
ES6 for
Humans

The Latest Standard of
JavaScript: ES2015 and Beyond
—
Deepak Grover
Hanu Prateek Kunduru

www.allitebooks.com

http://www.allitebooks.org

ES6 for Humans
The Latest Standard of

JavaScript: ES2015 and Beyond

Deepak Grover

Hanu Prateek Kunduru

www.allitebooks.com

http://www.allitebooks.org

ES6 for Humans

Deepak Grover				 Hanu Prateek Kunduru
Delhi, India				 Seattle, Washington, USA

ISBN-13 (pbk): 978-1-4842-2622-3		 ISBN-13 (electronic): 978-1-4842-2623-0
DOI 10.1007/978-1-4842-2623-0

Library of Congress Control Number: 2017944929

Copyright © 2017 by Deepak Grover and Hanu Kunduru

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Phil Nash
Coordinating Editor: Nancy Chen
Copy Editor: Karen Jameson
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484226223. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484226223
http://www.apress.com/source-code
http://www.allitebooks.org

Dedicated to our parents.

Without them, we wouldn’t be where we are today.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors�� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

■■Chapter 1: Getting Started with ES6�� 1

■■Chapter 2: New Syntax in ES6��� 11

■■Chapter 3: Destructuring��� 37

■■Chapter 4: Classes in ES6�� 49

■■Chapter 5: Modules��� 65

■■Chapter 6: Symbols in ES6�� 75

■■Chapter 7: Arrays and Collections��� 81

■■Chapter 8: Iterators and Generators�� 97

■■Chapter 9: Promises in ES6��� 109

■■Chapter 10: Meta Programming�� 117

■■Chapter 11: Beyond ES6�� 129

Index��� 135

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors�� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

■■Chapter 1: Getting Started with ES6�� 1

ES6 The Specification��� 1

History of ECMA, ECMAScript, and JavaScript��� 2

One JavaScript��� 3

Using ES6��� 4

Setting Up ES6 Using Babel and webpack��� 5

Transpiling with Babel��� 5

Setting Up an ES6 Boilerplate�� 5

Adding Your Generated bundle.js script to your index.html��������������������������������������� 8

Summary�� 10

■■Chapter 2: New Syntax in ES6��� 11

Variable Declarations: let, const, and Block Scoping����������������������������� 11

Block Scoping with let and const�� 12

More on Temporal Dead Zones�� 14

Variables Declarations in loops��� 15

Variable Declarations with Function Parameters and Global Scope������������������������ 16

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Arrow Functions��� 17

Using Arrow Functions to Create IIFEs��� 18

A Tale about this�� 19

Using Arrow Functions��� 24

Default Function Parameters�� 25

Rest and Spread Operators�� 27

The Spread Operator��� 29

Object Literal Extensions�� 30

Template Literals and Delimiters��� 32

Tagged Template Literals��� 32

Summary�� 35

■■Chapter 3: Destructuring��� 37

Destructuring of Objects and Arrays�� 37

Object Destructuring Syntax�� 38

Assignment Using Destructuring��� 40

Default Values�� 41

Nested Destructuring��� 42

Destructuring Using the rest Syntax�� 44

Destructured Parameters��� 45

Summary�� 47

■■Chapter 4: Classes in ES6�� 49

Classes in ES6�� 49

Defining Classes in ES6�� 51

Class Declarations��� 51

Class Expressions�� 52

Class Methods and Accessor Properties�� 53

Computed Method Names�� 56

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Class Properties and Privacy�� 56

Using Constructor Environments�� 57

Using WeakMaps��� 57

Static Methods and Properties��� 58

Class Inheritance and the Super Keyword��� 59

Inheriting Static Properties�� 61

Method Overriding�� 62

Inheritable Built-Ins�� 63

Summary�� 64

■■Chapter 5: Modules��� 65

Module Systems and a Little History�� 65

The Module Pattern in Traditional JavaScript��� 66

Modules in ES6��� 66

Exporting�� 67

Default Exports�� 67

Importing�� 68

Importing Default Values��� 69

Exporting an Imported Binding�� 70

Renaming Identifiers��� 70

Loading Modules�� 71

Modules in Web Browsers�� 71

Loading Modules with <script>�� 71

Loading Modules Asynchronously in Browsers��� 72

Common Pitfalls��� 72

Syntax�� 72

Read-Only Bindings��� 73

Destructing an Import Statement and Using Variables�� 73

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Using eval( )��� 74

Module Specifier�� 74

Summary�� 74

■■Chapter 6: Symbols in ES6�� 75

Symbols�� 75

Applications of Symbols�� 76

Symbols and Registry�� 79

Symbol.for(key)�� 79

Symbol.keyFor(symbol)�� 80

Built-In Symbols��� 80

Summary�� 80

■■Chapter 7: Arrays and Collections��� 81

Arrays and New Methods��� 81

Array.from()�� 81

Array.of()�� 83

New Array.Prototype Methods��� 84

Typed Arrays��� 89

Basics of Using Typed Arrays��� 89

Typed Arrays and Normal Arrays��� 90

Map and WeakMap��� 91

Map�� 91

WeakMap��� 93

Set and WeakSet�� 94

Set��� 94

WeakSet�� 95

Summary�� 96

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

■■Chapter 8: Iterators and Generators�� 97

Iterables and Iterators�� 97

Iteration Protocols�� 100

Iterable Protocol�� 100

Iterator Protocol��� 100

Iterator as an Iterable�� 101

return() and throw() in Iterators�� 102

Generators�� 102

Generator Function��� 103

Communicating with Generators�� 104

Completing Early�� 106

Summary�� 108

■■Chapter 9: Promises in ES6��� 109

Promises Overview�� 109

Creating a Promise��� 110

Consuming a Promise with then( ) and catch( )�� 111

Chaining of Promises��� 113

Error Handling�� 114

Combining Promises with Promises.all�� 115

Summary�� 116

■■Chapter 10: Meta Programming�� 117

Meta Programming in ES5 and ES6 Overview������������������������������������� 117

Proxies in ES6�� 118

Traps in Proxy Handler��� 119

has��� 121

ownKeys�� 122

apply�� 122

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

Revocable Proxy��� 123

Reflect��� 125

Summary�� 127

■■Chapter 11: Beyond ES6�� 129

ES2016��� 129

The includes method on Arrays��� 129

The Exponentiation Operator **��� 130

ES2017�� 130

Asynchronous Functions��� 131

Atomics and Shared Memory�� 132

Object.entries() and Object.values( )�� 132

padStart and padEnd��� 132

Object.getOwnPropertyDescriptors( )��� 133

Trailing Commas in Function Parameter lists & calls�� 134

Summary�� 134

Index��� 135

xiii

About the Authors

Deepak Grover is a software architect from India,
who has been helping several startups grow and
build scalable products. He holds a Master’s degree
in Software Engineering and has been programming
for the past eight years. He is proficient in JavaScript
and has built several open sources libraries using ES6,
ReactJS, and Angular 2 from the ground up. Besides
computers, he likes to travel and can be often found
speaking about JavaScript at tech meetups.

Hanu Kunduru is a computer languages polyglot and
has worked extensively with C, C++, Java, Python,
Ruby, and JavaScript. He is a serial entrepreneur with
experience building and scaling technology and web
products. Previously a CTO at a tech startup, he has
experience managing large developer teams and
workflows. He currently works as a staff member at
42 Silicon Valley in California, a coding school with
a revolutionary project-based, peer-to-peer learning
environment.

xv

About the Technical
Reviewer

Phil Nash is a developer evangelist for Twilio, serving
developer communities in London and all over the
world. He is a Ruby, JavaScript, and Swift developer,
Google Developer Expert, blogger, speaker, and
occasionally a brewer. He can be found hanging
out at meetups and conferences, playing with new
technologies and APIs, or writing open source code.

xvii

Acknowledgments

We would like to thank Louise Corrigan for scouting us and providing us with this
amazing opportunity to share our love for JavaScript with the rest of the world.

This book would not have seen the light of day if it were not for the tireless efforts
of the immensely supportive and responsive team at Apress. A very heartfelt thanks to
Nancy Chen and James Markham for being extremely patient with us through deadline
breaches and extensive rewrites.

Special thanks to Phil Nash, for his incredibly insightful and on-point reviews that
immensely affected the end result of the content in this book.

We would like to thank all our friends and family who are too many to name
individually, for motivating us and supporting us through this entire journey. Finally, we
wanted to acknowledge the countless developers and contributors that are part of the
JavaScript ecosystem, constantly innovating and pushing boundaries; you continue to
inspire us.

1© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_1

CHAPTER 1

Getting Started with ES6

Around 46% of the world’s population have Internet access today and the numbers are
steadily increasing. While you’re reading this, there are people out there who are using
Internet services to book a cab, or a flight, or a table for two at a fancy restaurant; the
point is that the Internet today has made people’s lives easier. More and more web apps
are being built everyday with the goals of saving people time, providing them with a
higher standard of comfort or simply for entertainment. These apps are accessible on the
go, and a lot of them are built using JavaScript.

According to the StackOverflow Developer Survey, JavaScript is the most commonly
used programming language on earth. The ubiquity of the web platform is driving
developers to use JavaScript more than any other language, leading to the evolution
of JavaScript platforms like Node.js, front-end frameworks like Angular & React, and
complete webstacks like MEAN (MongoDB, ExpressJS, AngularJS and NodeJS).

This book discusses the core concepts of ES 2015 (popularly referred to as ES6) and
beyond, while focusing on the best development practices. By the time you finish reading
this book, you will have a good understanding of core ES6 concepts, features, and their
applicability in the modern-day development workflow.

ES6 The Specification
For many years ECMAScript 6 (ES6) had been in the works but on June 17, 2015, the
109th Ecma General Assembly approved the 6th Edition of ECMA-262 standards, making
official a major upgrade to what we know and love as JavaScript.

The evolution of JavaScript, more specifically ECMAScript, is primarily community
driven and TC39 is the official committee in charge of it. TC39 is primarily constituted
by members that represent various stakeholders like the major browser companies and
other invited members. They meet and communicate on a regular basis and are tasked
with maintaining and upgrading the standard for the ECMAScript programming language
and the libraries that extend its capabilities. In the process, they consider and evaluate
the proposals for complementary and additional technologies for evolving ES. If you are
interested in knowing more or checking out the agendas and minutes of their meetings,
they are all available online on GitHub (https://github.com/tc39/tc39-notes).

The design process for ECMAScript standards is built around proposals that are
usually popular requests from the developer community for new features or upgrades
to existing ones. Since TC39 has a large number of participants, making it difficult to

https://github.com/tc39/tc39-notes

Chapter 1 ■ Getting Started with ES6

2

do collaborative design work, usually one or two committee members are assigned as
champions responsible for maintaining a proposal and to do design work and report back
to the committee.

For a proposal to become a standard, it has to go through multiple stages. The initial
feature sketch of the proposal, which is also referred to as a “Strawman proposal,” is the
first stage discussed by the committee and if it agrees that it is important, it is considered
an official proposal. The proposed feature then needs to be implemented at least by two
major JavaScript engines to get feedback from the community and evolve the proposal
further. Once the proposal passes through these stages and incorporates feedback, TC39
approves it and will include it in the new edition of the ECMAScript standard.

History of ECMA, ECMAScript, and JavaScript
For someone unaware of the history of JavaScript, it can get pretty confusing quickly with
so many different names like JavaScript, ECMAScript, different version numbers, and
other popular offshoots like ActionScript, JScript, and TypeScript, which are all different
forms of JavaScript.

JavaScript was originally developed by Brendan Eich as a scripting language for the
web for use in the Netscape browsers. The name itself was chosen for marketing reasons
due to the rising popularity of Java around the time, even though it had nothing to do with
Java. In an attempt to standardize the language and the specification, it was submitted
to ECMA International, a body for standardization of information and communication
technology and consumer electronics. Eventually, the language standardized in ECMA-
262 was just called ECMAScript or ES in abbreviated form, since JavaScript was a
name trademarked by Sun and now belongs to Oracle. None the less, the language is
still commonly referred to as JavaScript by everyone. There were many variations in
implementations with ECMAScript as the backbone, like a slightly different adoption for
the Internet Explorer by Microsoft called JScript. ActionScript is another example of a
derived language developed by Adobe.

The initial versions ES1 and ES2 were released in 1997 and 1998, but in 1999, the ES3
release was a major upgrade with new features like regular expressions, improved string
handling, more control statements, better error handling, and try catch exception handling
among many other enhancements that we commonly use in JavaScript today. It had a
widespread base implementation in various forms across major browsers and engines.

After the release of ES3, work on ES4 was well under way with many radical
changes and a massive scope. Updated features included new syntax, modules, classes,
classical inheritance, private object members, optional type annotations, and more. The
proposed changes led to many differences, both technical and political, among various
stakeholders in the community, resulting in it being put on hold in 2003. Parts of the
proposed features made their way into implementations like ActionScript and Jscript.
NET. After receiving feedback from these implementations, TC39 decided to resume work
on ES4 in 2005, but by this time there was a big split in the community and two major
groups had formed with differences on the way forward.

The alternate version championed by companies like Microsoft and Yahoo with fewer
feature additions and improvements to the existing spec was referred to as ECMAScript 3.1.
Because there was no consensus between the groups and the future of JavaScript was
questionable, there was no major progress for a few years. Finally, in 2008 TC39 came
to a consensus between ES4 and ES3.1. ECMAScript 3.1 was eventually standardized as

Chapter 1 ■ Getting Started with ES6

3

the fifth edition of ECMA-262, also described as ECMAScript 5, and the committee never
released an ECMAScript 4 standard to avoid confusion. ES5 would be a small incremental
update and they would work on the next major release, which would be more modest than
ES4, dropping many proposed features like packages, namespaces, and early binding. This
proposed release was code named ES Harmony due to the nature of the meeting.

ES5 was released in December 2009, and it is currently the most widely supported
version in modern browsers today. It came with many enhancements to the standard
library and updated language semantics via a strict mode.

When it was apparent that plans for ES Harmony were becoming too ambitious for
a single release, they split up the first set of features with the highest priority and code
named the release ES. Next, to avoid premature naming with a version number in light of
what happened with ES4, once it matured the specification was called ECMAScript 6.

ES6 took a long time to become official. The deadline for ES6 proposals was May 2011
and no major proposals were considered after that; but starting with the later versions,
TC39 decided to time-box releases and release a new version every year with smaller
incremental changes using whatever features are approved by that time. Hence the
committee decided to change the naming convention of the versions to denote the year of
release. Hence the official name of ES6 was changed to ECMAScript 2015 just before the
final release, but the name ES6 was so widely used for years that ES2015 is still commonly
referred to as ES6 and that’s why we chose to refer to the new specification as ES6
throughout this book. But going forward, ES versions will be officially referred to by their
year of release. So when we say ES6, we are referring to the broader changes in ES2015.

To look at ES6 from a bird’s eye view, the specification drafts are divided into four
major parts: the goals, the requirements, the means, and the themes. The goals aspire to
fix the common pitfalls in JavaScript and add new features, while the requirements state
that both of them need to be done in such a way that it does not break any existing code,
while preserving the lightweight nature of the language.

We won’t be digging into all the goals here. But you should know that these goals
aspire to make it a better language for writing complex applications, libraries, etc.
Keeping versioning simple and incremental, ES6 avoids versioning; this is best described
by the philosophy of One JavaScript. For example, in ES6 everything is ES6 code: there are
no parts that are specific only to ES5.

ES6 aims to provide better support for large applications and library creation. It
offers enhancements like classes, modules, lexical block scoping, iterators, generators,
native language support for promises, and much more.

The development of ECMAScript Standard is community driven and the
requirements and features of the language will still continue to evolve for betterment in
the future releases.

One JavaScript
In principle, when there is a new version of a language implementation, it is a chance
to clean it up and remove old outdated features and make way for newer, better
implementations. This leads to versioning, which basically implies that each piece of
code needs to be linked to a specific version of the language. For example in Python, to
shift between Python 2 and Python 3, one would need to migrate the code base. But this
option would not be feasible for the web and a language like JavaScript. You will always
have old chunks code that you will encounter on the Internet.

Chapter 1 ■ Getting Started with ES6

4

So the ES specification aspires to upgrade the language and avoid versioning. This is
done by always being backward compatible, that is, all valid ES5 code is also valid for ES6
code. Therefore, ES6 is designed to not have any breaking changes and none of the previous
features are removed. Hence in theory specifying the version is not required for the engines.
So instead of removing existing features, you introduce new and better features.

What does this mean for you, a JavaScript developer? Since ES6 is a superset of ES5
you will not need to migrate any old code. Your existing JS code is valid ES6 code as well.
Therefore to reiterate there is nothing you need to do. Therefore, everything you learned
and use in existing JavaScript can be brought over to ES6, and it has more and better tools
to add to your existing arsenal. This can be really helpful if you wish to incrementally port
your current system into ES6 because everything is backward compatible.

Using ES6
Many JavaScript environments including web browsers and Node.js are actively working
on implementing all the features of ECMAScript 6 and later. But it will take some time
before ES6 is universally supported all across the Internet. At the time of writing this
book, the latest version of chrome has 97% of features implemented and Safari has 100%
of the features implemented. You can check the current feature-wise support for all
engines at http://kangax.github.io/compat-table/es6/.

Until all of ES6 features are universally supported we need a way of converting
ES6 into compatible JavaScript code. This is where transpiling comes in. Transpiling
(transformation + compiling) is a technique in which we use special tools to transform ES6
code into its closest equivalent, ES5 code, to work on older browsers or environments.

Consider the following ES6 code:

const fruits = ["apples", "bananas", "oranges"];
let store = {
 fruits
};
store.fruits; // ["apples", "bananas", "oranges"]

This roughly transpiles to:

var fruits = ["apples", "bananas", "oranges"];
var store = {
 fruits: fruits
};

store.fruits; // ["apples", "bananas", "oranges"]

Some ES6 features can work simply by using polyfills or shims, which are simple
patterns that define a new behavior in an older environment. You can also run and
transpile small pieces of ES6 code online in your browser through ES6 REPLs like
https://jsfiddle.net/ and babeljs.io/repl/. But for larger projects, you would need
to use any of the available transpilers. We recommend using Babel, which is one of the
most popular JavaScript transpilers available today.

http://kangax.github.io/compat-table/es6/
https://jsfiddle.net/
http://babeljs.io/repl/

Chapter 1 ■ Getting Started with ES6

5

Setting Up ES6 Using Babel and webpack
In order to use ES6 in your projects today, there are a set of build tools you will need to get
things up and running. In this section, we will be discussing a few build tools, and we will
be setting up an ES6 Boilerplate that you can use as a starter kit for your ES6 projects.

Transpiling with Babel
Babel.js is an awesome tool that lets you transpile your ES6 code into ES5 code that can
then be run in current JavaScript environments. Babel supports the latest version of
JavaScript through syntax transformers, and these plug-ins allow you to use new syntax,
without waiting for browser support.

The first step is to install Babel on your local machine using npm.

■■ Note  Before you continue, make sure you have Node.js and npm already installed. If
you don’t have node and npm installed, you can visit https://nodejs.org/en/ to set up
your development environment.

npm install -g babel-cli

Now, you can run any file with ES6 code from your command line using:

babel-node <filename.js>

But transpiling every file manually isn’t efficient and, in most cases, isn’t the solution
for managing large projects. So let’s set up an ES6 starter kit that will help you automate
the build process and make the development process more efficient.

Setting Up an ES6 Boilerplate
In order to transpile an ES6 project, we will be using babel-loader and webpack that will
help us generate a bundled output with all the transpiled code and related dependencies.

Start a New Project
Run the following set of commands in your terminal to start a new project:

mkdir es6-boilerplate
cd es6-boilerplate
npm init –yes

npm init creates a new project with its own package.json and –yes flag prevents
npm from prompting you from any options and will use the defaults.

https://nodejs.org/en/

Chapter 1 ■ Getting Started with ES6

6

Install webpack and webpack-dev-server
Webpack is a very flexible module bundler that takes modules with dependencies and
generates static assets representing those modules. We will be using webpack to let babel-
loader transpile our ES6 code into traditional ES5 code and generate a bundled output file.

npm install –-save-dev webpack

Besides webpack, we need to use webpack-dev-server to serve our app and
transpile the code on the fly. But, note that webpack-dev-server is a development server
and should not be used for production.

npm install –-save-dev webpack-dev-server

■■ Note  To read more about webpack and webpack-dev-server in detail, you can visit
https://webpack.js.org/concepts/.

Install Babel in the Project
You can install babel into your project very easily using the following npm packages:

npm install --save-dev babel-loader babel-core babel-preset-es2015

The next step is to configure babel to use ES2015 presets by adding a new file
.babelrc in the root directory of your project with the following JSON:

{
 "presets": ["es2015"]
}

Your package.json file should more or less look like this:

{
 "name": "es6-boilerplate",
 "version": "1.0.0",
 "description": "ES6 Boilerplate",
 "devDependencies": {
 "babel-core": "^6.24.1",
 "babel-loader": "^6.4.1",
 "babel-preset-es2015": "^6.24.1",
 "webpack": "^2.4.1",
 "webpack-dev-server": "^2.4.2"
 }
}

https://webpack.js.org/concepts/

Chapter 1 ■ Getting Started with ES6

7

Now, create a new index.html file and index.js file in the root directory of your
project And your current project directory should look like the following:

.
├── index.html
├── node_modules
├── package.json
├── index.js

Configuring Webpack
The next step is to set up webpack by creating a configuration file - webpack.config.js in
the root directory of your project.

A webpack configuration file is a CommonJS-style module where a configuration
object is exported out of this module.

// webpack.config.js

module.exports = {
 entry: './index.js',
 output: {
 path: './dist',
 filename: 'bundle.js'
 }
};

Here, entry is the path to the source of your project and webpack will analyze your
entry file for dependencies and generate a bundled output (which includes all the
dependency modules). Note that only the entry module is executed on startup.

Add Loaders
Loaders allow you to preprocess files as you load them. Loaders provide a powerful way
to handle front-end build steps and can transform files from a different language, like
CoffeeScript to JavaScript or inline images as data URLs. For example, babel-loader uses
Babel to load ES2015 files.

So now, modify webpack.config.js to process all .js files using babel-loader:

module.exports = {
 entry: './index.js',
 output: {
 path: __dirname + '/dist',
 publicPath: '/dist/',
 filename: 'bundle.js'
 },

Chapter 1 ■ Getting Started with ES6

8

 module: {
 rules: [{
 test: /\.js$/,
 exclude: /node_modules/,
 use: 'babel-loader'
 }]
 }
};

The above configuration implies the following:

	 1.	 ‘./index.js’ is the entry point of the application.

	 2.	 Output will be generated in ‘./dist/bundle.js’.

	 3.	 We are processing every .js using the babel-loader, excluding
node_modules to avoid external libraries to go through Babel,
slowing down compilation.

Adding Your Generated bundle.js script to your
index.html
Now we can include the bundle.js script into our html file to run the code.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>ES6 Boilerplate</title>
 </head>
 <body>
 <h1>ES6 Boilerplate</h1>
 <p>Check console for details</p>
 <div id="main"></div>
 <script src="dist/bundle.js"></script>
 </body>
 </html>

To compile your .js file, you can run the following command in your terminal:

webpack

You can also use following additional flags with webpack:

•	 webpack for building once for development.

•	 webpack -p for building once for production (minification).

Chapter 1 ■ Getting Started with ES6

9

•	 webpack -w for continuous incremental build in development
(fast!).

•	 webpack -d to include source maps.

■■ Pro Tip W e can achieve prettier output using webpack – progress – colors that add a
progress bar and colors in the webpack output in the terminal.

Setting Up a Development Server
To start a development server to test your code, you can run the following command:

webpack-dev-server -d --progress --colors

This binds a small node-express server on localhost:8080, which serves your static
assets as well as the bundle (compiled automatically). It automatically updates the
browser page when a bundle is recompiled.

We can also add these webpack commands to your package.json scripts.

"scripts": {
 "start": "webpack-dev-server --hot --inline",
 "watch": "webpack -w -d",
 "build": "webpack -p"
},

Now, you can use this:

•	 npm start to run a dev server at localhost:8080 and watch for/
recompile on changes.

•	 npm run watch to only watch for/recompile on changes on your
own web-server.

•	 npm run build to generate a minified, production-ready build.

Let’s try this out with a helloWorld() function inside our index.js file:

const helloWorld = () => {
 console.log("Hello! We are all set!");
 console.log("Arrow functions are working");
};

helloWorld();

To ensure everything is working perfectly, you can run npm start in your terminal
and check the server running at http://localhost:8080.

Chapter 1 ■ Getting Started with ES6

10

You can run npm run watch to see the transpiled code in your bundle.js file
located inside the dist directory, which will have this chunk of transpiled ES5 code:

function(module, exports) {
 "use strict";
 var helloWorld = function sayHello() {
 console.log("Hello! We are all set!");
 console.log("Arrow functions are working");
 };
 helloWorld();
}

Finally, we also recommend using ESLint in your project to use best practices and
avoid errors while writing your code. You can find the above boilerplate code at
https://github.com/metagrover/ES6-boilerplate, which also has an .eslintrc file
that contains the standard rules and configurations we use.

Summary
JavaScript is one of the most powerful languages on the Web today, and it is only getting
stronger. ES6, or officially ES2015 and the versions that follow, brings in a new paradigm
to JavaScript. As we will see in the next few chapters, there is a lot of new stuff for a
conventional JavaScript developer. But it is important for existing JavaScript developers to
become aware of the new features to stay ahead of the curve as more and more features
become mainstream in the world of browsers and frameworks.

JavaScript is moving quicker than ever before and transpilers and shims/polyfills
are important tools to keep you on the forefront of where the language is headed.
ECMAScript 6 comes with a very extensive list of new additions to the language and
each of these features was carefully considered, discussed at length, and chosen by the
community to become a part of the standard. Now it’s up to us developers to use and
apply the new standard to our products to better serve the people using them.

You might be asking yourself, is the change worth it. Is integrating ES6 into your
projects and work necessary and do you really need to change the existing ways of
doing things. We would like to say "Yes, it is worth it," and through this book we aspire
to encourage you to adapt to this new world. Even if you face some resistance in moving
away from the old ways, we suggest you stick with it and change your practices.

The JavaScript community is extremely vibrant and dynamic with things changing at a
rapid rate. ES6/ES2015 knowledge is now expected among JavaScript developers. The new
language constructs have not only become popular, but are now also widely supported.
Mastering the inner workings of ES6 will let you build modern applications and give you
access to a more powerful language and help you improve your programming skills.

Through ES6, you will have access to more powerful programming concepts like
practical object oriented code among other new features that were simply not possible in
the past. We hope to introduce you a modern workflow and tools like Babel and Webpack
to make application development faster and more enjoyable. You will then be able to
measure code quality and write more testable JavaScript.

https://github.com/metagrover/ES6-boilerplate

11© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_2

CHAPTER 2

New Syntax in ES6

The new features introduced in ECMAScript 6 represent the foundation upon which
JavaScript applications will be built in the future. In this chapter we will take a look at the
changes and new additions to the ES6 syntax that help in fixing a lot of things that went wrong
with the previous versions of JavaScript. We will discuss in detail about new ways of declaring
variables and defining scope. We will also introduce new concepts like arrow functions,
default function parameters, spread and rest operators, and object literal extensions.

Variable Declarations: let, const, and Block
Scoping
In the past, all variables in JavaScript were declared using the keyword var. These variables
were function scoped, meaning their scope was within the function enclosing them, and
this could sometimes be confusing to developers coming from other languages. So, if you
needed to create a new block with its own scope, you would have to wrap your desired
code inside a regular function or an immediately invoked function expression.

Following is an example of regular function level scopes:

var price = 10; // Global Declaration

function showPrice() {
 var price = 12; // Local Declaration using var
 console.log(price); // 12
}
showPrice();
console.log(price); // 10

Following is an example of function level scopes with IIFE:

var price = 10; // Global Declaration
(function () {
 var price = 12; // Local Declaration using var
 console.log(price); // 12
})();
console.log(price); // 10

Chapter 2 ■ New Syntax in ES6

12

The above code demonstrates that the variable price is now scoped to the enclosing
function and the changes are not leaked to the parent scope, in this case global scope.
The new value price = 12 is only available inside the enclosing function scope.

If we replace the function scope with a block scope (‘if’ block), it looks like this:

var price = 10;
if (price) {
 price = 12;
 console.log(price); // 12
}
console.log(price); // 12

The above code makes it clear that the changes inside the ‘if’ block are leaked to the
parent scope, which tells us that the var declarations are bound to the function scope and
does not create block scopes.

Prior to ES6, JavaScript used functional scoping, but block scoping is more common
than functional scoping across most programming languages. With ES6, we now have two
additional ways for declaring variables, let and const, both of which declare variables
that are block scoped.

Block Scoping with let and const
Quite simply, block scoping means that a new scope is created between a pair of { }.
The variables declared using the keywords let and const only exist within the innermost
block that surrounds them.

In the following example, what do you think will be printed to the console when you
execute the following code snippet?

let nbr = 42;
{
 let nbr = 1000;
}
console.log(nbr);

The value 42 is printed to the console, because the second nbr variable is scoped to
the block within which it is declared and does not affect the nbr variable outside of the
block, where it remains 42. Normally, you wouldn’t use a block like that unless it were in a
control flow statement like an if condition or in a loop, but this explains how a variable is
block scoped.

We now know that var is bound to function scope, whereas let and const are block
scopes, which means if you've got a set of curly brackets (a block of code), you have a block
scope. But, the catch is you can declare a variable inside of its block scope only once.

On the other hand, unlike let, const creates immutable variables. The values of
the variables created using const need to be assigned during declaration and cannot be
changed later in the program.

Chapter 2 ■ New Syntax in ES6

13

Consider the following example:

const value = 42;

console.log(value); // 42
value = 1000; // TypeError

■■ Note  Trying to change the value of a const variable will throw a TypeError. Changing an
immutable binding in strict mode only causes an exception SetMutableBinding().

Make sure that you always initialize the variable with a value declared using const;
otherwise it will throw an error. Consider the following example:

const item; // SyntaxError: Missing initializer in const declaration

If you need a constant with an undefined value, you'd still have to do something like this:

const value = undefined;

If you know that the value of your variables is not going to change throughout
your code, you should be using const; otherwise use let to declare your variables. We
recommend moving away from the practice of using var to declare variables as it is
cleaner, more efficient, and easy to debug if you use block scoping. let and const avoid
the source of misunderstanding, especially for programmers with expectations set by
languages with block scope. let and const throw an exception if you try to access the
variables declared by them outside the blocks they were declared and do away with
hoisting, helping you localize the effects of your code fragments.

Consider the following example to understand how hoisting affects the variables
declared using the keyword var:

console.log(nbr); // undefined
var nbr = 42;

The above example prints undefined to the console because of hoisting. When we
declare the variable nbr using var, due to hoisting it becomes equivalent to declaring
the variable at the start of the scope with its value set to undefined. But if you moved
the console.log statement after the declaration, it would print the number 42, due to the
fact that entering the scope of the variable declared using var, that is, its surrounding
function, creates a binding. The variable is then initialized by setting the value to
undefined. When the execution reaches the declaration, this variable is then set to the
specified value in the assignment statement.

Let's take a look at a similar example using let:

console.log(nbr); // Reference Error: nbr is not defined
let nbr = 42;

Chapter 2 ■ New Syntax in ES6

14

This would actually give you a Reference Error: nbr is not defined since no hoisting
takes place here. This can be a big help in debugging different types of bugs that can be
caused by a variable being used before it is declared. This Reference Error is technically
called a Temporal Dead Zone (TDZ) error because you are accessing a variable that's
been declared but not yet initialized.

More on Temporal Dead Zones
The main takeaway from this discussion is that let and const declare variables with a
temporal dead zone (TDZ), in contrast to the hoisting that happens when you use var.
The variable in the Temporal Dead Zone is not yet initialized with any value. A memory
binding is created and remains uninitialized when the variable is declared. Trying to get
or set the variable at this point raises a Reference Error. When the program flow reaches
the declaration, the variable is then set to the value specified in the statement; otherwise
it is set to undefined if there is no assignment in the statement.

const works in a similar fashion, the only difference being that it needs an initializing
value during declaration, which cannot be changed later.

let data = true;

if (true) { // enter new scope, TDZ starts
 // Uninitialized binding for "data" is created

 console.log(data); // ReferenceError

 let data; // TDZ ends, "data" is initialized with "undefined"
}
console.log(data); // true

As soon as the initialization occurs with the assignment of a value to the variable, the
TDZ ends.

The temporal dead zone primarily exists to catch errors. You should not be able
to access a variable before it is declared, and even if you do by accident you should be
warned about it. TDZ was the best solution for const to work the way it does and having
let also having a TDZ makes switching between them very easy. TDZs helps us ensure
that a variable in runtime always has the correct value.

if (true) {
 console.log(typeof anUndeclaredVariable); // 'undefined'
 console.log(typeof random); // ReferenceError (TDZ)

 let random;
}

Even if you try to access a variable in the temporal dead zone using typeof, you
will get an exception. typeof is a safe way to check if a variable exists or not. But if a
variable is declared using let further down in the code, it will throw a TDZ error because

Chapter 2 ■ New Syntax in ES6

15

that variable is in the temporal dead zone when you call typeof. Therefore, it is a good
practice to always make variable declarations at the top of your scope. This check is also
useful for conditionally creating global variables using var. You can check if a global
variable exists by doing something like this:

if (typeof globalVariable === 'undefined') {
 var globalVariable = { ··· };
}

■■ Note  const is used to declare an immutable variable but it does not make the value
contained in the variable immutable.

In the following code snippet obj is a constant, but the value it points to is mutable;
therefore you can add a property to it but you cannot assign a different value to obj.

const obj = {};

obj.key = 42;

console.log(obj.key); // 42

obj = {}; // TypeError

If you wanted to you could make the value itself immutable by freezing it.

const obj = Object.freeze({});

obj.key = 42;

console.log(obj); // {}

Remember that Object.freeze() is shallow. It will only freeze the properties of the
object passed to it. Only one level of properties of the object become immutable and not
the objects that might be stored in its properties.

Variables Declarations in loops
For loops (for, for-in, for-of) let you declare variables in their heads. But the way
you declare these variables using var, let, or const changes things. Let’s look at each of
these cases.

In a basic for-loop, using var creates a single binding for that variable

let arr = [];

for (var i=0; i < 3; i++) {

Chapter 2 ■ New Syntax in ES6

16

 arr.push(function () { return i });
}

let value = arr[0]();

console.log(value); // 3

You might have expected the output to be 0, but the output is 3 because a closure
gets formed over the variable i at the end of the loop. i is set to 3 and each instance of i
in the body refers to the same binding. Therefore, the function always returns 3. Now let’s
take a look at the case where i is declared using let:

let arr = [];

for (let i=0; i < 3; i++) {
 arr.push(function () { return i });
}

let value = arr[0]();

console.log(value); // 0

When we use let in a for-loop, each iteration of the loop will get its own i variable
and any closures created close over their own value of i.

In the case of const, it works similar to var because the initial assigned value to a
const variable will not change again.

for (const i=0; i<3; i++) {
 console.log(i);
}

// TypeError: Assignment to constant variable (due to i++)

Variable Declarations with Function Parameters and
Global Scope
If you declare a variable using let inside a function, having the same name as a parameter,
ES6 will throw a static (load-time) error.

function fn(param) {
 let param; // SyntaxError: Identifier 'param' has already been declared
}

Doing the same with a var does nothing, because it is just equivalent to re-declaring
a variable. Another way of fixing this issue would be using a let inside a block, but the
new variable declared will only shadow the parameter:

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ New Syntax in ES6

17

function fn(param) {
 {
 let param;
 }
}

The global object in JavaScript (window in browsers and global in Node.js) has
always been confusing. That’s why in ES6 a distinction was introduced. Consider the
following example:

let notGlobal = "hello";
var isGlobal = "what up";

{ console.log(notGlobal); } // hello
{ console.log(isGlobal); } // what up

global.isGlobal //'what up'
global.notGlobal // undefined

All properties of the global objects are global variables. Therefore, in the global scope
var declarations and function declarations create such properties. But global variables
created using let and const declarations will not be properties of the global object.

Arrow Functions
Arrow Functions are another major syntax update in ES6. Arrow functions are functions
defined using a new syntax, the “fat” arrow =>. The arrow is based on a similar concept
from CoffeeScript. They help in making code more readable by opting out of the function
and return syntax and read the same way the function executes. In this section, we will
discuss in detail about how arrow functions are used and when it makes sense to use them.

The basic syntax of an arrow function is as follows:

var fn = data => data;

The first part of the left-hand side of the assignment statement is the argument that
is provided to the function. If there is only one argument, you do not need any additional
syntax. The next part is the arrow and then the expression that is to be returned. In this
case it just returns the argument. The function is effectively equivalent to

var fn = function(data) {
 return data;
};

Consider another example:

let getNumber = () => 42;

console.log(typeof getNumber); // function
console.log(getNumber()); // 42

Chapter 2 ■ New Syntax in ES6

18

In the code above, we declare a new function called getNumber and assign it using an
arrow function. The empty parentheses () denotes that the function has no parameters
and finally, the function returns the value 42. In arrow functions, we can leave out the
return keyword. The expression specified after the arrow will get returned as long as it is
not wrapped in { }.

var getPrice = (quantity, tax) => (quantity * 5) * (1 + tax);
console.log(getPrice(2, .095)); // 10.95

Note that you can skip the parentheses () in case of exactly one parameter, but you
will always need to use it when you have zero or more than one parameter.

If you want to specify a more traditional function block with more than one expression
you need to wrap the body in braces. But you would specifically need to use the return
keyword to specify the return value. Check the following code snippet for an example:

var getPrice = (quantity, tax) => {
let price = (quantity * 5)
price *= (1 + tax);
return price;
}

console.log(getPrice(2, .095)); // 10.95

Curly braces represent the function’s body. If you want the arrow function to return
an object literal outside the body, you must wrap the literal in parentheses. For example:

var getNumber = data => ({ data: "check", number: 42 });

// effectively equivalent to:

var getNumber = function(data) {
 return {
 data: "check",
 number: 42
 };
};

An object literal wrapped in parentheses shows that the braces are an object literal
instead of the function body.

Using Arrow Functions to Create IIFEs
Functions in JavaScript can be used to create immediately invoked function expressions or
IIFEs. You could define an anonymous function and call it without having any reference to
it. This is an effective pattern to shield the expression from the rest of the program.

Chapter 2 ■ New Syntax in ES6

19

var fn = function(number) {
 return {
 getNumber: function() {
 return number;
 }
 };
}(42);

console.log(fn.getNumber()); // 42

In the code above, an IIFE is used to create the getNumber() method, which uses the
number argument as a return value, ensuring the number property is effectively a private
member of the returned object. Something very similar can be achieved using an arrow
function as well by wrapping it in parentheses.

var fn = ((number) => {
 return {
 getNumber: function() {
 return number;
 }
 };
})(42);

console.log(fn.getNumber()); // 42

One distinction to note is that arrow functions are function expressions and are not
function declarations. They are anonymous function expressions that have no named
reference for the purposes of recursion or event binding or unbinding.

There’s more to arrow functions than just the pretty and cleaner syntax. Arrow
functions do save us a few lines of code and characters, but the real purpose of the arrow
functions is to handle the this keyword within functions. this behaves differently inside
an arrow function. But before we discuss that, in the next section let’s take a look at how
the this keyword works in general.

A Tale about this
In JavaScript, this is the current execution context of a function. Let’s take a look at what
it means in the following scenarios:

1. Function Invocation
Invocation of the getContext() function in Chrome will print the Window object in the
console. That’s because the context of the getContext() is Window/Global object. At
the time getContext() is called, JavaScript automatically sets this as the global object,
which in a browser is Window.

Chapter 2 ■ New Syntax in ES6

20

function getContext() {
 console.log(this); // Global or Window
}

When this is used outside any function scope, it also refers to the global scope.
Check the following code snippet:

if (this === window) {
 console.log("this refers to the Global context");
}

■■ Note  If you’re in strict mode ("use strict"), this would be undefined.

2. Method Invocation
Method invocation means an object’s method is called and in this case, this is the object
that owns the method in a method invocation.

let myObj = {
 name: 'fancy',
 operation: function() {
 console.log(this);
 }
}

myObj.operation(); // { name: 'fancy', operation: [Function: operation]}

Method Invocation, that is, on calling myObj.operation(), [myObj object] will be
printed in the console.

Now, let’s try this:

let x = myObj.operation;
x(); // Window

Here, x refers to the operation() method inside [myObj object]. Calling x() would
mean that we are making a function invocation instead of a method invocation and
therefore, this will refer to the Global (or Window) object.

If we were to call x with the [myObj object] (for method invocation), we will have to
use .call() method:

let x = myObj.operation;
x(); // Window

x.call(myObj); // { name: 'fancy', operation: [function]}

Chapter 2 ■ New Syntax in ES6

21

3. Constructor Invocation
Constructor invocation happens when an object is created using the new keyword.
Consider the following example:

function Employee(name, department, salary) {
 this.name = name;
 this.department = department;
 this.salary = salary;

 console.log("Welcome " + this.name + "!");
}

let john = new Employee('John', 'Sales', 4000);
// Welcome John!

new Employee('John', 'Sales', 4000) is a constructor invocation of the Employee
function. The result of execution is a new object and this refers to the newly created object.

The constructor function Employee() can be written as a class in ES6 that we will
discuss later in this book.

this in Arrow Functions

Let’s take a look at how this works inside an Arrow function. Arrow Functions are
designed to lexically bind the context, which means that this refers to the enclosing
context where the arrow function is defined. Unlike a normal function, an arrow function
does not create its own execution context, but takes this from the outer function where it
is defined. Consider the following code:

function Employee(firstName, department, salary) {
 this.firstName = firstName;
 this.department = department;
 this.salary = salary;

 this.getInfo = function() {
 // outer function context = Employee object
 return function () {
 // inner function context = Global object
 console.log(this.firstName + " from " +
 this.department + " earns " + this.salary);
 };
 }
}

let jim = new Employee('Jim', 'Finance', 5200);

Chapter 2 ■ New Syntax in ES6

22

In the above example, we created a constructor function called Employee and
created a new employee object called jim using the constructor function with the new
keyword. In order to print the employee information, we need to use the function
returned by jim.getInfo(). Check the following code snippet:

let printInfo = jim.getInfo();
printInfo(); // undefined from undefined earns undefined

Here, printInfo refers to the inner function and since we are simply making a
function invocation, this refers to the Global object that does not have any Employee
properties and hence produces undefined whenever a property on this is used.

Let's look at how this behaves differently if we replace the inner function with an
arrow function:

function Employee(firstName, department, salary) {
 this.firstName = firstName;
 this.department = department;
 this.salary = salary;

 this.getInfo = function() {
 // outer function context = Employee object
 return () => {
 // inner function context = surrounding context = Employee object
 console.log(this.firstName + " from " +
 this.department + " earns " + this.salary);
 };
 }
}

let jim = new Employee('Jim', 'Finance', 5200);

let printInfo = jim.getInfo();
printInfo(); // Jim from Finance earns 5200

In this case, the this keyword refers to the context of the function enclosing the
arrow function unlike the previous case where it referred to the Global object. At
this point, it is important to note that arrow functions do not change their context on
invocation. Consider the following example:

function Employee() {
 this.firstName = 'Mike',
 this.department = 'HR',
 this.salary = 4500,

 this.getContext = () => {
 console.log(this);
 }
}

Chapter 2 ■ New Syntax in ES6

23

let mark = new Employee();
mark.getContext(); // [Employee object]

let context = mark.getContext;
context(); // [Employee object] (regardless of a function invocation)

In the above example, the context of the arrow function was set on declaration and it
cannot be changed. An important thing to note here is that you cannot “rebind” an arrow
function. The context is always fixed. Check the following code snippet for an example:

var details = {
 number: 42,
 operation: function () {
 return () => console.log(this.number);
}
};

var details2 = {
 number: 84
};

details.operation().bind(details2)(); // 42

In the above example, we are setting the details2 number to 84. But we know we
cannot bind a new object to the arrow function. The engine does not throw any error, it
just ignores the bind completely. So 42 is printed even if we call the operation method
with the details2 object. This also applies to call and apply. So with an arrow function,
calls to bind, call, or apply will not be able to change to value of this.

It is clear from this example that inside a function the value of the this keyword
cannot be changed. The value of this inside a function will remain constant, but you will
still be able to use bind, call, and apply on arrow functions.

var product = (x, y) => x * y;

console.log(product.call(null, 2, 3)); // 6
console.log(product.apply(null, [2, 3])); // 6

var multiply = product.bind(null, 2, 3);
console.log(multiply ()); // 6

Apart from the lexical this, arrow functions also have lexical arguments. They don't
have their own arguments array but instead inherit from their parent. There are no this,
super, arguments, and new.target bindings for arrow functions, so the value of this,
super, arguments, and new.target inside a function is the nearest containing non-
arrow function.

Chapter 2 ■ New Syntax in ES6

24

■■ Note  Normally in JavaScript extra newlines between code do not mean anything and
the code still works properly, but with arrow functions, it is a problem. We cannot put the
arrow symbol on a newline. ES6 forbids a line break between the parameter definition and
the arrow of an arrow function.

Another important aspect of Arrow functions is that they cannot be called with new
since they do not have the construct method and cannot be used as constructors. They
will produce an error when used with new. Check the example below:

var newFn = () => {},
 object = new newFn(); // error - you can't use arrow functions with
'new'

Normally when a function is declared in ES5, it has a prototype property that is used
in construction functions. But since you cannot use new on an arrow function, there is no
need for a prototype. Hence, functions declared using arrow function, do not have access
to a prototype field.

var details = () => 42;

console.log(details.hasOwnProperty("prototype")); // false

Similar to non-arrow functions that do not have duplicate named parameters in
strict mode, arrow functions cannot have duplicate named parameters in either strict or
non-strict mode.

Using Arrow Functions
So whenever you have a short single-statement inline function expression, with a
computed return value and the function does not make a this reference a self-reference,
you can replace it with an arrow function.

If you have functions that use the var self = this hack to deal with the this issue,
or a .bind(this) call for proper this binding, arrow functions were built to help out
with this exact problem. For example, consider the following code snippet where we are
waiting for 1 second to toggle btn-active class on btn click.

$('.btn').on('click', function() {
 var self = this;

 setTimeout({
 $(self).toggleClass('btn-active');
 }, 1000);
});

Chapter 2 ■ New Syntax in ES6

25

Without arrow functions, we will need to store the context in a variable to be able
to access it inside our setTimeout function. This can be simply rewritten with arrow
functions as this:

$('.btn').on('click', function() {
 setTimeout(() => {
 $(this).toggleClass('btn-active');
 }, 1000);
});

Hence, along with shorter and more concise syntax, arrow functions handle the this
keyword a little differently, making it easier to manage the code in many situations.

Default Function Parameters
Unlike the common pattern in other languages, functions in JavaScript are unique in the
aspect that they allow you to call them by passing any number of parameters irrespective
of the parameters declared in the function definition. This gives the developer an
opportunity to use any value for the parameters in case no argument is specified. In
ES5, if the argument is not specified, its value would be set to undefined. The pattern
commonly used to set defaults for unspecified parameters was something like this,

function getSum(a,b) {
 a = (a !== undefined) ? a : 1;
 b = (b !== undefined) ? b : 41;

 console.log(a + b);
}

getSum(); // 42
getSum(1, 2); // 3
getSum(10); // 51
getSum(null, 6); // 6

ES6 tries to streamline this process by giving us the ability to set a default value to the
parameter in the function declaration statement itself.

var getSum2 = function(a = 1, b = 41) {
 console.log(a + b);
}

getSum2(); // 42
getSum2(1, 2); // 3
getSum2(10); // 51
getSum2(null, 6); // 6

Chapter 2 ■ New Syntax in ES6

26

When we call the function, if we do not specify any argument, the default value of the
parameter gets used. The syntax to specify a default value is the parameter followed by an
equal sign “=” and an expression after that.

var getAnswer = function(number = 42, item = "universe") {
 console.log(number + " is the answer to " + item);
}

getAnswer(undefined, "life"); // 42 is the answer to life

Here, we are passing undefined as the first parameter, and ES6 will use the default
value 42 instead.

Function default values can be more than just simple values like 42; they can be any
valid expression, even a function call. You can use complex expressions as default values
for parameters. Default value expressions are evaluated lazily, meaning they're run only if
a parameter's argument is not present or is undefined.

var getName = function(firstName = "John", lastName = "Doe") {
 console.log(firstName + " " + lastName);
}

getName("Jane"); // Jane Doe

You can also access the other variables in the expression used as the default value.

var defaultName = "John";

var getName = function(firstName = defaultName, lastName = "Doe") {
 console.log(firstName + " " + lastName);
}

getName(); // John Doe

You can also access a function when specifying a default for an argument.

var getFirstName = () => "John";

var getName = function(firstName = getFirstName(), lastName = "Doe") {
 console.log(firstName + " " + lastName);

}

getName(); // John Doe

Chapter 2 ■ New Syntax in ES6

27

In the above few examples, if we try to check the number of arguments:

var getName = function(firstName, lastName = "Doe") {
 console.log(arguments.length);
}

getName("John"); // 1

Even though the second argument gets a default value, arguments.length only
returns the number of arguments passed to it.

Let’s take a look at a little more complicated example:

var getPrice = function(quantity = price, price = 5) {
 console.log(quantity + ", " + price);
}

getPrice(); // ReferenceError: price is not defined

Think of the function declaration and arguments like a scope. The parameters of
a function declaration are in their own scope between the parentheses (...). Do not
confuse this with the function body scope. JavaScript has not yet reached the price
declaration when evaluating quantity and hence it does not know the value of price.
The reference to an identifier in a default value expression first matches the formal
parameters' scope before looking to an outer scope.

Like we discussed in the section on let declarations ES6 has a TDZ that does not
allow the variable to be accessed before it is initialized. Therefore, in the above example a
TDZ reference error occurs when you try to use a parameter before it is declared.

Another awesome feature of the default parameters in ES6 is the fact that they work
even when creating a dynamic function:

var getNumber = new Function("number = 42", "return number;");
console.log(getNumber()); // 42

Rest and Spread Operators
JavaScript has always had the feature of allowing functions to be passes fewer or more
parameters than formally specified in the function declaration without any problems.
Default Parameters, as discussed earlier, help you accept fewer values as parameters and
still have the other parameters assigned a value.

Many modern programming languages provide the ability for the function to accept
a variable number of parameters. ES6 introduces this much needed feature to JavaScript
with Rest Parameters. You now have the ability to pass a function a dynamic number of
parameters very easily. If you wanted to do this in ES5 you would have to put all the values
in a data container data type like an array. The Rest Parameters simplify this entire process.

Chapter 2 ■ New Syntax in ES6

28

■■ Note  Do not confuse this term to the web services concept of REST. This has nothing to
do with REST in web services. Rest here refers to gathering up parameters and putting them all
into a single array. Spread refers to spreading out the elements of an array (or even a string).

Let’s look at an example,

var showCollections = function (id, ...collection) {
 console.log(collection instanceof Array);
};

showCollections(42, "movies", "music"); // true

The ... symbol is the rest symbol. It precedes a named parameter. This named
parameter will become an Array that will just gather up all the remaining parameters
passed to the function. Hence here, Collections is set to an array. To make this more clear
if we execute the above program this way,

var showCollections = function (id, ...collection) {
 console.log(collection);
};

showCollections(42, "movies", "music"); // ["movies", "music"]

The Rest parameter gathers up all the remaining parameters after the id parameter
and makes it into an array called collection. Excluding the first defined parameter ‘id’,
everything will be placed in the Array.

If we call the same function by passing it just one value which is the id, it logs out an
empty array [].

Let’s look the length property of the function. If we call showCollections.length, it
will give us the number of parameters in the function.

var showCollections = function (id, ...collection) {};
console.log(showCollections.length); // 1

The length property ignores the Rest parameter. In this case, it is 1. The length property
of the function only counts the number of named parameters excluding the rest parameter.
Now let's look at the case where we check the arguments.length inside the function:

var showCollections = function (id, ...collection) {
 console.log(arguments.length);
};

showCollections(123, "movies", "music"); // 3

Chapter 2 ■ New Syntax in ES6

29

We already had an arguments object, which we can use to check all the parameters
passed to a function without having to define each parameter specifically. Remember we
can have both named and unnamed parameters in a function. In this case, even though
we have two parameters in the function definition, arguments object is going to refer back
to the original function call and three is the number of arguments passed to the function.

In the ES4 specification, Rest parameters were meant to replace arguments and
arguments object was completely done away with, but ES4 never came into being and in
ES6, this concept was reintroduced, but this time the 'arguments' has not been removed
from the language.

We can use the Rest operator in a function constructor. Check the following where
we are creating a new function that has a rest parameter and returns the very first
argument that is passed into it.

var getFirst = new Function("...args", "return args[0]");
console.log(getFirst(1, 2)); // 1

The Spread Operator
The spread operator, which is also denoted by ... before an array, does essentially the
reverse operation of a rest operator. It spreads out an array and passes the values into the
specified function. Consider the following example:

let values = [200, 300, 400];
let newSet = [100, ...values, 500]

console.log(newSet); // [100, 200, 300, 400, 500]

The spread operator is very closely related to the rest parameters. In this particular
format as a spread operator, ... is used like a concatenation or insertion mechanism
where the values array is inserted in between existing values to assign the newly formed
array to newSet.

In case of the rest parameters, you can combine multiple arguments into a single
array, while in case of the spread operator you can specify a single array that can be split
into separate arguments that can be passed into a function or method. Let us look at
another example using the Math.max() method and the spread operator:

let numbers = [-25, 100, 42, -1000];
console.log(Math.max(...numbers, 900)); // 900

In the above case, Math.max is passed five arguments, the first four being -25, 100, 42,
and -1000 and another fifth argument we added 900. The result is the maximum among
them which is 900. Therefore, the spread operator spreads out the values in an array as
arguments in a function call.

The spread operator helps in handling arguments to be passed to a function as arrays
much easier. Just like the rest operator, you can use the spread operator in a function
constructor as well.

Chapter 2 ■ New Syntax in ES6

30

If we try to spread out an empty array, which might be missing two values like [,,]
the last comma is considered a trailing comma that is ignored. The parameters spread out
would also be undefined. Consider the following example:

function printInput(...input) {
 console.log(input);
}

let input = [,,];

printInput(...input); // [undefined, undefined]

Object Literal Extensions
ES6 introduces some new extensions for Object Literals.

To declare object literals, currently using variables we have to use the following
coding pattern:

var price = 4.20, quantity = 20;
var invoiceData = {
 price: price,
quantity: quantity
};

console.log(invoiceData);

Declaring price and quantity twice is kind of redundant, but now ES6 offers a
shorthand making writing this simpler. Check the following example:

const price = 4.20, quantity = 20;
const invoiceData = {
 price,
quantity
};

console.log(invoiceData);

We can just list the field once and the object literal in ES6 is smart enough to interpret
that we want a field called price and want the context data set to the value of the variable
called price. This shorthand notation reduces code and also makes it easier to read.

ES6 also gives us a short notation to write functions in an object literal. Check the
following code snippet, for example:

const price = 4.20, quantity = 20;
const invoiceData = {
 price,
 quantity,

Chapter 2 ■ New Syntax in ES6

31

 calculateTotal() {
 return this.price * this.quantity;
 }
};
console.log(invoiceData.calculateTotal());

In the above shorthand notation, you no longer need the keyword function. When
we use the function shorthand within an object literal, this refers to the context of the
code just like an arrow function. It does not refer to the object that contains the function.
It behaves exactly like an arrow function.

Note that you can use dynamic field names in an object literal:

const field = 'dynamicRandom';
const price = 5.99;
const quantity = 2;
const invoiceData = {
 [field]: price,
 quantity,
 calculateTotal() {
 return this.price * this.quantity;
 }
};

console.log(invoiceData);
// { dynamicRandom: 5.99,
// quantity: 2,
// caculateTotal: [Function: calculateTotal] }

The field in the object gets assigned the name dynamicField. You can actually use an
entire expression and make naming properties even more dynamic:

const field = 'dynamicRandom';
const price = 5.99, quantity = 2;
const invoiceData = {
 [field + "-01"]: price,
 quantity,
 calculateTotal() {
 return this.price * this.quantity;
 }
};

console.log(invoiceData);
// { dynamicRandom-01: 5.99,
// quantity: 2,
// caculateTotal: [Function: calculateTotal] }

You can actually create a dynamic field name in a method as well. They work with
setters and getters as well.

Chapter 2 ■ New Syntax in ES6

32

Template Literals and Delimiters
Strings in JavaScript have been historically limited, lacking the capabilities one might
expect coming from other programming languages. ES6 introduces Template Literals,
which provide you a way to define strings with additional functionalities like:

•	 String interpolation

•	 Embedded expressions

•	 Multiline strings without hacks

•	 String formatting

Template Literals use backticks (``) rather than the single or double quotes. Template
literals, in the end, always produce strings. A template literal can be written as follows:

let user = `Kevin`;

Template literals allow string substitutions that provide us a way to substitute any
valid JavaScript expression inside a string. Template Literals can contain placeholders for
string substitution using the ${ } syntax. Consider the following example:

console.log(`Hi ${user}!`); // Hi Kevin!

In the above example, the template literal is delimited by backticks (`) and the
interpolated expressions inside the literal are delimited by ${ and }.

We can also substitute a lot more than variable names. Template Literals allow us to
use expression interpolation to embed readable inline math, for example:

let a = 10;
let b = 20;

console.log(`Sum of ${a} and ${b} is ${a+b}`);

Template literals also allow you to add multiline strings easily (without the use of \n):

console.log(`I am line-one
I am line-two`);

// I am line-one
// I am line-two

Tagged Template Literals
A more advanced form of template literals are tagged template literals. Tagged Templates
transform a Template String by placing a function name before the template string. For
example:

output`Hi, my name is ${name} and I love ${language}`;

Chapter 2 ■ New Syntax in ES6

33

This expression can be transformed into a function call that takes two kinds of
parameters:

	 1.	 Array of literal strings, that is [“Hi, my name is”, “and I love”, “ ”]

	 2.	 Substitutions, that is, name, language.

The total number of Literal Strings are always one greater than the number of
Substitutions. You can consider each substitution wrapped around by two literals on each
side. That's why there is an empty string as the last element in the array of literal strings above.

Therefore, the above tagged template can be written as:

output(["Hi, my name is ", " and I love ", ""], name, language)

The tag functions are typically defined using rest arguments to allow easier
parameter handling. The above function can be defined as:

function output(literals, ...substitutions) {
 let result = "";

 // concatenate literal strings and substitutions
 for (let i=0; i<substitutions.length; i++) {
 result += literals[i] + substitutions[i];
 }

 // concatenate the last element in the literals array
 // there is always one element more than the substitutions array
 result += literals[literals.length - 1];

 return result;
}

const name = 'John',
 language = 'JavaScript';

let text = output`Hi, my name is ${name} and I love ${language}`

console.log(text); // Hi, my name is John and I love JavaScript

Since these functions receive the parts of a Template String as arguments, you can
then decide how to use the strings and substitutions to determine the final output of your
string. For instance, you can use the output function to convert all the characters into
uppercase, converge the input into a hash-string, or anything you may want.

Iterating with for...of
Over the last two decades in JavaScript, we have been iterating using the for, for-in,
and forEach (in case of arrays). ES6 introduces another structure, the for...of loop,
which allows iterating over iterable objects such as array, map, set, string, etc.

Chapter 2 ■ New Syntax in ES6

34

We will be looking at iterators and iterables more closely later in this book. Consider a
simple for-loop for iterating over an array:

let names = ['matt', 'smith', 'jack'];

for (let i = 0; i<names.length; i++) {
 console.log(names[i]);
}
// matt
// smith
// jack

There's absolutely nothing wrong with this format, but with the new syntax, we
don't have to initialize and keep track of the loop counter variable (i). We can achieve
the same iteration logic with lesser and cleaner syntax. Check the following code snippet
written using the for-of syntax:

let names = ['matt', 'smith', 'jack'];

for (let name of names) {
 console.log(name);
}
// matt
// smith
// jack

Note that the value you loop over using for...of must be an iterable. An iterable is
simply an object that is able to produce an iterator, which the loop then uses. The for...of
loop doesn't just work for arrays, but also other iterables like the DOM NodeList object, the
arguments object, and String objects. Just like with arrays, the for-of loop makes it easier to
iterate over these non-Array sequences. Consider the following code snippet, for example:

for (let char of 'Bye') {
 console.log(char);
}

// B
// y
// e

■■ Note  It is important to not confuse for…of with the older for…in loop syntax, which is
used to iterate over the enumerable properties (or keys) of an object.

The applications and advantages of the for...of loop structure will make much
more sense when we discuss the iterators and iterables in detail later in this book. This
section was merely meant to introduce the new for...of loop syntax and its usage with
data structures like arrays and strings.

Chapter 2 ■ New Syntax in ES6

35

Summary
If you have been a JavaScript programmer, you might be aware of a few quirks in the way
we write JavaScript even though it has a fairly reasonable and straightforward syntax
similar to other languages. ES6 tries to address many of these issues by bringing in a lot
of new syntax and changes to existing patterns in JavaScript. There are plenty of new
concepts for you to become familiar with. Many of the new patterns introduced aim
at addressing existing challenges in previous versions of the language and easing the
process of programming in JavaScript. They help in writing cleaner code, debugging
faster, implementing logic in fewer lines, and avoiding confusion.

New keywords like let and const for variable declarations introduce block scoping
to JavaScript, bringing in functionality common to other programming languages, making
it easier to write more robust code and aid in the process of debugging. Features like
Arrow functions, while helping in writing shorter and nicer-looking functions, also bring
in specific behaviors that you can use for particular situations, like making the use of the
this keyword more simple.

Through this chapter, we also introduced to you new concepts like default values
for function parameters and the Rest and Spread operators. The pattern of gathering
the "rest" of the parameters of a function into an array is now merely using three dots.
We also discussed how template literals grant us more power for templating and string
manipulations. Finally, we looked at the new for...of loop structure for iterating over
the iterables without having to use an additional counter variable.

We have only introduced a few new important syntax features in this chapter, but
over the course of the next few chapters, we will be looking at many more new features
like Destructuring, Classes and Modules, Iterators and Generators, Meta Programming,
etc. So stay tuned.

37© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_3

CHAPTER 3

Destructuring

Object literals and arrays are probably some of the most widely used notations in JavaScript.
The popularity of these JavaScript notations is further extended to even outside the
language with their presence in the JSON data format. Objects and arrays are commonly
used to group data in JavaScript and there exists various patterns to systematically fetch
data from these defined structures when we need them. ES6 further extends this process by
making it easier and simpler through a process called destructuring.

Destructuring of Objects and Arrays
Destructuring is basically a convenient way of breaking the data structure into smaller
pieces to access its data more easily and extract multiple values from Objects or Arrays.
To understand destructuring better, simply think of it as a structured assignment from an
object or array. Consider the following example,

var letters = ['a', 'b', 'c'],
 x = letters[0],
 y = letters[1],
 z = letters[2];

console.log(x, y, z); // a b c

In the above example, we assigned values to an array called letters and then the
x, y, and z variables using indices on the letters variable. Let us look at another such
example using objects:

var numbers = {a: 1, b: 2, c: 3},
 a = numbers.a,
 b = numbers.b,
 c = numbers.c;

console.log(a, b, c); // 1 2 3

In this example, we use the numbers.a value to assign the value of the variable a
and similarly numbers.b & numbers.c for b and c variables. ES6 makes this pattern of
structured assignment simpler through a new and dedicated syntax called destructuring.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Destructuring

38

This syntax eliminates the need for the temporary, intermediate variables – letters and
numbers. Consider the following examples:

var [x, y, z] = ['a', 'b', 'c'];
var { a: a, b: b, c: c } = {a: 1, b: 2, c: 3};

console.log(x, y, z); // a b c
console.log(a, b, c); // 1 2 3

■■ Note  We are commonly used to seeing an object and array syntax like {a: a, b:b, c:c }
and [x, y, z] on the right side of an assignment statement. Destructuring flips this pattern
and puts them on the left side with a variable declaration keyword, and lets you decompose
the right side into individual values to be assigned to the variables on the left side.

As seen in the previous two examples, prior to ES6, fetching information from
objects and arrays and putting them into local variables needed a lot more code. Imagine
you needed to extract values from a very large object or array and store them in variables
of the same name. You would have to write a lot of code assigning values to them one by
one, but using destructuring, this process gets reduced to a single assignment statement.

Breaking the data structure into smaller parts using destructuring makes fetching the
data you need much easier. Furthermore, destructuring in ES6 uses the object and array
literal notation syntax, which traditional users of JavaScript are already familiar with.

Object Destructuring Syntax
Let us take a look at the object destructuring syntax a little more closely. The Object
Destructuring syntax as we have seen is,

var { a: a, b: b, c: c } = {a: 1, b: 2, c: 3};

In this example, you can notice that we used the same name for the variables being
assigned and the properties of the returned object. They do not have to be the same,
though, you can use any name for the local variables being assigned. But in case they
are the same, the syntax can be further shortened by leaving out the "a: " part of the
notation. This declaration statement can simply be written as,

var { a, b, c } = {a: 1, b: 2, c: 3};

console.log(a, b, c); // 1 2 3

It makes a lot of sense for us to use the smaller syntax instead of the long form, unless
you want to assign a property to a different variable name, but there is an important nuance
you need to be careful about when using the long form. Consider the following example,

Chapter 3 ■ Destructuring

39

var { a: foo, b: bar, c: baz } = {a: 1, b: 2, c: 3};

console.log(foo, bar, baz); // 1 2 3
console.log(a, b, c); // ReferenceError

Observe this example closely. The pattern may seem very straightforward where the
left side gets the values from the right side inside the object notation { a: foo, b: bar,
c: baz }. But it is actually the other way around. It is not the “target: source” pattern we
are commonly used to, but more accurately it is the inverse, that is, the “source: target”
pattern. Why this confusion though? This pattern will make more sense if you look at it in
a different way. Consider the following assignment:

var foo = 42, bar = 100;

var obj = { a: foo, b: bar };
var { a: FOO, b: BAR } = obj;

console.log(FOO, BAR); // 42 100

In this example, a and b refer to the properties of the object and in the object
destructuring assignment statement, a and b also represent the object properties.
Remember how in a previous example where we shortened the code, we said we could
leave out the a: part. It is precisely for this reason. In this example, if you get rid of the a:
and b: sections of the syntax, you will be left with FOO and BAR. This syntax can sometimes
be confusing, but it can be simple to grasp it,\ if you think of it as corresponding property
names and values being mapped to each other: in this case foo get assigned to FOO and
bar to BAR using the a and b property names.

Using Object Destructuring, you can actually set the value of multiple variables using
the same property value. Consider the following example:

var { x: foo, x: bar } = { x: 42 };

console.log(foo); // 42
console.log(bar); // 42

In this case both foo and bar get their value using the x property of the object.
You are free to use let, const, or var depending on the situation and requirement

in a destructuring declaration statement. But be sure to always have an assignment in the
statement, that is, a right-hand side is required for the statement.

var { x, y }; // syntax error!
let { x, y }; // syntax error!
const { x, y }; // syntax error!

All of the above declarations result in a syntax error because of a missing initializer
in the destructuring declaration. While we know that const requires an initializer in all
cases, when using destructuring var and let, they also require initializers.

Chapter 3 ■ Destructuring

40

Assignment Using Destructuring
So far in our discussion we have only seen cases where we use destructuring declarations
statements. But destructuring can also be used in assignment statements. Consider the
following example using getChars() and getNumbers() functions from the previous
examples,

var a, b, c, x, y, z;

[x, y ,z] = getChars();
({ a, b, c } = getNumbers());

console.log(x, y, z); // a b c
console.log(a, b, c); // 1 2 3

In this example the x, y, z, a, b, and c are all assigned using destructuring after
they are declared.

■■ Note  You must always use parentheses around an object destructuring assignment
statement. This is because an opening curly brace is used to denote the start of a block
statement. The parentheses around it denote that the curly brace should be interpreted as
an expression used in an assignment statement using destructuring.

You can also change the values of variables after they are assigned using
destructuring. Consider the following example,

let item = {
 name: "Apples",
 quantity: 5
 },
 name = "Oranges",
 quantity = 3;

// assigning different values using destructuring
({ name, quantity } = item);

console.log(name); // "Apples"
console.log(quantity); // 5

In this example, name, quantity, and item are initialized with values in a single
declaration statement. Then name and quantity are assigned new values by fetching
values from item using destructuring.

Chapter 3 ■ Destructuring

41

Default Values
When using destructuring to assign a value to a variable using an object that does not
have the corresponding property name, its value is set to undefined. For example:

var item = {
 name: "Apples",
 quantity: 5
};
var { name, quantity, value } = item;
console.log(name); // "Apples"
console.log(quantity); // 5
console.log(value); // undefined

In this example, an extra variable value that does not have a corresponding property
inside item is declared in the destructuring statement. It gets set to undefined while name
and quantity get their respective values from item.

Additionally, instead of giving the extra variables a value of undefined, you can also
choose to define a default value in case of the absence of the specified property. To do so,
just use an equals sign (=) after the property name and specify a default value, like this:

var item = {
 name: "Apples",
 quantity: 5
};

var { name = "Oranges", quantity = 3, value = 25 } = item;

console.log(name); // "Apples"
console.log(quantity); // 5
console.log(value); // 25

In this example, the variables quantity and value are given 3 and 25 as their default
values respectively. Since there is no item.value property, the variable value uses its
default value 25. This works similarly to the default parameter values for functions that we
saw in the previous chapter.

■■ Note  The default value (or undefined if not specified) will only be assigned to the
variable in case of a missing property in the item.

You can also use default values in the long form of a destructuring assignment
statement. But at this point the code can start getting dirty and a little confusing. Consider
the following example:

var { a, b, c: c = 3, d: FOO = 42 } = {a: 1, b: 2};
console.log(a, b, c, FOO); // 1 2 3 42

Chapter 3 ■ Destructuring

42

In this case, the variables a and b are declared and set to their corresponding
property values from the object literal on the right-hand side, but since the property c
does not exist in this object, its value is set to the default value of 3. The declared variable
FOO is also set to its default value 42 since the corresponding property d is not present in
the object. Here is where you need to remember the “target:source” syntax we discussed
above, which can sometimes lead to confusion. So it might be best to avoid this mixed
coding style unless absolutely necessary.

Another suggestion we have is to avoid using an object or array as the default value
inside a destructuring statement. This also can lead to confusion for anyone reading your
code, including yourself. Take a look at the following example:

var a = 1, b = 2, c = 3;
var obj = { a: { b: 42 }, c: { b: c } };

({ b: a = { b: b } } = obj);
({ c: b = { b: c } } = obj);
({ a: c = { b: a } } = obj);

console.log(a.b, b.b, c.b);

Try guessing what would be the output of the console.log statement. Full credit to
you if you guessed "2 3 42." But you get the idea why this can be confusing.

Nested Destructuring
The destructuring syntax, very much like the Object Literal syntax, can be used to navigate
inside nested objects to retrieve information. If the values you're destructuring have nested
objects or arrays, you can destructure those nested values as well. Here’s an example:

let items = {
 count : 2,
 name: "fruits",
 apple: {
 quantity: 5,
 value: 25
 },
 orange: {
 quantity: 3,
 value: 5
 }
};

let { apple: { quantity }} = items;

console.log(quantity); // 5

Chapter 3 ■ Destructuring

43

Curly braces here are used to denote that we have to first go down one level to the
apple property inside the items object and then fetch the property quantity. From our
previous discussion, we know that the identifier before the ‘:’ denotes the location we
need to go to and the right side assigns a value. If a curly brace is present after the colon, it
denotes that the destination is nested in the next depth level of the object and so on.

Since empty curly braces can be legal in object destructuring, you have to be very
careful while using nested destructuring. Consider the following example:

let { apple: {} } = items;
console.log(apple); // ReferenceError: apple is not defined

This destructuring statement has no bindings and because of the curly braces on the
right, apple is not a variable binding to create but rather is used as a location to inspect
inside the items object. In this case, if you wanted to create binding for the variable
apple, it would make sense to use = to define a default value rather than : that defines a
location, for example:

let { apple = {} } = items;
console.log(apple); // {quantity: 5, value: 25}

Let us take another example using nested array destructuring. You can insert another
array pattern into the overall pattern and the destructuring will descend into a nested array:

let fruits = ["apple", ["blueberry", "raspberry"], "orange"];

let [fruit1, [fruit2], fruit4] = fruits;

console.log(fruit1); // "apple"
console.log(fruit2); // "blueberry"
console.log(fruit4); // "orange"

In this example, the variable fruit2 will be assigned the value "blueberry" obtained
from inside the second array denoting berries present within the fruits array. The extra
square brackets in the destructuring statement around fruit2 are required to unpack
the fruits array and the berries array present inside it. Similar to objects we have seen
above, you can have any depth of nested arrays and will need to have corresponding
notations in the destructuring statements to fetch values from within them.

We can build complex expressions for the destructuring of objects and arrays to fetch
the right values and assign them to different variables, no matter how deep the object or
array is nested or from a mixture of objects and arrays using just one statement with the
power of destructuring. Consider the following example:

let student = {
 name: "Tony",
 courses: {
 english: {
 id: 1,
 score: 7
 },

Chapter 3 ■ Destructuring

44

 math: {
 id: 2,
 score: 9
 }
 },
 scoreRange: [0, 10]
};

let {
 courses: { english },
 scoreRange: [minScore]
} = student;

console.log(english.id); // 1
console.log(english.score); // 7
console.log(minScore); // 0

This code extracts student.courses.english and student.scoreRange[0] into
english and minScore, respectively. In this example both courses and scoreRange
are variables in the destructured pattern that get their values from the corresponding
properties within the student object. This sort of approach is extremely useful when you
want to fetch some specific data or values from complex JSON structures without having
to traverse through the whole tree.

Destructuring Using the rest Syntax
Using the rest operators along with the destructuring pattern can be a very powerful
concise syntax to variable assignments in ES6. We have already explored the rest pattern
in the previous chapter. Now let us take a look at it in conjunction with the destructing
pattern. Consider the following example:

var num1, num2, rest;
var x, y, z;

[num1, num2, ...rest] = [1, 2, 3, 4, 5];
[x, y, z] = [1, 2, 3, 4, 5];

console.log(num1); // 1
console.log(num2); // 2
console.log(rest); // [3, 4, 5]
console.log(x, y, z) // 1 2 3

In the above example, using destructuring we assign values to the variables num1,
num2, and rest (using the rest operator for only rest). We do the exact same for another
set of variables x, y, and z. But if you notice the output when we assign values using an
array containing five numbers, the first two values get assigned to num1 and num2, but the
remaining ones get gathered into an array and get assigned to the variable rest because
we used a rest operator along with it. Compare this to the second destructuring statement
where only the value 3 is assigned to z.

Chapter 3 ■ Destructuring

45

An important point note here is the fact that a SyntaxError will be thrown if a trailing
comma is used on the left-hand side with a rest element. Look the following example:

var [a, b,] = [1, 2, 3];
console.log(a, b) // 1 2
var [num1, ...num2,] = [1, 2, 3];
// SyntaxError: rest element may not have a trailing comma

Therefore, keep in mind that even though a trailing comma in a simple destructuring
statement does not make any difference, you should not use it after the rest element in
the destructuring statement.

Destructured Parameters
Apart from giving us a simpler declaration and assignment syntax, the destructuring
syntax also can be used while passing function parameters. All the previously discussed
variations of destructuring are available to us with parameter destructuring as well.
Destructuring also mixes well with other ES6 function parameter capabilities, like default
parameter values and rest parameters.

Let us take a look at a simple example using destructured array parameters:

function sum([num1, num2 = 0]) {
 console.log(num1 + num2);
}

sum([1, 2]); // 3
sum([1]); // 1
sum([]); // NaN

In the above example, there are multiple things to note: the sum() function when
passed in an array of two values 1 and 2 prints their sum 3, but when passed only one
value 1, it outputs 1 due to the fact that num2 has a default value of 0 assigned. When no
value is passed to the destructured array, it prints NaN (Not a Number) because even
though num2 defaults to 0, num1 is set to undefined.

When you need to provide a function with a large set of parameters, a common
pattern is to create an object with properties specifying the parameters and passing the
object into the function. But the problem with this pattern is the fact that it is incredibly
hard to guess what input the function requires just by looking at the function definition.
You will have to go over the body of the function to be able to understand the different
inputs required by the function. Consider the following example where the function takes
in an options object:

function createObj(name, value, options) {
 let obj = {};
 obj.x = options.a;
 obj.y = options.b;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SyntaxError#The SyntaxError object represents an error when trying to interpret syntactically invalid code.

Chapter 3 ■ Destructuring

46

 obj.z = options.c;
 obj[name] = value;
 return obj;
}

let options = {a: 1, b: 2, c: 3};
let testObj = createObj('test', 4, options);
console.log(testObj)// {x:1, y:2, z:3, test:4}

Here, the options object is one of the parameters required by the function
createObj, but destructuring can help to better read and fetch the required properties
of options needed inside the function. We can rewrite the function definition using
destructured parameters as follows:

function createObj(name, value, {x:a, y:b, z:c}) {
 // code to return object
}

This function behaves exactly like the previous example, but since the third
argument uses destructuring to fetch the corresponding values from the options object,
it is easy to understand what inputs are required by the function just by looking at the
function definition. Also the values can be assigned within the function call statement
itself. Therefore, you can use default values, mixed object, and array patterns and also
variable names that are different from the properties you read from.

■■ Note  Destructured parameters act like regular parameters in the sense that they are
set to undefined if not passed.

The ability to use Object Destructured parameters brings to us an added bonus.
They provide us with the ability to have optional parameters in any position of the list of
parameters. Consider the following example,

function printNums({ num1, num2 }) {
 console.log(num1, num2);
}

printNums({ num2: 1, num1: 2 }); // 2 1
printNums({ num2: 42 }); // undefined 42

In this example, the printNums() function prints two numbers passed into a
destructured object as parameter having properties num1 and num2. Notice in the first
function call how you can switch the order of the parameters by specifying num2 first and
then num1. Similarly, by specifying only num2, you can actually set the value of the first
intended parameter num1 as undefined.

Chapter 3 ■ Destructuring

47

At this juncture, it is important to point out the difference in behavior between a
destructuring default value and a function parameter default value. Consider this example:

function foo({ num1 = 42 } = {}, { num2 } = { num2: 42 }) {
 console.log(num1, num2);
}
foo(); // 42 42
foo({}, {}); // 42 undefined

In this example, if you do not pay attention to the output, it might seem like we
have declared a default value of 42 for both num1 and num2 in two different ways. The
first function call also indicates the same. But the second function call, where two empty
objects are passed into the function, tells a different story.

If you observe closely, there is a subtle difference in the two ways of declaring the
values of the parameters. In the above example, the function foo takes two parameters:

•	 { num1 = 42 } = {}

•	 { num2 } = { num2: 42 }

When no argument is passed to the function, the first parameter defaults to an empty
object {}, but since it uses object destructuring, the named parameter num1 defaults to 42,
both in this case and also when the object passed in as an argument does not have num1
as a property.

In the case of the second argument, the default parameter value is an object { num2:
42 }. The parameter defaults to this object when there is no second argument provided to
the function. Because of the destructured object on the left-hand side, when the parameter
defaults to the object, num2 is set to 42. But in the case where an empty object {} is passed
as a second argument, the default value is never used, and the { num2 } destructuring
occurs against the passed in {} empty object value, resulting in num2 set to undefined.

Summary
As you move around data in JavaScript, you will start appreciating the need to extract
specific pieces of information by breaking down objects and arrays to examine their
components individually. Prior to ES6, developers needed to write quite a bit of code to
destructure their data, but now they can enjoy the new syntax ES6 brings for destructuring,
making the process a lot simpler in terms of the amount of code they have to write.

Furthermore, destructuring helps in making object parameters of a function more
explicit. Using destructuring, you can have default values without having to check if the
property is present in the object, and we can now make optional properties more explicit
by providing a default value for a property. Explicitly visible things make code easier to
maintain, as you don’t have to guess or read the whole function to figure it out.

49© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_4

CHAPTER 4

Classes in ES6

If you are coming from object oriented programming languages like C++, Java, or Python,
you must already be aware of how classes work. Prior to ES6, classes never existed in
JavaScript, but from the early days, many patterns have existed to emulate classical
class-oriented development. The concept of classes was teased in various different forms,
primarily due to the fact that classes and classical inheritance could not be supported
inside JavaScript in a clean straightforward way. This left a lot of traditional developers
from other languages confused because classes and inheritance in JavaScript are not the
primary method of creating similar or related objects.

The syntax and coding patterns tried to use class-oriented development in hidden
ways inside the prototype system with things like new, instanceOf, and the constructor
property. Many libraries like JSClass, Classify.js, etc., existed to make JavaScript feel like
it supported traditional classes. Hence even though a lot of conventional JS developers
did not think there was a need for Classes in its traditional sense, just the sheer number of
libraries influenced TC39 to introduce “classes” in ES6. The goal was to make them look
similar to real classes, which was done by introducing the class keyword and a related
mechanism for declaring them.

Classes in ES6
The class pattern was widely debated and argued on through the design process of ES6
and a compromise was reached. It is important here to understand that ES6 classes do
not work exactly the same way as in other object oriented languages. That said, TC39 is
still in the process of adding more features post-ES6 to augment classes to bring them
closer to the classical definition.

Conceptually, there is no Class in traditional JavaScript. A class in ES6 is simply
a function under the hood. It is nothing more than syntactical sugar over Objects and
Prototypes, offering a convenient declarative form for class patterns that encourage
interoperability. This new class keyword in ES6 supports prototype-based inheritance,
constructors, super calls, instance, and static methods.

Let’s look at how you’d write the most basic form of class declaration in ES6, which is
very similar to how classes are defined in other languages. Consider the following example:

class Car {
 constructor(brand) {
 this.brand = brand;

Chapter 4 ■ Classes in ES6

50

 }
}

const myTesla = new Car("Tesla");

console.log(myTesla.hasOwnProperty("brand")); // true

console.log(typeof Car); // function

In this example, brand is the property assigned on the myTesla object. This object
can also be represented in an object literal form as follows:

const myTesla = {
 brand: "Tesla"
};

The above example is a simple representation of how you can create a class with
an optional constructor method that will be called when an object of this class is
instantiated. Classes in ES6 don’t add any functionality to what we already have in
the language; they are just a simpler syntax for building the objects. Any arguments
passed into new Car() will be received as parameters to the constructor method of Car,
and you can use those parameters to initialize instances of the same class. Therefore,
the constructor() method is where you initialize your object’s properties and these
properties are enumerable. Also, since the constructor() method is optional, you can
declare an empty class like the one in the following example:

class EmptyClass {

}

If you don’t define a constructor() method inside a class, the JavaScript engine will
insert an empty one for you:

class EmptyClass {

 /* JavaScript inserts an empty constructor:
 constructor () { }
 */

}

Now that we know how and where to initialize properties in a class, let’s look at
how you can define methods. Class declarations allow you to define methods on a class
without the use of a "function" keyword:

class Car {
 constructor(brand) {
 this.brand = brand;

Chapter 4 ■ Classes in ES6

51

 }

 start() {
 console.log(`Your ${this.brand} is ready to go!`);
 }
}

const myTesla = new Car("Tesla");

myTesla.start();
// Your Tesla is ready to go!

In the above example, we defined a start() method inside the class definition,
which accesses the brand property of the class using this keyword. This method gets
automatically attached to the class’s prototype and hence is non-enumerable. We will
discuss this and class methods in greater detail later in this chapter, but first, let’s take a
look at the different ways in which we can define classes in ES6.

Defining Classes in ES6
Just like in the case of functions, there are two ways in which you can define classes in
ES6. Let us look at each of them.

Class Declarations
As seen in the previous example, class declarations are pretty simple. You declare a class
using the "class" keyword followed by a class-name, which is generally by convention
written in TitleCase. A good thing to note here is that the name of a class behaves as if it
is a constant inside the class definition, which means you cannot overwrite a class using
the class name inside itself:

class SimpleClass {
 constructor() {
 SimpleClass = "42"; // throws an error during execution
 }
}

SimpleClass = "42"; // works fine after the declaration

Unlike function declarations, class declarations are not hoisted. Similar to let and
const, class declarations reside in the temporal dead zone (TDZ) until the execution
reaches the point of class declaration. Therefore, you need to declare your class before
accessing it, otherwise a ReferenceError will occur:

const b = new Bike(); // ReferenceError

class Bike {}

Chapter 4 ■ Classes in ES6

52

In the above example, since the class has not already been declared, it exists in the
TDZ and so when you try to initialize a new instance using the new keyword, a reference
error is thrown.

Class Expressions
Apart from Class declarations, the second way of defining new classes in ES6 is through
Class Expressions. They are identical to function expressions, and just like function
expressions they can also be anonymous. Consider the following example:

const Circle = class {
 constructor() {
 this.radius = 20;
 }
}

Notice, in the above example, how the identifier is missing after the class keyword;
this makes it an anonymous class expression. Besides variable declarations, these class
expressions can also be used to be pass arguments into functions. Consider the following
code snippet that has a factory function to create cars:

function carFactory(car) {
 return new car();
}

const Toyota = carFactory(class {
 start() {
 console.log("Your car is ready to roll");
 }
 stop() {
 console.log("Shutting down the engines");
 }
});

Toyota.start();
// Your car is ready to roll

Toyota.stop();
// Shutting down the engines

The factory function takes in the class definition as an argument and returns the
object of the class passed in as the argument. In programming languages, if an entity can
be passed as an argument, returned from a function, modified, and assigned to a variable,
it is considered to be a first-class citizen of the language. One of the many reasons that
functional programming is popular with JavaScript is because of functions being the first-
class citizen of the language, allowing us to use functions to the fullest extent and easily
creating higher order functions. In ES6, similar to functions, classes are also the first-class
citizens of the language, allowing a class to be passed as an argument to functions, as
seen in the above example, and assigned to a variable using class expressions.

Chapter 4 ■ Classes in ES6

53

Class Methods and Accessor Properties
Prior to ES6 you needed the Object.defineProperty() to make a method non-
enumerable, but in ES6 all methods of a class are non-enumerable. These methods are
attached to the prototype, which enables the method to be shared by all instances of the
class, providing an efficient way to conserve memory.

The syntax for defining methods of a class in ES6 is similar to the object literal
method shorthand (i.e., functions without the function keyword):

class AeroPlane {
 constructor(model, capacity) {
 this.model = model;
 this.capacity = capacity;
 }
 getData() {
 console.log(`You're flying a ${this.model} aeroplane`);
 �console.log(`This plane can fly with ${this.capacity}

passengers`);
 }
}

const jet = new AeroPlane("Jet", 60);

jet.getData();
// You're flying a Jet aeroplane
// This plane can fly with 60 passengers

console.log(jet.hasOwnProperty("getData")); // false
console.log(jet.__proto__.hasOwnProperty("getData")); // true

The above example shows a class AeroPlane where we initialize the instance
properties named model and capacity upon construction of each instance. The
getData() method declaration tells the instances of our AeroPlane class that they will
have a getData() method, which will return the results of this method, whenever that
method is called. This getData() method gets automatically added to the prototype.
The ES5 way to re-create the above example would be:

function AeroPlane(model, capacity) {
 this.model = model;
 this.capacity = capacity;
}

AeroPlane.prototype.getData = function() {
 console.log("You're flying a " + this.model + " aeroplane");
 �console.log("This plane can fly with " + this.capacity + "

passengers");
}

Chapter 4 ■ Classes in ES6

54

var jet = new AeroPlane("Jet", 60);

jet.getData();

// You're flying a Jet aeroplane
// This plane can fly with 60 passengers

ES6 classes also allow you to create accessor properties on the prototype. We can
use get and set keywords before the identifiers to create getter and setter properties
respectively. These property descriptors are non-enumerable and can be accessed using
Object.getOwnPropertyDescriptor() on the class’s prototype, since these properties
reside on the prototype object. Consider the following code snippet, for example:

 class AeroPlane {
 constructor(model, capacity) {
 this._model = model;
 this._capacity = capacity;
 }

 get model() {
 return this._model;
 }

 get capacity() {
 return this._capacity;
 }

 set model(model) {
 this._model = model;
 }

 set capacity(capacity) {
 this._capacity = capacity;
 }
}

const jet = new AeroPlane("Jet", 100);

console.log(jet.capacity);
// 100

console.log(Object.getOwnPropertyDescriptor(AeroPlane.prototype, "model"));

/*
{
 get: [Function: get model],
 set: [Function: set model],
 enumerable: false,

Chapter 4 ■ Classes in ES6

55

 configurable: true
}
*/

In the above example, you must note that we have added an _ (underscore) before
property names inside the class definition. Let’s take a look at why we did that, using the
following code snippet:

class StudyGroup {
 constructor(name) {
 this.name = name;
 }

 set name(newName) {
 this.name = newName;
 }
}

const jsGroup = new StudyGroup("js");

// RangeError: Maximum call stack size exceeded

If you try to run the above code snippet, you would see a RangeError stating
Maximum call stack size exceeded, which is because of your setter property recursively
setting itself, going into an infinite function call. Therefore, you must never have your
setter method name the same as that of your property because accessing the property
setter by its own name inside the setter creates an infinite recursive function call.

At this point, if you’re wondering why use setters and getters in the first place, here
are some reasons why you should consider using them:

•	 Setters and getters allow us to encapsulate the behavior
associated with getting or setting of the object’s property,
which makes the code more extendible as you can easily
add more functionalities like validation of the input or some
transformations of the input data based on your needs. Also,
it can be helpful to inherit these validation or transformation
functionalities to child classes and have them in place or modify
as per the application’s needs.

•	 At times, it may seem like a good idea to have an alternate
representation of the property exposed to the user via property
accessors, hiding the internal representation of the property.

•	 Having property accessor methods allow us to set different access
levels, for example, the getter can be public but the setter method
could be protected for certain group of users.

You should also note that the setter must have exactly one formal parameter, which
means you should create individual setters and getters for each property of the class instance.

Chapter 4 ■ Classes in ES6

56

Computed Method Names
Similar to object literals, methods inside a class can have computed names. This also
applies to getter and setter accessor properties of the class. As seen with object literals,
the computed method names can be wrapped with []; check the following code snippet
for an example:

const methodName = "getColor";
const propName = "color";

class AeroPlane {
constructor(color) {
 this._color = color
 }

 [methodName]() {
 return this._color;
 }

 get [propName]() {
 return this[`_${propName}`];
 }

 set [propName](value) {
 return this[`_${propName}`] = value;
 }
}

const whiteJet = new AeroPlane("white");

console.log(whiteJet.color);
// white

In the above example, we are computing the method name and getter and setter
accessor property names inside the class definition by wrapping them with []. We are
also using the string literals to evaluate the dynamic property name inside the getter and
setter methods.

Class Properties and Privacy
So far, we have seen how we can add properties to a class’s instance by defining the
property inside the constructor method in the class definition. However, all the properties
we have seen so far are public properties, which can be accessed easily outside the
class definition without using the setter or getter methods. There has been a long-term
discussion around private properties in the JavaScript community. Unfortunately, prior to
ES6, private properties never existed in JavaScript so they had to be faked. And the most
common convention was to prefix the property or method name with an underscore,
which we saw in the previous example.

Chapter 4 ■ Classes in ES6

57

With ES6, there are a couple of ways for managing data privacy inside a class.

Using Constructor Environments
The idea of having methods and properties stored inside the constructor environment,
capturing the variables in a closure, ensures that these methods or properties would not
be added to the prototype and are only accessible to the constructor and to the functions
it created.

class AeroPlane {
 constructor(capacity) {
 this.checkCapacity = function(value) {
 if (capacity >= value) {
 return true;
 }
 return false;
 }
 }
}
const jet = new AeroPlane(200);

console.log(jet.checkCapacity(100)); // true

console.log(jet.capacity); // undefined

In the above example, the constructor environment stores the parameters and local
variables, keeping class properties (here, capacity) private by making it inaccessible
outside the constructor. This keeps the private data completely safe and inaccessible from
the class’s instance.

Using WeakMaps
Before we move forward to see how WeakMaps help in keeping the data private inside
classes, let’s take a quick look at what WeakMaps are. A WeakMap is a new data type
introduced in ES6. They are simply a collection of keys and values with the main constraint
of having an object as the keys. We will be learning more about them in detail later in this
book. But for now, you should note that you can create a WeakMap using the following:

const myMap = new WeakMap();

and you can use set and get methods on the returned WeakMap to store and
retrieve a value associated with it:

const myMap = new WeakMap();

const myObj = { name: "jack" };

Chapter 4 ■ Classes in ES6

58

myMap.set(myObj, "developer");

console.log(myMap.get(myObj));
// developer

As seen in the above code snippet, we are using an object as the key to store a value
inside a WeakMap.

One of the other features of WeakMaps is that they do not prevent garbage collection
in case there would be no other reference to the object. Therefore, using WeakMap to
store properties of a class helps in keeping the data private, and it destroys those private
properties whenever an instance associated with the class is destroyed.

const data = new WeakMap();

class AeroPlane {
 constructor(seats) {
 data.set(this, {
 capacity: seats
 });
 }

 get seats() {
 return data.get(this).capacity;
 }

 set seats(value) {
 data.get(this).capacity = value;
 }
}

const jet = new AeroPlane(200);
console.log(jet.capacity); // undefined
console.log(jet.seats); // 200

In the above example, we are using a WeakMap to keep the data private and exposing
setters and getters to interact with the private data of the class. But it comes at the cost
of keeping your WeakMap hidden from the outside world. As long as it is hidden from
outside access, your properties will remain safe and private.

Besides WeakMaps, ES6 also provides another new technique to keep the data private
(or rather, prevent it from casual access) using Symbols, which we will learn later in this book.

Static Methods and Properties
With classes, you can also define properties and methods that are a part of a class and not
particularly any instance of that class. These methods and properties are associated with
the class, and not with the instances of the class, which is often useful in creating utility
functions for an application. ES6 allows you to easily create static methods by using the
static keyword before the method name:

Chapter 4 ■ Classes in ES6

59

class AeroPlane {
 constructor(capacity) {
 this.capacity = capacity;
 }

 static radio(message) {
 console.log(`Message from broadcast: ${message}`)
 }
}

AeroPlane.radio("Sky is clear");
// Message from broadcast: Sky is clear

As mentioned before, it is important to note that the static methods and properties
are accessed directly from their class, and you cannot access a static method or property
from the instance of the class. Therefore, static methods also cannot access the properties
or methods defined on an instance of the class using this.

At the time of writing this book, ES6 does not support creating properties with static
keywords. There is a proposal for adding them to the language specification, but until
this proposal is accepted and the implementation gets released, you can either use static
getters and setters or manually attach a static property to a class as follows:

class AeroPlane {
 constructor(capacity) {
 this.capacity = capacity;
 }
}

AeroPlane.color = "white";

console.log(AeroPlane.color);
// white

console.log(AeroPlane.capacity);
// undefined

In this example, notice how we are able to access the static property using the class-
name, and it returns undefined on a non-static property.

Class Inheritance and the Super Keyword
ES6 introduces the extends keyword to allow creation of a class as a child of another class.
Inheritance lets us incorporate another class’s state and behavior into our own. Extending
a class from its parent class prevents code duplication. Consider the following example:

class AeroPlane {
 constructor(capacity) {

Chapter 4 ■ Classes in ES6

60

 this.capacity = capacity;
 }

 showCapacity() {
 console.log(`Capacity of this plane: ${this.capacity}`);
 }
}

class FighterPlane {
 constructor(capacity) {
 this.capacity = capacity;
 }

 showCapacity() {
 console.log(`Capacity of this plane: ${this.capacity}`);
 }

 fire() {
 console.log("Loading weapons and firing");
 }
}

In the above example, the data property capacity and the method showCapacity are
repeated between both of the classes. We can easily eliminate this duplication by having
FighterPlane inherit from AeroPlane, allowing the state and behavior of AeroPlane to
be incorporated into the FighterPlane. Consider the following example where class
FighterPlane inherits from the parent class AeroPlane using the extends keyword:

class AeroPlane {
 constructor(capacity) {
 this.capacity = capacity;
 }

 showCapacity() {
 console.log(`Capacity of this plane: ${this.capacity}`);
 }
}

class FighterPlane extends AeroPlane {
 fire() {
 console.log("Loading weapons and firing");
 }
}

const phantom = new FighterPlane(2);

phantom.showCapacity();
// Capacity of this plane: 2

Chapter 4 ■ Classes in ES6

61

phantom.fire();
// Loading weapons and firing

If you wish to define a constructor method in derived classes as well, you would need
to use super(), which allows the parent class’s constructor to be called in the derived
class. super() is responsible for initializing the context, therefore, you must call super()
before accessing the context (this) inside the constructor method; otherwise it will
result in an error.

If no constructor is defined, then super() is automatically called for with all the
given arguments when a new instance of the class is created, as in the following example:

class FighterPlane extends AeroPlane {
 // no constructor

 fire() {
 console.log("Loading weapons and firing");
 }
}

// is equivalent to

class FighterPlane extends AeroPlane {
 constructor(...args) {
 super(...args);
 }

 fire() {
 console.log("Loading weapons and firing");
 }
}

Inheriting Static Properties
ES6 allows us to inherit static properties of a parent class into a child class. Consider
the following example where a static method of AeroPlane is called on its derived class
(FighterPlane):

class AeroPlane {
 static radio() {
 console.log("Radio works");
 }
}

class FighterPlane extends AeroPlane {}

FighterPlane.radio();
// Radio works

Chapter 4 ■ Classes in ES6

62

In this code, a new static radio() method is added to the AeroPlane class. Using
inheritance, this method is available as FighterPlane.radio() and behaves in the same
manner as the AeroPlane.radio() method.

Method Overriding
The methods of the parent class can easily be shadowed with the same name on the
parent class, inside the derived class. For instance, check the following code snippet
where fly() method from the parent class (AeroPlane) is being overridden inside the
derived class (FighterPlane):

class AeroPlane {
 constructor(capacity) {
 this.capacity = capacity;
 }

 showCapacity() {
 console.log(`Capacity of this plane: ${this.capacity}`);
 }

 fly() {
 console.log("Engines on, and the plane will take off soon");
 }
}

class FighterPlane extends AeroPlane {
 fly() {
 console.log("Engines on, and the plane is gone");
 }

 fire() {
 console.log("Loading weapons and firing");
 }
}

const phantom = new FighterPlane(2);

phantom.fly();
// Engines on, and the plane is gone

phantom.showCapacity();
// 2

If you wish to access the parent class version of the method, you can do so using
super.fly() as follows:

Chapter 4 ■ Classes in ES6

63

class FighterPlane extends AeroPlane {
 fly() {
 super.fly();
 console.log("Engines on, and the plane is gone");
 }
}

This ensures that first, the parent class’s method will be called every time the fly()
method is called on the FighterPlane’s instance. Besides methods, you can also override
constructors; consider the following code snippet, for example:

class AeroPlane {
 constructor(capacity, color) {
 this.capacity = capacity;
 this.color = color;
 }
}

class FighterPlane extends AeroPlane {
 constructor(color) {
 // This fighterplane is 2-seater
 super(2, color);
 }
}

const phantom = new FighterPlane("grey");

console.log(phantom.capacity); // 2

Inheritable Built-Ins
ES6 makes it really easy to inherit from built-in classes like Array, String, RegEx, etc.,
which can be really helpful in cases where you need data structures like stacks, queues, or
any other linked-list structures. You can also utilize this functionality to avail additional
helper methods on arrays like first, last, shuffle, etc., based on your needs.

Consider the following code snippet where we are implementing a ReversedString
data type by extending String built-in class:

class ReversedString extends String {

 print() {
 return this.split('').reverse().join('');
 }

}

Chapter 4 ■ Classes in ES6

64

const str = new ReversedString("Awesome");

console.log(str.print());
// emosewA

Summary
ES6 classes formalize an existing pattern in JavaScript of building pseudo-classes mimicking
the class-based development pattern in other programming languages. They make
inheritance in JavaScript easier to use and provide you with syntactic sugar to implement
the classical prototypal inheritance model of JavaScript with simpler class-based syntax.

In this chapter, we looked at how classes in ES6 use prototypal inheritance under the
hood, by defining non-static methods on the class prototype, while all the static methods
are defined on the class itself, making all of the class methods non-enumerable. We also
learned about the new class-based inheritance syntax that lets you create derived classes
from a base class, also allowing you to inherit from built-in classes like Arrays, Strings,
and other data types in JavaScript. On the whole, classes are a very important syntax
addition to JavaScript, enabling us to declare custom object types in a much cleaner
manner by offering a concise syntax.

65© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_5

CHAPTER 5

Modules

JavaScript, in its early days, started out as a simple scripting language for the web browser.
Hence it was originally built with an approach where “everything was shared.” But over
time, as the language evolved and as JavaScript applications started getting more and
more complex, this approach to loading code started to become a lot more error prone
and confusing. Contrast this to the fact that most high-level languages use concepts like
modules and packages to help with defining code scope. Prior to ES6, everything inside
a JavaScript application, including code across different files of the application, shared
the same scope. This is where modules come in to help better manage and introduce
code separation, reducing problems like naming collisions and increasing data security.
JavaScript developers were forced to resort to external libraries to incorporate modules
to help with these particular issues, but with ES6, modules have now been included as an
official part of the language.

Module Systems and a Little History
In the past, JavaScript has had two major module systems: the Asynchronous Module
Definition (AMD) and CommonJS. CommonJS is a commonly implemented module
standard in Node.js. It has a concise syntax and is designed for synchronous loading and
servers. AMD, on the other hand, is a popular implementation in RequireJS with a slightly
more complex syntax that allows it to work without eval() or a step for compilation. It is
designed for asynchronous loading and browsers. Both are not natively available in browsers.

When TC39 decided to implement the module spec in ES6, rather than using one
of these two, they came up with a new approach for implementing it. Their goal was
to cater to both users of CommonJS and AMD. This new approach built upon both of
them and tried to solve many of the problems commonly faced by developers in these
implementations.

The ES6 modules provide features from both AMD and CommonJS. They use a
compact syntax and a static module structure that aids in code optimization, static
checking, and eliminating dead code. It also comes with support for cyclic dependencies
like in the case of CommonJS and has support for asynchronous loading and configurable
module loading like in AMD.

Ending the fragmentation between CommonJS and AMD and having a single native
standard for modules brings with it additional advantages such as doing away with the
UMD (Universal Module Definition) pattern traditionally used to enable the same file to
be used with different systems.

Chapter 5 ■ Modules

66

The Module Pattern in Traditional JavaScript
To help us better understand Modules before getting into ES6 modules, we will
implement the module pattern in traditional JavaScript. Put simply, a module is a
function with inner variables and functions, which can then be exposed to an outside
environment by returning a “public API,” which gives access to the data inside the
function via methods that have closures over the data. To illustrate this, let us write a
function using the module pattern:

function Message(text) {
 function printMessage() {
 console.log("This is the message: " + text + "!");
 }
 return {
 printMessage: printMessage
 };
}

var printer = Message("test");
printer.printMessage(); // This is the message: test!

Here in this example, the variable printer is assigned a function Message with an
argument "test." Message is the function implementing the module pattern, which gives
a printer a public API with access to its inner function printMessage as a method that
prints out the text parameter.

Modules in ES6
Modules in ES6 make it easier to compartmentalize and separate code into smaller stand-
alone snippets that can then be reused and injected into other places as and when they
are required, making the process of testing your code easier as the modules are decoupled
from the primary code. Modules are also useful in loading scripts asynchronously,
improving load times of apps. But module systems are not exactly new to JavaScript.

Modules are simply JavaScript files that are loaded into JavaScript code from other
files. But it is important to understand how this differs from the way scripts are loaded.
If we consider the semantics of a JavaScript module in comparison to traditional script
loading, a few key differences become apparent. First, modules always run in strict mode
unlike traditional scripts where it can be changed. If you look at the top-level scope of the
module, the value of this is undefined and the variables created at the top level are not
present in the shared global scope. Anything and everything that you need from inside
the module has to be explicitly exported for us to be able to use them outside the module.
Let us now take a look at the core value of a module by understanding the ability to
import and export binding.

Chapter 5 ■ Modules

67

Exporting
The ‘export’ keyword can be used to expose parts of code inside modules to other
modules. You can export a variable, a function, or a class declaration from a module.
Variables, Functions, or Classes not exported from a module are not accessible outside
the module. Let us look at a few examples:

export var text = "ES6 is awesome";
export let name = "Ian Murawski";
export const number = 7;

Here in this example, you are exporting text, name, and number, all declared using
different variable declaration keywords. You can also export a function or a Class from the
module. Consider the following examples:

export function add(a, b) {
 return a + b;
}

export class Rectangle {
 constructor(length, width) {
 this.length = length;
 this.width = width;
 }
}

In this code snippet we are exporting the function add and Class Rectangle. You can
also export an existing function that is private to the module as well.

function multiply(a, b) {
 return a * b;
}
export { multiply };

From this example, we can see that not just a function declaration – but also a
reference to a private function of the module – can be exported.

At this point it is important to understand that only functions or class declarations
with names can be exported in this way, and all such exports are referred to as Named
Exports. You cannot export anonymous functions or classes from a module unless they
are marked as default Exports specified using the default keyword. You can have
multiple named exports in a module but only one default export. It is possible to use both
at the same time, but usually it is good practice to keep them separate.

Default Exports
In Node.js, it is a common practice to have modules that export only single values. Even
in front-end JS where we use classes for models and components, one class per module is
a common practice. An ES6 module is built to pick a default export that will be the main
exported value.

Chapter 5 ■ Modules

68

A single variable, function, or class can be specified as the default export of the
module using the default keyword. You can have only one value as a default export
inside a module. Using the keyword on more than one export inside the module will raise
an error. Default exports help in reducing the syntax for importing exports from a module.

export default function(a, b) {
 return a * b;
}

In this example, the function is exported from the module as its default. You can
notice how the function does not require a name as it is the default, and the module itself
represents the function, allowing you to omit the name for the function. You can also assign
it a name and export the function name using default. Consider the following example:

function multiply(a, b) {
 return a * b;
}

export default multiply;

Importing
Once a module with the relevant exports is set up, it can be accessed inside another
module by using the import keyword. There are two parts to an import statement: the
identifier you’re importing and the module from which those identifiers should be
imported. This is the statement in its basic form:

import { identifier1, identifier2 } from "./moduleFile.js";

In the above statement identifier1 and identifier2 are the bindings imported
from moduleFile.js.

The module is specified using a string representing the path to the file containing the
module after the from keyword. Notice that the list of bindings looks like a destructured
object but remember that it is not. Also the bindings are like variables defined using
const, that is, you cannot define any other variables using the same name or import
another module with the same name.

Using the above syntax, you can import specific bindings from a module as follows,

// importing the functions sum and multiply
import { sum, multiply } from "./ moduleFile.js";
console.log(sum(1, 7)); // 8
console.log(multiply(2, 3)); // 6

Here, there are two bindings imported from the moduleFile module: sum and
multiply can be used just like locally defined identifiers. But let us consider the case
where you want to import all the exports available in the module without having to
explicitly declare them by name. This can be done using the wildcard * and importing the
identifiers as properties of an object.

Chapter 5 ■ Modules

69

// import everything
import * as example from "./ moduleFile.js";
console.log(example.sum(1,7)); // 8
console.log(example.multiply(2, 3)); // 6

In this code, all exported bindings in moduleFile are loaded into an object called
example.

All the exports in the module become accessible as properties of the declared object.
This creates a new namespace since the object does not exist within the actual module.

It is important to note that irrespective of the number of times the module is
imported in the import statements, it will only be executed once. When the import is
executed, the module is stored in memory and reused for all subsequent imports. The file
storing the module is executed only once.

Importing Default Values
Importing default values from a module is as simple as,

import multiply from "./moduleFile.js";

This import statement imports the default value from the module. Notice that we do
not use any curly braces unlike when we import named exports. The name multiply in
this case is local and will be used to refer to the default value imported from the module.

In case of modules that export both default and non-default values, you can import
all the bindings using a single statement.

export let message = "42 is the answer to the everything.";

export default function(a, b) {
 return a * b;
}

import multiply, { message } from "./moduleFile.js";

console.log(multiply (21, 2)); // 42
console.log(message); // "42 is the answer to the everything."

You need to use a comma to separate the default local name and the non-default
identifiers listed inside curly braces. Make sure to always have the default before the non-
default values.

Another way to import a default module with a specific local name would be:

import { default as multiply, message } from "./moduleFile.js";

In this case, just like the previous example, multiply stores the default module
exported from moduleFile.js. We will be discussing renaming identifiers using a keyword
later in this chapter.

Chapter 5 ■ Modules

70

Exporting an Imported Binding
In case you need to re-export a binding that you imported into the module, you can do
that using an export statement:

import { message } from "./moduleFile.js";
// some javascript code
export message;

In this example, we imported the binding message from moduleFile.js and again
exported the same binding. You can also do this in one statement instead of two like this,

export { multiply } from "./moduleFile.js";

Furthermore, you can re-export everything using the wildcard ‘*’ like in the following
example:

export * from "./moduleFile.js";

In the above example, everything from moduleFile.js is exported out of the current
module, including the default value.

Renaming Identifiers
In many cases you might not want to use the original name of the imported variable,
function, or class because it can cause a conflict with other declarations in the code. ES6
helps you solve this issue by letting you rename exports and imports using the as keyword.

function sum(a, b) {
 return a + b;
}

export { sum as add };

In this example, sum is the local name of the exported function. But the function is
exported as add and needs to be imported in another module using its exported name add.

import { add } from "./moduleFIle.js";

Similarly, if you want to use a different name when you import the identifier, you can
do something like this,

import { add as sum } from "./moduleFile.js";
console.log(typeof add); // "undefined"
console.log(sum(1, 2)); // 3

Here, the exported name add is imported as sum. Therefore, technically there is no
identifier named add available for use in the rest of the code. It can only be referred to as sum.

Chapter 5 ■ Modules

71

You can also rename an identifier to default to make it a default export.

function multiply(a, b) {
 return a * b;
}

export { multiply as default };

Similarly, as we discussed before, you can import defaults after renaming them as well:

import { default as multiply, message } from "moduleFile.js";

console.log(multiply(1, 2)); // 2
console.log(message); // "42 is the answer to the everything."

Since default is a keyword in JavaScript, it cannot otherwise be used as a
variable, function, or class name. Hence, the use of default to rename an export can
be considered a special case to create a consistency with how non-default exports are
defined. This syntax is useful if you want to use a single export statement to specify
multiple exports, including the default, at once.

Loading Modules
ES6 does not specifically define how to load modules. This is because one of the design
goals for the module specification was to remain agnostic to the environment where
it is implemented. Instead of creating a specification that would work on all JavaScript
environments, ES6 only specifies the syntax. Browsers and Node.js need to decide how
to implement the HostResolveImportedModule, which is the internal operation to which
ES6 abstracts the loading mechanism.

Modules in Web Browsers
There are many ways of using JavaScript inside your web applications but the primary
way of inserting JavaScript inside html is through the <script> tag. The <script> tag
has an src attribute letting you inform the application that the script is at a particular
location. Another way is to directly include code inside the tag. You can also use workers
to load JavaScript. Let us look at each of these mechanisms in the context of modules.

Loading Modules with <script>
The <script> element loads JavaScript files as scripts by default. It is equivalent to
explicitly mentioning the type attribute with the content type as “text/javascript”. In order
to support modules, the value module was added to type options. For example,

Chapter 5 ■ Modules

72

<script type="module" src="moduleFile.js"></script>
<!-- load JavaScript file and recognize it as a module-->

<script type="module">
<!—an inline module -->

import { multiply } from "./moduleFile.js";
let result = multiply(1, 2);
</script>

Unlike scripts, modules use import to specify other files that need to be loaded for
it to execute correctly. For this functionality to work properly, the module type for the
script element always behaves as if the defer attribute was applied. The defer attribute
is optional for loading script files but is always applied for loading module files. The
module file starts getting downloaded as soon as the HTML parser encounters a <script
type="module"> element. So all modules are executed in the order in which they appear.

Loading Modules Asynchronously in Browsers
You might have already used the async attribute of the <script> tag in html. When you
use this attribute inside the script tag, it lets the browser know that the script needs to be
executed as soon as it has been fetched and is available. Therefore the order in which async
scripts are executed is not synchronous. They are executed as soon as they are available,
whichever order they might have been declared. You can use the same asynchronous
process of execution when it comes to modules. The only small thing to keep in mind is that
the import resources need to be fetched first before the module can be executed.

Common Pitfalls
Modules can be extremely useful in compartmentalizing code and creating reusable
logical components. But there are a few pitfalls you should be aware of to use them
effectively. In this section, we will be discussing these pitfalls in detail.

Syntax
Remember that both export and import need to be used only at the top level and cannot
be part of other statements or functions. For example, the following code will throw a
syntax error.

if (condition) {
 export condition;
 // SyntaxError: 'import' and 'export' may only appear at the top level
}

Chapter 5 ■ Modules

73

Here, the export statement is part of an if statement, which throws an error. Exports
and imports cannot be executed conditionally or dynamically in any way. This also stands
true in case of using import-export statements in a try-catch block. The export and import
keywords were specifically designed to be static so that text-editors could easily provide
the information that is available from a specific module when it is imported.

Read-Only Bindings
ES6 import statements only produce read-only bindings to the corresponding variables,
functions, or classes. Therefore, the module that imports them cannot change its value.
But the module that exports an identifier can make changes to it. For example,

// moduleFile.js starts here
export var message = "Message from moduleFile";

export function setMessage(newText) {
 message = newText;
}
// moduleFile.js ends here

// file.js
import { message, setMessage } from "./moduleFile.js"
console.log(message); // "Message from moduleFile"

setMessage ("New Message");
console.log(message); // "New Message"

message = "This is another message"; // error

In the above example, we import two bindings from the module, message and
setMessage. The function setMessage() can change the value of the variable message but
when you try to directly change the value it throws an error.

Destructing an Import Statement and Using Variables
Even though the import statement looks like destructuring, it is not. Hence, the following
code is invalid and will throw an error.

import { toto: { tata } } from 'someModule'; //error

You have to also keep in mind that an import statement should not depend on
anything that needs to be computed during runtime. Therefore, something like the
following example will also throw an error.

import toto from "someModule" + tata; //error

Chapter 5 ■ Modules

74

Hence, try and make sure not to use any such complicated mechanisms while
importing from a module.

Using eval()
You cannot use eval() on modules since they are a high-level construct for it. Eval()
usually accepts scripts that do not allow import or export.

Module Specifier
In all of the examples above, we used a relative path in the module specifier like “./moduleFile.js”.
When browsers try to run this code, they understand them in the following manner:

•	 / resolves to the root directory

•	 ./ resolves to the current directory

•	 ./ resolves to the parent directory

Summary
Modules in ES6 provide new ways to extend the functionality of JavaScript. They help
in better organizing code and maintaining a more modular semantic code base. ES6
introduces new keywords like import, export, and default to make the use of modules
possible. You no longer need to use UMD or additional modules systems like CommonJS
or AMD as ES6 brings in the best of both worlds.

Using modules you can write reusable and better packaged code. Modules do not
modify the global scope, unlike scripts, giving you a lesser chance for error. You have to
specifically export all the values out of the module if you want to use them elsewhere.

75© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_6

CHAPTER 6

Symbols in ES6

Since way back in 1996, around the time when JavaScript was first standardized and
ECMA attempted to carve out a standard specification, there have been five primitive
data types in JavaScript: Boolean, Number, String, Undefined, and Null where each type
represents a value. But now ES6 introduces a brand new primitive data type - Symbol. In
this chapter, we will go over, in detail, this new primitive type and its applications.

Symbols
Symbols represent a unique value and at its heart, a symbol is a unique token that is
guaranteed to never clash with any other Symbol. Symbols in ES6 can be created using a
factory function. The Symbol() method can be used to create a new symbol. Consider the
following example:

const foo = Symbol();
console.log(typeof foo); // "symbol"

Every time you call the factory function, a new and unique symbol is created. The
output from the typeof on a symbol type is "symbol," and this is the primary way to
identify symbols:

■■ Note  Symbols in ES6 do not have a literal form like other primitives.

Optionally, while creating a Symbol you can also give it a label by passing a string as
an argument into the Symbol() method:

const chocolate = Symbol("this is my chocolate");

console.log(chocolate);
// Symbol(this is my chocolate)

console.log(chocolate.toString());
// "Symbol(this is my chocolate)"

Chapter 6 ■ Symbols in ES6

76

The label passed in as the argument does not affect the value of the Symbol. It has no
other consequence except for being a string to describe the symbol while printing it. It is
also useful when you call .toString() method on the returned symbol, which converts
the symbol into a string. This label is shown when you write the symbol to console.log(),
and possibly in error messages. This can be helpful for debugging purposes.

Note that you should not be using the new keyword for creating symbols. Symbols do not
have an object constructor; therefore you cannot create a Symbol using the new keyword:

const bar = new Symbol(); // Type Error

As mentioned before, a symbol is always unique and two symbols can never be the
same. You can, however, create multiple symbols with the same label but the returned
symbols would always be unique. Check the following code snippet for an example:

const kit = Symbol("hello");
const kat = Symbol("hello");

console.log(kit === kat); // false

or you can simply try,

Symbol() !== Symbol() // true

Hence, symbols are always unique and can be of incredible use in various cases.
Let’s take a look at their applications in the next section.

Applications of Symbols
Symbols, by their very nature, are mainly used as unique property keys because a symbol
can never clash with any other property (symbol or string) of the object, which can
be incredibly helpful in cases where you don’t want to take chances on overriding native
properties of an object. Symbols are also commonly used to create anonymous (or private
in some sense) properties for the internal use of a class or an object type. Consider the
following example, where we have an object Person with some “public” properties:

let Person = {
 name: "John",
 age: 14,
 location: "New York"
}

Now let’s suppose we want to add a private method to the Person object. We can do
that using Symbols as follows:

let votingEligibility = Symbol();
Person[votingEligibility] = function() {
 return this.age >= 18;
}

Chapter 6 ■ Symbols in ES6

77

Let’s look at the Person object now, and you can see that an anonymous method has
been added to it.

console.log(Person);
// {name: "John", age: 14, location: "New York"}

// If you are running this in a recent version of Google Chrome,
// you will see - Symbol(): [Function] property as well

You can also use computed property keys here, which we have already discussed in a
previous chapter:

let Person = {
 name: "John",
 age: 14,
 location: "New York",
 [Symbol()]: function() {
 return this.age >= 18;
 }
}

The Symbol property is non-enumerable and anonymous. Therefore, when
using the for...in loop, symbol properties of the object won’t be accessible while
traversing, and since it is anonymous, it will not be listed in the resultant array of Object.
getOwnPropertyNames() method. However, you can get the Symbol property using
Object.getOwnPropertySymbols(). For example:

Object.getOwnPropertyNames(Person);
// ["name", "age", "location"]

Object.getOwnPropertySymbols(Person);
// [Symbol()]

Let us take a look at how you would use Object.getOwnPropertySymbols() in the
previous example where we created the Person object.

let canVote = Object.getOwnPropertySymbols(Person)[0];

Person[canVote]();

// false

■■ Note  We saw that Object.getOwnPropertySymbols() returns an array of Property
Symbols associated with an object, hence these properties are accessible and not private. But
using symbols, we definitely have the advantage of not discovering these properties casually.

Chapter 6 ■ Symbols in ES6

78

You can also achieve this by using the reference created to bind the property with the
Person object. Remember how we created the symbol using let votingEligibility =
Symbol();. Therefore,

Person[votingEligibility]();
// false

Similarly, custom classes can also create private members this way, making them
available privately to the other methods defined in the class. The dynamically created
symbol value can be saved to a scoped class variable that can be accessed only by the
internal methods of the class, shielding the private properties from unwanted and casual
discovery. Consider the following code snippet, for example:

const age = Symbol("age");

class Person {
 constructor(value) {
 this[age] = value;
 }

 getAge() {
 console.log(this[age]);
 }
}

const jack = new Person(23);

console.log(jack);
// Person {}

console.log(jack.age);
// undefined

console.log(jack[Symbol("age")]);
// undefined

jack.getAge();
// 23

In this example, we have a Person class that creates a private property using Symbols
to store the age of the person. As apparent from the code snippet, the property is
non-enumerable since it returns an empty object and can only be accessed via the
exposed getAge() method. Since Symbols are always unique, accessing the private
property by creating the symbol with the same label age: Symbol("age") will only create a
new unique symbol, and it will not be able to access the desired property of the object.

Chapter 6 ■ Symbols in ES6

79

Symbols and Registry
So far, we have talked about local symbols and how you can access them by obtaining
a reference. Symbols can also be placed in a global registry, from where they can be
accessed across different contexts known as realms. A realm is a context in which pieces
of code exist such as the page your application is running in, or an <iframe> within your
page, or a web worker with their context containing global variables and loaded modules.

Symbols come with a special power to be available throughout the runtime-wide
symbol registry, and you can use the following methods to add symbols to the runtime-
wide symbol registry:

Symbol.for(key) and Symbol.keyFor(symbol).

Symbol.for(key)
This method looks up existing symbols in the runtime-wide symbol registry with the
given key. If a symbol with that key exists in the global registry, that symbol is returned. If
no symbol with that key is found in the registry, a new symbol gets created. Consider the
following code snippet, for example, where the first call to Symbol.for('myCar') creates
a symbol, adds it to the registry, and returns it; and the second call returns that same
symbol because the key is already in the runtime-wide symbol registry:

Symbol.for('myCar') === Symbol.for('myCar')
// true

The runtime global registry keeps track of all the symbols created using Symbol.
for(key) method, which can be accessed across different realms. For instance, a symbol
created anywhere in your webpage can be accessed in an iframe’s context as well. Check
the following code snippet (you can run this in your browser’s console):

// create an iframe
const frame = document.createElement('iframe');

// append the iframe to body
document.body.appendChild(frame);

console.log(Symbol.for('temperature') === frame.contentWindow.Symbol.
for('temperature'));
// true

In the above example, Global Symbol from the webpage’s context is identical to the
Global Symbol in the iframe, which tells us that the symbols created using Symbol.for(key)
method can be accessed across different realms.

Chapter 6 ■ Symbols in ES6

80

Symbol.keyFor(symbol)
Symbol.keyFor(symbol) retrieves the key from the global symbol registry that was
associated with the given symbol when the symbol was added to the registry. It returns
undefined when the symbol is not found in the registry.

const symbol = Symbol.for('myHouse');

console.log(Symbol.keyFor(symbol)); // myHouse

const myCat = Symbol();

Symbol.keyFor(myCat); // undefined

Built-In Symbols
ES6 comes with a range of symbols that are predefined in the language specification,
most of which expose some meta properties and behaviors of JavaScript objects. Some of
the well-known symbols are the following:

Symbol.hasInstance - which allows us to determine whether an object is the
instance of the constructor. It is called by instanceof operator internally.

Another one is Symbol.iterator that we will be digging into later in this book.
It holds the default iterator of an object. Arrays, Sets, Maps, and WeakMaps have a
non-enumerable [Symbol.iterator] property present in their structure.

Summary
Symbols are a new primitive type introduced to JavaScript in ES6. They can be incredibly
helpful when you want to avoid name clashes in property keys, especially in cases
where you don’t want to take chances on overriding native properties of an object.
Symbols, being non-enumerable, provide an advantage by creating protected properties,
preventing them from being discovered casually as you have to specifically look for
symbols to find them.

81© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_7

CHAPTER 7

Arrays and Collections

Up until this point, we have covered many new and improved features and functionalities
that ES6 offers. In this chapter, we will look at a few more enhancements to data types like
arrays and collections. ES6 brings to the JavaScript language many new static properties
and methods that extend the functionality of built-in natives and objects. We will take
a look at the extended features of the Array type and some of the new data structure
abstractions that are now native components of the language.

Arrays and New Methods
Over the years, many popular JavaScript libraries like Underscore and Lodash have
evolved with the array data structure being one of the most commonly extended features.
Therefore, over time it had become increasingly necessary to have built-in support in
the language for a range of array functionalities made common by these libraries. In this
section, we will introduce all the new ES6 array functionalities and look into a few use
cases where they shine.

We now have a few new static and prototype methods that the language offers to help
you create, manipulate, fill, and filter arrays. First let’s take a look at the static methods:
Array.from() and Array.of(), and then we will explore the new prototype methods
introduced for Arrays in ES6.

Array.from()
Prior to ES6, in order to convert the array-like objects (e.g., arguments and NodeList)
to a true array, we needed to use hacks like calling Array.prototype.slice.call() on
the arguments or NodeList to convert the objects into arrays. Consider the following
example, where you have a list of elements present in the DOM:

 Apple
 Mango
 Orange
 Litchi
 Banana

Chapter 7 ■ Arrays and Collections

82

var listItems = document.querySelectorAll('li');

// converting NodeList to an array
listItems = Array.prototype.slice.call(listItems);

// using Array methods on the newly converted array
listItems.map(item => { console.log(item.innerText) });

// Apple
// Mango
// Orange
// Litchi
// Banana

With ES6, we now have a more straightforward solution for converting array-like
objects like the ones described in the above example, into arrays. The new Array.from
static method allows us to create arrays from any array-like or iterable objects. Before
we move forward though, let’s clearly understand what we actually mean by array-like
objects. These are simply the objects that have a length property or indexed elements. For
example, consider the following object:

const customers = {
 '0': 'matt',
 '1': 'ian',
 '2': 'mikhail',
 '3': 'akia',
 '4': 'vincent',
 length: 5
};

Now, if we were to convert this object into an array, we can do it using the Array.
from() syntax simply like this:

Array.from(customers).forEach(customer => {
 console.log(customer);
});

In this example, we just passed into the function the customer object, and in turn it
returns an array formed from the individual elements. Let’s look at the specific Array.from
syntax:

Array.from(arrayLike[, mapFn[, thisArg]])

In this syntax arrayLike is an array-like or iterable object and mapFn, which is an
optional argument is a Map function that can be applied on every element of the array.
thisArg is another optional argument whose value is used as this when executing the mapFn.

Chapter 7 ■ Arrays and Collections

83

Array.from()tries to check if its first argument is an iterable, and if it is it uses the
iterator to produce values to copy into the returned array. But if you pass an array-like
object, it behaves the same as slice() or apply() does, which is simply loop over the values
accessing numerically names properties from 0 to the length of the object.

If we now use the above example with the optional mapFn argument, it would look
like this:

Array.from(customers, customer => {
 console.log(customer);
});

Notice how we have removed the forEach method and used a second argument as a
map function to iterate over the resultant array.

Array.of()
Another really handy method introduced in ES6 is Array.of(), which lets you create an
array of elements easily. Array.of() takes a list of items as parameters and returns them
to you as an array. Consider the following example,

let arr = Array.of(10, 20, 30, 40);
console.log(arr); // [10, 20, 30, 40]

You might be wondering how is this different from the traditional Array(...)
constructor. You can also create an array with the array constructor method using the
Array() syntax. But, the difference between Array.of() and the Array constructor is
the way they handle a single number as an argument. The Array constructor has a very
weird behavior where if only one number is passed to it, instead of making an array of
one element with that number value, it constructs an empty array with the number as its
length. All the elements are set to undefined.

The Array.of() static method fixes this issue and is now the preferred function-form
constructor for arrays.

Take a look at the following example:

const arr1 = Array.of(10);
console.log(arr1); // [10]
console.log(arr1.length); // 1

const arr2 = Array(10);
console.log(arr2); // [,,,,,,,,,]
console.log(arr2.length); // 10

As you can see in the example above, the Array.of(10) creates an array of single
number [10], whereas new Array(10) method creates an empty array of length 10.
All that said and done, we need to understand why we would have to use the constructor
in the first place instead of a literal syntax like a = [1, 2, 3]. You would use the

Chapter 7 ■ Arrays and Collections

84

constructor, for example, in case you have a callback that is supposed to wrap arguments
passed to it into an array or if you have to subclass Array and want to create or initialize
elements in an instance of your subclass.

Now that we have looked at the two new static methods introduced for Arrays in ES6,
let’s dig deeper into the new prototype methods introduced for the Array prototype in ES6.

New Array.Prototype Methods
Now that we have discussed the new methods to create arrays, let’s take a look at how
the new array methods introduced in ES6 help us access and manipulate data stored
in the arrays easily. In this section, we will go over the new Array.prototype methods,
which include entries(), keys(), values(), find(), findIndex(), fill(), and
copyWithin(), and see some practical examples to understand how these methods help
us access and manipulate data easily.

Array.prototype.entries()
The entries() method returns a sequence of values, but reveals them one by one using
an iterator, instead of all at once as an array. You will learn about iterators in greater detail
in a later chapter, but let’s have a quick introduction to iterators here.

An iterator accesses the items from a collection one at a time, while keeping track of
its current position within that sequence. It provides a next() method that returns the
next item in the sequence. The next() method returns an object with two properties:
done and value, where value represents the item in the collection and done is a Boolean
that is true when all the elements of the iterable have been iterated over.

Every iterable (e.g., array) must implement the iterable protocol, meaning that the
object (or one of the objects up its prototype chain) must have a property with a Symbol.
iterator key. Symbol.iterator is another ES6 addition that we will discuss later in this
book, but for now, think of this as a way to define special keys that will never conflict with
regular object keys.

Let’s look at an array, which is an iterable, and the iterator it can produce to consume
its values:

const arr = [11,12,13];
const itr = arr[Symbol.iterator]();

itr.next(); // { value: 11, done: false }
itr.next(); // { value: 12, done: false }
itr.next(); // { value: 13, done: false }

itr.next(); // { value: undefined, done: true }

Chapter 7 ■ Arrays and Collections

85

Now that we have a basic understanding of iterators and iterables, let’s take a good
look at how the Array.prototype.entries() method helps us iterate over an array. This
method returns a new Array Iterator object that contains the key/value pairs for each
index in the array. Consider the following code snippet, for example:

const breakfast = ['apples', 'bananas', 'oranges'];
const eBreakfast = breakfast.entries();

console.log(eBreakfast.next().value); // [0, 'apples']
console.log(eBreakfast.next().value); // [1, 'bananas']
console.log(eBreakfast.next().value); // [2, 'oranges']

You can also use a for-of loop to iterate over the iterator returned from the
breakfast.entries() call:

for (let entry of eBreakfast) {
 console.log(entry);
}

// [0, 'apples']
// [1, 'bananas']
// [2, 'oranges']

Similarly, there are two more array methods to access the keys and values separately.
Let’s take a look at them.

Array.prototype.keys()
This method returns a new Array Iterator that contains the keys for each index in the array:

const breakfast = ['apples', 'bananas', 'oranges'];
const kBreakfast = breakfast.keys();

console.log(kBreakfast.next().value); // 0
console.log(kBreakfast.next().value); // 1
console.log(kBreakfast.next().value); // 2

Array.prototype.values()
This method returns a new Array Iterator object that contains the values for each index in
the array:

const breakfast = ['apples', 'bananas', 'oranges'];
const vBreakfast = breakfast.values();

console.log(vBreakfast.next().value); // apples
console.log(vBreakfast.next().value); // bananas
console.log(vBreakfast.next().value); // oranges

Chapter 7 ■ Arrays and Collections

86

Array.prototype.find()
The find() method lets you iterate through your array and returns the first item that
matches the callback(element, index, array) for the array. This method also allows
you to optionally pass a context binding for this. In other words, the find() method
returns the first value in the array for which the testing function returns true; otherwise
undefined is returned. The syntax for the find() method looks like this:

arr.find(callback[, thisArg])

where callback is the testing function that is executed on each value and takes three
arguments:

element, index and array.

function callback(element, index, array) {
// returns true or false based on some condition
}

Consider the following code snippet:

const inventory = [
 {name: 'apples', quantity: 2},
 {name: 'bananas', quantity: 0},
 {name: 'oranges', quantity: 5}
];

let result = inventory.find((fruit) => fruit.name === 'apples');
console.log(result); // {name: 'apples', quantity: 2}

The above example shows how we can easily find the first element that matches
the fruit.name as 'apples' in the given array. You can also use find() method to get the
element at a certain index position, for example:

result = inventory.find((fruit, i) => i > 2);
console.log(result); // {name: 'oranges', quantity: 5}

As mentioned above, the find() method returns undefined if the element is not
found in the array:

result = inventory.find((fruit, i) => i > 10);
console.log(result); // undefined

The next argument thisArg lets you optionally pass a context binding for this; for
example, consider the following code snippet:

function eligibleToVote(age) {
 return age >= this.legalAge;
}

Chapter 7 ■ Arrays and Collections

87

function foo() {
 this.legalAge = 18;
 const result = [10, 12, 23, 26, 32].find(eligibleToVote, this);
 console.log(result);
}

foo(); // 23

In this example, the context of foo is passed as the second argument in the find()
method, due to which this in eligibleToVote() refers to the context of foo and this.
legalAge is 18.

You might think that this method is similar to filter() method from ES5, but note
that filter() always returns an array of matches (and will return multiple matches),
whereas find() always returns only one element (first one in the array that matches the
condition).

Array.prototype.findIndex()
This method is an equivalent of find(). Instead of returning an item, this method
returns the index position. If none of the elements in the collection match the callback
(element, index, array) criteria, the return value is -1.

Consider the following code snippet, for example:

result = inventory.findIndex((fruit) => fruit.name === 'apples');

console.log(result); // 0
result = inventory.findIndex((fruit) => fruit.name === 'grapes');

console.log(result); // -1

This method is similar to the indexOf()method from ES5, which simply locates
the element in the array. With the indexOf() method, you can only search for an
element inside an array; it doesn’t support a callback method. Whereas in case of the
findIndex()method, we have the capability to apply a condition to which the element at
the returned index position must satisfy.

Array.prototype.fill()
This is a very simple method that allows us to fill all the elements of an array with a static
value. It also takes optional start and end index values.

Consider the following code snippet:

[1, 2, 3].fill(4); // [4, 4, 4]
[1, 2, 3].fill(4, 1); // [1, 4, 4]
[1, 2, 3].fill(4, 1, 2); // [1, 4, 3]

Chapter 7 ■ Arrays and Collections

88

The input value can be arbitrary, not necessarily a number, character, or any other
primitive type. It can be an object, for example:

new Array(4).fill({}); // [{}, {}, {}]

Array.prototype.copyWithin()
The copyWithin()method copies the sequence of array elements within the array to
the position starting at target. The elements that should be copied are taken from the
(start, end) range. The start argument is optional and defaults to 0. Also, the end
argument is also optional and defaults to the length of the array.

The syntax of copyWithin() method looks like this:

Array.prototype.copyWithin(target, start = 0, end = this.length)

Let’s start with a simple example. Consider the following code snippet:

let fruits = ["apples", "bananas", "oranges", "grapes", "guava",
"watermelon"];

fruits.copyWithin(4);

console.log(fruits);
// ["apples", "bananas", "oranges", "grapes", "apples", "bananas"]

fruits.copyWithin(4) considers the target index at 4, which is "guava." It further
determines the items to be copied will be taken as start at 0 (default) and end at 6 (length
of the array). You can obviously specify start and end values as per your needs:

fruits = ["apples", "bananas", "oranges", "grapes", "guava", "watermelon"];

fruits.copyWithin(4, 1, 3);

console.log(fruits);
// ["apples", "bananas", "oranges", "grapes", "bananas", "oranges"]

The copyWithin() method also accepts negative start indices, negative end indices,
and negative target indices. Let’s look at an example using that:

[1, 2, 3, 4, 5].copyWithin(-3, -4, -1); // [1, 2, 2, 3, 4]

In this example, -3 as the target index determines the start position as the third
element from the last of the array (which is 3 in the input array). It further determines
the start and end values as 2 and 5 (the fourth and first element from the end of the
array), respectively.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Arrays and Collections

89

Typed Arrays
Typed arrays in ES6 provide an efficient way for accessing and manipulating binary data.
Before ES6, JavaScript was not very good at handling binary data. Typed arrays help in
improving the performance when it comes to handling binary data.

With typed arrays, JavaScript engines do not have to deduce the type of the array.
If you make an ordinary array in JavaScript, and only store floating-point numbers in
it, your JavaScript engine may optimistically decide that it’s an array of floating-point
numbers and optimize the code for it. The performance can then be equivalent to that of
typed arrays. But, let’s consider a case where you have an array of floating-point numbers
and at some point in your code, you store an object in an element. In this case, your
JavaScript engine has to de-optimize and regenerate code that makes the array generic
again. Therefore, with Typed arrays, things are much simpler as they’re guaranteed to be
one type, and you just can’t store other things like objects in them. The fact they’re much
simpler means that less-sophisticated JavaScript engines can easily implement them, and
you can achieve a consistent performance throughout.

The architecture of a typed array is comprised of a buffer and a view. A buffer is an
object that represents a chunk of data. We can’t directly manipulate the contents of a
buffer. In order to access the memory contained in the buffer, we need to use a view.
A view enables us to read and write the data content of the buffer.

So, typed arrays have two separate classes: ArrayBuffer and DataView. The
ArrayBuffer contains our data and the DataView provides a custom view into this data,
which represents the buffer in a specific format and enables data access and manipulation.

Basics of Using Typed Arrays
Check the following code snippet; here we are creating an ArrayBuffer and then a
specific DataView to handle the data inside that buffer:

const buffer = new ArrayBuffer(16);
const int32View = new Int32Array(buffer);

for (let i = 0; i < int32View.length; i++) {
 int32View[i] = i * 2;
}

console.log(int32View); // [0, 2, 4, 6]

Typed array views provide views for all the usual numeric types like Int8, Uint32,
Float64, etc. You can check all the types and their respective size and description in Table 7-1.

Chapter 7 ■ Arrays and Collections

90

Note that in case of clamped arrays, all values outside the range are set to the nearest
element in the range, that is, the first or last element. The Uint8ClampedArray typed
array represents an array of 8-bit unsigned integers clamped to 0-255, which means if you
specify a value that is out of the range of [0,255], 0 or 255 will be set instead. If you specify
a non-integer, the nearest integer will be set.

Typed Arrays and Normal Arrays
Typed arrays and Normal arrays are similar in some ways: they both have length property,
and in the both of the cases, elements in the array can be accessed using the [] operator.
Typed arrays also support all standard array methods. But they do differ in various ways.

Typed arrays in JavaScript are similar to arrays in other programming languages like
C, C++ where all the elements of an array are of the same type, unlike arrays in JavaScript
where elements can be of any type. Typed arrays have a strict type for all the elements.

Typed arrays cannot have empty elements. They are always initialized with a 0 value,
unlike normal arrays where values can be empty (undefined). Check the following code
snippet:

const buffer = new ArrayBuffer(16);
const float32View = new Float32Array(buffer);
let arr = new Array(10);

console.log(float32View); // Float32Array [0, 0, 0, 0]
console.log(arr); // [,,,,,,,,,]

Typed arrays are supported by various browser APIs: File API, XMLHttpRequest,
Fetch API, Canvas, WebSockets, WebGL, Web Audio API, Media elements, etc. Currently,
some of the features of Typed Arrays might not be supported by all the browsers and
JavaScript engines, so you can check the availability for the desired JavaScript engine at
https://kangax.github.io/compat-table/es6/#typed_arrays.

Table 7-1.  Typed array views

Type Size in bytes Description

Int8Array 1 8-bit signed integer

Uint8Array 1 8-bit unsigned integer

Uint8ClampedArray 1 8-bit unsigned integer (clamped)

Int16Array 2 16-bit signed integer

Uint16Array 2 16-bit unsigned integer

Int32Array 4 32-bit signed integer

Uint32Array 4 32-bit unsigned integer

Float32Array 4 32-bit floating-point number

Float64Array 8 64-bit floating-point number

https://kangax.github.io/compat-table/es6/#typed_arrays

Chapter 7 ■ Arrays and Collections

91

Map and WeakMap
ES6 introduces a new set of data structures called Map and WeakMap, which are
fundamentally a hash table or a dictionary as referred in Python or C#. ES6 Maps provide
a simple API to store objects by an arbitrary key, a pretty essential functionality required
in many JavaScript programs. We will go into details about each of them in this section.

Map
We actually use maps in JavaScript all the time. In fact, every object can be considered
a Map. An object is made of keys (always strings) and values, whereas in Map, any value
(both objects and primitive values) can be used as either a key or a value.

In Map, keys can be of any type: string, Boolean, number, object, or function.
Have a look at this piece of code:

let myMap = new Map();

const keyString = "a string",
keyObj = {},
 keyFunc = () => {};

// setting the values

myMap.set(keyString, "value associated with 'a string'");
myMap.set(keyObj, "value associated with keyObj");
myMap.set(keyFunc, "value associated with keyFunc");

Note that the set() method is chainable so you can alternatively do this:

myMap.set(keyString, "value associated with 'a string'")
.set(keyObj, "value associated with keyObj")
.set(keyFunc, "value associated with keyFunc");

myMap.size; // 3

// getting the values
myMap.get(keyString); // "value associated with 'a string'"
myMap.get(keyObj); // "value associated with keyObj"
myMap.get(keyFunc); // "value associated with keyFunc"

Chapter 7 ■ Arrays and Collections

92

Checking Keys Equality
Key equality in Map() is based on the “same-value” algorithm, which is similar to
the === operator but also considers NaN to be equal to NaN (even though generally
NaN !== NaN), which means NaN when used as a key will return map objects that were
previously set using NaN as the key. Consider the following code snippet, for example:

let myMap = new Map();

myMap.set(NaN, "not a number");

myMap.get(NaN); // "not a number"

Note that you can also create a map via an iterable over key/value pairs:

let myMap = new Map([
[1, 'apple'],
 [2, 'banana'],
 [3, 'orange']
]);

Also, maps can be iterated over using for...of or forEach():

for (let [key, value] of myMap) {
console.log(key + " = " + value);
}

// 1 = apple
// 2 = banana
// 3 = orange

Maps also support keys(), values(), and entries() methods:

for (let key of myMap.keys()) {
console.log(key);
}
// 1
// 2
// 3

for (let value of myMap.values()) {
console.log(value);
}
// apple
// banana
// orange

Chapter 7 ■ Arrays and Collections

93

for (let [key, value] of myMap.entries()) {
console.log(key + " = " + value);
}
// 1 = apple
// 2 = banana
// 3 = orange

If you are a seasoned JS developer, you know that objects are the primary mechanism
for creating unordered key/value pairs as data structures. However, using objects as maps
does not give us the ability to use a non-string value as a key.

At this point, you must be wondering, when and when not to use maps over objects.
You should always use a Map when you need a key/value collection, because objects
inherently were not designed to be used as collections, and as a result there’s no efficient
way to determine the number of properties an object has. When you loop over an object’s
properties, you also get its prototype properties. Of course there are some workarounds
for this but when you loop over an object’s properties, the properties won’t necessarily be
retrieved in the same order they were inserted. That’s why it is recommended to use maps
when you need a key/value collection in your JavaScript program.

A good indicator would also be the case where you don’t know the keys of the
collection beforehand, that is, they are being read from the database or input by the user,
which means they don’t necessarily have to be a string or a number. In contrast, you
should be using objects when you know which and how many properties the object has
while writing the code, that is, when their shape is static.

WeakMap
WeakMaps are similar to normal Maps, albeit with fewer methods and some differences
with regards to garbage collection. A WeakMap is a Map in which the keys are weakly
referenced, which means a WeakMap doesn’t prevent its keys from being garbage
collected if all references to the key are lost and there are no more references to the value.
Therefore, you don’t have to worry about memory leaks with WeakMaps. Usually you
want this behavior when storing metadata related to something like a DOM node such
that DOM elements should be released from memory when they’re no longer of interest.

The biggest limitation in a WeakMap is that it is not iterable, as opposed to Map –
which means it does not support entries(), keys(), values(), forEach(), and
clear() methods. Another thing to note here is that, in WeakMap, as opposed to a Map,
every key must be an object.

Although it has almost the same API like a Map, we can’t iterate over the WeakMap
collection. We can’t even determine the length of the collection because we don’t have a
size attribute here. A WeakMap only has four methods:

•	 delete(key)

•	 has(key)

•	 get(key)

•	 set(key, value)

Chapter 7 ■ Arrays and Collections

94

let wMap = new WeakMap();

wMap.set('a', 'b');
// Uncaught TypeError: Invalid value used as weak map key

const o1 = {},
 o2 = () => {},
 o3 = window;

wMap.set(o1, 42);
wMap.set(o2, "hello");
wMap.set(o3, undefined);

wMap.get(o3); // undefined, because that is the set value
wMap.has(o1); // true
wMap.delete(o1);
wMap.has(o1); // false

Set and WeakSet
Sets and WeakSets are yet another collection type introduced in ES6. If you come from
programming languages like Python, you would know how incredibly helpful sets can be.
Let’s take a look at them in this section.

Set
Set objects are collections of unique values. Duplicate values are ignored, as the
collection must have all unique values. Sets are fast and the values can be primitive types
or object references.

Check the following code snippet to know more about sets and its methods:

let mySet = new Set([1, 1, 2, 2, 3, 3]);

mySet.size; // 3

mySet.has(1); // true

mySet.add('strings');
mySet.delete('strings'); // true
mySet.has('strings'); // false

mySet.add({ a: 1, b:2 });

mySet.size; // 4
mySet.clear(); // Clears the set
mySet.size; // 0

Chapter 7 ■ Arrays and Collections

95

Note that similar to maps, NaN equals NaN when it comes to Set, too. You can iterate
over a set by insertion order using either the forEach method or the for...of loop:

mySet = new Set([1, 1, 2, 2, 3, 3, { a: 1, b:2 }]);

mySet.forEach((item) => {
 console.log(item);
});

// 1
// 2
// 3
// Object { a: 1, b: 2 }

for (let value of mySet) {
 console.log(value);
}

// 1
// 2
// 3
// Object { a: 1, b: 2 }

Sets can be incredibly helpful if you need a dynamic list of unique elements to be
rendered in a drop-down or as an auto-suggestion for an input field. Using Set would
ensure that your list of suggestions would never have a duplicate value and saves you the
trouble of checking for duplicates.

WeakSet
Similar to WeakMap, the WeakSet object lets you store weakly held objects in a collection,
which means a WeakSet doesn’t prevent its elements from being garbage collected.
An object in the WeakSet occurs only once; it is unique in the WeakSet’s collection.

Values in a WeakMap must be unique object references. If nothing else is referencing
the object present in a WeakSet, it’ll be subject to garbage collection.

Much like a WeakMap, a WeakSet is not iterable and does not have a size property.
A WeakSet supports only three methods:

•	 add(value)

•	 has(value)

•	 delete(value)

let ws = new WeakSet();
const obj = {};
const foo = {};

Chapter 7 ■ Arrays and Collections

96

ws.add(window);
ws.add(obj);

ws.has(window); // true
ws.has(foo); // false, foo has not been added to the set

ws.delete(window); // removes window from the set
ws.has(window); // false, window has been removed

You should use a WeakSet over a Set when you need Garbage Collection capabilities
in the collection. Another typical use case would be marking an object as satisfying some
or other quality. Consider the following example:

const fruits = new WeakSet();

class Fruit {
 constructor() {
 fruits.add(this);
 }

 getName() {
 if (!fruits.has(this)) {
 throw new TypeError("getName() called on an incompatible object!");
 } else {
 // returns the name
 }
 }
}

This is a good way to prevent the usage of class methods on any object that was not
created by the class constructor.

Summary
In this chapter, we learned the new and effective methods introduced in ES6 to handle
and manipulate data using Arrays and Collections. These new features provide built-in
solutions for common use cases that were cumbersome prior to ES6. With new Array
methods, you have the capabilities to create and manage arrays easily in your JavaScript
programs. We also learned about the new array prototype methods introduced in ES6,
which help us iterate and access the elements stored in an array efficiently. We also
discussed how Typed Arrays help you improve performance when it comes to handling
binary data in JavaScript. In the latter half of this chapter, we learned about the new
collection types: Maps, WeakMaps, Sets, and WeakSets, introduced in ES6 with their rock
solid feature set and effective use cases.

At this point, you should feel confident about using these new data types in your
JavaScript applications. In the next chapter, we will be digging into details about briefly
discussed iterators and iterables, and learning the concept of generators introduced in ES6.

97© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_8

CHAPTER 8

Iterators and Generators

In this chapter, we will be learning all about the newly introduced iterators and
generators, which bring simplicity and customizability to the traversing mechanism in
JavaScript. A lot of programming languages have already moved away from the boring old
for loops that required additional efforts to keep track of the current index position while
traversing through the items in the collection. Let’s take a look at how we can use iterators
and generators to efficiently process data in our applications.

Iterables and Iterators
A lot of effort has been put into the latest release of the ECMAScript standard to improve
the way we organize our code. ES6 has a whole new traversing mechanism that makes it
really simple and easy to implement an iterable and an iterator. This version of JavaScript
introduces a set of protocols called as Iterator and Iterable Protocols, which should be
implemented by any JavaScript object to become an iterator or an iterable. Before moving
ahead and discussing these protocols, let’s take a look at iterables and iterators in JavaScript:

Put simply, an iterator pattern is a structured pattern for fetching information from
a collection of elements, element by element, in a specific order. It is an object with a
specific interface designed for iteration. This pattern has always been around and has
been used in JavaScript through custom objects, but with ES6, we are introduced to
an implicit standardization of the iterators pattern. Many existing data structures in
JavaScript now expose an iterator, and you can also construct your own iterator using the
same standard, providing you with maximum interoperability.

An Iterable is a simple representation of a series of elements that can be iterated
over. It does not have any iteration state such as a “current element.” Instead, it has one
method that produces an Iterator.

An Iterator is the object with an iteration state. All iterator objects come with a
next() method that is used to return the next object in the collection. The object returned
from the next() method has two properties. Namely:

(i)  value, which is the next value in the collection; and

(ii) � done, which is a Boolean that signals whether the sequence has ended,
that is, it is false as long as there are values in the sequence to return
and only returns true when the collection has run out of values.

Each call to the next() method produces the next value in the collection. Once all
the values of the collection are iterated, calling the next() method will return the value
as undefined and done as true.

Chapter 8 ■ Iterators and Generators

98

With all that said, let’s look at how you can manually implement an iterator in ES6:

function myIterator(data) {
 let currentIndex = 0;
 return {
 next: () => {
const done = (currentIndex >= data.length);
const value = !done ? data[currentIndex] : undefined;
currentIndex += 1;

return {
done,
value
 };
}
};
}

const itrObj = myIterator([41, 42, 43]);
itrObj.next(); // { value: 41, done: false }
itrObj.next(); // { value: 42, done: false }

itrObj.next(); // { value: 43, done: false }
itrObj.next(); // { value: undefined, done: true }

// for all further calls
console.log(itrObj.next()); // { value: undefined, done: true }

In the above code snippet, the myIterator() function returns an object that has a
next() method, when called each time returns the next value of the collection. After the
last element, the done value of the object returned becomes true and the value returned
is always undefined.

ES6 simplifies the process of implementing iterators by introducing [Symbol.
iterator], which specifies the default iterator for an object. This key holds the
@@iterator method, which underlies the iterable protocol that will be discussed later
in this chapter. Whenever an object needs to be iterated, such as at the beginning of a
for..of loop, its @@iterator method is called with no arguments. This method returns
the default Iterator for the object. In ES6, @@ describes a well-known symbol. Here, @@
iterator specifies the iterator function stored at the object’s key [Symbol.iterator].
Therefore, for the above example, the @@iterator method would return the next()
function:

myIterator[Symbol.iterator] = function () {
 return {
 next: function () {}
 }
}

Chapter 8 ■ Iterators and Generators

99

Having a symbol used as the key to hold the iterator method ensures that it will never
conflict with regular object keys. Now let’s look at the same example as above in ES6 with
Symbol.iterator in place:

const arr = [41, 42, 43];
const itrObj = arr[Symbol.iterator]();
itrObj.next(); // { value: 41, done: false }
itrObj.next(); // { value: 42, done: false }
itrObj.next(); // { value: 43, done: false }
itrObj.next(); // { value: undefined, done: true }

When the @@iterator method at Symbol.iterator is invoked for the given array arr,
it will create a new iterator. Note that a fresh iterator is created every time it is invoked.
Built-in ES6 data structures that are iterables have this behavior, allowing the values to be
iterated over using the next() method.

Let’s take a look at primitive string values as an example,

const message = "Ian is an awesome student";
const itrObj = message[Symbol.iterator]();

itrObj.next(); // { value: "I", done: false }
itrObj.next(); // { value: "a", done: false }
..

In the above example, we are able to iterate over each character of the String message
using the next() method. ES6 also allows us to iterate over the new data structures, like
Map and Set collections. Let’s take a look at Map as an example:

const permissionMap = new Map();

permissionMap.set("admin", {read: true, write: true, del: true});
permissionMap.set("student", {read: true, write: false, del: false});
permissionMap.set("faculty", {read: true, write: true, del: false});
permissionMap.set("staff", {read: true, write: false, del: true});

const permissions= permissionMap[Symbol.iterator]();

console.log(permissions.next());
// {value: ['admin', { read: true, write: true, del: true }], done: false}

console.log(permissions.next());
// {value: ['student', { read: true, write: false, del: false }], done:
false}

console.log(permissions.next());
// {value: ['faculty', { read: true, write: true, del: false }], done:
false}

Chapter 8 ■ Iterators and Generators

100

console.log(permissions.next());
// {value: ['staff', { read: true, write: false, del: true }], done: false}

console.log(permissions.next());
// {value: undefined, done: true}

In the above example, we have created a map for the permissions for different
user types as the key. We can simply create a new iterator by invoking the @@iterator
method and iterate over the values using next(). A good thing to note here is that these
collections also provide API method(s) to generate an iterator, for example, you can get
the iterator of a map using the entries() method:

const permissionEntries = permissionMap.entries();

console.log(permissionEntries.next());
// {value: ['admin', { read: true, write: true, del: true }], done: false}

console.log(permissionEntries.next());

// {value: ['student', { read: true, write: false, del: false }], done:
false}

Iteration Protocols
Now that we have a basic understanding of iterators and iterables, let’s talk about those
protocols we briefly discussed at the beginning of this chapter. There are two iteration
protocols: the iterable protocol and the iterator protocol. These protocols can be
implemented by any object respecting some conventions.

Iterable Protocol
The iterable protocol allows you to customize the iteration behavior of JavaScript objects.
This protocol states that all objects that are iterables must implement the @@iterator
method using the [Symbol.iterator] property. This method is called whenever an object
needs to be iterated. It takes no arguments and returns the default iterator, which can be
used to obtain the values out of the iterable. Built-in iterables such as Array, Map, Set, etc.,
have a default @@iterator method, which allows us to traverse the respective collections.

Iterator Protocol
The iterator protocol defines a standard way to get a sequence of values out of an iterable
object. This protocol states that an iterator object must define a next() method that takes
no arguments and returns an object with two properties: done and value.

Chapter 8 ■ Iterators and Generators

101

Iterator as an Iterable
If an iterator is also an iterable, it can directly be used with the for...of loop. You can
make an iterator an iterable by providing it with the Symbol.iterator, which returns the
iterator itself. Take a look at the following code snippet where we are making an iterable
from an iterator, and then using the for…of loop to iterate over:

const infiniteSequenceGenerator = {
 currentNumber: 0,

 // making the "infiniteSequenceGenerator" iterator an iterable
 [Symbol.iterator]() {
 return this;
 },

 next() {
 return {
 value: this.currentNumber++,
 done: false
 }
 }
};

const iter = infiniteSequenceGenerator[Symbol.iterator]();

console.log(iter === infiniteSequenceGenerator); // true

console.log(iter.next().value); // 0
console.log(iter.next().value); // 1
console.log(iter.next().value); // 2
console.log(iter.next().value); // 3

for (let item of iter) {
 if (item > 20) break;
 console.log(item);
}

// 4
// 5
// 6
// 7
// ... 20

In the above example, notice how we can directly use the for…of loop with an
iterable, but internally it uses the next() method since we got the list of numbers starting
from 4 in the for...of loop, having called the iterator four times before starting the loop
using the next() method manually.

Chapter 8 ■ Iterators and Generators

102

return() and throw() in Iterators
An iterator also has two additional optional methods: the return(…) and throw(...), which
are not implemented on most built-in iterators, but they definitely have a lot of relevance
in the context of generators, which we will be looking into later in this chapter.

There might cases where you may want the last item with {done: true, value:
undefined} to have some value other than being undefined. This is where return()
comes in. The return(...) method is used to send a signal to an iterator that the
code using the iterator will not call for anymore values from the iterator. It could be
used when the iterator has consumed all the values or when it has encountered an
unusual termination, allowing it to perform a cleanup operation like killing a database
connection, saving, or closing a file. If present, return(...) will be called automatically
when the collection has been exhausted, or it can also be called manually as well. The
return(...) method takes it as an optional argument, which is generally sent back as the
value in the returned object.

throw(...) on the other hand, is used to signal the iterator about an exception or an
error that might have occurred. This can be used differently by an iterator compared to the
signal from return(...) method because it does not imply a complete stop like return(...)
does. We will be looking into these methods more closely in the generators section.

Generators
In simple words, Generators are functions that can be paused. Prior to ES6, JavaScript
only had functions that would run to completion before anything could interrupt their
execution. With ES6, a different kind of function has been introduced to us through
generators that do not always run to completion like functions, but they can pause and
resume cycle midway through executions.

A generator is a function that allows us to create a special type of iterator, whose
execution can be suspended and retained while keeping the context. A function is a
generator if it contains one or more yield expressions and if it uses the function * syntax:

function *gen() {
 yield 42;
}

In this syntax, the position of the ‘*’ is not very significant. A generator can be written
in any of the following ways:

function *gen() { .. }
function* gen() { .. }
function * gen() { .. }
function*gen() { .. }

Nonetheless, it is preferable to maintain consistency in style when you use a
generator in your code. We will use the first format in the rest of this book.

Chapter 8 ■ Iterators and Generators

103

Generator Function
A generator function is paused by executing a yield keyword in the body of the function,
which can be used any number of times in the function body. You can return a value from
a yield expression. Check the following example where we are yielding the value 42 from
a generator:

function *generator () {
 yield 42;
}

A Generator executes just like any other function and you can pass arguments in it.
The only difference being that executing a generator doesn’t really run the code inside it.
It simply produces an iterator that can be used to execute the code inside it.

function *gen() {
 yield "Hello";
 yield "from";
 yield "generator";
}

Now if we call this generator function, it will not be executed; instead it returns an
iterator that will be used to execute the code inside it.

let obj = gen();

In the generator above, the operations in the beginning would run and then the yield
statement would pause the execution of the generator until the next() method is called.
The method obj.next() continues the execution of gen, until the next yield expression:

console.log(obj.next()); // { value: "Hello", done: false}
console.log(obj.next()); // { value: "from", done: false}
console.log(obj.next()); // { value: "generator", done: false}
console.log(obj.next()); // { value: undefined, done: true}

yield can be used any number of times inside a generator. It can also be a part of a
loop to represent a repeated pause location. Note that yield is not just a pause point, it
also sends out a value when pausing the generator.

function *infiniteNumbers() {
 var n = 1;
 while (true) {
 yield n++;
 }
}

Chapter 8 ■ Iterators and Generators

104

var numbers = infiniteNumbers(); // returns an iterable object

console.log(numbers.next()); // { value: 1, done: false }
console.log(numbers.next()); // { value: 2, done: false }
console.log(numbers.next()); // { value: 3, done: false }

Each time yield is called, the yielded value becomes the next value in the sequence.
A yield statement without a value provided just implies that the value is undefined.

Communicating with Generators
In the previous section, we saw how generators communicate to our code using yield
statements. We can also pass a value via yield to the generator function and use those
values inside the generator function when the execution resumes. Take a look at the
following code snippet, for example:

function *calculator() {
 const num1 = yield "I am a calculator";
 const num2 = yield "I add numbers";
 console.log(`Sum is: ${num1 + num2}`);
}

const myGenerator = calculator();

console.log(myGenerator.next());
// { value: 'I am a calculator', done: false }

console.log(myGenerator.next(2));
// { value: 'I add numbers', done: false }

console.log(myGenerator.next(3));
// Sum is: 5
// { value: undefined, done: true }

In the above example, the first time next() was called, the generator yields the "I
am a calculator" string and pauses. The second time the value from the next(2) will be
assigned to num1, because inside the generator, we specified that whatever value is yielded
at yield "I am a calculator" gets assigned to num1, and similarly for num2. Hence, the
third time next() was called, Sum is: 5 was printed to the console and since there was
no more yield statements, undefined was returned as the value.

This behavior of generators to communicate well with our code can be really helpful
in cases of asynchronous programming. Generators can make your asynchronous code
look synchronous. Consider another example that demonstrates how generators and
asynchronous code work well together:

Chapter 8 ■ Iterators and Generators

105

function getFlightDurations() {
 setTimeout(() => {
 flightIterator.next({
 Qatar: "39h 0m",
 Emirates: "40h 20m"
 });
 }, 1200);
}

function getFlightPrices() {
 setTimeout(function(){
 flightIterator.next({
 Qatar: "$2010",
 Emirates: "$1904"
 })
 }, 1000);
}

function *getFlights() {
 const allFlights = ["Qatar", "Emirates"];
 const flightDurations = yield getFlightDurations();
 const flightPrices = yield getFlightPrices();

 for (let flight of allFlights) {
 console.log(`New York to Auckland takes
${flightDurations[flight]} in ${flight} airlines for around
${flightPrices[flight]}`);
 }
}

const flightIterator = getFlights();

flightIterator.next();
// New York to Auckland takes 39h 0m in Qatar airlines for around $2010
// New York to Auckland takes 40h 20m in Emirates airlines for around $1904

In the above example, genFlights() is a generator function that returns an iterator.
On calling the next() method of the returned iterator, the generator execution gets to the
first yield statement where getFlightDurations() is invoked. getFlightDurations()
is an asynchronous function that uses setTimeout to delay the execution by 1.2s and
calls next() method on the iterator guaranteeing that flightDurations will be correctly
assigned. The same happens with flightPrices and once the next() method is called
again in getFlightPrices(), the output is logged out to the console. If we were not
using yield here, flightDurations and flightPrices would simply be assigned as
undefined since the function itself would return undefined at the time of assignment.
Having a yield statement prevents the value from being assigned until the setTimeout
function has executed. This is how generators help us write blocking code when using
asynchronous operations, making the code look more synchronous.

Chapter 8 ■ Iterators and Generators

106

Completing Early
Earlier in this chapter, we discussed about the iterators having two optional methods:
return(...) and throw(...), which have a lot of relevance in the context of generators.
These methods end the sequence in a paused generator as soon as they are called. Take a
look at the following code snippet, for example:

function *getFruits() {
 yield "apple";
 yield "orange";
 yield "banana";
}

const fruitIterator = getFruits();

console.log(fruitIterator.next()); // {value: 'apple', done: false}

console.log(fruitIterator.return("kiwi")); // {value: 'kiwi', done: true}

console.log(fruitIterator.next()); // {value: undefined, done: true}

In the above example, return("kiwi") returns the same value "kiwi" passed as the
argument and ends the sequence resulting in done to be true. This is equivalent to having
a return value in the generator function, although you should always keep in mind that
traversing the sequence obtained from a generator does not include the value that signals
{ done: true }. Check the following code snippet, for example, where we are iterating
over the collection fruitIterator, which only contains the elements yielded before the
return() method was invoked in the source generator:

function *getFruits() {
 yield "apple";
 yield "orange";
 yield "banana";
 return "kiwi";
 yield "watermelon";
}

const fruitIterator = getFruits();

for (let fruit of fruitIterator) {
 console.log(fruit);
}

// apple
// orange
// banana

Chapter 8 ■ Iterators and Generators

107

You can also avoid the immediate sequence termination by wrapping up the code
inside try-finally block ensuring that the code with the finally clause will execute in
case of completion, whether early or when the yield statements are exhausted. This can
be helpful in performing any cleanup or closing operations after the sequence has ended.
Check the following code snippet, for example:

function *getFruits() {
 try {
 yield "apple";
 yield "orange";
 yield "banana";
 }

 finally {
 console.log("You must always eat a big watermelon");
 yield "watermelon";
 }
}

const fruitIterator = getFruits();

console.log(fruitIterator.next());
// { value: 'apple', done: false }

console.log(fruitIterator.return("kiwi"));
// You must always eat a big watermelon
// { value: 'watermelon', done: false }

console.log(fruitIterator.next());
// { value: 'kiwi', done: true }

console.log(fruitIterator.next());
// { value: undefined, done: true }

In the above example, once the expressions in the finally block have been executed,
the sequence will terminate with the value as 'kiwi' and done as true, where 'kiwi' was
passed as the argument in the return(...) method.

Similarly, throw(...) also stops the execution of the generator but it is never called
automatically. This method can be useful in cases where you may want to warn the user
about some unexpected errors, utilizing a try-catch block to enable error handling in
generators. Check the following code snippet, for example:

function *getFruits() {
 yield "apple";
 yield "orange";
 yield "spinach";
 yield "watermelon"
}

Chapter 8 ■ Iterators and Generators

108

const fruitIterator = getFruits();

for (let fruit of fruitIterator) {
 try {
 console.log(fruit);
 if (fruit === "spinach") {
 fruitIterator.throw("Vegetable Found");
 }
 }
 catch (err) {
 console.log(`Exception: ${err}`);
 }
}

// apple
// orange
// spinach
// Exception: Vegetable Found

Notice how "watermelon" never got yielded from the generator because throw() was
called when "spinach" was returned, halting the execution of the sequence.

Summary
Iterators and Generators introduced in ES6 provide a sequential access to the values
stored in a collection and also allow us to customize the way we traverse these values. ES6
also introduces a new set of protocols to define iterators and iterables known as Iteration
protocols. In this chapter, we learned about defining the default iterator of an object
using the unique [Symbol.iterator] property. When Symbol.iterator is provided on an
object, the object is considered an iterable.

In the latter half of this chapter, we also learned about Generator functions, which
are indicated by a star (*) character and one or more yield statements in their function
body. They are special types of functions that can be paused and resumed midway
through executions.

109© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_9

CHAPTER 9

Promises in ES6

JavaScript, as we know it, is single threaded by design. In browsers, it uses event handling
to manage a lot of tasks concurrently. The JavaScript Engine manages an event queue
and when an event occurs, the registered handler function is called. If you have any
experience with traditional JavaScript, then you are already well aware of the fact
that understanding asynchronous programming is a must to properly be able to use
JavaScript. The main pattern for using asynchrony is through the callback function. ES6
brings to the standard JavaScript specification a new feature Promises (a feature available
in some of the new and latest JS libraries and frameworks) that solves many of the
significant problems in the callbacks – the only approach to async.

Promises Overview
In cases where it is required to wait for an asynchronous operation to complete and
then perform a task, JavaScript heavily relies on callbacks, allowing the code execution
to proceed past the long-running task. You must already know that setTimeout,
XMLHttpRequest, and all browser-based asynchronous functions are callback based. While
the concept is simple and easy to understand in theory, it can lead to some really confusing
and difficult-to-follow code, especially in cases when it is needed to make a callback after
a callback (nested callbacks), which is more often termed “Callback Hell.” Consider the
following code snippet, for example, where X must happen before Y must happen before Z:

x = getData();
y = getMoreData(x);
z = getMoreData(y);

Prior to ES6, you could have asynchronously fetched x and then passed it as an
argument to fetch y and similarly for z, using callbacks as follows:

getData(function(x){
 getMoreData(x, function(y){
 getMoreData(y, function(z){
 ...
 });
 });
});

Chapter 9 ■ Promises in ES6

110

This can get more and more complex in real-life applications where you have lots
of callback functions, which can lead to a callback pyramid. These callback pyramids
appear everywhere – in handling HTTP requests, database manipulation, animation,
interprocess communication, and all manners of other places. Generally, codes using
callback functions can become harder to follow, refactor, and test.

This is where promises come in. Promises give us a way to handle asynchronous
processing in a more controlled pattern. They represent a value that can be handled at
some point in the future, and offer an escape from the callback hell Promises provide a
simpler alternative for executing, composing, and managing asynchronous operations in
comparison to callback-based approaches. They also allow the logical flow of the code to
be much easier to follow.

ES6 has native support for promises. A promise is an object that is waiting for an
asynchronous operation to complete, and when that operation completes, the promise is
either fulfilled or rejected. A promise object can be any of these three states:

•	 fulfilled – when the promise succeeds

•	 rejected – when the promise fails

•	 pending – when it’s neither fulfilled or rejected

A pending promise may transition into a fulfilled or rejected state, and the promise is
considered to be settled when it’s either fulfilled or rejected. It is important to note a settled
promise is immutable, which means that once a promise is settled, it cannot be resettled.

Creating a Promise
Promises are created using the new Promise() constructor that accepts an executor (a
function) that takes two parameters:

•	 The first parameter (typically named resolve) is a function that
is called with the future value when it's ready, that is, when the
promise is fulfilled;

•	 And the second parameter (typically named reject) is a function
that is called to reject the promise if it can't resolve the future value.

The executor initiates some asynchronous work and then, once that completes, calls
either the resolve or reject function to resolve the promise or else reject it if an error occurred.

A simple Promise looks like this:

const p = new Promise((resolve, reject) => {
 if (/* some condition */) {
 resolve(/* some value */); // fulfilled successfully
 } else {
 reject(/* some reason */); // error, rejected
 }
});

Chapter 9 ■ Promises in ES6

111

The second method (reject) is optional, and you can very well create a promise
with only the resolve method, as demonstrated in the code snippet below where the
promises are fulfilled and rejected, respectively:

new Promise(resolve => resolve()) // promise is fulfilled
new Promise((resolve, reject) => reject()) // promise is rejected

You can also create an immediately resolved promise using:

const sayHello = Promise.resolve("hello!");

Similarly, you can also reject a promise using Promise.reject(value). Resolving
or rejecting a promise without a value isn’t very useful. Usually, a promise will resolve
to some value that could be a result from an HTTP request, animation, or some other
asynchronous operation.

A promise, once created, can only be settled, meaning it can either be fulfilled or
rejected. And as stated above, since a settled promise is immutable, the settled value
or failure reason cannot be changed (the value can be undefined as well). However, an
object may be used as the fulfilled value, and object properties may mutate.

Consuming a Promise with then() and catch()
Once a promise is created, it can be passed around as a value, essentially representing a
placeholder for a future value. This value can be consumed when the promise is fulfilled
using .then() method. This method takes a function that will be passed to the resolved
value of the Promise once it is fulfilled. Consider the following code snippet, for example:

const p = new Promise((resolve, reject) => resolve(42));
p.then((val) => console.log(val)); // 42

Every promise must have a .then() method that actually takes two possible parameters.
The first parameter is the function to be called when the promise is fulfilled and the second
parameter is a function to be called if the promise is rejected as depicted in Figure 9-1.

p.then((value) => { console.log("Promise Fulfilled:", value) },
 (error) => { console.log("Promise Rejected: ", error) });

Chapter 9 ■ Promises in ES6

112

If a given promise always gets resolved, we can omit the second parameter for
simplicity. Check out the following example where the customer gets his pizza five
seconds after the order:

const pizza = new Promise((resolve) => {
 console.log("Getting your pizza in 5 seconds...");
 setTimeout(() => {
 resolve("Onion Pizza");
 }, 5000);
});

pizza.then(
(item) => { console.log(`Order Received: ${item}`) },
(error) => { console.log("Something went wrong with your pizza") }
);

// Getting your pizza in 5 seconds...
// Order Received: Onion Pizza

This example demonstrates two things:

•	 First, that the handlers we attached to the promise were called
after all other code ran, asynchronously.

•	 Second, that the fulfillment handler was called only when the
promise was fulfilled, with the value it was resolved with (in our
case, the onion pizza). The same holds true for the rejection handler.

fulfilled

pending

rejectedreject

resolve

then(onResolve)

then(onReject)

Promise

Figure 9-1.  A pending promise can be fulfilled or rejected and handled using .then()
method

Chapter 9 ■ Promises in ES6

113

Here’s another typical example of consuming a promise, where
getRentalList(location) is asynchronous and returns the list of currently available
rental properties at the given location using a web service that returns a promise:

const housingPromise = getRentalList("London");
housingPromise.then(
 (res) => {
 if (res.properties && res.properties.length > 0) {
 console.log(`We found the houses for you: ${res.properties}`);
 } else {
 �console.log(`Sorry, no housing is available in ${res.

location}`);
 }
 },
 (error) => {
 console.log(`Something went wrong: ${error}`);
 }
);

If you’re only interested in rejecting a promise, you can omit the first parameter and
pass it as null. Check the following code snippet, for example:

const networkReq = new Promise((resolve, reject) => {
 reject("No Server Found");
});
networkReq.then(
 null,
 (error) => { console.log(error); }
);

On the one hand, if a handler returns a value in the a .then() call, it is automatically
wrapped in a promise when returned. These .then() calls can be chained. We will get
into the details of how the chaining of promises work in the next section. On the other
hand, you can also handle a rejected promise in a more compact way using the catch()
method. For instance, you can rewrite the above example as follows:

networkReq.catch((error) => { console.log(error); });

The catch() method is useful for error handling in promise composition. Similar to
then() method, it also returns a promise, but only deals with the rejected cases. catch()
method behaves as an abbreviation for then(null, onRejected). We will learn more
about handling errors later in this chapter.

Chaining of Promises
Since .then() and .catch() always return a new promise, it is easy to chain promises
with extreme control over how and where the errors are handled. Chaining promises
allows asynchronous operations to be chained together, so that they are guaranteed

Chapter 9 ■ Promises in ES6

114

to happen in the correct and expected order, resulting in code that looks almost
synchronous. Consider the following example:

const bond = new Promise((resolve, reject) => {
 resolve("Bond");
});

bond.then((str) => `${str}, James ${str}`)
 .then((str) => `Hello, I’m ${str}!`)
 .then((str) => console.log(str));

// Hello, I’m Bond, James Bond!

Above is a simple example of how chaining promises can help in a sequential
executing of different tasks and get the end result. Let’s take a look at the following code
snippet that is more realistic example of how chaining of promises can be beneficial with
asynchronous tasks:

getPaymentFromUser
 .then(displayTransactionDetails)
 .then(queueTransactionEmail)
 .then(redirectToOrdersPage)
 .catch(logError)

Here, getPaymentFromUser returns a promise, and each function in the promise
chain gets called with the return value of the previous handler once it has completed.
In this example, displayTransactionDetails() will wait for getPaymentFromUser()
to complete before starting, and queueTransactionEmail() will wait for
displayTransactionDetails() to complete before starting, and so on. It is important to
note that logError() will only run if any of the previous promises reject. This serializes
the calls without blocking the main execution thread and guaranteeing that the executing
of these operations will happen in the serial order.

Error Handling
Previously in this chapter, we discussed how we can handle errors while consuming
promises using any of the following ways:

somePromise().then(onResolved, onRejected);

// or simply using catch()

somePromise()
 .then(onResolved)
 .catch(onRejected);

Chapter 9 ■ Promises in ES6

115

But which one should you prefer and why? The answer to this question lies in the
very scenario where your onResolved() function throws an error. The promise returned
from then() method will be rejected, but using the first way, the rejection cannot be
caught — resulting in the error to get swallowed in your app. But using the second way, errors
originating from both somePromise() and onResolved() can be handled at the catch()
method. If we have more than one then() call, then the error is passed on until there is an
error handler. Therefore, it is recommended to end all promise chains with a catch() method.

Combining Promises with Promises.all
Promise.all takes an array of promises (or any iterable) and returns a promise that
resolves when all of the promises in the iterable argument have resolved, or rejects with
the reason of the first passed promise that rejects.

If any of the passed in promises rejects, then all the promises immediately reject
with the value of the promise that rejected, discarding all the other promises whether or
not they have resolved. Note that if an empty array is passed, then this method resolves
immediately.

const p1 = Promise.resolve(3);
const p2 = 42;
const p3 = new Promise((resolve, reject) => {
 setTimeout(resolve, 100, "foo");
});

Promise.all([p1, p2, p3]).then(values => {
 console.log(values); // [3, 42, "foo"]
});

However, in some cases, you may not want to wait for all the promises in your array
to resolve, but simply want to get the results of the first promise in the array to fulfill. In
that scenario, Promise.race() can be used.

Promise.race() also takes an array of promises, but unlike Promise.all(), it will
fulfill its returned promise as soon as the first promise in that array fulfills. For example,
consider the case where we want to fetch some JSON data from an API endpoint, but
we don’t want to wait forever for the response. In that case, we just want to use a default
value instead. We can implement this using Promise.race():

// A Promise that times out after given time (t)
function delay(t) {
 return new Promise((resolve, reject) => {
 setTimeout(resolve, t);
 });
}

Chapter 9 ■ Promises in ES6

116

// Whichever Promise fulfills first is the result passed to our handler
Promise.race([
 fetchData(),
 delay(5000).then(() => { data: "test" })
])
.then((res) => {
 // this will be "test" if fetchData() takes longer than 5 sec.
 console.log("data:", res.data);
})
.catch(function(err) {
 console.log("error:", err);
});

In this example, the delay() function returns a new promise that resolves after t
milliseconds. We then attach a handler to that returned promise to return our default user
object {user: "guest"}, which ensures that if we get user data from our server within 5
seconds, we will get the user details; otherwise a guest user will be used.

Summary
Promises have become the standard approach for dealing with large amounts of
asynchronous operations. In this chapter, we learned how promises, when used correctly,
produce easy-to-read code, which makes them easier to debug than traditional callbacks.
They allow us to combine asynchronous APIs and let us to wrap non-spec compliant
promise APIs or callback APIs with real promises. Unlike callbacks and events, promises
help us avoid race conditions and assure immutability of the value represented by it.
Promises let us write asynchronous code in a synchronous fashion, with flat indentation
and a single exception channel.

117© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_10

CHAPTER 10

Meta Programming

The term “meta” characterizes something that is characteristically self-referential. In
terms of programming, meta programming means to program the programming of
the program itself. It could be inspecting or modifying the structure of the program, or
changing the way things work in the language itself. ES6 introduces a great set of features
around meta programming, providing low-level hooks into the code mechanics of the
program. In this chapter, we will dig into those features in details and see how meta
programming works in JavaScript.

Meta Programming in ES5 and ES6 Overview
The concept of meta programming is not new to JavaScript. You’re probably using meta
programming every day without even realizing it. For example, checking whether an
object is a prototype of another object, we use a.isPrototypeOf(b). This is a form of
meta programming. Generally, all of the Object.* methods can be considered a form
of meta programming. Meta programming provides a way to utilize the features and
capabilities of the language, enabling you to make programs with greater flexibility and
efficiently handle custom needs of your applications.

A key strategy of meta programming is reflection. It allows us to inspect, or modify
the structure of a program, or alter the behavior of the internals (specifically metadata
properties and functions) of a program at runtime. ES6 offers reflection using three forms
of meta programming.

There are three forms of meta programming: introspection, self-modification, and
intercession.

•	 Introspection – when you have a code inspecting itself, for
example: a.isPrototypeOf(b) is introspection. typeof,
instanceof are also introspection operators as they gather
information about the code.

•	 Self-modification – when you modify the structure of a program.
One such example would be Object.defineProperty() method,
which defines a new property on an object or modifies the
existing one if it exists:

Chapter 10 ■ Meta Programming

118

let cake = {};

console.log(cake); // {}

Object.defineProperty(cake, "ingredients", {
 value: ["sugar", "all things nice"],
 enumerable: true,
 configurable: true,
 writable: true
});

console.log(cake);
// { ingredients: ['sugar', 'all things nice'] }

In the above example, notice how we modified the structure
of the cake object using Object.defineProperty().
Self-modification deals with the ability to access or create new
properties and modify the structure of a program in runtime.

•	 Intercession – when your code modifies the default behavior,
resulting in affecting the rest of the code. Intercession deals
with modification of semantics of the language, or adding new
constructs to your program at runtime. This is new to ES6 and we
will learn more about it later in this chapter.

ES6 introduces meta programming using three new APIs: Symbol, Proxy, and
Reflect. Previously in this book, we have seen how symbols allow us to create unique
and immutable identifiers. They offer us a way to efficiently create unique and non-
enumerable properties for an object, which can be good for separating the metadata of
the object from its public interface. Symbols also help us customize the default iteration
behavior of an object, essentially offering Reflection (self-modification) by enabling us to
modify the behavior of a program or create new (and unique) properties on an object in
runtime. Now let’s take a look at what Proxy and Reflect bring to the table.

Proxies in ES6
Proxies represent intercession forms of meta programming. Proxy objects allow us to
intercept any program’s behavior. They enable us to modify the operations of an object
and implement custom behaviors. In simpler words, there are many operations that
can be performed on an object, and proxies help us to modify such operations and
implement desired behaviors. These operations can be property lookup, assignment,
enumeration, function invocation, etc.

A proxy object wraps the target object and modifies its behavior. We can create a
proxy using:

const proxy = new Proxy(target, handler);

Chapter 10 ■ Meta Programming

119

where target is the object whose behaviors are being modified and handler is an
object whose properties are functions (referred as traps), which are called when various
operations are performed against the proxy. Handler objects allow us to define the new
behavior of the target object. It enables us to perform extra logic in addition to forwarding
the operations onto the target/wrapped object.

Traps in Proxy Handler
A handler object offers a list of methods that serve as traps for a proxy. These methods
are optional and if a trap has not been defined, the default behavior is to forward the
operation to the target.

Most common traps are for getters and setters. Take a look at the following code
snippet, for example, where we have defined a trap for the get property accessor method:

const restaurant = {
 soda: 2,
 burger: 1
};

const restHandler = {
 get: function(target, property) {
 if (property in target && target[property] > 0) {
 target[property] -= 1;
 return `Enjoy your ${property}`;
 }
 return `Sorry, We are out of ${property}s!`;
 }
};

const restProxy = new Proxy(restaurant, restHandler);

console.log(restProxy.soda);
// Enjoy your soda

console.log(restProxy.soda);
// Enjoy your soda

console.log(restProxy.soda);
// Sorry, We are out of sodas!

console.log(restProxy.burger);
// Enjoy your burger

console.log(restProxy.burger);
// Sorry, We are out of burgers!

Chapter 10 ■ Meta Programming

120

In the above example, we have a restaurant object that contains the list and the
quantities of available inventory. We are using proxy to wrap the restaurant object, which
enables us to intercept (or “trap”) native operations of the restaurant object and execute
the modified behavior on it. Here, the handler object contains a trap for the get property
accessor that receives the target and the property name when invoked. This method
traps all the “get property accessor” invocations and checks if the property exists and if
its value is greater than 0, and if it does, its value is decremented and the message `Enjoy
your ${property}` is returned; otherwise, the message is, `Sorry, We are out of
${property}s!` is returned. This “get” trap can be used to trap all the getter events on
the target object. Similarly, you can also intercept setter events. Check the following code
snippet, for example:

const restaurant = {
 soda: 5
};
const restHandler = {
 set: function(target, property, value) {
 target[property] = value;
 console.log(`${property} has been added to inventory`);
 }
}

const restProxy = new Proxy(restaurant, restHandler);

restProxy.beer = 10;
// beer has been added to inventory

In this example, we overwrite the set property accessor method, which overrides the
default assignment. Proxies can be extremely useful when it comes to validation. We can
easily validate the passed value for an object using set handler. For example, let’s suppose
that we are creating a voting application and only people above 18 years of age and
having residency of the country are allowed to vote:

const voterValidator = {
 set: function(obj, prop, value) {
 if (prop === "age") {
 if (!Number.isInteger(value)) {
 throw new TypeError("Input age is not an integer");
 }
 if (value < 18) {
 throw new RangeError("Input age seems invalid");
 }
 } else if (prop === "residency") {
 if (value === false) {
 throw new Error("Residency is mandatory to vote");
 }
 }

Chapter 10 ■ Meta Programming

121

 // The default behavior to store the value
 obj[prop] = value;

 // Indicate success
 return true;
 }
};

const person = new Proxy({}, voterValidator);

person.age = 23;
person.residency = false; // Throws an exception
person.age = "young"; // Throws an exception
person.age = 200; // Throws an exception

Another good use case for set trap would be data-binding, where you can have a
callback method in place, which will be invoked when a property is set and that callback
method can react to the changes made to the target object’s property.

Besides setters and getters, proxy offers a range of other traps that you can set up.
Below are some of those traps that can help you understand proxy better.

has
has is used to trap “in” operator. has can be incredibly useful if you want to hide a
particular property of an object. We can return false even if the property is present on an
object. Check out the following example where we are hiding beer inventory from the
restaurant object using the has method to trap “in” operator.

const restaurant = {
 soda: 5,
 beer: 10
};
const restHandler = {
 has: function(target, property) {
 if (property === "beer") {
 return false;
 }
 return property in target;
 }
}

const restProxy = new Proxy(restaurant, restHandler);
console.log("beer" in restProxy); // false
console.log("soda" in restProxy); // true

Chapter 10 ■ Meta Programming

122

In the above example, all “in” operator invocations are trapped in the “has” method
and if the property name is “beer,” false is returned; otherwise the default behavior is
maintained (check property in target). Note that a “has” can only help you in preventing
the detection of a particular property from “in” operator. The property is still enumerable
and can be accessed via a for…in loop.

ownKeys
ownKeys is used to trap the access of the owned properties and owned symbol
properties via Object.keys(), Object.getOwnPropertyNames() or Object.
getOwnSymbolProperties(). This can also be used in combination with the has trap
handler to strengthen the privacy of the target object properties. (Note that these
properties would still not be completely private):

const restaurant = {
 soda: 5,
 beer: 10
};

const restHandler = {
 has: function(target, property) {
 if (property === "beer") {
 return false;
 }
 return property in target;
 },

 ownKeys: function(target) {
 return ["soda"];
 }
}

const restProxy = new Proxy(restaurant, restHandler);

console.log("beer" in restProxy); // false
console.log(Object.keys(restProxy)); // ["soda"]

You can also add another trap handler: getOwnPropertyDescriptor, which traps the
Object.getOwnPropertyDescriptor() calls, to enhance the privacy.

apply
apply is used to trap a function invocation. It takes three arguments:

•	 target: the target function whose behavior is being modified;

•	 context: the context passed as this to target on invocation;

•	 args: the arguments passed when applying the call.

Chapter 10 ■ Meta Programming

123

Take a look at the following code snippet, for example, where we are applying a
season discount on the final billing amount using the apply trap handler:

function getBill(amount) {
 return amount;
}

const billHandler = {
 apply: function(target, context, args) {
 console.log("Applying Discount of 35%");
 return args[0] - (args[0] * 0.35);
 }
}

const billProxy = new Proxy(getBill, billHandler);

console.log(billProxy(300));
// Applying Discount of 35%
// 195

Since the target object here is a function, these are also called as function traps, and
you can alternatively have traps for .call() and .bind() methods also

Up until this point, we have covered enough trap handlers to give you an overall picture.
We have seen how Proxy helps us intercepting setters and getters, decorating objects,
adding validation rules, enhancing privacy, and essentially modifying the default behavior
of an object. You can explore through more trap handlers at the following link: - https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Meta_programming.

Revocable Proxy
ES6 allows us to create proxies that can be revoked. Proxy.revocable() method is used
to create a revocable proxy object. Similar to a proxy object, it also takes a handler and a
target object and returns a newly created revocable proxy object.

A revocable proxy object has two properties: proxy and revoke.

const { proxy, revoke } = Proxy.revocable(target, handler);

where,

•	 proxy – A Proxy object created with new Proxy (target, handler) call

•	 revoke – A function with no argument to invalidate (switch off)
the proxy.

If the revoke() function gets called, the proxy becomes unusable, which means any
trap to a handler will throw a TypeError. Once a proxy is revoked, it will remain revoked
and can be garbage collected. Subsequent calls of revoke have no further effect. Check
the following code snippet, for example:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Meta_programming
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Meta_programming

Chapter 10 ■ Meta Programming

124

const restaurant = {
 soda: 10,
 beer: 5
};

const { proxy, revoke } = Proxy.revocable(restaurant, {});

console.log(proxy.soda); // 10
console.log(proxy.beer); // 5

revoke();

console.log(proxy.soda); // TypeError: Revoked

Since Revocable Proxy allows you to completely cut off the Proxy and its traps, it
can be useful in cases to enhance the security of an object where if attempts to access
a private property has been made, the proxy can be revoked. We can modify the above
example to enhance the privacy of beer property as follows:

const restaurant = {
 soda: 10,
 beer: 5
};

const resthandler = {
 get: function(target, property) {
 if (property === "beer") {
 revoke();
 return undefined;
 }
 return target[property];
 }
}
const { proxy, revoke } = Proxy.revocable(restaurant, resthandler);

console.log(proxy.soda); // 10
console.log(proxy.beer); // undefined
console.log(proxy.soda); // TypeError: Revoked

In the above example, we are returning undefined and revoking the proxy if beer
property is accessed, cutting off further calls to the target object via proxy.

Up until this point, we have seen how self-modification and intercession works in
ES6. Now, let’s take a look at Reflection through introspection.

Chapter 10 ■ Meta Programming

125

Reflect
Reflect is a built-in global object that provides a range of introspection methods. These
methods essentially gather information about the runtime-level meta-operations on
objects. Besides already existing introspection methods like typeof, instanceof, etc.,
Reflect serves as a single object wrapper for a collection of many significant internal
methods that are available exclusively through the JavaScript engine internals. A simple
implementation of Reflect would look like this:

const restaurant = {
 soda: 10,
 beer: 5
};

console.log(Reflect.ownKeys(restaurant));
// ["soda", "beer"]

Note that Reflect is a static object and therefore cannot be used with the new keyword.
For every trap method in ES6 Proxy, there is a matching reflection method available

in Reflect. Therefore, Reflect is also useful for implementing traps in proxies. Check the
following code snippet where we are using Reflect with Proxy:

const restaurant = {
 soda: 2,
 beer: 5
};

const restHandler = {
 get: function(target, property) {
 if (property === "beer") {
 return undefined;
 }
 return Reflect.get(target, property);
 }
};

const restProxy = new Proxy(restaurant, restHandler);

console.log(restProxy.beer);
// undefined

console.log(restProxy.soda);
// 2

Again, in the above example, we are preventing the access to beer and using
Reflect.get() to access other properties of the target object. One of the reasons why you
should prefer using Reflect over the traditional target[property] way is this: if Reflect.get
is used on a non-object target, it will throw an error, whereas target[property] would

Chapter 10 ■ Meta Programming

126

simply return undefined. Therefore, it is a good practice to use Reflect.get here. Check
the following code snippet, for example, where we are trying to get a property on a non-
object target:

console.log(Reflect.get(1, "name"));
// TypeError: Reflect.get called on non-object

console.log(1["name"]);
// undefined

Besides this, it is also recommended to use Reflect when calling methods on
Function.prototype, because if the arguments list is null or undefined, Function.
prototype.apply will call the function with no arguments, whereas Reflect.apply will
throw an error. Another reason is that Reflect offers a shorter syntax, whereas Function.
prototype looks much too verbose. Take a look at the following code snippet, for example:

function sayHello() {
 console.log(`${this.name} says hello`);
}

const person = {
 name: "Jack"
};

Function.prototype.apply.call(sayHello, person);
// Jack says hello

Reflect.apply(sayHello, person);
// TypeError: CreateListFromArrayLike called on non-object

Reflect.apply(sayHello, person, []);
// Jack says hello

Similarly, there are many other useful static functions, some of which have the same
names as the proxy handler methods, and here are some common ones that can be helpful:

•	 Reflect.get() – A function that returns the value of properties.

•	 Reflect.set() – A function that assigns values to properties.
Returns a Boolean that is true if the update was successful.

•	 Reflect.getPrototypeOf() – Same as Object.getPrototypeOf().

•	 Reflect.has() – The in operator as function. Returns a Boolean
indicating whether an own or inherited property exists.

Chapter 10 ■ Meta Programming

127

Summary
Meta Programming in ES6 offers us a way to modify the behavior of the internal language
features by providing us low-level hooks into the code mechanics of the program. It
comes in three forms: introspection, self-modification, and intercession.

In this chapter, we learned about the new Proxy and Reflect API, which help us with
implementing different forms of meta programming. We also looked at some interesting
examples where Proxy helped us with managing private properties in an object. We
learned about various trap handler methods that come with Proxy, and their one-to-
one mapped static Reflect methods and how we can use them in our applications to
our advantage. As future ECMAScript versions are shaping up, we expect to see more
interesting meta programming features that will allow us to play around with the default
internal operations of the language more extensively.

129© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0_11

CHAPTER 11

Beyond ES6

As already described in the first chapter, the ES6 release is very big, and it is a significant
update to the existing versions of JavaScript, namely ES5. We have gone over all the major
changes extensively in the previous chapters of this book. It took more than six years for
TC39 to come up with a new version of the language and involved introducing a lot of
radically new concepts and functionalities into the language. One of the major decisions
taken by the committee toward the end of the release was that they would not wait too
long before coming to a conclusion and releasing new features as it was done previously.
They decided to officially name ES6 as ES2015 and going forward, smaller incremental
updates would be released for the language and it would be denoted by the year of
release. In this chapter, we will be looking at the changes and newer features that are a
part of ES2016 and ES2017.

ES2016
ES2016 is a small incremental update to the existing ES2015 (ES6) release with the
introduction of the Array.prototype.includes and the Exponentiation operator (**).
You can also check the KangaX compatibility table to see how well the new features
of ES2016 are supported on different browsers and platforms that support JavaScript:
https://kangax.github.io/compat-table/es2016plus/.

The includes method on Arrays
ES2016 introduces the includes method to the Array prototype in JavaScript. You can
check if an element exists in an Array using this method. It will return a Boolean value
based on whether or not the element passed to it is a part of the array it is used on.
Consider the following example:

['apple', 'banana', 'carrot'].includes('apple'); //true
['apple', 'banana', 'carrot'].includes('orange'); //false

https://kangax.github.io/compat-table/es2016plus/

Chapter 11 ■ Beyond ES6

130

As you can see in the above example, using the includes method on an array of
fruits returns true if the element passed to it is a part of the array, otherwise it returns
false. This check traditionally in JavaScript was done using the indexOf method, which
returns the index of the number if present, otherwise -1. So basically the above example is
equivalent to:

['apple', 'banana', 'carrot'].indexOf('apple') >= 0; //true
['apple', 'banana', 'carrot'].indexOf('orange') >= 0; //false

The above two statements work exactly like the previous example using includes,
but the major difference between includes() and indexOf() is the way they interact with
the value NaN (Not a Number), which helps in identifying the value.

const arr = [NaN];
arr.includes(NaN); // true
arr.indexOf(NaN); // -1

From this example, it is apparent that indexOf cannot be used to check for NaN
values inside an array, but the includes method allows us to check if a NaN value exists
inside an array.

The Exponentiation Operator **
The exponentiation operator is a new arithmetic operator introduced in ES2016 that is
very much like its counterpart in languages like Python, where a double asterisk is used to
calculate the exponent value of a number. It is equivalent to the traditional pow() function
of the Math library.

let a = 2;
let b = 3;
a ** b //8
Math.pow(a, b) // 8

Using the exponentiation Operator is a quick way to calculate the value when a
number is raised to the corresponding power like in this case 2 raised to the power of 3 is 8.

ES2017
ES2017 brings in two major new features to the language, namely, Async functions and
atomics with Shared memory. It also includes other simpler features like Object.entries(),
Object.values(), Object.getOwnPropertyDescriptors(), padStart, padEnd, and the
ability to use trailing commas in function parameter lists and calls. Let us look at each of them
in greater detail.

Chapter 11 ■ Beyond ES6

131

Asynchronous Functions
ES2017 introduces an exciting new way of dealing with asynchronous code, which is the
way of life in JavaScript. We have already been introduced to a popular way of handling
asynchronous operations with promises. ES2017 further builds on this pattern by making
it work in an synchronous manner using async and await keywords. To understand this
properly, consider the following example, where we are simply creating a function that
returns a promise:

function getData(site) {
 return fetch(site)
 .then(request => request.json())
}

For the above example, invoking the getData() function would return a promise, which
will get settled in the context of our execution asynchronously. Now using the async / await
keyword, we can have the above promise-based approach to take advantage of the generator
pattern and make our code behave synchronously. async always returns a promise, which
can be resolved to a value and await suspends the execution until the promise is settled.
We can rewrite the above example with the async/await keywords as follows:

async function getData(site) {
 let request = await fetch(url);
 let text = await request.text();
 return JSON.parse(text);
}

Note that the await keyword works with promises only, and casts the expression
into a promise if it's not one. You can also use async in function expressions, method
definitions, and arrow functions like the following examples:

// Using function expression:
const getData = async function () {};

// Using method definition:
const item = { async getData() {} }

// Using arrow function:
const item = async () => {};

You might be curious about the await keyword used in the previous example:
the await operator waits for the operand, that is, the promise to be settled and if the
promised is fulfilled, its result is the fulfillment value and if the promise is rejected, it
throws the rejection value. Therefore, we can use a traditional try catch block with async/
await to handle the promises in a better way.

Chapter 11 ■ Beyond ES6

132

Atomics and Shared Memory
Anyone used to WebWorkers will already be aware of the process of creating workers.
They are created by allocating Worker objects and passing into them the script that
needs to be run. The worker communicates over a message channel, and many types of
data can be sent through this channel, and the type and structure is preserved when it
arrives at the destination. In ES2017, to allocate shared memory you can simply use the
SharedArrayBuffer constructor. It is just like a normal ArrayBuffer but its memory is shared.

Also, this new spec in ES2017 brings to us the concept of new low-level Atomics
namespace object, which along with the SharedArrayBuffer constructor, provides us with
primitive buildings blocks for higher-level concurrency abstractions. You can use these
features to share data from a SharedArrayBuffer object among several web workers and the
core thread. This lets you be able to profit from being able to easily share data among workers,
giving you better coordination among them. A more detailed tutorial and specification
on this topic written by Lars Hansen, the original proposal writer for Shared Memory and
Atomics can be found online at the following link: - https://github.com/tc39/ecmascript_
sharedmem/blob/master/TUTORIAL.md, but it is outside the scope of this book.

Object.entries() and Object.values()
Object.entries() and Object.values() are two new methods introduced in ES2017.
The Object.entries() method, when run on an object, returns the object’s own
enumerable property [key, value] pairs in the same order as that provided by a for-
in loop. But unlike the for-in loop it does not enumerate properties in the prototype
chain. Similarly the Object.values() when passed an object returns an array of its own
enumerable property values:

const myObj = { a: 1, b: 42 };

Object.entries(myObj); // [['a', 1], ['b', 42]]

Object.values(myObj); // [1, 42]

As you can see in the above example, when the Object.entries() method is passed,
the object returns an array with its key/value pairs, while Object.values() method
returns the property values.

padStart and padEnd
The padStart() and padEnd() method are two new string methods introduced in ES2017
that help in adding padding to a string so that the resulting string is of the length passed into
them as the first parameter. You can also pass in a second optional parameter of another
string you can use to pad instead of the default space. Consider the following examples:

'string'.padStart(10); // " string"

'string'.padStart(10, "abc"); // "abcastring"

'string'.padStart(10,"123465"); // "1234string"

https://github.com/tc39/ecmascript_sharedmem/blob/master/TUTORIAL.md
https://github.com/tc39/ecmascript_sharedmem/blob/master/TUTORIAL.md

Chapter 11 ■ Beyond ES6

133

'string'.padStart(8, "0"); // "00string"

'string'.padStart(3); // "string"

'string'.padEnd(10); // "string "

'string'.padEnd(10, "abc"); // "stringabca"

'string'.padEnd(8, "123456"); // "string12"

'string'.padEnd(1); // "string"

As you can see in the examples above, the add padding to the giving string makes it
so that the resulting string length is either greater than the length of the first parameter
based on how long its original is; if the given length is greater, the adequate amount of
padding is added to the string at the start or the end based on which method you use.
You can also use a second parameter to use a different string to pad instead of spaces.

Object.getOwnPropertyDescriptors()
As the name suggests, the Object.getOwnPropertyDescriptors() is a new method in
ES2017 that lets you precisely examine the description of all the own properties of the
given object. The property in a JavaScript object usually consists of a name that is a string
and a property descriptor. The descriptor is a record of the property value, Boolean
writable, a get function, a set function, a Boolean configurable, and a Boolean enumerable.
Consider the following example:

const myObj = {
 [Symbol('mySymbol')]: 42,
 get random() { return 'test' },
};

console.log(Object.getOwnPropertyDescriptors(myObj));

// Object {random: Object, Symbol(mySymbol): Object}

// {random:{
// configurable: true,
// enumerable: true,
// get: function random(),
// set: undefined}
//[Symbol('mySymbol')]:{
// configurable: true,
// enumerable: true,
// value: 42,
// writable: true}
//}

Chapter 11 ■ Beyond ES6

134

The output of using the Object.getOwnPropertyDescriptors() on an object like
myObj will more or less be like above. Note that all of the above features are fairly new and
experimental so you might not always get the exact same results. That being said, they are
becoming more and more standard now.

Trailing Commas in Function Parameter lists & calls
This feature in ES2017 is a simple syntax update. Prior to introducing this feature,
having a comma after the last function parameter was not allowed in JavaScript even
though the rest of the spec had this fairly commonly as in the case of Arrays and Object
Literals. With this update in ES2017, you have a more uniform trailing commas syntax
across JavaScript. So you can do something like this,

const trailFunct = function(x, y, z,) {
 //function body
}

This is purely a syntax update to the language and has no significant change on the
behavior or functionalities in the language.

Summary
In this chapter, we looked at the various small and incremental changes to JavaScript and
updates on top of ES6 that have currently been released at the time of writing this book.
TC39 aims to have an annual release of new specifications that go from a proposal phase
to final spec phase and then incorporated into the language. They should be small feature
updates, unlike the massive change that was ES6 (ES2015).

135© Deepak Grover and Hanu Kunduru 2017
D. Grover and H. P. Kunduru, ES6 for Humans, DOI 10.1007/978-1-4842-2623-0

�       � A, B
Array.from(), 81, 83
Array.of(), 83–84
Array.prototype.copyWithin(), 88
Array.prototype.entries(), 84–85
Array.prototype.fill(), 87–88
Array.prototype.find(), 86–87
Array.prototype.findIndex(), 87
Array.prototype.keys(), 85
Array.prototype.values(), 85
Asynchronous functions, 131
Asynchronous Module Definition

(AMD), 65, 74

�       � C
CommonJS-style module, 7, 65
Constructor() method, 50

�       � D
Destructuring

assignment, 40
default values, 41–42
definition, 37
JavaScript, 47
in JSON data format, 37
nested values, 42–44
objects and arrays, 37–39
parameter values, 45–47
rest Syntax, 44–45

�       � E, F
ECMA International, 2
ECMAScript 2015, 3

ECMAScript 3.1, 2
ECMAScript 4, 6
ECMAScript 6 (ES6)

add loaders, 7–8
arrow functions, 17–19, 24–25
Babel in project, 6–7
and Block scoping, 11–14
Boilerplate, 5
classes

and accessor properties, 53–55
built-in classes, 63–64
class-based development

pattern, 64
classical class-oriented

development, 49
computed method names, 56
constructor() method, 50
constructor environments, 57–58
declarations, 51–52
expressions, 52
inheritance and super

keyword, 59–61
inheriting static properties, 61
languages, 49
optional constructor method, 50
properties and privacy, 56
static methods and

properties, 58–59
constructor invocation, 21–24
core concepts of, 1
default function parameters, 25–27
ECMA, ECMAScript and

JavaScript, 1–3
ES6/ES2015 knowledge, 10
function invocation, 19
function parameters and

global scope, 16–17

Index

■ INDEX

136

loop structure, 34
object literals, 30–31
prototype methods, 96
rest and spread operators, 27–30, 35
“Strawman proposal”, 2
tagged template literals, 32–33
TDZ, 14–15
template literals and delimiters, 32
transpiling, 4, 5
web browsers and Node.js, 4
webpack and webpack-dev-server, 6

ES2016
on arrays, 129–130
atomics and shared memory, 132
ES2017, 130
exponentiation operator **, 130
object.entries(), 132
object.getOwnProperty

Descriptors(), 133–134
object.values(), 132
padStart and padEnd, 132–133
trailing commas, 134

ES2017, 130
Expression interpolation, 32

�       � G, H
Generators, 3, 35, 96, 97–108, 131

�       � I, J, K, L
Immediately invoked function

expressions (IIFEs), 18
Intercession, 118
Introspection, 117
Iterable protocol, 100
Iterators

generators, 102
iterables, 97–100, 101
optional methods, 106
protocol, 100
return() and throw(), 102
Symbol.iterator, 108
yield statements, 107

�       � M
Map, 91
Meta programming

ES5 and ES6 overview, 117–118
future ECMAScript versions, 127
internal language features, 127
proxies in ES6, 118
in proxy handler, 119–121, 123
revocable proxy, 123–126

Module systems
in browsers, 72
destructuring, 73
in ES6, 66
eval(), 74
exporting, 67–68
importing, 68–71
JavaScript applications, 65
modular semantic code base, 74
read-only bindings, 73

�       � N
New Array.prototype methods, 84

�       � O
Object.defineProperty(), 53
Object destructuring syntax, 38
Object.entries(), 132
Object.getOwnProperty

Descriptors(), 133–134
Object.getOwnPropertySymbols(), 77
Object.getOwnSymbol

Properties(), 122
Object.values(), 132
OnResolved() function, 115

�       � P, Q
padEnd() method, 132
padStart() method, 132
Pending promise, 112
Promise() constructor, 110
Promises

asynchronous operations, 116
chaining, 113–114
creation, 110–111
error handling, 114
nested callbacks, 109
object, 110
setTimeout, 109
with then() and catch(), 111–113
XMLHttpRequest, 109

ECMAScript 6 (ES6) (cont.)

■ INDEX

137

�       � R
Reflect.get(), 126
Reflect.getPrototypeOf(), 126
Reflect.has(), 126
Reflect.set(), 126
Revoke() function, 123

�       � S
Self-modification, 117
String substitutions, 32
Symbol.for(key) method, 79
Symbol.for(myCar), 79
Symbol.iterator, 98, 100–101
Symbols

applications of, 76–78
built-in symbols, 80

creation, 75–76
symbol.for(key), 79
Symbol.keyFor(symbol), 80
.toString() method, 76

�       � T
Temporal dead zone (TDZ), 14–15, 51
Typed arrays, 89–90

�       � U, V
Universal Module Definition (UMD), 65, 74

�       � W, X, Y, Z
WeakMap, 93–94, 57–58
WeakSet, 95–96

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started with ES6
	ES6 The Specification
	History of ECMA, ECMAScript, and JavaScript
	One JavaScript
	Using ES6
	Setting Up ES6 Using Babel and webpack
	Transpiling with Babel
	Setting Up an ES6 Boilerplate
	Start a New Project
	Install webpack and webpack-dev-server
	Install Babel in the Project
	Configuring Webpack
	Add Loaders

	Adding Your Generated bundle.js script to your index.html
	Setting Up a Development Server

	Summary

	Chapter 2: New Syntax in ES6
	Variable Declarations: let, const, and Block Scoping
	Block Scoping with let and const
	More on Temporal Dead Zones
	Variables Declarations in loops
	Variable Declarations with Function Parameters and Global Scope

	Arrow Functions
	Using Arrow Functions to Create IIFEs
	A Tale about this
	1. Function Invocation
	2. Method Invocation
	3. Constructor Invocation
	this in Arrow Functions

	Using Arrow Functions

	Default Function Parameters
	Rest and Spread Operators
	The Spread Operator

	Object Literal Extensions
	Template Literals and Delimiters
	Tagged Template Literals
	Iterating with for...of

	Summary

	Chapter 3: Destructuring
	Destructuring of Objects and Arrays
	Object Destructuring Syntax
	Assignment Using Destructuring

	Default Values
	Nested Destructuring
	Destructuring Using the rest Syntax
	Destructured Parameters
	Summary

	Chapter 4: Classes in ES6
	Classes in ES6
	Defining Classes in ES6
	Class Declarations
	Class Expressions

	Class Methods and Accessor Properties
	Computed Method Names
	Class Properties and Privacy
	Using Constructor Environments
	Using WeakMaps

	Static Methods and Properties
	Class Inheritance and the Super Keyword
	Inheriting Static Properties
	Method Overriding
	Inheritable Built-Ins
	Summary

	Chapter 5: Modules
	Module Systems and a Little History
	The Module Pattern in Traditional JavaScript
	Modules in ES6
	Exporting
	Default Exports

	Importing
	Importing Default Values
	Exporting an Imported Binding
	Renaming Identifiers

	Loading Modules
	Modules in Web Browsers
	Loading Modules with <script>
	Loading Modules Asynchronously in Browsers

	Common Pitfalls
	Syntax
	Read-Only Bindings
	Destructing an Import Statement and Using Variables
	Using eval()
	Module Specifier

	Summary

	Chapter 6: Symbols in ES6
	Symbols
	Applications of Symbols

	Symbols and Registry
	Symbol.for(key)
	Symbol.keyFor(symbol)
	Built-In Symbols
	Summary

	Chapter 7: Arrays and Collections
	Arrays and New Methods
	Array.from()
	Array.of()
	New Array.Prototype Methods
	Array.prototype.entries()
	Array.prototype.keys()
	Array.prototype.values()
	Array.prototype.find()
	Array.prototype.findIndex()
	Array.prototype.fill()
	Array.prototype.copyWithin()

	Typed Arrays
	Basics of Using Typed Arrays
	Typed Arrays and Normal Arrays

	Map and WeakMap
	Map
	Checking Keys Equality

	WeakMap

	Set and WeakSet
	Set
	WeakSet

	Summary

	Chapter 8: Iterators and Generators
	Iterables and Iterators
	Iteration Protocols
	Iterable Protocol
	Iterator Protocol
	Iterator as an Iterable

	return() and throw() in Iterators
	Generators
	Generator Function
	Communicating with Generators
	Completing Early
	Summary

	Chapter 9: Promises in ES6
	Promises Overview
	Creating a Promise
	Consuming a Promise with then() and catch()
	Chaining of Promises
	Error Handling

	Combining Promises with Promises.all
	Summary

	Chapter 10: Meta Programming
	Meta Programming in ES5 and ES6 Overview
	Proxies in ES6
	Traps in Proxy Handler
	has
	ownKeys
	apply

	Revocable Proxy
	Reflect

	Summary

	Chapter 11: Beyond ES6
	ES2016
	The includes method on Arrays
	The Exponentiation Operator **
	ES2017
	Asynchronous Functions
	Atomics and Shared Memory
	Object.entries() and Object.values()
	padStart and padEnd
	Object.getOwnPropertyDescriptors()
	Trailing Commas in Function Parameter lists & calls

	Summary

	Index

