
Digital Representation

Topics Addressed

• Continuous Waveforms
• Sample Rate
• Aliasing
• Nyquist Frequency/Rate
• Wavetable Synthesis
• Band Limited Oscillators
• DAC/ADC

Continuous Waveforms

• All musical instruments produce a
continuous waveform.
• Vinyl discs and cassette tapes store

continuous waveforms.
• Speakers drive air to produce

continuous waveforms by voltage.
• Microphones capture changes in air

pressure and convert to a continuous
voltage.

COMPUTERS ARE
DIGITAL!!!!!!!!

Computer Storage

• Computers do two primary things: store data and process data
• Data is stored by using collections of binary bits that are abstractions

for high voltage or low voltage in an electrical circuit.
• Computers have a finite number of these bits. After all, they are a physical

device.

• Suppose we have a very tiny computer that only had 4 bits worth of
storage for a single number. How many different numbers could we
represent?

0

1

2

3

4

5
Etc…

6

Take CS240 to
learn more!

= Low Voltage

= High Volage

Implications

• If we only have a finite number of bits no matter what that finite
number is, can we represent all the integers? No!
• Yikes! This means we have to make concessions. Moreover, we don’t

want to use all the bits in our machine to represent a single number.
• In truth, our modern computers use up to 64 bits to represent a number,

allowing 264 different numbers.
• We also only have 64 bits for floating point numbers as well.
• If you look at the documentation for SuperCollider, you’ll see that the Float

class stores a 64-bit number while the Integer class stores a 32-bit number.
• Any computer will be unable to perfectly represent infinite forms like

numbers.

Continuous Waveforms

• Continuous waveforms require an infinite number of data points to
represent. Therefore, we will need to make some concessions.
• Our strategy will be to sample the signal we are trying to produce.

A signal is simply fluctuating data points
between -1 and 1 over a period of time.
The red lines here indicate both when the
sample occurs and what the value is
between -1 and 1 (represented by the
length of the line).

Time Amplitude

0 0

0.1 0.35

0.2 0.65

0.3 0.9

0.4 1

0.5 0.95

0.6 0.75

Etc…

• Samples are generated at regular, evenly-spaced time periods.
• The number of the sample is the amplitude of the signal
• Sampling gives a finite approximation of the continuous signal

Continuous Waveforms

Quantization

• Concessions need to be made in terms
of the number of samples generated for
a continuous waveform as we just saw.
• Concessions also need to be made for

exactness of the amplitude measured.
There are infinite number of possible
amplitudes generated from a signal
between -1 and 1 amplitude.
• Solution: quantize the amplitude.

• Bit depth specifies the number of bits
allocated to each sample of audio.
• More bits = more resolution = more

accurate amplitude sample
• Common bit depths: 24-bit and 16-bit

Sample Rate

• In order to achieve a good approximation of the continuous signal, many
samples need to be produced.
• The sample rate for a signal specifies the number of samples per second.
• The sample rate applies to both incoming and outgoing signals. With

incoming signals we sample at the sample rate from a continuous physical
voltage. With outgoing signals, we output samples at the sample rate to
generate a continuous voltage (which is usually passed on to our speakers).
• The standard rate is 44,100Hz, meaning that 44,100 samples are generated

for every second of sound.
• Other standard rates include 48kHz (i.e., 48,000Hz) or even 192kHz.
• Most of the time choosing a higher sampling rate won’t make any audible

difference to us but it could potentially.

Exercise
• Consider a simple continuous sine wave with frequency of 100. What

would the first five samples be if the sample rate were 44.1kHz?

Sample Number Time elapsed (in
seconds)

Amplitude

0 0 0

1

2

3

4

Time between samples =
1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒

=
1

44100
= 2.268 ∗ 10!"

0.00002268

0.00004535

0.00006803

0.00009070

.01425

.02849

.04273

.05699

Mathematically, we can model a sine
wave using sin. A sine wave has a period
of 0 to 2pi. Therefore, sin(2𝜋𝑡) where t
is time in seconds models a wave with
frequency 1Hz. sin(2𝜋𝑡 ∗ 𝑓) then
models a sine wave of any frequency.
Plug in our times to get the requisite
amplitude.

Relevant Equations

• Time elapsed between samples (i.e, the sampling period)

• A sine wave with frequency f in Hz and time elapsed t in seconds

1
𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒

sin(2𝜋𝑓 ∗ 𝑡)

Plotting Samples

• Imagine we had an array of samples from a sine wave. What could
we infer about such a sine wave? Frequency?
• Say we had the following samples as an array [0, 1, 0, -1, 0, 1, 0, -1, 0]

and our sample rate was 8Hz (yes, absurdly low).
• What can we say about this sine wave?

Let’s plot the samples first

• Suggestive of a sine wave with frequency 2Hz
• Our ears will definitively hears this frequency as 2Hz
• However, is that the only possible wave given the number of samples

that we have?

?????

Other Possibilities

Let’s say that we increased the sampling rate to 20Hz and we find that
our original samples of [0, 1, 0, -1, 0 … etc.] actually come from this
waveform!?

Yikes!
Maybe its actually
6Hz and not 2Hz?
How do we
know???

Other Possibilities

Let’s say that we increased the sampling rate to an even higher
sampling rate and we find our original samples of [0, 1, 0, -1, 0 … etc.]
come from this waveform!?

Yikes!
Maybe its actually
10Hz and not
2Hz? How do we
know???

Aliasing

• The previous few slides depict a fundamental issue when we try to
discretize continuous signals.
• If our sampling rate is too low for the signals we are trying to represent

then we could generate samples that will actually produce a different
frequency.
• Suppose our sine wave in the previous examples was actually 10Hz. With a sample

rate of just 8Hz, we generated samples that would be perceived by our ears as 2Hz.
Problem!

• We call such falsely generated lower frequencies aliases.
• Combatting aliasing in signals is a real problem in Digital Signal Processing.
• Problem: finite sampling cannot capture an infinite number of frequencies.

• Sampling rate restricts and determines the range of frequencies that can be
represented.

Minimum Samples
How many samples does it take to accurately
represent one period of a given frequency?
We need to have a sample from the “high”
amplitude and a sample from the “low”
amplitude to have an accurate frequency.
That recreates the physical phenomenon of
compression and rarefaction.

Four samples will work. We get a basic outline of the sinewaves peaks and troughs. Can we use
fewer?

Two samples seem to work. Can get a ”high” and “low” amplitude. Does it work in all cases?

No. So to guarantee we must sample at a rate greater than twice this frequency.

Nyquist Frequency/Rate

• We can generalize our results from the previous slide. Given an
analog signal 𝑥 𝑡 whose constituent sine waves includes a maximum
frequency 𝐵 (i.e., the bandwidth), then the sample rate 𝑓! must be
𝑓! > 2𝐵 to prevent aliasing.
• The Nyquist Rate is 2𝐵. Intuitively, this is the threshold for the

minimum sampling rate to accurately capture 𝑥 𝑡 .
• The Nyquist Frequency is 𝑓!/2. Intuitively, this is the maximum

frequency that can be sampled without aliasing.

Important: sometimes these terms are used interchangeably and sometimes they mean different things. Be
careful when reading other materials. In essence, they both express the limit of sampling.

Preventing Aliasing

• Continuous signals such as the human voice, an instrument, nature, … etc.
nearly always contain frequencies that exceed the Nyquist Frequency for
our computers.
• Every sound card or audio interface contains an analog to digital converter

(ADC for short) which handles the process of converting continuous signals
that we record into discrete samples.
• To prevent aliasing, continuous signals are passed through an anti-aliasing

filter which removes these upper frequencies before sampling occurs.
• This is a very simplified version of an incredibly complex topic.

• We also have to be mindful of not generating our own aliases by
attempting to produce frequencies above the Nyquist Frequency.

Wavetable Synthesis

• How do we actually generate a sinusoidal wave from the computer?
• We want to generate the samples of a sine wave
• We could sample from an analog sine wave but it is much easier to generate

the samples ourselves mathematically.

• Solution: wavetable
• Let’s create the samples ourselves by hand
• We will generate one single period of a sine wave and loop through those

samples when we will want to playback the wave.

Generating Sine Wavetable

Amplitude

0

.707

1

.707

0

-.707

-1

-.707

Let’s assume we have a sample rate of 44.1kHz. Assume we cycle through
the samples of this table at the sample rate. What frequency wave have
we generated?

Answer: 44100/8 = 5512.5Hz

Creating Other Frequencies

Amplitude

0

.707

1

.707

0

-.707

-1

-.707

• How do we create other frequencies?
• Option 1: generate a wave table for every frequency we

want to create.
• Pro: accurate wave table
• Con: terrible usage of memory. We could have

many many wavetables!
• Option 2: “playback” the wave table at different rates

• Pro: efficient usage of memory
• Con: inaccuracies in samples (more soon)

• It turns out that Option 2 is the most common, though
some oscillators/synthesizers will use multiple
wavetables for different parts of the frequency
spectrum.

Creating Other Frequencies

Amplitude

0

.707

1

.707

0

-.707

-1

-.707

• Let’s say we want to generate a sine wave of frequency 11025Hz.
• We know our table when looped through and played back at the sample rate

(44.1kHz) generates a sine wave of 5512.5Hz.
• What samples from our table do we need to create 11025Hz?

Need to generate 44100
samples per second. This
means we will go through
this single period 11025
times to generate a
frequency of 11025Hz.

0 1 0 -1 etc…

Generated Samples

Step size of 2

Creating Other Frequencies

Our first 9 samples of 𝑁 = 8 samples of a single
period of a sine wave. At a sample rate of 44.1kHz,
we play ⁄44100 8 = 5512.5 cycles of this sine
wave second. Therefore, our frequency is
5512.5Hz

Our first 9 samples of 𝑁 = 8 samples of two
periods of a sine wave. At a sample rate of
44.1kHz, we play ⁄44100 8 = 5512.5 cycles of this
sine wave second. Therefore, our frequency is
5512.5Hz * 2 = 11,025Hz.

Step Size = 1 Step Size = 2

Creating Other Frequencies

• We can generalize our discovery from the previous slide to discover
the playback rate for any frequency we want to produce where N is
the number of samples in our table, 𝑓" is the frequency we want to
produce, 𝑓! is the sample rate, and 𝑠 is the playback rate or step size:

• When the playback rate 𝑠 (we can also think about this as the step
size of moving through our table) is an integer, it’s easy to select
which samples should be used.
• What should we do for non-integer 𝑠?

𝑠 =
𝑁𝑓"
𝑓!

Creating Other Frequencies
Let’s say I want to generate samples for a wave of 8268.75Hz using our
table of 8 samples. Using the formula on the previous slide, this results
in a playback rate of 1.5, meaning we step through the table by every
1.5 sample.

Sample # Amplitude

0 0

1 .707

2 1

3 .707

4 0

5 -.707

6 -1

7 -.707

Generated Samples

What sample should I choose when my
value lies between two samples in my table?

0 .707
or 1

.707 0 or
-.707

-1 -.707
or 0

.707 1 or
.707

0 etc…
0 1.5 3 4.5 6 7.5 1 2.5 4

Truncation/Rounding

0 .707
or 1

.707 0 or
-.707

-1 -.707
or 0

.707 1 or
.707

0 etc…

0 .707 .707 0 -1 -.707 .707 1 0 etc…

0 1 .707 -.707 -1 0 .707 .707 0 etc…

0 .924 .707 -.383 -1 -.383 .707 .924 0 etc…

Choice based on
wavetable

Truncation – choose
lower sample’s value

Rounding (based on
step size) – choose
closer one

1.5 4.5 7.5 10.5
Roundup to higher
sample’s value
because step size
would roundup

True value given its
own wavetable

Linear Interpolation

• Both truncation and rounding produce poor approximations when we want
a sample that exists between two other samples. It can cause distortion to
the wave.
• Advantage of truncation and rounding: quick to produce a value for all samples

• Another option is to estimate what that value would be.
• Many different approaches we could take.
• Simplest is linear interpolation.
• Others include cubic hermite, polynomial, Lagrangian, sinc interpolation…

etc.
• Efficiency of producing samples varies! Remember we need to generate these

samples quickly!

Linear Interpolation

• Linear interpolation draws a line between the
values of two adjacent samples and estimates
what the sample value would be based on the
step size.
• Assuming we have a step size 𝑠 = 1.5, then the

samples we need from the our table will be
samples 0, 1.5, 3, 4.5, 6 … etc. We will need to
use linear interpolation to calculate 1.5, 4.5 ...
etc.
• Let’s take 1.5 for example. 1.5 is not any of the n

indices in our wavetable. In other words,
𝑆[1.5] is not valid.

Sample/
Index n

Amplitude
S[n]

0 0

1 .707

2 1

3 .707

4 0

5 -.707

6 -1

7 -.707

Linear Interpolation

• Consider the case of sample 1.5 which does not have a valid
index 𝑛 in our wavetable. We will use linear interpolation to
calculate that value.

• Using our good friend point-slope form (i.e., 𝑦 − 𝑦# =
𝑚(𝑥 − 𝑥#)) which is one form of the equation for line, let’s
calculate the equation of the line between the lower and
higher sample for 1.5 (i.e., 1 and 2). x is really our sample
index n and y is our amplitude. Therefore, the lower sample
of 1.5 which we call the point (𝑛$, 𝑎$) is (1, .707), and the
upper sample of 1.5 is (2, 1).

• First, calculate m. The slope between these two points is
0.293

• Second, use point-slope form to calculate the estimated
amplitude. 𝑎 = 𝑚 𝑛 − 𝑛% + 𝑎% = .293 1.5 − 1 +
.707 = .853

• Rounding produced 1. Truncation produced .707. The true
value should be .924.

Sample/
Index n

Amplitude
S[n]

0 0

1 .707

2 1

3 .707

4 0

5 -.707

6 -1

7 -.707

𝑛$, 𝑎$ = (1, .707)

𝑛$&# , 𝑎$&# = (2, 1)

Linear Interpolation

0 .707 .707 0 -1 -.707 .707 1 0 etc…

0 1 .707 -.707 -1 0 .707 .707 0 etc…

0 .924 .707 -.383 -1 -.383 .707 .924 0 etc…

Truncation – choose
lower value always

Rounding (based on
step size) – choose
closer one

True value given its
own wavetable

0 .853 .707 -.354 -1 -.354 .707 .853 0 etc…Linear interpolation

Total Error:

.2

.6

.4

0

Interpolation

• Interpolation provides the benefit of rendering more accurate
samples. Linear interpolation is just one of many kinds of
interpolation used.
• Disadvantage: it takes processor time to generate new samples when

they fall outside the constraints of wavetables.
• Linear interpolation does not provide the most accurate results as

other forms of interpolation but straddles the duality of accuracy vs.
computational expense decently.
• You will explore more in the upcoming assignment!

SinOsc and PlayBuf

From the documentation of SinOsc:

Generates a sine wave. Uses a wavetable lookup oscillator with linear
interpolation. Frequency and phase modulation are provided for audio-rate
modulation. Technically, SinOsc uses the same implementation as Osc except
that its table is fixed to be a sine wave made of 8192 samples.

From the documentation of PlayBuf:

Plays back a sample resident in memory. [For rate]: interpolation is cubic.

Experiment with SinOsc

Fiddle around with various frequencies for SinOsc above the Nyquist
frequency (i.e., above 22050 Hz for a 𝑓! of 44100Hz). Do we produce
audible frequencies? Why? Can you determine a relationship?

{SinOsc.ar(<your test frequency, 0, 0.1) ! 2}.play;

𝑠 =
𝑁𝑓"
𝑓!

StepsizeSampling Rate

𝑓! = 44100𝐻𝑧

What about complex sounds?

• So far we have only looked at wavetable synthesis for sine waves but
we can use wavetable synthesis for other complex waves like
sawtooth or triangle
• Complex sounds require extra precautions because they are a sum of

multiple sine waves.
• We need to be sure that our wavetable does not include frequencies

above the Nyquist Frequency.
• We need to be cautious that playing back our wavetable at higher

rates does not produce aliasing either!

Band Limited Oscillators

• Consider the sawtooth wave which for each harmonic n has
amplitude #

$
. A true sawtooth wave is equivalent to the sum of all

harmonics from the fundamental to infinity (i.e., ∑$%#& '() *+,$-
$

)

• This is of course will generate frequencies above the Nyquist
frequency.
• Band Limiting an oscillator excludes those frequencies that rise above

the Nyquist frequency and usually several more. In fact, that is what
we did when we used additive synthesis to build our own sawtooth
waves.

Remember
(
~saw = {

arg freq = 300, funAmp = 0.6;
var sig = {

|i| // One less than the harmonic num which are one indexed (not zero)
SinOsc.ar(freq * (i + 1), 0, funAmp/(i + 1)) // Freq and amp come from harmonic number

}.dup(30).sum; // 30 represents the number of harmonics. Sum sums the contents of an array
sig ! 2; // Return the stereo signal. ! equivalent to dup.

};
)

~saw.plot; // Functions that return a UGen or an array of UGens can be plotted!
~saw.play;

Bandlimited vs. Non-bandlimited

• Non-bandlimited waveforms still serve useful purposes especially at
lower frequencies.
• A non-bandlimited oscillator like a sawtooth wave with rich

harmonics will contain some aliasing but the frequencies will be
attenuated in amplitude by having a high harmonic number. So its
tolerated.
• Advantage is a rich harmonic sound because all harmonics are present.
• Disadvantage is that the aliasing is untenable at higher frequencies

• A bandlimited oscillator will contain fewer harmonics and a less
“pure” sound but no aliasing at higher frequencies.
• Note that sometimes multiple wavetables can be used

Comparison – Low Frequencies

Note the slight curvature in the sawtooth ramp

Non-band limited sawtooth wave Band limited sawtooth wave

Comparison – High Frequencies

Still distortion because not all harmonics are present

Non-band limited sawtooth wave Band limited sawtooth wave

Hearing Aliasing

{LFSaw.ar(XLine.kr(20, 15000, 3))!2}.play;

Listen to the additional noise and distortion particular
as the frequency hits higher levels.

Oscillators in Supercollider

Most oscillators in SuperCollider use wavetable synthesis and are either
bandlimited or non-bandlimited. Non-band limited oscillators are usually
named with the prefix “LF”, standing for low frequency and are intended to
be used as such.

LFPulse
LFSaw
LFTri

LFPar – parabolic
LFCub – cubic

…etc.

Pulse
Saw
Sin
Blip
…etc.

.ar vs .kr for SuperCollider UGens

• SuperCollider calculates audio in groups of samples called blocks.
• Why? Audio must be relayed from your program to your speakers using OS

(operating system) calls. I/O system calls are slow. Better to send a chunk instead of
individual samples.

• An audio UGen (.ar) will calculate all the samples in the block.
• Pros: accurate. Necessary for generating audio signals.
• Cons: less efficient. Matters when dealing with lots of processing.

• A control UGen (.kr) will calculate one value for the entire block.
• Pros: more efficient
• Cons: less accurate. Okay generally when we want to modulate parameters.

• The default block size in SuperCollider is 64 but can be adjusted. 64 sample
block size at 𝑓! = 44,100 is approximately 689 blocks a second for a period
of 0.00145 seconds.

ADC/DAC

• Analog to Digital Converter (ADC) – the process of converting a
continuous voltage signal into discrete samples
• Will often include an anti-aliasing filter to reduce frequencies above the

Nyquist frequency

• Digital to Analog Converter (DAC) – the process of converting a digital
signal consisting of samples back into a continuous voltage signal
• All computers with sound capabilities must have these two

components, either on a separate sound card or on the motherboard

Signal Chain

ADC CPU/Main
Memory DAC

Any sort of synthesis

Further Topics

• Bit depth
• Dithering
• Quantization
• DC offset
• Frequency Domain
• Much more on hardware implementations of ADC’s and DAC’s

• Summing Amplifier
• Successive-Approximation ADC
• Etc…

In Summary

• Computers store digital information which is problematic for
continuous data like audio signals
• Aliasing occurs when the sample rate is not high enough to

accommodate the maximum frequency of an audio signal.
• We can create aliasing when we sample a continuous signal at too low of a

rate.
• We can create aliasing when we digitally create samples of a signal whose

maximum frequency exceeds the Nyquist rate (i.e., LFPulse, LFSaw, … etc.)

• A solution to classic waveforms is to use bandlimited versions that
cap the maximum frequency.

