (a b) (a b) (\A |B|)
(|\A|

B
)

Последний пример, который занимает три строки, может и некрасив,
но вполне законен. В общем случае, везде в представлении, где
разрешены пробелы, может встречаться любое количество пробелов или
знаков перевода строки.

When print produces a printed representation, it must choose arbitrarily
from among many possible printed representations. It attempts to choose one
that is readable. There are a number of global variables that can be used to
control the actions of print, and a number of different printing functions.

Когда print выводит представление объекта, она должна
произвольно выбрать одно из возможных представлений. Она пытается
выбрать то, которое может быть прочитано считывателем. В Common
Lisp’е представлено некоторое количество глобальных переменных,
которые могут изменять поведение print, и некоторое количество
различных функций для вывода.

526 CHAPTER 22. INPUT/OUTPUT

This section describes in detail what is the standard printed representa-
tion for any Lisp object and also describes how read operates.

Этот раздел детально описывает, что является стандартным
выводимым представлением для любого Lisp’ового объекта, и также
описывает то, как работает read.

22.1.1 What the Read Function Accepts

The purpose of the Lisp reader is to accept characters, interpret them as
the printed representation of a Lisp object, and construct and return such
an object. The reader cannot accept everything that the printer produces;
for example, the printed representations of compiled code objects cannot be
read in. However, the reader has many features that are not used by the
output of the printer at all, such as comments, alternative representations,
and convenient abbreviations for frequently used but unwieldy constructs.
The reader is also parameterized in such a way that it can be used as a
lexical analyzer for a more general user-written parser.

Целью Lisp’ового считывателя (ридера) является чтение строки,
интерпретация как Lisp’ового объекта, создание и возврат этого объекта.
Считыватель (ридер) не может прочесть все возможные выводимые
представления объектов, например невозможно прочесть представление
скомпилированного кода. Однако считыватель (ридер) содержит
много таких возможностей, которые не используются при выводе. К
ним относятся комментарии, альтернативные представления и удобные
аббревиатуры для часто используемых, но тяжеловесных конструкций.
Считыватель также может быть настроен так, чтобы использоваться в
качестве лексического анализатора для более общих пользовательских
парсеров.

The reader is organized as a recursive-descent parser. Broadly speaking,
the reader operates by reading a character from the input stream and treating
it in one of three ways. Whitespace characters serve as separators but are
otherwise ignored. Constituent and escape characters are accumulated to
make a token, which is then interpreted as a number or symbol. Macro
characters trigger the invocation of functions (possibly user-supplied) that
can perform arbitrary parsing actions, including recursive invocation of the
reader.

Считыватель выполнен как рекурсивный нисходящий парсер.
Проще говоря, считыватель считывает букву из входящего потока

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 527

и обрабатывает его одним из трёх способов. Пробельные буквы
расцениваются как разделители, более одного игнорируются. Обычные
и экранирующие буквы накапливаются и составляют токен, которые
затем интерпретирует как число или символ. Макросимволы запускают
(вызывают) функцию (возможно пользовательскую), которая выполняет
произвольный парсинг, которые может содержать рекурсивный вызов
считывателя.

More precisely, when the reader is invoked, it reads a single character
from the input stream and dispatches according to the syntactic type of that
character. Every character that can appear in the input stream must be
of exactly one of the following kinds: illegal, whitespace, constituent, single
escape, multiple escape, or macro. Macro characters are further divided into
the types terminating and non-terminating (of tokens). (Note that macro
characters have nothing whatever to do with macros in their operation. There
is a superficial similarity in that macros allow the user to extend the syntax
of Common Lisp at the level of forms, while macro characters allow the user
to extend the syntax at the level of characters.) Constituents additionally
have one or more attributes, the most important of which is alphabetic; these
attributes are discussed further in section 22.1.2.

Более точное описание: когда вызывается считыватель, он читает
один строковый символ из входящего потока и действует в зависимости
от типа данного символа. Каждый символ, который может встретиться
во входящем потоке должен принадлежать только определённым типам:
некорректный, пробельный, обычный, одиночный экранирующий, много
экранирующий, or макросимвол. Макросимволы в свою очередь
делятся на терминальные и нетерминальные. (Следует отметить,
что макросимволы не имеют ничего общего с макросами. Подобие
заключается в том, что макросы позволяют расширить синтаксис
Common Lisp’а на уровне форм, тогда как макросимволы позволяют
расширить синтаксис на уровне букв.) Обычные символы имеют один
или более атрибутов, наиболее важный из них это алфавитный. Эти
атрибуты описаны далее в разделе 22.1.2.

The parsing of Common Lisp expressions is discussed in terms of these
syntactic character types because the types of individual characters are not
fixed but may be altered by the user (see set-syntax-from-char and set-
macro-character). The characters of the standard character set initially
have the syntactic types shown in table 22.2. Note that the brackets, braces,
question mark, and exclamation point (that is, [,], {, }, ?, and !) are

528 CHAPTER 22. INPUT/OUTPUT

normally defined to be constituents, but they are not used for any purpose
in standard Common Lisp syntax and do not occur in the names of built-in
Common Lisp functions or variables. These characters are explicitly reserved
to the user. The primary intent is that they be used as macro characters;
but a user might choose, for example, to make ! be a single escape character
(as it is in Portable Standard Lisp).

Парсинг Common Lisp’овых выражений описан в терминах типов
синтаксических символов, так как типы отдельных символов не
фиксированы и могут быть изменены пользователем (смотрите set-
syntax-from-char и set-macro-character). Символы из стандартного
множества имеют типы указанные в таблице 22.2. Следует отметить, что
квадратные, фигурные скобки, вопросительные знак и восклицательный
знак (то есть, [,], {, }, ?, и !) являются обычными символами, но они не
используются в стандартном Common Lisp’е и не встречаются в именах
системных функций и переменных. Эти символы явно зарезервированы
для нужд пользователя. Главная цель в том, чтобы использовать
эти символы в качестве макросимволов, но пользователь также может,
например, сделать символ ! одиночным экранирующим символом (как в
Portable Standard Lisp).

The algorithm performed by the Common Lisp reader is roughly as fol-
lows:

Алгоритм, выполняемый Common Lisp’овым считывателем,
примерно такой:

1. If at end of file, perform end-of-file processing (as specified by the caller of
the read function). Otherwise, read one character from the input stream,
call it x, and dispatch according to the syntactic type of x to one of steps 4
to 14.

2. Если достигнут конец файл, обработать эту ситуацию так как
указал вызвавший функцию read. В противном случае, прочесть
один символ из входящего потока, назвать его x, и обработать в
соответствии с синтаксическим типом x одним из способов 4 или 14.

3. If x is an illegal character, signal an error.

4. Если x является некорректным символом, сигнализировать ошибку.

5. If x is a whitespace character, then discard it and go back to step 2.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 529

Table 22.1: Standard Character Syntax Types
〈tab〉 whitespace 〈page〉 whitespace 〈newline〉 whitespace
〈space〉 whitespace @ constituent ‘ terminating macro
! constituent * A constituent a constituent
" terminating macro B constituent b constituent
non-terminating macro C constituent c constituent
$ constituent D constituent d constituent
% constituent E constituent e constituent
& constituent F constituent f constituent
’ terminating macro G constituent g constituent
(terminating macro H constituent h constituent
) terminating macro I constituent i constituent
* constituent J constituent j constituent
+ constituent K constituent k constituent
, terminating macro L constituent l constituent
- constituent M constituent m constituent
. constituent N constituent n constituent
/ constituent O constituent o constituent
0 constituent P constituent p constituent
1 constituent Q constituent q constituent
2 constituent R constituent r constituent
3 constituent S constituent s constituent
4 constituent T constituent t constituent
5 constituent U constituent u constituent
6 constituent V constituent v constituent
7 constituent W constituent w constituent
8 constituent X constituent x constituent
9 constituent Y constituent y constituent
: constituent Z constituent z constituent
; terminating macro [constituent * { constituent *
< constituent \ single escape | multiple escape
= constituent] constituent * } constituent *
> constituent ^ constituent ~ constituent
? constituent * _ constituent 〈rubout〉 constituent
〈backspace〉 constituent 〈return〉 whitespace 〈linefeed〉 whitespace
The characters marked with an asterisk are initially constituents but are reserved
to the user for use as macro characters or for any other desired purpose.

530 CHAPTER 22. INPUT/OUTPUT

Table 22.2: Стандартные типы символьного синтаксиса
〈tab〉 пробел 〈page〉 пробел 〈newline〉 пробел
〈space〉 пробел @ обычный ‘ терминальный макрос
! обычный * A обычный a обычный
" терминальный макрос B обычный b обычный
не-терминальный макросC обычный c обычный
$ обычный D обычный d обычный
% обычный E обычный e обычный
& обычный F обычный f обычный
’ терминальный макрос G обычный g обычный
(терминальный макрос H обычный h обычный
) терминальный макрос I обычный i обычный
* обычный J обычный j обычный
+ обычный K обычный k обычный
, терминальный макрос L обычный l обычный
- обычный M обычный m обычный
. обычный N обычный n обычный
/ обычный O обычный o обычный
0 обычный P обычный p обычный
1 обычный Q обычный q обычный
2 обычный R обычный r обычный
3 обычный S обычный s обычный
4 обычный T обычный t обычный
5 обычный U обычный u обычный
6 обычный V обычный v обычный
7 обычный W обычный w обычный
8 обычный X обычный x обычный
9 обычный Y обычный y обычный
: обычный Z обычный z обычный
; терминальный макрос [обычный * { обычный *
< обычный \ экранирующий один | экранирующий много
= обычный] обычный * } обычный *
> обычный ^ обычный ~ обычный
? обычный * _ обычный 〈rubout〉 обычный
〈backspace〉 обычный 〈return〉 пробел 〈linefeed〉 пробел
Символы помеченные звездочкой первоначально являются составной
частью, но зарезервированы для пользователя в качестве использования
макросимволов или для других целей.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 531

6. Если x является пробелом, игнорировать его и вернуться на шаг 2.

7. If x is amacro character (at this point the distinction between terminating
and non-terminating macro characters does not matter), then execute the
function associated with that character. The function may return zero
values or one value (see values).

The macro-character function may of course read characters from the
input stream; if it does, it will see those characters following the macro
character. The function may even invoke the reader recursively. This
is how the macro character (constructs a list: by invoking the reader
recursively to read the elements of the list.

If one value is returned, then return that value as the result of the read
operation; the algorithm is done. If zero values are returned, then go
back to step 2.

8. Если x является макросимволом (в данном случае различие между
терминальным и нетерминальным) макросимволами не имеет
значения), тогда вызвать функцию связанную с этим макросимволом.
Функция может вернуть ноль или одно значение (смотрите values).

Функция связанная с макросимволом, конечно, может считывать
символы из входящего потока, в этом случае она увидит символы,
идущие после данного макросимвола. Функция даже может
рекурсивно вызвать считыватель. Это например способ, которым
создаётся список для макросимвола (: рекурсивным вызовом
считывателя для каждого элемента списка.

Если функция вернула одно значение, тогда это значение
возвращается в качестве результата операции чтения, алгоритм
выполнен. Если функция не вернула значений, тогда приходит шаг 2.

9. If x is a single escape character (normally \), then read the next character
and call it y (but if at end of file, signal an error instead). Ignore the
usual syntax of y and pretend it is a constituent whose only attribute is
alphabetic.

For the purposes of readtable-case, y is not replaceable.

Use y to begin a token, and go to step 16.

532 CHAPTER 22. INPUT/OUTPUT

10. Если x является одиночным экранирующим символом (обычно это
\), тогда считать следующий символ и называеть его y (но если
был конец файла, сигнализировать ошибка). Игнорировать обычный
синтаксис y, и трактовать его как обычный, у которого только
алфавитный атрибут.

В целях использования readtable-case, y является незамещаемым.

Использовать y для начала токена, и перейти к шагу 16.

11. If x is a multiple escape character (normally |), then begin a token (ini-
tially containing no characters) and go to step 18.

12. Если x является много экранирующим символом (обычно |), тогда
начать запись токена (первоначально нулевой длины) и перейти к
шагу 18.

13. If x is a constituent character, then it begins an extended token. After
the entire token is read in, it will be interpreted either as representing
a Lisp object such as a symbol or number (in which case that object is
returned as the result of the read operation), or as being of illegal syntax
(in which case an error is signaled).

The case of x should not be altered; instead, x should be regarded as
replaceable.

Use x to begin a token, and go on to step 16.

14. Если x обычный символ, тогда начать запись расширенного токена.
После того как токен был считан, он будет интерпретирован как
представление Lisp’ового объекта: или символа, или числа (в этом
случае объект будет возвращён как результат функции чтения), или
как некорректный синтаксис (в этом случае будет сигнализирована
ошибка).

Регистр символа x не должен меняться, вместо этого x помечается
как замещаемый.

Использовать x для токена, и перейти к шагу 16.

15. (At this point a token is being accumulated, and an even number of
multiple escape characters have been encountered.) If at end of file, go to
step 20. Otherwise, read a character (call it y), and perform one of the
following actions according to its syntactic type:

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 533

16. (В данной точке начинается запись токена, и FIXME) Если конец
файла, перейти к шагу 20. Иначе прочесть символ (назвать его
y), и выполнить одно из следующих действий в зависимости от
синтаксического типа:

• If y is a constituent or non-terminating macro, then do the following.
The case of y should not be altered; instead, y should be regarded
as replaceable.
Append y to the token being built, and repeat step 16.

• Если y обычный или нетерминальный макросимвол, тогда
выполнить следующее.
Регистр y не должен быть изменён, вместо этого y помечается
как замещаемый.
Добавить y в конец записываемого токена и повторить шаг 16.

• If y is a single escape character, then read the next character and
call it z (but if at end of file, signal an error instead). Ignore the
usual syntax of z and pretend it is a constituent whose only attribute
is alphabetic.
For the purposes of readtable-case, z is not replaceable.
Append z to the token being built, and repeat step 16.

• Если y является одинарным экранирующим символом, тогда
прочесть следующий символ и назвать его z (но если это
конец файла, сигнализировать ошибку). Игнорировать обычный
синтаксис z и трактовать его как обычный символ, а которого
только алфавитный атрибут.
В целях функции readtable-case, z не является замещаемым.
Добавить z в конец записываемого токена и повторить шаг 16.

• If y is a multiple escape character, then go to step 18.

• Если y это много экранирующий символ, тогда перейти к
шагу 18.

• If y is an illegal character, signal an error.

• Если y это некорректный символ, сигнализировать ошибку.

• If y is a terminating macro character, it terminates the token. First
“unread” the character y (see unread-char), then go to step 20.

534 CHAPTER 22. INPUT/OUTPUT

• Если y это терминальный макросимвол, он завершает запись
токена. Сначала «отменить» чтение символа y (смотрите
unread-char), затем перейти к шагу 20.

• If y is a whitespace character, it terminates the token. First “unread”
y if appropriate (see read-preserving-whitespace), then go to
step 20.

• Если y это пробел, он завершает запись токена. Сначала,
если необходимо (смотрите read-preserving-whitespace)
«отменить» чтение y, затем перейти к шагу 20.

17. (At this point a token is being accumulated, and an odd number of mul-
tiple escape characters have been encountered.) If at end of file, signal
an error. Otherwise, read a character (call it y), and perform one of the
following actions according to its syntactic type:

18. (В данной точке начинается запись токена, и FIXME) Если конец
файла, сигнализировать ошибку. Иначе прочесть символ (назвать
его y), и выполнить одно из следующих действий в зависимости от
синтаксического типа:

• If y is a constituent, macro, or whitespace character, then ignore the
usual syntax of that character and pretend it is a constituent whose
only attribute is alphabetic.
For the purposes of readtable-case, y is not replaceable.
Append y to the token being built, and repeat step 18.

• Если y обычный, макросимвол или пробел, тогда игнорировать
обычный синтаксис данного символа и трактовать его как
обычный, у которого есть только алфавитный атрибут.

• If y is a single escape character, then read the next character and
call it z (but if at end of file, signal an error instead). Ignore the
usual syntax of z and pretend it is a constituent whose only attribute
is alphabetic.
For the purposes of readtable-case, z is not replaceable.
Append z to the token being built, and repeat step 18.

• Если y одинарный экранирующий символ, тогда прочесть
следующий символ и назвать его z (но если конец файла,

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 535

сигнализировать ошибку). Игнорировать обычный синтаксис
z и трактовать его как обычный символ, у которого только
алфавитный атрибут.
Для функции readtable-case z незамещаемый.
Добавить z в конец записываемого токена и повторить шаг 18.

• If y is a multiple escape character, then go to step 16.

• Если y много экранирующий символ, тогда перейти к шагу 16.

• If y is an illegal character, signal an error.

• Если y некорректный символ, сигнализировать ошибку.

19. An entire token has been accumulated. X3J13 voted in June 1989 to
introduce readtable-case. If the accumulated token is to be interpreted
as a symbol, any case conversion of replaceable characters should be per-
formed at this point according to the value of the readtable-case slot of
the current readtable (the value of *readtable*). Interpret the token as
representing a Lisp object and return that object as the result of the read
operation, or signal an error if the token is not of legal syntax. X3J13
voted in March 1989 to specify that implementation-defined attributes
may be removed from the characters of a symbol token when construct-
ing the print name. It is implementation-dependent which attributes are
removed.

20. Данный токен был записан. Если записанный токен трактуется
как символ, в данной точке, если указано в слоте readtable-case
текущей таблицы чтения из переменной *readtable*, все заменяемые
символы должны быть возведены в верхний регистр.

Интерпретировать токен как представление Lisp’ового объекта и
вернуть этот объект в качестве результата операции чтения, или
сигнализировать ошибку, если у токена некорректный синтаксис.

As a rule, a single escape character never stands for itself but always
serves to cause the following character to be treated as a simple alphabetic
character. A single escape character can be included in a token only if pre-
ceded by another single escape character.

Как правило. одинарный экранирующий символ никогда не стоит сам
по себе, а всегда указывает, что следующий символ нужно трактовать,
как обычный алфавитный символ. Одинарный экранирующий символ

536 CHAPTER 22. INPUT/OUTPUT

можно включить в токен только с помощью другого одинарного
экранирующего символа.

A multiple escape character also never stands for itself. The characters
between a pair of multiple escape characters are all treated as simple alpha-
betic characters, except that single escape and multiple escape characters
must nevertheless be preceded by a single escape character to be included.

Много экранирующий символ также никогда не стоит сам по
себе. Все символы между парой много экранирующих символов
трактуются как обычный алфавитные символы, за исключением
одинарного экранирующего символа, и много экранирующий символ
FIXME

22.1.2 Parsing of Numbers and Symbols

When an extended token is read, it is interpreted as a number or symbol.
In general, the token is interpreted as a number if it satisfies the syntax for
numbers specified in table 22.3; this is discussed in more detail below.

The characters of the extended token may serve various syntactic func-
tions as shown in table 22.5, but it must be remembered that any character
included in a token under the control of an escape character is treated as
alphabetic rather than according to the attributes shown in the table. One
consequence of this rule is that a whitespace, macro, or escape character will
always be treated as alphabetic within an extended token because such a
character cannot be included in an extended token except under the control
of an escape character.

To allow for extensions to the syntax of numbers, a syntax for potential
numbers is defined in Common Lisp that is more general than the actual
syntax for numbers. Any token that is not a potential number and does
not consist entirely of dots will always be taken to be a symbol, now and in
the future; programs may rely on this fact. Any token that is a potential
number but does not fit the actual number syntax defined below is a reserved
token and has an implementation-dependent interpretation; an implementa-
tion may signal an error, quietly treat the token as a symbol, or take some
other action. Programmers should avoid the use of such reserved tokens. (A
symbol whose name looks like a reserved token can always be written using
one or more escape characters.)

Just as bignum is the standard term used by Lisp implementors for very
large integers, and flonum (rhymes with “low hum”) refers to a floating-

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 537

Table 22.3: Actual Syntax of Numbers

number ::= integer | ratio | floating-point-number
integer ::= [sign] {digit}+ [decimal-point]
ratio ::= [sign] {digit}+ / {digit}+
floating-point-number ::= [sign] {digit}* decimal-point {digit}+ [exponent]

| [sign] {digit}+ [decimal-point {digit}*] exponent
sign ::= + | -
decimal-point ::= .
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
exponent ::= exponent-marker [sign] {digit}+
exponent-marker ::= e | s | f | d | l | E | S | F | D | L

point number, the term potnum has been used widely as an abbreviation for
“potential number.” “Potnum” rhymes with “hot rum.”

A token is a potential number if it satisfies the following requirements:

• It consists entirely of digits, signs (+ or -), ratio markers (/), deci-
mal points (.), extension characters (^ or _), and number markers.
(A number marker is a letter. Whether a letter may be treated as a
number marker depends on context, but no letter that is adjacent to
another letter may ever be treated as a number marker. Floating-point
exponent markers are instances of number markers.)

• It contains at least one digit. (Letters may be considered to be digits,
depending on the value of *read-base*, but only in tokens containing
no decimal points.)

• It begins with a digit, sign, decimal point, or extension character.

• It does not end with a sign.

As examples, the following tokens are potential numbers, but they are not
actually numbers as defined below, and so are reserved tokens. (They do
indicate some interesting possibilities for future extensions.)

1b5000 777777q 1.7J -3/4+6.7J 12/25/83
27^19 3^4/5 6//7 3.1.2.6 ^-43^
3.141_592_653_589_793_238_4 -3.7+2.6i-6.17j+19.6k

538 CHAPTER 22. INPUT/OUTPUT

Table 22.4: Standard Constituent Character Attributes
! alphabetic 〈page〉 illegal 〈backspace〉 illegal
" alphabetic * 〈return〉 illegal * 〈tab〉 illegal *
#alphabetic * 〈space〉 illegal * 〈newline〉 illegal *
$ alphabetic 〈rubout〉 illegal 〈linefeed〉 illegal *
%alphabetic . alphabetic, dot, decimal point
&alphabetic + alphabetic, plus sign
’ alphabetic * - alphabetic, minus sign
(alphabetic * * alphabetic
) alphabetic * / alphabetic, ratio marker
, alphabetic * @ alphabetic
0 alphadigit A, a alphadigit
1 alphadigit B, b alphadigit
2 alphadigit C, c alphadigit
3 alphadigit D, d alphadigit, double-float exponent marker
4 alphadigit E, e alphadigit, float exponent marker
5 alphadigit F, f alphadigit, single-float exponent marker
6 alphadigit G, g alphadigit
7 alphadigit H, h alphadigit
8 alphadigit I, i alphadigit
9 alphadigit J, j alphadigit
: package marker K, k alphadigit
; alphabetic * L, l alphadigit, long-float exponent marker
<alphabetic M, m alphadigit
=alphabetic N, n alphadigit
>alphabetic O, o alphadigit
? alphabetic P, p alphadigit
[alphabetic Q, q alphadigit
\ alphabetic * R, r alphadigit
] alphabetic S, s alphadigit, short-float exponent marker
^ alphabetic T, t alphadigit
_alphabetic U, u alphadigit
‘ alphabetic * V, v alphadigit
{ alphabetic W, w alphadigit
| alphabetic * X, x alphadigit
} alphabetic Y, y alphadigit
~ alphabetic Z, z alphadigit
These interpretations apply only to characters whose syntactic type is constituent. Entries
marked with an asterisk are normally shadowed because the characters are of syntactic type
whitespace, macro, single escape, or multiple escape. An alphadigit character is interpreted
as a digit if it is a valid digit in the radix specified by *read-base*; otherwise it is
alphabetic. Characters with an illegal attribute can never appear in a token except under
the control of an escape character.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 539

Table 22.5: Свойства стандартных символов
! алфавитный 〈page〉 недопустимый 〈backspace〉 недопустимый
" алфавитный * 〈return〉 недопустимый * 〈tab〉 недопустимый *
#алфавитный * 〈space〉 недопустимый * 〈newline〉 недопустимый *
$ алфавитный 〈rubout〉 недопустимый 〈linefeed〉 недопустимый *
%алфавитный . алфавитный, точка, разделитель десятичной части
&алфавитный + алфавитный, знак плюс
’ алфавитный * - алфавитный, знак минус
(алфавитный * * алфавитный
) алфавитный * / алфавитный, маркер дроби
, алфавитный * @ алфавитный
0 алфавитно-цифровой A, a алфавитно-цифровой
1 алфавитно-цифровой B, b алфавитно-цифровой
2 алфавитно-цифровой C, c алфавитно-цифровой
3 алфавитно-цифровой D, d алфавитно-цифровой, маркер экспоненты для двойного с плавающей точкой
4 алфавитно-цифровой E, e алфавитно-цифровой, маркер экспоненты для числа с плавающей точкой
5 алфавитно-цифровой F, f алфавитно-цифровой, маркер экспоненты для одинарного с плавающей точкой
6 алфавитно-цифровой G, g алфавитно-цифровой
7 алфавитно-цифровой H, h алфавитно-цифровой
8 алфавитно-цифровой I, i алфавитно-цифровой
9 алфавитно-цифровой J, j алфавитно-цифровой
: package marker K, k алфавитно-цифровой
; алфавитный * L, l алфавитно-цифровой, маркер экспоненты для длинного с плавающей точкой
<алфавитный M, m алфавитно-цифровой
=алфавитный N, n алфавитно-цифровой
>алфавитный O, o алфавитно-цифровой
? алфавитный P, p алфавитно-цифровой
[алфавитный Q, q алфавитно-цифровой
\ алфавитный * R, r алфавитно-цифровой
] алфавитный S, s алфавитно-цифровой, маркер экспоненты для короткого с плавающей точкой
^ алфавитный T, t алфавитно-цифровой
_алфавитный U, u алфавитно-цифровой
‘ алфавитный * V, v алфавитно-цифровой
{ алфавитный W, w алфавитно-цифровой
| алфавитный * X, x алфавитно-цифровой
} алфавитный Y, y алфавитно-цифровой
~ алфавитный Z, z алфавитно-цифровой
These interpretations apply only to characters whose syntactic type is constituent. Entries
marked with an asterisk are normally shadowed because the characters are of syntactic type
whitespace, macro, single escape, or multiple escape. An alphadigit character is interpreted
as a digit if it is a valid digit in the radix specified by *read-base*; otherwise it is
alphabetic. Characters with an illegal attribute can never appear in a token except under
the control of an escape character.

540 CHAPTER 22. INPUT/OUTPUT

The following tokens are not potential numbers but are always treated as
symbols:

/ /5 + 1+ 1-
foo+ ab.cd _ ^ ^/-

The following tokens are potential numbers if the value of *read-base*
is 16 (an abnormal situation), but they are always treated as symbols if the
value of *read-base* is 10 (the usual value):

bad-face 25-dec-83 a/b fad_cafe f^

It is possible for there to be an ambiguity as to whether a letter should
be treated as a digit or as a number marker. In such a case, the letter is
always treated as a digit rather than as a number marker.

Note that the printed representation for a potential number may not con-
tain any escape characters. An escape character robs the following character
of all syntactic qualities, forcing it to be strictly alphabetic and therefore
unsuitable for use in a potential number. For example, all of the following
representations are interpreted as symbols, not numbers:

\256 25\64 1.0\E6 |100| 3\.14159 |3/4| 3\/4 5||

In each case, removing the escape character(s) would allow the token to
be treated as a number.

If a potential number can in fact be interpreted as a number according
to the BNF syntax in table 22.3, then a number object of the appropriate
type is constructed and returned. It should be noted that in a given imple-
mentation it may be that not all tokens conforming to the actual syntax for
numbers can actually be converted into number objects. For example, spec-
ifying too large or too small an exponent for a floating-point number may
make the number impossible to represent in the implementation. Similarly,
a ratio with denominator zero (such as -35/000) cannot be represented in
any implementation. In any such circumstance where a token with the syn-
tax of a number cannot be converted to an internal number object, an error
is signaled. (On the other hand, an error must not be signaled for specify-
ing too many significant digits for a floating-point number; an appropriately
truncated or rounded value should be produced.)

There is an omission in the syntax of numbers as described in table 22.3, in
that the syntax does not account for the possible use of letters as digits. The

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 541

radix used for reading integers and ratios is normally decimal. However, this
radix is actually determined by the value of the variable *read-base*, whose
initial value is 10. *read-base* may take on any integral value between 2
and 36; let this value be n. Then a token x is interpreted as an integer or
ratio in base n if it could be properly so interpreted in the syntax #nRx
(see section 22.1.4). So, for example, if the value of *read-base* is 16, then
the printed representation

(a small face in a bad place)

would be interpreted as if the following representation had been read with
read-base set to 10:

(10 small 64206 in 10 2989 place)

because four of the seven tokens in the list can be interpreted as hexadec-
imal numbers. This facility is intended to be used in reading files of data
that for some reason contain numbers not in decimal radix; it may also be
used for reading programs written in Lisp dialects (such as MacLisp) whose
default number radix is not decimal. Non-decimal constants in Common Lisp
programs or portable Common Lisp data files should be written using #O,
#X, #B, or #nR syntax.

When *read-base* has a value greater than 10, an ambiguity is intro-
duced into the actual syntax for numbers because a letter can serve as either
a digit or an exponent marker; a simple example is 1E0 when the value of
read-base is 16. The ambiguity is resolved in accordance with the gen-
eral principle that interpretation as a digit is preferred to interpretation as
a number marker. The consequence in this case is that if a token can be
interpreted as either an integer or a floating-point number, then it is taken
to be an integer.

If a token consists solely of dots (with no escape characters), then an
error is signaled, except in one circumstance: if the token is a single dot and
occurs in a situation appropriate to “dotted list” syntax, then it is accepted
as a part of such syntax. Signaling an error catches not only misplaced dots
in dotted list syntax but also lists that were truncated by *print-length*
cutoff, because such lists end with a three-dot sequence (...). Examples:

(a . b) ;A dotted pair of a and b
(a.b) ;A list of one element, the symbol named a.b
(a. b) ;A list of two elements a. and b

542 CHAPTER 22. INPUT/OUTPUT

(a .b) ;A list of two elements a and .b
(a \. b) ;A list of three elements a, ., and b
(a |.| b) ;A list of three elements a, ., and b
(a \... b) ;A list of three elements a, ..., and b
(a |...| b) ;A list of three elements a, ..., and b
(a b . c) ;A dotted list of a and b with c at the end
.iot ;The symbol whose name is .iot
(. b) ;Illegal; an error is signaled
(a .) ;Illegal; an error is signaled
(a .. b) ;Illegal; an error is signaled
(a . . b) ;Illegal; an error is signaled
(a b c ...) ;Illegal; an error is signaled

In all other cases, the token is construed to be the name of a symbol. If
there are any package markers (colons) in the token, they divide the token
into pieces used to control the lookup and creation of the symbol.

If there is a single package marker, and it occurs at the beginning of the
token, then the token is interpreted as a keyword, that is, a symbol in the
keyword package. The part of the token after the package marker must not
have the syntax of a number.

If there is a single package marker not at the beginning or end of the
token, then it divides the token into two parts. The first part specifies a
package; the second part is the name of an external symbol available in that
package. Neither of the two parts may have the syntax of a number.

If there are two adjacent package markers not at the beginning or end of
the token, then they divide the token into two parts. The first part specifies
a package; the second part is the name of a symbol within that package
(possibly an internal symbol). Neither of the two parts may have the syntax
of a number.

X3J13 voted in March 1988 to clarify that, in the situations described
in the preceding three paragraphs, the restriction on the syntax of the parts
should be strengthened: none of the parts may have the syntax of even a
potential number. Tokens such as :3600, :1/2, and editor:3.14159 were
already ruled out; this clarification further declares that such tokens as :2^
3, compiler:1.7J, and Christmas:12/25/83 are also in error and therefore
should not be used in portable programs. Implementations may differ in their
treatment of such package-marked potential numbers.

If a symbol token contains no package markers, then the entire token is

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 543

the name of the symbol. The symbol is looked up in the default package,
which is the value of the variable *package*.

All other patterns of package markers, including the cases where there
are more than two package markers or where a package marker appears at
the end of the token, at present do not mean anything in Common Lisp
(see chapter 11). It is therefore currently an error to use such patterns in a
Common Lisp program. The valid patterns for tokens may be summarized
as follows:

nnnnn a number
xxxxx a symbol in the current package
:xxxxx a symbol in the keyword package
ppppp:xxxxx an external symbol in the ppppp package
ppppp::xxxxx a (possibly internal) symbol in the ppppp package

where nnnnn has the syntax of a number, and xxxxx and ppppp do not have
the syntax of a number.

In accordance with the X3J13 decision noted above , xxxxx and ppppp
may not have the syntax of even a potential number.

[Variable] *read-base*

The value of *read-base* controls the interpretation of tokens by read
as being integers or ratios. Its value is the radix in which integers and
ratios are to be read; the value may be any integer from 2 to 36 (inclusive)
and is normally 10 (decimal radix). Its value affects only the reading of
integers and ratios. In particular, floating-point numbers are always read
in decimal radix. The value of *read-base* does not affect the radix for
rational numbers whose radix is explicitly indicated by #O, #X, #B, or
#nR syntax or by a trailing decimal point.

Care should be taken when setting *read-base* to a value larger than
10, because tokens that would normally be interpreted as symbols may be
interpreted as numbers instead. For example, with *read-base* set to 16
(hexadecimal radix), variables with names such as a, b, f, bad, and face will
be treated by the reader as numbers (with decimal values 10, 11, 15, 2989,
and 64206, respectively). The ability to alter the input radix is provided
in Common Lisp primarily for the purpose of reading data files in special
operatorats, rather than for the purpose of altering the default radix in which

544 CHAPTER 22. INPUT/OUTPUT

to read programs. The user is strongly encouraged to use #O, #X, #B, or
#nR syntax when notating non-decimal constants in programs.

[Variable] *read-suppress*

When the value of *read-suppress* is nil, the Lisp reader operates
normally. When it is not nil, then most of the interesting operations of the
reader are suppressed; input characters are parsed, but much of what is read
is not interpreted.

The primary purpose of *read-suppress* is to support the operation
of the read-time conditional constructs #+ and #- (see section 22.1.4). It
is important for these constructs to be able to skip over the printed repre-
sentation of a Lisp expression despite the possibility that the syntax of the
skipped expression may not be entirely legal for the current implementation;
this is because a primary application of #+ and #- is to allow the same
program to be shared among several Lisp implementations despite small in-
compatibilities of syntax.

A non-nil value of *read-suppress* has the following specific effects on
the Common Lisp reader:

• All extended tokens are completely uninterpreted. It matters not
whether the token looks like a number, much less like a valid num-
ber; the pattern of package markers also does not matter. An extended
token is simply discarded and treated as if it were nil; that is, reading
an extended token when *read-suppress* is non-nil simply returns
nil. (One consequence of this is that the error concerning improper
dotted-list syntax will not be signaled.)

• Any standard # macro-character construction that requires, permits,
or disallows an infix numerical argument, such as#nR, will not enforce
any constraint on the presence, absence, or value of such an argument.

• The #\ construction always produces the value nil. It will not signal
an error even if an unknown character name is seen.

• Each of the #B, #O, #X, and #R constructions always scans over a
following token and produces the value nil. It will not signal an error
even if the token does not have the syntax of a rational number.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 545

• The #* construction always scans over a following token and produces
the value nil. It will not signal an error even if the token does not
consist solely of the characters 0 and 1.

• The #. construction reads the following form (in suppressed mode,
of course) but does not evaluate it. The form is discarded and nil is
produced.

• Each of the #A, #S, and #: constructions reads the following form
(in suppressed mode, of course) but does not interpret it in any way;
it need not even be a list in the case of #S, or a symbol in the case of
#:. The form is discarded and nil is produced.

• The #= construction is totally ignored. It does not read a following
form. It produces no object, but is treated as whitespace.

• The ## construction always produces nil.

Note that, no matter what the value of *read-suppress*, parentheses still
continue to delimit (and construct) lists; the #(construction continues to
delimit vectors; and comments, strings, and the quote and backquote con-
structions continue to be interpreted properly. Furthermore, such situations
as ’), #<, #), and #〈space〉 continue to signal errors.

In some cases, it may be appropriate for a user-written macro-character
definition to check the value of *read-suppress* and to avoid certain com-
putations or side effects if its value is not nil.

[Variable] *read-eval*

Default value of *read-eval* is t. If *read-eval* is false, the #. reader
macro signals an error.

Printing is also affected. If *read-eval* is false and *print-readably*
is true, any print-object method that would otherwise output a #. reader
macro must either output something different or signal an error of type print-
not-readable.

Binding *read-eval* to nil is useful when reading data that came from
an untrusted source, such as a network or a user-supplied data file; it prevents
the #. reader macro from being exploited as a “Trojan horse” to cause
arbitrary forms to be evaluated.

546 CHAPTER 22. INPUT/OUTPUT

22.1.3 Macro Characters

If the reader encounters a macro character, then the function associated with
that macro character is invoked and may produce an object to be returned.
This function may read following characters in the stream in whatever syntax
it likes (it may even call read recursively) and return the object represented
by that syntax. Macro characters may or may not be recognized, of course,
when read as part of other special syntaxes (such as for strings).

The reader is therefore organized into two parts: the basic dispatch loop,
which also distinguishes symbols and numbers, and the collection of macro
characters. Any character can be reprogrammed as a macro character; this
is a means by which the reader can be extended. The macro characters
normally defined are as follows:

(The left-parenthesis character initiates reading of a pair or list. The func-
tion read is called recursively to read successive objects until a right
parenthesis is found to be next in the input stream. A list of the objects
read is returned. Thus the input sequence

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right
parenthesis need not immediately follow the printed representation of
the last object; whitespace characters and comments may precede it.
This can be useful for putting one object on each line and making it
easy to add new objects:

(defun traffic-light (color)
(case color
(green)
(red (stop))
(amber (accelerate)) ;Insert more colors after this line
))

It may be that no objects precede the right parenthesis, as in () or ();
this reads as a list of zero objects (the empty list).

If a token that is just a dot, not preceded by an escape character, is
read after some object, then exactly one more object must follow the
dot, possibly followed by whitespace, followed by the right parenthesis:

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 547

(a b c . d)

This means that the cdr of the last pair in the list is not nil, but rather
the object whose representation followed the dot. The above example
might have been the result of evaluating

(cons ’a (cons ’b (cons ’c ’d))) ⇒ (a b c . d)

Similarly, we have

(cons ’znets ’wolq-zorbitan) ⇒ (znets . wolq-zorbitan)

It is permissible for the object following the dot to be a list:

(a b c d . (e f . (g)))

is the same as

(a b c d e f g)

but a list following a dot is a non-standard form that print will never
produce.

) The right-parenthesis character is part of various constructs (such as the
syntax for lists) using the left-parenthesis character and is invalid ex-
cept when used in such a construct.

548 CHAPTER 22. INPUT/OUTPUT

’ The single-quote (accent acute) character provides an abbreviation to make
it easier to put constants in programs. The form ’foo reads the same
as (quote foo): a list of the symbol quote and foo.

; Semicolon is used to write comments. The semicolon and all characters
up to and including the next newline are ignored. Thus a comment
can be put at the end of any line without affecting the reader. (A
comment will terminate a token, but a newline would terminate the
token anyway.)

There is no functional difference between using one semicolon and using
more than one, but the conventions shown here are in common use.

;;;; COMMENT-EXAMPLE function.
;;; This function is useless except to demonstrate comments.
;;; (Actually, this example is much too cluttered with them.)

(defun comment-example (x y) ;X is anything; Y is an a-list.
(cond ((listp x) x) ;If X is a list, use that.

;; X is now not a list. There are two other cases.
((symbolp x)
;; Look up a symbol in the a-list.
(cdr (assoc x y))) ;Remember, (cdr nil) is nil.
;; Do this when all else fails:
(t (cons x ;Add x to a default list.

’((lisp t) ;LISP is okay.
(fortran nil) ;FORTRAN is not.
(pl/i -500) ;Note that you can put comments in
(ada .001) ; "data" as well as in "programs".
;; COBOL??
(teco -1.0e9))))))

In this example, comments may begin with one to four semicolons.

• Single-semicolon comments are all aligned to the same column at
the right; usually each comment concerns only the code it is next
to. Occasionally a comment is long enough to occupy two or three
lines; in this case, it is conventional to indent the continued lines
of the comment one space (after the semicolon).

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 549

• Double-semicolon comments are aligned to the level of indentation
of the code. A space conventionally follows the two semicolons.
Such comments usually describe the state of the program at that
point or the code section that follows the comment.

• Triple-semicolon comments are aligned to the left margin. They
usually document whole programs or large code blocks.

• Quadruple-semicolon comments usually indicate titles of whole
programs or large code blocks.

" The double quote character begins the printed representation of a string.
Successive characters are read from the input stream and accumulated
until another double quote is encountered. An exception to this occurs
if a single escape character is seen; the escape character is discarded,
the next character is accumulated, and accumulation continues. When
a matching double quote is seen, all the accumulated characters up to
but not including the matching double quote are made into a simple
string and returned.

‘ The backquote (accent grave) character makes it easier to write programs
to construct complex data structures by using a template.

As an example, writing

‘(cond ((numberp ,x) ,@y) (t (print ,x) ,@y))

is roughly equivalent to writing

(list ’cond
(cons (list ’numberp x) y)
(list* ’t (list ’print x) y))

The general idea is that the backquote is followed by a template, a
picture of a data structure to be built. This template is copied, except
that within the template commas can appear. Where a comma occurs,
the form following the comma is to be evaluated to produce an object
to be inserted at that point. Assume b has the value 3; then evaluating
the form denoted by ‘(a b ,b ,(+ b 1) b) produces the result (a b 3
4 b).

550 CHAPTER 22. INPUT/OUTPUT

If a comma is immediately followed by an at-sign (@), then the form
following the at-sign is evaluated to produce a list of objects. These
objects are then “spliced” into place in the template. For example, if x
has the value (a b c), then

‘(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))
⇒ (x (a b c) a b c foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For
each of several situations in which backquote can be used, a possible
interpretation of that situation as an equivalent form is given. Note that
the form is equivalent only in the sense that when it is evaluated it will
calculate the correct result. An implementation is quite free to interpret
backquote in any way such that a backquoted form, when evaluated,
will produce a result equal to that produced by the interpretation
shown here.

• ‘basic is the same as ’basic, that is, (quote basic), for any form
basic that is not a list or a general vector.

• ‘,form is the same as form, for any form, provided that the rep-
resentation of form does not begin with “@” or “.”. (A similar
caveat holds for all occurrences of a form after a comma.)

• ‘,@form is an error.

• ‘(x1 x2 x3 ... xn . atom) may be interpreted to mean

(append [x1] [x2] [x3] ... [xn] (quote atom))

where the brackets are used to indicate a transformation of an xj
as follows:

– [form] is interpreted as (list ‘form), which contains a back-
quoted form that must then be further interpreted.

– [,form] is interpreted as (list form).
– [,@form] is interpreted simply as form.

• ‘(x1 x2 x3 ... xn) may be interpreted to mean the same as the
backquoted form ‘(x1 x2 x3 ... xn . nil), thereby reducing it
to the previous case.

• ‘(x1 x2 x3 ... xn . ,form) may be interpreted to mean

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 551

(append [x1] [x2] [x3] ... [xn] form)

where the brackets indicate a transformation of an xj as described
above.
• ‘(x1 x2 x3 ... xn . ,@form) is an error.
• ‘#(x1 x2 x3 ... xn) may be interpreted to mean

(apply #’vector ‘(x1 x2 x3 ... xn))

No other uses of comma are permitted; in particular, it may not appear
within the #A or #S syntax.
Anywhere “,@” may be used, the syntax “,.” may be used instead to
indicate that it is permissible to destroy the list produced by the form
following the “,.”; this may permit more efficient code, using nconc
instead of append, for example.
If the backquote syntax is nested, the innermost backquoted form
should be expanded first. This means that if several commas occur
in a row, the leftmost one belongs to the innermost backquote.
Once again, it is emphasized that an implementation is free to interpret
a backquoted form as any form that, when evaluated, will produce a
result that is equal to the result implied by the above definition. In
particular, no guarantees are made as to whether the constructed copy
of the template will or will not share list structure with the template
itself. As an example, the above definition implies that

‘((,a b) ,c ,@d)

will be interpreted as if it were

(append (list (append (list a) (list ’b) ’nil)) (list c) d ’nil)

but it could also be legitimately interpreted to mean any of the follow-
ing.

(append (list (append (list a) (list ’b))) (list c) d)
(append (list (append (list a) ’(b))) (list c) d)
(append (list (cons a ’(b))) (list c) d)
(list* (cons a ’(b)) c d)
(list* (cons a (list ’b)) c d)
(list* (cons a ’(b)) c (copy-list d))

552 CHAPTER 22. INPUT/OUTPUT

(There is no good reason why copy-list should be performed, but it is
not prohibited.)

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 553

Some users complain that backquote syntax is difficult to read, espe-
cially when it is nested. I agree that it can get complicated, but in
some situations (such as writing macros that expand into definitions
for other macros) such complexity is to be expected, and the alternative
is much worse.

After I gained some experience in writing nested backquote forms, I
found that I was not stopping to analyze the various patterns of nested
backquotes and interleaved commas and quotes; instead, I was recog-
nizing standard idioms wholesale, in the same manner that I recog-
nize cadar as the primitive for “extract the lambda-list from the form
((lambda ...) ...))” without stopping to analyze it into “car of cdr of
car.” For example, ,x within a doubly-nested backquote form means
“the value of x available during the second evaluation will appear here
once the form has been twice evaluated,” whereas ,’,x means “the value
of x available during the first evaluation will appear here once the form
has been twice evaluated” and „x means “the value of the value of x
will appear here.”

See appendix ?? for a systematic set of examples of the use of nested
backquotes.

, The comma character is part of the backquote syntax and is invalid if used
other than inside the body of a backquote construction as described
above.

This is a dispatching macro character. It reads an optional digit string and
then one more character, and uses that character to select a function
to run as a macro-character function.

The# character also happens to be a non-terminating macro character.
This is completely independent of the fact that it is a dispatching macro
character; it is a coincidence that the only standard dispatching macro
character in Common Lisp is also the only standard non-terminating
macro character.

See the next section for predefined # macro-character constructions.

554 CHAPTER 22. INPUT/OUTPUT

22.1.4 Standard Dispatching Macro Character Syntax

The standard syntax includes forms introduced by the # character. These
take the general form of a #, a second character that identifies the syntax,
and following arguments in some form. If the second character is a letter,
then case is not important; #O and #o are considered to be equivalent, for
example.

Certain # forms allow an unsigned decimal number to appear between
the # and the second character; some other forms even require it. Those
forms that do not explicitly permit such a number to appear forbid it.

The currently defined # constructs are described below and summarized
in table 22.6; more are likely to be added in the future. However, the con-
structs #!, #?, #[, #], #{, and #} are explicitly reserved for the user and
will never be defined by the Common Lisp standard.

#\ #\x reads in as a character object that represents the character x.
Also, #\name reads in as the character object whose name is name.
Note that the backslash \ allows this construct to be parsed easily by
EMACS-like editors.
In the single-character case, the character x must be followed by a non-
constituent character, lest a name appear to follow the #\. A good
model of what happens is that after #\ is read, the reader backs up
over the \ and then reads an extended token, treating the initial \ as an
escape character (whether it really is or not in the current readtable).
Uppercase and lowercase letters are distinguished after #\; #\A and
#\a denote different character objects. Any character works after#\,
even those that are normally special to read, such as parentheses. Non-
printing characters may be used after #\, although for them names
are generally preferred.
#\name reads in as a character object whose name is name (actu-
ally, whose name is (string-upcase name); therefore the syntax is
case-insensitive). The name should have the syntax of a symbol. The
following names are standard across all implementations:

newline The character that represents the division between lines
space The space or blank character

The following names are semi-standard; if an implementation supports
them, they should be used for the described characters and no others.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 555

Table 22.6: Standard # Macro Character Syntax
#! undefined * #〈backspace〉 signals error
#" undefined #〈tab〉 signals error
reference to #= label #〈newline〉 signals error
#$ undefined #〈linefeed〉 signals error
#% undefined #〈page〉 signals error
#& undefined #〈return〉 signals error
#’ function abbreviation #〈space〉 signals error
#(simple vector #+ read-time conditional
#) signals error #- read-time conditional
#* bit-vector #. read-time evaluation
#, load-time evaluation #/ undefined
#0 used for infix arguments #A, #a array
#1 used for infix arguments #B, #b binary rational
#2 used for infix arguments #C, #c complex number
#3 used for infix arguments #D, #d undefined
#4 used for infix arguments #E, #e undefined
#5 used for infix arguments #F, #f undefined
#6 used for infix arguments #G, #g undefined
#7 used for infix arguments #H, #h undefined
#8 used for infix arguments #I, #i undefined
#9 used for infix arguments #J, #j undefined
#: uninterned symbol #K, #k undefined
#; undefined #L, #l undefined
#< signals error #M, #m undefined
#= label following object #N, #n undefined
#> undefined #O, #o octal rational
#? undefined * #P, #p pathname
#@ undefined #Q, #q undefined
#[undefined * #R, #r radix-n rational
#\ character object #S, #s structure
#] undefined * #T, #t undefined
#^ undefined #U, #u undefined
#_ undefined #V, #v undefined
#‘ undefined #W, #w undefined
#{ undefined * #X, #x hexadecimal rational
#| balanced comment #Y, #y undefined
#} undefined * #Z, #z undefined
#~ undefined #〈rubout〉 undefined
The combinations marked by an asterisk are explicitly reserved to the user and will
never be defined by Common Lisp.

556 CHAPTER 22. INPUT/OUTPUT

rubout The rubout or delete character.
page The form-feed or page-separator character
tab The tabulate character
backspace The backspace character
return The carriage return character
linefeed The line-feed character

In some implementations, one or more of these characters might be a
synonym for a standard character; the #\Linefeed character might
be the same as #\Newline, for example.

When the Lisp printer types out the name of a special character, it uses
the same table as the #\ reader; therefore any character name you see
typed out is acceptable as input (in that implementation). Standard
names are always preferred over non-standard names for printing.

The following convention is used in implementations that support non-
zero bits attributes for character objects. If a name after #\ is longer
than one character and has a hyphen in it, then it may be split into
the two parts preceding and following the first hyphen; the first part
(actually, string-upcase of the first part) may then be interpreted
as the name or initial of a bit, and the second part as the name of
the character (which may in turn contain a hyphen and be subject to
further splitting). For example:

#\Control-Space #\Control-Meta-Tab
#\C-M-Return #\H-S-M-C-Rubout

If the character name consists of a single character, then that character
is used. Another \ may be necessary to quote the character.

#\Control-% #\Control-Meta-\"
#\Control-\a #\Meta->

If an unsigned decimal integer appears between the# and \, it is inter-
preted as a font number, to become the font attribute of the character
object (see char-font).

X3J13 voted in March 1989 to replace the notion of bits and font at-
tributes with that of implementation-defined attributes. Presumably

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 557

this eliminates the portable use of this syntax for font information,
although the vote did not address this question directly.

#’ #’foo is an abbreviation for (function foo). foo may be the printed
representation of any Lisp object. This abbreviation may be remem-
bered by analogy with the ’ macro character, since the function and
quote special operators are similar in form.

#(A series of representations of objects enclosed by #(and) is read as a
simple vector of those objects. This is analogous to the notation for
lists.
If an unsigned decimal integer appears between the# and (, it specifies
explicitly the length of the vector. In that case, it is an error if too many
objects are specified before the closing), and if too few are specified,
the last object (it is an error if there are none in this case) is used to
fill all remaining elements of the vector. For example,

#(a b c c c c) #6(a b c c c c) #6(a b c) #6(a b c c)

all mean the same thing: a vector of length 6 with elements a, b, and
four instances of c. The notation #() denotes an empty vector, as
does #0() (which is legitimate because it is not the case that too few
elements are specified).

#* A series of binary digits (0 and 1) preceded by #* is read as a simple
bit-vector containing those bits, the leftmost bit in the series being bit
0 of the bit-vector.
If an unsigned decimal integer appears between the# and *, it specifies
explicitly the length of the vector. In that case, it is an error if too
many bits are specified, and if too few are specified the last one (it is an
error if there are none in this case) is used to fill all remaining elements
of the bit-vector. For example,

#*101111 #6*101111 #6*101 #6*1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1,
1, and 1. The notation #* denotes an empty bit-vector, as does #0*
(which is legitimate because it is not the case that too few elements
are specified). Compare this to #B, used for expressing integers in
binary notation.

558 CHAPTER 22. INPUT/OUTPUT

#: #:foo requires foo to have the syntax of an unqualified symbol name
(no embedded colons). It denotes an uninterned symbol whose name
is foo. Every time this syntax is encountered, a different uninterned
symbol is created. If it is necessary to refer to the same uninterned
symbol more than once in the same expression, the #= syntax may
be useful.

#. #.foo is read as the object resulting from the evaluation of the Lisp
object represented by foo, which may be the printed representation of
any Lisp object. The evaluation is done during the read process, when
the #. construct is encountered.

X3J13 voted in June 1989 to add a new reader control variable, *read-
eval*. If it is true, the #. reader macro behaves as described above;
if it is false, the #. reader macro signals an error.

The #. syntax therefore performs a read-time evaluation of foo. By
contrast, #, (see below) performs a load-time evaluation.

Both #. and #, allow you to include, in an expression being read, an
object that does not have a convenient printed representation; instead
of writing a representation for the object, you write an expression that
will compute the object.

#B #brational reads rational in binary (radix 2). For example, #B1101
≡ 13, and #b101/11 ≡ 5/3. Compare this to #*, used for express-
ing bit-vectors in binary notation.

#O #orational reads rational in octal (radix 8). For example, #o37/15
≡ 31/13, and #o777 ≡ 511.

#X #xrational reads rational in hexadecimal (radix 16). The digits above
9 are the letters A through F (the lowercase letters a through f are
also acceptable). For example, #xF00 ≡ 3840.

#nR #radixrrational reads rational in radix radix. radix must consist
of only digits, and it is read in decimal; its value must be between 2
and 36 (inclusive).

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 559

For example, #3r102 is another way of writing 11, and #11R32 is
another way of writing 35. For radices larger than 10, letters of the
alphabet are used in order for the digits after 9.

#nA The syntax #nAobject constructs an n-dimensional array, using ob-
ject as the value of the :initial-contents argument to make-array.

The value of n makes a difference: #2A((0 1 5) (foo 2 (hot dog))),
for example, represents a 2-by-3 matrix:

0 1 5
foo 2 (hot dog)

In contrast, #1A((0 1 5) (foo 2 (hot dog))) represents a length-2
array whose elements are lists:

(0 1 5) (foo 2 (hot dog))

Furthermore, #0A((0 1 5) (foo 2 (hot dog))) represents a zero-
dimensional array whose sole element is a list:

((0 1 5) (foo 2 (hot dog)))

Similarly, #0Afoo (or, more readably, #0A foo) represents a zero-
dimensional array whose sole element is the symbol foo. The expression
#1Afoo would not be legal because foo is not a sequence.

#S The syntax #s(name slot1 value1 slot2 value2 ...) denotes a
structure. This is legal only if name is the name of a structure already
defined by defstruct and if the structure has a standard constructor
macro, which it normally will. Let cm stand for the name of this
constructor macro; then this syntax is equivalent to

#.(cm keyword1 ’value1 keyword2 ’value2 ...)

where each keywordj is the result of computing

(intern (string slotj) ’keyword)

560 CHAPTER 22. INPUT/OUTPUT

(This computation is made so that one need not write a colon in front
of every slot name.) The net effect is that the constructor macro is
called with the specified slots having the specified values (note that
one does not write quote marks in the #S syntax). Whatever object
the constructor macro returns is returned by the #S syntax.

#P X3J13 voted in June 1989 to define the reader syntax #p"..." to
be equivalent to #.(parse-namestring "..."). Presumably this was
meant to be taken descriptively and not literally. I would think, for ex-
ample, that the committee did not wish to quibble over the package in
which the name parse-namestring was to be read. Similarly, I would
presume that the #p syntax operates normally rather than signaling
an error when *read-eval* is false. I interpret the intent of the vote
to be that #p reads a following form, which should be a string, that
is then converted to a pathname as if by application of the standard
function parse-namestring.

#n= The syntax #n=object reads as whatever Lisp object has object as
its printed representation. However, that object is labelled by n, a
required unsigned decimal integer, for possible reference by the syntax
#n# (below). The scope of the label is the expression being read by
the outermost call to read. Within this expression the same label may
not appear twice.

#n# The syntax #n#, where n is a required unsigned decimal integer,
serves as a reference to some object labelled by #n=; that is, #n#
represents a pointer to the same identical (eq) object labelled by#n=.
This permits notation of structures with shared or circular substruc-
ture. For example, a structure created in the variable y by this code:

(setq x (list ’p ’q))
(setq y (list (list ’a ’b) x ’foo x))
(rplacd (last y) (cdr y))

could be represented in this way:

((a b) . #1=(#2=(p q) foo #2# . #1#))

Without this notation, but with *print-length* set to 10, the struc-
ture would print in this way:

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 561

((a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) ...)

A reference #n# may occur only after a label #n=; forward refer-
ences are not permitted. In addition, the reference may not appear
as the labelled object itself (that is, one may not write #n= #n#),
because the object labelled by #n= is not well defined in this case.

#+ The #+ syntax provides a read-time conditionalization facility; the
syntax is

#+feature form

If feature is “true,” then this syntax represents a Lisp object whose
printed representation is form. If feature is “false,” then this syntax is
effectively whitespace; it is as if it did not appear.

The feature should be the printed representation of a symbol or list. If
feature is a symbol, then it is true if and only if it is a member of the
list that is the value of the global variable *features*.

Otherwise, feature should be a Boolean expression composed of and,
or, and not operators on (recursive) feature expressions.

For example, suppose that in implementation A the features spice and
perq are true, and in implementation B the feature lispm is true.
Then the expressions on the left below are read the same as those on
the right in implementation A:

(cons #+spice "Spice" #+lispm "Lispm" x) (cons "Spice" x)
(setq a ’(1 2 #+perq 43 #+(not perq) 27)) (setq a ’(1 2 43))
(let ((a 3) #+(or spice lispm) (b 3)) (let ((a 3) (b 3))
(foo a)) (foo a))

(cons a #+perq #-perq b c) (cons a c)

In implementation B, however, they are read in this way:

(cons #+spice "Spice" #+lispm "Lispm" x) (cons "Lispm" x)
(setq a ’(1 2 #+perq 43 #+(not perq) 27)) (setq a ’(1 2 27))
(let ((a 3) #+(or spice lispm) (b 3)) (let ((a 3) (b 3))
(foo a)) (foo a))

(cons a #+perq #-perq b c) (cons a c)

562 CHAPTER 22. INPUT/OUTPUT

The #+ construction must be used judiciously if unreadable code is
not to result. The user should make a careful choice between read-time
conditionalization and run-time conditionalization.

The #+ syntax operates by first reading the feature specification and
then skipping over the form if the feature is “false.” This skipping of
a form is a bit tricky because of the possibility of user-defined macro
characters and side effects caused by the #. construction. It is accom-
plished by binding the variable *read-suppress* to a non-nil value
and then calling the read function. See the description of *read-
suppress* for the details of this operation.

X3J13 voted in March 1988 to specify that the keyword pack-
age is the default package during the reading of a feature specifi-
cation. Thus #+spice means the same thing as #+:spice, and
#+(or spice lispm)means the same thing as#+(or :spice :lispm).
Symbols in other packages may be used as feature names, but one must
use an explicit package prefix to cite one after #+.

#- #-feature form is equivalent to #+(not feature) form .

#| #|...|# is treated as a comment by the reader, just as everything from a
semicolon to the next newline is treated as a comment. Anything may
appear in the comment, except that it must be balanced with respect
to other occurrences of #| and |#. Except for this nesting rule, the
comment may contain any characters whatsoever.

The main purpose of this construct is to allow “commenting out” of
blocks of code or data. The balancing rule allows such blocks to contain
pieces already so commented out. In this respect the #|...|# syntax of
Common Lisp differs from the /*...*/ comment syntax used by PL/I
and C.

#< This is not legal reader syntax. It is conventionally used in the printed
representation of objects that cannot be read back in. Attempting to
read a #< will cause an error. (More precisely, it is legal syntax, but
the macro-character function for #< signals an error.)

The usual convention for printing unreadable data objects is to print
some identifying information (the internal machine address of the ob-
ject, if nothing else) preceded by #< and followed by >.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 563

X3J13 voted in June 1989 to add print-unreadable-object, a macro
that prints an object using#<...> syntax and also takes care of check-
ing the variable *print-readably*.

#〈space〉, #〈tab〉, #〈newline〉, #〈page〉, #〈return〉 A # followed
by a whitespace character is not legal reader syntax. This prevents
abbreviated forms produced via *print-level* cutoff from reading in
again, as a safeguard against losing information. (More precisely, this is
legal syntax, but the macro-character function for it signals an error.)

#) This is not legal reader syntax. This prevents abbreviated forms pro-
duced via *print-level* cutoff from reading in again, as a safeguard
against losing information. (More precisely, this is legal syntax, but
the macro-character function for it signals an error.)

22.1.5 The Readtable

Previous sections describe the standard syntax accepted by the read func-
tion. This section discusses the advanced topic of altering the standard syn-
tax either to provide extended syntax for Lisp objects or to aid the writing
of other parsers.

There is a data structure called the readtable that is used to control the
reader. It contains information about the syntax of each character equivalent
to that in table 22.2. It is set up exactly as in table 22.2 to give the standard
Common Lisp meanings to all the characters, but the user can change the
meanings of characters to alter and customize the syntax of characters. It is
also possible to have several readtables describing different syntaxes and to
switch from one to another by binding the variable *readtable*.

[Variable] *readtable*

The value of *readtable* is the current readtable. The initial value of
this is a readtable set up for standard Common Lisp syntax. You can bind
this variable to temporarily change the readtable being used.

To program the reader for a different syntax, a set of functions are pro-
vided for manipulating readtables. Normally, you should begin with a copy
of the standard Common Lisp readtable and then customize the individual
characters within that copy.

564 CHAPTER 22. INPUT/OUTPUT

[Function] copy-readtable &optional from-readtable to-readtable

A copy is made of from-readtable, which defaults to the current readtable
(the value of the global variable *readtable*). If from-readtable is nil, then
a copy of a standard Common Lisp readtable is made. For example,

(setq *readtable* (copy-readtable nil))

will restore the input syntax to standard Common Lisp syntax, even if the
original readtable has been clobbered (assuming it is not so badly clobbered
that you cannot type in the above expression!). On the other hand,

(setq *readtable* (copy-readtable))

will merely replace the current readtable with a copy of itself.
If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise,

to-readtable must be a readtable, which is destructively copied into.

[Function] readtablep object

readtablep is true if its argument is a readtable, and otherwise is false.

(readtablep x) ≡ (typep x ’readtable)

[Function] set-syntax-from-char to-char from-char &optional
to-readtable from-readtable

This makes the syntax of to-char in to-readtable be the same as the syn-
tax of from-char in from-readtable. The to-readtable defaults to the current
readtable (the value of the global variable *readtable*), and from-readtable
defaults to nil, meaning to use the syntaxes from the standard Lisp readtable.
X3J13 voted in January 1989 to clarify that the to-char and from-char must
each be a character.

Only attributes as shown in table 22.2 are copied; moreover, if a macro
character is copied, the macro definition function is copied also. However,
attributes as shown in table 22.5 are not copied; they are “hard-wired” into
the extended-token parser. For example, if the definition of S is copied to *,
then * will become a constituent that is alphabetic but cannot be used as an
exponent indicator for short-format floating-point number syntax.

It works to copy a macro definition from a character such as " to another
character; the standard definition for " looks for another character that is the

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 565

same as the character that invoked it. It doesn’t work to copy the definition of
(to {, for example; it can be done, but it lets one write lists in the form {a b
c), not {a b c}, because the definition always looks for a closing parenthesis,
not a closing brace. See the function read-delimited-list, which is useful
in this connection.

The set-syntax-from-char function returns t.

[Function] set-macro-character char function &optional
non-terminating-p readtable
[Function] get-macro-character char &optional readtable

set-macro-character causes char to be a macro character that when
seen by read causes function to be called. If non-terminating-p is not nil (it
defaults to nil), then it will be a non-terminating macro character: it may
be embedded within extended tokens. set-macro-character returns t.

get-macro-character returns the function associated with char and, as
a second value, returns the non-terminating-p flag; it returns nil if char does
not have macro-character syntax. In each case, readtable defaults to the
current readtable.

If nil is explicitly passed as the second argument to get-macro-
character, then the standard readtable is used. This is consistent with
the behavior of copy-readtable.

The function is called with two arguments, stream and char. The stream
is the input stream, and char is the macro character itself. In the simplest
case, function may return a Lisp object. This object is taken to be that whose
printed representation was the macro character and any following characters
read by the function. As an example, a plausible definition of the standard
single quote character is:

(defun single-quote-reader (stream char)
(declare (ignore char))
(list ’quote (read stream t nil t)))

(set-macro-character #\’ #’single-quote-reader)

(Note that t is specified for the recursive-p argument to read; see sec-
tion 22.2.1.) The function reads an object following the single-quote and
returns a list of the symbol quote and that object. The char argument is
ignored.

566 CHAPTER 22. INPUT/OUTPUT

The function may choose instead to return zero values (for example, by
using (values) as the return expression). In this case, the macro character
and whatever it may have read contribute nothing to the object being read.
As an example, here is a plausible definition for the standard semicolon
(comment) character:

(defun semicolon-reader (stream char)
(declare (ignore char))
;; First swallow the rest of the current input line.
;; End-of-file is acceptable for terminating the comment.
(do () ((char= (read-char stream nil #\Newline t) #\Newline)))
;; Return zero values.
(values))

(set-macro-character #\; #’semicolon-reader)

(Note that t is specified for the recursive-p argument to read-char; see
section 22.2.1.)

The function should not have any side effects other than on the stream.
Because of backtracking and restarting of the read operation, front ends
(such as editors and rubout handlers) to the reader may cause function to
be called repeatedly during the reading of a single expression in which the
macro character only appears once.

Here is an example of a more elaborate set of read-macro characters that I
used in the implementation of the original simulator for Connection Machine
Lisp [44, 57], a parallel dialect of Common Lisp. This simulator was used
to gain experience with the language before freezing its design for full-scale
implementation on a Connection Machine computer system. This example
illustrates the typical manner in which a language designer can embed a new
language within the syntactic and semantic framework of Lisp, saving the
effort of designing an implementation from scratch.

Connection Machine Lisp introduces a new data type called a xapping,
which is simply an unordered set of ordered pairs of Lisp objects. The first
element of each pair is called the index and the second element the value.
We say that the xapping maps each index to its corresponding value. No two
pairs of the same xapping may have the same (that is, eql) index. Xappings
may be finite or infinite sets of pairs; only certain kinds of infinite xappings
are required, and special representations are used for them.

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 567

A finite xapping is notated by writing the pairs between braces, separated
by whitespace. A pair is notated by writing the index and the value, sep-
arated by a right arrow (or an exclamation point if the host Common Lisp
has no right-arrow character).

Remark: The original language design used the right arrow; the exclamation
point was chosen to replace it on ASCII-only terminals because it is one of the six
characters [] { } ! ? reserved by Common Lisp to the user.

While preparing the TEX manuscript for this book I made a mistake in font se-
lection and discovered that by an absolutely incredible coincidence the right arrow
has the same numerical code (octal 41) within TEX fonts as the ASCII exclama-
tion point. The result was that although the manuscript called for right arrows,
exclamation points came out in the printed copy. Imagine my astonishment!

Here is an example of a xapping that maps three symbols to strings:

{moe⇒"Oh, a wise guy, eh?" larry⇒"Hey, what’s the idea?"
curly⇒"Nyuk, nyuk, nyuk!"}

For convenience there are certain abbreviated notations. If the index and
value for a pair are the same object x, then instead of having to write “x⇒ x ”
(or, worse yet, “#43=x⇒#43#”) we may write simply x for the pair. If all
pairs of a xapping are of this form, we call the xapping a xet. For example,
the notation

{baseball chess cricket curling bocce 43-man-squamish}

is entirely equivalent in meaning to

{baseball⇒baseball curling⇒curling cricket⇒cricket
chess⇒chess bocce⇒bocce 43-man-squamish⇒43-man-squamish}

namely a xet of symbols naming six sports.
Another useful abbreviation covers the situation where the n pairs of a

finite xapping are integers, collectively covering a range from zero to n − 1.
This kind of xapping is called a xector and may be notated by writing the
values between brackets in ascending order of their indices. Thus

[tinker evers chance]

is merely an abbreviation for

568 CHAPTER 22. INPUT/OUTPUT

{tinker⇒0 evers⇒1 chance⇒2}

There are two kinds of infinite xapping: constant and universal. A con-
stant xapping {⇒z} maps every object to the same value z. The universal
xapping {⇒} maps every object to itself and is therefore the xet of all Lisp
objects, sometimes called simply the universe. Both kinds of infinite xet may
be modified by explicitly writing exceptions. One kind of exception is simply
a pair, which specifies the value for a particular index; the other kind of ex-
ception is simply k⇒ indicating that the xapping does not have a pair with
index k after all. Thus the notation

{sky⇒blue grass⇒green idea⇒ glass⇒ ⇒red}

indicates a xapping that maps sky to blue, grass to green, and every
other object except idea and glass to red. Note well that the presence or
absence of whitespace on either side of an arrow is crucial to the correct
interpretation of the notation.

Here is the representation of a xapping as a structure:

(defstruct
(xapping (:print-function print-xapping)

(:constructor xap
(domain range &optional
(default ’:unknown defaultp)
(infinite (and defaultp :constant))
(exceptions ’()))))

domain
range
default
(infinite nil :type (member nil :constant :universal)
exceptions)

The explicit pairs are represented as two parallel lists, one of indexes
(domain) and one of values (range). The default slot is the default value,
relevant only if the infinite slot is :constant. The exceptions slot is a list
of indices for which there are no values. (See the end of section 22.3.3 for
the definition of print-xapping.)

Here, then, is the code for reading xectors in bracket notation:

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 569

(defun open-bracket-macro-char (stream macro-char)
(declare (ignore macro-char))
(let ((range (read-delimited-list #\] stream t)))
(xap (iota-list (length range)) range)))

(set-macro-character #\[#’open-bracket-macro-char)
(set-macro-character #\] (get-macro-character #\)))

(defun iota-list (n) ;Return list of integers from 0 to n− 1
(do ((j (- n 1) (- j 1))

(z ’() (cons j z)))
((< j 0) z)))

The code for reading xappings in the more general brace notation, with
all the possibilities for xets (or individual xet pairs), infinite xappings, and
exceptions, is a bit more complicated; it is shown in table 22.7. That code
is used in conjunction with the initializations

(set-macro-character #\{ #’open-brace-macro-char)
(set-macro-character #\} (get-macro-character #\)))

[Function] make-dispatch-macro-character char &optional
non-terminating-p readtable

This causes the character char to be a dispatching macro character in
readtable (which defaults to the current readtable). If non-terminating-p is
not nil (it defaults to nil), then it will be a non-terminating macro charac-
ter: it may be embedded within extended tokens. make-dispatch-macro-
character returns t.

Initially every character in the dispatch table has a character-macro func-
tion that signals an error. Use set-dispatch-macro-character to define
entries in the dispatch table. X3J13 voted in January 1989 to clarify that
char must be a character.

[Function] set-dispatch-macro-character disp-char sub-char function
&optional readtable

570 CHAPTER 22. INPUT/OUTPUT

Table 22.7: Macro Character Definition for Xapping Syntax

(defun open-brace-macro-char (s macro-char)
(declare (ignore macro-char))
(do ((ch (peek-char t s t nil t) (peek-char t s t nil t))

(domain ’()) (range ’()) (exceptions ’()))
((char= ch #\})
(read-char s t nil t)
(construct-xapping (reverse domain) (reverse range)))

(cond ((char= ch #\⇒)
(read-char s t nil t)
(let ((nextch (peek-char nil s t nil t)))
(cond ((char= nextch #\})

(read-char s t nil t)
(return (xap (reverse domain)

(reverse range)
nil :universal exceptions)))

(t (let ((item (read s t nil t)))
(cond ((char= (peek-char t s t nil t) #\})

(read-char s t nil t)
(return (xap (reverse domain)

(reverse range)
item :constant
exceptions)))

(t (reader-error s
"Default ⇒ item must be last"))))))))

(t (let ((item (read-preserving-whitespace s t nil t))
(nextch (peek-char nil s t nil t)))

(cond ((char= nextch #\⇒)
(read-char s t nil t)
(cond ((member (peek-char nil s t nil t)

’(#\Space #\Tab #\Newline))
(push item exceptions))
(t (push item domain)
(push (read s t nil t) range))))

((char= nch #\})
(read-char s t nil t)
(push item domain)
(push item range)
(return (xap (reverse domain) (reverse range))))
(t (push item domain)
(push item range))))))))

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 571

[Function] get-dispatch-macro-character disp-char sub-char
&optional readtable

set-dispatch-macro-character causes function to be called when the
disp-char followed by sub-char is read. The readtable defaults to the current
readtable. The arguments and return values for function are the same as for
normal macro characters except that function gets sub-char, not disp-char,
as its second argument and also receives a third argument that is the non-
negative integer whose decimal representation appeared between disp-char
and sub-char, or nil if no decimal integer appeared there.

The sub-char may not be one of the ten decimal digits; they are always
reserved for specifying an infix integer argument. Moreover, if sub-char is
a lowercase character (see lower-case-p), its uppercase equivalent is used
instead. (This is how the rule is enforced that the case of a dispatch sub-
character doesn’t matter.)

set-dispatch-macro-character returns t.
get-dispatch-macro-character returns the macro-character function

for sub-char under disp-char, or nil if there is no function associated with
sub-char.

If the sub-char is one of the ten decimal digits 0 1 2 3 4 5 6 7 8 9, get-
dispatch-macro-character always returns nil. If sub-char is a lowercase
character, its uppercase equivalent is used instead.

X3J13 voted in January 1989 to specify that if nil is explicitly passed as
the second argument to get-dispatch-macro-character, then the standard
readtable is used. This is consistent with the behavior of copy-readtable.

For either function, an error is signaled if the specified disp-char is not
in fact a dispatch character in the specified readtable. It is necessary to use
make-dispatch-macro-character to set up the dispatch character before
specifying its sub-characters.

As an example, suppose one would like #$foo to be read as if it were
(dollars foo). One might say:

(defun |#$-reader| (stream subchar arg)
(declare (ignore subchar arg))
(list ’dollars (read stream t nil t)))

(set-dispatch-macro-character #\# #\$ #’|#$-reader|)

572 CHAPTER 22. INPUT/OUTPUT

[Function] readtable-case readtable

X3J13 voted in June 1989 to introduce the function readtable-case to
control the reader’s interpretation of case. It provides access to a slot in a
readtable, and may be used with setf to alter the state of that slot. The
possible values for the slot are :upcase, :downcase, :preserve, and :invert;
the readtable-case for the standard readtable is :upcase. Note that copy-
readtable is required to copy the readtable-case slot along with all other
readtable information.

Once the reader has accumulated a token as described in section 22.1.1,
if the token is a symbol, “replaceable” characters (unescaped uppercase or
lowercase constituent characters) may be modified under the control of the
readtable-case of the current readtable:

• For :upcase, replaceable characters are converted to uppercase. (This
was the behavior specified by the first edition.)

• For :downcase, replaceable characters are converted to lowercase.

• For :preserve, the cases of all characters remain unchanged.

• For :invert, if all of the replaceable letters in the extended token are
of the same case, they are all converted to the opposite case; otherwise
the cases of all characters in that token remain unchanged.

As an illustration, consider the following code.

(let ((*readtable* (copy-readtable nil)))
(format t "READTABLE-CASE Input Symbol-name~

~%—————— —————–~
~%")

(dolist (readtable-case ’(:upcase :downcase :preserve :invert))
(setf (readtable-case *readtable*) readtable-case)
(dolist (input ’("ZEBRA" "Zebra" "zebra"))
(format t ":~A~16T~A~24T~A~%"

(string-upcase readtable-case)
input
(symbol-name (read-from-string input)))))))

The output from this test code should be

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 573

READTABLE-CASE Input Symbol-name
———————————–
:UPCASE ZEBRA ZEBRA
:UPCASE Zebra ZEBRA
:UPCASE zebra ZEBRA
:DOWNCASE ZEBRA zebra
:DOWNCASE Zebra zebra
:DOWNCASE zebra zebra
:PRESERVE ZEBRA ZEBRA
:PRESERVE Zebra Zebra
:PRESERVE zebra zebra
:INVERT ZEBRA zebra
:INVERT Zebra Zebra
:INVERT zebra ZEBRA

The readtable-case of the current readtable also affects the printing of
symbols (see *print-case* and *print-escape*).

22.1.6 What the Print Function Produces

The Common Lisp printer is controlled by a number of special variables.
These are referred to in the following discussion and are fully documented at
the end of this section.

How an expression is printed depends on its data type, as described in
the following paragraphs.

Integers If appropriate, a radix specifier may be printed; see the variable
print-radix. If an integer is negative, a minus sign is printed and
then the absolute value of the integer is printed. Integers are printed in
the radix specified by the variable *print-base* in the usual positional
notation, most significant digit first. The number zero is represented
by the single digit 0 and never has a sign. A decimal point may then
be printed, depending on the value of *print-radix*.

Ratios If appropriate, a radix specifier may be printed; see the variable
print-radix. If the ratio is negative, a minus sign is printed. Then
the absolute value of the numerator is printed, as for an integer; then
a /; then the denominator. The numerator and denominator are both
printed in the radix specified by the variable *print-base*; they are

574 CHAPTER 22. INPUT/OUTPUT

obtained as if by the numerator and denominator functions, and so
ratios are always printed in reduced form (lowest terms).

Floating-point numbers If the sign of the number (as determined by the
function float-sign) is negative, then a minus sign is printed. Then
the magnitude is printed in one of two ways. If the magnitude of the
floating-point number is either zero or between 10−3 (inclusive) and 107

(exclusive), it may be printed as the integer part of the number, then
a decimal point, followed by the fractional part of the number; there is
always at least one digit on each side of the decimal point. If the format
of the number does not match that specified by the variable *read-
default-float-format*, then the exponent marker for that format and
the digit 0 are also printed. For example, the base of the natural
logarithms as a short-format floating-point number might be printed
as 2.71828S0.

For non-zero magnitudes outside of the range 10−3 to 107, a floating-
point number will be printed in “computerized scientific notation.” The
representation of the number is scaled to be between 1 (inclusive) and
10 (exclusive) and then printed, with one digit before the decimal point
and at least one digit after the decimal point. Next the exponent
marker for the format is printed, except that if the format of the number
matches that specified by the variable *read-default-float-format*,
then the exponent marker E is used. Finally, the power of 10 by which
the fraction must be multiplied to equal the original number is printed
as a decimal integer. For example, Avogadro’s number as a short-format
floating-point number might be printed as 6.02S23.

Complex numbers A complex number is printed as #C, an open paren-
thesis, the printed representation of its real part, a space, the printed
representation of its imaginary part, and finally a close parenthesis.

Characters When *print-escape* is nil, a character prints as itself; it
is sent directly to the output stream. When *print-escape* is not
nil, then #\ syntax is used. For example, the printed representa-
tion of the character #\A with control and meta bits on would be
#\CONTROL-META-A, and that of #\a with control and meta
bits on would be #\CONTROL-META-\a. X3J13 voted in June
1989 to specify that if *print-readably* is not nil then every object

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 575

must be printed in a readable form, regardless of other printer control
variables. For characters, the simplest approach is always to use #\
syntax when *print-readably* is not nil, regardless of the value of
print-escape.

Symbols When *print-escape* is nil, only the characters of the print
name of the symbol are output (but the case in which to print any
uppercase characters in the print name is controlled by the variable
print-case).
X3J13 voted in June 1989 to specify that the new readtable-case slot
of the current readtable also controls the case in which letters (whether
uppercase or lowercase) in the print name of a symbol are output, no
matter what the value of *print-escape*.
The remaining paragraphs describing the printing of symbols cover the
situation when *print-escape* is not nil.
X3J13 voted in June 1989 to specify that if *print-readably* is not
nil then every object must be printed in a readable form, regardless of
other printer control variables. For symbols, the simplest approach is to
print them, when *print-readably* is not nil, as if *print-escape*
were not nil, regardless of the actual value of *print-escape*.
Backslashes \ and vertical bars | are included as required. In particular,
backslash or vertical-bar syntax is used when the name of the symbol
would be otherwise treated by the reader as a potential number (see
section 22.1.2). In making this decision, it is assumed that the value
of *print-base* being used for printing would be used as the value of
read-base used for reading; the value of *read-base* at the time
of printing is irrelevant. For example, if the value of *print-base*
were 16 when printing the symbol face, it would have to be printed as
\FACE or \Face or |FACE|, because the token face would be read
as a hexadecimal number (decimal value 64206) if *read-base* were
16.
The case in which to print any uppercase characters in the print name
is controlled by the variable *print-case*. X3J13 voted in June 1989
to clarify the interaction of *print-case* with *print-escape*; see
print-case. As a special case [no pun intended], nilmay sometimes
be printed as () instead, when *print-escape* and *print-pretty*
are both not nil.

576 CHAPTER 22. INPUT/OUTPUT

Package prefixes may be printed (using colon syntax) if necessary. The
rules for package qualifiers are as follows. When the symbol is printed,
if it is in the keyword package, then it is printed with a preceding
colon; otherwise, if it is accessible in the current package, it is printed
without any qualification; otherwise, it is printed with qualification.
See chapter 11.

A symbol that is uninterned (has no home package) is printed pre-
ceded by #: if the variables *print-gensym* and *print-escape*
are both non-nil; if either is nil, then the symbol is printed without
a prefix, as if it were in the current package. X3J13 voted in June
1989 to specify that if *print-readably* is not nil then every object
must be printed in a readable form, regardless of other printer control
variables. For uninterned symbols, the simplest approach is to print
them, when *print-readably* is not nil, as if *print-escape* and
print-gensym were not nil, regardless of their actual values.

Implementation note: Because the #: syntax does not intern the follow-
ing symbol, it is necessary to use circular-list syntax if *print-circle* is not
nil and the same uninterned symbol appears several times in an expression
to be printed. For example, the result of

(let ((x (make-symbol "FOO"))) (list x x))

would be printed as

(#:foo #:foo)

if *print-circle* were nil, but as

(#1=#:foo #1#)

if *print-circle* were not nil.

The case in which symbols are to be printed is controlled by the
variable *print-case*. It is also controlled by *print-escape*
and the readtable-case slot of the current readtable (the value of
readtable).

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 577

Strings The characters of the string are output in order. If *print-escape*
is not nil, a double quote is output before and after, and all double
quotes and single escape characters are preceded by backslash. The
printing of strings is not affected by *print-array*. If the string
has a fill pointer, then only those characters below the fill pointer are
printed.
X3J13 voted in June 1989 to specify that if *print-readably* is not
nil then every object must be printed in a readable form, regardless of
other printer control variables. For strings, the simplest approach is to
print them, when *print-readably* is not nil, as if *print-escape*
were not nil, regardless of the actual value of *print-escape*.

Conses Wherever possible, list notation is preferred over dot notation.
Therefore the following algorithm is used:

1. Print an open parenthesis, (.
2. Print the car of the cons.
3. If the cdr is a cons, make it the current cons, print a space, and

go to step 2.
4. If the cdr is not null, print a space, a dot, a space, and the cdr.
5. Print a close parenthesis,).

This form of printing is clearer than showing each individual cons cell.
Although the two expressions below are equivalent, and the reader will
accept either one and produce the same data structure, the printer will
always print such a data structure in the second form.

(a . (b . ((c . (d . nil)) . (e . nil))))

(a b (c d) e)

The printing of conses is affected by the variables *print-level* and
print-length.
X3J13 voted in June 1989 to specify that if *print-readably* is not
nil then every object must be printed in a readable form, regardless
of other printer control variables. For conses, the simplest approach is
to print them, when *print-readably* is not nil, as if *print-level*
and *print-length* were nil, regardless of their actual values.

578 CHAPTER 22. INPUT/OUTPUT

Bit-vectors A bit-vector is printed as #* followed by the bits of the bit-
vector in order. If *print-array* is nil, however, then the bit-vector is
printed in a format (using #<) that is concise but not readable. If the
bit-vector has a fill pointer, then only those bits below the fill pointer
are printed. X3J13 voted in June 1989 to specify that if *print-
readably* is not nil then every object must be printed in a readable
form, regardless of other printer control variables. For bit-vectors, the
simplest approach is to print them, when *print-readably* is not
nil, as if *print-array* were not nil, regardless of the actual value of
print-array.

Vectors Any vector other than a string or bit-vector is printed using general-
vector syntax; this means that information about specialized vector rep-
resentations will be lost. The printed representation of a zero-length
vector is #(). The printed representation of a non-zero-length vec-
tor begins with #(. Following that, the first element of the vector is
printed. If there are any other elements, they are printed in turn, with
a space printed before each additional element. A close parenthesis
after the last element terminates the printed representation of the vec-
tor. The printing of vectors is affected by the variables *print-level*
and *print-length*. If the vector has a fill pointer, then only those
elements below the fill pointer are printed.

If *print-array* is nil, however, then the vector is not printed as
described above, but in a format (using #<) that is concise but not
readable. X3J13 voted in June 1989 to specify that if *print-
readably* is not nil then every object must be printed in a readable
form, regardless of other printer control variables. For vectors, the
simplest approach is to print them, when *print-readably* is not nil,
as if *print-level* and *print-length* were nil and *print-array*
were not nil, regardless of their actual values.

Arrays Normally any array other than a vector is printed using #nA for-
mat. Let n be the rank of the array. Then# is printed, then n as a dec-
imal integer, then A, then n open parentheses. Next the elements are
scanned in row-major order. Imagine the array indices being enumer-
ated in odometer fashion, recalling that the dimensions are numbered
from 0 to n− 1. Every time the index for dimension j is incremented,
the following actions are taken:

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 579

1. If j < n− 1, then print a close parenthesis.

2. If incrementing the index for dimension j caused it to equal di-
mension j, reset that index to zero and increment dimension j− 1
(thereby performing these three steps recursively), unless j = 0, in
which case simply terminate the entire algorithm. If incrementing
the index for dimension j did not cause it to equal dimension j,
then print a space.

3. If j < n− 1, then print an open parenthesis.

This causes the contents to be printed in a format suitable for use as
the :initial-contents argument to make-array. The lists effectively
printed by this procedure are subject to truncation by *print-level*
and *print-length*.

If the array is of a specialized type, containing bits or string-characters,
then the innermost lists generated by the algorithm given above may
instead be printed using bit-vector or string syntax, provided that these
innermost lists would not be subject to truncation by *print-length*.
For example, a 3-by-2-by-4 array of string-characters that would ordi-
narily be printed as

#3A(((#\s #\t #\o #\p) (#\s #\p #\o #\t))
((#\p #\o #\s #\t) (#\p #\o #\t #\s))
((#\t #\o #\p #\s) (#\o #\p #\t #\s)))

may instead be printed more concisely as

#3A(("stop" "spot") ("post" "pots") ("tops" "opts"))

If *print-array* is nil, then the array is printed in a format (using
#<) that is concise but not readable. X3J13 voted in June 1989
to specify that if *print-readably* is not nil then every object must
be printed in a readable form, regardless of other printer control vari-
ables. For arrays, the simplest approach is to print them, when *print-
readably* is not nil, as if *print-level* and *print-length* were
nil and *print-array* were not nil, regardless of their actual values.

Random-states Common Lisp does not specify a specific syntax for print-
ing objects of type random-state. However, every implementation

580 CHAPTER 22. INPUT/OUTPUT

must arrange to print a random-state object in such a way that, within
the same implementation of Common Lisp, the function read can con-
struct from the printed representation a copy of the random-state ob-
ject as if the copy had been made by make-random-state.

Pathnames If *print-escape* is true, a pathname should be printed by
write as #P"..." where "..." is the namestring representation of the
pathname. If *print-escape* is false, write prints a pathname by
printing its namestring (presumably without escape characters or sur-
rounding double quotes).

If *print-readably* is not nil then every object must be printed
in a readable form, regardless of other printer control variables. For
pathnames, the simplest approach is to print them, when *print-
readably* is not nil, as if *print-escape* were nil, regardless of
its actual value.

Structures defined by defstruct are printed under the control of the user-
specified :print-function option to defstruct. If the user does not provide
a printing function explicitly, then a default printing function is supplied that
prints the structure using #S syntax (see section 22.1.4).

If *print-readably* is not nil then every object must be printed in
a readable form, regardless of the values of other printer control variables;
if this is not possible, then an error of type print-not-readable must be
signaled to avoid printing an unreadable syntax such as #<...>.

Macro print-unreadable-object prints an object using #<...> syntax
and also takes care of checking the variable *print-readably*.

When debugging or when frequently dealing with large or deep objects
at top level, the user may wish to restrict the printer from printing large
amounts of information. The variables *print-level* and *print-length*
allow the user to control how deep the printer will print and how many ele-
ments at a given level the printer will print. Thus the user can see enough of
the object to identify it without having to wade through the entire expression.

[Variable] *print-readably*

The default value of *print-readably* is nil. If *print-readably* is
true, then printing any object must either produce a printed representation
that the reader will accept or signal an error. If printing is successful, the

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 581

reader will, on reading the printed representation, produce an object that is
“similar as a constant” (see section 24.1.4) to the object that was printed.

If *print-readably* is true and printing a readable printed representa-
tion is not possible, the printer signals an error of type print-not-readable
rather than using an unreadable syntax such as #<. The printed repre-
sentation produced when *print-readably* is true might or might not be
the same as the printed representation produced when *print-readably* is
false.

If *print-readably* is true and another printer control variable (such
as *print-length*, *print-level*, *print-escape*, *print-gensym*,
print-array, or an implementation-defined printer control variable) would
cause the preceding requirements to be violated, that other printer control
variable is ignored.

The printing of interned symbols is not affected by *print-readably*.
Note that the “similar as a constant” rule for readable printing implies

that #A or #(syntax cannot be used for arrays of element-type other than
t. An implementation will have to use another syntax or signal a print-not-
readable error. A print-not-readable error will not be signaled for strings
or bit-vectors.

All methods for print-object must obey *print-readably*. This rule
applies to both user-defined methods and implementation-defined methods.

The reader control variable *read-eval* also affects printing. If *read-
eval* is false and *print-readably* is true, any print-object method that
would otherwise output a #. reader macro must either output something
different or signal an error of type print-not-readable.

Readable printing of structures and objects of type standard-object
is controlled by their print-object methods, not by their make-load-form
methods. “Similarity as a constant” for these objects is application-dependent
and hence is defined to be whatever these methods do.

print-readably allows errors involving data with no readable printed
representation to be detected when writing the file rather than later on when
the file is read.

print-readably is more rigorous than *print-escape*; output
printed with escapes must be merely generally recognizable by humans, with
a good chance of being recognizable by computers, whereas output printed
readably must be reliably recognizable by computers.

582 CHAPTER 22. INPUT/OUTPUT

[Variable] *print-escape*

When this flag is nil, then escape characters are not output when an
expression is printed. In particular, a symbol is printed by simply printing
the characters of its print name. The function princ effectively binds *print-
escape* to nil.

When this flag is not nil, then an attempt is made to print an expression
in such a way that it can be read again to produce an equal structure. The
function prin1 effectively binds *print-escape* to t. The initial value of
this variable is t.

[Variable] *print-pretty*

When this flag is nil, then only a small amount of whitespace is output
when printing an expression.

When this flag is not nil, then the printer will endeavor to insert extra
whitespace where appropriate to make the expression more readable. A few
other simple changes may be made, such as printing ’foo instead of (quote
foo).

The initial value of *print-pretty* is implementation-dependent.
X3J13 voted in January 1989 to adopt a facility for user-controlled pretty

printing in Common Lisp (see chapter 27).

[Variable] *print-circle*

When this flag is nil (the default), then the printing process proceeds
by recursive descent; an attempt to print a circular structure may lead to
looping behavior and failure to terminate.

If *print-circle* is true, the printer is required to detect not only cycles
but shared substructure, indicating both through the use of #n= and#n#
syntax. As an example, under the specification of the first edition

(print ’(#1=(a #1#) #1#))

might legitimately print (#1=(A #1#) #1#) or (#1=(A #1#)
#2=(A #2#)); the vote specifies that the first form is required.

User-defined printing functions for the defstruct :print-function op-
tion, as well as user-defined methods for the CLOS generic function print-
object, may print objects to the supplied stream usingwrite, print1, princ,

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 583

format, or print-object and expect circularities to be detected and printed
using #n# syntax (when *print-circle* is non-nil, of course).

It seems to me that the same ought to apply to abbreviation as controlled
by *print-level* and *print-length*, but that was not addressed by this
vote.

[Variable] *print-base*

The value of *print-base* determines in what radix the printer will print
rationals. This may be any integer from 2 to 36, inclusive; the default value
is 10 (decimal radix). For radices above 10, letters of the alphabet are used
to represent digits above 9.

[Variable] *print-radix*

If the variable *print-radix* is non-nil, the printer will print a radix
specifier to indicate the radix in which it is printing a rational number. To
prevent confusion of the letter O with the digit 0, and of the letter B with
the digit 8, the radix specifier is always printed using lowercase letters. For
example, if the current base is twenty-four (decimal), the decimal integer
twenty-three would print as #24rN. If *print-base* is 2, 8, or 16, then
the radix specifier used is#b, #o, or#x. For integers, base ten is indicated
by a trailing decimal point instead of a leading radix specifier; for ratios,
however, #10r is used. The default value of *print-radix* is nil.

[Variable] *print-case*

The read function normally converts lowercase characters appearing
in symbols to corresponding uppercase characters, so that internally print
names normally contain only uppercase characters. However, users may pre-
fer to see output using lowercase letters or letters of mixed case. This variable
controls the case (upper, lower, or mixed) in which to print any uppercase
characters in the names of symbols when vertical-bar syntax is not used. The
value of *print-case* should be one of the keywords :upcase, :downcase,
or :capitalize; the initial value is :upcase.

Lowercase characters in the internal print name are always printed in
lowercase, and are preceded by a single escape character or enclosed by mul-
tiple escape characters. Uppercase characters in the internal print name are
printed in uppercase, in lowercase, or in mixed case so as to capitalize words,

584 CHAPTER 22. INPUT/OUTPUT

according to the value of *print-case*. The convention for what constitutes
a “word” is the same as for the function string-capitalize.

X3J13 voted in June 1989 to clarify the interaction of *print-case* with
print-escape. When *print-escape* is nil, *print-case* determines
the case in which to print all uppercase characters in the print name of the
symbol. When *print-escape* is not nil, the implementation has some
freedom as to which characters will be printed so as to appear in an “escape
context” (after an escape character, typically \, or between multiple escape
characters, typically |); *print-case* determines the case in which to print
all uppercase characters that will not appear in an escape context. For
example, when the value of *print-case* is :upcase, an implementation
might choose to print the symbol whose print name is "(S)HE" as \(S\)HE
or as |(S)HE|, among other possibilities. When the value of *print-case*
is :downcase, the corresponding output should be \(s\)he or |(S)HE|,
respectively.

Consider the following test code. (For the sake of this example assume
that readtable-case is :upcase in the current readtable; this is discussed
further below.)

(let ((tabwidth 11))
(dolist (sym ’(|x| |FoObAr| |fOo|))
(let ((tabstop -1))
(format t "~&")
(dolist (escape ’(t nil))
(dolist (case ’(:upcase :downcase :capitalize))
(format t "~VT" (* (incf tabstop) tabwidth))
(write sym :escape escape :case case)))))

(format t " %"))

An implementation that leans heavily on multiple-escape characters (ver-
tical bars) might produce the following output:

|x| |x| |x| x x x
|FoObAr| |FoObAr| |FoObAr| FoObAr foobar Foobar
|fOo| |fOo| |fOo| fOo foo foo

An implementation that leans heavily on single-escape characters (back-
slashes) might produce the following output:

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 585

\x \x \x x x x
F\oO\bA\r f\oo\ba\r F\oo\ba\r FoObAr foobar Foobar
\fO\o \fo\o \fo\o fOo foo foo

These examples are not exhaustive; output using both kinds of escape
characters (for example, |FoO|\bA\r) is permissible (though ugly).

X3J13 voted in June 1989 to add a new readtable-case slot to readtables
to control automatic case conversion during the reading of symbols. The
value of readtable-case in the current readtable also affects the printing of
unescaped letters (letters appearing in an escape context are always printed
in their own case).

• If readtable-case is :upcase, unescaped uppercase letters are printed
in the case specified by *print-case* and unescaped lowercase let-
ters are printed in their own case. (If *print-escape* is non-nil, all
lowercase letters will necessarily be escaped.)

• If readtable-case is :downcase, unescaped lowercase letters are
printed in the case specified by *print-case* and unescaped uppercase
letters are printed in their own case. (If *print-escape* is non-nil,
all uppercase letters will necessarily be escaped.)

• If readtable-case is :preserve, all unescaped letters are printed in
their own case, regardless of the value of *print-case*. There is no
need to escape any letters, even if *print-escape* is non-nil, though
the X3J13 vote did not prohibit escaping letters in this situation.

• If readtable-case is :invert, and if all unescaped letters are of the
same case, then the case of all the unescaped letters is inverted; but if
the unescaped letters are not all of the same case then each is printed
in its own case. (Thus :invert does not always invert the case; the
inversion is conditional.) There is no need to escape any letters, even
if *print-escape* is non-nil, though the X3J13 vote did not prohibit
escaping letters in this situation.

Consider the following code.

586 CHAPTER 22. INPUT/OUTPUT

;;; Generate a table illustrating READTABLE-CASE and *PRINT-CASE*.

(let ((*readtable* (copy-readtable nil))
(*print-case* *print-case*))

(format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output~
~%————————- ————————-~
~%")

(dolist (readtable-case ’(:upcase :downcase :preserve :invert))
(setf (readtable-case *readtable*) readtable-case)
(dolist (print-case ’(:upcase :downcase :capitalize))
(dolist (sym ’(|ZEBRA| |Zebra| |zebra|))
(setq *print-case* print-case)
(format t ":~A~15T:~A~29T~A~42T~A~%"

(string-upcase readtable-case)
(string-upcase print-case)
(symbol-name sym)
(prin1-to-string sym)))))))

Note that the call to prin1-to-string (the last argument in the call to for-
mat that is within the nested loops) effectively uses a non-nil value for
print-escape.

Assuming an implementation that uses vertical bars around a symbol
name if any characters need escaping, the output from this test code should
be

READTABLE-CASE *PRINT-CASE* Symbol-name Output
————————————————–
:UPCASE :UPCASE ZEBRA ZEBRA
:UPCASE :UPCASE Zebra |Zebra|
:UPCASE :UPCASE zebra |zebra|
:UPCASE :DOWNCASE ZEBRA zebra
:UPCASE :DOWNCASE Zebra |Zebra|
:UPCASE :DOWNCASE zebra |zebra|
:UPCASE :CAPITALIZE ZEBRA Zebra
:UPCASE :CAPITALIZE Zebra |Zebra|
:UPCASE :CAPITALIZE zebra |zebra|
:DOWNCASE :UPCASE ZEBRA |ZEBRA|
:DOWNCASE :UPCASE Zebra |Zebra|
:DOWNCASE :UPCASE zebra ZEBRA

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 587

:DOWNCASE :DOWNCASE ZEBRA |ZEBRA|
:DOWNCASE :DOWNCASE Zebra |Zebra|
:DOWNCASE :DOWNCASE zebra zebra
:DOWNCASE :CAPITALIZE ZEBRA |ZEBRA|
:DOWNCASE :CAPITALIZE Zebra |Zebra|
:DOWNCASE :CAPITALIZE zebra Zebra
:PRESERVE :UPCASE ZEBRA ZEBRA
:PRESERVE :UPCASE Zebra Zebra
:PRESERVE :UPCASE zebra zebra
:PRESERVE :DOWNCASE ZEBRA ZEBRA
:PRESERVE :DOWNCASE Zebra Zebra
:PRESERVE :DOWNCASE zebra zebra
:PRESERVE :CAPITALIZE ZEBRA ZEBRA
:PRESERVE :CAPITALIZE Zebra Zebra
:PRESERVE :CAPITALIZE zebra zebra
:INVERT :UPCASE ZEBRA zebra
:INVERT :UPCASE Zebra Zebra
:INVERT :UPCASE zebra ZEBRA
:INVERT :DOWNCASE ZEBRA zebra
:INVERT :DOWNCASE Zebra Zebra
:INVERT :DOWNCASE zebra ZEBRA
:INVERT :CAPITALIZE ZEBRA zebra
:INVERT :CAPITALIZE Zebra Zebra
:INVERT :CAPITALIZE zebra ZEBRA

This illustrates all combinations for readtable-case and *print-case*.

588 CHAPTER 22. INPUT/OUTPUT

Table 22.8: Examples of Print Level and Print Length Abbreviation

v n Output
0 1 #
1 1 (if ...)
1 2 (if # ...)
1 3 (if # # ...)
1 4 (if # # #)
2 1 (if ...)
2 2 (if (member x ...) ...)
2 3 (if (member x y) (+ # 3) ...)
3 2 (if (member x ...) ...)
3 3 (if (member x y) (+ (car x) 3) ...)
3 4 (if (member x y) (+ (car x) 3) ’(foo . #(a b c d ...)))
3 5 (if (member x y) (+ (car x) 3) ’(foo . #(a b c d "Baz")))

[Variable] *print-gensym*

The *print-gensym* variable controls whether the prefix #: is printed
before symbols that have no home package. The prefix is printed if the
variable is not nil. The initial value of *print-gensym* is t.

[Variable] *print-level*
[Variable] *print-length*

The *print-level* variable controls how many levels deep a nested data
object will print. If *print-level* is nil (the initial value), then no control is
exercised. Otherwise, the value should be an integer, indicating the maximum
level to be printed. An object to be printed is at level 0; its components (as
of a list or vector) are at level 1; and so on. If an object to be recursively
printed has components and is at a level equal to or greater than the value
of *print-level*, then the object is printed as simply #.

The *print-length* variable controls how many elements at a given
level are printed. A value of nil (the initial value) indicates that there be no
limit to the number of components printed. Otherwise, the value of *print-
length* should be an integer. Should the number of elements of a data
object exceed the value *print-length*, the printer will print three dots, ...,

22.1. PRINTED REPRESENTATION OF LISP OBJECTS 589

in place of those elements beyond the number specified by *print-length*.
(In the case of a dotted list, if the list contains exactly as many elements as the
value of *print-length*, and in addition has the non-null atom terminating
it, that terminating atom is printed rather than the three dots.)

print-level and *print-length* affect the printing not only of lists
but also of vectors, arrays, and any other object printed with a list-like
syntax. They do not affect the printing of symbols, strings, and bit-vectors.

The Lisp reader will normally signal an error when reading an expression
that has been abbreviated because of level or length limits. This signal
is given because the # dispatch character normally signals an error when
followed by whitespace or), and because ... is defined to be an illegal token,
as are all tokens consisting entirely of periods (other than the single dot used
in dot notation).

As an example, table 22.8 shows the ways the object

(if (member x y) (+ (car x) 3) ’(foo . #(a b c d "Baz")))

would be printed for various values of *print-level* (in the column la-
beled v) and *print-length* (in the column labeled n).

[Variable] *print-array*

If *print-array* is nil, then the contents of arrays other than strings are
never printed. Instead, arrays are printed in a concise form (using #<) that
gives enough information for the user to be able to identify the array but does
not include the entire array contents. If *print-array* is not nil, non-string
arrays are printed using #(, #*, or #nA syntax. Notice of correction. In
the first edition, the preceding paragraph mentioned the nonexistent variable
print-array instead of *print-array*. The initial value of *print-array*
is implementation-dependent.
[Macro] with-standard-io-syntax {declaration}* {form}*
Within the dynamic extent of the body, all reader/printer control vari-

ables, including any implementation-defined ones not specified by Common
Lisp, are bound to values that produce standard read/print behavior. Ta-
ble 22.9 shows the values to which standard Common Lisp variables are
bound.

The values returned by with-standard-io-syntax are the values of the
last body form, or nil if there are no body forms.

590 CHAPTER 22. INPUT/OUTPUT

The intent is that a pair of executions, as shown in the following exam-
ple, should provide reasonable reliable communication of data from one Lisp
process to another:

;;; Write DATA to a file.
(with-open-file (file pathname :direction :output)
(with-standard-io-syntax
(print data file)))

;;; ... Later, in another Lisp:
(with-open-file (file pathname :direction :input)
(with-standard-io-syntax
(setq data (read file))))

Using with-standard-io-syntax to bind all the variables, instead of us-
ing let and explicit bindings, ensures that nothing is overlooked and avoids
problems with implementation-defined reader/printer control variables. If
the user wishes to use a non-standard value for some variable, such as *pack-
age* or *read-eval*, it can be bound by let inside the body of with-
standard-io-syntax. For example:

;;; Write DATA to a file. Forbid use of #. syntax.
(with-open-file (file pathname :direction :output)
(let ((*read-eval* nil))
(with-standard-io-syntax
(print data file))))

;;; Read DATA from a file. Forbid use of #. syntax.
(with-open-file (file pathname :direction :input)
(let ((*read-eval* nil))
(with-standard-io-syntax
(setq data (read file)))))

Similarly, a user who dislikes the arbitrary choice of values for *print-
circle* and *print-pretty* can bind these variables to other values inside
the body.

The X3J13 vote left it unclear whether with-standard-io-syntax per-
mits declarations to appear before the body of the macro call. I believe that
was the intent, and this is reflected in the syntax shown above; but this is
only my interpretation.

22.2. INPUT FUNCTIONS 591

22.2 Input Functions
The input functions are divided into two groups: those that operate on
streams of characters and those that operate on streams of binary data.

22.2.1 Input from Character Streams

Many character input functions take optional arguments called input-stream,
eof-error-p, and eof-value. The input-stream argument is the stream from
which to obtain input; if unsupplied or nil it defaults to the value of the
special variable *standard-input*. One may also specify t as a stream,
meaning the value of the special variable *terminal-io*.

The eof-error-p argument controls what happens if input is from a file
(or any other input source that has a definite end) and the end of the file
is reached. If eof-error-p is true (the default), an error will be signaled at
end of file. If it is false, then no error is signaled, and instead the function
returns eof-value.

An eof-value argument may be any Lisp datum whatsoever.
Functions such as read that read the representation of an object rather

than a single character will always signal an error, regardless of eof-error-p,
if the file ends in the middle of an object representation. For example, if a
file does not contain enough right parentheses to balance the left parentheses
in it, read will complain. If a file ends in a symbol or a number immediately
followed by end-of-file, read will read the symbol or number successfully and
when called again will see the end-of-file and only then act according to eof-
error-p. Similarly, the function read-line will successfully read the last line
of a file even if that line is terminated by end-of-file rather than the newline
character. If a file contains ignorable text at the end, such as blank lines and
comments, read will not consider it to end in the middle of an object. Thus
an eof-error-p argument controls what happens when the file ends between
objects.

Many input functions also take an argument called recursive-p. If spec-
ified and not nil, this argument specifies that this call is not a “top-level”
call to read but an imbedded call, typically from the function for a macro
character. It is important to distinguish such recursive calls for three reasons.

First, a top-level call establishes the context within which the #n= and
#n# syntax is scoped. Consider, for example, the expression

(cons ’#3=(p q r) ’(x y . #3#))

592 CHAPTER 22. INPUT/OUTPUT

If the single-quote macro character were defined in this way:

(set-macro-character #\’
#’(lambda (stream char)

(declare (ignore char))
(list ’quote (read stream))))

then the expression could not be read properly, because there would be
no way to know when read is called recursively by the first occurrence of ’
that the label #3= would be referred to later in the containing expression.
There would be no way to know because read could not determine that it
was called by a macro-character function rather than from “top level.” The
correct way to define the single quote macro character uses the recursive-p
argument:

(set-macro-character #\’
#’(lambda (stream char)

(declare (ignore char))
(list ’quote (read stream t nil t))))

Second, a recursive call does not alter whether the reading process is
to preserve whitespace or not (as determined by whether the top-level call
was to read or read-preserving-whitespace). Suppose again that the
single quote had the first, incorrect, macro-character definition shown above.
Then a call to read-preserving-whitespace that read the expression ’foo
would fail to preserve the space character following the symbol foo because
the single-quote macro-character function calls read, not read-preserving-
whitespace, to read the following expression (in this case foo). The correct
definition, which passes the value t for the recursive-p argument to read,
allows the top-level call to determine whether whitespace is preserved.

Third, when end-of-file is encountered and the eof-error-p argument is not
nil, the kind of error that is signaled may depend on the value of recursive-p.
If recursive-p is not nil, then the end-of-file is deemed to have occurred within
the middle of a printed representation; if recursive-p is nil, then the end-of-
file may be deemed to have occurred between objects rather than within the
middle of one.

[Function] read &optional input-stream eof-error-p eof-value recursive-p

read reads in the printed representation of a Lisp object from input-
stream, builds a corresponding Lisp object, and returns the object.

22.2. INPUT FUNCTIONS 593

Note that when the variable *read-suppress* is not nil, then read
reads in a printed representation as best it can, but most of the work of
interpreting the representation is avoided (the intent being that the result
is to be discarded anyway). For example, all extended tokens produce the
result nil regardless of their syntax.

[Variable] *read-default-float-format*

The value of this variable must be a type specifier symbol for a spe-
cific floating-point format; these include short-float, single-float, double-
float, and long-float and may include implementation-specific types as well.
The default value is single-float.

read-default-float-format indicates the floating-point format to be
used for reading floating-point numbers that have no exponent marker or
have e or E for an exponent marker. (Other exponent markers explicitly
prescribe the floating-point format to be used.) The printer also uses this
variable to guide the choice of exponent markers when printing floating-point
numbers.

[Function] read-preserving-whitespace &optional in-stream eof-error-p
eof-value recursive-p

Certain printed representations given to read, notably those of symbols
and numbers, require a delimiting character after them. (Lists do not, be-
cause the close parenthesis marks the end of the list.) Normally read will
throw away the delimiting character if it is a whitespace character; but read
will preserve the character (using unread-char) if it is syntactically mean-
ingful, because it may be the start of the next expression.

X3J13 voted in January 1989 to clarify the interaction of unread-char
with echo streams. These changes indirectly affect the echoing behavior of
read-preserving-whitespace.

The function read-preserving-whitespace is provided for some spe-
cialized situations where it is desirable to determine precisely what character
terminated the extended token.

As an example, consider this macro-character definition:

(defun slash-reader (stream char)
(declare (ignore char))
(do ((path (list (read-preserving-whitespace stream))

594 CHAPTER 22. INPUT/OUTPUT

(cons (progn (read-char stream nil nil t)
(read-preserving-whitespace
stream))

path)))
((not (char= (peek-char nil stream nil nil t) #\/))
(cons ’path (nreverse path)))))

(set-macro-character #\/ #’slash-reader)

(This is actually a rather dangerous definition to make because expres-
sions such as (/ x 3) will no longer be read properly. The ability to repro-
gram the reader syntax is very powerful and must be used with caution. This
redefinition of / is shown here purely for the sake of example.)

Consider now calling read on this expression:

(zyedh /usr/games/zork /usr/games/boggle)

The / macro reads objects separated by more / characters; thus
/usr/games/zork is intended to be read as (path usr games zork). The
entire example expression should therefore be read as

(zyedh (path usr games zork) (path usr games boggle))

However, if read had been used instead of read-preserving-
whitespace, then after the reading of the symbol zork, the following space
would be discarded; the next call to peek-char would see the following /,
and the loop would continue, producing this interpretation:

(zyedh (path usr games zork usr games boggle))

On the other hand, there are times when whitespace should be discarded.
If a command interpreter takes single-character commands, but occasionally
reads a Lisp object, then if the whitespace after a symbol is not discarded
it might be interpreted as a command some time later after the symbol had
been read.

Note that read-preserving-whitespace behaves exactly like read when
the recursive-p argument is not nil. The distinction is established only by
calls with recursive-p equal to nil or omitted.

[Function] read-delimited-list char &optional input-stream recursive-p

This reads objects from stream until the next character after an object’s
representation (ignoring whitespace characters and comments) is char. (The

22.2. INPUT FUNCTIONS 595

char should not have whitespace syntax in the current readtable.) A list of
the objects read is returned.

To be more precise, read-delimited-list looks ahead at each step for the
next non-whitespace character and peeks at it as if with peek-char. If it is
char, then the character is consumed and the list of objects is returned. If
it is a constituent or escape character, then read is used to read an object,
which is added to the end of the list. If it is a macro character, the associated
macro function is called; if the function returns a value, that value is added
to the list. The peek-ahead process is then repeated.

X3J13 voted in January 1989 to clarify the interaction of peek-char
with echo streams. These changes indirectly affect the echoing behavior of
the function read-delimited-list.

This function is particularly useful for defining new macro characters.
Usually it is desirable for the terminating character char to be a terminating
macro character so that it may be used to delimit tokens; however, read-
delimited-list makes no attempt to alter the syntax specified for char by
the current readtable. The user must make any necessary changes to the
readtable syntax explicitly. The following example illustrates this.

Suppose you wanted #{a b c ... z} to be read as a list of all pairs of
the elements a, b, c, ..., z ; for example:

#{p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a))

This can be done by specifying a macro-character definition for #{ that
does two things: read in all the items up to the }, and construct the pairs.
read-delimited-list performs the first task.

Note that mapcon allows the mapped function to examine the items of
the list after the current one, and that mapcon uses nconc, which is all
right because mapcar will produce fresh lists.

596 CHAPTER 22. INPUT/OUTPUT

(defun |#{-reader| (stream char arg)
(declare (ignore char arg))
(mapcon #’(lambda (x)

(mapcar #’(lambda (y) (list (car x) y)) (cdr x)))
(read-delimited-list #\} stream t)))

(set-dispatch-macro-character #\# #\{ #’|#{-reader|)

(set-macro-character #\} (get-macro-character #\) nil))

(Note that t is specified for the recursive-p argument.)
It is necessary here to give a definition to the character } as well to prevent

it from being a constituent. If the line

(set-macro-character #\} (get-macro-character #\) nil))

shown above were not included, then the } in

#{p q z a}

would be considered a constituent character, part of the symbol named
a}. One could correct for this by putting a space before the }, but it is better
simply to use the call to set-macro-character.

Giving } the same definition as the standard definition of the character
) has the twin benefit of making it terminate tokens for use with read-
delimited-list and also making it illegal for use in any other context (that
is, attempting to read a stray } will signal an error).

Note that read-delimited-list does not take an eof-error-p (or eof-value)
argument. The reason is that it is always an error to hit end-of-file during
the operation of read-delimited-list.

[Function] read-line &optional input-stream eof-error-p eof-value
recursive-p

read-line reads in a line of text terminated by a newline. It returns the
line as a character string (without the newline character). This function is
usually used to get a line of input from the user. A second returned value is
a flag that is false if the line was terminated normally, or true if end-of-file
terminated the (non-empty) line. If end-of-file is encountered immediately
(that is, appears to terminate an empty line), then end-of-file processing

22.2. INPUT FUNCTIONS 597

is controlled in the usual way by the eof-error-p, eof-value, and recursive-p
arguments.

The corresponding output function is write-line.

[Function] read-char &optional input-stream eof-error-p eof-value
recursive-p

read-char inputs one character from input-stream and returns it as a
character object.

The corresponding output function is write-char.
X3J13 voted in January 1989 to clarify the interaction of read-char with

echo streams (as created by make-echo-stream). A character is echoed
from the input stream to the associated output stream the first time it is
seen. If a character is read again because of an intervening unread-char
operation, the character is not echoed again when read for the second time
or any subsequent time.

[Function] unread-char character &optional input-stream

unread-char puts the character onto the front of input-stream. The
character must be the same character that was most recently read from
the input-stream. The input-stream “backs up” over this character; when a
character is next read from input-stream, it will be the specified character
followed by the previous contents of input-stream. unread-char returns nil.

One may apply unread-char only to the character most recently read
from input-stream. Moreover, one may not invoke unread-char twice con-
secutively without an intervening read-char operation. The result is that
one may back up only by one character, and one may not insert any charac-
ters into the input stream that were not already there.

X3J13 voted in January 1989 to clarify that one also may not invoke
unread-char after invoking peek-char without an intervening read-char
operation. This is consistent with the notion that peek-char behaves much
like read-char followed by unread-char.

Rationale: This is not intended to be a general mechanism, but rather an efficient
mechanism for allowing the Lisp reader and other parsers to perform one-character
lookahead in the input stream. This protocol admits a wide variety of efficient im-
plementations, such as simply decrementing a buffer pointer. To have to specify the
character in the call to unread-char is admittedly redundant, since at any given

598 CHAPTER 22. INPUT/OUTPUT

time there is only one character that may be legally specified. The redundancy is
intentional, again to give the implementation latitude.

X3J13 voted in January 1989 to clarify the interaction of unread-char
with echo streams (as created by make-echo-stream). When a character is
“unread” from an echo stream, no attempt is made to “unecho” the character.
However, a character placed back into an echo stream by unread-char will
not be re-echoed when it is subsequently re-read by read-char.

22.2. INPUT FUNCTIONS 599

[Function] peek-char &optional peek-type input-stream eof-error-p
eof-value recursive-p

What peek-char does depends on the peek-type, which defaults to nil.
With a peek-type of nil, peek-char returns the next character to be read
from input-stream, without actually removing it from the input stream. The
next time input is done from input-stream, the character will still be there.
It is as if one had called read-char and then unread-char in succession.

If peek-type is t, then peek-char skips over whitespace characters (but
not comments) and then performs the peeking operation on the next char-
acter. This is useful for finding the (possible) beginning of the next printed
representation of a Lisp object. The last character examined (the one that
starts an object) is not removed from the input stream.

If peek-type is a character object, then peek-char skips over input char-
acters until a character that is char= to that object is found; that character
is left in the input stream.

X3J13 voted in January 1989 to clarify the interaction of peek-char with
echo streams (as created by make-echo-stream). When a character from
an echo stream is only peeked at, it is not echoed at that time. The character
remains in the input stream and may be echoed when read by read-char at
a later time. Note, however, that if the peek-type is not nil, then characters
skipped over (and therefore consumed) by peek-char are treated as if they
had been read by read-char, and will be echoed if read-char would have
echoed them.

[Function] listen &optional input-stream

The predicate listen is true if there is a character immediately available
from input-stream, and is false if not. This is particularly useful when the
stream obtains characters from an interactive device such as a keyboard. A
call to read-char would simply wait until a character was available, but
listen can sense whether or not input is available and allow the program to
decide whether or not to attempt input. On a non-interactive stream, the
general rule is that listen is true except when at end-of-file.

[Function] read-char-no-hang &optional input-stream eof-error-p
eof-value recursive-p

This function is exactly like read-char, except that if it would be nec-
essary to wait in order to get a character (as from a keyboard), nil is im-

600 CHAPTER 22. INPUT/OUTPUT

mediately returned without waiting. This allows one to efficiently check for
input availability and get the input if it is available. This is different from the
listen operation in two ways. First, read-char-no-hang potentially reads a
character, whereas listen never inputs a character. Second, listen does not
distinguish between end-of-file and no input being available, whereas read-
char-no-hang does make that distinction, returning eof-value at end-of-file
(or signaling an error if no eof-error-p is true) but always returning nil if no
input is available.

[Function] clear-input &optional input-stream

This clears any buffered input associated with input-stream. It is pri-
marily useful for clearing type-ahead from keyboards when some kind of
asynchronous error has occurred. If this operation doesn’t make sense for
the stream involved, then clear-input does nothing. clear-input returns
nil.

[Function] read-from-string string &optional eof-error-p eof-value &key
:start :end :preserve-whitespace

The characters of string are given successively to the Lisp reader, and the
Lisp object built by the reader is returned. Macro characters and so on will
all take effect.

The arguments :start and :end delimit a substring of string beginning
at the character indexed by :start and up to but not including the character
indexed by :end. By default :start is 0 (the beginning of the string) and
:end is (length string). This is the same as for other string functions.

The flag :preserve-whitespace, if provided and not nil, indicates
that the operation should preserve whitespace as for read-preserving-
whitespace. It defaults to nil.

As with other reading functions, the arguments eof-error-p and eof-value
control the action if the end of the (sub)string is reached before the operation
is completed; reaching the end of the string is treated as any other end-of-file
event.

read-from-string returns two values: the first is the object read, and the
second is the index of the first character in the string not read. If the entire
string was read, the second result will be either the length of the string or one
greater than the length of the string. The parameter :preserve-whitespace
may affect this second value.

22.2. INPUT FUNCTIONS 601

(read-from-string "(a b c)") ⇒ (a b c) and 7

[Function] parse-integer string &key :start :end :radix :junk-allowed

This function examines the substring of string delimited by :start and
:end (which default to the beginning and end of the string). It skips over
whitespace characters and then attempts to parse an integer. The :radix
parameter defaults to 10 and must be an integer between 2 and 36.

If :junk-allowed is not nil, then the first value returned is the value of
the number parsed as an integer or nil if no syntactically correct integer was
seen.

If :junk-allowed is nil (the default), then the entire substring is scanned.
The returned value is the value of the number parsed as an integer. An error
is signaled if the substring does not consist entirely of the representation of
an integer, possibly surrounded on either side by whitespace characters.

In either case, the second value is the index into the string of the delimiter
that terminated the parse, or it is the index beyond the substring if the parse
terminated at the end of the substring (as will always be the case if :junk-
allowed is false).

Note that parse-integer does not recognize the syntactic radix-specifier
prefixes #O, #B, #X, and #nR, nor does it recognize a trailing decimal
point. It permits only an optional sign (+ or -) followed by a non-empty
sequence of digits in the specified radix.

[Function] read-sequence sequence input-stream &key :start :end

This function reads elements from input-stream into sequence. The posi-
tion of the first unchanged element of sequence is returned.

22.2.2 Input from Binary Streams

Common Lisp currently specifies only a very simple facility for binary input:
the reading of a single byte as an integer.

[Function] read-byte binary-input-stream &optional eof-error-p eof-value

read-byte reads one byte from the binary-input-stream and returns it in
the form of an integer.

602 CHAPTER 22. INPUT/OUTPUT

22.3 Output Functions
The output functions are divided into two groups: those that operate on
streams of characters and those that operate on streams of binary data.
The function format operates on streams of characters but is described in
a section separate from the other character-output functions because of its
great complexity.

22.3.1 Output to Character Streams

These functions all take an optional argument called output-stream, which is
where to send the output. If unsupplied or nil, output-stream defaults to the
value of the variable *standard-output*. If it is t, the value of the variable
terminal-io is used.

X3J13 voted in June 1989 to add the keyword argument :readably to
the function write, and voted in June 1989 to add the keyword arguments
:right-margin, :miser-width, :lines, and :pprint-dispatch. The revised
description is as follows.

[Function] write object &key :stream :escape :radix :base :circle :pretty
:level :length :case :gensym :array :readably :right-margin :miser-width
:lines :pprint-dispatch

The printed representation of object is written to the output stream spec-
ified by :stream, which defaults to the value of *standard-output*.

The other keyword arguments specify values used to control the gen-
eration of the printed representation. Each defaults to the value of
the corresponding global variable: see *print-escape*, *print-radix*,
print-base, *print-circle*, *print-pretty*, *print-level*, *print-
length*, and *print-case*, in addition to *print-array*, *print-
gensym*, *print-readably*, *print-right-margin*, *print-miser-
width*, *print-lines*, and *print-pprint-dispatch*. (This is the means
by which these variables affect printing operations: supplying default values
for the write function.) Note that the printing of symbols is also affected by
the value of the variable *package*. write returns object.

[Function] prin1 object &optional output-stream
[Function] print object &optional output-stream

22.3. OUTPUT FUNCTIONS 603

[Function] pprint object &optional output-stream
[Function] princ object &optional output-stream

prin1 outputs the printed representation of object to output-stream. Es-
cape characters are used as appropriate. Roughly speaking, the output from
prin1 is suitable for input to the function read. prin1 returns the object as
its value.

(prin1 object output-stream)
≡ (write object :stream output-stream :escape t)

print is just like prin1 except that the printed representation of object
is preceded by a newline (see terpri) and followed by a space. print returns
object.

pprint is just like print except that the trailing space is omitted and the
object is printed with the *print-pretty* flag non-nil to produce “pretty”
output. pprint returns no values (that is, what the expression (values)
returns: zero values).

X3J13 voted in January 1989 to adopt a facility for user-controlled pretty
printing (see chapter 27).

princ is just like prin1 except that the output has no escape characters.
A symbol is printed as simply the characters of its print name; a string is
printed without surrounding double quotes; and there may be differences
for other data types as well. The general rule is that output from princ
is intended to look good to people, while output from prin1 is intended to
be acceptable to the function read. X3J13 voted in June 1987 to clarify
that princ prints a character in exactly the same manner as write-char:
the character is simply sent to the output stream. This was implied by the
specification in section 22.1.6 in the first edition, but is worth pointing out
explicitly here. princ returns the object as its value.

(princ object output-stream)
≡ (write object :stream output-stream :escape nil)

[Function] write-to-string object &key :escape :radix :base :circle :pretty
:level :length :case :gensym :array :readably :right-margin :miser-width
:lines :pprint-dispatch
[Function] prin1-to-string object

604 CHAPTER 22. INPUT/OUTPUT

[Function] princ-to-string object

The object is effectively printed as if by write, prin1, or princ, respec-
tively, and the characters that would be output are made into a string, which
is returned.

[Function] write-char character &optional output-stream

write-char outputs the character to output-stream, and returns charac-
ter.

[Function] write-string string &optional output-stream &key :start :end
[Function] write-line string &optional output-stream &key :start :end

write-string writes the characters of the specified substring of string to
the output-stream. The :start and :end parameters delimit a substring of
string in the usual manner (see chapter 14). write-line does the same thing
but then outputs a newline afterwards. (See read-line.) In either case, the
string is returned (not the substring delimited by :start and :end). In some
implementations these may be much more efficient than an explicit loop using
write-char.

[Function] write-sequence sequence output-stream &key :start :end

write-sequence writes the elements of the subsequence of sequence
bounded by start and end to output-stream.

[Function] terpri &optional output-stream
[Function] fresh-line &optional output-stream

The function terpri outputs a newline to output-stream. It is identical
in effect to (write-char #\Newline output-stream); however, terpri
always returns nil.

fresh-line is similar to terpri but outputs a newline only if the stream
is not already at the start of a line. (If for some reason this cannot be
determined, then a newline is output anyway.) This guarantees that the
stream will be on a “fresh line” while consuming as little vertical distance as
possible. fresh-line is a predicate that is true if it output a newline, and
otherwise false.

22.3. OUTPUT FUNCTIONS 605

[Function] finish-output &optional output-stream
[Function] force-output &optional output-stream
[Function] clear-output &optional output-stream

Some streams may be implemented in an asynchronous or buffered man-
ner. The function finish-output attempts to ensure that all output sent to
output-stream has reached its destination, and only then returns nil. force-
output initiates the emptying of any internal buffers but returns nil without
waiting for completion or acknowledgment.

The function clear-output, on the other hand, attempts to abort any
outstanding output operation in progress in order to allow as little output
as possible to continue to the destination. This is useful, for example, to
abort a lengthy output to the terminal when an asynchronous error occurs.
clear-output returns nil.

The precise actions of all three of these operations are implementation-
dependent.

[Macro] print-unreadable-object (object stream
[[:type type | :identity id]])
{declaration}* {form}*

Function will output a printed representation of object on stream, begin-
ning with #< and ending with >. Everything output to the stream during
execution of the body forms is enclosed in the angle brackets. If type is true,
the body output is preceded by a brief description of the object’s type and a
space character. If id is true, the body output is followed by a space character
and a representation of the object’s identity, typically a storage address.

If *print-readably* is true, print-unreadable-object signals an error
of type print-not-readable without printing anything.

The object, stream, type, and id arguments are all evaluated normally.
The type and id default to false. It is valid to provide no body forms. If type
and id are both true and there are no body forms, only one space character
separates the printed type and the printed identity.

The value returned by print-unreadable-object is nil.

(defmethod print-object ((obj airplane) stream)
(print-unreadable-object (obj stream :type t :identity t)
(princ (tail-number obj) stream)))

606 CHAPTER 22. INPUT/OUTPUT

(print my-airplane) prints
#<Airplane NW0773 777500123135> ;In implementation A

or perhaps
#<FAA:AIRPLANE NW0773 17> ;In implementation B

The big advantage of print-unreadable-object is that it allows a user
to write print-object methods that adhere to implementation-specific style
without requiring the user to write implementation-dependent code.

The X3J13 vote left it unclear whether print-unreadable-object per-
mits declarations to appear before the body of the macro call. I believe that
was the intent, and this is reflected in the syntax shown above; but this is
only my interpretation.

22.3.2 Output to Binary Streams

Common Lisp currently specifies only a very simple facility for binary output:
the writing of a single byte as an integer.

[Function] write-byte integer binary-output-stream

write-byte writes one byte, the value of integer. It is an error if integer
is not of the type specified as the :element-type argument to open when
the stream was created. The value integer is returned.

22.3.3 Formatted Output to Character Streams

The function format is very useful for producing nicely formatted text, pro-
ducing good-looking messages, and so on. format can generate a string or
output to a stream.

Formatted output is performed not only by the format function itself
but by certain other functions that accept a control string “the way format
does.” For example, error-signaling functions such as cerror accept format
control strings.

[Function] format destination control-string &rest arguments

format is used to produce formatted output. format outputs the char-
acters of control-string, except that a tilde (~) introduces a directive. The

22.3. OUTPUT FUNCTIONS 607

character after the tilde, possibly preceded by prefix parameters and modi-
fiers, specifies what kind of formatting is desired. Most directives use one or
more elements of arguments to create their output; the typical directive puts
the next element of arguments into the output, formatted in some special
way. It is an error if no argument remains for a directive requiring an argu-
ment, but it is not an error if one or more arguments remain unprocessed by
a directive.

The output is sent to destination. If destination is nil, a string is created
that contains the output; this string is returned as the value of the call to
format.

When the first argument to format is nil, format creates a stream of
type string-stream in much the same manner as with-output-to-string.
(This stream may be visible to the user if, for example, the ~S directive is
used to print a defstruct structure that has a user-supplied print function.)

In all other cases format returns nil, performing output to destination
as a side effect. If destination is a stream, the output is sent to it. If
destination is t, the output is sent to the stream that is the value of the
variable *standard-output*. If destination is a string with a fill pointer,
then in effect the output characters are added to the end of the string (as if
by use of vector-push-extend).

The format function includes some extremely complicated and special-
ized features. It is not necessary to understand all or even most of its fea-
tures to use format effectively. The beginner should skip over anything in
the following documentation that is not immediately useful or clear. The
more sophisticated features (such as conditionals and iteration) are there for
the convenience of programs with especially complicated formatting require-
ments.

A format directive consists of a tilde (~), optional prefix parameters
separated by commas, optional colon (:) and at-sign (@) modifiers, and
a single character indicating what kind of directive this is. The alphabetic
case of the directive character is ignored. The prefix parameters are generally
integers, notated as optionally signed decimal numbers.

If both colon and at-sign modifiers are present, they may appear in either
order; thus ~:@R and ~@:R mean the same thing. However, it is traditional
to put the colon first, and all the examples in this book put colons before
at-signs.

Examples of control strings:

608 CHAPTER 22. INPUT/OUTPUT

"~S" ;An ~S directive with no parameters or modifiers
"~3,-4:@s" ;An ~S directive with two parameters, 3 and −4,

; and both the colon and at-sign flags
"~,+4S" ;First prefix parameter is omitted and takes

; on its default value; the second parameter is 4

Sometimes a prefix parameter is used to specify a character, for instance
the padding character in a right- or left-justifying operation. In this case a
single quote (’) followed by the desired character may be used as a prefix
parameter, to mean the character object that is the character following the
single quote. For example, you can use ~5,’0d to print an integer in decimal
radix in five columns with leading zeros, or ~5,’*d to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter V
(or v), which takes an argument from arguments for use as a parameter to
the directive. Normally this should be an integer or character object, as
appropriate. This feature allows variable-width fields and the like. If the
argument used by a V parameter is nil, the effect is as if the parameter had
been omitted. You may also use the character # in place of a parameter; it
represents the number of arguments remaining to be processed.

It is an error to give a format directive more parameters than it is de-
scribed here as accepting. It is also an error to give colon or at-sign modifiers
to a directive in a combination not specifically described here as being mean-
ingful.

22.3. OUTPUT FUNCTIONS 609

X3J13 voted in January 1989 to clarify the interaction between format
and the various printer control variables (those named *print-xxx*). This
is important because many format operations are defined, directly or indi-
rectly, in terms of prin1 or princ, which are affected by the printer control
variables. The general rule is that format does not bind any of the standard
printer control variables except as specified in the individual descriptions
of directives. An implementation may not bind any standard printer con-
trol variable not specified in the description of a format directive, nor may
an implementation fail to bind any standard printer control variables that
is specified to be bound by such a description. (See these descriptions for
specific changes voted by X3J13.)

One consequence of this change is that the user is guaranteed to be able
to use the format ~A and ~S directives to do pretty printing, under control
of the *print-pretty* variable. Implementations have differed on this point
in their interpretations of the first edition. The new ~W directive may be
more appropriate than either ~A and ~S for some purposes, whether for
pretty printing or ordinary printing. See section 27.4 for a discussion of ~W
and other new format directives related to pretty printing.

Here are some relatively simple examples to give you the general flavor
of how format is used.

(format nil "foo") ⇒ "foo"

(setq x 5)

(format nil "The answer is ~D." x) ⇒ "The answer is 5."

(format nil "The answer is ~3D." x) ⇒ "The answer is 5."

(format nil "The answer is ~3,’0D." x) ⇒ "The answer is 005."

(format nil "The answer is ~:D." (expt 47 x))
⇒ "The answer is 229,345,007."

(setq y "elephant")

(format nil "Look at the ~A!" y) ⇒ "Look at the elephant!"

610 CHAPTER 22. INPUT/OUTPUT

(format nil "Type ~:C to ~A."
(set-char-bit #\D :control t)
"delete all your files")

⇒ "Type Control-D to delete all your files."

22.3. OUTPUT FUNCTIONS 611

(setq n 3)

(format nil "~D item~:P found." n) ⇒ "3 items found."

(format nil "~R dog~:[s are~; is~] here." n (= n 1))
⇒ "three dogs are here."

(format nil "~R dog~:*~[s are~; is~:;s are~] here." n)
⇒ "three dogs are here."

(format nil "Here ~[are~;is~:;are~] ~:*~R pupp~:@P." n)
⇒ "Here are three puppies."

In the descriptions of the directives that follow, the term arg in general
refers to the next item of the set of arguments to be processed. The word or
phrase at the beginning of each description is a mnemonic (not necessarily
an accurate one) for the directive.

~A Ascii. An arg, any Lisp object, is printed without escape characters (as
by princ). In particular, if arg is a string, its characters will be output
verbatim. If arg is nil, it will be printed as nil; the colon modifier (~:A)
will cause an arg of nil to be printed as (), but if arg is a composite
structure, such as a list or vector, any contained occurrences of nil will
still be printed as nil.

~mincolA inserts spaces on the right, if necessary, to make the width
at least mincol columns. The @ modifier causes the spaces to be in-
serted on the left rather than the right.

~mincol,colinc,minpad,padcharA is the full form of ~A, which al-
lows elaborate control of the padding. The string is padded on the right
(or on the left if the @ modifier is used) with at least minpad copies
of padchar ; padding characters are then inserted colinc characters at
a time until the total width is at least mincol. The defaults are 0 for
mincol and minpad, 1 for colinc, and the space character for padchar.

format binds *print-escape* to nil during the processing of the ~A
directive.

~S S-expression. This is just like ~A, but arg is printed with escape charac-
ters (as by prin1 rather than princ). The output is therefore suitable

612 CHAPTER 22. INPUT/OUTPUT

for input to read. ~S accepts all the arguments and modifiers that
~A does.

format binds *print-escape* to t during the processing of the ~S
directive.

22.3. OUTPUT FUNCTIONS 613

~D Decimal. An arg, which should be an integer, is printed in decimal radix.
~D will never put a decimal point after the number.

~mincolD uses a column width of mincol ; spaces are inserted on the
left if the number requires fewer than mincol columns for its digits and
sign. If the number doesn’t fit in mincol columns, additional columns
are used as needed.

~mincol,padcharD uses padchar as the pad character instead of
space.

If arg is not an integer, it is printed in ~A format and decimal base.

format binds *print-escape* to nil, *print-radix* to nil, and
print-base to 10 during processing of ~D.

The @ modifier causes the number’s sign to be printed always; the
default is to print it only if the number is negative. The : mod-
ifier causes commas to be printed between groups of three digits;
the third prefix parameter may be used to change the character
used as the comma. Thus the most general form of ~D is ~min-
col,padchar,commacharD.

X3J13 voted in March 1988 to add a fourth parameter, the commain-
terval. This must be an integer; if it is not provided, it defaults to 3.
This parameter controls the number of digits in each group separated
by the commachar.

By extension, each of the ~B, ~O, and ~X directives accepts a com-
mainterval as a fourth parameter, and the ~R directive accepts a com-
mainterval as its fifth parameter. Examples:

(format nil "~„’ ,4B" #xFACE) ⇒ "1111 1010 1100 1110"
(format nil "~„’ ,4B" #x1CE) ⇒ "1 1100 1110"
(format nil "~19„’ ,4B" #xFACE) ⇒ "1111 1010 1100 1110"
(format nil "~19„’ ,4B" #x1CE) ⇒ "0000 0001 1100 1110"

This is one of those little improvements that probably don’t matter
much but aren’t hard to implement either. It was pretty silly having
the number 3 wired into the definition of comma separation when it is
just as easy to make it a parameter.

614 CHAPTER 22. INPUT/OUTPUT

~B Binary. This is just like ~D but prints in binary radix (radix
2) instead of decimal. The full form is therefore ~min-
col,padchar,commacharB.

format binds *print-escape* to nil, *print-radix* to nil, and
print-base to 2 during processing of ~B.

~O Octal. This is just like ~D but prints in octal radix (radix 8) instead of
decimal. The full form is therefore ~mincol,padchar,commacharO.

format binds *print-escape* to nil, *print-radix* to nil, and
print-base to 8 during processing of ~O.

~X Hexadecimal. This is just like ~D but prints in hexadecimal radix
(radix 16) instead of decimal. The full form is therefore ~min-
col,padchar,commacharX.

format binds *print-escape* to nil, *print-radix* to nil, and
print-base to 16 during processing of ~X.

~R Radix. ~nR prints arg in radix n. The modifier flags and
any remaining parameters are used as for the ~D directive. In-
deed, ~D is the same as ~10R. The full form here is therefore
~radix,mincol,padchar,commacharR.

format binds *print-escape* to nil, *print-radix* to nil, and
print-base to the value of the first parameter during the processing
of the ~R directive with a parameter.

If no parameters are given to ~R, then an entirely different interpre-
tation is given. Notice of correction. In the first edition, this sentence
referred to “arguments” given to ~R. The correct term is “parameters.”
The argument should be an integer; suppose it is 4. Then ~R prints
arg as a cardinal English number: four; ~:R prints arg as an ordinal
English number: fourth; ~@R prints arg as a Roman numeral: IV;
and ~:@R prints arg as an old Roman numeral: IIII.

format binds *print-base* to 10 during the processing of the ~R
directive with no parameter.

The first edition did not specify how ~R and its variants should handle
arguments that are very large or not positive. Actual practice varies,
and X3J13 has not yet addressed the topic. Here is a sampling of
current practice.

22.3. OUTPUT FUNCTIONS 615

For ~@R and ~:@R, nearly all implementations produce Roman nu-
merals only for integers in the range 1 to 3999, inclusive. Some imple-
mentations will produce old-style Roman numerals for integers in the
range 1 to 4999, inclusive. All other integers are printed in decimal
notation, as if ~D had been used.

For zero, most implementations print zero for ~R and zeroth for ~:R.

For ~R with a negative argument, most implementations simply print
the word minus followed by its absolute value as a cardinal in English.

For ~:R with a negative argument, some implementations also print
the word minus followed by its absolute value as an ordinal in English;
other implementations print the absolute value followed by the word
previous. Thus the argument -4 might produce minus fourth or
fourth previous. Each has its charm, but one is not always a suitable
substitute for the other; users should be careful.

There is standard English nomenclature for fairly large integers (up
to 1060, at least), based on appending the suffix -illion to Latin
names of integers. Thus we have the names trillion, quadrillion,
sextillion, septillion, and so on. For extremely large integers, one
may express powers of ten in English. One implementation gives
1606938044258990275541962092341162602522202993782792835301376
(which is 2200, the result of (ash 1 200)) in this manner:

one times ten to the sixtieth power six hundred six times ten to the
fifty-seventh power nine hundred thirty-eight septdecillion forty-four
sexdecillion two hundred fifty-eight quindecillion nine hundred ninety
quattuordecillion two hundred seventy-five tredecillion five hundred
forty-one duodecillion nine hundred sixty-two undecillion ninety-two
decillion three hundred forty-one nonillion one hundred sixty-two octillion
six hundred two septillion five hundred twenty-two sextillion two hundred
two quintillion nine hundred ninety-three quadrillion seven hundred
eighty-two trillion seven hundred ninety-two billion eight hundred
thirty-five million three hundred one thousand three hundred seventy-six

Another implementation prints it this way (note the use of plus):

one times ten to the sixtieth power plus six hundred six times ten to the
fifty-seventh power plus ... plus two hundred seventy-five times ten to the

616 CHAPTER 22. INPUT/OUTPUT

forty-second power plus five hundred forty-one duodecillion nine hundred
sixty-two undecillion ... three hundred seventy-six

(I have elided some of the text here to save space.)
Unfortunately, the meaning of this nomenclature differs between Amer-
ican English (in which k-illion means 103(k+1), so one trillion is 1012)
and British English (in which k-illion means 106k, so one trillion is 1018).
To avoid both confusion and prolixity, I recommend using decimal no-
tation for all numbers above 999,999,999; this is similar to the escape
hatch used for Roman numerals.

~P Plural. If arg is not eql to the integer 1, a lowercase s is printed; if arg is
eql to 1, nothing is printed. (Notice that if arg is a floating-point 1.0,
the s is printed.) ~:P does the same thing, after doing a ~:* to back
up one argument; that is, it prints a lowercase s if the last argument
was not 1. This is useful after printing a number using ~D. ~@P
prints y if the argument is 1, or ies if it is not. ~:@P does the same
thing, but backs up first.

(format nil "~D tr~:@P/~D win~:P" 7 1) ⇒ "7 tries/1 win"
(format nil "~D tr~:@P/~D win~:P" 1 0) ⇒ "1 try/0 wins"
(format nil "~D tr~:@P/~D win~:P" 1 3) ⇒ "1 try/3 wins"

~C Character. The next arg should be a character; it is printed according
to the modifier flags.
~C prints the character in an implementation-dependent abbreviated
format. This format should be culturally compatible with the host
environment.
X3J13 voted in June 1987 to specify that ~C performs exactly the same
action as write-char if the character to be printed has zero for its bits
attributes. X3J13 voted in March 1989 to eliminate the bits and font
attributes, replacing them with the notion of implementation-defined
attributes. The net effect is that characters whose implementation-
defined attributes all have the “standard” values should be printed by
~C in the same way that write-char would print them.
~:C spells out the names of the control bits and represents non-
printing characters by their names: Control-Meta-F, Control-
Return, Space. This is a “pretty” format for printing characters.

22.3. OUTPUT FUNCTIONS 617

~:@C prints what ~:C would, and then if the character requires un-
usual shift keys on the keyboard to type it, this fact is mentioned:
Control-∂ (Top-F). This is the format for telling the user about a
key he or she is expected to type, in prompts, for instance. The pre-
cise output may depend not only on the implementation but on the
particular I/O devices in use.

~@C prints the character so that the Lisp reader can read it, using
#\ syntax.

X3J13 voted in January 1989 to specify that format binds *print-
escape* to t during the processing of the ~@C directive. Other vari-
ants of the ~C directive do not bind any printer control variables.

Rationale: In some implementations the ~S directive would do what ~C
does, but ~C is compatible with Lisp dialects such as MacLisp that do not
have a character data type.

~F Fixed-format floating-point. The next arg is printed as a floating-point
number.

The full form is ~w,d,k,overflowchar,padcharF. The parameter w
is the width of the field to be printed; d is the number of digits to print
after the decimal point; k is a scale factor that defaults to zero.

Exactly w characters will be output. First, leading copies of the char-
acter padchar (which defaults to a space) are printed, if necessary, to
pad the field on the left. If the arg is negative, then a minus sign is
printed; if the arg is not negative, then a plus sign is printed if and
only if the @ modifier was specified. Then a sequence of digits, con-
taining a single embedded decimal point, is printed; this represents the
magnitude of the value of arg times 10k, rounded to d fractional digits.
(When rounding up and rounding down would produce printed values
equidistant from the scaled value of arg, then the implementation is
free to use either one. For example, printing the argument 6.375 using
the format ~4,2F may correctly produce either 6.37 or 6.38.) Leading
zeros are not permitted, except that a single zero digit is output before
the decimal point if the printed value is less than 1, and this single zero
digit is not output after all if w = d+ 1.

618 CHAPTER 22. INPUT/OUTPUT

If it is impossible to print the value in the required format in a field of
width w, then one of two actions is taken. If the parameter overflowchar
is specified, then w copies of that parameter are printed instead of the
scaled value of arg. If the overflowchar parameter is omitted, then the
scaled value is printed using more than w characters, as many more as
may be needed.

If the w parameter is omitted, then the field is of variable width. In
effect, a value is chosen for w in such a way that no leading pad charac-
ters need to be printed and exactly d characters will follow the decimal
point. For example, the directive ~,2F will print exactly two digits
after the decimal point and as many as necessary before the decimal
point.

If the parameter d is omitted, then there is no constraint on the number
of digits to appear after the decimal point. A value is chosen for d in
such a way that as many digits as possible may be printed subject to
the width constraint imposed by the parameter w and the constraint
that no trailing zero digits may appear in the fraction, except that if
the fraction to be printed is zero, then a single zero digit should appear
after the decimal point if permitted by the width constraint.

If both w and d are omitted, then the effect is to print the value using
ordinary free-format output; prin1 uses this format for any number
whose magnitude is either zero or between 10−3 (inclusive) and 107

(exclusive).

If w is omitted, then if the magnitude of arg is so large (or, if d is
also omitted, so small) that more than 100 digits would have to be
printed, then an implementation is free, at its discretion, to print the
number using exponential notation instead, as if by the directive ~E
(with all parameters to ~E defaulted, not taking their values from the
~F directive).

If arg is a rational number, then it is coerced to be a single-float and
then printed. (Alternatively, an implementation is permitted to process
a rational number by any other method that has essentially the same
behavior but avoids such hazards as loss of precision or overflow because
of the coercion. However, note that if w and d are unspecified and the
number has no exact decimal representation, for example 1/3, some
precision cutoff must be chosen by the implementation: only a finite

22.3. OUTPUT FUNCTIONS 619

number of digits may be printed.)

If arg is a complex number or some non-numeric object, then it is
printed using the format directive ~wD, thereby printing it in decimal
radix and a minimum field width of w. (If it is desired to print each
of the real part and imaginary part of a complex number using a ~F
directive, then this must be done explicitly with two ~F directives and
code to extract the two parts of the complex number.)

X3J13 voted in January 1989 to specify that format binds *print-
escape* to nil during the processing of the ~F directive.

(defun foo (x)
(format nil "~6,2F|~6,2,1,’*F|~6,2„’?F|~6F|~,2F|~F"

x x x x x x))
(foo 3.14159) ⇒ " 3.14| 31.42| 3.14|3.1416|3.14|3.14159"
(foo -3.14159) ⇒ " -3.14|-31.42| -3.14|-3.142|-3.14|-3.14159"
(foo 100.0) ⇒ "100.00|******|100.00| 100.0|100.00|100.0"
(foo 1234.0) ⇒ "1234.00|******|??????|1234.0|1234.00|1234.0"
(foo 0.006) ⇒ " 0.01| 0.06| 0.01| 0.006|0.01|0.006"

~E Exponential floating-point. The next arg is printed in exponential nota-
tion.

The full form is ~w,d,e,k,overflowchar,padchar,exponentcharE.
The parameter w is the width of the field to be printed; d is the number
of digits to print after the decimal point; e is the number of digits to
use when printing the exponent; k is a scale factor that defaults to 1
(not zero).

Exactly w characters will be output. First, leading copies of the char-
acter padchar (which defaults to a space) are printed, if necessary, to
pad the field on the left. If the arg is negative, then a minus sign is
printed; if the arg is not negative, then a plus sign is printed if and only
if the @ modifier was specified. Then a sequence of digits, containing
a single embedded decimal point, is printed. The form of this sequence
of digits depends on the scale factor k. If k is zero, then d digits are
printed after the decimal point, and a single zero digit appears before
the decimal point if the total field width will permit it. If k is positive,
then it must be strictly less than d+ 2; k significant digits are printed

620 CHAPTER 22. INPUT/OUTPUT

before the decimal point, and d− k+1 digits are printed after the dec-
imal point. If k is negative, then it must be strictly greater than −d;
a single zero digit appears before the decimal point if the total field
width will permit it, and after the decimal point are printed first −k
zeros and then d + k significant digits. The printed fraction must be
properly rounded. (When rounding up and rounding down would pro-
duce printed values equidistant from the scaled value of arg, then the
implementation is free to use either one. For example, printing 637.5
using the format ~8,2E may correctly produce either 6.37E+02 or
6.38E+02.)

Following the digit sequence, the exponent is printed. First the char-
acter parameter exponentchar is printed; if this parameter is omitted,
then the exponent marker that prin1 would use is printed, as deter-
mined from the type of the floating-point number and the current value
of *read-default-float-format*. Next, either a plus sign or a minus
sign is printed, followed by e digits representing the power of 10 by
which the printed fraction must be multiplied to properly represent
the rounded value of arg.

If it is impossible to print the value in the required format in a field
of width w, possibly because k is too large or too small or because
the exponent cannot be printed in e character positions, then one of
two actions is taken. If the parameter overflowchar is specified, then
w copies of that parameter are printed instead of the scaled value of
arg. If the overflowchar parameter is omitted, then the scaled value is
printed using more than w characters, as many more as may be needed;
if the problem is that d is too small for the specified k or that e is too
small, then a larger value is used for d or e as may be needed.

If the w parameter is omitted, then the field is of variable width. In ef-
fect a value is chosen for w in such a way that no leading pad characters
need to be printed.

If the parameter d is omitted, then there is no constraint on the number
of digits to appear. A value is chosen for d in such a way that as
many digits as possible may be printed subject to the width constraint
imposed by the parameter w, the constraint of the scale factor k, and
the constraint that no trailing zero digits may appear in the fraction,
except that if the fraction to be printed is zero, then a single zero digit

22.3. OUTPUT FUNCTIONS 621

should appear after the decimal point if the width constraint allows it.

If the parameter e is omitted, then the exponent is printed using the
smallest number of digits necessary to represent its value.

If all of w, d, and e are omitted, then the effect is to print the value
using ordinary free-format exponential-notation output; prin1 uses this
format for any non-zero number whose magnitude is less than 10−3 or
greater than or equal to 107.

X3J13 voted in January 1989 to amend the previous paragraph as fol-
lows:

If all of w, d, and e are omitted, then the effect is to print the value
using ordinary free-format exponential-notation output; prin1 uses a
similar format for any non-zero number whose magnitude is less than
10−3 or greater than or equal to 107. The only difference is that the
~E directive always prints a plus or minus sign before the exponent,
while prin1 omits the plus sign if the exponent is non-negative.

(The amendment reconciles this paragraph with the specification sev-
eral paragraphs above that ~E always prints a plus or minus sign before
the exponent.)

If arg is a rational number, then it is coerced to be a single-float and
then printed. (Alternatively, an implementation is permitted to process
a rational number by any other method that has essentially the same
behavior but avoids such hazards as loss of precision or overflow because
of the coercion. However, note that if w and d are unspecified and the
number has no exact decimal representation, for example 1/3, some
precision cutoff must be chosen by the implementation: only a finite
number of digits may be printed.)

If arg is a complex number or some non-numeric object, then it is
printed using the format directive ~wD, thereby printing it in decimal
radix and a minimum field width of w. (If it is desired to print each
of the real part and imaginary part of a complex number using a ~E
directive, then this must be done explicitly with two ~E directives and
code to extract the two parts of the complex number.)

X3J13 voted in January 1989 to specify that format binds *print-
escape* to nil during the processing of the ~E directive.

622 CHAPTER 22. INPUT/OUTPUT

(defun foo (x)
(format nil

"~9,2,1„’*E|~10,3,2,2,’?„’$E|~9,3,2,-2,’%@E|~9,2E"
x x x x))

(foo 3.14159) ⇒ " 3.14E+0| 31.42$-01|+.003E+03| 3.14E+0"
(foo -3.14159) ⇒ " -3.14E+0|-31.42$-01|-.003E+03| -3.14E+0"
(foo 1100.0) ⇒ " 1.10E+3| 11.00$+02|+.001E+06| 1.10E+3"
(foo 1100.0L0) ⇒ " 1.10L+3| 11.00$+02|+.001L+06| 1.10L+3"
(foo 1.1E13) ⇒ "*********| 11.00$+12|+.001E+16| 1.10E+13"
(foo 1.1L120) ⇒ "*********|??????????|%%%%%%%%%|1.10L+120"
(foo 1.1L1200) ⇒ "*********|??????????|%%%%%%%%%|1.10L+1200"

Here is an example of the effects of varying the scale factor:

(dotimes (k 13)
(format t " %Scale factor 2D: | 13,6,2,VE|"

(- k 5) 3.14159)) ;Prints 13 lines
Scale factor -5: | 0.000003E+06|
Scale factor -4: | 0.000031E+05|
Scale factor -3: | 0.000314E+04|
Scale factor -2: | 0.003142E+03|
Scale factor -1: | 0.031416E+02|
Scale factor 0: | 0.314159E+01|
Scale factor 1: | 3.141590E+00|
Scale factor 2: | 31.41590E-01|
Scale factor 3: | 314.1590E-02|
Scale factor 4: | 3141.590E-03|
Scale factor 5: | 31415.90E-04|
Scale factor 6: | 314159.0E-05|
Scale factor 7: | 3141590.E-06|

22.3. OUTPUT FUNCTIONS 623

~G General floating-point. The next arg is printed as a floating-point num-
ber in either fixed-format or exponential notation as appropriate.

The full form is ~w,d,e,k,overflowchar,padchar,exponentcharG.
The format in which to print arg depends on the magnitude (absolute
value) of the arg. Let n be an integer such that 10n−1 ≤ arg < 10n. (If
arg is zero, let n be 0.) Let ee equal e + 2, or 4 if e is omitted. Let
ww equal w − ee, or nil if w is omitted. If d is omitted, first let q be
the number of digits needed to print arg with no loss of information
and without leading or trailing zeros; then let d equal (max q (min
n 7)). Let dd equal d− n.

If 0 ≤ dd ≤ d, then arg is printed as if by the format directives

~ww,dd„overflowchar,padcharF~ee@T

Note that the scale factor k is not passed to the ~F directive. For all
other values of dd, arg is printed as if by the format directive

~w,d,e,k,overflowchar,padchar,exponentcharE

In either case, an @ modifier is specified to the ~F or ~E directive if
and only if one was specified to the ~G directive.

format binds *print-escape* to nil during the processing of the ~G
directive.

Examples:

(defun foo (x)
(format nil

"~9,2,1„’*G|~9,3,2,3,’?„’$G|~9,3,2,0,’%G|~9,2G"
x x x))

(foo 0.0314159) ⇒ " 3.14E-2|314.2$-04|0.314E-01| 3.14E-2"
(foo 0.314159) ⇒ " 0.31 |0.314 |0.314 | 0.31 "
(foo 3.14159) ⇒ " 3.1 | 3.14 | 3.14 | 3.1 "
(foo 31.4159) ⇒ " 31. | 31.4 | 31.4 | 31. "
(foo 314.159) ⇒ " 3.14E+2| 314. | 314. | 3.14E+2"
(foo 3141.59) ⇒ " 3.14E+3|314.2$+01|0.314E+04| 3.14E+3"
(foo 3141.59L0) ⇒ " 3.14L+3|314.2$+01|0.314L+04| 3.14L+3"

624 CHAPTER 22. INPUT/OUTPUT

(foo 3.14E12) ⇒ "*********|314.0$+10|0.314E+13| 3.14E+12"
(foo 3.14L120) ⇒ "*********|?????????|%%%%%%%%%|3.14L+120"
(foo 3.14L1200) ⇒ "*********|?????????|%%%%%%%%%|3.14L+1200"

22.3. OUTPUT FUNCTIONS 625

~$ Dollars floating-point. The next arg is printed as a floating-point number
in fixed-format notation. This format is particularly convenient for
printing a value as dollars and cents.

The full form is ~d,n,w,padchar$. The parameter d is the number
of digits to print after the decimal point (default value 2); n is the
minimum number of digits to print before the decimal point (default
value 1); w is the minimum total width of the field to be printed (default
value 0).

First padding and the sign are output. If the arg is negative, then a
minus sign is printed; if the arg is not negative, then a plus sign is
printed if and only if the @ modifier was specified. If the : modifier
is used, the sign appears before any padding, and otherwise after the
padding. If w is specified and the number of other characters to be
output is less than w, then copies of padchar (which defaults to a space)
are output to make the total field width equal w. Then n digits are
printed for the integer part of arg, with leading zeros if necessary; then
a decimal point; then d digits of fraction, properly rounded.

If the magnitude of arg is so large that more than m digits would have
to be printed, where m is the larger of w and 100, then an implemen-
tation is free, at its discretion, to print the number using exponential
notation instead, as if by the directive ~w,q„ „padcharE, where w and
padchar are present or omitted according to whether they were present
or omitted in the ~$ directive, and where q = d + n− 1, where d and
n are the (possibly default) values given to the ~$ directive.

If arg is a rational number, then it is coerced to be a single-float and
then printed. (Alternatively, an implementation is permitted to process
a rational number by any other method that has essentially the same
behavior but avoids such hazards as loss of precision or overflow because
of the coercion.)

If arg is a complex number or some non-numeric object, then it is
printed using the format directive ~wD, thereby printing it in decimal
radix and a minimum field width of w. (If it is desired to print each
of the real part and imaginary part of a complex number using a ~$
directive, then this must be done explicitly with two ~$ directives and
code to extract the two parts of the complex number.)

format binds *print-escape* to nil during the processing of the ~$

626 CHAPTER 22. INPUT/OUTPUT

directive.

~% This outputs a #\Newline character, thereby terminating the current
output line and beginning a new one (see terpri).

~n% outputs n newlines.

No arg is used. Simply putting a newline in the control string would
work, but ~% is often used because it makes the control string look
nicer in the middle of a Lisp program.

~& Unless it can be determined that the output stream is already at the
beginning of a line, this outputs a newline (see fresh-line).

~n& calls fresh-line and then outputs n − 1 newlines. ~0& does
nothing.

~| This outputs a page separator character, if possible. ~n| does this n
times. | is vertical bar, not capital I.

~~ Tilde. This outputs a tilde. ~n~ outputs n tildes.

~〈newline〉 Tilde immediately followed by a newline ignores the newline and
any following non-newline whitespace characters. With a :, the newline
is ignored, but any following whitespace is left in place. With an @,
the newline is left in place, but any following whitespace is ignored.
This directive is typically used when a format control string is too long
to fit nicely into one line of the program:

(defun type-clash-error (fn nargs argnum right-type wrong-type)
(format *error-output*

"~&Function ~S requires its ~:[~:R~;~*~] ~
argument to be of type ~S,~%but it was called ~
with an argument of type ~S.~%"
fn (eql nargs 1) argnum right-type wrong-type))

(type-clash-error ’aref nil 2 ’integer ’vector) prints:
Function AREF requires its second argument to be of type INTEGER,
but it was called with an argument of type VECTOR.

(type-clash-error ’car 1 1 ’list ’short-float) prints:

22.3. OUTPUT FUNCTIONS 627

Function CAR requires its argument to be of type LIST,
but it was called with an argument of type SHORT-FLOAT.

Note that in this example newlines appear in the output only as speci-
fied by the ~& and ~% directives; the actual newline characters in the
control string are suppressed because each is preceded by a tilde.

~T Tabulate. This spaces over to a given column. ~colnum,colincT will
output sufficient spaces to move the cursor to column colnum. If the
cursor is already at or beyond column colnum, it will output spaces to
move it to column colnum+k*colinc for the smallest positive integer
k possible, unless colinc is zero, in which case no spaces are output if
the cursor is already at or beyond column colnum. colnum and colinc
default to 1.

Ideally, the current column position is determined by examination of
the destination, whether a stream or string. (Although no user-level
operation for determining the column position of a stream is defined by
Common Lisp, such a facility may exist at the implementation level.)
If for some reason the current absolute column position cannot be de-
termined by direct inquiry, format may be able to deduce the current
column position by noting that certain directives (such as ~%, or ~&,
or ~A with the argument being a string containing a newline) cause
the column position to be reset to zero, and counting the number of
characters emitted since that point. If that fails, format may attempt
a similar deduction on the riskier assumption that the destination was
at column zero when format was invoked. If even this heuristic fails
or is implementationally inconvenient, at worst the ~T operation will
simply output two spaces. (All this implies that code that uses format
is more likely to be portable if all format control strings that use the
~T directive either begin with ~% or ~& to force a newline or are
designed to be used only when the destination is known from other
considerations to be at column zero.)

~@T performs relative tabulation. ~colrel,colinc@T outputs colrel
spaces and then outputs the smallest non-negative number of additional
spaces necessary to move the cursor to a column that is a multiple of
colinc. For example, the directive ~3,8@T outputs three spaces and
then moves the cursor to a “standard multiple-of-eight tab stop” if not

628 CHAPTER 22. INPUT/OUTPUT

at one already. If the current output column cannot be determined,
however, then colinc is ignored, and exactly colrel spaces are output.

X3J13 voted in June 1989 to define ~:T and ~:@T to perform tab-
ulation relative to a point defined by the pretty printing process (see
section 27.4).

~* The next arg is ignored. ~n* ignores the next n arguments.

~:* “ignores backwards”; that is, it backs up in the list of arguments so
that the argument last processed will be processed again. ~n:* backs
up n arguments.

When within a ~{ construct (see below), the ignoring (in either direc-
tion) is relative to the list of arguments being processed by the iteration.

~n@* is an “absolute goto” rather than a “relative goto”: it goes to
the nth arg, where 0 means the first one; n defaults to 0, so ~@* goes
back to the first arg. Directives after a ~n@* will take arguments in
sequence beginning with the one gone to. When within a ~{ construct,
the “goto” is relative to the list of arguments being processed by the
iteration.

~? Indirection. The next arg must be a string, and the one after it a list;
both are consumed by the ~? directive. The string is processed as a
format control string, with the elements of the list as the arguments.
Once the recursive processing of the control string has been finished,
then processing of the control string containing the ~? directive is
resumed. Example:

(format nil "~? ~D" "<~A ~D>" ’("Foo" 5) 7) ⇒ "<Foo 5> 7"
(format nil "~? ~D" "<~A ~D>" ’("Foo" 5 14) 7) ⇒ "<Foo 5> 7"

Note that in the second example three arguments are supplied to the
control string "<~A ~D>", but only two are processed and the third
is therefore ignored.

With the @ modifier, only one arg is directly consumed. The arg
must be a string; it is processed as part of the control string as if it
had appeared in place of the ~@? construct, and any directives in
the recursively processed control string may consume arguments of the
control string containing the ~@? directive. Example:

22.3. OUTPUT FUNCTIONS 629

(format nil "~@? ~D" "<~A ~D>" "Foo" 5 7) ⇒ "<Foo 5> 7"
(format nil "~@? ~D" "<~A ~D>" "Foo" 5 14 7) ⇒ "<Foo 5> 14"

Here is a rather sophisticated example. The format function itself, as
implemented at one time in Lisp Machine Lisp, used a routine internal
to the format package called format-error to signal error messages;
format-error in turn used error, which used format recursively. Now
format-error took a string and arguments, just like format, but also
printed the control string to format (which at this point was available
in the global variable *ctl-string*) and a little arrow showing where
in the processing of the control string the error occurred. The variable
ctl-index pointed one character after the place of the error.

(defun format-error (string &rest args) ;Example
(error nil "~?~%~V@T⇓~%~3@T\"~A\"~%"

string args (+ *ctl-index* 3) *ctl-string*))

(The character set used in the Lisp Machine Lisp implementation con-
tains a down-arrow character ⇓, which is not a standard Common Lisp
character.) This first processed the given string and arguments using
~?, then output a newline, tabbed a variable amount for printing the
down-arrow, and printed the control string between double quotes (note
the use of \" to include double quotes within the control string). The
effect was something like this:

(format t "The item is a ~[Foo~;Bar~;Loser~]." ’quux)
»ERROR: The argument to the FORMAT "~[" command

must be a number.
⇓

"The item is a ~[Foo~;Bar~;Loser~]."

Implementation note: Implementors may wish to report errors occurring
within format control strings in the manner outlined here. It looks pretty
flashy when done properly.

X3J13 voted in June 1989 to introduce certain format directives to sup-
port the user interface to the pretty printer described in detail in chapter 27.

630 CHAPTER 22. INPUT/OUTPUT

~_ Conditional newline. Without any modifiers, the directive ~_ is equiv-
alent to (pprint-newline :linear). The directive ~@_ is equiva-
lent to (pprint-newline :miser). The directive ~:_ is equivalent to
(pprint-newline :fill). The directive ~:@_ is equivalent to (pprint-
newline :mandatory).

~W Write. An arg, any Lisp object, is printed obeying every printer control
variable (as by write). See section 27.4 for details.

~I Indent. The directive ~nI is equivalent to (pprint-indent :block n).
The directive ~:nI is equivalent to (pprint-indent :current n). In
both cases, n defaults to zero, if it is omitted.

The format directives after this point are much more complicated than the
foregoing; they constitute control structures that can perform case conver-
sion, conditional selection, iteration, justification, and non-local exits. Used
with restraint, they can perform powerful tasks. Used with abandon, they
can produce completely unreadable and unmaintainable code.

The case-conversion, conditional, iteration, and justification constructs
can contain other formatting constructs by bracketing them. These con-
structs must nest properly with respect to each other. For example, it is
not legitimate to put the start of a case-conversion construct in each arm
of a conditional and the end of the case-conversion construct outside the
conditional:

(format nil "~:[abc~:@(def~;ghi~:@(jkl~]mno~)" x) ;Illegal!

One might expect this to produce either "abcDEFMNO" or "ghi-
JKLMNO", depending on whether x is false or true; but in fact the con-
struction is illegal because the ~[...~;...~] and ~(...~) constructs are not
properly nested.

The processing indirection caused by the ~? directive is also a kind of
nesting for the purposes of this rule of proper nesting. It is not permitted to
start a bracketing construct within a string processed under control of a ~?
directive and end the construct at some point after the ~? construct in the
string containing that construct, or vice versa. For example, this situation is
illegal:

(format nil "~?ghi~)" "abc~@(def") ;Illegal!

22.3. OUTPUT FUNCTIONS 631

One might expect it to produce "abcDEFGHI", but in fact the con-
struction is illegal because the ~? and ~(...~) constructs are not properly
nested.

~(str~) Case conversion. The contained control string str is processed,
and what it produces is subject to case conversion: ~(converts ev-
ery uppercase character to the corresponding lowercase character; ~:(
capitalizes all words, as if by string-capitalize; ~@(capitalizes just
the first word and forces the rest to lowercase; ~:@(converts every
lowercase character to the corresponding uppercase character. In this
example, ~@(is used to cause the first word produced by ~@R to be
capitalized:

(format nil "~@R ~(~@R~)" 14 14) ⇒ "XIV xiv"
(defun f (n) (format nil "~@(~R~) error~:P detected." n))
(f 0) ⇒ "Zero errors detected."
(f 1) ⇒ "One error detected."
(f 23) ⇒ "Twenty-three errors detected."

~[str0~;str1~;...~;strn~] Conditional expression. This is a set of control
strings, called clauses, one of which is chosen and used. The clauses are
separated by ~; and the construct is terminated by ~]. For example,

"~[Siamese~;Manx~;Persian~] Cat"

The argth clause is selected, where the first clause is number 0. If a
prefix parameter is given (as ~n[), then the parameter is used instead
of an argument. (This is useful only if the parameter is specified by #,
to dispatch on the number of arguments remaining to be processed.) If
arg is out of range, then no clause is selected (and no error is signaled).
After the selected alternative has been processed, the control string
continues after the ~].

~[str0~;str1~;...~;strn~:;default~] has a default case. If the last
~; used to separate clauses is ~:; instead, then the last clause is an “else”
clause that is performed if no other clause is selected. For example:

"~[Siamese~;Manx~;Persian~:;Alley~] Cat"

632 CHAPTER 22. INPUT/OUTPUT

~:[false~;true~] selects the false control string if arg is nil, and selects
the true control string otherwise.

~@[true~] tests the argument. If it is not nil, then the argument is
not used up by the ~@[command but remains as the next one to be
processed, and the one clause true is processed. If the arg is nil, then
the argument is used up, and the clause is not processed. The clause
therefore should normally use exactly one argument, and may expect
it to be non-nil. For example:

(setq *print-level* nil *print-length* 5)
(format nil "~@[print level = ~D~]~@[print length = ~D~]"

print-level *print-length*)
⇒ " print length = 5"

The combination of ~[and # is useful, for example, for dealing with
English conventions for printing lists:

(setq foo "Items:~#[none~; ~S~; ~S and ~S~
~:;~@{~#[~; and~] ~S~^,~}~].")

(format nil foo)
⇒ "Items: none."

(format nil foo ’foo)
⇒ "Items: FOO."

(format nil foo ’foo ’bar)
⇒ "Items: FOO and BAR."

(format nil foo ’foo ’bar ’baz)
⇒ "Items: FOO, BAR, and BAZ."

(format nil foo ’foo ’bar ’baz ’quux)
⇒ "Items: FOO, BAR, BAZ, and QUUX."

~; This separates clauses in ~[and ~< constructions. It is an error else-
where.

~] This terminates a ~[. It is an error elsewhere.

~{str~} Iteration. This is an iteration construct. The argument should
be a list, which is used as a set of arguments as if for a recursive call
to format. The string str is used repeatedly as the control string.

22.3. OUTPUT FUNCTIONS 633

Each iteration can absorb as many elements of the list as it likes as
arguments; if str uses up two arguments by itself, then two elements
of the list will get used up each time around the loop. If before any
iteration step the list is empty, then the iteration is terminated. Also,
if a prefix parameter n is given, then there will be at most n repetitions
of processing of str. Finally, the ~^ directive can be used to terminate
the iteration prematurely.

Here are some simple examples:

(format nil
"The winners are:~{ ~S~}."
’(fred harry jill))
⇒ "The winners are: FRED HARRY JILL."

(format nil "Pairs:~{ <~S,~S>~}." ’(a 1 b 2 c 3))
⇒ "Pairs: <A,1> <B,2> <C,3>."

~:{str~} is similar, but the argument should be a list of sublists. At
each repetition step, one sublist is used as the set of arguments for
processing str ; on the next repetition, a new sublist is used, whether
or not all of the last sublist had been processed. Example:

(format nil "Pairs:~:{ <~S,~S>~}."
’((a 1) (b 2) (c 3)))

⇒ "Pairs: <A,1> <B,2> <C,3>."

~@{str~} is similar to ~{str~}, but instead of using one argument
that is a list, all the remaining arguments are used as the list of argu-
ments for the iteration. Example:

(format nil "Pairs:~@{ <~S,~S>~}."
’a 1 ’b 2 ’c 3)

⇒ "Pairs: <A,1> <B,2> <C,3>."

If the iteration is terminated before all the remaining arguments are
consumed, then any arguments not processed by the iteration remain
to be processed by any directives following the iteration construct.

634 CHAPTER 22. INPUT/OUTPUT

~:@{str~} combines the features of ~:{str~} and ~@{str~}. All
the remaining arguments are used, and each one must be a list. On
each iteration, the next argument is used as a list of arguments to str.
Example:

(format nil "Pairs:~:@{ <~S,~S>~}."
’(a 1) ’(b 2) ’(c 3))

⇒ "Pairs: <A,1> <B,2> <C,3>."

Terminating the repetition construct with ~:} instead of ~} forces str
to be processed at least once, even if the initial list of arguments is null
(however, it will not override an explicit prefix parameter of zero).

If str is empty, then an argument is used as str. It must be a string
and precede any arguments processed by the iteration. As an example,
the following are equivalent:

(apply #’format stream string arguments)
(format stream "~1{~:}" string arguments)

This will use string as a formatting string. The ~1{ says it will be
processed at most once, and the ~:} says it will be processed at least
once. Therefore it is processed exactly once, using arguments as the
arguments. This case may be handled more clearly by the ~? directive,
but this general feature of ~{ is more powerful than ~?.

~} This terminates a ~{. It is an error elsewhere.

~mincol,colinc,minpad,padchar<str~> Justification. This justifies the
text produced by processing str within a field at least mincol columns
wide. str may be divided up into segments with ~;, in which case the
spacing is evenly divided between the text segments.

With no modifiers, the leftmost text segment is left-justified in the field,
and the rightmost text segment right-justified; if there is only one text
element, as a special case, it is right-justified. The : modifier causes
spacing to be introduced before the first text segment; the @ modifier
causes spacing to be added after the last. The minpad parameter (de-
fault 0) is the minimum number of padding characters to be output
between each segment. The padding character is specified by padchar,

22.3. OUTPUT FUNCTIONS 635

which defaults to the space character. If the total width needed to
satisfy these constraints is greater than mincol, then the width used is
mincol+k*colinc for the smallest possible non-negative integer value k ;
colinc defaults to 1, and mincol defaults to 0.

(format nil "~10<foo~;bar~>") ⇒ "foo bar"
(format nil "~10:<foo~;bar~>") ⇒ " foo bar"
(format nil "~10:@<foo~;bar~>") ⇒ " foo bar "
(format nil "~10<foobar~>") ⇒ " foobar"
(format nil "~10:<foobar~>") ⇒ " foobar"
(format nil "~10@<foobar~>") ⇒ "foobar "
(format nil "~10:@<foobar~>") ⇒ " foobar "

Note that str may include format directives. All the clauses in str are
processed in order; it is the resulting pieces of text that are justified.

The ~^ directive may be used to terminate processing of the clauses
prematurely, in which case only the completely processed clauses are
justified.

If the first clause of a ~< is terminated with ~:; instead of ~;, then
it is used in a special way. All of the clauses are processed (subject to
~^, of course), but the first one is not used in performing the spacing
and padding. When the padded result has been determined, then if
it will fit on the current line of output, it is output, and the text for
the first clause is discarded. If, however, the padded text will not fit
on the current line, then the text segment for the first clause is output
before the padded text. The first clause ought to contain a newline
(such as a ~% directive). The first clause is always processed, and so
any arguments it refers to will be used; the decision is whether to use
the resulting segment of text, not whether to process the first clause.
If the ~:; has a prefix parameter n, then the padded text must fit on
the current line with n character positions to spare to avoid outputting
the first clause’s text. For example, the control string

"~%;; ~{~<~%;; ~1:; ~S~>~^,~}.~%"

can be used to print a list of items separated by commas without break-
ing items over line boundaries, beginning each line with ;; . The prefix

636 CHAPTER 22. INPUT/OUTPUT

parameter 1 in ~1:; accounts for the width of the comma that will
follow the justified item if it is not the last element in the list, or the
period if it is. If ~:; has a second prefix parameter, then it is used
as the width of the line, thus overriding the natural line width of the
output stream. To make the preceding example use a line width of 50,
one would write

"~%;; ~{~<~%;; ~1,50:; ~S~>~^,~}.~%"

If the second argument is not specified, then format uses the line width
of the output stream. If this cannot be determined (for example, when
producing a string result), then format uses 72 as the line length.

~> Terminates a ~<. It is an error elsewhere. X3J13 voted in June 1989 to
introduce certain format directives to support the user interface to the
pretty printer. If ~:> is used to terminate a ~<... directive, the direc-
tive is equivalent to a call on pprint-logical-block. See section 27.4
for details.

~^ Up and out. This is an escape construct. If there are no more arguments
remaining to be processed, then the immediately enclosing ~{ or ~<
construct is terminated. If there is no such enclosing construct, then
the entire formatting operation is terminated. In the ~< case, the
formatting is performed, but no more segments are processed before
doing the justification. The ~^ should appear only at the beginning of
a ~< clause, because it aborts the entire clause it appears in (as well
as all following clauses). ~^ may appear anywhere in a ~{ construct.

(setq donestr "Done.~^ ~D warning~:P.~^ ~D error~:P.")
(format nil donestr) ⇒ "Done."
(format nil donestr 3) ⇒ "Done. 3 warnings."
(format nil donestr 1 5) ⇒ "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter
is zero. (Hence ~^ is equivalent to ~#^.) If two parameters are
given, termination occurs if they are equal. If three parameters are
given, termination occurs if the first is less than or equal to the second
and the second is less than or equal to the third. Of course, this is

22.3. OUTPUT FUNCTIONS 637

useless if all the prefix parameters are constants; at least one of them
should be a # or a V parameter.

If ~^ is used within a ~:{ construct, then it merely terminates the cur-
rent iteration step (because in the standard case it tests for remaining
arguments of the current step only); the next iteration step commences
immediately. To terminate the entire iteration process, use ~:^.

X3J13 voted in March 1988 to clarify the behavior of ~:^ as follows. It
may be used only if the command it would terminate is ~:{ or ~:@{.
The entire iteration process is terminated if and only if the sublist
that is supplying the arguments for the current iteration step is the
last sublist (in the case of terminating a ~:{ command) or the last
argument to that call to format (in the case of terminating a ~:@{
command). Note furthermore that while ~^ is equivalent to ~#^ in
all circumstances, ~:^ is not equivalent to ~:#^ because the latter
terminates the entire iteration if and only if no arguments remain for
the current iteration step (as opposed to no arguments remaining for
the entire iteration process).

Here are some examples of the differences in the behaviors of ~^, ~:^,
and ~:#^.

(format nil
"~:{/~S~^ ...~}"
’((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER/ICE .../FRENCH ..."

For each sublist, “ ...” appears after the first word unless there are no
additional words.

(format nil
"~:{/~S~:^ ...~}"
’((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER .../ICE .../FRENCH"

For each sublist, “ ...” always appears after the first word, unless it is
the last sublist, in which case the entire iteration is terminated.

638 CHAPTER 22. INPUT/OUTPUT

(format nil
"~:{/~S~:#^ ...~}"
’((hot dog) (hamburger) (ice cream) (french fries)))

⇒ "/HOT .../HAMBURGER"

For each sublist, “ ...” appears after the first word, but if the sublist
has only one word then the entire iteration is terminated.

If ~^ appears within a control string being processed under the control
of a ~? directive, but not within any ~{ or ~< construct within that
string, then the string being processed will be terminated, thereby end-
ing processing of the ~? directive. Processing then continues within
the string containing the ~? directive at the point following that di-
rective.

If ~^ appears within a ~[or ~(construct, then all the commands
up to the ~^ are properly selected or case-converted, the ~[or ~(
processing is terminated, and the outward search continues for a ~{ or
~< construct to be terminated. For example:

(setq tellstr "~@(~@[~R~]~^ ~A.~)")
(format nil tellstr 23) ⇒ "Twenty-three."
(format nil tellstr nil "losers") ⇒ "Losers."
(format nil tellstr 23 "losers") ⇒ "Twenty-three losers."

Here are some examples of the use of ~^ within a ~< construct.

(format nil "~15<~S~;~^~S~;~^~S~>" ’foo)
⇒ " FOO"

(format nil "~15<~S~;~^~S~;~^~S~>" ’foo ’bar)
⇒ "FOO BAR"

(format nil "~15<~S~;~^~S~;~^~S~>" ’foo ’bar ’baz)
⇒ "FOO BAR BAZ"

X3J13 voted in June 1989 to introduce user-defined directives in the form
of the ~/.../ directive. See section 27.4 for details.

The hairiest format control string I have ever seen in shown in ta-
ble 22.10. It started innocently enough as part of the simulator for Con-
nection Machine Lisp [44, 57]; the xapping data type, defined by defstruct,

22.3. OUTPUT FUNCTIONS 639

needed a :print-function option so that xappings would print properly. As
this data type became more complicated, step by step, so did the format
control string.

See the description of set-macro-character for a discussion of xappings
and the defstruct definition. Assume that the predicate xectorp is true of
a xapping if it is a xector, and that the predicate finite-part-is-xetp is true
if every value in the range is the same as its corresponding index.

Here is a blow-by-blow description of the parts of this format string:

~:[{~;[~] Print “[” for a xector, and “{” otherwise.
~:{~S~:[⇒~S~;~*~]~:^ ~} Given a list of lists, print the pairs. Each

sublist has three elements: the index (or
the value if we’re printing a xector); a
flag that is true for either a xector or xet
(in which case no arrow is printed); and
the value. Note the use of ~:{ to iterate,
and the use of ~:^ to avoid printing a
separating space after the final pair (or
at all, if there are no pairs).

~:[~; ~] If there were pairs and there are excep-
tions or an infinite part, print a separat-
ing space.

~〈newline〉 Do nothing. This merely allows the for-
mat control string to be broken across
two lines.

~{~S⇒~^ ~} Given a list of exception indices, print
them. Note the use of ~{ to iterate, and
the use of ~^ to avoid printing a sepa-
rating space after the final exception (or
at all, if there are no exceptions).

~:[~; ~] If there were exceptions and there is an
infinite part, print a separating space.

~[~*~;⇒~S~;⇒~*~] Use ~[to choose one of three cases for
printing the infinite part.

~:[}~;]~] Print “]” for a xector, and “}” otherwise.

640 CHAPTER 22. INPUT/OUTPUT

22.4 Querying the User

The following functions provide a convenient and consistent interface for ask-
ing questions of the user. Questions are printed and the answers are read us-
ing the stream *query-io*, which normally is synonymous with *terminal-
io* but can be rebound to another stream for special applications.

[Function] y-or-n-p &optional format-string &rest arguments

This predicate is for asking the user a question whose answer is either
“yes” or “no.” It types out a message (if supplied), reads an answer in some
implementation-dependent manner (intended to be short and simple, like
reading a single character such as Y or N), and is true if the answer was
“yes” or false if the answer was “no.”

If the format-string argument is supplied and not nil, then a fresh-line
operation is performed; then a message is printed as if the format-string and
arguments were given to format. Otherwise it is assumed that any message
has already been printed by other means. If you want a question mark at
the end of the message, you must put it there yourself; y-or-n-p will not
add it. However, the message should not contain an explanatory note such
as (Y or N), because the nature of the interface provided for y-or-n-p by
a given implementation might not involve typing a character on a keyboard;
y-or-n-p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable
query-io.

Here are some examples of the use of y-or-n-p:

(y-or-n-p "Produce listing file?")
(y-or-n-p "Cannot connect to network host ~S. Retry?" host)

y-or-n-p should only be used for questions that the user knows are com-
ing or in situations where the user is known to be waiting for a response of
some kind. If the user is unlikely to anticipate the question, or if the conse-
quences of the answer might be grave and irreparable, then y-or-n-p should
not be used because the user might type ahead and thereby accidentally an-
swer the question. For such questions as “Shall I delete all of your files?” it
is better to use yes-or-no-p.

22.4. QUERYING THE USER 641

[Function] yes-or-no-p &optional format-string &rest arguments

This predicate, like y-or-n-p, is for asking the user a question whose
answer is either “yes” or “no.” It types out a message (if supplied), attracts
the user’s attention (for example, by ringing the terminal’s bell), and reads
a reply in some implementation-dependent manner. It is intended that the
reply require the user to take more action than just a single keystroke, such
as typing the full word yes or no followed by a newline.

If the format-string argument is supplied and not nil, then a fresh-line
operation is performed; then a message is printed as if the format-string and
arguments were given to format. Otherwise it is assumed that any message
has already been printed by other means. If you want a question mark at
the end of the message, you must put it there yourself; yes-or-no-p will not
add it. However, the message should not contain an explanatory note such as
(Yes or No) because the nature of the interface provided for yes-or-no-p
by a given implementation might not involve typing the reply on a keyboard;
yes-or-no-p will provide such a note if appropriate.

All input and output are performed using the stream in the global variable
query-io.

To allow the user to answer a yes-or-no question with a single character,
use y-or-n-p. yes-or-no-p should be used for unanticipated or momentous
questions; this is why it attracts attention and why it requires a multiple-
action sequence to answer it.

642 CHAPTER 22. INPUT/OUTPUT

Table 22.9: Standard Bindings for I/O Control Variables

Variable Value
package the common-lisp-user package
print-array t
print-base 10
print-case :upcase
print-circle nil
print-escape t
print-gensym t
print-length nil
print-level nil
print-lines nil *
print-miser-width nil *
print-pprint-dispatch nil *
print-pretty nil
print-radix nil
print-readably t
print-right-margin nil *
read-base 10
read-default-float-format single-float
read-eval t
read-suppress nil
readtable the standard readtable

* X3J13 voted in June 1989 to introduce the printer control vari-
ables *print-right-margin*, *print-miser-width*, *print-lines*, and
print-pprint-dispatch (see section 27.2) but did not specify the values
to which with-standard-io-syntax should bind them. I recommend that
all four should be bound to nil.

22.4. QUERYING THE USER 643

Table 22.10: Print Function for the Xapping Data Type

(defun print-xapping (xapping stream depth)
(declare (ignore depth))
(format stream

;; Are you ready for this one?
"~:[{~;[~]~:{~S~:[⇒~S~;~*~]~:^ ~}~:[~; ~]~
~{~S⇒~^ ~}~:[~; ~]~[~*~;⇒~S~;⇒~*~]~:[}~;]~]"
;; Is that clear?
(xectorp xapping)
(do ((vp (xectorp xapping))

(sp (finite-part-is-xetp xapping))
(d (xapping-domain xapping) (cdr d))
(r (xapping-range xapping) (cdr r))
(z ’() (cons (list (if vp (car r) (car d))

(or vp sp)
(car r))

z)))
((null d) (reverse z)))

(and (xapping-domain xapping)
(or (xapping-exceptions xapping)

(xapping-infinite xapping)))
(xapping-exceptions xapping)
(and (xapping-exceptions xapping)

(xapping-infinite xapping))
(ecase (xapping-infinite xapping)
((nil) 0)
(:constant 1)
(:universal 2))

(xapping-default xapping)
(xectorp xapping)))

See section 22.1.5 for the defstruct definition of the xapping data type,
whose accessor functions are used in this code.

644 CHAPTER 22. INPUT/OUTPUT

Chapter 23

File System Interface

A frequent use of streams is to communicate with a file system to which
groups of data (files) can be written and from which files can be retrieved.

Потоки чаще всего используются для работы с файловой системой,
в которую могут быть записаны данные (файлы) и из которой после эти
файлы могут быть прочитаны.

Common Lisp defines a standard interface for dealing with such a file sys-
tem. This interface is designed to be simple and general enough to accom-
modate the facilities provided by “typical” operating system environments
within which Common Lisp is likely to be implemented. The goal is to make
Common Lisp programs that perform only simple operations on files reason-
ably portable.

Common Lisp определяет стандартный интерфейс для работы с
файловой системой. Данные интерфейс спроектирован простым и
достаточно обобщённым для того, чтобы предоставлять функционал
«типичной» операционной системы, в которой работает реализация Com-
mon Lisp’а. Целью является переносимость Common Lisp’овых программ
в случае, если они используют простые операции над файлами.

To this end, Common Lisp assumes that files are named, that given a
name one can construct a stream connected to a file of that name, and that
the names can be fit into a certain canonical, implementation-independent
form called a pathname.

И наконец, Common Lisp предполагает, что файлы имеют имена,
которые используются при создании файлового потока. Эти имена
абстрагируются в системонезависимую форму - pathname.

Facilities are provided for manipulating pathnames, for creating streams

645

646 CHAPTER 23. FILE SYSTEM INTERFACE

connected to files, and for manipulating the file system through pathnames
and streams.

Интерфейс предоставляет функционал для управления именами-
файлов, для создания файловых потоков, и для управления файловой
системой с помощью имён-файлов и потоков.

23.1 File Names

Common Lisp programs need to use names to designate files. The main
difficulty in dealing with names of files is that different file systems have
different naming formats for files. For example, here is a table of several
file systems (actually, operating systems that provide file systems) and what
equivalent file names might look like for each one:

System File Name
TOPS-20 <LISPIO>FORMAT.FASL.13
TOPS-10 FORMAT.FAS[1,4]
ITS LISPIO;FORMAT FASL
MULTICS >udd>LispIO>format.fasl
TENEX <LISPIO>FORMAT.FASL;13
VAX/VMS [LISPIO]FORMAT.FAS;13
UNIX /usr/lispio/format.fasl

It would be impossible for each program that deals with file names to know
about each different file name format that exists; a new Common Lisp imple-
mentation might use a format different from any of its predecessors. There-
fore, Common Lisp provides two ways to represent file names: namestrings,
which are strings in the implementation-dependent form customary for the
file system, and pathnames, which are special abstract data objects that
represent file names in an implementation-independent way. Functions are
provided to convert between these two representations, and all manipulations
of files can be expressed in machine-independent terms by using pathnames.

In order to allow Common Lisp programs to operate in a network en-
vironment that may have more than one kind of file system, the pathname
facility allows a file name to specify which file system is to be used. In this
context, each file system is called a host, in keeping with the usual networking
terminology.

23.1. FILE NAMES 647

Different hosts may use different notations for file names. Common Lisp
allows customary notation to be used for each host, but also supports a
system of logical pathnames that provides a standard framework for naming
files in a portable manner (see section 23.1.5).

23.1.1 Pathnames

All file systems dealt with by Common Lisp are forced into a common frame-
work, in which files are named by a Lisp data object of type pathname.

A pathname always has six components, described below. These compo-
nents are the common interface that allows programs to work the same way
with different file systems; the mapping of the pathname components into
the concepts peculiar to each file system is taken care of by the Common
Lisp implementation.

host The name of the file system on which the file resides.

device Corresponds to the “device” or “file structure” concept in many host
file systems: the name of a (logical or physical) device containing files.

directory Corresponds to the “directory” concept in many host file systems:
the name of a group of related files (typically those belonging to a single
user or project).

name The name of a group of files that can be thought of as the “same” file.

type Corresponds to the “filetype” or “extension” concept in many host file
systems; identifies the type of file. Files with the same names but
different types are usually related in some specific way, for instance,
one being a source file, another the compiled form of that source, and
a third the listing of error messages from the compiler.

version Corresponds to the “version number” concept in many host file
systems. Typically this is a number that is incremented every time the
file is modified.

Note that a pathname is not necessarily the name of a specific file. Rather,
it is a specification (possibly only a partial specification) of how to access
a file. A pathname need not correspond to any file that actually exists,
and more than one pathname can refer to the same file. For example, the

648 CHAPTER 23. FILE SYSTEM INTERFACE

pathname with a version of “newest” may refer to the same file as a pathname
with the same components except a certain number as the version. Indeed,
a pathname with version “newest” may refer to different files as time passes,
because the meaning of such a pathname depends on the state of the file
system. In file systems with such facilities as “links,” multiple file names,
logical devices, and so on, two pathnames that look quite different may turn
out to address the same file. To access a file given a pathname, one must do
a file system operation such as open.

Two important operations involving pathnames are parsing and merging.
Parsing is the conversion of a namestring (which might be something sup-
plied interactively by the user when asked to supply the name of a file) into a
pathname object. This operation is implementation-dependent, because the
format of namestrings is implementation-dependent. Merging takes a path-
name with missing components and supplies values for those components
from a source of defaults.

Not all of the components of a pathname need to be specified. If a
component of a pathname is missing, its value is nil. Before the file system
interface can do anything interesting with a file, such as opening the file, all
the missing components of a pathname must be filled in (typically from a set
of defaults). Pathnames with missing components may be used internally for
various purposes; in particular, parsing a namestring that does not specify
certain components will result in a pathname with missing components.

X3J13 voted in January 1989 to permit any component of a pathname
to have the value :unspecific, meaning that the component simply does not
exist, for file systems in which such a value makes sense. (For example, a
UNIX file system usually does not support version numbers, so the version
component of a pathname for a UNIX host might be :unspecific. Similarly,
the file type is usually regarded in a UNIX file system as the part of a name
after a period, but some file names contain no periods and therefore have no
file types.)

When a pathname is converted to a namestring, the values nil and
:unspecific have the same effect: they are treated as if the component
were empty (that is, they each cause the component not to appear in the
namestring). When merging, however, only a nil value for a component will
be replaced with the default for that component; the value :unspecific will
be left alone as if the field were filled.

The results are undefined if :unspecific is supplied to a file system in a
component for which :unspecific does not make sense for that file system.

23.1. FILE NAMES 649

Programming hint: portable programs should be prepared to handle the
value :unspecific in the device, directory, type, or version field in some
implementations. Portable programs should not explicitly place :unspecific
in any field because it might not be permitted in some situations, but portable
programs may sometimes do so implicitly (by copying such a value from
another pathname, for example).

What values are allowed for components of a pathname depends, in gen-
eral, on the pathname’s host. However, in order for pathnames to be us-
able in a system-independent way, certain global conventions are adhered to.
These conventions are stronger for the type and version than for the other
components, since the type and version are explicitly manipulated by many
programs, while the other components are usually treated as something sup-
plied by the user that just needs to be remembered and copied from place to
place.

The type is always a string or nil or :wild. It is expected that most
programs that deal with files will supply a default type for each file.

The version is either a positive integer or a special symbol. The meanings
of nil and :wild have been explained above. The keyword :newest refers
to the largest version number that already exists in the file system when
reading a file, or to a version number greater than any already existing in
the file system when writing a new file. Some Common Lisp implementors
may choose to define other special version symbols. Some semi-standard
names, suggested but not required to be supported by every Common Lisp
implementation, are :oldest, to refer to the smallest version number that
exists in the file system; :previous, to refer to the version previous to the
newest version; and :installed, to refer to a version that is officially installed
for users (as opposed to a working or development version). Some Common
Lisp implementors may also choose to attach a meaning to non-positive ver-
sion numbers (a typical convention is that 0 is synonymous with :newest and
-1 with :previous), but such interpretations are implementation-dependent.

The host may be a string, indicating a file system, or a list of strings, of
which the first names the file system and the rest may be used for such a
purpose as inter-network routing.

X3J13 voted in June 1989 to approve the following clarifications and
specifications of precisely what are valid values for the various components
of a pathname.

Pathname component value strings never contain the punctuation char-
acters that are used to separate fields in a namestring (for example, slashes

650 CHAPTER 23. FILE SYSTEM INTERFACE

and periods as used in UNIX file systems). Punctuation characters appear
only in namestrings. Characters used as punctuation can appear in path-
name component values with a non-punctuation meaning if the file system
allows it (for example, UNIX file systems allow a file name to begin with a
period).

When examining pathname components, conforming programs must be
prepared to encounter any of the following siutations:
• Any component can be nil, which means the component has not been

specified.

• Any component can be :unspecific, which means the component has
no meaning in this particular pathname.

• The device, directory, name, and type can be strings.

• The host can be any object, at the discretion of the implementation.

• The directory can be a list of strings and symbols as described in sec-
tion 23.1.3.

• The version can be any symbol or any integer. The symbol :newest
refers to the largest version number that already exists in the file system
when reading, overwriting, appending, superseding, or directory-listing
an existing file; it refers to the smallest version number greater than
any existing version number when creating a new file. Other symbols
and integers have implementation-defined meaning. It is suggested,
but not required, that implementations use positive integers starting
at 1 as version numbers, recognize the symbol :oldest to designate the
smallest existing version number, and use keyword symbols for other
special versions.

When examining wildcard components of a wildcard pathname, conform-
ing programs must be prepared to encounter any of the following additional
values in any component or any element of a list that is the directory com-
ponent:
• The symbol :wild, which matches anything.

• A string containing implementation-dependent special wildcard char-
acters.

• Any object, representing an implementation-dependent wildcard pat-
tern.

23.1. FILE NAMES 651

When constructing a pathname from components, conforming programs
must follow these rules:

• Any component may be nil. Specifying nil for the host may, in some
implementations, result in using a default host rather than an actual
nil value.

• The host, device, directory, name, and type may be strings. There are
implementation-dependent limits on the number and type of characters
in these strings. A plausible assumption is that letters (of a single case)
and digits are acceptable to most file systems.

• The directory may be a list of strings and symbols as described in sec-
tion 23.1.3. There are implementation-dependent limits on the length
and contents of the list.

• The version may be :newest.

• Any component may be taken from the corresponding component of
another pathname. When the two pathnames are for different file sys-
tems (in implementations that support multiple file systems), an ap-
propriate translation occurs. If no meaningful translation is possible,
an error is signaled. The definitions of “appropriate” and “meaningful”
are implementation-dependent.

• When constructing a wildcard pathname, the name, type, or version
may be :wild, which matches anything.

• An implementation might support other values for some components,
but a portable program should not use those values. A conforming
program can use implementation-dependent values but this can make it
non-portable; for example, it might work only with UNIX file systems.

The best way to compare two pathnames for equality is with equal, not
eql. (On pathnames, eql is simply the same as eq.) Two pathname objects
are equal if and only if all the corresponding components (host, device, and
so on) are equivalent. (Whether or not uppercase and lowercase letters are
considered equivalent in strings appearing in components depends on the file
name conventions of the file system.) Pathnames that are equal should be
functionally equivalent.

652 CHAPTER 23. FILE SYSTEM INTERFACE

23.1.2 Case Conventions

Issues of alphabetic case in pathnames are a major source of problems. In
some file systems, the customary case is lowercase, in some uppercase, in
some mixed. Some file systems are case-sensitive (that is, they treat FOO
and foo as different file names) and others are not.

There are two kinds of pathname case portability problems: moving pro-
grams from one Common Lisp to another, and moving pathname component
values from one file system to another. The solution to the first problem is the
requirement that all Common Lisp implementations that support a particu-
lar file system must use compatible representations for pathname component
values. The solution to the second problem is the use of a common represen-
tation for the least-common-denominator pathname component values that
exist on all interesting file systems.

Requiring a common representation directly conflicts with the desire
among programmers that use only one file system to work with the local
conventions and to ignore issues of porting to other file systems. The com-
mon representation cannot be the same as local (varying) conventions.

X3J13 voted in June 1989 to add a keyword argument :case to each
of the functions make-pathname, pathname-host, pathname-device,
pathname-directory, pathname-name, and pathname-type. The pos-
sible values for the argument are :common and :local. The default is :local.

The value :local means that strings given to make-pathname or re-
turned by any of the pathname component accessors follow the local file
system’s conventions for alphabetic case. Strings given to make-pathname
will be used exactly as written if the file system supports both cases. If the
file system supports only one case, the strings will be translated to that case.

The value :common means that strings given to make-pathname or
returned by any of the pathname component accessors follow this common
convention:

• All uppercase means that a file system’s customary case will be used.

• All lowercase means that the opposite of the customary case will be
used.

• Mixed case represents itself.

Uppercase is used as the common case for no better reason than consistency
with Lisp symbols. The second and third points allow translation from local

23.1. FILE NAMES 653

representation to common and back to be information-preserving. (Note that
translation from common to local representation and back may or may not be
information-preserving, depending on the nature of the local representation.)

Namestrings always use :local file system case conventions.
Finally, merge-pathnames and translate-pathname map customary

case in the input pathnames into customary case in the output pathname.
Examples of possible use of this convention:

• TOPS-20 is case-sensitive and prefers uppercase, translating lowercase
to uppercase unless escaped with ^V; for a TOPS-20–based file system,
a Common Lisp implementation should use identical representations for
common and local.

• UNIX is case-sensitive and prefers lowercase; for a UNIX-based file sys-
tem, a Common Lisp implementation should translate between com-
mon and local representations by inverting the case of non-mixed-case
strings.

• VAX/VMS is uppercase-only (that is, the file system translates all file
name arguments to uppercase); for a VAX/VMS-based file system, a
Common Lisp implementation should translate common representation
to local by converting to uppercase and should translate local repre-
sentation to common with no change.

• The Macintosh operating system is case-insensitive and prefers lower-
case, but remembers the cases of letters actually used to name a file; for
a Macintosh-based file system, a Common Lisp implementation should
translate between common and local representations by inverting the
case of non-mixed-case strings and should ignore case when determining
whether two pathnames are equal.

654 CHAPTER 23. FILE SYSTEM INTERFACE

Here are some examples of this behavior. Assume that the host T runs
TOPS-20, U runs UNIX, V runs VAX/VMS, and M runs the Macintosh
operating system.

;;; Returns two values: the PATHNAME-NAME from a namestring
;;; in :COMMON and :LOCAL representations (in that order).
(defun pathname-example (name)
(let ((path (parse-namestring name))))
(values (pathname-name path :case :common)

(pathname-name path :case :local))))

;Common Local
(pathname-example "T:<ME>FOO.LISP") ⇒ "FOO" and "FOO"
(pathname-example "T:<ME>foo.LISP") ⇒ "FOO" and "FOO"
(pathname-example "T:<ME>^Vf^Vo^Vo.LISP") ⇒ "foo" and "foo"
(pathname-example "T:<ME>TeX.LISP") ⇒ "TEX" and "TEX"
(pathname-example "T:<ME>T^VeX.LISP") ⇒ "TeX" and "TeX"
(pathname-example "U:/me/FOO.lisp") ⇒ "foo" and "FOO"
(pathname-example "U:/me/foo.lisp") ⇒ "FOO" and "foo"
(pathname-example "U:/me/TeX.lisp") ⇒ "TeX" and "TeX"
(pathname-example "V:[me]FOO.LISP") ⇒ "FOO" and "FOO"
(pathname-example "V:[me]foo.LISP") ⇒ "FOO" and "FOO"
(pathname-example "V:[me]TeX.LISP") ⇒ "TEX" and "TEX"
(pathname-example "M:FOO.LISP") ⇒ "foo" and "FOO"
(pathname-example "M:foo.LISP") ⇒ "FOO" and "foo"
(pathname-example "M:TeX.LISP") ⇒ "TeX" and "TeX"

The following example illustrates the creation of new pathnames. The
name is converted from common representation to local because namestrings
always use local conventions.

(defun make-pathname-example (h n)
(namestring (make-pathname :host h :name n :case :common))

(make-pathname-example "T" "FOO") ⇒ "T:FOO"
(make-pathname-example "T" "foo") ⇒ "T:^Vf^Vo^Vo"
(make-pathname-example "T" "TeX") ⇒ "T:T^VeX"
(make-pathname-example "U" "FOO") ⇒ "U:foo"
(make-pathname-example "U" "foo") ⇒ "U:FOO"

23.1. FILE NAMES 655

(make-pathname-example "U" "TeX") ⇒ "U:TeX"
(make-pathname-example "V" "FOO") ⇒ "V:FOO"
(make-pathname-example "V" "foo") ⇒ "V:FOO"
(make-pathname-example "V" "TeX") ⇒ "V:TeX"
(make-pathname-example "M" "FOO") ⇒ "M:foo"
(make-pathname-example "M" "foo") ⇒ "M:FOO"
(make-pathname-example "M" "TeX") ⇒ "M:TeX"

A big advantage of this set of conventions is that one can, for example, call
make-pathname with :type "LISP" and :case :common, and the result
will appear in a namestring as .LISP or .lisp, whichever is appropriate.

23.1.3 Structured Directories

X3J13 voted in June 1989 to define a specific pathname component format
for structured directories.

The value of a pathname’s directory component may be a list. The car of
the list should be a keyword, either :absolute or :relative. Each remaining
element of the list should be a string or a symbol (see below). Each string
names a single level of directory structure and should consist of only the
directory name without any punctuation characters.

A list whose car is the symbol :absolute represents a directory path
starting from the root directory. For example, the list (:absolute) represents
the root directory itself; the list (:absolute "foo" "bar" "baz") represents
the directory that in a UNIX file system would be called /foo/bar/baz.

A list whose car is the symbol :relative represents a directory path start-
ing from a default directory. The list (:relative) has the same meaning as
nil and hence normally is not used. The list (:relative "foo" "bar") rep-
resents the directory named bar in the directory named foo in the default
directory.

In place of a string, at any point in the list, a symbol may occur to indicate
a special file notation. The following symbols have standard meanings.

:wild Wildcard match of one level of directory structure

:wild-inferiors Wildcard match of any number of directory levels

:up Go upward in directory structure (semantic)

:back Go upward in directory structure (syntactic)

656 CHAPTER 23. FILE SYSTEM INTERFACE

(See section 23.1.4 for a discussion of wildcard pathnames.)
Implementations are permitted to add additional objects of any non-

string type if necessary to represent features of their file systems that cannot
be represented with the standard strings and symbols. Supplying any non-
string, including any of the symbols listed below, to a file system for which it
does not make sense signals an error of type file-error. For example, most
implementations of the UNIX file system do not support :wild-inferiors.
Any directory list in which :absolute or :wild-inferiors is immediately
followed by :up or :back is illegal and when processed causes an error to be
signaled.

The keyword :back has a “syntactic” meaning that depends only on the
pathname and not on the contents of the file system. The keyword :up
has a “semantic” meaning that depends on the contents of the file system; to
resolve a pathname containing :up to a pathname whose directory component
contains only :absolute and strings requires a search of the file system. Note
that use of :up instead of :back can result in designating a different actual
directory only in file systems that support multiple names for directories,
perhaps via symbolic links. For example, suppose that there is a directory
link such that

(:absolute "X" "Y") is linked to (:absolute "A" "B")

and there also exist directories

(:absolute "A" "Q") and (:absolute "X" "Q")

Then

(:absolute "X" "Y" :up "Q") designates (:absolute "A" "Q")

but

(:absolute "X" "Y" :back "Q") designates (:absolute "X" "Q")

If a string is used as the value of the :directory argument to make-
pathname, it should be the name of a top-level directory and should not
contain any punctuation characters. Specifying a string s is equivalent to
specifying the list (:absolute s). Specifying the symbol :wild is equivalent
to specifying the list (:absolute :wild-inferiors) (or (:absolute :wild) in
a file system that does not support :wild-inferiors).

23.1. FILE NAMES 657

The function pathname-directory always returns nil, :unspecific, or
a list—never a string, never :wild. If a list is returned, it is not guaranteed
to be freshly consed; the consequences of modifying this list are undefined.

In non-hierarchical file systems, the only valid list values for the directory
component of a pathname are (:absolute s) (where s is a string) and (:ab-
solute :wild). The keywords :relative, :wild-inferiors, :up, and :back
are not used in non-hierarchical file systems.

Pathname merging treats a relative directory specially. Let pathname and
defaults be the first two arguments to merge-pathnames. If (pathname-
directory pathname) is a list whose car is :relative, and (pathname-
directory defaults) is a list, then the merged directory is the value of

(append (pathname-directory defaults)
(cdr ;Remove :relative from the front
(pathname-directory pathname)))

except that if the resulting list contains a string or :wild immediately
followed by :back, both of them are removed. This removal of redundant
occurrences of :back is repeated as many times as possible. If (pathname-
directory defaults) is not a list or (pathname-directory pathname) is
not a list whose car is :relative, the merged directory is the value of

(or (pathname-directory pathname)
(pathname-directory defaults))

A relative directory in the pathname argument to a function such as open
is merged with the value of *default-pathname-defaults* before the file
system is accessed.

Here are some examples of the use of structured directories. Suppose that
host L supports a Symbolics Lisp Machine file system, host U supports a
UNIX file system, and host V supports a VAX/VMS file system.

(pathname-directory (parse-namestring "V:[FOO.BAR]BAZ.LSP"))
⇒ (:ABSOLUTE "FOO" "BAR")

(pathname-directory (parse-namestring "U:/foo/bar/baz.lisp"))
⇒ (:ABSOLUTE "foo" "bar")

(pathname-directory (parse-namestring "U:../baz.lisp"))
⇒ (:RELATIVE :UP)

658 CHAPTER 23. FILE SYSTEM INTERFACE

(pathname-directory (parse-namestring "U:/foo/bar/../mum/baz"))
⇒ (:ABSOLUTE "foo" "bar" :UP "mum")

(pathname-directory (parse-namestring "U:bar/../../ztesch/zip"))
⇒ (:RELATIVE "bar" :UP :UP "ztesch")

(pathname-directory (parse-namestring "L:>foo>**>bar>baz.lisp"))
⇒ (:ABSOLUTE "FOO" :WILD-INFERIORS "BAR")

(pathname-directory (parse-namestring "L:>foo>*>bar>baz.lisp"))
⇒ (:ABSOLUTE "FOO" :WILD "BAR")

23.1.4 Extended Wildcards

Some file systems provide more complex conventions for wildcards than sim-
ple component-wise wildcards representable by :wild. For example, the
namestring "F*O" might mean a normal three-character name; a three-
character name with the middle character wild; a name with at least two char-
acters, beginning with F and ending with O; or perhaps a wild match span-
ning multiple directories. Similarly, the namestring ">foo>**>bar>"
might imply that the middle directory is named "**"; the middle directory
is :wild; there are zero or more middle directories that are :wild; or per-
haps that the middle directory name matches any two-letter name. Some file
systems support even more complex wildcards, such as regular expressions.

X3J13 voted in June 1989 to provide some facilities for dealing with more
general wildcard pathnames in a fairly portable manner.

[Function] wild-pathname-p pathname &optional field-key

Tests a pathname for the presence of wildcard components. If the first
argument is not a pathname, string, or file stream, an error of type type-
error is signaled.

If no field-key is provided, or the field-key is nil, the result is true if and
only if pathname has any wildcard components.

If a non-null field-key is provided, it must be one of :host, :device,
:directory, :name, :type, or :version. In this case, the result is true if and
only if the indicated component of pathname is a wildcard.

Note that X3J13 voted in June 1989 to specify that an implementation
need not support wildcards in all fields; the only requirement is that the

23.1. FILE NAMES 659

name, type, or version may be :wild. However, portable programs should be
prepared to encounter either :wild or implementation-dependent wildcards
in any pathname component. The function wild-pathname-p provides a
portable way for testing the presence of wildcards.

[Function] pathname-match-p pathname wildname

This predicate is true if and only if the pathname matches the wildname.
The matching rules are implementation-defined but should be consistent with
the behavior of the directory function. Missing components of wildname
default to :wild.

If either argument is not a pathname, string, or file stream, an error of
type type-error is signaled. It is valid for pathname to be a wild pathname;
a wildcard field in pathname will match only a wildcard field in wildname;
that is, pathname-match-p is not commutative. It is valid for wildname
to be a non-wild pathname; I believe that in this case pathname-match-p
will have the same behavior as equal, though the X3J13 specification did
not say so.

[Function] translate-pathname source from-wildname to-wildname &key

Translates the pathname source, which must match from-wildname, into
a corresponding pathname (call it result), which is constructed so as to match
to-wildname, and returns result.

The pathname result is a copy of to-wildname with each missing or wild-
card field replaced by a portion of source; for this purpose a wildcard field is a
pathname component with a value of :wild, a :wild element of a list-valued
directory component, or an implementation-defined portion of a component,
such as the * in the complex wildcard string "foo*bar" that some imple-
mentations support. An implementation that adds other wildcard features,
such as regular expressions, must define how translate-pathname extends
to those features. A missing field is a pathname component that is nil.

The portion of source that is copied into result is implementation-defined.
Typically it is determined by the user interface conventions of the file systems
involved. Usually it is the portion of source that matches a wildcard field of
from-wildname that is in the same position as the missing or wildcard field of
to-wildname. If there is no wildcard field in from-wildname at that position,
then usually it is the entire corresponding pathname component of source or,

660 CHAPTER 23. FILE SYSTEM INTERFACE

in the case of a list-valued directory component, the entire corresponding list
element. For example, if the name components of source, from-wildname, and
to-wildname are "gazonk", "gaz*", and "h*" respectively, then in most
file systems the wildcard fields of the name component of from-wildname
and to-wildname are each "*", the matching portion of source is "onk",
and the name component of result is "honk"; however, the exact behavior of
translate-pathname is not dictated by the Common Lisp language and may
vary according to the user interface conventions of the file systems involved.

During the copying of a portion of source into result, additional
implementation-defined translations of alphabetic case or file naming con-
ventions may occur, especially when from-wildname and to-wildname are for
different hosts.

If any of the first three arguments is not a pathname, string, or file stream,
an error of type type-error is signaled. It is valid for source to be a wild
pathname; in general this will produce a wild result pathname. It is valid
for from-wildname or to-wildname or both to be non-wild. An error is sig-
naled if the source pathname does not match the from-wildname, that is, if
(pathname-match-p source from-wildname) would not be true.

There are no specified keyword arguments for translate-pathname, but
implementations are permitted to extend it by adding keyword arguments.
There is one specified return value from translate-pathname; implemen-
tations are permitted to extend it by returning additional values.

Here is an implementation suggestion. One file system performs this
operation by examining corresponding pieces of the three pathnames in turn,
where a piece is a pathname component or a list element of a structured
component such as a hierarchical directory. Hierarchical directory elements in
from-wildname and to-wildname are matched by whether they are wildcards,
not by depth in the directory hierarchy. If the piece in to-wildname is present
and not wild, it is copied into the result. If the piece in to-wildname is :wild
or nil, the corresponding piece in source is copied into the result. Otherwise,
the piece in to-wildname might be a complex wildcard such as "foo*bar";
the portion of the piece in source that matches the wildcard portion of the
corresponding piece in from-wildname (or the entire source piece, if the from-
wildname piece is not wild and therefore equals the source piece) replaces
the wildcard portion of the piece in to-wildname and the value produced is
used in the result.

X3J13 voted in June 1989 to require translate-pathname to map cus-
tomary case in argument pathnames to the customary case in returned path-

23.1. FILE NAMES 661

names (see section 23.1.2).
Here are some examples of the use of the new wildcard pathname facili-

ties. These examples are not portable. They are written to run with partic-
ular file systems and particular wildcard conventions and are intended to be
illustrative, not prescriptive. Other implementations may behave differently.

(wild-pathname-p (make-pathname :name :wild)) ⇒ t
(wild-pathname-p (make-pathname :name :wild) :name) ⇒ t
(wild-pathname-p (make-pathname :name :wild) :type) ⇒ nil
(wild-pathname-p (pathname "S:>foo>**>")) ⇒ t ;Maybe
(wild-pathname-p (make-pathname :name "F*O")) ⇒ t ;Probably

One cannot rely on rename-file to handle wild pathnames in a pre-
dictable manner. However, one can use translate-pathname explicitly to
control the process.

(defun rename-files (from to)
"Rename all files that match the first argument by
translating their names to the form of the second
argument. Both arguments may be wild pathnames."
(dolist (file (directory from))
;; DIRECTORY produces only pathnames that match from-wildname.
(rename-file file (translate-pathname file from to))))

Assuming one particular set of popular wildcard conventions, this func-
tion might exhibit the following behavior. Not all file systems will run this
example exactly as written.

(rename-files "/usr/me/*.lisp" "/dev/her/*.l")
renames /usr/me/init.lisp

to /dev/her/init.l

(rename-files "/usr/me/pcl*/*" "/sys/pcl/*/")
renames /usr/me/pcl-5-may/low.lisp

to /sys/pcl/pcl-5-may/low.lisp
(in some file systems the result might be /sys/pcl/5-may/low.lisp)

(rename-files "/usr/me/pcl*/*" "/sys/library/*/")
renames /usr/me/pcl-5-may/low.lisp

to /sys/library/pcl-5-may/low.lisp
(in some file systems the result might be /sys/library/5-may/low.lisp)

662 CHAPTER 23. FILE SYSTEM INTERFACE

(rename-files "/usr/me/foo.bar" "/usr/me2/")
renames /usr/me/foo.bar

to /usr/me2/foo.bar

(rename-files "/usr/joe/*-recipes.text"
"/usr/jim/personal/cookbook/joe’s-*-rec.text")

renames /usr/joe/lamb-recipes.text
to /usr/jim/personal/cookbook/joe’s-lamb-rec.text
renames /usr/joe/veg-recipes.text

to /usr/jim/personal/cookbook/joe’s-veg-rec.text
renames /usr/joe/cajun-recipes.text

to /usr/jim/personal/cookbook/joe’s-cajun-rec.text
renames /usr/joe/szechuan-recipes.text

to /usr/jim/personal/cookbook/joe’s-szechuan-rec.text

The following examples use UNIX syntax and the wildcard conventions
of one particular version of UNIX.

(namestring
(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/*.l"
"/usr/d*/backup/hacks/backup-*.*"))

⇒ "/usr/dmr/backup/hacks/backup-frob.l"

(namestring
(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/fr*.l"
"/usr/d*/backup/hacks/backup-*.*"))

⇒ "/usr/dmr/backup/hacks/backup-ob.l"

The following examples are similar to the preceding examples but use two
different hosts; host U supports a UNIX file system and host V supports a
VAX/VMS file system. Note the translation of file type (from l to LSP) and
the change of alphabetic case conventions.

(namestring
(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/*.l"
"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

⇒ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-FROB.LSP"

23.1. FILE NAMES 663

(namestring
(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/fr*.l"
"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

⇒ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-OB.LSP"

The next example is a version of the function translate-logical-
pathname (simplified a bit) for a logical host named FOO. The points of
interest are the use of pathname-match-p as a :test argument for assoc
and the use of translate-pathname as a substrate for translate-logical-
pathname.

(define-condition logical-translation-error (file-error))

(defun my-translate-logical-pathname (pathname &key rules)
(let ((rule (assoc pathname rules :test #’pathname-match-p)))
(unless rule
(error ’logical-translation-error :pathname pathname))

(translate-pathname pathname (first rule) (second rule))))

(my-translate-logical-pathname
"FOO:CODE;BASIC.LISP"
:rules ’(("FOO:DOCUMENTATION;" "U:/doc/foo/")

("FOO:CODE;" "U:/lib/foo/")
("FOO:PATCHES;*;" "U:/lib/foo/patch/*/")))

⇒ #P"U:/lib/foo/basic.l"

664 CHAPTER 23. FILE SYSTEM INTERFACE

23.1.5 Logical Pathnames

Pathname values are not portable, but sometimes they must be mentioned
in a program (for example, the names of files containing the program and
the data used by the program).

X3J13 voted in June 1989 to provide some facilities for portable pathname
values. The idea is to provide a portable framework for pathname values;
these logical pathnames are then mapped to physical (that is, actual) path-
names by a set of implementation-dependent or site-dependent rules. The
logical pathname facility therefore separates the concerns of program writing
and user software architecture from the details of how a software system is
embedded in a particular file system or operating environment.

Pathname values are not portable because not all Common Lisp imple-
mentations use the same operating system and file name syntax varies widely
among operating systems. In addition, corresponding files at two different
sites may have different names even when the operating system is the same;
for example, they may be on different directories or different devices. The
Common Lisp logical pathname system defines a particular pathname struc-
ture and namestring syntax that must be supported by all implementations.

[Class] logical-pathname

This is a subclass of pathname.

Syntax of Logical Pathname Namestrings

The syntax of a logical pathname namestring is as follows:

logical-namestring ::= [host :] [;] {directory ;}* [name] [. type [. version]]

Note that a logical namestring has no device portion.

host ::= word
directory ::= word | wildcard-word | wildcard-inferiors
name ::= word | wildcard-word
type ::= word | wildcard-word
version ::= word | wildcard-word
word ::= {letter | digit | -}+
wildcard-word ::= [word] * {word *}* [word]
wildcard-inferiors ::= **

23.1. FILE NAMES 665

A word consists of one or more uppercase letters, digits, and hyphens.
A wildcard word consists of one or more asterisks, uppercase letters, digits,

and hyphens, including at least one asterisk, with no two asterisks adjacent.
Each asterisk matches a sequence of zero or more characters. The wildcard
word * parses as :wild; all others parse as strings.

Lowercase letters may also appear in a word or wildcard word occurring in
a namestring. Such letters are converted to uppercase when the namestring
is converted to a pathname. The consequences of using other characters are
unspecified.

The host is a word that has been defined as a logical pathname host by
using setf with the function logical-pathname-translations.

There is no device, so the device component of a logical pathname is
always :unspecific. No other component of a logical pathname can be :un-
specific.

Each directory is a word, a wildcard word, or ** (which is parsed as :wild-
inferiors). If a semicolon precedes the directories, the directory component
is relative; otherwise it is absolute.

The name is a word or a wildcard word.
The type is a word or a wildcard word.
The version is a positive decimal integer or the wordNEWEST (which is

parsed as :newest) or * (which is parsed as :wild). The letters inNEWEST
can be in either alphabetic case.

The consequences of using any value not specified here as a logical path-
name component are unspecified. The null string "" is not a valid value for
any component of a logical pathname, since the null string is not a word or
a wildcard word.

Parsing of Logical Pathname Namestrings

Logical pathname namestrings are recognized by the functions logical-
pathname and translate-logical-pathname. The host portion of the
logical pathname namestring and its following colon must appear in the
namestring arguments to these functions.

The function parse-namestring recognizes a logical pathname
namestring when the host argument is logical or the defaults argument is
a logical pathname. In this case the host portion of the logical pathname
namestring and its following colon are optional. If the host portion of the
namestring and the host argument are both present and do not match, an

666 CHAPTER 23. FILE SYSTEM INTERFACE

error is signaled. The host argument is logical if it is supplied and came from
pathname-host of a logical pathname. Whether a host argument is logical
if it is a string equal to a logical pathname host name is implementation-
defined.

The function merge-pathnames recognizes a logical pathname
namestring when the defaults argument is a logical pathname. In this case
the host portion of the logical pathname namestring and its following colon
are optional.

Whether the other functions that coerce strings to pathnames recognize
logical pathname namestrings is implementation-defined. These functions in-
clude parse-namestring in circumstances other than those described above,
merge-pathnames in circumstances other than those described above, the
:defaults argument to make-pathname, and the following functions:

compile-file file-write-date pathname-name
compile-file-pathname host-namestring pathname-type
delete-file load pathname-version
directory namestring probe-file
directory-namestring open rename-file
dribble pathname translate-pathname
ed pathname-device truename
enough-namestring pathname-directory wild-pathname-p
file-author pathname-host with-open-file
file-namestring pathname-match-p

Note that many of these functions must accept logical pathnames even though
they do not accept logical pathname namestrings.

Using Logical Pathnames

Some real file systems do not have versions. Logical pathname translation to
such a file system ignores the version. This implies that a portable program
cannot rely on being able to store in a file system more than one version of
a file named by a logical pathname.

The type of a logical pathname for a Common Lisp source file is LISP.
This should be translated into whatever implementation-defined type is ap-
propriate in a physical pathname.

The logical pathname host name SYS is reserved for the implementation.
The existence and meaning of logical pathnames for logical host SYS is

23.1. FILE NAMES 667

implementation-defined.
File manipulation functions must operate with logical pathnames accord-

ing to the following requirements:

• The following accept logical pathnames and translate them into
physical pathnames as if by calling the function translate-logical-
pathname:

compile-file ed probe-file
compile-file-pathname file-author rename-file
delete-file file-write-date truename
directory load with-open-file
dribble open

• Applying the function pathname to a stream created by the function
open or the macro with-open-file using a logical pathname produces
a logical pathname.

• The functions truename, probe-file, and directory never return log-
ical pathnames.

• Calling rename-file with a logical pathname as the second argument
returns a logical pathname as the first value.

• make-pathname returns a logical pathname if and only if the host
is logical. If the :host argument to make-pathname is supplied,
the host is logical if it came from the pathname-host of a logical
pathname. Whether a :host argument is logical if it is a string equal
to a logical pathname host name is implementation-defined.

[Function] logical-pathname pathname

Converts the argument to a logical pathname and returns it. The argu-
ment can be a logical pathname, a logical pathname namestring containing
a host component, or a stream for which the pathname function returns a
logical pathname. For any other argument, logical-pathname signals an
error of type type-error.

668 CHAPTER 23. FILE SYSTEM INTERFACE

[Function] translate-logical-pathname pathname &key

Translates a logical pathname to the corresponding physical pathname.
The pathname argument is first coerced to a pathname. If it is not a path-
name, string, or file stream, an error of type type-error is signaled.

If the coerced argument is a physical pathname, it is returned.
If the coerced argument is a logical pathname, the first matching trans-

lation (according to pathname-match-p) of the logical pathname host is
applied, as if by calling translate-pathname. If the result is a logical
pathname, this process is repeated. When the result is finally a physical
pathname, it is returned.

If no translation matches a logical pathname, an error of type file-error
is signaled.

translate-logical-pathname may perform additional translations, typ-
ically to provide translation of file types to local naming conventions, to
accommodate physical file systems with names of limited length, or to deal
with special character requirements such as translating hyphens to under-
scores or uppercase letters to lowercase. Any such additional translations
are implementation-defined. Some implementations do no additional trans-
lations.

There are no specified keyword arguments for translate-logical-
pathname but implementations are permitted to extend it by adding key-
word arguments. There is one specified return value from translate-logical-
pathname; implementations are permitted to extend it by returning addi-
tional values.

[Function] logical-pathname-translations host

If the specified host is not the host component of a logical pathname and
is not a string that has been defined as a logical pathname host name by setf
of logical-pathname-translations, this function signals an error of type
type-error; otherwise, it returns the list of translations for the specified
host. Each translation is a list of at least two elements, from-wildname
and to-wildname. Any additional elements are implementation-defined. A
from-wildname is a logical pathname whose host is the specified host. A
to-wildname is any pathname. Translations are searched in the order listed,
so more specific from-wildnames must precede more general ones.

(setf (logical-pathname-translations host) translations) sets the
list of translations for the logical pathname host to translations. If host is

23.1. FILE NAMES 669

a string that has not previously been used as logical pathname host, a new
logical pathname host is defined; otherwise an existing host’s translations are
replaced. Logical pathname host names are compared with string-equal.

When setting the translations list, each from-wildname can be a logical
pathname whose host is host or a logical pathname namestring s parseable
by (parse-namestring s host-object), where host-object is an appropri-
ate object for representing the specified host to parse-namestring. (This
circuitous specification dodges the fact that parse-namestring does not
necessarily accept as its second argument any old string that names a log-
ical host.) Each to-wildname can be anything coercible to a pathname by
application of the function pathname. If to-wildname coerces to a logical
pathname, translate-logical-pathname will retranslate the result, repeat-
edly if necessary.

Implementations may define additional functions that operate on logi-
cal pathname hosts (for example, to specify additional translation rules or
options).

[Function] load-logical-pathname-translations host

If a logical pathname host named host (a string) is already defined, this
function returns nil. Otherwise, it searches for a logical pathname host
definition in an implementation-defined manner. If none is found, it signals
an error. If a definition is found, it installs the definition and returns t.

The search used by load-logical-pathname-translations should be
documented, as logical pathname definitions will be created by users as
well as by Lisp implementors. A typical search technique is to look in an
implementation-defined directory for a file whose name is derived from the
host name in an implementation-defined fashion.

[Function] compile-file-pathname pathname &key :output-file

Returns the pathname that compile-file would write into, if given the
same arguments. If the pathname argument is a logical pathname and the
:output-file argument is unspecified, the result is a logical pathname. If
an implementation supports additional keyword arguments to compile-file,
compile-file-pathname must accept the same arguments.

670 CHAPTER 23. FILE SYSTEM INTERFACE

Examples of the Use of Logical Pathnames

Here is a very simple example of setting up a logical pathname host named
FOO. Suppose that no translations are necessary to get around file system
restrictions, so all that is necessary is to specify the root of the physical
directory tree that contains the logical file system. The namestring syntax
in the to-wildname is implementation-specific.

(setf (logical-pathname-translations "foo")
’(("**;*.*.*" "MY-LISPM:>library>foo>**>")))

The following is a sample use of that logical pathname. All return values
are of course implementation-specific; all of the examples in this section are
of course meant to be illustrative and not prescriptive.

(translate-logical-pathname "foo:bar;baz;mum.quux.3")
⇒ #P"MY-LISPM:>library>foo>bar>baz>mum.quux.3"

Next we have a more complex example, dividing the files among two file
servers (U, supporting a UNIX file system, and V, supporting a VAX/VMS
file system) and several different directories. This UNIX file system doesn’t
support :wild-inferiors in the directory, so each directory level must be
translated individually. No file name or type translations are required except
for .MAIL to .MBX. The namestring syntax used for the to-wildnames is
implementation-specific.

(setf (logical-pathname-translations "prog")
’(("RELEASED;*.*.*" "U:/sys/bin/my-prog/")
("RELEASED;*;*.*.*" "U:/sys/bin/my-prog/*/")
("EXPERIMENTAL;*.*.*"

"U:/usr/Joe/development/prog/")
("EXPERIMENTAL;DOCUMENTATION;*.*.*"

"V:SYS$DISK:[JOE.DOC]")
("EXPERIMENTAL;*;*.*.*"

"U:/usr/Joe/development/prog/*/")
("MAIL;**;*.MAIL" "V:SYS$DISK:[JOE.MAIL.PROG...]*.MBX")
))

Here are sample uses of logical host PROG. All return values are of
course implementation-specific.

23.1. FILE NAMES 671

(translate-logical-pathname "prog:mail;save;ideas.mail.3")
⇒ #P"V:SYS$DISK:[JOE.MAIL.PROG.SAVE]IDEAS.MBX.3"

(translate-logical-pathname "prog:experimental;spreadsheet.c")
⇒ #P"U:/usr/Joe/development/prog/spreadsheet.c"

Suppose now that we have a program that uses three files logically named
MAIN.LISP, AUXILIARY.LISP, and DOCUMENTATION.LISP.
The following translations might be provided by a software supplier as ex-
amples.

For a UNIX file system with long file names:

(setf (logical-pathname-translations "prog")
’(("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")
⇒ #P"/lib/prog/documentation.lisp"

For a UNIX file system with 14-character file names, using .lisp as the
type:

(setf (logical-pathname-translations "prog")
’(("CODE;DOCUMENTATION.*.*" "/lib/prog/docum.*")
("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")
⇒ #P"/lib/prog/docum.lisp"

For a UNIX file system with 14-character file names, using .l as the type
(the second translation shortens the compiled file type to .b):

(setf (logical-pathname-translations "prog")
‘(("**;*.LISP.*" ,(logical-pathname "PROG:**;*.L.*"))
(,(compile-file-pathname

(logical-pathname "PROG:**;*.LISP.*"))
,(logical-pathname "PROG:**;*.B.*"))

("CODE;DOCUMENTATION.*.*" "/lib/prog/documentatio.*")
("CODE;*.*.*" "/lib/prog/")))

(translate-logical-pathname "prog:code;documentation.lisp")
⇒ #P"/lib/prog/documentatio.l"

672 CHAPTER 23. FILE SYSTEM INTERFACE

Discussion of Logical Pathnames

Large programs can be moved between sites without changing any path-
names, provided all pathnames used are logical. A portable system con-
struction tool can be created that operates on programs defined as sets of
files named by logical pathnames.

Logical pathname syntax was chosen to be easily translated into the for-
mats of most popular file systems, while still being powerful enough for stor-
ing large programs. Although they have hierarchical directories, extended
wildcard matching, versions, and no limit on the length of names, logical
pathnames can be mapped onto a less capable real file system by translating
each directory that is used into a flat directory name, processing wildcards in
the Lisp implementation rather than in the file system, treating all versions
as :newest, and using translations to shorten long names.

Logical pathname words are restricted to non-case-sensitive letters, dig-
its, and hyphens to avoid creating problems with real file systems that sup-
port limited character sets for file naming. (If logical pathnames were case-
sensitive, it would be very difficult to map them into a file system that is not
sensitive to case in its file names.)

It is not a goal of logical pathnames to be able to represent all possible file
names. Their goal is rather to represent just enough file names to be useful
for storing software. Real pathnames, in contrast, need to provide a uniform
interface to all possible file names, including names and naming conventions
that are not under the control of Common Lisp.

The choice of logical pathname syntax, using colon, semicolon, and pe-
riod, was guided by the goals of being visually distinct from real file systems
and minimizing the use of special characters.

The logical-pathname function is separate from the pathname func-
tion so that the syntax of logical pathname namestrings does not constrain
the syntax of physical pathname namestrings in any way. Logical pathname
syntax must be defined by Common Lisp so that logical pathnames can be
conveniently exchanged between implementations, but physical pathname
syntax is dictated by the operating environments.

The compile-file-pathname function and the specification of LISP as
the type of a logical pathname for a Common Lisp source file together provide
enough information about compilation to make possible a portable system
construction tool. Suppose that it is desirable to call compile-file only
if the source file is newer than the compiled file. For this to succeed, it

23.1. FILE NAMES 673

must be possible to know the name of the compiled file without actually
calling compile-file. In some implementations the compiler produces one
of several file types, depending on a variety of implementation-dependent
circumstances, so it is not sufficient simply to prescribe a standard logical
file type for compiled files; compile-file-pathname provides access to the
defaulting that is performed by compile-file “in a manner appropriate to
the implementation’s file system conventions.”

The use of the logical pathname host name SYS for the implementation
is current practice. Standardizing on this name helps users choose logical
pathname host names that avoid conflicting with implementation-defined
names.

Loading of logical pathname translations from a site-dependent file allows
software to be distributed using logical pathnames. The assumed model of
software distribution is a division of labor between the supplier of the software
and the user installing it. The supplier chooses logical pathnames to name
all the files used or created by the software, and supplies examples of logical
pathname translations for a few popular file systems. Each example uses an
assumed directory and/or device name, assumes local file naming conven-
tions, and provides translations that will translate all the logical pathnames
used or generated by the particular software into valid physical pathnames.
For a powerful file system these translations can be quite simple. For a more
restricted file system, it may be necessary to list an explicit translation for
every logical pathname used (for example, when dealing with restrictions on
the maximum length of a file name).

The user installing the software decides on which device and directory to
store the files and edits the example logical pathname translations accord-
ingly. If necessary, the user also adjusts the translations for local file naming
conventions and any other special aspects of the user’s local file system pol-
icy and local Common Lisp implementation. For example, the files might
be divided among several file server hosts to share the load. The process
of defining site-customized logical pathname translations is quite easy for a
user of a popular file system for which the software supplier has provided an
example. A user of a more unusual file system might have to take more time;
the supplier can help by providing a list of all the logical pathnames used or
generated by the software.

Once the user has created and executed a suitable setf form for setting the
logical-pathname-translations of the relevant logical host, the software
can be loaded and run. It may be necessary to use the translations again,

674 CHAPTER 23. FILE SYSTEM INTERFACE

or on another workstation at the same site, so it is best to save the setf
form in the standard place where it can be found later by load-logical-
pathname-translations. Often a software supplier will include a program
for restoring software from the distribution medium to the file system and a
program for loading the software from the file system into a Common Lisp;
these programs will start by calling load-logical-pathname-translations
to make sure that the logical pathname host is defined.

Note that the setf of logical-pathname-translations form isn’t part
of the program; it is separate and is written by the user, not by the software
supplier. That separation and a uniform convention for doing the separation
are the key aspects of logical pathnames. For small programs involving only
a handful of files, it doesn’t matter much. The real benefits come with large
programs with hundreds or thousands of files and more complicated situa-
tions such as program-generated file names or porting a program developed
on a system with long file names onto a system with a very restrictive limit
on the length of file names.

23.1.6 Pathname Functions

These functions are what programs use to parse and default file names that
have been typed in or otherwise supplied by the user.

Any argument called pathname in this book may actually be a pathname,
a string or symbol, or a stream. Any argument called defaults may likewise
be a pathname, a string or symbol, or a stream.

X3J13 voted in March 1988 to change the language so that a symbol
is never allowed as a pathname argument. More specifically, the following
functions are changed to disallow a symbol as a pathname argument:

pathname pathname-device namestring
truename pathname-directory file-namestring
parse-namestring pathname-name directory-namestring
merge-pathnames pathname-type host-namestring
pathname-host pathname-version enough-namestring

(The function require was also changed by this vote but was deleted from the
language by a vote in January 1989 .) Furthermore, the vote reaffirmed that
the following functions do not accept symbols as file, filename, or pathname
arguments:

23.1. FILE NAMES 675

open rename-file file-write-date
with-open-file delete-file file-author
load probe-file directory
compile-file
In older implementations of Lisp that did not have strings, for example
MacLisp, symbols were the only means for specifying pathnames. This was
convenient only because the file systems of the time allowed only uppercase
letters in file names. Typing (load ’foo) caused the function load to re-
ceive the symbol FOO (with uppercase letters because of the way symbols
are parsed) and therefore to load the file named FOO. Now that many file
systems, most notably UNIX, support case-sensitive file names, the use of
symbols is less convenient and more error-prone.

X3J13 voted in March 1988 to specify that a stream may be used as a
pathname, file, or filename argument only if it was created by use of open
or with-open-file, or if it is a synonym stream whose symbol is bound to a
stream that may be used as a pathname.

If such a stream is used as a pathname, it is as if the pathname function
were applied to the stream and the resulting pathname used in place of the
stream. This represents the name used to open the file. This may be, but is
not required to be, the actual name of the file.

It is an error to attempt to obtain a pathname from a stream created by
any of the following:
make-two-way-stream make-string-input-stream
make-echo-stream make-string-output-stream
make-broadcast-stream with-input-from-string
make-concatenated-stream with-output-to-string

In the examples, it is assumed that the host named CMUC runs the
TOPS-20 operating system, and therefore uses TOPS-20 file system syn-
tax; furthermore, an explicit host name is indicated by following the host
name with a double colon. Remember, however, that namestring syntax is
implementation-dependent, and this syntax is used here purely for the sake
of examples.

[Function] pathname pathname

The pathname function converts its argument to be a pathname. The
argument may be a pathname, a string or symbol, or a stream; the result is
always a pathname.

676 CHAPTER 23. FILE SYSTEM INTERFACE

X3J13 voted in March 1988 not to permit symbols as pathnames and to
specify exactly which streams may be used as pathnames .

X3J13 voted in January 1989 to specify that pathname is unaffected
by whether its argument, if a stream, is open or closed. X3J13 further
commented that because some implementations cannot provide the “true
name” of a file until the file is closed, in such an implementation pathname
might, in principle, return a different (perhaps more specific) file name after
the stream is closed. However, such behavior is prohibited; pathname must
return the same pathname after a stream is closed as it would have while the
stream was open. See truename.

[Function] truename pathname

The truename function endeavors to discover the “true name” of the
file associated with the pathname within the file system. If the pathname
is an open stream already associated with a file in the file system, that file
is used. The “true name” is returned as a pathname. An error is signaled
if an appropriate file cannot be located within the file system for the given
pathname.

The truename function may be used to account for any file name trans-
lations performed by the file system, for example.

For example, suppose that DOC: is a TOPS-20 logical de-
vice name that is translated by the TOPS-20 file system to be
PS:<DOCUMENTATION>.

(setq file (open "CMUC::DOC:DUMPER.HLP"))
(namestring (pathname file)) ⇒ "CMUC::DOC:DUMPER.HLP"
(namestring (truename file))
⇒ "CMUC::PS:<DOCUMENTATION>DUMPER.HLP.13"

X3J13 voted in March 1988 not to permit symbols as pathnames and to
specify exactly which streams may be used as pathnames .

X3J13 voted in January 1989 to specify that truename may be applied
to a stream whether the stream is open or closed. X3J13 further commented
that because some implementations cannot provide the “true name” of a file
until the file is closed, in principle it would be possible in such an imple-
mentation for truename to return a different file name after the stream is
closed. Such behavior is permitted; in this respect truename differs from
pathname.

23.1. FILE NAMES 677

X3J13 voted in June 1989 to clarify that truename accepts only non-
wild pathnames; an error is signaled if wild-pathname-p would be true of
the pathname argument.

X3J13 voted in June 1989 to require truename to accept logical path-
names (see section 23.1.5). However, truename never returns a logical path-
name.

[Function] parse-namestring thing &optional host defaults &key :start
:end :junk-allowed

This turns thing into a pathname. The thing is usually a string (that is, a
namestring), but it may be a symbol (in which case the print name is used)
or a pathname or stream (in which case no parsing is needed, but an error
check may be made for matching hosts).

X3J13 voted in March 1988 not to permit symbols as pathnames and
to specify exactly which streams may be used as pathnames . The thing
argument may not be a symbol.

X3J13 voted in June 1989 to require parse-namestring to accept logical
pathname namestrings (see section 23.1.5).

This function does not, in general, do defaulting of pathname components,
even though it has an argument named defaults ; it only does parsing. The
host and defaults arguments are present because in some implementations it
may be that a namestring can only be parsed with reference to a particular
file name syntax of several available in the implementation. If host is non-nil,
it must be a host name that could appear in the host component of a path-
name, or nil; if host is nil then the host name is extracted from the default
pathname in defaults and used to determine the syntax convention. The
defaults argument defaults to the value of *default-pathname-defaults*.

For a string (or symbol) argument, parse-namestring parses a file name
within it in the range delimited by the :start and :end arguments (which
are integer indices into string, defaulting to the beginning and end of the
string).

See chapter 14 for a discussion of :start and :end arguments.
If :junk-allowed is not nil, then the first value returned is the pathname

parsed, or nil if no syntactically correct pathname was seen.
If :junk-allowed is nil (the default), then the entire substring is scanned.

The returned value is the pathname parsed. An error is signaled if the sub-
string does not consist entirely of the representation of a pathname, possibly

678 CHAPTER 23. FILE SYSTEM INTERFACE

surrounded on either side by whitespace characters if that is appropriate to
the cultural conventions of the implementation.

In either case, the second value is the index into the string of the delimiter
that terminated the parse, or the index beyond the substring if the parse
terminated at the end of the substring (as will always be the case if :junk-
allowed is false).

If thing is not a string or symbol, then start (which defaults to zero in
any case) is always returned as the second value.

Parsing an empty string always succeeds, producing a pathname with all
components (except the host) equal to nil.

Note that if host is specified and not nil, and thing contains a manifest
host name, an error is signaled if the hosts do not match.

If thing contains an explicit host name and no explicit device name, then
it might be appropriate, depending on the implementation environment, for
parse-namestring to supply the standard default device for that host as
the device component of the resulting pathname.

[Function] merge-pathnames pathname &optional defaults
default-version

X3J13 voted in March 1988 not to permit symbols as pathnames and to
specify exactly which streams may be used as pathnames .

X3J13 voted in June 1989 to require merge-namestrings to recognize
a logical pathname namestring as its first argument if its second argument is
a logical pathname (see section 23.1.5).

X3J13 voted in January 1989 to specify that merge-pathname is un-
affected by whether the first argument, if a stream, is open or closed. If
the first argument is a stream, merge-pathname behaves as if the func-
tion pathname were applied to the stream and the resulting pathname used
instead.

X3J13 voted in June 1989 to require merge-pathnames to map cus-
tomary case in argument pathnames to the customary case in returned path-
names (see section 23.1.2).

defaults defaults to the value of *default-pathname-defaults*.
default-version defaults to :newest.
Here is an example of the use of merge-pathnames:

(merge-pathnames "CMUC::FORMAT"

23.1. FILE NAMES 679

"CMUC::PS:<LISPIO>.FASL")
⇒ a pathname object that re-expressed as a namestring would be
"CMUC::PS:<LISPIO>FORMAT.FASL.0"

Defaulting of pathname components is done by filling in components
taken from another pathname. This is especially useful for cases such as
a program that has an input file and an output file, and asks the user for the
name of both, letting the unsupplied components of one name default from
the other. Unspecified components of the output pathname will come from
the input pathname, except that the type should default not to the type of
the input but to the appropriate default type for output from this program.

The pathname merging operation takes as input a given pathname, a
defaults pathname, and a default version, and returns a new pathname. Ba-
sically, the missing components in the given pathname are filled in from the
defaults pathname, except that if no version is specified the default version
is used. The default version is usually :newest; if no version is specified the
newest version in existence should be used. The default version can be nil,
to preserve the information that it was missing in the input pathname.

If the given pathname explicitly specifies a host and does not supply a
device, then if the host component of the defaults matches the host com-
ponent of the given pathname, then the device is taken from the defaults;
otherwise the device will be the default file device for that host. Next, if the
given pathname does not specify a host, device, directory, name, or type,
each such component is copied from the defaults. The merging rules for the
version are more complicated and depend on whether the pathname specifies
a name. If the pathname doesn’t specify a name, then the version, if not
provided, will come from the defaults, just like the other components. How-
ever, if the pathname does specify a name, then the version is not affected
by the defaults. The reason is that the version “belongs to” some other file
name and is unlikely to have anything to do with the new one. Finally, if
this process leaves the version missing, the default version is used.

The net effect is that if the user supplies just a name, then the host,
device, directory, and type will come from the defaults, but the version will
come from the default version argument to the merging operation. If the
user supplies nothing, or just a directory, the name, type, and version will
come over from the defaults together. If the host’s file name syntax provides
a way to input a version without a name or type, the user can let the name
and type default but supply a version different from the one in the defaults.

680 CHAPTER 23. FILE SYSTEM INTERFACE

X3J13 voted in June 1989 to agree to disagree: merge-pathname might
or might not perform plausibility checking on its arguments to ensure that
the resulting pathname can be converted a valid namestring. User beware:
this could cause portability problems.

For example, suppose that host LOSER constrains file
types to be three characters or fewer but host CMUC does
not. Then "LOSER::FORMAT" is a valid namestring and
"CMUC::PS:<LISPIO>.FASL" is a valid namestring, but

(merge-pathnames "LOSER::FORMAT" "CMUC::PS:<LISPIO>.FASL")

might signal an error in some implementations because the hy-
pothetical result would be a pathname equivalent to the namestring
"LOSER::FORMAT.FASL" which is illegal because the file type FASL
has more than three characters. In other implementations merge-
pathname might return a pathname but that pathname might cause
namestring to signal an error.

[Variable] *default-pathname-defaults*

This is the default pathname-defaults pathname; if any pathname primi-
tive that needs a set of defaults is not given one, it uses this one. As a general
rule, however, each program should have its own pathname defaults rather
than using this one.

The following example assumes the use of UNIX syntax and conventions.

(make-pathname :host "technodrome"
:directory ’(:absolute "usr" "krang")
:name "shredder")

⇒ #P"technodrome:/usr/krang/shredder"

X3J13 voted in June 1989 to add a new keyword argument :case to
make-pathname. The new argument description is therefore as follows:

[Function] make-pathname &key :host :device :directory :name :type
:version :defaults :case

See section 23.1.2 for a description of the :case argument.
X3J13 voted in June 1989 to agree to disagree: make-pathname might

or might not check on its arguments to ensure that the resulting pathname

23.1. FILE NAMES 681

can be converted to a valid namestring. If make-pathname does not check
its arguments and signal an error in problematical cases, namestring yet
might or might not signal an error when given the resulting pathname. User
beware: this could cause portability problems.

[Function] pathnamep object

This predicate is true if object is a pathname, and otherwise is false.

(pathnamep x) ≡ (typep x ’pathname)

X3J13 voted in March 1988 not to permit symbols as pathnames and to
specify exactly which streams may be used as pathnames .

X3J13 voted in January 1989 to specify that these operations are unaf-
fected by whether the first argument, if a stream, is open or closed. If the first
argument is a stream, each operation behaves as if the function pathname
were applied to the stream and the resulting pathname used instead.

X3J13 voted in June 1989 to add a keyword argument :case to all of the
pathname accessor functions except pathname-version. The new argument
descriptions are therefore as follows:

[Function] pathname-host pathname &key :case
[Function] pathname-device pathname &key :case
[Function] pathname-directory pathname &key :case
[Function] pathname-name pathname &key :case
[Function] pathname-type pathname &key :case
[Function] pathname-version pathname

See section 23.1.2 for a description of the :case argument.
X3J13 voted in June 1989 to specify that pathname-directory always

returns nil, :unspecific, or a list—never a string, never :wild (see sec-
tion 23.1.3). If a list is returned, it is not guaranteed to be freshly consed;
the consequences of modifying this list are undefined.

[Function] namestring pathname
[Function] file-namestring pathname
[Function] directory-namestring pathname
[Function] host-namestring pathname

682 CHAPTER 23. FILE SYSTEM INTERFACE

[Function] enough-namestring pathname &optional defaults

The pathname argument may be a pathname, a string or symbol, or a
stream that is or was open to a file. The name represented by pathname is
returned as a namelist in canonical form.

If pathname is a stream, the name returned represents the name used to
open the file, which may not be the actual name of the file (see truename).

X3J13 voted in March 1988 not to permit symbols as pathnames and to
specify exactly which streams may be used as pathnames .

X3J13 voted in January 1989 to specify that these operations are unaf-
fected by whether the first argument, if a stream, is open or closed. If the first
argument is a stream, each operation behaves as if the function pathname
were applied to the stream and the resulting pathname used instead.

namestring returns the full form of the pathname as a string. file-
namestring returns a string representing just the name, type, and version
components of the pathname; the result of directory-namestring repre-
sents just the directory-name portion; and host-namestring returns a string
for just the host-name portion. Note that a valid namestring cannot necessar-
ily be constructed simply by concatenating some of the three shorter strings
in some order.

enough-namestring takes another argument, defaults. It returns an
abbreviated namestring that is just sufficient to identify the file named by
pathname when considered relative to the defaults (which defaults to the
value of *default-pathname-defaults*). That is, it is required that

(merge-pathnames (enough-namestring pathname defaults) defaults) ≡
(merge-pathnames (parse-namestring pathname nil defaults) defaults)

in all cases; and the result of enough-namestring is, roughly speaking,
the shortest reasonable string that will still satisfy this criterion. X3J13
voted in June 1989 to agree to disagree: make-pathname and merge-
pathnames might or might not be able to produce pathnames that cannot
be converted to valid namestrings. User beware: this could cause portability
problems.

[Function] user-homedir-pathname &optional host

Returns a pathname for the user’s “home directory” on host. The
host argument defaults in some appropriate implementation-dependent man-

23.2. OPENING AND CLOSING FILES 683

ner. The concept of “home directory” is itself somewhat implementation-
dependent, but from the point of view of Common Lisp it is the directory
where the user keeps personal files such as initialization files and mail. If it
is impossible to determine this information, then nil is returned instead of a
pathname; however, user-homedir-pathname never returns nil if the host
argument is not specified. This function returns a pathname without any
name, type, or version component (those components are all nil).

23.2 Opening and Closing Files
When a file is opened, a stream object is constructed to serve as the file
system’s ambassador to the Lisp environment; operations on the stream are
reflected by operations on the file in the file system. The act of closing the
file (actually, the stream) ends the association; the transaction with the file
system is terminated, and input/output may no longer be performed on the
stream. The stream function close may be used to close a file; the functions
described below may be used to open them. The basic operation is open,
but with-open-file is usually more convenient for most applications.

[Function] open filename &key :direction :element-type :if-exists
:if-does-not-exist :external-format

X3J13 voted in June 1989 to add to the function open a new keyword
argument :external-format. This argument did not appear in the preceding
argument description in the first edition.

This returns a stream that is connected to the file specified by filename.
The filename is the name of the file to be opened; it may be a string, a
pathname, or a stream. (If the filename is a stream, then it is not closed first
or otherwise affected; it is used merely to provide a file name for the opening
of a new stream.)

X3J13 voted in January 1989 to specify that the result of open, if it is a
stream, is always a stream of type file-stream.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in January 1989 to specify that open is unaffected by
whether the first argument, if a stream, is open or closed. If the first argu-
ment is a stream, open behaves as if the function pathname were applied
to the stream and the resulting pathname used instead.

684 CHAPTER 23. FILE SYSTEM INTERFACE

X3J13 voted in June 1989 to clarify that open accepts only non-wild
pathnames; an error is signaled if wild-pathname-p would be true of file-
name.

X3J13 voted in June 1989 to require open to accept logical pathnames
(see section 23.1.5).

The keyword arguments specify what kind of stream to produce and how
to handle errors:

:direction This argument specifies whether the stream should handle input,
output, or both.

:input The result will be an input stream. This is the
default.

:output The result will be an output stream.
:io The result will be a bidirectional stream.
:probe The result will be a no-directional stream (in effect,

the stream is created and then closed). This is useful for
determining whether a file exists without actually setting
up a complete stream.

:element-type This argument specifies the type of the unit of transaction
for the stream. Anything that can be recognized as being a finite sub-
type of character or integer is acceptable. In particular, the following
types are recognized:

character The unit of transaction is any character, not
just a string-character. The functions read-char and
write-char (depending on the value of the :direction
argument) may be used on the stream. This is the de-
fault.

base-char The unit of transaction is a base character. The
functions read-char and write-char (depending on the
value of the :direction argument) may be used on the
stream.

(unsigned-byte n) The unit of transaction is an un-
signed byte (a non-negative integer) of size n. The func-
tions read-byte and/or write-byte may be used on the
stream.

23.2. OPENING AND CLOSING FILES 685

unsigned-byte The unit of transaction is an unsigned byte
(a non-negative integer); the size of the byte is deter-
mined by the file system. The functions read-byte
and/or write-byte may be used on the stream.

(signed-byte n) The unit of transaction is a signed byte
of size n. The functions read-byte and/or write-byte
may be used on the stream.

signed-byte The unit of transaction is a signed byte; the
size of the byte is determined by the file system. The
functions read-byte and/or write-byte may be used
on the stream.

bit The unit of transaction is a bit (values 0 and 1). The
functions read-byte and/or write-byte may be used
on the stream.

(mod n) The unit of transaction is a non-negative integer
less than n. The functions read-byte and/or write-
byte may be used on the stream.

:default The unit of transaction is to be determined by the
file system, based on the file it finds. The type can be de-
termined by using the function stream-element-type.

:if-exists This argument specifies the action to be taken if the :direction
is :output or :io and a file of the specified name already exists. If the
direction is :input or :probe, this argument is ignored.

:error Signals an error. This is the default when the
version component of the filename is not :newest.

:new-version Creates a new file with the same file name
but with a larger version number. This is the default
when the version component of the filename is :newest.

:rename Renames the existing file to some other name and
then creates a new file with the specified name.

:rename-and-delete Renames the existing file to some
other name and then deletes it (but does not expunge it,
on those systems that distinguish deletion from expung-
ing). Then create a new file with the specified name.

686 CHAPTER 23. FILE SYSTEM INTERFACE

:overwrite Uses the existing file. Output operations on the
stream will destructively modify the file. If the :direc-
tion is :io, the file is opened in a bidirectional mode
that allows both reading and writing. The file pointer
is initially positioned at the beginning of the file; how-
ever, the file is not truncated back to length zero when
it is opened. This mode is most useful when the file-
position function can be used on the stream.

:append Uses the existing file. Output operations on the
stream will destructively modify the file. The file pointer
is initially positioned at the end of the file. If the :di-
rection is :io, the file is opened in a bidirectional mode
that allows both reading and writing.

:supersede Supersedes the existing file. If possible, the
implementation should arrange not to destroy the old
file until the new stream is closed, against the possibil-
ity that the stream will be closed in “abort” mode (see
close). This differs from :new-version in that :super-
sede creates a new file with the same name as the old
one, rather than a file name with a higher version num-
ber.

nil Does not create a file or even a stream, but instead simply
returns nil to indicate failure.

If the :direction is :output or :io and the value of :if-exists is :new-
version, then the version of the (newly created) file that is opened will
be a version greater than that of any other file in the file system whose
other pathname components are the same as those of filename.

If the :direction is :input or :probe or the value of :if-exists is not
:new-version, and the version component of the filename is :newest,
then the file opened is that file already existing in the file system that
has a version greater than that of any other file in the file system whose
other pathname components are the same as those of filename.

Some file systems permit yet other actions to be taken when a file al-
ready exists; therefore, some implementations provide implementation-
specific :if-exist options.

23.2. OPENING AND CLOSING FILES 687

Implementation note: The various file systems in existence today have widely
differing capabilities. A given implementation may not be able to support all of
these options in exactly the manner stated. An implementation is required to
recognize all of these option keywords and to try to do something “reasonable”
in the context of the host operating system. Implementors are encouraged to
approximate the semantics specified here as closely as possible.

As an example, suppose that a file system does not support distinct file versions
and does not distinguish the notions of deletion and expunging (in some file systems
file deletion is reversible until an expunge operation is performed). Then :new-
version might be treated the same as :rename or :supersede, and :rename-
and-delete might be treated the same as :supersede.

If it is utterly impossible for an implementation to handle some option in a
manner close to what is specified here, it may simply signal an error. The opening
of files is an area where complete portability is too much to hope for; the intent
here is simply to make things as portable as possible by providing specific names
for a range of commonly supportable options.

:if-does-not-exist This argument specifies the action to be taken if a file of
the specified name does not already exist.

:error Signals an error. This is the default if the :direc-
tion is :input, or if the :if-exists argument is :over-
write or :append.

:create Creates an empty file with the specified name and
then proceeds as if it had already existed (but do not
perform any processing directed by the :if-exists argu-
ment). This is the default if the :direction is :output or
:io, and the :if-exists argument is anything but :over-
write or :append.

nil Does not create a file or even a stream, but instead simply
returns nil to indicate failure. This is the default if the
:direction is :probe.

X3J13 voted in June 1989 to add to the function open a new keyword
argument :external-format.

:external-format This argument specifies an implementation-recognized
scheme for representing characters in files. The default value is :default

688 CHAPTER 23. FILE SYSTEM INTERFACE

and is implementation-defined but must support the base characters.
An error is signaled if the implementation does recognize the specified
format.

This argument may be specified if the :direction argument is :input,
:output, or :io. It is an error to write a character to the resulting
stream that cannot be represented by the specified file format. (How-
ever, the #\Newline character cannot produce such an error; im-
plementations must provide appropriate line division behavior for all
character streams.)

See stream-external-format.

When the caller is finished with the stream, it should close the file by
using the close function. The with-open-file form does this automatically,
and so is preferred for most purposes. open should be used only when the
control structure of the program necessitates opening and closing of a file in
some way more complex than provided by with-open-file. It is suggested
that any program that uses open directly should use the special operator
unwind-protect to close the file if an abnormal exit occurs.
[Macro] with-open-file (stream filename {options}*)
{declaration}* {form}*
with-open-file evaluates the forms of the body (an implicit progn) with

the variable stream bound to a stream that reads or writes the file named by
the value of filename. The options are evaluated and are used as keyword
arguments to the function open.

When control leaves the body, either normally or abnormally (such as
by use of throw), the file is automatically closed. If a new output file is
being written, and control leaves abnormally, the file is aborted and the file
system is left, so far as possible, as if the file had never been opened. Because
with-open-file always closes the file, even when an error exit is taken, it is
preferred over open for most applications.

filename is the name of the file to be opened; it may be a string, a
pathname, or a stream.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in June 1989 to clarify that with-open-file accepts only
non-wild pathnames; an error is signaled if wild-pathname-p would be
true of the filename argument.

23.3. RENAMING, DELETING, AND OTHER FILE OPERATIONS 689

X3J13 voted in June 1989 to require with-open-file to accept logical
pathnames (see section 23.1.5).

For example:

(with-open-file (ifile name
:direction :input)

(with-open-file (ofile (merge-pathname-defaults ifile
nil
"out")

:direction :output
:if-exists :supersede)

(transduce-file ifile ofile)))

X3J13 voted in June 1989 to specify that the variable stream is not always
bound to a stream; rather it is bound to whatever would be returned by a
call to open. For example, if the options include :if-does-not-exist nil,
stream will be bound to nil if the file does not exist. In this case the value of
stream should be tested within the body of the with-open-file form before
it is used as a stream. For example:

(with-open-file (ifile name
:direction :input
:if-does-not-exist nil)

;; Process the file only if it actually exists.
(when (streamp name)
(compile-cobol-program ifile)))

Implementation note: While with-open-file tries to automatically close the
stream on exit from the construct, for robustness it is helpful if the garbage collector
can detect discarded streams and automatically close them.

23.3 Renaming, Deleting, and Other File Op-
erations

These functions provide a standard interface to operations provided in some
form by most file systems. It may be that some implementations of Common
Lisp cannot support them all completely.

690 CHAPTER 23. FILE SYSTEM INTERFACE

[Function] rename-file file new-name

The specified file is renamed to new-name (which must be a file name).
The file may be a string, a pathname, or a stream. If it is an open stream
associated with a file, then the stream itself and the file associated with it
are affected (if the file system permits).

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

rename-file returns three values if successful. The first value is the
new-name with any missing components filled in by performing a merge-
pathnames operation using file as the defaults. The second value is the
truename of the file before it was renamed. The third value is the truename
of the file after it was renamed.

If the renaming operation is not successful, an error is signaled.
X3J13 voted in June 1989 to require rename-file to accept logical path-

names (see section 23.1.5).

[Function] delete-file file

The specified file is deleted. The file may be a string, a pathname, or
a stream. If it is an open stream associated with a file, then the stream
itself and the file associated with it are affected (if the file system permits),
in which case the stream may or may not be closed immediately, and the
deletion may be immediate or delayed until the stream is explicitly closed,
depending on the requirements of the file system.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

delete-file returns a non-nil value if successful. It is left to the discretion
of the implementation whether an attempt to delete a non-existent file is
considered to be successful. If the deleting operation is not successful, an
error is signaled.

X3J13 voted in June 1989 to require delete-file to accept logical path-
names (see section 23.1.5).

[Function] probe-file file

This predicate is false if there is no file named file, and otherwise returns
a pathname that is the true name of the file (which may be different from file
because of file links, version numbers, or other artifacts of the file system).

23.3. RENAMING, DELETING, AND OTHER FILE OPERATIONS 691

Note that if the file is an open stream associated with a file, then probe-file
cannot return nil but will produce the true name of the associated file. See
truename and the :probe value for the :direction argument to open.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in June 1989 to clarify that probe-file accepts only non-
wild pathnames; an error is signaled if wild-pathname-p would be true of
the file argument.

X3J13 voted in June 1989 to require probe-file to accept logical path-
names (see section 23.1.5). However, probe-file never returns a logical path-
name.

X3J13 voted in January 1989 to specify that probe-file is unaffected by
whether the first argument, if a stream, is open or closed. If the first argument
is a stream, probe-file behaves as if the function pathname were applied to
the stream and the resulting pathname used instead. However, X3J13 further
commented that the treatment of open streams may differ considerably from
one implementation to another; for example, in some operating systems open
files are written under a temporary or invisible name and later renamed when
closed. In general, programmers writing code intended to be portable should
be very careful when using probe-file.

[Function] file-write-date file

file can be a file name or a stream that is open to a file. This returns the
time at which the file was created or last written as an integer in universal
time format (see section 24.3.1), or nil if this cannot be determined.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in June 1989 to clarify that file-write-date accepts only
non-wild pathnames; an error is signaled if wild-pathname-p would be true
of the file argument.

X3J13 voted in June 1989 to require file-write-date to accept logical
pathnames (see section 23.1.5).

[Function] file-author file

file can be a file name or a stream that is open to a file. This returns the
name of the author of the file as a string, or nil if this cannot be determined.

692 CHAPTER 23. FILE SYSTEM INTERFACE

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in June 1989 to clarify that file-author accepts only non-
wild pathnames; an error is signaled if wild-pathname-p would be true of
the file argument.

X3J13 voted in June 1989 to require file-author to accept logical path-
names (see section 23.1.5).

[Function] file-position file-stream &optional position

file-position returns or sets the current position within a random-access
file.

(file-position file-stream) returns a non-negative integer indicating the
current position within the file-stream, or nil if this cannot be determined.
The file position at the start of a file will be zero. The value returned by
file-position increases monotonically as input or output operations are per-
formed. For a character file, performing a single read-char or write-char
operation may cause the file position to be increased by more than 1 because
of character-set translations (such as translating between the Common Lisp
#\Newline character and an external ASCII carriage-return/line-feed se-
quence) and other aspects of the implementation. For a binary file, every
read-byte or write-byte operation increases the file position by 1.

(file-position file-stream position) sets the position within file-stream
to be position. The position may be an integer, or :start for the beginning
of the stream, or :end for the end of the stream. If the integer is too large
or otherwise inappropriate, an error is signaled (the file-length function
returns the length beyond which file-position may not access). An integer
returned by file-position of one argument should, in general, be acceptable
as a second argument for use with the same file. With two arguments, file-
position returns t if the repositioning was performed successfully, or nil if
it was not (for example, because the file was not random-access).
Implementation note: Implementations that have character files represented as
a sequence of records of bounded size might choose to encode the file position as,
for example, record-number*256+character-within-record. This is a valid encoding
because it increases monotonically as each character is read or written, though not
necessarily by 1 at each step. An integer might then be considered “inappropriate”
as a second argument to file-position if, when decoded into record number and

23.4. LOADING FILES 693

character number, it turned out that the specified record was too short for the
specified character number.

[Function] file-length file-stream

file-stream must be a stream that is open to a file. The length of the file is
returned as a non-negative integer, or nil if the length cannot be determined.
For a binary file, the length is specifically measured in units of the :element-
type specified when the file was opened (see open).

[Function] file-string-length file-stream object

X3J13 voted in June 1989 to add the function file-string-length. The
object must be a string or a character. The function file-string-length
returns a non-negative integer that is the difference between what the file-
position of the file-stream would be after and before writing the object to the
file-stream, or nil if this difference cannot be determined. The value returned
may depend on the current state of the file-stream; that is, calling file-
string-length on the same arguments twice may in certain circumstances
produce two different integers.

23.4 Loading Files
To load a file is to read through the file, evaluating each form in it. Programs
are typically stored in files containing calls to constructs such as defun, def-
macro, and defvar, which define the functions and variables of the program.

Loading a compiled (“fasload”) file is similar, except that the file does not
contain text but rather pre-digested expressions created by the compiler that
can be loaded more quickly.

[Function] load filename &key :verbose :print :if-does-not-exist

This function loads the file named by filename into the Lisp environment.
It is assumed that a text (character file) can be automatically distinguished
from an object (binary) file by some appropriate implementation-dependent
means, possibly by the file type. The defaults for filename are taken from the
variable *default-pathname-defaults*. If the filename (after the merging
in of the defaults) does not explicitly specify a type, and both text and object

694 CHAPTER 23. FILE SYSTEM INTERFACE

types of the file are available in the file system, load should try to select the
more appropriate file by some implementation-dependent means.

If the first argument is a stream rather than a pathname, then load
determines what kind of stream it is and loads directly from the stream.

The :verbose argument (which defaults to the value of *load-
verbose*), if true, permits load to print a message in the form of a comment
(that is, with a leading semicolon) to *standard-output* indicating what
file is being loaded and other useful information.

The :print argument (default nil), if true, causes the value of each ex-
pression loaded to be printed to *standard-output*. If a binary file is
being loaded, then what is printed may not reflect precisely the contents of
the source file, but nevertheless some information will be printed. X3J13
voted in March 1989 to add the variable *load-print*; its value is used as
the default for the :print argument to load.

The function load rebinds *package* to its current value. If some form
in the file changes the value of *package* during loading, the old value will
be restored when the loading is completed. (This was specified in the first
edition under the description of *package*; for convenience I now mention
it here as well.)

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in June 1989 to clarify that supplying a wild pathname as
the filename argument to load has implementation-dependent consequences;
load might signal an error, for example, or might load all files that match
the pathname.

X3J13 voted in June 1989 to require load to accept logical pathnames
(see section 23.1.5).

If a file is successfully loaded, load always returns a non-nil value. If
:if-does-not-exist is specified and is nil, load just returns nil rather than
signaling an error if the file does not exist.

X3J13 voted in March 1989 to require that load bind *readtable* to
its current value at the time load is called; the dynamic extent of the bind-
ing should encompass all of the file-loading activity. This allows a portable
program to include forms such as

23.4. LOADING FILES 695

(in-package "FOO")

(eval-when (:execute :load-toplevel :compile-toplevel)
(setq *readtable* foo:my-readtable))

without performing a net global side effect on the loading environment.
Such statements allow the remainder of such a file to be read either as in-
terpreted code or by compile-file in a syntax determined by an alternative
readtable.

X3J13 voted in June 1989 to require that load bind two new variables
load-pathname and *load-truename*; the dynamic extent of the bind-
ings should encompass all of the file-loading activity.

[Variable] *load-verbose*

This variable provides the default for the :verbose argument to load.
Its initial value is implementation-dependent.

[Variable] *load-print*

X3J13 voted in March 1989 to add *load-print*. This variable provides
the default for the :print argument to load. Its initial value is nil.

[Variable] *load-pathname*

X3J13 voted in June 1989 to introduce *load-pathname*; it is initially
nil but load binds it to a pathname that represents the file name given as the
first argument to load merged with the defaults (see merge-pathname).

[Variable] *load-truename*

X3J13 voted in June 1989 to introduce *load-truename*; it is initially
nil but load binds it to the “true name” of the file being loaded. See true-
name.

X3J13 voted in March 1989 to introduce a facility based on the Ob-
ject System whereby a user can specify how compile-file and load must
cooperate to reconstruct compile-time constant objects at load time. The
protocol is simply this: compile-file calls the generic function make-load-
form on any object that is referenced as a constant or as a self-evaluating

696 CHAPTER 23. FILE SYSTEM INTERFACE

form, if the object’s metaclass is standard-class, structure-class, any user-
defined metaclass (not a subclass of built-in-class), or any of a possibly
empty implementation-defined list of other metaclasses; compile-file will
call make-load-form only once for any given object (as determined by eq)
within a single file. The user-programmability stems from the possibility
of user-defined methods for make-load-form. The helper function make-
load-form-saving-slots makes it easy to write commonly used versions of
such methods.

[Generic function] make-load-form object

The argument is an object that is referenced as a constant or as a self-
evaluating form in a file being compiled by compile-file. The objective is
to enable load to construct an equivalent object.

The first value, called the creation form, is a form that, when evaluated
at load time, should return an object that is equivalent to the argument.
The exact meaning of “equivalent” depends on the type of object and is up
to the programmer who defines a method for make-load-form. This allows
the user to program the notion of “similar as a constant” (see section 24.1).

The second value, called the initialization form, is a form that, when
evaluated at load time, should perform further initialization of the object.
The value returned by the initialization form is ignored. If the make-load-
form method returns only one value, the initialization form is nil, which has
no effect. If the object used as the argument to make-load-form appears as
a constant in the initialization form, at load time it will be replaced by the
equivalent object constructed by the creation form; this is how the further
initialization gains access to the object.

Two values are returned so that circular structures may be handled. The
order of evaluation rules discussed below for creation and initialization forms
eliminates the possibility of partially initialized objects in the absence of
circular structures and reduces the possibility to a minimum in the presence
of circular structures. This allows nodes in non-circular structures to be built
out of fully initialized subparts.

Both the creation form and the initialization form can contain references
to objects of user-defined types (defined precisely below). However, there
must not be any circular dependencies in creation forms. An example of a
circular dependency: the creation form for the object X contains a reference
to the object Y , and the creation form for the object Y contains a reference

23.4. LOADING FILES 697

to the object X . A simpler example: the creation form for the object X
contains a reference to X itself. Initialization forms are not subject to any
restriction against circular dependencies, which is the entire reason for having
initialization forms. See the example of circular data structures below.

The creation form for an object is always evaluated before the initializa-
tion form for that object. When either the creation form or the initialization
form refers to other objects of user-defined types that have not been refer-
enced earlier in the compile-file, the compiler collects all of the creation
and initialization forms. Each initialization form is evaluated as soon as pos-
sible after its creation form, as determined by data flow. If the initialization
form for an object does not refer to any other objects of user-defined types
that have not been referenced earlier in the compile-file, the initialization
form is evaluated immediately after the creation form. If a creation or ini-
tialization form F references other objects of user-defined types that have
not been referenced earlier in the compile-file, the creation forms for those
other objects are evaluated before F and the initialization forms for those
other objects are also evaluated before F whenever they do not depend on
the object created or initialized by F. Where the above rules do not uniquely
determine an order of evaluation, it is unspecified which of the possible orders
of evaluation is chosen.

While these creation and initialization forms are being evaluated, the
objects are possibly in an uninitialized state, analogous to the state of an
object between the time it has been created by allocate-instance and it has
been processed fully by initialize-instance. Programmers writing methods
for make-load-form must take care in manipulating objects not to depend
on slots that have not yet been initialized.

It is unspecified whether load calls eval on the forms or does some other
operation that has an equivalent effect. For example, the forms might be
translated into different but equivalent forms and then evaluated; they might
be compiled and the resulting functions called by load (after they themselves
have been loaded); or they might be interpreted by a special-purpose inter-
preter different from eval. All that is required is that the effect be equivalent
to evaluating the forms.

It is valid for user programs to call make-load-form in circumstances
other than compilation, providing the argument’s metaclass is not built-in-
class or a subclass of built-in-class.

Applying make-load-form to an object whose metaclass is standard-
class or structure-class for which no user-defined method is applicable

698 CHAPTER 23. FILE SYSTEM INTERFACE

signals an error. It is valid to implement this either by defining default
methods for the classes standard-object and structure-object that signal
an error or by having no applicable method for those classes.

See load-time-eval.
In the following example, an equivalent instance of my-class is recon-

structed by using the values of two of its slots. The value of the third slot is
derived from those two values.

(defclass my-class () ((a :initarg :a :reader my-a)
(b :initarg :b :reader my-b)
(c :accessor my-c)))

(defmethod shared-initialize ((self my-class) slots &rest inits)
(declare (ignore slots inits))
(unless (slot-boundp self ’c)
(setf (my-c self)

(some-computation (my-a self) (my-b self)))))

(defmethod make-load-form ((self my-class))
‘(make-instance ’,(class-name (class-of self))

:a ’,(my-a self) :b ’,(my-b self)))

This code will fail if either of the first two slots of some instance of my-
class contains the instance itself. Another way to write the last form in the
preceding example is

(defmethod make-load-form ((self my-class))
(make-load-form-saving-slots self ’(a b)))

This has the advantages of conciseness and handling circularities correctly.
In the next example, instances of class my-frob are “interned” in some

way. An equivalent instance is reconstructed by using the value of the name
slot as a key for searching for existing objects. In this case the programmer
has chosen to create a new object if no existing object is found; an alternative
possibility would be to signal an error in that case.

(defclass my-frob ()
((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob))
‘(find-my-frob ’,(my-name self) :if-does-not-exist :create))

23.4. LOADING FILES 699

In the following example, the data structure to be dumped is circular,
because each node of a tree has a list of its children and each child has a
reference back to its parent.

(defclass tree-with-parent () ((parent :accessor tree-parent)
(children :initarg :children)))

(defmethod make-load-form ((x tree-with-parent))
(values
‘(make-instance ’,(class-of x)

:children ’,(slot-value x ’children))
‘(setf (tree-parent ’,x) ’,(slot-value x ’parent))))

Supposemake-load-form is called on one object in such a structure. The
creation form creates an equivalent object and fills in the children slot, which
forces creation of equivalent objects for all of its children, grandchildren, etc.
At this point none of the parent slots have been filled in. The initialization
form fills in the parent slot, which forces creation of an equivalent object for
the parent if it was not already created. Thus the entire tree is recreated at
load time. At compile time, make-load-form is called once for each object
in the tree. All the creation forms are evaluated, in unspecified order, and
then all the initialization forms are evaluated, also in unspecified order.

In this final example, the data structure to be dumped has no special
properties and an equivalent structure can be reconstructed simply by recon-
structing the slots’ contents.

(defstruct my-struct a b c)
(defmethod make-load-form ((s my-struct))
(make-load-form-saving-slots s))

This is easy to code using make-load-form-saving-slots.

[Function] make-load-form-saving-slots object &optional slots

This returns two values suitable for return from a make-load-form
method. The first argument is the object. The optional second argument is
a list of the names of slots to preserve; it defaults to all of the local slots.

make-load-form-saving-slots returns forms that construct an equiv-
alent object using make-instance and setf of slot-value for slots with

700 CHAPTER 23. FILE SYSTEM INTERFACE

values, or slot-makunbound for slots without values, or other functions of
equivalent effect.

Because make-load-form-saving-slots returns two values, it can deal
with circular structures; it works for any object of metaclass standard-class
or structure-class. Whether the result is useful depends on whether the
object’s type and slot contents fully capture an application’s idea of the
object’s state.

23.5 Accessing Directories

The following function is a very simple portable primitive for examining
a directory. Most file systems can support much more powerful directory-
searching primitives, but no two are alike. It is expected that most imple-
mentations of Common Lisp will extend the directory function or provide
more powerful primitives.

Следующие функции это простые портируемые примитивы для
работы с директорией. Большинство файловых систем поддерживают
гораздо более мощные примитивы. Ожидается, что реализации Com-
mon Lisp’а расширят функцию directory или предоставят более мощные
примитивы.

[Function] directory pathname &key

A list of pathnames is returned, one for each file in the file system that
matches the given pathname. (The pathname argument may be a pathname,
a string, or a stream associated with a file.) For a file that matches, the
truename appears in the result list. If no file matches the pathname, it is
not an error; directory simply returns nil, the list of no results. Keywords
such as :wild and :newest may be used in pathname to indicate the search
space.

Возвращается список имён-файлов, каждое для одного файла,
который подходит для переданного имени-файла pathname.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames. See section 23.1.6.

X3J13 voted in January 1989 to specify that directory is unaffected by
whether the first argument, if a stream, is open or closed. If the first argument
is a stream, directory behaves as if the function pathname were applied

23.5. ACCESSING DIRECTORIES 701

to the stream and the resulting pathname used instead. However, X3J13
commented that the treatment of open streams may differ considerably from
one implementation to another; for example, in some operating systems open
files are written under a temporary or invisible name and later renamed when
closed. In general, programmers writing code intended to be portable should
be careful when using directory.

X3J13 voted in June 1989 to require directory to accept logical path-
names (see section 23.1.5). However, the result returned by directory never
contains a logical pathname.

Implementation note: It is anticipated that an implementation may need to
provide additional parameters to control the directory search. Therefore directory
is specified to take additional keyword arguments so that implementations may
experiment with extensions, even though no particular keywords are specified here.

As a simple example of such an extension, for a file system that supports the
notion of cross-directory file links, a keyword argument :links might, if non-nil,
specify that such links be included in the result list.

[Function] ensure-directories-exist file &key :verbose

If the directories of file do not exist then this function creates them re-
turning two values, file and a second value true if the directories were created
or nil if not.

Если директории не существовали, тогда данная функция создаёт их
и возвращает два значения file и, если создание происходило - t, иначе -
nil.

702 CHAPTER 23. FILE SYSTEM INTERFACE

Chapter 24

Miscellaneous Features

In this chapter are described various things that don’t seem to fit neatly
anywhere else in this book: the compiler, the documentation function,
debugging aids, environment inquiries (including facilities for calculating and
measuring time), and the identity function.

24.1 The Compiler

The compiler is a program that may make code run faster by translating
programs into an implementation-dependent form that can be executed more
efficiently by the computer. Most of the time you can write programs without
worrying about the compiler; compiling a file of code should produce an
equivalent but more efficient program. When doing more esoteric things, you
may need to think carefully about what happens at “compile time” and what
happens at “load time.” Then the eval-when construct becomes particularly
useful.

Most declarations are not used by the Common Lisp interpreter; they
may be used to give advice to the compiler. The compiler may attempt to
check your advice and warn you if it is inconsistent.

Unlike most other Lisp dialects, Common Lisp recognizes special decla-
rations in interpreted code as well as compiled code.

The internal workings of a compiler will of course be highly
implementation-dependent. The following functions provide a standard in-
terface to the compiler, however.

703

704 CHAPTER 24. MISCELLANEOUS FEATURES

[Function] compile name &optional definition

If definition is supplied, it should be a lambda-expression, the interpreted
function to be compiled. If it is not supplied, then name should be a symbol
with a definition that is a lambda-expression; that definition is compiled
and the resulting compiled code is put back into the symbol as its function
definition.

name may be any function-name (a symbol or a list whose car is setf—
see section 7.1). One may write (compile ’(setf cadr)) to compile the setf
expansion function for cadr.

If the optional definition argument is supplied, it may be either a lambda-
expression (which is coerced to a function) or a function to be compiled; if no
definition is supplied, the symbol-function of the symbol is extracted and
compiled. It is permissible for the symbol to have a macro definition rather
than a function definition; both macros and functions may be compiled.

It is an error if the function to be compiled was defined interpretively
in a non-null lexical environment. (An implementation is free to extend
the behavior of compile to compile such functions properly, but portable
programs may not depend on this capability.) The consequences of calling
compile on a function that is already compiled are unspecified.

The definition is compiled and a compiled-function object produced. If
name is a non-nil symbol, then the compiled-function object is installed
as the global function definition of the symbol and the symbol is returned.
If name is nil, then the compiled-function object itself is returned. For
example:

(defun foo ...) ⇒ foo ;A function definition
(compile ’foo) ⇒ foo ;Compile it

;Now foo runs faster (maybe)
(compile nil

’(lambda (a b c) (- (* b b) (* 4 a c))))
⇒ a compiled function of three arguments that computes b2 − 4ac

X3J13 voted in June 1989 to specify that compile returns two addi-
tional values indicating whether the compiler issued any diagnostics (see
section 24.1.1).

X3J13 voted in March 1989 to add two new keyword arguments :ver-
bose and :print to compile-file by analogy with load. The new function

24.1. THE COMPILER 705

definition is as follows.

[Function] compile-file input-pathname &key :output-file :verbose :print

The input-pathname must be a valid file specifier, such as a path-
name. The defaults for input-filename are taken from the variable *default-
pathname-defaults*. The file should be a Lisp source file; its contents are
compiled and written as a binary object file.

The :verbose argument (which defaults to the value of *compile-
verbose*), if true, permits compile-file to print a message in the form
of a comment to *standard-output* indicating what file is being compiled
and other useful information.

The :print argument (which defaults to the value of *compile-print*),
if true, causes information about top-level forms in the file being com-
piled to be printed to *standard-output*. Exactly what is printed is
implementation-dependent; nevertheless something will be printed.

X3J13 voted in March 1988 to specify exactly which streams may be used
as pathnames (see section 23.1.6). X3J13 voted in June 1989 to clarify that
supplying a wild pathname as the input-pathname argument to compile-file
has implementation-dependent consequences; compile-file might signal an
error, for example, or might compile all files that match the wild pathname.

X3J13 voted in June 1989 to require compile-file to accept logical path-
names (see section 23.1.5).

The :output-file argument may be used to specify an output pathname;
it defaults in a manner appropriate to the implementation’s file system con-
ventions.

X3J13 voted in June 1989 to specify that compile-file returns three
values: the truename of the output file (or nil if the file could not be created)
and two values indicating whether the compiler issued any diagnostics (see
section 24.1.1).

X3J13 voted in October 1988 to specify that compile-file, like load,
rebinds *package* to its current value. If some form in the file changes
the value of *package*, the old value will be restored when compilation is
completed.

X3J13 voted in June 1989 to specify restrictions on conforming programs
to ensure consistent handling of symbols and packages.

In order to guarantee that compiled files can be loaded correctly, the user
must ensure that the packages referenced in the file are defined consistently

706 CHAPTER 24. MISCELLANEOUS FEATURES

at compile and load time. Conforming Common Lisp programs must satisfy
the following requirements.
• The value of *package* when a top-level form in the file is processed

by compile-file must be the same as the value of *package* when
the code corresponding to that top-level form in the compiled file is
executed by the loader. In particular, any top-level form in a file that
alters the value of *package* must change it to a package of the same
name at both compile and load time; moreover, if the first non-atomic
top-level form in the file is not a call to in-package, then the value
of *package* at the time load is called must be a package with the
same name as the package that was the value of *package* at the
time compile-file was called.

• For every symbol appearing lexically within a top-level form that was
accessible in the package that was the value of *package* during pro-
cessing of that top-level form at compile time, but whose home package
was another package, at load time there must be a symbol with the same
name that is accessible in both the load-time *package* and in the
package with the same name as the compile-time home package.

• For every symbol in the compiled file that was an external symbol in its
home package at compile time, there must be a symbol with the same
name that is an external symbol in the package with the same name at
load time.

If any of these conditions do not hold, the package in which load looks for
the affected symbols is unspecified. Implementations are permitted to signal
an error or otherwise define this behavior.

These requirements are merely an explicit statement of the status quo,
namely that users cannot depend on any particular behavior if the package
environment at load time is inconsistent with what existed at compile time.

X3J13 voted in March 1989 to specify that compile-file must bind
readtable to its current value at the time compile-file is called; the
dynamic extent of the binding should encompass all of the file-loading activ-
ity. This allows a portable program to include forms such as
(in-package "FOO")

(eval-when (:execute :load-toplevel :compile-toplevel)
(setq *readtable* foo:my-readtable))

24.1. THE COMPILER 707

without performing a net global side effect on the loading environment.
Such statements allow the remainder of such a file to be read either as in-
terpreted code or by compile-file in a syntax determined by an alternative
readtable.

X3J13 voted in June 1989 to require that compile-file bind two new
variables *compile-file-pathname* and *compile-file-truename*; the
dynamic extent of the bindings should encompass all of the file-compiling
activity.

[Variable] *compile-verbose*

This variable provides the default for the :verbose argument to compile-
file. Its initial value is implementation-dependent.

[Variable] *compile-print*

This variable provides the default for the :print argument to compile-
file. Its initial value is implementation-dependent.

[Variable] *compile-file-pathname*

X3J13 voted in June 1989 to introduce *compile-file-pathname*; it is
initially nil but compile-file binds it to a pathname that represents the file
name given as the first argument to compile-file merged with the defaults
(see merge-pathname).

[Variable] *compile-file-truename*

Variable is initially nil but compile-file binds it to the “true name” of
the pathname of the file being compiled. See truename.
[Special operator] load-time-value form [read-only-p]
This is a mechanism for delaying evaluation of a form until it can be done

in the run-time environment.
If a load-time-value expression is seen by compile-file, the compiler

performs its normal semantic processing (such as macro expansion and trans-
lation into machine code) on the form, but arranges for the execution of the
form to occur at load time in a null lexical environment, with the result
of this evaluation then being treated as an immediate quantity (that is, as
if originally quoted) at run time. It is guaranteed that the evaluation of

708 CHAPTER 24. MISCELLANEOUS FEATURES

the form will take place only once when the file is loaded, but the order
of evaluation with respect to the execution of top-level forms in the file is
unspecified.

If a load-time-value expression appears within a function compiled with
compile, the form is evaluated at compile time in a null lexical environment.
The result of this compile-time evaluation is treated as an immediate quantity
in the compiled code.

In interpreted code, form is evaluated (by eval) in a null lexical envi-
ronment and one value is returned. Implementations that implicitly compile
(or partially compile) expressions passed to eval may evaluate the form only
once, at the time this compilation is performed. This is intentionally similar
to the freedom that implementations are given for the time of expanding
macros in interpreted code.

If the same (as determined by eq) list (load-time-value form) is eval-
uated or compiled more than once, it is unspecified whether the form is eval-
uated only once or is evaluated more than once. This can happen both when
an expression being evaluated or compiled shares substructure and when the
same expression is passed to eval or to compile multiple times. Since a
load-time-value expression may be referenced in more than one place and
may be evaluated multiple times by the interpreter, it is unspecified whether
each execution returns a “fresh” object or returns the same object as some
other execution. Users must use caution when destructively modifying the
resulting object.

If two lists (load-time-value form) are equal but not eq, their values
always come from distinct evaluations of form. Coalescing of these forms is
not permitted.

The optional read-only-p argument designates whether the result may be
considered a read-only constant. If nil (the default), the result must be con-
sidered ordinary, modifiable data. If t, the result is a read-only quantity that
may, as appropriate, be copied into read-only space and may, as appropriate,
be shared with other programs. The read-only-p argument is not evaluated
and only the literal symbols t and nil are permitted.

This new feature addresses the same set of needs as the now-defunct #,
reader syntax but in a cleaner and more general manner. Note that #,
syntax was reliably useful only inside quoted structure (though this was not
explicitly mentioned in the first edition), whereas a load-time-value form
must appear outside quoted structure in a for-evaluation position.

See make-load-form.

24.1. THE COMPILER 709

[Function] disassemble name-or-compiled-function

The argument should be a function object, a lambda-expression, or a
symbol with a function definition. If the relevant function is not a compiled
function, it is first compiled. In any case, the compiled code is then “reverse-
assembled” and printed out in a symbolic format. This is primarily useful
for debugging the compiler, but also often of use to the novice who wishes
to understand the workings of compiled code.

Implementation note: Implementors are encouraged to make the output read-
able, preferably with helpful comments.

When disassemble compiles a function, it never installs the resulting
compiled-function object in the symbol-function of a symbol.

name may be any function-name (a symbol or a list whose car is setf—see
section 7.1). Thus one may write (disassemble ’(setf cadr)) to disassemble
the setf expansion function for cadr.

[Function] function-lambda-expression fn

This function allows the source code for a defined function to be recov-
ered. (The committee noted that the first edition provided no portable way
to recover a lambda-expression once it had been compiled or evaluated to
produce a function.)

This function takes one argument, which must be a function, and returns
three values.

The first value is the defining lambda-expression for the function, or nil
if that information is not available. The lambda-expression may have been
preprocessed in some ways but should nevertheless be of a form suitable as
an argument to the function compile or for use in the function special
operator.

The second value is nil if the function was definitely produced by closing
a lambda-expression in the null lexical environment; it is some non-nil value
if the function might have been closed in some non-null lexical environment.

The third value is the “name” of the function; this is nil if the name is not
available or if the function had no name. The name is intended for debugging
purposes only and may be any Lisp object (not necessarily one that would
be valid for use as a name in a defun or function special operator, for
example).

710 CHAPTER 24. MISCELLANEOUS FEATURES

Implementation note: An implementation is always free to return the values
nil, t, nil from this function but is encouraged to make more useful information
available as appropriate. For example, it may not be desirable for files of compiled
code to retain the source lambda-expressions for use after the file is loaded, but it
is probably desirable for functions produced by “in-core” calls to eval, compile, or
defun to retain the defining lambda-expression for debugging purposes. The func-
tion function-lambda-expression makes this information, if retained, accessible
in a standard and portable manner.

[Macro] with-compilation-unit ({option-name option-value}*) {form}*

with-compilation-unit executes the body forms as an implicit progn.
Within the dynamic context of this form, warnings deferred by the compiler
until “the end of compilation” will be deferred until the end of the outermost
call to with-compilation-unit. The results are the same as those of the
last of the forms (or nil if there is no form).

Each option-name is an unevaluated keyword; each option-value is evalu-
ated. The set of keywords permitted may be extended by the implementation,
but the only standard option keyword is :override; the default value for this
option is nil. If with-compilation-unit forms are nested dynamically, only
the outermost such call has any effect unless the :override value of an inner
call is true.

The function compile-file should provide the effect of

(with-compilation-unit (:override nil) ...)

around its code.
Any implementation-dependent extensions to this behavior may be pro-

vided only as the result of an explicit programmer request by use of an
implementation-dependent keyword. It is forbidden for an implementation
to attach additional meaning to a conforming use of this macro.

Note that not all compiler warnings are deferred. In some implementa-
tions, it may be that none are deferred. This macro only creates an interface
to the capability where it exists, it does not require the creation of the ca-
pability. An implementation that does not defer any compiler warnings may
correctly implement this macro as an expansion into a simple progn.

24.1. THE COMPILER 711

24.1.1 Compiler Diagnostics

compile and compile-filemay output warning messages; any such messages
should go to the stream that is the value of *error-output*.

First, note that error and warning conditions may be signaled either by
the compiler itself or by code being processed by the compiler (for example,
arbitrary errors may occur during compile-time macro expansion or process-
ing of eval-when forms). Considering only those conditions signaled by the
compiler (as opposed to during compilation):

• Conditions of type error may be signaled by the compiler in situations
where the compilation cannot proceed without intervention. Examples
of such situations may include errors when opening a file or syntax
errors.

• Conditions of type warning may be signaled by the compiler in situa-
tions where the standard explicitly states that a warning must, should,
or may be signaled. They may also be signaled when the compiler can
determine that a situation would result at runtime that would have un-
defined consequences or would cause an error to be signaled. Examples
of such situations may include violations of type declarations, alter-
ing or rebinding a constant defined with defconstant, calls to built-in
Lisp functions with too few or too many arguments or with malformed
keyword argument lists, referring to a variable declared ignore, or un-
recognized declaration specifiers.

• The compiler is permitted to signal diagnostics about matters of pro-
gramming style as conditions of type style-warning, a subtype of
warning. Although a style-warning condition may be signaled in
these situations, no implementation is required to do so. However, if
an implementation does choose to signal a condition, that condition will
be of type style-warning and will be signaled by a call to the func-
tion warn. Examples of such situations may include redefinition of a
function with an incompatible argument list, calls to functions (other
than built-in functions) with too few or too many arguments or with
malformed keyword argument lists, unreferenced local variables not de-
clared ignore, or standard declaration specifiers that are ignored by the
particular compiler in question.

712 CHAPTER 24. MISCELLANEOUS FEATURES

Both compile and compile-file are permitted (but not required) to es-
tablish a handler for conditions of type error. Such a handler might, for
example, issue a warning and restart compilation from some implementation-
dependent point in order to let the compilation proceed without manual in-
tervention.

The functions compile and compile-file each return three values. See
the definitions of these functions for descriptions of the first value. The
second value is nil if no compiler diagnostics were issued, and true otherwise.
The third value is nil if no compiler diagnostics other than style warnings
were issued; a non-nil value indicates that there were “serious” compiler
diagnostics issued or that other conditions of type error or warning (but
not style-warning) were signaled during compilation.

24.1.2 Compiled Functions

Certain requirements are imposed on the functions produced by the compi-
lation process.

If a function is of type compiled-function, then all macro calls appear-
ing lexically within the function have already been expanded and will not
be expanded again when the function is called. The process of compila-
tion effectively turns every macrolet or symbol-macrolet construct into a
progn (or a locally) with all instances of the local macros in the body fully
expanded.

If a function is of type compiled-function, then all load-time-value
forms appearing lexically within the function have already been pre-evaluated
and will not be evaluated again when the function is called.

Implementations are free to classify every function as a compiled-
function provided that all functions satisfy the preceding requirements.
Conversely, it is permissible for a function that is not a compiled-function
to satisfy the preceding requirements.

If one or more functions are defined in a file that is compiled with
compile-file and the compiled file is subsequently loaded by the function
load, the resulting loaded function definitions must be of type compiled-
function.

The function compile must produce an object of type compiled-
function as the value that is either returned or stored into the symbol-
function of a symbol argument.

24.1. THE COMPILER 713

Note that none of these restrictions addresses questions of the compilation
technology or target instruction set. For example, a compiled function does
not necessarily consist of native machine instructions. These requirements
merely specify the behavior of the type system with respect to certain actions
taken by compile, compile-file, and load.

24.1.3 Compilation Environment

Following information must be available at compile time for correct compi-
lation and what need not be available until run time.

The following information must be present in the compile-time environ-
ment for a program to be compiled correctly. This information need not also
be present in the run-time environment.

• In conforming code, macros referenced in the code being compiled must
have been previously defined in the compile-time environment. The
compiler must treat as a function call any form that is a list whose
car is a symbol that does not name a macro or special operator. (This
implies that setf methods must also be available at compile time.)

• In conforming code, proclamations for special variables must be made
in the compile-time environment before any bindings of those variables
are processed by the compiler. The compiler must treat any binding of
an undeclared variable as a lexical binding.

The compiler may incorporate the following kinds of information into the
code it produces, if the information is present in the compile-time environ-
ment and is referenced within the code being compiled; however, the compiler
is not required to do so. When compile-time and run-time definitions differ,
it is unspecified which will prevail within the compiled code (unless some
other behavior is explicitly specified below). It is also permissible for an im-
plementation to signal an error at run time on detecting such a discrepancy.
In all cases, the absence of the information at compile time is not an error,
but its presence may enable the compiler to generate more efficient code.

• The compiler may assume that functions that are defined and declared
inline in the compile-time environment will retain the same definitions
at run time.

714 CHAPTER 24. MISCELLANEOUS FEATURES

• The compiler may assume that, within a named function, a recursive
call to a function of the same name refers to the same function, unless
that function has been declared notinline. (This permits tail-recursive
calls of a function to itself to be compiled as jumps, for example, thereby
turning certain recursive schemas into efficient loops.)

• In the absence of notinline declarations to the contrary, compile-
file may assume that a call within the file being compiled to a named
function that is defined in that file refers to that function. (This rule
permits block compilation of files.) The behavior of the program is
unspecified if functions are redefined individually at run time.

• The compiler may assume that the signature (or “interface contract”)
of all built-in Common Lisp functions will not change. In addition, the
compiler may treat all built-in Common Lisp functions as if they had
been proclaimed inline.

• The compiler may assume that the signature (or “interface contract”)
of functions with ftype information available will not change.

• The compiler may “wire in” (that is, open-code or inline) the values
of symbolic constants that have been defined with defconstant in the
compile-time environment.

• The compiler may assume that any type definition made with def-
struct or deftype in the compile-time environment will retain the
same definition in the run-time environment. It may also assume that
a class defined by defclass in the compile-time environment will be
defined in the run-time environment in such a way as to have the same
superclasses and metaclass. This implies that subtype/supertype rela-
tionships of type specifiers will not change between compile time and
run time. (Note that it is not an error for an unknown type to ap-
pear in a declaration at compile time, although it is reasonable for the
compiler to emit a warning in such a case.)

• The compiler may assume that if type declarations are present in the
compile-time environment, the corresponding variables and functions
present in the run-time environment will actually be of those types. If
this assumption is violated, the run-time behavior of the program is
undefined.

24.1. THE COMPILER 715

The compiler must not make any additional assumptions about consis-
tency between the compile-time and run-time environments. In particular,
the compiler may not assume that functions that are defined in the compile-
time environment will retain either the same definition or the same signature
at run time, except as described above. Similarly, the compiler may not sig-
nal an error if it sees a call to a function that is not defined at compile time,
since that function may be provided at run time.

X3J13 voted in January 1989 to specify the compile-time side effects of
processing various macro forms.

Calls to defining macros such as defmacro or defvar appearing within a
file being processed by compile-file normally have compile-time side effects
that affect how subsequent forms in the same file are compiled. A convenient
model for explaining how these side effects happen is that each defining
macro expands into one or more eval-when forms and that compile-time
side effects are caused by calls occurring in the body of an (eval-when
(:compile-toplevel) ...) form.

The affected defining macros and their specific side effects are as follows.
In each case, it is identified what a user must do to ensure that a program
is conforming, and what a compiler must do in order to correctly process a
conforming program.

deftype The user must ensure that the body of a deftype form is evaluable
at compile time if the type is referenced in subsequent type declarations.
The compiler must ensure that a type specifier defined by deftype is
recognized in subsequent type declarations. If the expansion of a type
specifier is not defined fully at compile time (perhaps because it expands
into an unknown type specifier or a satisfies of a named function that
isn’t defined in the compile-time environment), an implementation may
ignore any references to this type in declarations and may signal a
warning.

defmacro and define-modify-macro The compiler must store macro def-
initions at compile time, so that occurrences of the macro later on in
the file can be expanded correctly. The user must ensure that the body
of the macro is evaluable at compile time if it is referenced within the
file being compiled.

defun No required compile-time side effects are associated with defun
forms. In particular, defun does not make the function definition

716 CHAPTER 24. MISCELLANEOUS FEATURES

available at compile time. An implementation may choose to store
information about the function for the purposes of compile-time error
checking (such as checking the number of arguments on calls) or to
permit later inline expansion of the function.

defvar and defparameter The compiler must recognize that the variables
named by these forms have been proclaimed special. However, it must
not evaluate the initial-value form or set the variable at compile time.

defconstant The compiler must recognize that the symbol names a con-
stant. An implementation may choose to evaluate the value-form at
compile time, load time, or both. Therefore the user must ensure that
the value-form is evaluable at compile time (regardless of whether or
not references to the constant appear in the file) and that it always
evaluates to the same value. (There has been considerable variance
among implementations on this point. The effect of this specification
is to legitimize all of the implementation variants by requiring care of
the user.)

defsetf and define-setf-method The compiler must make setf methods
available so that they may be used to expand calls to setf later on
in the file. Users must ensure that the body of a call to define-setf-
method or the complex form of defsetf is evaluable at compile time if
the corresponding place is referred to in a subsequent setf in the same
file. The compiler must make these setf methods available to compile-
time calls to get-setf-method when its environment argument is a
value received as the &environment parameter of a macro.

defstruct The compiler must make the structure type name recognized as
a valid type name in subsequent declarations (as described above for
deftype) and make the structure slot accessors known to setf. In
addition, the compiler must save enough information so that further
defstruct definitions can include (with the :include option) a struc-
ture type defined earlier in the file being compiled. The functions that
defstruct generates are not defined in the compile-time environment,
although the compiler may save enough information about the func-
tions to allow inline expansion of subsequent calls to these functions.
The #S reader syntax may or may not be available for that structure
type at compile time.

24.1. THE COMPILER 717

define-condition The rules are essentially the same as those for defstruct.
The compiler must make the condition type recognizable as a valid
type name, and it must be possible to reference the condition type
as the parent-type of another condition type in a subsequent define-
condition form in the file being compiled.

defpackage All of the actions normally performed by the defpackage
macro at load time must also be performed at compile time.

Compile-time side effects may cause information about a definition to be
stored in a different manner from information about definitions processed
either interpretively or by loading a compiled file. In particular, the informa-
tion stored by a defining macro at compile time may or may not be available
to the interpreter (either during or after compilation) or during subsequent
calls to compile or compile-file. For example, the following code is not
portable because it assumes that the compiler stores the macro definition of
foo where it is available to the interpreter.

(defmacro foo (x) ‘(car ,x))

(eval-when (:execute :compile-toplevel :load-toplevel)
(print (foo ’(a b c)))) ;Wrong

The goal may be accomplished portably by including the macro definition
within the eval-when form:

(eval-when (eval compile load)
(defmacro foo (x) ‘(car ,x))
(print (foo ’(a b c)))) ;Right

declaim X3J13 voted in June 1989 to add a new macro declaim for making
proclamations recognizable at compile time. The declaration specifiers
in the declaim form are effectively proclaimed at compile time so as to
affect compilation of subsequent forms. (Note that compiler processing
of a call to proclaim does not have any compile-time side effects, for
proclaim is a function.)

in-package X3J13 voted in March 1989 to specify that all of the actions
normally performed by the in-package macro at load time must also
be performed at compile time.

718 CHAPTER 24. MISCELLANEOUS FEATURES

X3J13 voted in June 1989 to specify the compile-time side effects of pro-
cessing various CLOS-related macro forms. Top-level calls to the CLOS defin-
ing macros have the following compile-time side effects; any other compile-
time behavior is explicitly left unspecified.

defclass The class name may appear in subsequent type declarations and
can be used as a specializer in subsequent defmethod forms. Thus
the compile-time behavior of defclass is similar to that of deftype or
defstruct.

defgeneric The generic function can be referenced in subsequent
defmethod forms, but the compiler does not arrange for the generic
function to be callable at compile time.

defmethod The compiler does not arrange for the method to be callable
at compile time. If there is a generic function with the same name
defined at compile time, compiling a defmethod form does not add
the method to that generic function; the method is added to the generic
function only when the defmethod form is actually executed.

The error-signaling behavior described in the specification of
defmethod in chapter 28 (if the function isn’t a generic function or if
the lambda-list is not congruent) occurs only when the defining form
is executed, not at compile time.

The forms in eql parameter specializers are evaluated when the
defmethod form is executed. The compiler is permitted to build in
knowledge about what the form in an eql specializer will evaluate to
in cases where the ultimate result can be syntactically inferred without
actually evaluating it.

define-method-combination The method combination can be used in
subsequent defgeneric forms.

The body of a define-method-combination form is evaluated no
earlier than when the defining macro is executed and possibly as late
as generic function invocation time. The compiler may attempt to
evaluate these forms at compile time but must not depend on being
able to do so.

24.1. THE COMPILER 719

24.1.4 Similarity of Constants

Following paragraphs specifies what objects can be in compiled constants and
what relationship there must be between a constant passed to the compiler
and the one that is established by compiling it and then loading its file.

The key is a definition of an equivalence relationship called “similarity as
constants” between Lisp objects. Code passed through the file compiler and
then loaded must behave as though quoted constants in it are similar in this
sense to quoted constants in the corresponding source code. An object may
be used as a quoted constant processed by compile-file if and only if the
compiler can guarantee that the resulting constant established by loading the
compiled file is “similar as a constant” to the original. Specific requirements
are spelled out below.

Some types of objects, such as streams, are not supported in constants
processed by the file compiler. Such objects may not portably appear as
constants in code processed with compile-file. Conforming implementations
are required to handle such objects either by having the compiler or loader
reconstruct an equivalent copy of the object in some implementation-specific
manner or by having the compiler signal an error.

Of the types supported in constants, some are treated as aggregate ob-
jects. For these types, being similar as constants is defined recursively. We
say that an object of such a type has certain “basic attributes”; to be similar
as a constant to another object, the values of the corresponding attributes
of the two objects must also be similar as constants.

A definition of this recursive form has problems with any circular or
infinitely recursive object such as a list that is an element of itself. We use
the idea of depth-limited comparison and say that two objects are similar
as constants if they are similar at all finite levels. This idea is implicit in
the definitions below, and it applies in all the places where attributes of two
objects are required to be similar as constants. The question of handling
circular constants is the subject of a separate vote by X3J13 (see below).

The following terms are used throughout this section. The term constant
refers to a quoted or self-evaluating constant, not a named constant defined
by defconstant. The term source code is used to refer to the objects con-
structed when compile-file calls read (or the equivalent) and to additional
objects constructed by macro expansion during file compilation. The term
compiled code is used to refer to objects constructed by load.

Two objects are similar as a constant if and only if they are both of one

720 CHAPTER 24. MISCELLANEOUS FEATURES

of the types listed below and satisfy the additional requirements listed for
that type.

number Two numbers are similar as constants if they are of the same type
and represent the same mathematical value.

character Two characters are similar as constants if they both represent the
same character. (The intent is that this be compatible with how eql is
defined on characters.)

symbol X3J13 voted in June 1989 to define similarity as a constant for
interned symbols. A symbol S appearing in the source code is similar
as a constant to a symbol S′ in the compiled code if their print names
are similar as constants and either of the following conditions holds:

• S is accessible in *package* at compile time and S′ is accessible
in *package* at load time.

• S′ is accessible in the package that is similar as a constant to the
home package of symbol S.

The “similar as constants” relationship for interned symbols has nothing
to do with *readtable* or how the function read would parse the
characters in the print name of the symbol.

An uninterned symbol in the source code is similar as a constant to an
uninterned symbol in the compiled code if their print names are similar
as constants.

package A package in the source code is similar as a constant to a package
in the compiled code if their names are similar as constants. Note that
the loader finds the corresponding package object as if by calling find-
package with the package name as an argument. An error is signaled
if no package of that name exists at load time.

random-state We say that two random-state objects are functionally
equivalent if applying random to them repeatedly always produces
the same pseudo-random numbers in the same order.

Two random-states are similar as constants if and only if copies of them
made viamake-random-state are functionally equivalent. (Note that
a constant random-state object cannot be used as the state argument

24.1. THE COMPILER 721

to the function random because random performs a side effect on that
argument.)

cons Two conses are similar as constants if the values of their respective car
and cdr attributes are similar as constants.

array Two arrays are similar as constants if the corresponding values of
each of the following attributes are similar as constants: for vectors
(one-dimensional arrays), the length and element-type and the re-
sult of elt for all valid indices; for all other arrays, the array-rank,
the result of array-dimension for all valid axis numbers, the array-
element-type, and the result of aref for all valid indices. (The point
of distinguishing vectors is to take any fill pointers into account.)

If the array in the source code is a simple-array, then the correspond-
ing array in the compiled code must also be a simple-array, but if the
array in the source code is displaced, has a fill pointer, or is adjustable,
the corresponding array in the compiled code is permitted to lack any
or all of these qualities.

hash-table Two hash tables are similar as constants if they meet three re-
quirements. First, they must have the same test (for example, both are
eql hash tables or both are equal hash tables). Second, there must be
a unique bijective correspondence between the keys of the two tables,
such that the corresponding keys are similar as constants. Third, for
all keys, the values associated with two corresponding keys must be
similar as constants.

If there is more than one possible one-to-one correspondence between
the keys of the two tables, it is unspecified whether the two tables are
similar as constants. A conforming program cannot use such a table as
a constant.

pathname Two pathnames are similar as constants if all corresponding
pathname components are similar as constants.

stream, readtable, and method Objects of these types are not sup-
ported in compiled constants.

function X3J13 voted in June 1989 to specify that objects of type function
are not supported in compiled constants.

722 CHAPTER 24. MISCELLANEOUS FEATURES

structure and standard-object X3J13 voted in March 1989 to introduce
a facility based on the Common Lisp Object System whereby a user
can specify how compile-file and load must cooperate to reconstruct
compile-time constant objects at load time (see make-load-form).

X3J13 voted in March 1989 to specify the circumstances under which
constants may be coalesced in compiled code.

Suppose A and B are two objects used as quoted constants in the source
code, and that A′ and B′ are the corresponding objects in the compiled code.
If A′ and B′ are eql but A and B were not eql, then we say that A and B
have been coalesced by the compiler.

An implementation is permitted to coalesce constants appearing in code
to be compiled if and only if they are similar as constants, except that objects
of type symbol, package, structure, or standard-object obey their own
rules and may not be coalesced by a separate mechanism.

Rationale: Objects of type symbol and package cannot be coalesced because
the fact that they are named, interned objects means they are already as coalesced
as it is useful for them to be. Uninterned symbols could perhaps be coalesced,
but that was thought to be more dangerous than useful. Structures and objects
could be coalesced if a “similar as a constant” predicate were defined for them;
it would be a generic function. However, at present there is no such predicate.
Currently make-load-form provides a protocol by which compile-file and load
work together to construct an object in the compiled code that is equivalent to the
object in the source code; a different mechanism would have to be added to permit
coalescing.

Note that coalescing is possible only because it is forbidden to destruc-
tively modify constants (see quote).

Objects containing circular or infinitely recursive references may legit-
imately appear as constants to be compiled. The compiler is required to
preserve eql-ness of substructures within a file compiled by compile-file.

24.2 Debugging Tools
The utilities described in this section are sufficiently complex and sufficiently
dependent on the host environment that their complete definition is beyond
the scope of this book. However, they are also sufficiently useful to warrant

24.2. DEBUGGING TOOLS 723

mention here. It is expected that every implementation will provide some
version of these utilities, however clever or however simple.

Коммунальные услуги, описанные в этом разделе достаточно сложны
и достаточно зависит от внешней среды, что их полное описание выходит
за рамки этой книги. Тем не менее, они также достаточно полезно,
чтобы оправдать упомянуть здесь. Ожидается, что каждая реализация
предоставить некоторые версии этих программ, однако умный или же
просто.

Описанные в этом разделе утилиты достаточно сложны и зависят от
внешней среды ОС, что их полное описание выходит за рамки книги.
Тем не менее их описание будет полезным. Предполагается, что каждая
реализация будет представлять некоторую версию этих утилит.

[Macro] trace { function-name}*

[Macro] untrace { function-name}*

Invoking trace with one or more function-names (symbols or lists, whose
car is setf—see section 7.1), causes the functions named to be traced. Hence-
forth, whenever such a function is invoked, information about the call, the
arguments passed, and the eventually returned values, if any, will be printed
to the stream that is the value of *trace-output*. For example:

(trace fft gcd string-upcase)

If a function call is open-coded (possibly as a result of an inline declara-
tion), then such a call may not produce trace output.

Invoking untrace with one or more function names will cause those func-
tions not to be traced any more.

Tracing an already traced function, or untracing a function not currently
being traced, should produce no harmful effects but may produce a warning
message.

Calling trace with no argument forms will return a list of functions cur-
rently being traced.

Calling untrace with no argument forms will cause all currently traced
functions to be no longer traced.

The values returned by trace and untrace when given argument forms
are implementation-dependent.

trace and untrace may also accept additional implementation-
dependent argument formats. The format of the trace output is

724 CHAPTER 24. MISCELLANEOUS FEATURES

implementation-dependent.
[Macro] step form
This evaluates form and returns what form returns. However, the user is

allowed to interactively “single-step” through the evaluation of form, at least
through those evaluation steps that are performed interpretively. The nature
of the interaction is implementation-dependent. However, implementations
are encouraged to respond to the typing of the character ? by providing help,
including a list of commands.

step evaluates its argument form in the current lexical environment (not
simply a null environment), and that calls to step may be compiled, in which
case an implementation may step through only those parts of the evaluation
that are interpreted. (In other words, the form itself is unlikely to be stepped,
but if executing it happens to invoke interpreted code, then that code may
be stepped.)
[Macro] time form
This evaluates form and returns what form returns. However, as a side

effect, various timing data and other information are printed to the stream
that is the value of *trace-output*. The nature and format of the printed
information is implementation-dependent. However, implementations are en-
couraged to provide such information as elapsed real time, machine run time,
storage management statistics, and so on.

time evaluates its argument form in the current lexical environment (not
simply a null environment), and that calls to time may be compiled.

[Function] describe object &optional stream

describe prints, to the stream information about the object. Sometimes
it will describe something that it finds inside something else; such recursive
descriptions are indented appropriately. For instance, describe of a symbol
will exhibit the symbol’s value, its definition, and each of its properties.
describe of a floating-point number will exhibit its internal representation
in a way that is useful for tracking down round-off errors and the like. The
nature and format of the output is implementation-dependent.

describe returns no values (that is, it returns what the expression (val-
ues) returns: zero values).

The output is sent to the specified stream, which defaults to the value
of *standard-output*; the stream may also be nil (meaning *standard-
output*) or t (meaning *terminal-io*).

24.2. DEBUGGING TOOLS 725

The behavior of describe depends on the generic function describe-
object (see below).

That describe is forbidden to prompt for or require user input when given
exactly one argument; It is permitted implementations to extend describe
to accept keyword arguments that may cause it to prompt for or to require
user input.

[Generic function] describe-object object stream
[Primary method] describe-object (object standard-object) stream

The generic function describe-object writes a description of an object to
a stream. The function describe-object is called by the describe function;
it should not be called by the user.

Each implementation must provide a method on the class standard-
object and methods on enough other classes to ensure that there is always
an applicable method. Implementations are free to add methods for other
classes. Users can write methods for describe-object for their own classes
if they do not wish to inherit an implementation-supplied method.

The first argument may be any Lisp object. The second argument is a
stream; it cannot be t or nil. The values returned by describe-object are
unspecified.

Methods on describe-object may recursively call describe. Indenta-
tion, depth limits, and circularity detection are all taken care of automati-
cally, provided that each method handles exactly one level of structure and
calls describe recursively if there are more structural levels. If this rule is
not obeyed, the results are undefined.

In some implementations the stream argument passed to a describe-
object method is not the original stream but is an intermediate stream that
implements parts of describe. Methods should therefore not depend on the
identity of this stream.

Rationale: This proposal was closely modeled on the CLOS description of print-
object, which was well thought out and provides a great deal of functionality
and implementation freedom. Implementation techniques for print-object are
applicable to describe-object.

The reason for making the return values for describe-object unspecified is
to avoid forcing users to write (values) explicitly in all their methods; describe
should take care of that.

726 CHAPTER 24. MISCELLANEOUS FEATURES

[Function] inspect object

inspect is an interactive version of describe. The nature of the interac-
tion is implementation-dependent, but the purpose of inspect is to make it
easy to wander through a data structure, examining and modifying parts of
it. Implementations are encouraged to respond to the typing of the character
? by providing help, including a list of commands.

The values returned by inspect are implementation-dependent.

[Function] room &optional x

room prints, to the stream in the variable *standard-output*, infor-
mation about the state of internal storage and its management. This might
include descriptions of the amount of memory in use and the degree of mem-
ory compaction, possibly broken down by internal data type if that is appro-
priate. The nature and format of the printed information is implementation-
dependent. The intent is to provide information that may help a user to tune
a program to a particular implementation.

(room nil) prints out a minimal amount of information. (room t)
prints out a maximal amount of information. Simply (room) prints out an
intermediate amount of information that is likely to be useful.

The argument x may also be the keyword :default, which has the same
effect as passing no argument at all.

[Function] ed &optional x

If the implementation provides a resident editor, this function should
invoke it.

(ed) or (ed nil) simply enters the editor, leaving you in the same state
as the last time you were in the editor.

(ed pathname) edits the contents of the file specified by pathname. The
pathname may be an actual pathname or a string.

ed accepts logical pathnames (see section 23.1.5).
(ed symbol) tries to let you edit the text for the function named sym-

bol. The means by which the function text is obtained is implementation-
dependent; it might involve searching the file system, or pretty printing res-
ident interpreted code, for example.

Function name may be any function-name (a symbol or a list whose car
is setf—see section 7.1). Thus one may write (ed ’(setf cadr)) to edit the
setf expansion function for cadr.

24.2. DEBUGGING TOOLS 727

[Function] dribble &optional pathname

(dribble pathname) may rebind *standard-input* and *standard-
output*, and may take other appropriate action, so as to send a record
of the input/output interaction to a file named by pathname. The primary
purpose of this is to create a readable record of an interactive session.

(dribble) terminates the recording of input and output and closes the
dribble file.

dribble also accepts logical pathnames (see section 23.1.5).
dribble is intended primarily for interactive debugging and that its effect

cannot be relied upon for use in portable programs.
Different implementations of Common Lisp have used radically different

techniques for implementing dribble. All are reasonable interpretations of
the original specification, and all behave in approximately the same way if
dribble is called only from the interactive top level. However, they may have
quite different behaviors if dribble is called from within compound forms.

Consider two models of the operation of dribble. In the “redirecting”
model, a call to dribble with a pathname argument alters certain global
variables such as *standard-output*, perhaps by constructing a broadcast
stream directed to both the original value of *standard-output* and to
the dribble file; other streams may be affected as well. A call to dribble
with no arguments undoes these side effects.

In the “recursive” model, by contrast, a call to dribble with a pathname
argument creates a new interactive command loop and calls it recursively.
This new command loop is just like an ordinary read-eval-print loop except
that it also echoes the interaction to the dribble file. A call to dribble
with no arguments does a throw that exits the recursive command loop and
returns to the original caller of dribble with an argument.

The two models may be distinguished by this test case:

(progn (dribble "basketball")
(print "Larry")
(dribble)
(princ "Bird"))

If this form is input to the Lisp top level, in either model a newline
(provided by the function print) and the words Larry Bird will be printed
to the standard output. The redirecting dribble model will additionally print
all but the word Bird to a file named basketball.

728 CHAPTER 24. MISCELLANEOUS FEATURES

By contrast, the recursive dribble model will enter a recursive command
loop and not print anything until (dribble) is executed from within the new
interactive command loop. At that time the file named basketball will be
closed, and then execution of the progn form will be resumed. A newline
and “Larry ” (note the trailing space) will be printed to the standard output,
and then the call (dribble) may complain that there is no active dribble file.
Once this error is resolved, the word Bird may be printed to the standard
output.

Here is a slightly different test case:

(dribble "baby-food")

(progn (print "Mashed banana")
(dribble)
(princ "and cream of rice"))

If this form is input to the Lisp top level, in the redirecting model a
newline and the words Mashed banana and cream of rice will be printed
to the standard output and all but the words and cream of rice will be
sent to a file named baby-food.

The recursive model will direct exactly the same output to the file named
baby-food but will never print the words and cream of rice to the standard
output because the call (dribble) does not return normally; it throws.

The redirecting model may be intuitively more appealing to some. The
recursive model, however, may be more robust; it carefully limits the extent
of the dribble operation and disables dribbling if a throw of any kind occurs.
The vote by X3J13 was an explicit decision not to decide which model to
use. Users are advised to call dribble only interactively, at top level.

[Function] apropos string &optional package
[Function] apropos-list string &optional package

(apropos string) tries to find all available symbols whose print names
contain string as a substring. (A symbol may be supplied for the string,
in which case the print name of the symbol is used.) Whenever apropos
finds a symbol, it prints out the symbol’s name; in addition, information
about the function definition and dynamic value of the symbol, if any, is
printed. If package is specified and not nil, then only symbols available in
that package are examined; otherwise “all” packages are searched, as if by

24.3. ENVIRONMENT INQUIRIES 729

do-all-symbols. Because a symbol may be available by way of more than
one inheritance path, aproposmay print information about the same symbol
more than once. The information is printed to the stream that is the value of
standard-output. apropos returns no values (that is, it returns what
the expression (values) returns: zero values).

apropos-list performs the same search that apropos does but prints
nothing. It returns a list of the symbols whose print names contain string as
a substring.

24.3 Environment Inquiries

Environment inquiry functions provide information about the environment
in which a Common Lisp program is being executed. They are described here
in two categories: first, those dealing with determination and measurement
of time, and second, all the others, most of which deal with identification of
the computer hardware and software.

Справочные функции представляют информацию о среде, в которой
исполняется Common Lisp’овая программа. Функции разделены на две
категории: первые для работы со временем, и остальные для получения
имен, версий, типов программ и оборудования.

24.3.1 Time Functions

Time is represented in three different ways in Common Lisp: Decoded Time,
Universal Time, and Internal Time. The first two representations are used
primarily to represent calendar time and are precise only to one second.
Internal Time is used primarily to represent measurements of computer time
(such as run time) and is precise to some implementation-dependent fraction
of a second, as specified by internal-time-units-per-second. Decoded
Time format is used only for absolute time indications. Universal Time and
Internal Time formats are used for both absolute and relative times.

Decoded Time format represents calendar time as a number of compo-
nents:

• Second : an integer between 0 and 59, inclusive.

• Minute: an integer between 0 and 59, inclusive.

730 CHAPTER 24. MISCELLANEOUS FEATURES

• Hour : an integer between 0 and 23, inclusive.

• Date: an integer between 1 and 31, inclusive (the upper limit actually
depends on the month and year, of course).

• Month: an integer between 1 and 12, inclusive; 1 means January, 12
means December.

• Year : an integer indicating the year A.D. However, if this integer is
between 0 and 99, the “obvious” year is used; more precisely, that year
is assumed that is equal to the integer modulo 100 and within fifty
years of the current year (inclusive backwards and exclusive forwards).
Thus, in the year 1978, year 28 is 1928 but year 27 is 2027. (Functions
that return time in this format always return a full year number.)

• Day-of-week : an integer between 0 and 6, inclusive; 0 means Monday,
1 means Tuesday, and so on; 6 means Sunday.

• Daylight-saving-time-p: a flag that, if not nil, indicates that daylight
saving time is in effect.

• Time-zone: an integer specified as the number of hours west of GMT
(Greenwich Mean Time). For example, in Massachusetts the time zone
is 5, and in California it is 8. Any adjustment for daylight saving time
is separate from this.

Time zone part of Decoded Time need not be an integer, but may be any
rational number (either an integer or a ratio) in the range -24 to 24 (inclusive
on both ends) that is an integral multiple of 1/3600.

Rationale: For all possible time designations to be accommodated, it is necessary
to allow the time zone to be non-integral, for some places in the world have time
standards offset from Greenwich Mean Time by a non-integral number of hours.

There appears to be no user demand for floating-point time zones. Since such
zones would introduce inexact arithmetic, X3J13 did not consider adding them at
this time.

This specification does require time zones to be represented as integral multiples
of 1 second (rather than 1 hour). This prevents problems that could otherwise occur
in converting Decoded Time to Universal Time.

24.3. ENVIRONMENT INQUIRIES 731

Universal Time represents time as a single non-negative integer. For
relative time purposes, this is a number of seconds. For absolute time, this is
the number of seconds since midnight, January 1, 1900 GMT. Thus the time
1 is 00:00:01 (that is, 12:00:01 A.M.) on January 1, 1900 GMT. Similarly,
the time 2398291201 corresponds to time 00:00:01 on January 1, 1976 GMT.
Recall that the year 1900 was not a leap year; for the purposes of Common
Lisp, a year is a leap year if and only if its number is divisible by 4, except
that years divisible by 100 are not leap years, except that years divisible
by 400 are leap years. Therefore the year 2000 will be a leap year. (Note
that the “leap seconds” that are sporadically inserted by the world’s official
timekeepers as an additional correction are ignored; Common Lisp assumes
that every day is exactly 86400 seconds long.) Universal Time format is
used as a standard time representation within the ARPANET; see reference
[22]. Because the Common Lisp Universal Time representation uses only
non-negative integers, times before the base time of midnight, January 1,
1900 GMT cannot be processed by Common Lisp.

Internal Time also represents time as a single integer, but in terms of an
implementation-dependent unit. Relative time is measured as a number of
these units. Absolute time is relative to an arbitrary time base, typically the
time at which the system began running.

[Function] get-decoded-time

The current time is returned in Decoded Time format. Nine values are
returned: second, minute, hour, date, month, year, day-of-week, daylight-
saving-time-p, and time-zone.

[Function] get-universal-time

The current time of day is returned as a single integer in Universal Time
format.

Функция возвращает текущее время всемирное время в

[Function] decode-universal-time universal-time &optional time-zone

The time specified by universal-time in Universal Time format is con-
verted to Decoded Time format. Nine values are returned: second, minute,
hour, date, month, year, day-of-week, daylight-saving-time-p, and time-zone.

The time-zone argument defaults to the current time zone.

732 CHAPTER 24. MISCELLANEOUS FEATURES

decode-universal-time, like encode-universal-time, ignores daylight
saving time information if a time-zone is explicitly specified; in this case the
returned daylight-saving-time-p value will necessarily be nil even if daylight
saving time happens to be in effect in that time zone at the specified time.

[Function] encode-universal-time second minute hour date month year
&optional time-zone

The time specified by the given components of Decoded Time format is
encoded into Universal Time format and returned. If you do not specify
time-zone, it defaults to the current time zone adjusted for daylight saving
time. If you provide time-zone explicitly, no adjustment for daylight saving
time is performed.

[Constant] internal-time-units-per-second

This value is an integer, the implementation-dependent number of inter-
nal time units in a second. (The internal time unit must be chosen so that
one second is an integral multiple of it.)

Rationale: The reason for allowing the internal time units to be implementation-
dependent is so that get-internal-run-time and get-internal-real-time can ex-
ecute with minimum overhead. The idea is that it should be very likely that a
fixnum will suffice as the returned value from these functions. This probability can
be tuned to the implementation by trading off the speed of the machine against
the word size. Any particular unit will be inappropriate for some implementations:
a microsecond is too long for a very fast machine, while a much smaller unit would
force many implementations to return bignums for most calls to get-internal-
time, rendering that function less useful for accurate timing measurements.

[Function] get-internal-run-time

The current run time is returned as a single integer in Internal Time
format. The precise meaning of this quantity is implementation-dependent;
it may measure real time, run time, CPU cycles, or some other quantity. The
intent is that the difference between the values of two calls to this function
be the amount of time between the two calls during which computational
effort was expended on behalf of the executing program.

24.3. ENVIRONMENT INQUIRIES 733

[Function] get-internal-real-time

The current time is returned as a single integer in Internal Time format.
This time is relative to an arbitrary time base, but the difference between the
values of two calls to this function will be the amount of elapsed real time
between the two calls, measured in the units defined by internal-time-
units-per-second.

[Function] sleep seconds

(sleep n) causes execution to cease and become dormant for approxi-
mately n seconds of real time, whereupon execution is resumed. The argu-
ment may be any non-negative non-complex number. sleep returns nil.

24.3.2 Other Environment Inquiries

24.3.3 Справочные функции о среде

For any of the following functions, if no appropriate and relevant result can
be produced, nil is returned instead of a string.

Rationale: These inquiry facilities are functions rather than variables against the
possibility that a Common Lisp process might migrate from machine to machine.
This need not happen in a distributed environment; consider, for example, dumping
a core image file containing a compiler and then shipping it to another site.

[Function] lisp-implementation-type

A string is returned that identifies the generic name of the particular
Common Lisp implementation. Examples: "Spice LISP", "Zetalisp",
"SBCL".

[Function] lisp-implementation-version

A string is returned that identifies the version of the particular Common
Lisp implementation; this information should be of use to maintainers of
the implementation. Examples: "1192", "53.7 with complex numbers",
"1746.9A, NEWIO 53, ETHER 5.3".

734 CHAPTER 24. MISCELLANEOUS FEATURES

[Function] machine-type

A string is returned that identifies the generic name of the computer
hardware on which Common Lisp is running. Examples: "IMLAC", "DEC
PDP-10", "DEC VAX-11/780", "X86-64".

[Function] machine-version

A string is returned that identifies the version of the computer hardware
on which Common Lisp is running. Example: "KL10, microcode 9",
"AMD Athlon(tm) 64 X2 Dual Core Processor 3600+".

[Function] machine-instance

A string is returned that identifies the particular instance of the computer
hardware on which Common Lisp is running; this might be a local nickname,
for example, or a serial number. Examples: "MIT-MC", "CMU GP-
VAX".

[Function] software-type

A string is returned that identifies the generic name of any relevant sup-
porting software. Examples: "Spice", "TOPS-20", "ITS", Linux.

[Function] software-version

A string is returned that identifies the version of any relevant supporting
software; this information should be of use to maintainer of the implementa-
tion.

[Function] short-site-name
[Function] long-site-name

A string is returned that identifies the physical location of the computer
hardware. Examples of short names: "MIT AI Lab", "CMU-CSD".
Examples of long names:

"MIT Artificial Intelligence Laboratory"
"Massachusetts Institute of Technology
Artificial Intelligence Laboratory"
"Carnegie-Mellon University Computer Science Department"

24.4. IDENTITY FUNCTION 735

See also user-homedir-pathname.

[Variable] *features*

The value of the variable *features* should be a list of symbols that
name “features” provided by the implementation. Most such names will be
implementation-specific; typically a name for the implementation will be
included.

The value of this variable is used by the #+ and #- reader syntax.
Feature names used with #+ and #- are read in the keyword pack-

age unless an explicit prefix designating some other package appears. The
standard feature name ieee-floating-point is therefore actually the key-
word :ieee-floating-point, though one need not write the colon when using
it with #+ or #-; thus #+ieee-floating-point and #+:ieee-floating-
point mean the same thing.

24.4 Identity Function

This function is occasionally useful as an argument to other functions that
require functions as arguments. (Got that?)

[Function] identity object

The object is returned as the value of identity.
The identity function is the default value for the :key argument to many

sequence functions (see chapter 14).
Table 12.1 illustrates the behavior in the complex plane of the identity

function regarded as a function of a complex numerical argument.
Many other constructs in Common Lisp have the behavior of identity

when given a single argument. For example, one might well use values in
place of identity. However, writing values of a single argument convention-
ally indicates that the argument form might deliver multiple values and that
the intent is to pass on only the first of those values.

736 CHAPTER 24. MISCELLANEOUS FEATURES

[Function] constantly object

Returns a function that will always return the object. The returned func-
tion takes any number of arguments.
[Macro] lambda lambda-list [[{declaration}* | [doc-string]] {form}*
A dubious shortcut for (function (lambda ...)) or #’(lambda ...).

Chapter 25

Loop

737

738 CHAPTER 25. LOOP

Chapter 26

Цикл loop

Author: Jon L White
Автор: Jon L White

preface:X3J13 voted in January 1989 to adopt an extended definition of the
loop macro as a part of the forthcoming draft Common Lisp standard. This
chapter presents the bulk of the Common Lisp Loop Facility proposal, writ-
ten by Jon L White. I have edited it only very lightly to conform to the
overall style of this book and have inserted a small number of bracketed
remarks, identified by the initials GLS. (See the Acknowledgments to this
second edition for acknowledgments to others who contributed to the Loop
Facility proposal.)

Guy L. Steele Jr.

26.1 Introduction

26.2 Введение

A loop is a series of expressions that are executed one or more times, a process
known as iteration. The Loop Facility defines a variety of useful methods,
indicated by loop keywords, to iterate and to accumulate values in a loop.

Цикл представляет собой группу выражений, которые выполняются
один или более раз, такой процесс известен как итерация. Цикл Loop
включает в себя различную функциональность, которая обозначается
ключевыми символами loop, для итерации и для накопления значений в
цикле.

739

740 CHAPTER 26. ЦИКЛ LOOP

Loop keywords are not true Common Lisp keywords; they are symbols
that are recognized by the Loop Facility and that provide such capabilities
as controlling the direction of iteration, accumulating values inside the body
of a loop, and evaluating expressions that precede or follow the loop body.
If you do not use any loop keywords, the Loop Facility simply executes the
loop body repeatedly.

Ключевые символы loop это не те ключевые символы Common Lisp’а.
Они являются просто символами, которые имеют специальное значение
в теле этой формы. Символы указывают на: направление итерации,
накопление значения внутри тела, на действия для выполнения в
начале/конце цикла. Если вы не используете эти ключевые символы,
то loop просто циклически выполняет тело.

26.3 How the Loop Facility Works

26.4 Как работает Loop
The driving element of the Loop Facility is the loop macro. When Lisp
encounters a loop macro call form, it invokes the Loop Facility and passes
to it the loop clauses as a list of unevaluated forms, as with any macro.
The loop clauses contain Common Lisp forms and loop keywords. The loop
keywords are recognized by their symbol name, regardless of the packages
that contain them. The loop macro translates the given form into Common
Lisp code and returns the expanded form.

Главным элементом Loop является макрос loop. Как только Common
Lisp видит вызов макроса loop, он разворачивает его без вычисления
аргументов, что собственно происходит и с любым другим макросом.
Loop содержит формы и ключевые символы. Ключевые символы
обозначаются символами не обращая внимание на их принадлежность
к пакету. Макрос loop транслирует полученную форму в Common
Lisp’овый код и возвращает развёрнутую форму.

The expanded loop form is one or more lambda-expressions for the local
binding of loop variables and a block and a tagbody that express a looping
control structure. The variables established in the loop construct are bound
as if by using let or lambda. Implementations can interleave the setting
of initial values with the bindings. However, the assignment of the initial
values is always calculated in the order specified by the user. A variable is

26.4. КАК РАБОТАЕТ LOOP 741

thus sometimes bound to a harmless value of the correct data type, and then
later in the prologue it is set to the true initial value by using setq.

Развернутая форма представляется собой одно или более лямбда-
выражений для связываний переменных цикла и формы block или tag-
body, которые содержат тело цикла. Переменные для цикла создаются
как если бы с помощью let или lambda. Связывание локальных
переменных происходит в том порядке, в каком указал пользователь.

The expanded form consists of three basic parts in the tagbody:
Развёрнутая форма состоит из трёх основных частей в tagbody:

• The loop prologue contains forms that are executed before iteration
begins, such as initial settings of loop variables and possibly an initial
termination test.

• Пролог содержит формы, которые вычисляется перед началом
итераций, например, первоначальные связывания переменных
цикла и возможно первая проверка на завершение цикла.

• The loop body contains those forms that are executed during iteration,
including application-specific calculations, termination tests, and vari-
able stepping. Stepping is the process of assigning a variable the next
item in a series of items.

• Тело содержит формы, которые вычисляются на каждом шаге
цикла, включая непосредственно пользовательские операции,
проверки завершения цикла, и пошаговое изменение переменных
цикла. Пошаговое изменение это присваивание переменное
следующего значения из последовательности значений.

• The loop epilogue contains forms that are executed after iteration ter-
minates, such as code to return values from the loop.

• Эпилог содержит формы, которые вычисляются после завершения
цикла, например, форма возврата значений из цикла.

Expansion of the loop macro produces an implicit block (named nil).
Thus, the Common Lisp macro return and the special operator return-
from can be used to return values from a loop or to exit a loop.

Раскрытие макроса loop порождает неявный block (с именем nil).
Таким образом, внутри цикла для возврата значений или выхода можно

742 CHAPTER 26. ЦИКЛ LOOP

пользоваться макросом return или специальным оператором return-
from.

Within the executable parts of loop clauses and around the entire loop
form, you can still bind variables by using the Common Lisp special operator
let.

В любой части выражения цикла можно использовать обычную
конструкцию связывания переменных let.

26.5 Parsing Loop Clauses

26.6 Парсинг выражений Loop
The syntactic parts of a loop construct are called clauses ; the scope of each
clause is determined by the top-level parsing of that clause’s keyword. The
following example shows a loop construct with six clauses:

Синтаксические части конструкции loop называются выражениями.
Область действия каждого выражения определяется парсером данного
типа выражения. Следующий пример показывает loop с шестью
выражениями:

(loop for i from 1 to (compute-top-value) ;First clause
while (not (unacceptable i)) ;Second clause
collect (square i) ;Third clause
do (format t "Working on ~D now" i) ;Fourth clause
when (evenp i) ;Fifth clause
do (format t "~D is a non-odd number" i)

finally (format t "About to exit!")) ;Sixth clause

(loop for i from 1 to (compute-top-value) ;Первое выражение
while (not (unacceptable i)) ;Второе
collect (square i) ;Третье
do (format t "Обрабтка ~D " i) ;Четвёртое
when (evenp i) ;Пятое
do (format t "~D чётное" i)

finally (format t "Почти у выхода!")) ;Шестое

Each loop keyword introduces either a compound loop clause or a simple
loop clause that can consist of a loop keyword followed by a single Lisp form.

26.6. ПАРСИНГ ВЫРАЖЕНИЙ LOOP 743

The number of forms in a clause is determined by the loop keyword that
begins the clause and by the auxiliary keywords in the clause. The keywords
do, initially, and finally are the only loop keywords that can take any
number of Lisp forms and group them as if in a single progn form.

Каждое ключевое слово представляет или составное выражение,
или простое выражение, которое может состоять из этого ключевого
слова и одиночное Lisp’овой формы. Количество форм в выражении
определяется первым ключевым символом или вспомогательными
ключевыми символами в выражении. Только такие ключевые символы,
как do, initially и finally, могут принимать любое количество Lisp’овых
форм и группировать в одиночную форму progn.

Loop clauses can contain auxiliary keywords, which are sometimes called
prepositions. For example, the first clause in the preceding code includes the
prepositions from and to, which mark the value from which stepping begins
and the value at which stepping ends.

Выражения loop могут содержать вспомогательные ключевые
символы, которые иногда называются предлоги. Например, первое
выражение в предыдущем коде включает предлоги from и to, которые
указывают на начальное и конечное значения для переменной.

26.6.1 Order of Execution

26.6.2 Порядок вычисления

With the exceptions listed below, clauses are executed in the loop body in
the order in which they appear in the source. Execution is repeated until a
clause terminates the loop or until a Common Lisp return, go, or throw
form is encountered. The following actions are exceptions to the linear order
of execution:

Выражения в теле loop вычисляются в том порядке, в котором задал
пользователь, с некоторыми исключениями перечисленными ниже.
Вычисление повторяется пока не сработает выражение, завершающее
цикл, или не будет вызвана одна из Common Lisp’овых форм return,
go, throw. Для последовательного выполнения существуют следующие
исключения:

• All variables are initialized first, regardless of where the establishing
clauses appear in the source. The order of initialization follows the
order of these clauses.

744 CHAPTER 26. ЦИКЛ LOOP

• Перво-наперво выполняется инициализация всех переменных,
вне зависимости от их позиции в исходном коде. Порядок
инициализации сохраняется.

• The code for any initially clauses is collected into one progn in the
order in which the clauses appear in the source. The collected code is
executed once in the loop prologue after any implicit variable initial-
izations.

• Код из всех initially выражений в исходном порядке собирается
в один большой progn. Собранный код вычисляется единожды в
прологе после инициализации всех переменных.

• The code for any finally clauses is collected into one progn in the
order in which the clauses appear in the source. The collected code
is executed once in the loop epilogue before any implicit values from
the accumulation clauses are returned. Explicit returns anywhere in
the source, however, will exit the loop without executing the epilogue
code.

• Код для всех finally выражение в исходном порядке собирается
в один большой progn. Собранный код вычисляется единожды
в эпилоге, перед тем как будут неявно возвращены значения из
цикла. Однако явный выход где-либо в исходнике, будет завершать
цикл без выполнения эпилога.

• A with clause introduces a variable binding and an optional initial
value. The initial values are calculated in the order in which the with
clauses occur.

• with выражение обозначает связывание переменной и опционально
первоначальное значение. Первоначальные значение вычисляются
в исходном порядке.

• Iteration control clauses implicitly perform the following actions:

– initializing variables

– stepping variables, generally between each execution of the loop
body

26.6. ПАРСИНГ ВЫРАЖЕНИЙ LOOP 745

– performing termination tests, generally just before the execution
of the loop body

• Выражения для итераций неявно выполняют следующие действия:

– присваивание переменных

– наращивание переменных на каждой итерации

– проверка условия завершения цикла, обычно перед
выполнение итерации

26.6.3 Kinds of Loop Clauses

26.6.4 Разновидности Loop выражений

Loop clauses fall into one of the following categories:
Выражения делятся на следующие категории:

• variable initialization and stepping

• инициализация и пошаговое изменение

– The for and as constructs provide iteration control clauses that
establish a variable to be initialized. You can combine for and
as clauses with the loop keyword and to get parallel initialization
and stepping.

– Конструкции for и as служат для установки переменных. Для
параллельной инициализации и изменения, выражения for и
as могут комбинироваться с помощью символа and.

– The with construct is similar to a single let clause. You can
combine with clauses using and to get parallel initialization.

– Конструкция with похожа на выражение let. Для
параллельной инициализации вы можете комбинировать with
с помощью and.

– The repeat construct causes iteration to terminate after a speci-
fied number of times. It uses an internal variable to keep track of
the number of iterations.

746 CHAPTER 26. ЦИКЛ LOOP

– Конструкция repeat указывает на количество итераций. Она
использует внутреннюю переменную для подсчёта шагов.

You can specify data types for loop variables (see section 26.23.2).
It is an error to bind the same variable twice in any variable-binding
clause of a single loop expression. Such variables include local variables,
iteration control variables, and variables found by destructuring.

Вы можете указать типы данных для переменных циклы (смотрите
раздел 26.23.2). Связывать переменные два раза в одном цикле
нельзя. Такие переменные включают локальные переменные,
переменные для управления циклом и переменные созданные при
деструктуризации.

• value accumulation

• накопление значения

– The collect construct takes one form in its clause and adds the
value of that form to the end of a list of values. By default, the
list of values is returned when the loop finishes.

– Конструкция collect принимает одну форму и добавляет
значение этой формы в конец списка значений. По-умолчанию
в конце цикла этот список возвращается.

– The append construct takes one form in its clause and appends
the value of that form to the end of a list of values. By default,
the list of values is returned when the loop finishes.

– Конструкция append принимает одну форму и добавляет
значение этой формы в конец списка значений. По-умолчанию
в конце цикла этот список возвращается.

– The nconc construct is similar to append, but its list values
are concatenated as if by the Common Lisp function nconc. By
default, the list of values is returned when the loop finishes.

– Конструкция nconc похожа на append, но список соединяется
с помощью функции nconc. По-умолчанию в конце цикла этот
список возвращается.

26.6. ПАРСИНГ ВЫРАЖЕНИЙ LOOP 747

– The sum construct takes one form in its clause that must evaluate
to a number and adds that number into a running total. By
default, the cumulative sum is returned when the loop finishes.

– Конструкция sum принимает одну форму, которая должна
вернуть число, и добавляет это число в общую сумму. По-
умолчанию накопленная сумма возвращается из цикла.

– The count construct takes one form in its clause and counts the
number of times that the form evaluates to a non-nil value. By
default, the count is returned when the loop finishes.

– Конструкция count принимает одну форму и подсчитывает
сколько раз эта форма вернула не-nil значение. По-умолчанию
это количество возвращается из цикла.

– The minimize construct takes one form in its clause and deter-
mines the minimum value obtained by evaluating that form. By
default, the minimum value is returned when the loop finishes.

– Конструкция minimize принимает одну форму и сохраняет
минимальное значение, которое вернула эта форма. По-
умолчанию, минимальное значение возвращается из цикла.

– The maximize construct takes one form in its clause and deter-
mines the maximum value obtained by evaluating that form. By
default, the maximum value is returned when the loop finishes.

– Конструкция maximize принимает одну форму и сохраняет
максимальное значение, которое вернула эта форма. По-
умолчанию, максимальное значение возвращается из цикла.

• termination conditions

• условия для завершения

– The loop-finish Lisp macro terminates iteration and returns any
accumulated result. If specified, any finally clauses are evaluated.

– Lisp’овые макрос loop-finish прекращает цикл и возвращает
накопленный результат. Вычисляется выражение finally, если
было указано.

– The for and as constructs provide a termination test that is de-
termined by the iteration control clause.

748 CHAPTER 26. ЦИКЛ LOOP

– Конструкции for и as завершают цикл после выполнения
указанных условий.

– The repeat construct causes termination after a specified number
of iterations.

– Конструкция repeat завершает цикл после выполнения
указанного количества итераций.

– The while construct takes one form, a condition, and terminates
the iteration if the condition evaluates to nil. A while clause is
equivalent to the expression (if (not condition) (loop-finish)).

– Конструкция while принимает одну форму — условие, и
завершает цикл когда условие возвращает nil. Выражение
while эквивалентно (if (not condition) (loop-finish)).

– The until construct is the inverse of while; it terminates the
iteration if the condition evaluates to any non-nil value. An un-
til clause is equivalent to the expression (if condition (loop-
finish)).

– Конструкция until антоним конструкции while. Она
завершает цикл, когда условие возвращает не-nil значение.
Выражение until эквивалентно (if condition (loop-finish)).

– The always construct takes one form and terminates the loop if
the form ever evaluates to nil; in this case, it returns nil. Other-
wise, it provides a default return value of t.

– Конструкция always принимает одну форму и завершает
цикл, если форма возвращает nil, в этом случае возвращается
nil. Иначе возвращается результат по-умолчанию t.

– The never construct takes one form and terminates the loop if
the form ever evaluates to non-nil; in this case, it returns nil.
Otherwise, it provides a default return value of t.

– Конструкция never принимает одну форму и завершает цикл,
если форма возвращает nil, в этом случае возвращается nil.
Иначе возвращается результат по-умолчанию t.

– The thereis construct takes one form and terminates the loop if
the form ever evaluates to non-nil; in this case, it returns that
value.

26.6. ПАРСИНГ ВЫРАЖЕНИЙ LOOP 749

– Конструкция thereis принимает одну форму и завершает
цикле, если форма возвращает не-nil, в этом случае
возвращается значение формы.

• unconditional execution

• безусловное выполнение

– The do construct simply evaluates all forms in its clause.

– Конструкция do просто выполняет все переданные формы.

– The return construct takes one form and returns its value. It is
equivalent to the clause do (return value).

– Конструкция return принимает одну форму и возвращает её
значение. Эквивалентное выражение do (return value).

• conditional execution

• условное выполнение

– The if construct takes one form as a predicate and a clause that
is executed when the predicate is true. The clause can be a value
accumulation, unconditional, or another conditional clause; it can
also be any combination of such clauses connected by the loop
keyword and.

– Конструкция if принимает форму в качестве предиката
и выражение, которое выполняется в случае истинности
предиката. Выражение может быть накоплением значения,
безусловным или другим условным выражением.

– The when construct is a synonym for if.

– Конструкция when это синоним для конструкции if.

– The unless construct is similar to when except that it comple-
ments the predicate; it executes the following clause if the predi-
cate is false.

– Конструкция unless похожа на when кроме того, что она
выполняет форму при условии что предикат ложен.

750 CHAPTER 26. ЦИКЛ LOOP

– The else construct provides an optional component of if, when,
and unless clauses that is executed when the predicate is false.
The component is one of the clauses described under if.

– Конструкция else содержит компонент, который будет
выполнен при невыполнении веток if, when и unless.

– The end construct provides an optional component to mark the
end of a conditional clause.

– Конструкция end указывает на конец условного выражения.

• miscellaneous operations

• дополнительные операции

– The named construct assigns a name to a loop construct.

– Конструкция named присваивает имя блоку цикла.

– The initially construct causes its forms to be evaluated in the loop
prologue, which precedes all loop code except for initial settings
specified by the constructs with, for, or as.

– Конструкция initially вычисляет формы в прологе цикла,
который следует перед телом цикла, но после первоначальных
связываний в конструкциях with, for и as.

– The finally construct causes its forms to be evaluated in the
loop epilogue after normal iteration terminates. An unconditional
clause can also follow the loop keyword finally.

– Конструкция finally выполняет формы в эпилоге цикла после
завершения итераций. Кроме того после слова finally могут
следовать безусловные выражения.

26.6.5 Loop Syntax

26.6.6 Синтаксис Loop

The following syntax description provides an overview of the syntax for loop
clauses. Detailed syntax descriptions of individual clauses appear in sec-
tions 26.12 through 26.23. A loop consists of the following types of clauses:

26.6. ПАРСИНГ ВЫРАЖЕНИЙ LOOP 751

initial-final ::= initially | finally
variables ::= with | initial-final | for-as | repeat
main ::= unconditional | accumulation | conditional | termination | initial-final
loop ::= (loop [named name] {}* variables {}*main)

Вот небольшой обзор синтаксиса для выражений цикла. Детальные
описания конкретных подвыражений находятся в разделах начиная
с 26.12 и заканчивая 26.23. Цикл содержит следующие типы выражений:

initial-final ::= initially | finally
variables ::= with | initial-final | for-as | repeat
main ::= unconditional | accumulation | conditional | termination | initial-final
loop ::= (loop [named name] {}* variables {}*main)

Note that a loop must have at least one clause; however, for backward
compatibility, the following format is also supported:

(loop {tag | expr}*)

where expr is any Common Lisp expression that can be evaluated, and tag
is any symbol not identifiable as a loop keyword. Such a format is roughly
equivalent to the following one:

(loop do {tag | expr}*)

Заметьте, что цикл должен содержать как минимум одно выражение,
однако для обратной совместимости также поддерживается и следующий
формат:

(loop {tag | expr}*)

где expr является любым Common Lisp’овым выражением, которое
может быть вычислено, и tag это любой символ не из множества
символов loop. Такой формат примерно эквивалентен следующему:

(loop do {tag | expr}*)

A loop prologue consists of any automatic variable initializations pre-
scribed by the variable clauses, along with any initially clauses in the order
they appear in the source.

752 CHAPTER 26. ЦИКЛ LOOP

Пролог состоит из инициализации переменных описанных в
соответствующих выражения, и initially выражений в том порядке, в
котором они были записаны.

A loop epilogue consists of finally clauses, if any, along with any implicit
return value from an accumulation clause or an end-test clause.

Эпилог состоит из выражений finally (если они были), и неявного
возврата значения из выражений собирающих результат или из
выражений проверки выхода из цикла.

26.7 User Extensibility

There is currently no specified portable method for users to add extensions
to the Loop Facility. The names defloop and define-loop-method have
been suggested as candidates for such a method.

26.8 Пользовательские расширения

Пользователю не предоставляется способа расширить функционал Loop.

26.9 Loop Constructs

26.10 Конструкции Loop

The remaining sections of this chapter describe the constructs that the Loop
Facility provides. The descriptions are organized according to the function-
ality of the constructs. Each section begins with a general discussion of a
particular operation; it then presents the constructs that perform the oper-
ation.

Следующие разделы раскрывают конструкции цикла Loop.
Описания сгруппированы по типам данных конструкций. Каждый
раздел начинается с общего описания конкретной операции, затем
раскрывается конструкция, которая выполняет данную операцию.

• Section 26.12, “Iteration Control,” describes iteration control clauses
that allow directed loop iteration.

26.10. КОНСТРУКЦИИ LOOP 753

• Раздел 26.12, «Управление итерациями» описывает выражения для
управления итерациями.

• Section 26.14, “End-Test Control,” describes clauses that stop iteration
by providing a conditional expression that can be tested after each
execution of the loop body.

• Раздел 26.14, «Проверка завершения» описывает выражения,
которые прекращают итерации, в случае если того требует тестовое
выражение, которые выполняется на каждой итерации.

• Section 26.15, “Value Accumulation,” describes constructs that accumu-
late values during iteration and return them from a loop. This section
also discusses ways in which accumulation clauses can be combined
within the Loop Facility.

• Раздел 26.15, «Накопление значения» описывает конструкции,
которые накапливают значение во время итераций и возвращают их
из цикла. Данный раздел также содержит методы комбинирования
данных выражений с другим функционалом.

• Section 26.17, “Variable Initializations,” describes the with construct,
which provides local variables for use within the loop body, and other
constructs that provide local variables.

• Раздел 26.17, «Инициализация переменных» описывает
конструкцию with, которая позволяет создавать локальные
переменные для использования в теле цикла, а также другие
конструкции, которые создают локальные переменные.

• Section 26.19, “Conditional Execution,” describes how to execute loop
clauses conditionally.

• Раздел 26.19, «Условное выполнение» описывает то, как выполнять
выражения цикла в зависимости от условия.

• Section 26.21, “Unconditional Execution,” describes the do and re-
turn constructs. It also describes constructs that are used in the loop
prologue and loop epilogue.

754 CHAPTER 26. ЦИКЛ LOOP

• Раздел 26.21, «Безусловное выполнение» описывает конструкции
do и return. Раздел также содержит информацию о прологе и
эпилоге цикла Loop.

• Section 26.23, “Miscellaneous Features,” discusses loop data types and
destructuring. It also presents constructs for naming a loop and for
specifying initial and final actions.

• Раздел 26.23 «Дополнительные возможности» описывает типы
данных и деструктуризацию в контексте цикла loop. Раздел также
содержит информацию о задании имени цикла и прологе и эпилоге.

26.11 Iteration Control

26.12 Управление итерациями

Iteration control clauses allow you to direct loop iteration. The loop keywords
as, for, and repeat designate iteration control clauses.

Для управления итерациями используются выражения as, for и re-
peat.

Iteration control clauses differ with respect to the specification of termina-
tion conditions and the initialization and stepping of loop variables. Iteration
clauses by themselves do not cause the Loop Facility to return values, but
they can be used in conjunction with value-accumulation clauses to return
values (see section 26.15).

Управление итерациями отличается от условий завершения цикла
и инициализации и наращивания переменных цикла. Управление
итерациями само по себе не выполняет возврат значение, но оно может
использоваться в сочетании с выражениями накопления значения для
возврата значений (смотрите раздел 26.15).

All variables are initialized in the loop prologue. The scope of the variable
binding is lexical unless it is proclaimed special; thus, the variable can be
accessed only by expressions that lie textually within the loop. Stepping
assignments are made in the loop body before any other expressions are
evaluated in the body.

Все переменные инициализируются в прологе цикла. Область
видимости переменных лексическая, если только они не объявлены

26.12. УПРАВЛЕНИЕ ИТЕРАЦИЯМИ 755

как специальные. Таким образом переменные доступны только в
выражениях, которые текстово находятся в цикле. Наращивание
переменных выполняется в теле цикла перед другими выражениями.

The variable argument in iteration control clauses can be a destructuring
list. A destructuring list is a tree whose non-null atoms are symbols that can
be assigned a value (see section 26.23.3).

На месте переменное может стоять список переменных для
деструктуризации. Данный список представляет из себя дерево, в
котором не-null атомы это символы, которые могут быть связаны со
значениями (смотрите раздел 26.23.3).

The iteration control clauses for, as, and repeat must precede any other
loop clauses except initially, with, and named, since they establish variable
bindings. When iteration control clauses are used in a loop, termination tests
in the loop body are evaluated before any other loop body code is executed.

Выражения для управления итерациями for, as и repeat должны
быть указаны прежде других выражений за исключением initially,
with и named, так как последние служат для создания переменных.
При использовании выражений управления итерациями, проверка
завершения выполняется перед самим телом цикла.

If you use multiple iteration clauses to control iteration, variable initial-
ization and stepping occur sequentially by default. You can use the and
construct to connect two or more iteration clauses when sequential binding
and stepping are not necessary. The iteration behavior of clauses joined by
and is analogous to the behavior of the Common Lisp macro do relative to
do*.

Если вы используете несколько выражений для управления
итерациями, по-умолчанию связывания и наращивания переменных
выполняются последовательно. Если последовательное выполнение
необязательно, вы можете объединить выражения с помощью
конструкции and. Различия при неиспользовании и использовании
конструкции and аналогичны различиям между do и do*

In the following example, the variable x is stepped before y is stepped;
thus, the value of y reflects the updated value of x:

(loop for x from 1 to 9
for y = nil then x
collect (list x y))
⇒ ((1 NIL) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9))

756 CHAPTER 26. ЦИКЛ LOOP

In the following example, x and y are stepped in parallel:

(loop for x from 1 to 9
and y = nil then x
collect (list x y))
⇒ ((1 NIL) (2 1) (3 2) (4 3) (5 4) (6 5) (7 6) (8 7) (9 8))

В следующем примере переменная x наращивается прежде чем y,
таким образом y содержит новое значение x.

(loop for x from 1 to 9
for y = nil then x
collect (list x y))
⇒ ((1 NIL) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9))

В следующем примере переменные x и y наращиваются параллельно:

(loop for x from 1 to 9
and y = nil then x
collect (list x y))
⇒ ((1 NIL) (2 1) (3 2) (4 3) (5 4) (6 5) (7 6) (8 7) (9 8))

The for and as clauses iterate by using one or more local loop variables
that are initialized to some value and that can be modified or stepped after
each iteration. For these clauses, iteration terminates when a local variable
reaches some specified value or when some other loop clause terminates it-
eration. At each iteration, variables can be stepped by an increment or a
decrement or can be assigned a new value by the evaluation of an expres-
sion. Destructuring can be used to assign initial values to variables during
iteration.

Выражения for и as выполняют тело цикла для одной или нескольких
переменных, которые вначале инициализируются некоторым значением,
затем наращиваются после каждой итерации. Для этих выражений
цикл завершается после того, как локальная переменная достигает
последнего указанного значения, или срабатывает какое-либо другое
завершающее выражение. На каждой итерации переменная может
быть увеличена, уменьшена, или ей может быть связана с значением
некоторого выражения. Для присваивания первоначальных значений
может использоваться деструктуризация.

26.12. УПРАВЛЕНИЕ ИТЕРАЦИЯМИ 757

The for and as keywords are synonyms and may be used interchange-
ably. There are seven syntactic representations for these constructs. In each
syntactic description, the data type of var can be specified by the optional
type-spec argument. If var is a destructuring list, the data type specified
by the type-spec argument must appropriately match the elements of the list
(see sections 26.23.2 and 26.23.3).

Ключевые символы for и as являются синонимами, соответственно
взаимозаменяемы. Для этих конструкций существует семь
синтаксических представлений. В каждой из них для переменной
var опционально можно задать тип type-spec. Если var является
списком для деструктуризации, type-spec должен соответственно
описывать элементы списка (смотрите разделы 26.23.2 и 26.23.3)

[Loop clause] for var [type-spec] [{from | downfrom | upfrom} expr1]
[{to | downto | upto | below | above} expr2]
[by expr3]

[Loop clause] as var [type-spec] [{from | downfrom | upfrom} expr1]
[{to | downto | upto | below | above} expr2]
[by expr3]

[This is the first of seven for/as syntaxes.—GLS]
The for or as construct iterates from the value specified by expr1 to the

value specified by expr2 in increments or decrements denoted by expr3. Each
expression is evaluated only once and must evaluate to a number.

The variable var is bound to the value of expr1 in the first iteration and
is stepped by the value of expr3 in each succeeding iteration, or by 1 if expr3
is not provided.

The following loop keywords serve as valid prepositions within this syntax.

from The loop keyword from marks the value from which stepping begins,
as specified by expr1. Stepping is incremental by default. For decre-
mental stepping, use above or downto with expr2. For incremental
stepping, the default from value is 0.

downfrom, upfrom The loop keyword downfrom indicates that the vari-
able var is decreased in decrements specified by expr3 ; the loop key-
word upfrom indicates that var is increased in increments specified by
expr3.

758 CHAPTER 26. ЦИКЛ LOOP

to The loop keyword to marks the end value for stepping specified in expr2.
Stepping is incremental by default. For decremental stepping, use
downto, downfrom, or above with expr2.

downto, upto The loop keyword downto allows iteration to proceed from
a larger number to a smaller number by the decrement expr3. The loop
keyword upto allows iteration to proceed from a smaller number to a
larger number by the increment expr3. Since there is no default for
expr1 in decremental stepping, you must supply a value with downto.

below, above The loop keywords below and above are analogous to upto
and downto, respectively. These keywords stop iteration just before
the value of the variable var reaches the value specified by expr2 ; the
end value of expr2 is not included. Since there is no default for expr1
in decremental stepping, you must supply a value with above.

by The loop keyword by marks the increment or decrement specified by
expr3. The value of expr3 can be any positive number. The default
value is 1.

At least one of these prepositions must be used with this syntax.
In an iteration control clause, the for or as construct causes termination

when the specified limit is reached. That is, iteration continues until the
value var is stepped to the exclusive or inclusive limit specified by expr2 .
The range is exclusive if expr3 increases or decreases var to the value of
expr2 without reaching that value; the loop keywords below and above
provide exclusive limits. An inclusive limit allows var to attain the value of
expr2 ; to, downto, and upto provide inclusive limits.

A common convention is to use for to introduce new iterations and as to
introduce iterations that depend on a previous iteration specification. [How-
ever, loop does not enforce this convention, and some of the examples below
violate it. De gustibus non disputandum est.—GLS]

Examples:

;;; Print some numbers.
(loop as i from 1 to 5

do (print i)) ;Prints 5 lines

26.12. УПРАВЛЕНИЕ ИТЕРАЦИЯМИ 759

1
2
3
4
5
⇒ NIL

;;; Print every third number.
(loop for i from 10 downto 1 by 3

do (print i)) ;Prints 4 lines
10
7
4
1
⇒ NIL

;;; Step incrementally from the default starting value.
(loop as i below 5

do (print i)) ;Prints 5 lines
0
1
2
3
4
⇒ NIL

[Loop clause] for var [type-spec] in expr1 [by step-fun]
[Loop clause] as var [type-spec] in expr1 [by step-fun]
[This is the second of seven for/as syntaxes.—GLS]
This construct iterates over the contents of a list. It checks for the end

of the list as if using the Common Lisp function endp. The variable var is
bound to the successive elements of the list expr1 before each iteration. At
the end of each iteration, the function step-fun is called on the list and is
expected to produce a successor list; the default value for step-fun is the cdr
function.

The for or as construct causes termination when the end of the list is
reached. The loop keywords in and by serve as valid prepositions in this
syntax.

760 CHAPTER 26. ЦИКЛ LOOP

Examples:

;;; Print every item in a list.
(loop for item in ’(1 2 3 4 5) do (print item)) ;Prints 5 lines
1
2
3
4
5
⇒ NIL

;;; Print every other item in a list.
(loop for item in ’(1 2 3 4 5) by #’cddr

do (print item)) ;Prints 3 lines
1
3
5
⇒ NIL

;;; Destructure items of a list, and sum the x values
;;; using fixnum arithmetic.
(loop for (item . x) (t . fixnum)

in ’((A . 1) (B . 2) (C . 3))
unless (eq item ’B) sum x)
⇒ 4

[Loop clause] for var [type-spec] on expr1 [by step-fun]
[Loop clause] as var [type-spec] on expr1 [by step-fun]
[This is the third of seven for/as syntaxes.—GLS]
This construct iterates over the contents of a list. It checks for the end

of the list as if using the Common Lisp function endp. The variable var is
bound to the successive tails of the list expr1. At the end of each iteration, the
function step-fun is called on the list and is expected to produce a successor
list; the default value for step-fun is the cdr function.

The loop keywords on and by serve as valid prepositions in this syntax.
The for or as construct causes termination when the end of the list is reached.

Examples:

26.12. УПРАВЛЕНИЕ ИТЕРАЦИЯМИ 761

;;; Collect successive tails of a list.
(loop for sublist on ’(a b c d)

collect sublist)
⇒ ((A B C D) (B C D) (C D) (D))

;;; Print a list by using destructuring with the loop keyword ON.
(loop for (item) on ’(1 2 3)

do (print item)) ;Prints 3 lines
1
2
3
⇒ NIL

;;; Print items in a list without using destructuring.
(loop for item in ’(1 2 3)

do (print item)) ;Prints 3 lines
1
2
3
⇒ NIL

[Loop clause] for var [type-spec] = expr1 [then expr2]
[Loop clause] as var [type-spec] = expr1 [then expr2]
[This is the fourth of seven for/as syntaxes.—GLS]
This construct initializes the variable var by setting it to the result of

evaluating expr1 on the first iteration, then setting it to the result of evalu-
ating expr2 on the second and subsequent iterations. If expr2 is omitted, the
construct uses expr1 on the second and subsequent iterations. When expr2
is omitted, the expanded code shows the following optimization:

;;; Sample original code:
(loop for x = expr1 then expr2 do (print x))

;;; The usual expansion:
(tagbody

(setq x expr1)
tag (print x)

(setq x expr2)
(go tag))

762 CHAPTER 26. ЦИКЛ LOOP

;;; The optimized expansion:
(tagbody
tag (setq x expr1)

(print x)
(go tag))

The loop keywords = and then serve as valid prepositions in this syntax.
This construct does not provide any termination conditions.

Example:

;;; Collect some numbers.
(loop for item = 1 then (+ item 10)

repeat 5
collect item)
⇒ (1 11 21 31 41)

[Loop clause] for var [type-spec] across vector
[Loop clause] as var [type-spec] across vector
[This is the fifth of seven for/as syntaxes.—GLS]
This construct binds the variable var to the value of each element in the

array vector.
The loop keyword across marks the array vector ; across is used as a

preposition in this syntax. Iteration stops when there are no more elements
in the specified array that can be referenced.

Some implementations might use a [user-supplied—GLS] the special op-
erator in the vector form to produce more efficient code.

Example:

(loop for char across (the simple-string (find-message port))
do (write-char char stream))

[Loop clause] for var [type-spec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hash-table [using ({hash-value | hash-key} other-var)]
[Loop clause] as var [type-spec] being {each | the}
{hash-key | hash-keys | hash-value | hash-values}
{in | of} hash-table [using ({hash-value | hash-key} other-var)]
[This is the sixth of seven for/as syntaxes.—GLS]

26.12. УПРАВЛЕНИЕ ИТЕРАЦИЯМИ 763

This construct iterates over the elements, keys, and values of a hash table.
The variable var takes on the value of each hash key or hash value in the
specified hash table.

The following loop keywords serve as valid prepositions within this syntax.

being The keyword being marks the loop method to be used, either hash-
key or hash-value.

each, the For purposes of readability, the loop keyword each should follow
the loop keyword being when hash-key or hash-value is used. The
loop keyword the is used with hash-keys and hash-values.

hash-key, hash-keys These loop keywords access each key entry of the
hash table. If the name hash-value is specified in a using construct
with one of these loop methods, the iteration can optionally access the
keyed value. The order in which the keys are accessed is undefined;
empty slots in the hash table are ignored.

hash-value, hash-values These loop keywords access each value entry of
a hash table. If the name hash-key is specified in a using construct
with one of these loop methods, the iteration can optionally access the
key that corresponds to the value. The order in which the keys are
accessed is undefined; empty slots in the hash table are ignored.

using The loop keyword using marks the optional key or the keyed value
to be accessed. It allows you to access the hash key if iterating over
the hash values, and the hash value if iterating over the hash keys.

in, of These loop prepositions mark the hash table hash-table.

Iteration stops when there are no more hash keys or hash values to be
referenced in the specified hash table.
[Loop clause] for var [type-spec] being {each | the}
{symbol | present-symbol | external-symbol |
symbols | present-symbols | external-symbols}
{in | of} package
[Loop clause] as var [type-spec] being {each | the}
{symbol | present-symbol | external-symbol |
symbols | present-symbols | external-symbols}
{in | of} package
[This is the last of seven for/as syntaxes.—GLS]

764 CHAPTER 26. ЦИКЛ LOOP

This construct iterates over the symbols in a package. The variable var
takes on the value of each symbol in the specified package.

The following loop keywords serve as valid prepositions within this syntax.

being The keyword being marks the loop method to be used: symbol,
present-symbol, or external-symbol.

each, the For purposes of readability, the loop keyword each should fol-
low the loop keyword being when symbol, present-symbol, or
external-symbol is used. The loop keyword the is used with sym-
bols, present-symbols, and external-symbols.

present-symbol, present-symbols These loop methods iterate over the
symbols that are present but not external in a package. The package
to be iterated over is specified in the same way that package arguments
to the Common Lisp function find-package are specified. If you do
not specify the package for the iteration, the current package is used.
If you specify a package that does not exist, an error is signaled.

symbol, symbols These loop methods iterate over symbols that are acces-
sible from a given package. The package to be iterated over is specified
in the same way that package arguments to the Common Lisp function
find-package are specified. If you do not specify the package for the
iteration, the current package is used. If you specify a package that
does not exist, an error is signaled.

external-symbol, external-symbols These loop methods iterate over the
external symbols of a package. The package to be iterated over is
specified in the same way that package arguments to the Common Lisp
function find-package are specified. If you do not specify the package
for the iteration, the current package is used. If you specify a package
that does not exist, an error is signaled.

in, of These loop prepositions mark the package package.

Iteration stops when there are no more symbols to be referenced in the
specified package.

Example:

26.12. УПРАВЛЕНИЕ ИТЕРАЦИЯМИ 765

(loop for x being each present-symbol of "COMMON-LISP-USER"
do (print x)) ;Prints 7 lines in this example

COMMON-LISP-USER::IN
COMMON-LISP-USER::X
COMMON-LISP-USER::ALWAYS
COMMON-LISP-USER::FOO
COMMON-LISP-USER::Y
COMMON-LISP-USER::FOR
COMMON-LISP-USER::LUCID
⇒ NIL

[Loop clause] repeat expr
The repeat construct causes iteration to terminate after a specified num-

ber of times. The loop body is executed n times, where n is the value of
the expression expr. The expr argument is evaluated one time in the loop
prologue. If the expression evaluates to zero or to a negative number, the
loop body is not evaluated.

Конструкция repeat завершает цикл после указанного количества
итераций. Тело цикла выполняется n раз, где n является значением
выражения expr. Аргумент expr вычисляется единожды в прологе
цикла. Если выражение возвращает ноль или отрицательное число, тело
цикла не выполняется.

The clause repeat n is roughly equivalent to a clause such as

for internal-variable downfrom (- n 1) to 0

but, in some implementations, the repeat construct might be more effi-
cient.

Выражение repeat n примерно похоже на выражение

for internal-variable downfrom (- n 1) to 0

но на некоторых реализациях repeat может быть более эффективна.
Examples:

(loop repeat 3 ;Prints 3 lines
do (format t "What I say three times is true~%"))

What I say three times is true
What I say three times is true
What I say three times is true
⇒ NIL

766 CHAPTER 26. ЦИКЛ LOOP

(loop repeat -15 ;Prints nothing
do (format t "What you see is what you expect~%"))
⇒ NIL

Примеры:

(loop repeat 3 ;Напечатает 3 строки
do (format t "То, что я скажу три раза является истиной~%"))

То, что я скажу три раза является истиной
То, что я скажу три раза является истиной
То, что я скажу три раза является истиной
⇒ NIL

(loop repeat -15 ;Ничего не напечатает
do (format t "То что вы видите, это то, что вы ожидаете~%"))
⇒ NIL

26.13 End-Test Control

26.14 Проверка завершения

The loop keywords always, never, thereis, until, and while designate
constructs that use a single test condition to determine when loop iteration
should terminate.

Ключевые символы always, never, thereis, until иwhile обозначают
конструкции, которые с помощью условия проверяют должен ли быть
завершён цикл.

The constructs always, never, and thereis provide specific values to be
returned when a loop terminates. Using always, never, or thereis with
value-returning accumulation clauses can produce unpredictable results. In
all other respects these constructs behave like thewhile and until constructs.

The macro loop-finish can be used at any time to cause normal termina-
tion. In normal termination, finally clauses are executed and default return
values are returned.

End-test control constructs can be used anywhere within the loop body.

26.14. ПРОВЕРКА ЗАВЕРШЕНИЯ 767

The termination conditions are tested in the order in which they appear.
[Loop clause] while expr
[Loop clause] until expr
The while construct allows iteration to continue until the specified ex-

pression expr evaluates to nil. The expression is re-evaluated at the location
of the while clause.

The until construct is equivalent to while (not expr). If the value of the
specified expression is non-nil, iteration terminates.

You can use while and until at any point in a loop. If a while or until
clause causes termination, any clauses that precede it in the source are still
evaluated.

Examples:
;;; A classic "while-loop".
(loop while (hungry-p) do (eat))

;;; UNTIL NOT is equivalent to WHILE.
(loop until (not (hungry-p)) do (eat))

;;; Collect the length and the items of STACK.
(let ((stack ’(a b c d e f)))
(loop while stack

for item = (length stack) then (pop stack)
collect item))

⇒ (6 A B C D E F)

;;; Use WHILE to terminate a loop that otherwise wouldn’t
;;; terminate. Note that WHILE occurs after the WHEN.
(loop for i fixnum from 3

when (oddp i) collect i
while (< i 5))
⇒ (3 5)
[Loop clause] always expr
[Loop clause] never expr
[Loop clause] thereis expr
The always construct takes one form and terminates the loop if the form

ever evaluates to nil; in this case, it returns nil. Otherwise, it provides a
default return value of t.

768 CHAPTER 26. ЦИКЛ LOOP

The never construct takes one form and terminates the loop if the form
ever evaluates to non-nil; in this case, it returns nil. Otherwise, it provides
a default return value of t.

The thereis construct takes one form and terminates the loop if the form
ever evaluates to non-nil; in this case, it returns that value.

If the while or until construct causes termination, control is passed to
the loop epilogue, where any finally clauses will be executed. Since always,
never, and thereis use the Common Lisp macro return to terminate iter-
ation, any finally clause that is specified is not evaluated.

Examples:

;;; Make sure I is always less than 11 (two ways).
;;; The FOR construct terminates these loops.

(loop for i from 0 to 10
always (< i 11))
⇒ T

(loop for i from 0 to 10
never (> i 11))
⇒ T

;;; If I exceeds 10, return I; otherwise, return NIL.
;;; The THEREIS construct terminates this loop.

(loop for i from 0
thereis (when (> i 10) i))
⇒ 11

;;; The FINALLY clause is not evaluated in these examples.

(loop for i from 0 to 10
always (< i 9)
finally (print "you won’t see this"))
⇒ NIL

(loop never t
finally (print "you won’t see this"))
⇒ NIL

26.14. ПРОВЕРКА ЗАВЕРШЕНИЯ 769

(loop thereis "Here is my value"
finally (print "you won’t see this"))
⇒ "Here is my value"

;;; The FOR construct terminates this loop,
;;; so the FINALLY clause is evaluated.

(loop for i from 1 to 10
thereis (> i 11)
finally (print i)) ;Prints 1 line

11
⇒ NIL

(defstruct mountain height difficulty (why "because it is there"))
(setq everest (make-mountain :height ’(2.86e-13 parsecs)))
(setq chocorua (make-mountain :height ’(1059180001 microns)))
(defstruct desert area (humidity 0))
(setq sahara (make-desert :area ’(212480000 square furlongs)))

;First there is a mountain, then there is no mountain, then there is . . .
(loop for x in (list everest sahara chocorua) ; —GLS

thereis (and (mountain-p x) (mountain-height x)))
⇒ (2.86E-13 PARSECS)

;;; If you could use this code to find a counterexample to
;;; Fermat’s last theorem, it would still not return the value
;;; of the counterexample because all of the THEREIS clauses
;;; in this example return only T. Of course, this code has
;;; never been observed to terminate.

(loop for z upfrom 2
thereis
(loop for n upfrom 3 below (log z 2)

thereis
(loop for x below z

thereis
(loop for y below z

thereis (= (+ (expt x n)
(expt y n))

(expt z n))))))

770 CHAPTER 26. ЦИКЛ LOOP

[Macro] loop-finish
The macro loop-finish terminates iteration normally and returns any

accumulated result. If specified, a finally clause is evaluated.
In most cases it is not necessary to use loop-finish because other loop

control clauses terminate the loop. Use loop-finish to provide a normal exit
from a nested condition inside a loop.

You can use loop-finish inside nested Lisp code to provide a normal exit
from a loop. Since loop-finish transfers control to the loop epilogue, using
loop-finish within a finally expression can cause infinite looping.

Implementations are allowed to provide this construct as a local macro
by using macrolet.

Examples:

;;; Print a date in February, but exclude leap day.
;;; LOOP-FINISH exits from the nested condition.
(loop for date in date-list

do (case date
(29 (when (eq month ’february)

(loop-finish))
(format t "~:@(~A~) ~A" month date))))

;;; Terminate the loop, but return the accumulated count.
(loop for i in ’(1 2 3 stop-here 4 5 6)

when (symbolp i) do (loop-finish)
count i)
⇒ 3

;;; This loop works just as well as the previous example.
(loop for i in ’(1 2 3 stop-here 4 5 6)

until (symbolp i)
count i)
⇒ 3

26.15 Value Accumulation
Accumulating values during iteration and returning them from a loop is often
useful. Some of these accumulations occur so frequently that special loop
clauses have been developed to handle them.

26.15. VALUE ACCUMULATION 771

The loop keywords append, appending, collect, collecting, nconc,
and nconcing designate clauses that accumulate values in lists and return
them.

The loop keywords count, counting, maximize, maximizing, mini-
mize, minimizing, sum, and summing designate clauses that accumulate
and return numerical values. [There is no semantic difference between the
“ing” keywords and their non-“ing” counterparts. They are provided purely
for the sake of stylistic diversity among users. I happen to prefer the non-
“ing” forms—when I use loop at all.—GLS]

The loop preposition into can be used to name the variable used to hold
partial accumulations. The variable is bound as if by the loop construct with
(see section 26.17). If into is used, the construct does not provide a default
return value; however, the variable is available for use in any finally clause.

You can combine value-returning accumulation clauses in a loop if all
the clauses accumulate the same type of data object. By default, the Loop
Facility returns only one value; thus, the data objects collected by multiple
accumulation clauses as return values must have compatible types. For ex-
ample, since both the collect and append constructs accumulate objects
into a list that is returned from a loop, you can combine them safely.

;;; Collect every name and the kids in one list by using
;;; COLLECT and APPEND.
(loop for name in ’(fred sue alice joe june)

for kids in ’((bob ken) () () (kris sunshine) ())
collect name
append kids)
⇒ (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

[In the preceding example, note that the items accumulated by the collect
and append clauses are interleaved in the result list, according to the order
in which the clauses were executed.—GLS]

Multiple clauses that do not accumulate the same type of data object can
coexist in a loop only if each clause accumulates its values into a different
user-specified variable. Any number of values can be returned from a loop if
you use the Common Lisp function values, as the next example shows:

772 CHAPTER 26. ЦИКЛ LOOP

;;; Count and collect names and ages.
(loop for name in ’(fred sue alice joe june)

as age in ’(22 26 19 20 10)
append (list name age) into name-and-age-list
count name into name-count
sum age into total-age
finally
(return (values (round total-age name-count)

name-and-age-list)))
⇒ 19 and (FRED 22 SUE 26 ALICE 19 JOE 20 JUNE 10)

[Loop clause] collect expr [into var]
[Loop clause] collecting expr [into var]
During each iteration, these constructs collect the value of the specified

expression into a list. When iteration terminates, the list is returned.
The argument var is set to the list of collected values; if var is specified,

the loop does not return the final list automatically. If var is not specified,
it is equivalent to specifying an internal name for var and returning its value
in a finally clause. The var argument is bound as if by the construct with.
You cannot specify a data type for var ; it must be of type list.

Examples:

;;; Collect all the symbols in a list.
(loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)

when (symbolp i) collect i)
⇒ (BIRD TURTLE HORSE CAT)

;;; Collect and return odd numbers.
(loop for i from 1 to 10

if (oddp i) collect i)
⇒ (1 3 5 7 9)

;;; Collect items into local variable, but don’t return them.
(loop for i in ’(a b c d) by #’cddr

collect i into my-list
finally (print my-list)) ;Prints 1 line

(A C)
⇒ NIL

26.15. VALUE ACCUMULATION 773

[Loop clause] append expr [into var]
[Loop clause] appending expr [into var]
[Loop clause] nconc expr [into var]
[Loop clause] nconcing expr [into var]
These constructs are similar to collect except that the values of the

specified expression must be lists.
The append keyword causes its list values to be concatenated into a

single list, as if they were arguments to the Common Lisp function append.
The nconc keyword causes its list values to be concatenated into a single

list, as if they were arguments to the Common Lisp function nconc. Note
that the nconc keyword destructively modifies its argument lists.

The argument var is set to the list of concatenated values; if you specify
var, the loop does not return the final list automatically. The var argument
is bound as if by the construct with. You cannot specify a data type for
var ; it must be of type list.

Examples:

;;; Use APPEND to concatenate some sublists.
(loop for x in ’((a) (b) ((c)))

append x)
⇒ (A B (C))

;;; NCONC some sublists together. Note that only lists
;;; made by the call to LIST are modified.
(loop for i upfrom 0

as x in ’(a b (c))
nconc (if (evenp i) (list x) ’()))
⇒ (A (C))

[Loop clause] count expr [into var] [type-spec]
[Loop clause] counting expr [into var] [type-spec]
The count construct counts the number of times that the specified ex-

pression has a non-nil value.
The argument var accumulates the number of occurrences; if var is spec-

ified, the loop does not return the final count automatically. The var argu-
ment is bound as if by the construct with.

If into var is used, the optional type-spec argument specifies a data type
for var . If there is no into variable, the optional type-spec argument applies

774 CHAPTER 26. ЦИКЛ LOOP

to the internal variable that is keeping the count. In either case it is an error
to specify a non-numeric data type. The default type is implementation-
dependent, but it must be a subtype of (or integer float).

Example:

(loop for i in ’(a b nil c nil d e)
count i)
⇒ 5

[Loop clause] sum expr [into var] [type-spec]
[Loop clause] summing expr [into var] [type-spec]
The sum construct forms a cumulative sum of the values of the specified

expression at each iteration.
The argument var is used to accumulate the sum; if var is specified, the

loop does not return the final sum automatically. The var argument is bound
as if by the construct with.

If into var is used, the optional type-spec argument specifies a data type
for var . If there is no into variable, the optional type-spec argument applies
to the internal variable that is keeping the sum. In either case it is an error
to specify a non-numeric data type. The default type is implementation-
dependent, but it must be a subtype of number.

Examples:

;;; Sum the elements of a list.

(loop for i fixnum in ’(1 2 3 4 5)
sum i)
⇒ 15

;;; Sum a function of elements of a list.

(setq series
’(1.2 4.3 5.7))
⇒ (1.2 4.3 5.7)

(loop for v in series
sum (* 2.0 v))
⇒ 22.4

26.15. VALUE ACCUMULATION 775

[Loop clause] maximize expr [into var] [type-spec]

[Loop clause] maximizing expr [into var] [type-spec]

[Loop clause] minimize expr [into var] [type-spec]

[Loop clause] minimizing expr [into var] [type-spec]

The maximize construct compares the value of the specified expression
obtained during the first iteration with values obtained in successive itera-
tions. The maximum value encountered is determined and returned. If the
loop never executes the body, the returned value is not meaningful.

The minimize construct is similar to maximize; it determines and re-
turns the minimum value.

The argument var accumulates the maximum or minimum value; if var is
specified, the loop does not return the maximum or minimum automatically.
The var argument is bound as if by the construct with.

If into var is used, the optional type-spec argument specifies a data type
for var . If there is no into variable, the optional type-spec argument applies
to the internal variable that is keeping the intermediate result. In either
case it is an error to specify a non-numeric data type. The default type is
implementation-dependent, but it must be a subtype of (or integer float).

Examples:

(loop for i in ’(2 1 5 3 4)
maximize i)
⇒ 5

776 CHAPTER 26. ЦИКЛ LOOP

(loop for i in ’(2 1 5 3 4)
minimize i)
⇒ 1

;;; In this example, FIXNUM applies to the internal
;;; variable that holds the maximum value.

(setq series ’(1.2 4.3 5.7))
⇒ (1.2 4.3 5.7)

(loop for v in series
maximize (round v) fixnum)
⇒ 6

;;; In this example, FIXNUM applies to the variable RESULT.

(loop for v float in series
minimize (round v) into result fixnum
finally (return result))
⇒ 1

26.16 Variable Initializations

26.17 Инициализация переменных
A local loop variable is one that exists only when the Loop Facility is invoked.
At that time, the variables are declared and are initialized to some value.
These local variables exist until loop iteration terminates, at which point
they cease to exist. Implicitly variables are also established by iteration
control clauses and the into preposition of accumulation clauses.

The loop keywordwith designates a loop clause that allows you to declare
and initialize variables that are local to a loop. The variables are initialized
one time only; they can be initialized sequentially or in parallel.

By default, the with construct initializes variables sequentially; that is,
one variable is assigned a value before the next expression is evaluated. How-
ever, by using the loop keyword and to join several with clauses, you can
force initializations to occur in parallel; that is, all of the specified expres-

26.17. ИНИЦИАЛИЗАЦИЯ ПЕРЕМЕННЫХ 777

sions are evaluated, and the results are bound to the respective variables
simultaneously.

Use sequential binding for making the initialization of some variables
depend on the values of previously bound variables. For example, suppose
you want to bind the variables a, b, and c in sequence:

(loop with a = 1
with b = (+ a 2)
with c = (+ b 3)
with d = (+ c 4)
return (list a b c d))
⇒ (1 3 6 10)

Если инициализация переменных зависит от предыдущих
переменных, используйте последовательное связывание. Например, вы
хотите последовательно связать переменные a, b и c:

(loop with a = 1
with b = (+ a 2)
with c = (+ b 3)
with d = (+ c 4)
return (list a b c d))
⇒ (1 3 6 10)

The execution of the preceding loop is equivalent to the execution of the
following code:

(let* ((a 1)
(b (+ a 2))
(c (+ b 3))
(d (+ c 4)))

(block nil
(tagbody
next-loop (return (list a b c d))

(go next-loop)
end-loop)))

Предыдущий код эквивалентен такому:

778 CHAPTER 26. ЦИКЛ LOOP

(let* ((a 1)
(b (+ a 2))
(c (+ b 3))
(d (+ c 4)))

(block nil
(tagbody
next-loop (return (list a b c d))

(go next-loop)
end-loop)))

If you are not depending on the value of previously bound variables for
the initialization of other local variables, you can use parallel bindings as
follows:

(loop with a = 1
and b = 2
and c = 3
and d = 4
return (list a b c d))
⇒ (1 2 3 4)

Если последовательная инициализация не требуется, используйте
параллельную:

(loop with a = 1
and b = 2
and c = 3
and d = 4
return (list a b c d))
⇒ (1 2 3 4)

The execution of the preceding loop is equivalent to the execution of the
following code:

(let ((a 1)
(b 2)
(c 3)
(d 4))

26.17. ИНИЦИАЛИЗАЦИЯ ПЕРЕМЕННЫХ 779

(block nil
(tagbody
next-loop (return (list a b c))

(go next-loop)
end-loop)))

Предыдущий код эквивалентен такому:

(let ((a 1)
(b 2)
(c 3)
(d 4))

(block nil
(tagbody
next-loop (return (list a b c))

(go next-loop)
end-loop)))

[Loop clause] with var [type-spec] [= expr] {and var [type-spec] [= expr]}*
The with construct initializes variables that are local to a loop. The

variables are initialized one time only.
Конструкция with инициализирует локальные переменные.

Переменные инициализируются только один раз.
If the optional type-spec argument is specified for any variable var , but

there is no related expression expr to be evaluated, var is initialized to an
appropriate default value for its data type. For example, for the data types
t, number, and float, the default values are nil, 0, and 0.0, respectively. It
is an error to specify a type-spec argument for var if the related expression
returns a value that is not of the specified type. The optional and clause
forces parallel rather than sequential initializations.

Examples:

;;; These bindings occur in sequence.
(loop with a = 1

with b = (+ a 2)
with c = (+ b 3)
with d = (+ c 4)
return (list a b c d))
⇒ (1 3 6 10)

780 CHAPTER 26. ЦИКЛ LOOP

;;; These bindings occur in parallel.
(setq a 5 b 10 c 1729)
(loop with a = 1

and b = (+ a 2)
and c = (+ b 3)
and d = (+ c 4)
return (list a b c d))
⇒ (1 7 13 1733)

;;; This example shows a shorthand way to declare
;;; local variables that are of different types.
(loop with (a b c) (float integer float)

return (format nil "~A ~A ~A" a b c))
⇒ "0.0 0 0.0"

;;; This example shows a shorthand way to declare
;;; local variables that are of the same type.
(loop with (a b c) float

return (format nil "~A ~A ~A" a b c))
⇒ "0.0 0.0 0.0"

26.18 Conditional Execution

26.19 Условное выполнение
The loop keywords if, when, and unless designate constructs that are useful
when you want some loop clauses to operate under a specified condition.

Ключевые символы if, when и unless обозначают конструкцию,
которая полезна, когда вы хотите выполнить некоторые действия только
при выполнении некоторого условия.

If the specified condition is true, the succeeding loop clause is executed.
If the specified condition is not true, the succeeding clause is skipped, and
program control moves to the clause that follows the loop keyword else. If
the specified condition is not true and no else clause is specified, the entire
conditional construct is skipped. Several clauses can be connected into one
compound clause with the loop keyword and. The end of the conditional

26.19. УСЛОВНОЕ ВЫПОЛНЕНИЕ 781

clause can be marked with the keyword end.
Если условие истинно, выполняется следующее выражение. Если

условие ложно, следующее выражение пропускается и выполнение
переходит к выражению в ветке else. Если условие ложно и ветка else
отсутствует, всё выражение просто пропускается. Несколько выражений
могут объединены в одно с помощью and. Конец условного выражения
можно обозначить символом end.

[Loop clause] if expr clause {and clause}*
[else clause {and clause}*] [end]

[Loop clause] when expr clause {and clause}*
[else clause {and clause}*] [end]

[Loop clause] unless expr clause {and clause}*
[else clause {and clause}*] [end]

The constructs when and if allow conditional execution of loop clauses.
These constructs are synonyms and can be used interchangeably.

Конструкции when и if выполняют действия в зависимости от
условия. Эти конструкции являются синонимами и соответственно
взаимозаменяемы.

If the value of the test expression expr is non-nil, the expression clause1
is evaluated. If the test expression evaluates to nil and an else construct
is specified, the statements that follow the else are evaluated; otherwise,
control passes to the next clause.

Если значение условия expr не-nil, выполняется выражение clause1.
Если условие возвращает nil и указана ветка else выполняются
выражения в этой ветке, иначе выполнение переходит к следующему
выражению.

The unless construct is equivalent towhen (not expr) and if (not expr).
If the value of the test expression expr is nil, the expression clause1 is eval-
uated. If the test expression evaluates to non-nil and an else construct is
specified, the statements that follow the else are evaluated; otherwise, con-
trol passes to the next clause. [Compare this to the macro unless, which
does not allow an “else” part—or do I mean a “then” part?! Ugh. To prevent
confusion, I strongly recommend as a matter of style that else not be used
with unless loop clauses.—GLS]

Конструкция unless эквивалентна конструкциям when (not expr)
и if (not expr). Если значение условия nil, выполняется выражение

782 CHAPTER 26. ЦИКЛ LOOP

clause1. Если условие не-nil выполняется ветка else, иначе выполнение
переходит к следующей конструкции.

The clause arguments must be either accumulation, unconditional, or
conditional clauses (see section 26.6.3). Clauses that follow the test expres-
sion can be grouped by using the loop keyword and to produce a compound
clause.

Аргументы clause должны быть или накоплением значения,
безусловным или условным выполнением (смотрите раздел 26.6.3).
Выражения, которые следуют после условия, могут группироваться с
помощью and.

The loop keyword it can be used to refer to the result of the test expression
in a clause. If multiple clauses are connected with and, the it construct must
be used in the first clause in the block. Since it is a loop keyword, it may
not be used as a local variable within a loop.

Для ссылки на результат условия может использоваться символ
it. Если выражения были сгруппированы с помощью and, it должна
использоваться только в первом выражении в блоке. Таким образом it
не может использоваться в качестве локальной переменной внутри loop.

If when or if clauses are nested, each else is paired with the closest
preceding when or if construct that has no associated else.

Если when или if вложены, каждый else относится к ближайшему
предшествующему when или if, у которого ещё не было else.

The optional loop keyword end marks the end of the clause. If this
keyword is not specified, the next loop keyword marks the end. You can use
end to distinguish the scoping of compound clauses.

;;; Group conditional clauses into a block.
(loop for i in numbers-list

when (oddp i)
do (print i)
and collect i into odd-numbers
and do (terpri)

else ;I is even
collect i into even-numbers

finally
(return (values odd-numbers even-numbers)))

26.19. УСЛОВНОЕ ВЫПОЛНЕНИЕ 783

;;; Collect numbers larger than 3.
(loop for i in ’(1 2 3 4 5 6)

when (and (> i 3) i)
collect it) ;it refers to (and (> i 3) i)
⇒ (4 5 6)

;;; Find a number in a list.
(loop for i in ’(1 2 3 4 5 6)

when (and (> i 3) i)
return it)
⇒ 4

;;; The preceding example is similar to the following one.
(loop for i in ’(1 2 3 4 5 6)

thereis (and (> i 3) i))
⇒ 4

;;; An example of using UNLESS with ELSE (yuk). —GLS
(loop for turtle in teenage-mutant-ninja-turtles do
(loop for x in ’(joker brainiac shredder krazy-kat)

unless (evil x)
do (eat (make-pizza :anchovies t))

else unless (and (eq x ’shredder) (attacking-p x))
do (cut turtle slack) ;When the evil Shredder attacks,

else (fight turtle x))) ; those turtle boys don’t cut no slack

;;; Nest conditional clauses.
(loop for i in list

when (numberp i)
when (bignump i)
collect i into big-numbers

else ;Not (bignump i)
collect i into other-numbers

else ;Not (numberp i)
when (symbolp i)
collect i into symbol-list

else ;Not (symbolp i)
(error "found a funny value in list ~S, value ~S~%"

"list i))

784 CHAPTER 26. ЦИКЛ LOOP

;;; Without the END marker, the last AND would apply to the
;;; inner IF rather than the outer one.
(loop for x from 0 to 3

do (print x)
if (zerop (mod x 2))
do (princ " a")
and if (zerop (floor x 2))

do (princ " b")
end

and do (princ " c"))

Конец можно обозначить необязательным символом end. Если
этот символ не указан, конструкция заканчивается там, где начинается
следующая, обозначенная символом. Вы можете использовать end для
ограничения пространство составных выражений.

;;; Группирует условные выражение в блок.
(loop for i in numbers-list

when (oddp i)
do (print i)
and collect i into odd-numbers
and do (terpri)

else ;I is even
collect i into even-numbers

finally
(return (values odd-numbers even-numbers)))

;;; Накапливает числа, большие чем 3.
(loop for i in ’(1 2 3 4 5 6)

when (and (> i 3) i)
collect it) ;it ссылается на (and (> i 3) i)
⇒ (4 5 6)

;;; Ищет числа в списке.
(loop for i in ’(1 2 3 4 5 6)

when (and (> i 3) i)
return it)
⇒ 4

26.19. УСЛОВНОЕ ВЫПОЛНЕНИЕ 785

;;; То же что и в предыдущем примере.
(loop for i in ’(1 2 3 4 5 6)

thereis (and (> i 3) i))
⇒ 4

;;; Пример использования UNLESS с ELSE. —GLS
(loop for turtle in teenage-mutant-ninja-turtles do
(loop for x in ’(joker brainiac shredder krazy-kat)

unless (evil x)
do (eat (make-pizza :anchovies t))

else unless (and (eq x ’shredder) (attacking-p x))
do (cut turtle slack) ;Когда злой Шрёдер атакует,

else (fight turtle x))) ; эти черепашки-ниндзя дают ему отпор.

;;; Вложенные условные выражения.
(loop for i in list

when (numberp i)
when (bignump i)
collect i into big-numbers

else ;Not (bignump i)
collect i into other-numbers

else ;Not (numberp i)
when (symbolp i)
collect i into symbol-list

else ;Not (symbolp i)
(error "нашёл интересное значение в списке ~S, значение ~S~%"

"list i))

;;; Без маркера END последнее AND должно примениться к
;;; внутреннему IF, а не к внешнему.
(loop for x from 0 to 3

do (print x)
if (zerop (mod x 2))
do (princ " a")
and if (zerop (floor x 2))

do (princ " b")
end

and do (princ " c"))

786 CHAPTER 26. ЦИКЛ LOOP

26.20 Unconditional Execution

26.21 Безусловное выполнение

The loop construct do (or doing) takes one or more expressions and simply
evaluates them in order.

The loop construct return takes one expression and returns its value. It
is equivalent to the clause do (return value).

Конструкция do (или doing) принимает одно или более выражений
и просто их выполняет в исходном порядке.

Конструкция return принимает одно выражение и возвращает его
значение. Оно эквивалентно такому выражению: do (return value).

[Loop clause] do {expr}*

[Loop clause] doing {expr}*

The do construct simply evaluates the specified expressions wherever they
occur in the expanded form of loop.

Конструкция do просто выполняет указанные выражения.
Конструкция может быть использована в любом месте формы loop.

The expr argument can be any non-atomic Common Lisp form. Each
expr is evaluated in every iteration.

Аргумент expr может быть любой неатомной Common Lisp’овой
формой. Каждое выражение expr вычисляется на каждой итерации
цикла.

The constructs do, initially, and finally are the only loop keywords that
take an arbitrary number of forms and group them as if using an implicit
progn. Because every loop clause must begin with a loop keyword, you
would use the keyword do when no control action other than execution is
required.

Только конструкции do, initially и finally принимают несколько
форм и группируют их как неявный progn. Так как каждое выражение
цикла loop начинается с ключевого символа, когда требуется просто
выполнение некоторых действий, вы должны использовать ключевой
символ do.

Examples:

26.21. БЕЗУСЛОВНОЕ ВЫПОЛНЕНИЕ 787

;;; Print some numbers.
(loop for i from 1 to 5

do (print i)) ;Prints 5 lines
1
2
3
4
5
⇒ NIL

;;; Print numbers and their squares.
;;; The DO construct applies to multiple forms.
(loop for i from 1 to 4

do (print i)
(print (* i i))) ;Prints 8 lines

1
1
2
4
3
9
4
16
⇒ NIL

Примеры:

;;; Напечатает несколько чисел
(loop for i from 1 to 5

do (print i)) ;Напечатает 5 строк
1
2
3
4
5
⇒ NIL

788 CHAPTER 26. ЦИКЛ LOOP

;;; Напечатает числа и их квадраты.
;;; Конструкция DO применяется к нескольким формам.
(loop for i from 1 to 4

do (print i)
(print (* i i))) ;Напечатает 8 строк

1
1
2
4
3
9
4
16
⇒ NIL

[Loop clause] return expr

The return construct terminates a loop and returns the value of the
specified expression as the value of the loop. This construct is similar to the
Common Lisp special operator return-from and the Common Lisp macro
return.

The Loop Facility supports the return construct for backward compat-
ibility with older loop implementations. The return construct returns im-
mediately and does not execute any finally clause that is given.

Examples:

;;; Signal an exceptional condition.
(loop for item in ’(1 2 3 a 4 5)

when (not (numberp item))
return (cerror "enter new value"

"non-numeric value: ~s"
item)) ;Signals an error

»Error: non-numeric value: A

26.22. MISCELLANEOUS FEATURES 789

;;; The previous example is equivalent to the following one.
(loop for item in ’(1 2 3 a 4 5)

when (not (numberp item))
do (return

(cerror "enter new value"
"non-numeric value: ~s"
item))) ;Signals an error

»Error: non-numeric value: A

26.22 Miscellaneous Features

26.23 Дополнительные возможности

The Loop Facility provides the named construct to name a loop so that the
Common Lisp special operator return-from can be used.

Для задания имени цикла используется конструкция named. Данное
имя впоследствии можно использовать в return-from.

The loop keywords initially and finally designate loop constructs that
cause expressions to be evaluated before and after the loop body, respectively.

Символы initially и finally обозначают выражения, которые будут
выполнены перед и после тела цикла соответственно.

The code for any initially clauses is collected into one progn in the order
in which the clauses appeared in the loop. The collected code is executed
once in the loop prologue after any implicit variable initializations.

Выражения после всех initially собираются в один progn в исходном
порядке. Сгруппированный код выполняется единожды перед началом
итераций.

The code for any finally clauses is collected into one progn in the order
in which the clauses appeared in the loop. The collected code is executed
once in the loop epilogue before any implicit values are returned from the
accumulation clauses. Explicit returns in the loop body, however, will exit
the loop without executing the epilogue code.

Выражения после всех finally собираются в один progn в
исходном порядке. Сгруппированный код выполняется единожды после
выполнения всех итераций в эпилоге перед неявным возвратом значений.
В случае явного выхода из цикла, эпилог не выполняется.

790 CHAPTER 26. ЦИКЛ LOOP

26.23.1 Data Types

26.23.2 Типы данных

Many loop constructs take a type-spec argument that allows you to specify
certain data types for loop variables. While it is not necessary to specify a
data type for any variable, by doing so you ensure that the variable has a
correctly typed initial value. The type declaration is made available to the
compiler for more efficient loop expansion. In some implementations, fixnum
and float declarations are especially useful; the compiler notices them and
emits more efficient code.

Многие конструкции принимают аргумент type-spec, который
позволяет задать тип для переменной. Конечно в этом нет прямой
необходимости, но декларации типов упрощают дальнейшую работу
с программой. Декларация типов также помогает компилятору
оптимизировать программу. Особенно это касается типов fixnum и float.

The type-spec argument has the following syntax:

type-spec ::= of-type d-type-spec
d-type-spec ::= type-specifier | (d-type-spec . d-type-spec)

A type-specifier in this syntax can be any Common Lisp type specifier. The d-
type-spec argument is used for destructuring, as described in section 26.23.3.
If the d-type-spec argument consists solely of the types fixnum, float, t,
or nil, the of-type keyword is optional. The of-type construct is optional
in these cases to provide backward compatibility; thus the following two
expressions are the same:

;;; This expression uses the old syntax for type specifiers.
(loop for i fixnum upfrom 3 ...)

;;; This expression uses the new syntax for type specifiers.
(loop for i of-type fixnum upfrom 3 ...)

Аргумент type-spec выглядит так:

type-spec ::= of-type d-type-spec
d-type-spec ::= type-specifier | (d-type-spec . d-type-spec)

На месте type-specifier может быть любой спецификатор типа. Аргумент
d-type-spec используется для деструктуризации, как написано в

26.23. ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ 791

разделе 26.23.3. Если аргумент d-type-spec состоит только из ключевых
слов fixnum, float, t или nil, символ of-type необязателен. Это
оставлено для обратной совместимости.

;;; Старый стиль кода.
(loop for i fixnum upfrom 3 ...)

;;; Новый стиль кода.
(loop for i of-type fixnum upfrom 3 ...)

26.23.3 Destructuring

Destructuring allows you to bind a set of variables to a corresponding set
of values anywhere that you can normally bind a value to a single variable.
During loop expansion, each variable in the variable list is matched with the
values in the values list. If there are more variables in the variable list than
there are values in the values list, the remaining variables are given a value
of nil. If there are more values than variables listed, the extra values are
discarded.

Suppose you want to assign values from a list to the variables a, b, and
c. You could use one for clause to bind the variable numlist to the car of
the specified expression, and then you could use another for clause to bind
the variables a, b, and c sequentially.

;;; Collect values by using FOR constructs.
(loop for numlist in ’((1 2 4.0) (5 6 8.3) (8 9 10.4))

for a integer = (first numlist)
and for b integer = (second numlist)
and for c float = (third numlist)
collect (list c b a))
⇒ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

Destructuring makes this process easier by allowing the variables to be
bound in parallel in each loop iteration. You can declare data types by using
a list of type-spec arguments. If all the types are the same, you can use a
shorthand destructuring syntax, as the second example following illustrates.

792 CHAPTER 26. ЦИКЛ LOOP

;;; Destructuring simplifies the process.
(loop for (a b c) (integer integer float) in

’((1 2 4.0) (5 6 8.3) (8 9 10.4))
collect (list c b a)))
⇒ ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;;; If all the types are the same, this way is even simpler.
(loop for (a b c) float in

’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))
collect (list c b a))
⇒ ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If you use destructuring to declare or initialize a number of groups of
variables into types, you can use the loop keyword and to simplify the process
further.

;;; Initialize and declare variables in parallel
;;; by using the AND construct.
(loop with (a b) float = ’(1.0 2.0)

and (c d) integer = ’(3 4)
and (e f)
return (list a b c d e f))
⇒ (1.0 2.0 3 4 NIL NIL)

A data type specifier for a destructuring pattern is a tree of type specifiers
with the same shape as the tree of variables, with the following exceptions:

• When aligning the trees, an atom in the type specifier tree that matches
a cons in the variable tree declares the same type for each variable.

• A cons in the type specifier tree that matches an atom in the variable
tree is a non-atomic type specifer.

;;; Declare X and Y to be of type VECTOR and FIXNUM, respectively.
(loop for (x y) of-type (vector fixnum) in my-list do ...)

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) = ’(1 2 3)
do (return (list a b)))
⇒ (1 3)

26.23. ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ 793

Note that nonstandard lists can specify destructuring.

(loop for (x . y) = ’(1 . 2)
do (return y))
⇒ 2

(loop for ((a . b) (c . d))
of-type ((float . float) (integer . integer))
in ’(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))

collect (list a b c d))
⇒ ((1.2 2.4 3 4) (3.4 4.6 5 6))

[It is worth noting that the destructuring facility of loop predates, and
differs in some details from, that of destructuring-bind, an extension that
has been provided by many implementors of Common Lisp.—GLS]

[Loop clause] initially {expr}*

[Loop clause] finally [do | doing] {expr}*

[Loop clause] finally return expr

The initially construct causes the specified expression to be evaluated
in the loop prologue, which precedes all loop code except for initial settings
specified by constructs with, for, or as. The finally construct causes the
specified expression to be evaluated in the loop epilogue after normal iteration
terminates.

The expr argument can be any non-atomic Common Lisp form.
Clauses such as return, always, never, and thereis can bypass the

finally clause.
The Common Lisp macro return (or the return loop construct) can

be used after finally to return values from a loop. The evaluation of the
return form inside the finally clause takes precedence over returning the
accumulation from clauses specified by such keywords as collect, nconc,
append, sum, count, maximize, and minimize; the accumulation values
for these pre-empted clauses are not returned by the loop if return is used.

The constructs do, initially, and finally are the only loop keywords
that take an arbitrary number of (non-atomic) forms and group them as if
by using an implicit progn.

794 CHAPTER 26. ЦИКЛ LOOP

Examples:

;;; This example parses a simple printed string representation
;;; from BUFFER (which is itself a string) and returns the
;;; index of the closing double-quote character.

(loop initially (unless (char= (char buffer 0) #\")
(loop-finish))

for i fixnum from 1 below (string-length buffer)
when (char= (char buffer i) #\")
return i)

;;; The FINALLY clause prints the last value of I.
;;; The collected value is returned.

(loop for i from 1 to 10
when (> i 5)
collect i

finally (print i)) ;Prints 1 line
11
⇒ (6 7 8 9 10)

;;; Return both the count of collected numbers
;;; as well as the numbers themselves.

(loop for i from 1 to 10
when (> i 5)
collect i into number-list
and count i into number-count

finally (return (values number-count number-list)))
⇒ 5 and (6 7 8 9 10)

[Loop clause] named name
The named construct allows you to assign a name to a loop construct

so that you can use the Common Lisp special operator return-from to exit
the named loop.

Only one name may be assigned per loop; the specified name becomes
the name of the implicit block for the loop.

26.23. ДОПОЛНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ 795

If used, the named construct must be the first clause in the loop expres-
sion, coming right after the word loop.

Example:

;;; Just name and return.
(loop named max

for i from 1 to 10
do (print i)
do (return-from max ’done)) ;Prints 1 line

1
⇒ DONE

796 CHAPTER 26. ЦИКЛ LOOP

Chapter 27

Pretty Printing

Author: Richard C. Waters
preface: X3J13 voted in January 1989 to adopt a facility for user-controlled
pretty printing as a part of the forthcoming draft Common Lisp standard.
This facility is the culmination of thirteen years of design, testing, revision,
and use of this approach.

This chapter presents the bulk of the Common Lisp pretty printing spec-
ification, written by Richard C. Waters. I have edited it only very lightly to
conform to the overall style of this book.

—Guy L. Steele Jr.

27.1 Introduction

Pretty printing has traditionally been a black box process, displaying pro-
gram code using a set of fixed layout rules. Its utility can be greatly enhanced
by opening it up to user control. The facilities described in this chapter pro-
vide general and powerful means for specifying pretty-printing behavior.

By providing direct access to the mechanisms within the pretty printer
that make dynamic decisions about layout, the macros and functions pprint-
logical-block, pprint-newline, and pprint-indent make it possible to
specify pretty printing layout rules as a part of any function that produces
output. They also make it very easy for the function to support detection of
circularity and sharing and abbreviation based on length and nesting depth.
Using the function set-pprint-dispatch, one can associate a user-defined
pretty printing function with any type of object. A small set of new for-

797

798 CHAPTER 27. PRETTY PRINTING

mat directives allows concise implementation of user-defined pretty-printing
functions. Together, these facilities enable users to redefine the way code is
displayed and allow the full power of pretty printing to be applied to complex
combinations of data structures.

Implementation note: This chapter describes the interface of the XP pretty
printer. XP is described fully in [54], which also explains how to obtain a portable
implementation. XP uses a highly efficient linear-time algorithm. When properly
integrated into a Common Lisp, this algorithm supports pretty printing that is
only fractionally slower than ordinary printing.

27.2 Pretty Printing Control Variables
The function write accepts keyword arguments named :pprint-dispatch,
:miser-width, :right-margin, and :lines, corresponding to these variables.

[Variable] *print-pprint-dispatch*

When *print-pretty* is not nil, printing is controlled by the ‘pprint
dispatch table’ stored in the variable *print-pprint-dispatch*. The initial
value of *print-pprint-dispatch* is implementation-dependent and causes
traditional pretty printing of Lisp code. The last section of this chapter
explains how the contents of this table can be changed.

[Variable] *print-right-margin*

A primary goal of pretty printing is to keep the output between a pair of
margins. The left margin is set at the column where the output begins. If
this cannot be determined, the left margin is set to zero.

When *print-right-margin* is not nil, it specifies the right margin to
use when making layout decisions. When *print-right-margin* is nil (the
initial value), the right margin is set at the maximum line length that can
be displayed by the output stream without wraparound or truncation. If
this cannot be determined, the right margin is set to an implementation-
dependent value.

To allow for the possibility of variable-width fonts, *print-right-
margin* is in units of ems—the width of an “m” in the font being used
to display characters on the relevant output stream at the moment when the
variables are consulted.

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT799

[Variable] *print-miser-width*

If *print-miser-width* is not nil, the pretty printer switches to a com-
pact style of output (called miser style) whenever the width available for
printing a substructure is less than or equal to *print-miser-width* ems.
The initial value of *print-miser-width* is implementation-dependent.

[Variable] *print-lines*

When given a value other than its initial value of nil, *print-lines* limits
the number of output lines produced when something is pretty printed. If an
attempt is made to go beyond *print-lines* lines, “ ..” (a space and two
periods) is printed at the end of the last line followed by all of the suffixes
(closing delimiters) that are pending to be printed.

(let ((*print-right-margin* 25) (*print-lines* 3))
(pprint ’(progn (setq a 1 b 2 c 3 d 4))))

(PROGN (SETQ A 1
B 2
C 3 ..))

(The symbol “..” is printed out to ensure that a reader error will occur
if the output is later read. A symbol different from “...” is used to indicate
that a different kind of abbreviation has occurred.)

27.3 Dynamic Control of the Arrangement of
Output

The following functions and macros support precise control of what should
be done when a piece of output is too large to fit in the space available. Three
concepts underlie the way these operations work: logical blocks, conditional
newlines, and sections. Before proceeding further, it is important to define
these terms.

The first line of figure 27.1 shows a schematic piece of output. The char-
acters in the output are represented by hyphens. The positions of conditional
newlines are indicated by digits. The beginnings and ends of logical blocks
are indicated in the figure by “<” and “>” respectively.

800 CHAPTER 27. PRETTY PRINTING

Figure 27.1: Example of Logical Blocks, Conditional Newlines, and Sections

<-1—<–<–2—3->–4–>->
000000000000000000000000000
11 111111111111111111111111

22 222
333 3333

44444444444444 44444

The output as a whole is a logical block and the outermost section. This
section is indicated by the 0’s on the second line of figure 27.1. Logical blocks
nested within the output are specified by the macro pprint-logical-block.
Conditional newline positions are specified by calls on pprint-newline.
Each conditional newline defines two sections (one before it and one after
it) and is associated with a third (the section immediately containing it).

The section after a conditional newline consists of all the output up to,
but not including, (a) the next conditional newline immediately contained in
the same logical block; or if (a) is not applicable, (b) the next newline that
is at a lesser level of nesting in logical blocks; or if (b) is not applicable, (c)
the end of the output.

The section before a conditional newline consists of all the output back
to, but not including, (a) the previous conditional newline that is imme-
diately contained in the same logical block; or if (a) is not applicable, (b)
the beginning of the immediately containing logical block. The last four
lines in figure 27.1 indicate the sections before and after the four conditional
newlines.

The section immediately containing a conditional newline is the shortest
section that contains the conditional newline in question. In figure 27.1, the
first conditional newline is immediately contained in the section marked with
0’s, the second and third conditional newlines are immediately contained in
the section before the fourth conditional newline, and the fourth conditional
newline is immediately contained in the section after the first conditional
newline.

Whenever possible, the pretty printer displays the entire contents of a
section on a single line. However, if the section is too long to fit in the space

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT801

available, line breaks are inserted at conditional newline positions within the
section.

[Function] pprint-newline kind &optional stream

The stream (which defaults to *standard-output*) follows the standard
conventions for stream arguments to printing functions (that is, nil stands for
standard-output and t stands for *terminal-io*). The kind argument
specifies the style of conditional newline. It must be one of :linear, :fill,
:miser, or :mandatory. An error is signaled if any other value is supplied.
If stream is a pretty printing stream created by pprint-logical-block, a
line break is inserted in the output when the appropriate condition below is
satisfied. Otherwise, pprint-newline has no effect. The value nil is always
returned.

If kind is :linear, it specifies a ‘linear-style’ conditional newline. A line
break is inserted if and only if the immediately containing section cannot be
printed on one line. The effect of this is that line breaks are either inserted
at every linear-style conditional newline in a logical block or at none of them.

If kind is :miser, it specifies a ‘miser-style’ conditional newline. A line
break is inserted if and only if the immediately containing section cannot be
printed on one line and miser style is in effect in the immediately containing
logical block. The effect of this is that miser-style conditional newlines act
like linear-style conditional newlines, but only when miser style is in effect.
Miser style is in effect for a logical block if and only if the starting position
of the logical block is less than or equal to *print-miser-width* from the
right margin.

If kind is :fill, it specifies a ‘fill-style’ conditional newline. A line break
is inserted if and only if either (a) the following section cannot be printed
on the end of the current line, (b) the preceding section was not printed on
a single line, or (c) the immediately containing section cannot be printed
on one line and miser style is in effect in the immediately containing logical
block. If a logical block is broken up into a number of subsections by fill-style
conditional newlines, the basic effect is that the logical block is printed with
as many subsections as possible on each line. However, if miser style is in
effect, fill-style conditional newlines act like linear-style conditional newlines.

If kind is :mandatory, it specifies a ‘mandatory-style’ conditional new-
line. A line break is always inserted. This implies that none of the containing

802 CHAPTER 27. PRETTY PRINTING

sections can be printed on a single line and will therefore trigger the insertion
of line breaks at linear-style conditional newlines in these sections.

When a line break is inserted by any type of conditional newline, any
blanks that immediately precede the conditional newline are omitted from
the output and indentation is introduced at the beginning of the next line.
By default, the indentation causes the following line to begin in the same
horizontal position as the first character in the immediately containing logical
block. (The indentation can be changed via pprint-indent.)

There are a variety of ways unconditional newlines can be introduced
into the output (for example, via terpri or by printing a string containing a
newline character). As with mandatory conditional newlines, this prevents
any of the containing sections from being printed on one line. In general,
when an unconditional newline is encountered, it is printed out without sup-
pression of the preceding blanks and without any indentation following it.
However, if a per-line prefix has been specified (see pprint-logical-block),
that prefix will always be printed no matter how a newline originates.

[Macro] pprint-logical-block (stream-symbol list
[[{:prefix | :per-line-prefix} p | :suffix s]])
{form}*

This macro causes printing to be grouped into a logical block. It returns
nil.

The stream-symbol must be a symbol. If it is nil, it is treated the same
as if it were *standard-output*. If it is t, it is treated the same as if it
were *terminal-io*. The run-time value of stream-symbol must be a stream
(or nil standing for *standard-output* or t standing for *terminal-io*).
The logical block is printed into this destination stream.

The body (which consists of the forms) can contain any arbitrary Lisp
forms. Within the body, stream-symbol (or *standard-output* if stream-
symbol is nil, or *terminal-io* if stream-symbol is t) is bound to a “pretty
printing” stream that supports decisions about the arrangement of output
and then forwards the output to the destination stream. All the standard
printing functions (for example, write, princ, terpri) can be used to send
output to the pretty printing stream created by pprint-logical-block. All
and only the output sent to this pretty printing stream is treated as being in
the logical block.

pprint-logical-block and the pretty printing stream it creates have dy-
namic extent. It is undefined what happens if output is attempted outside

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT803

of this extent to the pretty printing stream created. It is unspecified what
happens if, within this extent, any output is sent directly to the underlying
destination stream (by calling write-char, for example).

The :suffix, :prefix, and :per-line-prefix arguments must all be ex-
pressions that (at run time) evaluate to strings. The :suffix argument s
(which defaults to the null string) specifies a suffix that is printed just after
the logical block. The :prefix and :per-line-prefix arguments are mutually
exclusive. If neither :prefix nor :per-line-prefix is specified, a :prefix of
the null string is assumed. The :prefix argument specifies a prefix p that
is printed before the beginning of the logical block. The :per-line-prefix
specifies a prefix p that is printed before the block and at the beginning
of each subsequent line in the block. An error is signaled if :prefix and
:per-line-prefix are both used or if a :suffix, :prefix, or :pre-line-prefix
argument does not evaluate to a string.

The list is interpreted as being a list that the body is responsible for
printing. (See pprint-exit-if-list-exhausted and pprint-pop.) If list does
not (at run time) evaluate to a list, it is printed using write. (This makes
it easier to write printing functions that are robust in the face of malformed
arguments.) If *print-circle* (and possibly also *print-shared*) is not
nil and list is a circular (or shared) reference to a cons, then an appropriate
“#n#” marker is printed. (This makes it easy to write printing functions
that provide full support for circularity and sharing abbreviation.) If *print-
level* is not nil and the logical block is at a dynamic nesting depth of greater
than *print-level* in logical blocks, “#” is printed. (This makes it easy to
write printing functions that provide full support for depth abbreviation.)

If any of the three preceding conditions occurs, the indicated output is
printed on stream-symbol and the body is skipped along with the printing
of the prefix and suffix. (If the body is not responsible for printing a list,
then the first two tests above can be turned off by supplying nil for the list
argument.)

In addition to the list argument of pprint-logical-block, the arguments
of the standard printing functions such as write, print, pprint, print1,
and pprint, as well as the arguments of the standard format directives
such as ~A, ~S, (and ~W) are all checked (when necessary) for circularity
and sharing. However, such checking is not applied to the arguments of the
functions write-line, write-string, and write-char or to the literal text
output by format. A consequence of this is that you must use one of the
latter functions if you want to print some literal text in the output that is not

804 CHAPTER 27. PRETTY PRINTING

supposed to be checked for circularity or sharing. (See the examples below.)

Implementation note: Detection of circularity and sharing is supported by the
pretty printer by in essence performing the requested output twice. On the first
pass, circularities and sharing are detected and the actual outputting of characters
is suppressed. On the second pass, the appropriate “#n=” and “#n#” markers
are inserted and characters are output.

A consequence of this two-pass approach to the detection of circularity and
sharing is that the body of a pprint-logical-block must not perform any side-
effects on the surrounding environment. This includes not modifying any variables
that are bound outside of its scope. Obeying this restriction is facilitated by using
pprint-pop, instead of an ordinary pop when traversing a list being printed by
the body of a pprint-logical-block.)

[Macro] pprint-exit-if-list-exhausted
pprint-exit-if-list-exhausted tests whether or not the list argument

of pprint-logical-block has been exhausted (see pprint-pop). If this list
has been reduced to nil, pprint-exit-if-list-exhausted terminates the ex-
ecution of the immediately containing pprint-logical-block except for the
printing of the suffix. Otherwise pprint-exit-if-list-exhausted returns nil.
An error message is issued if pprint-exit-if-list-exhausted is used any-
where other than syntactically nested within a call on pprint-logical-block.
It is undefined what happens if pprint-pop is executed outside of the dy-
namic extent of this pprint-logical-block.
[Macro] pprint-pop
pprint-pop pops elements one at a time off the list argument of pprint-

logical-block, taking care to obey *print-length*, *print-circle*, and
print-shared. An error message is issued if it is used anywhere other than
syntactically nested within a call on pprint-logical-block. It is undefined
what happens if pprint-pop is executed outside of the dynamic extent of
this call on pprint-logical-block.

Each time pprint-pop is called, it pops the next value off the list argu-
ment of pprint-logical-block and returns it. However, before doing this,
it performs three tests. If the remaining list is not a list (neither a cons nor
nil), “. ” is printed followed by the remaining list. (This makes it easier
to write printing functions that are robust in the face of malformed argu-
ments.) If *print-length* is nil and pprint-pop has already been called

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT805

print-length times within the immediately containing logical block, “...”
is printed. (This makes it easy to write printing functions that properly han-
dle *print-length*.) If *print-circle* (and possibly also *print-shared*)
is not nil, and the remaining list is a circular (or shared) reference, then “. ” is
printed followed by an appropriate “#n#” marker. (This catches instances
of cdr circularity and sharing in lists.)

If any of the three preceding conditions occurs, the indicated output is
printed on the pretty printing stream created by the immediately contain-
ing pprint-logical-block and the execution of the immediately containing
pprint-logical-block is terminated except for the printing of the suffix.

If pprint-logical-block is given a list argument of nil—because it is not
processing a list—pprint-pop can still be used to obtain support for *print-
length* (see the example function pprint-vector below). In this situation,
the first and third tests above are disabled and pprint-pop always returns
nil.

[Function] pprint-indent relative-to n &optional stream

pprint-indent specifies the indentation to use in a logical block. Stream
(which defaults to *standard-output*) follows the standard conventions
for stream arguments to printing functions. The argument n specifies the
indentation in ems. If relative-to is :block, the indentation is set to the
horizontal position of the first character in the block plus n ems. If relative-
to is :current, the indentation is set to the current output position plus n
ems.

The argument n can be negative; however, the total indentation cannot
be moved left of the beginning of the line or left of the end of the rightmost
per-line prefix. Changes in indentation caused by pprint-indent do not
take effect until after the next line break. In addition, in miser mode all calls
on pprint-indent are ignored, forcing the lines corresponding to the logical
block to line up under the first character in the block.

An error is signaled if a value other than :block or :current is supplied for
relative-to. If stream is a pretty printing stream created by pprint-logical-
block, pprint-indent sets the indentation in the innermost dynamically
enclosing logical block. Otherwise, pprint-indent has no effect. The value
nil is always returned.

806 CHAPTER 27. PRETTY PRINTING

[Function] pprint-tab kind colnum colinc &optional stream

pprint-tab specifies tabbing as performed by the standard format direc-
tive ~T. Stream (which defaults to *standard-output*) follows the stan-
dard conventions for stream arguments to printing functions. The arguments
colnum and colinc correspond to the two parameters to ~T and are in terms
of ems. The kind argument specifies the style of tabbing. It must be one
of :line (tab as by ~T) :section (tab as by ~T, but measuring horizontal
positions relative to the start of the dynamically enclosing section), :line-
relative (tab as by ~@T), or :section-relative (tab as by ~@T, but mea-
suring horizontal positions relative to the start of the dynamically enclosing
section). An error is signaled if any other value is supplied for kind. If
stream is a pretty printing stream created by pprint-logical-block, tab-
bing is performed. Otherwise, pprint-tab has no effect. The value nil is
always returned.

[Function] pprint-fill stream list &optional colon? atsign?
[Function] pprint-linear stream list &optional colon? atsign?
[Function] pprint-tabular stream list &optional colon? atsign? tabsize

These three functions specify particular ways of pretty printing lists.
Stream follows the standard conventions for stream arguments to printing
functions. Each function prints parentheses around the output if and only
if colon? (default t) is not nil. Each function ignores its atsign? argument
and returns nil. (These two arguments are included in this way so that these
functions can be used via ~/.../ and as set-pprint-dispatch functions as
well as directly.) Each function handles abbreviation and the detection of
circularity and sharing correctly and uses write to print list when given a
non-list argument.

The function pprint-linear prints a list either all on one line or with
each element on a separate line. The function pprint-fill prints a list with
as many elements as possible on each line. The function pprint-tabular is
the same as pprint-fill except that it prints the elements so that they line
up in columns. This function takes an additional argument tabsize (default
16) that specifies the column spacing in ems.

As an example of the interaction of logical blocks, conditional newlines,
and indentation, consider the function pprint-defun below. This function
pretty prints a list whose car is defun in the standard way assuming that
the length of the list is exactly 4.

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT807

;;; Pretty printer function for DEFUN forms.

(defun pprint-defun (list)
(pprint-logical-block (nil list :prefix "(" :suffix ")")
(write (first list))
(write-char #\space)
(pprint-newline :miser)
(pprint-indent :current 0)
(write (second list))
(write-char #\space)
(pprint-newline :fill)
(write (third list))
(pprint-indent :block 1)
(write-char #\space)
(pprint-newline :linear)
(write (fourth list))))

Suppose that one evaluates the following:

(pprint-defun ’(defun prod (x y) (* x y)))

If the line width available is greater than or equal to 26, all of the output
appears on one line. If the width is reduced to 25, a line break is inserted at
the linear-style conditional newline before (* X Y), producing the output
shown below. The (pprint-indent :block 1) causes (* X Y) to be printed
at a relative indentation of 1 in the logical block.

(DEFUN PROD (X Y)
(* X Y))

If the width is 15, a line break is also inserted at the fill-style conditional
newline before the argument list. The argument list lines up under the func-
tion name because of the call on (pprint-indent :current 0) before the
printing of the function name.

(DEFUN PROD
(X Y)

(* X Y))

If *print-miser-width* were greater than or equal to 14, the output
would have been entirely in miser mode. All indentation changes are ignored

808 CHAPTER 27. PRETTY PRINTING

in miser mode and line breaks are inserted at miser-style conditional newlines.
The result would have been as follows:

(DEFUN
PROD
(X Y)
(* X Y))

As an example of the use of a per-line prefix, consider that evaluating the
expression

(pprint-logical-block (nil nil :per-line-prefix ";;; ")
(pprint-defun ’(defun prod (x y) (* x y))))

produces the output

;;; (DEFUN PROD
;;; (X Y)
;;; (* X Y))

with a line width of 20 and nil as the value of the printer control variable
print-miser-width.

(If *print-miser-width* were not nil the output

;;; (DEFUN
;;; PROD
;;; (X Y)
;;; (* X Y))

might appear instead.)
As a more complex (and realistic) example, consider the function pprint-

let below. This specifies how to pretty print a let in the standard style. It is
more complex than pprint-defun because it has to deal with nested struc-
ture. Also, unlike pprint-defun, it contains complete code to print readably
any possible list that begins with the symbol let. The outermost pprint-
logical-block handles the printing of the input list as a whole and speci-
fies that parentheses should be printed in the output. The second pprint-
logical-block handles the list of binding pairs. Each pair in the list is itself
printed by the innermost pprint-logical-block. (A loop is used instead of
merely decomposing the pair into two elements so that readable output will
be produced no matter whether the list corresponding to the pair has one

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT809

element, two elements, or (being malformed) has more than two elements.)
A space and a fill-style conditional newline are placed after each pair except
the last. The loop at the end of the topmost pprint-logical-block prints
out the forms in the body of the let separated by spaces and linear-style
conditional newlines.

;;; Pretty printer function for LET forms,
;;; carefully coded to handle malformed binding pairs.

(defun pprint-let (list)
(pprint-logical-block (nil list :prefix "(" :suffix ")")
(write (pprint-pop))
(pprint-exit-if-list-exhausted)
(write-char #\space)
(pprint-logical-block

(nil (pprint-pop) :prefix "(" :suffix ")")
(pprint-exit-if-list-exhausted)
(loop (pprint-logical-block

(nil (pprint-pop) :prefix "(" :suffix ")")
(pprint-exit-if-list-exhausted)
(loop (write (pprint-pop))

(pprint-exit-if-list-exhausted)
(write-char #\space)
(pprint-newline :linear)))

(pprint-exit-if-list-exhausted)
(write-char #\space)
(pprint-newline :fill)))

(pprint-indent :block 1)
(loop (pprint-exit-if-list-exhausted)

(write-char #\space)
(pprint-newline :linear)
(write (pprint-pop)))))

Suppose that the following is evaluated with *print-level* having the
value 4 and *print-circle* having the value t.

(pprint-let ’#1=(let (x (*print-length* (f (g 3)))
(z . 2) (k (car y)))

(setq x (sqrt z)) #1#))

810 CHAPTER 27. PRETTY PRINTING

If the line length is greater than or equal to 77, the output produced
appears on one line. However, if the line length is 76, line breaks are inserted
at the linear-style conditional newlines separating the forms in the body and
the output below is produced. Note that the degenerate binding pair X is
printed readably even though it fails to be a list; a depth abbreviation marker
is printed in place of (G 3); the binding pair (Z . 2) is printed readably
even though it is not a proper list; and appropriate circularity markers are
printed.

#1=(LET (X (*PRINT-LENGTH* (F #)) (Z . 2) (K (CAR Y)))
(SETQ X (SQRT Z))
#1#)

If the line length is reduced to 35, a line break is inserted at one of the
fill-style conditional newlines separating the binding pairs.

#1=(LET (X (*PRINT-PRETTY* (F #))
(Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))
#1#)

Suppose that the line length is further reduced to 22 and *print-length*
is set to 3. In this situation, line breaks are inserted after both the first and
second binding pairs. In addition, the second binding pair is itself broken
across two lines. Clause (b) of the description of fill-style conditional newlines
prevents the binding pair (Z . 2) from being printed at the end of the third
line. Note that the length abbreviation hides the circularity from view and
therefore the printing of circularity markers disappears.

(LET (X
(*PRINT-LENGTH*
(F #))
(Z . 2) ...)

(SETQ X (SQRT Z))
...)

The function pprint-tabular could be defined as follows:

27.3. DYNAMIC CONTROL OF THE ARRANGEMENT OF OUTPUT811

(defun pprint-tabular (s list &optional (c? t) a? (size 16))
(declare (ignore a?))
(pprint-logical-block

(s list :prefix (if c? "(" "") :suffix (if c? ")" ""))
(pprint-exit-if-list-exhausted)
(loop (write (pprint-pop) :stream s)

(pprint-exit-if-list-exhausted)
(write-char #\space s)
(pprint-tab :section-relative 0 size s)
(pprint-newline :fill s))))

Evaluating the following with a line length of 25 produces the output
shown.

(princ "Roads ")
(pprint-tabular nil ’(elm main maple center) nil nil 8)

Roads ELM MAIN
MAPLE CENTER

The function below prints a vector using #(...) notation.

(defun pprint-vector (v)
(pprint-logical-block (nil nil :prefix "#(" :suffix ")")
(let ((end (length v)) (i 0))
(when (plusp end)
(loop (pprint-pop)

(write (aref v i))
(if (= (incf i) end) (return nil))
(write-char #\space)
(pprint-newline :fill))))))

Evaluating the following with a line length of 15 produces the output
shown.

(pprint-vector ’#(12 34 567 8 9012 34 567 89 0 1 23))

#(12 34 567 8
9012 34 567
89 0 1 23)

812 CHAPTER 27. PRETTY PRINTING

27.4 Format Directive Interface
The primary interface to operations for dynamically determining the arrange-
ment of output is provided through the functions above. However, an addi-
tional interface is provided via a set of format directives because, as shown
by the examples in this section and the next, format strings are typically a
much more compact way to specify pretty printing. In addition, without such
an interface, one would have to abandon the use of format when interacting
with the pretty printer.

~W Write. An arg, any Lisp object, is printed obeying every printer control
variable (as by write). In addition, ~W interacts correctly with depth
abbreviation by not resetting the depth counter to zero. ~W does
not accept parameters. If given the colon modifier, ~W binds *print-
pretty* to t. If given the atsign modifier, ~W binds *print-level*
and *print-length* to nil.

~W provides automatic support for circularity detection. If *print-
circle* (and possibly also *print-shared*) is not nil and ~W is ap-
plied to an argument that is a circular (or shared) reference, an appro-
priate “#n#” marker is inserted in the output instead of printing the
argument.

~_ Conditional newline. Without any modifiers, ~_ is equivalent to
(pprint-newline :linear). The directive ~@_ is equivalent to
(pprint-newline :miser). The directive ~:_ is equivalent to
(pprint-newline :fill). The directive ~:@_ is equivalent to (pprint-
newline :mandatory).

~<str~:> Logical block. If ~:> is used to terminate a ~<... directive,
the directive is equivalent to a call on pprint-logical-block. The
format argument corresponding to the ~<...~:> directive is treated
in the same way as the list argument to pprint-logical-block, thereby
providing automatic support for non-list arguments and the detection
of circularity, sharing, and depth abbreviation. The portion of the
format control string nested within the ~<...~:> specifies the :prefix
(or :per-line-prefix), :suffix, and body of the pprint-logical-block.

The format string portion enclosed by ~<...~:> can be divided into
segments ~<prefix~;body~; suffix~:> by ~; directives. If the first

27.4. FORMAT DIRECTIVE INTERFACE 813

section is terminated by ~@;, it specifies a per-line prefix rather than
a simple prefix. The prefix and suffix cannot contain format direc-
tives. An error is signaled if either the prefix or suffix fails to be a
constant string or if the enclosed portion is divided into more than
three segments.

If the enclosed portion is divided into only two segments, the suffix
defaults to the null string. If the enclosed portion consists of only a
single segment, both the prefix and the suffix default to the null string.
If the colon modifier is used (that is, ~:<...~:>), the prefix and suffix
default to "(" and ")", respectively, instead of the null string.

The body segment can be any arbitrary format control string. This
format control string is applied to the elements of the list correspond-
ing to the ~<...~:> directive as a whole. Elements are extracted from
this list using pprint-pop, thereby providing automatic support for
malformed lists and the detection of circularity, sharing, and length
abbreviation. Within the body segment, ~^ acts like pprint-exit-if-
list-exhausted.

~<...~:> supports a feature not supported by pprint-logical-block.
If ~:@> is used to terminate the directive (that is, ~<...~:@>), then
a fill-style conditional newline is automatically inserted after each group
of blanks immediately contained in the body (except for blanks after a
~<newline> directive). This makes it easy to achieve the equivalent
of paragraph filling.

If the atsign modifier is used with ~<...~:>, the entire remaining
argument list is passed to the directive as its argument. All of the
remaining arguments are always consumed by ~@<...~:>, even if they
are not all used by the format string nested in the directive. Other
than the difference in its argument, ~@<...~:> is exactly the same
as ~<...~:>, except that circularity (and sharing) detection is not
applied if the ~@<...~:> is at top level in a format string. This
ensures that circularity detection is applied only to data lists and not
to format argument lists.

To a considerable extent, the basic form of the directive ~<...~> is
incompatible with the dynamic control of the arrangement of output
by ~W, ~_, ~<...~:>, ~I, and ~:T. As a result, an error is signaled
if any of these directives is nested within ~<...~>. Beyond this, an

814 CHAPTER 27. PRETTY PRINTING

error is also signaled if the ~<...~:;...~> form of ~<...~> is used in
the same format string with ~W, ~_, ~<...~:>, ~I, or ~:T.

~I Indent. ~nI is equivalent to (pprint-indent :block n). ~:nI is equiv-
alent to (pprint-indent :current n). In both cases, n defaults to
zero if it is omitted.

~:T Tabulate. If the colon modifier is used with the ~T directive, the tab-
bing computation is done relative to the column where the section
immediately containing the directive begins, rather than with respect
to column zero. ~n,m:T is equivalent to (pprint-tab :section n m).
~n,m:@T is equivalent to (pprint-tab :section-relative n m). The
numerical parameters are both interpreted as being in units of ems and
both default to 1.

~/name/ Call function. User-defined functions can be called from within
a format string by using the directive ~/name/. The colon modifier,
the atsign modifier, and arbitrarily many parameters can be specified
with the ~/name/ directive. The name can be any string that does
not contain “/”. All of the characters in name are treated as if they
were upper case. If name contains a “:” or “::”, then everything up
to but not including the first “:” or “::” is taken to be a string that
names a package. Everything after the first “:” or “::” (if any) is taken
to be a string that names a symbol. The function corresponding to a
~/name/ directive is obtained by looking up the symbol that has the
indicated name in the indicated package. If name does not contain a
“:” or “::”, then the whole name string is looked up in the user package.

When a ~/name/ directive is encountered, the indicated function is
called with four or more arguments. The first four arguments are the
output stream, the format argument corresponding to the directive,
the value t if the colon modifier was used (nil otherwise), and the
value t if the atsign modifier was used (nil otherwise). The remaining
arguments consist of any parameters specified with the directive. The
function should print the argument appropriately. Any values returned
by the function are ignored.

The three functions pprint-linear, pprint-fill, and pprint-tabular
are designed so that they can be called by ~/.../ (that is, ~/pprint-
linear/, ~/pprint-fill/, and ~/pprint-tabular/. In particular they

27.5. COMPILING FORMAT CONTROL STRINGS 815

take colon and atsign arguments.

As examples of the convenience of specifying pretty printing with for-
mat strings, consider the functions pprint-defun and pprint-let used as
examples in the last section. They can be more compactly defined as follows.
The function pprint-vector cannot be defined using format, because the
data structure it traverses is not a list. The function pprint-tabular is in-
convenient to define using format, because of the need to pass its tabsize
argument through to a ~:T directive nested within an iteration over a list.

(defun pprint-defun (list)
(format t "~:<~W ~@_~:I~W ~:_~W~1I ~_~W~:>" list))

(defun pprint-let (list)
(format t "~:<~W~^ ~:<~@{~:<~@{~W~^ ~_~}~:>~^ ~:_~}~:>~1I~

~@{~^ ~_~W~}~:>"
list))

27.5 Compiling Format Control Strings

The control strings used by format are essentially programs that perform
printing. The macro formatter provides the efficiency of using a compiled
function for printing without losing the visual compactness of format strings.

[Macro] formatter control-string

The control-string must be a literal string. An error is sig-
naled if control-string is not a valid format control string. The
macro formatter expands into an expression of the form (func-
tion (lambda (stream &rest args) ...)) that does the printing spec-
ified by control-string. The lambda created accepts an output stream as
its first argument and zero or more data values as its remaining arguments.
The value returned by the lambda is the tail (if any) of the data values
that are not printed out by control-string. (For example, if the control-string
is "~A~A", the cddr (if any) of the data values is returned.) The form
(formatter "~%~2@{~S, ~}") is equivalent to the following:

816 CHAPTER 27. PRETTY PRINTING

#’(lambda (stream &rest args)
(terpri stream)
(dotimes (n 2)
(if (null args) (return nil))
(prin1 (pop args) stream)
(write-string ", " stream))

args)

In support of the above mechanism, format is extended so that it accepts
functions as its second argument as well as strings. When a function is
provided, it must be a function of the form created by formatter. The
function is called with the appropriate output stream as its first argument
and the data arguments to format as its remaining arguments. The function
should perform whatever output is necessary and return the unused tail of
the arguments (if any). The directives ~? and ~{~} with no body are also
extended so that they accept functions as well as control strings. Every other
standard function that takes a format string as an argument (for example,
error and warn) is also extended so that it can accept functions of the form
above instead.

27.6 Pretty Printing Dispatch Tables

When *print-pretty* is not nil, the pprint dispatch table in the variable
print-pprint-dispatch controls how objects are printed. The informa-
tion in this table takes precedence over all other mechanisms for specifying
how to print objects. In particular, it overrides user-defined print-object
methods and print functions for structures. However, if there is no specifi-
cation for how to pretty print a particular kind of object, it is then printed
using the standard mechanisms as if *print-pretty* were nil.

A pprint dispatch table is a mapping from keys to pairs of values. The
keys are type specifiers. The values are functions and numerical priorities.
Basic insertion and retrieval is done based on the keys with the equality of
keys being tested by equal. The function to use when pretty printing an
object is chosen by finding the highest priority function in *print-pprint-
dispatch* that is associated with a type specifier that matches the object.

27.6. PRETTY PRINTING DISPATCH TABLES 817

[Function] copy-pprint-dispatch &optional table

A copy is made of table, which defaults to the current pprint dispatch
table. If table is nil, a copy is returned of the initial value of *print-pprint-
dispatch*.

[Function] pprint-dispatch object &optional table

This retrieves the highest priority function from a pprint table that is
associated with a type specifier in the table that matches object. The function
is chosen by finding all the type specifiers in table that match the object
and selecting the highest priority function associated with any of these type
specifiers. If there is more than one highest priority function, an arbitrary
choice is made. If no type specifiers match the object, a function is returned
that prints object with *print-pretty* bound to nil.

As a second return value, pprint-dispatch returns a flag that is t if a
matching type specifier was found in table and nil if not.

Table (which defaults to *print-pprint-dispatch*) must be a pprint
dispatch table. Table can be nil, in which case retrieval is done in the initial
value of *print-pprint-dispatch*.

When *print-pretty* is t, (write object :stream s) is equivalent to
(funcall (pprint-dispatch object) s object).

[Function] set-pprint-dispatch type function &optional priority table

This puts an entry into a pprint dispatch table and returns nil. The type
must be a valid type specifier and is the key of the entry. The first action
of set-pprint-dispatch is to remove any pre-existing entry associated with
type. This guarantees that there will never be two entries associated with
the same type specifier in a given pprint dispatch table. Equality of type
specifiers is tested by equal.

Two values are associated with each type specifier in a pprint dispatch
table: a function and a priority. The function must accept two arguments:
the stream to send output to and the object to be printed. The function
should pretty print the object on the stream. The function can assume that
object satisfies type. The function should obey *print-readably*. Any
values returned by the function are ignored.

The priority (which defaults to 0) must be a non-complex number. This
number is used as a priority to resolve conflicts when an object matches more

818 CHAPTER 27. PRETTY PRINTING

than one entry. An error is signaled if priority fails to be a non-complex
number.

The table (which defaults to the value of *print-pprint-dispatch*)
must be a pprint dispatch table. The specified entry is placed in this ta-
ble.

It is permissible for function to be nil. In this situation, there will be no
type entry in table after set-pprint-dispatch is evaluated.

To facilitate the use of pprint dispatch tables for controlling the pretty
printing of Lisp code, the type-specifier argument of the function set-pprint-
dispatch is allowed to contain the form (cons car-type cdr-type). This form
indicates that the corresponding object must be a cons whose car satisfies
the type specifier car-type and whose cdr satisfies the type specifier cdr-type.
The cdr-type can be omitted, in which case it defaults to t.

The initial value of *print-pprint-dispatch* is implementation-
dependent. However, the initial entries all use a special class of priorities
that are less than every priority that can be specified using set-pprint-
dispatch. This guarantees that pretty printing functions specified by users
will override everything in the initial value of *print-pprint-dispatch*.

Consider the following examples. The first form restores *print-pprint-
dispatch* to its initial value. The next two forms then specify a special way
of pretty printing ratios. Note that the more specific type specifier has to be
associated with a higher priority.

(setq *print-pprint-dispatch*
(copy-pprint-dispatch nil))

(defun div-print (s r colon? atsign?)
(declare (ignore colon? atsign?))
(format s "(/ ~D ~D)" (numerator (abs r)) (denominator r)))

(set-pprint-dispatch ’ratio (formatter "#.~/div-print/"))

(set-pprint-dispatch ’(and ratio (satisfies minusp))
(formatter "#.(- ~/div-print/)")
5)

(pprint ’(1/3 -2/3)) prints: (#.(/ 1 3) #.(- (/ 2 3)))

The following two forms illustrate the specification of pretty printing func-

27.6. PRETTY PRINTING DISPATCH TABLES 819

tions for particular types of Lisp code. The first form illustrates how to spec-
ify the traditional method for printing quoted objects using “’” syntax. Note
the care taken to ensure that data lists that happen to begin with quote
will be printed readably. The second form specifies that lists beginning with
the symbol my-let should print the same way that lists beginning with let
print when the initial pprint dispatch table is in effect.

(set-pprint-dispatch ’(cons (member quote))
#’(lambda (s list)

(if (and (consp (cdr list)) (null (cddr list)))
(funcall (formatter "’~W") s (cadr list))
(pprint-fill s list)))))

(set-pprint-dispatch ’(cons (member my-let))
(pprint-dispatch ’(let) nil))

The next example specifies a default method for printing lists that do not
correspond to function calls. Note that, as shown in the definition of pprint-
tabular above, pprint-linear, pprint-fill, and pprint-tabular are defined
with optional colon and atsign arguments so that they can be used as pprint
dispatch functions as well as ~/.../ functions.

(set-pprint-dispatch
’(cons (not (and symbol (satisfies fboundp))))
#’pprint-fill
-5)

With a line length of 9, (pprint ’(0 b c d e f g h i j k)) prints:

(0 b c d
e f g h
i j k)

This final example shows how to define a pretty printing function for a
user defined data structure.

(defstruct family mom kids)

820 CHAPTER 27. PRETTY PRINTING

(set-pprint-dispatch ’family
#’(lambda (s f)

(format s "~@<#<~;~W and ~2I~_~/pprint-fill/~;>~:>"
(family-mom f) (family-kids f))))

The pretty printing function for the structure family specifies how to
adjust the layout of the output so that it can fit aesthetically into a variety
of line widths. In addition, it obeys the printer control variables *print-
level*, *print-length*, *print-lines*, *print-circle*, *print-shared*,
and *print-escape*, and can tolerate several different kinds of malformity
in the data structure. The output below shows what is printed out with a
right margin of 25, *print-pretty* t, *print-escape* nil, and a malformed
kids list.

(write (list ’principal-family
(make-family :mom "Lucy"

:kids ’("Mark" "Bob" . "Dan")))
:right-margin 25 :pretty T :escape nil :miser-width nil)

(PRINCIPAL-FAMILY
#<Lucy and

Mark Bob . Dan>)

Note that a pretty printing function for a structure is different from the
structure’s print function. While print functions are permanently associated
with a structure, pretty printing functions are stored in pprint dispatch tables
and can be rapidly changed to reflect different printing needs. If there is no
pretty printing function for a structure in the current print dispatch table,
the print function (if any) is used instead.

Chapter 28

Common Lisp Object System

Authors: Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya
E. Keene, Gregor Kiczales, and David A. Moon

This chapter presents the bulk of the first two chapters of the Common
Lisp Object System specification; it is substantially identical to these two
specification chapters as previously published elsewhere [5, 6, 7]. I have edited
the material only very lightly to conform to the overall style of this book and
to save a substantial number of pages by using a typographically condensed
presentation. I have inserted a small number of bracketed remarks, identified
by the initials GLS. The chapter divisions of the original specification have
become section divisions in this chapter; references to the three chapters of
the original specification now refer to the three “parts” of the specification.
(See the Acknowledgments to this second edition for acknowledgments to
others who contributed to the Common Lisp Object System specification.)
This is not the last word on CLOS; X3J13 may well refine this material
further. Keene has written a good tutorial introduction to CLOS [26].

—Guy L. Steele Jr.

28.1 Programmer Interface Concepts

The Common Lisp Object System (CLOS) is an object-oriented extension
to Common Lisp. It is based on generic functions, multiple inheritance,
declarative method combination, and a meta-object protocol.

The first two parts of this specification describe the standard Programmer
Interface for the Common Lisp Object System. The first part, Programmer

821

822 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Interface Concepts, contains a description of the concepts of the Common
Lisp Object System, and the second part, Functions in the Programmer
Interface, contains a description of the functions and macros in the Common
Lisp Object System Programmer Interface. The third part, The Common
Lisp Object System Meta-Object Protocol, explains how the Common Lisp
Object System can be customized.

The fundamental objects of the Common Lisp Object System are classes,
instances, generic functions, and methods.

A class object determines the structure and behavior of a set of other
objects, which are called its instances. Every Common Lisp object is an
instance of a class. The class of an object determines the set of operations
that can be performed on the object.

A generic function is a function whose behavior depends on the classes or
identities of the arguments supplied to it. A generic function object contains
a set of methods, a lambda-list, a method combination type, and other in-
formation. The methods define the class-specific behavior and operations of
the generic function; a method is said to specialize a generic function. When
invoked, a generic function executes a subset of its methods based on the
classes of its arguments.

A generic function can be used in the same ways as an ordinary function
in Common Lisp; in particular, a generic function can be used as an argument
to funcall and apply and can be given a global name.

A method is an object that contains a method function, a sequence of
parameter specializers that specify when the given method is applicable, and
a sequence of qualifiers that is used by the method combination facility to
distinguish among methods. Each required formal parameter of each method
has an associated parameter specializer, and the method will be invoked only
on arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the
order in which they are run, and the values that are returned by the generic
function. The Common Lisp Object System offers a default method combi-
nation type and provides a facility for declaring new types of method com-
bination.

28.1.1 Error Terminology

A situation is the evaluation of an expression in some specific context. For
example, a situation might be the invocation of a function on arguments that

28.1. PROGRAMMER INTERFACE CONCEPTS 823

fail to satisfy some specified constraints.
In the specification of the Common Lisp Object System, the behavior

of programs in all situations is described, and the options available to the
implementor are defined. No implementation is allowed to extend the syntax
or semantics of the Object System except as explicitly defined in the Object
System specification. In particular, no implementation is allowed to extend
the syntax of the Object System in such a way that ambiguity between the
specified syntax of the Object System and those extensions is possible.

“When situation S occurs, an error is signaled.” This terminology
has the following meaning:

• If this situation occurs, an error will be signaled in the interpreter
and in code compiled under all compiler safety optimization levels.

• Valid programs may rely on the fact that an error will be signaled
in the interpreter and in code compiled under all compiler safety
optimization levels.

• Every implementation is required to detect such an error in the
interpreter and in code compiled under all compiler safety opti-
mization levels.

“When situation S occurs, an error should be signaled.” This
terminology has the following meaning:

• If this situation occurs, an error will be signaled at least in the
interpreter and in code compiled under the safest compiler safety
optimization level.

• Valid programs may not rely on the fact that an error will be
signaled.

• Every implementation is required to detect such an error at least
in the interpreter and in code compiled under the safest compiler
safety optimization level.

• When an error is not signaled, the results are undefined (see be-
low).

“When situation S occurs, the results are undefined.” This termi-
nology has the following meaning:

824 CHAPTER 28. COMMON LISP OBJECT SYSTEM

• If this situation occurs, the results are unpredictable. The results
may range from harmless to fatal.

• Implementations are allowed to detect this situation and signal an
error, but no implementation is required to detect the situation.

• No valid program may depend on the effects of this situation, and
all valid programs are required to treat the effects of this situation
as unpredictable.

“When situation S occurs, the results are unspecified.” This termi-
nology has the following meaning:

• The effects of this situation are not specified in the Object System,
but the effects are harmless.

• Implementations are allowed to specify the effects of this situation.

• No portable program can depend on the effects of this situation,
and all portable programs are required to treat the situation as
unpredictable but harmless.

“The Common Lisp Object System may be extended to cover situation S.”
The meaning of this terminology is that an implementation is free to
treat situation S in one of three ways:

• When situation S occurs, an error is signaled at least in the in-
terpreter and in code compiled under the safest compiler safety
optimization level.

• When situation S occurs, the results are undefined.

• When situation S occurs, the results are defined and specified.

In addition, this terminology has the following meaning:

• No portable program can depend on the effects of this situation,
and all portable programs are required to treat the situation as
undefined.

“Implementations are free to extend the syntax S.” This terminol-
ogy has the following meaning:

28.1. PROGRAMMER INTERFACE CONCEPTS 825

• Implementations are allowed to define unambiguous extensions to
syntax S.
• No portable program can depend on this extension, and all

portable programs are required to treat the syntax as meaningless.

The Common Lisp Object System specification may disallow certain ex-
tensions while allowing others.

28.1.2 Classes

A class is an object that determines the structure and behavior of a set of
other objects, which are called its instances.

A class can inherit structure and behavior from other classes. A class
whose definition refers to other classes for the purpose of inheriting from
them is said to be a subclass of each of those classes. The classes that
are designated for purposes of inheritance are said to be superclasses of the
inheriting class.

A class can have a name. The function class-name takes a class object
and returns its name. The name of an anonymous class is nil. A symbol can
name a class. The function find-class takes a symbol and returns the class
that the symbol names. A class has a proper name if the name is a symbol
and if the name of the class names that class. That is, a class C has the
proper name S if S = (class-name C) and C = (find-class S). Notice
that it is possible for (find-class S1) = (find-class S2) and S1 6= S2. If
C = (find-class S), we say that C is the class named S.

A class C1 is a direct superclass of a class C2 if C2 explicitly designates
C1 as a superclass in its definition. In this case, C2 is a direct subclass of
C1. A class Cn is a superclass of a class C1 if there exists a series of classes
C2, . . . , Cn−1 such that Ci+1 is a direct superclass of Ci for 1 ≤ i < n. In this
case, C1 is a subclass of Cn. A class is considered neither a superclass nor a
subclass of itself. That is, if C1 is a superclass of C2, then C1 6= C2. The set
of classes consisting of some given class C along with all of its superclasses
is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the
set of the given class and its superclasses. The total ordering is expressed
as a list ordered from most specific to least specific. The class precedence
list is used in several ways. In general, more specific classes can shadow, or
override, features that would otherwise be inherited from less specific classes.

826 CHAPTER 28. COMMON LISP OBJECT SYSTEM

The method selection and combination process uses the class precedence list
to order methods from most specific to least specific.

When a class is defined, the order in which its direct superclasses are
mentioned in the defining form is important. Each class has a local precedence
order, which is a list consisting of the class followed by its direct superclasses
in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence
order of each class in the list. The classes in each local precedence order
appear within the class precedence list in the same order. If the local prece-
dence orders are inconsistent with each other, no class precedence list can
be constructed, and an error is signaled. The class precedence list and its
computation is discussed in section 28.1.5.

Classes are organized into a directed acyclic graph. There are two dis-
tinguished classes, named t and standard-object. The class named t has
no superclasses. It is a superclass of every class except itself. The class
named standard-object is an instance of the class standard-class and is a
superclass of every class that is an instance of standard-class except itself.

There is a mapping from the Common Lisp Object System class space
into the Common Lisp type space. Many of the standard Common Lisp
types have a corresponding class that has the same name as the type. Some
Common Lisp types do not have a corresponding class. The integration of
the type and class systems is discussed in section 28.1.4.

Classes are represented by objects that are themselves instances of classes.
The class of the class of an object is termed the metaclass of that object.
When no misinterpretation is possible, the term metaclass will be used to
refer to a class that has instances that are themselves classes. The metaclass
determines the form of inheritance used by the classes that are its instances
and the representation of the instances of those classes. The Common Lisp
Object System provides a default metaclass, standard-class, that is appro-
priate for most programs. The meta-object protocol provides mechanisms
for defining and using new metaclasses.

Except where otherwise specified, all classes mentioned in this chapter
are instances of the class standard-class, all generic functions are instances
of the class standard-generic-function, and all methods are instances of
the class standard-method.

28.1. PROGRAMMER INTERFACE CONCEPTS 827

Defining Classes

The macro defclass is used to define a new named class. The definition of
a class includes the following:

• The name of the new class. For newly defined classes this is a proper
name.

• The list of the direct superclasses of the new class.

• A set of slot specifiers. Each slot specifier includes the name of the
slot and zero or more slot options. A slot option pertains only to a
single slot. If a class definition contains two slot specifiers with the
same name, an error is signaled.

• A set of class options. Each class option pertains to the class as a
whole.

The slot options and class options of the defclass form provide mecha-
nisms for the following:

• Supplying a default initial value form for a given slot.

• Requesting that methods for generic functions be automatically gener-
ated for reading or writing slots.

• Controlling whether a given slot is shared by instances of the class or
whether each instance of the class has its own slot.

• Supplying a set of initialization arguments and initialization argument
defaults to be used in instance creation.

• Indicating that the metaclass is to be other than the default.

• Indicating the expected type for the value stored in the slot.

• Indicating the documentation string for the slot.

828 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Creating Instances of Classes

The generic function make-instance creates and returns a new instance of
a class. The Object System provides several mechanisms for specifying how
a new instance is to be initialized. For example, it is possible to specify the
initial values for slots in newly created instances either by giving arguments
to make-instance or by providing default initial values.

Further initialization activities can be performed by methods written for
generic functions that are part of the initialization protocol. The complete
initialization protocol is described in section 28.1.9.

Slots

An object that has standard-class as its metaclass has zero or more named
slots. The slots of an object are determined by the class of the object. Each
slot can hold one value. The name of a slot is a symbol that is syntactically
valid for use as a variable name.

When a slot does not have a value, the slot is said to be unbound. When
an unbound slot is read, the generic function slot-unbound is invoked. The
system-supplied primary method for slot-unbound signals an error.

The default initial value form for a slot is defined by the :initform slot
option. When the :initform form is used to supply a value, it is evaluated
in the lexical environment in which the defclass form was evaluated. The
:initform along with the lexical environment in which the defclass form
was evaluated is called a captured :initform. See section 28.1.9.

A local slot is defined to be a slot that is visible to exactly one instance,
namely the one in which the slot is allocated. A shared slot is defined to
be a slot that is visible to more than one instance of a given class and its
subclasses.

A class is said to define a slot with a given name when the defclass form
for that class contains a slot specifier with that name. Defining a local slot
does not immediately create a slot; it causes a slot to be created each time an
instance of the class is created. Defining a shared slot immediately creates a
slot.

The :allocation slot option to defclass controls the kind of slot that is
defined. If the value of the :allocation slot option is :instance, a local slot
is created. If the value of :allocation is :class, a shared slot is created.

A slot is said to be accessible in an instance of a class if the slot is defined

28.1. PROGRAMMER INTERFACE CONCEPTS 829

by the class of the instance or is inherited from a superclass of that class.
At most one slot of a given name can be accessible in an instance. A shared
slot defined by a class is accessible in all instances of that class. A detailed
explanation of the inheritance of slots is given in section 28.1.3.

Accessing Slots

Slots can be accessed in two ways: by use of the primitive function slot-value
and by use of generic functions generated by the defclass form.

The function slot-value can be used with any slot name specified in the
defclass form to access a specific slot accessible in an instance of the given
class.

The macro defclass provides syntax for generating methods to read and
write slots. If a reader is requested, a method is automatically generated
for reading the value of the slot, but no method for storing a value into it is
generated. If a writer is requested, a method is automatically generated for
storing a value into the slot, but no method for reading its value is generated.
If an accessor is requested, a method for reading the value of the slot and a
method for storing a value into the slot are automatically generated. Reader
and writer methods are implemented using slot-value.

When a reader or writer is specified for a slot, the name of the generic
function to which the generated method belongs is directly specified. If the
name specified for the writer option is the symbol name, the name of the
generic function for writing the slot is the symbol name, and the generic
function takes two arguments: the new value and the instance, in that order.
If the name specified for the accessor option is the symbol name, the name of
the generic function for reading the slot is the symbol name, and the name
of the generic function for writing the slot is the list (setf name).

A generic function created or modified by supplying reader, writer, or
accessor slot options can be treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot
whether or not reader or writer methods exist for that slot. When slot-
value is used, no reader or writer methods are invoked.

The macro with-slots can be used to establish a lexical environment in
which specified slots are lexically available as if they were variables. The
macro with-slots invokes the function slot-value to access the specified
slots.

The macrowith-accessors can be used to establish a lexical environment

830 CHAPTER 28. COMMON LISP OBJECT SYSTEM

in which specified slots are lexically available through their accessors as if they
were variables. The macrowith-accessors invokes the appropriate accessors
to access the specified slots. Any accessors specified by with-accessorsmust
already have been defined before they are used.

28.1.3 Inheritance

A class can inherit methods, slots, and some defclass options from its su-
perclasses. The following sections describe the inheritance of methods, the
inheritance of slots and slot options, and the inheritance of class options.

Inheritance of Methods

A subclass inherits methods in the sense that any method applicable to all
instances of a class is also applicable to all instances of any subclass of that
class.

The inheritance of methods acts the same way regardless of whether the
method was created by using one of the method-defining forms or by using
one of the defclass options that causes methods to be generated automati-
cally.

The inheritance of methods is described in detail in section 28.1.7.

Inheritance of Slots and Slot Options

The set of names of all slots accessible in an instance of a class C is the union
of the sets of names of slots defined by C and its superclasses. The structure
of an instance is the set of names of local slots in that instance.

In the simplest case, only one class among C and its superclasses defines
a slot with a given slot name. If a slot is defined by a superclass of C, the
slot is said to be inherited. The characteristics of the slot are determined by
the slot specifier of the defining class. Consider the defining class for a slot S.
If the value of the :allocation slot option is :instance, then S is a local slot
and each instance of C has its own slot named S that stores its own value.
If the value of the :allocation slot option is :class, then S is a shared slot,
the class that defined S stores the value, and all instances of C can access
that single slot. If the :allocation slot option is omitted, :instance is used.

In general, more than one class among C and its superclasses can define
a slot with a given name. In such cases, only one slot with the given name

28.1. PROGRAMMER INTERFACE CONCEPTS 831

is accessible in an instance of C, and the characteristics of that slot are a
combination of the several slot specifiers, computed as follows:

• All the slot specifiers for a given slot name are ordered from most
specific to least specific, according to the order in C ’s class precedence
list of the classes that define them. All references to the specificity of
slot specifiers immediately following refer to this ordering.

• The allocation of a slot is controlled by the most specific slot specifier.
If the most specific slot specifier does not contain an :allocation slot
option, :instance is used. Less specific slot specifiers do not affect the
allocation.

• The default initial value form for a slot is the value of the :initform
slot option in the most specific slot specifier that contains one. If no
slot specifier contains an :initform slot option, the slot has no default
initial value form.

• The contents of a slot will always be of type (and T1 . . . Tn) where
T1, . . . , Tn are the values of the :type slot options contained in all of the
slot specifiers. If no slot specifier contains the :type slot option, the
contents of the slot will always be of type t. The result of attempting
to store in a slot a value that does not satisfy the type of the slot is
undefined.

• The set of initialization arguments that initialize a given slot is the
union of the initialization arguments declared in the :initarg slot op-
tions in all the slot specifiers.

• The documentation string for a slot is the value of the :documenta-
tion slot option in the most specific slot specifier that contains one. If
no slot specifier contains a :documentation slot option, the slot has
no documentation string.

A consequence of the allocation rule is that a shared slot can be shad-
owed. For example, if a class C1 defines a slot named S whose value for the
:allocation slot option is :class, that slot is accessible in instances of C1

and all of its subclasses. However, if C2 is a subclass of C1 and also defines
a slot named S, C1’s slot is not shared by instances of C2 and its subclasses.
When a class C1 defines a shared slot, any subclass C2 of C1 will share this

832 CHAPTER 28. COMMON LISP OBJECT SYSTEM

single slot unless the defclass form for C2 specifies a slot of the same name
or there is a superclass of C2 that precedes C1 in the class precedence list of
C2 that defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type
constraint of each slot specifier that contributes to that slot. Because the
result of attempting to store in a slot a value that does not satisfy the type
constraint for the slot is undefined, the value in a slot might fail to satisfy
its type constraint.

The :reader, :writer, and :accessor slot options create methods rather
than define the characteristics of a slot. Reader and writer methods are
inherited in the sense described in section 28.1.3.

Methods that access slots use only the name of the slot and the type
of the slot’s value. Suppose a superclass provides a method that expects
to access a shared slot of a given name, and a subclass defines a local slot
with the same name. If the method provided by the superclass is used on an
instance of the subclass, the method accesses the local slot.

Inheritance of Class Options

The :default-initargs class option is inherited. The set of defaulted ini-
tialization arguments for a class is the union of the sets of initialization
arguments specified in the :default-initargs class options of the class and
its superclasses. When more than one default initial value form is supplied
for a given initialization argument, the default initial value form that is used
is the one supplied by the class that is most specific according to the class
precedence list.

If a given :default-initargs class option specifies an initialization argu-
ment of the same name more than once, an error is signaled.

Examples

(defclass C1 ()
((S1 :initform 5.4 :type number)
(S2 :allocation :class)))

28.1. PROGRAMMER INTERFACE CONCEPTS 833

(defclass C2 (C1)
((S1 :initform 5 :type integer)
(S2 :allocation :instance)
(S3 :accessor C2-S3)))

Instances of the class C1 have a local slot named S1, whose default initial
value is 5.4 and whose value should always be a number. The class C1 also
has a shared slot named S2.

There is a local slot named S1 in instances of C2. The default initial
value of S1 is 5. The value of S1 will be of type (and integer number).
There are also local slots named S2 and S3 in instances of C2. The class
C2 has a method for C2-S3 for reading the value of slot S3; there is also a
method for (setf C2-S3) that writes the value of S3.

28.1.4 Integrating Types and Classes

The Common Lisp Object System maps the space of classes into the Common
Lisp type space. Every class that has a proper name has a corresponding
type with the same name.

The proper name of every class is a valid type specifier. In addition, every
class object is a valid type specifier. Thus the expression (typep object
class) evaluates to true if the class of object is class itself or a subclass of
class. The evaluation of the expression (subtypep class1 class2) returns
the values t and t if class1 is a subclass of class2 or if they are the same
class; otherwise it returns the values nil and t. If I is an instance of some
class C named S and C is an instance of standard-class, the evaluation of
the expression (type-of I) will return S if S is the proper name of C ; if S
is not the proper name of C, the expression (type-of I) will return C.

Because the names of classes and class objects are type specifiers, they
may be used in the special operator the and in type declarations.

Many but not all of the predefined Common Lisp type specifiers have
a corresponding class with the same proper name as the type. These type
specifiers are listed in table 28.1. For example, the type array has a corre-
sponding class named array. No type specifier that is a list, such as (vector
double-float 100), has a corresponding class. The form deftype does not
create any classes.

Each class that corresponds to a predefined Common Lisp type specifier
can be implemented in one of three ways, at the discretion of each imple-

834 CHAPTER 28. COMMON LISP OBJECT SYSTEM

mentation. It can be a standard class (of the kind defined by defclass), a
structure class (defined by defstruct), or a built-in class (implemented in a
special, non-extensible way).

A built-in class is one whose instances have restricted capabilities or spe-
cial representations. Attempting to use defclass to define subclasses of a
built-in class signals an error. Calling make-instance to create an instance
of a built-in class signals an error. Calling slot-value on an instance of a
built-in class signals an error. Redefining a built-in class or using change-
class to change the class of an instance to or from a built-in class signals
an error. However, built-in classes can be used as parameter specializers in
methods.

It is possible to determine whether a class is a built-in class by checking
the metaclass. A standard class is an instance of standard-class, a built-in
class is an instance of built-in-class, and a structure class is an instance of
structure-class.

Each structure type created by defstruct without using the :type option
has a corresponding class. This class is an instance of structure-class.

The :include option of defstruct creates a direct subclass of the class
that corresponds to the included structure.

The purpose of specifying that many of the standard Common Lisp type
specifiers have a corresponding class is to enable users to write methods
that discriminate on these types. Method selection requires that a class
precedence list can be determined for each class.

The hierarchical relationships among the Common Lisp type specifiers
are mirrored by relationships among the classes corresponding to those types.
The existing type hierarchy is used for determining the class precedence list
for each class that corresponds to a predefined Common Lisp type.

Table 28.1 lists the set of classes required by the Object System that
correspond to predefined Common Lisp type specifiers. The superclasses of
each such class are presented in order from most specific to most general,
thereby defining the class precedence list for the class. The local precedence
order for each class that corresponds to a Common Lisp type specifier can
be derived from this table.

Individual implementations may be extended to define other type spec-
ifiers to have a corresponding class. Individual implementations can be ex-
tended to add other subclass relationships and to add other elements to the
class precedence lists in the above table as long as they do not violate the
type relationships and disjointness requirements specified in section 2.15. A

28.1. PROGRAMMER INTERFACE CONCEPTS 835

standard class defined with no direct superclasses is guaranteed to be disjoint
from all of the classes in the table, except for the class named t.

[At this point the original CLOS report specified that certain Common
Lisp types were to appear in table 28.1 if and only if X3J13 voted to make
them disjoint from cons, symbol, array, number, and character. X3J13
voted to do so in June 1988 . I have added these types and their class
precedence lists to the table; the new types are indicated by asterisks.—GLS]

28.1.5 Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its
direct superclasses. This ordering is called the local precedence order. It is an
ordered list of the class and its direct superclasses. The class precedence list
for a class C is a total ordering on C and its superclasses that is consistent
with the local precedence orders for C and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes
all other direct superclasses specified to its right in the superclasses list of
the defclass form. For every class C, define

RC = {(C,C1), (C1, C2), . . . , (Cn−1, Cn)}

where C1, . . . , Cn are the direct superclasses of C in the order in which they
are mentioned in the defclass form. These ordered pairs generate the total
ordering on the class C and its direct superclasses.

Let SC be the set of C and its superclasses. Let R be

R =
⋃

c ∈ SC
Rc

The set R may or may not generate a partial ordering, depending on
whether the Rc, c ∈ SC , are consistent; it is assumed that they are consistent
and that R generates a partial ordering. When the Rc are not consistent, it
is said that R is inconsistent.

To compute the class precedence list for C, topologically sort the elements
of SC with respect to the partial ordering generated by R. When the topo-
logical sort must select a class from a set of two or more classes, none of
which are preceded by other classes with respect to R, the class selected is
chosen deterministically, as described below. If R is inconsistent, an error is
signaled.

836 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Topological Sorting

Топологическая сортировка
Topological sorting proceeds by finding a class C in SC such that no other

class precedes that element according to the elements in R. The class C is
placed first in the result. Remove C from SC , and remove all pairs of the
form (C,D), D ∈ SC , from R. Repeat the process, adding classes with no
predecessors to the end of the result. Stop when no element can be found
that has no predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent.
If every class in the finite set of classes is preceded by another, then R contains
a loop. That is, there is a chain of classes C1, . . . , Cn such that Ci precedes
Ci+1, 1 ≤ i < n, and Cn precedes C1.

Sometimes there are several classes from SC with no predecessors. In this
case select the one that has a direct subclass rightmost in the class precedence
list computed so far. If there is no such candidate class, R does not generate
a partial ordering — the Rc, c ∈ SC , are inconsistent.

In more precise terms, let {N1, . . . , Nm}, m ≥ 2, be the classes from SC
with no predecessors. Let (C1 . . . Cn), n ≥ 1, be the class precedence list
constructed so far. C1 is the most specific class, and Cn is the least specific.
Let 1 ≤ j ≤ n be the largest number such that there exists an i where
1 ≤ i ≤ m and Ni is a direct superclass of Cj; Ni is placed next.

The effect of this rule for selecting from a set of classes with no prede-
cessors is that classes in a simple superclass chain are adjacent in the class
precedence list and that classes in each relatively separated subgraph are ad-
jacent in the class precedence list. For example, let T1 and T2 be subgraphs
whose only element in common is the class J. Suppose that no superclass of
J appears in either T1 or T2. Let C1 be the bottom of T1; and let C2 be the
bottom of T2. Suppose C is a class whose direct superclasses are C1 and C2

in that order; then the class precedence list for C will start with C and will
be followed by all classes in T1 except J. All the classes of T2 will be next.
The class J and its superclasses will appear last.

Examples

This example determines a class precedence list for the class pie. The fol-
lowing classes are defined:

http://ru.wikipedia.org/wiki/\T2A\CYRT \T2A\cyro \T2A\cyrp \T2A\cyro \T2A\cyrl \T2A\cyro \T2A\cyrg \T2A\cyri \T2A\cyrch \T2A\cyre \T2A\cyrs \T2A\cyrk \T2A\cyra \T2A\cyrya _\T2A\cyrs \T2A\cyro \T2A\cyrr \T2A\cyrt \T2A\cyri \T2A\cyrr \T2A\cyro \T2A\cyrv \T2A\cyrk \T2A\cyra

28.1. PROGRAMMER INTERFACE CONCEPTS 837

(defclass pie (apple cinnamon) ())
(defclass apple (fruit) ())
(defclass cinnamon (spice) ())
(defclass fruit (food) ())
(defclass spice (food) ())
(defclass food () ())

The set S={pie, apple, cinnamon, fruit, spice, food, standard-object,
t}. The set R={(pie, apple), (apple, cinnamon), (cinnamon,
standard-object), (apple, fruit), (fruit, standard-object),
(cinnamon, spice), (spice, standard-object), (fruit, food), (food,
standard-object), (spice, food), (standard-object, t)}.
The class pie is not preceded by anything, so it comes first; the result so far
is (pie). Remove pie from S and pairs mentioning pie from R to get
S={apple, cinnamon, fruit, spice, food, standard-object, t} and R={
(apple, cinnamon), (cinnamon, standard-object), (apple, fruit),
(fruit, standard-object), (cinnamon, spice), (spice,
standard-object), (fruit, food), (food, standard-object), (spice,
food), (standard-object, t)}.
The class apple is not preceded by anything, so it is next; the result is
(pie apple). Removing apple and the relevant pairs results in
S={cinnamon, fruit, spice, food, standard-object, t} and
R={(cinnamon, standard-object), (fruit, standard-object),
(cinnamon, spice), (spice, standard-object), (fruit, food), (food,
standard-object), (spice, food), (standard-object, t)}.
The classes cinnamon and fruit are not preceded by anything, so the one
with a direct subclass rightmost in the class precedence list computed so far
goes next. The class apple is a direct subclass of fruit, and the class pie is
a direct subclass of cinnamon. Because apple appears to the right of pie
in the precedence list, fruit goes next, and the result so far is (pie apple
fruit). S={cinnamon, spice, food, standard-object, t};
R={(cinnamon, standard-object), (cinnamon, spice), (spice,
standard-object), (food, standard-object), (spice, food),
(standard-object, t)}.
The class cinnamon is next, giving the result so far as (pie apple fruit
cinnamon). At this point S={spice, food, standard-object, t};
R={(spice, standard-object), (food, standard-object), (spice, food),
(standard-object, t)}.

838 CHAPTER 28. COMMON LISP OBJECT SYSTEM

The classes spice, food, standard-object, and t are then added in that
order, and the final class precedence list for pie is

(pie apple fruit cinnamon spice food standard-object t)

It is possible to write a set of class definitions that cannot be ordered.
For example:

(defclass new-class (fruit apple) ())
(defclass apple (fruit) ())

The class fruit must precede apple because the local ordering of super-
classes must be preserved. The class apple must precede fruit because a
class always precedes its own superclasses. When this situation occurs, an
error is signaled when the system tries to compute the class precedence list.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())
(defclass pastry (cinnamon apple) ())
(defclass apple () ())
(defclass cinnamon () ())

The class precedence list for pie is

(pie apple cinnamon standard-object t)

The class precedence list for pastry is

(pastry cinnamon apple standard-object t)

It is not a problem for apple to precede cinnamon in the ordering of the
superclasses of pie but not in the ordering for pastry. However, it is not
possible to build a new class that has both pie and pastry as superclasses.

28.1.6 Generic Functions and Methods

A generic function is a function whose behavior depends on the classes or
identities of the arguments supplied to it. The methods define the class-
specific behavior and operations of the generic function. The following sec-
tions describe generic functions and methods.

28.1. PROGRAMMER INTERFACE CONCEPTS 839

Introduction to Generic Functions

A generic function object contains a set of methods, a lambda-list, a method
combination type, and other information.

Like an ordinary Lisp function, a generic function takes arguments, per-
forms a series of operations, and perhaps returns useful values. An ordinary
function has a single body of code that is always executed when the function
is called. A generic function has a set of bodies of code of which a subset is
selected for execution. The selected bodies of code and the manner of their
combination are determined by the classes or identities of one or more of the
arguments to the generic function and by its method combination type.

Ordinary functions and generic functions are called with identical
function-call syntax.

Generic functions are true functions that can be passed as arguments,
returned as values, used as the first argument to funcall and apply, and
otherwise used in all the ways an ordinary function may be used.

The generic-function macro creates an anonymous generic function
with the set of methods specified by the method definitions that appear
in the generic-function form.

When a defgeneric form is evaluated, one of three actions is taken:

• If a generic function of the given name already exists, the existing
generic function object is modified. Methods specified by the current
defgeneric form are added, and any methods in the existing generic
function that were defined by a previous defgeneric form are removed.
Methods added by the current defgeneric form might replace methods
defined by defmethod or defclass. No other methods in the generic
function are affected or replaced.

• If the given name names a non-generic function, a macro, or a special
operator, an error is signaled.

• Otherwise a generic function is created with the methods specified by
the method definitions in the defgeneric form.

Some forms specify the options of a generic function, such as the type of
method combination it uses or its argument precedence order. They will be
referred to as “forms that specify generic function options.” These forms are
defgeneric, generic-function.

840 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Some forms define methods for a generic function. They will be referred
to as “method-defining forms.” These forms are defgeneric, defmethod,
generic-function, and defclass. Note that all the method-defining forms
except defclass and defmethod are also forms that specify generic function
options.

Introduction to Methods

A method object contains a method function, a sequence of parameter spe-
cializers that specify when the given method is applicable, a lambda-list, and
a sequence of qualifiers that are used by the method combination facility to
distinguish among methods.

A method object is not a function and cannot be invoked as a function.
Various mechanisms in the Object System take a method object and invoke
its method function, as is the case when a generic function is invoked. When
this occurs it is said that the method is invoked or called.

A method-defining form contains the code that is to be run when the
arguments to the generic function cause the method that it defines to be
invoked. When a method-defining form is evaluated, a method object is
created and one of four actions is taken:

• If a generic function of the given name already exists and if a method
object already exists that agrees with the new one on parameter spe-
cializers and qualifiers, the new method object replaces the old one.
For a definition of one method agreeing with another on parameter
specializers and qualifiers, see section 28.1.6.

• If a generic function of the given name already exists and if there is no
method object that agrees with the new one on parameter specializers
and qualifiers, the existing generic function object is modified to contain
the new method object.

• If the given name names a non-generic function, a macro, or a special
operator, an error is signaled.

• Otherwise a generic function is created with the methods specified by
the method-defining form.

If the lambda-list of a new method is not congruent with the lambda-
list of the generic function, an error is signaled. If a method-defining form

28.1. PROGRAMMER INTERFACE CONCEPTS 841

that cannot specify generic function options creates a new generic function,
a lambda-list for that generic function is derived from the lambda-lists of the
methods in the method-defining form in such a way as to be congruent with
them. For a discussion of congruence, see section 28.1.6.

Each method has a specialized lambda-list, which determines when that
method can be applied. A specialized lambda-list is like an ordinary lambda-
list except that a specialized parameter may occur instead of the name of
a required parameter. A specialized parameter is a list (variable-name
parameter-specializer-name), where parameter-specializer-name is either
a name that names a class or a list (eql form). A parameter specializer name
denotes a parameter specializer as follows:

• A name that names a class denotes that class.

• The list (eql form) denotes the type specifier (eql object), where
object is the result of evaluating form. The form form is evaluated in
the lexical environment in which the method-defining form is evalu-
ated. Note that form is evaluated only once, at the time the method
is defined, not each time the generic function is called.

Parameter specializer names are used in macros intended as the user-
level interface (defmethod), while parameter specializers are used in the
functional interface.

[It is very important to understand clearly the distinction made in the
preceding paragraph. A parameter specializer name has the form of a type
specifier but is semantically quite different from a type specifier: a param-
eter specializer name of the form (eql form) is not a type specifier, for it
contains a form to be evaluated. Type specifiers never contain forms to be
evaluated. All parameter specializers (as opposed to parameter specializer
names) are valid type specifiers, but not all type specifiers are valid pa-
rameter specializers. Macros such as defmethod take parameter specializer
names and treat them as specifications for constructing certain type speci-
fiers (parameter specializers) that may then be used with such functions as
find-method.—GLS]

Only required parameters may be specialized, and there must be a pa-
rameter specializer for each required parameter. For notational simplicity, if
some required parameter in a specialized lambda-list in a method-defining
form is simply a variable name, its parameter specializer defaults to the class
named t.

842 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Given a generic function and a set of arguments, an applicable method is
a method for that generic function whose parameter specializers are satisfied
by their corresponding arguments. The following definition specifies what
it means for a method to be applicable and for an argument to satisfy a
parameter specializer.

Let 〈A1, . . . , An〉 be the required arguments to a generic function in order.
Let 〈P1, . . . , Pn〉 be the parameter specializers corresponding to the required
parameters of the method M in order. The method M is applicable when
each Ai satisfies Pi. If Pi is a class, and if Ai is an instance of a class C, then
it is said that Ai satisfies Pi when C = Pi or when C is a subclass of Pi. If
Pi is of the form (eql object), then it is said that Ai satisfies Pi when the
function eql applied to Ai and object is true.

Because a parameter specializer is a type specifier, the function typep can
be used during method selection to determine whether an argument satisfies
a parameter specializer. In general a parameter specializer cannot be a type
specifier list, such as (vector single-float). The only parameter specializer
that can be a list is (eql object). This requires that Common Lisp define
the type specifier eql as if the following were evaluated:

(deftype eql (object) ‘(member ,object))

[See section 4.3.—GLS]
A method all of whose parameter specializers are the class named t is

called a default method ; it is always applicable but may be shadowed by a
more specific method.

Methods can have qualifiers, which give the method combination proce-
dure a way to distinguish among methods. A method that has one or more
qualifiers is called a qualified method. A method with no qualifiers is called
an unqualified method. A qualifier is any object other than a list, that is, any
non-nil atom. The qualifiers defined by standard method combination and
by the built-in method combination types are symbols.

In this specification, the terms primary method and auxiliary method are
used to partition methods within a method combination type according to
their intended use. In standard method combination, primary methods are
unqualified methods, and auxiliary methods are methods with a single quali-
fier that is one of :around, :before, or :after. When a method combination
type is defined using the short form of define-method-combination, pri-
mary methods are methods qualified with the name of the type of method

28.1. PROGRAMMER INTERFACE CONCEPTS 843

combination, and auxiliary methods have the qualifier :around. Thus the
terms primary method and auxiliary method have only a relative definition
within a given method combination type.

Agreement on Parameter Specializers and Qualifiers

Two methods are said to agree with each other on parameter specializers and
qualifiers if the following conditions hold:

• Both methods have the same number of required parameters. Sup-
pose the parameter specializers of the two methods are P1,1 . . . P1,n and
P2,1 . . . P2,n.

• For each 1 ≤ i ≤ n, P1,i agrees with P2,i. The parameter specializer
P1,i agrees with P2,i if P1,i and P2,i are the same class or if P1,i =
(eqlobject1), P2,i = (eqlobject2), and (eql object1 object2). Otherwise
P1,i and P2,i do not agree.

• The lists of qualifiers of both methods contain the same non-nil atoms
in the same order. That is, the lists are equal.

Congruent Lambda-Lists for All Methods of a Generic Function

These rules define the congruence of a set of lambda-lists, including the
lambda-list of each method for a given generic function and the lambda-list
specified for the generic function itself, if given.

• Each lambda-list must have the same number of required parameters.

• Each lambda-list must have the same number of optional parameters.
Each method can supply its own default for an optional parameter.

• If any lambda-list mentions &rest or &key, each lambda-list must
mention one or both of them.

• If the generic function lambda-list mentions &key, each method must
accept all of the keyword names mentioned after &key, either by ac-
cepting them explicitly, by specifying &allow-other-keys, or by spec-
ifying &rest but not &key. Each method can accept additional key-
word arguments of its own. The checking of the validity of keyword

844 CHAPTER 28. COMMON LISP OBJECT SYSTEM

names is done in the generic function, not in each method. A method
is invoked as if the keyword argument pair whose keyword is :allow-
other-keys and whose value is t were supplied, though no such argu-
ment pair will be passed.

• The use of &allow-other-keys need not be consistent across lambda-
lists. If &allow-other-keys is mentioned in the lambda-list of any
applicable method or of the generic function, any keyword arguments
may be mentioned in the call to the generic function.

• The use of &aux need not be consistent across methods.

If a method-defining form that cannot specify generic function options cre-
ates a generic function, and if the lambda-list for the method mentions key-
word arguments, the lambda-list of the generic function will mention &key
(but no keyword arguments).

Keyword Arguments in Generic Functions and Methods

When a generic function or any of its methods mentions &key in a lambda-
list, the specific set of keyword arguments accepted by the generic function
varies according to the applicable methods. The set of keyword arguments ac-
cepted by the generic function for a particular call is the union of the keyword
arguments accepted by all applicable methods and the keyword arguments
mentioned after &key in the generic function definition, if any. A method
that has &rest but not &key does not affect the set of acceptable keyword
arguments. If the lambda-list of any applicable method or of the generic
function definition contains &allow-other-keys, all keyword arguments are
accepted by the generic function.

The lambda-list congruence rules require that each method accept all of
the keyword arguments mentioned after &key in the generic function defi-
nition, by accepting them explicitly, by specifying &allow-other-keys, or
by specifying &rest but not &key. Each method can accept additional key-
word arguments of its own, in addition to the keyword arguments mentioned
in the generic function definition.

If a generic function is passed a keyword argument that no applicable
method accepts, an error is signaled.

For example, suppose there are two methods defined for width as follows:

28.1. PROGRAMMER INTERFACE CONCEPTS 845

(defmethod width ((c character-class) &key font) ...)

(defmethod width ((p picture-class) &key pixel-size) ...)

Assume that there are no other methods and no generic function definition
for width. The evaluation of the following form will signal an error because
the keyword argument :pixel-size is not accepted by the applicable method.

(width (make-instance ’character-class :char #\Q)
:font ’baskerville :pixel-size 10)

The evaluation of the following form will signal an error.

(width (make-instance ’picture-class :glyph (glyph #\Q))
:font ’baskerville :pixel-size 10)

The evaluation of the following form will not signal an error if the class
named character-picture-class is a subclass of both picture-class and
character-class.

(width (make-instance ’character-picture-class :char #\Q)
:font ’baskerville :pixel-size 10)

28.1.7 Method Selection and Combination

When a generic function is called with particular arguments, it must deter-
mine the code to execute. This code is called the effective method for those
arguments. The effective method is a combination of the applicable methods
in the generic function. A combination of methods is a Lisp expression that
contains calls to some or all of the methods. If a generic function is called and
no methods apply, the generic function no-applicable-method is invoked.

When the effective method has been determined, it is invoked with the
same arguments that were passed to the generic function. Whatever values
it returns are returned as the values of the generic function.

846 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Determining the Effective Method

The effective method for a set of arguments is determined by the following
three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most
specific method first.

3. Apply method combination to the sorted list of applicable methods,
producing the effective method.

Selecting the Applicable Methods. This step is described in sec-
tion 28.1.6.

Sorting the Applicable Methods by Precedence Order. To com-
pare the precedence of two methods, their parameter specializers are exam-
ined in order. The default examination order is from left to right, but an
alternative order may be specified by the :argument-precedence-order
option to defgeneric or to any of the other forms that specify generic func-
tion options.

The corresponding parameter specializers from each method are com-
pared. When a pair of parameter specializers are equal, the next pair are
compared for equality. If all corresponding parameter specializers are equal,
the two methods must have different qualifiers; in this case, either method
can be selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair
of parameter specializers that are not equal determines the precedence. If
both parameter specializers are classes, the more specific of the two methods
is the method whose parameter specializer appears earlier in the class prece-
dence list of the corresponding argument. Because of the way in which the set
of applicable methods is chosen, the parameter specializers are guaranteed
to be present in the class precedence list of the class of the argument.

If just one parameter specializer is (eql object), the method with that
parameter specializer precedes the other method. If both parameter special-
izers are eql forms, the specializers must be the same (otherwise the two
methods would not both have been applicable to this argument).

The resulting list of applicable methods has the most specific method first
and the least specific method last.

28.1. PROGRAMMER INTERFACE CONCEPTS 847

Applying Method Combination to the Sorted List of Applicable
Methods.

In the simple case—if standard method combination is used and all ap-
plicable methods are primary methods—the effective method is the most
specific method. That method can call the next most specific method by us-
ing the function call-next-method. The method that call-next-method
will call is referred to as the next method. The predicate next-method-p
tests whether a next method exists. If call-next-method is called and there
is no next most specific method, the generic function no-next-method is
invoked.

In general, the effective method is some combination of the applicable
methods. It is defined by a Lisp form that contains calls to some or all of
the applicable methods, returns the value or values that will be returned
as the value or values of the generic function, and optionally makes some
of the methods accessible by means of call-next-method. This Lisp form
is the body of the effective method; it is augmented with an appropriate
lambda-list to make it a function.

The role of each method in the effective method is determined by its
method qualifiers and the specificity of the method. A qualifier serves to
mark a method, and the meaning of a qualifier is determined by the way
that these marks are used by this step of the procedure. If an applicable
method has an unrecognized qualifier, this step signals an error and does not
include that method in the effective method.

When standard method combination is used together with qualified meth-
ods, the effective method is produced as described in section 28.1.7.

Another type of method combination can be specified by using the
:method-combination option of defgeneric or of any of the other forms
that specify generic function options. In this way this step of the procedure
can be customized.

New types of method combination can be defined by using the define-
method-combination macro.

The meta-object level also offers a mechanism for defining new types of
method combination. The generic function compute-effective-method re-
ceives as arguments the generic function, the method combination object, and
the sorted list of applicable methods. It returns the Lisp form that defines
the effective method. A method for compute-effective-method can be de-
fined directly by using defmethod or indirectly by using define-method-
combination. A method combination object is an object that encapsu-

848 CHAPTER 28. COMMON LISP OBJECT SYSTEM

lates the method combination type and options specified by the :method-
combination option to forms that specify generic function options.

Implementation note: In the simplest implementation, the generic function
would compute the effective method each time it was called. In practice, this will
be too inefficient for some implementations. Instead, these implementations might
employ a variety of optimizations of the three-step procedure. Some illustrative
examples of such optimizations are the following:

• Use a hash table keyed by the class of the arguments to store the effective
method.

• Compile the effective method and save the resulting compiled function in a
table.

• Recognize the Lisp form as an instance of a pattern of control structure and
substitute a closure that implements that structure.

• Examine the parameter specializers of all methods for the generic function
and enumerate all possible effective methods. Combine the effective methods,
together with code to select from among them, into a single function and
compile that function. Call that function whenever the generic function is
called.

Standard Method Combination

Standard method combination is supported by the class standard-generic-
function. It is used if no other type of method combination is specified or
if the built-in method combination type standard is specified.

Primary methods define the main action of the effective method, while
auxiliary methods modify that action in one of three ways. A primary method
has no method qualifiers.

An auxiliary method is a method whose method qualifier is :before,
:after, or :around. Standard method combination allows no more than one
qualifier per method; if a method definition specifies more than one qualifier
per method, an error is signaled.

• A :before method has the keyword :before as its only qualifier. A
:before method specifies code that is to be run before any primary
method.

28.1. PROGRAMMER INTERFACE CONCEPTS 849

• An :after method has the keyword :after as its only qualifier. An
:after method specifies code that is to be run after primary methods.

• An :around method has the keyword :around as its only qualifier.
An :around method specifies code that is to be run instead of other
applicable methods but that is able to cause some of them to be run.

The semantics of standard method combination are as follows:

• If there are any :around methods, the most specific :around method
is called. It supplies the value or values of the generic function.

• Inside the body of an :aroundmethod, call-next-method can be used
to call the next method. When the next method returns, the :around
method can execute more code, perhaps based on the returned value
or values. The generic function no-next-method is invoked if call-
next-method is used and there is no applicable method to call. The
function next-method-p may be used to determine whether a next
method exists.

• If an :around method invokes call-next-method, the next most spe-
cific :around method is called, if one is applicable. If there are no
:around methods or if call-next-method is called by the least spe-
cific :around method, the other methods are called as follows:

– All the :before methods are called, in most-specific-first order.
Their values are ignored. An error is signaled if call-next-
method is used in a :before method.

– The most specific primary method is called. Inside the body of a
primary method, call-next-method may be used to call the next
most specific primary method. When that method returns, the
previous primary method can execute more code, perhaps based
on the returned value or values. The generic function no-next-
method is invoked if call-next-method is used and there are no
more applicable primary methods. The function next-method-p
may be used to determine whether a next method exists. If call-
next-method is not used, only the most specific primary method
is called.

850 CHAPTER 28. COMMON LISP OBJECT SYSTEM

– All the :aftermethods are called in most-specific-last order. Their
values are ignored. An error is signaled if call-next-method is
used in an :after method.

• If no :aroundmethods were invoked, the most specific primary method
supplies the value or values returned by the generic function. The
value or values returned by the invocation of call-next-method in the
least specific :around method are those returned by the most specific
primary method.

In standard method combination, if there is an applicable method but no
applicable primary method, an error is signaled.

The :before methods are run in most-specific-first order and the :after
methods are run in least-specific-first order. The design rationale for this
difference can be illustrated with an example. Suppose class C1 modifies
the behavior of its superclass, C2, by adding :before and :after methods.
Whether the behavior of the class C2 is defined directly by methods on C2 or is
inherited from its superclasses does not affect the relative order of invocation
of methods on instances of the class C1. Class C1’s :before method runs
before all of class C2’s methods. Class C1’s :after method runs after all of
class C2’s methods.

By contrast, all :around methods run before any other methods run.
Thus a less specific :around method runs before a more specific primary
method.

If only primary methods are used and if call-next-method is not used,
only the most specific method is invoked; that is, more specific methods
shadow more general ones.

Declarative Method Combination

The macro define-method-combination defines new forms of method com-
bination. It provides a mechanism for customizing the production of the ef-
fective method. The default procedure for producing an effective method
is described in section 28.1.7. There are two forms of define-method-
combination. The short form is a simple facility; the long form is more
powerful and more verbose. The long form resembles defmacro in that the
body is an expression that computes a Lisp form; it provides mechanisms for
implementing arbitrary control structures within method combination and

28.1. PROGRAMMER INTERFACE CONCEPTS 851

for arbitrary processing of method qualifiers. The syntax and use of both
forms of define-method-combination are explained in section 28.2.

Built-in Method Combination Types

The Common Lisp Object System provides a set of built-in method combina-
tion types. To specify that a generic function is to use one of these method
combination types, the name of the method combination type is given as
the argument to the :method-combination option to defgeneric or to the
:method-combination option to any of the other forms that specify generic
function options.

The names of the built-in method combination types are +, and, ap-
pend, list, max, min, nconc, or, progn, and standard.

The semantics of the standard built-in method combination type were
described in section 28.1.7. The other built-in method combination types are
called simple built-in method combination types.

The simple built-in method combination types act as though they were
defined by the short form of define-method-combination. They recognize
two roles for methods:

• An :around method has the keyword symbol :around as its sole qual-
ifier. The meaning of :around methods is the same as in standard
method combination. Use of the functions call-next-method and
next-method-p is supported in :around methods.

• A primary method has the name of the method combination type as
its sole qualifier. For example, the built-in method combination type
and recognizes methods whose sole qualifier is and; these are primary
methods. Use of the functions call-next-method and next-method-
p is not supported in primary methods.

The semantics of the simple built-in method combination types are as
follows:

• If there are any :around methods, the most specific :around method
is called. It supplies the value or values of the generic function.

• Inside the body of an :around method, the function call-next-
method can be used to call the next method. The generic function

852 CHAPTER 28. COMMON LISP OBJECT SYSTEM

no-next-method is invoked if call-next-method is used and there
is no applicable method to call. The function next-method-p may
be used to determine whether a next method exists. When the next
method returns, the :around method can execute more code, perhaps
based on the returned value or values.

• If an :around method invokes call-next-method, the next most spe-
cific :around method is called, if one is applicable. If there are no
:around methods or if call-next-method is called by the least spe-
cific :aroundmethod, a Lisp form derived from the name of the built-in
method combination type and from the list of applicable primary meth-
ods is evaluated to produce the value of the generic function. Suppose
the name of the method combination type is operator and the call to
the generic function is of the form

(generic-function a1 ... an)

Let M1, . . . ,Mk be the applicable primary methods in order; then the
derived Lisp form is

(operator 〈M1 a1 . . . an〉 ... 〈Mk a1 . . . an〉)

If the expression 〈Mi a1 . . . an〉 is evaluated, the method Mi will be
applied to the arguments a1 . . . an. For example, if operator is or, the
expression 〈Mi a1 . . . an〉 is evaluated only if 〈Mj a1 . . . an〉, 1 ≤ j < i,
returned nil.

The default order for the primary methods is :most-specific-first.
However, the order can be reversed by supplying :most-specific-last
as the second argument to the :method-combination option.

The simple built-in method combination types require exactly one quali-
fier per method. An error is signaled if there are applicable methods with no
qualifiers or with qualifiers that are not supported by the method combina-
tion type. An error is signaled if there are applicable :around methods and
no applicable primary methods.

28.1. PROGRAMMER INTERFACE CONCEPTS 853

28.1.8 Meta-objects

The implementation of the Object System manipulates classes, methods, and
generic functions. The meta-object protocol specifies a set of generic func-
tions defined by methods on classes; the behavior of those generic functions
defines the behavior of the Object System. The instances of the classes on
which those methods are defined are called meta-objects. Programming at
the meta-object protocol level involves defining new classes of meta-objects
along with methods specialized on these classes.

Metaclasses

The metaclass of an object is the class of its class. The metaclass determines
the representation of instances of its instances and the forms of inheritance
used by its instances for slot descriptions and method inheritance. The meta-
class mechanism can be used to provide particular forms of optimization or to
tailor the Common Lisp Object System for particular uses. The protocol for
defining metaclasses is discussed in the third part of the CLOS specification,
The Common Lisp Object System Meta-Object Protocol 30.

Standard Metaclasses

The Common Lisp Object System provides a number of predefined meta-
classes. These include the classes standard-class, built-in-class, and
structure-class:

• The class standard-class is the default class of classes defined by
defclass.

• The class built-in-class is the class whose instances are classes that
have special implementations with restricted capabilities. Any class
that corresponds to a standard Common Lisp type might be an in-
stance of built-in-class. The predefined Common Lisp type specifiers
that are required to have corresponding classes are listed in table 28.1.
It is implementation-dependent whether each of these classes is imple-
mented as a built-in class.

• All classes defined by means of defstruct are instances of structure-
class.

854 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Standard Meta-objects

The Object System supplies a standard set of meta-objects, called standard
meta-objects. These include the class standard-object and instances of
the classes standard-method, standard-generic-function, andmethod-
combination.

• The class standard-method is the default class of methods that are
defined by the forms defmethod, defgeneric, generic-function.

• The class standard-generic-function is the default class of generic
functions defined by the forms defmethod, defgeneric, generic-
function, and defclass.

• The class named standard-object is an instance of the class
standard-class and is a superclass of every class that is an instance
of standard-class except itself.

• Every method combination object is an instance of a subclass of the
class method-combination.

28.1.9 Object Creation and Initialization

The generic functionmake-instance creates and returns a new instance of a
class. The first argument is a class or the name of a class, and the remaining
arguments form an initialization argument list.

The initialization of a new instance consists of several distinct steps, in-
cluding the following: combining the explicitly supplied initialization argu-
ments with default values for the unsupplied initialization arguments, check-
ing the validity of the initialization arguments, allocating storage for the
instance, filling slots with values, and executing user-supplied methods that
perform additional initialization. Each step of make-instance is imple-
mented by a generic function to provide a mechanism for customizing that
step. In addition, make-instance is itself a generic function and thus also
can be customized.

The Object System specifies system-supplied primary methods for each
step and thus specifies a well-defined standard behavior for the entire initial-
ization process. The standard behavior provides four simple mechanisms for
controlling initialization:

28.1. PROGRAMMER INTERFACE CONCEPTS 855

• Declaring a symbol to be an initialization argument for a slot. An
initialization argument is declared by using the :initarg slot option to
defclass. This provides a mechanism for supplying a value for a slot
in a call to make-instance.

• Supplying a default value form for an initialization argument. De-
fault value forms for initialization arguments are defined by using the
:default-initargs class option to defclass. If an initialization argu-
ment is not explicitly provided as an argument to make-instance, the
default value form is evaluated in the lexical environment of the def-
class form that defined it, and the resulting value is used as the value
of the initialization argument.

• Supplying a default initial value form for a slot. A default initial value
form for a slot is defined by using the :initform slot option to defclass.
If no initialization argument associated with that slot is given as an
argument tomake-instance or is defaulted by :default-initargs, this
default initial value form is evaluated in the lexical environment of the
defclass form that defined it, and the resulting value is stored in the
slot. The :initform form for a local slot may be used when creating an
instance, when updating an instance to conform to a redefined class, or
when updating an instance to conform to the definition of a different
class. The :initform form for a shared slot may be used when defining
or re-defining the class.

• Defining methods for initialize-instance and shared-initialize. The
slot-filling behavior described above is implemented by a system-
supplied primary method for initialize-instance which invokes
shared-initialize. The generic function shared-initialize imple-
ments the parts of initialization shared by these four situations: when
making an instance, when re-initializing an instance, when updating
an instance to conform to a redefined class, and when updating an
instance to conform to the definition of a different class. The system-
supplied primary method for shared-initialize directly implements
the slot-filling behavior described above, and initialize-instance sim-
ply invokes shared-initialize.

856 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Initialization Arguments

An initialization argument controls object creation and initialization. It is
often convenient to use keyword symbols to name initialization arguments,
but the name of an initialization argument can be any symbol, including nil.
An initialization argument can be used in two ways: to fill a slot with a value
or to provide an argument for an initialization method. A single initialization
argument can be used for both purposes.

An initialization argument list is a list of alternating initialization argu-
ment names and values. Its structure is identical to a property list and also
to the portion of an argument list processed for &key parameters. As in
those lists, if an initialization argument name appears more than once in an
initialization argument list, the leftmost occurrence supplies the value and
the remaining occurrences are ignored. The arguments to make-instance
(after the first argument) form an initialization argument list. Error check-
ing of initialization argument names is disabled if the keyword argument pair
whose keyword is :allow-other-keys and whose value is non-nil appears in
the initialization argument list.

An initialization argument can be associated with a slot. If the initial-
ization argument has a value in the initialization argument list, the value is
stored into the slot of the newly created object, overriding any :initform
form associated with the slot. A single initialization argument can initialize
more than one slot. An initialization argument that initializes a shared slot
stores its value into the shared slot, replacing any previous value.

An initialization argument can be associated with a method. When an ob-
ject is created and a particular initialization argument is supplied, the generic
functions initialize-instance, shared-initialize, and allocate-instance
are called with that initialization argument’s name and value as a keyword
argument pair. If a value for the initialization argument is not supplied in
the initialization argument list, the method’s lambda-list supplies a default
value.

Initialization arguments are used in four situations: when making an
instance, when re-initializing an instance, when updating an instance to con-
form to a redefined class, and when updating an instance to conform to the
definition of a different class.

Because initialization arguments are used to control the creation and ini-
tialization of an instance of some particular class, we say that an initialization
argument is “an initialization argument for” that class.

28.1. PROGRAMMER INTERFACE CONCEPTS 857

Declaring the Validity of Initialization Arguments

Initialization arguments are checked for validity in each of the four situations
that use them. An initialization argument may be valid in one situation
and not another. For example, the system-supplied primary method for
make-instance defined for the class standard-class checks the validity of
its initialization arguments and signals an error if an initialization argument
is supplied that is not declared valid in that situation.

There are two means of declaring initialization arguments valid.

• Initialization arguments that fill slots are declared valid by the :initarg
slot option to defclass. The :initarg slot option is inherited from
superclasses. Thus the set of valid initialization arguments that fill
slots for a class is the union of the initialization arguments that fill
slots declared valid by that class and its superclasses. Initialization
arguments that fill slots are valid in all four contexts.

• Initialization arguments that supply arguments to methods are declared
valid by defining those methods. The keyword name of each keyword
parameter specified in the method’s lambda-list becomes an initializa-
tion argument for all classes for which the method is applicable. Thus
method inheritance controls the set of valid initialization arguments
that supply arguments to methods. The generic functions for which
method definitions serve to declare initialization arguments valid are
as follows:

– Making an instance of a class: allocate-instance, initialize-
instance, and shared-initialize. Initialization arguments de-
clared valid by these methods are valid when making an instance
of a class.

– Re-initializing an instance: the functions reinitialize-instance
and shared-initialize. Initialization arguments declared valid
by these methods are valid when re-initializing an instance.

– Updating an instance to conform to a redefined class: update-
instance-for-redefined-class and shared-initialize. Initializa-
tion arguments declared valid by these methods are valid when
updating an instance to conform to a redefined class.

858 CHAPTER 28. COMMON LISP OBJECT SYSTEM

– Updating an instance to conform to the definition of a differ-
ent class: update-instance-for-different-class and shared-
initialize. Initialization arguments declared valid by these meth-
ods are valid when updating an instance to conform to the defini-
tion of a different class.

The set of valid initialization arguments for a class is the set of valid
initialization arguments that either fill slots or supply arguments to methods,
along with the predefined initialization argument :allow-other-keys. The
default value for :allow-other-keys is nil. The meaning of :allow-other-
keys is the same here as when it is passed to an ordinary function.

Defaulting of Initialization Arguments

A default value form can be supplied for an initialization argument by using
the :default-initargs class option. If an initialization argument is declared
valid by some particular class, its default value form might be specified by
a different class. In this case :default-initargs is used to supply a default
value for an inherited initialization argument.

The :default-initargs option is used only to provide default values for
initialization arguments; it does not declare a symbol as a valid initialization
argument name. Furthermore, the :default-initargs option is used only to
provide default values for initialization arguments when making an instance.

The argument to the :default-initargs class option is a list of alternating
initialization argument names and forms. Each form is the default value
form for the corresponding initialization argument. The default value form
of an initialization argument is used and evaluated only if that initialization
argument does not appear in the arguments to make-instance and is not
defaulted by a more specific class. The default value form is evaluated in the
lexical environment of the defclass form that supplied it; the result is used
as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined
with defaulted initialization arguments to produce a defaulted initialization
argument list. A defaulted initialization argument list is a list of alternating
initialization argument names and values in which unsupplied initialization
arguments are defaulted and in which the explicitly supplied initialization
arguments appear earlier in the list than the defaulted initialization argu-
ments. Defaulted initialization arguments are ordered according to the order

28.1. PROGRAMMER INTERFACE CONCEPTS 859

in the class precedence list of the classes that supplied the default values.
There is a distinction between the purposes of the :default-initargs

and the :initform options with respect to the initialization of slots. The
:default-initargs class option provides a mechanism for the user to give a
default value form for an initialization argument without knowing whether
the initialization argument initializes a slot or is passed to a method. If that
initialization argument is not explicitly supplied in a call to make-instance,
the default value form is used, just as if it had been supplied in the call. In
contrast, the :initform slot option provides a mechanism for the user to give
a default initial value form for a slot. An :initform form is used to initialize
a slot only if no initialization argument associated with that slot is given as
an argument to make-instance or is defaulted by :default-initargs.

The order of evaluation of default value forms for initialization arguments
and the order of evaluation of :initform forms are undefined. If the order of
evaluation matters, use initialize-instance or shared-initialize methods.

Rules for Initialization Arguments

The :initarg slot option may be specified more than once for a given slot.
The following rules specify when initialization arguments may be multiply
defined:

• A given initialization argument can be used to initialize more than one
slot if the same initialization argument name appears in more than one
:initarg slot option.

• A given initialization argument name can appear in the lambda-list of
more than one initialization method.

• A given initialization argument name can appear both in an :initarg
slot option and in the lambda-list of an initialization method.

If two or more initialization arguments that initialize the same slot are
given in the arguments tomake-instance, the leftmost of these initialization
arguments in the initialization argument list supplies the value, even if the
initialization arguments have different names.

If two or more different initialization arguments that initialize the same
slot have default values and none is given explicitly in the arguments to

860 CHAPTER 28. COMMON LISP OBJECT SYSTEM

make-instance, the initialization argument that appears in a :default-
initargs class option in the most specific of the classes supplies the value.
If a single :default-initargs class option specifies two or more initialization
arguments that initialize the same slot and none is given explicitly in the ar-
guments tomake-instance, the leftmost argument in the :default-initargs
class option supplies the value, and the values of the remaining default value
forms are ignored.

Initialization arguments given explicitly in the arguments to make-
instance appear to the left of defaulted initialization arguments. Suppose
that the classes C1 and C2 supply the values of defaulted initialization argu-
ments for different slots, and suppose that C1 is more specific than C2; then
the defaulted initialization argument whose value is supplied by C1 is to the
left of the defaulted initialization argument whose value is supplied by C2 in
the defaulted initialization argument list. If a single :default-initargs class
option supplies the values of initialization arguments for two different slots,
the initialization argument whose value is specified farther to the left in the
default-initargs class option appears farther to the left in the defaulted
initialization argument list.

If a slot has both an :initform form and an :initarg slot option, and the
initialization argument is defaulted using :default-initargs or is supplied to
make-instance, the captured :initform form is neither used nor evaluated.

The following is an example of the preceding rules:

(defclass q () ((x :initarg a)))

(defclass r (q) ((x :initarg b))
(:default-initargs a 1 b 2))

Defaulted Initialization Contents
Form Argument List of Slot
(make-instance ’r) (a 1 b 2) 1
(make-instance ’r ’a 3) (a 3 b 2) 3
(make-instance ’r ’b 4) (b 4 a 1) 4
(make-instance ’r ’a 1 ’a 2) (a 1 a 2 b 2) 1

Shared-Initialize

The generic function shared-initialize is used to fill the slots of an in-
stance using initialization arguments and :initform forms when an instance

28.1. PROGRAMMER INTERFACE CONCEPTS 861

is created, when an instance is re-initialized, when an instance is updated to
conform to a redefined class, and when an instance is updated to conform to
a different class. It uses standard method combination. It takes the following
arguments: the instance to be initialized, a specification of a set of names of
slots accessible in that instance, and any number of initialization arguments.
The arguments after the first two must form an initialization argument list.

The second argument to shared-initialize may be one of the following:

• It can be a list of slot names, which specifies the set of those slot names.

• It can be nil, which specifies the empty set of slot names.

• It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared-initialize whose
first parameter specializer is the class standard-object. This method be-
haves as follows on each slot, whether shared or local:

• If an initialization argument in the initialization argument list specifies
a value for that slot, that value is stored into the slot, even if a value
has already been stored in the slot before the method is run. The
affected slots are independent of which slots are indicated by the second
argument to shared-initialize.

• Any slots indicated by the second argument that are still unbound
at this point are initialized according to their :initform forms. For
any such slot that has an :initform form, that form is evaluated in
the lexical environment of its defining defclass form and the result is
stored into the slot. For example, if a :before method stores a value in
the slot, the :initform form will not be used to supply a value for the
slot. If the second argument specifies a name that does not correspond
to any slots accessible in the instance, the results are unspecified.

• The rules mentioned in section 28.1.9 are obeyed.

The generic function shared-initialize is called by the system-supplied
primary methods for the generic functions initialize-instance, reinitialize-
instance, update-instance-for-different-class, and update-instance-
for-redefined-class. Thus methods can be written for shared-initialize
to specify actions that should be taken in all of these contexts.

862 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Initialize-Instance

The generic function initialize-instance is called by make-instance to
initialize a newly created instance. It uses standard method combination.
Methods for initialize-instance can be defined in order to perform any
initialization that cannot be achieved with the simple slot-filling mechanisms.

During initialization, initialize-instance is invoked after the following
actions have been taken:

• The defaulted initialization argument list has been computed by com-
bining the supplied initialization argument list with any default initial-
ization arguments for the class.

• The validity of the defaulted initialization argument list has been
checked. If any of the initialization arguments has not been declared
valid, an error is signaled.

• A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance
and the defaulted initialization arguments. There is a system-supplied pri-
mary method for initialize-instance whose parameter specializer is the class
standard-object. This method calls the generic function shared-initialize
to fill in the slots according to the initialization arguments and the :initform
forms for the slots; the generic function shared-initialize is called with the
following arguments: the instance, t, and the defaulted initialization argu-
ments.

Note that initialize-instance provides the defaulted initialization argu-
ment list in its call to shared-initialize, so the first step performed by the
system-supplied primary method for shared-initialize takes into account
both the initialization arguments provided in the call to make-instance
and the defaulted initialization argument list.

Methods for initialize-instance can be defined to specify actions to be
taken when an instance is initialized. If only :after methods for initialize-
instance are defined, they will be run after the system-supplied primary
method for initialization and therefore they will not interfere with the default
behavior of initialize-instance.

The Object System provides two functions that are useful in the bod-
ies of initialize-instance methods. The function slot-boundp returns a

28.1. PROGRAMMER INTERFACE CONCEPTS 863

boolean value that indicates whether a specified slot has a value; this pro-
vides a mechanism for writing :after methods for initialize-instance that
initialize slots only if they have not already been initialized. The function
slot-makunbound causes the slot to have no value.

Definitions of Make-Instance and Initialize-Instance

The generic function make-instance behaves as if it were defined as follows,
except that certain optimizations are permitted:

(defmethod make-instance ((class standard-class) &rest initargs)
(setq initargs (default-initargs class initargs))
...
(let ((instance (apply #’allocate-instance class initargs)))
(apply #’initialize-instance instance initargs)
instance))

(defmethod make-instance ((class-name symbol) &rest initargs)
(apply #’make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance checks the supplied
initialization arguments to determine whether an initialization argument was
supplied that neither filled a slot nor supplied an argument to an applica-
ble method. This check could be implemented using the generic functions
class-prototype, compute-applicable-methods, function-keywords,
and class-slot-initargs. See the third part of the Common Lisp Object
System specification for a description of this initialization argument check.

The generic function initialize-instance behaves as if it were defined as
follows, except that certain optimizations are permitted:

(defmethod initialize-instance
((instance standard-object) &rest initargs)

(apply #’shared-initialize instance t initargs)))

These procedures can be customized at either the Programmer Interface
level, the meta-object level, or both.

Customizing at the Programmer Interface level includes using the :init-
form, :initarg, and :default-initargs options to defclass, as well as defin-
ing methods for make-instance and initialize-instance. It is also pos-
sible to define methods for shared-initialize, which would be invoked

864 CHAPTER 28. COMMON LISP OBJECT SYSTEM

by the generic functions reinitialize-instance, update-instance-for-
redefined-class, update-instance-for-different-class, and initialize-
instance. The meta-object level supports additional customization by al-
lowing methods to be defined on make-instance, default-initargs, and
allocate-instance. Parts 2 and 3 of the Common Lisp Object System spec-
ification document each of these generic functions and the system-supplied
primary methods. [The third part has not yet been approved by X3J13 for
inclusion in the forthcoming Common Lisp standard and is not included in
this book.—GLS]

Implementations are permitted to make certain optimizations to
initialize-instance and shared-initialize. The description of shared-
initialize in section 28.2 mentions the possible optimizations.

Because of optimization, the check for valid initialization arguments might
not be implemented using the generic functions class-prototype, compute-
applicable-methods, function-keywords, and class-slot-initargs. In
addition, methods for the generic function default-initargs and the system-
supplied primary methods for allocate-instance, initialize-instance, and
shared-initialize might not be called on every call to make-instance or
might not receive exactly the arguments that would be expected.

28.1.10 Redefining Classes

A class that is an instance of standard-class can be redefined if the new class
will also be an instance of standard-class. Redefining a class modifies the
existing class object to reflect the new class definition; it does not create a new
class object for the class. Any method object created by a :reader, :writer,
or :accessor option specified by the old defclass form is removed from the
corresponding generic function. Methods specified by the new defclass form
are added.

When the class C is redefined, changes are propagated to its instances and
to instances of any of its subclasses. Updating such an instance occurs at an
implementation-dependent time, but no later than the next time a slot of that
instance is read or written. Updating an instance does not change its identity
as defined by the eq function. The updating process may change the slots
of that particular instance, but it does not create a new instance. Whether
updating an instance consumes storage is implementation-dependent.

Note that redefining a class may cause slots to be added or deleted. If
a class is redefined in a way that changes the set of local slots accessible

28.1. PROGRAMMER INTERFACE CONCEPTS 865

in instances, the instances will be updated. It is implementation-dependent
whether instances are updated if a class is redefined in a way that does not
change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in
the new class is retained. If such a shared slot was unbound in the old class,
it will be unbound in the new class. Slots that were local in the old class and
that are shared in the new class are initialized. Newly added shared slots are
initialized.

Each newly added shared slot is set to the result of evaluating the cap-
tured :initform form for the slot that was specified in the defclass form for
the new class. If there is no :initform form, the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible
in an instance of the class is changed, a two-step process of updating the
instances of the class takes place. The process may be explicitly started
by invoking the generic function make-instances-obsolete. This two-step
process can happen in other circumstances in some implementations. For
example, in some implementations this two-step process will be triggered if
the order of slots in storage is changed.

The first step modifies the structure of the instance by adding new local
slots and discarding local slots that are not defined in the new version of the
class. The second step initializes the newly added local slots and performs
any other user-defined actions. These steps are further specified in the next
two sections.

Modifying the Structure of Instances

The first step modifies the structure of instances of the redefined class to
conform to its new class definition. Local slots specified by the new class
definition that are not specified as either local or shared by the old class
are added, and slots not specified as either local or shared by the new class
definition that are specified as local by the old class are discarded. The
names of these added and discarded slots are passed as arguments to update-
instance-for-redefined-class as described in the next section.

The values of local slots specified by both the new and old classes are
retained. If such a local slot was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local
in the new class is retained. If such a shared slot was unbound, the local slot
will be unbound.

866 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any
other user-defined actions. This step is implemented by the generic function
update-instance-for-redefined-class, which is called after completion of
the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four
required arguments: the instance being updated after it has undergone the
first step, a list of the names of local slots that were added, a list of the
names of local slots that were discarded, and a property list containing the
slot names and values of slots that were discarded and had values. Included
among the discarded slots are slots that were local in the old class and that
are shared in the new class.

The generic function update-instance-for-redefined-class also takes
any number of initialization arguments. When it is called by the system to
update an instance whose class has been redefined, no initialization argu-
ments are provided.

There is a system-supplied primary method for the generic function
update-instance-for-redefined-class whose parameter specializer for its
instance argument is the class standard-object. First this method checks
the validity of initialization arguments and signals an error if an initialization
argument is supplied that is not declared valid (see section 28.1.9.) Then it
calls the generic function shared-initialize with the following arguments:
the instance, the list of names of the newly added slots, and the initialization
arguments it received.

Customizing Class Redefinition

Methods for update-instance-for-redefined-class may be defined to spec-
ify actions to be taken when an instance is updated. If only :after meth-
ods for update-instance-for-redefined-class are defined, they will be
run after the system-supplied primary method for initialization and there-
fore will not interfere with the default behavior of update-instance-for-
redefined-class. Because no initialization arguments are passed to update-
instance-for-redefined-class when it is called by the system, the :initform
forms for slots that are filled by :before methods for update-instance-for-
redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefi-

28.1. PROGRAMMER INTERFACE CONCEPTS 867

nition (see section 28.1.9).

Extensions

There are two allowed extensions to class redefinition:

• The Object System may be extended to permit the new class to be an
instance of a metaclass other than the metaclass of the old class.

• The Object System may be extended to support an updating process
when either the old or the new class is an instance of a class other than
standard-class that is not a built-in class.

28.1.11 Changing the Class of an Instance

The function change-class can be used to change the class of an instance
from its current class, Cfrom, to a different class, Cto; it changes the structure
of the instance to conform to the definition of the class Cto.

Note that changing the class of an instance may cause slots to be added
or deleted.

When change-class is invoked on an instance, a two-step updating pro-
cess takes place. The first step modifies the structure of the instance by
adding new local slots and discarding local slots that are not specified in the
new version of the instance. The second step initializes the newly added local
slots and performs any other user-defined actions. These steps are further
described in the following two sections.

Modifying the Structure of an Instance

In order to make an instance conform to the class Cto, local slots specified by
the class Cto that are not specified by the class Cfrom are added, and local
slots not specified by the class Cto that are specified by the class Cfrom are
discarded.

The values of local slots specified by both the class Cto and the class
Cfrom are retained. If such a local slot was unbound, it remains unbound.

The values of slots specified as shared in the class Cfrom and as local in
the class Cto are retained.

This first step of the update does not affect the values of any shared slots.

868 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Initializing Newly Added Local Slots

The second step of the update initializes the newly added slots and performs
any other user-defined actions. This step is implemented by the generic func-
tion update-instance-for-different-class. The generic function update-
instance-for-different-class is invoked by change-class after the first step
of the update has been completed.

The generic function update-instance-for-different-class is invoked
on two arguments computed by change-class. The first argument passed is
a copy of the instance being updated and is an instance of the class Cfrom;
this copy has dynamic extent within the generic function change-class. The
second argument is the instance as updated so far by change-class and is
an instance of the class Cto.

The generic function update-instance-for-different-class also takes
any number of initialization arguments. When it is called by change-class,
no initialization arguments are provided.

There is a system-supplied primary method for the generic function
update-instance-for-different-class that has two parameter specializers,
each of which is the class standard-object. First this method checks the
validity of initialization arguments and signals an error if an initialization
argument is supplied that is not declared valid (see section 28.1.9). Then it
calls the generic function shared-initialize with the following arguments:
the instance, a list of names of the newly added slots, and the initialization
arguments it received.

Customizing the Change of Class of an Instance

Methods for update-instance-for-different-class may be defined to spec-
ify actions to be taken when an instance is updated. If only :after meth-
ods for update-instance-for-different-class are defined, they will be run
after the system-supplied primary method for initialization and will not in-
terfere with the default behavior of update-instance-for-different-class.
Because no initialization arguments are passed to update-instance-for-
different-class when it is called by change-class, the :initform forms for
slots that are filled by :beforemethods for update-instance-for-different-
class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefi-
nition (see section 28.1.9).

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 869

28.1.12 Reinitializing an Instance

The generic function reinitialize-instancemay be used to change the values
of slots according to initialization arguments.

The process of reinitialization changes the values of some slots and per-
forms any user-defined actions.

Reinitialization does not modify the structure of an instance to add or
delete slots, and it does not use any :initform forms to initialize slots.

The generic function reinitialize-instance may be called directly. It
takes one required argument, the instance. It also takes any number of
initialization arguments to be used by methods for reinitialize-instance or
for shared-initialize. The arguments after the required instance must form
an initialization argument list.

There is a system-supplied primary method for reinitialize-instance
whose parameter specializer is the class standard-object. First this method
checks the validity of initialization arguments and signals an error if an ini-
tialization argument is supplied that is not declared valid (see section 28.1.9).
Then it calls the generic function shared-initialize with the following ar-
guments: the instance, nil, and the initialization arguments it received.

Customizing Reinitialization

Methods for the generic function reinitialize-instance may be defined to
specify actions to be taken when an instance is updated. If only :after
methods for reinitialize-instance are defined, they will be run after the
system-supplied primary method for initialization and therefore will not in-
terfere with the default behavior of reinitialize-instance.

Methods for shared-initialize may be defined to customize class redefi-
nition (see section 28.1.9).

28.2 Functions in the Programmer Interface

This section describes the functions, macros, special operators, and generic
functions provided by the Common Lisp Object System Programmer Inter-
face. The Programmer Interface comprises the functions and macros that
are sufficient for writing most object-oriented programs.

This section is reference material that requires an understanding of the

870 CHAPTER 28. COMMON LISP OBJECT SYSTEM

basic concepts of the Common Lisp Object System. The functions are ar-
ranged in alphabetical order for convenient reference.

The description of each function, macro, special operator, and generic
function includes its purpose, its syntax, the semantics of its arguments and
returned values, and often an example and cross-references to related func-
tions.

The syntax description for a function, macro, or special operator describes
its parameters. The description of a generic function includes descriptions of
the methods that are defined on that generic function by the Common Lisp
Object System. A method signature is used to describe the parameters and
parameter specializers for each method.

The following is an example of the format for the syntax description of a
generic function with the method signature for one primary method:

[Generic function] f x y &optional z &key :k
[Primary method] f (x class) (y t) &optional z &key :k

This description indicates that the generic function f has two required
parameters, x and y. In addition, there is an optional parameter z and a
keyword parameter :k.

The method signature indicates that this method on the generic function
f has two required parameters, x, which must be an instance of the class
class, and y, which can be any object. In addition, there is an optional
parameter z and a keyword parameter :k. The signature also indicates that
this method on f is a primary method and has no qualifiers.

The syntax description for a generic function describes the lambda-list of
the generic function itself, while the method signatures describe the lambda-
lists of the defined methods.

The generic functions described in this book are all standard generic
functions. They all use standard method combination.

Any implementation of the Common Lisp Object System is allowed to
provide additional methods on the generic functions described here.

It is useful to categorize the functions and macros according to their role
in this standard:

• Tools used for simple object-oriented programming

These tools allow for defining new classes, methods, and generic func-
tions and for making instances. Some tools used within method bodies

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 871

are also listed here. Some of the macros listed here have a correspond-
ing function that performs the same task at a lower level of abstraction.

call-next-method initialize-instance
change-class make-instance
defclass next-method-p
defgeneric slot-boundp
defmethod slot-value

with-accessors
generic-function

with-slots

• Functions underlying the commonly used macros

add-method reinitialize-instance
class-name remove-method
compute-applicable-methods shared-initialize
ensure-generic-function slot-exists-p
find-class slot-makunbound
find-method slot-missing
function-keywords slot-unbound
make-instances-obsolete update-instance-for-different-class
no-applicable-method update-instance-for-redefined-class
no-next-method

• Tools for declarative method combination

call-method method-combination-error
define-method-combination method-qualifiers
invalid-method-error

• General Common Lisp support tools

class-of print-object
documentation symbol-macrolet

872 CHAPTER 28. COMMON LISP OBJECT SYSTEM

[Note that describe appeared in this list in the original CLOS proposal
[5, 7], but X3J13 voted in March 1989 not to make describe a generic
function after all (see describe-object).—GLS]

[At this point the original CLOS report contained a description of the [[]]
and ↓ notation; that description is omitted here. I have adopted the notation
for use throughout this book. It is described in section 1.2.5.—GLS]

[Generic function] add-method generic-function method
[Primary method] add-method
(generic-function standard-generic-function) (method method)

The generic function add-method adds a method to a generic function.
It destructively modifies the generic function and returns the modified generic
function as its result.

The generic-function argument is a generic function object.
The method argument is a method object. The lambda-list of the method

function must be congruent with the lambda-list of the generic function, or
an error is signaled.

The modified generic function is returned. The result of add-method is
eq to the generic-function argument.

If the given method agrees with an existing method of the generic function
on parameter specializers and qualifiers, the existing method is replaced. See
section 28.1.6 for a definition of agreement in this context.

If the method object is a method object of another generic function, an
error is signaled.

See section 28.1.6 as well as defmethod, defgeneric, find-method, and
remove-method.
[Macro] call-method method next-method-list
The macro call-method is used in method combination. This macro

hides the implementation-dependent details of how methods are called. It
can be used only within an effective method form, for the name call-method
is defined only within the lexical scope of such a form.

The macro call-method invokes the specified method, supplying it
with arguments and with definitions for call-next-method and for next-
method-p. The arguments are the arguments that were supplied to the
effective method form containing the invocation of call-method. The defi-
nitions of call-next-method and next-method-p rely on the list of method
objects given as the second argument to call-method.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 873

The call-next-method function available to the method that is the first
subform will call the first method in the list that is the second subform. The
call-next-method function available in that method, in turn, will call the
second method in the list that is the second subform, and so on, until the
list of next methods is exhausted.

The method argument is a method object; the next-method-list argument
is a list of method objects.

A list whose first element is the symbolmake-method and whose second
element is a Lisp form can be used instead of a method object as the first
subform of call-method or as an element of the second subform of call-
method. Such a list specifies a method object whose method function has
a body that is the given form.

The result of call-method is the value or values returned by the method
invocation.

See call-next-method, define-method-combination, and next-
method-p.

[Function] call-next-method &rest args

The function call-next-method can be used within the body of a
method defined by a method-defining form to call the next method.

The function call-next-method returns the value or values returned by
the method it calls. If there is no next method, the generic function no-
next-method is called.

The type of method combination used determines which methods can
invoke call-next-method. The standard method combination type allows
call-next-method to be used within primary methods and :around meth-
ods.

The standard method combination type defines the next method accord-
ing to the following rules:

• If call-next-method is used in an :around method, the next method
is the next most specific :around method, if one is applicable.

• If there are no :around methods at all or if call-next-method is
called by the least specific :around method, other methods are called
as follows:

874 CHAPTER 28. COMMON LISP OBJECT SYSTEM

– All the :before methods are called, in most-specific-first order.
The function call-next-method cannot be used in :beforemeth-
ods.

– The most specific primary method is called. Inside the body of
a primary method, call-next-method may be used to pass con-
trol to the next most specific primary method. The generic func-
tion no-next-method is called if call-next-method is used and
there are no more primary methods.

– All the :after methods are called in most-specific-last order. The
function call-next-method cannot be used in :after methods.

For further discussion of the use of call-next-method, see sections 28.1.7
and 28.1.7.

When call-next-method is called with no arguments, it passes the cur-
rent method’s original arguments to the next method. Neither argument
defaulting, nor using setq, nor rebinding variables with the same names as
parameters of the method affects the values call-next-method passes to the
method it calls.

When call-next-method is called with arguments, the next method
is called with those arguments. When providing arguments to call-next-
method, the following rule must be satisfied or an error is signaled: The
ordered set of methods applicable for a changed set of arguments for call-
next-method must be the same as the ordered set of applicable methods
for the original arguments to the generic function. Optimizations of the error
checking are possible, but they must not change the semantics of call-next-
method.

If call-next-method is called with arguments but omits optional argu-
ments, the next method called defaults those arguments.

The function call-next-method returns the value or values returned by
the method it calls.

Further computation is possible after call-next-method returns.
The definition of the function call-next-method has lexical scope (for

it is defined only within the body of a method defined by a method-defining
form) and indefinite extent.

For generic functions using a type of method combination defined by
the short form of define-method-combination, call-next-method can
be used in :around methods only.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 875

The function next-method-p can be used to test whether or not there
is a next method.

If call-next-method is used in methods that do not support it, an error
is signaled.

See sections 28.1.7, 28.1.7, and 28.1.7 as well as the functions define-
method-combination, next-method-p, and no-next-method.

[Generic function] change-class instance new-class
[Primary method] change-class (instance standard-object)
(new-class standard-class)
[Primary method] change-class (instance t) (new-class symbol)

The generic function change-class changes the class of an instance to a
new class. It destructively modifies and returns the instance.

If in the old class there is any slot of the same name as a local slot in
the new class, the value of that slot is retained. This means that if the slot
has a value, the value returned by slot-value after change-class is invoked
is eql to the value returned by slot-value before change-class is invoked.
Similarly, if the slot was unbound, it remains unbound. The other slots are
initialized as described in section 28.1.11.

The instance argument is a Lisp object.
The new-class argument is a class object or a symbol that names a class.
If the second of the preceding methods is selected, that method invokes

change-class on instance and (find-class new-class).
The modified instance is returned. The result of change-class is eq to

the instance argument.
Examples:

(defclass position () ())

(defclass x-y-position (position)
((x :initform 0 :initarg :x)
(y :initform 0 :initarg :y)))

(defclass rho-theta-position (position)
((rho :initform 0)
(theta :initform 0)))

876 CHAPTER 28. COMMON LISP OBJECT SYSTEM

(defmethod update-instance-for-different-class :before
((old x-y-position)
(new rho-theta-position)
&key)

;; Copy the position information from old to new to make new
;; be a rho-theta-position at the same position as old.
(let ((x (slot-value old ’x))

(y (slot-value old ’y)))
(setf (slot-value new ’rho) (sqrt (+ (* x x) (* y y)))

(slot-value new ’theta) (atan y x))))

;;; At this point an instance of the class x-y-position can be
;;; changed to be an instance of the class rho-theta-position
;;; using change-class:

(setq p1 (make-instance ’x-y-position :x 2 :y 0))

(change-class p1 ’rho-theta-position)

;;; The result is that the instance bound to p1 is now
;;; an instance of the class rho-theta-position.
;;; The update-instance-for-different-class method
;;; performed the initialization of the rho and theta
;;; slots based on the values of the x and y slots,
;;; which were maintained by the old instance.

After completing all other actions, change-class invokes the generic func-
tion update-instance-for-different-class. The generic function update-
instance-for-different-class can be used to assign values to slots in the
transformed instance.

The generic function change-class has several semantic difficulties.
First, it performs a destructive operation that can be invoked within a
method on an instance that was used to select that method. When mul-
tiple methods are involved because methods are being combined, the meth-
ods currently executing or about to be executed may no longer be applica-
ble. Second, some implementations might use compiler optimizations of slot
access, and when the class of an instance is changed the assumptions the
compiler made might be violated. This implies that a programmer must not

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 877

use change-class inside a method if any methods for that generic function
access any slots, or the results are undefined.

See section 28.1.11 as well as update-instance-for-different-class.

[Generic function] class-name class
[Primary method] class-name (class class)

The generic function class-name takes a class object and returns its
name.

The class argument is a class object. The name of the given class is
returned.

The name of an anonymous class is nil.
If S is a symbol such that S =(class-name C) and C = (find-class

S), then S is the proper name of C (see section 28.1.2).
See also section 28.1.2 and find-class.

[Generic function] (setf class-name) new-value class
[Primary method] (setf class-name) new-value (class class)

The generic function (setf class-name) takes a class object and sets its
name.

The class argument is a class object. The new-value argument is any
object.

[Function] class-of object

The function class-of returns the class of which the given object is an
instance. The argument to class-of may be any Common Lisp object.

[Function] compute-applicable-methods generic-function
function-arguments

Given a generic function and a set of arguments, the function compute-
applicable-methods returns the set of methods that are applicable for those
arguments.

The methods are sorted according to precedence order. See section 28.1.7.

878 CHAPTER 28. COMMON LISP OBJECT SYSTEM

The generic-function argument must be a generic function object. The
function-arguments argument is a list of the arguments to that generic func-
tion. The result is a list of the applicable methods in order of precedence.
See section 28.1.7.
[Macro] defclass class-name ({superclass-name}*)
({slot-specifier}*) [[↓class-option]]

class-name ::= symbol
superclass-name ::= symbol
slot-specifier ::= slot-name | (slot-name [[↓slot-option]])
slot-name ::= symbol
slot-option ::= {:reader reader-function-name}*
| {:writer writer-function-name}*
| {:accessor reader-function-name}*
| {:allocation allocation-type}
| {:initarg initarg-name}*
| {:initform form}
| {:type type-specifier}
| {:documentation string}

reader-function-name ::= symbol
writer-function-name ::= function-name
function-name ::= {symbol | (setf symbol)}
initarg-name ::= symbol
allocation-type ::= :instance | :class
class-option ::= (:default-initargs initarg-list)
| (:documentation string)
| (:metaclass class-name)
initarg-list ::= {initarg-name default-initial-value-form}*

The macro defclass defines a new named class. It returns the new class
object as its result.

The syntax of defclass provides options for specifying initialization ar-
guments for slots, for specifying default initialization values for slots, and
for requesting that methods on specified generic functions be automatically
generated for reading and writing the values of slots. No reader or writer func-
tions are defined by default; their generation must be explicitly requested.

Defining a new class also causes a type of the same name to be defined.
The predicate (typep object class-name) returns true if the class of the

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 879

given object is class-name itself or a subclass of the class class-name. A class
object can be used as a type specifier. Thus (typep object class) returns
true if the class of the object is class itself or a subclass of class.

The class-name argument is a non-nil symbol. It becomes the proper
name of the new class. If a class with the same proper name already exists
and that class is an instance of standard-class, and if the defclass form
for the definition of the new class specifies a class of class standard-class,
the definition of the existing class is replaced.

Each superclass-name argument is a non-nil symbol that specifies a direct
superclass of the new class. The new class will inherit slots and methods from
each of its direct superclasses, from their direct superclasses, and so on. See
section 28.1.3 for a discussion of how slots and methods are inherited.

Each slot-specifier argument is the name of the slot or a list consisting of
the slot name followed by zero or more slot options. The slot-name argument
is a symbol that is syntactically valid for use as a variable name. If there are
any duplicate slot names, an error is signaled.

The following slot options are available:

• The :reader slot option specifies that an unqualified method is to be
defined on the generic function named reader-function-name to read
the value of the given slot. The reader-function-name argument is a
non-nil symbol. The :reader slot option may be specified more than
once for a given slot.

• The :writer slot option specifies that an unqualified method is to be
defined on the generic function named writer-function-name to write
the value of the slot. The writer-function-name argument is a function-
name. The :writer slot option may be specified more than once for a
given slot.

• The :accessor slot option specifies that an unqualified method is to be
defined on the generic function named reader-function-name to read the
value of the given slot and that an unqualified method is to be defined
on the generic function named (setf reader-function-name) to be
used with setf to modify the value of the slot. The reader-function-
name argument is a non-nil symbol. The :accessor slot option may
be specified more than once for a given slot.

• The :allocation slot option is used to specify where storage is to be
allocated for the given slot. Storage for a slot may be located in each

880 CHAPTER 28. COMMON LISP OBJECT SYSTEM

instance or in the class object itself, for example. The value of the
allocation-type argument can be either the keyword :instance or the
keyword :class. The :allocation slot option may be specified at most
once for a given slot. If the :allocation slot option is not specified, the
effect is the same as specifying :allocation :instance.

– If allocation-type is :instance, a local slot of the given name is
allocated in each instance of the class.

– If allocation-type is :class, a shared slot of the given name is allo-
cated. The value of the slot is shared by all instances of the class.
If a class C1 defines such a shared slot, any subclass C2 of C1 will
share this single slot unless the defclass form for C2 specifies a
slot of the same name or there is a superclass of C2 that precedes
C1 in the class precedence list of C2 and that defines a slot of the
same name.

• The :initform slot option is used to provide a default initial value form
to be used in the initialization of the slot. The :initform slot option
may be specified at most once for a given slot. This form is evaluated
every time it is used to initialize the slot. The lexical environment in
which this form is evaluated is the lexical environment in which the
defclass form was evaluated. Note that the lexical environment refers
both to variables and to functions. For local slots, the dynamic environ-
ment is the dynamic environment in which make-instance was called;
for shared slots, the dynamic environment is the dynamic environment
in which the defclass form was evaluated. See section 28.1.9.

No implementation is permitted to extend the syntax of defclass to al-
low (slot-name form) as an abbreviation for (slot-name :initform
form).

• The :initarg slot option declares an initialization argument named
initarg-name and specifies that this initialization argument initializes
the given slot. If the initialization argument has a value in the call to
initialize-instance, the value will be stored into the given slot, and
the slot’s :initform slot option, if any, is not evaluated. If none of the
initialization arguments specified for a given slot has a value, the slot
is initialized according to the :initform slot option, if specified. The

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 881

:initarg slot option can be specified more than once for a given slot.
The initarg-name argument can be any symbol.

• The :type slot option specifies that the contents of the slot will always
be of the specified data type. It effectively declares the result type of
the reader generic function when applied to an object of this class. The
result of attempting to store in a slot a value that does not satisfy the
type of the slot is undefined. The :type slot option may be specified at
most once for a given slot. The :type slot option is further discussed
in section 28.1.3.

• The :documentation slot option provides a documentation string for
the slot.

Each class option is an option that refers to the class as a whole or to all
class slots. The following class options are available:

• The :default-initargs class option is followed by a list of alternating
initialization argument names and default initial value forms. If any
of these initialization arguments does not appear in the initialization
argument list supplied to make-instance, the corresponding default
initial value form is evaluated, and the initialization argument name
and the form’s value are added to the end of the initialization argument
list before the instance is created (see section 28.1.9). The default initial
value form is evaluated each time it is used. The lexical environment
in which this form is evaluated is the lexical environment in which the
defclass form was evaluated. The dynamic environment is the dynamic
environment in which make-instance was called. If an initialization
argument name appears more than once in a :default-initargs class
option, an error is signaled. The :default-initargs class option may
be specified at most once.

• The :documentation class option causes a documentation string to
be attached to the class name. The documentation type for this string
is type. The form (documentation class-name ’type) may be
used to retrieve the documentation string. The :documentation class
option may be specified at most once.

• The :metaclass class option is used to specify that instances of the
class being defined are to have a different metaclass than the default

882 CHAPTER 28. COMMON LISP OBJECT SYSTEM

provided by the system (the class standard-class). The class-name
argument is the name of the desired metaclass. The :metaclass class
option may be specified at most once.

The new class object is returned as the result.
If a class with the same proper name already exists and that class is an

instance of standard-class, and if the defclass form for the definition of
the new class specifies a class of class standard-class, the existing class is
redefined, and instances of it (and its subclasses) are updated to the new
definition at the time that they are next accessed (see section 28.1.10).

Note the following rules of defclass for standard classes:

• It is not required that the superclasses of a class be defined before the
defclass form for that class is evaluated.

• All the superclasses of a class must be defined before an instance of the
class can be made.

• A class must be defined before it can be used as a parameter specializer
in a defmethod form.

The Object System may be extended to cover situations where these rules
are not obeyed.

Some slot options are inherited by a class from its superclasses, and some
can be shadowed or altered by providing a local slot description. No class
options except :default-initargs are inherited. For a detailed description of
how slots and slot options are inherited, see section 28.1.3.

The options to defclass can be extended. An implementation must signal
an error if it observes a class option or a slot option that is not implemented
locally.

It is valid to specify more than one reader, writer, accessor, or initializa-
tion argument for a slot. No other slot option may appear more than once
in a single slot description, or an error is signaled.

If no reader, writer, or accessor is specified for a slot, the slot can be
accessed only by the function slot-value.

See sections 28.1.2, 28.1.3, 28.1.10, 28.1.5, 28.1.9 as well as slot-value,
make-instance, and initialize-instance.
[Macro] defgeneric function-name lambda-list
[[↓option | {method-description}*]]

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 883

function-name ::= {symbol | (setf symbol)}
lambda-list ::= ({var}*

[&optional {var | (var)}*]
[&rest var]
[&key {keyword-parameter}* [&allow-other-keys]])

keyword-parameter ::= var | ({var | (keyword var)})
option ::= (:argument-precedence-order {parameter-name}+)
| (declare {declaration}+)
| (:documentation string)
| (:method-combination symbol {arg}*)
| (:generic-function-class class-name)
| (:method-class class-name)
method-description ::= (:method {method-qualifier}*
specialized-lambda-list
[[{declaration}* | documentation]]
{form}*)
method-qualifier ::= non-nil-atom
specialized-lambda-list ::=
({var | (var parameter-specializer-name)}*
[&optional {var | (var [initform [supplied-p-parameter]])}*]
[&rest var]
[&key {specialized-keyword-parameter}* [&allow-other-keys]]
[&aux {var | (var [initform])}*])
specialized-keyword-parameter ::=
var | ({var | (keyword var)} [initform [supplied-p-parameter]])
parameter-specializer-name ::= symbol | (eql eql-specializer-form)

The macro defgeneric is used to define a generic function or to specify
options and declarations that pertain to a generic function as a whole.

If (fboundp function-name) is nil, a new generic function is created.
If (fdefinition function-specifier) is a generic function, that generic func-
tion is modified. If function-name names a non-generic function, a macro,
or a special operator, an error is signaled.

[X3J13 voted in March 1989 to use fdefinition in the previous paragraph,
as shown, rather than symbol-function, as it appeared in the original report
on CLOS [5, 7]. The vote also changed all occurrences of function-specifier
in the original report to function-name; this change is reflected here.—GLS]

884 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Each method-description defines a method on the generic function. The
lambda-list of each method must be congruent with the lambda-list specified
by the lambda-list option. If this condition does not hold, an error is signaled.
See section 28.1.6 for a definition of congruence in this context.

The macro defgeneric returns the generic function object as its result.
The function-name argument is a non-nil symbol or a list of the form

(setf symbol).
The lambda-list argument is an ordinary function lambda-list with the

following exceptions:

• The use of &aux is not allowed.

• Optional and keyword arguments may not have default initial value
forms nor use supplied-p parameters. The generic function passes to
the method all the argument values passed to it, and only those; default
values are not supported. Note that optional and keyword arguments
in method definitions, however, can have default initial value forms and
can use supplied-p parameters.

The following options are provided. A given option may occur only once,
or an error is signaled.

• The :argument-precedence-order option is used to specify the order
in which the required arguments in a call to the generic function are
tested for specificity when selecting a particular method. Each required
argument, as specified in the lambda-list argument, must be included
exactly once as a parameter-name so that the full and unambiguous
precedence order is supplied. If this condition is not met, an error is
signaled.

• The declare option is used to specify declarations that pertain to the
generic function. The following standard Common Lisp declaration is
allowed:

– An optimize declaration specifies whether method selection
should be optimized for speed or space, but it has no effect on
methods. To control how a method is optimized, an optimize
declaration must be placed directly in the defmethod form or
method description. The optimization qualities speed and space

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 885

are the only qualities this standard requires, but an implemen-
tation can extend the Common Lisp Object System to recog-
nize other qualities. A simple implementation that has only one
method selection technique and ignores the optimize declaration
is valid.

The special, ftype, function, inline, notinline, and declaration
declarations are not permitted. Individual implementations can extend
the declare option to support additional declarations. If an implemen-
tation notices a declaration that it does not support and that has not
been proclaimed as a non-standard declaration name in a declaration
proclamation, it should issue a warning.

• The :documentation argument associates a documentation string
with the generic function. The documentation type for this string is
function. The form (documentation function-name ’function)
may be used to retrieve this string.

• The :generic-function-class option may be used to specify that the
generic function is to have a different class than the default provided by
the system (the class standard-generic-function). The class-name
argument is the name of a class that can be the class of a generic
function. If function-name specifies an existing generic function that
has a different value for the :generic-function-class argument and the
new generic function class is compatible with the old, change-class is
called to change the class of the generic function; otherwise an error is
signaled.

• The :method-class option is used to specify that all methods on this
generic function are to have a different class from the default provided
by the system (the class standard-method). The class-name argu-
ment is the name of a class that is capable of being the class of a
method.

• The :method-combination option is followed by a symbol that names
a type of method combination. The arguments (if any) that follow
that symbol depend on the type of method combination. Note that the
standard method combination type does not support any arguments.
However, all types of method combination defined by the short form

886 CHAPTER 28. COMMON LISP OBJECT SYSTEM

of define-method-combination accept an optional argument named
order, defaulting to :most-specific-first, where a value of :most-
specific-last reverses the order of the primary methods without af-
fecting the order of the auxiliary methods.

The method-description arguments define methods that will be associated
with the generic function. The method-qualifier and specialized-lambda-list
arguments in a method description are the same as for defmethod.

The form arguments specify the method body. The body of the method
is enclosed in an implicit block. If function-name is a symbol, this block
bears the same name as the generic function. If function-name is a list of
the form (setf symbol), the name of the block is symbol.

The generic function object is returned as the result.
The effect of the defgeneric macro is as if the following three steps

were performed: first, methods defined by previous defgeneric forms are
removed; second, ensure-generic-function is called; and finally, methods
specified by the current defgeneric form are added to the generic function.

If no method descriptions are specified and a generic function of the same
name does not already exist, a generic function with no methods is created.

The lambda-list argument of defgeneric specifies the shape of lambda-
lists for the methods on this generic function. All methods on the resulting
generic function must have lambda-lists that are congruent with this shape.
If a defgeneric form is evaluated and some methods for that generic function
have lambda-lists that are not congruent with that given in the defgeneric
form, an error is signaled. For further details on method congruence, see
section 28.1.6.

Implementations can extend defgeneric to include other options. It is
required that an implementation signal an error if it observes an option that
is not implemented locally.

See section 28.1.6 as well as defmethod, ensure-generic-function, and
generic-function.
[Macro] define-method-combination name [[↓short-form-option]]
[Macro] define-method-combination name lambda-list
({method-group-specifier}*)
[(:arguments . lambda-list)]
[(:generic-function generic-fn-symbol)]
[[{declaration}* | doc-string]]
{form}*

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 887

short-form-option ::= :documentation string
| :identity-with-one-argument boolean
| :operator operator
method-group-specifier ::= (variable { {qualifier-pattern}+ | predicate}

[[↓long-form-option]])
long-form-option ::= :description format-string
| :order order
| :required boolean

The macro define-method-combination is used to define new types of
method combination.

There are two forms of define-method-combination. The short form is
a simple facility for the cases that are expected to be most commonly needed.
The long form is more powerful but more verbose. It resembles defmacro
in that the body is an expression, usually using backquote, that computes a
Lisp form. Thus arbitrary control structures can be implemented. The long
form also allows arbitrary processing of method qualifiers.

In both the short and long forms, name is a symbol. By convention,
non-keyword, non-nil symbols are usually used.

The short-form syntax of define-method-combination is recognized
when the second subform is a non-nil symbol or is not present. When the
short form is used, name is defined as a type of method combination that
produces a Lisp form (operator method-call method-call . . .). The op-
erator is a symbol that can be the name of a function, macro, or special
operator. The operator can be specified by a keyword option; it defaults to
name.

Keyword options for the short form are the following:

• The :documentation option is used to document the method-
combination type.

• The :identity-with-one-argument option enables an optimization
when boolean is true (the default is false). If there is exactly one ap-
plicable method and it is a primary method, that method serves as the
effective method and operator is not called. This optimization avoids
the need to create a new effective method and avoids the overhead of
a function call. This option is designed to be used with operators such
as progn, and, +, and max.

888 CHAPTER 28. COMMON LISP OBJECT SYSTEM

• The :operator option specifies the name of the operator. The operator
argument is a symbol that can be the name of a function, macro, or
special operator. By convention, name and operator are often the same
symbol. This is the default, but it is not required.

None of the subforms is evaluated.
These types of method combination require exactly one qualifier per

method. An error is signaled if there are applicable methods with no qual-
ifiers or with qualifiers that are not supported by the method combination
type.

A method combination procedure defined in this way recognizes two roles
for methods. A method whose one qualifier is the symbol naming this type of
method combination is defined to be a primary method. At least one primary
method must be applicable or an error is signaled. A method with :around as
its one qualifier is an auxiliary method that behaves the same as an :around
method in standard method combination. The function call-next-method
can be used only in :around methods; it cannot be used in primary methods
defined by the short form of the define-method-combination macro.

A method combination procedure defined in this way accepts an optional
argument named order, which defaults to :most-specific-first. A value
of :most-specific-last reverses the order of the primary methods without
affecting the order of the auxiliary methods.

The short form automatically includes error checking and support for
:around methods.

For a discussion of built-in method combination types, see section 28.1.7.

The long-form syntax of define-method-combination is recognized
when the second subform is a list.

The lambda-list argument is an ordinary lambda-list. It receives any
arguments provided after the name of the method combination type in the
:method-combination option to defgeneric.

A list of method group specifiers follows. Each specifier selects a subset
of the applicable methods to play a particular role, either by matching their
qualifiers against some patterns or by testing their qualifiers with a predicate.
These method group specifiers define all method qualifiers that can be used
with this type of method combination. If an applicable method does not
fall into any method group, the system signals the error that the method is
invalid for the kind of method combination in use.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 889

Each method group specifier names a variable. During the execution
of the forms in the body of define-method-combination, this variable is
bound to a list of the methods in the method group. The methods in this
list occur in most-specific-first order.

A qualifier pattern is a list or the symbol *. A method matches a qualifier
pattern if the method’s list of qualifiers is equal to the qualifier pattern
(except that the symbol * in a qualifier pattern matches anything). Thus
a qualifier pattern can be one of the following: the empty list (), which
matches unqualified methods; the symbol *, which matches all methods; a
true list, which matches methods with the same number of qualifiers as the
length of the list when each qualifier matches the corresponding list element;
or a dotted list that ends in the symbol * (the * matches any number of
additional qualifiers).

Each applicable method is tested against the qualifier patterns and pred-
icates in left-to-right order. As soon as a qualifier pattern matches or a
predicate returns true, the method becomes a member of the corresponding
method group and no further tests are made. Thus if a method could be a
member of more than one method group, it joins only the first such group.
If a method group has more than one qualifier pattern, a method need only
satisfy one of the qualifier patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier patterns
in a method group specifier. The predicate is called for each method that has
not been assigned to an earlier method group; it is called with one argument,
the method’s qualifier list. The predicate should return true if the method
is to be a member of the method group. A predicate can be distinguished
from a qualifier pattern because it is a symbol other than nil or *.

If there is an applicable method whose qualifiers are not valid for the
method combination type, the function invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier
patterns or predicate. Keyword options can be distinguished from additional
qualifier patterns because they are neither lists nor the symbol *. The key-
word options are:

• The :description option is used to provide a description of the role
of methods in the method group. Programming environment tools
use (apply #’format stream format-string (method-qualifiers
method)) to print this description, which is expected to be concise.
This keyword option allows the description of a method qualifier to be

890 CHAPTER 28. COMMON LISP OBJECT SYSTEM

defined in the same module that defines the meaning of the method
qualifier. In most cases, format-string will not contain any format
directives, but they are available for generality. If :description is not
specified, a default description is generated based on the variable name
and the qualifier patterns and on whether this method group includes
the unqualified methods. The argument format-string is not evaluated.

• The :order option specifies the order of methods. The order argument
is a form that evaluates to :most-specific-first or :most-specific-
last. If it evaluates to any other value, an error is signaled. This
keyword option is a convenience and does not add any expressive power.
If :order is not specified, it defaults to :most-specific-first.

• The :required option specifies whether at least one method in this
method group is required. If the boolean argument is non-nil and the
method group is empty (that is, no applicable methods match the qual-
ifier patterns or satisfy the predicate), an error is signaled. This key-
word option is a convenience and does not add any expressive power.
If :required is not specified, it defaults to nil. The boolean argument
is not evaluated.

The use of method group specifiers provides a convenient syntax to select
methods, to divide them among the possible roles, and to perform the nec-
essary error checking. It is possible to perform further filtering of methods
in the body forms by using normal list-processing operations and the func-
tions method-qualifiers and invalid-method-error. It is permissible to
use setq on the variables named in the method group specifiers and to bind
additional variables. It is also possible to bypass the method group specifier
mechanism and do everything in the body forms. This is accomplished by
writing a single method group with * as its only qualifier pattern; the variable
is then bound to a list of all of the applicable methods, in most-specific-first
order.

The body forms compute and return the Lisp form that specifies how the
methods are combined, that is, the effective method. The effective method
uses the macro call-method. The definition of this macro has lexical scope
and is available only in an effective method form. Given a method object in
one of the lists produced by the method group specifiers and a list of next
methods, the macro call-method will invoke the method so that call-next-
method will have available the next methods.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 891

When an effective method has no effect other than to call a single method,
some implementations employ an optimization that uses the single method
directly as the effective method, thus avoiding the need to create a new effec-
tive method. This optimization is active when the effective method form con-
sists entirely of an invocation of the call-method macro whose first subform
is a method object and whose second subform is nil. Each define-method-
combination body is responsible for stripping off redundant invocations of
progn, and, multiple-value-prog1, and the like, if this optimization is
desired.

The list (:arguments . lambda-list) can appear before any declaration
or documentation string. This form is useful when the method combination
type performs some specific behavior as part of the combined method and
that behavior needs access to the arguments to the generic function. Each
parameter variable defined by lambda-list is bound to a form that can be
inserted into the effective method. When this form is evaluated during ex-
ecution of the effective method, its value is the corresponding argument to
the generic function. If lambda-list is not congruent to the generic function’s
lambda-list, additional ignored parameters are automatically inserted until it
is congruent. Thus it is permissible for lambda-list to receive fewer arguments
than the number that the generic function expects.

Erroneous conditions detected by the body should be reported with
method-combination-error or invalid-method-error; these functions
add any necessary contextual information to the error message and will signal
the appropriate error.

The body forms are evaluated inside the bindings created by the lambda-
list and method group specifiers. Declarations at the head of the body are
positioned directly inside bindings created by the lambda-list and outside
the bindings of the method group variables. Thus method group variables
cannot be declared.

Within the body forms, generic-function-symbol is bound to the generic
function object.

If a doc-string argument is present, it provides the documentation for the
method combination type.

The functions method-combination-error and invalid-method-
error can be called from the body forms or from functions called by the body
forms. The actions of these two functions can depend on implementation-
dependent dynamic variables automatically bound before the generic func-
tion compute-effective-method is called.

892 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Note that two methods with identical specializers, but with different qual-
ifiers, are not ordered by the algorithm described in step 2 of the method
selection and combination process described in section 28.1.7. Normally the
two methods play different roles in the effective method because they have
different qualifiers, and no matter how they are ordered in the result of step 2
the effective method is the same. If the two methods play the same role and
their order matters, an error is signaled. This happens as part of the qualifier
pattern matching in define-method-combination.

The value returned by the define-method-combination macro is the
new method combination object.

Most examples of the long form of define-method-combination also
illustrate the use of the related functions that are provided as part of the
declarative method combination facility.

;;; Examples of the short form of define-method-combination

(define-method-combination and :identity-with-one-argument t)

(defmethod func and ((x class1) y)
...)

;;; The equivalent of this example in the long form is:

(define-method-combination and
(&optional (order ’:most-specific-first))
((around (:around))
(primary (and) :order order :required t))

(let ((form (if (rest primary)
‘(and ,@(mapcar #’(lambda (method)

‘(call-method ,method ()))
primary))

‘(call-method ,(first primary) ()))))
(if around

‘(call-method ,(first around)
(,@(rest around)
(make-method form)))

form)))

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 893

;;; Examples of the long form of define-method-combination

;;; The default method-combination technique

(define-method-combination standard ()
((around (:around))
(before (:before))
(primary () :required t)
(after (:after)))

(flet ((call-methods (methods)
(mapcar #’(lambda (method)

‘(call-method ,method ()))
methods)))

(let ((form (if (or before after (rest primary))
‘(multiple-value-prog1
(progn ,@(call-methods before)

(call-method ,(first primary)
,(rest primary)))

,@(call-methods (reverse after)))
‘(call-method ,(first primary) ()))))

(if around
‘(call-method ,(first around)

(,@(rest around)
(make-method form)))

form))))

;;; A simple way to try several methods until one returns non-nil

(define-method-combination or ()
((methods (or)))

‘(or ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))

methods)))

894 CHAPTER 28. COMMON LISP OBJECT SYSTEM

;;; A more complete version of the preceding

(define-method-combination or
(&optional (order ’:most-specific-first))
((around (:around))
(primary (or)))

;; Process the order argument
(case order
(:most-specific-first)
(:most-specific-last (setq primary (reverse primary)))
(otherwise (method-combination-error

"~S is an invalid order.~@
:most-specific-first and :most-specific-last ~
are the possible values."

order)))
;; Must have a primary method
(unless primary
(method-combination-error "A primary method is required."))

;; Construct the form that calls the primary methods
(let ((form (if (rest primary)

‘(or ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))

primary))
‘(call-method ,(first primary) ()))))

;; Wrap the around methods around that form
(if around

‘(call-method ,(first around)
(,@(rest around)
(make-method form)))

form)))

;;; The same thing, using the :order and :required keyword options
(define-method-combination or

(&optional (order ’:most-specific-first))
((around (:around))
(primary (or) :order order :required t))

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 895

(let ((form (if (rest primary)
‘(or ,@(mapcar #’(lambda (method)

‘(call-method ,method ()))
primary))

‘(call-method ,(first primary) ()))))
(if around

‘(call-method ,(first around)
(,@(rest around)
(make-method form)))

form)))

;;; This short-form call is behaviorally identical to the preceding.
(define-method-combination or :identity-with-one-argument t)

;;; Order methods by positive integer qualifiers; note that :around
;;; methods are disallowed here in order to keep the example small.

(define-method-combination example-method-combination ()
((methods positive-integer-qualifier-p))

‘(progn ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))

(stable-sort methods #’<
:key #’(lambda (method)

(first (method-qualifiers
method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)
(and (= (length method-qualifiers) 1)

(typep (first method-qualifiers) ’(integer 0 *))))

;;; Example of the use of :arguments
(define-method-combination progn-with-lock ()

((methods ()))
(:arguments object)

896 CHAPTER 28. COMMON LISP OBJECT SYSTEM

‘(unwind-protect
(progn (lock (object-lock ,object))

,@(mapcar #’(lambda (method)
‘(call-method ,method ()))

methods))
(unlock (object-lock ,object))))

The :method-combination option of defgeneric is used to specify that
a generic function should use a particular method combination type. The
argument to the :method-combination option is the name of a method
combination type.

See sections 28.1.7 and 28.1.7 as well as call-method, method-
qualifiers, method-combination-error, invalid-method-error, and de-
fgeneric.
[Macro] defmethod function-name {method-qualifier}*
specialized-lambda-list
[[{declaration}* | doc-string]] {form}*

function-name ::= {symbol | (setf symbol)}
method-qualifier ::= non-nil-atom
parameter-specializer-name ::= symbol | (eql eql-specializer-form)

The macro defmethod defines a method on a generic function.
If (fboundp function-name) is nil, a generic function is created with

default values for the argument precedence order (each argument is more
specific than the arguments to its right in the argument list), for the generic
function class (the class standard-generic-function), for the method class
(the class standard-method), and for the method combination type (the
standard method combination type). The lambda-list of the generic func-
tion is congruent with the lambda-list of the method being defined; if
the defmethod form mentions keyword arguments, the lambda-list of the
generic function will mention&key (but no keyword arguments). If function-
name names a non-generic function, a macro, or a special operator, an error
is signaled.

If a generic function is currently named by function-name, where function-
name is a symbol or a list of the form (setf symbol), the lambda-list of the
method must be congruent with the lambda-list of the generic function. If
this condition does not hold, an error is signaled. See section 28.1.6 for a
definition of congruence in this context.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 897

The function-name argument is a non-nil symbol or a list of the form
(setf symbol). It names the generic function on which the method is defined.

Each method-qualifier argument is an object that is used by method com-
bination to identify the given method. A method qualifier is a non-nil atom.
The method combination type may further restrict what a method quali-
fier may be. The standard method combination type allows for unqualified
methods or methods whose sole qualifier is the keyword :before, the keyword
:after, or the keyword :around.

A specialized-lambda-list is like an ordinary function lambda-list except
that the name of a required parameter can be replaced by a specialized
parameter, a list of the form (variable-name parameter-specializer-
name). Only required parameters may be specialized. A parameter spe-
cializer name is a symbol that names a class or (eql eql-specializer-form).
The parameter specializer name (eql eql-specializer-form) indicates that
the corresponding argument must be eql to the object that is the value of eql-
specializer-form for the method to be applicable. If no parameter specializer
name is specified for a given required parameter, the parameter specializer
defaults to the class named t. See section 28.1.6.

The form arguments specify the method body. The body of the method
is enclosed in an implicit block. If function-name is a symbol, this block
bears the same name as the generic function. If function-name is a list of
the form (setf symbol), the name of the block is symbol.

The result of defmethod is the method object.
The class of the method object that is created is that given by the method

class option of the generic function on which the method is defined.
If the generic function already has a method that agrees with the method

being defined on parameter specializers and qualifiers, defmethod replaces
the existing method with the one now being defined. See section 28.1.6 for a
definition of agreement in this context.

The parameter specializers are derived from the parameter specializer
names as described in section 28.1.6.

The expansion of the defmethod macro refers to each specialized param-
eter (see the ignore declaration specifier), including parameters that have an
explicit parameter specializer name of t. This means that a compiler warn-
ing does not occur if the body of the method does not refer to a specialized
parameter. Note that a parameter that specializes on t is not synonymous
with an unspecialized parameter in this context.

See sections 28.1.6, 28.1.6, and 28.1.6.

898 CHAPTER 28. COMMON LISP OBJECT SYSTEM

[At this point the original CLOS report [5, 7] contained a specification for
describe as a generic function. This specification is omitted here because
X3J13 voted in March 1989 not to make describe a generic function after
all (see describe-object).—GLS]

[Generic function] documentation x &optional doc-type
[Primary method] documentation (method standard-method) &optional
doc-type
[Primary method] documentation
(generic-function standard-generic-function) &optional doc-type
[Primary method] documentation (class standard-class) &optional
doc-type
[Primary method] documentation
(method-combination method-combination) &optional doc-type
[Primary method] documentation
(slot-description standard-slot-description) &optional doc-type
[Primary method] documentation (symbol symbol) &optional doc-type
[Primary method] documentation (list list) &optional doc-type

The ordinary function documentation (see section ??) is replaced by a
generic function. The generic function documentation returns the docu-
mentation string associated with the given object if it is available; otherwise
documentation returns nil.

The first argument of documentation is a symbol, a function-name
list of the form (setf symbol), a method object, a class object, a generic
function object, a method combination object, or a slot description object.
Whether a second argument should be supplied depends on the type of the
first argument.

• If the first argument is a method object, a class object, a generic func-
tion object, a method combination object, or a slot description object,
the second argument must not be supplied, or an error is signaled.

• If the first argument is a symbol or a list of the form (setf symbol),
the second argument must be supplied.

– The forms

(documentation symbol ’function)

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 899

and

(documentation ’(setf symbol) ’function)

return the documentation string of the function, generic function,
special operator, or macro named by the symbol or list.

– The form (documentation symbol ’variable) returns the doc-
umentation string of the special variable or constant named by
the symbol.

– The form (documentation symbol ’structure) returns the doc-
umentation string of the defstruct structure named by the sym-
bol.

– The form (documentation symbol ’type) returns the documen-
tation string of the class object named by the symbol, if there is
such a class. If there is no such class, it returns the documentation
string of the type specifier named by the symbol.

– The form (documentation symbol ’setf) returns the documen-
tation string of the defsetf or define-setf-method definition as-
sociated with the symbol.

– The form (documentation symbol ’method-combination)
returns the documentation string of the method combination type
named by the symbol.

An implementation may extend the set of symbols that are acceptable
as the second argument. If a symbol is not recognized as an acceptable
argument by the implementation, an error must be signaled.

The documentation string associated with the given object is returned
unless none is available, in which case documentation returns nil.

[Generic function] (setf documentation) new-value x &optional
doc-type
[Primary method] (setf documentation) new-value
(method standard-method) &optional doc-type
[Primary method] (setf documentation) new-value
(generic-function standard-generic-function) &optional doc-type
[Primary method] (setf documentation) new-value
(class standard-class) &optional doc-type

900 CHAPTER 28. COMMON LISP OBJECT SYSTEM

[Primary method] (setf documentation) new-value
(method-combination method-combination) &optional doc-type
[Primary method] (setf documentation) new-value
(slot-description standard-slot-description) &optional doc-type
[Primary method] (setf documentation) new-value (symbol symbol)
&optional doc-type
[Primary method] (setf documentation) new-value (list list) &optional
doc-type

The generic function (setf documentation) is used to update the doc-
umentation.

The first argument of (setf documentation) is the new documentation.
The second argument of documentation is a symbol, a function-name

list of the form (setf symbol), a method object, a class object, a generic
function object, a method combination object, or a slot description object.
Whether a third argument should be supplied depends on the type of the
second argument. See documentation.

[Function] ensure-generic-function function-name &key :lambda-list
:argument-precedence-order :declare :documentation :generic-function-class
:method-combination :method-class :environment

function-name ::= {symbol | (setf symbol)}

The function ensure-generic-function is used to define a globally named
generic function with no methods or to specify or modify options and decla-
rations that pertain to a globally named generic function as a whole.

If (fboundp function-name) is nil, a new generic function is created.
If (fdefinition function-name) is a non-generic function, a macro, or a
special operator, an error is signaled.

[X3J13 voted in March 1989 to use fdefinition in the previous paragraph,
as shown, rather than symbol-function, as it appeared in the original report
on CLOS [5, 7]. The vote also changed all occurrences of function-specifier
in the original report to function-name; this change is reflected here.—GLS]

If function-name specifies a generic function that has a different value for
any of the following arguments, the generic function is modified to have the
new value: :argument-precedence-order, :declare, :documentation,
:method-combination.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 901

If function-name specifies a generic function that has a different value
for the :lambda-list argument, and the new value is congruent with the
lambda-lists of all existing methods or there are no methods, the value is
changed; otherwise an error is signaled.

If function-name specifies a generic function that has a different value for
the :generic-function-class argument and if the new generic function class
is compatible with the old, change-class is called to change the class of the
generic function; otherwise an error is signaled.

If function-name specifies a generic function that has a different
:method-class value, the value is changed but any existing methods are
not changed.

The function-name argument is a symbol or a list of the form (setf sym-
bol).

The keyword arguments correspond to the option arguments of def-
generic, except that the :method-class and :generic-function-class ar-
guments can be class objects as well as names.

The :environment argument is the same as the &environment ar-
gument to macro expansion functions. It is typically used to distinguish
between compile-time and run-time environments.

The :method-combination argument is a method combination object.
The generic function object is returned.
See defgeneric.

[Function] find-class symbol &optional errorp environment

The function find-class returns the class object named by the given
symbol in the given environment.

The first argument to find-class is a symbol.
If there is no such class and the errorp argument is not supplied or is

non-nil, find-class signals an error. If there is no such class and the errorp
argument is nil, find-class returns nil. The default value of errorp is t.

The optional environment argument is the same as the &environment
argument to macro expansion functions. It is typically used to distinguish
between compile-time and run-time environments.

The result of find-class is the class object named by the given symbol.
The class associated with a particular symbol can be changed by using

setf with find-class. The results are undefined if the user attempts to

902 CHAPTER 28. COMMON LISP OBJECT SYSTEM

change the class associated with a symbol that is defined as a type specifier
in chapter 4. See section 28.1.4.

[Generic function] find-method generic-function method-qualifiers
specializers &optional errorp
[Primary method] find-method
(generic-function standard-generic-function) method-qualifiers specializers
&optional errorp

The generic function find-method takes a generic function and returns
the method object that agrees on method qualifiers and parameter specializ-
ers with the method-qualifiers and specializers arguments of find-method.
See section 28.1.6 for a definition of agreement in this context.

The generic-function argument is a generic function.
The method-qualifiers argument is a list of the method qualifiers for the

method. The order of the method qualifiers is significant.
The specializers argument is a list of the parameter specializers for the

method. It must correspond in length to the number of required arguments
of the generic function, or an error is signaled. This means that to obtain
the default method on a given generic function, a list whose elements are the
class named t must be given.

If there is no such method and the errorp argument is not supplied or
is non-nil, find-method signals an error. If there is no such method and
the errorp argument is nil, find-method returns nil. The default value of
errorp is t.

The result of find-method is the method object with the given method
qualifiers and parameter specializers.

See section 28.1.6.

[Generic function] function-keywords method
[Primary method] function-keywords (method standard-method)

The generic function function-keywords is used to return the keyword
parameter specifiers for a given method.

The method argument is a method object.
The generic function function-keywords returns two values: a list of

the explicitly named keywords and a boolean that states whether &allow-
other-keys had been specified in the method definition.
[Macro] generic-function lambda-list [[↓option | {method-description}*]]

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 903

option ::= (:argument-precedence-order {parameter-name}+)
| (declare {declaration}+)
| (:documentation string)
| (:method-combination symbol {arg}*)
| (:generic-function-class class-name)
| (:method-class class-name)

method-description ::= (:method {method-qualifier}* specialized-lambda-list {declaration | documentation}* {form}*)

The generic-function macro creates an anonymous generic function. The
generic function is created with the set of methods specified by its method
descriptions.

The option, method-qualifier, and specialized-lambda-list arguments are
the same as for defgeneric.

The generic function object is returned as the result.
If no method descriptions are specified, an anonymous generic function

with no methods is created.
See defgeneric, and defmethod.

[Generic function] initialize-instance instance &rest initargs
[Primary method] initialize-instance (instance standard-object) &rest
initargs

The generic function initialize-instance is called by make-instance to
initialize a newly created instance. The generic function initialize-instance
is called with the new instance and the defaulted initialization arguments.

The system-supplied primary method on initialize-instance initializes
the slots of the instance with values according to the initialization arguments
and the :initform forms of the slots. It does this by calling the generic
function shared-initialize with the following arguments: the instance, t
(this indicates that all slots for which no initialization arguments are provided
should be initialized according to their :initform forms) and the defaulted
initialization arguments.

The instance argument is the object to be initialized.
The initargs argument consists of alternating initialization argument

names and values.
The modified instance is returned as the result.
Programmers can define methods for initialize-instance to specify ac-

tions to be taken when an instance is initialized. If only :after methods

904 CHAPTER 28. COMMON LISP OBJECT SYSTEM

are defined, they will be run after the system-supplied primary method for
initialization and therefore will not interfere with the default behavior of
initialize-instance.

See sections 28.1.9, 28.1.9, and 28.1.9 as well as shared-initialize,make-
instance, slot-boundp, and slot-makunbound.

[Function] invalid-method-error method format-string &rest args

The function invalid-method-error is used to signal an error when there
is an applicable method whose qualifiers are not valid for the method combi-
nation type. The error message is constructed by using a format string and
any arguments to it. Because an implementation may need to add additional
contextual information to the error message, invalid-method-error should
be called only within the dynamic extent of a method combination function.

The function invalid-method-error is called automatically when a
method fails to satisfy every qualifier pattern and predicate in a define-
method-combination form. A method combination function that imposes
additional restrictions should call invalid-method-error explicitly if it en-
counters a method it cannot accept.

The method argument is the invalid method object.
The format-string argument is a control string that can be given to for-

mat, and args are any arguments required by that string.
Whether invalid-method-error returns to its caller or exits via throw

is implementation-dependent.
See define-method-combination.

[Generic function] make-instance class &rest initargs
[Primary method] make-instance (class standard-class) &rest initargs
[Primary method] make-instance (class symbol) &rest initargs

The generic function make-instance creates a new instance of the given
class.

The generic function make-instance may be used as described in sec-
tion 28.1.9.

The class argument is a class object or a symbol that names a class. The
remaining arguments form a list of alternating initialization argument names
and values.

If the second of the preceding methods is selected, that method invokes
make-instance on the arguments (find-class class) and initargs.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 905

The initialization arguments are checked withinmake-instance (see sec-
tion 28.1.9).

The new instance is returned.
The meta-object protocol can be used to define new methods on make-

instance to replace the object-creation protocol.
See section 28.1.9 as well as defclass, initialize-instance, and class-of.

[Generic function] make-instances-obsolete class
[Primary method] make-instances-obsolete (class standard-class)
[Primary method] make-instances-obsolete (class symbol)

The generic functionmake-instances-obsolete is invoked automatically
by the system when defclass has been used to redefine an existing standard
class and the set of local slots accessible in an instance is changed or the
order of slots in storage is changed. It can also be explicitly invoked by the
user.

The function make-instances-obsolete has the effect of initiating the
process of updating the instances of the class. During updating, the generic
function update-instance-for-redefined-class will be invoked.

The class argument is a class object or symbol that names the class whose
instances are to be made obsolete.

If the second of the preceding methods is selected, that method invokes
make-instances-obsolete on (find-class class).

The modified class is returned. The result of make-instances-obsolete
is eq to the class argument supplied to the first of the preceding methods.

See section 28.1.10 as well as update-instance-for-redefined-class.

[Function] method-combination-error format-string &rest args

The function method-combination-error is used to signal an error
in method combination. The error message is constructed by using a for-
mat string and any arguments to it. Because an implementation may need
to add additional contextual information to the error message, method-
combination-error should be called only within the dynamic extent of a
method combination function.

The format-string argument is a control string that can be given to for-
mat, and args are any arguments required by that string.

Whether method-combination-error returns to its caller or exits via
throw is implementation-dependent.

906 CHAPTER 28. COMMON LISP OBJECT SYSTEM

See define-method-combination.

[Generic function] method-qualifiers method
[Primary method] method-qualifiers (method standard-method)

The generic function method-qualifiers returns a list of the qualifiers
of the given method.

The method argument is a method object.
A list of the qualifiers of the given method is returned.
Example:

(setq methods (remove-duplicates methods
:from-end t
:key #’method-qualifiers
:test #’equal))

See define-method-combination.

[Function] next-method-p

The locally defined function next-method-p can be used within the
body of a method defined by a method-defining form to determine whether
a next method exists.

The function next-method-p takes no arguments.
The function next-method-p returns true or false.
Like call-next-method, the function next-method-p has lexical scope

(for it is defined only within the body of a method defined by a method-
defining form) and indefinite extent.

See call-next-method.

[Generic function] no-applicable-method generic-function &rest
function-arguments
[Primary method] no-applicable-method (generic-function t) &rest
function-arguments

The generic function no-applicable-method is called when a generic
function of the class standard-generic-function is invoked and no method
on that generic function is applicable. The default method signals an error.

The generic function no-applicable-method is not intended to be called
by programmers. Programmers may write methods for it.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 907

The generic-function argument of no-applicable-method is the generic
function object on which no applicable method was found.

The function-arguments argument is a list of the arguments to that
generic function.

[Generic function] no-next-method generic-function method &rest args
[Primary method] no-next-method
(generic-function standard-generic-function) (method standard-method)
&rest args

The generic function no-next-method is called by call-next-method
when there is no next method. The system-supplied method on no-next-
method signals an error.

The generic function no-next-method is not intended to be called by
programmers. Programmers may write methods for it.

The generic-function argument is the generic function object to which
the method that is the second argument belongs.

The method argument is the method that contains the call to call-next-
method for which there is no next method.

The args argument is a list of the arguments to call-next-method.
See call-next-method.

[Generic function] print-object object stream
[Primary method] print-object (object standard-object) stream

The generic function print-object writes the printed representation of
an object to a stream. The function print-object is called by the print
system; it should not be called by the user.

Each implementation must provide a method on the class standard-
object and methods on enough other classes so as to ensure that there is
always an applicable method. Implementations are free to add methods for
other classes. Users can write methods for print-object for their own classes
if they do not wish to inherit an implementation-supplied method.

The first argument is any Lisp object. The second argument is a stream;
it cannot be t or nil.

The function print-object returns its first argument, the object.
Methods on print-object must obey the print control special variables

named *print-xxx* for various xxx. The specific details are the following:

908 CHAPTER 28. COMMON LISP OBJECT SYSTEM

• Each method must implement *print-escape*.

• The *print-pretty* control variable can be ignored by most methods
other than the one for lists.

• The *print-circle* control variable is handled by the printer and can
be ignored by methods.

• The printer takes care of *print-level* automatically, provided that
each method handles exactly one level of structure and calls write
(or an equivalent function) recursively if there are more structural lev-
els. The printer’s decision of whether an object has components (and
therefore should not be printed when the printing depth is not less
than *print-level*) is implementation-dependent. In some implemen-
tations its print-object method is not called; in others the method is
called, and the determination that the object has components is based
on what it tries to write to the stream.

• Methods that produce output of indefinite length must obey *print-
length*, but most methods other than the one for lists can ignore
it.

• The *print-base*, *print-radix*, *print-case*, *print-gensym*,
and *print-array* control variables apply to specific types of objects
and are handled by the methods for those objects.

• X3J13 voted in June 1989 to add the following point. All methods for
print-object must obey *print-readably*, which takes precedence
over all other printer control variables. This includes both user-defined
methods and implementation-defined methods.

If these rules are not obeyed, the results are undefined.
In general, the printer and the print-object methods should not rebind

the print control variables as they operate recursively through the structure,
but this is implementation-dependent.

In some implementations the stream argument passed to a print-object
method is not the original stream but is an intermediate stream that im-
plements part of the printer. Methods should therefore not depend on the
identity of this stream.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 909

All of the existing printing functions (write, prin1, print, princ,
pprint, write-to-string, prin1-to-string, princ-to-string, the ~S and
~A format operations, and the ~B, ~D, ~E, ~F, ~G, ~$, ~O, ~R, and
~X format operations when they encounter a non-numeric value) are re-
quired to be changed to go through the print-object generic function. Each
implementation is required to replace its former implementation of printing
with one or more print-object methods. Exactly which classes have meth-
ods for print-object is not specified; it would be valid for an implementation
to have one default method that is inherited by all system-defined classes.

[Generic function] reinitialize-instance instance &rest initargs
[Primary method] reinitialize-instance (instance standard-object) &rest
initargs

The generic function reinitialize-instance can be used to change the
values of local slots according to initialization arguments. This generic func-
tion is called by the Meta-Object Protocol. It can also be called by users.

The system-supplied primary method for reinitialize-instance checks
the validity of initialization arguments and signals an error if an initializa-
tion argument is supplied that is not declared valid. The method then calls
the generic function shared-initialize with the following arguments: the
instance, nil (which means no slots should be initialized according to their
:initform forms) and the initialization arguments it received.

The instance argument is the object to be initialized.
The initargs argument consists of alternating initialization argument

names and values.
The modified instance is returned as the result.
Initialization arguments are declared valid by using the :initarg option

to defclass, or by defining methods for reinitialize-instance or shared-
initialize. The keyword name of each keyword parameter specifier in the
lambda-list of any method defined on reinitialize-instance or shared-
initialize is declared a valid initialization argument name for all classes for
which that method is applicable.

See sections 28.1.12, 28.1.9, 28.1.9 as well as initialize-instance, slot-
boundp, update-instance-for-redefined-class, update-instance-for-
different-class, slot-makunbound, and shared-initialize.

[Generic function] remove-method generic-function method

910 CHAPTER 28. COMMON LISP OBJECT SYSTEM

[Primary method] remove-method
(generic-function standard-generic-function) method

The generic function remove-method removes a method from a generic
function. It destructively modifies the specified generic function and returns
the modified generic function as its result.

The generic-function argument is a generic function object.
The method argument is a method object. The function remove-

method does not signal an error if the method is not one of the methods on
the generic function.

The modified generic function is returned. The result of remove-
method is eq to the generic-function argument.

See find-method.

[Generic function] shared-initialize instance slot-names &rest initargs
[Primary method] shared-initialize (instance standard-object) slot-names
&rest initargs

The generic function shared-initialize is used to fill the slots of an
instance using initialization arguments and :initform forms. It is called
when an instance is created, when an instance is re-initialized, when an in-
stance is updated to conform to a redefined class, and when an instance
is updated to conform to a different class. The generic function shared-
initialize is called by the system-supplied primary method for initialize-
instance, reinitialize-instance, update-instance-for-redefined-class,
and update-instance-for-different-class.

The generic function shared-initialize takes the following arguments:
the instance to be initialized, a specification of a set of names of slots ac-
cessible in that instance, and any number of initialization arguments. The
arguments after the first two must form an initialization argument list. The
system-supplied primary method on shared-initialize initializes the slots
with values according to the initialization arguments and specified :initform
forms. The second argument indicates which slots should be initialized ac-
cording to their :initform forms if no initialization arguments are provided
for those slots.

The system-supplied primary method behaves as follows, regardless of
whether the slots are local or shared:

• If an initialization argument in the initialization argument list specifies

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 911

a value for that slot, that value is stored into the slot, even if a value
has already been stored in the slot before the method is run.

• Any slots indicated by the second argument that are still unbound
at this point are initialized according to their :initform forms. For
any such slot that has an :initform form, that form is evaluated in
the lexical environment of its defining defclass form and the result is
stored into the slot. For example, if a :before method stores a value
in the slot, the :initform form will not be used to supply a value for
the slot.

• The rules mentioned in section 28.1.9 are obeyed.

The instance argument is the object to be initialized.
The slot-names argument specifies the slots that are to be initialized

according to their :initform forms if no initialization arguments apply. It is
supplied in one of three forms as follows:

• It can be a list of slot names, which specifies the set of those slot names.

• It can be nil, which specifies the empty set of slot names.

• It can be the symbol t, which specifies the set of all of the slots.

The initargs argument consists of alternating initialization argument
names and values.

The modified instance is returned as the result.
Initialization arguments are declared valid by using the :initarg option to

defclass, or by defining methods for shared-initialize. The keyword name
of each keyword parameter specifier in the lambda-list of any method defined
on shared-initialize is declared a valid initialization argument name for all
classes for which that method is applicable.

Implementations are permitted to optimize :initform forms that neither
produce nor depend on side effects by evaluating these forms and storing them
into slots before running any initialize-instance methods, rather than by
handling them in the primary initialize-instance method. (This optimiza-
tion might be implemented by having the allocate-instance method copy
a prototype instance.)

Implementations are permitted to optimize default initial value forms for
initialization arguments associated with slots by not actually creating the

912 CHAPTER 28. COMMON LISP OBJECT SYSTEM

complete initialization argument list when the only method that would re-
ceive the complete list is the method on standard-object. In this case,
default initial value forms can be treated like :initform forms. This opti-
mization has no visible effects other than a performance improvement.

See sections 28.1.9, 28.1.9, 28.1.9 as well as initialize-instance,
reinitialize-instance, update-instance-for-redefined-class, update-
instance-for-different-class, slot-boundp, and slot-makunbound.

[Function] slot-boundp instance slot-name

The function slot-boundp tests whether a specific slot in an instance is
bound.

The arguments are the instance and the name of the slot.
The function slot-boundp returns true or false.
This function allows for writing :after methods on initialize-instance

in order to initialize only those slots that have not already been bound.
If no slot of the given name exists in the instance, slot-missing is called

as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-boundp)

The function slot-boundp is implemented using slot-boundp-using-
class. See slot-missing.

[Function] slot-exists-p object slot-name

The function slot-exists-p tests whether the specified object has a slot
of the given name.

The object argument is any object. The slot-name argument is a symbol.
The function slot-exists-p returns true or false.
The function slot-exists-p is implemented using slot-exists-p-using-

class.

[Function] slot-makunbound instance slot-name

The function slot-makunbound restores a slot in an instance to the
unbound state.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 913

The arguments to slot-makunbound are the instance and the name of
the slot.

The instance is returned as the result.
If no slot of the given name exists in the instance, slot-missing is called

as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-makunbound)

The function slot-makunbound is implemented using slot-
makunbound-using-class. See slot-missing.

[Generic function] slot-missing class object slot-name operation
&optional new-value
[Primary method] slot-missing (class t) object slot-name operation
&optional new-value

The generic function slot-missing is invoked when an attempt is made
to access a slot in an object whose metaclass is standard-class and the
name of the slot provided is not a name of a slot in that class. The default
method signals an error.

The generic function slot-missing is not intended to be called by pro-
grammers. Programmers may write methods for it.

The required arguments to slot-missing are the class of the object that
is being accessed, the object, the slot name, and a symbol that indicates the
operation that caused slot-missing to be invoked. The optional argument
to slot-missing is used when the operation is attempting to set the value of
the slot.

If a method written for slot-missing returns values, these values get
returned as the values of the original function invocation.

The generic function slot-missing may be called during evaluation of
slot-value, (setf slot-value), slot-boundp, and slot-makunbound. For
each of these operations the corresponding symbol for the operation argument
is slot-value, setf, slot-boundp, and slot-makunbound, respectively.

The set of arguments (including the class of the instance) facilitates defin-
ing methods on the metaclass for slot-missing.

914 CHAPTER 28. COMMON LISP OBJECT SYSTEM

[Generic function] slot-unbound class instance slot-name
[Primary method] slot-unbound (class t) instance slot-name

The generic function slot-unbound is called when an unbound slot is
read in an instance whose metaclass is standard-class. The default method
signals an error.

The generic function slot-unbound is not intended to be called by pro-
grammers. Programmers may write methods for it. The function slot-
unbound is called only by the function slot-value-using-class and thus
indirectly by slot-value.

The arguments to slot-unbound are the class of the instance whose slot
was accessed, the instance itself, and the name of the slot.

If a method written for slot-unbound returns values, these values get
returned as the values of the original function invocation.

An unbound slot may occur if no :initform form was specified for the
slot and the slot value has not been set, or if slot-makunbound has been
called on the slot.

See slot-makunbound.

[Function] slot-value object slot-name

The function slot-value returns the value contained in the slot slot-name
of the given object. If there is no slot with that name, slot-missing is called.
If the slot is unbound, slot-unbound is called.

The macro setf can be used with slot-value to change the value of a
slot.

If an attempt is made to read a slot and no slot of the given name exists
in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-value)

If an attempt is made to write a slot and no slot of the given name exists
in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 915

’setf
new-value)

The function slot-value is implemented using slot-value-using-class.
Implementations may optimize slot-value by compiling it in-line.
See slot-missing and slot-unbound.
[At this point the original CLOS report [5, 7] contained a specification for

symbol-macrolet. This specification is omitted here. Instead, a description
of symbol-macrolet appears with those of related constructs in chapter 7.—
GLS]

[Generic function] update-instance-for-different-class previous current
&rest initargs
[Primary method] update-instance-for-different-class
(previous standard-object) (current standard-object) &rest initargs

The generic function update-instance-for-different-class is not in-
tended to be called by programmers. Programmers may write methods for
it. This function is called only by the function change-class.

The system-supplied primary method on update-instance-for-
different-class checks the validity of initialization arguments and signals
an error if an initialization argument is supplied that is not declared valid.
This method then initializes slots with values according to the initialization
arguments and initializes the newly added slots with values according to
their :initform forms. It does this by calling the generic function shared-
initialize with the following arguments: the instance, a list of names of the
newly added slots, and the initialization arguments it received. Newly added
slots are those local slots for which no slot of the same name exists in the
previous class.

Methods for update-instance-for-different-class can be defined to
specify actions to be taken when an instance is updated. If only :after meth-
ods for update-instance-for-different-class are defined, they will be run
after the system-supplied primary method for initialization and therefore will
not interfere with the default behavior of update-instance-for-different-
class.

The arguments to update-instance-for-different-class are computed
by change-class. When change-class is invoked on an instance, a copy
of that instance is made; change-class then destructively alters the origi-
nal instance. The first argument to update-instance-for-different-class,

916 CHAPTER 28. COMMON LISP OBJECT SYSTEM

previous, is that copy; it holds the old slot values temporarily. This argu-
ment has dynamic extent within change-class; if it is referenced in any
way once update-instance-for-different-class returns, the results are un-
defined. The second argument to update-instance-for-different-class,
current, is the altered original instance.

The intended use of previous is to extract old slot values by using slot-
value or with-slots or by invoking a reader generic function, or to run other
methods that were applicable to instances of the original class.

The initargs argument consists of alternating initialization argument
names and values.

The value returned by update-instance-for-different-class is ignored
by change-class.

See the example for the function change-class.
Initialization arguments are declared valid by using the :initarg option

to defclass, or by defining methods for update-instance-for-different-
class or shared-initialize. The keyword name of each keyword parameter
specifier in the lambda-list of any method defined on update-instance-
for-different-class or shared-initialize is declared a valid initialization
argument name for all classes for which that method is applicable.

Methods on update-instance-for-different-class can be defined to ini-
tialize slots differently from change-class. The default behavior of change-
class is described in section 28.1.11.

See sections 28.1.11, 28.1.9, and 28.1.9 as well as change-class and
shared-initialize.

[Generic function] update-instance-for-redefined-class instance
added-slots discarded-slots property-list &rest initargs
[Primary method] update-instance-for-redefined-class
(instance standard-object) added-slots discarded-slots property-list &rest
initargs

The generic function update-instance-for-redefined-class is not in-
tended to be called by programmers. Programmers may write methods for
it. The generic function update-instance-for-redefined-class is called by
the mechanism activated by make-instances-obsolete.

The system-supplied primary method on update-instance-for-
redefined-class checks the validity of initialization arguments and signals
an error if an initialization argument is supplied that is not declared valid.

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 917

This method then initializes slots with values according to the initialization
arguments and initializes the newly added slots with values according to
their :initform forms. It does this by calling the generic function shared-
initialize with the following arguments: the instance, a list of names of the
newly added slots, and the initialization arguments it received. Newly added
slots are those local slots for which no slot of the same name exists in the old
version of the class.

When make-instances-obsolete is invoked or when a class has been
redefined and an instance is being updated, a property list is created that
captures the slot names and values of all the discarded slots with values
in the original instance. The structure of the instance is transformed so
that it conforms to the current class definition. The arguments to update-
instance-for-redefined-class are this transformed instance, a list of the
names of the new slots added to the instance, a list of the names of the old
slots discarded from the instance, and the property list containing the slot
names and values for slots that were discarded and had values. Included in
this list of discarded slots are slots that were local in the old class and are
shared in the new class.

The initargs argument consists of alternating initialization argument
names and values.

The value returned by update-instance-for-redefined-class is ignored.
Initialization arguments are declared valid by using the :initarg option

to defclass or by defining methods for update-instance-for-redefined-
class or shared-initialize. The keyword name of each keyword parameter
specifier in the lambda-list of any method defined on update-instance-
for-redefined-class or shared-initialize is declared a valid initialization
argument name for all classes for which that method is applicable.

See sections 28.1.10, 28.1.9, and 28.1.9 as well as shared-initialize and
make-instances-obsolete.

(defclass position () ())

(defclass x-y-position (position)
((x :initform 0 :accessor position-x)
(y :initform 0 :accessor position-y)))

918 CHAPTER 28. COMMON LISP OBJECT SYSTEM

;;; It turns out polar coordinates are used more than Cartesian
;;; coordinates, so the representation is altered and some new
;;; accessor methods are added.

(defmethod update-instance-for-redefined-class :before
((pos x-y-position) added deleted plist &key)

;; Transform the x-y coordinates to polar coordinates
;; and store into the new slots.
(let ((x (getf plist ’x))

(y (getf plist ’y)))
(setf (position-rho pos) (sqrt (+ (* x x) (* y y)))

(position-theta pos) (atan y x))))

(defclass x-y-position (position)
((rho :initform 0 :accessor position-rho)
(theta :initform 0 :accessor position-theta)))

;;; All instances of the old x-y-position class will be updated
;;; automatically.

;;; The new representation has the look and feel of the old one.

(defmethod position-x ((pos x-y-position))
(with-slots (rho theta) pos (* rho (cos theta))))

(defmethod (setf position-x) (new-x (pos x-y-position))
(with-slots (rho theta) pos
(let ((y (position-y pos)))
(setq rho (sqrt (+ (* new-x new-x) (* y y)))

theta (atan y new-x))
new-x)))

(defmethod position-y ((pos x-y-position))
(with-slots (rho theta) pos (* rho (sin theta))))

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 919

(defmethod (setf position-y) (new-y (pos x-y-position))
(with-slots (rho theta) pos
(let ((x (position-x pos)))
(setq rho (sqrt (+ (* x x) (* new-y new-y)))

theta (atan new-y x))
new-y)))

[Macro] with-accessors ({slot-entry}*) instance-form
{declaration}* {form}*
The macro with-accessors creates a lexical environment in which spec-

ified slots are lexically available through their accessors as if they were vari-
ables. The macrowith-accessors invokes the appropriate accessors to access
the specified slots. Both setf and setq can be used to set the value of the
slot.

The result returned is that obtained by executing the forms specified by
the body argument.

Example:

(with-accessors ((x position-x) (y position-y)) p1
(setq x y))

A with-accessors expression of the form

(with-accessors (slot1 ... slotn) instance
declaration1 ... declarationm)
form1 ... formk)

expands into the equivalent of

(let ((in instance))
(symbol-macrolet ((variable1 (accessor1 in))

...
(variablen (accessorn in)))

declaration1 ... declarationm)
form1 ... formk)

[X3J13 voted in March 1989 to modify the definition of symbol-
macrolet substantially and also voted to allow declarations before the body

920 CHAPTER 28. COMMON LISP OBJECT SYSTEM

of symbol-macrolet but with peculiar treatment of special and type dec-
larations. The syntactic changes are reflected in this definition of with-
accessors.—GLS]

See with-slots and symbol-macrolet.

[Macro] with-slots ({slot-entry}*) instance-form {declaration}* {form}*

slot-entry ::= slot-name | (variable-name slot-name)

The macro with-slots creates a lexical context for referring to specified slots
as though they were variables. Within such a context the value of the slot
can be specified by using its slot name, as if it were a lexically bound variable.
Both setf and setq can be used to set the value of the slot.

The macro with-slots translates an appearance of the slot name as a
variable into a call to slot-value.

The result returned is that obtained by executing the forms specified by
the body argument.

Example:

(with-slots (x y) position-1
(sqrt (+ (* x x) (* y y))))

(with-slots ((x1 x) (y1 y)) position-1
(with-slots ((x2 x) (y2 y)) position-2
(psetf x1 x2

y1 y2))))

(with-slots (x y) position
(setq x (1+ x)

y (1+ y)))

A with-slots expression of the form:

(with-slots (slot-entry1 ... slot-entryn) instance
declaration1 ... declarationm)
form1 ... formk)

expands into the equivalent of

28.2. FUNCTIONS IN THE PROGRAMMER INTERFACE 921

(let ((in instance))
(symbol-macrolet (Q1 ... Qn)
declaration1 ... declarationm)
form1 ... formk)

where Qj is

(slot-entryj (slot-value in ’slot-entryj))

if slot-entryj is a symbol and is

(variable-namej (slot-value in ’slot-namej))

if slot-entryj is of the form (variable-namej slot-namej).
[X3J13 voted in March 1989 to modify the definition of symbol-

macrolet substantially and also voted to allow declarations before the body
of symbol-macrolet but with peculiar treatment of special and type dec-
larations. The syntactic changes are reflected in this definition of with-
slots.—GLS]

See with-accessors and symbol-macrolet.

922 CHAPTER 28. COMMON LISP OBJECT SYSTEM

Table 28.1: Class Precedence Lists for Predefined Types

Predefined Common Lisp Type Class Precedence List for Corresponding Class
array (array t)
bit-vector (bit-vector vector array sequence t)
character (character t)
complex (complex number t)
cons (cons list sequence t)
float (float number t)
function * (function t)
hash-table * (hash-table t)
integer (integer rational number t)
list (list sequence t)
null (null symbol list sequence t)
number (number t)
package * (package t)
pathname * (pathname t)
random-state * (random-state t)
ratio (ratio rational number t)
rational (rational number t)
readtable * (readtable t)
sequence (sequence t)
stream * (stream t)
string (string vector array sequence t)
symbol (symbol t)
t (t)
vector (vector array sequence t)

[An asterisk indicates a type added to this table as a consequence of a portion
of the CLOS specification that was conditional on X3J13 voting to make that
type disjoint from certain other built-in types .—GLS]

Chapter 29

Conditions

Author: Kent M. Pitman
This chapter presents the bulk of the Common Lisp Condition System

proposal, written by Kent M. Pitman and amended by X3J13. I have edited
it only very lightly to conform to the overall style of this book and have
inserted a small number of bracketed remarks identified by the initials GLS.
Please see the Acknowledgments to this second edition for the author’s ac-
knowledgments to others who contributed to the Condition System proposal.

—Guy L. Steele Jr.

29.1 Introduction

Often we find it useful to describe a function in terms of its behavior in
“normal situations.” For example, we may say informally that the function
+ returns the sum of its arguments or that the function read-char returns
the next available character on a given input stream.

Sometimes, however, an “exceptional situation” will arise that does not fit
neatly into such descriptions. For example,+might receive an argument that
is not a number, or read-char might receive as a single argument a stream
that has no more available characters. This distinction between normal and
exceptional situations is in some sense arbitrary but is often very useful in
practice.

For example, suppose a function f were defined to allow only integer
arguments but also guaranteed to detect and signal an error for non-integer
arguments. Such a description is in fact internally inconsistent (that is,

923

924 CHAPTER 29. CONDITIONS

paradoxical) because the function’s behavior is well-defined for non-integers.
Yet we would not want this annoying paradox to force description of f as a
function that accepts any kind of argument (just in case f is being called only
as a quick way to signal an error, for example). Using the normal/exceptional
distinction, we can say clearly that f accepts integers in the normal situation
and signals an error in exceptional situations. Moreover, we can say that
when we refer to the definition of a function informally, it is acceptable to
speak only of its normal behavior. For example, we can speak informally
about f as a function that accepts only integers without feeling that we are
committing some awful fraud.

Not all exceptional situations are errors. For example, a program that
is directing the typing of a long line of text may come to an end-of-line. It
is possible that no real harm will result from failing to signal end-of-line to
its caller because the operating system will simply force a carriage return
on the output device, which will continue typing on the next line. However,
it may still be interesting to establish a protocol whereby the printing pro-
gram can inform its caller of end-of-line exceptions. The caller could then
opt to deal with these situations in interesting ways at certain times. For ex-
ample, a caller might choose to terminate printing, obtaining an end-of-line
truncation. The important thing, however, is that the failure of the caller
to provide advice about the situation need not prevent the printer program
from operating correctly.

Mechanisms for dealing with exceptional situations vary widely. When
an exceptional situation is encountered, a program may attempt to handle
it by returning a distinguished value, returning an additional value, setting
a variable, calling a function, performing a special transfer of control, or
stopping the program altogether and entering the debugger.

For the most part, the facilities described in this chapter do not introduce
any fundamentally new way of dealing with exceptional situations. Rather,
they encapsulate and formalize useful patterns of data and control flow that
have been seen to be useful in dealing with exceptional situations.

A proper conceptual approach to errors should perhaps begin from first
principles, with a discussion of conditions in general, and eventually work
up to the concept of an error as just one of the many kinds of conditions.
However, given the primitive state of error-handling technology, a proper
buildup may be as inappropriate as requiring that a beggar learn to cook
a gourmet meal before being allowed to eat. Thus, we deal first with the
essentials—error handling—and then go back later to fill in the missing details.

29.2. CHANGES IN TERMINOLOGY 925

29.2 Changes in Terminology
In this section, we introduce changes to the terminology defined in sec-
tion 1.2.4.

A condition is an interesting situation in a program that has been de-
tected and announced. Later we allow this term also to refer to objects that
programs use to represent such situations.

An error is a condition in which normal program execution may not
continue without some form of intervention (either interactively by the user
or under some sort of program control, as described below).

The process by which a condition is formally announced by a program is
called signaling. The function signal is the primitive mechanism by which
such announcement is done. Other abstractions, such as error and cerror,
are built using signal.

The first edition is ambiguous about the reason why a particular program
action “is an error.” There are two principal reasons why an action may be
an error without being required to signal an error:

• Detecting the error might be prohibitively expensive.

For example, (+ nil 3) is an error. It is likely that the designers of
Common Lisp believed this would be an error in all implementations
but felt it might be excessively expensive to detect the problem in
compiled code on stock hardware, so they did not require that it signal
an error.

• Some implementations might implement the behavior as an extension.

For example, (loop for x from 1 to 3 do (print x)) is an error
because loop is not defined to take atoms in its body. In fact, however,
some implementations offer an extension that makes this well-defined.
In order to leave room for such extensions, the first edition used the “is
an error” terminology to keep implementors from being forced to signal
an error in the extended implementations.

[This example was written well before the vote by X3J13 in January
1989 to add exactly this extension to the forthcoming draft standard
(see chapter 26).—GLS]

In this chapter, we use the following terminology. [Compare this to the
terminology presented in section 28.1.1.—GLS]

926 CHAPTER 29. CONDITIONS

• If the signaling of a condition or error is part of a function’s contract
in all situations, we say that it “signals” or “must signal” that condition
or error.

• If the signaling of a condition or error is optional for some important
reason (such as performance), we say that the program “might signal”
that condition or error. In this case, we are defining the operation to
be illegal in all implementations, but allowing some implementations
to fail to detect the error.

• If an action is left undefined for the sake of implementation-dependent
extension, we say that it “is undefined” or “has undefined effect.” This
means that it is not possible to depend portably upon the effects of that
action. A program that has undefined effect may enter the debugger,
transfer control, or modify data in unpredictable ways.

• In the special case where only the return value of an operation is not
well defined but any side effect and transfer-of-control behavior is well
defined, we say that it has “undefined value.” In this case, the number
and nature of the return values is not defined, but the function can
reasonably be expected to return. It is worth noting that under this
description, there are some (though not many) legitimate ways in which
such return value(s) can be used. For example, if the function foo
has no side effects and undefined value, the expression (length (list
(foo))) is completely well defined even for portable code. However,
the effect of (print (list (foo))) is not well defined.

29.3 Survey of Concepts

This section discusses various aspects of the condition system by topic, illus-
trating them with extensive examples. The next section contains definitions
of specific functions, macros, and other facilities.

29.3.1 Signaling Errors

Conceptually, signaling an error in a program is an admission by that pro-
gram that it does not know how to continue and requires external interven-

29.3. SURVEY OF CONCEPTS 927

tion. Once an error is signaled, any decision about how to continue must
come from the “outside.”

The simplest way to signal an error is to use the error function with
format-style arguments describing the error for the sake of the user interface.
If error is called and there are no active handlers (described in sections 29.3.2
and 29.3.3), the debugger will be entered and the error message will be typed
out. For example:

Lisp> (defun factorial (x)
(cond ((or (not (typep x ’integer)) (minusp x))

(error "~S is not a valid argument to FACTORIAL."
x))

((zerop x) 1)
(t (* x (factorial (- x 1))))))

⇒ FACTORIAL
Lisp> (factorial 20)
⇒ 2432902008176640000
Lisp> (factorial -1)
Error: -1 is not a valid argument to FACTORIAL.
To continue, type :CONTINUE followed by an option number:
1: Return to Lisp Toplevel.
Debug>

In general, a call to error cannot directly return. Unless special work has
been done to override this behavior, the debugger will be entered and there
will be no option to simply continue.

The only exception may be that some implementations may provide de-
bugger commands for interactively returning from individual stack frames;
even then, however, such commands should never be used except by someone
who has read the erring code and understands the consequences of continuing
from that point. In particular, the programmer should feel confident about
writing code like this:

(defun wargames:no-win-scenario ()
(when (true) (error "Pushing the button would be stupid."))
(push-the-button))

In this scenario, there should be no chance that the function error will
return and the button will be pushed.

928 CHAPTER 29. CONDITIONS

Remark: It should be noted that the notion of “no chance” that the button will
be pushed is relative only to the language model; it assumes that the language is
accurately implemented. In practice, compilers have bugs, computers have glitches,
and users have been known to interrupt at inopportune moments and use the
debugger to return from arbitrary stack frames. Such violations of the language
model are beyond the scope of the condition system but not necessarily beyond the
scope of potential failures that the programmer should consider and defend against.
The possibility of such unusual failures may of course also influence the design
of code meant to handle less drastic situations, such as maintaining a database
uncorrupted.—KMP and GLS

In some cases, the programmer may have a single, well-defined idea of a
reasonable recovery strategy for this particular error. In that case, he can use
the function cerror, which specifies information about what would happen
if the user did simply continue from the call to cerror. For example:

Lisp> (defun factorial (x)
(cond ((not (typep x ’integer))

(error "~S is not a valid argument to FACTORIAL."
x))

((minusp x)
(let ((x-magnitude (- x)))
(cerror "Compute -(~D!) instead."

"(-~D)! is not defined." x-magnitude)
(- (factorial x-magnitude))))

((zerop x) 1)
(t (* x (factorial (- x 1))))))

⇒ FACTORIAL
Lisp> (factorial -3)
Error: (-3)! is not defined.
To continue, type :CONTINUE followed by an option number:
1: Compute -(3!) instead.
2: Return to Lisp Toplevel.
Debug> :continue 1
⇒ -6

29.3. SURVEY OF CONCEPTS 929

29.3.2 Trapping Errors

By default, a call to error will force entry into the debugger. You can
override that behavior in a variety of ways. The simplest (and most blunt)
tool for inhibiting entry to the debugger on an error is to use ignore-errors.
In the normal situation, forms in the body of ignore-errors are evaluated
sequentially and the last value is returned. If a condition of type error is
signaled, ignore-errors immediately returns two values, namely nil and the
condition that was signaled; the debugger is not entered and no error message
is printed. For example:

Lisp> (setq filename "nosuchfile")
⇒ "nosuchfile"
Lisp> (ignore-errors (open filename :direction :input))
⇒ NIL and #<FILE-ERROR 3437523>

The second return value is an object that represents the kind of error.
This is explained in greater detail in section 29.3.4.

In many cases, however, ignore-errors is not desirable because it deals
with too many kinds of errors. Contrary to the belief of some, a program
that does not enter the debugger is not necessarily better than one that does.
Excessive use of ignore-errors may keep the program out of the debugger,
but it may not increase the program’s reliability, because the program may
continue to run after encountering errors other than those you meant to
work past. In general, it is better to attempt to deal only with the particular
kinds of errors that you believe could legitimately happen. That way, if an
unexpected error comes along, you will still find out about it.

ignore-errors is a useful special case built from a more general facility,
handler-case, that allows the programmer to deal with particular kinds of
conditions (including non-error conditions) without affecting what happens
when other kinds of conditions are signaled. For example, an effect equivalent
to that of ignore-errors above is achieved in the following example:

Lisp> (setq filename "nosuchfile")
⇒ "nosuchfile"
Lisp> (handler-case (open filename :direction :input)

(error (condition)
(values nil condition)))

⇒ NIL and #<FILE-ERROR 3437525>

930 CHAPTER 29. CONDITIONS

However, using handler-case, one can indicate a more specific condition
type than just “error.” Condition types are explained in detail later, but the
syntax looks roughly like the following:

Lisp> (makunbound ’filename)
⇒ FILENAME
Lisp> (handler-case (open filename :direction :input)

(file-error (condition)
(values nil condition)))

Error: The variable FILENAME is unbound.
To continue, type :CONTINUE followed by an option number:
1: Retry getting the value of FILENAME.
2: Specify a value of FILENAME to use this time.
3: Specify a value of FILENAME to store and use.
4: Return to Lisp Toplevel.
Debug>

29.3.3 Handling Conditions

Blind transfer of control to a handler-case is only one possible kind of
recovery action that can be taken when a condition is signaled. The low-
level mechanism offers great flexibility in how to continue once a condition
has been signaled.

The basic idea behind condition handling is that a piece of code called the
signaler recognizes and announces the existence of an exceptional situation
using signal or some function built on signal (such as error).

The process of signaling involves the search for and invocation of a han-
dler, a piece of code that will attempt to deal appropriately with the situation.

If a handler is found, it may either handle the situation, by performing
some non-local transfer of control, or decline to handle it, by failing to per-
form a non-local transfer of control. If it declines, other handlers are sought.

Since the lexical environment of the signaler might not be available to
handlers, a data structure called a condition is created to represent explicitly
the relevant state of the situation. A condition either is created explicitly
using make-condition and then passed to a function such as signal, or
is created implicitly by a function such as signal when given appropriate
non-condition arguments.

29.3. SURVEY OF CONCEPTS 931

In order to handle the error, a handler is permitted to use any non-local
transfer of control such as go to a tag in a tagbody, return from a block,
or throw to a catch. In addition, structured abstractions of these primitives
are provided for convenience in exception handling.

A handler can be made dynamically accessible to a program by use of
handler-bind. For example, to create a handler for a condition of type
arithmetic-error, one might write:

(handler-bind ((arithmetic-error handler))body)

The handler is a function of one argument, the condition. If a condition of
the designated type is signaled while the body is executing (and there are no
intervening handlers), the handler would be invoked on the given condition,
allowing it the option of transferring control. For example, one might write
a macro that executes a body, returning either its value(s) or the two values
nil and the condition:

(defmacro without-arithmetic-errors (&body forms)
(let ((tag (gensym)))
‘(block ,tag
(handler-bind ((arithmetic-error

#’(lambda (c) ;Argument c is a condition
(return-from ,tag (values nil c)))))

,@body))))

The handler is executed in the dynamic context of the signaler, except
that the set of available condition handlers will have been rebound to the
value that was active at the time the condition handler was made active. If
a handler decline (that is, it does not transfer control), other handlers are
sought. If no handler is found and the condition was signaled by error or
cerror (or some function such as assert that behaves like these functions),
the debugger is entered, still in the dynamic context of the signaler.

29.3.4 Object-Oriented Basis of Condition Handling

Of course, the ability of the handler to usefully handle an exceptional situa-
tion is related to the quality of the information it is provided. For example,
if all errors were signaled by

932 CHAPTER 29. CONDITIONS

(error "some format string")

then the only piece of information that would be accessible to the handler
would be an object of type simple-error that had a slot containing the
format string.

If this were done, string-equal would be the preferred way to tell one
error from another, and it would be very hard to allow flexibility in the
presentation of error messages because existing handlers would tend to be
broken by even tiny variations in the wording of an error message. This
phenomenon has been the major failing of most error systems previously
available in Lisp. It is fundamentally important to decouple the error message
string (the human interface) from the objects that formally represent the
error state (the program interface). We therefore have the notion of typed
conditions, and of formal operations on those conditions that make them
inspectable in a structured way.

This object-oriented approach to condition handling has the following
important advantages over a text-based approach:

• Conditions are classified according to subtype relationships, making it
easy to test for categories of conditions.

• Conditions have named slot values through which parameters are con-
veyed from the program that signals the condition to the program that
handles it.

• Inheritance of methods and slots reduces the amount of explicit speci-
fication necessary to achieve various interesting effects.

Some condition types are defined by this document, but the set of con-
dition types is extensible using define-condition. Common Lisp condition
types are in fact CLOS classes, and condition objects are ordinary CLOS
objects; define-condition merely provides an abstract interface that is a
bit more convenient than defclass for defining conditions.

Here, as an example, we define a two-argument function called divide
that is patterned after the / function but does some stylized error checking:

(defun divide (numerator denominator)
(cond ((or (not (numberp numerator))

(not (numberp denominator)))
(error "(DIVIDE ’~S ’~S) - Bad arguments."

29.3. SURVEY OF CONCEPTS 933

numerator denominator))
((zerop denominator)
(error ’division-by-zero

:operator ’divide
:operands (list numerator denominator)))

(t ...)))

Note that in the first clause we have used error with a string argu-
ment and in the second clause we have named a particular condition type,
division-by-zero. In the case of a string argument, the condition type that
will be signaled is simple-error.

The particular kind of error that is signaled may be important in cases
where handlers are active. For example, simple-error inherits from type
error, which in turn inherits from type condition. On the other hand,
division-by-zero inherits from arithmetic-error, which inherits from er-
ror, which inherits from condition. So if a handler existed for arithmetic-
error while a division-by-zero condition was signaled, that handler would
be tried; however, if a simple-error condition were signaled in the same
context, the handler for type arithmetic-error would not be tried.

29.3.5 Restarts

The Common Lisp Condition System creats a clear separation between the
act of signaling an error of a particular type and the act of saying that a
particular way of recovery is appropriate. In the divide example above,
simply signaling an error does not imply a willingness on the part of the
signaler to cooperate in any corrective action. For example, the following
sample interaction illustrates that the only recovery action offered for this
error is “Return to Lisp Toplevel”:

Lisp> (+ (divide 3 0) 7)
Error: Attempt to divide 3 by 0.
To continue, type :CONTINUE followed by an option number:
1: Return to Lisp Toplevel.
Debug> :continue 1
Returned to Lisp Toplevel.
Lisp>

When an error is detected and the function error is called, execution
cannot continue normally because error will not directly return. Control

934 CHAPTER 29. CONDITIONS

can be transferred to other points in the program, however, by means of
specially established “restarts.”

29.3.6 Anonymous Restarts

The simplest kind of restart involves structured transfer of control using
a macro called restart-case. The restart-case form allows execution of
a piece of code in a context where zero or more restarts are active, and
where if one of those restarts is “invoked,” control will be transferred to
the corresponding clause in the restart-case form. For example, we could
rewrite the previous divide example as follows.

(defun divide (numerator denominator)
(loop
(restart-case

(return
(cond ((or (not (numberp numerator))

(not (numberp denominator)))
(error "(DIVIDE ’~S ’~S) - Bad arguments."

numerator denominator))
((zerop denominator)
(error ’division-by-zero

:operator ’divide
:operands (list numerator denominator)))

(t ...)))
(nil (arg1 arg2)

:report "Provide new arguments for use by DIVIDE."
:interactive
(lambda ()
(list (prompt-for ’number "Numerator: ")

(prompt-for ’number "Denominator: ")))
(setq numerator arg1 denominator arg2))

(nil (result)
:report "Provide a value to return from DIVIDE."
:interactive
(lambda () (list (prompt-for ’number "Result: ")))

(return result)))))

29.3. SURVEY OF CONCEPTS 935

Remark: The function prompt-for used in this chapter in a number of places is
not a part of Common Lisp. It is used in the examples in this chapter only to keep
the presentation simple. It is assumed to accept a type specifier and optionally a
format string and associated arguments. It uses the format string and associated
arguments as part of an interactive prompt, and uses read to read a Lisp object;
however, only an object of the type indicated by the type specifier is accepted.

The question of whether or not prompt-for (or something like it) would be a
useful addition to Common Lisp is under consideration by X3J13, but as of January
1989 no action has been taken. In spite of its use in a number of examples, nothing
in the Common Lisp Condition System depends on this function.

In the example, the nil at the head of each clause means that it is an
“anonymous” restart. Anonymous restarts are typically invoked only from
within the debugger. As we shall see later, it is possible to have “named
restarts” that may be invoked from code without the need for user interven-
tion.

If the arguments to anonymous restarts are not optional, then special
information must be provided about what the debugger should use as argu-
ments. Here the :interactive keyword is used to specify that information.

The :report keyword introduces information to be used when presenting
the restart option to the user (by the debugger, for example).

Here is a sample interaction that takes advantage of the restarts provided
by the revised definition of divide:

Lisp> (+ (divide 3 0) 7)
Error: Attempt to divide 3 by 0.
To continue, type :CONTINUE followed by an option number:
1: Provide new arguments for use by the DIVIDE function.
2: Provide a value to return from the DIVIDE function.
3: Return to Lisp Toplevel.
Debug> :continue 1
1
Numerator: 4
Denominator: 2
⇒ 9

936 CHAPTER 29. CONDITIONS

29.3.7 Named Restarts

In addition to anonymous restarts, one can have named restarts, which can
be invoked by name from within code. As a trivial example, one could write

(restart-case (invoke-restart ’foo 3)
(foo (x) (+ x 1)))

to add 3 to 1, returning 4. This trivial example is conceptually analogous
to writing:

(+ (catch ’something (throw ’something 3)) 1)

For a more realistic example, the code for the function symbol-value
might signal an unbound variable error as follows:

(restart-case (error "The variable ~S is unbound." variable)
(continue ()

:report
(lambda (s) ;Argument s is a stream
(format s "Retry getting the value of ~S." variable))

(symbol-value variable))
(use-value (value)

:report
(lambda (s) ;Argument s is a stream
(format s "Specify a value of ~S to use this time."

variable))
value)

(store-value (value)
:report
(lambda (s) ;Argument s is a stream
(format s "Specify a value of ~S to store and use."

variable))
(setf (symbol-value variable) value)
value))

If this were part of the implementation of symbol-value, then it would
be possible for users to write a variety of automatic handlers for unbound
variable errors. For example, to make unbound variables evaluate to them-
selves, one might write

29.3. SURVEY OF CONCEPTS 937

(handler-bind ((unbound-variable
#’(lambda (c) ;Argument c is a condition

(when (find-restart ’use-value)
(invoke-restart ’use-value

(cell-error-name c))))))
body)

29.3.8 Restart Functions

For commonly used restarts, it is conventional to define a program interface
that hides the use of invoke-restart. Such program interfaces to restarts
are called restart functions.

The normal convention is for the function to share the name of the restart.
The pre-defined functions abort, continue, muffle-warning, store-value,
and use-value are restart functions. With use-value the above example of
handler-bind could have been written more concisely as

(handler-bind ((unbound-variable
#’(lambda (c) ;Argument c is a condition

(use-value (cell-error-name c)))))
body)

29.3.9 Comparison of Restarts and Catch/Throw

One important feature that restart-case (or restart-bind) offers that
catch does not is the ability to reason about the available points to which
control might be transferred without actually attempting the transfer. One
could, for example, write

(ignore-errors (throw ...))

which is a sort of poor man’s variation of

(when (find-restart ’something)
(invoke-restart ’something))

but there is no way to use ignore-errors and throw to simulate some-
thing like

938 CHAPTER 29. CONDITIONS

(when (and (find-restart ’something)
(find-restart ’something-else))

(invoke-restart ’something))

or even just

(when (and (find-restart ’something)
(yes-or-no-p "Do something? "))

(invoke-restart ’something))

because the degree of inspectability that comes with simply writing

(ignore-errors (throw ...))

is too primitive—getting the desired information also forces transfer of
control, perhaps at a time when it is not desirable.

Many programmers have previously evolved strategies like the following
on a case-by-case basis:

(defvar *foo-tag-is-available* nil)

(defun fn-1 ()
(catch ’foo
(let ((*foo-tag-is-available* t))
... (fn-2) ...)))

(defun fn-2 ()
...
(if *foo-tag-is-available* (throw ’foo t))
...)

The facility provided by restart-case and find-restart is intended to
provide a standardized protocol for this sort of information to be communi-
cated between programs that were developed independently so that individ-
ual variations from program to program do not thwart the overall modularity
and debuggability of programs.

Another difference between the restart facility and the catch/throw fa-
cility is that a catch with any given tag completely shadows any outer pend-
ing catch that uses the same tag. Because of the presence of compute-
restarts, however, it is possible to see shadowed restarts, which may be very
useful in some situations (particularly in an interactive debugger).

29.3. SURVEY OF CONCEPTS 939

29.3.10 Generalized Restarts

restart-case is a mechanism that allows only imperative transfer of control
for its associated restarts. restart-case is built on a lower-level mechanism
called restart-bind, which does not force transfer of control.

restart-bind is to restart-case as handler-bind is to handler-case.
The syntax is

(restart-bind ((name function . options)) . body)

The body is executed in a dynamic context within which the function will
be called whenever (invoke-restart ’name) is executed. The options are
keyword-style and are used to pass information such as that provided with
the :report keyword in restart-case.

A restart-case expands into a call to restart-bind where the function
simply does an unconditional transfer of control to a particular body of code,
passing along “argument” information in a structured way.

It is also possible to write restarts that do not transfer control. Such
restarts may be useful in implementing various special commands for the
debugger that are of interest only in certain situations. For example, one
might imagine a situation where file space was exhausted and the following
was done in an attempt to free space in directory dir:

(restart-bind ((nil #’(lambda () (expunge-directory dir))
:report-function
#’(lambda (stream)

(format stream "Expunge ~A."
(directory-namestring dir)))))

(cerror "Try this file operation again."
’directory-full :directory dir))

In this case, the debugger might be entered and the user could first per-
form the expunge (which would not transfer control from the debugger con-
text) and then retry the file operation:

Lisp> (open "FOO" :direction :output)
Error: The directory PS:<JDOE> is full.
To continue, type :CONTINUE followed by an option number:
1: Try this file operation again.
2: Expunge PS:<JDOE>.

940 CHAPTER 29. CONDITIONS

3: Return to Lisp Toplevel.
Debug> :continue 2
Expunging PS:<JDOE> ... 3 records freed.
Debug> :continue 1
⇒ #<OUTPUT-STREAM "PS:<JDOE>FOO.LSP" 2323473>

29.3.11 Interactive Condition Handling

When a program does not know how to continue, and no active handler is
able to advise it, the “interactive condition handler,” or “debugger,” can be
entered. This happens implicitly through the use of functions such as error
and cerror, or explicitly through the use of the function invoke-debugger.

The interactive condition handler never returns directly; it returns only
through structured non-local transfer of control to specially defined restart
points that can be set up either by the system or by user code. The mech-
anisms that support the establishment of such structured restart points for
portable code are outlined in sections 29.3.5 through 29.3.10.

Actually, implementations may also provide extended debugging facilities
that allow return from arbitrary stack frames. Although such commands
are frequently useful in practice, their effects are implementation-dependent
because they violate the Common Lisp program abstraction. The effect of
using such commands is undefined with respect to Common Lisp.

29.3.12 Serious Conditions

The ignore-errors macro will trap conditions of type error. There are,
however, conditions that are not of type error.

Some conditions are not considered errors but are still very serious, so
we call them serious conditions and we use the type serious-condition to
represent them. Conditions such as those that might be signaled for “stack
overflow” or “storage exhausted” are in this category.

The type error is a subtype of serious-condition, and it would tech-
nically be correct to use the term “serious condition” to refer to all serious
conditions whether errors or not. However, normally we use the term “seri-
ous condition” to refer to things of type serious-condition but not of type
error.

The point of the distinction between errors and other serious conditions is
that some conditions are known to occur for reasons that are beyond the scope

29.3. SURVEY OF CONCEPTS 941

of Common Lisp to specify clearly. For example, we know that a stack will
generally be used to implement function calling, and we know that stacks tend
to be of finite size and are prone to overflow. Since the available stack size
may vary from implementation to implementation, from session to session, or
from function call to function call, it would be confusing to have expressions
such as (ignore-errors (+ a b)) return a number sometimes and nil other
times if a and b were always bound to numbers and the stack just happened
to overflow on a particular call. For this reason, only conditions of type error
and not all conditions of type serious-condition are trapped by ignore-
errors. To trap other conditions, a lower-level facility must be used (such
as handler-bind or handler-case).

By convention, the function error is preferred over signal to signal con-
ditions of type serious-condition (including those of type error). It is the
use of the function error, and not the type of the condition being signaled,
that actually causes the debugger to be entered.

29.3.13 Non-Serious Conditions

Some conditions are neither errors nor serious conditions. They are signaled
to give other programs a chance to intervene, but if no action is taken, com-
putation simply continues normally.

For example, an implementation might choose to signal a non-serious
(and implementation-dependent) condition called end-of-line when output
reaches the last character position on a line of character output. In such an
implementation, the signaling of this condition might allow a convenient way
for other programs to intervene, producing output that is truncated at the
end of a line.

By convention, the function signal is used to signal conditions that are
not serious. It would be possible to signal serious conditions using signal, and
the debugger would not be entered if the condition went unhandled. However,
by convention, handlers will generally tend to assume that serious conditions
and errors were signaled by calling the error function (and will therefore
force entry to the interactive condition handler) and that they should work
to avoid this.

942 CHAPTER 29. CONDITIONS

29.3.14 Condition Types

Some types of conditions are predefined by the system. All types of conditions
are subtypes of condition. That is, (typep x ’condition) is true if and
only if the value of x is a condition.

Implementations supporting multiple (or non-hierarchical) type inheri-
tance are expressly permitted to exploit multiple inheritance in the tree of
condition types as implementation-dependent extensions, as long as such ex-
tensions are compatible with the specifications in this chapter. [X3J13 voted
in March 1989 to integrate the Condition System and the Object System, so
multiple inheritance is always available for condition types.—GLS]

In order to avoid problems in portable code that runs both in systems
with multiple type inheritance and in systems without it, programmers are
explicitly warned that while all correct Common Lisp implementations will
ensure that (typep c ’condition) is true for all conditions c (and all subtype
relationships indicated in this chapter will also be true), it should not be
assumed that two condition types specified to be subtypes of the same third
type are disjoint. (In some cases, disjoint subtypes are identified explicitly,
but such disjointness is not to be assumed by default.) For example, it
follows from the subtype descriptions contained in this chapter that in all
implementations (typep c ’control-error) implies (typep c ’error), but
note that (typep c ’control-error) does not imply (not (typep c ’cell-
error)).

29.3.15 Signaling Conditions

When a condition is signaled, the system tries to locate the most appropriate
handler for the condition and to invoke that handler.

Handlers are established dynamically using handler-bind or abstrac-
tions built on handler-bind.

If an appropriate handler is found, it is called. In some circumstances,
the handler may decline simply by returning without performing a non-local
transfer of control. In such cases, the search for an appropriate handler is
picked up where it left off, as if the called handler had never been present.

If no handler is found, or if all handlers that were found decline, signal
returns nil.

Although it follows from the description above, it is perhaps worth noting
explicitly that the lookup procedure described here will prefer a general but

29.3. SURVEY OF CONCEPTS 943

more (dynamically) local handler over a specific but less (dynamically) local
handler. Experience with existing condition systems suggests that this is a
reasonable approach and works adequately in most situations. Some care
should be taken when binding handlers for very general kinds of conditions,
such as is done in ignore-errors. Often, binding for a more specific condition
type than error is more appropriate.

29.3.16 Resignaling Conditions

[The contents of this section are still a subject of some debate within X3J13.
The reader may wish to take this section with a grain of salt.—GLS]

Note that signaling a condition has no side effect on that condition, and
that there is no dynamic state contained in a condition object. As such, it
may at times be reasonable and appropriate to consider caching condition
objects for repeated use, re-signaling conditions from within handlers, or
saving conditions away somewhere and re-signaling them later.

For example, it may be desirable for the system to pre-allocate objects of
type storage-condition so that they can be signaled when needed without
attempting to allocate more storage.

29.3.17 Condition Handlers

A handler is a function of one argument, the condition to be handled. The
handler may inspect the object to be sure it is “interested” in handling the
condition.

A handler is executed in the dynamic context of the signaler, except that
the set of available condition handlers will have been rebound to the value
that was active at the time the condition handler was made active. The
intent of this is to prevent infinite recursion because of errors in a condition
handler.

After inspecting the condition, the handler should take one of the follow-
ing actions:

• It might decline to handle the condition (by simply returning). When
this happens, the returned values are ignored and the effect is the same
as if the handler had been invisible to the mechanism seeking to find
a handler. The next handler in line will be tried, or if no such handler
exists, the condition will go unhandled.

944 CHAPTER 29. CONDITIONS

• It might handle the condition (by performing some non-local transfer
of control). This may be done either primitively using go, return, or
throw, or more abstractly using a function such as abort or invoke-
restart.

• It might signal another condition.

• It might invoke the interactive debugger.

In fact, the latter two actions (signaling another condition or entering the
debugger) are really just ways of putting off the decision to either handle or
decline, or trying to get someone else to make such a decision. Ultimately,
all a handler can do is to handle or decline to handle.

29.3.18 Printing Conditions

When *print-escape* is nil (for example, when the princ function or the
~A directive is used with format), the report method for the condition will
be invoked. This will be done automatically by functions such as invoke-
debugger, break, and warn, but there may still be situations in which it is
desirable to have a condition report under explicit user control. For example,

(let ((form ’(open "nosuchfile")))
(handler-case (eval form)
(serious-condition (c)
(format t "~&Evaluation of ~S failed:~%~A" form c))))

might print something like

Evaluation of (OPEN "nosuchfile") failed:
The file "nosuchfile" was not found.

Some suggestions about the form of text typed by report methods:

• The message should generally be a complete sentence, beginning with
a capital letter and ending with appropriate punctuation (usually a
period).

• The message should not include any introductory text such as “Error:”
or “Warning:” and should not be followed by a trailing newline. Such
text will be added as may be appropriate to context by the routine
invoking the report method.

29.3. SURVEY OF CONCEPTS 945

• Except where unavoidable, the tab character (which is only semi-
standard anyway) should not be used in error messages. Its effect may
vary from one implementation to another and may cause problems even
within an implementation because it may do different things depending
on the column at which the error report begins.

• Single-line messages are preferred, but newlines in the middle of long
messages are acceptable.

• If any program (for example, the debugger) displays messages indented
from the prevailing left margin (for example, indented seven spaces
because they are prefixed by the seven-character herald “Error: ”), then
that program will take care of inserting the appropriate indentation
into the extra lines of a multi-line error message. Similarly, a program
that prefixes error messages with semicolons so that they appear to be
comments should take care of inserting a semicolon at the beginning
of each line in a multi-line error message. (These rules are important
because, even within a single implementation, there may be more than
one program that presents error messages to the user, and they may use
different styles of presentation. The caller of error cannot anticipate
all such possible styles, and so it is incumbent upon the presenter of
the message to make any necessary adjustments.)

When *print-escape* is not nil, the object should print in some useful
(but usually fairly abbreviated) fashion according to the style of the imple-
mentation. It is not expected that a condition will be printed in a form
suitable for read. Something like #<ARITHMETIC-ERROR 1734>
is fine.

X3J13 voted in March 1989 to integrate the Condition System and the
Object System. In the original Condition System proposal, no function was
provided for directly accessing or setting the printer for a condition type,
or for invoking it; the techniques described above were the sole interface to
reporting. The vote specified that, in CLOS terms, condition reporting is
mediated through the print-object method for the condition type (that is,
class) in question, with *print-escape* bound to nil.

Specifying (:report fn) to define-condition when defining condition
type C is equivalent to a separate method definition:

946 CHAPTER 29. CONDITIONS

(defmethod print-object ((x C) stream)
(if *print-escape*

(call-next-method)
(funcall #’fn x stream)))

Note that the method uses fn to print the condition only when *print-
escape* has the value nil.

29.4 Program Interface to the Condition Sys-
tem

This section describes functions, macros, variables, and condition types as-
sociated with the Common Lisp Condition System.

29.4.1 Signaling Conditions

The functions in this section provide various mechanisms for signaling warn-
ings, breaks, continuable errors, and fatal errors.

[Function] error datum &rest arguments

Invokes the signal facility on a condition. If the condition is not handled,
(invoke-debugger condition) is executed. As a consequence of calling
invoke-debugger, error never directly returns to its caller; the only exit
from this function can come by non-local transfer of control in a handler or
by use of an interactive debugging command.

If datum is a condition, then that condition is used directly. In this case,
it is an error for the list of arguments to be non-empty; that is, error must
have been called with exactly one argument, the condition.

If datum is a condition type (a class or class name), then the condition
used is effectively the result of (apply #’make-condition datum argu-
ments).

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error
:format-string datum
:format-arguments arguments)

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 947

[Function] cerror continue-format-string datum &rest arguments

The function cerror invokes the error facility on a condition. If the
condition is not handled, (invoke-debugger condition) is executed. While
signaling is going on, and while control is in the debugger (if it is reached),
it is possible to continue program execution (thereby returning from the call
to cerror) using the continue restart.

If datum is a condition, then that condition is used directly. In this case,
the list of arguments need not be empty, but will be used only with the
continue-format-string and will not be used to initialize datum.

If datum is a condition type (a class or class name), then the condition
used is effectively the result of (apply #’make-condition datum argu-
ments).

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error
:format-string datum
:format-arguments arguments)

The continue-format-string must be a string. Note that if datum is not
a string, then the format arguments used by the continue-format-string will
still be the list of arguments (which is in keyword format if datum is a condi-
tion type). In this case, some care may be necessary to set up the continue-
format-string correctly. The format directive ~*, which ignores and skips
over format arguments, may be particularly useful in this situation.

The value returned by cerror is nil.

[Function] signal datum &rest arguments

Invokes the signal facility on a condition. If the condition is not handled,
signal returns nil.

If datum is a condition, then that condition is used directly. In this case,
it is an error for the list of arguments to be non-empty; that is, signal must
have been called with exactly one argument, the condition.

If datum is a condition type (a class or class name), then the condition
used is effectively the result of (apply #’make-condition datum argu-
ments).

If datum is a string, then the condition used is effectively the result of

948 CHAPTER 29. CONDITIONS

(make-condition ’simple-error
:format-string datum
:format-arguments arguments)

Note that if (typep condition *break-on-signals*) is true, then the
debugger will be entered prior to beginning the process of signaling. The
continue restart function may be used to continue with the signaling process;
the restart is associated with the signaled condition as if by use of with-
condition-restarts. This is true also for all other functions and macros
that signal conditions, such as warn, error, cerror, assert, and check-
type.

During the dynamic extent of a call to signal with a particular condi-
tion, the effect of calling signal again on that condition object for a distinct
abstract event is not defined. For example, although a handler may resignal
a condition in order to allow outer handlers first shot at handling the condi-
tion, two distinct asynchronous keyboard events must not signal an the same
(eq) condition object at the same time.

For further details about signaling and handling, see the discussion of
condition handlers in section 29.3.17.

[Variable] *break-on-signals*

This variable is intended primarily for use when the user is debugging
programs that do signaling. The value of *break-on-signals* should be
suitable as a second argument to typep, that is, a type or type specifier.

When (typep condition *break-on-signals*) is true, then calls to
signal (and to other advertised functions such as error that implicitly call
signal) will enter the debugger prior to signaling that condition. The con-
tinue restart may be used to continue with the normal signaling process;
the restart is associated with the signaled condition as if by use of with-
condition-restarts.

Note that nil is a valid type specifier. If the value of *break-on-signals*
is nil, then signal will never enter the debugger in this implicit manner.

When setting this variable, the user is encouraged to choose the most
restrictive specification that suffices. Setting this flag effectively violates the
modular handling of condition signaling that this chapter seeks to establish.
Its complete effect may be unpredictable in some cases, since the user may
not be aware of the variety or number of calls to signal that are used in
programs called only incidentally.

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 949

By default—and certainly in any “production” use—the value of this vari-
able should be nil, both for reasons of performance and for reasons of mod-
ularity and abstraction.

29.4.2 Assertions

These facilities are designed to make it convenient for the user to insert error
checks into code.
[Macro] check-type place typespec [string]
A check-type form signals an error of type type-error if the contents

of place are not of the desired type.
If a condition is signaled, handlers of this condition can use the functions

type-error-datum and type-error-expected-type to access the contents
of place and the typespec, respectively.

This function can return only if the store-value restart is invoked, either
explicitly from a handler or implicitly as one of the options offered by the
debugger. The restart is associated with the signaled condition as if by use
of with-condition-restarts.

If store-value is called, check-type will store the new value that is
the argument to store-value (or that is prompted for interactively by the
debugger) in place and start over, checking the type of the new value and
signaling another error if it is still not the desired type. Subforms of place may
be evaluated multiple times because of the implicit loop generated. check-
type returns nil.

The place must be a generalized variable reference acceptable to setf. The
typespec must be a type specifier; it is not evaluated. The string should be an
English description of the type, starting with an indefinite article (“a” or “an”);
it is evaluated. If the string is not supplied, it is computed automatically
from the typespec. (The optional string argument is allowed because some
applications of check-type may require a more specific description of what
is wanted than can be generated automatically from the type specifier.)

The error message will mention the place, its contents, and the desired
type.

Implementation note: An implementation may choose to generate a somewhat
differently worded error message if it recognizes that place is of a particular form,
such as one of the arguments to the function that called check-type.

950 CHAPTER 29. CONDITIONS

Lisp> (setq aardvarks ’(sam harry fred))
⇒ (SAM HARRY FRED)
Lisp> (check-type aardvarks (array * (3)))
Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a 3-long array.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use instead.
2: Return to Lisp Toplevel.
Debug> :continue 1
Use Value: #(sam fred harry)
⇒ NIL
Lisp> aardvarks
⇒ #<ARRAY-3 13571>
Lisp> (map ’list #’identity aardvarks)
⇒ (SAM FRED HARRY)
Lisp> (setq aacount ’foo)
⇒ FOO
Lisp> (check-type aacount (integer 0 *) "a non-negative integer")
Error: The value of AACOUNT, FOO, is not a non-negative integer.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use instead.
2: Return to Lisp Toplevel.
Debug> :continue 2
Lisp>

[Macro] assert test-form [({place}*) [datum {argument}*]]
An assert form signals an error if the value of the test-form is nil. Con-

tinuing from this error using the continue restart will allow the user to alter
the values of some variables, and assert will then start over, evaluating the
test-form again. (The restart is associated with the signaled condition as if
by use of with-condition-restarts.) assert returns nil.

The test-form may be any form. Each place (there may be any number
of them, or none) must be a generalized variable reference acceptable to
setf. These should be variables on which test-form depends, whose values
may sensibly be changed by the user in attempting to correct the error.
Subforms of each place are evaluated only if an error is signaled, and may
be re-evaluated if the error is re-signaled (after continuing without actually
fixing the problem).

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 951

The datum and arguments are evaluated only if an error is to be signaled,
and re-evaluated if the error is to be signaled again.

If datum is a condition, then that condition is used directly. In this case,
it is an error to specify any arguments.

If datum is a condition type (a class or class name), then the condition
used is effectively the result of (apply #’make-condition datum (list
{argument}*)).

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error
:format-string datum
:format-arguments (list {argument}*))

If datum is omitted, then a condition of type simple-error is constructed
using the test-form as data. For example, the following might be used:

(make-condition ’simple-error
:format-string "The assertion ~S failed."
:format-arguments ’(test-form))

Note that the test-form itself, and not its value, is used as the format
argument.

Implementation note: The debugger need not include the test-form in the error
message, and any places should not be included in the message, but they should be
made available for the user’s perusal. If the user gives the “continue” command, an
opportunity should be presented to alter the values of any or all of the references.
The details of this depend on the implementation’s style of user interface, of course.

Here is an example of the use of assert:

(setq x (make-array ’(3 5) :initial-element 3))
(setq y (make-array ’(3 5) :initial-element 7))

(defun matrix-multiply (a b)
(let ((*print-array* nil))
(assert (and (= (array-rank a) (array-rank b) 2)

(= (array-dimension a 1)
(array-dimension b 0)))

(a b)
"Cannot multiply ~S by ~S." a b)

(really-matrix-multiply a b)))

952 CHAPTER 29. CONDITIONS

(matrix-multiply x y)
Error: Cannot multiply #<ARRAY-3-5 12345> by #<ARRAY-3-5 12364>.
To continue, type :CONTINUE followed by an option number:
1: Specify new values.
2: Return to Lisp Toplevel.
Debug> :continue 1
Value for A: x
Value for B: (make-array ’(5 3) :initial-element 6)
⇒#2A((54 54 54 54 54)

(54 54 54 54 54)
(54 54 54 54 54)
(54 54 54 54 54)
(54 54 54 54 54))

29.4.3 Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase,
except that no otherwise clause is permitted. Similarly, the syntax for
ecase and ccase is the same as for case except for the otherwise clause.

etypecase and ecase are similar to typecase and case, respectively,
but signal a non-continuable error rather than returning nil if no clause is
selected.

ctypecase and ccase are also similar to typecase and case, respectively,
but signal a continuable error if no clause is selected.

[Macro] etypecase keyform {(type {form}*)}*

This control construct is similar to typecase, but no explicit otherwise
or t clause is permitted. If no clause is satisfied, etypecase signals an error
(of type type-error) with a message constructed from the clauses. It is not
permissible to continue from this error. To supply an error message, the user
should use typecase with an otherwise clause containing a call to error.
The name of this function stands for “exhaustive type case” or “error-checking
type case.”

Example:

Lisp> (setq x 1/3)
⇒ 1/3

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 953

Lisp> (etypecase x
(integer (* x 4))
(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither an integer nor a symbol.
To continue, type :CONTINUE followed by an option number:
1: Return to Lisp Toplevel.
Debug>

[Macro] ctypecase keyplace {(type {form}*)}*

This control construct is similar to typecase, but no explicit otherwise
or t clause is permitted.

The keyplace must be a generalized variable reference acceptable to setf.
If no clause is satisfied, ctypecase signals an error (of type type-error) with
a message constructed from the clauses. This error may be continued using
the store-value restart. The argument to store-value is stored in keyplace
and then ctypecase starts over, making the type tests again. Subforms
of keyplace may be evaluated multiple times. If the store-value restart is
invoked interactively, the user will be prompted for the value to be used.

The name of this function is mnemonic for “continuable (exhaustive) type
case.”

Example:

Lisp> (setq x 1/3)
⇒ 1/3
Lisp> (ctypecase x

(integer (* x 4))
(symbol (symbol-value x)))

Error: The value of X, 1/3, is neither an integer nor a symbol.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use instead.
2: Return to Lisp Toplevel.
Debug> :continue 1
Use value: 3.7
Error: The value of X, 3.7, is neither an integer nor a symbol.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use instead.
2: Return to Lisp Toplevel.

954 CHAPTER 29. CONDITIONS

Debug> :continue 1
Use value: 12
⇒ 48

[Macro] ecase keyform {({({key}*) | key} {form}*)}*
This control construct is similar to case, but no explicit otherwise or

t clause is permitted. If no clause is satisfied, ecase signals an error (of
type type-error) with a message constructed from the clauses. It is not
permissible to continue from this error. To supply an error message, the user
should use case with an otherwise clause containing a call to error. The
name of this function stands for “exhaustive case” or “error-checking case.”

Example:

Lisp> (setq x 1/3)
⇒ 1/3
Lisp> (ecase x

(alpha (foo))
(omega (bar))
((zeta phi) (baz)))

Error: The value of X, 1/3, is not ALPHA, OMEGA, ZETA, or PHI.
To continue, type :CONTINUE followed by an option number:
1: Return to Lisp Toplevel.
Debug>

[Macro] ccase keyplace {({({key}*) | key} {form}*)}*
This control construct is similar to case, but no explicit otherwise or t

clause is permitted.
The keyplace must be a generalized variable reference acceptable to setf.

If no clause is satisfied, ccase signals an error (of type type-error) with a
message constructed from the clauses. This error may be continued using
the store-value restart. The argument to store-value is stored in keyplace
and then ccase starts over, making the type tests again. Subforms of key-
place may be evaluated multiple times. If the store-value restart is invoked
interactively, the user will be prompted for the value to be used.

The name of this function is mnemonic for “continuable (exhaustive)
case.”

Implementation note: The type-error signaled by ccase and ecase is free
to choose any representation of the acceptable argument type that it wishes for

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 955

placement in the expected-type slot. It will always work to use type (member .
keys), but in some cases it may be more efficient, for example, to use a type that
represents an integer subrange or a type composed using the or type specifier.

29.4.4 Handling Conditions

These macros allow a program to gain control when a condition is signaled.
[Macro] handler-case expression {(typespec ([var]) {form}*)}*
Executes the given expression in a context where various specified han-

dlers are active.
Each typespec may be any type specifier. If during the execution of the

expression a condition is signaled for which there is an appropriate clause—
that is, one for which (typep condition ’typespec) is true—and if there is
no intervening handler for conditions of that type, then control is transferred
to the body of the relevant clause (unwinding the dynamic state appropriately
in the process) and the given variable var is bound to the condition that
was signaled. If no such condition is signaled and the computation runs to
completion, then the values resulting from the expression are returned by
the handler-case form.

If more than one case is provided, those cases are made accessible in
parallel. That is, in

(handler-case expression
(type1 (var1) form1)
(type2 (var2) form2))

if the first clause (containing form1) has been selected, the handler for
the second is no longer visible (and vice versa).

The cases are searched sequentially from top to bottom. If a signaled
condition matches more than one case (possible if there is type overlap) the
earlier of the two cases will be selected.

If the variable var is not needed, it may be omitted. That is, a clause
such as

(type (var) (declare (ignore var)) form)

may be written using the following shorthand notation:

(type () form)

956 CHAPTER 29. CONDITIONS

If there are no forms in a selected case, the case returns nil. Note that

(handler-case expression
(type1 (var1) . body1)
(type2 (var2) . body2)
...)

is approximately equivalent to

(block #1=#:block-1
(let (#2=#:var-2)
(tagbody
(handler-bind ((type1 #’(lambda (temp)

(setq #2# temp)
(go #3=#:tag-3)))

(type2 #’(lambda (temp)
(setq #2# temp)
(go #4=#:tag-4)))

...)
(return-from #1# expression))

#3# (return-from #1# (let ((var1 #2#)) . body1))
#4# (return-from #1# (let ((var2 #2#)) . body2))
...)))

[Note the use of “gensyms” such as #:block-1 as block names, variables,
and tagbody tags in this example, and the use of #n= and #n# read-
macro syntax to indicate that the very same gensym appears in multiple
places.—GLS]

As a special case, the typespec can also be the symbol :no-error in the
last clause. If it is, it designates a clause that will take control if the expres-
sion returns normally. In that case, a completely general lambda-list may
follow the symbol :no-error, and the arguments to which the lambda-list
parameters are bound are like those for multiple-value-call on the return
value of the expression. For example,

(handler-case expression
(type1 (var1) . body1)
(type2 (var2) . body2)
...
(typen (varn) . bodyn)
(:no-error (nvar1 nvar2 ... nvarm) . nbody))

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 957

is approximately equivalent to

(block #1=#:error-return
(multiple-value-call #’(lambda (nvar1 nvar2 ... nvarm) . nbody)
(block #2=#:normal-return
(return-from #1#
(handler-case (return-from #2# expression)
(type1 (var1) . body1)
(type2 (var2) . body2)
...
(typen (varn) . bodyn))))))

Examples of the use of handler-case:

(handler-case (/ x y)
(division-by-zero () nil))

(handler-case (open *the-file* :direction :input)
(file-error (condition) (format t "~&Fooey: ~A~%" condition)))

(handler-case (some-user-function)
(file-error (condition) condition)
(division-by-zero () 0)
((or unbound-variable undefined-function) () ’unbound))

(handler-case (intern x y)
(error (condition) condition)
(:no-error (symbol status)
(declare (ignore symbol))
status))

[Macro] ignore-errors {form}*
Executes its body in a context that handles conditions of type error by

returning control to this form. If no such condition is signaled, any values
returned by the last form are returned by ignore-errors. Otherwise, two
values are returned: nil and the error condition that was signaled.

ignore-errors could be defined by

(defmacro ignore-errors (&body forms)
‘(handler-case (progn ,@forms)
(error (c) (values nil c))))

958 CHAPTER 29. CONDITIONS

[Macro] handler-bind ({(typespec handler)}*) {form}*

Executes body in a dynamic context where the given handler bindings
are in effect. Each typespec may be any type specifier. Each handler form
should evaluate to a function to be used to handle conditions of the given
type(s) during execution of the forms. This function should take a single
argument, the condition being signaled.

If more than one binding is specified, the bindings are searched sequen-
tially from top to bottom in search of a match (by visual analogy with type-
case). If an appropriate typespec is found, the associated handler is run in
a context where none of the handler bindings are visible (to avoid recursive
errors). For example, in the case of

(handler-bind ((unbound-variable #’(lambda ...))
(error #’(lambda ...)))

...)

if an unbound variable error is signaled in the body (and not handled by
an intervening handler), the first function will be called. If any other kind of
error is signaled, the second function will be called. In either case, neither
handler will be active while executing the code in the associated function.

29.4.5 Defining Conditions

[The contents of this section are still a subject of some debate within X3J13.
The reader may wish to take this section with a grain of salt, two aspirin
tablets, and call a hacker in the morning.—GLS]

[Macro] define-condition name ({parent-type}*)
[({slot-specifier}*) {option}*]

Defines a new condition type called name, which is a subtype of each given
parent-type. Except as otherwise noted, the arguments are not evaluated.

Objects of this condition type will have all of the indicated slots, plus
any additional slots inherited from the parent types (its superclasses). If the
slots list is omitted, the empty list is assumed.

A slot must have the form

slot-specifier ::= slot-name | (slot-name [[↓slot-option]])

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 959

For the syntax of a slot-option, see defclass. The slots of a condition object
are normal CLOS slots. Note thatwith-slotsmay be used instead of accessor
functions to access slots of a condition object.

make-condition will accept keywords (in the keyword package) with the
print name of any of the designated slots, and will initialize the corresponding
slots in conditions it creates.

Accessors are created according to the same rules as used by defclass.
The valid options are as follows:

(:documentation doc-string) The doc-string should be either nil or a
string that describes the purpose of the condition type. If this option
is omitted, nil is assumed. Calling (documentation ’name ’type)
will retrieve this information.

(:report exp) If exp is not a literal string, it must be a suitable argument
to the function special operator. The expression (function exp) will
be evaluated in the current lexical environment. It should produce a
function of two arguments, a condition and a stream, that prints on the
stream a description of the condition. This function is called whenever
the condition is printed while *print-escape* is nil.

If exp is a literal string, it is shorthand for

(lambda (c s)
(declare (ignore c))
(write-string exp s))

[That is, a function is provided that will simply write the given string
literally to the stream, regardless of the particular condition object
supplied.—GLS]

The :report option is processed after the new condition type has been
defined, so use of the slot accessors within the report function is per-
mitted. If this option is not specified, information about how to report
this type of condition will be inherited from the parent-type.

[X3J13 voted in March 1989 to integrate the Condition System and
the Object System. In the original Condition System proposal, define-
condition allowed only one parent-type (the inheritance structure was a
simple hierarchy). Slot descriptions were much simpler, even simpler than
those for defstruct:

960 CHAPTER 29. CONDITIONS

slot ::= slot-name | (slot-name) | (slot-name default-value)

Similarly, define-condition allowed a :conc-name option similar to that
of defstruct:

(:conc-name symbol-or-string) Not now part of Common Lisp. As
with defstruct, this sets up automatic prefixing of the names of slot
accessors. Also as in defstruct, the default behavior is to use the name
of the new type, name, followed by a hyphen. (Generated names are
interned in the package that is current at the time that the define-
condition is processed).

One consequence of the vote was to make define-condition slot descriptions
like those of defclass.—GLS]

Here are some examples of the use of define-condition.
The following form defines a condition of type peg/hole-mismatch that

inherits from a condition type called blocks-world-error:

(define-condition peg/hole-mismatch (blocks-world-error)
(peg-shape hole-shape)

(:report
(lambda (condition stream)
(with-slots (peg-shape hole-shape) condition
(format stream "A ~A peg cannot go in a ~A hole."

peg-shape hole-shape))))

The new type has slots peg-shape and hole-shape, somake-condition
will accept :peg-shape and :hole-shape keywords. The with-slots macro
may be used to access the peg-shape and hole-shape slots, as illustrated
in the :report information.

Here is another example. This defines a condition called machine-error
that inherits from error:

(define-condition machine-error (error)
((machine-name
:reader machine-error-machine-name))

(:report (lambda (condition stream)
(format stream "There is a problem with ~A."

(machine-error-machine-name condition)))))

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 961

Building on this definition, we can define a new error condition that is a
subtype of machine-error for use when machines are not available:

(define-condition machine-not-available-error (machine-error) ()
(:report (lambda (condition stream)

(format stream "The machine ~A is not available."
(machine-error-machine-name condition)))))

We may now define a still more specific condition, built upon machine-
not-available-error, that provides a default for machine-name but does
not provide any new slots or report information. It just gives the machine-
name slot a default initialization:

(define-condition my-favorite-machine-not-available-error
(machine-not-available-error)
((machine-name :initform "MC.LCS.MIT.EDU")))

Note that since no :report clause was given, the information inherited
from machine-not-available-error will be used to report this type of con-
dition.

29.4.6 Creating Conditions

The function make-condition is the basic means for creating condition ob-
jects.

[Function] make-condition type &rest slot-initializations

Constructs a condition object of the given type using slot-initializations
as a specification of the initial value of the slots. The newly created condition
is returned.

The slot-initializations are alternating keyword/value pairs. For example:

(make-condition ’peg/hole-mismatch
:peg-shape ’square :hole-shape ’round)

962 CHAPTER 29. CONDITIONS

29.4.7 Establishing Restarts

The lowest-level form that creates restart points is called restart-bind. The
restart-case macro is an abstraction that addresses many common needs for
restart-bind while offering a more palatable syntax. See also with-simple-
restart. The function that transfers control to a restart point established
by one of these macros is called invoke-restart.

All restarts have dynamic extent; a restart does not survive execution of
the form that establishes it.

[Macro] with-simple-restart (name format-string {format-argument}*)
{form}*

This is shorthand for one of the most common uses of restart-case.

If the restart designated by name is not invoked while executing the
forms, all values returned by the last form are returned. If that restart
is invoked, control is transferred to the with-simple-restart form, which
immediately returns the two values nil and t.

The name may be nil, in which case an anonymous restart is established.

with-simple-restart could be defined by

(defmacro with-simple-restart ((restart-name format-string
&rest format-arguments)
&body forms)

‘(restart-case (progn ,@forms)
(,restart-name ()
:report
(lambda (stream)
(format stream format-string ,@format-arguments))

(values nil t))))

Here is an example of the use of with-simple-restart.

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 963

Lisp> (defun read-eval-print-loop (level)
(with-simple-restart

(abort "Exit command level ~D." level)
(loop
(with-simple-restart

(abort "Return to command level ~D." level)
(let ((form (prog2 (fresh-line)

(read)
(fresh-line))))

(prin1 (eval form)))))))
⇒ READ-EVAL-PRINT-LOOP
Lisp> (read-eval-print-loop 1)
(+ ’a 3)
Error: The argument, A, to the function + was of the wrong type.

The function expected a number.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use this time.
2: Return to command level 1.
3: Exit command level 1.
4: Return to Lisp Toplevel.
Debug>

Remark: Some readers may wonder what ought to be done by the “abort” key
(or whatever the implementation’s interrupt key is—Control-C or Control-G, for
example). Such interrupts, whether synchronous or asynchronous in nature, are
beyond the scope of this chapter and indeed are not currently addressed by Com-
mon Lisp at all. This may be a topic worth standardizing under separate cover.
Here is some speculation about some possible things that might happen.

An implementation might simply call abort or break directly without signaling
any condition.

Another implementation might signal some condition related to the fact that
a key had been pressed rather than to the action that should be taken. This is
one way to allow user customization. Perhaps there would be an implementation-
dependent keyboard-interrupt condition type with a slot containing the key that
was pressed—or perhaps there would be such a condition type, but rather than its
having slots, different subtypes of that type with names like keyboard-abort,
keyboard-break, and so on might be signaled. That implementation would then

964 CHAPTER 29. CONDITIONS

document the action it would take if user programs failed to handle the condition,
and perhaps ways for user programs to usefully dismiss the interrupt.
Implementation note: Implementors are encouraged to make sure that there
is always a restart named abort around any user code so that user code can call
abort at any time and expect something reasonable to happen; exactly what the
reasonable thing is may vary somewhat. Typically, in an interactive program,
invoking abort should return the user to top level, though in some batch or multi-
processing situations killing the running process might be more appropriate.

[Macro] restart-case expression {(case-name arglist
{keyword value}*
{form}*)}*
The expression is evaluated in a dynamic context where the clauses have

special meanings as points to which control may be transferred. If the ex-
pression finishes executing and returns any values, all such values are simply
returned by the restart-case form. While the expression is running, any
code may transfer control to one of the clauses (see invoke-restart). If a
transfer occurs, the forms in the body of that clause will be evaluated and any
values returned by the last such form will be returned by the restart-case
form.

As a special case, if the expression is a list whose car is signal, error,
cerror, or warn, then with-condition-restarts is implicitly used to asso-
ciate the restarts with the condition to be signaled. For example,

(restart-case (signal weird-error)
(become-confused ...)
(rewind-line-printer ...)
(halt-and-catch-fire ...))

is equivalent to

(restart-case (with-condition-restarts
weird-error
(list (find-restart ’become-confused)

(find-restart ’rewind-line-printer)
(find-restart ’halt-and-catch-fire))

(signal weird-error))
(become-confused ...)
(rewind-line-printer ...)
(halt-and-catch-fire ...))

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 965

If there are no forms in a selected clause, restart-case returns nil.
The case-name may be nil or a symbol naming this restart.
It is possible to have more than one clause use the same case-name. In

this case, the first clause with that name will be found by find-restart.
The other clauses are accessible using compute-restarts. [In this respect,
restart-case is rather different from case!—GLS]

Each arglist is a normal lambda-list containing parameters to be bound
during the execution of its corresponding forms. These parameters are used
to pass any necessary data from a call to invoke-restart to the restart-case
clause.

By default, invoke-restart-interactively will pass no arguments and all
parameters must be optional in order to accommodate interactive restarting.
However, the parameters need not be optional if the :interactive keyword
has been used to inform invoke-restart-interactively about how to com-
pute a proper argument list.

The valid keyword value pairs are the following:

:test fn The fn must be a suitable argument for the function special op-
erator. The expression (function fn) will be evaluated in the current
lexical environment. It should produce a function of one argument, a
condition. If this function returns nil when given some condition, func-
tions such as find-restart, compute-restart, and invoke-restart
will not consider this restart when searching for restarts associated
with that condition. If this pair is not supplied, it is as if

(lambda (c) (declare (ignore c)) t)

were used for the fn.

:interactive fn The fn must be a suitable argument for the function
special operator. The expression (function fn) will be evaluated
in the current lexical environment. It should produce a function of
no arguments that returns arguments to be used by invoke-restart-
interactively when invoking this function. This function will be called
in the dynamic environment available prior to any restart attempt. It
may interact with the user on the stream in *query-io*.

If a restart is invoked interactively but no :interactive option was
supplied, the argument list used in the invocation is the empty list.

966 CHAPTER 29. CONDITIONS

:report exp If exp is not a literal string, it must be a suitable argument
to the function special operator. The expression (function exp) will
be evaluated in the current lexical environment. It should produce
a function of one argument, a stream, that prints on the stream a
description of the restart. This function is called whenever the restart
is printed while *print-escape* is nil.
If exp is a literal string, it is shorthand for

(lambda (s) (write-string exp s))

[That is, a function is provided that will simply write the given string
literally to the stream.—GLS]
If a named restart is asked to report but no report information has been
supplied, the name of the restart is used in generating default report
text.
When *print-escape* is nil, the printer will use the report informa-
tion for a restart. For example, a debugger might announce the action
of typing “:continue” by executing the equivalent of

(format *debug-io* "~&~S – ~A~%" ’:continue some-restart)

which might then display as something like

:CONTINUE – Return to command level.

It is an error if an unnamed restart is used and no report information
is provided.

Rationale: Unnamed restarts are required to have report information on the
grounds that they are generally only useful interactively, and an interactive
option that has no description is of little value.
Implementation note: Implementations are encouraged to warn about
this error at compilation time.

At run time, this error might be noticed when entering the debugger. Since
signaling an error would probably cause recursive entry into the debugger
(causing yet another recursive error, and so on), it is suggested that the
debugger print some indication of such problems when they occur, but not
actually signal errors.

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 967

Note that

(restart-case expression
(name1 arglist1 options1 . body1)
(name2 arglist2 options2 . body2)
...)

is essentially equivalent to

(block #1=#:block-1
(let ((#2=#:var-2 nil))
(tagbody
(restart-bind ((name1 #’(lambda (&rest temp)

(setq #2# temp)
(go #3=#:tag-3))

〈slightly transformed options1〉)
(name2 #’(lambda (&rest temp)

(setq #2# temp)
(go #4=#:tag-4))

〈slightly transformed options2〉)
...)

(return-from #1# expression))
#3# (return-from #1#

(apply #’(lambda arglist1 . body1) #2#))
#4# (return-from #1#

(apply #’(lambda arglist2 . body2) #2#))
...)))

[Note the use of “gensyms” such as #:block-1 as block names, variables,
and tagbody tags in this example, and the use of #n= and #n# read-
macro syntax to indicate that the very same gensym appears in multiple
places.—GLS]

Here are some examples of the use of restart-case.

968 CHAPTER 29. CONDITIONS

(loop
(restart-case (return (apply function some-args))
(new-function (new-function)

:report "Use a different function."
:interactive
(lambda ()
(list (prompt-for ’function "Function: ")))

(setq function new-function))))

(loop
(restart-case (return (apply function some-args))
(nil (new-function)

:report "Use a different function."
:interactive
(lambda ()
(list (prompt-for ’function "Function: ")))

(setq function new-function))))

(restart-case (a-command-loop)
(return-from-command-level ()

:report
(lambda (s) ;Argument s is a stream
(format s "Return from command level ~D." level))

nil))

(loop
(restart-case (another-random-computation)
(continue () nil)))

The first and second examples are equivalent from the point of view of
someone using the interactive debugger, but they differ in one important as-
pect for non-interactive handling. If a handler “knows about” named restarts,
as in, for example,

(when (find-restart ’new-function)
(invoke-restart ’new-function the-replacement))

then only the first example, and not the second, will have control trans-
ferred to its correction clause, since only the first example uses a restart
named new-function.

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 969

Here is a more complete example:

(let ((my-food ’milk)
(my-color ’greenish-blue))

(do ()
((not (bad-food-color-p my-food my-color)))

(restart-case (error ’bad-food-color
:food my-food :color my-color)

(use-food (new-food)
:report "Use another food."

(setq my-food new-food))
(use-color (new-color)

:report "Use another color."
(setq my-color new-color))))

;; We won’t get to here until MY-FOOD
;; and MY-COLOR are compatible.
(list my-food my-color))

Assuming that use-food and use-color have been defined as

(defun use-food (new-food)
(invoke-restart ’use-food new-food))

(defun use-color (new-color)
(invoke-restart ’use-color new-color))

a handler can then restart from the error in either of two ways. It may
correct the color or correct the food. For example:

#’(lambda (c) ... (use-color ’white) ...) ;Corrects color

#’(lambda (c) ... (use-food ’cheese) ...) ;Corrects food

Here is an example using handler-bind and restart-case that refers to
a condition type foo-error, presumably defined elsewhere:

(handler-bind ((foo-error #’(lambda (ignore) (use-value 7))))
(restart-case (error ’foo-error)
(use-value (x) (* x x))))
⇒ 49

970 CHAPTER 29. CONDITIONS

[Macro] restart-bind ({(name function {keyword value}*)}*) {form}*
Executes a body of forms in a dynamic context where the given restart

bindings are in effect.
Each name may be nil to indicate an anonymous restart, or some other

symbol to indicate a named restart.
Each function is a form that should evaluate to a function to be used

to perform the restart. If invoked, this function may either perform a non-
local transfer of control or it may return normally. The function may take
whatever arguments the programmer feels are appropriate; it will be invoked
only if invoke-restart is used from a program, or if a user interactively
asks the debugger to invoke it. In the case of interactive invocation, the
:interactive-function option is used.

The valid keyword value pairs are as follows:
:test-function form The form will be evaluated in the current lexical en-

vironment and should return a function of one argument, a condition.
If this function returns nil when given some condition, functions such
as find-restart, compute-restart, and invoke-restart will not con-
sider this restart when searching for restarts associated with that con-
dition. If this pair is not supplied, it is as if

#’(lambda (c) (declare (ignore c)) t)

were used for the form.

:interactive-function form The form will be evaluated in the current lexi-
cal environment and should return a function of no arguments that con-
structs a list of arguments to be used by invoke-restart-interactively
when invoking this restart. The function may prompt interactively us-
ing *query-io* if necessary.

:report-function form The form will be evaluated in the current lexical
environment and should return a function of one argument, a stream,
that prints on the stream a summary of the action this restart will take.
This function is called whenever the restart is printed while *print-
escape* is nil.

[Macro] with-condition-restarts condition-form restarts-form
{declaration}* {form}*
The value of condition-form should be a condition C and the value of

restarts-form should be a list of restarts (R1 R2 ...). The forms of the

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 971

body are evaluated as an implicit progn. While in the dynamic context of
the body, an attempt to find a restart associated with a particular condition
C ′ will consider the restarts R1, R2, . . . if C ′ is eq to C.

Usually this macro is not used explicitly in code, because restart-case
handles most of the common uses in a way that is syntactically more concise.

[The X3J13 vote left it unclear whether with-condition-restarts per-
mits declarations to appear at the heads of its body. I believe that was the
intent, but this is only my interpretation.—GLS]

29.4.8 Finding and Manipulating Restarts

The following functions determine what restarts are active and invoke
restarts.

[Function] compute-restarts &optional condition

Uses the dynamic state of the program to compute a list of the restarts
that are currently active. See restart-bind.

If condition is nil or not supplied, all outstanding restarts are returned. If
condition is not nil, only restarts associated with that condition are returned.

Each restart represents a function that can be called to perform some
form of recovery action, usually a transfer of control to an outer point in
the running program. Implementations are free to implement these objects
in whatever manner is most convenient; the objects need have only dynamic
extent (relative to the scope of the binding form that instantiates them).

The list that results from a call to compute-restarts is ordered so that
the inner (that is, more recently established) restarts are nearer the head of
the list.

Note, too, that compute-restarts returns all valid restarts, including
anonymous ones, even if some of them have the same name as others and
would therefore not be found by find-restart when given a symbol argument.

Implementations are permitted, but not required, to return different (that
is, non-eq) lists from repeated calls to compute-restarts while in the same
dynamic environment. It is an error to modify the list that is returned by
compute-restarts.

[Function] restart-name restart

Returns the name of the given restart, or nil if it is not named.

972 CHAPTER 29. CONDITIONS

[Function] find-restart restart-identifier &optional condition

Searches for a particular restart in the current dynamic environment.
If condition is nil or not supplied, all outstanding restarts are consid-

ered. If condition is not nil, only restarts associated with that condition are
considered.

If the restart-identifier is a non-nil symbol, then the innermost (that is,
most recently established) restart with that name is returned; nil is returned
if no such restart is found.

If restart-identifier is a restart object, then it is simply returned, unless
it is not currently active, in which case nil is returned.

Although anonymous restarts have a name of nil, it is an error for the
symbol nil to be given as the restart-identifier. Applications that would seem
to require this should be rewritten to make appropriate use of compute-
restarts instead.

[Function] invoke-restart restart-identifier &rest arguments

Calls the function associated with the given restart-identifier, passing
any given arguments. The restart-identifier must be a restart or the non-
null name of a restart that is valid in the current dynamic context. If the
argument is not valid, an error of type control-error will be signaled.

Implementation note: Restart functions call this function, not vice versa.

[Function] invoke-restart-interactively restart-identifier

Calls the function associated with the given restart-identifier, prompting
for any necessary arguments. The restart-identifier must be a restart or the
non-null name of a restart that is valid in the current dynamic context. If
the argument is not valid, an error of type control-error will be signaled.

The function invoke-restart-interactively will prompt for arguments
by executing the code provided in the :interactive keyword to restart-case
or :interactive-function keyword to restart-bind.

If no :interactive or :interactive-function option has been supplied in
the corresponding restart-case or restart-bind, then it is an error if the
restart takes required arguments. If the arguments are optional, an empty
argument list will be used in this case.

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 973

Once invoke-restart-interactively has calculated the arguments, it
simply performs (apply #’invoke-restart restart-identifier argu-
ments).

invoke-restart-interactively is used internally by the debugger and
may also be useful in implementing other portable, interactive debugging
tools.

29.4.9 Warnings

Warnings are a subclass of errors that are conventionally regarded as “mild.”

[Function] warn datum &rest arguments

Warns about a situation, by signaling a condition of type warning.
If datum is a condition, then that condition is used directly. In this case,

if the condition is not of type warning or arguments is non-nil, an error of
type type-error is signaled.

If datum is a condition type (a class or class name), then the condition
used is effectively the result of (apply #’make-condition datum argu-
ments). This result must be of typewarning or an error of type type-error
is signaled.

If datum is a string, then the condition used is effectively the result of

(make-condition ’simple-error
:format-string datum
:format-arguments arguments)

The precise mechanism for warning is as follows.

1. The warning condition is signaled.

While the warning condition is being signaled, the muffle-warning
restart is established for use by a handler to bypass further action by
warn (that is, to cause warn to immediately return nil).

As part of the signaling process, if (typep condition *break-on-
signals*) is true, then a break will occur prior to beginning the sig-
naling process.

2. If no handlers for the warning condition are found, or if all such han-
dlers decline, then the condition will be reported to *error-output* by

974 CHAPTER 29. CONDITIONS

the warn function (with possible implementation-specific extra output
such as motion to a fresh line before or after the display of the warn-
ing, or supplying some introductory text mentioning the name of the
function that called warn or the fact that this is a warning).

3. The value returned by warn (if it returns) is nil.

29.4.10 Restart Functions

Common Lisp has the following restart functions built in.

[Function] abort &optional condition

This function transfers control to the restart named abort. If no such
restart exists, abort signals an error of type control-error.

If condition is nil or not supplied, all outstanding restarts are consid-
ered. If condition is not nil, only restarts associated with that condition are
considered.

The purpose of the abort restart is generally to allow control to return
to the innermost “command level.”

[Function] continue &optional condition

This function transfers control to the restart named continue. If no such
restart exists, continue returns nil.

If condition is nil or not supplied, all outstanding restarts are consid-
ered. If condition is not nil, only restarts associated with that condition are
considered.

The continue restart is generally part of simple protocols where there
is a single “obvious” way to continue, as with break and cerror. Some
user-defined protocols may also wish to incorporate it for similar reasons. In
general, however, it is more reliable to design a special-purpose restart with
a name that better suits the particular application.

[Function] muffle-warning &optional condition

This function transfers control to the restart named muffle-warning. If
no such restart exists, muffle-warning signals an error of type control-
error.

29.4. PROGRAM INTERFACE TO THE CONDITION SYSTEM 975

If condition is nil or not supplied, all outstanding restarts are consid-
ered. If condition is not nil, only restarts associated with that condition are
considered.

warn sets up this restart so that handlers of warning conditions have a
way to tell warn that a warning has already been dealt with and that no
further action is warranted.

[Function] store-value value &optional condition

This function transfers control (and one value) to the restart named
store-value. If no such restart exists, store-value returns nil.

If condition is nil or not supplied, all outstanding restarts are consid-
ered. If condition is not nil, only restarts associated with that condition are
considered.

The store-value restart is generally used by handlers trying to recover
from errors of types such as cell-error or type-error, where the handler
may wish to supply a replacement datum to be stored permanently.

[Function] use-value value &optional condition

This function transfers control (and one value) to the restart named use-
value. If no such restart exists, use-value returns nil.

If condition is nil or not supplied, all outstanding restarts are consid-
ered. If condition is not nil, only restarts associated with that condition are
considered.

The use-value restart is generally used by handlers trying to recover from
errors of types such as cell-error, where the handler may wish to supply a
replacement datum for one-time use.

29.4.11 Debugging Utilities

Common Lisp does not specify exactly what a debugger is or does, but it does
provide certain means for indicating intent to transfer control to a supervisory
or debugging facility.

976 CHAPTER 29. CONDITIONS

[Function] break &optional format-string &rest format-arguments

The function break prints the message described by the format-string
and format-arguments and then goes directly into the debugger without al-
lowing any possibility of interception by programmed error-handling facili-
ties.

If no format-string is supplied, a suitable default will be generated.
If continued, break returns nil.
Note that break is presumed to be used as a way of inserting temporary

debugging “breakpoints” in a program, not as a way of signaling errors; it
is expected that continuing from a break will not trigger any unusual re-
covery action. For this reason, break does not take the additional format
control string that cerror takes as its first argument. This and the lack of
any possibility of interception by programmed error handling are the only
program-visible differences between break and cerror. The user interface
aspects of these functions are permitted to vary more widely; for example, it
is permissible for a read-eval-print loop to be entered by break rather than
by the conventional debugger.

break could be defined by

(defun break (&optional (format-string "Break")
&rest format-arguments)

(with-simple-restart (continue "Return from BREAK.")
(invoke-debugger
(make-condition ’simple-condition

:format-string format-string
:format-arguments format-arguments)))

nil)

[Function] invoke-debugger condition

Attempts interactive handling of its argument, which must be a condition.
If the variable *debugger-hook* is not nil, it will be called as a function

on two arguments: the condition being handled and the value of *debugger-
hook*. If a hook function returns normally, the standard debugger will be
tried.

The standard debugger will never directly return. Return can occur only
by a special transfer of control, such as the use of a restart.

29.5. PREDEFINED CONDITION TYPES 977

Remark: The exact way in which the debugger interacts with users is expected
to vary considerably from system to system. For example, some systems may use
a keyboard interface, while others may use a mouse interface. Of those systems
using keyboard commands, some may use single-character commands and others
may use parsed line-at-a-time commands. The exact set of commands will vary as
well. The important properties of a debugger are that it makes information about
the error accessible and that it makes the set of apparent restarts easily accessible.

It is desirable to have a mode where the debugger allows other features, such
as the ability to inspect data, stacks, etc. However, it may sometimes be appro-
priate to have this kind of information hidden from users. Experience on the Lisp
Machines has shown that some users who are not programmers develop a terrible
phobia of debuggers. The reason for this usually may be traced to the fact that
the debugger is very foreign to them and provides an overwhelming amount of in-
formation of interest only to programmers. With the advent of restarts, there is
a clear mechanism for the construction of “friendly” debuggers. Programmers can
be taught how to get to the information they need for debugging, but it should be
possible to construct user interfaces to the debugger that are natural, convenient,
intelligible, and friendly even to non-programmers.

[Variable] *debugger-hook*

This variable should hold either nil or a function of two arguments, a con-
dition and the value of *debugger-hook*. This function may either handle
the condition (transfer control) or return normally (allowing the standard
debugger to run).

Note that, to minimize recursive errors while debugging, *debugger-
hook* is bound to nil when calling this function. When evaluating code
typed in by the user interactively, the hook function may want to bind
debugger-hook to the function that was its second argument so that
recursive errors can be handled using the same interactive facility.

29.5 Predefined Condition Types
[The proposal for the Common Lisp Condition System introduced a new
notation for documenting types, treating them in the same syntactic manner
as functions and variables. This notation is used in this section but is not
reflected throughout the entire book.—GLS]

978 CHAPTER 29. CONDITIONS

X3J13 voted in March 1989 to integrate the Condition System and the
Object System.

All condition types are CLOS classes and all condition objects are ordi-
nary CLOS objects.

[Type] restart

This is the data type used to represent a restart.
The Common Lisp condition type hierarchy is illustrated in table 29.1.
The types that are not leaves in the hierarchy (that is, condition, warn-

ing, storage-condition, error, arithmetic-error, control-error, and so
on) are provided primarily for type inclusion purposes. Normally they would
not be directly instantiated.

Implementations are permitted to support non-portable synonyms for
these types, as well as to introduce other types that are above, below, or
between the types shown in this tree as long as the indicated subtype rela-
tionships are not violated.

The types simple-condition, serious-condition, and warning are
pairwise disjoint. The type error is also disjoint from types simple-
condition and warning.

[Type] condition

All types of conditions, whether error or non-error, must inherit from this
type.

[Type] warning

All types of warnings should inherit from this type. This is a subtype of
condition.

[Type] serious-condition

All serious conditions (conditions serious enough to require interactive
intervention if not handled) should inherit from this type. This is a subtype
of condition.

This condition type is provided primarily for terminological convenience.
In fact, signaling a condition that inherits from serious-condition does not
force entry into the debugger. Rather, it is conventional to use error (or

29.5. PREDEFINED CONDITION TYPES 979

something built on error) to signal conditions that are of this type, and to
use signal to signal conditions that are not of this type.

[Type] error

All types of error conditions inherit from this condition. This is a subtype
of serious-condition.

The default condition type for signal and warn is simple-condition.
The default condition type for error and cerror is simple-error.

[Type] simple-condition

Conditions signaled by signal when given a format string as a first argu-
ment are of this type. This is a subtype of condition. The initialization key-
words :format-string and :format-arguments are supported to initialize
the slots, which can be accessed using simple-condition-format-control
and simple-condition-format-arguments. If :format-arguments is not
supplied to make-condition, the format-arguments slot defaults to nil.

[Type] simple-warning

Conditions signaled by warn when given a format string as a first argu-
ment are of this type. This is a subtype of warning. The initialization key-
words :format-string and :format-arguments are supported to initialize
the slots, which can be accessed using simple-condition-format-control
and simple-condition-format-arguments. If :format-arguments is not
supplied to make-condition, the format-arguments slot defaults to nil.

In implementations supporting multiple inheritance, this type will also
be a subtype of simple-condition.

[Type] simple-error

Conditions signaled by error and cerror when given a format string
as a first argument are of this type. This is a subtype of error. The
initialization keywords :format-string and :format-arguments are sup-
ported to initialize the slots, which can be accessed using simple-condition-
format-control and simple-condition-format-arguments. If :format-
arguments is not supplied to make-condition, the format-arguments slot
defaults to nil.

980 CHAPTER 29. CONDITIONS

In implementations supporting multiple inheritance, this type will also
be a subtype of simple-condition.

[Function] simple-condition-format-control condition

Accesses the format-string slot of a given condition, which must be of
type simple-condition, simple-warning, simple-error, or simple-type-
error.

[Function] simple-condition-format-arguments condition

Accesses the format-arguments slot of a given condition, which must be of
type simple-condition, simple-warning, simple-error, or simple-type-
error.

[Type] storage-condition

Conditions that relate to storage overflow should inherit from this type.
This is a subtype of serious-condition.

[Type] type-error

Errors in the transfer of data in a program should inherit from this type.
This is a subtype of error. For example, conditions to be signaled by check-
type should inherit from this type. The initialization keywords :datum and
:expected-type are supported to initialize the slots, which can be accessed
using type-error-datum and type-error-expected-type.

[Function] type-error-datum condition

Accesses the datum slot of a given condition, which must be of type
type-error.

[Function] type-error-expected-type condition

Accesses the expected-type slot of a given condition, which must be of
type type-error. Users of type-error conditions are expected to fill this
slot with an object that is a valid Common Lisp type specifier.

29.5. PREDEFINED CONDITION TYPES 981

[Type] simple-type-error

Conditions signaled by facilities similar to check-type may want to
use this type. The initialization keywords :format-string and :format-
arguments are supported to initialize the slots, which can be accessed
using simple-condition-format-control and simple-condition-format-
arguments. If :format-arguments is not supplied to make-condition,
the format-arguments slot defaults to nil.

In implementations supporting multiple inheritance, this type will also
be a subtype of simple-condition.

[Type] program-error

Errors relating to incorrect program syntax that are statically detectable
should inherit from this type (regardless of whether they are in fact statically
detected). This is a subtype of error. This is not a subtype of control-
error.

[Type] control-error

Errors in the dynamic transfer of control in a program should inherit from
this type. This is a subtype of error. This is not a subtype of program-
error.

The errors that result from giving throw a tag that is not active or from
giving go or return-from a tag that is no longer dynamically available are
control errors.

On the other hand, the errors that result from naming a go tag or return-
from tag that is not lexically apparent are not control errors. They are
program errors. See program-error.

[Type] package-error

Errors that occur during operations on packages should inherit from this
type. This is a subtype of error. The initialization keyword :package is
supported to initialize the slot, which can be accessed using package-error-
package.

982 CHAPTER 29. CONDITIONS

[Function] package-error-package condition

Accesses the package (or package name) that was being modified or ma-
nipulated in a condition of type package-error.

[Type] stream-error

Errors that occur during input from, output to, or closing a stream should
inherit from this type. This is a subtype of error. The initialization key-
word :stream is supported to initialize the slot, which can be accessed using
stream-error-stream.

[Function] stream-error-stream condition

Accesses the offending stream of a condition of type stream-error.

[Type] end-of-file

The error that results when a read operation is done on a stream that
has no more tokens or characters should inherit from this type. This is a
subtype of stream-error.

[Type] file-error

Errors that occur during an attempt to open a file, or during some low-
level transaction with a file system, should inherit from this type. This is
a subtype of error. The initialization keyword :pathname is supported to
initialize the slot, which can be accessed using file-error-pathname.

[Function] file-error-pathname condition

Accesses the offending pathname of a condition of type file-error.

[Type] cell-error

Errors that occur while accessing a location should inherit from this type.
This is a subtype of error. The initialization keyword :name is supported
to initialize the slot, which can be accessed using cell-error-name.

29.5. PREDEFINED CONDITION TYPES 983

[Function] cell-error-name condition

Accesses the offending cell name of a condition of type cell-error.

[Type] unbound-variable

The error that results from trying to access the value of an unbound
variable should inherit from this type. This is a subtype of cell-error.

[Type] undefined-function

The error that results from trying to access the value of an undefined
function should inherit from this type. This is a subtype of cell-error.

[Type] arithmetic-error

Errors that occur while doing arithmetic type operations should inherit
from this type. This is a subtype of error. The initialization keywords
:operation and :operands are supported to initialize the slots, which
can be accessed using arithmetic-error-operation and arithmetic-error-
operands.

[Function] arithmetic-error-operation condition

Accesses the offending operation of a condition of type arithmetic-
error.

[Function] arithmetic-error-operands condition

Accesses a list of the offending operands in a condition of type
arithmetic-error.

[Type] division-by-zero

Errors that occur because of division by zero should inherit from this
type. This is a subtype of arithmetic-error.

[Type] floating-point-overflow

Errors that occur because of floating-point overflow should inherit from
this type. This is a subtype of arithmetic-error.

984 CHAPTER 29. CONDITIONS

[Type] floating-point-underflow

Errors that occur because of floating-point underflow should inherit from
this type. This is a subtype of arithmetic-error.

29.5. PREDEFINED CONDITION TYPES 985

Table 29.1: Condition Type Hierarchy

condition
simple-condition
serious-condition

error
simple-error
arithmetic-error

division-by-zero
floating-point-overflow
floating-point-underflow
...

cell-error
unbound-variable
undefined-function
...

control-error
file-error
package-error
program-error
stream-error

end-of-file
...

type-error
simple-type-error
...

...
storage-condition
...

warning
simple-warning
...

...

986 CHAPTER 29. CONDITIONS

Chapter 30

Metaobject Protocol

Book: Art Of Metaobject Protocol
Chapters 5,6
Authors: Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow
http://www.alu.org/mop/index.html

30.1 Concepts

30.1.1 Introduction

30.1.2 Введение

The CLOS Specification 28 describes the standard Programmer Interface
for the Common Lisp Object System (CLOS). This document extends that
specification by defining a metaobject protocol for CLOS—that is, a descrip-
tion of CLOS itself as an extensible CLOS program. In this description, the
fundamental elements of CLOS programs (classes, slot definitions, generic
functions, methods, specializers and method combinations) are represented
by first-class objects. The behavior of CLOS is provided by these objects,
or, more precisely, by methods specialized to the classes of these objects.

Because these objects represent pieces of CLOS programs, and because
their behavior provides the behavior of the CLOS language itself, they are
considered meta-level objects or metaobjects. The protocol followed by the
metaobjects to provide the behavior of CLOS is called the CLOS Metaobject
Protocol (MOP).

987

http://www.alu.org/mop/index.html

988 CHAPTER 30. METAOBJECT PROTOCOL

CLOS спецификация 28 описывает API для Common Lisp’овой
объектной системы. Данная глава дополняет эту спецификацию
описанием метаобъектного протокола для CLOS — то. В этом описании,
базовые элементы CLOS’а (классы, определения слотов, обобщённые
функции, методы, специализаторы и комбинации методов) представлены
в качестве представлены как объекты первого класса. Поведение
CLOS’а регулируется этими объектами, или, если быть точнее, методами,
специализированным для объектов этих классов.

Так как эти объекты представляют части CLOS программы, и так как
их поведение задаёт поведение языка CLOS, они рассматриваются как
объекты метауровня или метаобъекты. Протокол определения методов
для метаобъектов называется Метаобъектным Протоколом CLOS (на
английском MOP).

Metaobjects

Метаобъекты

For each kind of program element there is a corresponding basic metaob-
ject class. These are the classes: class, slot-definition, generic-function,
method and method-combination. A metaobject class is a subclass of
exactly one of these classes. The results are undefined if an attempt is made
to define a class that is a subclass of more than one basic metaobject class.
A metaobject is an instance of a metaobject class.

Для каждого элемента CLOS программы существует
соответствующий базовый метаобъектный класс. Все классы:
class, slot-definition, generic-function, method и method-
combination. Метаобъектный класс является подклассом только
одного из вышеперечисленных. При попытке определить класс, которые
наследует более одного базового метакласса поведение непресказуемо.
Метаобъект является экземпляром метакласса.

Each metaobject represents one program element. Associated with each
metaobject is the information required to serve its role. This includes in-
formation that might be provided directly in a user interface macro such as
defclass or defmethod. It also includes information computed indirectly
from other metaobjects such as that computed from class inheritance or the
full set of methods associated with a generic function.

Каждый метаобъект представляет один элемент CLOS программы.

30.1. CONCEPTS 989

С каждым метаобъектом связана информация, которая необходима
для выполнения им своей роли. Она включает информацию, которая
может быть предоставлена напрямую в пользовательский макрос,
такой, например, как defclass или defmethod. Она также включает
информацию, вычисляемую ненапрямую от других метаобъектов, так,
например, вычисление информации из иерархии классов или полного
множества методов связанных с обобщённой функцией.

Much of the information associated with a metaobject is in the form
of connections to other metaobjects. This interconnection means that the
role of a metaobject is always based on that of other metaobjects. As an
introduction to this interconnected structure, this section presents a par-
tial enumeration of the kinds of information associated with each kind of
metaobject. More detailed information is presented later.

Много информации связанной с метаобъектом находится в виде
виде связи с другими метаобъектами. Такая взаимосвязь означает,
что роль метаобъекта всегда основана на других метаобъектах. В
качестве введения структуру данных взаимосвязей, данный раздел
предоставляет частичное перечисление типов информации связанной
с каждым типов метаобъектов. Более подробная информация будет
предоставлена позже.

Classes

Классы

A class metaobject determines the structure and the default behavior of its
instances. The following information is associated with class metaobjects:

Классовые метаобъекты определяют структуру и поведение по-
умолчанию для их экземпляров. С классовыми метаобъектами связана
следующая информация:

• The name, if there is one, is available as an object.

• Имя, если оно существует, доступно как объект.

• The direct subclasses, direct superclasses and class precedence list are
available as lists of class metaobjects.

990 CHAPTER 30. METAOBJECT PROTOCOL

• Прямые подклассы, прямые суперклассы и список
предшествования классов доступны как списки классовых
метаобъектов.

• The slots defined directly in the class are available as a list of direct slot
definition metaobjects. The slots which are accessible in instances of
the class are available as a list of effective slot definition metaobjects.

• Слоты прямо определённые в классе доступны как список
прямых слотовых метаобъектов. Слоты, которые доступны
в экземплярах класса доступны как список действительных
слотовых метаобъектов. FIXME

• The documentation is available as a string or nil.

• Документация доступна как строка или nil.

• The methods which use the class as a specializer, and the generic func-
tions associated with those methods are available as lists of method
and generic function metaobjects respectively.

• Методы, которые используют класс в качестве специализатора,
и обобщённые функции, связанные с этими методами, доступны
как списки методовых или функциональных метаобъектов
соответственно.

Slot Definitions

Определения слотов

A slot definition metaobject contains information about the definition of a
slot. There are two kinds of slot definition metaobjects. A direct slot defini-
tion metaobject is used to represent the direct definition of a slot in a class.
This corresponds roughly to the slot specifiers found in defclass forms. An
effective slot definition metaobject is used to represent information, includ-
ing inherited information, about a slot which is accessible in instances of a
particular class.

Слотовый метаобъект содержит информацию об определении
слота. Существуют два вида этих метаобъектов. Прямой слотовой
метаобъект используется для представления определённых слотов

30.1. CONCEPTS 991

напрямую в классе. Он приблизительно отвечает за спецификаторы
слотов, указанные в формах defclass. Метаобъект действующего
слота отображает информацию, которая включает информацию об
унаследованных свойствах слота, о слотах, которые доступны в
экземплярах отдельно взятого класса.

Associated with each class metaobject is a list of direct slot definition
metaobjects representing the slots defined directly in the class. Also associ-
ated with each class metaobject is a list of effective slot definition metaobjects
representing the set of slots accessible in instances of that class.

The following information is associated with both direct and effective slot
definitions metaobjects:

• The name, allocation, and type are available as forms that could appear
in a defclass form.

• The initialization form, if there is one, is available as a form that could
appear in a defclass form. The initialization form together with its
lexical environment is available as a function of no arguments which,
when called, returns the result of evaluating the initialization form in
its lexical environment. This is called the initfunction of the slot.

• The slot filling initialization arguments are available as a list of symbols.

• The documentation is available as a string or nil.

Certain other information is only associated with direct slot definition
metaobjects. This information applies only to the direct definition of the
slot in the class (it is not inherited).

• The function names of those generic functions for which there are au-
tomatically generated reader and writer methods. This information is
available as lists of function names. Any accessors specified in the de-
fclass form are broken down into their equivalent readers and writers
in the direct slot definition.

Information, including inherited information, which applies to the defini-
tion of a slot in a particular class in which it is accessible is associated only
with effective slot definition metaobjects.

• For certain slots, the location of the slot in instances of the class is
available.

992 CHAPTER 30. METAOBJECT PROTOCOL

Generic Functions

A generic function metaobject contains information about a generic function
over and above the information associated with each of the generic function’s
methods.

• The name is available as a function name.

• The methods associated with the generic function are available as a list
of method metaobjects.

• The default class for this generic function’s method metaobjects is avail-
able as a class metaobject.

• The lambda list is available as a list.

• The method combination is available as a method combination metaob-
ject.

• The documentation is available as a string or nil.

• The argument precedence order is available as a permutation of those
symbols from the lambda list which name the required arguments of
the generic function.

• The declarations are available as a list of declarations.

Terminology Note: There is some ambiguity in Common Lisp about
the terms used to identify the various parts of declare special opera-
tors. In this document, the term declaration is used to refer to an object
that could be an argument to a declare special operator. For example,
in the special form (declare (special *g1*)), the list (special *g1*)
is a declaration.

Methods

A method metaobject contains information about a specific method.

• The qualifiers are available as a list of of non-null atoms.

• The lambda list is available as a list.

• The specializers are available as a list of specializer metaobjects.

30.1. CONCEPTS 993

• The function is available as a function. This function can be applied
to arguments and a list of next methods using apply or funcall.

• When the method is associated with a generic function, that generic
function metaobject is available. A method can be associated with at
most one generic function at a time.

• The documentation is available as a string or nil.

Specializers

A specializer metaobject represents the specializers of a method. Class
metaobjects are themselves specializer metaobjects. A special kind of spe-
cializer metaobject is used for eql specializers.

Method Combinations

A method combination metaobject represents the information about the
method combination being used by a generic function.

Note: This document does not specify the structure of method combi-
nation metaobjects.

30.1.3 Inheritance Structure of Metaobject Classes

The inheritance structure of the specified metaobject classes is shown in the
table 30.1.

The classes standard-class, standard-direct-slot-definition,
standard-effective-slot-definition, standard-method, standard-
reader-method, standard-writer-method and standard-generic-
function are called standard metaobject classes. For each kind of
metaobject, this is the class the user interface macros presented in the
CLOS Specification use by default. These are also the classes on which user
specializations are normally based.

The classes built-in-class, funcallable-standard-class and forward-
referenced-class are special-purpose class metaobject classes. Built-in
classes are instances of the class built-in-class. The class funcallable-
standard-class provides a special kind of instances described in the sec-
tion 30.1.5. When the definition of a class references another class which has

994 CHAPTER 30. METAOBJECT PROTOCOL

not yet been defined, an instance of forward-referenced-class is used as a
stand-in until the class is actually defined.

The class standard-object is the default direct superclass of the class
standard-class. When an instance of the class standard-class is cre-
ated, and no direct superclasses are explicitly specified, it defaults to the
class standard-object. In this way, any behavior associated with the class
standard-object will be inherited, directly or indirectly, by all instances of
the class standard-class. A subclass of standard-class may have a differ-
ent class as its default direct superclass, but that class must be a subclass of
the class standard-object.

The same is true for funcallable-standard-class and funcallable-
standard-object.

The class specializer captures only the most basic behavior of method
specializers, and is not itself intended to be instantiated. The class class
is a direct subclass of specializer reflecting the property that classes by
themselves can be used as method specializers. The class eql-specializer is
used for eql specializers.

Implementation and User Specialization

The purpose of the Metaobject Protocol is to provide users with a powerful
mechanism for extending and customizing the basic behavior of the Common
Lisp Object System. As an object-oriented description of the basic CLOS be-
havior, the Metaobject Protocol makes it possible to create these extensions
by defining specialized subclasses of existing metaobject classes.

The Metaobject Protocol provides this capability without interfering
with the implementor’s ability to develop high-performance implementations.
This balance between user extensibility and implementor freedom is medi-
ated by placing explicit restrictions on each. Some of these restrictions are
general—they apply to the entire class graph and the applicability of all
methods. These are presented in this section.

The following additional terminology is used to present these restrictions:

• Metaobjects are divided into three categories. Those defined in this
document are called specified ; those defined by an implementation but
not mentioned in this document are called implementation-specific; and
those defined by a portable program are called portable.

30.1. CONCEPTS 995

• A class I is interposed between two other classes C1 and C2 if and only
if there is some path, following direct superclasses, from the class C1

to the class C2 which includes I.

• A method is specialized to a class if and only if that class is in the list
of specializers associated with the method; and the method is in the
list of methods associated with some generic function.

• In a given implementation, a specified method is said to have been
promoted if and only if the specializers of the method, S1 . . . Sn, are
defined in this specification as the classes C1 . . . Cn, but in the imple-
mentation, one or more of the specializers Si, is a superclass of the class
given in the specification Ci.

• For a given generic function and set of arguments, a methodM2 extends
a method M1 if and only if:

– (i)M1 andM2 are both associated with the given generic function,

– (ii) M1 and M2 are both applicable to the given arguments,

– (iii) the specializers and qualifiers of the methods are such that
when the generic function is called, M2 is executed before M1,

– (iv) M1 will be executed if and only if call-next-method is in-
voked from within the body of M2 and

– (v)call-next-method is invoked from within the body of M2,
thereby causing M1 to be executed.

• For a given generic function and set of arguments, a method M2 over-
rides a method M1 if and only if conditions i through iv above hold
and

– (v’) call-next-method is not invoked from within the body of
M2, thereby preventing M1 from being executed.

Restrictions on Implementations

Implementations are allowed latitude to modify the structure of specified
classes and methods. This includes: the interposition of implementation-
specific classes; the promotion of specified methods; and the consolidation of

996 CHAPTER 30. METAOBJECT PROTOCOL

two or more specified methods into a single method specialized to interposed
classes.

Any such modifications are permitted only so long as for any portable
class Cp that is a subclass of one or more specified classes C0 . . . Ci, the
following conditions are met:

• In the actual class precedence list of Cp, the classes C0 . . . Ci must
appear in the same order as they would have if no implementation-
specific modifications had been made.

• The method applicability of any specified generic function must be the
same in terms of behavior as it would have been had no implementation-
specific changes been made. This includes specified generic functions
that have had portable methods added. In this context, the expression
“the same in terms of behavior” means that methods with the same
behavior as those specified are applicable, and in the same order.

• No portable class Cp may inherit, by virtue of being a direct or in-
direct subclass of a specified class, any slot for which the name is a
symbol accessible in the common-lisp-user package or exported by
any package defined in the ANSI Common Lisp standard.

• Implementations are free to define implementation-specific before- and
after-methods on specified generic functions. Implementations are also
free to define implementation-specific around-methods with extending
behavior.

Restrictions on Portable Programs

Portable programs are allowed to define subclasses of specified classes, and
are permitted to define methods on specified generic functions, with the
following restrictions. The results are undefined if any of these restrictions
is violated.

• Portable programs must not redefine any specified classes, generic func-
tions, methods or method combinations. Any method defined by a
portable program on a specified generic function must have at least
one specializer that is neither a specified class nor an eql specializer
whose associated value is an instance of a specified class.

30.1. CONCEPTS 997

• Portable programs may define methods that extend specified methods
unless the description of the specified method explicitly prohibits this.
Unless there is a specific statement to the contrary, these extending
methods must return whatever value was returned by the call to call-
next-method.

• Portable programs may define methods that override specified methods
only when the description of the specified method explicitly allows this.
Typically, when a method is allowed to be overridden, a small number
of related methods will need to be overridden as well.

• An example of this is the specified methods on the generic functions
add-dependent, remove-dependent and map-dependents. Over-
riding a specified method on one of these generic functions requires
that the corresponding method on the other two generic functions be
overridden as well.

• Portable methods on specified generic functions specialized to portable
metaobject classes must be defined before any instances of those classes
(or any subclasses) are created, either directly or indirectly by a call to
make-instance. Methods can be defined after instances are created
by allocate-instance however. Portable metaobject classes cannot be
redefined.

Implementation Note: The purpose of this last restriction is to per-
mit implementations to provide performance optimizations by analyz-
ing, at the time the first instance of a metaobject class is initialized,
what portable methods will be applicable to it. This can make it pos-
sible to optimize calls to those specified generic functions which would
have no applicable portable methods.

Note: The specification technology used in this document needs fur-
ther development. The concepts of object-oriented protocols and sub-
class specialization are intuitively familiar to programmers of object-
oriented systems; the protocols presented here fit quite naturally into
this framework. Nonetheless, in preparing this document, we have
found it difficult to give specification-quality descriptions of the proto-
cols in a way that makes it clear what extensions users can and cannot
write. Object-oriented protocol specification is inherently about speci-
fying leeway, and this seems difficult using current technology.

998 CHAPTER 30. METAOBJECT PROTOCOL

30.1.4 Processing of the User Interface Macros

A list in which the first element is one of the symbols defclass, defmethod,
defgeneric, or define-method-combination, and which has proper syntax
for that macro is called a user interface macro form. This document pro-
vides an extended specification of the defclass, defmethod and defgeneric
macros.

The user interface macros defclass, defgeneric and defmethod can be
used not only to define metaobjects that are instances of the correspond-
ing standard metaobject class, but also to define metaobjects that are in-
stances of appropriate portable metaobject classes. To make it possible for
portable metaobject classes to properly process the information appearing
in the macro form, this document provides a limited specification of the
processing of these macro forms.

User interface macro forms can be evaluated or compiled and later exe-
cuted. The effect of evaluating or executing a user interface macro form is
specified in terms of calls to specified functions and generic functions which
provide the actual behavior of the macro. The arguments received by these
functions and generic functions are derived in a specified way from the macro
form.

Converting a user interface macro form into the arguments to the appro-
priate functions and generic functions has two major aspects: the conversion
of the macro argument syntax into a form more suitable for later process-
ing, and the processing of macro arguments which are forms to be evaluated
(including method bodies).

In the syntax of the defclass macro, the initform and default-initarg-
initial-value-form arguments are forms which will be evaluated one or more
times after the macro form is evaluated or executed. Special processing must
be done on these arguments to ensure that the lexical scope of the forms is
captured properly. This is done by building a function of zero arguments
which, when called, returns the result of evaluating the form in the proper
lexical environment.

In the syntax of the defmethod macro the form* argument is a list of
forms that comprise the body of the method definition. This list of forms
must be processed specially to capture the lexical scope of the macro form.
In addition, the lexical functions available only in the body of methods must
be introduced. To allow this and any other special processing (such as slot
access optimization), a specializable protocol is used for processing the body

30.1. CONCEPTS 999

of methods. This is discussed in the section 30.1.4.

Compile-file Processing of the User Interface Macros

It is common practice for Common Lisp compilers, while processing a file
or set of files, to maintain information about the definitions that have been
compiled so far. Among other things, this makes it possible to ensure that a
global macro definition (defmacro form) which appears in a file will affect
uses of the macro later in that file. This information about the state of the
compilation is called the compile-file environment.

When compiling files containing CLOS definitions, it is useful to main-
tain certain additional information in the compile-file environment. This can
make it possible to issue various kinds of warnings (e.g., lambda list congru-
ence) and to do various performance optimizations that would not otherwise
be possible.

At this time, there is such significant variance in the way existing Com-
mon Lisp implementations handle compile-file environments that it would be
premature to specify this mechanism. Consequently, this document speci-
fies only the behavior of evaluating or executing user interface macro forms.
What functions and generic functions are called during compile-file pro-
cessing of a user interface macro form is not specified. Implementations
are free to define and document their own behavior. Users may need to
check implementation-specific behavior before attempting to compile certain
portable programs.

The defclass Macro

A defclass form with standard slot and class options and an expansion of it
that would result in the proper call to ensure-class.

(defclass plane (moving-object graphics-object)
((altitude :initform 0 :accessor plane-altitude)
(speed))

(:default-initargs :engine *jet*))

1000 CHAPTER 30. METAOBJECT PROTOCOL

(ensure-class
’plane
’:direct-superclasses
’(moving-object graphics-object)
’:direct-slots (list (list ’:name ’altitude

’:initform ’0
’:initfunction #’(lambda () 0)
’:readers ’(plane-altitude)
’:writers ’((setf plane-altitude)))

(list ’:name ’speed))
’:direct-default-initargs (list (list ’:engine ’*jet*

#’(lambda () *jet*))))

A defclass form with non-standard class and slot options, and an expan-
sion of it which results in the proper call to ensure-class.

Note that the order of the slot options has not affected the order of the
properties in the canonicalized slot specification, but has affected the order
of the elements in the lists which are the values of those properties.

(defclass sst (plane)
((mach mag-step 2

locator sst-mach
locator mach-location
:reader mach-speed
:reader mach))

(:metaclass faster-class)
(another-option foo bar))

(ensure-class ’sst
’:direct-superclasses
’(plane)
’:direct-slots (list (list ’:name ’mach

’:readers ’(mach-speed mach)
’mag-step ’2
’locator ’(sst-mach mach-location)))

’:metaclass ’faster-class
’another-option ’(foo bar))

30.1. CONCEPTS 1001

The evaluation or execution of a defclass form results in a call to the
ensure-class function. The arguments received by ensure-class are derived
from the defclass form in a defined way. The exact macro-expansion of the
defclass form is not defined, only the relationship between the arguments to
the defclass macro and the arguments received by the ensure-class func-
tion. Examples of typical defclass forms and sample expansions are shown
in precedence examples.

• The name argument to defclass becomes the value of the first argu-
ment to ensure-class. This is the only positional argument accepted
by ensure-class; all other arguments are keyword arguments.

• The direct-superclasses argument to defclass becomes the value of the
:direct-superclasses keyword argument to ensure-class.

• The direct slots argument to defclass becomes the value of the :direct-
slots keyword argument to ensure-class. Special processing of this
value is done to regularize the form of each slot specification and to
properly capture the lexical scope of the initialization forms. This is
done by converting each slot specification to a property list called a
canonicalized slot specification. The resulting list of canonicalized slot
specifications is the value of the :direct-slots keyword argument.

Canonicalized slot specifications are later used as the keyword argu-
ments to a generic function which will, in turn, pass them to make-
instance for use as a set of initialization arguments. Each canonical-
ized slot specification is formed from the corresponding slot specifica-
tion as follows:

– The name of the slot is the value of the :name property. This
property appears in every canonicalized slot specification.

– When the :initform slot option is present in the slot specification,
then both the :initform and :initfunction properties are present
in the canonicalized slot specification. The value of the :initform
property is the initialization form. The value of the :initfunction
property is a function of zero arguments which, when called, re-
turns the result of evaluating the initialization form in its proper
lexical environment.

1002 CHAPTER 30. METAOBJECT PROTOCOL

– If the :initform slot option is not present in the slot specification,
then either the :initfunction property will not appear, or its value
will be false. In such cases, the value of the :initform property,
or whether it appears, is unspecified.

– The value of the :initargs property is a list of the values of each
:initarg slot option. If there are no :initarg slot options, then
either the :initargs property will not appear or its value will be
the empty list.

– The value of the :readers property is a list of the values of each
:reader and :accessor slot option. If there are no :reader or
:accessor slot options, then either the :readers property will not
appear or its value will be the empty list.

– The value of the :writers property is a list of the values specified
by each :writer and :accessor slot option. The value specified by
a :writer slot option is just the value of the slot option. The value
specified by an :accessor slot option is a two element list: the first
element is the symbol setf, the second element is the value of the
slot option. If there are no :writer or :accessor slot options, then
either the :writers property will not appear or its value will be
the empty list.

– The value of the :documentation property is the value of the
:documentation slot option. If there is no :documentation
slot option, then either the :documentation property will not
appear or its value will be false.

– All other slot options appear as the values of properties with the
same name as the slot option. Note that this includes not only the
remaining standard slot options (:allocation and :type), but also
any other options and values appearing in the slot specification.
If one of these slot options appears more than once, the value of
the property will be a list of the specified values.

– An implementation is free to add additional properties to the
canonicalized slot specification provided these are not symbols
accessible in the common-lisp-user package, or exported by any
package defined in the ANSI Common Lisp standard.

Returning to the correspondence between arguments to the defclass
macro and the arguments received by the ensure-class function:

30.1. CONCEPTS 1003

• The default initargs class option, if it is present in the defclass form,
becomes the value of the :direct-default-initargs keyword argument
to ensure-class. Special processing of this value is done to properly
capture the lexical scope of the default value forms. This is done by
converting each default initarg in the class option into a canonicalized
default initarg. The resulting list of canonicalized default initargs is the
value of the :direct-default-initargs keyword argument to ensure-
class.

A canonicalized default initarg is a list of three elements. The first
element is the name; the second is the actual form itself; and the third
is a function of zero arguments which, when called, returns the result
of evaluating the default value form in its proper lexical environment.

• The metaclass class option, if it is present in the defclass form, be-
comes the value of the :metaclass keyword argument to ensure-class.

• The documentation class option, if it is present in the defclass form, be-
comes the value of the :documentation keyword argument to ensure-
class.

• Any other class options become the value of keyword arguments with
the same name. The value of the keyword argument is the tail of the
class option. An error is signaled if any class option appears more than
once in the defclass form.

In the call to ensure-class, every element of its arguments appears in the
same left-to-right order as the corresponding element of the defclass form,
except that the order of the properties of canonicalized slot specifications is
unspecified. The values of properties in canonicalized slot specifications do
follow this ordering requirement. Other ordering relationships in the keyword
arguments to ensure-class are unspecified.

The result of the call to ensure-class is returned as the result of evalu-
ating or executing the defclass form.

The defmethod Macro

The evaluation or execution of a defmethod form requires first that the
body of the method be converted to a method function. This process is
described in the next section. The result of this process is a method function

1004 CHAPTER 30. METAOBJECT PROTOCOL

and a set of additional initialization arguments to be used when creating
the new method. Given these two values, the evaluation or execution of a
defmethod form proceeds in three steps.

The first step ensures the existence of a generic function with the specified
name. This is done by calling the function ensure-generic-function. The first
argument in this call is the generic function name specified in the defmethod
form.

The second step is the creation of the new method metaobject by calling
make-instance. The class of the new method metaobject is determined by
calling generic-function-method-class on the result of the call to ensure-
generic-function from the first step.

The initialization arguments received by the call to make-instance are
as follows:

• The value of the :qualifiers initialization argument is a list of the qual-
ifiers which appeared in the defmethod form. No special processing
is done on these values. The order of the elements of this list is the
same as in the defmethod form.

• The value of the :lambda-list initialization argument is the unspecial-
ized lambda list from the defmethod form.

• The value of the :specializers initialization argument is a list of the
specializers for the method. For specializers which are classes, the
specializer is the class metaobject itself. In the case of eql specializers,
it will be an eql-specializer metaobject obtained by calling intern-
eql-specializer on the result of evaluating the eql specializer form in
the lexical environment of the defmethod form.

• The value of the :function initialization argument is the method func-
tion.

• The value of the :declarations initialization argument is a list of the
declarations from the defmethod form. If there are no declarations in
the macro form, this initialization argument either doesn’t appear, or
appears with a value of the empty list.

• The value of the :documentation initialization argument is the docu-
mentation string from the defmethod form. If there is no documenta-

30.1. CONCEPTS 1005

tion string in the macro form this initialization argument either doesn’t
appear, or appears with a value of false.

• Any other initialization argument produced in conjunction with the
method function are also included.

• The implementation is free to include additional initialization argu-
ments provided these are not symbols accessible in the common-lisp-
user package, or exported by any package defined in the ANSI Common
Lisp standard.

In the third step, add-method is called to add the newly created method
to the set of methods associated with the generic function metaobject.

The result of the call to add-method is returned as the result of evalu-
ating or executing the defmethod form.

An example defmethod form and one possible correct expansion. In the
expansion, method-lambda is the result of calling make-method-lambda
as described in the section 30.1.4. The initargs appearing after :function are
assumed to be additional initargs returned from the call to make-method-
lambda.

An example showing a typical defmethod form and a sample expansion
is shown in 30.1. The processing of the method body for this method is
shown in 30.2.

Processing Method Bodies

Before a method can be created, the list of forms comprising the method
body must be converted to a method function. This conversion is a two step
process.

Note: The body of methods can also appear in the :initial-methods
option of defgeneric forms. Initial methods are not considered by any of
the protocols specified in this document.

During macro-expansion of the defmethod macro shown in 30.1, code
similar to this would be run to produce the method lambda and additional
initargs. In this example, environment is the macroexpansion environment
of the defmethod macro form.

The first step occurs during macro-expansion of the macro form. In
this step, the method lambda list, declarations and body are converted to
a lambda expression called a method lambda. This conversion is based on

1006 CHAPTER 30. METAOBJECT PROTOCOL

Figure 30.1: Example 3

(defmethod move :before ((p position) (l (eql 0))
&optional (visiblyp t)
&key color)

(set-to-origin p)
(when visiblyp (show-move p 0 color)))

(let ((#:g001 (ensure-generic-function ’move)))
(add-method #:g001
(make-instance (generic-function-method-class #:g001)

’:qualifiers ’(:before)
’:specializers (list (find-class ’position)

(intern-eql-specializer 0))
’:lambda-list ’(p l &optional (visiblyp t)

&key color)
’:function (function method-lambda)
’additional-initarg-1 ’t
’additional-initarg-2 ’39)))

Figure 30.2: Example 4

(let ((gf (ensure-generic-function ’move)))
(make-method-lambda
gf
(class-prototype (generic-function-method-class gf))
’(lambda (p l &optional (visiblyp t) &key color)
(set-to-origin p)
(when visiblyp (show-move p 0 color)))

environment))

30.1. CONCEPTS 1007

information associated with the generic function definition in effect at the
time the macro form is expanded.

The generic function definition is obtained by calling ensure-generic-
function with a first argument of the generic function name specified in the
macro form. The :lambda-list keyword argument is not passed in this call.

Given the generic function, production of the method lambda proceeds by
calling make-method-lambda. The first argument in this call is the generic
function obtained as described above. The second argument is the result of
calling class-prototype on the result of calling generic-function-method-
class on the generic function. The third argument is a lambda expression
formed from the method lambda list, declarations and body. The fourth
argument is the macro-expansion environment of the macro form; this is the
value of the &environment argument to the defmethod macro.

The generic function make-method-lambda returns two values. The
first is the method lambda itself. The second is a list of initialization argu-
ments and values. These are included in the initialization arguments when
the method is created.

In the second step, the method lambda is converted to a function which
properly captures the lexical scope of the macro form. This is done by hav-
ing the method lambda appear in the macro-expansion as the argument of
the function special form. During the subsequent evaluation of the macro-
expansion, the result of the function special operator is the method function.

The defgeneric Macro

The evaluation or execution of a defgeneric form results in a call to the
ensure-generic-function function. The arguments received by ensure-
generic-function are derived from the defgeneric form in a defined way.
As with defclass and defmethod, the exact macro-expansion of the def-
generic form is not defined, only the relationship between the arguments to
the macro and the arguments received by ensure-generic-function.

• The function-name argument to defgeneric becomes the first argu-
ment to ensure-generic-function. This is the only positional argument
accepted by ensure-generic-function; all other arguments are keyword
arguments.

• The lambda-list argument to defgeneric becomes the value of the
:lambda-list keyword argument to ensure-generic-function.

1008 CHAPTER 30. METAOBJECT PROTOCOL

• For each of the options :argument-precedence-order, :documen-
tation, :generic-function-class and :method-class, the value of the
option becomes the value of the keyword argument with the same name.
If the option does not appear in the macro form, the keyword argument
does not appear in the resulting call to ensure-generic-function.

• For the option declare, the list of declarations becomes the value of
the :declarations keyword argument. If the declare option does not
appear in the macro form, the :declarations keyword argument does
not appear in the call to ensure-generic-function.

• The handling of the :method-combination option is not specified.

The result of the call to ensure-generic-function is returned as the
result of evaluating or executing the defgeneric form.

30.1.5 Subprotocols

This section provides an overview of the Metaobject Protocols. The detailed
behavior of each function, generic function and macro in the Metaobject
Protocol is presented in the Generic Functions and Methods Dictionary. The
remainder of this chapter is intended to emphasize connections among the
parts of the Metaobject Protocol, and to provide some examples of the kinds
of specializations and extensions the protocols are designed to support.

Metaobject Initialization Protocols

Like other objects, metaobjects can be created by calling make-instance.
The initialization arguments passed to make-instance are used to initialize
the metaobject in the usual way. The set of legal initialization arguments,
and their interpretation, depends on the kind of metaobject being created.
Implementations and portable programs are free to extend the set of legal
initialization arguments. Detailed information about the initialization of
each kind of metaobject are provided in Generic Functions and Methods
Dictionary; this section provides an overview and examples of this behavior.

Initialization of Class Metaobjects
Class metaobjects created with make-instance are usually anonymous ;

that is, they have no proper name. An anonymous class metaobject can be
given a proper name using setf find-class and setf class-name.

30.1. CONCEPTS 1009

When a class metaobject is created with make-instance, it is initialized
in the usual way. The initialization arguments passed to make-instance are
use to establish the definition of the class. Each initialization argument is
checked for errors and associated with the class metaobject. The initialization
arguments correspond roughly to the arguments accepted by the defclass
macro, and more closely to the arguments accepted by the ensure-class
function.

Some class metaobject classes allow their instances to be redefined. When
permissible, this is done by calling reinitialize-instance. This is discussed
in the next section.

An example of creating an anonymous class directly using make-
instance follows:

(flet ((zero () 0)
(propellor () *propellor*))

(make-instance ’standard-class
:name ’(my-class foo)
:direct-superclasses (list (find-class ’plane)

another-anonymous-class)
:direct-slots ‘((:name x

:initform 0
:initfunction ,#’zero
:initargs (:x)
:readers (position-x)
:writers ((setf position-x)))
(:name y
:initform 0
:initfunction ,#’zero
:initargs (:y)
:readers (position-y)
:writers ((setf position-y))))

:direct-default-initargs ‘((:engine *propellor* ,#’propellor))))

Reinitialization of Class Metaobjects
Some class metaobject classes allow their instances to be reinitialized.

This is done by calling reinitialize-instance. The initialization arguments
have the same interpretation as in class initialization.

1010 CHAPTER 30. METAOBJECT PROTOCOL

If the class metaobject was finalized before the call to reinitialize-
instance, finalize-inheritance will be called again once all the initialization
arguments have been processed and associated with the class metaobject. In
addition, once finalization is complete, any dependents of the class metaob-
ject will be updated by calling update-dependent.

Initialization of Generic Function and Method Metaobjects
An example of creating a generic function and a method metaobject, and

then adding the method to the generic function is shown below. This example
is comparable to the method definition shown in 30.1.

(let* ((gf (make-instance ’standard-generic-function
:lambda-list ’(p l &optional visiblyp &key)))

(method-class (generic-function-method-class gf)))
(multiple-value-bind (lambda initargs)

(make-method-lambda
gf
(class-prototype method-class)
’(lambda (p l &optional (visiblyp t) &key color)
(set-to-origin p)
(when visiblyp (show-move p 0 color)))

nil)
(add-method gf

(apply #’make-instance method-class
:function (compile nil lambda)
:specializers (list (find-class ’position)

(intern-eql-specializer 0))
:qualifiers ()
:lambda-list ’(p l &optional (visiblyp t)

&key color)
initargs))))

Class Finalization Protocol

Class finalization is the process of computing the information a class inherits
from its superclasses and preparing to actually allocate instances of the class.
The class finalization process includes computing the class’s class precedence
list, the full set of slots accessible in instances of the class and the full set

30.1. CONCEPTS 1011

of default initialization arguments for the class. These values are associated
with the class metaobject and can be accessed by calling the appropriate
reader. In addition, the class finalization process makes decisions about how
instances of the class will be implemented.

To support forward-referenced superclasses, and to account for the fact
that not all classes are actually instantiated, class finalization is not done
as part of the initialization of the class metaobject. Instead, finalization is
done as a separate protocol, invoked by calling the generic function finalize-
inheritance. The exact point at which finalize-inheritance is called de-
pends on the class of the class metaobject; for standard-class it is called
sometime after all the classes superclasses are defined, but no later than
when the first instance of the class is allocated (by allocate-instance).

The first step of class finalization is computing the class precedence
list. Doing this first allows subsequent steps to access the class precedence
list. This step is performed by calling the generic function compute-class-
precedence-list. The value returned from this call is associated with the
class metaobject and can be accessed by calling the class-precedence-list
generic function.

The second step is computing the full set of slots that will be accessible in
instances of the class. This step is performed by calling the generic function
compute-slots. The result of this call is a list of effective slot definition
metaobjects. This value is associated with the class metaobject and can be
accessed by calling the class-slots generic function.

The behavior of compute-slots is itself layered, consisting of calls to
effective-slot-definition-class and compute-effective-slot-definition.

The final step of class finalization is computing the full set of initializa-
tion arguments for the class. This is done by calling the generic function
compute-default-initargs. The value returned by this generic function is
associated with the class metaobject and can be accessed by calling class-
default-initargs.

If the class was previously finalized, finalize-inheritance may call
make-instances-obsolete. The circumstances under which this happens
are describe in the section 28.1.10 of the CLOS specification.

Forward-referenced classes, which provide a temporary definition for a
class which has been referenced but not yet defined, can never be finalized.
An error is signalled if finalize-inheritance is called on a forward-referenced
class.

1012 CHAPTER 30. METAOBJECT PROTOCOL

Instance Structure Protocol

The instance structure protocol is responsible for implementing the behavior
of the slot access functions like slot-value and (setf slot-value).

For each CLOS slot access function other than slot-exists-p, there is a
corresponding generic function which actually provides the behavior of the
function. When called, the slot access function finds the pertinent effective
slot definition metaobject, calls the corresponding generic function and re-
turns its result. The arguments passed on to the generic function include one
additional value, the class of the object argument, which always immediately
precedes the object argument

The correspondences between slot access function and underlying slot
access generic function are as follows:

Slot Access Function Corresponding Slot Access Generic Function
slot-boundp slot-boundp-using-class
slot-makunbound slot-makunbound-using-class
slot-value slot-value-using-class
(setf slot-value) (setf slot-value-using-class)
At the lowest level, the instance structure protocol provides only limited

mechanisms for portable programs to control the implementation of instances
and to directly access the storage associated with instances without going
through the indirection of slot access. This is done to allow portable programs
to perform certain commonly requested slot access optimizations.

In particular, portable programs can control the implementation of, and
obtain direct access to, slots with allocation :instance and type t. These
are called directly accessible slots.

The relevant specified around-method on compute-slots determines the
implementation of instances by deciding how each slot in the instance will be
stored. For each directly accessible slot, this method allocates a location and
associates it with the effective slot definition metaobject. The location can be
accessed by calling the slot-definition-location generic function. Locations are
non-negative integers. For a given class, the locations increase consecutively,
in the order that the directly accessible slots appear in the list of effective
slots. (Note that here, the next paragraph, and the specification of this
around-method are the only places where the value returned by compute-
slots is described as a list rather than a set.)

Given the location of a directly accessible slot, the value of that
slot in an instance can be accessed with the appropriate accessor. For

30.1. CONCEPTS 1013

standard-class, this accessor is the function standard-instance-access.
For funcallable-standard-class, this accessor is the function funcallable-
standard-instance-access. In each case, the arguments to the accessor are
the instance and the slot location, in that order. See the definition of each
accessor in Chapter for additional restrictions on the use of these function.

Portable programs are permitted to affect and rely on the allocation of lo-
cations only in the following limited way: By first defining a portable primary
method on compute-slots which orders the returned value in a predictable
way, and then relying on the defined behavior of the specified around-method
to assign locations to all directly accessible slots. Portable programs may
compile-in calls to low-level accessors which take advantage of the resulting
predictable allocation of slot locations.

The following example shows the use of this mechanism to implement
a new class metaobject class, ordered-class and class option :slot-order.
This option provides control over the allocation of slot locations. In this
simple example implementation, the :slot-order option is not inherited by
subclasses; it controls only instances of the class itself.

(defclass ordered-class (standard-class)
((slot-order :initform ()

:initarg :slot-order
:reader class-slot-order)))

(defmethod compute-slots ((class ordered-class))
(let ((order (class-slot-order class)))
(sort (copy-list (call-next-method))

#’(lambda (a b) (< (position (slot-definition-name a) order)
(position (slot-definition-name b) order))))))

Following is the source code the user of this extension would write. Note
that because the code above doesn’t implement inheritance of the :slot-
order option, the function distance must not be called on instances of
subclasses of point; it can only be called on instances of point itself.

1014 CHAPTER 30. METAOBJECT PROTOCOL

(defclass point ()
((x :initform 0)
(y :initform 0))

(:metaclass ordered-class)
(:slot-order x y))

(defun distance (point)
(sqrt (/ (+ (expt (standard-instance-access point 0) 2)

(expt (standard-instance-access point 1) 2)) 2.0)))

In more realistic uses of this mechanism, the calls to the low-level in-
stance structure accessors would not actually appear textually in the source
program, but rather would be generated by a meta-level analysis program
run during the process of compiling the source program.

Funcallable Instances

Instances of classes which are themselves instances of funcallable-
standard-class or one of its subclasses are called funcallable instances.
Funcallable instances can only be created by allocate-instance (funcallable-
standard-class).

Like standard instances, funcallable instances have slots with the normal
behavior. They differ from standard instances in that they can be used as
functions as well; that is, they can be passed to funcall and apply, and they
can be stored as the definition of a function name. Associated with each
funcallable instance is the function which it runs when it is called. This
function can be changed with set-funcallable-instance-function.

The following simple example shows the use of funcallable instances to
create a simple, defstruct-like facility. (Funcallable instances are useful
when a program needs to construct and maintain a set of functions and
information about those functions. They make it possible to maintain both
as the same object rather than two separate objects linked, for example, by
hash tables.)

30.1. CONCEPTS 1015

(defclass constructor ()
((name :initarg :name :accessor constructor-name)
(fields :initarg :fields :accessor constructor-fields))

(:metaclass funcallable-standard-class))

(defmethod initialize-instance :after ((c constructor) &key)
(with-slots (name fields) c
(set-funcallable-instance-function
c
#’(lambda ()

(let ((new (make-array (1+ (length fields)))))
(setf (aref new 0) name) new)))))

(setq c1 (make-instance ’constructor :name ’position :fields ’(x y)))
#<CONSTRUCTOR 262437>

(setq p1 (funcall c1))
#<ARRAY 3 263674>

Generic Function Invocation Protocol

Associated with each generic function is its discriminating function. Each
time the generic function is called, the discriminating function is called to
provide the behavior of the generic function. The discriminating function
receives the full set of arguments received by the generic function. It must
lookup and execute the appropriate methods, and return the appropriate
values.

The discriminating function is computed by the highest layer of the
generic function invocation protocol, compute-discriminating-function.
Whenever a generic function metaobject is initialized, reinitialized, or a
method is added or removed, the discriminating function is recomputed. The
new discriminating function is then stored with set-funcallable-instance-
function.

Discriminating functions call compute-applicable-methods and
compute-applicable-methods-using-classes to compute the methods
applicable to the generic functions arguments. Applicable methods are
combined by compute-effective-method to produce an effective method.

1016 CHAPTER 30. METAOBJECT PROTOCOL

Provisions are made to allow memoization of the method applicability
and effective methods computations. (See the description of compute-
discriminating-function for details.)

The body of method definitions are processed by make-method-
lambda. The result of this generic function is a lambda expression which is
processed by either compile or the file compiler to produce a method func-
tion. The arguments received by the method function are controlled by the
call-method forms appearing in the effective methods. By default, method
functions accept two arguments: a list of arguments to the generic function,
and a list of next methods. The list of next methods corresponds to the
next methods argument to call-method. If call-method appears with ad-
ditional arguments, these will be passed to the method functions as well; in
these cases, make-method-lambda must have created the method lambdas
to expect additional arguments.

Dependent Maintenance Protocol

It is convenient for portable metaobjects to be able to memoize information
about other metaobjects, portable or otherwise. Because class and generic
function metaobjects can be reinitialized, and generic function metaobjects
can be modified by adding and removing methods, a means must be provided
to update this memoized information.

The dependent maintenance protocol supports this by providing a way
to register an object which should be notified whenever a class or generic
function is modified. An object which has been registered this way is called
a dependent of the class or generic function metaobject. The dependents of
class and generic function metaobjects are maintained with add-dependent
and remove-dependent. The dependents of a class or generic function
metaobject can be accessed withmap-dependents. Dependents are notified
about a modification by calling update-dependent. (See the specification
of update-dependent for detailed description of the circumstances under
which it is called.)

To prevent conflicts between two portable programs, or between portable
programs and the implementation, portable code must not register metaob-
jects themselves as dependents. Instead, portable programs which need to
record a metaobject as a dependent, should encapsulate that metaobject in
some other kind of object, and record that object as the dependent. The
results are undefined if this restriction is violated.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1017

This example shows a general facility for encapsulating metaobjects be-
fore recording them as dependents. The facility defines a basic kind of encap-
sulating object: an updater. Specializations of the basic class can be defined
with appropriate special updating behavior. In this way, information about
the updating required is associated with each updater rather than with the
metaobject being updated.

Updaters are used to encapsulate any metaobject which requires updating
when a given class or generic function is modified. The function record-
updater is called to both create an updater and add it to the dependents
of the class or generic function. Methods on the generic function update-
dependent, specialized to the specific class of updater do the appropriate
update work.

(defclass updater ()
((dependent :initarg :dependent :reader dependent)))

(defun record-updater (class dependee dependent &rest initargs)
(let ((updater (apply #’make-instance class :dependent dependent initargs)))
(add-dependent dependee updater) updater))

A flush-cache-updater simply flushes the cache of the dependent when it
is updated.

(defclass flush-cache-updater (updater) ())

(defmethod update-dependent (dependee (updater flush-cache-updater) &rest args)
(declare (ignore args))
(flush-cache (dependent updater)))

30.2 Generic Functions and Methods Dictio-
nary

This chapter describes each of the functions and generic functions that make
up the CLOS Metaobject Protocol. The descriptions appear in alphabetical
order with the exception that all the reader generic functions for each kind of
metaobject are grouped together. So, for example, method-function would
be found with method-qualifiers and other method metaobject readers
under section 30.2.7.

1018 CHAPTER 30. METAOBJECT PROTOCOL

The description of functions follows the same form as used in the CLOS
specification. The description of generic functions is similar to that in the
CLOS specification, but some minor changes have been made in the way
methods are presented.

The following is an example of the format for the syntax description of a
generic function:

[Generic Function] gf1 x y &optional z &key k

This description indicates that gf1 is a generic function with two required
parameters, x and y, an optional parameter z and a keyword parameter k.

The description of a generic function includes a description of its behavior.
This provides the general behavior, or protocol of the generic function. All
methods defined on the generic function, both portable and specified, must
have behavior consistent with this description.

Every generic function described in this section is an instance of the class
standard-generic-function and uses standard method combination.

The description of a generic function also includes descriptions of the spec-
ified methods for that generic function. In the description of these methods,
a method signature is used to describe the parameters and parameter spe-
cializers of each method. The following is an example of the format for a
method signature:

[Primary Method] gf1 (x class) y &optional z &key k

This signature indicates that this primary method on the generic function
gf1 has two required parameters, named x and y. In addition, there is an op-
tional parameter z and a keyword parameter k. This signature also indicates
that the method’s parameter specializers are the classes named class and t.

The description of each method includes a description of the behavior
particular to that method.

An abbreviated syntax is used when referring to a method defined else-
where in the document. This abbreviated syntax includes the name of the
generic function, the qualifiers, and the parameter specializers. A reference
to the method with the signature shown above is written as: gf1 (class t).

[Generic Function] add-dependent metaobject dependent

Arguments:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1019

The metaobject argument is a class or generic function metaobject.
The dependent argument is an object.
Values:
The value returned by this generic function is unspecified.
Purpose:
This generic function adds dependent to the dependents of metaobject. If

dependent is already in the set of dependents it is not added again (no error
is signaled).

The generic function map-dependents can be called to access the set
of dependents of a class or generic function. The generic function remove-
dependent can be called to remove an object from the set of dependents of a
class or generic function. The effect of calling add-dependent or remove-
dependent while a call to map-dependents on the same class or generic
function is in progress is unspecified.

The situations in which add-dependent is called are not specified.
Methods:

[Primary Method] add-dependent (class standard-class) dependent

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

remove-dependent (standard-class t)
map-dependents (standard-class t)

[Primary Method] add-dependent (class funcallable-standard-class)
dependent

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

remove-dependent (funcallable-standard-class t)
map-dependents (funcallable-standard-class t)

1020 CHAPTER 30. METAOBJECT PROTOCOL

[Primary Method] add-dependent
(generic-function standard-generic-function) dependent

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

remove-dependent (standard-generic-function t)
map-dependents (standard-generic-function t)

Notes:
See the section 30.1.5 for remarks about the use of this facility.

[Generic Function] add-direct-method specializer method

Arguments:
The specializer argument is a specializer metaobject.
The method argument is a method metaobject.
Values:
The value returned by this generic function is unspecified.
Purpose:
This generic function is called to maintain a set of backpointers from a

specializer to the set of methods specialized to it. If method is already in the
set, it is not added again (no error is signaled).

This set can be accessed as a list by calling the generic function
specializer-direct-methods. Methods are removed from the set by
remove-direct-method.

The generic function add-direct-method is called by add-method
whenever a method is added to a generic function. It is called once for
each of the specializers of the method. Note that in cases where a specializer
appears more than once in the specializers of a method, this generic function
will be called more than once with the same specializer as argument.

The results are undefined if the specializer argument is not one of the
specializers of the method argument.

Methods:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1021

[Primary Method] add-direct-method (specializer class)
(method method)

This method implements the behavior of the generic function for class
specializers. No behavior is specified for this method beyond that which is
specified for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

remove-direct-method (class method)
specializer-direct-generic-functions (class)
specializer-direct-methods (class)

[Primary Method] add-direct-method (specializer eql-specializer)
(method method)

This method implements the behavior of the generic function for eql
specializers. No behavior is specified for this method beyond that which is
specified for the generic function.

[Generic Function] add-direct-subclass superclass subclass

Arguments:
The superclass argument is a class metaobject.
The subclass argument is a class metaobject.
Values:
The value returned by this generic function is unspecified.
Purpose:
This generic function is called to maintain a set of backpointers from a

class to its direct subclasses. This generic function adds subclass to the set
of direct subclasses of superclass.

When a class is initialized, this generic function is called once for each
direct superclass of the class.

When a class is reinitialized, this generic function is called once for each
added direct superclass of the class. The generic function remove-direct-
subclass is called once for each deleted direct superclass of the class.

Methods:

1022 CHAPTER 30. METAOBJECT PROTOCOL

[Primary Method] add-direct-subclass (superclass class) (subclass class)

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

remove-direct-subclass (class class)
class-direct-subclasses (class)

[Generic Function] add-method generic-function method

Arguments:
The generic-function argument is a generic function metaobject.
The method argument is a method metaobject.
Values:
The generic-function argument is returned.
Purpose:
This generic function associates an unattached method with a generic

function.
An error is signaled if the lambda list of the method is not congruent

with the lambda list of the generic function. An error is also signaled if the
method is already associated with some other generic function.

If the given method agrees with an existing method of the generic func-
tion on parameter specializers and qualifiers, the existing method is removed
by calling remove-method before the new method is added. See the sec-
tion 28.1.6 of the CLOS Specification for a definition of agreement in this
context.

Associating the method with the generic function then proceeds in four
steps:

• (i) add method to the set returned by generic-function-methods and
arrange for method-generic-function to return generic-function;

• (ii) call add-direct-method for each of the method’s specializers;

• (iii) call compute-discriminating-function and install its result
with set-funcallable-instance-function;

• and (iv) update the dependents of the generic function.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1023

The generic function add-method can be called by the user or the imple-
mentation.

Methods:

[Primary Method] add-method
(generic-function standard-generic-function) (method standard-method)

No behavior is specified for this method beyond that which is specified
for the generic function.

[Generic Function] allocate-instance class &rest initargs

Arguments:
The class argument is a class metaobject.
The initargs argument consists of alternating initialization argument

names and values.
Values:
The value returned is a newly allocated instance of class.
Purpose:
This generic function is called to create a new, uninitialized instance of a

class. The interpretation of the concept of an “uninitialized” instance depends
on the class metaobject class.

Before allocating the new instance, class-finalized-p is called to see if class
has been finalized. If it has not been finalized, finalize-inheritance is called
before the new instance is allocated.

Methods:

[Primary Method] allocate-instance (class standard-class) &rest initargs

This method allocates storage in the instance for each slot with allocation
:instance. These slots are unbound. Slots with any other allocation are
ignored by this method (no error is signaled).

[Primary Method] allocate-instance (class funcallable-standard-class)
&rest initargs

This method allocates storage in the instance for each slot with allocation
:instance. These slots are unbound. Slots with any other allocation are
ignored by this method (no error is signaled).

1024 CHAPTER 30. METAOBJECT PROTOCOL

The funcallable instance function of the instance is undefined—the results
are undefined if the instance is applied to arguments before set-funcallable-
instance-function has been used to set the funcallable instance function.

[Primary Method] allocate-instance (class built-in-class) &rest initargs

This method signals an error.

[Generic Function] class-default-initargs
[Generic Function] class-direct-default-initargs
[Generic Function] class-direct-slots
[Generic Function] class-direct-subclasses
[Generic Function] class-direct-superclasses
[Generic Function] class-finalized-p
[Generic Function] class-name
[Generic Function] class-precedence-list
[Generic Function] class-prototype

The following generic functions are described together under sec-
tion 30.2.5: class-default-initargs, class-direct-default-initargs, class-
direct-slots, class-direct-subclasses, class-direct-superclasses, class-
finalized-p, class-name, class-precedence-list, class-prototype and
class-slots.

[Generic Function] compute-applicable-methods generic-function
arguments

Arguments:
The generic-function argument is a generic function metaobject.
The arguments argument is a list of objects.
Values:
This generic function returns a possibly empty list of method metaobjects.
Purpose:
This generic function determines the method applicability of a generic

function given a list of required arguments. The returned list of method
metaobjects is sorted by precedence order with the most specific method
appearing first. If no methods are applicable to the supplied arguments the
empty list is returned.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1025

When a generic function is invoked, the discriminating function must
determine the ordered list of methods applicable to the arguments. Depend-
ing on the generic function and the arguments, this is done in one of three
ways: using a memoized value; calling compute-applicable-methods-
using-classes; or calling compute-applicable-methods. (Refer to the
description of compute-discriminating-function for the details of this
process.)

The arguments argument is permitted to contain more elements than
the generic function accepts required arguments; in these cases the extra
arguments will be ignored. An error is signaled if arguments contains fewer
elements than the generic function accepts required arguments.

The list returned by this generic function will not be mutated by the
implementation. The results are undefined if a portable program mutates
the list returned by this generic function.

Methods:

[Primary Method] compute-applicable-methods
(generic-function standard-generic-function) arguments

This method signals an error if any method of the generic function has a
specializer which is neither a class metaobject nor an eql specializer metaob-
ject.

Otherwise, this method computes the sorted list of applicable methods
according to the rules described in the section 28.1.7 of the CLOS Specifica-
tion.

This method can be overridden. Because of the consistency require-
ments between this generic function and compute-applicable-methods-
using-classes, doing so may require also overriding compute-applicable-
methods-using-classes (standard-generic-function t).

[Generic Function] compute-applicable-methods-using-classes
generic-function classes

Arguments:
The generic-function argument is a generic function metaobject.
The classes argument is a list of class metaobjects.
Values:
This generic function returns two values. The first is a possibly empty

list of method metaobjects. The second is either true or false.

1026 CHAPTER 30. METAOBJECT PROTOCOL

Purpose:
This generic function is called to attempt to determine the method appli-

cability of a generic function given only the classes of the required arguments.
If it is possible to completely determine the ordered list of applicable

methods based only on the supplied classes, this generic function returns
that list as its first value and true as its second value. The returned list of
method metaobjects is sorted by precedence order, the most specific method
coming first. If no methods are applicable to arguments with the specified
classes, the empty list and true are returned.

If it is not possible to completely determine the ordered list of applicable
methods based only on the supplied classes, this generic function returns an
unspecified first value and false as its second value.

When a generic function is invoked, the discriminating function must
determine the ordered list of methods applicable to the arguments. Depend-
ing on the generic function and the arguments, this is done in one of three
ways: using a memoized value; calling compute-applicable-methods-
using-classes; or calling compute-applicable-methods. (Refer to the
description of compute-discriminating-function for the details of this pro-
cess.)

The following consistency relationship between compute-applicable-
methods-using-classes and compute-applicable-methods must be
maintained: for any given generic function and set of arguments, if
compute-applicable-methods-using-classes returns a second value of
true, the first value must be equal to the value that would be returned by
a corresponding call to compute-applicable-methods. The results are unde-
fined if a portable method on either of these generic functions causes this
consistency to be violated.

The list returned by this generic function will not be mutated by the
implementation. The results are undefined if a portable program mutates
the list returned by this generic function.

Methods:

[Primary Method] compute-applicable-methods-using-classes
(generic-function standard-generic-function) classes

If any method of the generic function has a specializer which is neither a
class metaobject nor an eql specializer metaobject, this method signals an
error.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1027

In cases where the generic function has no methods with eql specializers,
or has no methods with eql specializers that could be applicable to arguments
of the supplied classes, this method returns the ordered list of applicable
methods as its first value and true as its second value.

Otherwise this method returns an unspecified first value and false as its
second value.

This method can be overridden. Because of the consistency requirements
between this generic function and compute-applicable-methods, doing so may
require also overriding compute-applicable-methods (standard-generic-
function t).

Notes:
This generic function exists to allow user extensions which alter method

lookup rules, but which base the new rules only on the classes of the required
arguments, to take advantage of the class-based method lookup memoization
found in many implementations. (There is of course no requirement for an
implementation to provide this optimization.)

Such an extension can be implemented by two methods, one on this
generic function and one on compute-applicable-methods. Whenever
the user extension is in effect, the first method will return a second value
of true. This should allow the implementation to absorb these cases into its
own memoization scheme.

To get appropriate performance, other kinds of extensions may require
methods on compute-discriminating-function which implement their
own memoization scheme.

[Generic Function] compute-class-precedence-list class

Arguments:
The class argument is a class metaobject.
Values:
The value returned by this generic function is a list of class metaobjects.
Purpose:
This generic-function is called to determine the class precedence list of a

class.
The result is a list which contains each of class and its superclasses once

and only once. The first element of the list is class and the last element is
the class named t.

1028 CHAPTER 30. METAOBJECT PROTOCOL

All methods on this generic function must compute the class precedence
list as a function of the ordered direct superclasses of the superclasses of class.
The results are undefined if the rules used to compute the class precedence
list depend on any other factors.

When a class is finalized, finalize-inheritance calls this generic function
and associates the returned value with the class metaobject. The value can
then be accessed by calling class-precedence-list.

The list returned by this generic function will not be mutated by the
implementation. The results are undefined if a portable program mutates
the list returned by this generic function.

Methods:

[Primary Method] compute-class-precedence-list (class class)

This method computes the class precedence list according to the rules
described in the section 28.1.5 of the CLOS Specification.

This method signals an error if class or any of its superclasses is a forward
referenced class.

This method can be overridden.

[Generic Function] compute-default-initargs class

Arguments:
The class argument is a class metaobject.
Values:
The value returned by this generic function is a list of canonicalized de-

fault initialization arguments.
Purpose:
This generic-function is called to determine the default initialization ar-

guments for a class.
The result is a list of canonicalized default initialization arguments, with

no duplication among initialization argument names.
All methods on this generic function must compute the default initializa-

tion arguments as a function of only: (i) the class precedence list of class, and
(ii) the direct default initialization arguments of each class in that list. The
results are undefined if the rules used to compute the default initialization
arguments depend on any other factors.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1029

When a class is finalized, finalize-inheritance calls this generic function
and associates the returned value with the class metaobject. The value can
then be accessed by calling class-default-initargs.

The list returned by this generic function will not be mutated by the
implementation. The results are undefined if a portable program mutates
the list returned by this generic function.

Methods:

[Primary Method] compute-default-initargs (class standard-class)
compute-default-initargs (class funcallable-standard-class)

These methods compute the default initialization arguments according to
the rules described in the section 28.1.9 of the CLOS Specification.

These methods signal an error if class or any of its superclasses is a
forward referenced class.

These methods can be overridden.

[Generic Function] compute-discriminating-function generic-function

Arguments:
The generic-function argument is a generic function metaobject.
Values:
The value returned by this generic function is a function.
Purpose:
This generic function is called to determine the discriminating function

for a generic function. When a generic function is called, the installed dis-
criminating function is called with the full set of arguments received by the
generic function, and must implement the behavior of calling the generic
function: determining the ordered set of applicable methods, determining
the effective method, and running the effective method.

To determine the ordered set of applicable methods, the discriminat-
ing function first calls compute-applicable-methods-using-classes. If
compute-applicable-methods-using-classes returns a second value of
false, the discriminating function then calls compute-applicable-methods.

When compute-applicable-methods-using-classes returns a second
value of true, the discriminating function is permitted to memoize the first
returned value as follows. The discriminating function may reuse the list of
applicable methods without calling compute-applicable-methods-using-
classes again provided that:

1030 CHAPTER 30. METAOBJECT PROTOCOL

• (i) the generic function is being called again with required arguments
which are instances of the same classes,

• (ii) the generic function has not been reinitialized,

• (iii) no method has been added to or removed from the generic function,

• (iv) for all the specializers of all the generic function’s methods which
are classes, their class precedence lists have not changed and

• (v) for any such memoized value, the class precedence list of the class
of each of the required arguments has not changed.

Determination of the effective method is done by calling compute-
effective-method. When the effective method is run, each method’s function
is called, and receives as arguments: (i) a list of the arguments to the generic
function, and (ii) whatever other arguments are specified in the call-method
form indicating that the method should be called. (See make-method-
lambda for more information about how method functions are called.)

The generic function compute-discriminating-function is called, and
its result installed, by add-method, remove-method, initialize-instance
and reinitialize-instance.

Methods:

[Primary Method] compute-discriminating-function
(generic-function standard-generic-function)

No behavior is specified for this method beyond that specified for the
generic function.

This method can be overridden.

[Generic Function] compute-effective-method generic-function
method-combination methods

Arguments:
The generic-function argument is a generic function metaobject.
The method-combination argument is a method combination metaob-

ject.
The methods argument is a list of method metaobjects.
Values:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1031

This generic function returns two values. The first is an effective method,
the second is a list of effective method options.

Purpose:
This generic function is called to determine the effective method from a

sorted list of method metaobjects.
An effective method is a form that describes how the applicable methods

are to be combined. Inside of effective method forms are call-method forms
which indicate that a particular method is to be called. The arguments
to the call-method form indicate exactly how the method function of the
method should be called. (See make-method-lambda for more details
about method functions.)

An effective method option has the same interpretation and syntax as
either the :arguments or the :generic-function option in the long form of
define-method-combination.

More information about the form and interpretation of effective meth-
ods and effective method options can be found under the description of the
define-method-combination macro in the CLOS specification.

This generic function can be called by the user or the implementation.
It is called by discriminating functions whenever a sorted list of applicable
methods must be converted to an effective method.

Methods:

[Primary Method] compute-effective-method
(generic-function standard-generic-function) method-combination methods

This method computes the effective method according to the rules of the
method combination type implemented by method-combination.

This method can be overridden.

[Generic Function] compute-effective-slot-definition class name
direct-slot-definitions

Arguments:
The class argument is a class metaobject.
The name argument is a slot name.
The direct-slot-definitions argument is an ordered list of direct slot defini-

tion metaobjects. The most specific direct slot definition metaobject appears
first in the list.

1032 CHAPTER 30. METAOBJECT PROTOCOL

Values:
The value returned by this generic function is an effective slot definition

metaobject.
Purpose:
This generic function determines the effective slot definition for a slot in a

class. It is called by compute-slots once for each slot accessible in instances
of class.

This generic function uses the supplied list of direct slot definition
metaobjects to compute the inheritance of slot properties for a single slot.
The returned effective slot definition represents the result of computing the
inheritance. The name of the new effective slot definition is the same as the
name of the direct slot definitions supplied.

The class of the effective slot definition metaobject is determined by call-
ing effective-slot-definition-class. The effective slot definition is then created
by callingmake-instance. The initialization arguments passed in this call to
make-instance are used to initialize the new effective slot definition metaob-
ject. See section 30.2.4 for details.

Methods:

[Primary Method] compute-effective-slot-definition
(class standard-class) name direct-slot-definitions

This method implements the inheritance and defaulting of slot options
following the rules described in the section 28.1.3 of the CLOS Specification.

This method can be extended, but the value returned by the extending
method must be the value returned by this method.

[Primary Method] compute-effective-slot-definition
(class funcallable-standard-class) name direct-slot-definitions

This method implements the inheritance and defaulting of slot options
following the rules described in the section 28.1.3 of the CLOS Specification.

This method can be extended, but the value returned by the extending
method must be the value returned by this method.

[Generic Function] compute-slots class

Arguments:
The class argument is a class metaobject.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1033

Values:
The value returned is a set of effective slot definition metaobjects.
Purpose:
This generic function computes a set of effective slot definition metaob-

jects for the class class. The result is a list of effective slot definition metaob-
jects: one for each slot that will be accessible in instances of class.

This generic function proceeds in 3 steps:
The first step collects the full set of direct slot definitions from the super-

classes of class.
The direct slot definitions are then collected into individual lists, one list

for each slot name associated with any of the direct slot definitions. The
slot names are compared with eql. Each such list is then sorted into class
precedence list order. Direct slot definitions coming from classes earlier in the
class precedence list of class appear before those coming from classes later in
the class precedence list. For each slot name, the generic function compute-
effective-slot-definition is called to compute an effective slot definition.
The result of compute-slots is a list of these effective slot definitions, in
unspecified order.

In the final step, the location for each effective slot definition is set. This
is done by specified around-methods; portable methods cannot take over
this behavior. For more information on the slot definition locations, see the
section 30.1.5.

The list returned by this generic function will not be mutated by the
implementation. The results are undefined if a portable program mutates
the list returned by this generic function.

Methods:

[Primary Method] compute-slots (class standard-class)

This method implements the specified behavior of the generic function.
This method can be overridden.

[Primary Method] compute-slots (class funcallable-standard-class)

This method implements the specified behavior of the generic function.
This method can be overridden.

1034 CHAPTER 30. METAOBJECT PROTOCOL

[Around Method] compute-slots (class standard-class)

This method implements the specified behavior of computing and storing
slot locations. This method cannot be overridden.

[Around Method] compute-slots (class funcallable-standard-class)

This method implements the specified behavior of computing and storing
slot locations. This method cannot be overridden.

[Generic Function] direct-slot-definition-class class &rest initargs

Arguments:
The class argument is a class metaobject.
The initargs argument is a set of initialization arguments and values.
Values:
The value returned is a subclass of the class direct-slot-definition.
Purpose:
When a class is initialized, each of the canonicalized slot specifications

must be converted to a direct slot definition metaobject. This generic func-
tion is called to determine the class of that direct slot definition metaobject.

The initargs argument is simply the canonicalized slot specification for
the slot.

Methods:

[Primary Method] direct-slot-definition-class (class standard-class)
&rest initargs

This method returns the class standard-direct-slot-definition.
This method can be overridden.

[Primary Method] direct-slot-definition-class
(class funcallable-standard-class) &rest initargs

This method returns the class standard-direct-slot-definition.
This method can be overridden.

[Generic Function] effective-slot-definition-class class &rest initargs

Arguments:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1035

The class argument is a class metaobject.
The initargs argument is a set of initialization arguments and values.
Values:
The value returned is a subclass of the class effective-slot-definition.
Purpose:
This generic function is called by compute-effective-slot-definition to

determine the class of the resulting effective slot definition metaobject. The
initargs argument is the set of initialization arguments and values that will
be passed to make-instance when the effective slot definition metaobject is
created.

Methods:

[Primary Method] effective-slot-definition-class (class standard-class)
&rest initargs

This method returns the class standard-effective-slot-definition.
This method can be overridden.

[Primary Method] effective-slot-definition-class
(class funcallable-standard-class) &rest initargs

This method returns the class standard-effective-slot-definition.
This method can be overridden.

[Function] ensure-class name &key &allow-other-keys

Arguments:
The name argument is a symbol.
Some of the keyword arguments accepted by this function are actually

processed by ensure-class-using-class, others are processed during initial-
ization of the class metaobject (as described in the section 30.2.1).

Values:
The result is a class metaobject.
Purpose:
This function is called to define or redefine a class with the specified name,

and can be called by the user or the implementation. It is the functional
equivalent of defclass, and is called by the expansion of the defclass macro.

1036 CHAPTER 30. METAOBJECT PROTOCOL

The behavior of this function is actually implemented by the generic
function ensure-class-using-class. When ensure-class is called, it imme-
diately calls ensure-class-using-class and returns that result as its own.

The first argument to ensure-class-using-class is computed as follows:

• If name names a class (find-class returns a class when called with
name) use that class.

• Otherwise use nil.

The second argument is name. The remaining arguments are the com-
plete set of keyword arguments received by the ensure-class function.

[Generic Function] ensure-class-using-class class name &key
direct-default-initargs direct-slots direct-superclasses name metaclass
&allow-other-keys

Arguments:
The class argument is a class metaobject or nil.
The name argument is a class name.
The :metaclass argument is a class metaobject class or a class metaob-

ject class name. If this argument is not supplied, it defaults to the class
named standard-class. If a class name is supplied, it is interpreted as the
class with that name. If a class name is supplied, but there is no such class,
an error is signaled.

The :direct-superclasses argument is a list of which each element is a
class metaobject or a class name. An error is signaled if this argument is not
a proper list.

For the interpretation of additional keyword arguments, see section 30.2.1.
Values:
The result is a class metaobject.
Purpose:
This generic function is called to define or modify the definition of a

named class. It is called by the ensure-class function. It can also be called
directly.

The first step performed by this generic function is to compute the set
of initialization arguments which will be used to create or reinitialize the
named class. The initialization arguments are computed from the full set of
keyword arguments received by this generic function as follows:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1037

• The :metaclass argument is not included in the initialization argu-
ments.

• If the :direct-superclasses argument was received by this generic
function, it is converted into a list of class metaobjects. This conver-
sion does not affect the structure of the supplied :direct-superclasses
argument. For each element in the :direct-superclasses argument:

– If the element is a class metaobject, that class metaobject is used.

– If the element names a class, that class metaobject is used.

– Otherwise an instance of the class forward-referenced-class is
created and used. The proper name of the newly created forward
referenced class metaobject is set to name.

• All other keyword arguments are included directly in the initialization
arguments.

If the class argument is nil, a new class metaobject is created by call-
ing the make-instance generic function with the value of the :metaclass
argument as its first argument, and the previously computed initialization
arguments. The proper name of the newly created class metaobject is set to
name. The newly created class metaobject is returned.

If the class argument is a forward referenced class, change-class is called
to change its class to the value specified by the :metaclass argument. The
class metaobject is then reinitialized with the previously computed initial-
ization arguments. (This is a documented violation of the general constraint
that change-class not be used with class metaobjects.)

If the class of the class argument is not the same as the class specified by
the :metaclass argument, an error is signaled.

Otherwise, the class metaobject class is redefined by calling the
reinitialize-instance generic function with class and the initialization ar-
guments. The class argument is then returned.

Methods:

[Primary Method] ensure-class-using-class (class class) name &key
metaclass direct-superclasses &allow-other-keys

This method implements the behavior of the generic function in the case
where the class argument is a class.

1038 CHAPTER 30. METAOBJECT PROTOCOL

This method can be overridden.

[Primary Method] ensure-class-using-class
(class forward-referenced-class) name &key metaclass direct-superclasses
&allow-other-keys

This method implements the behavior of the generic function in the case
where the class argument is a forward referenced class.

[Primary Method] ensure-class-using-class (class null) name &key
metaclass direct-superclasses &allow-other-keys

This method implements the behavior of the generic function in the case
where the class argument is nil.

[Function] ensure-generic-function function-name &key
&allow-other-keys

Arguments:
The function-name argument is a symbol or a list of the form (setf sym-

bol).
Some of the keyword arguments accepted by this function are actually

processed by ensure-generic-function-using-class, others are processed
during initialization of the generic function metaobject (as described in the
section 30.2.2).

Values:
The result is a generic function metaobject.
Purpose:
This function is called to define a globally named generic function or to

specify or modify options and declarations that pertain to a globally named
generic function as a whole. It can be called by the user or the implementa-
tion.

It is the functional equivalent of defgeneric, and is called by the expan-
sion of the defgeneric and defmethod macros.

The behavior of this function is actually implemented by the generic
function ensure-generic-function-using-class. When ensure-generic-
function is called, it immediately calls ensure-generic-function-using-
class and returns that result as its own.

The first argument to ensure-generic-function-using-class is com-
puted as follows:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1039

• If function-name names a non-generic function, a macro, or a special
operator, an error is signaled.

• If function-name names a generic function, that generic function
metaobject is used.

• Otherwise, nil is used.

The second argument is function-name. The remaining arguments are the
complete set of keyword arguments received by ensure-generic-function.

[Generic Function] ensure-generic-function-using-class
generic-function function-name &key argument-precedence-order
declarations documentation generic-function-class lambda-list method-class
method-combination name &allow-other-keys

Arguments:
The generic-function argument is a generic function metaobject or nil.
The function-name argument is a symbol or a list of the form (setf sym-

bol).
The :generic-function-class argument is a class metaobject or a class

name. If it is not supplied, it defaults to the class named standard-generic-
function. If a class name is supplied, it is interpreted as the class with that
name. If a class name is supplied, but there is no such class, an error is
signaled.

For the interpretation of additional keyword arguments, see section 30.2.2.
Values:
The result is a generic function metaobject.
Purpose:
The generic function ensure-generic-function-using-class is called to

define or modify the definition of a globally named generic function. It
is called by the ensure-generic-function function. It can also be called
directly.

The first step performed by this generic function is to compute the set of
initialization arguments which will be used to create or reinitialize the glob-
ally named generic function. These initialization arguments are computed
from the full set of keyword arguments received by this generic function as
follows:

1040 CHAPTER 30. METAOBJECT PROTOCOL

• The :generic-function-class argument is not included in the initial-
ization arguments.

• If the :method-class argument was received by this generic function,
it is converted into a class metaobject. This is done by looking up
the class name with find-class. If there is no such class, an error is
signalled.

• All other keyword arguments are included directly in the initialization
arguments.

If the generic-function argument is nil, an instance of the class specified by
the :generic-function-class argument is created by calling make-instance
with the previously computed initialization arguments. The function name
function-name is set to name the generic function. The newly created generic
function metaobject is returned.

If the class of the generic-function argument is not the same as the class
specified by the :generic-function-class argument, an error is signaled.

Otherwise the generic function generic-function is redefined by calling
the reinitialize-instance generic function with generic-function and the
initialization arguments. The generic-function argument is then returned.

Methods:

[Primary Method] ensure-generic-function-using-class
(generic-function generic-function) function-name &key
generic-function-class &allow-other-keys

This method implements the behavior of the generic function in the case
where function-name names an existing generic function.

This method can be overridden.

[Primary Method] ensure-generic-function-using-class
(generic-function null) function-name &key generic-function-class
&allow-other-keys

This method implements the behavior of the generic function in the case
where function-name names no function, generic function, macro or special
operator.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1041

[Function] eql-specializer-object eql-specializer

Arguments:
The eql-specializer argument is an eql specializer metaobject.
Values:
The value returned by this function is an object.
Purpose:
This function returns the object associated with eql-specializer during

initialization. The value is guaranteed to be eql to the value originally passed
to intern-eql-specializer, but it is not necessarily eq to that value.

This function signals an error if eql-specializer is not an eql specializer.

[Function] extract-lambda-list specialized-lambda-list

Arguments:
The specialized-lambda-list argument is a specialized lambda list as ac-

cepted by def-method.
Values:
The result is an unspecialized lambda list.
Purpose:
This function takes a specialized lambda list and returns the lambda list

with the specializers removed. This is a non-destructive operation. Whether
the result shares any structure with the argument is unspecified.

If the specialized-lambda-list argument does not have legal syntax, an
error is signaled. This syntax checking does not check the syntax of the
actual specializer names, only the syntax of the lambda list and where the
specializers appear.

Examples:

(extract-lambda-list ’((p position))) ≡ (P)

(extract-lambda-list ’((p position) x y)) ≡ (P X Y)

(extract-lambda-list ’(a (b (eql x)) c &rest i)) ≡ (A B C &OPTIONAL I)

[Function] extract-specializer-names specialized-lambda-list

Arguments:

1042 CHAPTER 30. METAOBJECT PROTOCOL

The specialized-lambda-list argument is a specialized lambda list as ac-
cepted by def-method.

Values:
The result is a list of specializer names.
Purpose:
This function takes a specialized lambda list and returns its specializer

names. This is a non-destructive operation. Whether the result shares struc-
ture with the argument is unspecified. The results are undefined if the result
of this function is modified.

The result of this function will be a list with a number of elements equal
to the number of required arguments in specialized-lambda-list. Specializers
are defaulted to the symbol t.

If the specialized-lambda-list argument does not have legal syntax, an
error is signaled. This syntax checking does not check the syntax of the
actual specializer names, only the syntax of the lambda list and where the
specializers appear.

Examples:

(extract-specializer-names ’((p position))) ⇒ (POSITION)

(extract-specializer-names ’((p position) x y)) ⇒ (POSITION T T)

(extract-specializer-names ’(a (b (eql x)) c &rest i)) ⇒(T (EQL X) T)

[Generic Function] finalize-inheritance class

Arguments:
The class argument is a class metaobject.
Values:
The value returned by this generic function is unspecified.
Purpose:
This generic function is called to finalize a class metaobject. This is

described in the section 30.1.5.
After finalize-inheritance returns, the class metaobject is finalized and

the result of calling class-finalized-p on the class metaobject will be true.
Methods:

[Primary Method] finalize-inheritance (class standard-class)

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1043

[Primary Method] finalize-inheritance (class funcallable-standard-class)

No behavior is specified for these methods beyond that which is specified
for the generic function.

[Primary Method] finalize-inheritance (class forward-referenced-class)

This method signals an error.

[Generic Function] find-method-combination generic-function
method-combination-type-name method-combination-options

Arguments:
The generic-function argument is a generic function metaobject.
The method-combination-type-name argument is a symbol which names

a type of method combination.
The method-combination-options argument is a list of arguments to the

method combination type.
Values:
The value returned by this generic function is a method combination

metaobject.
Purpose:
This generic function is called to determine the method combination ob-

ject used by a generic function.
Notes:
Further details of method combination metaobjects are not specified.

[Function] funcallable-standard-instance-access instance location

Arguments:
The instance argument is an object.
The location argument is a slot location.
Values:
The result of this function is an object.
Purpose:
This function is called to provide direct access to a slot in an instance.

By usurping the normal slot lookup protocol, this function is intended to
provide highly optimized access to the slots associated with an instance.

The following restrictions apply to the use of this function:

1044 CHAPTER 30. METAOBJECT PROTOCOL

• The instance argument must be a funcallable instance (it must have
been returned by allocate-instance (funcallable-standard-class)).

• The instance argument cannot be an non-updated obsolete instance.

• The location argument must be a location of one of the directly acces-
sible slots of the instance’s class.

• The slot must be bound.

The results are undefined if any of these restrictions are not met.

[Generic Function] generic-function-argument-precedence-order
[Generic Function] generic-function-declarations
[Generic Function] generic-function-lambda-list
[Generic Function] generic-function-method-combination
[Generic Function] generic-function-methods
[Generic Function] generic-function-name

The following generic functions are described together under sec-
tion 30.2.6: generic-function-argument-precedence-order, generic-function-
declarations, generic-function-lambda-list, generic-function-method-class,
generic-function-method-combination, generic-function-methods and
generic-function-name.

30.2.1 Initialization of Class Metaobjects

A class metaobject can be created by calling make-instance. The initializa-
tion arguments establish the definition of the class. A class metaobject can
be redefined by calling reinitialize-instance. Some classes of class metaob-
ject do not support redefinition; in these cases, reinitialize-instance signals
an error.

Initialization of a class metaobject must be done by calling make-
instance and allowing it to call initialize-instance. Reinitialization of
a class metaobject must be done by calling reinitialize-instance. Portable
programs must not call initialize-instance directly to initialize a class metaob-
ject. Portable programs must not call shared-initialize directly to initialize
or reinitialize a class metaobject. Portable programs must not call change-
class to change the class of any class metaobject or to turn a non-class object
into a class metaobject.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1045

Since metaobject classes may not be redefined, no behavior is specified
for the result of calls to update-instance-for-redefined-class on class
metaobjects. Since the class of class metaobjects may not be changed, no be-
havior is specified for the result of calls to update-instance-for-different-
class on class metaobjects.

During initialization or reinitialization, each initialization argument is
checked for errors and then associated with the class metaobject. The value
can then be accessed by calling the appropriate accessor as shown in ta-
ble 30.2.

This section begins with a description of the error checking and process-
ing of each initialization argument. This is followed by a table showing the
generic functions that can be used to access the stored initialization argu-
ments. Initialization behavior specific to the different specified class metaob-
ject classes comes next. The section ends with a set of restrictions on portable
methods affecting class metaobject initialization and reinitialization.

In these descriptions, the phrase “this argument defaults to value” means
that when that initialization argument is not supplied, initialization or reini-
tialization is performed as if value had been supplied. For some initializa-
tion arguments this could be done by the use of default initialization argu-
ments, but whether it is done this way is not specified. Implementations are
free to define default initialization arguments for specified class metaobject
classes. Portable programs are free to define default initialization arguments
for portable subclasses of the class class.

Unless there is a specific note to the contrary, then during reinitialization,
if an initialization argument is not supplied, the previously stored value is
left unchanged.

• The :direct-default-initargs argument is a list of canonicalized de-
fault initialization arguments.

An error is signaled if this value is not a proper list, or if any element
of the list is not a canonicalized default initialization argument.

If the class metaobject is being initialized, this argument defaults to
the empty list.

• The :direct-slots argument is a list of canonicalized slot specifications.

An error is signaled if this value is not a proper list or if any element
of the list is not a canonicalized slot specification.

1046 CHAPTER 30. METAOBJECT PROTOCOL

After error checking, this value is converted to a list of direct slot def-
inition metaobjects before it is associated with the class metaobject.
Conversion of each canonicalized slot specification to a direct slot def-
inition metaobject is a two-step process. First, the generic function
direct-slot-definition-class is called with the class metaobject and
the canonicalized slot specification to determine the class of the new di-
rect slot definition metaobject; this permits both the class metaobject
and the canonicalized slot specification to control the resulting direct
slot definition metaobject class. Second, make-instance is applied to
the direct slot definition metaobject class and the canonicalized slot
specification. This conversion could be implemented as shown in the
following code:

(defun convert-to-direct-slot-definition (class canonicalized-slot)
(apply #’make-instance

(apply #’direct-slot-definition-class
class canonicalized-slot)

canonicalized-slot))

If the class metaobject is being initialized, this argument defaults to
the empty list.

Once the direct slot definition metaobjects have been created, the spec-
ified reader and writer methods are created. The generic functions
reader-method-class and writer-method-class are called to deter-
mine the classes of the method metaobjects created.

• The :direct-superclasses argument is a list of class metaobjects.
Classes which do not support multiple inheritance signal an error if
the list contains more than one element.

An error is signaled if this value is not a proper list or if validate-
superclass applied to class and any element of this list returns false.

When the class metaobject is being initialized, and this argument is ei-
ther not supplied or is the empty list, this argument defaults as follows:
if the class is an instance of standard-class or one of its subclasses
the default value is a list of the class standard-object; if the class
is an instance of funcallable-standard-class or one of its subclasses
the default value is list of the class funcallable-standard-object.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1047

After any defaulting of the value, the generic function add-direct-
subclass is called once for each element of the list.

When the class metaobject is being reinitialized and this argument is
supplied, the generic function remove-direct-subclass is called once
for each class metaobject in the previously stored value but not in the
new value; the generic function add-direct-subclass is called once for
each class metaobject in the new value but not in the previously stored
value.

• The :documentation argument is a string or nil.

An error is signaled if this value is not a string or nil.

If the class metaobject is being initialized, this argument defaults to
nil.

• The :name argument is an object.

If the class is being initialized, this argument defaults to nil.

After the processing and defaulting of initialization arguments described
above, the value of each initialization argument is associated with the class
metaobject. These values can then be accessed by calling the corresponding
generic function. The correspondences are as follows:

Instances of the class standard-class support multiple inheritance and
reinitialization. Instances of the class funcallable-standard-class support
multiple inheritance and reinitialization. For forward referenced classes, all
of the initialization arguments default to nil.

Since built-in classes cannot be created or reinitialized by the user, an
error is signaled if initialize-instance or reinitialize-instance are called
to initialize or reinitialize a derived instance of the class built-in-class.

Methods:
It is not specified which methods provide the initialization and reinitial-

ization behavior described above. Instead, the information needed to allow
portable programs to specialize this behavior is presented as a set of restric-
tions on the methods a portable program can define. The model is that
portable initialization methods have access to the class metaobject when
either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can de-
fine on the generic functions initialize-instance, reinitialize-instance, and

1048 CHAPTER 30. METAOBJECT PROTOCOL

shared-initialize. These restrictions apply only to methods on these generic
functions for which the first specializer is a subclass of the class class. Other
portable methods on these generic functions are not affected by these restric-
tions.

• Portable programs must not define methods on shared-initialize.

• For initialize-instance and reinitialize-instance:

– Portable programs must not define primary methods.

– Portable programs may define around-methods, but these must
be extending, not overriding methods.

– Portable before-methods must assume that when they are run,
none of the initialization behavior described above has been com-
pleted.

– Portable after-methods must assume that when they are run, all
of the initialization behavior described above has been completed.
The results are undefined if any of these restrictions are violated.

30.2.2 Initialization of Generic Function Metaobjects

A generic function metaobject can be created by calling make-instance.
The initialization arguments establish the definition of the generic func-
tion. A generic function metaobject can be redefined by calling reinitialize-
instance. Some classes of generic function metaobject do not support redef-
inition; in these cases, reinitialize-instance signals an error.

Initialization of a generic function metaobject must be done by calling
make-instance and allowing it to call initialize-instance. Reinitializa-
tion of a generic-function metaobject must be done by calling reinitialize-
instance. Portable programs must not call initialize-instance directly
to initialize a generic function metaobject. Portable programs must not
call shared-initialize directly to initialize or reinitialize a generic function
metaobject. Portable programs must not call change-class to change the
class of any generic function metaobject or to turn a non-generic-function
object into a generic function metaobject.

Since metaobject classes may not be redefined, no behavior is specified
for the result of calls to update-instance-for-redefined-class on generic

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1049

function metaobjects. Since the class of a generic function metaobject may
not be changed, no behavior is specified for the results of calls to update-
instance-for-different-class on generic function metaobjects.

During initialization or reinitialization, each initialization argument is
checked for errors and then associated with the generic function metaobject.
The value can then be accessed by calling the appropriate accessor as shown
in table 30.3.

This section begins with a description of the error checking and pro-
cessing of each initialization argument. This is followed by a table showing
the generic functions that can be used to access the stored initialization ar-
guments. The section ends with a set of restrictions on portable methods
affecting generic function metaobject initialization and reinitialization.

In these descriptions, the phrase “this argument defaults to value” means
that when that initialization argument is not supplied, initialization or reini-
tialization is performed as if value had been supplied. For some initialization
arguments this could be done by the use of default initialization arguments,
but whether it is done this way is not specified. Implementations are free to
define default initialization arguments for specified generic function metaob-
ject classes. Portable programs are free to define default initialization argu-
ments for portable subclasses of the class generic-function.

Unless there is a specific note to the contrary, then during reinitialization,
if an initialization argument is not supplied, the previously stored value is
left unchanged.

• The :argument-precedence-order argument is a list of symbols.

An error is signaled if this argument appears but the :lambda-list
argument does not appear. An error is signaled if this value is not a
proper list or if this value is not a permutation of the symbols from the
required arguments part of the :lambda-list initialization argument.

When the generic function is being initialized or reinitialized, and this
argument is not supplied, but the :lambda-list argument is supplied,
this value defaults to the symbols from the required arguments part
of the :lambda-list argument, in the order they appear in that argu-
ment. If neither argument is supplied, neither are initialized (see the
description of :lambda-list.)

• The :declarations argument is a list of declarations.

1050 CHAPTER 30. METAOBJECT PROTOCOL

An error is signaled if this value is not a proper list or if each of its
elements is not a legal declaration.

When the generic function is being initialized, and this argument is not
supplied, it defaults to the empty list.

• The :documentation argument is a string or nil.

An error is signaled if this value is not a string or nil.

If the generic function is being initialized, this argument defaults to
nil.

• The :lambda-list argument is a lambda list.

An error is signaled if this value is not a proper generic function lambda
list.

When the generic function is being initialized, and this argument is
not supplied, the generic function’s lambda list is not initialized. The
lambda list will be initialized later, either when the first method is
added to the generic function, or a later reinitialization of the generic
function.

• The :method-combination argument is a method combination
metaobject.

• The :method-class argument is a class metaobject.

An error is signaled if this value is not a subclass of the class method.

When the generic function is being initialized, and this argument is not
supplied, it defaults to the class standard-method.

• The :name argument is an object.

If the generic function is being initialized, this argument defaults to
nil.

After the processing and defaulting of initialization arguments described
above, the value of each initialization argument is associated with the generic
function metaobject. These values can then be accessed by calling the cor-
responding generic function. The correspondences are as follows:

Methods:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1051

It is not specified which methods provide the initialization and reinitial-
ization behavior described above. Instead, the information needed to allow
portable programs to specialize this behavior is presented as a set of restric-
tions on the methods a portable program can define. The model is that
portable initialization methods have access to the generic function metaob-
ject when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can de-
fine on the generic functions initialize-instance, reinitialize-instance, and
shared-initialize. These restrictions apply only to methods on these generic
functions for which the first specializer is a subclass of the class generic-
function. Other portable methods on these generic functions are not af-
fected by these restrictions.

• Portable programs must not define methods on shared-initialize.

• For initialize-instance and reinitialize-instance:

– Portable programs must not define primary methods.

– Portable programs may define around-methods, but these must
be extending, not overriding methods.

– Portable before-methods must assume that when they are run,
none of the initialization behavior described above has been com-
pleted.

– Portable after-methods must assume that when they are run, all
of the initialization behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

30.2.3 Initialization of Method Metaobjects

A method metaobject can be created by callingmake-instance. The initial-
ization arguments establish the definition of the method. A method metaob-
ject cannot be redefined; calling reinitialize-instance signals an error.

Initialization of a method metaobject must be done by calling make-
instance and allowing it to call initialize-instance. Portable programs
must not call initialize-instance directly to initialize a method metao-
ject. Portable programs must not call shared-initialize directly to initialize
a method metaobject. Portable programs must not call change-class to

1052 CHAPTER 30. METAOBJECT PROTOCOL

change the class of any method metaobject or to turn a non-method object
into a method metaobject.

Since metaobject classes may not be redefined, no behavior is specified
for the result of calls to update-instance-for-redefined-class on method
metaobjects. Since the class of a method metaobject cannot be changed,
no behavior is specified for the result of calls to update-instance-for-
different-class on method metaobjects.

During initialization, each initialization argument is checked for errors
and then associated with the method metaobject. The value can then be
accessed by calling the appropriate accessor as shown in table 30.4.

This section begins with a description of the error checking and pro-
cessing of each initialization argument. This is followed by a table showing
the generic functions that can be used to access the stored initialization ar-
guments. The section ends with a set of restrictions on portable methods
affecting method metaobject initialization.

In these descriptions, the phrase “this argument defaults to value” means
that when that initialization argument is not supplied, initialization is per-
formed as if value had been supplied. For some initialization arguments this
could be done by the use of default initialization arguments, but whether it
is done this way is not specified. Implementations are free to define default
initialization arguments for specified method metaobject classes. Portable
programs are free to define default initialization arguments for portable sub-
classes of the class method.

• The :qualifiers argument is a list of method qualifiers. An error is
signaled if this value is not a proper list, or if any element of the list is
not a non-null atom. This argument defaults to the empty list.

• The :lambda-list argument is the unspecialized lambda list of the
method. An error is signaled if this value is not a proper lambda list.
If this value is not supplied, an error is signaled.

• The :specializers argument is a list of the specializer metaobjects for
the method. An error is signaled if this value is not a proper list, or
if the length of the list differs from the number of required arguments
in the :lambda-list argument, or if any element of the list is not a
specializer metaobject. If this value is not supplied, an error is signaled.

• The :function argument is a method function. It must be compati-
ble with the methods on compute-effective-method defined for this

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1053

class of method and generic function with which it will be used. That
is, it must accept the same number of arguments as all uses of call-
method that will call it supply. (See compute-effective-method for
more information.) An error is signaled if this argument is not supplied.

• When the method being initialized is an instance of a subclass of
standard-accessor-method, the :slot-definition initialization argu-
ment must be provided. Its value is the direct slot definition metaobject
which defines this accessor method. An error is signaled if the value is
not an instance of a subclass of direct-slot-definition.

• The :documentation argument is a string or nil. An error is signaled
if this value is not a string or nil. This argument defaults to nil.

After the processing and defaulting of initialization arguments described
above, the value of each initialization argument is associated with the method
metaobject. These values can then be accessed by calling the corresponding
generic function. The correspondences are as follows:

Methods:
It is not specified which methods provide the initialization behavior de-

scribed above. Instead, the information needed to allow portable programs
to specialize this behavior is presented in as a set of restrictions on the meth-
ods a portable program can define. The model is that portable initialization
methods have access to the method metaobject when either all or none of
the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define
on the generic functions initialize-instance, reinitialize-instance, and
shared-initialize. These restrictions apply only to methods on these generic
functions for which the first specializer is a subclass of the class method.
Other portable methods on these generic functions are not affected by these
restrictions.

• Portable programs must not define methods on shared-initialize or
reinitialize-instance.

• For initialize-instance:

– Portable programs must not define primary methods.
– Portable programs may define around-methods, but these must

be extending, not overriding methods.

1054 CHAPTER 30. METAOBJECT PROTOCOL

– Portable before-methods must assume that when they are run,
none of the initialization behavior described above has been com-
pleted.

– Portable after-methods must assume that when they are run, all
of the initialization behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

30.2.4 Initialization of Slot Definition Metaobjects

A slot definition metaobject can be created by calling make-instance. The
initialization arguments establish the definition of the slot definition. A slot
definition metaobject cannot be redefined; calling reinitialize-instance sig-
nals an error.

Initialization of a slot definition metaobject must be done by calling
make-instance and allowing it to call initialize-instance. Portable pro-
grams must not call initialize-instance directly to initialize a slot defini-
tion metaobject. Portable programs must not call shared-initialize directly
to initialize a slot definition metaobject. Portable programs must not call
change-class to change the class of any slot definition metaobject or to turn
a non-slot-definition object into a slot definition metaobject.

Since metaobject classes may not be redefined, no behavior is specified
for the result of calls to update-instance-for-redefined-class on slot defi-
nition metaobjects. Since the class of a slot definition metaobject cannot be
changed, no behavior is specified for the result of calls to update-instance-
for-different-class on slot definition metaobjects.

During initialization, each initialization argument is checked for errors
and then associated with the slot definition metaobject. The value can then
be accessed by calling the appropriate accessor as shown in table 30.5.

This section begins with a description of the error checking and process-
ing of each initialization argument. This is followed by a table showing the
generic functions that can be used to access the stored initialization argu-
ments.

In these descriptions, the phrase “this argument defaults to value” means
that when that initialization argument is not supplied, initialization is per-
formed as if value had been supplied. For some initialization arguments this
could be done by the use of default initialization arguments, but whether it is

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1055

done this way is not specified. Implementations are free to define default ini-
tialization arguments for specified slot definition metaobject classes. Portable
programs are free to define default initialization arguments for portable sub-
classes of the class slot-definition.

• The :name argument is a slot name. An error is signaled if this argu-
ment is not a symbol which can be used as a variable name. An error
is signaled if this argument is not supplied.

• The :initform argument is a form. The :initform argument defaults
to nil. An error is signaled if the :initform argument is supplied, but
the :initfunction argument is not supplied.

• The :initfunction argument is a function of zero arguments which,
when called, evaluates the :initform in the appropriate lexical envi-
ronment. The :initfunction argument defaults to false. An error is
signaled if the :initfunction argument is supplied, but the :initform
argument is not supplied.

• The :type argument is a type specifier name. An error is signaled
otherwise. The :type argument defaults to the symbol t.

• The :allocation argument is a symbol. An error is signaled otherwise.
The :allocation argument defaults to the symbol :instance.

• The :initargs argument is a list of symbols. An error is signaled if
this argument is not a proper list, or if any element of this list is not a
symbol. The :initargs argument defaults to the empty list.

• The :readers argument is a list of function names. An error is signaled
if it is not a proper list, or if any element is not a valid function name.
It defaults to the empty list. An error is signaled if this argument is
supplied and the metaobject is not a direct slot definition.

• The :writers argument is a list of function names. An error is signaled
if it is not a proper list, or if any element is not a valid function name.
It defaults to the empty list. An error is signaled if this argument is
supplied and the metaobject is not a direct slot definition.

• The :documentation argument is a string or nil. An error is signaled
otherwise. The :documentation argument defaults to nil.

1056 CHAPTER 30. METAOBJECT PROTOCOL

After the processing and defaulting of initialization arguments described
above, the value of each initialization argument is associated with the slot
definition metaobject. These values can then be accessed by calling the
corresponding generic function. The correspondences are as follows:

Methods:
It is not specified which methods provide the initialization and reinitial-

ization behavior described above. Instead, the information needed to allow
portable programs to specialize this behavior is presented as a set of restric-
tions on the methods a portable program can define. The model is that
portable initialization methods have access to the slot definition metaobject
when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can de-
fine on the generic functions initialize-instance, reinitialize-instance,
and shared-initialize. These restrictions apply only to methods on these
generic functions for which the first specializer is a subclass of the class
slot-definition. Other portable methods on these generic functions are not
affected by these restrictions.

• Portable programs must not define methods on shared-initialize or
reinitialize-instance.

• For initialize-instance:

– Portable programs must not define primary methods.

– Portable programs may define around-methods, but these must
be extending, not overriding methods.

– Portable before-methods must assume that when they are run,
none of the initialization behavior described above has been com-
pleted.

– Portable after-methods must assume that when they are run, all
of the initialization behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

[Function] intern-eql-specializer object

Arguments:
The object argument is any Lisp object.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1057

Values:
The result is the eql specializer metaobject for object.
Purpose:
This function returns the unique eql specializer metaobject for object,

creating one if necessary. Two calls to intern-eql-specializer with eql
arguments will return the same (i.e., eq) value.

Notes:
The result of calling eql-specializer-object on the result of a call to

intern-eql-special-izer is only guaranteed to be eql to the original object
argument, not necessarily eq.

[Generic Function] make-instance class &rest initargs

Arguments:
The class argument is a class metaobject or a class name.
The initargs argument is a list of alternating initialization argument

names and values.
Values:
The result is a newly allocated and initialized instance of class.
Purpose:
The generic function make-instance creates and returns a new instance

of the given class. Its behavior and use is described in the CLOS specification.
Methods:

[Primary Method] make-instance (class symbol) &rest initargs

This method simply invokes make-instance recursively on the argu-
ments (find-class class) and initargs.

[Primary Method] make-instance (class standard-class) &rest initargs
make-instance (class funcallable-standard-class) &rest initargs

These methods implement the behavior of make-instance described in
the CLOS specification section 28.1.9.

[Generic Function] make-method-lambda generic-function method
lambda-expression environment

Arguments:

1058 CHAPTER 30. METAOBJECT PROTOCOL

The generic-function argument is a generic function metaobject.
The method argument is a (possibly uninitialized) method metaobject.
The lambda-expression argument is a lambda expression.
The environment argument is the same as the &environment argument

to macro expansion functions.
Values:
This generic function returns two values. The first is a lambda expression,

the second is a list of initialization arguments and values.
Purpose:
This generic function is called to produce a lambda expression which

can itself be used to produce a method function for a method and generic
function with the specified classes. The generic function and method the
method function will be used with are not required to be the given ones.
Moreover, the method metaobject may be uninitialized.

Either the function compile, the special operator function or the func-
tion coerce must be used to convert the lambda expression to a method
function. The method function itself can be applied to arguments with ap-
ply or funcall.

When a method is actually called by an effective method, its first argu-
ment will be a list of the arguments to the generic function. Its remaining
arguments will be all but the first argument passed to call-method. By de-
fault, all method functions must accept two arguments: the list of arguments
to the generic function and the list of next methods.

For a given generic function and method class, the applicable methods on
make-method-lambda and compute-effective-method must be consis-
tent in the following way: each use of call-method returned by the method
on compute-effective-method must have the same number of arguments,
and the method lambda returned by the method onmake-method-lambda
must accept a corresponding number of arguments.

Note that the system-supplied implementation of call-next-method is
not required to handle extra arguments to the method function. Users who
define additional arguments to the method function must either redefine or
forego call-next-method. (See the example below.)

When the method metaobject is created with make-instance, the
method function must be the value of the :function initialization argument.
The additional initialization arguments, returned as the second value of this
generic function, must also be passed in this call to make-instance.

Methods:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1059

[Primary Method] make-method-lambda
(generic-function standard-generic-function) (method standard-method)
lambda-expression environment

This method returns a method lambda which accepts two arguments, the
list of arguments to the generic function, and the list of next methods. What
initialization arguments may be returned in the second value are unspecified.

This method can be overridden.

This example shows how to define a kind of method which, from within
the body of the method, has access to the actual method metaobject for
the method. This simplified code overrides whatever method combination is
specified for the generic function, implementing a simple method combination
supporting only primary methods, call-next-method and next-method-
p. (In addition, its a simplified version of call-next-method which does no
error checking.)

Notice that the extra lexical function bindings get wrapped around the
body before call-next-method is called. In this way, the user’s definition of
call-next-method and next-method-p are sure to override the system’s
definitions.

(defclass my-generic-function (standard-generic-function)
()

(:default-initargs :method-class (find-class ’my-method)))

(defclass my-method (standard-method) ())

1060 CHAPTER 30. METAOBJECT PROTOCOL

(defmethod make-method-lambda ((gf my-generic-function) (method my-method)
lambda-expression environment)

(declare (ignore environment))
‘(lambda (args next-methods this-method)
(,(call-next-method gf method

‘(lambda ,(cadr lambda-expression)
(flet ((this-method () this-method)
(call-next-method (&rest cnm-args)
(funcall (method-function (car next-methods))
(or cnm-args args) (cdr next-methods) (car next-methods)))

(next-method-p ()
(not (null next-methods))))

,@(cddr lambda-expression))) environment) args next-methods)))

(defmethod compute-effective-method ((gf my-generic-function)
method-combination methods)
‘(call-method ,(car methods) ,(cdr methods) ,(car methods)))

[Generic Function] map-dependents metaobject function

Arguments:
The metaobject argument is a class or generic function metaobject.
The function argument is a function which accepts one argument.
Values:
The value returned is unspecified.
Purpose:
This generic function applies function to each of the dependents of

metaobject. The order in which the dependents are processed is not speci-
fied, but function is applied to each dependent once and only once. If, during
the mapping, add-dependent or remove-dependent is called to alter the
dependents of metaobject, it is not specified whether the newly added or
removed dependent will have function applied to it.

Methods:

[Primary Method] map-dependents (metaobject standard-class) function

This method has no specified behavior beyond that which is specified for
the generic function.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1061

This method cannot be overridden unless the following methods are over-
ridden as well:

add-dependent (standard-class t)
remove-dependent (standard-class t)

[Primary Method] map-dependents
(metaobject funcallable-standard-class) function

This method has no specified behavior beyond that which is specified for
the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-dependent (funcallable-standard-class t) remove-dependent
(funcallable-standard-class t)

[Primary Method] map-dependents
(metaobject standard-generic-function) function

This method has no specified behavior beyond that which is specified for
the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-dependent (standard-generic-function t) remove-dependent
(standard-generic-function t)

Notes:
See the section 30.1.5 for remarks about the use of this facility.

[Generic Function] method-function
[Generic Function] method-generic-function
[Generic Function] method-lambda-list
[Generic Function] method-specializers
[Generic Function] method-qualifiers
[Generic Function] accessor-method-slot-definition

The following generic functions are described together under 30.2.6:
method-function, method-generic-function, method-lambda-list, method-
specializers, method-qualifiers and accessor-method-slot-definition.

1062 CHAPTER 30. METAOBJECT PROTOCOL

30.2.5 Readers for Class Metaobjects

In this and the immediately following sections, the “reader” generic functions
which simply return information associated with a particular kind of metaob-
ject are presented together. General information is presented first, followed
by a description of the purpose of each, and ending with the specified meth-
ods for these generic functions.

The reader generic functions which simply return information associated
with class metaobjects are presented together in this section.

Each of the reader generic functions for class metaobjects has the same
syntax, accepting one required argument called class, which must be an class
metaobject; otherwise, an error is signaled. An error is also signaled if the
class metaobject has not been initialized.

These generic functions can be called by the user or the implementation.
For any of these generic functions which returns a list, such lists will not

be mutated by the implementation. The results are undefined if a portable
program allows such a list to be mutated.

[Generic Function] class-default-initargs class

Returns a list of the default initialization arguments for class. Each ele-
ment of this list is a canonicalized default initialization argument. The empty
list is returned if class has no default initialization arguments.

During finalization finalize-inheritance calls compute-default-
initargs to compute the default initialization arguments for the class. That
value is associated with the class metaobject and is returned by class-
default-initargs.

This generic function signals an error if class has not been finalized.

[Generic Function] class-direct-default-initargs class

Returns a list of the direct default initialization arguments for class. Each
element of this list is a canonicalized default initialization argument. The
empty list is returned if class has no direct default initialization arguments.
This is the defaulted value of the :direct-default-initargs initialization
argument that was associated with the class during initialization or reinitial-
ization.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1063

[Generic Function] class-direct-slots class

Returns a set of the direct slots of class. The elements of this set are
direct slot definition metaobjects. If the class has no direct slots, the empty
set is returned. This is the defaulted value of the :direct-slots initializa-
tion argument that was associated with the class during initialization and
reinitialization.

[Generic Function] class-direct-subclasses class

Returns a set of the direct subclasses of class. The elements of this set
are class metaobjects that all mention this class among their direct super-
classes. The empty set is returned if class has no direct subclasses. This value
is maintained by the generic functions add-direct-subclass and remove-
direct-subclass.

[Generic Function] class-direct-superclasses class

Returns a list of the direct superclasses of class. The elements of this
list are class metaobjects. The empty list is returned if class has no direct
superclasses. This is the defaulted value of the :direct-superclasses initial-
ization argument that was associated with the class during initialization or
reinitialization.

[Generic Function] class-finalized-p class

Returns true if class has been finalized. Returns false otherwise. Also
returns false if the class has not been initialized.

[Generic Function] class-name class

Returns the name of class. This value can be any Lisp object, but is
usually a symbol, or nil if the class has no name. This is the defaulted value of
the :name initialization argument that was associated with the class during
initialization or reinitialization. (Also see (setf class-name).)

[Generic Function] class-precedence-list class

Returns the class precedence list of class. The elements of this list are
class metaobjects.

1064 CHAPTER 30. METAOBJECT PROTOCOL

During class finalization finalize-inheritance calls compute-class-
precedence-list to compute the class precedence list of the class. That value
is associated with the class metaobject and is returned by class-precedence-
list.

This generic function signals an error if class has not been finalized.

[Generic Function] class-prototype class

Returns a prototype instance of class. Whether the instance is initialized
is not specified. The results are undefined if a portable program modifies the
binding of any slot of prototype instance.

This generic function signals an error if class has not been finalized.

[Generic Function] class-slots class

Returns a possibly empty set of the slots accessible in instances of class.
The elements of this set are effective slot definition metaobjects.

During class finalization finalize-inheritance calls compute-slots to
compute the slots of the class. That value is associated with the class metaob-
ject and is returned by class-slots.

This generic function signals an error if class has not been finalized.
Methods:
The specified methods for the class metaobject reader generic functions

are presented below.
Each entry in the table indicates a method on one of the reader generic

functions, specialized to a specified class. The number in each entry is a
reference to the full description of the method. The full descriptions appear
after the table.

1. This method returns the value which was associated with the class
metaobject during initialization or reinitialization.

2. This method returns the value associated with the class metaob-
ject by finalize-inheritance (standard-class) or finalize-inheritance
(funcallable-standard-class).

3. This method signals an error.

4. This method returns the empty list.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1065

5. This method returns true.

6. This method returns false.

7. This method returns a value derived from the information in table 30.1,
except that implementation-specific modifications are permitted as de-
scribed in section 30.1.3.

8. This method returns the name of the built-in class.

9. This methods returns a value which is maintained by add-direct-
subclass (class class) and remove-direct-subclass (class class).
This method can be overridden only if those methods are overridden
as well.

10. No behavior is specified for this method beyond that specified for the
generic function.

30.2.6 Readers for Generic Function Metaobjects

The reader generic functions which simply return information associated with
generic function metaobjects are presented together in this section.

Each of the reader generic functions for generic function metaobjects has
the same syntax, accepting one required argument called generic-function,
which must be a generic function metaobject; otherwise, an error is signaled.
An error is also signaled if the generic function metaobject has not been
initialized.

These generic functions can be called by the user or the implementation.
The list returned by this generic function will not be mutated by the

implementation. The results are undefined if a portable program mutates
the list returned by this generic function.

[Generic Function] generic-function-argument-precedence-order
generic-function

Returns the argument precedence order of the generic function. This
value is a list of symbols, a permutation of the required parameters in
the lambda list of the generic function. This is the defaulted value of the
:argument-precedence-order initialization argument that was associated
with the generic function metaobject during initialization or reinitialization.

1066 CHAPTER 30. METAOBJECT PROTOCOL

[Generic Function] generic-function-declarations generic-function

Returns a possibly empty list of the declarations of the generic function.
The elements of this list are declarations. This list is the defaulted value
of the :declarations initialization argument that was associated with the
generic function metaobject during initialization or reinitialization.

[Generic Function] generic-function-lambda-list generic-function

Returns the lambda list of the generic function. This is the defaulted
value of the :lambda-list initialization argument that was associated with
the generic function metaobject during initialization or reinitialization. An
error is signaled if the lambda list has yet to be supplied.

[Generic Function] generic-function-method-class generic-function

Returns the default method class of the generic function. This class
must be a subclass of the class method. This is the defaulted value of the
:method-class initialization argument that was associated with the generic
function metaobject during initialization or reinitialization.

[Generic Function] generic-function-method-combination
generic-function

Returns the method combination of the generic function. This is a method
combination metaobject. This is the defaulted value of the :method-
combination initialization argument that was associated with the generic
function metaobject during initialization or reinitialization.

[Generic Function] generic-function-methods generic-function

Returns the set of methods currently connected to the generic function.
This is a set of method metaobjects. This value is maintained by the generic
functions add-method and remove-method.

[Generic Function] generic-function-name generic-function

Returns the name of the generic function, or nil if the generic function
has no name. This is the defaulted value of the :name initialization argument

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1067

that was associated with the generic function metaobject during initialization
or reinitialization. (Also see (setf generic-function-name).)

Methods:
The specified methods for the generic function metaobject reader generic

functions are presented below.

[Primary Method] generic-function-argument-precedence-order
(generic-function standard-generic-function)
[Primary Method] generic-function-declarations
(generic-function standard-generic-function)
[Primary Method] generic-function-lambda-list
(generic-function standard-generic-function)
[Primary Method] generic-function-method-class
(generic-function standard-generic-function)
[Primary Method] generic-function-method-combination
(generic-function standard-generic-function)
[Primary Method] generic-function-name
(generic-function standard-generic-function)

No behavior is specified for these methods beyond that which is specified
for their respective generic functions.

[Primary Method] generic-function-methods
(generic-function standard-generic-function)

No behavior is specified for this method beyond that which is specified
for their respective generic functions.

The value returned by this method is maintained by add-method
(standard-generic-function standard-method) and remove-method
(standard-generic-function standard-method).

30.2.7 Readers for Method Metaobjects

The reader generic functions which simply return information associated with
method metaobjects are presented together here in the format described
under section 30.2.5.

Each of these reader generic functions have the same syntax, accepting
one required argument called method, which must be a method metaob-

1068 CHAPTER 30. METAOBJECT PROTOCOL

ject; otherwise, an error is signaled. An error is also signaled if the method
metaobject has not been initialized.

These generic functions can be called by the user or the implementation.
For any of these generic functions which returns a list, such lists will not

be mutated by the implementation. The results are undefined if a portable
program allows such a list to be mutated.

[Generic Function] method-function method

Returns the method function of method. This is the defaulted value of
the :function initialization argument that was associated with the method
during initialization.

[Generic Function] method-generic-function method

Returns the generic function that method is currently connected to, or nil
if it is not currently connected to any generic function. This value is either
a generic function metaobject or nil. When a method is first created it is
not connected to any generic function. This connection is maintained by the
generic functions add-method and remove-method.

[Generic Function] method-lambda-list method

Returns the (unspecialized) lambda list of method. This value is a Com-
mon Lisp lambda list. This is the defaulted value of the :lambda-list initial-
ization argument that was associated with the method during initialization.

[Generic Function] method-specializers method

Returns a list of the specializers of method. This value is a list of special-
izer metaobjects. This is the defaulted value of the :specializers initializa-
tion argument that was associated with the method during initialization.

[Generic Function] method-qualifiers method

Returns a (possibly empty) list of the qualifiers of method. This value is
a list of non-nil atoms. This is the defaulted value of the :qualifiers initial-
ization argument that was associated with the method during initialization.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1069

[Generic Function] accessor-method-slot-definition method

This accessor can only be called on accessor methods. It returns the
direct slot definition metaobject that defined this method. This is the value
of the :slot-definition initialization argument associated with the method
during initialization.

Methods:
The specified methods for the method metaobject readers are presented

below.

[Primary Method] method-function (method standard-method)
[Primary Method] method-lambda-list (method standard-method)
[Primary Method] method-specializers (method standard-method)
[Primary Method] method-qualifiers (method standard-method)

No behavior is specified for these methods beyond that which is specified
for their respective generic functions.

[Primary Method] method-generic-function (method standard-method)

No behavior is specified for this method beyond that which is specified
for its generic function.

The value returned by this method is maintained by add-method
(standard-generic-function standard-method) and remove-method
(standard-generic-function standard-method).

[Primary Method] accessor-method-slot-definition
(method standard-accessor-method)

No behavior is specified for this method beyond that which is specified
for its generic function.

30.2.8 Readers for Slot Definition Metaobjects

The reader generic functions which simply return information associated
with slot definition metaobjects are presented together here in the format
described under section 30.2.5.

Each of the reader generic functions for slot definition metaobjects has
the same syntax, accepting one required argument called slot, which must be

1070 CHAPTER 30. METAOBJECT PROTOCOL

a slot definition metaobject; otherwise, an error is signaled. An error is also
signaled if the slot definition metaobject has not been initialized.

These generic functions can be called by the user or the implementation.
For any of these generic functions which returns a list, such lists will not

be mutated by the implementation. The results are undefined if a portable
program allows such a list to be mutated.

Generic Functions:

[Generic Function] slot-definition-allocation slot

Returns the allocation of slot. This is a symbol. This is the defaulted
value of the :allocation initialization argument that was associated with the
slot definition metaobject during initialization.

[Generic Function] slot-definition-initargs slot

Returns the set of initialization argument keywords for slot. This is the
defaulted value of the :initargs initialization argument that was associated
with the slot definition metaobject during initialization.

[Generic Function] slot-definition-initform slot

Returns the initialization form of slot. This can be any form. This is
the defaulted value of the :initform initialization argument that was asso-
ciated with the slot definition metaobject during initialization. When slot
has no initialization form, the value returned is unspecified (however, slot-
definition-initfunction is guaranteed to return nil).

[Generic Function] slot-definition-initfunction slot

Returns the initialization function of slot. This value is either a function
of no arguments, or nil, indicating that the slot has no initialization function.
This is the defaulted value of the :initfunction initialization argument that
was associated with the slot definition metaobject during initialization.

[Generic Function] slot-definition-name slot

Returns the name of slot. This value is a symbol that can be used as a
variable name. This is the value of the :name initialization argument that
was associated with the slot definition metaobject during initialization.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1071

[Generic Function] slot-definition-type slot

Returns the type of slot. This is a type specifier name. This is the
defaulted value of the :type initialization argument that was associated with
the slot definition metaobject during initialization.

Methods:
The specified methods for the slot definition metaobject readers are pre-

sented below.

[Primary Method] slot-definition-allocation
(slot-definition standard-slot-definition)
[Primary Method] slot-definition-initargs
(slot-definition standard-slot-definition)
[Primary Method] slot-definition-initform
(slot-definition standard-slot-definition)
[Primary Method] slot-definition-initfunction
(slot-definition standard-slot-definition)
[Primary Method] slot-definition-name
(slot-definition standard-slot-definition)
[Primary Method] slot-definition-type
(slot-definition standard-slot-definition)

No behavior is specified for these methods beyond that which is specified
for their respective generic functions.

Direct Slot Definition Metaobjects:
The following additional reader generic functions are defined for direct

slot definition metaobjects.

[Generic Function] slot-definition-readers direct-slot

Returns a (possibly empty) set of readers of the direct slot. This value
is a list of function names. This is the defaulted value of the :readers
initialization argument that was associated with the direct slot definition
metaobject during initialization.

[Generic Function] slot-definition-writers direct-slot

Returns a (possibly empty) set of writers of the direct slot. This value is a
list of function names. This is the defaulted value of the :writers initializa-

1072 CHAPTER 30. METAOBJECT PROTOCOL

tion argument that was associated with the direct slot definition metaobject
during initialization.

[Primary Method] slot-definition-readers
(direct-slot-definition standard-direct-slot-definition)
[Primary Method] slot-definition-writers
(direct-slot-definition standard-direct-slot-definition)

No behavior is specified for these methods beyond what is specified for
their generic functions.

Effective Slot Definition Metaobjects:
The following reader generic function is defined for effective slot definition

metaobjects.

[Generic Function] slot-definition-location effective-slot-definition

Returns the location of effective-slot-definition. The meaning and inter-
pretation of this value is described in the section 30.1.5.

[Primary Method] slot-definition-location
(effective-slot-definition standard-effective-slot-definition)

This method returns the value stored by

[Around Method] compute-slots (standard-class)
compute-slots (funcallable-standard-class)

Stub

[Generic Function] reader-method-class class direct-slot &rest initargs

Arguments:
The class argument is a class metaobject.
The direct-slot argument is a direct slot definition metaobject.
The initargs argument consists of alternating initialization argument

names and values.
Values:
The value returned is a class metaobject.
Purpose:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1073

This generic function is called to determine the class of reader methods
created during class initialization and reinitialization. The result must be a
subclass of standard-reader-method.

The initargs argument must be the same as will be passed to make-
instance to create the reader method. The initargs must include :slot-
definition with slot-definition as its value.

Methods:

[Primary Method] reader-method-class (class standard-class)
(direct-slot standard-direct-slot-definition) &rest initargs
[Primary Method] reader-method-class (class funcallable-standard-class)
(direct-slot standard-direct-slot-definition) &rest initargs

These methods return the class standard-reader-method. These meth-
ods can be overridden.

[Generic Function] remove-dependent metaobject dependent

Arguments:
The metaobject argument is a class or generic function metaobject.
The dependent argument is an object.
Values:
The value returned by this generic function is unspecified.
Purpose:
This generic function removes dependent from the dependents of metaob-

ject. If dependent is not one of the dependents of metaobject, no error is
signaled.

The generic function map-dependents can be called to access the set
of dependents of a class or generic function. The generic function add-
dependent can be called to add an object from the set of dependents of a
class or generic function. The effect of calling add-dependent or remove-
dependent while a call to map-dependents on the same class or generic
function is in progress is unspecified.

The situations in which remove-dependent is called are not specified.
Methods:

1074 CHAPTER 30. METAOBJECT PROTOCOL

[Primary Method] remove-dependent (class standard-class) dependent

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-dependent (standard-class t)
map-dependents (standard-class t)

[Primary Method] remove-dependent (class funcallable-standard-class)
dependent

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-dependent (funcallable-standard-class t)
map-dependents (funcallable-standard-class t)

[Primary Method] remove-dependent
(generic-function standard-generic-function) dependent

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-dependent (standard-generic-function t)
map-dependents (standard-generic-function t)

Notes:
See the section 30.1.5 for remarks about the use of this facility.

[Generic Function] remove-direct-method specializer method

Arguments:
The specializer argument is a specializer metaobject.
The method argument is a method metaobject.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1075

Values:
The value returned by remove-direct-method is unspecified.
Purpose:
This generic function is called to maintain a set of backpointers from a

specializer to the set of methods specialized to it. If method is in the set it
is removed. If it is not, no error is signaled.

This set can be accessed as a list by calling the generic function
specializer-direct-methods. Methods are added to the set by add-direct-
method.

The generic function remove-direct-method is called by remove-
method whenever a method is removed from a generic function. It is called
once for each of the specializers of the method. Note that in cases where
a specializer appears more than once in the specializers of a method, this
generic function will be called more than once with the same specializer as
argument.

The results are undefined if the specializer argument is not one of the
specializers of the method argument.

Methods:

[Primary Method] remove-direct-method (specializer class)
(method method)

This method implements the behavior of the generic function for class
specializers. No behavior is specified for this method beyond that which is
specified for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-direct-method (class method)
specializer-direct-generic-functions (class)
specializer-direct-methods (class)

[Primary Method] remove-direct-method (specializer eql-specializer)
(method method)

This method implements the behavior of the generic function for eql spe-
cializers. No behavior is specified for this method beyond that which is
specified for the generic function.

1076 CHAPTER 30. METAOBJECT PROTOCOL

[Generic Function] remove-direct-subclass superclass subclass

Arguments:
The superclass argument is a class metaobject.
The subclass argument is a class metaobject.
Values:
The value returned by this generic function is unspecified.
Purpose:
This generic function is called to maintain a set of backpointers from

a class to its direct subclasses. It removes subclass from the set of direct
subclasses of superclass. No error is signaled if subclass is not in this set.

Whenever a class is reinitialized, this generic function is called once with
each deleted direct superclass of the class.

Methods:

[Primary Method] remove-direct-subclass (superclass class)
(subclass class)

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-direct-subclass (class class)
class-direct-subclasses (class)

[Generic Function] remove-method generic-function method

Arguments:
The generic-function argument is a generic function metaobject.
The method argument is a method metaobject.
Values:
The generic-function argument is returned.
Purpose:
This generic function breaks the association between a generic function

and one of its methods.
No error is signaled if the method is not among the methods of the generic

function.
Breaking the association between the method and the generic function

proceeds in four steps:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1077

• (i) remove method from the set returned by generic-function-
methods and arrange for method-generic-function to return nil;

• (ii) call remove-direct-method for each of the method’s specializers;

• (iii) call compute-discriminating-function and install its result
with set-funcallable-instance-function;

• and (iv) update the dependents of the generic function.

The generic function remove-method can be called by the user or the
implementation.

Methods:

[Primary Method] remove-method generic-function
standard-generic-function) (method standard-method)

No behavior is specified for this method beyond that which is specified
for the generic function.

[Function] set-funcallable-instance-function funcallable-instance
function

Arguments:
The funcallable-instance argument is a funcallable instance (it must have

been returned by allocate-instance (funcallable-standard-class)).
The function argument is a function.
Values:
The value returned by this function is unspecified.
Purpose:
This function is called to set or to change the function of a funcallable in-

stance. After set-funcallable-instance-function is called, any subsequent
calls to funcallable-instance will run the new function.

[Function] (setf class-name) new-name class

Arguments:
The class argument is a class metaobject.
The new-name argument is any Lisp object.
Values:

1078 CHAPTER 30. METAOBJECT PROTOCOL

This function returns its new-name argument.
Purpose:
This function changes the name of class to new-name. This value is

usually a symbol, or nil if the class has no name.
This function works by calling reinitialize-instance with class as its

first argument, the symbol :name as its second argument and new-name as
its third argument.

[Function] (setf generic-function-name) new-name generic-function

Arguments:
The generic-function argument is a generic function metaobject.
The new-name argument is a function name or nil.
Values:
This function returns its new-name argument.
Purpose:
This function changes the name of generic-function to new-name. This

value is usually a function name (i.e., a symbol or a list of the form (setf
symbol)) or nil, if the generic function is to have no name.

This function works by calling reinitialize-instance with generic-
function as its first argument, the symbol :name as its second argument
and new-name as its third argument.

[Generic Function] (setf slot-value-using-class) new-value class object
slot

Arguments:
The new-value argument is an object.
The class argument is a class metaobject. It is the class of the object

argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.
Values:
This generic function returns the new-value argument.
Purpose:
The generic function (setf slot-value-using-class) implements the be-

havior of the (setf slot-value) function. It is called by (setf slot-value)
with the class of object as its second argument and the pertinent effective
slot definition metaobject as its fourth argument.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1079

The generic function (setf slot-value-using-class) sets the value con-
tained in the given slot of the given object to the given new value; any
previous value is lost.

The results are undefined if the class argument is not the class of the
object argument, or if the slot argument does not appear among the set of
effective slots associated with the class argument.

Methods:

[Primary Method] (setf slot-value-using-class) new-value
(class standard-class) object (slot standard-effective-slot-definition)
[Primary Method] (setf slot-value-using-class) new-value
(class funcallable-standard-class) object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for
slots with allocation :instance and :class. If the supplied slot has an allo-
cation other than :instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other
methods in the standard implementation of the slot access protocol.

[Primary Method] (setf slot-value-using-class) new-value
(class built-in-class) object slot

This method signals an error.

[Generic Function] slot-boundp-using-class class object slot

Arguments:
The class argument is a class metaobject. It is the class of the object

argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.
Values:
This generic function returns true or false.
Purpose:
This generic function implements the behavior of the slot-boundp func-

tion. It is called by slot-boundp with the class of object as its first argument
and the pertinent effective slot definition metaobject as its third argument.

1080 CHAPTER 30. METAOBJECT PROTOCOL

The generic function slot-boundp-using-class tests whether a specific
slot in an instance is bound.

The results are undefined if the class argument is not the class of the
object argument, or if the slot argument does not appear among the set of
effective slots associated with the class argument.

Methods:

[Primary Method] slot-boundp-using-class (class standard-class) object
(slot standard-effective-slot-definition)
[Primary Method] slot-boundp-using-class
(class funcallable-standard-class) object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for
slots with allocation :instance and :class. If the supplied slot has an allo-
cation other than :instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other
methods in the standard implementation of the slot access protocol.

[Primary Method] slot-boundp-using-class (class built-in-class) object
slot

This method signals an error.
Notes:
In cases where the class metaobject class does not distinguish unbound

slots, true should be returned.

[Generic Function] slot-definition-allocation
[Generic Function] slot-definition-initargs
[Generic Function] slot-definition-initform
[Generic Function] slot-definition-initfunction
[Generic Function] slot-definition-location
[Generic Function] slot-definition-name
[Generic Function] slot-definition-readers
[Generic Function] slot-definition-writers
[Generic Function] slot-definition-type

The following generic functions are described together under sec-
tion 30.2.8: slot-definition-allocation, slot-definition-initargs, slot-definition-

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1081

initform, slot-definition-initfunction, slot-definition-location, slot-definition-
name, slot-definition-readers, slot-definition-writers and slot-definition-type.

[Generic Function] slot-makunbound-using-class class object slot

Arguments:
The class argument is a class metaobject. It is the class of the object

argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.
Values:
This generic function returns its object argument.
Purpose:
This generic function implements the behavior of the slot-makunbound

function. It is called by slot-makunbound with the class of object as its
first argument and the pertinent effective slot definition metaobject as its
third argument.

The generic function slot-makunbound-using-class restores a slot in
an object to its unbound state. The interpretation of “restoring a slot to its
unbound state” depends on the class metaobject class.

The results are undefined if the class argument is not the class of the
object argument, or if the slot argument does not appear among the set of
effective slots associated with the class argument.

Methods:

[Primary Method] slot-makunbound-using-class (class standard-class)
object (slot standard-effective-slot-definition)
[Primary Method] slot-makunbound-using-class
(class funcallable-standard-class) object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for
slots with allocation :instance and :class. If the supplied slot has an allo-
cation other than :instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other
methods in the standard implementation of the slot access protocol.

1082 CHAPTER 30. METAOBJECT PROTOCOL

[Primary Method] slot-makunbound-using-class (class built-in-class)
object slot

This method signals an error.

[Generic Function] slot-value-using-class class object slot

Arguments:
The class argument is a class metaobject. It is the class of the object

argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.
Values:
The value returned by this generic function is an object.
Purpose:
This generic function implements the behavior of the slot-value function.

It is called by slot-value with the class of object as its first argument and
the pertinent effective slot definition metaobject as its third argument.

The generic function slot-value-using-class returns the value contained
in the given slot of the given object. If the slot is unbound slot-unbound
is called.

The results are undefined if the class argument is not the class of the
object argument, or if the slot argument does not appear among the set of
effective slots associated with the class argument.

Methods:

[Primary Method] slot-value-using-class (class standard-class) object
(slot standard-effective-slot-definition)
[Primary Method] slot-value-using-class
(class funcallable-standard-class) object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for
slots with allocation :instance and :class. If the supplied slot has an allo-
cation other than :instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other
methods in the standard implementation of the slot access protocol.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1083

[Primary Method] slot-value-using-class (class built-in-class) object slot

This method signals an error.

[Generic Function] specializer-direct-generic-functions specializer

Arguments:
The specializer argument is a specializer metaobject.
Values:
The result of this generic function is a possibly empty list of generic

function metaobjects.
Purpose:
This generic function returns the possibly empty set of those generic

functions which have a method with specializer as a specializer. The elements
of this set are generic function metaobjects. This value is maintained by the
generic functions add-direct-method and remove-direct-method.

Methods:

[Primary Method] specializer-direct-generic-functions
(specializer class)

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-direct-method (class method) remove-direct-method (class method)
specializer-direct-methods (class)

[Primary Method] specializer-direct-generic-functions
(specializer eql-specializer)

No behavior is specified for this method beyond that which is specified
for the generic function.

[Generic Function] specializer-direct-methods specializer

Arguments:
The specializer argument is a specializer metaobject.
Values:

1084 CHAPTER 30. METAOBJECT PROTOCOL

The result of this generic function is a possibly empty list of method
metaobjects.

Purpose:
This generic function returns the possibly empty set of those methods,

connected to generic functions, which have specializer as a specializer. The
elements of this set are method metaobjects. This value is maintained by
the generic functions add-direct-method and remove-direct-method.

Methods:

[Primary Method] specializer-direct-methods (specializer class)

No behavior is specified for this method beyond that which is specified
for the generic function.

This method cannot be overridden unless the following methods are over-
ridden as well:

add-direct-method (class method)
remove-direct-method (class method)
specializer-direct-generic-functions (class)

[Primary Method] specializer-direct-methods
(specializer eql-specializer)

No behavior is specified for this method beyond that which is specified
for the generic function.

[Function] standard-instance-access instance location

Arguments:
The instance argument is an object.
The location argument is a slot location.
Values:
The result of this function is an object.
Purpose:
This function is called to provide direct access to a slot in an instance.

By usurping the normal slot lookup protocol, this function is intended to
provide highly optimized access to the slots associated with an instance.

The following restrictions apply to the use of this function:

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1085

• The instance argument must be a standard instance (it must have been
returned by allocate-instance (standard-class)).

• The instance argument cannot be an non-updated obsolete instance.

• The location argument must be a location of one of the directly acces-
sible slots of the instance’s class.

• The slot must be bound.

The results are undefined if any of these restrictions are not met.

[Generic Function] update-dependent metaobject dependent &rest
initargs

Arguments:
The metaobject argument is a class or generic function metaobject. It is

the metaobject being reinitialized or otherwise modified.
The dependent argument is an object. It is the dependent being updated.
The initargs argument is a list of the initialization arguments for the

metaobject redefinition.
Values:
The value returned by update-dependent is unspecified.
Purpose:
This generic function is called to update a dependent of metaobject.
When a class or a generic function is reinitialized each of its dependents

is updated. The initargs argument to update-dependent is the set of ini-
tialization arguments received by reinitialize-instance.

When a method is added to a generic function, each of the generic func-
tion’s dependents is updated. The initargs argument is a list of two elements:
the symbol add-method, and the method that was added.

When a method is removed from a generic function, each of the generic
function’s dependents is updated. The initargs argument is a list of two
elements: the symbol remove-method, and the method that was removed.

In each case, map-dependents is used to call update-dependent on
each of the dependents. So, for example, the update of a generic function’s
dependents when a method is added could be performed by the following
code:

1086 CHAPTER 30. METAOBJECT PROTOCOL

(map-dependents generic-function
#’(lambda (dep)

(update-dependent generic-function
dep
’add-method
new-method

Methods:
There are no specified methods on this generic function.
Notes:
See the section 30.1.5 for remarks about the use of this facility.

[Generic Function] validate-superclass class superclass

Arguments:
The class argument is a class metaobject.
The superclass argument is a class metaobject.
Values:
This generic function returns true or false.
Purpose:
This generic function is called to determine whether the class superclass

is suitable for use as a superclass of class.
This generic function can be be called by the implementation or user code.

It is called during class metaobject initialization and reinitialization, before
the direct superclasses are stored. If this generic function returns false, the
initialization or reinitialization will signal an error.

Methods:

[Primary Method] validate-superclass (class class) (superclass class)

This method returns true in three situations:

• (i) If the superclass argument is the class named t,

• (ii) if the class of the class argument is the same as the class of the
superclass argument or

• (iii) if the classes one of the arguments is standard-class and the class
of the other is funcallable-standard-class.

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1087

In all other cases, this method returns false.
This method can be overridden.
Notes:
Defining a method on validate-superclass requires detailed knowledge

of of the internal protocol followed by each of the two class metaobject classes.
A method on validate-superclass which returns true for two different class
metaobject classes declares that they are compatible.

[Generic Function] writer-method-class class direct-slot &rest initargs

Arguments:
The class argument is a class metaobject.
The direct-slot argument is a direct slot definition metaobject.
The initargs argument is a list of initialization arguments and values.
Values:
The value returned is a class metaobject.
Purpose:
This generic function is called to determine the class of writer methods

created during class initialization and reinitialization. The result must be a
subclass of standard-writer-method.

The initargs argument must be the same as will be passed to make-
instance to create the reader method. The initargs must include :slot-
definition with slot-definition as its value.

Methods:

[Primary Method] writer-method-class (class standard-class)
(direct-slot standard-direct-slot-definition) &rest initargs
[Primary Method] writer-method-class (class funcallable-standard-class)
(direct-slot standard-direct-slot-definition) &rest initargs

These methods returns the class standard-writer-method. These
methods can be overridden.

1088 CHAPTER 30. METAOBJECT PROTOCOL

Table 30.1: Direct superclass relationships among the specified metaobject
classes

Metaobject Class Direct Superclasses
standard-object (t)
funcallable-standard-object (standard-object function)
metaobject (standard-object)
generic-function (metaobject funcallable-standard-object)
standard-generic-function (generic-function)
method (metaobject)
standard-method (method)
standard-accessor-method (standard-method)
standard-reader-method (standard-accessor-method)
standard-writer-method (standard-accessor-method)
method-combination (metaobject)
slot-definition (metaobject)
direct-slot-definition (slot-definition)
effective-slot-definition (slot-definition)
standard-slot-definition (slot-definition)
standard-direct-slot-definition (standard-slot-definition direct-slot-definition)
standard-effective-slot-definition (standard-slot-definition effective-slot-definition)
specializer (metaobject)
eql-specializer (specializer)
class (specializer)
built-in-class (class)
forward-referenced-class (class)
standard-class (class)
funcallable-standard-class (class)

The class of every class shown is standard-class except for the class t
which is an instance of the class built-in-class and the classes generic-
function and standard-generic-function which are instances of the class
funcallable-standard-class.
[Each class marked with a “*” is an abstract class and is not intended to be
instantiated. The results are undefined if an attempt is made to make an
instance of one of these classes with make-instance.]

30.2. GENERIC FUNCTIONS AND METHODS DICTIONARY 1089

Table 30.2: Initialization arguments and accessors for class metaobjects

Initialization Argument Generic Function
:direct-default-initargs class-direct-default-initargs
:direct-slots class-direct-slots
:direct-superclasses class-direct-superclasses
:documentation documentation
:name class-name

Table 30.3: Initialization arguments and accessors for generic function
metaobjects

Initialization Argument Generic Function
:argument-precedence-order generic-function-argument-precedence-order
:declarations generic-function-declarations
:documentation documentation
:lambda-list generic-function-lambda-list
:method-combination generic-function-method-combination
:method-class generic-function-method-class
:name generic-function-name

Table 30.4: Initialization arguments and accessors for method metaobjects

Initialization Argument Generic Function
:qualifiers method-qualifiers
:lambda-list method-lambda-list
:specializers method-specializers
:function method-function
:slot-definition accessor-method-slot-definition
:documentation documentation

1090 CHAPTER 30. METAOBJECT PROTOCOL

Table 30.5: Initialization arguments and accessors for slot definition metaob-
jects

Initialization Argument Generic Function
:name slot-definition-name
:initform slot-definition-initform
:initfunction slot-definition-initfunction
:type slot-definition-type
:allocation slot-definition-allocation
:initargs slot-definition-initargs
:readers slot-definition-readers
:writers slot-definition-writers
:documentation documentation

Table 30.6: Initialization arguments and accessors for slot definition metaob-
jects

standard-class and funcallable-standard-class forward-referenced-class built-in-class
class-default-initargs 2 3 4
class-direct-default-initargs 1 4 4
class-direct-slots 1 4 4
class-direct-subclasses 9 9 7
class-direct-superclasses 1 4 7
class-finalized-p 2 6 5
class-name 1 1 8
class-precedence-list 2 3 7
class-prototype 10 10 10
class-slots 2 3 4

Bibliography

[1] Adobe Systems Incorporated. PostScript Language Reference Manual.
Addison-Wesley (Reading, Massachusetts, 1985).

[2] Alberga, Cyril N., Bosman-Clark, Chris, Mikelsons, Martin,
Van Deusen, Mary S., and Padget, Julian. Experience with an un-
common Lisp. In Proc. 1986 ACM Conference on Lisp and Functional
Programming. ACM SIGPLAN/SIGACT/SIGART (Cambridge, Mas-
sachusetts, August 1986), 39–53.

[3] American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 edition. American National Standards Institute, Inc. (New
York, 1978).

[4] Bates, Raymond L., Dyer, David, and Feber, Mark. Recent develop-
ments in ISI-Interlisp. In Proc. 1984 ACM Symposium on Lisp and
Functional Programming. ACM SIGPLAN/SIGACT/SIGART (Austin,
Texas, August 1984), 129–139.

[5] Bobrow, Daniel G., DiMichiel, Linda G., Gabriel, Richard P., Keene,
Sonya E., Kiczales, Gregor, and Moon, David A. Common Lisp Object
System Specification: X3J13 Document 88-002R. SIGPLAN Notices 23
(September 1988).

[6] Bobrow, Daniel G., DiMichiel, Linda G., Gabriel, Richard P., Keene,
Sonya E., Kiczales, Gregor, and Moon, David A. Common Lisp Ob-
ject System specification: 1. Programmer interface concepts. Lisp and
Symbolic Computation 1, 3/4 (January 1989), 245–298.

[7] Bobrow, Daniel G., DiMichiel, Linda G., Gabriel, Richard P., Keene,
Sonya E., Kiczales, Gregor, and Moon, David A. Common Lisp Object

1091

1092 BIBLIOGRAPHY

System specification: 2. Functions in the programmer interface. Lisp
and Symbolic Computation 1, 3/4 (January 1989), 299–394.

[8] Bobrow, Daniel G., and Kiczales, Gregor. The Common Lisp Object
System metaobject kernel: A status report. In Proc. 1988 ACM Confer-
ence on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/
SIGART (Snowbird, Utah, July 1988), 309–315.

[9] Brooks, Rodney A., and Gabriel, Richard P. A critique of Common Lisp.
In Proc. 1984 ACM Symposium on Lisp and Functional Programming.
ACM SIGPLAN/SIGACT/SIGART (Austin, Texas, August 1984), 1–8.

[10] Brooks, Rodney A., Gabriel, Richard P., and Steele, Guy L., Jr. S-
1 Common Lisp implementation. In Proc. 1982 ACM Symposium on
Lisp and Functional Programming. ACM SIGPLAN/SIGACT/SIGART
(Pittsburgh, Pennsylvania, August 1982), 108–113.

[11] Brooks, Rodney A., Gabriel, Richard P., and Steele, Guy L., Jr. An op-
timizing compiler for lexically scoped lisp. In Proc. 1982 Symposium on
Compiler Construction. ACM SIGPLAN (Boston, June 1982), 261–275.
Proceedings published as ACM SIGPLAN Notices 17, 6 (June 1982).

[12] Clinger, William (ed.) The Revised Revised Report on Scheme; or, An
Uncommon Lisp. AI Memo 848. MIT Artificial Intelligence Laboratory
(Cambridge, Massachusetts, August 1985).

[13] Clinger, William (ed.) The Revised Revised Report on Scheme; or, An
Uncommon Lisp. Computer Science Department Technical Report 174.
Indiana University (Bloomington, Indiana, June 1985).

[14] Cody, William J., Jr., and Waite, William. Software Manual for the Ele-
mentary Functions. Prentice-Hall (Englewood Cliffs, New Jersey, 1980).

[15] Committee, ANSI X3J3. Draft proposed American National Standard
Fortran. ACM SIGPLAN Notices 11, 3 (March 1976).

[16] Coonen, Jerome T. Errata for “An implementation guide to a proposed
standard for floating-point arithmetic.” Computer 14, 3 (March 1981),
62. These are errata for [17].

BIBLIOGRAPHY 1093

[17] Coonen, Jerome T. An implementation guide to a proposed standard for
floating-point arithmetic. Computer 13, 1 (January 1980), 68–79. Errata
for this paper appeared as [16].

[18] DiMichiel, Linda G. Overview: The Common Lisp Object System. Lisp
and Symbolic Computation 1, 3/4 (January 1989), 227–244.

[19] Fateman, Richard J. Reply to an editorial. ACM SIGSAM Bulletin 25
(March 1973), 9–11.

[20] Goldberg, Adele, and Robson, David. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley (Reading, Massachusetts, 1983).

[21] Griss, Martin L., Benson, Eric, and Hearn, Anthony C. Current status of
a portable LISP compiler. In Proc. 1982 Symposium on Compiler Con-
struction. ACM SIGPLAN (Boston, June 1982), 276–283. Proceedings
published as ACM SIGPLAN Notices 17, 6 (June 1982).

[22] Harrenstien, Kenneth L. Time Server. Request for Comments (RFC) 738
(NIC 42218). ARPANET Network Working Group (October 1977).
Available from the ARPANET Network Information Center.

[23] IEEE Computer Society Standard Committee, Floating-Point Work-
ing Group, Microprocessor Standards Subcommittee. A proposed stan-
dard for binary floating-point arithmetic. Computer 14, 3 (March 1981),
51–62.

[24] ISO. Information Processing—Coded Character Sets for Text Communi-
cation, Part 2: Latin Alphabetic and Non-alphabetic Graphic Characters.
ISO (1983).

[25] Kahan, W. Branch cuts for complex elementary functions; or, Much ado
about nothing’s sign bit. In Iserles, A., and Powell, M. (eds.), The State
of the Art in Numerical Analysis. Clarendon Press (1987), 165–211.

[26] Keene, Sonya E.Object-Oriented Programming in Common Lisp: A Pro-
grammer’s Guide to CLOS. Addison-Wesley (Reading, Massachusetts,
1989).

[27] Knuth, Donald E. Seminumerical Algorithms. Volume 2 of The Art
of Computer Programming. Addison-Wesley (Reading, Massachusetts,
1969).

1094 BIBLIOGRAPHY

[28] Knuth, Donald E. The TEXbook. Volume A of Computers and Typeset-
ting. Addison-Wesley (Reading, Massachusetts, 1986).

[29] Knuth, Donald E. TEX: The Program. Volume B of Computers and
Typesetting. Addison-Wesley (Reading, Massachusetts, 1986).

[30] Lamport, Leslie. LATEX: A Document Preparation System. Addison-
Wesley (Reading, Massachusetts, 1986).

[31] Marti, J., Hearn, A. C., Griss, M. L., and Griss, C. Standard Lisp report.
ACM SIGPLAN Notices 14, 10 (October 1979), 48–68.

[32] McDonnell, E. E. The story of ◦. APL Quote Quad 8, 2 (December
1977), 48–54.

[33] Moon, David. MacLISP Reference Manual, Revision 0. MIT Project
MAC (Cambridge, Massachusetts, April 1974).

[34] Moon, David; Stallman, Richard; and Weinreb, Daniel. LISP Machine
Manual, Fifth Edition. MIT Artificial Intelligence Laboratory (Cam-
bridge, Massachusetts, January 1983).

[35] Padget, Julian, et al. Desiderata for the standardisation of Lisp. In
Proc. 1986 ACM Conference on Lisp and Functional Programming.
ACM SIGPLAN/SIGACT/SIGART (Cambridge, Massachusetts, Au-
gust 1986), 54–66.

[36] Penfield, Paul, Jr. Principal values and branch cuts in complex APL. In
APL 81 Conference Proceedings. ACM SIGAPL (San Francisco, Septem-
ber 1981), 248–256. Proceedings published as APL Quote Quad 12, 1
(September 1981).

[37] Pitman, Kent M. The Revised MacLISP Manual. MIT/LCS/TR 295.
MIT Laboratory for Computer Science (Cambridge, Massachusetts, May
1983).

[38] Pitman, Kent M. Exceptional Situations in Lisp. Working paper 268.
MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts).

[39] Queinnec, Christian, and Cointe, Pierre. An open-ended data represen-
tation model for EU_LISP. In Proc. 1988 ACM Conference on Lisp and

BIBLIOGRAPHY 1095

Functional Programming. ACM SIGPLAN/SIGACT/SIGART (Snow-
bird, Utah, July 1988), 298–308.

[40] Rees, Jonathan, Clinger, William, et al. Revised3 report on the algorith-
mic language Scheme. ACM SIGPLAN Notices 21, 12 (December 1986),
37–79.

[41] Reiser, John F. Analysis of Additive Random Number Generators. Tech-
nical Report STAN-CS-77-601. Stanford University Computer Science
Department (Palo Alto, California, March 1977).

[42] Roylance, Gerald. Expressing mathematical subroutines constructively.
In Proc. 1988 ACM Conference on Lisp and Functional Programming.
ACM SIGPLAN/SIGACT/SIGART (Snowbird, Utah, July 1988), 8–13.

[43] Steele, Guy L., Jr. An overview of Common Lisp. In Proc. 1982 ACM
Symposium on Lisp and Functional Programming. ACM SIGPLAN/
SIGACT/SIGART (Pittsburgh, Pennsylvania, August 1982), 98–107.

[44] Steele, Guy L., Jr., and Hillis, W. Daniel. Connection Machine Lisp:
Fine-grained parallel symbolic processing. In Proc. 1986 ACM Confer-
ence on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/
SIGART (Cambridge, Massachusetts, August 1986), 279–297.

[45] Steele, Guy Lewis, Jr. RABBIT: A Compiler for SCHEME (A Study
in Compiler Optimization). Technical Report 474. MIT Artificial Intel-
ligence Laboratory (Cambridge, Massachusetts, May 1978).

[46] Steele, Guy Lewis, Jr., and Sussman, Gerald Jay. The Revised Report on
SCHEME: A Dialect of LISP. AI Memo 452. MIT Artificial Intelligence
Laboratory (Cambridge, Massachusetts, January 1978).

[47] Suzuki, Norihisa. Analysis of pointer “rotation”. Communications of the
ACM 25, 5 (May 1982), 330–335.

[48] Swanson, Mark, Kessler, Robert, and Lindstrom, Gary. An implementa-
tion of Portable Standard Lisp on the BBN Butterfly. In Proc. 1988 ACM
Conference on Lisp and Functional Programming. ACM SIGPLAN/
SIGACT/SIGART (Snowbird, Utah, July 1988), 132–142.

1096 BIBLIOGRAPHY

[49] Symbolics, Inc. Signalling and Handling Conditions. (Cambridge, Mas-
sachusetts, 1983).

[50] Teitelman, Warren, et al. InterLISP Reference Manual. Xerox Palo Alto
Research Center (Palo Alto, California, 1978). Third revision.

[51] The Utah Symbolic Computation Group. The Portable Standard LISP
Users Manual. Technical Report TR-10. Department of Computer Sci-
ence, University of Utah (Salt Lake City, Utah, January 1982).

[52] Waters, Richard C. Optimization of Series Expressions, Part I: User’s
Manual for the Series Macro Package. AI Memo 1082. MIT Artificial
Intelligence Laboratory (Cambridge, Massachusetts, January 1989).

[53] Waters, Richard C. Optimization of Series Expressions, Part II:
Overview of the Theory and Implementation. AI Memo 1083. MIT Artifi-
cial Intelligence Laboratory (Cambridge, Massachusetts, January 1989).

[54] Waters, Richard C. XP: A Common Lisp Pretty Printing System. AI
Memo 1102. MIT Artificial Intelligence Laboratory (Cambridge, Mas-
sachusetts, March 1989).

[55] Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edi-
tion. MIT Artificial Intelligence Laboratory (Cambridge, Massachusetts,
July 1981).

[56] Wholey, Skef, and Fahlman, Scott E. The design of an instruction set for
Common Lisp. In Proc. 1984 ACM Symposium on Lisp and Functional
Programming. ACM SIGPLAN/SIGACT/SIGART (Austin, Texas, Au-
gust 1984), 150–158.

[57] Wholey, Skef, and Steele, Guy L., Jr. Connection Machine Lisp: A di-
alect of Common Lisp for data parallel programming. In Kartashev,
Lana P., and Kartashev, Steven I. (eds.), Proc. Second International
Conference on Supercomputing. Volume III. International Supercomput-
ing Institute (Santa Clara, California, May 1987), 45–54.

X3J13 VOTES 1097

X3J13 Votes

ADJUST-ARRAY-
DISPLACEMENT, 466

ADJUST-ARRAY-FILL-
POINTER, 465

ADJUST-ARRAY-NOT-
ADJUSTABLE, 451,
452, 460, 464, 465

ALLOW-LOCAL-INLINE, 240
APPLYHOOK-ENVIROMENT,

505, 506
ARGUMENTS-

UNDERSPECIFIED,
399, 443, 473, 564, 569

ARRAY-TYPE-ELEMENT-
TYPE-SEMANTICS, 54,
56, 57, 59, 99, 100, 450

CHARACTER-PROPOSAL, 131,
140, 278, 399, 469, 535,
556, 616

CLOS, 160, 482
CLOS-MACRO-COMPILATION,

718
CLOSE-CONSTRUCTED-

STREAM, 520
CLOSED-STREAM-

OPERATIONS, 519,
676, 678, 681–683, 691,
700

COLON-NUMBER, 542, 543
COMPILE-FILE-HANDLING-

OF-TOP-LEVEL-
FORMS, 715

COMPILE-FILE-PACKAGE, 705
COMPILE-FILE-SYMBOL-

HANDLING, 705, 720
COMPILER-DIAGNOSTICS,

704, 705
COMPILER-VERBOSITY, 694,

695, 704
COMPLEX-ATAN-BRANCH-

CUT, 312, 315
COMPLEX-RATIONAL-

RESULT, 303
CONDITION-RESTARTS, 971
CONSTANT-CIRCULAR-

COMPILATION, 120
CONSTANT-COLLAPSING, 722
CONSTANT-COMPILABLE-

TYPES, 120
CONSTANT-FUNCTION-

COMPILATION, 721
CONSTANT-MODIFICATION,

722
CONTAGION-ON-NUMERICAL-

COMPARISONS, 112,
293, 442

COPY-SYMBOL-COPY-PLIST,
255

COPY-SYMBOL-PRINT-NAME,
255

DATA-IO, 558, 563, 574–579, 602,
908

DATA-TYPES-HIERARCHY-
UNDERSPECIFIED, 490,
835, 922

DECLARATION-SCOPE, 228
DECLARE-ARRAY-

TYPE-ELEMENT-

1098 BIBLIOGRAPHY

REFERENCES, 56
DECLARE-FUNCTION-

AMBIGUITY, 237
DECLARE-TYPE-FREE, 228,

231, 233
DEFCONSTANT-SPECIAL, 90
DEFINE-COMPILER-MACRO,

213, 273
DEFINING-MACROS-NON-

TOP-LEVEL, 146, 150,
158, 216, 482

DEFMACRO-LAMBDA-LIST,
204

DEFSTRUCT-CONSTRUCTOR-
KEY-MIXTURE, 494

DEFSTRUCT-DEFAULT-
VALUE-EVALUATION,
485

DEFSTRUCT-PRINT-
FUNCTION-
INHERITANCE, 491

DEFSTRUCT-REDEFINITION,
483

DEFSTRUCT-SLOTS-
CONSTRAINTS-NAME,
481

DEFVAR-INIT-TIME, 89
DESCRIBE-UNDERSPECIFIED,

872, 898
DESTRUCTURING-BIND, 215
DO-SYMBOLS-DUPLICATES,

286, 287

EQUAL-STRUCTURE, 111
EVAL-WHEN-NON-TOP-

LEVEL, 216
EXIT-EXTENT, 194

FIXNUM-NON-PORTABLE, 379,

454
FLET-DECLARATIONS, 160
FLET-IMPLICIT-BLOCK, 146,

149, 214
FLOAT-UNDERFLOW, 292, 380
FORMAT-COLON-UPARROW-

SCOPE, 637
FORMAT-COMMA-INTERVAL,

613
FORMAT-E-EXPONENT-SIGN,

621
FORMAT-OP-C, 616
FORMAT-PRETTY-PRINT, 609,

617, 619, 621
FUNCTION-NAME, 118, 124,

131, 133, 237, 239, 883,
900

FUNCTION-TYPE, 55, 105, 120,
124, 151, 152, 178, 211,
394, 397, 505

FUNCTION-TYPE-
ARGUMENT-TYPE-
SEMANTICS, 236, 237

GENSYM-NAME-STICKINESS,
256

GET-MACRO-CHARACTER-
READTABLE, 571

GET-SETF-METHOD-
ENVIRONMENT, 144,
149–151

HASH-TABLE-ACCESS, 446
HASH-TABLE-PACKAGE-

GENERATORS, 445
HASH-TABLE-SIZE, 442, 443
HASH-TABLE-TESTS, 442

IEEE-ATAN-BRANCH-CUT, 305,

X3J13 VOTES 1099

307, 312–314
IN-PACKAGE-

FUNCTIONALITY,
717

IN-SYNTAX, 694, 706

LISP-SYMBOL-REDEFINITION,
273

LOAD-OBJECTS, 695, 722
LOAD-TRUENAME, 695, 707
LOCALLY-TOP-LEVEL, 91
LOOP-FACILITY, 739

MACRO-CACHING, 211
MACRO-ENVIRONMENT-

EXTENT, 204, 211, 212
MAPPING-DESTRUCTIVE-

INTERACTION, 174, 178,
183, 286–288, 401–403,
406, 408–410, 412, 413,
415, 416, 420, 431–437,
439, 440, 445, 504, 517,
518

MORE-CHARACTER-
PROPOSAL, 522, 683,
687, 693

NTH-VALUE, 188

OPTIMIZE-DEBUG-INFO, 240

PACKAGE-CLUTTER, 272
PACKAGE-FUNCTION-

CONSISTENCY, 262
PATHNAME-COMPONENT-

CASE, 652, 660, 678, 680,
681

PATHNAME-COMPONENT-
VALUE, 649, 658

PATHNAME-LOGICAL, 664, 677,
678, 684, 689–692, 694,
701, 705

PATHNAME-PRINT-READ, 560
PATHNAME-STREAM, 675–678,

681–683, 688, 690–692,
694, 700, 705

PATHNAME-SUBDIRECTORY-
LIST, 655, 681

PATHNAME-SYMBOL, 674, 676–
678, 681, 682

PATHNAME-SYNTAX-ERROR-
TIME, 680, 682

PATHNAME-UNSPECIFIC-
COMPONENT, 648

PATHNAME-WILD, 658, 677,
684, 688, 691, 692, 694,
705

PEEK-CHAR-READ-CHAR-
ECHO, 515, 593, 595,
597–599

PRETTY-PRINT-INTERFACE,
582, 602, 603, 628, 629,
636, 638, 642, 797

PRINC-CHARACTER, 603
PRINT-CASE-PRINT-ESCAPE-

INTERACTION, 575,
584

PRINT-CIRCLE-STRUCTURE,
491

PROCLAIM-ETC-IN-COMPILE-
FILE, 717

PROCLAIM-INLINE-WHERE,
238

PUSH-EVALUATION-ORDER,
138, 253, 301

QUOTE-SEMANTICS, 107, 119

1100 BIBLIOGRAPHY

RANGE-OF-COUNT-
KEYWORD, 405, 406,
408

RANGE-OF-START-AND-END-
PARAMETERS, 395

READ-CASE-SENSITIVITY,
535, 572, 575, 585

REDUCE-ARGUMENT-
EXTRACTION, 403

REMF-DESTRUCTION-
UNSPECIFIED, 251–253,
399, 407–409, 435–437

REQUIRE-PATHNAME-
DEFAULTS, 674

SEQUENCE-TYPE-LENGTH,
399–401, 416

SETF-MULTIPLE-STORE-
VARIABLES, 134–137

SETF-SUB-METHODS, 140
SHARPSIGN-PLUS-MINUS-

PACKAGE, 562
SPECIAL-TYPE-SHADOWING,

231
STANDARD-INPUT-INITIAL-

BINDING, 513
STREAM-ACCESS, 518, 683
STREAM-CAPABILITIES, 521
STRING-COERCION, 471–475
SUBSEQ-OUT-OF-BOUNDS, 395
SUBTYPEP-TOO-VAGUE, 99
SYMBOL-MACROLET-

DECLARE, 160, 919,
921

SYMBOL-MACROLET-
SEMANTICS, 134, 160,
161, 188, 212, 919, 921

SYNTACTIC-ENVIRONMENT-

ACCESS, 215

UNREAD-CHAR-AFTER-PEEK-
CHAR, 597

VARIABLE-LIST-
ASYMMETRY, 170

WITH-OPEN-FILE-DOES-NOT-
EXIST, 689

ZLOS-CONDITIONS, 942, 945,
959, 978

SYMBOLS 1101

Symbols

’
macro character, 548

#
macro character, 553

#\
macro character, 554

"
macrocharacter, 549

(
macro character, 546

(setf class-name)
function, 1077
generic function, 877
primary method, 877

(setf documentation)
generic function, 899
primary method, 899, 900

(setf generic-function-name)
function, 1078

(setf slot-value-using-class)
generic function, 1078
primary method, 1079

)
macro character, 547

*
function, 299
variable, 508

**
variable, 508

variable, 508

applyhook
variable, 504

break-on-signals

variable, 948
compile-file-pathname

variable, 707
compile-file-truename

variable, 707
compile-print

variable, 707
compile-verbose

variable, 707
debug-io

variable, 512
debugger-hook

variable, 977
default-pathname-defaults

variable, 680
error-output

variable, 512
evalhook

variable, 504
features

variable, 735
gensym-counter

variable, 256
load-pathname

variable, 695
load-print

variable, 695
load-truename

variable, 695
load-verbose

variable, 695
macroexpand-hook

variable, 212
package

1102 BIBLIOGRAPHY

variable, 275
print-array

variable, 589
print-base

variable, 583
print-case

variable, 583
print-circle

variable, 582
print-escape

variable, 581
print-gensym

variable, 588
print-length

variable, 588
print-level

variable, 588
print-lines

variable, 799
print-miser-width

variable, 799
print-pprint-dispatch

variable, 798
print-pretty

variable, 582
print-radix

variable, 583
print-readably

variable, 580
print-right-margin

variable, 798
query-io

variable, 512
random-state

variable, 377
read-base

variable, 543
read-default-float-format

variable, 593
read-eval

variable, 545
read-suppress

variable, 544
readtable

variable, 563
sample-variable

variable, 7
standard-input

variable, 511
standard-output

variable, 512
terminal-io

variable, 512
trace-output

variable, 513
+

function, 299
variable, 508

++
variable, 508

+++
variable, 508

,
macro character, 553

-
function, 299
variable, 508

/
function, 299
variable, 509

//
variable, 509

///
variable, 509

/=
function, 296

SYMBOLS 1103

;
macro character, 548

;;
macro character, 549

;;;
macro character, 549

;;;;
macro character, 549

<
function, 296

<=
function, 296

=
function, 296

>
function, 296

>=
function, 296

‘
macro character, 549

1+
function, 300

1-
function, 300

abort
function, 974

abs
function, 306

accessor-method-slot-definition
generic function, 1061, 1068
primary method, 1069

acons
function, 438

acos
function, 309

acosh
function, 311

add-dependent

generic function, 1018
primary method, 1019, 1020

add-direct-method
generic function, 1020
primary method, 1020, 1021

add-direct-subclass
generic function, 1021
primary method, 1021

add-method
generic function, 1022
generic function, 872
primary method, 1023
primary method, 872

adjoin
function, 433

adjust-array
function, 464

adjustable-array-p
function, 459

allocate-instance
generic function, 1023
primary method, 1023, 1024

alpha-char-p
function, 385

alphanumericp
function, 387

always
loop clause, 767

and
macro, 113

append
function, 424
loop clause, 773

appending
loop clause, 773

apply
function, 151

applyhook

1104 BIBLIOGRAPHY

function, 506
apropos

function, 728
apropos-list

function, 728
aref

function, 454
arithmetic-error

type, 983
arithmetic-error-operands

function, 983
arithmetic-error-operation

function, 983
array, 32
array-dimension

function, 456
array-dimension-limit

constant, 453
array-dimensions

function, 456
array-displacement

function, 460
array-element-type

function, 455
array-has-fill-pointer-p

function, 463
array-in-bounds-p

function, 457
array-rank

function, 456
array-rank-limit

constant, 453
array-row-major-index

function, 457
array-total-size

function, 456
array-total-size-limit

constant, 454

arrayp
function, 104

as
loop clause, 757, 759–763

ash
function, 371

asin
function, 309

asinh
function, 311

assert
macro, 950

assoc
function, 438

assoc-if
function, 438

assoc-if-not
function, 438

atan
function, 310

atanh
function, 311

atom
function, 102

augment-environment
function, 220

bit
function, 460

bit-and
function, 460

bit-andc1
function, 461

bit-andc2
function, 461

bit-eqv
function, 461

bit-ior
function, 461

SYMBOLS 1105

bit-nand
function, 461

bit-nor
function, 461

bit-not
function, 462

bit-orc1
function, 461

bit-orc2
function, 461

bit-vector-p
function, 104

bit-xor
function, 461

block
special operator, 166

boole
function, 369

boole-1
constant, 369

boole-2
constant, 369

boole-and
constant, 369

boole-andc1
constant, 369

boole-andc2
constant, 369

boole-c1
constant, 369

boole-c2
constant, 369

boole-clr
constant, 369

boole-eqv
constant, 369

boole-ior
constant, 369

boole-nand
constant, 369

boole-nor
constant, 369

boole-orc1
constant, 370

boole-orc2
constant, 370

boole-set
constant, 369

boole-xor
constant, 369

both-case-p
function, 386

boundp
function, 124

break
function, 975

broadcast-stream-streams
function, 521

butlast
function, 428

byte
function, 373

byte-position
function, 373

byte-size
function, 373

caaaar
function, 418

caaadr
function, 418

caaar
function, 418

caadar
function, 418

caaddr
function, 418

1106 BIBLIOGRAPHY

caadr
function, 418

caar
function, 418

cadaar
function, 418

cadadr
function, 418

cadar
function, 418

caddar
function, 418

cadddr
function, 418

caddr
function, 418

cadr
function, 418

call-arguments-limit
constant, 152

call-method
macro, 872

call-next-method
function, 873

car
function, 417

case
macro, 164

catch
special operator, 192

ccase
macro, 954

cdaaar
function, 418

cdaadr
function, 418

cdaar
function, 418

cdadar
function, 418

cdaddr
function, 418

cdadr
function, 418

cdar
function, 418

cddaar
function, 418

cddadr
function, 418

cddar
function, 418

cdddar
function, 418

cddddr
function, 418

cdddr
function, 418

cddr
function, 418

cdr
function, 417

ceiling
function, 361

cell-error
type, 982

cell-error-name
function, 982

cerror
function, 947

change-class
generic function, 875
primary method, 875

char
function, 470

char-code

SYMBOLS 1107

function, 390
char-code-limit

constant, 383
char-downcase

function, 390
char-equal

function, 389
char-greaterp

function, 389
char-int

function, 391
char-lessp

function, 389
char-name

function, 391
char-not-equal

function, 389
char-not-greaterp

function, 389
char-not-lessp

function, 389
char-upcase

function, 390
char/=

function, 387
char<

function, 387
char<=

function, 387
char=

function, 387
char>

function, 387
char>=

function, 387
character

function, 390
characterp

function, 103
check-type

macro, 949
cis

function, 308
class-default-initargs

generic function, 1024, 1062
class-direct-default-initargs

generic function, 1024, 1062
class-direct-slots

generic function, 1024, 1062
class-direct-subclasses

generic function, 1024, 1063
class-direct-superclasses

generic function, 1024, 1063
class-finalized-p

generic function, 1024, 1063
class-name

generic function, 1024, 1063
generic function, 877
primary method, 877

class-of
function, 877

class-precedence-list
generic function, 1024, 1063

class-prototype
generic function, 1024, 1064

class-slots
generic function, 1064

cleanup handler, 192
clear-input

function, 600
clear-output

function, 605
close

function, 519
closure, 120
clrhash

1108 BIBLIOGRAPHY

function, 445
code-char

function, 390
coerce

function, 65
collect

loop clause, 772
collecting

loop clause, 772
comments, 548
compile

function, 703
compile-file

function, 705
compile-file-pathname

function, 669
compiled-function-p

function, 105
compiler-macro-function

function, 214
compiler-macroexpand

function, 214
compiler-macroexpand-1

function, 214
complement

function, 397
complex

function, 366
complexp

function, 103
compute-applicable-methods

function, 877
generic function, 1024
primary method, 1025

compute-applicable-methods-
using-classes

generic function, 1025
primary method, 1026

compute-class-precedence-list
generic function, 1027
primary method, 1028

compute-default-initargs
generic function, 1028
primary method, 1029

compute-discriminating-function
generic function, 1029
primary method, 1030

compute-effective-method
generic function, 1030
primary method, 1031

compute-effective-slot-definition
generic function, 1031
primary method, 1032

compute-restarts
function, 971

compute-slots
around method, 1033, 1034,

1072
generic function, 1032
primary method, 1033

concatenate
function, 400

concatenated-stream-streams
function, 521

cond
macro, 163

condition
type, 978

conjugate
function, 301

cons, 30
function, 419

consp
function, 102

constantly
function, 735

SYMBOLS 1109

constantp
function, 507

continue
function, 974

control-error
type, 981

copy-alist
function, 424

copy-list
function, 424

copy-pprint-dispatch
function, 816

copy-readtable
function, 563

copy-seq
function, 398

copy-symbol
function, 255

copy-tree
function, 424

cos
function, 308

cosh
function, 311

count
function, 412
loop clause, 773

count-if
function, 412

count-if-not
function, 412

counting
loop clause, 773

ctypecase
macro, 953

decf
macro, 300

declaim

macro, 232
declaration-information

function, 219
declare

special operator, 225
decode-float

function, 364
decode-universal-time

function, 731
defclass

macro, 878
defconstant

macro, 88
defgeneric

macro, 882
define-compiler-macro

macro, 213
define-condition

macro, 958
define-declaration

macro, 221
define-method-combination

macro, 886
define-modify-macro

macro, 143
define-setf-method

macro, 148
define-symbol-macro

macro, 161
defmacro

macro, 203
defmethod

macro, 896
defpackage

macro, 281
defparameter

macro, 88
defsetf

1110 BIBLIOGRAPHY

macro, 144
defstruct

macro, 480
deftype

macro, 63
defun

macro, 87
defvar

macro, 88
delete

function, 406
delete-duplicates

function, 407
delete-file

function, 690
delete-if

function, 406
delete-if-not

function, 406
delete-package

function, 277
denominator

function, 361
deposit-field

function, 374
describe

function, 724
describe-object

generic function, 725
primary method, 725

destructuring-bind
macro, 212

digit-char
function, 391

digit-char-p
function, 386

direct-slot-definition-class
generic function, 1034

primary method, 1034
directory

function, 700
directory-namestring

function, 681
disassemble

function, 709
division-by-zero

type, 983
do

loop clause, 786
macro, 169, 170

do*
macro, 169, 170

do-all-symbols
macro, 287

do-external-symbols
macro, 287

do-symbols
macro, 286

documentation
generic function, 898
primary method, 898

doing
loop clause, 786

dolist
macro, 174

dotimes
macro, 174

double-float-epsilon
constant, 381

double-float-negative-epsilon
constant, 381

dpb
function, 374

dribble
function, 727

dynamic exit, 192

SYMBOLS 1111

ecase
macro, 954

echo-stream-input-stream
function, 521

echo-stream-output-stream
function, 521

ed
function, 726

effective-slot-definition-class
generic function, 1034
primary method, 1035

eighth
function, 422

elt
function, 398

enclose
function, 223

encode-universal-time
function, 732

end-of-file
type, 982

endp
function, 420

enough-namestring
function, 681

ensure-class
function, 1035

ensure-class-using-class
generic function, 1036
primary method, 1037, 1038

ensure-directories-exist
function, 701

ensure-generic-function
function, 900, 1038

ensure-generic-function-using-class

generic function, 1039
primary method, 1040

eq
function, 106

eql
function, 108

eql-specializer-object
function, 1040

equal
function, 109

equalp
function, 110

error
function, 946
type, 979

etypecase
macro, 952

eval
function, 504

eval-when
special operator, 91

evalhook
function, 505

evenp
function, 296

every
function, 401

exp
function, 303

export
function, 279

expt
function, 303

extract-lambda-list
function, 1041

extract-specializer-names
function, 1041

f
generic function, 870
primary method, 870

1112 BIBLIOGRAPHY

fboundp
function, 125

fceiling
function, 363

fdefinition
function, 124

ffloor
function, 363

fifth
function, 421

file-author
function, 691

file-error
type, 982

file-error-pathname
function, 982

file-length
function, 693

file-namestring
function, 681

file-position
function, 692

file-string-length
function, 693

file-write-date
function, 691

fill
function, 404

fill-pointer
function, 463

finalize-inheritance
generic function, 1042
primary method, 1042, 1043

finally
loop clause, 793

find
function, 410

find-all-symbols

function, 286
find-class

function, 901
find-if

function, 410
find-if-not

function, 410
find-method

generic function, 902
primary method, 902

find-method-combination
generic function, 1043

find-package
function, 275

find-restart
function, 972

find-symbol
function, 278

finish-output
function, 604

first
function, 421

flet
special operator, 157

float
function, 360

float-digits
function, 364

float-precision
function, 364

float-radix
function, 364

float-sign
function, 364

floating-point-overflow
type, 983

floating-point-underflow
type, 984

SYMBOLS 1113

floatp
function, 103

floor
function, 361

fmakunbound
function, 127

for
loop clause, 757, 759–763

force-output
function, 605

format
function, 606

formatter
macro, 815

fourth
function, 421

fresh-line
function, 604

fround
function, 364

ftruncate
function, 364

funcall
function, 152

funcallable-standard-instance-
access

function, 1043
function

special operator, 120
function-information

function, 217
function-keywords

generic function, 902
primary method, 902

function-lambda-expression
function, 709

functionp
function, 105

gcd
function, 301

generic-function
macro, 902

generic-function-argument-
precedence-order

generic function, 1044, 1065
primary method, 1067

generic-function-declarations
generic function, 1044, 1066
primary method, 1067

generic-function-lambda-list
generic function, 1044, 1066
primary method, 1067

generic-function-method-class
generic function, 1066
primary method, 1067

generic-function-method-
combination

generic function, 1044, 1066
primary method, 1067

generic-function-methods
generic function, 1044, 1066
primary method, 1067

generic-function-name
generic function, 1044, 1066
primary method, 1067

gensym
function, 255

gentemp
function, 256

get
function, 250

get-decoded-time
function, 731

get-dispatch-macro-character
function, 569

get-internal-real-time

1114 BIBLIOGRAPHY

function, 732
get-internal-run-time

function, 732
get-macro-character

function, 565
get-output-stream-string

function, 516
get-properties

function, 253
get-setf-method

function, 150
get-setf-method-multiple-value

function, 150
get-universal-time

function, 731
getf

function, 252
gethash

function, 443
gf1

generic function, 1018
primary method, 1018

go
special operator, 182

graphic-char-p
function, 385

handler-bind
macro, 958

handler-case
macro, 955

hash-table-count
function, 445

hash-table-p
function, 443

hash-table-rehash-size
function, 446

hash-table-rehash-threshold
function, 446

hash-table-size
function, 446

hash-table-test
function, 446

host-namestring
function, 681

identity
function, 735

if
loop clause, 781
special operator, 162

ignore-errors
macro, 957

imagpart
function, 366

implicit progn, 117, 170
import

function, 280
in-package

macro, 275
incf

macro, 300
initialize-instance

generic function, 903
primary method, 903

initially
loop clause, 793

input-stream-p
function, 518

inspect
function, 726

integer, 17
integer-decode-float

function, 364
integer-length

function, 372
integerp

function, 103

SYMBOLS 1115

interactive-stream-p
function, 521

intern
function, 278

intern-eql-specializer
function, 1056

internal-time-units-per-second
constant, 732

intersection
function, 435

invalid-method-error
function, 904

invoke-debugger
function, 976

invoke-restart
function, 972

invoke-restart-interactively
function, 972

isqrt
function, 305

iteration, 168
keywordp

function, 257
labels

special operator, 157
lambda

macro, 736
lambda-expression, 78
lambda-list, 78
lambda-list-keywords

constant, 85
lambda-parameters-limit

constant, 86
last

function, 422
lcm

function, 301
ldb

function, 373
ldb-test

function, 373
ldiff

function, 428
least-negative-double-float

constant, 380
least-negative-long-float

constant, 380
least-negative-normalized-double-

float
constant, 381

least-negative-normalized-long-
float

constant, 381
least-negative-normalized-short-

float
constant, 380

least-negative-normalized-single-
float

constant, 381
least-negative-short-float

constant, 379
least-negative-single-float

constant, 380
least-positive-double-float

constant, 380
least-positive-long-float

constant, 380
least-positive-normalized-double-

float
constant, 381

least-positive-normalized-long-
float

constant, 381
least-positive-normalized-short-

float
constant, 380

1116 BIBLIOGRAPHY

least-positive-normalized-single-
float

constant, 381
least-positive-short-float

constant, 379
least-positive-single-float

constant, 380
length

function, 398
let

special operator, 154
let*

special operator, 156
lisp-implementation-type

function, 733
lisp-implementation-version

function, 733
list

function, 423
list*

function, 423
list-all-packages

function, 277
list-length

function, 420
listen

function, 599
listp

function, 102
load

function, 693
load-logical-pathname-translations

function, 669
load-time-value

special operator, 707
locally

special operator, 230

log
function, 304

logand
function, 368

logandc1
function, 368

logandc2
function, 368

logbitp
function, 371

logcount
function, 371

logeqv
function, 368

logical-pathname
class, 664
function, 667

logical-pathname-translations
function, 668

logior
function, 368

lognand
function, 368

lognor
function, 368

lognot
function, 370

logorc1
function, 368

logorc2
function, 368

logtest
function, 371

logxor
function, 368

long-float-epsilon
constant, 381

long-float-negative-epsilon

SYMBOLS 1117

constant, 381
long-site-name

function, 734
loop

macro, 168
loop-finish

macro, 770
lower-case-p

function, 386
machine-instance

function, 734
machine-type

function, 733
machine-version

function, 734
macro character, 546
macro-function

function, 202
macroexpand

function, 211
macroexpand-1

function, 211
macrolet

special operator, 157
make-array

function, 449
make-broadcast-stream

function, 514
make-concatenated-stream

function, 515
make-condition

function, 961
make-dispatch-macro-character

function, 569
make-echo-stream

function, 515
make-hash-table

function, 442

make-instance
generic function, 1057
generic function, 904
primary method, 1057
primary method, 904

make-instances-obsolete
generic function, 905
primary method, 905

make-list
function, 424

make-load-form
generic function, 696

make-load-form-saving-slots
function, 699

make-method-lambda
generic function, 1057
primary method, 1059

make-package
function, 275

make-pathname
function, 680

make-random-state
function, 377

make-sequence
function, 399

make-string
function, 473

make-string-input-stream
function, 516

make-string-output-stream
function, 516

make-symbol
function, 255

make-synonym-stream
function, 514

make-two-way-stream
function, 515

makunbound

1118 BIBLIOGRAPHY

function, 127
map

function, 400
map-dependents

generic function, 1060
primary method, 1060, 1061

map-into
function, 401

mapc
function, 176

mapcan
function, 176

mapcar
function, 176

mapcon
function, 176

maphash
function, 444

mapl
function, 176

maplist
function, 176

mapping, 176
mask-field

function, 374
max

function, 298
maximize

loop clause, 775
maximizing

loop clause, 775
member

function, 432
member-if

function, 432
member-if-not

function, 432
merge

function, 415
merge-pathnames

function, 678
method-combination-error

function, 905
method-function

generic function, 1061, 1068
primary method, 1069

method-generic-function
generic function, 1061, 1068
primary method, 1069

method-lambda-list
generic function, 1061, 1068
primary method, 1069

method-qualifiers
generic function, 1061, 1068
generic function, 906
primary method, 1069
primary method, 906

method-specializers
generic function, 1061, 1068
primary method, 1069

min
function, 298

minimize
loop clause, 775

minimizing
loop clause, 775

minusp
function, 295

mismatch
function, 412

mod
function, 363

most-negative-double-float
constant, 380

most-negative-fixnum
constant, 379

SYMBOLS 1119

most-negative-long-float
constant, 380

most-negative-short-float
constant, 379

most-negative-single-float
constant, 380

most-positive-double-float
constant, 380

most-positive-fixnum
constant, 379

most-positive-long-float
constant, 380

most-positive-short-float
constant, 379

most-positive-single-float
constant, 380

muffle-warning
function, 974

multiple values, 185
multiple-value-bind

macro, 188
multiple-value-call

special operator, 187
multiple-value-list

macro, 187
multiple-value-prog1

special operator, 188
multiple-value-setq

macro, 188
multiple-values-limit

constant, 187
name-char

function, 392
named

loop clause, 794
namestring

function, 681
nbutlast

function, 428
nconc

function, 425
loop clause, 773

nconcing
loop clause, 773

never
loop clause, 767

next-method-p
function, 906

nil
constant, 98

nintersection
function, 435

ninth
function, 422

no-applicable-method
generic function, 906
primary method, 906

no-next-method
generic function, 907
primary method, 907

non-local exit, 192
not

function, 113
notany

function, 401
notevery

function, 402
nreconc

function, 426
nreverse

function, 399
nset-difference

function, 436
nset-exclusive-or

function, 436
nstring-capitalize

1120 BIBLIOGRAPHY

function, 475
nstring-downcase

function, 475
nstring-upcase

function, 475
nsublis

function, 432
nsubst

function, 431
nsubst-if

function, 431
nsubst-if-not

function, 431
nsubstitute

function, 409
nsubstitute-if

function, 409
nsubstitute-if-not

function, 409
nth

function, 421
nth-value

macro, 188
nthcdr

function, 422
null

function, 101
numberp

function, 102
numerator

function, 361
nunion

function, 434
oddp

function, 296
open

function, 683
open-stream-p

function, 518
or

macro, 114
output-stream-p

function, 519
package-error

type, 981
package-error-package

function, 981
package-name

function, 276
package-nicknames

function, 276
package-shadowing-symbols

function, 277
package-use-list

function, 276
package-used-by-list

function, 276
packagep

function, 105
pairlis

function, 438
parse-integer

function, 601
parse-macro

function, 222
parse-namestring

function, 677
parsing, 546
pathname

function, 675
pathname-device

function, 681
pathname-directory

function, 681
pathname-host

function, 681

SYMBOLS 1121

pathname-match-p
function, 659

pathname-name
function, 681

pathname-type
function, 681

pathname-version
function, 681

pathnamep
function, 681

peek-char
function, 599

phase
function, 306

pi
constant, 311

plusp
function, 295

pop
macro, 427

position
function, 410

position-if
function, 410

position-if-not
function, 410

pprint
function, 602

pprint-dispatch
function, 817

pprint-exit-if-list-exhausted
macro, 804

pprint-fill
function, 806

pprint-indent
function, 805

pprint-linear
function, 806

pprint-logical-block
macro, 802

pprint-newline
function, 801

pprint-pop
macro, 804

pprint-tab
function, 805

pprint-tabular
function, 806

prin1
function, 602

prin1-to-string
function, 603

princ
function, 603

princ-to-string
function, 603

print
function, 602

print name, 469
print-object

generic function, 907
primary method, 907

print-unreadable-object
macro, 605

printed representation, 524
printer, 524
probe-file

function, 690
proclaim

function, 230
prog

macro, 180
prog*

macro, 180
prog1

macro, 153

1122 BIBLIOGRAPHY

prog2
macro, 154

progn
special operator, 153

program-error
type, 981

progv
special operator, 157

psetf
macro, 135

psetq
macro, 126

push
macro, 426

pushnew
macro, 427

quote
special operator, 119

random
function, 375

random-state-p
function, 379

rassoc
function, 439

rassoc-if
function, 439

rassoc-if-not
function, 439

ratio, 18
rational, 18

function, 360
rationalize

function, 360
rationalp

function, 103
read

function, 592
read-byte

function, 601
read-char

function, 597
read-char-no-hang

function, 599
read-delimited-list

function, 594
read-from-string

function, 600
read-line

function, 596
read-preserving-whitespace

function, 593
read-sequence

function, 601
reader, 524, 526
reader-method-class

generic function, 1072
primary method, 1073

readtable-case
function, 571

readtablep
function, 564

realp
function, 103

realpart
function, 366

reduce
function, 402

reinitialize-instance
generic function, 909
primary method, 909

rem
function, 363

remf
macro, 253

remhash
function, 444

SYMBOLS 1123

remove
function, 405

remove-dependent
generic function, 1073
primary method, 1073, 1074

remove-direct-method
generic function, 1074
primary method, 1075

remove-direct-subclass
generic function, 1076
primary method, 1076

remove-duplicates
function, 407

remove-if
function, 405

remove-if-not
function, 405

remove-method
generic function, 1076
generic function, 909
primary method, 1077
primary method, 909

remprop
function, 251

rename-file
function, 690

rename-package
function, 276

repeat
loop clause, 765

replace
function, 404

rest
function, 422

restart
type, 978

restart-bind
macro, 970

restart-case
macro, 964

restart-name
function, 971

return
loop clause, 788
macro, 167

return-from
special operator, 167

revappend
function, 425

reverse
function, 398

room
function, 726

rotatef
macro, 137

round
function, 361

row-major-aref
function, 457

rplaca
function, 429

rplacd
function, 429

sample-constant
constant, 7

sample-function
function, 7

sample-macro
macro, 8

sample-special-form
special operator, 8

sbit
function, 460

scale-float
function, 364

schar

1124 BIBLIOGRAPHY

function, 470
search

function, 413
second

function, 421
serious-condition

type, 978
set

function, 127
set-difference

function, 436
set-dispatch-macro-character

function, 569
set-exclusive-or

function, 436
set-funcallable-instance-function

function, 1077
set-macro-character

function, 565
set-pprint-dispatch

function, 817
set-syntax-from-char

function, 564
setf

macro, 129
setq

special operator, 126
seventh

function, 422
shadow

function, 280
shadowing-import

function, 280
shared-initialize

generic function, 910
primary method, 910

shiftf
macro, 135

short-float-epsilon
constant, 381

short-float-negative-epsilon
constant, 381

short-site-name
function, 734

signal
function, 947

signum
function, 308

simple-bit-vector-p
function, 104

simple-condition
type, 979

simple-condition-format-
arguments

function, 980
simple-condition-format-control

function, 980
simple-error

type, 979
simple-string-p

function, 104
simple-type-error

type, 980
simple-vector-p

function, 104
simple-warning

type, 979
sin

function, 308
single-float-epsilon

constant, 381
single-float-negative-epsilon

constant, 381
sinh

function, 311
sixth

SYMBOLS 1125

function, 422
sleep

function, 733
slot-boundp

function, 912
slot-boundp-using-class

generic function, 1079
primary method, 1080

slot-definition-allocation
generic function, 1070, 1080
primary method, 1071

slot-definition-initargs
generic function, 1070, 1080
primary method, 1071

slot-definition-initform
generic function, 1070, 1080
primary method, 1071

slot-definition-initfunction
generic function, 1070, 1080
primary method, 1071

slot-definition-location
generic function, 1072, 1080
primary method, 1072

slot-definition-name
generic function, 1070, 1080
primary method, 1071

slot-definition-readers
generic function, 1071, 1080
primary method, 1072

slot-definition-type
generic function, 1071, 1080
primary method, 1071

slot-definition-writers
generic function, 1071, 1080
primary method, 1072

slot-exists-p
function, 912

slot-makunbound

function, 912
slot-makunbound-using-class

generic function, 1081
primary method, 1081

slot-missing
generic function, 913
primary method, 913

slot-unbound
generic function, 913
primary method, 914

slot-value
function, 914

slot-value-using-class
generic function, 1082
primary method, 1082

software-type
function, 734

software-version
function, 734

some
function, 401

sort
function, 413

sorting, 413
special-operator-p

function, 125
specializer-direct-generic-functions

generic function, 1083
primary method, 1083

specializer-direct-methods
generic function, 1083
primary method, 1084

sqrt
function, 305

stable-sort
function, 413

standard-char-p

1126 BIBLIOGRAPHY

function, 385
standard-instance-access

function, 1084
step

macro, 724
storage-condition

type, 980
store-value

function, 975
stream-element-type

function, 519
stream-error

type, 982
stream-error-stream

function, 982
stream-external-format

function, 522
streamp

function, 518
string

function, 475
string-capitalize

function, 474
string-downcase

function, 474
string-equal

function, 471
string-greaterp

function, 472
string-left-trim

function, 473
string-lessp

function, 472
string-not-equal

function, 472
string-not-greaterp

function, 472
string-not-lessp

function, 472
string-right-trim

function, 473
string-trim

function, 473
string-upcase

function, 474
string/=

function, 472
string<

function, 471
string<=

function, 471
string=

function, 470
string>

function, 471
string>=

function, 472
stringp

function, 104
sublis

function, 431
subseq

function, 398
subsetp

function, 437
subst

function, 430
subst-if

function, 430
subst-if-not

function, 430
substitute

function, 408
substitute-if

function, 408
substitute-if-not

SYMBOLS 1127

function, 408
substitution, 430
subtypep

function, 99
sum

loop clause, 774
summing

loop clause, 774
svref

function, 455
sxhash

function, 447
symbol-function

function, 123
symbol-macrolet

special operator, 160
symbol-name

function, 254
symbol-package

function, 257
symbol-plist

function, 252
symbol-value

function, 123
symbolp

function, 102
synonym-stream-symbol

function, 521
t

constant, 98
tagbody

special operator, 178
tailp

function, 433
tan

function, 308
tanh

function, 311

tenth
function, 422

terpri
function, 604

the
special operator, 246

thereis
loop clause, 767

third
function, 421

throw
special operator, 197

time
macro, 724

trace
macro, 723

translate-logical-pathname
function, 667

translate-pathname
function, 659

tree-equal
function, 419

truename
function, 676

truncate
function, 361

two-way-stream-input-stream
function, 521

two-way-stream-output-stream
function, 521

type-error
type, 980

type-error-datum
function, 980

type-error-expected-type
function, 980

type-of
function, 67

1128 BIBLIOGRAPHY

typecase
macro, 165

typep
function, 98

unbound-variable
type, 983

undefined-function
type, 983

unexport
function, 279

unintern
function, 279

union
function, 434

unless
loop clause, 781
macro, 162

unread-char
function, 597

until
loop clause, 767

untrace
macro, 723

unuse-package
function, 281

unwind protection, 192
unwind-protect

special operator, 192
update-dependent

generic function, 1085
update-instance-for-different-class

generic function, 915
primary method, 915

update-instance-for-redefined-class

generic function, 916
primary method, 916

upgraded-array-element-type

function, 68
upgraded-complex-part-type

function, 69
upper-case-p

function, 386
use-package

function, 281
use-value

function, 975
user-homedir-pathname

function, 682
validate-superclass

generic function, 1086
primary method, 1086

values
function, 186

values-list
function, 187

variable-information
function, 216

vector
function, 454

vector-pop
function, 464

vector-push
function, 463

vector-push-extend
function, 463

vectorp
function, 104

warn
function, 973

warning
type, 978

when
loop clause, 781
macro, 162

while

SYMBOLS 1129

loop clause, 767
wild-pathname-p

function, 658
with

loop clause, 779
with-accessors

macro, 919
with-compilation-unit

macro, 710
with-condition-restarts

macro, 970
with-hash-table-iterator

macro, 445
with-input-from-string

macro, 517
with-open-file

macro, 688
with-open-stream

macro, 516
with-output-to-string

macro, 517
with-package-iterator

macro, 287
with-simple-restart

macro, 962
with-slots

macro, 920
with-standard-io-syntax

macro, 589
write

function, 602
write-byte

function, 606
write-char

function, 604
write-line

function, 604
write-sequence

function, 604
write-string

function, 604
write-to-string

function, 603
writer-method-class

generic function, 1087
primary method, 1087

y-or-n-p
function, 640

yes-or-no-p
function, 640

zerop
function, 295

1130 BIBLIOGRAPHY

Colophon

Camera-ready copy for this book was created by the author (using TEX,
LATEX, and TEX macros written by the author), proofed on an Apple Laser-
Writer II, and printed on a Linotron 300 at Advanced Computer Graphics.
The text of the first edition was converted from Scribe format to TEX format
by a throwaway program written in Common Lisp. The diagrams in chapter
12 were generated automatically as PostScript code (by a program written in
Common Lisp) and integrated into the text by Textures, an implementation
of TEX by Blue Sky Research for the Apple Macintosh computer.

The body type is 10-point Times Roman. Chapter titles are in ITC
Eras Demi; running heads and chapter subtitles are in ITC Eras Book. The
monospace typeface used for program code in both displays and running text
is 8.5-point Letter Gothic Bold, somewhat modified by the author through
TEX macros for improved legibility. The accent grave (‘), accent acute(’),
circumflex (^), and tilde (~) characters are in 10-point Letter Gothic Bold
and adjusted vertically to match the height of the 8.5-point characters. The
hyphen (-) was replaced by an en dash (-). The equals sign (=) was re-
placed by a construction of two em dashes (=), one raised and one lowered,
the better to match the other relational characters. The sharp sign (#) is
overstruck with two hyphens, one raised and one lowered, to eliminate the
vertical gap (#). Special mathematical characters such as square-root signs
are in Computer Modern Math. The typefaces used in this book were digi-
tized by Adobe Systems Incorporated, except for Computer Modern Math,
which was designed by Donald E. Knuth.

1131

	Introduction
	Purpose
	Notational Conventions
	Decimal Numbers
	Nil, False, and the Empty List
	Evaluation, Expansion, and Equivalence
	Errors
	Descriptions of Functions and Other Entities
	The Lisp Reader
	Overview of Syntax

	Data Types
	Numbers
	Integers
	Ratios
	Floating-Point Numbers
	Complex Numbers

	Characters
	Standard Characters
	Line Divisions
	Non-standard Characters

	Symbols
	Lists and Conses
	Arrays
	Vectors
	Strings
	Bit-Vectors

	Hash Tables
	Readtables
	Packages
	Pathnames
	Streams
	Random-States
	Structures
	Functions
	Unreadable Data Objects
	Overlap, Inclusion, and Disjointness of Types

	Scope and Extent
	Type Specifiers
	Type Specifier Symbols
	Type Specifier Lists
	Predicating Type Specifiers
	Type Specifiers That Combine
	Type Specifiers That Specialize
	Type Specifiers That Abbreviate
	Defining New Type Specifiers
	Type Conversion Function
	Determining the Type of an Object
	Type Upgrading

	Program Structure
	Forms
	Self-Evaluating Forms
	Variables
	Special Operators
	Macros
	Function Calls

	Functions
	Named Functions
	Lambda-Expressions

	Top-Level Forms
	Defining Named Functions
	Declaring Global Variables and Named Constants
	Control of Time of Evaluation

	Predicates
	Logical Values
	Data Type Predicates
	General Type Predicates
	Specific Data Type Predicates

	Equality Predicates
	Logical operators

	Control Structure
	Constants and Variables
	Reference
	Assignment

	Generalized Variables
	Function Invocation
	Simple Sequencing
	Establishing New Variable Bindings
	Conditionals
	Blocks and Exits
	Iteration
	Indefinite Iteration
	General Iteration
	Simple Iteration Constructs
	Mapping
	The ``Program Feature''

	Structure Traversal and Side Effects
	Multiple Values
	Constructs for Handling Multiple Values
	Rules Governing the Passing of Multiple Values

	Dynamic Non-Local Exits

	Macros
	Macro Definition
	Macro Expansion
	Destructuring
	Compiler Macros
	Environments

	Declarations
	Declaration Syntax
	Declaration Specifiers
	Type Declaration for Forms

	Symbols
	The Property List
	The Print Name
	Creating Symbols

	Packages
	Consistency Rules
	Package Names
	Translating Strings to Symbols
	Exporting and Importing Symbols
	Name Conflicts
	Built-in Packages
	Package System Functions and Variables

	Numbers
	Precision, Contagion, and Coercion
	Predicates on Numbers
	Comparisons on Numbers
	Arithmetic Operations
	Irrational and Transcendental Functions
	Exponential and Logarithmic Functions
	Trigonometric and Related Functions
	Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

	Type Conversions and Component Extractions on Numbers
	Logical Operations on Numbers
	Byte Manipulation Functions
	Random Numbers
	Implementation Parameters

	Characters
	Character Attributes
	Predicates on Characters
	Character Construction and Selection
	Character Conversions

	Sequences
	Simple Sequence Functions
	Concatenating, Mapping, and Reducing Sequences
	Modifying Sequences
	Searching Sequences for Items
	Sorting and Merging

	Lists
	Conses
	Lists
	Alteration of List Structure
	Substitution of Expressions
	Using Lists as Sets
	Association Lists

	Hash Tables
	Hash Table Functions
	Primitive Hash Function

	Arrays
	Array Creation
	Array Access
	Array Information
	Functions on Arrays of Bits
	Fill Pointers
	Changing the Dimensions of an Array

	Strings
	String Access
	String Comparison
	String Construction and Manipulation

	Structures
	Introduction to Structures
	How to Use Defstruct
	Using the Automatically Defined Constructor Function
	Defstruct Slot-Options
	Defstruct Options
	By-Position Constructor Functions
	Structures of Explicitly Specified Representational Type
	Unnamed Structures
	Named Structures
	Other Aspects of Explicitly Specified Structures

	Evaluator
	Run-Time Evaluation of Forms
	The Top-Level Loop

	Streams
	Standard Streams
	Creating New Streams
	Operations on Streams

	Input/Output
	Printed Representation of Lisp Objects
	What the Read Function Accepts
	Parsing of Numbers and Symbols
	Macro Characters
	Standard Dispatching Macro Character Syntax
	The Readtable
	What the Print Function Produces

	Input Functions
	Input from Character Streams
	Input from Binary Streams

	Output Functions
	Output to Character Streams
	Output to Binary Streams
	Formatted Output to Character Streams

	Querying the User

	File System Interface
	File Names
	Pathnames
	Case Conventions
	Structured Directories
	Extended Wildcards
	Logical Pathnames
	Pathname Functions

	Opening and Closing Files
	Renaming, Deleting, and Other File Operations
	Loading Files
	Accessing Directories

	Miscellaneous Features
	The Compiler
	Compiler Diagnostics
	Compiled Functions
	Compilation Environment
	Similarity of Constants

	Debugging Tools
	Environment Inquiries
	Time Functions
	Other Environment Inquiries
	Справочные функции о среде

	Identity Function

	Loop
	Цикл loop
	Introduction
	Введение
	How the Loop Facility Works
	Как работает Loop
	Parsing Loop Clauses
	Парсинг выражений Loop
	Order of Execution
	Порядок вычисления
	Kinds of Loop Clauses
	Разновидности Loop выражений
	Loop Syntax
	Синтаксис Loop

	User Extensibility
	Пользовательские расширения
	Loop Constructs
	Конструкции Loop
	Iteration Control
	Управление итерациями
	End-Test Control
	Проверка завершения
	Value Accumulation
	Variable Initializations
	Инициализация переменных
	Conditional Execution
	Условное выполнение
	Unconditional Execution
	Безусловное выполнение
	Miscellaneous Features
	Дополнительные возможности
	Data Types
	Типы данных
	Destructuring

	Pretty Printing
	Introduction
	Pretty Printing Control Variables
	Dynamic Control of the Arrangement of Output
	Format Directive Interface
	Compiling Format Control Strings
	Pretty Printing Dispatch Tables

	Common Lisp Object System
	Programmer Interface Concepts
	Error Terminology
	Classes
	Inheritance
	Integrating Types and Classes
	Determining the Class Precedence List
	Generic Functions and Methods
	Method Selection and Combination
	Meta-objects
	Object Creation and Initialization
	Redefining Classes
	Changing the Class of an Instance
	Reinitializing an Instance

	Functions in the Programmer Interface

	Conditions
	Introduction
	Changes in Terminology
	Survey of Concepts
	Signaling Errors
	Trapping Errors
	Handling Conditions
	Object-Oriented Basis of Condition Handling
	Restarts
	Anonymous Restarts
	Named Restarts
	Restart Functions
	Comparison of Restarts and Catch/Throw
	Generalized Restarts
	Interactive Condition Handling
	Serious Conditions
	Non-Serious Conditions
	Condition Types
	Signaling Conditions
	Resignaling Conditions
	Condition Handlers
	Printing Conditions

	Program Interface to the Condition System
	Signaling Conditions
	Assertions
	Exhaustive Case Analysis
	Handling Conditions
	Defining Conditions
	Creating Conditions
	Establishing Restarts
	Finding and Manipulating Restarts
	Warnings
	Restart Functions
	Debugging Utilities

	Predefined Condition Types

	Metaobject Protocol
	Concepts
	Introduction
	Введение
	Inheritance Structure of Metaobject Classes
	Processing of the User Interface Macros
	Subprotocols

	Generic Functions and Methods Dictionary
	Initialization of Class Metaobjects
	Initialization of Generic Function Metaobjects
	Initialization of Method Metaobjects
	Initialization of Slot Definition Metaobjects
	Readers for Class Metaobjects
	Readers for Generic Function Metaobjects
	Readers for Method Metaobjects
	Readers for Slot Definition Metaobjects

	Bibliography
	Index
	X3J13 Votes
	Symbols

