

The Early History of F# (HOPL IV - first draft)

DON SYME, Principal Researcher, Microsoft; F# Language Designer; F# Community Contributor

This paper describes the genesis and early history of the F# programming language. We start with the origins of strongly-typed

functional programming (FP) in the 1970s, 80s and 90s. During the same period, Microsoft was founded and grew to dominate the

software industry. In 1997, as a response to Java, Microsoft initiated internal projects which eventually became the .NET

programming framework and the C# language. From 1997 the worlds of academic functional programming and industry combined

at Microsoft Research, Cambridge. The researchers engaged with the company through Project 7, the initial effort to bring multiple

languages to .NET, leading to the initiation of .NET Generics in 1998 and F# in 2002. F# was one of several responses by advocates

of strongly-typed functional programming to the “object-oriented tidal wave” of the mid-1990s. The development of the core

features of F# happened from 2004-2007, and we describe the decision-making process that led to the “productization” of F# by

Microsoft in 2007-10 and the release of F# 2.0. The origins of F#’s characteristic features are covered: object programming,

quotations, statically resolved type parameters, active patterns, computation expressions, async, units-of-measure and type

providers. We describe key developments in F# since 2010, including F# 3.0-4.5, and its evolution as an open source, cross-platform

language with multiple delivery channels. We conclude by examining some uses of F# and the influence F# has had on other

languages so far.

NOTE: Some of the bibliography is currently in footnote form – added in response to comments from people who gave

early feedback on this draft. In the second-draft submission, these will be converted to citations.

The history of the F# programming language is an arc drawn from the 1970s to the present day. Somewhere, back in

the early 1970s, an idea was born in the mind of Robin Milner and his colleagues Lockwood Morris and Malcolm

Newey of a succinct, fully type-inferred functional programming language suitable for manipulating structured

information. (Gordon, 2000). Building on the tradition of LISP (and indeed using LISP as their implementation

vehicle), this language became ML – Meta Language - and is the root of a tradition of “strongly typed functional

programming languages” that includes Edinburgh ML, Miranda, Haskell, Standard ML, OCaml, Elm, ReasonML and

PureScript. F# is part of this family.

The history of Standard ML has been told elsewhere (MacQueen, 2015). ML-family languages are often associated

with formalism, a theme we will explore later in this article. However, a primary concern of Milner and co. from the

outset was pragmatic usability. This group needed their language for a specific purpose: to succinctly and accurately

program the proof rules and transformations (“tactics”) of a theorem proving system called LCF, at that time on PDP-

10 machines. Pragmatic choices included the inclusion of mutable state (to allow proof state to be stored in an

interactive system) and a type inference system (later called Hindley-Milner type inference), allowing the code for

derived tactics to be both succinct and automatically generalized. A similar theme of pragmatism ran through later

ML dialects as well, including OCaml (Leroy), witnessed by both the language design and tooling such as the OCaml

C Foreign Function Interface (FFI).

Rolling forward, to the present day, key ideas stemming from the 1970s are at the core of the F# language design

and central to the day-to-day experience of using the language. Like all ML-family languages:

• The core paradigm supported by F# is still strongly typed functional programming;

• The core activity of F# is still defining types (type X) and functions (let f x = …) and these declarations

are type-inferred and generalized automatically;

• F# still aims to support a mode of programming where the focus is on the domain being manipulated rather

than on the details of programming itself.

Today, books are published which extoll the virtues of F# for “Domain Driven Design” (Wlaschin, 2017). This is

not so far removed from the early role of ML where the “domain” was the symbolic representation of terms and

theorems of the LCF logic. The “spirit” of ML is very much alive in F#, as it was always intended to be.

The leap from 1970s to the present day spans a period of massive change in the computing industry: we have shifted

from PDP-10s to cloud systems, from punch cards to mobile phones, from edit-line to tooling-rich IDEs, from small

to massive storage, from no-network to ubiquitous network. This article tells the story of how F# developed, the

industry and academic contexts in which this occurred, the immediate influences on the language and its distinctive

contributions. The story intersects with many other histories in programming language design, including the complex

Permission Notice

 Don Syme

2

histories of functional programming, object-oriented programming, type systems, runtime design, operating systems

and open source software, and emphasis is placed on the genesis of F# as one of several reactions to the “object-

oriented tidal wave” of the early 1990s. The story is necessarily incomplete and told largely from the personal

perspective of the author, the designer of the language, and I apologize for that. Where references are not provided the

text is offered as source material based on the recollection of the author.

We have started with the core idea of the ML-family of programming languages: type-safe, succinct, accurate,

domain-oriented functional programming. From the perspective of the author, this idea has “held strong, held true”

throughout this era of change. Whether that is through obstinacy, coherence or coincidence is something we leave the

reader to assess.

What is F# in 2018?

In 2018, F# is described on its documentation pages as “a functional programming language that runs on .NET.” The

F# language guide1 calls out the following major features of the language:

• functions and modules

• pipelines and composition

• lists, arrays, sequences

• pattern matching

• active patterns

• type inference

• recursive functions

• quotations

• record types, discriminated union types

• option types

• units of measure

• object programming

• asynchronous programming

• computation expressions

• type providers

The documentation continues with an explanation of the main tooling and libraries available for F# programming,

including

• cross-platform compilation and execution;

• the primary F# and .NET libraries;

• web, mobile and data programming toolkits;

• editing tools from Emacs to Visual Studio, VS Code and Jet Brains Rider (TM);

• how to use of F# with the cloud platform of the company providing the documentation.

Other resources for learning F# programming follow a similar order of explanation, e.g. Fable (García-Caro, 2018) is

a packaging of F# for client-side web programming compiling to JavaScript, and WebSharper (Granicz, 2018) and

SAFE-Stack2 emphasize the use of F# as a “full-stack” language where both client and server components are written

in the same language.

That’s what F# is today: an open-source, cross-platform, strongly-typed, succinct programming language with

broad applicability to many different programming scenarios and much loved by its users. The language community

centers around the F# Software Foundation (FSSF)3, a US non-profit, and social media such as Twitter. F# has had

influence – most directly on C# but also more broadly – we discuss this in the conclusion. But how did we get there?

Background: Languages, Programmability at Microsoft and the Creation of .NET

The 1970s-80s saw continual, rapid expansion of the computing industry, from transistor design and chip fabrication

to software development and applications. Software development tooling both boomed and consolidated with the

1 What is F#, Microsoft Corporation 2018, https://docs.microsoft.com/en-us/dotnet/fsharp/what-is-fsharp
2 https://safe-stack.github.io/
3 http://foundation.fsharp.org

https://docs.microsoft.com/en-us/dotnet/fsharp/what-is-fsharp
https://safe-stack.github.io/
http://foundation.fsharp.org/

The Early History of F#

3

development and adoption of many different programming paradigms and languages, including BASIC, PASCAL,

Prolog, Modula 2 and C. Accompanying each were commercial variations (Visual Basic, Turbo Pascal, Borland C for

example). Languages such as Logo served to spark the imagination of a new generation that programming could be

“different”4 and a bold new era of “fourth generation languages” was promised.

At this time, Microsoft also saw massive expansion as an operating system and applications company. Microsoft

started by building programming tools in 1975 and the importance of programmability – both as a commercial and

technical undertaking – was “in the bones” of the company and its CEO Bill Gates (Microsoft, 2012). Through the

1980s his primary concern with regard to programmability was commercial: how to support the creation of applications

and a commercial ecosystem of independent software vendors (ISVs) for the DOS and Windows ecosystems. What

mattered most was the sheer number of developers using these platforms, for developers would feed the growth of

these ecosystems. The company created tools such as Visual Basic to satisfy the mass-developer market, and versions

of C for more hard-core developers, a distinction that later got characterized as tools for “Mort” (Visual Basic) and

“Einstein” (C++)5. Such tooling was pitted against a myriad of rapid development environments such as HyperCard6

and ToolBook7 and Microsoft succeeded hands-down, becoming dominant in application development worldwide and

achieving a monopoly position in operating systems. Microsoft also made numerous other programming tools

including FoxPro and a FORTRAN compiler8, later discontinued.

The late 1980s saw a new wave of thinking coalesce around “object-oriented” programming, and this became

increasingly influential in applied software development and academia. Indeed, object-orientation moved from the

margins to be central to the conceptualization of software development. The pattern of languages with commercial

toolchains repeated: examples include the first C++ commercial compilers in 1985, Borland C++ in 1992 and IBM

Smalltalk in 1993. Foremost amongst the drivers towards OO was the rising prevalence of user interface elements in

software: applications were now interactive and made of “buttons” and other “widgets”, these widgets were easily

conceptualized as “objects” combining state and behavior, and these widgets could be hierarchically classified.

Procedurally-oriented languages were unable to express such abstractions directly in code, and languages without

subtyping found it hard to express the necessary relationships between widgets. People assessed languages by asking

two primary questions: “does it support inheritance?” and “is everything an object?”. Any language that did not meet

these criteria quickly became marginalized into relative obscurity.

The prospect of an industry-shifting nexus between this new wave of software development methodology and an

operating system company drew tantalizingly near. For example, the launch of NEXTStep 3.0 in 1993 featured heavy

focus on “objects” as a concept that the NEXTStep OS somehow supported (the technical details were hazy), used by

Jobs to demonstrate its sophistication and technical maturity. When Java was developed in 1991-95, and released in

1996, it was a deep challenge to Microsoft in at least five ways:

• Java was object-oriented and “modern”;

• Java promised Write Once Run Anywhere software development that could in theory cut the dependence on

a particular operating system;

• Java was developed by a direct rival in the upper-end operating system market;

• Java was positioned as a web-technology at the dawn of the web, potentially capable of delivering end-use

applications via the browser;

• Java used a set of technical devices such as a virtual machine (VM) and garbage collection (GC) that were

previously relatively marginalized, and not yet delivered in Microsoft programmability products; and

• Java was recognized as a contribution to applied academic computer science 9 , bringing on board a

constituency who had been largely ignored by Microsoft. As a result, Java became embraced as a de-facto

standard for typed object-orientation.

Microsoft was initially slow to respond. Internally, the company was committed to C for implementing its flagship

products but had plenty of assembly code as well. Given the target hardware specs it was unrealistic to write Windows

or Microsoft Word in a heap-allocating “toy” language like Java, so Java was not going to become the major language

of internal use at Microsoft quickly. Further, external-facing RAD environments like Visual Basic didn’t immediately

4 The author recalls my primary school librarian telling me about Logo on a school walk in 1981, when I was 10. It was my first exposure to the

world of programming languages.
5 The term “Elvis” was used later for C# programmers.
6 https://en.wikipedia.org/wiki/HyperCard#History
7 https://en.wikipedia.org/wiki/ToolBook
8 https://winworldpc.com/product/microsoft-fortran/5x
9 For example (Alves-Foss, 1999)

https://en.wikipedia.org/wiki/HyperCard#History
https://en.wikipedia.org/wiki/ToolBook
https://winworldpc.com/product/microsoft-fortran/5x

 Don Syme

4

benefit from the structured approach to OO found in class-oriented languages. With a tidal wave of Java hype flooding

the industry, Microsoft responded by embracing Java, licensed from Sun in 1996 (Microsoft J++), but subsequently

faced industry-shifting legal action for extending the language. This formed part of the background to the Department

of Justice Consent Decree of 2001.

In 1997, Microsoft changed tack and started the internal development of a new programmability platform which

could address the fundamental challenge of Java, while also addressing the needs specific to Windows

programmability. Initially called COM+ 2.0, or DCOM, or Lightning, and eventually .NET, the founding principles

of the runtime environment were as follows:

• It would support multiple programming languages, including Visual Basic, C++ and Java. Additionally, a

new language was started, under the design of Anders Hejlsberg, initially called Cool and later C#.

• It would support a bytecode, garbage collection, JIT compilation and “middleware” features such as stack-

based security checks and remoting. Additionally, the runtime would support unsigned integers, unboxed

representations and install-time compilation.

• It would be made specifically for application development on Windows, including native interoperability to

C-based Win32 APIs and built-in support for COM. However, it would also be sufficiently general that

porting to other operating systems would be theoretically possible.

• Its SDK would be offered free and aligned with emerging efforts in academic relations, then managed by

Microsoft Research, founded in 1992.

The decisions around Lightning were regularly reviewed by Bill Gates. Through the efforts of two “developer

evangelists” - Peter and James Plamondon10 – a key decision was made: Lightning would be a multi-language runtime

rather than just a fixed set of languages decided by Microsoft. An outreach project called “Project 7” was initiated:

the aim was to bring seven commercial languages and seven academic languages to target Lightning at launch. While

in some ways this was a marketing activity, there was also serious belief and intent. For help with defining the

academic languages James Plamondon turned to Microsoft Research (MSR).

From the perspective of the history of F#, this is a moment when largely unrelated traditions in the history of

computer science began to merge and intertwine: the worlds of Robin Milner and Bill Gates began to meet.

MSR had been founded in 1992 and expanded to Cambridge UK in September 1997. Andy Gordon (a high-profile

young researcher in programming language theory) and Luca Cardelli (author of one of the first ML implementations

and prolific researcher) were hired, followed in September 1998 by Simon Peyton Jones (a leading Haskell

contributor), Nick Benton (a theorist and initiator of MLj, discussed later), Cedric Fournet (a core member of the

OCaml team), Sir Tony Hoare (world famous computer scientist) and Don Syme (the author of this paper;

undergraduate student of early ML contributor Malcolm Newey in Australia; and later designer of F#, with a

background in functional programming, formal verification and Java), along with over 500 researchers and engineers

in various MSR locations.

Suddenly Microsoft was brimming with academic computer scientists, though in a separate “org” to the “product

teams”. Many were eager to make an impact on Microsoft’s product range, and there was cultural memory from Bell

Labs (Cardelli), DEC-SRC (Cardelli), Compaq (Gordon) and Intel (Syme) that this was how such labs “paid the bills”.

Each researcher was in their own way deeply evangelical about one point-of-view or another in computer science and

often held tribal allegiances to their corresponding communities in academia, both of which shaped their interactions

with product teams and the projects they chose. Many in the formal verification and theory areas had experience of

strongly-typed functional programming. Robin Milner, the originator of the ML family of languages, was head of

department at Cambridge University “across the road” and was held in high esteem as a pioneer in the field of research.

On the other side, Microsoft was entering a phase where it was becoming deeply committed to a multi-language

runtime and wanted to be seen to innovate positively. Lightning already had many of the core elements of a typical

functional language implementation (GC, JIT, bytecode), and promised to unite disparate themes in programming,

though initially within the confines of the Windows operating system. The scene was set for interesting things to

happen. The Lightning effort was renamed NGWS and then finally called .NET on launch in 2000.

Background: Strongly Typed Functional Programming through the 1990s – Calculi, Miranda, OCaml, Haskell and
Pizza

While Microsoft was establishing its monopoly position in the early 1990s, and object-orientation was sweeping the

globe, the world of strongly typed functional programming was small and marginalized yet active and vibrant. This

10 Known as “The Flying Plamondon Brothers”

The Early History of F#

5

world overlapped with other fields of activity, which we would now call “PL research” but at the time included formal

verification, type theory and programming logics and an increasing dose of category theory. This world was heavily

influenced by foundational calculi, most obviously the Lambda Calculus and its variations such as System F, followed

by concurrent calculi such as CCS and the Pi Calculus (Sangiorg & Walker, 2001). Efforts to identify unifying object

calculi were well underway (Cardelli & Abadi, 1996) and conferences such as FOOL searched for foundational

formalisms for new constructs being added to existing languages.11

“Formal methods” was an overlapping field in its hey-day in the 1980s, with major government initiatives in

formalized hardware and software. Controversies (MacKenzie, 2001) and the relatively modest successes of formal

methods in industry saw researchers in the 1990s look to more pragmatic techniques for bug-finding including model

checking and static analysis tools. Systems such as SMV, Z, ACL, HOL88, PVS, HOL90, Isabelle and commercial

offerings were used to model, formalize and verify aspects of software and hardware designs. Functional languages

were often used to implement and script these systems, e.g. Edinburgh ML (HOL88), Standard ML (HOL90, Isabelle),

OCaml (Coq, NuPRL), Caml Light (HOL-Lite), LISP (ACL2, PVS). These systems thus formed a core constituency

of adoption of strongly-typed functional languages and held functional programming close to more theoretical

communities. The Formal Definition of Standard ML (Harper, Milner, & Tofte, 1990) and its commentary was seen

by some as almost holy texts, enshrining the virtues of standardization, cooperation, formalism and theory. At the same

time, some functional programming systems were closely aligned to research on parallel programming, e.g. Parallel

ML (Rabhi & Gorlatch, 2003) and parallel versions of Haskell. Together these formed the context in which the author

of this paper first encountered strongly typed functional programming and ML in his undergraduate research work

(Syme, 1993).

The FDIV bug at Intel, discovered in 199412, led to a significant increase in formal verification investment on the

part of hardware manufacturers. Intel turned to academia for help and among the projects brought in was Forte, led by

Carl Seger, a toolchain using BDDs and theorem proving to verify the data paths of floating point circuits up to an

IEEE model. The Forte toolchain was built around a strongly typed functional language called Forte FL. Although not

otherwise influential on programming language design, this is mentioned because the author was employed as an intern

on this project in 1996-97 and in this context experienced the extreme effectiveness of strongly-typed FP as a “glue

language” for symbolic manipulations in applied formal verification, an early application domain for F#. (Seger, et al.,

2005). Forte FL also made many pragmatic choices, for example when interoperating with external data and the

inclusion of quotations on the design of a strongly-typed language. This experience had significant impact on the later

design of F#.

Strongly-typed FP also saw significant use through Miranda, first released in 1985.13 During the 1990s the small

world of strongly-typed functional programming also split and diverged in ways typical of active research

communities. Haskell 98 united the streams of lazy, pure functional programming, predecessors included HOPE and

Miranda. Standard ML from 1989 remained the unifying effort for mixed functional-imperative languages. However,

the INRIA Project Cristal group saw the standardization as premature, and instead created Caml Light and then

OCaml. 14 Standard ML itself was heavily associated with its innovative module system and saw practical

implementations in Poly ML and Standard ML of New Jersey.

Strongly-typed FP languages and compilers saw an ongoing trickle of interest, adoption and use. While not enough

to challenge the massive adoption of C, C++ and Java, and largely unnoticed by industry, they were enough to sustain

the languages, promote research and create small cohorts of dedicated advocates of OCaml, Standard ML and

Haskell.15 People who had the good fortune to use these languages in practice (including the author) experienced

dramatic increases in productivity as well as some frustrations. As with the original ML implementation, the domain

of use was typically symbolic programming of some kind. The experience of productivity was due to the peculiar

effectiveness of the combination of features on offer: the “magic” of Hindley-Milner type inference to support safe,

compositional programming; the effectiveness of parametric polymorphism (generics) and discriminated unions to

describe and manipulate domain data; the correctness benefits of programming without pervasive null values; the close

correspondence between code and formal models. These are in addition to the elegance and expressive power of

11 Foundations of Object-Oriented Languages, https://conf.researchr.org/series/fool
12 Pentium FDIV: The processor bug that shook the world https://www.techradar.com/uk/news/computing-components/processors/pentium-fdiv-

the-processor-bug-that-shook-the-world-1270773
13 While the author hadn’t used Miranda, early adopters of F# (e.g. Ralf Herbrich) and internal supporters within Microsoft (e.g. Andrew Blake,

head of MSR Cambridge 2008-2016) had positive exposure to Miranda during their education. Interestingly these people were outside the theory

domain, active in machine learning and vision, and valued Miranda for its pragmatism and productivity.
14 A History of OCaml https://ocaml.org/learn/history.html
15 As a curious side note, one of those dedicated to OCaml was Julian Assange, later famous for WikiLeaks, http://caml.inria.fr/pub/ml-

archives/caml-list/2000/08/6b8b195b3a25876e0789fe3db770db9f.en.html

https://conf.researchr.org/series/fool
https://www.techradar.com/uk/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
https://www.techradar.com/uk/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
http://caml.inria.fr/pub/ml-archives/caml-list/2000/08/6b8b195b3a25876e0789fe3db770db9f.en.html
http://caml.inria.fr/pub/ml-archives/caml-list/2000/08/6b8b195b3a25876e0789fe3db770db9f.en.html

 Don Syme

6

expression-oriented programming, well-known from LISP but newly rediscovered with joy and delight by user after

user. There was a strong feeling that these languages had the potential to be used much more broadly, and that valuable

programming techniques were being lost through the widespread embrace of Java.

The tidal wave of interest in object-orientation in the early 1990s had significant impact in academia, just as in

industry. By the mid-1990s many in the world of FP and PL were genuinely shocked, bewildered, disoriented and in

some cases disillusioned by the rise of C++, Java and OO in general. Reactions varied, and we now examine responses

to the OO tidal wave that are key to understanding the genesis of F#, Scala and other languages in the 2000s.

One response to object-orientation was to “give in” and work on Java implementations. Others worked on

formalisms around Java, and indeed the author initially did just that for his PhD thesis (Syme, 1999) and others

formulated and published foundational object calculi. Some responded by integrating object-oriented features into FP

languages: LISP had already added CLOS, the Common LISP object system and OCaml saw the introduction of new

forms of genericity (“row-polymorphism” and “column polymorphism”) used as the basis for a fascinating object

system.16

Another response was to propose to integrate specific technical features associated with strongly-typed functional

languages into “mainstream” OO languages. Wadler and Odersky led the charge with the development of Pizza, a

variation of Java that incorporated parametric polymorphism (generics), discriminated unions and first-class function

values. (Bracha, Odersky, Stoutamire, & Wadler, 1998) This was subsequently trimmed-down to the proposal Generic

Java (GJ), and later heavily influenced C#, Scala and F#. Ultimately GJ became the basis for Java generics, though its

use of “erasure” and lack of accurate runtime type information were significant compromises.

An alternative angle was to “deconstruct” functional programming itself and examine the underlying problems (as

exhibited by implementations of Haskell or Standard ML for example). One instance of this was the paper Why no one

uses functional languages (Wadler, Why no one uses functional languages, 1998). This paper, while not widely cited,

was central to the author’s understanding of the programming language landscape as he started at Microsoft Research

in 1998. Instead of blaming the unwashed masses for their ignorance, Wadler’s paper outlines seven problems of

strongly-typed FP implementations at the time: Libraries, Portability, Availability, Packagability, Tools, Training,

Popularity. It also listed Performance and Ignorance as non-reasons. The early development of F# was essentially an

effort to address each of these.

Further, some responded by trying to compete via new commercial implementations of strongly typed FP languages

including Poly ML and Harlequin ML. However, these saw little adoption and left the community with the feeling that

the support of a “big player” in the industry was needed.

A final response was to attempt to use the JVM as a substrate for implementing established functional programming

languages, and thereby as a delivery vehicle for FP into the browser and the web (the nascent driving force behind Java

at the time). Foremost in these efforts was MLj, a research/commercial implementation of Standard ML by Benton,

Kennedy et al at Persimmon (Benton & Kennedy, Interlanguage working without tears: blending SML with Java,

1999). MLj was a whole-program compiler which allowed interop with the Java ecosystem through object

programming extensions. When the research arm of Persimmon folded in 1998, Benton moved to MSR Cambridge,

followed later by Kennedy, bringing experience highly relevant to .NET and later F#. Despite these various responses,

there was also strong anathema to object-orientation in theoretical communities: proponents of OO were too readily

labelled with the tar-brush of heresy: “unprincipled nonsense”, “lacking theoretical foundations” and similar.

That completes our summary of the general surrounding context as the author joined Microsoft Research in 1998

and began predecessor work leading to F#. For completeness, the background influences on the author himself were

as follows:

• The author had used strongly typed functional programming, mostly in the context of theorem proving

systems (Edinburgh ML in HOL88, Standard ML of New Jersey in HOL90, Caml-Light in HOL-Lite, ForteFL

at Intel). He had come to love them, while appreciating their weaknesses. In his undergraduate work he had

been supervised by one of the originators of ML, Malcolm Newey. Through his PhD work, the OCaml

community and MSR Cambridge, the author was involved in overlapping communities that saw strongly

typed functional programming as the norm.

• The author had used object-oriented languages (C++, Java) including studying Java and the JVM formally as

part of his thesis work. His experience with C++ at university in 1992 had been negative, particularly through

the over-use of hierarchical classification in student projects.

16 Simple Type Inference for Structural Polymorphism, Jacques Garrigue, 9th FOOL, 2002

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.2521

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.2521

The Early History of F#

7

• As a child, from 1980-87, the author had used BASIC and Logo (Apple II) and Turbo Pascal (Windows). As

a student, he used Prolog, C, Scheme, Modula 2. A comparative programming languages course provoked

interest in a range of languages. In early employment he had used Prolog on Windows for an Australian

software company (SoftLaw, 1990-1993).

• The author had implemented several strongly-typed language, proof and compilation systems as part of his

PhD thesis work using various ML dialects and toolchains including SMLNJ, MoscowML, Caml-light and

OCaml. Additionally, he had, somewhat unusually for the times, also implemented some visual tooling for

these systems, notably a graphical proof editing IDE for HOL90 (Syme, 1995) and a proof editing workbench

for the theorem prover DECLARE (Syme, 1999). The author had a positive disposition to IDE tooling and

understood the interaction between IDE tooling and language design.

• In 1996-98, the author had been exposed to the work of academic leaders such as Drossopoulou, Leroy,

Wadler and Odersky to synthesize OO and functional programming (Alves-Foss, 1999).

• The author was part of discussions trying to reimagine how we deliver strongly-typed functional programming

to “the masses”.

Project 7 and .NET Generics

When Project 7 kicked off at Microsoft, the researchers at MSR Cambridge recommended the following languages for

inclusion on the academic stream: Eiffel, Mercury, Standard ML, OCaml, Scheme, Alice and Haskell. The biases of

the research group at MSR are clear here: 6 of 7 recommendations were strongly typed languages, and 3 of 7 were

firmly “strongly typed functional languages” in a specific sense of the term, e.g. incorporating Hindley-Milner type

inference and having functions as first-class values. Commercial languages in Project 7 included Perl, Python, Cobol

and Ada. Academic or commercial partners were found for each, funding was provided by Microsoft and workshops

were arranged at MSR Cambridge and elsewhere.

In retrospect Project 7 was flawed but not catastrophically – some of the researchers didn’t engage, few of the

language implementations saw much use, and the costs to maintain them were high. While you can still buy and use

Cobol.NET today, .NET programming is dominated by the Microsoft-supported languages C#, Visual Basic and F#,

and the JVM has a more vibrant multi-language ecosystem. However Project 7 did have definite technical impact: for

example, at this stage, Gordon and Peyton Jones engaged with the designers of .NET, and argued successfully for the

inclusion of tailcalls as a first class operation (the “tail.” instruction in the .NET bytecode), both to support some of

these languages and as a way of differentiating the .NET bytecode from the JVM. This started .NET down a long

technical path of innovation and differentiation led by the demands of the languages being brought to the platform.17

Project 7 also had an impact by raising the question of “language interoperability”: it was one thing to get languages

targeting a common substrate, another to get them to interoperate. In 1999, the author and colleagues wrote the internal

whitepaper “Proposed Extensions to COM+ VOS”18 which argued that

a primary objective of the COM+ Runtime is to deliver services and performance that are clearly technically

superior to those provided by other potential backend runtime environments.19

and that Microsoft should “get serious about language innovation”. Five technical features were proposed, of which

“generalized delegates” (i.e. functions as first-class values) and “enhanced parametric polymorphism” were the more

17 Support for the “tail.” instruction remained patchy in .NET implementations for many years: innovation is one thing, but maintaining the results

requires ongoing commitment and costs.
18 https://blogs.msdn.microsoft.com/dsyme/2012/07/05/more-c-net-generics-research-project-history-the-msr-white-paper-from-mid-1999/
19 At this time, Project Lightning (i.e. .NET) was called “COM+”. VOS is for Virtual Object System, the name of the .NET object system at the

time.

https://blogs.msdn.microsoft.com/dsyme/2012/07/05/more-c-net-generics-research-project-history-the-msr-white-paper-from-mid-1999/

 Don Syme

8

serious. The influence of Pizza and GJ is strong here and these are explicitly mentioned as competitors. The author

also developed ILX, an extension to the .NET bytecode incorporating these features, which he hoped might be adopted

by other Project 7 languages, implemented on .NET initially by erasure and compilation to the existing .NET IL.

This whitepaper served as the start of the “.NET Generics” project, specifically designed to bring a form of generics

to .NET that could work for both C# and other Project 7 languages such as Eiffel, OCaml and Haskell. .NET Generics

and its history is covered elsewhere20 and over the next 4 years, Syme, Kennedy and Russo worked with enormous

dedication to deliver .NET Generics in C# and .NET (Kennedy & Syme, 2001). The feature encountered enthusiasm,

reluctance and indifference from various parts of Microsoft, though a review to Gates in 2001 was well received and

started to turn things around.21 Ultimately the feature was delivered as part of the 2005 .NET 2.0 “Whidbey” release.

At the same time, Microsoft began to make its first very tentative steps towards embracing open source, and a “shared

source” release of the .NET codebase was made called Rotor along with a corresponding extension containing the

.NET Generics implementation called Gyro. A poster from MSR’s internal tradeshow “Tech Fest” is shown in Figure

1.

The key premise of .NET Generics is that generic instantiations can be “managed” by the runtime environment,

including the management of runtime type information and the JIT-compilation of fresh code for newly encountered

instantiations. This means the end-programming model in, say, C#, can support a form of generics that is very complete

and smooth from the programmer’s perspective: runtime type information is accurate, the process of making and

managing instantiations unobtrusive, the code for instantiations is automatically shared based on a policy. .NET

Generics has been immensely successful: it is widely adopted by millions of C#, F# and Visual Basic programmers; it

is seen as a key differentiating factor of C# over Java; and has been the basis for many later innovations delivered in

F#, C# and .NET. For example, generic collections (C# 2.0), LINQ (C# 3.0), tasks (C# 4.0), async/await (C# 5.0) and

Span (C# 7.2) all use .NET Generics heavily, as do all F# features. There are grounds to see .NET Generics as a

breakthrough moment in language design and implementation that put .NET years ahead: even today systems such as

Java, Go, Scala and Swift struggle with the implementation of genericity. Equally, generics is a technical feature that

imposed significant costs on Microsoft’s .NET implementation going forward. Generics is most easily implemented

via a JIT and attempts to do fully static compilation of .NET code have struggled with the feature.

From the perspective of the history of F# (which did not yet exist), the successful delivery of .NET Generics

intentionally made .NET a suitable substrate for a “direct” compilation from a strongly typed functional language into

.NET bytecode: this was by design, not by accident. For example, it allowed a simple, direct compilation of genericity

inferred via Hindley-Milner type inference into .NET Generics with little or no runtime overhead. Consider simple

code such as this in some ML-like dialect:

let keyAndData getKey x = (getKey x, x)
let data = [| 1 .. 100 |]
let add x = x + 1
let y = Array.map (keyAndData add) data

20 How generics were added to .NET http://mattwarren.org/2018/03/02/How-generics-were-added-to-.NET/
21

BillG Review 2001.ppt https://github.com/dsyme/fsharp-presentations/blob/master/generics/BillG%20Review%202001.ppt

Figure 1 - .NET Generics poster at TechFest 2002, Microsoft

Building 33, Redmond

https://github.com/dsyme/fsharp-presentations/blob/master/generics/BillG%20Review%202001.ppt

The Early History of F#

9

In a genericized and type-annotated form this code would be roughly as follows, using “<T>” pseudo-notation to

indicate the points of implicit generalization:

let keyAndData<T,U> (getKey: T -> U) (x: T) : Pair<U, T> = (getKey x, x)
let data : array<int> = [| 1 .. 100 |]
let add (x: int) : int = x % 7
let y = Array.map (fun x -> keyAndData<int,int> add x) data

In many systems of generics such as GJ, values of generic type such as T and U might be represented in boxed (heap-

allocated) form. Thus, in the absence of other optimizations, the code above would cause the boxing of the integers as

they enter the (generic) “keyAndData” function, and then unboxing as they are passed on to the (non-generic) “add”

function. Such implicit costs for basic collection types would be unbearable and make any Hindley-Milner type-

inferred language intrinsically low-performance on .NET. With .NET Generics these specific performance problems

go away. In crucial ways .NET Generics laid a foundation for later work on F#.

The Decision to Create F#

At MSR, Project 7 also led to the SML.NET project (Benton, Kennedy, & Russo, 2004). SML.NET was a continuation

of MLj, mentioned earlier, retargeted to .NET. SML.NET used a sophisticated whole-program optimizer with de-

virtualization and representation transformations and was a faithful implementation of Standard ML with extensions

for object programming. The system was of high quality but didn’t gain significant external mindshare. During 2001,

the author grew frustrated with SML.NET, which was not yet released even though .NET itself was now public. While

fully respecting the research goals of his colleagues, he was keen to see strongly typed FP delivered in a way that could

be readily adopted by large numbers of programmers, and on a path to addressing the seven major themes identified

by Wadler in 1998. The implementation of OCaml was influential on the author here: OCaml used a relatively direct

and simple compilation strategy, and it was not clear why a whole-program compilation strategy was needed. Further,

SML.NET didn’t target .NET Generics, and there was no definite plan to make it do so: the compiler was predicated

on the benefits of whole-program compilation and pervasive monomorphization, with the aim of recovering

performance and compact code. As commonly happens in research labs, a divergence of opinion occurred.

Initially, in conjunction with Reuben Thomas, the author attempted an implementation of Haskell for .NET, using

a direct translation from the “Core” intermediate representation of the Glasgow Haskell Compiler (GHC) to the .NET

bytecode. This experience was partly successful: small programs ran. However, the advice of Simon Peyton Jones led

the author to believe that Haskell.NET couldn’t be successful for several technical and cultural reasons:22

• As with other Project 7 languages, running Haskell on .NET “in isolation” was not enough in itself: a primary

goal was to make a functional language that was fully part of the .NET ecosystem, with full interop with .NET

libraries.

• Full interop means that every .NET function would need a rendering in Haskell with a Haskell type, so type

translation is needed. The type systems were not the same, so the translation is onerous or simply impossible

in many cases.

• Moreover, to ease the translation, Haskell itself would need to be adapted to incorporate some form of

subtyping and object programming and would eventually need the ability to extend an existing .NET class.

The Haskell community was reluctant to contemplate such substantial language changes driven by the

requirements of a particular platform.

• At the time, almost all Haskell code (if you include libraries) needed technical features that lacked

corresponding .NET support, including higher-kinded type variables, lightweight concurrency, exceptions

(with Haskell’s exception semantics), ephemerons and software transactional memory. So, even interop aside,

it would be hard to claim that any Haskell program would run well on .NET; only a subset would do so.

So, work on Haskell.NET stopped.

The question of OCaml and JVM/.NET was also being discussed on the Caml mailing list around this time. An

example is the following message from the author, on February 6, 2001:

Subject: OCaml on CLR/JVM? (Was RE: OCaml <--> ODBC/SQL Server)

> What I cannot find around is a way to easily interrogate and interface

> in OCaml with an ODBC data source …

22 See also the later summary https://wiki.haskell.org/GHC/FAQ#Why_isn.27t_GHC_available_for_.NET_or_on_the_JVM.3F

https://wiki.haskell.org/GHC/FAQ#Why_isn.27t_GHC_available_for_.NET_or_on_the_JVM.3F

 Don Syme

10

Now I have to say the obvious: wouldn't it be wonderful if Caml interfaced with either Java or the .NET Common

Language Runtime seamlessly so we wouldn't have to keep facing these kinds of questions and problems, and could

just leverage existing libraries?

I'm very interested to know if there are people with some time to spare who would be keen to work with me toward

a .NET version of OCaml. I've talked this over from time to time with Xavier, and have done a lot of foundational

work for the core language when building a .NET compiler for Haskell. If you think would be interested, or would

simply like to join a mailing list devoted to talking about getting Caml running and interoperating on .NET, then

please let me know!23

This was the first explicit public indication of the author’s desire to create a version of OCaml targeting .NET. Leroy

replied on 2001-02-08:

I've been working on and off (mostly off, lately) on an OCaml/Java interface that works by coupling the two

systems at the C level via their foreign-function interfaces (Java's JNI and OCaml's C interface). This was

strongly inspired by the work of Erik Meijer et al on a similar Haskell/Java interface. (These Haskell guys sure

are at the bleeding edge of language interoperability. This is the second interop idea I steal from them, after the

IDL/COM binding.)

The low-level coupling is surprisingly easy, including making the two garbage collectors cooperate: both the JNI

and OCaml's C interface provide enough functionality to get the coupling to work without *any* modification on

either of the implementations. How nice! The only limitation is that a cross-heap cycle (a Java object pointing to a

Caml block pointing back to the Java object) can never be reclaimed... (Thanks to Martin Odersky for pointing this

out.)…

Of course, the low-level interface is type-unsafe, so the real fun is to build a type-safe view of Java classes and

objects as Caml classes and objects, and conversely. I'm still struggling with some of the issues involved. For

instance, it turns out to be much simpler (for the implementation, not for the final user!) to map Java objects to

values of abstract Caml types, and treat methods as functions over these abstract types, than mapping Java objects

to Caml objects. That was quite unexpected!

One thing I learnt is that the real problem with language interoperability is not how to compile language X to

virtual machine Y (this can always be done, albeit more or less efficiently), but rather how to map between X's data

structures and objects and those of all other languages Z1 ... Zn that also compile down to Y. This is obvious in

retrospect, but I think many (myself included) often overlook this point and believe that compiling to the same

virtual machine is necessary and sufficient for interoperability. It is actually neither necessary nor sufficient...

While this work started with the JVM, I'm pretty sure it can be made to work with the .NET CLR, as soon as it will

have a foreign-function interface with features comparable to those of the JNI. (And I'm sure this will happen

eventually, not only because it makes sense, but also because Java has it, so .NET must too :-)

Stay tuned for further developments.24

This lays out the basic question many languages have faced since: should a language have its own runtime and

interoperate indirectly with .NET and/or the JVM, or should it target those runtimes directly?25 Leroy’s response

represented a divergence of opinion: Project 7 had envisaged very close interoperability, sharing one virtual machine

including memory, code, reflection, JIT, GC and library capabilities, and potentially bringing the object system of the

host ecosystem into the language. The approach described by Leroy was, technically, highly sensible for the existing

OCaml implementation, however it didn’t feel right once .NET could be assumed. To the author, it would intrinsically

run into performance, interoperability, tooling and other issues at boundaries between the languages, and adoption

would be limited to the intersection of those willing to rely on both the .NET and OCaml implementations.

The discussion also brought contributions from Dave Berry, based on his prior experience of implementing

Harlequin ML26, a proprietary implementation of Standard ML (Dave later contracted with MSR Cambridge on an

open source version of .NET Generics), on February 9, 2002:

23 https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/5770514eec29b794c2d560fc3282bc14.en.html
24 https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/229eebd5314fd127dadb27872f9e4c6f.en.html
25 Interestingly, this discussion arose directly in the context of data integration, an area that would drive much of the C# and F# design work in the

2000s.
26 Harlequin, Wikipedia https://en.wikipedia.org/wiki/Harlequin_%28software_company%29

https://en.wikipedia.org/wiki/Harlequin_%28software_company%29

The Early History of F#

11

> > Now I have to say the obvious: wouldn't it be wonderful if Caml interfaced with either

> > Java or the .NET Common Language Runtime seamlessly so we wouldn't have to

> > keep facing these kinds of questions and problems, and could just leverage existing
> > libraries?

Although this view is understandable, I think it is rather naive. … To look at it another way, OCaml already

shares a platform with C (at least with the native-code compiler), so all the C libraries are already available… Yet

it can still be a lot of effort to link with a C library. Why should Java and .NET be any easier? Also, look at the

effort that went into making an ML/Java system with MLj…. Threads are another area of potential problems. In

fact they can be a total minefield.27

To which the author replied on February 10, 2002:

There's hard work to be done to realise this vision, but in principle a clean interop story sure beats the endless

rehashing of other people's code in language X as a library in language Y. Myself and others involved in the

Project 7 are working on one approach to achieve this interop, i.e. compiling languages directly to .NET MS-IL, in

the style of MLj, often adding extensions to the language in order to improve the interop. We are also working on

improving the .NET infrastructure, proposing support for features such as parametric polymorphism in MS-IL.

Xavier is also working on a solution for OCaml, as he mentioned, though the problem of how to reflect the

constructs of an object model into ML, Haskell or OCaml remains similar whichever approach you take to actually

running the stuff.

There are several reasons why it is easier: exceptions, for example, can be propagated across the interop

boundary, without any effort at all if you compile to MS-IL of Java bytecode. If you're compiling to bytecode you

can also ensure more compatibilities of representations, e.g. make sure ML int64's are exactly representationally

equivalent to C's int64s. Note if you don't compile to a bytecode then you even have to marshal integers across the

interop boundary in Caml, though this could be automated.

You can also transfer objects more consistently, as the semantics of the object models of Java and .NET are fairly

simple in contrast to C, e.g. no need to have an IDL to help interpret pointers as "in-out", "in", "out" parameters.

While at a certain level I like Xavier's approach, i.e. maintaining two runtimes, garbage collectors etc., I have

troubles seeing it scaling to the multi-language component programming envisioned as part of .NET approach

(and indeed currently in practice with C#, C++, VB.NET and other .NET languages). Two GC's are already

trouble enough (performance might suck as they will both be tuned to fill up the cache), but if you have

components from 10 languages in one process? 10 GCs competing for attention? Maybe it can be made to work,

but there's a certain conceptual clarity in just accepting that a GC should form part of the computing

infrastructure, and share that service. These are the aspects of the .NET approach that I find quite compelling.

As an aside, I think it would be an interesting question to say "OK, let's take it for granted that the end purpose of

our language is to produce components whose interface is expressed in terms of the Java or .NET type systems, but

which retains as many of the features and conceptual simplicity of OCaml and ML as possible." I'm not sure

exactly what you'd end up with, but whatever it was it could be the language to take over from C# and/or Java (if

that's what you're interested in...) But without really taking Java/.NET component building seriously right from

the start I feel you're always just going to end up with a bit of a hack - an interesting, usable hack perhaps, but not

a really _good_ language.

Probably the greatest recurring technical problem that I see in this kind of work is that of type inference, and the

way both the Java and .NET models rely on both subtyping and overloading to help make APIs palatable. Type

inference just doesn't work well with either subtyping or overloading. This is a great, great shame, as it's

obviously one of the main things ML has to offer to improve productivity.

P.S. As for threads - I don't think the story is half as bad as you might think. After all, OCaml threads map down to

Windows threads at some point, and I just don't see that there are that many special logical properties of typical

ML and Caml threading libraries that make it semantically ridiculous to share threads between languages (though

it is true asynchronous exceptions can make things hard when compiling to a bytecode). But I'll admit I'm not an

expert on this.28

Finally, there was techno-political controversy too, this time in a reply from Fabrice le Fessant on February 12, 2002:

27 https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/133b91bc1099f414b036a6ded7209d4c.en.html
28 https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/5ed4e8db99c99cb983fddea7407f5d9c.en.html

https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/5ed4e8db99c99cb983fddea7407f5d9c.en.html

 Don Syme

12

Is the .NET VM open source ? Which part is Microsoft-independent ?…

If Microsoft wants its new product to be used, it is Microsoft problem to port more languages to its VM, and not

only say: "We have ported our homemade languages to it (C#, C++, VB.NET) [because it was designed for them],

so, you see, we have proved it's the universal VM. Now, do the same for your languages, or your language will not

be used anymore by our customers..."

So, why do we really need a .NET port of OCaml ? OCaml is working fine on Windows, and on many other OS ...29

A discussion thread followed on the merits of open source, standards, interoperability and cross-platform execution,

issues which weren’t resolved for F# for another 13 years, when F#, C# and .NET Core were finally open source and

cross-platform. A contribution by Dave Berry on February 16, 2002 was more positive:

I think Microsoft should be congratulated on their outreach to programming language researchers. I for one

would certainly welcome a widely distributed VM that is a good target for compiling ML. Interoperability with

other languages on the same VM would be a bonus…. That said, interoperability is still hard. ….30

There were many valid arguments and sensitivities here, and the author proceeded from this point determined to be

highly respectful towards OCaml and its existing user base: he genuinely loved the language and the approach to

programming it represented.

Predicting the future trajectory of software infrastructure like .NET and architecture was also an important factor

in making decisions, e.g. in this final response by Arturo Borquez on March 3, 2002:

Perhaps I am wrong, but let me state what I believe about this stuff. …C# is not really important as it will never

reach the 'mass' of VB.… The real issue is …the Client/Server model …. In my opinion this model has no future,

…clients would become minimal… with a diverse and broad family of client devices (terminals). My conclusion is

CLR/JVM ... are not important for the future of Caml, as all will die. Caml will need only some library updates to

match the communication tech upgrades. 31

Predictions like these were both right and wrong: the structure of applications evolved extensively, and .NET and the

JVM ultimately de-emphasized their role as “middleware”, but neither .NET nor the JVM have died. Languages and

runtimes seem to endure longer than architectures.

So, in mid-2001 the itch remained: how were MSR going to bring strongly typed functional programming to .NET

in a way that could be readily adopted by large numbers of programmers? By October 10, 2001 the author felt firm

enough in this conviction to reply as follows:

When time permits I plan to implement a .NET CLR compiler for Caml. Initially I will implement only the core

language, and perhaps first-order modules, and then to assess things after that. I will be coding the

implementation up from scratch rather than using the sources for the existing OCaml compiler….

My first reason for doing this is because I have an existing OCaml code base that I would like to make available as

a .NET library…. Plus I love Caml, and would like to see it supported on .NET, and I'm interested in proving that

interoperability between functional languages is practical in .NET.

This implementation path would give object introspection capabilities for free. However it would no doubt be

slower than the existing native code Caml implementation: you don't get something for nothing.

I don't know of any other _active_ efforts to do a .NET compiler for Caml. SML.NET will, hopefully, be available

publicly soon.

So by late 2001 this path remained: to bring a variant of the OCaml language to target .NET itself. The Project 7 effort

around OCaml had led to the above approach by Leroy and didn’t look likely to continue. This left a space for a new

Caml.NET initiative, though one targeting the .NET IL itself, and in December 2001 the author decided to move ahead

with an “Caml.NET”, soon rebranded “F#”.32

Early F# - 2002 – 2003

29 https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/b67bc40320ae83c25dd035848a767b19.en.html
30 https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/394c8e018c81d45cda9c71c20d22518b.en.html
31 https://caml.inria.fr/pub/ml-archives/caml-list/2001/03/c505a4570bf94080cb8a7f82b2f3598a.en.html
32 The “F” in “F#” comes from both “Functional” and “System F”, an elegant variant of simply typed lambda calculus. The F# community also

say “F is for Fun”.

https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/b67bc40320ae83c25dd035848a767b19.en.html
https://caml.inria.fr/pub/ml-archives/caml-list/2001/02/394c8e018c81d45cda9c71c20d22518b.en.html
https://caml.inria.fr/pub/ml-archives/caml-list/2001/03/c505a4570bf94080cb8a7f82b2f3598a.en.html

The Early History of F#

13

The early conception of F# was simple: to bring the benefits of OCaml to .NET and .NET to OCaml: a marriage

between strongly typed functional programming and .NET. Here “OCaml” meant both the core of the language itself,

and the pragmatic approach to strongly-typed functional programming it represented. The initial task was relatively

well-defined: the author would re-implement the core of the OCaml language and a portion of its base library to target

the .NET Common Language Runtime. The implementation would be fresh, i.e. not using any of the OCaml codebase,

for legal clarity.

The first lines of the F# implementation were written in December 2001, a front-end for a re-implementation of the

core Caml syntax targeting ILX as a back end, and thus to .NET. The initial compiler was written using OCaml (later

bootstrapped using F# in 2006).

The initial design choices were subtle. By far the most wide-ranging design decision is easy to miss in retrospect:

F#’s number-one design choice was to be a .NET language. Everything else was to be subservient to that goal. In

particular, .NET types are F# types, .NET values are F# values, .NET exceptions (and their semantics) are F#

exceptions (and their semantics), and .NET threads are F# threads. The same was true in reverse and “two-way interop”

was always a design goal. There’s no type translation, no marshalling from one representation to another. Strings in

F# were to be strings in F# and vice-versa. Types and functions defined in F# could be used from other .NET languages.

This decision gave F# less room to innovate – more often than not, F# is stuck with whatever .NET does – but it

guaranteed two-way interop. This was a huge reason for starting a new language design, rather than trying to map an

existing language onto .NET. This full identification of types and data goes beyond the question of having one runtime

vs two: even if you have one runtime, a language could still have chosen to use different representations for (say) a list

of integers, represented internally as .NET objects of some kind, but marshalled when passed to a .NET method: one

runtime, but two representations. F# doesn’t do that: it uses one runtime and, where possible, identical representations.

This influenced many small decisions: for example, from the outset a function declared in F# had a guaranteed, stable

representation in .NET code as a static member of a class with a stable name, and could be used directly from .NET

languages. This also meant F# code could always be accessed via .NET reflection. Although the first version of F#

was initially presented as “Caml-for-.NET”, in reality it was always a new language, designed for .NET from day 1,

but taking Caml as its principal source of design guidance and inspiration.

In addition, there was the question what not to implement. A notable omission from the design was the functorial

module system of OCaml. Functors were a key part of Standard ML and a modified form of the feature was included

with OCaml, a source of ongoing controversy amongst theoreticians. The author was positively disposed towards

functors as a “gold standard” in what parameterization could be in a programming language but was wary of their

theoretical complexities. Furthermore, at the time there were relatively few places where functors were used by

practicing OCaml programmers. One part of the OCaml module system – nested module definitions – was eventually

included in the design of F#. However, functors were perceived to be awkward to implement in a direct way on .NET

and it was hard to justify their inclusion in a language design alongside .NET object programming. Another decision

was not to include any OCaml 3.0 features, specifically neither the object system nor the recently added “named

arguments” feature. Leroy’s email above explains the issues regarding the object system: there was sufficient disparity

and mismatch between the object systems of .NET and OCaml that the latter couldn’t be used for the former. The

OCaml pre-processor CamlP4 was also not supported, though CamlLex and CamlYacc could be used. The question of

the object system would be dealt with later. However, this meant that F# and OCaml diverged as of the core language

of OCaml 2.0.

The first release (v0.1, soon replaced by 0.5) was made near-silently on June 4 200233 as an addition to the ILX

project, making the following claims on the website:

Mixed functional/imperative programming is a fantastic paradigm for many programming tasks….You can access

hundreds of .NET libraries using F#....F# is an implementation of the core of the Caml programming language for

the .NET Framework, along with cross-language extensions. …The aim is to have it work together seamlessly with

C#, Visual Basic, SML.NET and other .NET programming languages. …Types and values in an ML program can

be accessed from some significant languages (e.g. C#) in a predictable and friendly way. … F# provides an

implementation of a subset of the OCaml libraries as well as the ability to access .NET libraries. Using the .NET

libraries is optional…. F# supports features that are often missing from ML implementations such as Unicode

strings and dynamic linking. … Tooling consists of a simple command line compiler, supporting separate

compilation, debug information and optimization…. F# is, as far as I know, the first ML compiler to have good

binary-compatibility and versioning properties…

33 https://web.archive.org/web/20020604234213/http://research.microsoft.com/projects/ilx/fsharp.htm

https://web.archive.org/web/20020604234213/http:/research.microsoft.com/projects/ilx/fsharp.htm

 Don Syme

14

Some hurdles had been cleared along the way. MSR granted permission to allow commercial use of programs

compiled with ILX and this permission was recycled for the F# implementation. Next, at a conference the author asked

Leroy for tacit approval in putting out a variant of Caml for .NET, including making changes to the language design.

Leroy approved – OCaml itself was part of a long history of adapting and modifying the core ML – and what was

research if we didn’t experiment? In a later email reply Leroy said:

Don Syme and his Microsoft Cambridge colleagues did a great job with adding parametric polymorphism to the

.NET framework -- something that was initially overlooked in .NET --, and I'm very happy that they chose core

Caml to demonstrate this extension in action. https://caml.inria.fr/pub/ml-archives/caml-

list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html

To which my reply:

And I'm even more grateful to Xavier and the team for doing such a great job with OCaml over the years, and for

providing a solid core language, an excellent runtime system and the very interesting set of language features

they've added to the core. Core Caml provides a great starting point for work of all kinds: I used it in my PhD

thesis, for example, as the term language for a theorem prover.

I chose to implement a core Caml compiler for .NET partly to test out generics, but also because I want to be able

to program against .NET libraries using the language I love to program in, and reuse the libraries and techniques

I've developed. I guess it's possible I'll get a bit of flak from the Caml community about F#. Being at Microsoft

Research I presume I'll be writing a fair bit of .NET code sooner or late, and personally I'd rather do that in

Caml/F# than C#... I hope the Caml community won't mind me making that opportunity available to others via the

public release of F#.34

The first real design-work began with the addition of the ability to access .NET object types via the dot-notation.:

C# and other .NET languages can be directly accessed from F#... Types are accessed using the "Namespace.Type"

notation. You may simply use "Type" if an "open Namespace" declaration has been given. Instance members are

accessed using "obj.Method(arg1,...,argN)" or "obj.Property" or "obj.Field". Static members are accessed using

"Namespace.Type.Method(arg1,...,argN)" or "Type.Method(arg1,...,argN)", similarly for properties and fields.35

While seemingly innocuous, this design decision broke with OCaml and a long tradition of ML language design:

it used inferred type information in name resolution. A name like M in obj.M was now resolved immediately using the

partially inferred type of obj rather than by adding a new inference constraint. This meant that type annotations would

now sometimes be needed, compromising one of the traditional “rules” of ML (i.e. that type annotations are strictly

optional), and that inference becomes “algorithmic” or “left-to-right”:

Typing. Sometimes extra annotations are needed to get the program to typecheck, e.g. casts using "(cast <expr> :

<type>)" and type annotations to help resolve overloading.

This also created a potential for non-monotonicity, where adding new inference information would change name

resolutions. The author decided that if the inference algorithm was well-defined and kept stable, and non-monotonicity

of resolutions didn’t occur, this would be sufficient for interoperability purposes. In practice, the use of partially

inferred type information in name resolution proved effective and stable and was kept throughout the evolution of F#.

Type inference was eventually specified algorithmically in the language specification.

Another design question was about nulls. The SML.NET system had “sanitised” all interop calls by inserting the

Standard ML “option” type with tags SOME/NONE at all relevant points. In F#, the author decided not to do this:

Null. Null objects returned by the .NET assemblies are NOT checked by the process of importing the assemblies or

by the F# type system. This may be addressed in the future, but for the moment use the "nonnull" function from

Pervasives to check if values are null and the "null" value from Obj to create a new null value.

https://web.archive.org/web/20020814185220/http://research.microsoft.com:80/projects/ilx/fsharp-manual-

import-interop.htm

This was partly because of ergonomics: the insertion of the option type was highly intrusive on programming and

nulls were not used as pervasively in the .NET libraries as in Java, so in balance the need for a pleasant programming

experience outweighed the need for null-safety at interoperability. Further, the author felt that the topic of null-safety

should be dealt with systematically across all .NET languages, as we had done with .NET Generics.36

34 https://caml.inria.fr/pub/ml-archives/caml-list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html
35 https://web.archive.org/web/20020604234213/http://research.microsoft.com/projects/ilx/fsharp.htm
36 This position eventually bore fruit in 2018 when C# 8.0 finally began the transition to assuming non-nullness by default for references types,

discussed in the conclusion.

https://caml.inria.fr/pub/ml-archives/caml-list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html
https://caml.inria.fr/pub/ml-archives/caml-list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html
https://web.archive.org/web/20020814185220/http:/research.microsoft.com:80/projects/ilx/fsharp-manual-import-interop.htm
https://web.archive.org/web/20020814185220/http:/research.microsoft.com:80/projects/ilx/fsharp-manual-import-interop.htm
https://caml.inria.fr/pub/ml-archives/caml-list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html
https://web.archive.org/web/20020604234213/http:/research.microsoft.com/projects/ilx/fsharp.htm

The Early History of F#

15

Initially, early F# avoided adding object programming declarations:

Currently you cannot declare new classes or implement interfaces in F#. For the moment workaround this by

declaring a new class in C# that accepts delegate parameters to implement the virtual/interface members, and then

pass function values from F# to the C# class. You will only need to write this C# class once.

Further, contrary to the warnings from Dave Berry and others in the email threads shown earlier, no design work

was needed for threading: F# simply assumed the same threading model as .NET itself, which essentially mapped

.NET threads to operating system threads.

Early F# - Release

F# “0.5” was little noticed at first, deliberately: the initial implementation was lacking in many ways and needed time

to settle. Initially, the plan was as follows:

1. Make the language viable for adoption and use.

2. Use it to stress-test .NET Generics.

3. Get it out to the public.

4. See where things led.

The author had been influenced by his time at Intel Strategic CAD Laboratories, which used a structured “maturity

model” for research projects and technology development: projects at Intel would proceed from “concept” to “proof

of concept” to “prototype” and then through a product delivery phase. Thus there was no Microsoft “buy-in” at this

stage: few at the company knew of F# apart from those in MSR Cambridge and their .NET team contacts. 6 months

later, after several iterations, the project got noticed by Internet news sites, always keen for the latest scoop, and the

author decided to make a clarification on the OCaml mailing list in case things “got out of hand” before the

implementation was fully ready, and in case accusations of “embrace, extend, extinguish” emerged.

There have been some utterly speculative (and entirely off-the-mark!!) internet press reports about this project in

the last few days (e.g. see internetnews.com)…. I thought it wise to add the following clarification to the F# website

and to post it to this list.

…Despite reports suggesting otherwise, F# is a relatively small research project designed to demonstrate that it is

possible to easily implement ML-like languages for use on the .NET Framework. There are no current plans to

commercialize F#.... F# is public, on-going research, and Microsoft Research regularly and openly collaborates

with universities on programming languages. 37

The fact that F# needed to be down-played initially was partly due to the sensitivities around launching anything

“product-like” at the time from MSR. At the time, all public software by MSR had an awkward legal/commercial

status: publication of software was primarily to support a research/publication agenda. Despite a budget nearing $1B,

the organization was not at that stage permitted to make and release commercial products. MSR strongly encouraged

open research, but open software was more problematic. However, designing and delivering new programming

languages was an essential part of any PL research agenda, and indeed the whole rationale behind Project 7. Further,

external “proofing” of these technologies was critical to refine them.

External perceptions were also tricky to manage: from the perspective of computer science academia and hacker

culture, corporations in general – and Microsoft in particular – were often seen as structural adversities. Offerings from

MSR were even feared, and one leading researcher suggested that F# would “kill off” language research. In retrospect

such ideas seem laughable – PL research has bloomed in the last 15 years and hundreds of new languages have been

developed – but these views stemmed from anti-commercial biases, fear of a perceived monopolist, and Microsoft’s

opposition to open source software at the time.

Either way, you had to go public and be commercially usable if you had any chance of changing things and be true

to both the spirit of research and the original goals of Project 7. Later, other cutting-edge MSR projects would not

reach their full potential, because they didn’t make the commercially usable releases necessary to proof the

technologies and gain evidence of their utility in sufficient time to occupy a market niche, examples include Accelerator

and Dryad LINQ. On the other hand, MSR provided a good “institutional home” for a language, given its concentration

of expertise and its long-term mission to change computing. Lab directors such as Andrew Herbert, Luca Cardelli and

Andrew Blake would be consistently supportive of the work on F# over a long period of time. However, doing a public,

37 https://lwn.net/Articles/34678/

https://lwn.net/Articles/34678/

 Don Syme

16

commercially usable language offering via MSR was not going to be plain sailing, and the support of the product teams

would ultimately be needed.

F# 1.0 – 2004-2006 - Overview

After completing .NET Generics in mid-2004, the rest of the year saw intense work by the author on improving F#. At

this stage, .NET was on the ascendency inside Microsoft and it achieved widespread external success on the back of a

huge evangelization effort: most programming for the Windows platform moved over to C# and .NET worldwide. A

massive shift towards .NET also happened internally: the Windows team started major initiatives, including a rewrite

of the Windows “shell” and the creation of many major .NET projects such as Windows Presentation Foundation,

Windows Communication Foundation and Windows Workflow Foundation.

On January 5, 2005, a pre-release of F# 1.0 was declared in the author’s first MSDN (Microsoft Developer

Network) blog entry.38 In March 2005, F# 1.0 was first demonstrated at “TechFest”, an internal MSR trade-show in

Redmond.

Figure 2- Two posters for F# 1.0 at MSR TechFest 2005

F# developed in crucial ways during 2004-06. Based on successful trials, and with the support of Byron Cook, MSR

manager Luca Cardelli agreed to add developer support to the project. On February 10, 2005 we were able to advertise

and on 24 March 2005, James Margetson joined to form a small team with interns (Dominic Cooney, May-July 2004,

Gregory Neverov June-August 2006). Small internal and external user communities grew and trust in the project began

to form. The technical additions made to F# during this time were as follows:

1. Completion of the core Caml-like language programming model (2004)

2. Targeting .NET generics (2004)

3. Addition of initialization graphs (2004)

4. Addition of dot-notation, method overload resolution and object-expressions for interoperability with .NET

(2005)

5. Addition of “statically resolved type parameters” for handling overloaded arithmetic in a way that fits with

Hindley-Milner type inference (2005)

6. Addition of class/interface constructs for object programming (2005)

7. Addition of implicit class construction (2006)

8. Addition of the “light” indentation-aware syntax (2006)

9. Addition of a treatment of subtyping within Hindley-Milner type inference (2006)

10. Addition of runtime meta-programming via quotations (2006)

11. Addition of F# Interactive, a REPL for F# (2006)

12. Initial Visual Studio tooling (2006)

13. Bootstrapping (2006)

14. Execution on Linux using Mono (2006)

To “proof” the language we turned to some existing OCaml codebases at MSR including the SPiM (Stochastic Pi

Machine), Static Driver Verifier and Terminator projects. These tests were successful, for example allowing the

addition of a Windows-based GUI to SPiM. During this time, James Margetson was responsible for performance

38 https://blogs.msdn.microsoft.com/dsyme/2005/01/05/welcome-to-dons-f-blog/. At the time, individual blogging on MSDN was encouraged by

management and proved a great way to utilize Microsoft’s positive brand with developers for both the company and many individuals.

The Early History of F#

17

testing and supporting the internal use of F# on these projects by Andrew Phillips, Jakob Lichtenberg and Byron Cook.

Margetson also implemented the first REPL for F# and created numerous compelling demonstrations of interactive

development using F# scripting and the REPL. The author and Margetson were responsible for documentation and

releases.

During this time F# was not the result of a “meeting of minds” amongst MSR Cambridge language researchers, but

rather the author and collaborators pursuing a series of design additions to the initial implementation, with the help of

some feedback from colleagues, users, researcher networks such as WG2.8 and an emerging worldwide community.

The design conversations in the external community on mailing lists and in blog responses were encouraging, and

internal and external adoption was growing steadily.

F# 1.0 – Pipelines

One of the first things to become associated with F# was also one of the simplest: the “pipe-forward” operator, added

to the F# standard library in 2003:

let (|>) x f = f x

In conjunction with curried function application this allows an intermediate result to be passed through a chain of

functions, e.g.

[1 .. 10]

 |> List.map (fun x -> x *x)

 |> List.filter (fun x -> x % 2 = 0)

instead of

List.filter (fun x -> x % 2 = 0)

 (List.map (fun x -> x *x) [1 .. 10])

Despite being heavily associated with F#, the use of the pipeline symbol in ML dialects was originated by Tobias

Nipkow, in May 1994:39

… I promised to dig into my old mail folders to uncover the true story behind |> in Isabelle/ML, which also

turned out popular in F#... (e.g. see http://paste.pocoo.org/show/134013/ for some example from Scala -- it

cites "F#'s pipeline operator").

In the attachment you find the original mail thread of the three of us [Larry Paulson; Tobias Nipkow; Marius

Wenzel], coming up with this now indispensable piece of ML art in April/May 1994. The mail exchange starts

as a response of Larry to my changes.40

…Tobias …came up with the actual name |> in the end…

The use of the pipeline symbol is particularly important in F# because type-inference is propagated left-to-right and

name resolution occurs based on information available earlier in the program. For example, the following passes type

checking without an explicit type annotation:

let data = ["one"; "three"]

data |> List.map (fun s -> s.Length)

In contrast the following requires an explicit type annotation:

List.map (fun (s: string) -> s.Length) data

39 Syme, D., Archeological Semiotics: The Birth of the Pipeline Symbol, 1994,

https://blogs.msdn.microsoft.com/dsyme/2011/05/17/archeological-semiotics-the-birth-of-the-pipeline-symbol-1994/
40 Wenzel M., Nipkow T, Paulson L, Isabelle archives, 1994, “added infix op also”: http://isabelle.in.tum.de/repos/isabelle/rev/daca5b594fb3 and

http://isabelle.in.tum.de/repos/isabelle/annotate/e9ba9f7e2542/src/Pure/sign.ML#l545

https://blogs.msdn.microsoft.com/dsyme/2011/05/17/archeological-semiotics-the-birth-of-the-pipeline-symbol-1994/

 Don Syme

18

However, pipelines were heavily used by the author and others prior to F#. The F# library also defined two and three-

argument pipeline operators, e.g.

let (||>) (x1, x2) f = f x1 x2

(0, data)

 ||> List.fold (fun count s -> count + data.Length)

F# 1.0 –Tackling Object Programming

From the outset, F# consumed class and interface definitions from .NET. Being a functional language, it was natural

to begin by supporting an expression-based form of object implementations akin to function closures. F# 1.0 described

these as follows:41

An object expression declares an implementation and/or extension of a class or interface. For example, the

following uses the functionality of F#'s built-in polymorphic < and > operators to construct an object that

implements the .NET IComparer interface.

{new IComparer with Compare(a,b) = compare a b }

After attempts to allow .NET classes to be declared using OCaml-like record types, on April 27, 2005 the author began

the process of designing the object-programming extensions for F#, through an email to Dominic Cooney (no longer

an intern, but experienced in using F# and a sounding board for private discussions):

We’re continually coming across the need to be able to present F# APIs in a more OO way. …I’m wondering if I

could run some drafts of both the language mechanisms and the API itself by you for your comments, since you are

so familiar with both the library and the standards expected of .NET libraries.

In the next iteration of the discussion on May 19, 2005 the F# object programming syntax took its near-final form (with

the exclusion of implicit constructors, added later):

type X =

 override x.ToString() = "abc"

 member x.InstanceProperty = "fooproperty"

 member x.MutableInstanceProperty

 with get() = "fooproperty"

 and set(v) = System.Console.WriteLine("mutated!")

 member x.InstanceIndexer

 with get(v) = v+1

 member StaticProperty = "fooproperty"

 member MutableStaticProperty

 with get() = "fooproperty"

 and set(v) = System.Console.WriteLine("mutated!")

 member x.InstanceMethod(s1) = "baz"

 static member StaticMethod(s1,s2) = "static method"

In this syntax, “x” is the name of the “this” or “self” parameter. The decision to use a user-defined explicit name for

this parameter was partly driven by similar decisions in the OCaml system, and partly by the feeling of “horror” the

author had experienced while refereeing an academic paper on the subtleties of the resolution of “this” in Java inner

classes. Since nesting of such constructs would eventually be required, and considered normal in an ML-family

language, it would be better to require an explicit name.

In retrospect, the addition of object programming to F# was a process of “deconstruction” of object-orientation into

its essential elements (roughly 20 individual features: dot-notation, classes, method-overloading and so on), and

incorporating some of them into F# in a way that preserved the essence of the core expression language and emphasized

41 Surprisingly this feature is yet to make it into any version of C#.

The Early History of F#

19

delegation over inheritance. The author summarizes this today by stating that “F# embraces ‘object’ programming and

de-emphasizes ‘object-oriented’ programming, especially implementation inheritance”.42 For example, the “protected”

accessibility modifier is not supported even to this day in F#, since it is perceived to encourage implementation

inheritance.

F# 1.0 – Improving the Functional Core: Initialization Graphs

The first novel feature added to F# was an adjustment to initialization and recursion of a kind not previously used in

strongly typed functional languages. This was designed and implemented initially in mid-2004 and presented internally

at MSR Cambridge on September 4, 2004 then at the ML Workshop 2005 (Syme, 2006). This feature was inspired by

hallway conversations with Georges Gonthier and the idea of giving “co-inductive” interpretations to recursive

definitions wherever possible. Co-inductive techniques – including co-inductive algebras as an interpretation of object-

orientation – was a popular research topic at the time. In the 2004 presentation, the author focused on how we define

networks of “reactive objects”:

Forget subtyping. Forget inheritance. The restrictions on self-referential and mutually-referential objects is what

makes ML a poor GUI programming language….At least when driving reasonable libraries such as

System.Windows.Forms, and the problem gets worse the more “declarative” a library gets…. C# “solves” this

through a mishmash of implicit nulls and/or “create-and-configure” APIs. ML “solves” it in a similar way.

Haskell has little choice but to heavily annotate and re-design the APIs. F# permits the above techniques, but

offers another solution… (Syme, 2004)

The solution offered was to extend the “let rec” construct to allow the definition of not just functions but also a graph

of values and objects, e.g.

F# permits you to write values (and not just functions) whose specifications appear to refer to themselves, but

where the self-references are hidden inside delayed values such as inner functions, other recursive functions,

anonymous 'fun' lambdas, lazy computations, and the 'methods' of object-implementation expressions.

The recursion is 'runtime checked' because there is a possibility that the computations involved in evaluating the

bindings may actually take the delayed computations and execute them. The F# compiler inserts delays and thunks

so that if runtime self-reference does occur then an exception will be raised.

The recursion is 'reactive' because it only really makes sense to use this when defining automaton such as forms,

controls and services that respond to various inputs and make self-referential modifications as a result. A simple

example is the following menu item, which prints out part of its state as part of its action:

 let rec menuItem =
 new MenuItem("Say Hello",
 EventHandler(fun e -> printf "Hello %s\n" menuItem.Text),
 Shortcut.CtrlH)

A compiler warning is given because in theory the "new MenuItem" constructor could evaluate the callback as part

of the construction process, in which case a self-reference would have occurred - and F# can't prove this won't

happen.

The ML Workshop paper describes the historical precedents to this feature. It is still used occasionally in F# today,

and it influenced aspects of the design of F# object programming: in F# 2.0 class definitions, virtual calls that

“recursively” invoke object members in sub-classes during object construction are checked for initialization safety and

will raise an exception if reentrancy occurs before initialization is complete.

F# 1.0 – Improving the Functional Core: Overloaded Arithmetic

Among the obvious problems of OCaml was the question of overloaded arithmetic. OCaml had avoided adding type

classes in the style of Haskell and had instead adopted a syntax-ambiguated approach to integer and floating-point

arithmetic, e.g.

 let x1 = 1 + 1 (* an integer*)
 let x2 = 1.0 +. 2.0 (* a floating point number *)

This approach was practical for symbolic programming, which did not use numeric types extensively, but impractical

in the context of .NET, which had its own standards in this area. For example, a type supporting overloaded arithmetic

42 F# Code I Love, Don Syme, https://skillsmatter.com/skillscasts/11439-keynote-f-sharp-code-i-love

https://skillsmatter.com/skillscasts/11439-keynote-f-sharp-code-i-love

 Don Syme

20

would indicate this by supporting a static member call op_Addition. The F# approach to solving this problem was

inspired by work on HM(X) and the G'Caml (a proposal for treating these issues in OCaml).43 Specifically, “method

constraints” were added, introduced by a deliberately baroque syntax:

 let inline (+) (x: ^T) (y: ^U) : ^V =
 ((^T or ^U): (static member op_Addition : ^T * ^U -> ^V) (x, y))

This definition says that any use of “+” is implemented via inlining a call to an appropriately-typed op_Addition

method. The ^T notation for type variables indicates statically resolved type parameters (SRTP). The inline keyword

was added to F# only to support this construct: by inlining, the constraint would be resolved according to the types

available at point of use. This allows overloaded arithmetic to integrate neatly with Hindley-Milner type inference, and

code to take a more natural form:

 let x1 = 1 + 1 // an integer
 let x2 = 1.0 + 2.0 // a floating point number
 let x2 = DateTime.Now + TimeSpan.Years(1.0) // a date

SRTPs subsequently got used more generally in F# as a mechanism for constrained generics, though originally it was

only specifically designed to cope with overloaded arithmetic.

F# 1.0 – Improving the Functional Core: Active Patterns

Since the 1980s, one of the best-loved features of strongly-typed functional programming languages has been pattern

matching, represented in F# and OCaml by the match … with … construct. Since Wadler’s work on views (Wadler,

1987) it had been recognized that pattern matching suffered a lack of abstraction: you couldn’t write new pattern

matching constructs for existing or abstract data types. During the “proofing” of F# in 2005 the importance of this

problem in real-world OCaml codebases like SPiM and Static Driver Verifier became obvious to the author: there were

many cases in those codebases where implementation details of types were “leaking out” into code through pattern

matching, making changes of core representations difficult. In early 2006 the author began the process of deciding

what to do about this for F#.

The idea of “active patterns” or “views” had featured in academia but had never been implemented in a practical

strongly-typed FP system (Erwig, 1996). Since F# had to interoperate with .NET object types whose representations

were private, it became natural to add extensible pattern matching. In May 2006, Gregory Neverov joined as an intern

and was assigned this topic. A prototype emerged quickly, and was presented at WG 2.8, July 16-21, Boston.44 One

attendee was Martin Odersky, and on July 25, 2006 he replied:

I enjoyed a lot discussing with you at the WG 2.8. I have been thinking how to do active patterns in Scala. It seems

I can replace existentials by dependent types. It is less clear to me at present is how to do GADT like behaviour.

From this email and the first EPFL paper (Emir, Odersky, & Williams, 2007), it seems that the addition of active

patterns to F# had some impact on the design of Scala. The final versions of the respective mechanisms for F# (active

patterns) and Scala (extractors) were designed and implemented around the same time. Simon Peyton Jones gave very

helpful advice for F# at this time, recounting to the author the various attempts to add view patterns to Haskell, an

emphasizing the need for “bang for buck” in such a feature, i.e. simplicity of declaration and use. An initial

implementation of F# active patterns was released in August 2006, an ICFP paper followed (Syme, Neverov, &

Margetson, 2007), and the feature remains a very widely used part of the F# language.45

F# 1.0 – Improving the Functional Core: First-class Events

Early F# applications included GUI programming for systems like SPiM, and inevitably reactive, asynchronous and

event-based programming received greater emphasis in F# than in previous ML-family language designs. .NET

metadata and C# included a built-in notion of “event” that was not first-class: events couldn’t be treated as first-class

values. In the process of designing the F# object system – and in order to simplify and regularize it – “first-class

events” were designed as an F# language and library extension and released on March 23, 200646. Representative code

samples for first-class events were:

let mouseMove =

43 G'Caml, Caml with Extensional polymorphism extension https://inbox.ocaml.org/caml-list/20010619182424P.Jun.Furuse@inria.fr/
44 http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/
45 https://blogs.msdn.microsoft.com/dsyme/2006/08/15/an-upcoming-experimental-feature-active-patterns-in-f/
46 https://blogs.msdn.microsoft.com/dsyme/2006/03/23/f-first-class-events-simplicity-and-compositionality-in-imperative-reactive-programming/

https://inbox.ocaml.org/caml-list/20010619182424P.Jun.Furuse@inria.fr/
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/
https://blogs.msdn.microsoft.com/dsyme/2006/08/15/an-upcoming-experimental-feature-active-patterns-in-f/
https://blogs.msdn.microsoft.com/dsyme/2006/03/23/f-first-class-events-simplicity-and-compositionality-in-imperative-reactive-programming/

The Early History of F#

21

 form.MouseMove
 |> Event.filter (fun e -> e.Button = MouseButtons.Left)
 |> Event.filter (fun _ -> inputMenuItem.Checked)

Here form.MouseMove is a first-class event allowing registration and de-registration of handlers. The event

composition filters triggers of form.MouseMove to generate a new event that only fires when the Left mouse button is

down and a particular menu item is checked. Common patterns of event composition, filtering, combination and

transformation can now begin to be abstracted. The addition of this feature directly influenced Wes Dyer, leading to

the creation of the Reactive Extensions (Rx) project with Erik Meijer.47 Registering event handlers has implications

for memory leaks, later dealt with by converting this part of the F# programming model to use the IObservable type

from Rx. This topic also led to an F#-related publication by Petricek and Syme on garbage collection in reactive

systems (Petricek & Syme, 2010).

F# 1.0 – Improving the Functional Core: Computation Expressions and Async

In April 2007, the author spent a six-week sabbatical at EPFL with Martin Odersky in Lausanne. Odersky was then

developing Scala, an exciting time for that language and group. Partly through this visit another important idea was

seeded and eventually added to the core F# design: computation expressions and their application to asynchronous

programming. This would still be influencing C# years later, in C# 5.0 (async/await) and 8.0 (async sequences), and

in turn influence many other languages.

The problems addressed by computation expressions and “async” were as follows. First, from 2003 there was an

increasing focus on multi-core and parallel processing in commodity computing systems. Further, the rise of web-

programming put server-side concurrency and client-side long-running web-requests to the fore. Additionally, in the

context of Windows, it could be assumed that “operating system threads were expensive”, thus ruling out approaches

to concurrency based purely on OS threading. This combination of factors gradually led languages and frameworks

to take a strong point of view on concurrency and user-level threading. For .NET the focus of C# work at the time was

on shared-memory primitives and locking (Duffy & Sutter, 2008). While good for low-level high-performance

primitives, the .NET community were crying out for better, more productive abstractions. For many other languages,

the focus was on actor-like message queueing systems, futures or continuations.

From the theoretical side, it had long been recognized:

1. async was a form of monadic programming implemented via continuation passing;

2. adding “syntactic sugar” for monadic computations would make an expressive addition to a programming or

specification language

At EPFL in 2007, the author noticed that Odersky was experimenting with a react { … } construct for message

processing in Scala, and realized that some kind of primitive construct to deal with asynchronous programming was

going to be needed in F#. C# had added “iterators” in C# 2.0 (again initiated by MSR). This featured an implicit

inversion of control-flow which was of interest in the context of async programming.

Ideas around async programming had also been floating around the OCaml community and its mailing lists,

especially through the async implementation used in the system MLDonkey by Fabrice le Fessant.48 Haskell had added

monadic syntax49, and later arrow syntax.50 Many theorem proving systems had generic notational extensions. But no

strict functional language had a suitable monadic syntax allowing the re-interpretation of all control constructs in

asynchronous form, and in OCaml and Standard ML libraries of functional combinators were generally used instead.

On returning from EPFL, the author discussed these problems with Margetson around May 2007, who emphasized

the importance of monads in implementing async programming. This led the author to finally experiment with adding

a monadic syntax to F# and apply it to asynchronous programming, leading to the addition of “computation

expressions” and async { ... } to F# in 2007. On October 10, 2007 we announced these features in the blog post

Introducing F# Asynchronous Workflows.51 Representative async code samples used in the blog posts at the time were

as follows:

 let task1 = async { return 10+10 }
 let task2 = async { return 20+20 }

47 A Brief Introduction to the Reactive Extensions for .NET, Rx https://blogs.msdn.microsoft.com/wesdyer/2009/11/18/a-brief-introduction-to-the-

reactive-extensions-for-net-rx/
48 https://en.wikipedia.org/wiki/MLDonkey
49 https://en.wikibooks.org/wiki/Haskell/do_notation
50 https://www.haskell.org/arrows/syntax.html
51 https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/

https://blogs.msdn.microsoft.com/wesdyer/2009/11/18/a-brief-introduction-to-the-reactive-extensions-for-net-rx/
https://blogs.msdn.microsoft.com/wesdyer/2009/11/18/a-brief-introduction-to-the-reactive-extensions-for-net-rx/
https://en.wikipedia.org/wiki/MLDonkey
https://en.wikibooks.org/wiki/Haskell/do_notation
https://www.haskell.org/arrows/syntax.html

 Don Syme

22

 Async.Run (Async.Parallel [task1; task2])

Here:

• async { return 10+10 } generates an object of type Async<int>. These values are not actual results: they

are specifications of tasks to run

• Async.Parallel [task1; task2] composes two task specifications generating a new value of type

Async<int[]>

• Async.Run takes this and runs it, returning the array [20; 40].

The identifier async refers to a builder for a computation expression. The interpretation of code such as:

 async {
 let! x = p1
 let! y = p2
 return x + y
 }

is

 async.Bind(p1, (fun x1 ->
 async.Bind(p2, (fun x2 ->
 async.Return(x1 + x2))))

A computation expression could include all control constructs of the F# language, e.g. try/finally, if/then/else, for loops

and so on, each re-interpreted by builder in a structured, compositional way, de-sugared into method calls in the builder:

async.Bind, async.TryFinally and so on.

Surprisingly, the syntactic machinery used for computations could be recycled for a whole range of compositional

control constructs, including “monoidal” computations such as list comprehensions. For example

 [yield "zero"
 for a in 1 .. 5 do
 match a with
 | 3 -> yield "hello"; yield "world"
 | _ -> yield a.ToString()]

Evaluates to:

 ["zero"; "1"; "2"; "hello"; "world"; "4"; "5"]

The introduction of computation expressions to F# hit three nails with one hammer: iterators (C#), list comprehensions

and async programming were all dealt with via the one general syntactic mechanism. The various families of control

constructs that could utilize computation expressions were eventually characterized by Petricek and Syme (Petricek &

Syme, 2014) and in 2010 they developed an experimental monadic generalization of pattern matching called Joinads

(Petricek & Syme, Joinads: a retargetable control-flow construct for reactive, parallel and concurrent programming,

2011).

F# 1.0 – Meta-programming

F# 1.0 saw the addition of “quotation meta-programming” to F#. Quotations had been a significant feature in LISP

since its inception and have been possible for inclusion in languages since. However, they had rarely found their way

into strongly-typed functional or OO languages.

In 2005, the C# team found new uses for expression quotations in their early prototypes of LINQ, which added a

comprehension syntax and runtime expression quotations to C# to express both in-memory and database queries.

Under-the-hood, LINQ used a combinator encoding of queries heavily inspired by functional programming. A key

contributor to LINQ was Erik Meijer who was an avid evangelist for functional ideas in general and innovative in their

application. LINQ was highly successful and is a widely used feature of C# today. Additionally, the author had

previously used ForteFL at Intel, a strongly-typed functional language that included expression quotations. Further,

systems such as Mathematica and R allowed expression quotations and made interesting use of these facilities to mix

symbolic and computational elements. When early versions of LINQ were announced in 2006, he decided to

experiment with adding quotations to F#, initially with the aim of interoperating with the query mechanisms available

in LINQ.

The Early History of F#

23

This work released on January 26, 2006 in prototype form under title “F# meets LINQ, and great things happen

(Part I)”.52 A sample code fragment was as follows:

 let q =
 db.Customers
 |> where <@ fun c -> c.City = "London" @>
 |> select <@ fun c -> c.ContactName @>

Some of the details changed in later releases, but here <@ … @> is an expression quotation literal, forming a quotation

of the expression tree. These parts of the program were re-interpreted at runtime and executed as part of an SQL query.

This mechanism was also applied to a broader range of “heterogeneous execution” problems, running F# code on the

GPU by utilizing the Accelerator library from MSR. Collectively this work was published at the ML Workshop (Syme,

2006). Later, in F# 2.0, the design of the API for F# quotations was extensively revised and simplified.

In early 2006, Tomas Petricek at Charles University, Prague began work on a JavaScript compiler and web

programming system utilizing F# quotations.53 He joined the F# team as an intern in April 2007, working on extending

the use of F# for JavaScript and GPU compilation, and returned as an intern in 2009, making many contributions to F#

2.0 including its IDE tooling.

F# 1.0 – Improving the Functional Core: Indentation-aware Syntax

Another addition during the F# 1.0 timeframe was the addition of an indentation-aware syntax, released on September

23, 2006.54

The F# indentation-aware syntax option is a conservative extension of the explicit language syntax, in the sense

that it simply lets you leave out certain tokens such as in and ;; by having the parser take indentation into account.

This can make a surprising difference to the readability of code.

Note: This feature is similar in spirit to the use of indentation by Python and Haskell, and we thank Simon Marlow

(of Haskell fame) for his help in designing this feature and sketching the implementation technique. We also thank

all the F# users at MSR Cambridge who've been helping us iron out the details of this feature.

The origins of this feature are from the author’s experience looking at samples of Haskell and Python code, and from

frequently being asked “why does F# require the ‘in’ token for ‘let x = … in’” by non-functional-programming

audiences. The author made a private judgement that the presence of these extra tokens was a limiting factor in F#

adoptability. The feature was refined over future iterations and became the default for F# code in F# 2.0 in 2010.

F# 1.0 – IDE Tooling

A significant factor in F# 1.0 was the inclusion of IDE tooling that would integrate with Visual Studio 2005 and 2008.

The early implementation of this tooling was done by the author based on prototypes for extensible, language-neutral

tooling by Daan Leijen, stemming from Project 7. The early versions were adequate for demonstration purposes and

adoption by enthusiasts. However, during the implementation of this tooling many mistakes were made, and the

“compiler service” part of the F# compiler codebase quickly became poorly implemented. These problems dogged F#

tooling through until 2010 in terms of accuracy, quality and completeness, and arguably have only been resolved

through the creation of the F# Compiler Service components in 2015 and subsequent improvements in 2017.

From the language design perspective, the assumption of IDE tooling had strongly affected the C# design. For

example, the syntax of the C# LINQ design was influenced by the basic question “will we be able to give good IDE

assistance as people type LINQ queries”. This assumption was not generally a driving factor of the F# design itself,

however it was an occasional consideration.

Finance and Functional: Microsoft Commits to F#, 2007

During 2006-07, external adoption of F# began to grow, partly on the base of steady blogging about the features and

utility of the language by the author.55 Social media and “scalable” communication was emphasized over conference

52 F# meets LINQ, and great things happen (Part I), https://blogs.msdn.microsoft.com/dsyme/2006/01/26/f-meets-linq-and-great-things-happen-

part-i/
53 Thesis: Client-side Scripting using Meta-programming http://tomasp.net/blog/webtools-thesis.aspx/
54 https://blogs.msdn.microsoft.com/dsyme/2006/08/23/lightweight-syntax-option-in-f-1-1-12-3/
55 https://blogs.msdn.microsoft.com/dsyme/

https://blogs.msdn.microsoft.com/dsyme/2006/01/26/f-meets-linq-and-great-things-happen-part-i/
https://blogs.msdn.microsoft.com/dsyme/2006/01/26/f-meets-linq-and-great-things-happen-part-i/
http://tomasp.net/blog/webtools-thesis.aspx/
https://blogs.msdn.microsoft.com/dsyme/

 Don Syme

24

publications, and the blogging was used to highlight the practical nature of the F# feature set and its adoption. The

online developer video portal Channel 9 opened their doors, allowing us to reach a broader audience.56 There was a

lack of practical alternatives for functional programming on Windows and .NET, and F# received growing attention.57

.NET user groups existed worldwide, and some began to give presentations on F#. Download rates were about

18,000/year in early 2007: far from mainstream, but relatively substantial for an MSR project, and F# was the most

visited site on research.microsoft.com, somewhat unexpectedly. The language developed a strong community feel and

some related technologies began to emerge: in 2006 Jon Harrop made his influential OCaml for Scientists book

available as F# for Scientists58; in 2007 WebSharper was initiated by Adam Granicz, including a transpiler from F# to

JavaScript and the ability to use F# for both client and server components59; in 2007 IntelliFactory began offering

consulting services in F#.60 61 In 2006, James Huddlestone, an editor at Apress, approached Syme and Pickering to

author the first two books on F#: Beginning F# and Expert F#, the latter joint-authored with Adam Granicz and Antonio

Cisternino.62

By March 2007 the language and implementation had matured to “F# 1.9”, and we presented an F# update and

lecture at the internal tradeshow MSR TechFest in Redmond.63

In 2 hours I'm flying off to TechFest 2007 in Redmond. … James Margetson, myself and other members of the F#

community will be presenting a booth on F#, highlighting how the language has both matured to be an incredibly

useful tool and how it is also acting as a vehicle for innovative applied functional programming research.

Figure 3 One of the posters used for F# 1.9 at TechFest 2007

Among other things, Bill Gates visited the booth. Like all research organizations, MSR needed its successes, and giving

backing to F# at this stage was an obvious choice. The author and his collaborators at MSR took a “drip, drip” approach

to increasing awareness of the language amongst Vice Presidents in Microsoft, forwarding emails and information at

a steady rate, and giving presentations opportunistically.64 On May 31, 2007 the head of the Developer Division

(“DevDiv”, the makers of Visual Studio), S. Somasegar replied:

It is exciting to see F# continue to gain excitement, buzz and real adoption in the world. There is also a growing

excitement for functional languages in general. What do you think we should do if anything on functional

languages and specifically with F#? Have you thought about whether we need to do some level of deeper VS

integration for F#. I would love to hear your thoughts on this.

56 https://blogs.msdn.microsoft.com/dsyme/2006/09/14/f-on-channel-9/
57 https://blogs.msdn.microsoft.com/dsyme/2006/, https://blogs.msdn.microsoft.com/dsyme/2007/
58 https://blogs.msdn.microsoft.com/dsyme/2006/10/23/f-for-scientists-announced-by-jon-harrop/
59 Composing Reactive GUIs in F# Using WebSharper, Bjornson J., Tayanovskyy A., Granicz A., IFL 2010,

https://link.springer.com/chapter/10.1007%2F978-3-642-24276-2_13
60 Peake A., Granicz A., The first substantial line of business application in F#, CUFP '09 Proceedings of the 2009 Workshop on Commercial

Users of Functional Programming https://dl.acm.org/citation.cfm?id=1668119
61 https://web.archive.org/web/20071102190038/http://www.intellifactory.com:80/Development.aspx
62 https://blogs.msdn.microsoft.com/dsyme/2006/09/06/draft-chapter-2-of-expert-f-essential-language-features/
63 https://blogs.msdn.microsoft.com/dsyme/2007/03/04/f-1-9-almost-ready/
64 Sometimes this gave mixed results: at one presentation a technical assistant of Bill Gates told the author and Ralf Herbrich firmly “you should

be focusing on the 250,000 programmers still using Visual Basic 6”.

https://blogs.msdn.microsoft.com/dsyme/2006/
https://blogs.msdn.microsoft.com/dsyme/2007/
https://link.springer.com/chapter/10.1007%2F978-3-642-24276-2_13
https://dl.acm.org/citation.cfm?id=1668119
https://blogs.msdn.microsoft.com/dsyme/2007/03/04/f-1-9-almost-ready/

The Early History of F#

25

Some influential enterprise customers began to look at the language. Notably:

• Credit Suisse trialed and adopted early versions of the language successfully in 2006-07, in the context of the

Global Modelling and Analytics Group, to author models for financial instruments and orchestrate existing

Windows COM components;

• Morgan Stanley initiated a large project to convert large portions of their analytics to Windows and F#, to

replace a legacy APL codebase.65

In the summer of 2007 the influence of Wall St was at its peak worldwide. Among other things, one F# customer

committed to a large purchase of “Windows HPC”, a new high-performance computing product based around

Windows Server. Emails about F# from these companies were forwarded to management, including Craig Mundie,

then Chief Research and Strategy Office, and presentations given to Mundie, Anders Hejlsberg and Steve Ballmer. In

August 2007, the Applied Games Group at MSR Cambridge featuring Ralf Herbrich, Thore Graepel and Phil Trelford

won a company-wide machine learning competition for predicting ad clicks using F#. Burton Smith and Dave Wecker

were strong advocates in Redmond. On August 30, 2007, Craig Mundie sent this email:

Thanks. We are going to proceed with the productization of F#. Soma will drive that to happen now.66

F# was to be “productized”, i.e. enter the stable of officially supported Microsoft languages.

F# 2.0 – 2007 to 2010

In practice, the prospect of becoming a Microsoft-supported language was both exhilarating and terrifying. What did

it mean? Who had committed to what? Who would manage the project? How long would we have to refine the

language from a research prototype? Who would be on hook for “supporting” the language? What promises had been

made to whom? Who was on-board internally? What criteria would we be measured against? None of these things

were initially clear.

Over the next 6 months, an initial team was formed at in Redmond, including program manager Luke Hoban67

(Nov 1, 2007 – June 2010), developer Jomo Fisher (early 2008 – mid 2010), engineering lead Tim Ng, and QA staff

Matteo Tavaggi, Daniel Quirk and Chris Smith. Laurent Le Brun helped test code in Cambridge as an intern in 2011,

and James Margetson continued to work on the compiler and tools in Cambridge until March 2011. Mads Torgerson,

Luca Bolognese and Raj Pai from the C# team were involved in initial planning. The author spent 4 weeks with the

Redmond team in February 2008.

Some things soon became clear: the process would be run out of Redmond (despite initial talk of hiring equal

people in Cambridge); DevDiv would provide funding via dedicated “headcount” (there were no budgets for individual

projects); we would have 1-2 years to complete a sustainable, long-term supportable version of the language; we would

have an application focus on “functional programming for the enterprise” and “technical computing”. A whirlwind

tour of New York financial institutions was arranged in December 2007, and the author found himself giving

presentations on functional programming to core quantitative finance groups in institutions such as Morgan Stanley,

Bank of America and Credit Suisse.68

However, not all was plain sailing. Doing a new language is controversial and a driver of potential negative

responses. DevDiv were pushing forward many innovative projects. For example, teams were formed to drive forward

dynamic languages on the .NET platform with the “Dynamic Language Runtime”, including Iron Ruby and Iron

Python: these projects were both compatriots but also competitors for development resources. Likewise, a large project

to add Software Transactional Memory to .NET had started, partly at the instigation of MSR. Amidst the Global

Financial Crash and its aftermath, Microsoft cut its workforce by 5,000 in January 2009, and projects across the board

65 Of these, the first adoption succeeded and saw considerable use of F# over multiple years.
66 Private email, Thu 30/08/2007 23:34
67 At Microsoft in 2008, program managers had broad responsibilities, including product delivery, customer interaction and specification. This was

often summarized by saying the PM “represents the customer” to the development organization.
68 In retrospect these quant groups likely had other things to worry about in late 2007. On one occasion in New York, when the author asked about

the structural problems in the global market, an F# quant said “yes, I should have spotted that” and added that he felt “personally responsible” for

the GFC. A rare admission from the finance sector.

 Don Syme

26

were at risk, and many were cancelled.69 70 71 72 In addition, .NET itself began to be seen less purely positively as it

reached some limits of its applicability, discussed below.

Further, Microsoft programming products appealed to a relatively conservative end of the programming industry:

would these people accept a functional programming language? C# had a very active user base with very strong tooling.

In such a context, where Microsoft came under surprising pressure after years of growth, landing F# as an industry-

applicable language was not out of the question, but couldn’t be taken for granted.

So, what was F# for, at least as far as Microsoft was concerned? As a general-purpose language, the answer was

and remains obvious: “F# is for programming”. However, as an addition to an established product range that wasn’t

going to cut it: F# couldn’t realistically be presented as a replacement for C#, C++ and Visual Basic with their millions

of existing customers. A key factor was the “designer” tooling in these toolchains: this tooling was expensive to build

and maintain and undergoing continual churn as user interface technologies changed. It was decided early that it was

not realistic to make this tooling available for F# 2.0. Management had communicated early that F# would be a “first-

class language in Visual Studio”73, implying to some that all Visual Studio tooling would be made to work with F# on

par with C#. The dissonance between these positions caused frustration amongst users dependent on Microsoft for

tooling. It was largely resolved by the major improvements in F# tooling in 2017 and a reduction in emphasis on

“Visual” programming in the Microsoft product line-up around the same time.

In this context we coined the term “functional-first” programming to characterize the methodology associated with

F# in practice: functional prototyping followed by elements of object programming (for software engineering and

interop) and imperative programming (for performance). A guiding mantra at the time was “F# is functional-first

programming for the enterprise”. In addition, despite the prevailing economic conditions, Microsoft invested in a new

“Technical Computing Initiative” (TCI). This eventually employed 300 people and included an entirely new

programming language, never released. F# was not directly involved in this, and the TCI was subsequently reorganized

three years later without producing a major product, but F# was loosely associated with some of its public content, and

thus the meme was born that “F# is for technical computing” or even just “F# is for that math stuff” – something which

was both true and false simultaneously. Many examples of successful use of F# had been in technical areas, especially

for implementing “computational engines” within larger systems, and F# could be used directly as a MATLAB or

Python-like language when equipped with suitable libraries. Books such as F# for Scientists by Harrop were excellent

early material and F# had existing adoption with the finance industry. In bio-tech, F# was being used for DNA analysis

at the Joint Genome Institute.74 The association between functional languages and “mathematical-style programming”

has long held currency, and, while we tried hard to avoid it, this epithet continued to apply to F# for some time.75

The writing of the first two editions of Expert F# was crucial in refining the exact details language between 2007

and 2010, as did the authoring of the F# 2.0 Language Specification, written as an informal but rigorous 200 page

document in the style of the C# Language Specification and used as the basis for much QA work.76 During this time,

literally thousands of design suggestions poured in via fsbugs@microsoft.com, a very direct channel between team

and customers for Microsoft at the time. On the one hand, this meant that the language had been proofed in detail by

time of launch, on the other it caused the team to be reactive to user demands. Hundreds of bugs were fixed, many

design improvements were made and multiple “beta” versions released. During this time, roles in the team also

changed. The author had to become more of a “product architect”, making definitive final, detailed decisions about

the composition of the language. The center of gravity of the project moved to Redmond (and the USA), and both

online working and face-to-face visits with the Redmond team were crucial. The importance of quality increased

greatly, and we began to look for features to cut. Ultimately the F# 2.0 feature set resembled that of F# 1.9 closely,

but the quality of the language specification, design, implementation and tools had increased drastically.

69 Microsoft’s Experiments with Software Transactional Memory Have Ended https://www.infoq.com/news/2010/05/STM-Dropped
70 Microsoft cuts loose Iron languages https://www.theregister.co.uk/2010/10/22/microsoft_kills_dynamic_languages_projects/
71 Microsoft drops Dryad; puts its big-data bets on Hadoop https://www.zdnet.com/article/microsoft-drops-dryad-puts-its-big-data-bets-on-

hadoop/
72 Microsoft to close Microsoft Research lab in Silicon Valley https://www.zdnet.com/article/microsoft-to-close-microsoft-research-lab-in-silicon-

valley/
73 https://blogs.msdn.microsoft.com/somasegar/2007/10/17/f-a-functional-programming-language/
74 Syme, D., December 2006. Blog post. F# helps show we’re not Neanderthals. https://blogs.msdn.microsoft.com/dsyme/2006/12/05/f-helps-

show-were-not-neanderthals/.
75 It was finally de-emphasized around 2015 once F# developed as an open source, cross-platform language with a strong web and cloud

programming story. F# today is for programming of all kinds.
76 https://fsharp.org/specs/language-spec/

mailto:fsbugs@microsoft.com
https://blogs.msdn.microsoft.com/dsyme/2006/12/05/f-helps-show-were-not-neanderthals/
https://blogs.msdn.microsoft.com/dsyme/2006/12/05/f-helps-show-were-not-neanderthals/

The Early History of F#

27

On April 12, 2010, with a volcano in Iceland, and after an arduous 2 years that put considerable strain on all

involved, the first officially supported version of “Visual F# 2.0” was released as part of Visual Studio 2010.77 In

practice “Visual” F# was a misnomer: we had supplied a strongly-typed, code-oriented functional programming

language suitable for adoption in the Windows ecosystem. This was a great step forward and raised the profile of

strongly-typed functional programming in the industry. However, more was going to be needed.

F# 2.0 – Units of Measure

One significant feature was added to the language in 2009: units of measure checking and inference. This work was

initiated by Andrew Kennedy, a research at MSR Cambridge whose PhD thesis had shown how to integrate unit

inference with Hindley-Milner type inference78. In late 2007 Kennedy began to prototype, and on December 10, 2007

sent links internally to a working version, refined over the next year and made available in preview release on August

29, 2008.79 In the context of the Microsoft TCI, adding unit inference aligned with other goals, and it is also an elegant,

powerful and non-intrusive feature yet to be rivalled in other languages.

Type Providers and F# 3.0

With F# 2.0 essentially completed by December 2009, the attention of the F# group at Microsoft rapidly turned to

“what’s next” for F#. Since 2005, C# had not stood still: the experience of adding generics and iterators to C# 2.0

(2005) had cultivated a surprising and ongoing taste for innovation in language design through the addition of new

features. In C# 3.0 (2008), the C# team introduced LINQ (Language Integrated Queries), mentioned earlier. In C# 4.0

(2010) the C# team turned their attention to dynamic programming, adding a set of weakly-typed features that are less

widely adopted. This culture of innovation also played well with a Microsoft Research agenda and some looked

towards F# to supply new ideas that could later influence C#. Likewise, C# could influence F#, and support for LINQ

was brought in to F# 3.0.

Separately, the process of “productizing” F# had exposed the author to a wide range of applied programming

scenarios. A common theme was data integration: many applications of F# and .NET involved programming against

external information sources. Further, F# had a REPL called F# Interactive, which, together with Visual Studio made

an interactive editor environment suitable for data scripting. Putting these themes together it became obvious that F#

could expand its capabilities in data programmability.

The work on F# type providers began at Microsoft Research from an internship in mid-2008 with Adrian Moors,

where we discussed supporting diverse data-oriented user experiences such as:

• “referencing a database” (and having its types and contents be immediately accessible in an F# scripting

context, with both editor/autocomplete and REPL execution)

• “referencing a spreadsheet” (and likewise having its “types” and contents be immediately accessible)

• “referencing a web service” (with similar effect)

• “referencing a CSV file” (with similar effect)

Together we called this “referencing the planet”. However, while that framed the problem, those initial

explorations didn’t lead to something usable, and it was clear that a major technical challenge needed to be solved: we

needed to think again about a general mechanism to “bring data into the language, in a strongly-typed way”.

Essentially, we needed a meta-programming mechanism to bring arbitrary schematized data into the language.

Prototyping with Jomo Fisher led to a compile-time meta-programming mechanism initially called extended static

typing and then awesome types80 and finally type providers.

In brief, an F# type provider is a compile-time meta-programming plug-in component which is added to F# editor,

compiler and REPL tooling in the same way as a library. A type provider provides information about a

programmatically-generated space of nominal object type definitions and associated properties and members. It also

provides macro expansions that represent the erased implementations of the methods of these types. The mechanism

worked in an “on-demand” way, so that a type provider could supply an infinite sea of related nominal types. This

enables an astonishing range of applications and led to fascinating discussions about applications with people from

77 This day is celebrated as “F# Day” in the F# community. https://fsharpforfunandprofit.com/posts/happy-fsharp-day/
78 Programming Languages and Dimensions http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.807
79 The F# September 2008 CTP is now available! https://blogs.msdn.microsoft.com/dsyme/2008/08/29/the-f-september-2008-ctp-is-now-

available/
80 The name is courtesy of Chris Smith

https://fsharpforfunandprofit.com/posts/happy-fsharp-day/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.807
https://blogs.msdn.microsoft.com/dsyme/2008/08/29/the-f-september-2008-ctp-is-now-available/
https://blogs.msdn.microsoft.com/dsyme/2008/08/29/the-f-september-2008-ctp-is-now-available/

 Don Syme

28

many different parts of the industry. Curiously, few of these conversations were with programming language

researchers!

The early demos were developed by Fisher and communicated internally on February 17, 2010. It felt breath-taking

and exhilarating – suddenly we were demonstrating things like:

• the immediate integration of Excel spreadsheets into F# programming with auto-complete and type-checking;

• the immediate integration of scalable semantic-web information sources such as the entity graph called

Freebase81, again with auto-complete and type-checking;

• directly referencing multiple databases in a data script in a strongly-typed way.

The first internally distributed demo script and screen grabs for F# type providers was as follows:

1) Type and run in interactive: #r "FSharp.Data"

2) Open MySpreadsheet.xlsx

3) Type FSharp.Data.

4) Continue typing FSharp.Data.Live.Excel.MySpreadsheet.Invoice.

- Show that cells with data appear

- Show that data tip has the live value from the sheet

- Show that the type ‘string’ flows from Excel into F#

5) Hover over my spreadsheet to see the full file name of the referenced file and a comment from the spreadsheet.

6) Open the comment in Excel to see where the data and comment is coming from:

7) Show RowsByNamedColumn:

8) Code up a loop and print, but first show that you can dot off the loop variable:

81 Freebase: a collaboratively created graph database for structuring human knowledge. https://dl.acm.org/citation.cfm?id=1376746

https://dl.acm.org/citation.cfm?id=1376746

The Early History of F#

29

9) Delete the dot and send to interactive.

{Quantity=5, Unit=car, Description=Ford GT40, Unit Price=148000, … }
{Quantity=1, Unit=banana, Description=Yellow and curved, Unit Price=0.99, … }

10) Move to freebase. Show the large set of top level domains:

11) Query something:

This was F# 2.0 but suddenly connected to immensely rich data sources, with IDE-integrated tooling as evident from

the above examples. Further, we were doing these prototypes in the context of a language and IDE tooling we could

deliver “for real” to industry. By June 2010 we knew that we’d hit on somewhat of a goldmine for F#. The feature

addressed pragmatic customer concerns; was simple to demonstrate; was innovative; avoided the need for bespoke

tooling for different data sources; and allowed F# to leap-frog other languages in terms of data integration. Further,

this feature could “transcend the divide” between research and product and enable continued cooperation between

MSR and the Microsoft product teams.

In 2011 both MSR and Microsoft management committed to making type providers a major part of F# 3.0. The

period between 2010 and 2012 was spent refining the mechanism and delivering a set of type-providers to work

alongside F#. An online demonstrator called Try F# was produced, funded by Tony Hey in Microsoft External

Relations. F# 3.0 also included enhanced support for LINQ queries and a range of other improvements and fixes. Sarika

Calla, Donna Malayeri and Layla Driscoll took on program management responsibilities during this time. Joe Palmer,

Brian Macnamara, Dmitry Lomov and Vlad Matveev were development staff, and Matteo Tavvaggi and Lincoln

Atkinson were QA staff. Kevin Ransom joined the team towards the end of F# 3.0, bringing depth of experience,

having worked on .NET and Visual Studio since its inception. Keith Battocchi (2011-13) and Ross McKinlay (2013)

worked as contractors for Microsoft Research on applications of type providers, developing applications of type

providers potentially relevant to the Microsoft product line-up including integrating Microsoft Dynamics CRM and

Windows WMI computer management information and presenting at MSR TechFest 2012 and 2013.82

On release of F# 3.0 on September 12, 2012, F# type providers immediately became a significant part of the F#

ecosystem, confirmed with the later creation of the FSharp.Data library of commonly-used type providers for XML,

CSV and HTML data by Tomas Petricek and Gustavo Guerra. Other applications of type providers include:

• Database integration (SQL)

• Language integration (T-SQL, RProvider)

• Configuration information integration (FSharp.Configuration)

• Web APIs (via JSON and schematizations such as WSDL and Swagger)

• Schematized “big-data” sources including Hadoop

82 Ross McKinlay is also famous in the F# community for humorous applications of F# type providers including encoding “choose your own

adventure” games in the autocomplete-menus made available to the programmer via the compile-time meta-programming machinery that

integrates with the IDE. http://www.pinksquirrellabs.com/post/2013/07/29/Choose-Your-Own-Adventure-Type-Provider.aspx

http://www.pinksquirrellabs.com/post/2013/07/29/Choose-Your-Own-Adventure-Type-Provider.aspx

 Don Syme

30

The paper Types from data - Making structured data first-class citizens in F# (Petricek, Guerra, & Syme, 2016)

received a Distinguished Paper award at PLDI 2016 and was selected as one of three CACM Research Highlight in

2018.

.NET, F# and the Shift to Cloud and Mobile Computing

The focus of this paper is the early history of F#, particularly up to F# 3.0 in 2012 and the core set of innovative features

that have formed the backbone of all future versions of the F# language. In the remainder of this paper, we continue

the more recent history since 2012, but in slightly less detail, particularly focusing on themes that were present in the

early history but where major changes have occurred.

Not all was plain sailing for F#, C# and .NET at Microsoft in the F# 3.0 period. This stemmed largely from seismic

shifts within the industry itself, with the rise of mobile and cloud computing. The iPhone was launched in 2007 and a

massive change began in the industry. Around 2011, .NET hit serious hurdles inside Microsoft. For Windows 8, the

Windows team needed to reassess programmability in the light of the “consumer app” model being so successful on

the iPhone and iPad. As part of this, the Windows team decided to embrace HTML5 and JavaScript as a first-class

language for Windows programmability, and Windows 8 eventually supported C#, JavaScript and C++ as the main

programming languages for “Windows Store” apps. This was seen by many external observers as a “retreat” from

.NET, even though C# was the most popular language for Windows Store app development. This perception was

reinforced when the development of Silverlight, the browser-hosted version of .NET, was halted. Further, seeing the

threat from the iPhone, iPad and Android, the Windows team wanted to focus on consumer applications rather than

enterprise.

For F# at Microsoft this posed a series of challenging issues. Within the company’s product range, F# was

positioned as “functional programming for the enterprise” at a time where enterprise programming became less

important to company strategy, despite the enterprise sector sustaining up to 95% of company profits through “platform

pull-through”. For internal political reasons, DevDiv didn’t feel able to push F# as a choice for app programming on

to the powerful Windows team. Fortunately, F# continued to receive good backing from DevDiv. While a reduction in

resourcing occurred, and the pressure was considerable, the team were given the resources to deliver the F# 3.0 feature

set at high quality, and subsequently F# 3.1 and so on. However, things were undoubtedly changing in the computing

landscape and many projects at Microsoft were affected. There was a causal connection from Steve Jobs’ success with

the iPhone to pressure on many technologies at Microsoft.

Fortunately, around this time a major structural shift at Microsoft occurred with the development of the Azure cloud

platform, originally released in 2010 but achieving maturity and increasing commercial success from 2012. A similar

shift to commodity computing on the server-side happened with platforms such as Amazon Web Services and Google

Cloud Platform. Cloud programmability is highly suited to both high-level languages and functional programming,

and from 2012 it became clear that Azure and cloud computing was a critical part of the future of F#. The same applied

to .NET more generally, and Azure became increasingly influential in technical strategy for .NET, C# and F#. Azure

also drove a sea-change in Microsoft as the company fully embraced open source for its programming languages,

SDKs and tools used to access Azure. At this time Microsoft also fully embraced the use of Linux within Azure –

unthinkable a decade before. Microsoft now “loved” Linux and it formed a core part of one of its growth businesses.

During this time, the consultancy Nessos in Athens developed a highly innovative cloud programming system

called MBrace (Dzik, Palladinos, Rontogiannis, Tsarpalis, & Vathis, 2013). Originally conceived as a distributed

programming system, later iterations emphasized cloud computing and big-data processing.

A New Dawn for F#, C# and .NET: Open and Cross-Platform, At Last!

Since its inception, F# faced its most important and seemingly insurmountable challenge. Open-source software had

become the norm, and .NET, F# and C# were now definite outliers in the world of programming languages and

runtimes: largely closed source – or at least not accepting external contributions.

At Microsoft there were many who advocated embracing open source, and the question had been lurking in the

background since the inception of .NET. In 2004 a “shared-source” version of .NET had been released. The source for

F# had also been included with early MSR releases but on a non-commercial basis. However open source was still

controversial, and, in several instances, projects had been open-sourced only to be stopped soon after. “Going open”

was thus still risky and needed to be explained carefully.

The Early History of F#

31

On November 11, 2010, Microsoft made the first release of the F# source under an OSI-approved license (Apache

2.0), placing F# in the vanguard of changes that would soon be embraced more widely.83 Even more importantly, on

April 3, 2014 Microsoft started accepting contributions to F#, which again “led the way” in embracing a full open-

engineering process.84 This also enabled a corresponding shift towards open-design and, with F# 4.0, the language

shifted to an open and transparent design process.85 The language design process and RFCs are now run through the

FSSF under the guidance of the author, Phillip Carter (program manager for F# at Microsoft) and Chet Husk.

The shift to openness had other effects too: in 2013 the .NET community finally developed a modern, effective

way to deliver packages through the creation of the NuGet package manager and the nuget.org package repository.

Prior to this, the poor packaging story for .NET components was a major inhibitor to the growth of both .NET and F#.

In 2014 a technical breakthrough was made with the creation of the FSharp.Compiler.Service (FCS) package by

Petricek, with many later contributors.86 This contains the core implementation of the F# compiler, editor tooling and

scripting engine in the form of a single library and can be used to make F# tooling for a wide range of situations. This

has allowed F# to be delivered into many more editors, scripting and documentation tools and allowed the development

of alternative backends for F#. Key editor community-based tooling includes Ionide, by Cieślak and contributors,

used for rich editing support in the cross-platform VSCode editor, with over 1M downloads at time of writing.87

Today, open-source is the norm for nearly all language and cloud tooling at Microsoft. The core F# tooling accepts

contributions and has many contributors. Currently hosting over 120,000 packages, with nearly 10 billion package

downloads, the NuGet package ecosystem is rapidly growing to be one of the largest and most comprehensive in the

world. The open source Paket client has been a popular way to access this ecosystem for F# developers88, and the open

source FAKE build scripting tool is a “gateway drug” for the adoption of F#.89

The F# Community and the F# Software Foundation

The F# community was initially sustained through hubFS.net forums (2005), created by Chris Barwick under the

pseudonym “optionsScalper”. The online Community for F# (2007) was created by Ryan Riley. The creation of the

SkillsMatter London meetup in 2012 propelled the growth of the F# community in the UK and Europe, and by 2018

over 50 F# meetup groups have been created worldwide.90 Community-run F# conferences include openfsharp, F#

Exchange and fableconf, and F# material is regularly presented at both .NET-friendly and functional-friendly

conferences. In 2011 the hubFS forums were replaced by FPish.net, implemented by Adam Granicz and others at

IntelliFactory.

In 2014, Tomas Petricek and Phil Trelford met with the author in a café in Cambridge and decided to start the F#

Software Foundation (FSSF), commonly known as “fsharp.org”. Initially this was an informal organization along the

lines of the Python Software Foundation. An online meeting of potential community members was initiated, and

Petricek and Trelford explained their goals: a fun, open web-based organization that could represent the interests of F#

users. Membership was free, requiring only agreement with the mission statement of the organization, and grew

quickly to about 500 members. In 2016 the FSSF incorporated as a U.S non-profit under the guidance of Reed Copsey

and Mathias Brandewinder, and now holds yearly board elections.

The formation of the FSSF was a highly significant moment for F#. Until then, a strong “culture of dependence”

had existed in the .NET and F# community, where users (including paying customers) expected Microsoft to solve all

problems, provide all resources and make all public communication about these technologies. With the formation of

the FSSF this situation changed: the F# community now had a strong voice that could collect social proof, advocate

for the use of F# and help guide community engineering efforts. As a result, F# evangelism began to be more effective.

One result of the community’s more active role in evangelizing F# was the creation of “F# for Fun and Profit” by Scott

Wlaschin, an impressive collection of didactic material about functional programming concepts and practical F# topics

that has been very influential in the F# community.

83 Announcing the F# Compiler + Library Source Code Drop https://blogs.msdn.microsoft.com/dsyme/2010/11/04/announcing-the-f-compiler-

library-source-code-drop/
84 Facilitating Open Contributions for the F# Compiler, Library and Visual F# Tools

https://blogs.msdn.microsoft.com/fsharpteam/2014/04/03/facilitating-open-contributions-for-the-f-compiler-library-and-visual-f-tools/
85 F# Language Design RFCs https://github.com/fsharp/fslang-design/
86 F# Compiler Services http://fsharp.github.io/FSharp.Compiler.Service/
87 Ionide - A Visual Studio Code package suite for cross platform F# development. http://ionide.io/
88 Paket: a dependency manager for .NET - https://fsprojects.github.io/Paket/
89 F# Make: a DSL for Build Tasks and more - https://fake.build/
90 http://community.fsharp.org/user_groups

https://blogs.msdn.microsoft.com/dsyme/2010/11/04/announcing-the-f-compiler-library-source-code-drop/
https://blogs.msdn.microsoft.com/dsyme/2010/11/04/announcing-the-f-compiler-library-source-code-drop/
https://blogs.msdn.microsoft.com/fsharpteam/2014/04/03/facilitating-open-contributions-for-the-f-compiler-library-and-visual-f-tools/
https://github.com/fsharp/fslang-design/
http://fsharp.github.io/FSharp.Compiler.Service/
http://ionide.io/
https://fsprojects.github.io/Paket/
https://fake.build/
http://community.fsharp.org/user_groups

 Don Syme

32

The FSSF now has over 2000 members and owns fsharp.org and github.com/fsharp. The FSSF is now at the heart

of the F# community and works with community stakeholders on F# education, diversity, tooling, governance,

conference and software initiatives.

.NET Core: Microsoft take C#, F# and .NET Cross-Platform

The question of cross-platform support for .NET was present from the start: even the shared source release of 2004

was cross-platform. In the same year, the Mono project was launched by Miguel de Icaza and others to implement a

fully open-source and cross-platform version of .NET. F# ran successfully on Mono since 2006.

In 2016, Microsoft released a fully open-source and cross-platform implementation of .NET called .NET Core. F#

support is included directly in the .NET Core SDK and included in the standard Linux packages. With v2.0 released,

.NET Core has been increasingly successful, and the use of F# on Linux and Docker is now mainstream within the

community. Cloud providers including Amazon and Google now support F# through .NET Core, which forms the

backbone of .NET support in cloud-hosted services such as Azure Functions, Amazon Lambda and Google Cloud

Platform.

The inclusion of F# directly in the .NET Core SDK is one the most significant long-term event in the history of the

language: F# is now supported everywhere that the .NET Core SDK is installed, in a simple, consistent way and with

full backing from both an open source community and major commercial interests. Further, .NET Core has enabled

the programming framework to throw off some of the very tight constraints that came with backwards compatibility

within the Windows ecosystem, allowing rapid introduction of new features into the runtime layer. .NET Core allows

side-by-side installations and changes in the runtime do not affect existing applications on the same machine. This

allows co-evolution of the runtime and its languages (always one of the strong points of OCaml, which originally

inspired F#) and has already had impact on the design of C# and F#, with the Span feature of C# 7.2 and F# 4.5

including both runtime and language elements.

F# for Mobile

The industry shift to mobile and cloud computing saw a huge rise in the importance of Android and iOS as platforms

from 2009 onwards. With millions of people using .NET, a startup called Xamarin was formed to allow C# and F#

developers to use their existing skills to program apps for Android, iOS and Windows devices. The Xamarin toolchain

converts .NET IL code to Java code (for Android) and binary code (for iOS). Xamarin also provided cross-platform

user interface programming options including Xamarin.Forms.

Xamarin was eventually acquired by Microsoft and, as of 2018, F# is a supported language in Microsoft’s mobile

programming offerings.

F#, JavaScript and Full Stack Programming

Since 2005 JavaScript has risen in importance as a delivery platform for programming languages. In 2007, Tomas

Petricek experimented with the first transpiler for F#. In 2008 the first version of WebSharper was released. Innovative

for its time, WebSharper is now a complete open-source full-stack programming toolkit using F# as its primary

programming language.

In 2015 the F# community also developed Fable, another JavaScript implementation of F#, for web development

in the JS/Node ecosystem (García-Caro, 2018). At the time of writing, Fable is seeing increasing adoption for web

programming. Fable became a key part of SAFE-Stack, a “full stack” solution for F# that incorporates web client,

server and cloud computing.

Retrospective

In telling the genesis and early history of F# we positioned it as one of several “reactions” by those experienced in

strongly-typed functional programming to the tidal wave of Java and object-oriented programming that engulfed the

industry in the mid-1990s and the rise of the JVM and .NET. In this light, F# was in the vanguard in changing how

we deliver functional languages: F# and Scala were among the first languages to be explicitly design and implemented

on the assumption of an industry-standard virtual-machine substrate such as the JVM or .NET. With hindsight this

decision was a good one and has subsequently been followed by many languages including Clojure, Nemerle, Kotlin

and Swift (the latter targeting the Objective-C runtime as substrate). A more recent wave of languages has assumed

JavaScript as a substrate, e.g. Elm, TypeScript and PureScript. This approach is now so common as to be industry-

standard for new language efforts.

http://github.com/fsharp

The Early History of F#

33

Programming languages get used for many purposes, and it would be impossible to do justice to the many

fascinating things people have done with F#. A key aspect of the early work of the FSSF was to collect and

communicate “social proof” about the effectiveness of F# through testimonials.91 Three uses are, however, particularly

striking. First, F# was used to implement LIQUi|> (“Liquid”), a quantum simulator for F#, by Dave Wecker and

Microsoft Quantum Computing.92 Second, F# was used in conjunction with Rhinoceros3D to construct the digital 3D

model used in the manufacturing of the cladding of

the Louvre Abu Dhabi Dome, a picture of which is

included in Figure 4. Thirdly, F# was the primary

language used at Jet.com, a start-up subsequently

acquired by Walmart at a valuation of over $3B, and

the first “unicorn” built using the Azure cloud

platform. These alone constitute success for

strongly-typed functional programming of a scale

undreamt of in 1998.

Since around 2007 strongly-typed functional

programming has shifted from relative obscurity to

be a central paradigm in programming. C#, Java,

C++, Scala, Kotlin, Swift, Rust and TypeScript now

all include elements of strongly-typed FP, and Apple

executives extolled functional features at the launch

of Swift in 2014, including pattern matching,

generics, option types, type inference, tuples and

closures, something unthinkable in 2005.93 Haskell, F# and OCaml have all grown in use, and newcomers such as Elm

and ReasonML are also finding good adoption.

What caused this shift? Some factors have been touched on in this paper – for example, the relative decline of

widget-based GUI programming, and the corresponding rise of web programming, cloud computing, multi-core

programming and scalable-data processing, all of which are amenable to functional programming. The rise in

importance of JavaScript is also surely of relevance: although untyped it has many functional features. That said, it is

noticeable that the transition also seems to have started when Scala and F# matured and received support at the heart

of the computing industry. More recent entrants such as Swift, ReasonML, TypeScript and Elm face many challenges,

but a lack of industry awareness of strongly-typed functional programming is not one of them. We’ve come a long way

since 2007, and Wadler’s question “Why no one uses functional programming?” has been consigned to the many short-

lived curiosities of history.

F#’s Influence

The most obvious direct influence of F# has been on C#. C# 2.0 (generics) was preliminary work leading up to the

creation of F#. C# 3.0 (“var x = …”), C# 5.0 (tasks/async), C# 7.0 (tuples, pattern matching) and C# 8.0 (non-null

pointers as the default) were all heavily influenced by F#.94 Given that C# is one of the most widely adopted languages

today, and underwent rapid iteration in the 2000s95, it is reasonable to claim that the presence of F# within the Microsoft

Developer Division played an important role as a bridge between the stream of ideas that constitute “functional

programming” and C#. That said, the ideas have flowed both ways, with F# also influenced by C# 1.0 (objects,

properties, events), C# 3.0 (LINQ) and C# 7.0 (Span). There have also been influences on C# from other sources such

as Icon (C# 2.0 Iterators), Python (C# 4.0) and the internal projects Axum by Gustafsson et al96 (C# 5.0 state machine

compilation of async) and M#97 (C# 7.0 Span).

91 http://fsharp.org/testimonials
92 http://stationq.github.io/Liquid/
93 Apple WWDC 2014 - Swift Introduction https://www.youtube.com/watch?v=MO7Ta0DvEWA
94 Why you should use F#, Mads Torgersen and Phillip Carter, Microsoft https://channel9.msdn.com/Events/Build/2017/T6064
95 The language designs of Java, C++, JavaScript and Python all progressed during this time, but to a lesser extent than C#.
96 https://en.wikipedia.org/wiki/Axum_(programming_language)
97 http://joeduffyblog.com/2015/11/03/blogging-about-midori/

Figure 4 The Louvre Abu Dhabi - the digital 3D model to

manufacture the cladding used F#

http://fsharp.org/testimonials
http://stationq.github.io/Liquid/
https://www.youtube.com/watch?v=MO7Ta0DvEWA
https://channel9.msdn.com/Events/Build/2017/T6064
https://en.wikipedia.org/wiki/Axum_(programming_language)
http://joeduffyblog.com/2015/11/03/blogging-about-midori/

 Don Syme

34

The addition of first-class events and compositional event-combinator programming to F# influenced directly the

initiation of the Rx project, a reactive-functional programming toolkit now re-implemented as a pattern in multiple

languages including Rx.JS. 98 The early influence of F# here was recounted informally to the author by Wes Dyer.

Other direct influences of F# on languages are harder to measure: language designers tend to be coy about their

influences both direct and indirect. Both Elixir and Elm use the |> operator and there are ways to emulate that operator

in other languages such as Scala and R. The Scala designer, Martin Odersky, was intimately aware of F# throughout

its history in his role on the MSR Cambridge Technical Advisory Board and EPFL research includes efforts to bring

F# type providers to Scala.99 The apparent influence of F# on the creation of Scala extractors was mentioned earlier

in this article. Swift seems to have been influenced by F#, and Kotlin seems to use C#, F# and other languages as

reference points. Rust seems to have been influenced by OCaml, and the author Graydon Hoare refers to F# extensively

when discussing “What’s Next” after Rust.100 TypeScript was directly influenced by F#: one of the originators of

TypeScript was Luke Hoban, who began TypeScript (then called Strada) immediately after working on F# 2.0.

Recently he noted the influence of F# on early parts of the TypeScript design.101 The extent of this influence is a matter

of counter-factual debate, but it is the author’s opinion that TypeScript would not have appeared from a Microsoft team

in anything close to its current form without the influence of F#.

From the outset, F# placed non-nullness as central to its design: the value “null” can’t normally be used in

conjunction with F#-declared types, and in practice null-reference exceptions are rare.102 This affects many micro-

decisions in the language. Coming from the OCaml perspective, this is an obvious choice, and in the cultural context

of MSR Cambridge – including the presence of Tony Hoare at the lab and the memory of his “Billion Dollar Mistake

– any other choice would have been unthinkable.103 However, languages like Scala didn’t make the same decision,

and even by 2014 F# was the only significant language running on the JVM or .NET that placed non-nullness as central

to its design. At the time of writing, in August 2018, C# 8.0 is planning to make non-nullness the default, a dramatic

shift that we hope will herald a shift to eliminate this cancer from the programming industry. F# has been central to

this process.

F# was the first language to introduce an “async” modality to allow the localized reinterpretation of the existing

control constructs of the language. 104 This meant that converting a piece of code from “synchronous” to

“asynchronous” involved nothing more than wrapping “async { … }” around the code and marking up the “await”

points (“let!” in F#). This directly influenced the async/await mechanism added to C# 5.0 in 2012 – the F# version

was first presented to the C# designers in 2007 and many discussions were held in between. The C# async/await

feature has been influential on TypeScript, Kotlin and other languages.105

Mistakes and Questions

Mistakes are hard to admit, and best seen in their historical context. From the early history, the greatest mistake related

to F# was that neither .NET nor the language were open source or using open engineering. This mistake was well-

understood by the core contributors at the time and many across Microsoft were advocating for a shift to open-source.

Put simply, an innovative language grew in the research lab of a company that had not yet embraced open source: those

involved did what they could through source drops, and the problem was eventually solved via the gradual shift to

open source from 2011 to 2014. The rectification of this mistake will likely be the most significant development in the

history of the language. Further, the fact that F# was able to navigate 2002-2014 while using closed-engineering is

largely due to the recognition of its qualities by decision makers at Microsoft.

One unfortunate side effect of closed-engineering was discontinuity: most early contributors to F# soon moved on

to other jobs. Because F# was not open source, they were unable to continue to contribute to the codebase, even

transitionally. Today, contributors can come and go freely and frequently answer questions about older code.

98 https://blogs.msdn.microsoft.com/dsyme/2006/03/23/f-first-class-events-simplicity-and-compositionality-in-imperative-reactive-programming/
99 Scala macros: let our powers combine! On how rich syntax and static types work with metaprogramming. Eugene Burmako, SCALA@ECOOP

2013 https://www.semanticscholar.org/paper/Scala-macros%3A-let-our-powers-combine!%3A-on-how-rich-

Burmako/34ac77d1b2646c9a48c519d91e90b584296f833c
100 https://graydon.livejournal.com/256533.html
101 https://hackernoon.com/the-first-typescript-demo-905ea095a70f
102 The F# community joke being “Question: What can C# do that F# can’t?” “Answer: NullReferenceException!”
103 Null References: The Billion Dollar Mistake, Tony Hoare, https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-

Tony-Hoare
104 Don Syme, Tomas Petricek and Dmitry Lomov, The F# Asynchronous Programming Model, PADL 2011,

http://tomasp.net/academic/papers/async/
105 The history of async programming, continuations and co-routines would need to be the subject of a different article, stretching back to LISP.

C# 5.0 added new elements to the design of “async/await” suitable for an ALGOL language, including state-machine compilation, derived

originally from the Axum prototype. In this light, F# async was a predecessor to C# async/await, though the latter was not a copy of the former.

https://blogs.msdn.microsoft.com/dsyme/2006/03/23/f-first-class-events-simplicity-and-compositionality-in-imperative-reactive-programming/
https://www.semanticscholar.org/paper/Scala-macros%3A-let-our-powers-combine!%3A-on-how-rich-Burmako/34ac77d1b2646c9a48c519d91e90b584296f833c
https://www.semanticscholar.org/paper/Scala-macros%3A-let-our-powers-combine!%3A-on-how-rich-Burmako/34ac77d1b2646c9a48c519d91e90b584296f833c

The Early History of F#

35

From a technical perspective, F# has many achievements, and the core feature set has been stable and even binary-

compatible since F# 1.9. There are, of course, some design mistakes, including active bugs. Of these, the “statically

resolved type parameter” mechanism is perhaps the one causing most corner-case niggles. Originally designed just for

operator overloading, the mechanism is also used by advanced F# users as a type constraint mechanism akin to Haskell

type classes. The combination of complex SRTP constraints with algorithm-based type inference is, however, fragile,

and it is proving hard to fix some mistakes in the resolution of SRTP constraints without breaking some existing code

in corner cases. If backwards compatibility were not a major concern this would not be a problem, however it is highly

valued by both the F# community and Microsoft design groups.

The design of F# incorporated some features of OCaml which, in retrospect, could have been omitted. One example

is generic comparison: OCaml supports unconstrained generic structural operators =, <>, <, >, <=, >=, compare, min

and max. The F# design enforces “equality” and “comparable” type constraints on these operators, but runtime the

implementation of generic comparison is complicated, particularly because of corner cases such as NaN on floating

point numbers. There are also performance implications when using these operators. In retrospect, the whole generic

comparison feature could likely have been omitted from F#, or greatly constrained.

One recurring theme of F# language evolution has been its interaction with corresponding C# and .NET design

elements. For example, F# 1.9 added Async<T> in 2007. In contrast, .NET added Task<T> in 2010 and C# 5.0 added

language integrated support for Task<T> in 2012. At the high level these are all “the same thing”, i.e. lightweight user-

level threading. However, even at the time of writing, in 2018, these sit awkwardly together. They interoperate: you

can generate Task<T> from an Async<T>, and await a Task<T> in an Async<T>, but each has distinct advantages (when

using Async<T> the F# programmer is relieved of the burden of passing cancellation tokens explicitly, when using

Task<T> performance can produce fewer allocations).

One small but fortuitous mistake was the precedence of the “back-piping” operator f <| x, which can’t be used in

iterated fashion f2 <| f1 <| x due to a left-associative precedence. This was not deliberate – the precedence was

simply taken from OCaml - but was never fixed because the preferred F# style is x |> f1 |> f2, so the mistake has

the benefit of restricting the use of the operator. The F# library also includes multi-argument back-piping operators

<|| and <||| which should never have been included simply for stylistic reasons: code using them is very rare but also

incomprehensible.

This tension, where F# added one version of a feature, only for C# to add a modified version of a similar feature

later, was repeated even with tuples: F# had boxed tuples from the outset in 2002, and C# added unboxed tuples in

2017. In 2017 the F# design team had to adjust F# to allow both boxed and unboxed tuples. The introduction of C#

expression quotations in 2007 was similar: F# had quotations Expr<T>, but C#’s expression quotation added LINQ’s

Expression<T>, widely used by .NET libraries. C# expressions quotations are strictly more limited than F# quotations

(covering only C# expressions, and not statement forms), and more complicated, but they are effectively a .NET

standard. To the author’s knowledge no other language dances quite so closely with a “bigger” language. It is important

for the long-term integrity of the F# design that these adjustments are done with extreme care.

As a language design, F# has many opportunities to evolve, and over 200 active language suggestions are recorded

on the “F# Language Suggestions” site that forms part of the official FSSF language design process.106 Two of the

most popular suggestions are type classes and higher kind type parameterization. However, in both cases the author

has indicated an unwillingness to add this feature to F# without also adding a matching feature to C#, partly to avoid

a recurring pattern of multiple semi-compatible versions of similar features.

As indicated in the discussion on .NET Core, significant evolution steps are likely to happen in conjunction with

the design of both C# and the .NET runtime itself. One example is the addition of safe high-performance memory

primitives called “Span” in F# 4.5 and C# 7.2. This feature had the added benefit of helping iron out various minor

problems present since the F# 2.0 design.

Conclusion

In this article, we have tried to sketch the long arc from Robin Milner in the 1970s to F# as it is today, with a focus on

the genesis and early history of F# and the context in which that happened. F# has come a long way since 2001, when

it was an idea in an email on the OCaml mailing list, or 2006, when it was a Microsoft Research project, or 2010, when

F# 2.0 was effectively tied to Windows. The core spirit of ML - succinct, type-safe, correct, pragmatic functional-first

programming - has held true throughout this journey, with the integration of new ideas along the way. F# today is

open-source and cross-platform, with both commercial support and a vibrant community. It has solid future evolution

path and is usable as a practical and enjoyable functional-first programming language in many application domains.

106 https://github.com/fsharp/fslang-suggestions/

https://github.com/fsharp/fslang-suggestions/

 Don Syme

36

Acknowledgements

Many thanks to Andrea Magnorsky, Phillip Carter, Darren Platt, Natallie Baikevich, Richard Campbell, Adam Granicz,

Tomas Petricek, Mark Laws, Miguel de Icaza and Simon Peyton Jones for feedback on early drafts of this paper. Any

mistakes that remain are the author’s responsibility. Since this is a first draft, please contact the author as soon as

possible with extra information or corrections.

REFERENCES

Alves-Foss, J. (1999). Formal Syntax and Semantics of Java. Berlin: Springer-Verlag.
Benton, N., & Kennedy, A. (1999). Interlanguage working without tears: blending SML with Java. In ACM SIGPLAN Notices - ICFP '99

Proceedings of the fourth ACM SIGPLAN International Conference on Functional Programming (pp. 126 - 137). ACM.
Benton, N., Kennedy, A., & Russo, C. V. (2004). Adventures in Interoperability: The SML.NET Experience. In PPDP '04 - Proceedings of the

6th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (pp. 215-226). ACM.
Bracha, G., Odersky, M., Stoutamire, D., & Wadler, P. (1998). Making the future safe for the past: Adding Genericity to the Java

Programming Language. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (pp. 183-200). ACM SIGPLAN Notices.

Cardelli, L., & Abadi, M. (1996). A Theory of Objects. New York: Springer-Verlag.
Duffy, J., & Sutter, H. (2008). Concurrent Programming on Windows: Architecture, Principles, and Patterns. Addison Wesley.
Dzik, J., Palladinos, N., Rontogiannis, K., Tsarpalis, E., & Vathis, N. (2013). MBrace: Cloud Computing with Monads. In Proceedings of the

Seventh Workshop on Programming Languages and Operating Systems. New York: ACM.
Emir, B., Odersky, M., & Williams, J. (2007). Matching Objects with Patterns. In ECOOP '07 - Proceedings of the 21st European Conference on

Object-Oriented Programming (pp. 273-298). Springer-Verlag.
Erwig, M. (1996). Active Patterns. In 8th Int. Workshop on Implementation of Functional Languages, LNCS 1268 (pp. 21-40).
García-Caro, A. a. (2018). Fable - The compiler that emits JavaScript you can be proud of! Retrieved from http://fable.io
Gordon, M. (2000). From LCF to HOL: a short history. In Proof, language, and interaction (pp. 169-185). MIT Press. Retrieved from

https://www.cl.cam.ac.uk/archive/mjcg/papers/HolHistory.pdf
Granicz, A. (2018). WebSharper. Retrieved from http://websharper.com
Harper, R., Milner, R., & Tofte, M. (1990). The Formal Definition of Standard ML. MIT Press.
Kennedy, A., & Syme, D. (2001). Design and Implementation of Generics for the .NET Common Language Runtime. In PLDI 2001 -

Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation. New York: ACM.
Leroy, X. (2004). A few papers on Caml. Retrieved from https://caml.inria.fr/about/papers.en.html
MacKenzie, D. (2001). Mechanizing Proof - Computing, Risk, and Trust. MIT Press.
MacQueen, D. (2015, September 3). The History of Standard ML. Retrieved from http://sml-family.org/history/ML2015-talk.pdf
Microsoft. (2012). Key Events in Microsoft History. Retrieved from http://download.microsoft.com/download/7/e/a/7ea5ca8c-4c72-

49e9-a694-87ae755e1f58/keyevents.doc
Petricek, T., & Syme, D. (2010). Collecting Hollywood's garbage: Avoiding space-leaks in composite events. In ISMM 2010 - Proceedings of

International Symposium on Memory Management.
Petricek, T., & Syme, D. (2011). Joinads: a retargetable control-flow construct for reactive, parallel and concurrent programming. In PADL

2011 - Proceedings of Practical Aspects of Declarative Languages.
Petricek, T., & Syme, D. (2014). The F# Computation Expression Zoo. In PADL 2014 - Proceedings of Practical Aspects of Declarative

Languages.
Petricek, T., Guerra, G., & Syme, D. (2016). Types from data: Making structured data first-class citizens in F#. In PLDI 2016 - Proceedings of

Conference on Programming Language Design and Implementation.
Rabhi, F., & Gorlatch, S. (2003). Patterns and Skeletons for Parallel and Distributed Computing. London: Springer-Verlag.
Sangiorg, D., & Walker, D. (2001). PI-Calculus: A Theory of Mobile Processes. New York: Cambridge University Press.
Seger, C., Jones, R., O'Leary, J., Melham, T., Aagaard, M., Barrett, C., & Syme, D. (2005). An industrially effective environment for formal

hardware verification. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 24, Issue 9 (pp.
1381-1405).

Syme, D. (1993). Reasoning with the Formal Definition of Standard ML in HOL. In Higher Order Logic Theorem Proving and Its Applications
(pp. 43-60). Springer-Verlag.

Syme, D. (1995). A new interface for HOL - Ideas, issues and implementation. In LNCS 971 - Higher Order Logic Theorem Proving and Its
Applications pp 324-339. Springer-Verlag.

Syme, D. (1999). Declarative theorem proving for operational semantics (PhD thesis). Cambridge. Retrieved from
https://www.repository.cam.ac.uk/handle/1810/252967

Syme, D. (2004, September 4). F#, GUI Programming and the Problem of Mutually Referential Objects in ML-style Programming . Retrieved
from https://github.com/dsyme/fsharp-presentations/blob/master/2004-09-28-serious/dsyme-serious-sep-04-v3.ppt

Syme, D. (2006). Initializing Mutually Referential Abstract Objects: The Value Recursion Challenge. Electronic Notes in Theoretical
Computer Science (ENTCS), 148(2), 3-25.

Syme, D. (2006). Leveraging .NET meta-programming components from F#: integrated queries and interoperable heterogeneous
execution. In ML '06 Proceedings of the 2006 workshop on ML (pp. 43-54). New York: ACM.

Syme, D., Neverov, G., & Margetson, J. (2007). Extensible Pattern Matching via a Lightweight Language Extension. In ICFP '07 - Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming (pp. 29-40). ACM.

Wadler, P. (1987). Views: A Way for Pattern Matching to Cohabit with Data Abstraction. In POPL '87 - Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (pp. 307-313). New York: ACM.

Wadler, P. (1998, August 1998). Why no one uses functional languages. ACM SIGPLAN Notices, 33(8), pp. 23-27.
Wlaschin, S. (2017). Domain Modeling Made Functional. Pragmatic Bookshelf.

