
Implementing Fun
tional Languages:

a tutorial

Simon L Peyton Jones

Department of Computing S
ien
e, University of Glasgow

and David R Lester

Department of Computer S
ien
e, University of Man
hester

 1991

Mar
h 23, 2000

This book is dedi
ated to the memory of our friend and
olleague Jon Salkild

(1963-1991).

1

Contents

Prefa
e 5

1 The Core language 10

1.1 An overview of the Core language . 11

1.2 Syntax of the Core language . 15

1.3 Data types for the Core language . 16

1.4 A small standard prelude . 19

1.5 A pretty-printer for the Core language . 20

1.6 A parser for the Core language . 28

2 Template instantiation 42

2.1 A review of template instantiation . 42

2.2 State transition systems . 48

2.3 Mark 1: A minimal template instantiation graph redu
er 50

2.4 Mark 2: let(re
) expressions . 62

2.5 Mark 3: Adding updating . 63

2.6 Mark 4: Adding arithmeti
 . 65

2.7 Mark 5: Stru
tured data . 68

2.8 Alternative implementationsy . 74

2.9 Garbage
olle
tiony . 76

3 The G-ma
hine 83

3.1 Introdu
tion to the G-ma
hine . 83

3.2 Code sequen
es for building templates . 85

3.3 Mark 1: A minimal G-ma
hine . 89

2

3.4 Mark 2: Making it lazy . 102

3.5 Mark 3: let(re
) expressions . 105

3.6 Mark 4: Adding primitives . 111

3.7 Mark 5: Towards better handling of arithmeti
 119

3.8 Mark 6: Adding data stru
tures . 123

3.9 Mark 7: Further improvements . 131

3.10 Con
lusions . 141

4 TIM: the three instru
tion ma
hine 143

4.1 Ba
kground: How TIM works . 143

4.2 Mark 1: A minimal TIM . 151

4.3 Mark 2: Adding arithmeti
 . 161

4.4 Mark 3: let(re
) expressions . 167

4.5 Mark 4: Updating . 172

4.6 Mark 5: Stru
tured data . 183

4.7 Mark 6: Constant appli
ative forms and the
ode storey 189

4.8 Summary . 192

5 A Parallel G-ma
hine 196

5.1 Introdu
tion . 196

5.2 Mark 1: A minimal parallel G-ma
hine . 200

5.3 Mark 2: The evaluate-and-die model . 209

5.4 Mark 3: A realisti
 parallel G-ma
hine . 212

5.5 Mark 4: A better way to handle blo
king . 214

5.6 Con
lusions . 216

6 Lambda Lifting 217

6.1 Introdu
tion . 217

6.2 Improving the expr data type . 217

6.3 Mark 1: A simple lambda lifter . 221

6.4 Mark 2: Improving the simple lambda lifter . 230

6.5 Mark 3: Johnsson-style lambda lifting . 231

6.6 Mark 4: A separate full laziness pass . 236

3

6.7 Mark 5: Improvements to full laziness . 250

6.8 Mark 6: Dependen
y analysisy . 252

6.9 Con
lusion . 260

A Utilities module 262

A.1 The heap type . 262

A.2 The asso
iation list type . 264

A.3 Generating unique names . 265

A.4 Sets . 265

A.5 Other useful fun
tion de�nitions . 267

B Example Core-language programs 268

B.1 Basi
 programs . 268

B.2 let and letre
 . 269

B.3 Arithmeti
 . 269

B.4 Data stru
tures . 270

4

Prefa
e

This book gives a pra
ti
al approa
h to understanding implementations of non-stri
t fun
tional

languages using lazy graph redu
tion. The book is intended to be a sour
e of pra
ti
al labwork

material, to help make fun
tional-language implementations `
ome alive', by helping the reader

to develop, modify and experiment with some non-trivial
ompilers.

The unusual aspe
t of the book is that it is meant to be exe
uted as well as read. Rather than

merely presenting an abstra
t des
ription of ea
h implementation te
hnique, we present the

ode for a
omplete working prototype of ea
h major method, and then work through a series

of improvements to it. All of the
ode is available in ma
hine-readable form.

Overview of the book

The prin
ipal
ontent of the book is a series of implementations of a small fun
tional language

alled the Core language. The Core language is designed to be as small as possible, so that it is

easy to implement, but still ri
h enough to allow modern non-stri
t fun
tional languages to be

translated into it without losing eÆ
ien
y. It is des
ribed in detail in Chapter 1, in whi
h we

also develop a parser and pretty-printer for the Core language.

Appendix B
ontains a sele
tion of Core-language programs for use as test programs thoughout

the book.

The main body of the book
onsists of four distin
t implementations of the Core language.

� Chapter 2 des
ribes the most dire
t implementation, based on template instantiation.

� Chapter 3 introdu
es the G-ma
hine, and shows how to
ompile the program to sequen
es

of instru
tions (G-
ode) whi
h
an be further translated to ma
hine
ode.

� Chapter 4 repeats the same exer
ise for a di�erent abstra
t ma
hine, the Three Instru
tion

Ma
hine (TIM), whose evaluation model is very di�erent from that of the G-ma
hine. The

TIM was developed more re
ently than the G-ma
hine, so there is mu
h less other literature

about it. Chapter 4 therefore
ontains a rather more detailed development of the TIM's

evaluation model than that given for the G-ma
hine.

� Finally, Chapter 5 adds a new dimension by showing how to
ompile fun
tional programs

for a parallel G-ma
hine.

For ea
h of these implementations we dis
uss two main parts, the
ompiler and the ma
hine

5

?

?

?

q

R	

)

? ? ? ?

Chapter 4 Chapter 5Chapter 3Chapter 2

Sour
e program

Core program

ompiler

Parallel G-ma
hine

ompiler

G-ma
hine

Template

interpreter

G-ma
hine

interpreter

TIM

interpreter

Parallel G-ma
hine

interpreter

Chapter 1

Chapter 6Lambda lifter

Parser

Template

ompiler

ompiler

TIM

Figure 1: Overview of the implementations

interpreter. The
ompiler takes a Core-language program and translates it into a form suitable

for exe
ution by the ma
hine interpreter.

The ma
hine interpreter simulates the exe
ution of the
ompiled program. In ea
h
ase the

interpreter is modelled as a state transition system so that there is a very
lear
onne
tion

between the ma
hine interpreter and a `real' implementation. Figure 1 summarises the stru
ture

of our implementations.

One important way in whi
h the Core language is restri
tive is in its la
k of lo
al fun
tion

de�nitions. There is a well-known transformation,
alled lambda lifting, whi
h turns lo
al fun
-

tion de�nitions into global ones, thus enabling lo
al fun
tion de�nitions to be written freely

and transformed out later. In Chapter 6 we develop a suitable lambda lifter. This
hapter is

more than just a re-presentation of standard material. Full laziness is a property of fun
tional

programs whi
h had previously been seen as inseparable from lambda lifting. In Chapter 6 we

show that they are in fa
t quite distin
t, and show how to implement full laziness in a separate

6

pass from lambda lifting.

Throughout the book we use a number of utility fun
tions and data types whi
h are de�ned in

Appendix A.

Some se
tions and exer
ises are a little more advan
ed, and
an be omitted without major loss.

They are identi�ed with a dagger, thus: y.

The prototyping language

The question arises of what language to use for writing our implementations. We have
hosen to

use an existing fun
tional language, Miranda

1

. One of the major uses of fun
tional languages is

for rapid prototyping, be
ause they allow us to express the fundamental aspe
ts of the prototype

without getting bogged down in administrative detail. We hope that this book
an serve as a

large example to substantiate this
laim. In addition, working through this book should provide

useful experien
e of writing substantial fun
tional programs.

This book is not an introdu
tion to fun
tional programming. We assume that you have done

some programming in a fun
tional language already. (Suitable introdu
tions to fun
tional pro-

gramming in
lude [Bird and Wadler 1988℄ and [Holyer 1991℄.) Nevertheless, the programs de-

veloped in this book are quite substantial, and we hope they will serve as a role model, to stret
h

and develop your ability to write
lear, modular fun
tional programs.

Miranda
ode is written in typewriter fount using the `inverse
omment
onvention'. For exam-

ple, here is a de�nition of a fun
tion whi
h takes the length of a list:

> length [℄ = 0

> length (x:xs) = 1 + length xs

The > mark in the left margin indi
ates that this is a line of exe
utable Miranda
ode. Not

only does this distinguish Miranda
ode from Core-language programs (whi
h are also written

in typewriter fount), but Miranda itself re
ognises this
onvention, so the text of ea
h
hapter

of this book is exe
utable Miranda
ode! Indeed, it has all been exe
uted. (A
tually, a small

amount of pre-pro
essing is required before feeding the text to Miranda, be
ause we sometimes

write several versions of the same fun
tion, as we re�ne the implementation, and Miranda

obje
ts to su
h multiple de�nitions. The pre-pro
essing is simply a sele
tion pro
ess to pi
k the

parti
ular version we are interested in.)

The text
ontains all the
ode required for the initial version of ea
h implementation. O

asion-

ally, this be
omes rather tiresome, be
ause we have to present
hunks of
ode whi
h are not very

interesting. Su
h
hunks
ould have been omitted from the printed text (though not from the

exe
utable version), but we have
hosen to in
lude them, so that you
an always �nd a de�nition

for every fun
tion. (The index
ontains an entry for every Miranda fun
tion de�nition.)

Like most fun
tional languages, Miranda
omes with a
olle
tion of pre-de
lared fun
tions,

whi
h are automati
ally in s
ope. We make use of these throughout the text, referring to them

as standard fun
tions. You
an �nd details of all the standard fun
tions in Miranda's online

manual.

1

Miranda is a trade mark of Resear
h Software Ltd.

7

What this book does not
over

We fo
us ex
lusively in this book on the `ba
k end' of fun
tional-language
ompilers. We make

no attempt to dis
uss how to translate programs written in a fully
edged fun
tional language,

su
h as Miranda, into the Core language, or how to type-
he
k su
h programs.

The development throughout is informal. It would be ni
e to give a formal proof of the equiva-

len
e between the meaning of a Core program and its implementation, but this is quite a hard

task. Indeed, the only full proof of su
h an equivalen
e whi
h we know of is [Lester 1988℄.

Relationship to The implementation of fun
tional programming languages

An earlier book by one of us, [Peyton Jones 1987℄,
overs similar material to this one, but in a

less pra
ti
ally oriented style. Our intention is that a student should be able to follow a
ourse

on fun
tional-language implementations using the present book alone, without referen
e to the

other.

The s
ope of this book is somewhat more modest,
orresponding to Parts 2 and 3 of [Peyton Jones 1987℄.

Part 1 of the latter, whi
h dis
usses how a high-level fun
tional language
an be translated into

a
ore language, is not
overed here at all.

Getting the ma
hine-readable sour
es

You
an get all the sour
e
ode for this book, by network �le transfer (FTP) from the several

sites. In ea
h
ase, you need only get the �le

pjlester-n.m.tar.Z

where n.m is the
urrent version number of the book. There is always only one su
h �le, but

the n.m may vary as we
orre
t errors and otherwise improve the material. On
e you have got

the �le, run the
ommand

z
at pjlester-n.m.tar.Z | tar xf -

and then read or print the README �le, and the DVI �le installation.dvi. If you don't have

z
at, do the following instead:

un
ompress pjlester-n.m.tar.Z

tar xf pjlester-n.m.tar

The sites where the sour
es are held are as follows.

Site Host name Host address Dire
tory

Glasgow ftp.d
s.glasgow.a
.uk 130.209.240.50 pub/pj-lester-book

Yale nebula.
s.yale.edu 128.36.13.1 pub/pj-lester-book

Chalmers animal.
s.
halmers.se 129.16.2.27 pub/pj-lester-book

Log in as anonymous, and use your ele
troni
 mail address as password. Here is a sample Internet

FTP session:

8

% ftp nebula.
s.yale.edu

Conne
ted to NEBULA.SYSTEMSZ.CS.YALE.EDU.

220 nebula FTP server (SunOS 4.0) ready.

Name (nebula.
s.yale.edu:guestftp): anonymous

331 Guest login ok, send ident as password.

Password: simonpj�d
s.glasgow.a
.uk

230 Guest login ok, a

ess restri
tions apply.

ftp> type binary

200 Type set to I.

ftp>
d pub/pj-lester-book

250 CWD
ommand su

essful.

ftp> get pjlester-1.2.tar.Z

<messages about a su

essful transfer would
ome here>

ftp> bye

Within the UK, you may get the above �le from uk.a
.glasgow.d
s by anonymous UK NIFTP

(binary mode; user: guest; password: your e-mail address); request:

<FP>/pj-lester-book/�lename

A typi
al
ommand you might use on at least some Unix ma
hines is:

pf -b '<FP>/pj-lester-book/pjlester-1.2.tar.Z�uk.a
.glasgow.d
s'

pjlester-1.2.tar.Z

Errors

We would greatly appre
iate your help in eliminating mistakes in the text. If you un
over any

errors, please
onta
t one of us at the addresses given below.

9

A
knowledgements

We would like to thank Professor Rajaraman from the Indian Institute of S
ien
e in Bangalore

for the invitation to give the
ourse on whi
h this book is based, and the British Coun
il for

sponsoring the visit.

A number of people have made helpful
omments on drafts of this material. We thank them

very mu
h, espe
ially Guy Argo, Cordelia Hall, Denis Howe, John Keane, Ni
k North, David

Wakeling and an anonymous reviewer.

Simon L. Peyton Jones David R. Lester

Department of Computing S
ien
e Department of Computer S
ien
e

University of Glasgow G12 8QQ University of Man
hester M13 9PL

email: simonpj�d
s.glasgow.a
.uk email: dlester�
s.man
hester.a
.uk

10

Chapter 1

The Core language

All our implementations take some program written in a simple Core language and exe
ute it.

The Core language is quite impoverished, and one would not want to write a large program in

it. Nevertheless it has been
arefully
hosen so that it is possible to translate programs in a

ri
h fun
tional language (su
h as Miranda) into the Core language without losing expressiveness

or eÆ
ien
y. The Core language thus serves as a
lean interfa
e between the `front end' of the

ompiler, whi
h is
on
erned with high-level language
onstru
ts, and the `ba
k end', whi
h is

on
erned with implementing the Core language in various di�erent ways.

We begin with an informal introdu
tion to the Core language (Se
tion 1.1). Following this, we

de�ne the Core language more formally, by giving:

� Its syntax (Se
tion 1.2).

� Miranda data types
oreProgram and
oreExpr for Core-language programs and expres-

sions respe
tively (Se
tion 1.3). These will serve as the input data types for the
ompilers

we build.

� De�nitions for a small standard prelude of Core-language fun
tions, whi
h will be made

available in any Core program (Se
tion 1.4).

� A pretty-printer, whi
h transforms a Core-language program into a
hara
ter string whi
h,

when printed, is a formatted version of the program (Se
tion 1.5).

� A parser, whi
h parses a
hara
ter string to produ
e a Core-language program (Se
-

tion 1.6).

This
hapter has a se
ond purpose: it introdu
es and uses many of the features of Miranda whi
h

we will use throughout the book before we get involved with any of our fun
tional-language

implementations.

11

1.1 An overview of the Core language

Here is an example Core program

1

, whi
h evaluates to 42:

main = double 21

double x = x + x

A Core program
onsists of a set of super
ombinator de�nitions, in
luding a distinguished one,

main. To exe
ute the program, we evaluate main. Super
ombinators
an de�ne fun
tions, su
h

as the de�nition of double. double is a fun
tion of one argument, x, whi
h returns twi
e

its argument. The program looks quite similar to the top level of a Miranda s
ript, ex
ept

that no pattern mat
hing is permitted for fun
tion arguments. Pattern mat
hing is performed

by a separate Core language
onstru
t, the
ase expression, whi
h is dis
ussed below. Ea
h

super
ombinator is de�ned by a single equation whose arguments are all simple variables.

Noti
e that not all super
ombinators have arguments. Some, su
h as main, take no arguments.

Super
ombinators with no arguments are also
alled
onstant appli
ative forms or CAFs and,

as we shall see, often require spe
ial treatment in an implementation.

1.1.1 Lo
al de�nitions

Super
ombinators
an have lo
al de�nitions, using the let
onstru
t of the Core language:

main = quadruple 20 ;

quadruple x = let twi
e_x = x+x

in twi
e_x + twi
e_x

Here twi
e_x is de�ned lo
ally within the body of quadruple to be x+x, and quadruple re-

turns twi
e_x + twi
e_x. Like Miranda where
lauses, lo
al de�nitions are useful both to

name intermediate values, and to save re
omputing the same value twi
e; the programmer
an

reasonably hope that only two additions are performed by quadruple.

A let expression is non-re
ursive. For re
ursive de�nitions, the Core language uses the letre

onstru
t, whi
h is exa
tly like let ex
ept that its de�nitions
an be re
ursive. For example:

infinite n = letre
 ns =
ons n ns

in ns

The reason that we distinguish let from letre
 in the Core language (rather than providing

only letre
) is that let is a bit simpler to implement than letre
, and we may get slightly

better
ode.

let and letre
 are similar to the Miranda where
lause, but there are a number of important

di�eren
es:

� The where
lause always de�nes a re
ursive s
ope. There is no non-re
ursive form.

1

We use typewriter fount for Core programs, but without the initial > sign whi
h distinguishes exe
utable

Miranda
ode.

12

� A where
lause
an be used to de�ne lo
al fun
tions, and to perform pattern mat
hing:

... where f x = x+y

(p,q) = zip xs ys

Neither of these fa
ilities is provided by the Core language let and letre
 expressions.

Fun
tions
an only be de�ned at the top level, as super
ombinators, and pattern mat
hing

is done only by
ase expressions.

In short, the left-hand side of a let or letre
 binding must be a simple variable.

� The let/letre

onstru
t is an expression. It is therefore quite legal to write (for exam-

ple):

quad_plus_one x = 1 + (let tx = x+x in tx+tx)

In
ontrast a where
lause in Miranda
an only be atta
hed to de�nitions. (One reason

for this is that it allows the de�nitions in a Miranda where
lause to range over several

guarded right-hand sides.)

1.1.2 Lambda abstra
tions

Fun
tions are usually expressed in the Core language using top-level super
ombinator de�nitions,

and for most of the book this is the only way in whi
h fun
tions
an be denoted. However, it is

sometimes
onvenient to be able to denote fun
tions using expli
it lambda abstra
tions, and the

Core language provides a
onstru
t to do so. For example, in the program

double_list xs = map (\ x. 2*x) xs

the lambda abstra
tion (\ x. 2*x) denotes the fun
tion whi
h doubles its argument.

It is possible to transform a program involving expli
it lambda abstra
tions into an equivalent

one whi
h uses only top-level super
ombinator de�nitions. This pro
ess is
alled lambda lifting,

and is dis
ussed in detail in Chapter 6. Throughout the other
hapters we assume that this

lambda lifting pro
ess has been done, so they make no use of expli
it lambda abstra
tions.

The �nal major
onstru
t in the Core language is the
ase expression, whi
h expresses pattern

mat
hing. There are several ways of handling pattern mat
hing, so we begin with a review of

stru
tured data types.

1.1.3 Stru
tured data types

A universal feature of all modern fun
tional programming languages is the provision of stru
tured

types, often
alled algebrai
 data types. For example, here are a few algebrai
 type de�nitions,

written in Miranda:

olour ::= Red | Green | Blue

13

omplex ::= Re
t num num | Polar num num

numPair ::= MkNumPair num num

tree * ::= Leaf * | Bran
h (tree *) (tree *)

Ea
h de�nition introdu
es a new type (su
h as
olour), together with one or more
onstru
tors

(su
h as Red, Green). They
an be read as follows: `A value of type
olour is either Red or

Green or Blue', and `A
omplex is either a Re
t
ontaining two nums, or a Polar
ontaining

two nums'.

The type tree is an example of a parameterised algebrai
 data type; the type tree is parame-

terised with respe
t to the type variable *. It should be read as follows: `a tree of *'s is either

a Leaf
ontaining a *, or a Bran
h
ontaining two tree of *'s'. Any parti
ular tree must have

leaves of uniform type; for example, the type tree num is a tree with nums at its leaves, and the

type tree
olour is a tree with
olours at its leaves.

Stru
tured values are built with these
onstru
tors; for example the following expressions denote

stru
tured values:

Green

Re
t 3 4

Bran
h (Leaf num) (Leaf num)

Stru
tured values are taken apart using pattern mat
hing. For example:

isRed Red = True

isRed Green = False

isRed Blue = False

first (MkNumPair n1 n2) = n1

depth (Leaf n) = 0

depth (Bran
h t1 t2) = 1 + max (depth t1) (depth t2)

Several data types usually thought of as `built in' are just spe
ial
ases of stru
tured types.

For example, booleans are a stru
tured type: they
an be de�ned by the algebrai
 data type

de
laration

bool ::= False | True

Apart from their spe
ial syntax, the lists and tuples provided by Miranda are further examples

of stru
tured types. If we use Cons and Nil as
onstru
tors rather than the spe
ial syntax of :

and [℄, we
ould de�ne lists like this:

list * ::= Nil | Cons * (list *)

Chapter 4 of [Peyton Jones 1987℄ gives a fuller dis
ussion of stru
tured types.

14

The question arises, therefore: how are we to represent and manipulate stru
tured types in our

small Core language? In parti
ular, our goal is to avoid having data type de
larations in the

Core language altogether. The approa
h we take breaks into two parts:

� Use a simple, uniform representation for
onstru
tors.

� Transform pattern mat
hing into simple
ase expressions.

1.1.4 Representing
onstru
tors

Instead of allowing user-de�ned
onstru
tors su
h as Red and Bran
h in our Core language, we

provide a single family of
onstru
tors

Pa
k{tag ; arity}

Here, tag is an integer whi
h uniquely identi�es the
onstru
tor, and arity tells how many

arguments it takes. For example, we
ould represent the
onstru
tors of
olour,
omplex, tree

and numPair as follows:

Red = Pa
k{1,0}

Green = Pa
k{2,0}

Blue = Pa
k{3,0}

Re
t = Pa
k{4,2}

Polar = Pa
k{5,2}

Leaf = Pa
k{6,1}

Bran
h = Pa
k{7,2}

MkNumPair = Pa
k{8,2}

So in the Core language one writes

Pa
k{7,2} (Pa
k{6,1} 3) (Pa
k{6,1} 4)

instead of

Bran
h (Leaf 3) (Leaf 4)

The tag is required so that obje
ts built with di�erent
onstru
tors
an be distinguished from one

another. In a well-typed program, obje
ts of di�erent type will never need to be distinguished

at run-time, so tags only need to be unique within a data type. Hen
e, we
an start the tag at

1 afresh for ea
h new data type, giving the following representation:

15

Red = Pa
k{1,0}

Green = Pa
k{2,0}

Blue = Pa
k{3,0}

Re
t = Pa
k{1,2}

Polar = Pa
k{2,2}

Leaf = Pa
k{1,1}

Bran
h = Pa
k{2,2}

MkNumPair = Pa
k{1,2}

1.1.5
ase expressions

In general, the pattern mat
hing allowed by modern fun
tional programming languages
an be

rather
omplex, with multiple nested patterns, overlapping patterns, guards and so on. For

the Core language, we eliminate these
ompli
ations by outlawing all
omplex forms of pattern

mat
hing! We do this by providing only
ase expressions in the Core language. Their formal

syntax is given in Se
tion 1.2, but here are some examples:

isRed
 =
ase
 of

<1> -> True ;

<2> -> False ;

<3> -> False

depth t =
ase t of

<1> n -> 0 ;

<2> t1 t2 -> 1 + max (depth t1) (depth t2)

The important thing about
ase expressions is that ea
h alternative
onsists only of a tag

followed by a number of variables (whi
h should be the same as the arity of the
onstru
tor).

No nested patterns are allowed.

ase expressions have a very simple operational interpretation, rather like a multi-way jump:

evaluate the expression to be analysed, get the tag of the
onstru
tor it is built with and evaluate

the appropriate alternative.

1.2 Syntax of the Core language

Figure 1.1 gives the syntax for the Core language. The grammar allows in�x binary operators,

but (for brevity) is not expli
it about their pre
eden
e. Instead we give the following table of

pre
eden
es, where a higher pre
eden
e means tighter binding:

16

Pre
eden
e Asso
iativity Operator

6 Left Appli
ation

5 Right *

None /

4 Right +

None -

3 None == ~= > >= < <=

2 Right &

1 Right |

An operator's asso
iativity determines when parentheses may be omitted around repetitions of

the operator. For example, + is right-asso
iative, so x+y+z means the same as x+(y+z). On the

other hand, / is non-asso
iative, so the expression x/y/z is illegal.

There is no spe
ial operator symbol for unary negation. Instead, the negate fun
tion is provided,

whi
h behaves synta
ti
ally like any normal fun
tion. For example:

f x = x + (negate x)

The boolean negation operator, not, is handled in the same way.

1.3 Data types for the Core language

For ea
h of the implementations dis
ussed in this book we will build a
ompiler and a ma
hine

interpreter. The
ompiler takes a Core program and translates it into a form suitable for

exe
ution by the ma
hine interpreter. To do this we need a Miranda data type to represent

Core programs, and that is what we will de�ne in this se
tion. In fa
t we will de�ne a type for

Core programs, one for Core expressions and a few other auxiliary types.

The data type of Core-language expression, expr, is de�ned as follows:

> module Language where

> import Utils

> data Expr a

> = EVar Name -- Variables

> | ENum Int -- Numbers

> | EConstr Int Int -- Constru
tor tag arity

> | EAp (Expr a) (Expr a) -- Appli
ations

> | ELet -- Let(re
) expressions

> IsRe
 -- boolean with True = re
ursive,

> [(a, Expr a)℄ -- Definitions

> (Expr a) -- Body of let(re
)

> | ECase -- Case expression

> (Expr a) -- Expression to s
rutinise

> [Alter a℄ -- Alternatives

> | ELam [a℄ (Expr a) -- Lambda abstra
tions

> deriving (Text)

17

Programs program ! s

1

; : : : ; s

n

n � 1

Super
ombinators s
 ! var var

1

: : : var

n

= expr n � 0

Expressions expr ! expr aexpr Appli
ation

j expr

1

binop expr

2

In�x binary appli
ation

j let defns in expr Lo
al de�nitions

j letre
 defns in expr Lo
al re
ursive de�nitions

j
ase expr of alts Case expression

j \ var

1

: : : var

n

. expr Lambda abstra
tion (n � 1)

j aexpr Atomi
 expression

aexpr ! var Variable

j num Number

j Pa
k{num,num} Constru
tor

j (expr) Parenthesised expression

De�nitions defns ! defn

1

; : : : ; defn

n

n � 1

defn ! var = expr

Alternatives alts ! alt

1

; : : : ; alt

n

n � 1

alt ! <num> var

1

: : : var

n

-> expr n � 0

Binary operators binop ! arithop j relop j boolop

arithop ! + j - j * j / Arithmeti

relop ! < j <= j == j ~= j >= j > Comparison

boolop ! & j | Boolean

Variables var ! alpha var
h

1

: : : var
h

n

n � 0

alpha ! an alphabeti

hara
ter

var
h ! alpha j digit j _

Numbers num ! digit

1

: : : digit

n

n � 1

Figure 1.1: BNF syntax for the Core language

18

We
hoose to parameterise the data type of expr with respe
t to its binders. A binder is the

name used at the binding o

urren
e of a variable; that is, on the left-hand side of a let(re
)

de�nition, or in a lambda abstra
tion. The de
laration
an be read `An expr of * is either an

EVar
ontaining a name, or . . . , or an ELam
ontaining a list of values of type * and an expr of

*'.

For the most of the book we always use name in these binding positions, so we use a type synonym

to de�ne the type of
oreExpr, whi
h is the type we will normally use:

> type CoreExpr = Expr Name

The ability to use types other than name in binding positions is only used in Chapter 6.

Apart from this, the data type follows fairly dire
tly from the syntax given in the previous

se
tion, ex
ept that various super�
ial di�eren
es are dis
arded. The biggest di�eren
e is that

in�x operators are expressed in pre�x form in the data type. For example, the expression

x + y

is represented by

EAp (EAp (EVar "+") (EVar "x")) (EVar "y")

Variables are represented by an EVar
onstru
tor
ontaining the variable's name. A variable's

name is represented simply by a list of
hara
ters, whi
h we express using another type synonym:

> type Name = String

Constru
tors are identi�ed by their arity and tag, as des
ribed in Se
tion 1.1.4.

let and letre
 expressions are represented by an ELet
onstru
tor
ontaining: a
ag of type

isRe
 to distinguish the re
ursive
ase from the non-re
ursive one; a list of de�nitions; and

the expression whi
h is the body of the let(re
). We
hoose to represent isRe
 as a boolean

variable, and we de�ne the two boolean values as follows:

> type IsRe
 = Bool

> re
ursive, nonRe
ursive :: IsRe

> re
ursive = True

> nonRe
ursive = False

Ea
h de�nition is just a pair of the variable name being bound and the expression to whi
h it

is bound. We de�ne two useful fun
tions whi
h ea
h take a list of de�nitions: bindersOf pi
ks

out the list of variables bound by the de�nitions, and rhssOf (short for `right-hand sides of')

extra
ts the list of right-hand sides to whi
h they are bound.

> bindersOf :: [(a,b)℄ -> [a℄

> bindersOf defns = [name | (name, rhs) <- defns℄

19

> rhssOf :: [(a,b)℄ -> [b℄

> rhssOf defns = [rhs | (name, rhs) <- defns℄

ase expressions have an expression to analyse, and a list of alternatives. Ea
h alternative

ontains a tag, a list of the bound variables and the expression to the right of the arrow.

> type Alter a = (Int, [a℄, Expr a)

> type CoreAlt = Alter Name

We take the opportunity to de�ne a useful fun
tion on expressions, a boolean-valued fun
tion,

isAtomi
Expr, whi
h identi�es `atomi
' expressions; that is, expressions with no internal stru
-

ture:

> isAtomi
Expr :: Expr a -> Bool

> isAtomi
Expr (EVar v) = True

> isAtomi
Expr (ENum n) = True

> isAtomi
Expr e = False

Finally, a Core-language program is just a list of super
ombinator de�nitions:

> type Program a = [S
Defn a℄

> type CoreProgram = Program Name

A super
ombinator de�nition
ontains the name of the super
ombinator, its arguments and its

body:

> type S
Defn a = (Name, [a℄, Expr a)

> type CoreS
Defn = S
Defn Name

The argument list might be empty, in the
ase of a super
ombinator with no arguments.

We
on
lude with a small example. Consider the following small program.

main = double 21 ;

double x = x+x

This program is represented by the following Miranda expression, of type
oreProgram:

[("main", [℄, (EAp (EVar "double") (ENum 21))),

("double", ["x"℄, (EAp (EAp (EVar "+") (EVar "x")) (EVar "x")))

℄

1.4 A small standard prelude

Miranda has a standard prelude whi
h
ontains de�nitions of various useful fun
tions (su
h as

map, foldr and so on) whi
h are always available. We will do the same for the Core language,

by providing the following standard de�nitions:

20

I x = x ;

K x y = x ;

K1 x y = y ;

S f g x = f x (g x) ;

ompose f g x = f (g x) ;

twi
e f =
ompose f f

This `standard prelude' is ne
essarily rather small, be
ause we want it to work for all of our

implementations, in
luding the most primitive ones whi
h will la
k arithmeti
 and fa
ilities for

manipulating data stru
tures. All that is available in the simplest implementations is fun
tion

appli
ation!

The following de�nition for preludeDefs, whi
h will be used throughout the book, embodies

these de�nitions:

> preludeDefs :: CoreProgram

> preludeDefs

> = [("I", ["x"℄, EVar "x"),

> ("K", ["x","y"℄, EVar "x"),

> ("K1",["x","y"℄, EVar "y"),

> ("S", ["f","g","x"℄, EAp (EAp (EVar "f") (EVar "x"))

> (EAp (EVar "g") (EVar "x"))),

> ("
ompose", ["f","g","x"℄, EAp (EVar "f")

> (EAp (EVar "g") (EVar "x"))),

> ("twi
e", ["f"℄, EAp (EAp (EVar "
ompose") (EVar "f")) (EVar "f")) ℄

1.5 A pretty-printer for the Core language

On
e we have a value of type
oreProgram it is often
onvenient to be able to display it.

Miranda's built-in features are not mu
h help here. For example, if one types preludeDefs in

response to the Miranda prompt, the output produ
ed is rather hard to understand. (Try it.)

What we require is a `pretty-printing' fun
tion pprint, with type

> pprint :: CoreProgram -> String

Then we
ould type pprint preludeDefs, and expe
t to get a list of
hara
ters whi
h, when

printed, looks like a ni
ely formatted version of preludeDefs. Our goal in this se
tion is to

write su
h a fun
tion.

When the result of a program is a list, Miranda usually prints out the list items separated by

ommas and surrounded by bra
kets. But in the spe
ial
ase when the result of the program is of

type [
har℄, Miranda displays the list `all squashed up', without square bra
kets and
ommas.

For example, the value "Hi\nthere" is displayed as

Hi

there

21

and not as

['H', 'i', '\n', 't', 'h', 'e', 'r', 'e'℄

In this way, pprint
an have
omplete
ontrol over the output format.

We will need some of the utility fun
tions de�ned in Appendix A, so we import them using the

%in
lude dire
tive:

1.5.1 Pretty-printing using strings

Let us �rst
on
entrate on Core-language expressions. It looks as though we require a pretty-

printing fun
tion, pprExpr, de�ned something like this:

> pprExpr :: CoreExpr -> String

> pprExpr (ENum n) = show n

> pprExpr (EVar v) = v

> pprExpr (EAp e1 e2) = pprExpr e1 ++ " " ++ pprAExpr e2

(We have deliberately left out many of the
ases for pprExpr for the moment.) pprAExpr has the

same type as pprExpr, but di�ers from it by pla
ing parentheses around the expression unless

it is a variable or number.

> pprAExpr :: CoreExpr -> String

> pprAExpr e = isAtomi
Expr e | pprExpr e

> pprAExpr e = otherwise | "(" ++ pprExpr e ++ ")"

One
an pro
eed in this fashion, but there is a serious problem with doing so. The pretty-printer

uses the list append fun
tion, ++, a great deal. This
an give very nasty performan
e, as the

following example shows. Consider the expression

(xs1 ++ xs2) ++ xs3

The inner ++ takes time proportional to #xs1

2

, but then the outer ++ takes time proportional

to the length of xs1++xs2, so the total time taken is (2 � #xs1) + #xs2. In general, if we added

more lists to this nested append, the
ost
an be quadrati
 in the length of the result! Of
ourse,

if we bra
ket the expression the other way, the
ost is linear in the length of the result, but

unfortunately we
annot guarantee this in a pretty-printer.

To demonstrate this e�e
t, we will �rst write a fun
tion mkMultiAp, whi
h makes it easy for us

to build sample expressions of a given size. The
all (mkMultiAp n e

1

e

2

) generates a
oreExpr

representing the expression

e

1

e

2

e

2

: : : e

2

| {z }

n

2

The # fun
tion is a standard Miranda fun
tion for taking the length of a list.

22

-

?

?

???

a

'

xnx3x2x1a

Figure 1.2: An illustration of foldll
 a

 [x

1

; : : : ; x

n

℄

> mkMultiAp :: Int -> CoreExpr -> CoreExpr -> CoreExpr

> mkMultiAp n e1 e2 = foldll EAp e1 (take n e2s)

> where

> e2s = e2 : e2s

In this de�nition, take is a Miranda standard fun
tion whi
h takes the �rst n elements of

a list, dis
arding the rest of the list. The fun
tion foldll is a standard fun
tion, de�ned in

Appendix A

3

. Given a dyadi
 fun
tion
, a value a

 and a list xs = [x

1

; :::; x

n

℄, foldll
 a

 xs

omputes a

0

, where

a

0

= (: : : ((a

 x

1

)
 x

2

)
 : : : x

n

)

This is illustrated by Figure 1.2. In mkMultiAp, foldll is used to build a left-bran
hing
hain

of EAp nodes. The initial a

umulator a

 is e1, and the
ombining fun
tion
 is the EAp

onstru
tor. Finally, e2s is the in�nite list [e2, e2, : : : ℄; only its �rst n elements are used by

take.

Exer
ise 1.1. Measure the number of Miranda steps required to
ompute

(pprExpr (mkMultiAp n (EVar "f") (EVar "x")))

for various values of n. (You
an use the Miranda dire
tive /
ount to tell Miranda to print

exe
ution statisti
s. We take the length of the result so that the s
reen does not �ll up with a huge

printout.) Sket
h a graph whi
h shows how the exe
ution
ost rises with n and
he
k that it is

roughly quadrati
 in n.

1.5.2 An abstra
t data type for pretty-printing

A pretty-printer whose
ost is quadrati
 in the size of the program to be printed is
learly

una

eptable, so we had better �nd a way around it.

We
an separate this problem into two parts: `what operations do we want to perform?', and

`what is an eÆ
ient way to perform them?'. In
ommon with other languages, Miranda provides

a way to make this distin
tion
lear by introdu
ing an abstra
t data type.

3

We use foldll rather than the Miranda standard fun
tion foldl be
ause di�erent versions of Miranda have

di�erent de�nitions for foldl.

23

> iNil :: Iseq -- The empty iseq

> iStr :: String -> Iseq -- Turn a string into an iseq

> iAppend :: Iseq -> Iseq -> Iseq -- Append two iseqs

> iNewline :: Iseq -- New line with indentation

> iIndent :: Iseq -> Iseq -- Indent an iseq

> iDisplay :: Iseq -> String -- Turn an iseq into a string

The abstype keyword introdu
es an abstra
t data type, iseq. It is followed by the interfa
e of

the data type; that is, the operations whi
h
an be performed on the data type iseq and their

type of ea
h operation.

Given su
h a data type, we rewrite pprExpr to return an iseq instead of a list of
hara
ters:

> pprExpr :: CoreExpr -> Iseq

> pprExpr (EVar v) = iStr v

> pprExpr (EAp e1 e2) = (pprExpr e1) `iAppend` (iStr " ") `iAppend` (pprAExpr e2)

We have simply repla
ed ++ by iAppend

4

, and added an iStr around literal strings.

What are the di�eren
es between an iseq and a list of
hara
ters? Firstly, we aim to produ
e

an implementation of iAppend whi
h does not have the unexpe
ted quadrati
 behaviour of list

append. Se
ondly, iseq provides new operations iIndent and iNewline whi
h will be useful

for
ontrolling indentation. The idea is that iIndent indents its argument to line up with the

urrent
olumn; it should work even if its argument spreads over many lines, and itself
ontains

alls to iIndent. iNewline stands for a newline followed by a number of spa
es determined by

the
urrent level of indentation.

As an example of how iIndent and iNewline might be used, let us extend pprExpr to handle

let and letre
 expressions:

> pprExpr (ELet isre
 defns expr)

> = iCon
at [iStr keyword, iNewline,

> iStr " ",iIndent (pprDefns defns),iNewline,

> iStr "in ",pprExpr expr ℄

> where

> keyword | not isre
 = "let"

> | isre
 = "letre
"

> pprDefns :: [(Name,CoreExpr)℄ -> Iseq

> pprDefns defns = iInterleave sep (map pprDefn defns)

> where

> sep = iCon
at [iStr ";", iNewline ℄

> pprDefn :: (Name, CoreExpr) -> Iseq

> pprDefn (name, expr)

> = iCon
at [iStr name, iStr " = ", iIndent (pprExpr expr) ℄

4

In Miranda, writing a dollar sign in front of an identi�er turns it into an in�x operator, allowing us to write

iAppend between its arguments, instead of in front of them. Su
h in�x operators are right-asso
iative.

24

To make the de�nitions more legible, we have used two new fun
tions, iCon
at and iInterleave,

with the types

> iCon
at :: [Iseq℄ -> Iseq

> iInterleave :: Iseq -> [Iseq℄ -> Iseq

iCon
at takes a list of iseqs and uses iAppend to
on
atenate them into a single iseq. iInterleave

is similar to iCon
at ex
ept that it interleaves a spe
i�ed iseq between ea
h adja
ent pair.

Exer
ise 1.2. De�ne iCon
at and iInterleave in terms of iAppend and iNil.

In general, all our pretty-printing fun
tions will return an iseq, and we apply iDisplay just

on
e at the top level, to the iseq representing the entire thing we want to display:

> pprint prog = iDisplay (pprProgram prog)

Exer
ise 1.3. Add a further equation to pprExpr to handle
ase and lambda expressions, and write

de�nitions for pprAExpr and pprProgram in the same style.

1.5.3 Implementing iseq

Now we
ome to the implementation of the iseq type. We begin by making an implementation

that ignores all indentation. To implement the abstra
t data type we must say what type is

used to represent an iseq:

> data Iseq = INil

> | IStr String

> | IAppend Iseq Iseq

The �rst de
laration says that the type iseqRep is used to represent an iseq, while the se
ond

de
lares iseqRep to be an algebrai
 data type with the three
onstru
tors INil, IStr and

IAppend.

The general idea of this parti
ular representation is to postpone all the work until the eventual

all of iDisplay. The operations iNil, iStr and iAppend all just use the relevant
onstru
tor:

> iNil = INil

> iAppend seq1 seq2 = IAppend seq1 seq2

> iStr str = IStr str

Sin
e we are ignoring indentation, iIndent and iNewline are de�ned trivially. We will improve

them in the next se
tion.

> iIndent seq = seq

> iNewline = IStr "\n"

25

All the interest lies in the operation iDisplay whi
h turns an iseq into a list of
hara
ters. The

goal is that it should only take time linear in the size of the iseq. It turns out to be
onvenient

to de�ne iDisplay in terms of a more general fun
tion, flatten:

> flatten :: [Iseq℄ -> String

>

> iDisplay seq = flatten [seq℄

The fun
tion flatten takes a list of iseqReps, and returns the result of
on
atenating ea
h of

the iseqReps in the list. The reason for having this list is that is allows us to a

umulate a list

of pending work, as we will soon see. Noti
e that flatten manipulates the representation type

iseqRep, rather than the abstra
t type iseq.

We de�ne flatten by
ase analysis on its argument, whi
h we
all the work-list. If the work-list

is empty, we are done:

> flatten [℄ = ""

Otherwise, we work by doing
ase analysis on the �rst element of the work-list. The INil
ase

just pops an item from the work-list:

> flatten (INil : seqs) = flatten seqs

The IStr
ase works by appending the spe
i�ed string with the result of
attening the rest of

the work-list:

> flatten (IStr s : seqs) = s ++ (flatten seqs)

So far, the fa
t that flatten takes a list has not helped us mu
h. The justi�
ation for the list

argument
an be seen more
learly when we deal with IAppend; all that need be done is to push

one more item onto the front of the work-list:

> flatten (IAppend seq1 seq2 : seqs) = flatten (seq1 : seq2 : seqs)

Exer
ise 1.4. What is the
ost of flatten in terms of the size of the iseq?

Change pprExpr to use iseq as indi
ated above, and measure the e�e
t of the new implementation

using the same experiment as in the previous exer
ise. Remember to apply iDisplay to the result

of pprExpr.

Exer
ise 1.5. The key advantage of using an abstra
t data type is that one
an
hange the implemen-

tation of the ADT without a�e
ting its interfa
e. As an example of this, rede�ne iAppend so that

it returns a simpli�ed result if either of its arguments is INil.

1.5.4 Layout and indentation

So far we have only given a rather trivial interpretation to the iIndent operation, and we now

turn to improving it. In the same spirit as before, we �rst expand the iseqRep type with

an extra two
onstru
tors, IIndent and INewline, and rede�ne their operations to use these

onstru
tors:

26

> data Iseq = INil

> | IStr String

> | IAppend Iseq Iseq

> | IIndent Iseq

> | INewline

>

> iIndent seq = IIndent seq

> iNewline = INewline

We must then make flatten more powerful. Firstly, it needs to keep tra
k of the
urrent

olumn, and se
ondly, its work-list must
onsist of (iseq, num) pairs, where the number gives

the indentation required for the
orresponding iseq:

> flatten :: Int -- Current
olumn; 0 for first
olumn

> -> [(Iseq, Int)℄ -- Work list

> -> String -- Result

We need to
hange iDisplay to initialise flatten appropriately:

> iDisplay seq = flatten 0 [(seq,0)℄

The interesting
ase for flatten is when we deal with INewline, be
ause this is where we need

to perform indentation

5

:

> flatten
ol ((INewline, indent) : seqs)

> = '\n' : (spa
e indent) ++ (flatten indent seqs)

Noti
e that the re
ursive
all to
atten has a
urrent-
olumn argument of indent sin
e we have

now moved on to a new line and added indent spa
es.

The IIndent
ase simply sets the
urrent indentation from the
urrent
olumn:

> flatten
ol ((IIndent seq, indent) : seqs)

> = flatten
ol ((seq,
ol) : seqs)

Exer
ise 1.6. Add equations for flatten for IAppend, IStr and INil.

Try pprExpr on an expression involving an ELet, and
he
k that the layout works properly.

Exer
ise 1.7. The pretty-printer will go wrong if a newline
hara
ter '\n' is embedded in a string given

to IStr. Modify iStr to
he
k for this, repla
ing the newline
hara
ter by a use of INewline.

1.5.5 Operator pre
eden
e

As dis
ussed in Se
tion 1.3, the
oreExpr type has no
onstru
t for in�x operator appli
ations.

Instead, su
h appli
ations are expressed in pre�x form, just like any other fun
tion appli
ation.

It would be ni
e if our pretty-printer re
ognised su
h appli
ations, and printed them in in�x

form. This is easily done by adding extra equations to pprExpr of the form

5

spa
es is a standard Miranda fun
tion whi
h returns a list of a spe
i�ed number of spa
e
hara
ters.

27

pprExpr (EAp (EAp (EVar "+") e1) e2)

= iCon
at [pprAExpr e1, iStr " + ", pprAExpr e2 ℄

This still does not do a very good job, be
ause it inserts too many parentheses. Would you

prefer to see the expression

x + y > p * length xs

or the fully parenthesised version?

(x + y) > (p * (length xs))

The easiest way to a
hieve this is to give pprExpr an extra argument whi
h indi
ates the

pre
eden
e level of its
ontext, and then use this to de
ide whether to add parentheses around

the expression it produ
es. (The fun
tion pprAExpr now be
omes redundant.)

Exer
ise 1.8. Make these
hanges to pprExpr and test them.

1.5.6 Other useful fun
tions on iseq

Later on it will be useful to have a few more fun
tions whi
h work on iseqs. They are all de�ned

in terms of the iseq interfa
e fun
tions, so the implementation
an be
hanged without altering

any of these de�nitions.

iNum maps a number to an iseq and iFWNum does the same ex
ept that the result is left-padded

with spa
es to a spe
i�ed width:

> iNum :: Int -> Iseq

> iNum n = iStr (show n)

> iFWNum :: Int -> Int -> Iseq

> iFWNum width n

> = iStr (spa
e (width - length digits) ++ digits)

> where

> digits = show n

(If the number is wider than the width required, a negative number will be passed to spa
es,

whi
h then returns the empty list. So the net e�e
t is to return a �eld just wide enough to
ontain

the number.) iLayn lays out a list, numbering the items and putting a newline
hara
ter after

ea
h, just as the standard fun
tion layn does.

> iLayn :: [Iseq℄ -> Iseq

> iLayn seqs = iCon
at (map lay_item (zip [1..℄ seqs))

> where

> lay_item (n, seq)

> = iCon
at [iFWNum 4 n, iStr ") ", iIndent seq, iNewline ℄

28

1.5.7 Summary

Our pretty-printer still has its short
omings. In parti
ular, a good pretty-printer will lay things

out on one line if they �t, and over many lines if they do not. It is quite possible to elaborate

the iseq data type so that it
an do this, but we will not do so here.

The iseq type is useful for pretty-printing data other than programs, and we will use it for a

variety of purposes throughout the book.

There are two general points we would like to bring out from this se
tion:

� It is very often helpful to separate the interfa
e of an abstra
t data type from its imple-

mentation. Miranda provides dire
t support for this abstra
tion, by ensuring the fun
tions

over the abstra
t type do not inspe
t the representation.

� The de�nition of iDisplay in terms of flatten exempli�es a very
ommon te
hnique

alled generalisation. We often de�ne the fun
tion we really want in terms of a simple

all to a more general fun
tion. This is usually be
ause the more general fun
tion
arries

around some extra arguments whi
h it needs to keep the book-keeping straight.

It is hard to make general statements about when generalisation is an appropriate te
h-

nique; indeed, working out a good generalisation is often the main
reative step in writing

any program. However, there are plenty of examples of generalisation in this book, whi
h

we hope will help to
onvey the idea.

1.6 A parser for the Core language

We will want to run ea
h of our implementations on a variety of Core programs. This means

that we want a way of taking a �le
ontaining the Core program in its
on
rete syntax, and

parsing it to a value of type
oreProgram.

Writing parsers is generally rather tiresome, so mu
h so that great e�ort has been devoted to

building tools whi
h a

ept a grammar and write a parser for you. The Unix Ya

 utility is an

example of su
h a parser generator. In a fun
tional language, however, it is quite easy to write

a simple parser, and we will do so in this se
tion for the Core language. We split the task into

three stages:

� First, we obtain the
ontents of the named �le, as a list of
hara
ters. This is done by the

built-in Miranda fun
tion read.

� Next, the lexi
al analysis fun
tion lex breaks the input into a sequen
e of small
hunks,

su
h as identi�ers, numbers, symbols and so on. These small
hunks are
alled tokens:

>
lex :: String -> [Token℄

� Finally, the syntax analysis fun
tion syntax
onsumes this sequen
e of tokens and produ
es

a
oreProgram:

> syntax :: [Token℄ -> CoreProgram

29

The full parser is just the
omposition of these three fun
tions:

> parse :: String -> CoreProgram

> parse = syntax .
lex

> -- In Gofer I propose to
ompose this with some fun
tion

> -- CoreProgram -> String, whi
h will illustrate some sort of

> -- exe
ution ma
hine, and then give this
omposition to
atWith

> -- from my utils

The symbol `.' is Miranda's in�x
omposition operator, whi
h
an be de�ned thus:

(f . g) x = f (g x)

We
ould equivalently have de�ned parse without using
omposition, like this:

parse filename = syntax (lex (read filename))

but it is ni
er style to use
omposition, be
ause it makes it parti
ularly easy to see that we are

de�ning parse as a pipeline of three fun
tions.

1.6.1 Lexi
al analysis

We begin with the lexi
al analyser. We have not yet de�ned the type of a token. The easiest

thing to begin with is to do no pro
essing at all on the tokens, leaving them as (non-empty)

strings:

> type Token = String -- A token is never empty

Now the lexi
al analysis itself. It should throw away white spa
e (blanks, tabs, newlines):

>
lex (
:
s) | isWhiteSpa
e
 =
lex
s

It should re
ognise numbers as a single token:

>
lex (
:
s) | isDigit
 = num_token :
lex rest_
s

> where

> num_token =
 : takeWhile isDigit
s

> rest_
s = dropWhile isDigit
s

The standard fun
tion digit takes a
hara
ter and returns True if and only if the
hara
ter is

a de
imal digit. takewhile and dropwhile are both also standard fun
tions; takewhile takes

elements from the front of a list while a predi
ate is satis�ed, and dropwhile removes elements

from the front of a list while the predi
ate is satis�ed. For example,

takewhile digit "123ab
456"

30

is the list "123".

The lexi
al analyser should also re
ognise variables, whi
h begin with an alphabeti
 letter, and

ontinue with a sequen
e of letters, digits and unders
ores:

>
lex (
:
s) | isAlpha
 = var_tok :
lex rest_
s

> where

> var_tok =
 : takeWhile isIdChar
s

> rest_
s = dropWhile isIdChar
s

Here letter is a standard fun
tion like digit whi
h returns True on alphabeti

hara
ters, and

isIdChar is de�ned below.

If none of the above equations applies, the lexi
al analyser returns a token
ontaining a single

hara
ter.

>
lex (
:
s) = [
℄ :
lex
s

Lastly, when the input string is empty, lex returns an empty token list.

>
lex [℄ = [℄

We
on
lude with the de�nitions of the auxiliary fun
tions used above. (The operator `\/' is

Miranda's boolean `or' operation.)

> isIdChar, isWhiteSpa
e :: Char -> Bool

> isIdChar
 = isAlpha
 || isDigit
 || (
 == '_')

> isWhiteSpa
e
 =
 `elem` " \t\n"

Exer
ise 1.9. Modify the lexi
al analyser so that it ignores
omments as well as white spa
e. Use the

same
onvention that a
omment is introdu
ed by a double verti
al bar, ||, and extend to the end

of the line.

Exer
ise 1.10. The lexi
al analyser does not
urrently re
ognise two-
hara
ter operators, su
h as <=

and ==, as single tokens. We de�ne su
h operators by giving a list of them:

> twoCharOps :: [String℄

> twoCharOps = ["==", "~=", ">=", "<=", "->"℄

Modify lex so that it re
ognises members of twoCharOps as tokens. (The standard fun
tion member

may be useful.)

Exer
ise 1.11. Sin
e the lexi
al analysis throws away white spa
e, the parser
annot report the line

number of a syntax error. One way to solve this problem is to atta
h a line number to ea
h token;

that is, the type token be
omes

token == (num, [
har℄)

Alter the lexi
al analyser so that it does this. To do this you will need to add an extra parameter

to lex, being the
urrent line number.

31

1.6.2 Basi
 tools for parsing

In preparation for writing a parser for the Core language, we now develop some general-

purpose fun
tions to use when writing parsers. The te
hniques des
ribed below are well known

[Fairbairn 1986, Wadler 1985℄, but make a rather ni
e demonstration of what
an be done with

fun
tional programming. As a running example, we will use the following small grammar:

greeting ! hg person !

hg ! hello

j goodbye

where person is any token beginning with a letter.

Our general approa
h, whi
h is very
ommon in fun
tional programming, is to try to build a

big parser by glueing together smaller parsers. The key question is: what should the type of a

parser be? It is a fun
tion whi
h takes a list of tokens as its argument, and at �rst it appears

that it should just return the parsed value. But this is insuÆ
iently general, for two reasons.

1. Firstly, it must also return the remaining list of tokens. If, for example, we want to parse

two items from the input, one after the other, we
an apply the �rst parser to the input,

but we must then apply the se
ond parser to the remaining input returned by the �rst.

2. Se
ondly, the grammar may be ambiguous, so there is more than one way to parse the

input; or the input may not
onform to the grammar, in whi
h
ase there is no way to

su

essfully parse the input. An elegant way to a

ommodate these possibilities is to

return a list of possible parses. This list is empty if there is no way to parse the input,

ontains one element if there is a unique way to parse it, and so on.

We
an summarise our
on
lusion by de�ning the type of parsers using a type synonym, like

this:

> type Parser a = [Token℄ -> [(a, [Token℄)℄

That is, a parser for values of type * takes a list of tokens and returns a list of parses, ea
h of

whi
h
onsists of a value of type * paired with the remaining list of tokens.

Now we are ready to de�ne some small parsers. The fun
tion pLit (`lit' is short for `literal')

takes a string and delivers a parser whi
h re
ognises only tokens
ontaining that string, returning

the string as the value of the parse:

> pLit :: String -> Parser String

How does pLit work? It looks at the �rst token on the input and
ompares it with the desired

string. If it mat
hes, pLit returns a singleton list, indi
ating a single su

essful parse; if it does

not mat
h, pLit returns an empty list, indi
ating failure to parse

6

:

6

This de�nition of pLit assumes that a token is just a string. If you have added line numbers to your tokens,

as suggested in Exer
ise 1.11, then pLit will need to strip o� the line number before making the
omparison.

32

> pLit s (tok:toks) = s == tok | [(s, toks)℄

> = otherwise | [℄

> pLit s [℄ = [℄

The se
ond equation takes
are of the
ase where the input stream is empty. We
an use pLit

to de�ne parsers whi
h look for parti
ular tokens in the input. For example, the expression

pLit "hello" ["hello", "John", "!"℄

evaluates to

[("hello", ["John", "!"℄)℄

Similarly, we de�ne a parser pVar to parse a variable from the beginning of the input:

> pVar :: Parser String

> pVar [℄ = [℄

pVar de
ides whether a token is a variable or not by looking at its �rst
hara
ter. (The lexi
al

analyser ensures that no token is empty.) A
tually, this is not quite right, be
ause it should not

treat keywords as variables, but we will �x this problem later (Exer
ise 1.17).

The whole point of this development is to build bigger parsers by gluing together smaller ones,

and we are now ready to do so. We will de�ne a fun
tion pAlt (`alt' is short for `alternative')

whi
h
ombines two parsers, say p1 and p2. First it uses p1 to parse the input, and then it uses

p2 to parse the same input; it returns all the su

essful parses returned by either p1 or p2. So

the type of pAlt is

> pAlt :: Parser a -> Parser a -> Parser a

The a
tual de�nition of pAlt is delightfully simple. All it needs to is append the lists of parses

returned by p1 and p2:

> pAlt p1 p2 toks = (p1 toks) ++ (p2 toks)

For example, pHelloOrGoodbye is a parser whi
h re
ognises either the token "hello" or "goodbye":

> pHelloOrGoodbye :: Parser String

> pHelloOrGoodbye = (pLit "hello") `pAlt` (pLit "goodbye")

It is easy to see that pAlt
orresponds dire
tly to the verti
al bar, j, of a BNF grammar (see

Figure 1.1, for example). We need one other fundamental parser-
ombining fun
tion, pThen,

whi
h
orresponds to the sequen
ing of symbols in a BNF grammar.

Like pAlt, pThen
ombines two parsers, say p1 and p2, returning a bigger parser whi
h behaves

as follows. First, it uses p1 to parse a value from the input, and then it uses p2 to parse a

se
ond value from the remaining input. What value should pThen return from a su

essful

parse? Presumably some
ombination of the values returned by p1 and p2, so the right thing

to do is to give pThen a third argument whi
h is the value-
ombining fun
tion. So the type of

pThen is:

33

> pThen :: (a -> b ->
) -> Parser a -> Parser b -> Parser

The de�nition of pThen makes use of a list
omprehension:

> pThen
ombine p1 p2 toks

> = [(
ombine v1 v2, toks2) | (v1,toks1) <- p1 toks,

> (v2,toks2) <- p2 toks1℄

The right-hand side of this equation should be read as follows:

`the list of pairs (
ombine v1 v2, toks2),

where (v1,toks1) is drawn from the list p1 toks,

and (v2,toks2) is drawn from the list p2 toks1'.

With the aid of pThen we
an make a parser for greetings:

> pGreeting :: Parser (String, String)

> pGreeting = pThen mk_pair pHelloOrGoodbye pVar

> where

> mk_pair hg name = (hg, name)

For example, the expression

pGreeting ["goodbye", "James", "!"℄

would evaluate to

[(("goodbye", "James"), ["!"℄)℄

Noti
e that when writing pGreetingwe did not need to think about the fa
t that pHelloOrGoodbye

was itself a
omposite parser. We simply built pGreeting out of its
omponent parsers, ea
h

of whi
h has the same standard interfa
e. We
ould subsequently
hange pHelloOrGoodbye

without having to
hange pGreeting as well.

1.6.3 Sharpening the tools

We have now
ompleted the basi
 tools for developing parsers. In this se
tion we will develop

them in a number of ways.

The de�nition of pGreeting given above is not quite right, be
ause the grammar demands an

ex
lamation mark after the person's name. We
ould �x the problem like this:

pGreeting = pThen keep_first

(pThen mk_pair pHelloOrGoodbye pVar)

(pLit "!")

where

keep_first hg_name ex
lamation = hg_name

mk_pair hg name = (hg, name)

34

Sin
e the �nal ex
lamation mark is always present, we have
hosen not to return it as part of

the parsed value; it is dis
arded by keep_first. This de�nition is rather
lumsy, however. It

would be more
onvenient to de�ne a new fun
tion pThen3, so that we
ould write:

pGreeting = pThen3 mk_greeting

pHelloOrGoodbye

pVar

(pLit "!")

where

mk_greeting hg name ex
lamation = (hg, name)

Exer
ise 1.12. Give the type of pThen3, write down its de�nition, and test the new version of pGreeting.

Similarly, write pThen4, whi
h we will need later.

Another very
ommon feature of grammars is to require zero or more repetitions of a symbol. To

re
e
t this we would like a fun
tion, pZeroOrMore, whi
h takes a parser, p, and returns a new

parser whi
h re
ognises zero or more o

urren
es of whatever p re
ognises. The value returned

by a su

essful parse
an be the list of the values returned by the su

essive uses of p. So the

type of pZeroOrMore is

> pZeroOrMore :: Parser a -> Parser [a℄

For example, a parser to re
ognise zero or more greetings is

> pGreetings :: Parser [(String, String)℄

> pGreetings = pZeroOrMore pGreeting

We
an de�ne pZeroOrMore by observing that it must either see one or more o

urren
es, or

zero o

urren
es:

> pZeroOrMore p = (pOneOrMore p) `pAlt` (pEmpty [℄)

Here, pEmpty is a parser whi
h always su

eeds, removing nothing from the input, returning the

value it is given as its �rst argument:

> pEmpty :: a -> Parser a

The fun
tion pOneOrMore has the same type as pZeroOrMore.

> pOneOrMore :: Parser a -> Parser [a℄

Exer
ise 1.13. Write de�nitions for pOneOrMore and pEmpty. (Hint: you will �nd it
onvenient to
all

pZeroOrMore from pOneOrMore.) Test your de�nitions by using them to de�ne a parser to re
ognise

one or more greetings.

It is often
onvenient to pro
ess the values returned by su

essful parses. For example, suppose

we wanted pGreetings to return the number of greetings rather than their
ontent. To do this

we would like to apply the length fun
tion, #, to the value returned by pZeroOrMore:

35

> pGreetingsN :: Parser Int

> pGreetingsN = (pZeroOrMore pGreeting) `pApply` length

Here pApply is a new parser-manipulation fun
tion, whi
h takes a parser and a fun
tion, and

applies the fun
tion to the values returned by the parser:

> pApply :: Parser a -> (a -> b) -> Parser b

Exer
ise 1.14. Write a de�nition for pApply, and test it. (Hint: use a list
omprehension.)

Another very
ommon pattern in grammars is to look for one or more o

urren
es of a symbol,

separated by some other symbol. For example, a program in Figure 1.1 is a sequen
e of one or

more super
ombinator de�nitions, separated by semi
olons. We need yet another parser-building

fun
tion, pOneOrMoreWithSep, whose type is

> pOneOrMoreWithSep :: Parser a -> Parser b -> Parser [a℄

The se
ond argument is the parser whi
h re
ognises the separators, whi
h are not returned as

part of the result; that is why there is only one o

urren
e of ** in the type.

Exer
ise 1.15. De�ne and test pOneOrMoreWithSep. It may help to think of the following grammar for

program:

program ! s
 programRest

programRest ! ; program

j �

where � is the empty string (
orresponding to the pEmpty parser).

The parsers pLit and pVar are quite similar to ea
h other: they both test for some property of

the �rst token, and either fail (if it does not have the property) or su

eed, returning the string

inside the token (if it does have the property). We
ould generalise this idea by writing a parser

pSat (where `sat' is short for `satis�es'), with the type

> pSat :: (String -> Bool) -> Parser String

pSat takes a fun
tion whi
h tells whether or not the string inside the token has the desired

property, and returns a parser whi
h re
ognises a token with the property. Now we
an write

pLit in terms of pSat

7

:

> pLit s = pSat (== s)

Exer
ise 1.16. De�ne pSat and test it. Write pVar in terms of pSat in a similar way to pLit.

7

The expression (= s) is
alled a se
tion. It is the partial appli
ation of the equality operator = to one argument

s, produ
ing a fun
tion whi
h tests whether its argument is equal to s.

36

pSat adds a useful level of modularity. For example, pVar
urrently re
ognises all alphabeti

tokens as variables, but ultimately we might want it not to re
ognise language keywords (su
h

as let and
ase) as variables.

Exer
ise 1.17. Modify the fun
tion passed to pSat in the de�nition of pVar above so that it does not

treat strings in the list keywords as variables.

> keywords :: [String℄

> keywords = ["let", "letre
", "
ase", "in", "of", "Pa
k"℄

Exer
ise 1.18. As another example, use pSat to de�ne a parser for numbers, with the type

> pNum :: Parser Int

pNum should use pSat to identify numeri
 tokens, and then pApply to
onvert the string to a

number. (Miranda provides a standard fun
tion numval with type [
har℄ -> num whi
h
an be

used to do the hard work.)

There is an interesting performan
e problem asso
iated with pOneOrMore and its related fun
-

tions. Consider the following Core program:

f x = let x1 = x; x2 = x; ...; xn = x

of x1

The idea is that we have a big let expression with de�nitions for x1, x2, . . . , xn (the de�nitions

are rather trivial, but they serve the purpose). This program has a syntax error: we have written

`of' instead of `in' after the let expression.

Exer
ise 1.19. yCount how many Miranda steps it takes before the syntax error is reported, for n =

5; 10; 15; 20 and so on. (Use Miranda's /
ount dire
tive to get a display of exe
ution statisti
s.)

How fast does the parsing
ost rise, in terms of n?

To get an idea why this happens, try evaluating:

pOneOrMore (pLit "x") ["x", "x", "x", "x", "x", "x"℄

You should get a list of six possible parses. Based on this,
an you work out why the parsing
ost

in the previous example rises so fast?

How
an this problem be solved? (Hint: apart from the �rst one, are any of the parses returned

by pOneOrMore useful? How
ould the extra ones be eliminated?)

1.6.4 Parsing the Core language

We are �nally ready to de�ne a parser for the Core language. First we deal with the `wrapper'

fun
tion, syntax. Re
all that it takes a list of tokens and delivers a result of type
oreProgram.

It
an do this by
alling the parser pProgramwhi
h parses the non-terminal program (Figure 1.1),

and then sele
ting the �rst
omplete parse it returns. If it returns no
omplete parse | that is,

one in whi
h the sequen
e of tokens remaining after the parse is empty | syntax produ
es a

(horribly uninformative) error message.

37

> syntax = take_first_parse . pProgram

> where

> take_first_parse ((prog,[℄) : others) = prog

> take_first_parse (parse : others) = take_first_parse others

> take_first_parse other = error "Syntax error"

The beauty of our parsing tools is that we
an write parsers by merely transliterating the grammar

into Miranda. For example,
onsider the produ
tions for program and s
 in Figure 1.1:

program ! s

1

; : : : ; s

n

(n � 1)

s
 ! var var

1

: : : var

n

= expr (n � 0)

We
an transliterate these dire
tly into Miranda:

> pProgram :: Parser CoreProgram

> pProgram = pOneOrMoreWithSep pS
 (pLit ";")

> pS
 :: Parser CoreS
Defn

> pS
 = pThen4 mk_s
 pVar (pZeroOrMore pVar) (pLit "=") pExpr

Exer
ise 1.20. Write the fun
tion mk_s
. It takes four arguments returned by the four parsers used in

pS
, and builds a value of type:

(name, [name℄,
oreExpr)

It is a straightforward matter to
omplete the de�nitions for the rest of the grammar, apart

from the produ
tions for appli
ation and in�x operators.

Exer
ise 1.21. Leaving these two produ
tions out,
omplete the parser. A little
are is needed for the

parser pAexpr, whi
h should have type parser
oreExpr. The pApply fun
tion is required to

wrap an EVar
onstru
tor around the value returned by pVar, and an ENum
onstru
tor around

that returned by pNum.

Test your parser on the following program

f = 3 ;

g x y = let z = x in z ;

h x =
ase (let y = x in y) of

<1> -> 2 ;

<2> -> 5

You will �nd that the output be
omes illegible as you run the parser on larger programs. To solve

this, use the pretty-printing fun
tion pprint to format the output of your parser.

Exer
ise 1.22. Consider the program

f x y =
ase x of

<1> ->
ase y of

<1> -> 1;

<2> -> 2

Does the alternative starting with <2> atta
h to the inner
ase or the outer one? Work out your

answer, and see if your parser behaves as you expe
t. This is known as the `dangling else' question.

Now we turn our attention to the two problems mentioned above.

38

1.6.5 Left re
ursion

The problem with appli
ations is relatively easy to solve. The produ
tion for appli
ations looks

like this:

expr ! expr aexpr

If we simply transliterate this to

pExpr = pThen EAp pExpr pAexpr

then unfortunately pExpr will never terminate, be
ause it keeps
alling itself inde�nitely. The

problem is that expr appears as the �rst symbol in a produ
tion of expr ; this is
alled left

re
ursion. Our parsing tools simply
annot
ope with left-re
ursive grammars. Fortunately, it

is usually possible to transform the grammar so that it is no longer left-re
ursive, though the

resulting grammar does not then re
e
t the stru
ture of the result we are trying to
onstru
t.

In this
ase, for example, we
an simply use repetition, transforming the o�ending produ
tion

to

expr ! aexpr

1

: : : aexpr

n

(n � 1)

and now the parser (pOneOrMore pAexpr)
an be used. The trouble is that this returns a list

of expressions, rather than a single expression built with EAp
onstru
tors. We
an solve this

using pApply, giving the parser

(pOneOrMore pAexpr) $pApply mk_ap_
hain

Exer
ise 1.23. De�ne the appropriate fun
tion mk_ap_
hainwith type [
oreExpr℄ ->
oreExpr. Ad-

d the produ
tion for appli
ations to your parser and test it.

1.6.6 Adding in�x operators

The �rst problem with in�x operators is that their pre
eden
e is impli
it in the grammar of

Figure 1.1. The standard way to make this expli
it is to have several sorts of expression, as

shown in Figure 1.3.

Noti
e the way that this grammar expresses the fa
t that | and & are right-asso
iative, whereas

relational operators are non-asso
iative. Having to write out so many rules is rather tiresome,

but we are only making expli
it what we meant all along. But now the se
ond problem arises:

a parser implemented dire
tly from these rules would be horribly ineÆ
ient! Consider the

produ
tions for expr1. A naive parser would attempt to re
ognise an expr2, and then look for

a verti
al bar |. If it did not �nd one (as will often be the
ase), it will laboriously reparse the

original input to look for an expr2 again. Worse, ea
h attempt to parse an expr2 may involve

two attempts to parse an expr3, and hen
e four attempts to parse an expr4, and so on.

We want to share the parsing of the expr2 between the two produ
tions, and this is not hard to

do, by splitting the expr1 produ
tion into two:

expr1 ! expr2 expr1

expr1
 ! | expr1

j �

39

expr ! let defns in expr

j letre
 defns in expr

j
ase expr of alts

j \ var

1

: : : var

n

. expr

j expr1

expr1 ! expr2 | expr1

j expr2

expr2 ! expr3 & expr2

j expr3

expr3 ! expr4 relop expr4

j expr4

expr4 ! expr5 + expr4

j expr5 - expr5

j expr5

expr5 ! expr6 * expr5

j expr6 / expr6

j expr6

expr6 ! aexpr

1

: : : aexpr

n

(n � 1)

Figure 1.3: Grammar expressing operator pre
eden
e and asso
iativity

Here � stands for the empty string; the produ
tions for expr1
 say that an expr1
 is either a

verti
al bar, |, followed by an expr1, or it is empty. We are almost there! The last question

is: what is the type of a parser for expr1
. It
annot be of type parser
oreExpr, be
ause the

phrase | expr1 is only part of an expression, and the empty string � is not an expression either.

As usual, transforming the grammar has destroyed the stru
ture.

The solution is fairly easy. We de�ne a new data type partialExpr, like this

> data PartialExpr = NoOp | FoundOp Name CoreExpr

Now we
an de�ne the parser for expr1
 like this:

> pExpr1
 :: Parser PartialExpr

> pExpr1
 = (pThen FoundOp (pLit "|") pExpr1) `pAlt` (pEmpty NoOp)

The parser for expr1 takes apart the intermediate result returned by pExpr1
:

> pExpr1 :: Parser CoreExpr

> pExpr1 = pThen assembleOp pExpr2 pExpr1

> assembleOp :: CoreExpr -> PartialExpr -> CoreExpr

> assembleOp e1 NoOp = e1

> assembleOp e1 (FoundOp op e2) = EAp (EAp (EVar op) e1) e2

Exer
ise 1.24. Transform the grammar along the lines suggested, transliterate the
hanges into Miranda

ode, and test the resulting parser.

40

1.6.7 Summary

The grammars that
an be handled eÆ
iently by our library of parser-building fun
tions are

alled LL(1) grammars, exa
tly the same
lass that
an be dealt with by
onventional re
ursive-

des
ent parsers [Aho et al. 1986℄.

Using the library we
an easily write very
on
ise parsers. This is an important and useful

property, be
ause almost any program has an input language of some sort, whi
h has to be

parsed by the program.

There are various things we have to take
are about (left re
ursion, operator pre
eden
e, sharing),

but exa
tly the same issues arise in any re
ursive-des
ent parser, regardless of the language in

whi
h it is implemented.

41

> module Template where

> import Language

> import Utils

42

Chapter 2

Template instantiation

This
hapter introdu
es the simplest possible implementation of a fun
tional language: a graph

redu
er based on template instantiation.

The
omplete sour
e
ode for an initial version (Mark 1) is given, followed by a series of im-

provements and variations on the basi
 design. We begin with a review of graph redu
tion and

template instantiation.

2.1 A review of template instantiation

We begin with a brief overview of template instantiation. This material is
overed in more detail

in Chapters 11 and 12 of [Peyton Jones 1987℄.

We re
all the following key fa
ts:

� A fun
tional program is `exe
uted' by evaluating an expression.

� The expression is represented by a graph.

� Evaluation takes pla
e by
arrying out a sequen
e of redu
tions.

� A redu
tion repla
es (or updates) a redu
ible expression in the graph by its redu
ed form.

The term `redu
ible expression' is often abbreviated to `redex'.

� Evaluation is
omplete when there are no more redexes; we say that the expression is in

normal form.

� At any time there may be more than one redex in the expression being evaluated, so there

is a
hoi
e about whi
h one to redu
e next. Fortunately, whatever redu
tion sequen
e we

hoose, we will always get the same answer (that is, normal form). There is one
aveat:

some redu
tion sequen
es may fail to terminate.

� However, if any
hoi
e of redexes makes evaluation terminate, then the poli
y of always

sele
ting the outermost redex will also do so. This
hoi
e of redu
tion order is
alled

normal order redu
tion, and it is the one we will always use.

43

Thus the pro
ess of evaluation
an be des
ribed as follows:

until there are no more redexes

sele
t the outermost redex

redu
e it

update the (root of the) redex with the result

end

2.1.1 An example

As an example,
onsider the following Core-language program:

square x = x * x ;

main = square (square 3)

The program
onsists of a set of de�nitions,
alled super
ombinators; square and main are both

super
ombinators. By
onvention, the expression to be evaluated is the super
ombinator main.

Hen
e, to begin with the expression to be evaluated is represented by the following rather trivial

tree (remember that a tree is just a spe
ial sort of graph):

main

Now, sin
e main has no arguments, it itself is a redex, so we repla
e it by its body:

main redu
es to �

/ \

square �

/ \

square 3

Appli
ations are represented by � signs in these pi
tures and all subsequent ones.

Now the outermost redex is the outer appli
ation of square. To redu
e a fun
tion appli
ation

we repla
e the redex with an instan
e of the body of the fun
tion, substituting a pointer to the

argument for ea
h o

urren
e of the formal parameter, thus:

�! redu
es to �!

/ \ / \

square � � \

/ \ / ___�

square 3 * / \

square 3

The root of the redex, whi
h is overwritten with the result, is marked with a !. Noti
e that the

inner square 3 redex has be
ome shared, so that the tree has be
ome a graph.

In the de�nition of square the expression x*x (in whi
h the * is written in�x) is just short for

((* x) x), the appli
ation of * to two arguments. We use
urrying to write fun
tions of several

44

arguments in terms of one-argument appli
ations: * is a fun
tion whi
h, when applied to an

argument p, gives a fun
tion whi
h, when applied to another argument q, returns the produ
t

of p and q.

Now the only redex is the inner appli
ation of square to 3. The appli
ation of * is not redu
ible

be
ause * requires its arguments to be evaluated. The inner appli
ation is redu
ed like this:

� redu
es to �

/ \ / \

� \ � \

/ ___�! / ___�

* / \ * / \

square 3 � \

/ ___3

*

There is still only one redex, the inner multipli
ation. We repla
e the redex with the result of

the multipli
ation, 9:

� redu
es to �

/ \ / \

� \ � \

/ ___�! / ___9

* / \ *

� \

/ ___3

*

Noti
e that by physi
ally updating the root of the redex with the result, both arguments of the

outer multipli
ation `see' the result of the inner multipli
ation. The �nal redu
tion is simple:

� redu
es to 81

/ \

� \

/ ___9

*

2.1.2 The three steps

As we saw earlier, graph redu
tion
onsists of repeating the following three steps until a normal

form is rea
hed:

1. Find the next redex.

2. Redu
e it.

3. Update the (root of the) redex with the result.

45

As
an be seen from the example in the previous se
tion, there are two sorts of redex, whi
h are

redu
ed in di�erent ways:

Super
ombinators. If the outermost fun
tion appli
ation is a super
ombinator appli
ation,

then it is
ertainly also a redex, and it
an be redu
ed as des
ribed below (Se
tion 2.1.4).

Built-in primitives. If the outermost fun
tion appli
ation is the appli
ation of a built-in prim-

itive, then the appli
ation may or may not be a redex, depending on whether the arguments

are evaluated. If not, then the arguments must be evaluated. This is done using exa
tly

the same pro
ess: repeatedly �nd the outermost redex of the argument and redu
e it.

On
e this is done, we
an return to the redu
tion of the outer appli
ation.

2.1.3 Unwinding the spine to �nd the next redex

The �rst step of the redu
tion
y
le is to �nd the site of the next redu
tion to be performed;

that is, the outermost redu
ible fun
tion appli
ation. It is easy to �nd the outermost fun
tion

appli
ation (though it may not be redu
ible) as follows:

1. Follow the left bran
h of the appli
ation nodes, starting at the root, until you get to a

super
ombinator or built-in primitive. This left-bran
hing
hain of appli
ation nodes is

alled the spine of the expression, and this pro
ess is
alled unwinding the spine. Typi
ally

a sta
k is used to remember the addresses of the nodes en
ountered on the way down.

2. Now,
he
k how many arguments the super
ombinator or primitive takes and go ba
k up

that number of appli
ation nodes; you have now found the root of the outermost fun
tion

appli
ation.

For example, in the expression (f E1 E2 E3), where f takes two arguments, say, the outermost

fun
tion appli
ation is (f E1 E2). The expression and sta
k would look like this:

Sta
k

| ---|-------> �

------- / \

| ---|-----> �! E3

------- / \

| ---|---> � E2

------- / \

| ---|-> f E1

The (root of the) outermost fun
tion appli
ation is marked with a !.

If the result of an evaluation
ould be a partial appli
ation, as would be the
ase if f took four

arguments instead of two, then step 2 above needs to be pre
eded by a
he
k there are enough

appli
ation nodes in the spine. If not, the expression has rea
hed weak head normal form

(WHNF). The sub-expressions E1, E2 and E3 might still
ontain redexes, but most evaluators

will stop when they rea
h WHNF rather than trying to redu
e the sub-expressions also. If the

46

program has been type-
he
ked, and the result is guaranteed to be a number, say, or a list, then

this under
ow
he
k
an be omitted.

Noti
e that we have only found the root of the outermost fun
tion appli
ation. It may or may

not be a redex as well. If the fun
tion is a super
ombinator, then it will
ertainly be a redex,

but if it is a primitive, su
h as +, then it depends on whether its arguments are evaluated. If

they are, we have found the outermost redex. If not, we have more work to do.

If a primitive requires the value of a
urrently unevaluated argument, we must evaluate the

argument before the primitive redu
tion
an pro
eed. To do this, we must put the
urrent sta
k

on one side, and begin with a new sta
k to redu
e the argument, in the same way as before.

This was the situation in the example of the previous se
tion when we rea
hed the stage

�

/ \

� \

/ ___�

* / \

square 3

We need to evaluate the argument (square 3) on a new sta
k. During this evaluation, we

might again en
ounter a primitive with an unevaluated argument, so we would need to start a

new evaluation again. We need to keep tra
k of all the `old' sta
ks, so that we
ome ba
k to

them in the right order. This is
onveniently done by keeping a sta
k of sta
ks,
alled the dump.

When we need to evaluate an argument, we push the
urrent sta
k onto the dump; when we

have �nished an evaluation we pop the old sta
k o� the dump.

Of
ourse, in a real implementation we would not
opy whole sta
ks! Sin
e the `new' sta
k will

be �nished with before the `old' one is again required, the `new' one
ould be built physi
ally on

top of the `old' one. The dump sta
k would then just keep tra
k of where the boundary between

`new' and `old' was. Con
eptually, though, the dump is a sta
k of sta
ks, and we will model it

in this way.

2.1.4 Super
ombinator redexes

A super
ombinator redex is redu
ed by substituting the arguments into its body. More pre
isely:

Super
ombinator redu
tion. A super
ombinator redex is redu
ed by repla
ing the

redex with an instan
e of the super
ombinator body, substituting pointers to the a
tual

arguments for
orresponding o

urren
es of the formal parameters. Noti
e that the

arguments are not
opied; rather, by the devi
e of using pointers to them, they are

shared.

A super
ombinator body may
ontain let and letre
 expressions. For example:

f x = let y = x*x

in y+y

47

let and letre
 expressions are treated as textual des
riptions of a graph. Here, for example, is

a possible use of the de�nition of f:

� redu
es to �

/ \ / \

f 3 � \

/ ___�y

+ / \

� \

/ ___3

*

The let expression de�nes a sub-expression x*x, whi
h is named y. The body of the let

expression, y+y, uses pointers to the sub-expression in pla
e of y. Thus ordinary expressions

des
ribe trees; let expressions des
ribe a
y
li
 graphs; and letre
 expressions des
ribe
y
li

graphs.

2.1.5 Updates

After performing a redu
tion, we must update the root of the redex with the result, so that if

the redex is shared (as it was in the example (square (square 3))) the redu
tion is only done

on
e. This updating is the essen
e of lazy evaluation. A redex may not be evaluated at all but,

if it is evaluated, the update ensures that the
ost of doing so is in
urred at most on
e.

Omitting the updates does not
ause any errors; it will just mean that some expressions may be

evaluated more than on
e, whi
h is ineÆ
ient.

There is one
ase that requires a little
are when performing updates. Consider the program

id x = x

f p = (id p) * p

main = f (sqrt 4)

After the f redu
tion has taken pla
e, the graph looks like this:

�

/ \

� \

/ \ \

* � \

/ ___�

id / \

sqrt 4

We assume sqrt is a built-in primitive for taking square roots. Now, suppose that the next

redex sele
ted is the �rst argument of the *, namely the appli
ation of id. (It might equally

well be the se
ond argument of *, sin
e neither argument is in normal form, but we will suppose

48

it is the �rst.) What should we overwrite the root of the redex with after performing the id

redu
tion? We should
ertainly not overwrite it with a
opy of the (sqrt 4) appli
ation node,

be
ause then (sqrt 4) would be evaluated twi
e!

The easiest way out of this dilemma is to add a new sort of graph node, an indire
tion node,

whi
h will be depi
ted as a # sign. An indire
tion node
an be used to update the root of a

redex to point to the result of the redu
tion:

� redu
es to �

/ \ / \

� \ � \

/ \ \ / \ \

* � \ * # \

/ ___� ___�

id / \ / \

sqrt 4 sqrt 4

Se
tion 12.4 of [Peyton Jones 1987℄
ontains further dis
ussion of the issues involved in updates.

2.1.6 Constant appli
ative formsy

Some super
ombinators have no arguments; they are
alled
onstant appli
ative forms, or CAFs.

For example, fa
20 is a CAF:

fa
20 = fa
torial 20

The interesting thing about CAFs is that the super
ombinator itself is a redex. We do not want

to instantiate a new
opy of fa
torial 20 whenever fa
20 is
alled, be
ause that would mean

repeating the
omputation of fa
torial 20. Rather, the super
ombinator fa
20 is the root of

the fa
20-redu
tion, and should be overwritten with the result of instantiating its body.

The pra
ti
al
onsequen
e is that super
ombinators should be represented by graph nodes, in

order that they
an be updated in the usual way. We will see this happening in pra
ti
e in ea
h

of our implementations.

This
on
ludes our review of graph redu
tion.

2.2 State transition systems

We now turn our attention to implementing graph redu
tion. We will des
ribe ea
h of our

implementations using a state transition system. In this se
tion we introdu
e state transition

systems.

A state transition system is a notation for des
ribing the behaviour of a sequential ma
hine. At

any time, the ma
hine is in some state, beginning with a spe
i�ed initial state. If the ma
hine's

state mat
hes one of the state transition rules, the rule �res and spe
i�es a new state for the

ma
hine. When no state transition rule mat
hes, exe
ution halts. If more than one rule mat
hes,

49

then one is
hosen arbitrarily to �re; the ma
hine is then non-deterministi
. All our ma
hines

will be deterministi
.

Here is a simple example of a state transition system used to spe
ify a (rather ineÆ
ient)

multipli
ation ma
hine. The state is a quadruple (n;m; d ; t). The numbers to be multiplied are

n and m, and the running total is t , and the ma
hine is initialised to the state (n;m; 0; 0).

The operation of the ma
hine is spe
i�ed by two transition rules. The d
omponent is repeatedly

de
remented towards zero while simultaneously in
rementing t , as spe
i�ed by the �rst rule:

n m d t

=) n m d � 1 t + 1

where d > 0

We always write transition rules with ea
h
omponent of the new state dire
tly underneath the

same
omponent of the old state, so that it is easy to see whi
h
omponents have
hanged.

When d rea
hes zero it is initialised again to n, and m is de
remented, until m rea
hes zero.

This is spe
i�ed by the se
ond rule:

n m 0 t

=) n m � 1 n t

where m > 0

The ma
hine terminates when no rule applies. At this point it will be in a state (n; 0; 0; t),

where t is the produ
t of n and m from the initial state.

Exer
ise 2.1. Run the ma
hine by hand starting with initial state (2; 3; 0; 0), spe
ifying whi
h rule �res

at ea
h step. Verify that the �nal state is (2; 0; 0; 6).

Exer
ise 2.2. An invariant of a sequen
e of states is a predi
ate whi
h is true of all of the states. Find

an invariant whi
h expresses the relationship between the initial value of n and m (
all them N and

M), and the
urrent values of m, d and t . Hen
e prove the
onje
ture that the ma
hine performs

multipli
ation. To do the proof you need to show that

1. The invariant is true for the initial state.

2. If the invariant is true for a parti
ular state, then it is true for its su

essor state.

3. Given the invariant and the termination
ondition (m = d = 0), then t = N �M .

4. The ma
hine terminates.

State transition systems are
onvenient for our purposes, be
ause:

� They are suÆ
iently abstra
t that we do not get tangled up in very low-level details.

� They are suÆ
iently
on
rete that we
an be sure we are not `
heating' by hiding a lot of

omplexity in the rules.

� We
an transliterate a state transition system dire
tly into Miranda to give an exe
utable

implementation of the system.

50

To illustrate the last point, we will transliterate the multipli
ation ma
hine into Miranda. We

begin by giving a type synonym to de�ne the type of a state in this ma
hine:

> type MultState = (Int, Int, Int, Int) -- (n, m, d, t)

Next, the fun
tion evalMult takes a state and returns the list
onsisting of that state followed

by all the states whi
h follow it:

> evalMult :: MultState -> [MultState℄

> evalMult state = if multFinal state

> then [state℄

> else state : evalMult (stepMult state)

The fun
tion stepMult takes a non-�nal state and returns the next state. There is one equation

for stepMult for ea
h transition rule:

> stepMult (n, m, d, t) | d > 0 = (n, m, d-1, t+1)

> stepMult (n, m, d, t) | d == 0 = (n, m-1, n, t)

The fun
tion multFinal takes a state and tests whether the state is a �nal state:

> multFinal :: MultState -> Bool

Exer
ise 2.3. De�ne the fun
tion multFinal, and run the resulting ma
hine on the initial state (2; 3; 0; 0),

he
king that the last state of the result list is (2; 0; 0; 6). You may �nd the standard fun
tion layn

is useful to help lay out the results more legibly.

2.3 Mark 1: A minimal template instantiation graph redu
er

We are now ready to begin the de�nition of a rather simple graph redu
er. Even though it is

simple, it
ontains many of the parts that more sophisti
ated graph redu
ers have, so it takes a

few pages to explain.

2.3.1 Transition rules for graph redu
tion

The state of the template instantiation graph redu
tion ma
hine is a quadruple

(sta
k, dump, heap, globals)

or (s,d,h,f) for short.

� The sta
k is a sta
k of addresses, ea
h of whi
h identi�es a node in the heap. These nodes

form the spine of the expression being evaluated. The notation a

1

: s denotes a sta
k

whose top element is a

1

and the rest of whi
h is s.

51

� The dump re
ords the state of the spine sta
k prior to the evaluation of an argument of a

stri
t primitive. The dump will not be used at all in the Mark 1 ma
hine, but it will be

useful for subsequent versions.

� The heap is a
olle
tion of tagged nodes. The notation h[a : node℄ means that in the heap

h the address a refers to the node node.

� For ea
h super
ombinator (and later for ea
h primitive), globals gives the address of heap

node representing the super
ombinator (or primitive).

A heap node
an take one of three forms (for our most primitive ma
hine):

� NAp a

1

a

2

represents the appli
ation of the node whose address is a

1

to that whose address

is a

2

.

� NSuper
omb args body represents a super
ombinator with arguments args and body body .

� NNum n represents the number n.

There are only two state transition rules for this primitive template instantiation ma
hine. The

�rst one des
ribes how to unwind a single appli
ation node onto the spine sta
k:

(2.1)

a : s d h[a : NAp a

1

a

2

℄ f

=) a

1

: a : s d h f

(The heap
omponent of the se
ond line of this rule still in
ludes the mapping of address a to

NAp a

1

a

2

, but we do not write it out again, to save
lutter.) Repeated appli
ation of this rule

will unwind the entire spine of the expression onto the sta
k, until the node on top of the sta
k

is no longer a NAp node.

The se
ond rule des
ribes how to perform a super
ombinator redu
tion.

(2.2)

a

0

: a

1

: : : : : a

n

: s d h[a

0

: NSuper
omb [x

1

; : : : ; x

n

℄ body ℄ f

=) a

r

: s d h

0

f

where (h

0

; a

r

) = instantiate body h f [x

1

7! a

1

; : : : ; x

n

7! a

n

℄

Most of the interest in this rule is hidden inside the fun
tion instantiate. Its arguments are:

� the expression to instantiate,

� a heap,

� the global mapping of names to heap addresses, f , augmented by the mapping of argument

names to their addresses obtained from the sta
k.

It returns a new heap and the address of the (root of the) newly
onstru
ted instan
e. Su
h a

powerful operation is really at varian
e with the spirit of state transition systems, where ea
h

step is meant to be a simple atomi
 a
tion, but that is the nature of the template instantiation

ma
hine. The implementations of later
hapters will all have truly atomi
 a
tions!

52

Noti
e that the root of the redex is not itself a�e
ted by this rule; it is merely repla
ed on the

sta
k by the root of the result. In other words, these rules des
ribe a tree-redu
tion ma
hine,

whi
h does not update the root of the redex, rather than a graph-redu
tion ma
hine. We will

improve on this later in Se
tion 2.5.

2.3.2 Stru
ture of the implementation

Now that we have a spe
i�
ation of our ma
hine, we are ready to embark on its implementation.

Sin
e we are writing the implementation in a fun
tional language, we must write a fun
tion run,

say, to do the job. What should its type be? It should take a �lename, run the program therein,

and print out the results, whi
h might be either the �nal result or some kind of exe
ution tra
e.

So the type of run is given by the following type signature:

> runProg :: [Char℄ -> [Char℄ -- name
hanged to not
onfli
t

Now we
an think about how run might be built up. Running a program
onsists of four stages:

1. Parse the program from the expression found in a spe
i�ed �le. The parse fun
tion takes

a �lename and returns the parsed program.

> parse :: [Char℄ -> CoreProgram

2. Translate the program into a form suitable for exe
ution. The
ompile fun
tion, whi
h

performs this task, takes a program and produ
es the initial state of the template instan-

tiation ma
hine:

>
ompile :: CoreProgram -> TiState

tiState is the type of the state of the template instantiation ma
hine. (The pre�x `ti' is

short for template instantiation.)

3. Exe
ute the program, by performing repeated state transitions until a �nal state is rea
hed.

The result is a list of all the states passed through; from this we
an subsequently either

extra
t the �nal state, or get a tra
e of all the states. For the present we will restri
t

ourselves to programs whi
h return a number as their result, so we
all this exe
ution

fun
tion eval.

> eval :: TiState -> [TiState℄

4. Format the results for printing. This is done by the fun
tion showResults, whi
h sele
ts

whi
h information to print, and formats it into a list of
hara
ters.

> showResults :: [TiState℄ -> [Char℄

The fun
tion run is just the
omposition of these four fun
tions:

> runProg = showResults . eval .
ompile . parse -- "run": name
onfli
t

We will devote a subse
tion to ea
h of these phases.

53

2.3.3 The parser

The sour
e language, in
luding the parse fun
tion, is de�ned in a separate module language,

de�ned in Chapter 1. We make it available using the %in
lude dire
tive to import the module:

> -- import Language

2.3.4 The
ompiler

In this se
tion we de�ne the
ompile fun
tion. We will need the data types and fun
tions

de�ned in the utils module, so we use %in
lude to make it available.

> -- import Utils

Now we need to
onsider the representation of the data types the
ompiler manipulates.

Data types

The
ompiler produ
es the initial state of the ma
hine, whi
h has type tiState, so the next

thing to do is to de�ne how ma
hine states are represented, using a type synonym:

> type TiState = (TiSta
k, TiDump, TiHeap, TiGlobals, TiStats)

The state of the ma
hine is a quintuple whose �rst four
omponents
orrespond exa
tly to those

given in Se
tion 2.3.1, and whose �fth
omponent is used to a

umulate statisti
s.

Next, we need to
onsider the representation of ea
h of these
omponents.

� The spine sta
k is just a sta
k of heap addresses:

> type TiSta
k = [Addr℄

We
hoose to represent the sta
k as a list. The elements of the sta
k are members of the

abstra
t data type addr de�ned in the utilsmodule (Appendix A.1). They represent heap

addresses, and by making them abstra
t we ensure that we
an only use the operations

provided on them by the utils module. Thus it is impossible for us to add one to an

address, say, by mistake.

� The dump is not required until Se
tion 2.6, but we make it part of the state already

be
ause adding it later would require many tiresome alterations to the state transition

rules. For now we give it a trivial type de�nition,
onsisting of just a single
onstru
tor

with no arguments.

> data TiDump = DummyTiDump

> initialTiDump = DummyTiDump

54

� The heap is represented by the heap abstra
t data type de�ned in the utils module. We

have to say what the heap
ontains, namely obje
ts of type node (yet to be de�ned):

> type TiHeap = Heap Node

Heap nodes are represented by the following algebrai
 data type de
laration, whi
h
orre-

sponds to the list of possibilities given in Se
tion 2.3.1:

> data Node = NAp Addr Addr -- Appli
ation

> | NSuper
omb Name [Name℄ CoreExpr -- Super
ombinator

> | NNum Int -- A number

The only di�eren
e is that we have added an extra �eld of type name to the NSuper
omb

onstru
tor, whi
h is used to hold the name of the super
ombinator. This is used only for

do
umentation and debugging purposes.

� The globals
omponent asso
iates ea
h super
ombinator name with the address of a heap

node
ontaining its de�nition:

> type TiGlobals = ASSOC Name Addr

The asso
 type is de�ned in the utils module, along with its operations (Appendix A.2).

It is a
tually de�ned there as a type synonym (not an abstra
t data type) be
ause it is so

onvenient to be able to manipulate asso
iations using the built-in syntax for lists. There

is a tension here between abstra
tion and ease of programming.

� The tiStats
omponent of the state is not mentioned in the transition rules, but we will

use it to
olle
t run-time performan
e statisti
s on what the ma
hine does. So that we

an easily
hange what statisti
s are
olle
ted, we will make it an abstra
t type. To begin

with, we will re
ord only the number of steps taken:

> tiStatInitial :: TiStats

> tiStatIn
Steps :: TiStats -> TiStats

> tiStatGetSteps :: TiStats -> Int

The implementation is rather simple:

> type TiStats = Int

> tiStatInitial = 0

> tiStatIn
Steps s = s+1

> tiStatGetSteps s = s

A useful fun
tion applyToStats applies a given fun
tion to the statisti
s
omponent of

the state:

> applyToStats :: (TiStats -> TiStats) -> TiState -> TiState

> applyToStats stats_fun (sta
k, dump, heap, s
_defs, stats)

> = (sta
k, dump, heap, s
_defs, stats_fun stats)

This
ompletes our de�nition of the data types involved.

55

The
ompiler itself

The business of the
ompiler is to take a program, and from it
reate the initial state of the

ma
hine:

>
ompile program

> = (initial_sta
k, initialTiDump, initial_heap, globals, tiStatInitial)

> where

> s
_defs = program ++ preludeDefs ++ extraPreludeDefs

>

> (initial_heap, globals) = buildInitialHeap s
_defs

>

> initial_sta
k = [address_of_main℄

> address_of_main = aLookup globals "main" (error "main is not defined")

Let us
onsider ea
h of the de�nitions in the where
lause in turn. The �rst, s
_defs, is just a

list of all the super
ombinator de�nitions involved in the program. Re
all that preludeDefs was

de�ned in Se
tion 1.4 to be the list of standard super
ombinator de�nitions whi
h are always

in
luded in every program. extraPreludeDefs is a list of any further standard fun
tions we

may want to add; for the present it is empty:

> extraPreludeDefs = [℄

The se
ond de�nition uses an auxiliary fun
tion, buildInitialHeap, to
onstru
t an initial

heap
ontaining an NSuper
omb node for ea
h super
ombinator, together with an asso
iation

list globals whi
h maps ea
h super
ombinator name onto the address of its node.

Lastly, initial_sta
k is de�ned to
ontain just one item, the address of the node for the

super
ombinator main, obtained from globals.

Now we need to
onsider the de�nition of buildInitialHeap, whi
h is a little tri
ky. We need

to do something for ea
h element of the list s
_defs, but what makes it awkward is that the

`something' involves heap allo
ation. Sin
e ea
h heap allo
ation produ
es a new heap, we need

to �nd a way of passing the heap along from one element of s
_defs to the next. This pro
ess

starts with the empty heap, hInitial (Appendix A.1).

We en
apsulate this idea in a higher-order fun
tion mapA

uml, whi
h we will use quite a lot in

this book. mapA

uml takes three arguments: f , the `pro
essing fun
tion'; a

, the `a

umulator';

and a list [x

1

; : : : ; x

n

℄. It takes ea
h element of the input list, and applies f to it and the
urrent

a

umulator. f returns a pair of results, an element of the result list and a new value for the

a

umulator. mapA

uml passes the a

umulator along from one
all of f to the next, and

eventually returns a pair of results: a

0

, the �nal value of the a

umulator; and the result

list [y

1

; : : : ; y

n

℄. Figure 2.1 illustrates this plumbing. The de�nition of mapA

uml is given in

Appendix A.5.

In our
ase, the `a

umulator' is the heap, with initial value hInitial. The list [x

1

; : : : ; x

n

℄ is the

super
ombinator de�nitions, s
_defs, while the result list [y

1

; : : : ; y

n

℄ is the asso
iation of super-

ombinator names and addresses, s
_addrs. Here, then, is the de�nition of buildInitialHeap.

> buildInitialHeap :: [CoreS
Defn℄ -> (TiHeap, TiGlobals)

56

-

??

?

?

?

?

?

?

?

a

a

'yny3y2y1

xnx3x2x1

ffff

Figure 2.1: A pi
ture of mapA

uml f a

 [x

1

; : : : ; x

n

℄

> buildInitialHeap s
_defs = mapA

uml allo
ateS
 hInitial s
_defs

The `pro
essing fun
tion', whi
h we will
all allo
ateSC, allo
ates a single super
ombinator,

returning a new heap and a member of the s
_addrs asso
iation list.

> allo
ateS
 :: TiHeap -> CoreS
Defn -> (TiHeap, (Name, Addr))

> allo
ateS
 heap (name, args, body)

> = (heap', (name, addr))

> where

> (heap', addr) = hAllo
 heap (NSuper
omb name args body)

That
ompletes the de�nition of the
ompiler. Next, we turn our attention to the evaluator.

2.3.5 The evaluator

The evaluator eval takes an initial ma
hine state, and runs the ma
hine one step at a time,

returning the list of all states it has been through.

eval always returns the
urrent state as the �rst element of its result. If the
urrent state is

a �nal state, no further states are returned; otherwise, eval is applied re
ursively to the next

state. The latter is obtained by taking a single step (using step), and then
alling doAdmin to

do any administrative work required between steps.

> eval state = state : rest_states

> where

> rest_states | tiFinal state = [℄

> | otherwise = eval next_state

> next_state = doAdmin (step state)

57

> doAdmin :: TiState -> TiState

> doAdmin state = applyToStats tiStatIn
Steps state

Testing for a �nal state

The fun
tion tiFinal dete
ts the �nal state. We are only �nished if the sta
k
ontains a single

obje
t, and it is either a number or a data obje
t.

> tiFinal :: TiState -> Bool

>

> tiFinal ([sole_addr℄, dump, heap, globals, stats)

> = isDataNode (hLookup heap sole_addr)

>

> tiFinal ([℄, dump, heap, globals, stats) = error "Empty sta
k!"

> tiFinal state = False -- Sta
k
ontains more than one item

Noti
e that the sta
k element is an address, whi
h we need to look up in the heap before we

an
he
k whether it is a number or not. We should also produ
e a sensible error message if the

sta
k should be empty (whi
h should never happen).

Finally, we
an de�ne isDataNode:

> isDataNode :: Node -> Bool

> isDataNode (NNum n) = True

> isDataNode node = False

Taking a step

The fun
tion step maps one state into its su

essor:

> step :: TiState -> TiState

It has to do
ase analysis on the node on top of the spine sta
k, so it extra
ts this node from

the heap, and uses dispat
h to
all an appropriate fun
tion to do the hard work for ea
h form

of node.

> step state

> = dispat
h (hLookup heap (hd sta
k))

> where

> (sta
k, dump, heap, globals, stats) = state

>

> dispat
h (NNum n) = numStep state n

> dispat
h (NAp a1 a2) = apStep state a1 a2

> dispat
h (NSuper
omb s
 args body) = s
Step state s
 args body

58

We
an deal with the
ases for numbers and appli
ations with very little trouble. It is an error

for there to be a number on top of the sta
k, sin
e a number should never be applied as a

fun
tion. (If it was the only obje
t on the sta
k, exe
ution will have been halted by tiFinal.)

> numStep :: TiState -> Int -> TiState

> numStep state n = error "Number applied as a fun
tion!"

Dealing with an appli
ation node is des
ribed by the unwind rule (Rule 2.1), whi
h
an be

translated dire
tly into Miranda:

> apStep :: TiState -> Addr -> Addr -> TiState

> apStep (sta
k, dump, heap, globals, stats) a1 a2

> = (a1 : sta
k, dump, heap, globals, stats)

Applying a super
ombinator

To apply a super
ombinator, we must instantiate its body, binding the argument names to the

argument addresses found in the sta
k (Rule 2.2). Then we dis
ard the arguments from the

sta
k, in
luding the root of the redex, and push the (root of the) result of the redu
tion onto the

sta
k instead. (Remember, in this �rst version of the ma
hine we are not performing updates.)

> s
Step :: TiState -> Name -> [Name℄ -> CoreExpr -> TiState

> s
Step (sta
k, dump, heap, globals, stats) s
_name arg_names body

> = (new_sta
k, dump, new_heap, globals, stats)

> where

> new_sta
k = result_addr : (drop (length arg_names+1) sta
k)

>

> (new_heap, result_addr) = instantiate body heap env

> env = arg_bindings ++ globals

> arg_bindings = zip2 arg_names (getargs heap sta
k)

In order to apply super
ombinators and primitives, we need an auxiliary fun
tion. The fun
tion

getArgs takes a sta
k (whi
h must
onsist of a super
ombinator on top of a sta
k of appli
ation

nodes), and returns a list formed from the argument of ea
h of the appli
ation nodes on the

sta
k.

> -- now getargs sin
e getArgs
onfli
ts with Gofer standard.prelude

> getargs :: TiHeap -> TiSta
k -> [Addr℄

> getargs heap (s
:sta
k)

> = map get_arg sta
k

> where get_arg addr = arg where (NAp fun arg) = hLookup heap addr

The instantiate fun
tion takes an expression, a heap and an environment asso
iating names

with addresses. It
reates an instan
e of the expression in the heap, and returns the new heap

and address of the root of the instan
e. The environment is used by instantiate to spe
ify the

addresses to be substituted for super
ombinators and lo
al variables.

59

> instantiate :: CoreExpr -- Body of super
ombinator

> -> TiHeap -- Heap before instantiation

> -> ASSOC Name Addr -- Asso
iation of names to addresses

> -> (TiHeap, Addr) -- Heap after instantiation, and

> -- address of root of instan
e

The
ase for numbers is quite straightforward.

> instantiate (ENum n) heap env = hAllo
 heap (NNum n)

The
ase for appli
ations is also simple; just instantiate the two bran
hes, and build the appli-

ation node. Noti
e how we `thread' the heap though the re
ursive
alls to instantiate. That

is, the �rst
all to instantiate is given a heap and produ
es a new heap; the latter is given to

the se
ond
all to instantiate, whi
h produ
es yet another heap; the latter is the heap in whi
h

the new appli
ation node is allo
ated, produ
ing a �nal heap whi
h is returned to the
aller.

> instantiate (EAp e1 e2) heap env

> = hAllo
 heap2 (NAp a1 a2) where (heap1, a1) = instantiate e1 heap env

> (heap2, a2) = instantiate e2 heap1 env

For variables, we simply look up the name in the environment we are given, produ
ing a suitable

error message if we do not �nd a binding for it.

> instantiate (EVar v) heap env

> = (heap, aLookup env v (error ("Undefined name " ++ show v)))

aLookup, whi
h is de�ned in Appendix A.2, looks up a variable in an asso
iation list, but returns

its third argument if the lookup fails.

We postpone the question of instantiating
onstru
tors and let(re
) expressions by
alling

auxiliary fun
tions instantiateConstr and instantiateLet, whi
h ea
h give errors for the

present; later we will repla
e them with operational de�nitions. Lastly, the template ma
hine is

unable to handle
ase expressions at all, as we will see.

> instantiate (EConstr tag arity) heap env

> = instantiateConstr tag arity heap env

> instantiate (ELet isre
 defs body) heap env

> = instantiateLet isre
 defs body heap env

> instantiate (ECase e alts) heap env = error "Can't instantiate
ase exprs"

> instantiateConstr tag arity heap env

> = error "Can't instantiate
onstru
tors yet"

> instantiateLet isre
 defs body heap env

> = error "Can't instantiate let(re
)s yet"

60

2.3.6 Formatting the results

The output from eval is a list of states, whi
h are rather voluminous if printed in their entirety.

Furthermore, sin
e the heaps and sta
ks are abstra
t obje
ts, Miranda will not print them at all.

So the showResults fun
tion formats the output for us, using the iseq data type introdu
ed in

Se
tion 1.5.

> showResults states

> = iDisplay (iCon
at [iLayn (map showState states),

> showStats (last states)

> ℄)

We display the state just by showing the
ontents of the sta
k. It is too tiresome to print the

heap in its entirety after ea
h step, so we will
ontent ourselves with printing the
ontents of

nodes referred to dire
tly from the sta
k. The other
omponents of the state do not
hange, so

we will not print them either.

> showState :: TiState -> Iseq

> showState (sta
k, dump, heap, globals, stats)

> = iCon
at [showSta
k heap sta
k, iNewline ℄

We display the sta
k, topmost element �rst, by displaying the address on the sta
k, and the

ontents of the node to whi
h it points. Most of these nodes are appli
ation nodes, and for ea
h

of these we also display the
ontents of its argument node.

> showSta
k :: TiHeap -> TiSta
k -> Iseq

> showSta
k heap sta
k

> = iCon
at [

> iStr "Stk [",

> iIndent (iInterleave iNewline (map show_sta
k_item sta
k)),

> iStr " ℄"

> ℄

> where

> show_sta
k_item addr

> = iCon
at [showFWAddr addr, iStr ": ",

> showStkNode heap (hLookup heap addr)

> ℄

> showStkNode :: TiHeap -> Node -> Iseq

> showStkNode heap (NAp fun_addr arg_addr)

> = iCon
at [iStr "NAp ", showFWAddr fun_addr,

> iStr " ", showFWAddr arg_addr, iStr " (",

> showNode (hLookup heap arg_addr), iStr ")"

> ℄

> showStkNode heap node = showNode node

61

showNode displays the value of a node. It prints only the name stored inside NSuper
omb nodes,

rather than printing the
omplete value; indeed this is the only reason the name is stored inside

these nodes.

> showNode :: Node -> Iseq

> showNode (NAp a1 a2) = iCon
at [iStr "NAp ", showAddr a1,

> iStr " ", showAddr a2

> ℄

> showNode (NSuper
omb name args body) = iStr ("NSuper
omb " ++ name)

> showNode (NNum n) = (iStr "NNum ") `iAppend` (iNum n)

> showAddr :: Addr -> Iseq

> showAddr addr = iStr (show addr)

>

> showFWAddr :: Addr -> Iseq -- Show address in field of width 4

> showFWAddr addr = iStr (spa
e (4 - length str) ++ str)

> where

> str = show addr

showStats is responsible for printing out the a

umulated statisti
s:

> showStats :: TiState -> Iseq

> showStats (sta
k, dump, heap, globals, stats)

> = iCon
at [iNewline, iNewline, iStr "Total number of steps = ",

> iNum (tiStatGetSteps stats)

> ℄

Exer
ise 2.4. Test the implementation given so far. Here is a suitable test program:

main = S K K 3

The result should be the number 3. Invent a
ouple more test programs and
he
k that they work.

Remember, we have not yet de�ned any arithmeti
 operations!

Exer
ise 2.5. Modify showState so that it prints out the entire
ontents of the heap. (Hint: use

hAddresses to dis
over the addresses of all the nodes in the heap.) In this way you
an see how

the heap evolves from one step to the next.

Exer
ise 2.6. s
Step will fail if the super
ombinator or primitive is applied to too few arguments. Add

a suitable
he
k and error message to s
Step to dete
t this
ase.

Exer
ise 2.7. Modify your interpreter to
olle
t more exe
ution statisti
s. For example, you
ould

a

umulate:

� The number of redu
tions, perhaps split into super
ombinator redu
tions and primitive re-

du
tions.

� The number of ea
h kind of heap operation, espe
ially allo
ations. The most
onvenient way

to do this is to modify the heap abstra
t data type to a

umulate this information itself,

though this only works for heap operations whi
h return a new heap as part of the result.

62

� The maximum sta
k depth.

Exer
ise 2.8. In the de�nition of s
Step, the environment env whi
h is passed to instantiate is

de�ned as

env = arg_bindings ++ globals

What di�eren
e would it make if the arguments to ++ were reversed?

Exer
ise 2.9. (Slightly tri
ky.) You might think that the following de�nition for eval would be more

obvious than the one given:

eval state = [state℄, tiFinal state

= state : eval next_state, otherwise

(where next_state is de�ned as before). Why is this an inferior de�nition? (Hint: think about

what would happen if all the states were being formatted by showResults, and some error o

urred

when evaluating tiFinal state, su
h as an attempt to a

ess a non-existent heap node. Would

the state whi
h
aused the error be printed? If not, why not?)

2.4 Mark 2: let(re
) expressions

Our �rst enhan
ement is to make the ma
hine
apable of dealing with let and letre
 expres-

sions. As dis
ussed in Se
tion 2.1.4, the bodies of super
ombinators may
ontain let(re
)

expressions, whi
h are regarded as textual des
riptions of a graph.

It follows that the only
hange we have to make to our implementation is to enhan
e instantiate,

so that it has an equation for the ELet
onstru
tor.

Exer
ise 2.10. Add an equation to instantiate for non-re
ursive let expressions. What you will need

to do to instantiate (ELet nonRe
ursive defs body) is:

1. instantiate the right-hand side of ea
h of the de�nitions in defs;

2. augment the environment to bind the names in defs to the addresses of the newly
onstru
ted

instan
es;

3.
all instantiate passing the augmented environment and the expression body.

This still only takes
are of let expressions. The result of instantiating a letre
 expression is

a
y
li
 graph, whereas let expressions give rise to a
y
li
 graphs.

Exer
ise 2.11. Copy your equation for the non-re
ursive ELet of instantiate, and modify it to work

for the re
ursive
ase (or modify your de�nition to deal with both).

(Hint: do everything exa
tly as in the let
ase, ex
ept that in Step 1 pass the augmented environ-

ment (
onstru
ted in Step 2) to instantiate, instead of the existing environment.)

The hint in this exer
ise seems
urious, be
ause it requires the name-to-address bindings pro-

du
ed in Step 2 to be used as an input to Step 1. If you try this in Miranda it all works perfe
tly

be
ause, as in any non-stri
t fun
tional language, the inputs to a fun
tion do not have to be

evaluated before the fun
tion is
alled. In a real implementation we would have to do this tri
k

`by hand', by working out the addresses at whi
h ea
h of the (root) nodes in the letre
 will be

63

allo
ated, augmenting the environment to re
e
t this information, and then instantiating the

right-hand sides.

Here is a test program, to see if your implementation works:

pair x y f = f x y ;

fst p = p K ;

snd p = p K1 ;

f x y = letre

a = pair x b ;

b = pair y a

in

fst (snd (snd (snd a))) ;

main = f 3 4

The result should be 4. Can you �gure out how this program works? (All will be revealed in

Se
tion 2.8.3.)

Exer
ise 2.12. Consider the program

main = letre
 f = f x in f

What happens if you run this program? Could this problem ever arise in a strongly typed language

su
h as Miranda?

2.5 Mark 3: Adding updating

So far our redu
tion ma
hine does not perform any updates, so shared sub-expressions may be

evaluated many times. As explained in Se
tion 2.1.5 the easiest way to �x the problem is to

update the root of the redex with an indire
tion node pointing to the result.

We
an express this by modifying the state transition rule (2.2) for super
ombinator redexes:

(2.3)

a

0

: a

1

: : : : : a

n

: s d h[a

0

: NSuper
omb [x

1

; : : : ; x

n

℄ body ℄ f

=) a

r

: s d h

0

[a

n

: NInd a

r

℄ f

where (h

0

; a

r

) = instantiate body h f [x

1

7! a

1

; : : : ; x

n

7! a

n

℄

The di�eren
e is that the heap h

0

returned by the instantiate fun
tion is further modi�ed by

overwriting the node a

n

(the root of the redex) with an indire
tion to a

r

(the root of the result,

returned by instantiate). Noti
e that if the super
ombinator is a CAF (see Se
tion 2.1.6), then

n = 0 and the node to be modi�ed is the super
ombinator node itself.

One further modi�
ation is required. Sin
e we may now en
ounter indire
tions during unwinding

the spine, we need to add a new rule to
ope with this
ase:

(2.4)

a : s d h[a : NInd a

1

℄ f

=) a

1

: s d h f

64

The address of the indire
tion node, a, is removed from the sta
k, just as if it had never been

there.

There are several things we need to do to implement these new rules:

� Add a new node
onstru
tor, NInd, to the node data type. This gives the following revised

de�nition:

> data Node = NAp Addr Addr -- Appli
ation

> | NSuper
omb Name [Name℄ CoreExpr -- Super
ombinator

> | NNum Int -- Number

> | NInd Addr -- Indire
tion

We need to add a new equation to showNode to take a

ount of this extra
onstru
tor.

� Modify s
Step to use hUpdate to update the root of the redex with an indire
tion to the

result (Rule 2.3).

� Add an equation to the de�nition of dispat
h to
ope with indire
tions (Rule 2.4).

Exer
ise 2.13. Make the modi�
ations to perform updates with indire
tion nodes. Try out the e�e
t

of your
hanges by running the following program on both the Mark 1 and Mark 3 versions of your

redu
tion ma
hine:

id x = x ;

main = twi
e twi
e id 3

(Re
all that twi
e is de�ned in preludeDefs { Se
tion 1.4.) Try to �gure out what would happen

by redu
ing it by hand �rst. What happens if you de�ne main to be twi
e twi
e twi
e id 3?

2.5.1 Redu
ing the number of indire
tions

Often we will be updating the root of the redex with an indire
tion to a node newly
reated by

instantiate (or, as we shall see, by a primitive). Under these
ir
umstan
es, rather than use

an indire
tion, it would be safe to build the root node of the result dire
tly on top of the root

of the redex. Be
ause the root of the result is newly
reated, no sharing
an be lost by doing

this, and it saves building (and subsequently traversing) an extra indire
tion node.

We
an do this by de�ning a new instantiation fun
tion, instantiateAndUpdate, whi
h is just

like instantiate ex
ept that it takes an extra argument, the address of the node to be updated

with the result, and it does not return the address of the resulting graph.

> instantiateAndUpdate

> :: CoreExpr -- Body of super
ombinator

> -> Addr -- Address of node to update

> -> TiHeap -- Heap before instantiation

> -> ASSOC Name Addr -- Asso
iate parameters to addresses

> -> TiHeap -- Heap after instantiation

Here, for example, is the de�nition of instantiateAndUpdate in the
ase when the expression

is an appli
ation:

65

> instantiateAndUpdate (EAp e1 e2) upd_addr heap env

> = hUpdate heap2 upd_addr (NAp a1 a2)

> where

> (heap1, a1) = instantiate e1 heap env

> (heap2, a2) = instantiate e2 heap1 env

Noti
e that the re
ursive instantiations are still performed by the old instantiate; only the

root node needs to be updated.

Exer
ise 2.14. Complete the de�nition of instantiateAndUpdate. The following points need a little

are:

� When the expression to be instantiated is a simple variable, you will still need to use an

indire
tion. Why?

� Think
arefully about the re
ursive instantiations in the equations for let(re
) expressions.

Modify s
Step to
all instantiateAndUpdate instead of instantiate, passing the root of the

redex as the address of the node to be updated. Remove the update
ode from s
Step itself.

Measure the e�e
t of this modi�
ation on the number of redu
tions and the number of heap nodes

allo
ated.

2.6 Mark 4: Adding arithmeti

In this se
tion we will add arithmeti
 primitives. This will involve using the dump for the �rst

time.

2.6.1 Transition rules for arithmeti

First of all we develop the state transition rules for arithmeti
. We begin with negation, be
ause

it is a simple unary operation. The rules for other arithmeti
 operations are similar. Here is a

plausible-looking rule when the argument is evaluated:

(2.5)

a : a

1

: [℄ d h

2

6

4

a : NPrim Neg

a

1

: NAp a b

b : NNum n

3

7

5

f

=) a

1

: [℄ d h[a

1

: NNum (�n)℄ f

Noti
e that the rule spe
i�es that the sta
k should
ontain only the argument to the negation

operator, be
ause anything else would be a type error.

Suppose that the argument is not evaluated: what should happen then? We need to evaluate

the argument on a fresh sta
k (so that the evaluations do not get mixed up with ea
h other)

and, when this is
omplete, restore the old sta
k and try again. We need a way to keep tra
k of

the old sta
k, so we introdu
e the dump for the �rst time. The dump is just a sta
k of sta
ks.

The Neg rule to start an evaluation is like this:

66

(2.6)

a : a

1

: [℄ d h

"

a : NPrim Neg

a

1

: NAp a b

#

f

=) b : [℄ (a : a

1

: [℄) : d h f

This rule is used only if the previous one (whi
h is a spe
ial
ase of this one, with the node at

address b being an NNum node) does not apply.

On
e the evaluation is
omplete, we need a rule to restore the old sta
k:

(2.7)

a : [℄ s : d h[a : NNum n℄ f

=) s d h f

On
e the old sta
k has been restored, the negation primitive will be found on top of the sta
k

again, but this time the argument will be in normal form.

But we need to take
are! The argument will indeed have been redu
ed to normal form, but the

root node of the argument will have been updated, so it may now be an indire
tion node. Hen
e,

the �rst rule for Neg will not see the NNum node dire
tly. (For example,
onsider the expression

(negate (id 3)).)

The easiest way around this is to add an extra transition rule just before the rule whi
h unwinds

an appli
ation node (Rule 2.1). In the spe
ial
ase where the argument of the appli
ation is an

indire
tion, the rule updates the appli
ation with a new one whose argument points past the

indire
tion:

(2.8)

a : s d h

"

a : NAp a

1

a

2

a

2

: NInd a

3

#

f

=) a : s d h[a : NAp a

1

a

3

℄ f

In order to bring this rule into play, we need to modify Rule 2.6 so that it unwinds anew from

the root of the redex after the evaluation is
ompleted:

(2.9)

a : a

1

: [℄ d h

"

a : NPrim Neg

a

1

: NAp a b

#

f

=) b : [℄ (a

1

: [℄) : d h f

This is rather tiresome; the implementations developed in subsequent
hapters will do a better

job.

Exer
ise 2.15. Write the state transition rules for addition. (The other dyadi
 arithmeti
 operations

are pra
ti
ally identi
al.)

2.6.2 Implementing arithmeti

To implement arithmeti
 we need to make a number of
hanges. First, we need to rede�ne the

type tiDump to be a sta
k of sta
ks, whose initial value is empty.

> type TiDump = [TiSta
k℄

> initialTiDump = [℄

67

Next, we need to add a new kind of heap node: NPrim n p represents a primitive whose name

is n and whose value is p, where p is of type primitive. As in the
ase of NSuper
omb nodes,

the name is present in the NPrim node solely for debugging and do
umentation reasons.

> data Node = NAp Addr Addr -- Appli
ation

> | NSuper
omb Name [Name℄ CoreExpr -- Super
ombinator

> | NNum Int -- Number

> | NInd Addr -- Indire
tion

> | NPrim Name Primitive -- Primitive

As usual, showNode needs to be augmented as well, to display NPrim nodes. The transition rules

given in the previous se
tion suggest that the data type primitive should be de�ned like this:

> data Primitive = Neg | Add | Sub | Mul | Div

with one
onstru
tor for ea
h desired primitive.

Now, just as we needed to allo
ate an NSuper
omb node in the initial heap for ea
h super
om-

binator, so we need to allo
ate an NPrim node in the initial heap for ea
h primitive. Then we

an add extra bindings to the globals
omponent of the ma
hine state, whi
h map the name of

ea
h primitive to the address of its node, just as we did for super
ombinators. We
an do this

easily by modifying the de�nition of buildInitialHeap, like this:

> buildInitialHeap :: [CoreS
Defn℄ -> (TiHeap, TiGlobals)

> buildInitialHeap s
_defs

> = (heap2, s
_addrs ++ prim_addrs)

> where

> (heap1, s
_addrs) = mapA

uml allo
ateS
 hInitial s
_defs

> (heap2, prim_addrs) = mapA

uml allo
atePrim heap1 primitives

We de�ne an asso
iation list giving the mapping from variable names to primitives, thus:

> primitives :: ASSOC Name Primitive

> primitives = [("negate", Neg),

> ("+", Add), ("-", Sub),

> ("*", Mul), ("/", Div)

> ℄

To add further primitives, just add more
onstru
tors to the primitive type, and more elements

to the primitives asso
iation list.

We
an then de�ne allo
atePrim, very mu
h as we de�ned allo
ateS
:

> allo
atePrim :: TiHeap -> (Name, Primitive) -> (TiHeap, (Name, Addr))

> allo
atePrim heap (name, prim)

> = (heap', (name, addr))

> where

> (heap', addr) = hAllo
 heap (NPrim name prim)

68

Next, we need to augment the dispat
h fun
tion in step to
all primStep when it �nds a

NPrim node. primStep performs
ase analysis on the primitive being used, and then
alls one

of a family of auxiliary fun
tions, primNeg, primAdd and so on, whi
h a
tually perform the

operation. For the present we
ontent ourselves with negation.

> primStep state Neg = primNeg state

primNeg needs to do the following:

� Use getArgs to extra
t the address of the argument from the sta
k, and hLookup to get

the node pointed to by this address.

� Use the auxiliary fun
tion isDataNode to
he
k if the argument node is evaluated.

� If it is not evaluated, use Rule 2.9 to set up the new state ready to evaluate the argument.

This involves pushing the
urrent sta
k on the dump, and making a new sta
k whose only

element is the argument to negate.

� If it is evaluated, use hUpdate to overwrite the root of the redex with an NNum node

ontaining the result, and return, having modi�ed the sta
k appropriately.

Next, we need to implement the new rules for unwinding and for numbers. The de�nition of

numStepmust be
hanged to implement Rule 2.7. If the sta
k
ontains just one item, the address

of an NNum node, and the dump is non-empty, numStep should pop the top element of the dump

and make it into the new sta
k. If these
onditions do not apply, it should signal an error.

Similarly, the de�nition of apStep must be
hanged to implement Rule 2.8. It
an do this by

he
king for an indire
tion in the argument, and using hUpdate to update the heap if so.

Lastly, we need to make a
hange to tiFinal. At present it halts exe
ution when the sta
k

ontains a single NNum; but it must now only do this if the dump is empty, otherwise the new

Rule 2.7 will never get a
han
e to exe
ute!

Exer
ise 2.16. Implement all these
hanges to add negation, and test some programs involving negation.

For example,

main = negate 3

or

main = twi
e negate 3

You should also test the following program, to show that the handling of indire
tions is working:

main = negate (I 3)

The obvious extension now is to implement addition, subtra
tion and the other arithmeti

primitives. If we rush ahead blindly we will �nd that all these dyadi
 arithmeti
 primitives have

a rather stereotyped form; indeed they are identi
al ex
ept for the fa
t that at one point we use

* or / rather than +.

To avoid this dupli
ation, we
an instead de�ne a single generi
 fun
tion primArith and pass

to it the required operation as an argument, thus:

69

> primStep state Add = primArith state (+)

> primStep state Sub = primArith state (-)

> primStep state Mul = primArith state (*)

> primStep state Div = primArith state (div)

> primArith :: TiState -> (Int -> Int -> Int) -> TiState

This is a simple example of the way in whi
h higher-order fun
tions
an enable us to make

programs more modular.

Exer
ise 2.17. Implement primArith, and test your implementation.

2.7 Mark 5: Stru
tured data

In this se
tion we will add stru
tured data types to our redu
tion ma
hine. It would be ni
e

to give an implementation for the
ase expressions of our
ore language, but it turns out that

it is rather hard to do so within the framework of a template instantiation ma
hine. (Our

later implementations will not have this problem.) Instead we will use a
olle
tion of built-in

fun
tions, su
h as if,
asePair and
aseList, whi
h allow us to manipulate
ertain stru
tured

types. The template ma
hine will remain unable to handle general stru
tured obje
ts.

Exer
ise 2.18. Why is it hard to introdu
e
ase expressions into the template instantiation ma
hine?

(Hint: think about what instantiate would do with a
ase expression.)

2.7.1 Building stru
tured data

Stru
tured data is built with the family of
onstru
tors Pa
k{t ; a} where t gives the tag of

the
onstru
tor, and a gives its arity (Se
tion 1.1.4), so we need a representation for these

onstru
tor fun
tions in the graph. They are really a new form of primitive, so we
an do

this by adding a new
onstru
tor PrimConstr to the primitive type. Now in the equa-

tion for instantiateConstr, we
an instantiate an expression EConstr t a to the heap node

NPrim "Pa
k" (PrimConstr t a).

Next the question arises of how this primitive is implemented. We need to add a
ase to primStep

to mat
h the PrimConstr
onstru
tor, whi
h
alls a new auxiliary fun
tion primConstr. This

should
he
k that it is given enough arguments, and if so build a stru
tured data obje
t in the

heap.

To do this we need to add a new
onstru
tor, NData, to the node type to represent stru
tured

data obje
ts. The NData
onstru
tor
ontains the tag of the obje
t, and its
omponents.

> data Node = NAp Addr Addr -- Appli
ation

> | NSuper
omb Name [Name℄ CoreExpr -- Super
ombinator

> | NNum Int -- Number

> | NInd Addr -- Indire
tion

> | NPrim Name Primitive -- Primitive

> | NData Int [Addr℄ -- Tag, list of
omponents

70

We
an now give the rule for NPrim (PrimConstr t n):

(2.10)

a : a

1

: : : : : a

n

: [℄ d h

2

6

6

6

4

a : NPrim (PrimConstr t n)

a

1

: NAp a b

1

: : :

a

n

: NAp a

n�1

b

n

3

7

7

7

5

f

=) a

n

: [℄ d h[a

n

: NData t [b

1

; : : : ; b

n

℄℄ f

So mu
h for building stru
tured obje
ts. The next question is how to take them apart, whi
h

is expressed by
ase expressions in the Core language. As already mentioned, it is hard to

implement
ase expressions dire
tly, so we
ontent ourselves with a few spe
ial
ases, beginning

with booleans.

2.7.2 Conditionals

The boolean type might be de
lared in Miranda like this:

boolean ::= False | True

There are two
onstru
tors, True and False. Ea
h has arity zero, and we arbitrarily assign a

tag of one to False and two to True. So we
an give the following Core-language de�nitions:

False = Pa
k{1,0}

True = Pa
k{2,0}

Sin
e we
annot have general
ase expressions, it will suÆ
e to add a
onditional primitive,

with the redu
tion rules:

if Pa
k{2,0} t e = t

if Pa
k{1,0} t e = e

Operationally, if evaluates its �rst argument, whi
h it expe
ts to be a data obje
t, examines its

tag, and sele
ts either its se
ond or third argument depending on whether the tag is 2 (True)

or 1 (False) respe
tively.

Exer
ise 2.19. Write the state transition rules for the
onditional primitive. You need three rules: two

to perform the redu
tion if the boolean
ondition is already evaluated; and one to start evaluation

if the
ondition is not evaluated, by pushing the old sta
k on the dump, and pushing the address

of the
ondition on the new empty sta
k (
f. Rule 2.9). You should �nd that you need to use an

indire
tion in the update for the �rst two rules.

One further rule is missing. What is it? (Hint: when evaluation of the
ondition is
omplete, how

does the
onditional get re-tried?)

On
e you have if, you
an give Core-language de�nitions for the other boolean operators in

terms of it and False and True. For example:

and x y = if x y False

71

Exer
ise 2.20. Give Core-language de�nitions for or, xor and not. Add all of these Core-language

de�nitions to extraPreludeDefs.

Finally, we need some way of
omparing numeri
 values, whi
h requires new primitives >, >=

and so on.

2.7.3 Implementing stru
tured data

Here is a list of the
hanges required to the implementation to add stru
tured data obje
ts,

onditionals and
omparison operations.

� Add the NData
onstru
tor to the node data type. Extend showNode to display NData

nodes.

� Add PrimConstr, If, Greater, GreaterEq, Less, LessEq, Eq, NotEq to the primitive

type. For all ex
ept the �rst, add suitable pairs to the primitives asso
iation list, so that

the names of these primitives
an be mapped to their values by instantiateVar.

� Add a de�nition for instantiateConstr (and instantiateAndUpdateConstr if ne
es-

sary).

� The isDataNode fun
tion should identify NData nodes as well as NNum nodes.

� The dispat
h
ode in step needs an extra
ase for NData nodes,
alling a new auxiliary

fun
tion dataStep.

� De�ne dataStep; it is very similar to numStep.

� Extend primStep to
ope with the new primitives PrimConstr, If, Greater and so on.

For PrimConstr and If it should
all new auxiliary fun
tions primConstr and primIf.

The
omparison primitives
an almost, but not quite, use primArith. What we need is a

slight generalisation of primArith:

> primDyadi
 :: TiState -> (Node -> Node -> Node) -> TiState

whi
h takes a node-
ombining fun
tion instead of a number-
ombining one. It is simple

to de�ne primArith, and a similar fun
tion primComp for
omparison primitives, in terms

of primDyadi
; and to de�ne primDyadi
 by generalising the de�nition of primArith.

Exer
ise 2.21. Make all these
hanges. Now, at last, we
an write sensible re
ursive fun
tions, be
ause

we have a
onditional to terminate the re
ursion. Try, for example, the fa
torial fun
tion

fa
 n = if (n == 0) 1 (n * fa
 (n-1)) ;

main = fa
 3

2.7.4 Pairs

The
onstru
tors for booleans both have arity zero. Next, we will add the data type of pairs,

whi
h might be de
lared in Miranda like this:

72

pair * ** ::= MkPair * **

We
an build pairs using the Pa
k{1,2}
onstru
tor:

MkPair = Pa
k{1,2}

How about taking them apart, still without using
ase expressions? For example,
onsider the

following Core-language program involving a
ase expression:

f p =
ase p of

<1> a b -> b*a*a end

La
king
ase expressions, we
an translate it instead as follows:

f p =
asePair p f'

f' a b = b*a*a

Here, f' is an auxiliary fun
tion, and
asePair is a built-in primitive de�ned like this:

asePair (Pa
k{1,2} a b) f = f a b

Operationally,
asePair evaluates its �rst argument, whi
h it expe
ts to yield a pair; it then

applies its se
ond argument to the two
omponents of the pair. You
an implement this by

adding yet another
onstru
tor PrimCasePair to the primitive type, and writing some more

ode to handle it.

We
an, for example, de�ne fst and snd whi
h extra
t the �rst and se
ond
omponents of a

pair, with the following Core-language de�nitions:

fst p =
asePair p K

snd p =
asePair p K1

Exer
ise 2.22. Write the state transition rules for
asePair. As usual, you will need two rules: one to

perform the redu
tion if the �rst argument is evaluated, and one to start its evaluation if not.

Make the ne
essary
hanges to implement pairs, as des
ribed above.

Test your implementation with the following program (and others of your own):

main = fst (snd (fst (MkPair (MkPair 1 (MkPair 2 3)) 4)))

2.7.5 Lists

Now that you have done pairs and booleans, lists should be easy. The list data type might be

de�ned in Miranda like this:

list * ::= Nil | Cons * (list *)

73

We assign the tag 1 to Nil and 2 to Cons.

The only question is what exa
tly the
aseList primitive, whi
h takes a list apart, should do.

We re
all that the
asePair has one `
ontinuation', a fun
tion whi
h takes the
omponents of

the pair as its arguments. if has two `
ontinuations', and sele
ts one or other depending on the

value of its �rst argument. So
aseList is just a
ombination of both these ideas:

aseList Pa
k{1,0}
n

 =
n

aseList (Pa
k{2,2} x xs)
n

 =

 x xs

It takes three arguments, and evaluates the �rst one. If it is an empty list (i.e. has a tag of 1

and no
omponents) then
aseList simply sele
ts its se
ond argument
n. Otherwise it must

be a list
ell (i.e. a tag of 2 and two
omponents), and
aseList applies its third argument

to these
omponents.

For example, suppose we wanted to implement the length fun
tion, whi
h in Miranda would

be written

length [℄ = 0

length (x:xs) = 1 + length xs

With the aid of
aseList we
ould write length like this:

length xs =
aseList xs 0 length'

length' x xs = 1 + length xs

Exer
ise 2.23. Write Core-language de�nitions for Cons, Nil, head and tail. To de�ne head and tail,

you will need to introdu
e a new primitive abort, whi
h is returned if you take the head or tail

of an empty list. abort
an
onveniently be implemented by
alling Miranda's error primitive to

stop the program.

Exer
ise 2.24. Write the state transition rules for
aseList, implement it and abort, and add de�ni-

tions to preludeDefs for Cons, Nil, head and tail.

Write some programs to test your implementation.

You should now be able to write a suitable
ase primitive for any stru
tured data type you
are

to think of.

Exer
ise 2.25. What is the main disadvantage of taking apart stru
tured data types with
ase primi-

tives, rather than implementing full
ase expressions?

2.7.6 Printing lists

So far we have been impli
itly assuming that the result of the whole program is a number.

What would we have to do to allow a list of numbers to be the result? If this was the
ase, after

evaluating main for a while, we would eventually expe
t to �nd the address of a list obje
t on

top of the sta
k. If it is an empty list, the program terminates. If it is a Cons
ell, and its head

is not evaluated we need to begin a re
ursive evaluation of its head; if the head is evaluated we

need to print the head, and then repeat the whole exer
ise on the tail.

74

As soon as we start to write state transition rules to des
ribe this, we have to de
ide how to

express the idea of `printing a number' in our state transition world. The neatest solution is

to add a new
omponent to the state,
alled the output, and model `printing a number' by

`appending a number to the output'. We will also add two new primitives, Print and Stop.

The Stop primitive is easy: it makes the sta
k empty. (tiFinal will be altered to stop the

ma
hine when it sees an empty sta
k, rather than giving an error, whi
h is what it does now.)

Stop expe
ts the dump to be empty.

(2.11)

o a : [℄ [℄ h[a : NPrim Stop℄ f

=) o [℄ [℄ h f

The Print primitive evaluates its �rst argument to an integer, and atta
hes its value to the

output list; then it returns its se
ond argument as its result. It also expe
ts the dump to be

empty. The �rst rule applies if the �rst argument is already evaluated:

(2.12)

o a : a

1

: a

2

: [℄ [℄ h

2

6

6

6

4

a : NPrim Print

a

1

: NAp a b

1

a

2

: NAp a

1

b

2

b

1

: NNum n

3

7

7

7

5

f

=) o ++ [n℄ b

2

: [℄ [℄ h f

Print is a rather weird super
ombinator, be
ause it has a side-e�e
t on the output o. Print

must obviously be used with
are! The se
ond rule applies if Print's �rst argument is not

evaluated: it starts an evaluation in the usual way.

(2.13)

o a : a

1

: a

2

: [℄ [℄ h

2

6

4

a : NPrim Print

a

1

: NAp a b

1

a

2

: NAp a

1

b

2

3

7

5

f

=) o b

1

: [℄ (a

2

: [℄) : [℄ h f

Now, we de�ne the following extra fun
tions in extraPreludeDefs:

printList xs =
aseList xs stop printCons

printCons h t = print h (printList t)

where "print" is bound by primitives to the Print primitive, and "stop" is bound to Stop.

Finally, we modify the
ompile fun
tion so that the sta
k initially
ontains the address of the

expression (printList main). It should not take long to
onvin
e yourself that this does the

right thing.

Exer
ise 2.26. Implement these
hanges, and test your implementation by writing a program whi
h

returns a list of numbers.

2.8 Alternative implementationsy

These exer
ises explore some alternative implementations for things we have done.

75

2.8.1 An alternative representation for primitives

Sin
e the only thing we ever do to a primitive is exe
ute it, we
an play the following tri
k:

instead of making primitive be an enumeration type on whi
h we perform
ase analysis, we

ould make it a fun
tion whi
h takes a tiState to a tiState, like this:

> Type Primitive = TiState -> TiState

The
onstru
tors Add, Sub and so on have vanished altogether. Now the `
ase analysis' done by

primStep is rather easy: just apply the fun
tion! Here are the revised de�nitions for primStep

and primitives.

> primStep state prim = prim state

> primitives = [("negate", primNeg),

> ("+", primArith (+)), ("-", primArith (-)),

> ("*", primArith (*)), ("/", primArith (/))

> ℄

This has a dire
t
ounterpart in real implementations: instead of storing a small integer tag in a

NPrim node to distinguish among primitives, we store a
ode pointer, and jump to it to exe
ute

the primitive.

Exer
ise 2.27. Implement and test this
hange.

2.8.2 An alternative representation of the dump

At present we have implemented the dump as a sta
k of sta
ks, but in a real implementation

we would doubtless build the new sta
k dire
tly on top of the old one. The dump would then

ontain o�sets from the base of the spine sta
k, telling where one sub-sta
k ends and the next

begins.

We
an model this dire
tly in our ma
hine with the following type de
laration:

> type TiDump = Sta
k Num

Exer
ise 2.28. Implement and test this
hange. You will need to modify the equations that deal with

beginning and ending an evaluation of an argument, and the de�nition of tiFinal.

2.8.3 An alternative representation for data values

There is another way to implement booleans whi
h is quite instru
tive. The redu
tion rules

given in Se
tion 2.7.2 for if simply sele
t one or other of the se
ond or third arguments. Now,

suppose that instead of representing a boolean value as a stru
tured data obje
t, we represented

it as a fun
tion, whi
h sele
ts one or other of its arguments. That is, True and False are

rede�ned like this:

76

True t f = t

False t f = f

Now boolean operators
an be de�ned like this:

if = I

and b1 b2 t f = b1 (b2 t f) f

or b1 b2 t f = b1 t (b2 t f)

not b t f = b f t

These de�nitions
an all be in
luded in extraPreludeDefs. Now the only primitives required

are the arithmeti

omparison operators! There is no need to de�ne a primitive if, or to add

NData to the node type.

We
an apply exa
tly the same tri
k for pairs. A pair is represented as a fun
tion whi
h takes

a single argument and applies it to the two
omponents of the pair:

pair a b f = f a b

asePair = I

fst p = p K

snd p = p K1

The same tri
k works for lists, but now we need two `extra' arguments, one to use if the list is

a Cons
ell, and the other to use if it is empty:

ons a b
n

 =

 a b

nil
n

 =
n

aseList = I

Exer
ise 2.29. Implement booleans, pairs and lists in this way, and measure their performan
e. What

advantages and disadvantages
an you see relative to the previous implementation?

2.9 Garbage
olle
tiony

As exe
ution pro
eeds, more and more nodes will be allo
ated in the heap, so the Miranda data

stru
ture representing the heap will be
ome larger and larger. Eventually, Miranda will run out

of spa
e. This
omes as no surprise, be
ause it
orresponds dire
tly to real implementations.

As nodes are allo
ated, the heap be
omes larger and larger, and eventually �lls up. We need to

perform garbage
olle
tion to free up some spa
e.

More spe
i�
ally, we need to de�ne a fun
tion g
, with type

whose result state behaves exa
tly like its input state, ex
ept that it has a (hopefully) smaller

heap. This smaller heap
ontains all the nodes whi
h are a

essible from the other
omponents

of the ma
hine state, dire
tly or indire
tly. g
 makes the heap smaller by
alling hFree on the

addresses of nodes whi
h are no longer required (see Appendix A.1 for a des
ription of hFree).

The doAdmin fun
tion
an
he
k the heap size (using hSize) after ea
h step, and
all the garbage

olle
tor if it is larger than some given size.

77

2.9.1 Mark-s
an
olle
tion

To begin with, we will develop a mark-s
an
olle
tor. This works in three phases:

1. The �rst phase identi�es all the roots; that is, all the heap addresses
ontained in the

ma
hine state. Where
an su
h addresses be lurking? We
an easily �nd out by looking

at the types involved in the ma
hine state for o

urren
es of addr. The answer is that

addresses
an o

ur in the sta
k, the dump and the globals. So we need the following

fun
tions:

> findSta
kRoots :: TiSta
k -> [Addr℄

> findDumpRoots :: TiDump -> [Addr℄

> findGlobalRoots :: TiGlobals -> [Addr℄

2. In the mark phase, ea
h node whose address is in the ma
hine state is marked. When a

node is marked, all its des
endants are also marked, and so on re
ursively. The markFrom

fun
tion takes a heap and an address, and returns a new heap in whi
h all the nodes

a

essible from the address have been marked.

> markFrom :: TiHeap -> Addr -> TiHeap

3. In the s
an phase, all the nodes in the heap (whether marked or not) are examined.

Unmarked nodes are freed, and marked nodes are unmarked.

> s
anHeap :: TiHeap -> TiHeap

Exer
ise 2.30. Write a de�nition for g
 in terms of findRoots, markFrom and s
anHeap, and
all it

appropriately from doAdmin.

Exer
ise 2.31. Write a de�nition for findRoots.

Before we
an implement markFrom and s
anHeap we need to have a way to mark a node. In a

real implementation this is done by using a bit in the node to indi
ate whether or not the node

is marked. We will model this by adding a new
onstru
tor, the node type, as follows:

> data Node = NAp Addr Addr -- Appli
ation

> | NSuper
omb Name [Name℄ CoreExpr -- Super
ombinator

> | NNum Int -- Number

> | NInd Addr -- Indire
tion

> | NPrim Name Primitive -- Primitive

> | NData Int [Addr℄ -- Tag, list of
omponents

> | NMarked Node -- Marked node

The new kind of node is an NMarked node, and it
ontains inside it the node whi
h was there

before the marking happened. The node inside an NMarked node is never another NMarked node.

Now we are ready to de�ne markFrom. Given an address a and a heap h, it does the following:

78

j

?

-

(
)(b)

(a)

(
)(b)

(a)

Before garbage
olle
tion

After garbage
olle
tion

(Garbage) NInd Another node

NAp

NAp

Another nodeNInd

Figure 2.2: Eliminating indire
tions during garbage
olle
tion

1. It looks up a in h, giving a node n. If it is already marked, markFrom returns immediately.

This is what prevents the marking pro
ess from going on forever when it en
ounters a

y
li
 stru
ture in the heap.

2. It marks the node by using hUpdate to repla
e it with NMarked n.

3. It extra
ts any addresses from inside n (there may be zero or more su
h addresses), and

alls markFrom on ea
h of them.

All that remains is s
anHeap. It uses hAddresses to extra
t the list of all the addresses used

in the heap, and examines ea
h in turn. If the node to whi
h it refers is unmarked (that is, not

an NMarked node), it
alls hFree to free the node. Otherwise, it unmarks the node by using

hUpdate to repla
e it with the node found inside the NMarked
onstru
tor.

Exer
ise 2.32. Write de�nitions for markFrom and s
anHeap.

That
ompletes the mark-s
an garbage
olle
tor.

Mark-s
an is not the only way to perform garbage
olle
tion, and we now suggest some dire
tions

for further exploration. A brief survey of garbage-
olle
tion te
hniques
an be found in Chapter

17 of [Peyton Jones 1987℄; a more
omprehensive review is [Cohen 1981℄.

2.9.2 Eliminating indire
tions

We begin with an optimisation to the
olle
tor we have just developed. During evaluation we

may introdu
e indire
tion nodes, and it would be ni
e to eliminate them, by readjusting pointers

79

as suggested in Figure 2.2. To do this, we need to
hange the fun
tionality of markFrom a bit.

It should now take an address and a heap, mark all the nodes a

essible from the address, and

return a new heap together with a new address whi
h should be used instead of the old one.

> markFrom :: TiHeap -> Addr -> (TiHeap, Addr)

In the pi
ture,
alling markFrom with the address of node (a) should mark node (
) (but not

node (b)), and return the address of node (
).

How do we make use of the address returned by markFrom? It must be inserted in pla
e of

the address with whi
h markFrom was
alled. The easiest way to do this is to merge the �rst

two phases, so that as ea
h root is identi�ed in the ma
hine state, markFrom is
alled, and

the returned address is used to repla
e the original root in the ma
hine state. So we repla
e

findSta
kRoots and its
ompanions with:

> markFromSta
k :: TiHeap -> TiSta
k -> (TiHeap,TiSta
k)

> markFromDump :: TiHeap -> TiDump -> (TiHeap,TiDump)

> markFromGlobals :: TiHeap -> TiGlobals -> (TiHeap,TiGlobals)

Exer
ise 2.33. Implement the revised version of markFrom, making it `skip over' indire
tions without

marking them, and update the addresses inside ea
h node as it
alls itself re
ursively. Then

implement the other marking fun
tions in terms of markFrom, and glue them together with a new

version of g
. Measure the improvement, by
omparing the heap sizes obtained with this new

olle
tor to the ones you obtained before. (You
an easily revert to the one before by removing the

spe
ial handling of NInd from markFrom.)

2.9.3 Pointer reversal

If all the N nodes in the heap happened to be linked together into a single long list, then

markFrom would
all itself re
ursively N times. In a real implementation this would build up

a sta
k whi
h is as deep as the heap is large. It is very tiresome to have to allo
ate a sta
k as

large as the heap to a

ount for a very unlikely situation!

There is a neat tri
k
alled pointer reversal, whi
h
an eliminate the sta
k by linking together

the very nodes whi
h are being marked [S
horr and Waite 1967℄. The only extra requirement

pla
ed by the algorithm is that marked nodes need a few extra bits of state information. We

an express this by expanding the NMarked
onstru
tor somewhat:

> data Node = NAp Addr Addr -- Appli
ation

> | NSuper
omb Name [Name℄ CoreExpr -- Super
ombinator

> | NNum Int -- Number

> | NInd Addr -- Indire
tion

> | NPrim Name Primitive -- Primitive

> | NData Int [Addr℄ -- Tag, list of
omponents

> | NMarked MarkState Node -- Marked node

> data markState = Done -- Marking on this node finished

> | Visits Int -- Node visited n times so far

80

The meaning of the
onstru
tors for markState will be explained shortly.

We
an des
ribe the pointer-reversal algorithm with the aid of another (quite separate) state

transition system. The state of the marking ma
hine has three
omponents (f ; b; h), the forward

pointer, the ba
kward pointer and the heap. Ea
h
all to markFrom initiates a new run of the

ma
hine. When markFrom is
alled with address a and heap h

init

the ma
hine is started from

the state

(a; hNull; h

init

)

(hNull is a distinguished value of type addr whi
h does not address any obje
t in the heap, and

whi
h
an be distinguished from ordinary addresses.) The ma
hine terminates when it is in a

state

(f ; hNull; h[f : NMarked Done n℄)

that is, when f points to a marked node, and b = hNull. (It is possible that the initial state is

also a �nal state, if the node pointed to by f is already marked.)

We begin the transition rules by des
ribing how the ma
hine handles unmarked nodes. NData

nodes will be ignored for the present. First, we deal with the
ase of appli
ations. When we

en
ounter an unmarked appli
ation, we `go down' into its �rst sub-graph, re
ording the old

ba
k-pointer in the �rst �eld of the NAp node. The new forward-pointer addresses the �rst sub-

graph, and the new ba
k-pointer addresses the appli
ation node itself. The state information,

Visits 1, re
ords the fa
t that the ba
k-pointer is kept in the �rst �eld of the NAp node.

f b h[f : NAp a

1

a

2

℄

=) a

1

f h[f : NMarked (Visits 1) (NAp b a

2

)℄

This is illustrated in Figure 2.3(a) and (b). In this �gure the marks are abbreviated to `V1'

for `Visits 1', `V2' for `Visits 2' and `D' for `Done'. Noti
e the way that a
hain of reversed

pointers builds up in the appli
ation nodes whi
h have been visited.

The next rule says that unmarked NPrim nodes should be marked as
ompleted, using the

NMarked Done
onstru
tor (Figure 2.3(
)):

f b h[f : NPrim p℄

=) f b h[f : NMarked Done (NPrim p)℄

NSuper
omb and NNum nodes are treated similarly, sin
e they do not
ontain any further address-

es.

So mu
h for unmarked nodes. When the ma
hine �nds that f points to a marked node, it

inspe
ts the node whi
h b points to. If it is hNull, the ma
hine terminates. Otherwise, it

must be a marked NAp node. Let us deal �rst with the
ase where the state information is

(Visits 1), saying that the node has been visited on
e. We have therefore
ompleted marking

the �rst sub-graph of the NAp node, and should now mark the se
ond, whi
h we do by making f

point to it, leaving b un
hanged, moving the ba
k-pointer saved in the node (b

0

) from the �rst

�eld to the se
ond, and
hanging the state information (Figure 2.3(d)):

f b h

"

f : NMarked Done n

b : NMarked (Visits 1) (NAp b

0

a

2

)

#

=) a

2

b h[b : NMarked (Visits 2) (NAp f b

0

)℄

81

=

Y

=

-

�

-

?

I

-

�

-

??

-

�

-

I

-

�

-

?

=

=

-

�

?

=

-

�

-

(f)(e)

(d)(
)

(b)(a)

NAp

+NPrim

NAp

NNum 5

f:

b:

D

NAp

+NPrim

NAp

NNum 5

f:

b:

D

b:

f:

5NNum

NAp

NPrim +

NAp

b:

f:

5NNum

NAp

NPrim +

NAp

V1

D

D

V1

V1V1

hnull

hnull

V1

V2

D

D

D

D

V1

hnullhnull

hnullb:

f:

5NNum

NAp

NPrim +

NAp

D

b:

f:

5NNum

NAp

NPrim +

NAp

V1

D

hnull

Figure 2.3: Marking a graph using pointer reversal

82

Some time later, the ma
hine will
omplete marking the se
ond sub-graph, in whi
h
ase it

an restore the node to its original form, and ba
k up the
hain of ba
k-pointers one stage

(Figure 2.3(e)):

f b h

"

f : NMarked Done n

b : NMarked (Visits 2) (NAp a

1

b

0

)

#

=) b b

0

h[b : NMarked Done (NAp a

1

f)℄

Lastly, we deal with indire
tions. They are skipped over by
hanging f but not b. The heap is

left un
hanged, so the indire
tion itself is not marked. When garbage
olle
tion is
ompleted,

all indire
tions will therefore be re
laimed. As you
an see, `shorting out' indire
tions during

garbage
olle
tion is very easy with this marking algorithm.

f b h[f : NInd a℄

=) a b h

That
ompletes the state transitions for the pointer-reversal algorithm.

Exer
ise 2.34. Add rules for the NData node.

Exer
ise 2.35. Implement the algorithm. The main
hanges required are to the node type and to

the markFrom fun
tion. s
an needs to
hange in a trivial way, be
ause the format of NMarked

onstru
tors has
hanged.

2.9.4 Two-spa
e garbage
olle
tion

Another very popular way of performing garbage
olle
tion is to
opy all the live data from one

heap to another, the so-
alled two-spa
e
olle
tor invented by [Feni
hel and Yo
helson 1969℄ (see

also [Baker 1978, Cheney 1970℄). The
olle
tor works in two stages:

1. All the nodes pointed to by the ma
hine state (sta
k, dump, et
.) are eva
uated from the

old heap (
alled from-spa
e) into the initially empty new heap (
alled to-spa
e). A node is

eva
uated by allo
ating a
opy of it in to-spa
e, and overwriting the from-spa
e
opy with

a forwarding pointer
ontaining the to-spa
e address of the new node. Like markFrom, the

eva
uation routine returns the to-spa
e address of the new node, whi
h is used to repla
e

the old address in the ma
hine state.

2. Then all the nodes in to-spa
e are s
anned linearly, starting at the �rst, and ea
h is

s
avenged. A node n is s
avenged by eva
uating any nodes to whi
h it points, repla
ing

their addresses in n with their new to-spa
e addresses. S
anning stops when the s
anning

pointer
at
hes up with the allo
ation pointer.

To implement this, we have to add yet another variant of the node type, this time with an

NForward
onstru
tor, whi
h
ontains a single adddress (the to-spa
e address). (NMarked is not

needed for this
olle
tor.) Instead of markFromSta
k we need eva
uateSta
k with type:

> eva
uateSta
k :: TiHeap -> TiHeap -> TiSta
k -> (TiHeap, TiSta
k)

83

The
all (eva
uateSta
k fromheap toheap stk) eva
uates all the nodes in fromheap referred to

from stk into toheap, returning the new toheap and the new stk . Similar fun
tions are required

for the dump and globals.

Lastly, we need a fun
tion

> s
avengeHeap :: TiHeap -> TiHeap -> TiHeap

where the
all (s
avengeHeap fromheap toheap) s
avenges nodes in toheap, eva
uating when

ne
essary nodes from fromheap into toheap.

Exer
ise 2.36. Implement this garbage
olle
tor.

84

> module GM where

> import Language

> import Utils

85

Chapter 3

The G-ma
hine

In this
hapter we introdu
e our �rst
ompiler-based implementation, the G-ma
hine, whi
h

was developed at the Chalmers Institute of Te
hnology, G�oteborg, Sweden, by Augustsson and

Johnsson. The material in this
hapter is based on their series of papers [Augustsson 1984,

Johnsson 1984℄
ulminating in their Ph.D. theses [Augustsson 1987, Johnsson 1987℄.

3.1 Introdu
tion to the G-ma
hine

The fundamental operation of the template instantiation ma
hine was to
onstru
t an instan
e

of a super
ombinator body, implemented by the instantiate fun
tion. This is a rather slow op-

eration, be
ause instantiate must re
ursively traverse the template ea
h time an instantiation

is performed. When we think of the ma
hine instru
tions that are exe
uted by instantiate,

we see that they will be of two kinds: those
on
erned with traversing the template, and those

on
erned with a
tually
onstru
ting the instan
e.

The `Big Idea' of the G-ma
hine, and other
ompiled implementations, is this:

Before running the program, translate ea
h super
ombinator body to a sequen
e of

instru
tions whi
h, when exe
uted, will
onstru
t an instan
e of the super
ombinator

body.

Exe
uting this
ode should be faster than
alling an instantiation fun
tion, be
ause all the

instru
tions are
on
erned with
onstru
ting the instan
e. There are no instru
tions required to

traverse the template, be
ause all that has been done during the translation pro
ess. Running

a program is thereby split into two stages. In the �rst stage a
ompiler is used to produ
e some

intermediate form of the program; this is referred to as
ompile-time. In the se
ond stage the

intermediate form is exe
uted; this is
alled run-time.

Sin
e all we ever do to a super
ombinator is to instantiate it, we
an dis
ard the original

super
ombinators on
e the translation is done, keeping only the
ompiled
ode.

In prin
iple, then, we use a G-ma
hine
ompiler to turn a program in our sour
e language into

a sequen
e of ma
hine language instru
tions. Be
ause we may wish to implement our language

on many di�erent pie
es of hardware (68000 based, or VAX, et
.) it is useful to have an abstra
t

86

ma
hine. A good abstra
t ma
hine has two properties: �rstly, it
an be easily translated into

any
on
rete ma
hine
ode (for example 68000 assembler); se
ondly, it is easy to generate the

abstra
t ma
hine
ode from the sour
e.

Noti
e that we are fa
ed with a trade-o� here. We
an ideally satisfy the �rst property (easy

on
rete
ode generation) by making the abstra
t ma
hine the same as the real ma
hine. But

this makes the se
ond property mu
h harder to ful�l. An abstra
t ma
hine is therefore a

stepping-stone between the sour
e language and a parti
ular ma
hine
ode.

3.1.1 An example

Here is a small example of the G-ma
hine
ompiler in a
tion. Consider the fun
tion

f g x = K (g x)

This would be
ompiled to the sequen
e of G-
ode instru
tions:

Push 1

Push 1

Mkap

Pushglobal K

Mkap

Slide 3

Unwind

In Figure 3.1, we show how this
ode will exe
ute. On the left-hand side of ea
h diagram is the

sta
k, whi
h grows downwards. The remainder of ea
h diagram is the heap. The appli
ation

nodes are represented by an �
hara
ter, expressions are labelled with lower-
ase letters, and

super
ombinators are labelled with upper-
ase letters.

In Figure 3.1, diagram (a), we see the state of the ma
hine before exe
uting the sequen
e of

instru
tions for f. The spine has been unwound, just as it was in the template ma
hine. The

top two items on the sta
k are pointers to the appli
ation nodes, whose right-hand parts are the

expressions to be bound for g and x.

The Push instru
tion uses addressing relative to the top of the sta
k. Ignoring the pointer to

the super
ombinator node f, the �rst sta
k item is numbered 0, the next is numbered 1 and so

on. The next diagram (b) shows the
hanged sta
k, after exe
uting a Push 1 instru
tion. This

pushes a pointer to the expression x onto the sta
k, x being two sta
k items down the sta
k.

After another Push 1 we have a pointer to g on top of the sta
k; again this is two sta
k items

down the sta
k, be
ause the previous instru
tion pushed a new pointer onto the sta
k. The new

diagram is (
).

Diagram (d) shows what happens when a Mkap instru
tion is exe
uted. It takes two pointers

from the sta
k and makes an appli
ation node from them; leaving a pointer to the result on

the sta
k. In diagram (e) we exe
ute a Pushglobal K instru
tion, with the e�e
t of pushing a

pointer to the K super
ombinator. Another Mkap instru
tion
ompletes the instantiation of the

body of f, as shown in diagram (f).

87

-

-

6

6

-

6

--

6

6

-

-

-

-

-

-

-

-

(d) Mkap(
) Push 1(b) Push 1(a)

fff

�

f gggg

xxxx� � � �

����

-

- -

--

-

- -

-

6

6 6

6

-

(g) Slide 3(f) Mkap(e) Pushglobal K

K

K

�

ff

� � �

x x� �

gg

�

�

K �

g x

Figure 3.1: Exe
ution of
ode for the f super
ombinator

We
an now repla
e the original expression, f g x, with the newly instantiated body: K (g x).

In the �rst version of the G-ma
hine { whi
h is not lazy { we simply slide the body down three

pla
es on the sta
k, dis
arding the three pointers that were there. This is a
hieved by using

a Slide 3 instru
tion, as shown in diagram (g). The �nal Unwind instru
tion will
ause the

ma
hine to
ontinue to evaluate.

This
on
ludes a brief overview of the exe
ution of the G-ma
hine.

3.1.2 Further optimisations

A modest performan
e gain
an be a
hieved by eliminating the interpretive overhead of travers-

ing the template, as we have dis
ussed. However, it turns out that
ompilation also opens

the door to a whole host of short-
uts and optimisations whi
h are simply not available to the

template instantiation ma
hine. For example,
onsider the following de�nition:

f x = x + x

The template ma
hine would evaluate x twi
e; on the se
ond o

asion it would of
ourse �nd

that it was already evaluated. A
ompiled implementation
an spot at
ompile-time that x will

already be evaluated, and omit the evaluation step.

88

3.2 Code sequen
es for building templates

We re
all that the template instantiator operates in the following way:

� The ma
hine has terminated when the single item on top of the sta
k is a pointer to an

integer.

� If this is not the
ase then we unwind any appli
ation nodes we
ome a
ross until we rea
h

a super
ombinator node. We then instantiate a
opy of the super
ombinator body, making

substitutions for its arguments.

At the heart of the Mark 1 template ma
hine are the two fun
tions s
Step and instantiate,

whi
h are de�ned on pages 58 and 58. If we take a look at the de�nitions of s
Step and

instantiate, we
an give the following des
ription to the operation of instantiating a super-

ombinator:

1. Constru
t a lo
al environment of variable names to addresses in the heap.

2. Using this lo
al environment, make an instan
e of the super
ombinator body in the heap.

Variables are not
opied; instead the
orresponding address is used.

3. Remove the pointers to the appli
ation nodes and the super
ombinator node from the

sta
k.

4. Push the address of the newly
reated instan
e of the super
ombinator onto the sta
k.

In the template instantiator, making an instan
e of a super
ombinator involves traversing the

tree stru
ture of the expression whi
h is the body of the super
ombinator. Be
ause expressions

are de�ned re
ursively, the tree-traversal fun
tion instantiate is de�ned re
ursively. For ex-

ample, look at the de�nition of instantiate { on page 58 { for the
ase of EAp e1 e2. First

we
all instantiate for e1 and then for e2, holding on to the addresses of the graph for ea
h

sub-expression. Finally we
ombine the two addresses by building an appli
ation node in the

graph.

We would like to
ompile a linear sequen
e of instru
tions to perform the operation of instanti-

ating an expression.

3.2.1 Post�x evaluation of arithmeti

The desire to
onstru
t a linear sequen
e of instru
tions to instantiate an expression is reminis-

ent of the post�x evaluation of arithmeti
 expressions. We explore this analogy further before

returning to the G-ma
hine.

The language of arithmeti
 expressions
onsists of: numbers, addition and multipli
ation. We

an represent this language as the type aExpr.

> data AExpr = Num Int

> | Plus AExpr AExpr

> | Mult AExpr AExpr

89

It is intended that the language should have an `obvious' meaning; we
an give this using the

fun
tion aInterpret.

> aInterpret :: AExpr -> Int

> aInterpret (Num n) = n

> aInterpret (Plus e1 e2) = aInterpret e1 + aInterpret e2

> aInterpret (Mult e1 e2) = aInterpret e1 * aInterpret e2

Alternatively, we
an
ompile the expression into a post�x sequen
e of operators (or instru
-

tions). To evaluate the expression we use the
ompiled operators and a sta
k of values. For

example, the arithmeti
 expression 2 + 3� 4 would be represented as the sequen
e

[INum 2; INum 3; INum 4; IMult; IPlus℄

We
an give the instru
tions for our post�x ma
hine as the type aInstru
tion.

> data AInstru
tion = INum Int

> | IPlus

> | IMult

The state of the evaluator is a pair, whi
h is a sequen
e of operators and a sta
k of numbers.

The meaning of a
ode sequen
e is then given in the following transition rules.

(3.1)

[℄ [n℄

=) n

(3.2)

INum n : i ns

=) i n : ns

(3.3)

IPlus : i n

0

: n

1

: ns

=) i (n

1

+ n

0

) : ns

(3.4)

IMult : i n

0

: n

1

: ns

=) i (n

1

� n

0

) : ns

Translating these transition rules into Miranda gives:

> aEval :: ([AInstru
tion℄, [Int℄) -> Int

> aEval ([℄, [n℄) = n

> aEval (INum n:is, s) = aEval (is, n: s)

> aEval (IPlus: is, n0:n1:s) = aEval (is, n1+n0:s)

> aEval (IMult: is, n0:n1:s) = aEval (is, n1*n0:s)

To generate the sequen
e of post�x
ode for an expression we must de�ne a
ompiler. This takes

an expression and delivers a sequen
e of instru
tions, whi
h when exe
uted will
ompute the

value of the expression.

90

> aCompile :: AExpr -> [AInstru
tion℄

> aCompile (Num n) = [INum n℄

> aCompile (Plus e1 e2) = aCompile e1 ++ aCompile e2 ++ [IPlus℄

> aCompile (Mult e1 e2) = aCompile e1 ++ aCompile e2 ++ [IMult℄

The key idea from this is given by the type of the aCompile fun
tion. It returns a list of

instru
tions.

The post�x representation of expressions is a way of
attening or linearising an ex-

pression tree, so that the expression
an be represented by a
at sequen
e of operators.

Exer
ise 3.1. Using stru
tural indu
tion, or otherwise, prove that the post�x evaluation of arithmeti

expressions results in the same answer as the tree evaluation of expressions. That is: prove that

for all expressions e of type aExpr,

aInterpret e = aEval (aCompile e; [℄)

This is an example of a
ongruen
e proof.

Exer
ise 3.2. Extend the fun
tions aInterpret, aCompile and aEval to handle let expressions. Prove

that for all expressions in e of type aExpr, these new fun
tions satisfy the relation:

aInterpret e = aEval (aCompile e; [℄)

Can you extend the language to even more
ompli
ated expressions, e.g. letre
 expressions? Can

you prove that you have
orre
tly implemented these extensions?

3.2.2 Using post�x
ode to
onstru
t graphs

We
an use the same te
hnique to
reate an instan
e of a super
ombinator body. In this
ase

the `values' on the sta
k will be addresses of parts of the expression being instantiated.

The operations of the template
onstru
tion instru
tions will be di�erent from those we saw in

the arithmeti
 example above, in that the instru
tions generally have the side-e�e
t of allo
ating

nodes in the heap. As an example,
onsider introdu
ing an Mkap instru
tion. This instru
tion

makes an appli
ation node, in the heap, from the top two addresses on the sta
k. It leaves a

pointer to this new node on the sta
k upon
ompletion.

There is no reason to invent a new evaluation sta
k of addresses, as our template instantiation

ma
hine already has su
h a sta
k. However, there is an important point to remember if we do

make use of this sta
k:

The map of the sta
k lo
ations
orresponding to variable names will
hange as we

pop and push obje
ts from the sta
k. We must therefore keep tra
k of this when we

are
ompiling expressions.

Our a

ess to items in the sta
k is relative to the top of the sta
k. So, if an item is added, the

o�set to rea
h that item is in
reased by one; similarly, when an item is popped, the o�set is

de
reased by one.

91

.

.

.

.

j

q

�

R

^

-

-

.

.

.

.

.

.

.

.

.

.

�

^�

-

e

en

en-1

�

�

f

e1

�

Figure 3.2: The sta
k layout for the Mark 1 ma
hine

3.2.3 What happens after an instantiation has been made?

On
e the instantiation of the super
ombinator body has been made we must tidy up the sta
k,

and arrange the
ontinuation of the evaluation pro
ess. On
ompleting the evaluation of the

post�x sequen
e for a super
ombinator with n arguments, the sta
k will have the following form:

� On top there will be the address in heap of the newly instantiated body, e.

� Next there are the n + 1 pointers. From these we
an a

ess the arguments used in the

instantiation pro
ess.

� The last of the n+1 pointers points to the root of the expression we have just instantiated.

This is shown in Figure 3.2.

We must repla
e the redex with the newly instantiated body, and pop o� n items from the sta
k,

using the Slide instru
tion. To �nd the next super
ombinator we must now start unwinding

again, using the Unwind instru
tion. By adding operations to do the tidying and unwinding to

the post�x operator sequen
e, we have transformed the template instantiator into our Mark 1

G-ma
hine.

The
ode for the fun
tion f x1 ... xn = e is:

<
ode to
onstru
t an instan
e of e>

Slide n+1

Unwind

92

3.3 Mark 1: A minimal G-ma
hine

We now present the
ode for a
omplete G-ma
hine and its
ompiler. It does not perform

updates (whi
h are introdu
ed in Se
tion 3.4) or arithmeti
 (whi
h is introdu
ed in Se
tion 3.6).

3.3.1 Overall stru
ture

At the top level the G-ma
hine is very similar to the template instantiator; as usual the whole

system is knitted together with a run fun
tion.

> -- The fun
tion run is already defined in gofers standard.prelude

> runProg :: [Char℄ -> [Char℄

> runProg = showResults . eval .
ompile . parse

The parser data stru
tures and fun
tions are in
luded be
ause we will need a

ess to them.

> -- :a language.lhs -- parser data types

3.3.2 Data type de�nitions

Fundamental to graph redu
tion implementation te
hniques is the graph. We use the heap data

type, amongst others, from the utilities provided in Appendix A.

> -- :a util.lhs -- heap data type and other library fun
tions

The Mark 1 G-ma
hine uses the �ve-tuple, gmState, as its state. A gmState holds all the

information that we need during the exe
ution of the
ompiled program.

> type GmState

> = (GmCode, -- Current instru
tion stream

> GmSta
k, -- Current sta
k

> GmHeap, -- Heap of nodes

> GmGlobals, -- Global addresses in heap

> GmStats) -- Statisti
s

In des
ribing the G-ma
hine, we will make use of state a

ess fun
tions to a

ess the
omponents

of a state. The advantage of this approa
h is that when we modify the state to a

ommodate

new
omponents, we may reuse most of the original
ode we have written. We will use the

pre�x get to denote an a

ess fun
tion that gets a
omponent from a state, and the pre�x put

to repla
e a
omponent in a state.

We
onsider the type de�nitions of ea
h of the �ve
omponents of the state, and their a

ess

fun
tions, in turn.

� The instru
tion stream is of type gmCode and is simply a list of instru
tions.

93

> type GmCode = [Instru
tion℄

To get
onvenient a

ess to the
ode, when the state is later augmented with extra
om-

ponents, we de�ne two fun
tions: getCode and putCode.

> getCode :: GmState -> GmCode

> getCode (i, sta
k, heap, globals, stats) = i

> putCode :: GmCode -> GmState -> GmState

> putCode i' (i, sta
k, heap, globals, stats)

> = (i', sta
k, heap, globals, stats)

There are only six instru
tions initially. We will des
ribe these in more detail in subse
-

tion 3.3.3.

> data Instru
tion

> = Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

> | Slide Int

> instan
e Eq Instru
tion

> where

> Unwind == Unwind = True

> Pushglobal a == Pushglobal b = a == b

> Pushint a == Pushint b = a == b

> Push a == Push b = a == b

> Mkap == Mkap = True

> Slide a == Slide b = a == b

> _ == _ = False

� The G-ma
hine sta
k gmSta
k is a list of addresses in the heap.

> type GmSta
k = [Addr℄

To get
onvenient a

ess to the sta
k, when the state is later augmented with extra
om-

ponents, we de�ne two fun
tions getSta
k and putSta
k

> getSta
k :: GmState -> GmSta
k

> getSta
k (i, sta
k, heap, globals, stats) = sta
k

> putSta
k :: GmSta
k -> GmState -> GmState

> putSta
k sta
k' (i, sta
k, heap, globals, stats)

> = (i, sta
k', heap, globals, stats)

94

� Just as we did in the
ase of the template instantiator, we use the heap data stru
ture

from utils to implement heaps.

> type GmHeap = Heap Node

Again, to a

ess this
omponent of the state we de�ne a

ess fun
tions.

> getHeap :: GmState -> GmHeap

> getHeap (i, sta
k, heap, globals, stats) = heap

> putHeap :: GmHeap -> GmState -> GmState

> putHeap heap' (i, sta
k, heap, globals, stats)

> = (i, sta
k, heap', globals, stats)

In the minimal G-ma
hine there are only three types of nodes: numbers, NNum; appli
ations,

NAp; and globals, NGlobal.

> data Node

> = NNum Int -- Numbers

> | NAp Addr Addr -- Appli
ations

> | NGlobal Int GmCode -- Globals

Number nodes
ontain the relevant number; appli
ation nodes apply the fun
tion at the

�rst address to the expression at the se
ond address. The NGlobal node
ontains the

number of arguments that the global expe
ts and the
ode sequen
e to be exe
uted when

the global has enough arguments. This repla
es the NSuper
omb nodes of the template

instantiator, whi
h held a template instead of the arity and
ode.

� Be
ause we will later be making a lazy implementation it is important that there is only

one node for ea
h global. The address of a global
an be determined by looking up its

value in the asso
iation list gmGlobals. This
orresponds to the tiGlobals
omponent of

the template ma
hine.

> type GmGlobals = ASSOC Name Addr

The a

ess fun
tion we use is getGlobals; in the Mark 1 ma
hine, this
omponent is

onstant so we do not need a
orresponding put fun
tion.

> getGlobals :: GmState -> GmGlobals

> getGlobals (i, sta
k, heap, globals, stats) = globals

� The statisti
s
omponent of the state is implemented as an abstra
t data type.

> statInitial :: GmStats

> statIn
Steps :: GmStats -> GmStats

> statGetSteps :: GmStats -> Int

The implementation of gmStats is now given.

95

> type GmStats = Int

> statInitial = 0

> statIn
Steps s = s+1

> statGetSteps s = s

To a

ess this
omponent we de�ne getStats and putStats:

> getStats :: GmState -> GmStats

> getStats (i, sta
k, heap, globals, stats) = stats

> putStats :: GmStats -> GmState -> GmState

> putStats stats' (i, sta
k, heap, globals, stats)

> = (i, sta
k, heap, globals, stats')

3.3.3 The evaluator

The G-ma
hine evaluator, eval, is de�ned to produ
e a list of states. The �rst one is the one

onstru
ted by the
ompiler. If there is a last state, then the result of the evaluation will be on

the top of the sta
k
omponent of the last state.

> eval :: GmState -> [GmState℄

> eval state = state: restStates

> where

> restStates | gmFinal state = [℄

> | otherwise = eval nextState

> nextState = doAdmin (step state)

The fun
tion doAdmin uses statIn
Steps to modify the statisti
s
omponent of the state.

> doAdmin :: GmState -> GmState

> doAdmin s = putStats (statIn
Steps (getStats s)) s

The important parts of the evaluator are the fun
tions gmFinal and step whi
h we will now

look at.

Testing for a �nal state

The G-ma
hine interpreter has �nished when the
ode sequen
e that it is exe
uting is empty.

We express this
ondition in the gmFinal fun
tion.

> gmFinal :: GmState -> Bool

> gmFinal s =
ase (getCode s) of

> [℄ -> True

> otherwise -> False

96

Taking a step

The step fun
tion is de�ned so that it makes a state transition based on the instru
tion it is

exe
uting.

> step :: GmState -> GmState

> step state = dispat
h i (putCode is state)

> where (i:is) = getCode state

We dispat
h on the
urrent instru
tion i and repla
e the
urrent
ode sequen
e with the
ode

sequen
e is; this
orresponds to advan
ing the program
ounter in a real ma
hine.

> dispat
h :: Instru
tion -> GmState -> GmState

> dispat
h (Pushglobal f) = pushglobal f

> dispat
h (Pushint n) = pushint n

> dispat
h Mkap = mkap

> dispat
h (Push n) = push n

> dispat
h (Slide n) = slide n

> dispat
h Unwind = unwind

As we
an see, the dispat
h fun
tion simply sele
ts a state transition to exe
ute.

Let us begin by looking at the transition rules for the post�x instru
tions. There will be one for

ea
h synta
ti
 obje
t in instru
tion. We begin with the Pushglobal instru
tion, whi
h uses

the globals
omponent of the state to �nd the unique NGlobal node in the heap that holds the

global f . If it
annot �nd one, it prints a suitable error message.

(3.5)

Pushglobal f : i s h m[f : a℄

=) i a : s h m

We implement this rule using the pushglobal fun
tion.

> pushglobal :: Name -> GmState -> GmState

> pushglobal f state

> = putSta
k (a: getSta
k state) state

> where a = aLookup (getGlobals state) f (error ("Unde
lared global " ++ f))

The remaining transitions are for
onstru
ting the body of a super
ombinator. The transition

for Pushint pla
es an integer node into the heap.

(3.6)

Pushint n : i s h m

=) i a : s h[a : NNum n℄ m

The
orresponding fun
tion is pushint. The number is pla
ed in the new heap heap' with

address a. We then pla
e the heap and sta
k ba
k into the state.

97

> pushint :: Int -> GmState -> GmState

> pushint n state

> = putHeap heap' (putSta
k (a: getSta
k state) state)

> where (heap', a) = hAllo
 (getHeap state) (NNum n)

The Mkap instru
tion uses the two addresses on the top of the sta
k to
onstru
t an appli
ation

node in the heap. It has the following transition rule.

(3.7)

Mkap : i a

1

: a

2

: s h m

=) i a : s h[a : NAp a

1

a

2

℄ m

This transition be
omes mkap. Again heap' and a are respe
tively the new heap and the address

of the new node.

> mkap :: GmState -> GmState

> mkap state

> = putHeap heap' (putSta
k (a:as') state)

> where (heap', a) = hAllo
 (getHeap state) (NAp a1 a2)

> (a1:a2:as') = getSta
k state

The Push instru
tion is used to take a
opy of an argument whi
h was passed to a fun
tion. To

do this it has to `look through' the appli
ation node whi
h is pointed to from the sta
k. We

must also remember to skip over the super
ombinator node whi
h is on the sta
k.

(3.8)

Push n : i a

0

: : : : : a

n+1

: s h[a

n+1

: NAp a

n

a

0

n

℄ m

=) i a

0

n

: a

0

: : : : : a

n+1

: s h m

> push :: Int -> GmState -> GmState

> push n state

> = putSta
k (a:as) state

> where as = getSta
k state

> a = getArg (hLookup (getHeap state) (as !! (n+1)))

This uses the auxiliary fun
tion getArg to sele
t the required expression from an appli
ation

node.

> getArg :: Node -> Addr

> getArg (NAp a1 a2) = a2

Be
ause of the sta
k stru
ture we have
hanged the addressing mode of the Push

instru
tion from that used in [Peyton Jones 1987℄.

Next, the tidying up of the sta
k, whi
h o

urs after a super
ombinator has been instantiated

and before
ontinuing unwinding, is performed by the Slide instru
tion.

98

(3.9)

Slide n : i a

0

: : : : : a

n

: s h m

=) i a

0

: s h m

> slide :: Int -> GmState -> GmState

> slide n state

> = putSta
k (a: drop n as) state

> where (a:as) = getSta
k state

Unwind is the most
omplex instru
tion be
ause it repla
es the outer loop of our template

instantiator. The Unwind instru
tion is always the last instru
tion of a sequen
e, as we shall see

in the next se
tion. The newState
onstru
ted depends on the item on top of the sta
k; this

depends on the transition rule that is �red, whi
h also depends on the item on top of the sta
k.

> unwind :: GmState -> GmState

> unwind state

> = newState (hLookup heap a)

> where

> (a:as) = getSta
k state

> heap = getHeap state

We �rst
onsider the
ase where there is a number on top of the sta
k. In this
ase, we are

�nished; the G-ma
hine has terminated, and we pla
e [℄ in the
ode
omponent to signify this

fa
t.

(3.10)

[Unwind℄ a : s h[a : NNum n℄ m

=) [℄ a : s h m

> newState (NNum n) = state

If there is an appli
ation node on top of the sta
k then we must
ontinue to unwind from the

next node.

(3.11)

[Unwind℄ a : s h[a : NAp a

1

a

2

℄ m

=) [Unwind℄ a

1

: a : s h m

> newState (NAp a1 a2) = putCode [Unwind℄ (putSta
k (a1:a:as) state)

The most
ompli
ated rule o

urs when there is a global node on top of the sta
k. There

are two
ases to
onsider, depending on whether there are enough arguments to redu
e the

super
ombinator appli
ation.

Firstly, if there are not enough arguments to redu
e the super
ombinator appli
ation then the

program was ill-typed. We will ignore this
ase for the Mark 1 G-ma
hine. Alternatively,

when there are enough arguments, it is possible to redu
e the super
ombinator, by `jumping

to' the
ode for the super
ombinator. In the transition rule this is expressed by moving the

super
ombinator
ode into the
ode
omponent of the ma
hine.

99

SC[[d ℄℄ is the G-ma
hine
ode for the super
ombinator de�nition d .

SC[[f x

1

: : : x

n

= e℄℄ = R[[e℄℄ [x

1

7! 0; : : : ; x

n

7! n � 1℄ n

R[[e℄℄ � d generates
ode whi
h instantiates the expression e in environ-

ment �, for a super
ombinator of arity d , and then pro
eeds to unwind

the resulting sta
k.

R[[e℄℄ � d = C[[e℄℄ � ++ [Slide d + 1; Unwind℄

C[[e℄℄ � generates
ode whi
h
onstru
ts the graph of e in environment �,

leaving a pointer to it on top of the sta
k.

C[[f ℄℄ � = [Pushglobal f ℄ where f is a super
ombinator

C[[x ℄℄ � = [Push (� x)℄ where x is a lo
al variable

C[[i ℄℄ � = [Pushint i ℄

C[[e

0

e

1

℄℄ � = C[[e

1

℄℄ � ++ C[[e

0

℄℄ �

+1

++ [Mkap℄ where �

+n

x = (� x) + n

Figure 3.3: The SC, R and C
ompilation s
hemes

(3.12)

[Unwind℄ a

0

: : : : : a

n

: s h[a

0

: NGlobal n
℄ m

=)
 a

0

: : : : : a

n

: s h m

> newState (NGlobal n
)

> | length as < n = error "Unwinding with too few arguments"

> | otherwise = putCode
 state

We have now seen how the instru
tions are de�ned, but we have not seen how to generate the

post�x sequen
es of operators, or instru
tion sequen
es as we shall refer to them from now on.

This is the subje
t of the next subse
tion.

3.3.4 Compiling a program

We des
ribe the
ompiler using a set of
ompilation s
hemes. Ea
h super
ombinator de�nition

is
ompiled using the
ompilation s
heme SC. The
ompiled
ode generated for ea
h super
om-

binator is de�ned in Figure 3.3. Corresponding to the
ompilation s
hemes SC, R and C are

ompiler fun
tions
ompileS
,
ompileR and
ompileC. We
onsider ea
h of these in turn.

The
ompile fun
tion turns a program into an initial state for the G-ma
hine. The initial
ode

sequen
e �nds the global main and then evaluates it. The heap is initialised so that it
ontains

a node for ea
h global de
lared. globals
ontains the map from global names to the NGlobal

nodes provided for them.

>
ompile :: CoreProgram -> GmState

100

>
ompile program

> = (initialCode, [℄, heap, globals, statInitial)

> where (heap, globals) = buildInitialHeap program

To
onstru
t the initial heap and to provide the map of the global nodes for ea
h global de�ned

we use buildInitialHeap. This is just as it was in the template ma
hine.

> buildInitialHeap :: CoreProgram -> (GmHeap, GmGlobals)

> buildInitialHeap program

> = mapA

uml allo
ateS
 hInitial
ompiled

> --where
ompiled = map
ompileS
 (preludeDefs ++ program) ++

> --
ompiledPrimitives

> where
ompiled = map
ompileS
 program

The buildInitialHeap fun
tion uses mapA

uml to allo
ate nodes for ea
h
ompiled global; the

ompilation o

urring (where ne
essary) in
ompiled, whi
h has type [gmCompiledSC℄.

> type GmCompiledSC = (Name, Int, GmCode)

The fun
tion allo
ateS
 allo
ates a new global for its
ompiled super
ombinator argument,

returning the new heap and the address where the global is stored.

> allo
ateS
 :: GmHeap -> GmCompiledSC -> (GmHeap, (Name, Addr))

> allo
ateS
 heap (name, nargs, instns)

> = (heap', (name, addr))

> where (heap', addr) = hAllo
 heap (NGlobal nargs instns)

In the initial state, we want the ma
hine to evaluate the value of the program. We re
all that

this is just the value of the global main.

> initialCode :: GmCode

> initialCode = [Pushglobal "main", Unwind℄

Ea
h super
ombinator is
ompiled using
ompileS
, whi
h implements the SC s
heme of Fig-

ure 3.3. It returns a triple
ontaining the super
ombinator name, the number of arguments

the super
ombinator needs before it
an be redu
ed, and the
ode sequen
e asso
iated with the

super
ombinator.

>
ompileS
 :: (Name, [Name℄, CoreExpr) -> GmCompiledSC

>
ompileS
 (name, env, body)

> = (name, length env,
ompileR body (zip2 env [0..℄))

This in turn uses
ompileR, whi
h
orresponds to the R s
heme of Figure 3.3.

>
ompileR :: GmCompiler

>
ompileR e env =
ompileC e env ++ [Slide (length env + 1), Unwind℄

>
ompileR e env =
ompileC e env ++ [Slide (length env + 1), Unwind℄

101

Ea
h of the
ompiler s
hemes has the same type: gmCompiler.

> type GmCompiler = CoreExpr -> GmEnvironment -> GmCode

We use the fa
t that we
an represent the map � from the
ompilation s
heme as an asso
iation

list. Not only
an we look up the o�sets for a variable from this list, but we may also
al
ulate

how many arguments there are on the sta
k. This is used in
ompileR to �nd out how many

sta
k elements to squeeze out with a Slide instru
tion. The list has type gmEnvironment, whi
h

is de�ned as:

> type GmEnvironment = ASSOC Name Int

This
onstru
ts the instantiation of the super
ombinator body using
ompileC, whi
h
orre-

sponds to the C s
heme of Figure 3.3.

>
ompileC :: GmCompiler

>
ompileC (EVar v) env

> | elem v (aDomain env) = [Push n℄

> | otherwise = [Pushglobal v℄

> where n = aLookup env v (error "Can't happen")

>
ompileC (ENum n) env = [Pushint n℄

>
ompileC (EAp e1 e2) env =
ompileC e2 env ++

>
ompileC e1 (argOffset 1 env) ++

> [Mkap℄

We
an
hange the sta
k o�sets using the fun
tion argOffset. If env implements �, then

(argOffset n env) implements �

+n

.

> argOffset :: Int -> GmEnvironment -> GmEnvironment

> argOffset n env = [(v, n+m) | (v,m) <- env℄

An example
ompilation

Let us look at the
ompilation of the K
ombinator. When
ompiling this fun
tion, we will begin

by evaluating the following expression.

ompileS
 ("K", ["x", "y"℄, EVar "x")

The �rst element of the tuple is the name (K in this
ase); the se
ond is the argument list (in

this
ase we have two variables: x and y); and the third
omponent of the tuple is the body of

the super
ombinator (whi
h for this example is just the variable x).

When we rewrite this expression, we get:

("K", 2,
ompileR (EVar "x") [("x", 0), ("y", 1)℄)

102

The resulting triple
onsists of the name (K), the number of arguments we need to redu
e the

super
ombinator (two in this
ase), and the
ode sequen
e to perform the instantiation. When

we rewrite this expression we will generate the
ode sequen
e for this super
ombinator. Noti
e

that the environment is represented by the expression [("x", 0), ("y", 1)℄; this tells us that

when we instantiate the body, a pointer to x will be on top of the argument sta
k and a pointer

to y will be immediately below x on the sta
k.

("K", 2,
ompileC (EVar "x") [("x", 0), ("y", 1)℄ ++ [Slide 3, Unwind℄)

The
ompileR fun
tion is de�ned to
ompile the body using
ompileC, and to add a Slide and

an Unwind instru
tion at the end.

To
ompile the body we look up x and �nd that it is on top of the sta
k. We generate
ode to

make a
opy of the top of the sta
k, using Push 0.

("K", 2, [Push 0, Slide 3, Unwind℄)

Exer
ise 3.3. Write out the equivalent sequen
e of transformations for the S
ombinator from the

prelude de�nitions. Re
all that S is de�ned as:

S f g x = f x (g x)

Che
k the �nal result by running the
ompiler and ma
hine with any of the simple programs given

in Appendix B. (S is in the standard prelude.)

Primitives

In this minimal G-ma
hine there are no primitives, so there is nothing to implement!

>
ompiledPrimitives :: [GmCompiledSC℄

>
ompiledPrimitives = [℄

3.3.5 Printing the results

Be
ause a number of the state
omponents are abstra
t data types (and are therefore not dire
tly

printable) we must de�ne a pretty-printer for the states that the ma
hine produ
es. It is also a

fa
t that the output is voluminous and not very informative if it is all displayed at on
e. The

printing is
ontrolled by showResults. It produ
es three pie
es of output: the super-
ombinator

ode sequen
es, the state transitions and the �nal statisti
s.

> showResults :: [GmState℄ -> [Char℄

> showResults states

> = iDisplay (iCon
at [

> iStr "Super
ombinator definitions", iNewline,

> iInterleave iNewline (map (showSC s) (getGlobals s)),

> iNewline, iNewline, iStr "State transitions", iNewline, iNewline,

> iLayn (map showState states),

103

> iNewline, iNewline,

> showStats (last states)℄)

> where (s:ss) = states

Taking ea
h of these in turn, we begin with showSC. This �nds the
ode for the super
ombinator

in the unique global heap node asso
iated with the global, and prints the
ode sequen
e using

showInstru
tions.

> showSC :: GmState -> (Name, Addr) -> Iseq

> showSC s (name, addr)

> = iCon
at [iStr "Code for ", iStr name, iNewline,

> showInstru
tions
ode, iNewline, iNewline℄

> where (NGlobal arity
ode) = (hLookup (getHeap s) addr)

Then showInstru
tions is used to output a
ode sequen
e.

> showInstru
tions :: GmCode -> Iseq

> showInstru
tions is

> = iCon
at [iStr " Code:{",

> iIndent (iInterleave iNewline (map showInstru
tion is)),

> iStr "}", iNewline℄

The output for ea
h individual instru
tion is given by showInstru
tion.

> showInstru
tion :: Instru
tion -> Iseq

> showInstru
tion Unwind = iStr "Unwind"

> showInstru
tion (Pushglobal f) = (iStr "Pushglobal ") `iAppend` (iStr f)

> showInstru
tion (Push n) = (iStr "Push ") `iAppend` (iNum n)

> showInstru
tion (Pushint n) = (iStr "Pushint ") `iAppend` (iNum n)

> showInstru
tion Mkap = iStr "Mkap"

> showInstru
tion (Slide n) = (iStr "Slide ") `iAppend` (iNum n)

The next major pie
e of output is the state transitions; these are individually dealt with using

showState.

> showState :: GmState -> Iseq

> showState s

> = iCon
at [showSta
k s, iNewline,

> showInstru
tions (getCode s), iNewline℄

To
orrespond with our diagrams, we would like to have the top of sta
k at the bottom of the

printed sta
k. To this end we reverse the sta
k.

> showSta
k :: GmState -> Iseq

> showSta
k s

> = iCon
at [iStr " Sta
k:[",

> iIndent (iInterleave iNewline

> (map (showSta
kItem s) (reverse (getSta
k s)))),

> iStr "℄"℄

104

Ea
h sta
k item is displayed using showSta
kItem. It prints the address stored in the sta
k and

the obje
t in the heap to whi
h it points.

> showSta
kItem :: GmState -> Addr -> Iseq

> showSta
kItem s a

> = iCon
at [iStr (showaddr a), iStr ": ",

> showNode s a (hLookup (getHeap s) a)℄

The fun
tion showNode needs to invert the asso
iation list of global names and heap addresses

to display the global nodes it
omes a
ross.

> showNode :: GmState -> Addr -> Node -> Iseq

> showNode s a (NNum n) = iNum n

> showNode s a (NGlobal n g) = iCon
at [iStr "Global ", iStr v℄

> where v = head [n | (n,b) <- getGlobals s, a==b℄

> showNode s a (NAp a1 a2) = iCon
at [iStr "Ap ", iStr (showaddr a1),

> iStr " ", iStr (showaddr a2)℄

Finally, we print the a

umulated statisti
s, using showStats.

> showStats :: GmState -> Iseq

> showStats s

> = iCon
at [iStr "Steps taken = ", iNum (statGetSteps (getStats s))℄

This
on
ludes the des
ription of the basi
 G-ma
hine. We now move on to
onsider ways to

make it more sophisti
ated.

3.3.6 Improvements to the Mark 1 G-ma
hine

Exer
ise 3.4. Run the program main = S K K 3. How many steps does it take? Why is it di�erent

from that obtained for the template ma
hine? Do you think that
omparing steps taken is a fair

omparison of the ma
hines?

Exer
ise 3.5. Try running some other programs from Appendix B. Remember, there is no arithmeti

in this simple ma
hine.

Exer
ise 3.6. It is possible to use the same tri
k we used for Pushglobal to implement Pushint: for

ea
h distin
t number we
reate a unique node in the heap. For example, when we �rst exe
ute

Pushint 2, we update gmGlobals so that it asso
iates "2" with the address in heap of the node

NNum 2.

In the transition rules, if there is already a global
alled n, then we
an reuse this global node.

(3.13)

Pushint n : i s h m[n : a℄

=) i a : s h m

Alternatively, when this is not the
ase, we will
reate a new node and add it to the global map.

(3.14)

Pushint n : i s h m

=) i a : s h[a : NNum n℄ m[n : a℄

105

-

R

.

.

.

.

.

.

.

.

.

?

R

R

.

-

-

-

After exe
uting Slide (n+1)Before exe
uting Slide (n+1)

e

f

en-1

�

e

en

e1

�

�

Figure 3.4: Mark 1 G-ma
hine (exe
uting Slide n+1)

The advantage of this s
heme is that we
an reuse the same number node in the heap ea
h time a

Pushint is exe
uted.

Implement this new transition pushint for the Pushint instru
tion. You should de�ne an a

ess

fun
tion for the global
omponent,
alling it putGlobals.

3.4 Mark 2: Making it lazy

We will now make a number of small
hanges to the Mark 1 G-ma
hine in order to make it

lazy. The Mark 1 ma
hine is not lazy at the moment be
ause it does not overwrite the root

node of the original expression before unwinding. This updating is des
ribed in Se
tion 2.1.5.

In the Mark 2 ma
hine, the idea is that after instantiating the body of the super
ombinator,

we will overwrite the root of the original redex with an indire
tion node pointing to the newly

onstru
ted instan
e. The e�e
t is that the ma
hine `remembers' the value that was instantiated

last time the redex was redu
ed, and hen
e does not need to re
al
ulate it.

We implement this
hange as follows. In the Mark 1 ma
hine the
ode for ea
h super
om-

binator
on
luded with [Slide (n + 1); Unwind℄. To
apture updating we repla
e this with

[Update n; Pop n; Unwind℄. This is illustrated in the following diagrams, in whi
h we use # to

represent indire
tion nodes.

Figure 3.4 shows how the Mark 1 ma
hine exe
utes a Slide n +1 instru
tion. In Figure 3.5 we

see the Mark 2 ma
hine exe
uting the sequen
e [Update n; Pop n℄; this being the sequen
e we

propose to use as a lazy repla
ement for [Slide n+1℄. The Update instru
tion is responsible for

overwriting the root node with the newly
reated instan
e of the body of the super
ombinator.

The Pop instru
tion is used to remove the arguments from the sta
k, as they are now no longer

needed.

Let us �rst
onsider the ne
essary modi�
ations to the data stru
tures.

106

��

-

-

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

-

.

^

-

^

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

After Update nBefore exe
uting Update n

#

f

e

After Pop n

e

#

e

f

en

e1

�

�

�

Figure 3.5: Mark 2 G-ma
hine (exe
uting [Update n, Pop n℄)

3.4.1 Data stru
tures

In pla
e of the single instru
tion Slide n + 1 that we generated last time we now generate the

sequen
e of instru
tions [Update n; Pop n℄. Therefore we are going to have to in
lude these

instru
tions in the new instru
tion set.

> data Instru
tion = Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

> | Update Int

> | Pop Int

> instan
e Eq Instru
tion

> where

> Unwind == Unwind = True

> Pushglobal a == Pushglobal b = a == b

> Pushint a == Pushint b = a == b

> Push a == Push b = a == b

> Mkap == Mkap = True

> Update a == Update b = a == b

> _ == _ = False

Exer
ise 3.7. Modify the fun
tion showInstru
tion, so that it displays the new instru
tions.

To implement the indire
tion nodes we must have a new node type in the heap: NInd whi
h we

use for indire
tions.

107

> data Node

> = NNum Int -- Numbers

> | NAp Addr Addr -- Appli
ations

> | NGlobal Int GmCode -- Globals

> | NInd Addr -- Indire
tions

> instan
e Eq Node

> where

> NNum a == NNum b = a == b -- needed to
he
k
onditions

> NAp a b == NAp
 d = False -- not needed

> NGlobal a b == NGlobal
 d = False -- not needed

> NInd a == NInd b = False -- not needed

Again we must rede�ne the display fun
tion showNode, so that it re
e
ts the extension of the

data type.

Exer
ise 3.8. Make the ne
essary
hange to showNode.

We have not yet given a semanti
s to the two new instru
tions. This is done below.

3.4.2 The evaluator

The e�e
t of an Update n instru
tion is to overwrite the n + 1

th

sta
k item with an indire
tion

to the item on top of the sta
k. Noti
e that this addressing mode is di�erent from that used

in [Peyton Jones 1987℄. For the intended appli
ation of this instru
tion the a

1

: : : a

n

are the n

appli
ation nodes forming the spine, and a

0

is the fun
tion node.

(3.15)

Update n : i a : a

0

: : : : : a

n

: s h m

=) i a

0

: : : : : a

n

: s h[a

n

: NInd a℄ m

The Pop n instru
tion simply removes n sta
k items. Again, in the Mark 2 G-ma
hine a

1

: : : a

n

are the appli
ation nodes forming the spine of the redex.

(3.16)

Pop n : i a

1

: : : : : a

n

: s h m

=) i s h m

We must also de�ne a transition for Unwind when the top of sta
k item is an indire
tion. The

e�e
t is to repla
e the
urrent sta
k item with the item that the indire
tion points to.

(3.17)

[Unwind℄ a

0

: s h[a

0

: NInd a℄ m

=) [Unwind℄ a : s h m

Exer
ise 3.9. Modify the dispat
h fun
tion of the Mark 1 ma
hine to in
orporate the new instru
tions;

implement the new transition rules.

108

R[[e℄℄ � d generates
ode whi
h instantiates the expression e in environ-

ment �, for a super
ombinator of arity d , and then pro
eeds to unwind

the resulting sta
k.

R[[e℄℄ � d = C[[e℄℄ � ++ [Update d ; Pop d ; Unwind℄

Figure 3.6: The R
ompilation s
heme for Mark 2 G-ma
hine

3.4.3 The
ompiler

The only
hange to the
ompiler lies in the
ode generated by the R s
heme. The new de�nition

is given in Figure 3.6.

Exer
ise 3.10. Modify
ompileR to implement the new R s
heme.

Exer
ise 3.11. Run the lazy evaluator on the program:

twi
e f x = f (f x)

id x = x

main = twi
e twi
e id 3

How many steps does it take? Why is it di�erent from that obtained for the Mark 1 ma
hine? Is

it fair to
ompare the number of steps taken for the ma
hines?

3.5 Mark 3: let(re
) expressions

We now extend the language so that the
ompiler will a

ept super
ombinators whose body

in
ludes let(re
)-bound variables. These are represented in the data type
oreExpr by the

onstru
tor ELet. It takes three arguments: a boolean
ag whi
h says whether the de�nitions

are to be treated re
ursively, the de�nitions themselves and an expression in whi
h the de�nitions

are to be used.

Before we attempt to extend the ma
hine by adding lo
al de�nitions, we will have another look

at the sta
k. In parti
ular we will try to de�ne a more eÆ
ient a

ess method for variables.

Besides the eÆ
ien
y argument, we also wish to make a

ess to lo
ally bound variables the same

as that used to bind fun
tion parameters.

Argument a

ess from the sta
k

Suppose that the unwinding pro
ess has rea
hed a super
ombinator node f, and that the super-

ombinator takes n arguments. In the Mark 1 ma
hine the sta
k will be in the state shown in

the left-hand diagram of Figure 3.7.

Having rea
hed the super
ombinator f, in the Mark 3 G-ma
hine, the sta
k is slightly modi�ed.

The equivalent Mark 3 sta
k is shown in the right-hand diagram of Figure 3.7; the top n elements

now point dire
tly to the expressions e1 . . . en. The important point here is that we have faster

109

-

q

j

-

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. -

-

-

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

-

Mark 3 onwardsMarks 1 and 2

�

�

�

�

e1

e2

en

f f

en

e2

e1

�

�

�

�

Figure 3.7: Sta
k layout on entry to fun
tion f

a

ess to the variables (provided that the variable is a

essed at least on
e). This is be
ause we

only look at the appli
ation node on
e, to get its right-hand argument.

This improves the eÆ
ien
y of a

ess to the expressions that will be substituted for the formal

parameters in the super
ombinator. In terms of the Mark 1 ma
hine:

� we no longer need the fun
tion getArg in the Push instru
tion,

� but we do need to rearrange the sta
k when we Unwind a super
ombinator with suÆ
ient

arguments.

Noti
e that we have retained a pointer to the root of the redex so that we
an perform an

Update.

The e�e
ts on instru
tions

When we
hoose to use the new sta
k layout, we ne
essarily have to modify
ertain of the ma
hine

instru
tions to
ope. The instru
tions a�e
ted are Push and Unwind. The Push instru
tion will

have to
hange be
ause we do not need to `look through' the appli
ation node to get at the

argument.

110

(3.18)

Push n : i a

0

: : : : : a

n

: s h m

=) i a

n

: a

0

: : : : : a

n

: s h m

The other modi�
ation required for the new sta
k layout is that Unwind must rearrange the

sta
k. This rearrangement is required whenever a super
ombinator with suÆ
ient arguments is

found on the top of the sta
k. The new transition rule for Unwind is:

(3.19)

[Unwind℄ a

0

: : : : : a

n

: s h

2

6

6

6

4

a

0

: NGlobal n

a

1

: NAp a

0

a

0

1

� � �

a

n

: NAp a

n�1

a

0

n

3

7

7

7

5

m

=)
 a

0

1

: : : : : a

0

n

: a

n

: s h m

Noti
e that this de�nition of Unwind will work properly for the
ase where n is zero.

Exer
ise 3.12. Rewrite the dispat
h fun
tion and the new transitions for the new instru
tion set. You

should make use of the fun
tion rearrange to rearrange the sta
k.

> rearrange :: Int -> GmHeap -> GmSta
k -> GmSta
k

> rearrange n heap as

> = take n as' ++ drop n as

> where as' = map (getArg . hLookup heap) (tl as)

Exer
ise 3.13. Test the
ompiler and new abstra
t ma
hine on some sample programs from Appendix B,

to ensure that the implementation still works.

3.5.1 Lo
ally bound variables

Now we return to the implementation of let(re
) expressions,
onsidering the non-re
ursive

ase �rst. The variables x

1

: : : x

n

, in the expression let x

1

=e

1

; : : : ; x

n

= e

n

in e,
an be

treated in the same way as the arguments to a super
ombinator, on
e the expressions e

1

: : : e

n

have been
reated. That is, we a

ess the variables x

1

: : : x

n

via o�sets into the sta
k, using the

environment to re
ord their lo
ations.

Suppose that the
ode to build the lo
al de�nitions is
alled Code, then the sequen
e of a
tions

shown in Figure 3.8 will be ne
essary. Initially, the sta
k will
ontain pointers to the arguments

to the super
ombinator. After the
ode to build the lo
al de�nitions has exe
uted we will have

n new pointers on the sta
k. We
an now pro
eed to build the body of the let expression, in a

new environment that maps x

i

to the pointer to e

i

. Finally, we need to throw away the pointers

to the expressions e

1

: : : e

n

from the sta
k.

Be
ause we have added n new variables to the sta
k (x

1

: : : x

n

) we must note this fa
t in the

variable map we use to
ompile e. The
ode to
onstru
t the lo
al bindings { whi
h we have

alled Code { will simply build the graph of ea
h expression e

1

: : : e

n

in turn, leaving the address

of the pie
e of graph on the sta
k.

After building the body expression e { whi
h may use any of the variables x

1

: : : x

n

{ we must

remove the pointers to e

1

: : : e

n

from the sta
k. This is a

omplished by using a Slide instru
-

tion. The
omplete s
heme for
ompiling a non-re
ursive lo
al de�nition is given in Figure 3.10

(p.109).

111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

-

-

-

-

-

-

-

--

.

On
ompletion

After Building eAfter CodeInitially

e

enen

ee1e1

Figure 3.8: Sta
k usage in non-re
ursive lo
al de�nitions

�

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

-

-

-

-

-

-

-

--

After x1 is updated

#

After building e1

?

e1

Allo
 n

e1

?

??

?

Initially

Figure 3.9: Constru
ting a re
ursively de�ned expression: e1

The situation with re
ursive lo
al de�nitions is more
ompli
ated: ea
h of the expressions

e

1

: : : e

n

must be
ompiled so that the variables x

1

: : : x

n

are in s
ope. To do this we
reate

empty nodes in the graph, leaving pointers to them on the sta
k. Ea
h expression e

1

: : : e

n

is

then
ompiled using the same variable map that we used for the
ompilation of the body of the

non-re
ursive
ase. At the end of ea
h expression's
ompiled
ode we pla
e an Update instru
-

tion that will overwrite the empty node with the
orre
t pie
e of graph. To do this we need one

new instru
tion { Allo
 n { whi
h will
reate n empty graph nodes for us. In Figure 3.9 the

empty graph nodes are represented by a ? symbol.

The pro
ess shown in Figure 3.9 needs to be repeated until ea
h of the expressions e

1

: : : e

n

has been pro
essed. Compiling
ode for the body e is then the same as the previous
ase for

non-re
ursive lo
al de�nitions. We now add the new data types for the Mark 3 ma
hine.

112

3.5.2 Data stru
tures

The instru
tion data type in
ludes all of the instru
tions of the Mark 2 ma
hine, with the new

Allo
 instru
tion and the Slide instru
tion from the Mark 1 ma
hine.

Exer
ise 3.14. Modify the data type instru
tion so that it in
ludes Allo
 and Slide. You will also

need to modify the fun
tion showInstru
tion, to a

ommodate these new instru
tions.

3.5.3 The evaluator

For the Mark 3 G-ma
hine we will need to add the Allo
 instru
tion whi
h
reates n lo
ations in

the heap. We use these lo
ations to mark the pla
es we will store the lo
ally bound expressions.

These nodes are initially
reated as indire
tion nodes that point to an illegal heap address:

hNull. Be
ause these nodes
reated by Allo
 are going to be overwritten, it does not really

matter what value we assign them.

(3.20)

Allo
 n : i s h m

=) i a

1

: : : : : a

n

: s h

2

6

4

a

1

: NInd hNull

� � �

a

n

: NInd hNull

3

7

5

m

To implement allo
, the transition fun
tion for the Allo
 instru
tion, we use an auxiliary

fun
tion allo
Nodes. Given the number of nodes required and the
urrent heap, it returns a

pair
onsisting of the modi�ed heap and the list of addresses of the indire
tion nodes.

> allo
Nodes :: Int -> GmHeap -> (GmHeap, [Addr℄)

> allo
Nodes 0 heap = (heap, [℄)

> allo
Nodes (n+1) heap = (heap2, a:as)

> where (heap1, as) = allo
Nodes n heap

> (heap2, a) = hAllo
 heap1 (NInd hNull)

Exer
ise 3.15. Extend the dispat
h fun
tion, with
ases for the new instru
tions. You should use

allo
Nodes to implement allo
, the transition fun
tion for the Allo
 instru
tion.

3.5.4 The
ompiler

The only
hange to the
ompiler is that there are now two more
ases for whi
h the C s
heme

an
ompile
ode. The modi�
ation to
ompileC is simple. It
an now
ope with a wider range

of
oreExprs. We need two new fun
tions:
ompileLetre
 and
ompileLet.

>
ompileC :: GmCompiler

>
ompileC (EVar v) args

> | elem v (aDomain args) = [Push n℄

> | otherwise = [Pushglobal v℄

> where n = aLookup args v (error "")

113

C[[e℄℄ � generates
ode whi
h
onstru
ts the graph of e in environment �,

leaving a pointer to it on top of the sta
k.

C[[f ℄℄ � = [Pushglobal f ℄ where f is a super
ombinator

C[[x ℄℄ � = [Push (� x)℄ where x is a lo
al variable

C[[i ℄℄ � = [Pushint i ℄

C[[e

0

e

1

℄℄ � = C[[e

1

℄℄ � ++ C[[e

0

℄℄ �

+1

++ [Mkap℄ where �

+n

x is (� x) + n

C[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

C[[e℄℄ �

0

++ [Slide n℄ where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

C[[letre
 x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo
 n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

C[[e℄℄ �

0

++ [Slide n℄ where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

Figure 3.10: The modi�ed C
ompilation s
heme for let and letre

>
ompileC (ENum n) env = [Pushint n℄

>
ompileC (EAp e1 e2) env =
ompileC e2 env ++

>
ompileC e1 (argOffset 1 env) ++

> [Mkap℄

>
ompileC (ELet re
ursive defs e) args

> | re
ursive =
ompileLetre

ompileC defs e args

> | otherwise =
ompileLet
ompileC defs e args

The de�nition of
ompileLet follows the spe
i�
ation given in Figure 3.10. It takes as arguments:

the
ompilation s
heme
omp for the body e, the de�nitions defs and the
urrent environment

env. We have provided the
ompiler parameter so that in later versions of the ma
hine we do

not have to rewrite this fun
tion.

>
ompileLet :: GmCompiler -> [(Name, CoreExpr)℄ -> GmCompiler

>
ompileLet
omp defs expr env

> =
ompileLet' defs env ++
omp expr env' ++ [Slide (length defs)℄

> where env' =
ompileArgs defs env

The
ompilation of the new de�nitions is a

omplished by the fun
tion
ompileLet'.

>
ompileLet' :: [(Name, CoreExpr)℄ -> GmEnvironment -> GmCode

>
ompileLet' [℄ env = [℄

>
ompileLet' ((name, expr):defs) env

> =
ompileC expr env ++
ompileLet' defs (argOffset 1 env)

ompileLet also uses
ompileArgs to modify the o�sets into the sta
k for the
ompilation of

the body, e.

114

>
ompileArgs :: [(Name, CoreExpr)℄ -> GmEnvironment -> GmEnvironment

>
ompileArgs defs env

> = zip (map first defs) [n-1, n-2 .. 0℄ ++ argOffset n env

> where n = length defs

An example

In this example we will show how the
ode for the �xpoint
ombinator Y is
ompiled. The

de�nition we will use is:

Y f = letre
 x = f x in x

This is the so-
alled `knot-tying' �xpoint
ombinator; we will see why it has this name when

we run the resulting
ode. When the above de�nition is
ompiled, the
ompileS
 fun
tion will

need to produ
e
ode for the super
ombinator.

ompileS
 ("Y", ["f"℄, ELet True [("x", EAp (EVar "f") (EVar "x"))℄ (EVar "x"))

This in turn
alls the
ompileR fun
tion with an environment for the variable f; having �rst

reated a name for the super
ombinator (Y) and its number of arguments (1).

("Y", 1,
ompileR e [("f", 0)℄)

where e = ELet True [("x", EAp (EVar "f") (EVar "x"))℄ (EVar "x")

For
onvenien
e we will refer to the body of the expression as e. The fun
tion
ompileR
alls

ompileC, pla
ing the tidying-up
ode at the end.

("Y", 1,
ompileC e [("f", 0)℄ ++ [Update 1, Pop 1, Unwind℄)

Referring to the
ompilation s
heme in Figure 3.10, we see that to
ompile a letre
 we �rst

reate a new environment. In the �gure this is
alled �

0

; in this example we will
all it p. It is an

extension of the initial environment in whi
h we also give a sta
k lo
ation to the lo
al variable

x.

("Y", 1, [Allo
 1℄ ++

ompileC (EAp (EVar "f") (EVar "x")) p ++ [Update 0℄ ++

ompileC (EVar "x") p ++ [Slide 1℄ ++

[Update 1, Pop 1, Unwind℄)

where p = [("x", 0), ("f", 1)℄

The
ode generation is laid out in the same fashion as the
ompilation s
heme. When the

expressions involving
ompileC are simpli�ed we get:

("Y", 1, [Allo
 1℄ ++

[Push 0, Push 2, Mkap℄ ++ [Update 0℄ ++

[Push 0℄ ++ [Slide 1℄ ++

[Update 1, Pop 1, Unwind℄)

115

jU

q

-

U

-

qq

-

After Push 0After Allo
 1On entering Y

? ?

YY

� �

fff

Y

�

	

	

I

�

-

-

-

*

sN

q

--

qq

-

6

�

#

After Update 0After MkapAfter Push 2

�

?

� �

fff

Y

�

Y

YY

?

Y

Figure 3.11: Exe
ution of
ode for Y

Whi
h gives the following
ode sequen
e:

("Y", 1, [Allo
 1, Push 0, Push 2, Mkap, Update 0, Push 0,

Slide 1, Update 1, Pop 1, Unwind℄)

We
an see the way in whi
h this
ode exe
utes in Figure 3.11. This de�nition of the Y su-

per
ombinator is
alled `knot-tying' be
ause we are tying a knot in the graph when we do the

Update 0 as the �fth instru
tion. We have not shown the remainder of the instru
tions, as this

is left as Exer
ise 3.18.

Exer
ise 3.16. The
ompilation of letre
s is de�ned in Figure 3.10. Implement the fun
tion
ompileLetre

to perform this operation.

Exer
ise 3.17. What test programs would you use to show that the new
ompiler and instru
tion set

work properly?

Exer
ise 3.18. By running the
ode generated for the super
ombinator Y, or otherwise, draw the re-

mainder of the state transitions in the style of Figure 3.11.

Exer
ise 3.19. Give a shorter, alternative,
ode sequen
e for the super
ombinator Y. It should still

onstru
t a `knot-tying' version.

Exer
ise 3.20. In the absen
e of a letre

onstru
t in the language, how would you de�ne the �xpoint

ombinator Y? How is this de�nition di�erent from the one we used in the example?

116

3.6 Mark 4: Adding primitives

In this se
tion we add primitive operations to the G-ma
hine; this makes it useful. By primitive

operations we mean operations like addition, multipli
ation and so on. We will use addition as

a running example throughout this se
tion.

The addition instru
tion will be
alled Add; whi
h adds two numbers from the heap, pla
ing the

result into a new node in the heap. The addresses of the two arguments are on top of the sta
k,

and this is where the address of the result is subsequently pla
ed. It has the following transition

rule.

(3.21)

Add : i a

0

: a

1

: s h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) i a : s h[a : NNum n

0

+ n

1

℄ m

We
ould
ontinue to expand the G-ma
hine with other instru
tions to implement the remainder

of the operations required, but before we do, let us pause to
onsider whether we have missed

something here. The problem is that the rule only applies if the two obje
ts on top of the sta
k

are numbers. Sin
e we are working on a ma
hine that supports lazy evaluation there is no good

reason to suppose that this will always be the
ase. In the template ma
hine Add
he
ked that

its arguments were evaluated. In the G-ma
hine we want to keep the instru
tions simple, so we

will only use Add in situations where we guarantee that the arguments are already evaluated.

What we do instead is to augment the instru
tion set further with an Eval instru
tion. This

satis�es the following
onstraint:

Suppose that we are in a state:

Eval : i a : s h m

Whenever exe
ution resumes with instru
tion sequen
e i, the state will be:

i a : s h

0

m

and the item on top of the sta
k will be in WHNF.

It is also possible for Eval to fail to terminate; this will be the
ase when the node

pointed to from the top of the sta
k has no WHNF.

If the node whose address is on top of the sta
k is already in WHNF, then the Eval instru
tion

does nothing. If there is redu
tion to be performed, then the a
tion of Eval is to perform

an evaluation to WHNF. If this
all terminates then exe
ution resumes with nothing ex
ept

the heap
omponent
hanged. This is similar to the stru
ture of subroutine
all and return

traditionally used in programming language implementation. We re
all that the
lassi
 way to

implement this feature is to use a sta
k. The sta
k will save suÆ
ient of the ma
hine's
urrent

ontext that it
an resume when the subroutine
all
ompletes.

In the Mark 4 G-ma
hine this sta
k is
alled the dump, and is a sta
k of pairs, whose �rst

omponent is a
ode sequen
e, and whose se
ond
omponent is a sta
k. This is similar to the

dump in the template ma
hine (see Se
tion 2.6), ex
ept we now have to restore the original
ode

sequen
e as well as the original sta
k. Hen
e both
omponents are kept on the dump.

117

3.6.1 Data stru
tures

We extend the G-ma
hine state by adding a dump
omponent. As previously dis
ussed, this is

used to implement re
ursive
alls to the evaluator.

> type GmState = (GmCode, --
urrent Instru
tion

> GmSta
k, --
urrent Sta
k

> GmDump, --
urrent Dump

> GmHeap, -- Heap of Nodes

> GmGlobals, -- Global adresses in Heap

> GmStats) -- Statisti
s

The dump itself is a sta
k of dumpItem. Ea
h of these is a pair
onsisting of the instru
tion

stream and sta
k to use when we resume the original
omputation.

> type GmDump = [GmDumpItem℄

> type GmDumpItem = (GmCode, GmSta
k)

When we add this new
omponent we must
hange all of the previously spe
i�ed a

ess fun
tions.

We must also add a

ess fun
tions for the dump.

> getDump :: GmState -> GmDump

> getDump (i, sta
k, dump, heap, globals, stats) = dump

> putDump :: GmDump -> GmState -> GmState

> putDump dump' (i, sta
k, dump, heap, globals, stats)

> = (i, sta
k, dump', heap, globals, stats)

Noti
e that it is only in the a

ess fun
tions that we have done pattern mat
hing on G-ma
hine

states. Changes to other fun
tions as a result of adding new
omponents to the state are no

longer needed.

Exer
ise 3.21. Make the relevant
hanges to the other a

ess fun
tions.

In addition to the new de�nition of state, we also need some new instru
tions. We reuse all of

the instru
tions from the Mark 3 ma
hine.

> data Instru
tion

> = Slide Int

> | Allo
 Int

> | Update Int

> | Pop Int

> | Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

118

In addition we in
lude the Eval instru
tion,

> | Eval

the following arithmeti
 instru
tions:

> | Add | Sub | Mul | Div | Neg

and the following
omparison instru
tions:

> | Eq | Ne | Lt | Le | Gt | Ge

We also in
lude a primitive form of
onditional in the Cond instru
tion.

> | Cond GmCode GmCode

Exer
ise 3.22. Add
ases to showInstru
tion to print all of the new instru
tions.

3.6.2 Printing the state

We take this opportunity to revise the de�nition of showState, so that it displays the dump

omponent.

> showState :: GmState -> Iseq

> showState s

> = iCon
at [showSta
k s, iNewline,

> showDump s, iNewline,

> showInstru
tions (getCode s), iNewline℄

We therefore need to de�ne showDump.

> showDump :: GmState -> Iseq

> showDump s

> = iCon
at [iStr " Dump:[",

> iIndent (iInterleave iNewline

> (map showDumpItem (reverse (getDump s)))),

> iStr "℄"℄

This in turn needs the fun
tion showDumpItem.

> showDumpItem :: GmDumpItem -> Iseq

> showDumpItem (
ode, sta
k)

> = iCon
at [iStr "<",

> shortShowInstru
tions 3
ode, iStr ", ",

> shortShowSta
k sta
k, iStr ">"℄

119

We use the fun
tion shortShowInstru
tions to print only the �rst three instru
tions of the in-

stru
tion stream in the dump items. This is usually suÆ
ient to indi
ate where the
omputation

will resume.

> shortShowInstru
tions :: Int -> GmCode -> Iseq

> shortShowInstru
tions number
ode

> = iCon
at [iStr "{", iInterleave (iStr "; ") dot
odes, iStr "}"℄

> where
odes = map showInstru
tion (take number
ode)

> dot
odes | length
ode > number =
odes ++ [iStr "..."℄

> | otherwise =
odes

Similarly, we do not need the full details of the sta
k
omponent of the dump item either, so we

use shortShowSta
k.

> shortShowSta
k :: GmSta
k -> Iseq

> shortShowSta
k sta
k

> = iCon
at [iStr "[",

> iInterleave (iStr ", ") (map (iStr . showaddr) sta
k),

> iStr "℄"℄

3.6.3 The new instru
tion transitions

Evaluator instru
tions

There are a
tually very few instru
tions that manipulate the dump. First, there is Eval itself,

whi
h
reates a new dump item whenever the node on top of the sta
k is not in WHNF. Se
ondly,

there is a modi�
ation to the Unwind instru
tion that pops a dump item when an evaluation is

ompleted.

We �rst des
ribe the new Unwind instru
tion. When the expression held in the sta
k is in

WHNF, Unwind
an restore the old
ontext from the dump, pla
ing the last address in the sta
k

on the restored old sta
k. We see this
learly in the transition for the
ase of numbers.

1

(3.22)

[Unwind℄ a : s hi

0

; s

0

i : d h[a : NNum n℄ m

=) i

0

a : s

0

d h m

The expression with address a is in WHNF be
ause it is an integer, so we restore the old

instru
tion sequen
e i

0

and the sta
k is now the old sta
k s

0

with the address a on top. All other

transitions for Unwind remain the same as they were in the Mark 3 ma
hine (ex
ept that they

have the dump
omponent in their state).

We are now in a position to spe
ify the rule for Eval. It saves the remainder of the sta
k s

and the rest of the instru
tions i as a dump item on the dump. The new
ode sequen
e is just

unwinding and the new sta
k
ontains the singleton a.

(3.23)

Eval : i a : s d h m

=) [Unwind℄ [a℄ hi ; si : d h m

1

The rule only applies if the dump is non-empty; if the dump is empty then the ma
hine has terminated.

120

Arithmeti
 instru
tions

The dyadi
 arithmeti
 operators all have the following generi
 transition rule. Let us suppose

that the arithmeti
 operator we wish to implement is �; the transition rule for the instru
tion

� is then:

(3.24)

� : i a

0

: a

1

: s d h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) i a : s d h[a : NNum (n

0

� n

1

)℄ m

What has happened is that the two numbers on top of the sta
k have had the dyadi
 operator

� applied to them. The result, whi
h is entered into the heap, has its address pla
ed on the

sta
k. The Neg instru
tion negates the number on top of the sta
k, so it has transition rule:

(3.25)

Neg : i a : s d h[a : NNum n℄ m

=) i a

0

: s d h[a

0

: NNum (�n)℄ m

Noti
e how similar all of the dyadi
 operations are. First we extra
t the two numbers from

the heap, then we perform the operation, and �nally we pla
e the answer ba
k in the heap.

This suggests that we should write some higher-order fun
tions that are parameterised over the

extra
tion from heap (whi
h we
all `unboxing' the value), and insertion ba
k into the heap

(whi
h we
all `boxing' the value), along with the spe
i�
 operation we wish to perform.

Let us write the boxing operations �rst. boxInteger takes a number and an initial state, and

returns a new state in whi
h the number has been pla
ed into the heap, and a pointer to this

new node left on top of the sta
k.

> boxInteger :: Int -> GmState -> GmState

> boxInteger n state

> = putSta
k (a: getSta
k state) (putHeap h' state)

> where (h', a) = hAllo
 (getHeap state) (NNum n)

Now to extra
t an integer at address a from a state, we will use unboxInteger.

> unboxInteger :: Addr -> GmState -> Int

> unboxInteger a state

> = ub (hLookup (getHeap state) a)

> where ub (NNum i) = i

> ub n = error "Unboxing a non-integer"

A generi
 monadi
 operator
an now be spe
i�ed in terms of its boxing fun
tion, box, its

unboxing fun
tion unbox, and the operator op on the unboxed values.

> primitive1 :: (b -> GmState -> GmState) -- boxing fun
tion

> -> (Addr -> GmState -> a) -- unbixing fun
tion

> -> (a -> b) -- operator

> -> (GmState -> GmState) -- state transition

121

> primitive1 box unbox op state

> = box (op (unbox a state)) (putSta
k as state)

> where (a:as) = getSta
k state

The generi
 dyadi
 operators
an now be implemented in a similar way using primitive2.

> primitive2 :: (b -> GmState -> GmState) -- boxing fun
tion

> -> (Addr -> GmState -> a) -- unbixing fun
tion

> -> (a -> a -> b) -- operator

> -> (GmState -> GmState) -- state transition

> primitive2 box unbox op state

> = box (op (unbox a0 state) (unbox a1 state)) (putSta
k as state)

> where (a0:a1:as) = getSta
k state

To be even more expli
it, arithmeti
1 implements all monadi
 arithmeti
, and arithmeti
2

implements all dyadi
 arithmeti
.

> arithmeti
1 :: (Int -> Int) -- arithmeti
 operator

> -> (GmState -> GmState) -- state transition

> arithmeti
1 = primitive1 boxInteger unboxInteger

> arithmeti
2 :: (Int -> Int -> Int) -- arithmeti
 operation

> -> (GmState -> GmState) -- state transition

> arithmeti
2 = primitive2 boxInteger unboxInteger

As the alert reader would expe
t, we will be taking advantage of the generality of these fun
tions

later in the
hapter.

Exer
ise 3.23. Implement all of the new instru
tion transitions for the ma
hine. Modify the dispat
h

fun
tion to deal with the new instru
tions. You should use the higher-order fun
tions primitive1

and primitive2 to implement the operators.

Exer
ise 3.24. Why are indire
tion nodes never left on top of the sta
k on
ompleting an Eval instru
-

tion?

122

Comparison instru
tions

The
omparison operators all have the following generi
 transition rule. Let us suppose that

the
omparison operator we wish to implement is �; the transition rule for the instru
tion � is

then:

(3.26)

� : i a

0

: a

1

: s d h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) i a : s d h[a : NNum (n

0

� n

1

)℄ m

What has happened is that the two numbers on top of the sta
k have had the dyadi
 operator

� applied to them. The result, whi
h is entered into the heap, has its address pla
ed on the

sta
k. This is almost the same as arithmeti
.

The di�eren
e is that an operation, == say, returns a boolean and not an integer. To �x this we

turn booleans into integers using the following rule:

� we represent True by the integer 1;

� we represent False by the integer 0.

To make the use of primitive2 possible, we de�ne boxBoolean

> boxBoolean :: Bool -> GmState -> GmState

> boxBoolean b state

> = putSta
k (a: getSta
k state) (putHeap h' state)

> where (h',a) = hAllo
 (getHeap state) (NNum b')

> b' | b = 1

> | otherwise = 0

Using this de�nition we
an write a generi

omparison fun
tion, whi
h we
all
omparison.

This fun
tion takes a boxing fun
tion for the booleans, the unboxing fun
tion for integers

(unboxInteger), and a
omparison operator; it returns a state transition.

>
omparison :: (Int -> Int -> Bool) -> GmState -> GmState

>
omparison = primitive2 boxBoolean unboxInteger

Finally, we implement the Cond instru
tion, whi
h we will use to
ompile the if fun
tion. It

has two transition rules:

(3.27)

Cond i

1

i

2

: i a : s d h[a : NNum 1℄ m

=) i

1

++ i s d h m

In the �rst
ase { where there is the number 1 on top of the sta
k { we take the �rst bran
h.

This means that we exe
ute the instru
tions i

1

before
ontinuing to exe
ute the instru
tions i .

(3.28)

Cond i

1

i

2

: i a : s d h[a : NNum 0℄ m

=) i

2

++ i s d h m

123

Alternatively, if the number on top of the sta
k is 0, we exe
ute the instru
tion sequen
e i

2

�rst,

and then the sequen
e i .

Exer
ise 3.25. Implement the transitions for the
omparison instru
tions and the Cond instru
tion.

3.6.4 The
ompiler

The
ompiler will eventually need to be
hanged to take advantage of these new instru
tions to

ompile arithmeti
 expressions. For the moment we make only the minimum set of
hanges that

will allow us to use the arithmeti
 instru
tions we have so laboriously added. First, the
ompile

fun
tion must
reate a new initial state in whi
h the initial dump is empty and in whi
h the

initial
ode sequen
e di�ers from the one we have used so far.

>
ompile :: CoreProgram -> GmState

>
ompile program

> = (initialCode, [℄, [℄, heap, globals, statInitial)

> where (heap, globals) = buildInitialHeap program

> initialCode :: GmCode

> initialCode = [Pushglobal "main", Eval℄

Exer
ise 3.26. Why has the initial instru
tion sequen
e been
hanged? What happens if we retain the

old one?

The simplest way to extend the
ompiler is simply to add G-ma
hine
ode for ea
h of the new

built-in fun
tions to the
ompiledPrimitives. The initial four instru
tions of the sequen
e

ensure that the arguments have been evaluated to integers.

>
ompiledPrimitives :: [GmCompiledSC℄

>
ompiledPrimitives

> = [("+", 2, [Push 1, Eval, Push 1, Eval, Add, Update 2, Pop 2, Unwind℄),

> ("-", 2, [Push 1, Eval, Push 1, Eval, Sub, Update 2, Pop 2, Unwind℄),

> ("*", 2, [Push 1, Eval, Push 1, Eval, Mul, Update 2, Pop 2, Unwind℄),

> ("/", 2, [Push 1, Eval, Push 1, Eval, Div, Update 2, Pop 2, Unwind℄),

We also need to add the negation fun
tion. As this only takes one argument, we only evaluate

one argument.

> ("negate", 1, [Push 0, Eval, Neg, Update 1, Pop 1, Unwind℄),

The
omparison operations are implemented as follows.

> ("==", 2, [Push 1, Eval, Push 1, Eval, Eq, Update 2, Pop 2, Unwind℄),

> ("~=", 2, [Push 1, Eval, Push 1, Eval, Ne, Update 2, Pop 2, Unwind℄),

> ("<", 2, [Push 1, Eval, Push 1, Eval, Lt, Update 2, Pop 2, Unwind℄),

124

> ("<=", 2, [Push 1, Eval, Push 1, Eval, Le, Update 2, Pop 2, Unwind℄),

> (">", 2, [Push 1, Eval, Push 1, Eval, Gt, Update 2, Pop 2, Unwind℄),

> (">=", 2, [Push 1, Eval, Push 1, Eval, Ge, Update 2, Pop 2, Unwind℄),

The if fun
tion is
ompiled so that it uses Cond for the bran
hing.

> ("if", 3, [Push 0, Eval, Cond [Push 1℄ [Push 2℄,

> Update 3, Pop 3, Unwind℄)℄

Exer
ise 3.27. What test programs from Appendix B would you use in order to
he
k that the new

instru
tions and
ompiler work?

3.7 Mark 5: Towards better handling of arithmeti

The way the G-ma
hine is implemented at the moment, ea
h arithmeti
 operator is
alled via

one of the
ompiled primitives. We
an improve on this arrangement by observing that often we

an
all the arithmeti
 operator dire
tly. For example,
onsider the following simple program:

main = 3+4*5

This generates the following
ode when we use the
urrent
ompiler:

[Pushint 5, Pushint 4, Pushglobal "*", Mkap, Mkap,

Pushint 3, Pushglobal "+", Mkap, Mkap, Eval℄

When exe
uted this
ode will take 33 steps and use 11 heap nodes. Our �rst thought must

surely be that we
an use the instru
tions Add and Mul in pla
e of
alls to the fun
tions `+' and

`*'. This leads to the following improved
ode:

[Pushint 5, Pushint 4, Mul, Pushint 3, Add℄

This will take only �ve steps to exe
ute and uses �ve heap nodes.

3.7.1 A problem

A possible problem arises when we
onsider our next example program.

main = K 1 (1/0)

This generates the following
ode:

[Pushint 0, Pushint 1, Pushglobal "/", Mkap, Mkap,

Pushint 1, Pushglobal "K", Mkap, Mkap, Eval℄

If we follow the pattern of the previous example we might try generating the
ode:

125

[Pushint 0, Pushint 1, Div,

Pushint 1, Pushglobal "K", Mkap, Mkap, Eval℄

The problem is that the division operator is applied before we redu
e K, with the result that a

division-by-zero error is generated. A
orre
t
ompiler must generate
ode that will not give

su
h errors.

What has happened is that our
ode is too stri
t. The
ode is evaluating expressions that it

need not { whi
h results in errors arising where they should not. A similar problem will also

arise when non-terminating expressions are inadvertently evaluated.

3.7.2 The solution

The solution to the problem is to keep tra
k of the
ontext in whi
h an expression appears. We

will distinguish two
ontexts

2

:

Stri
t The value of the expression will be required in WHNF.

Lazy The value of the expression may or may not be required in WHNF.

Corresponding to ea
h
ontext, we have a
ompilation s
heme whi
h will
ompile an expression

to a sequen
e of G-ma
hine instru
tions. In the stri
t
ontext this
ompilation s
heme is the E

s
heme; in the lazy
ontext we will use the C s
heme we have seen already.

We would like to �nd as many stri
t
ontexts as possible, sin
e these
ontexts allow us to generate

better
ode. We make the following observation: whenever a super
ombinator is instantiated it

is be
ause we wish to evaluate its value to WHNF. From this we
on
lude that the body of a

super
ombinator
an always be evaluated in a stri
t
ontext. There are also expressions where

we know that some sub-expressions will be evaluated to WHNF if the expression is evaluated to

WHNF.

The
lass of stri
t
ontext expressions
an be des
ribed re
ursively.

� The expression in the body of a super
ombinator de�nition is in a stri
t
ontext.

� If e

0

� e

1

o

urs in a stri
t
ontext, where � is an arithmeti
 or
omparison operator,

then the expressions e

0

and e

1

are also in a stri
t
ontext.

� If negate e o

urs in a stri
t
ontext, then the expression e also does.

� If the expression if e

0

e

1

e

2

o

urs in a stri
t
ontext, then so do the expressions e

0

, e

1

,

and e

2

.

� If let(re
) � in e o

urs in a stri
t
ontext then the expression e is also in a stri
t

ontext.

An example should make this
lear;
onsider the body of the super
ombinator f:

2

It is possible to distinguish more
ontexts. Proje
tion analysis [Wadler 1987℄ and evaluation transformers

[Burn 1991℄ are two ways to do this.

126

R[[e℄℄ � d generates
ode whi
h instantiates the expression e in environ-

ment �, for a super
ombinator of arity d , and then pro
eeds to unwind

the resulting sta
k.

R[[e℄℄ � d = E [[e℄℄ � ++ [Update d ; Pop d ; Unwind℄

E [[e℄℄ �
ompiles
ode that evaluates an expression e to WHNF in envi-

ronment �, leaving a pointer to the expression on top of the sta
k.

E [[i ℄℄ � = [Pushint i ℄

E [[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[letre
 x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo
 n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[e

0

+ e

1

℄℄ � = E [[e

1

℄℄ � ++ E [[e

0

℄℄ �

+1

++ [Add℄

And similarly for other arithmeti
 and
omparison expressions

E [[negate e℄℄ � = E [[e℄℄ � ++ [Neg℄

E [[if e

0

e

1

e

2

℄℄ � = E [[e

0

℄℄ � ++ [Cond (E [[e

1

℄℄ �) (E [[e

2

℄℄ �)℄

E [[e℄℄ � = C[[e℄℄ � ++ [Eval℄ the default
ase

Figure 3.12: The R and E
ompilation s
hemes for the Mark 5 ma
hine

f x y = (x+y) + g (x*y)

Both (x+y) and g (x*y) will be evaluated in a stri
t
ontext { be
ause the body of the super-

ombinator is. In the �rst
ase this
auses x and y to be evaluated in a stri
t
ontext { be
ause

+ propagates the stri
t
ontext. In the se
ond expression, the presen
e of a user-de�ned super-

ombinator means that the sub-expression x*y will be
ompiled assuming that the expression

may not be evaluated.

This suggests that we
an implement the stri
t-
ontext
ompiler, E , in a re
ursive manner.

Be
ause the body of ea
h super
ombinator is evaluated in a stri
t
ontext we will need to
all

the E s
heme fun
tion from the R s
heme. This satis�es the �rst of the points above. To

propagate the
ontext information into sub-expressions we will re
ursively invoke the E s
heme

for arithmeti
 expressions.

The new
ompiler s
hemes are de�ned in Figure 3.12.

To make it easier to extend the set of built-in operators that
an be
ompiled using the new

s
heme, we de�ne builtInDyadi
.

127

> builtInDyadi
 :: ASSOC Name Instru
tion

> builtInDyadi

> = [("+", Add), ("-", Sub), ("*", Mul), ("div", Div),

> ("==", Eq), ("~=", Ne), (">=", Ge),

> (">", Gt), ("<=", Le), ("<", Lt)℄

Exer
ise 3.28. Modify the existing
ompiler fun
tions
ompileR and
ompileE so that they implement

the R s
heme and E s
heme of Figure 3.12. You should use builtInDyadi
.

O

asionally the ma
hine will fail when the new
ompiler is used. What we need is to introdu
e

a new rule for the Unwind instru
tion.

(3.29)

[Unwind℄ [a

0

; : : : ; a

k

℄ hi ; si : d h[a

0

: NGlobal n
℄ m

=) i a

k

: s d h m when k < n

This allows us to use Eval to evaluate any obje
t to WHNF, and not just numbers.

Exer
ise 3.29. Implement the new transition for Unwind. Write a program that fails without the new

Unwind transition.

Exer
ise 3.30. Compare the exe
ution of the example program used at the start of this se
tion, with

its exe
ution on the Mark 4 ma
hine.

main = 3+4*5

Try some other programs from Appendix B.

The way we implemented the stri
t
ontext in the
ompiler is addis simple example of the

inherited attributes from
ompiler theory. If we regard the stri
t
ontext as an attribute of an

expression, then a sub-expression inherits its stri
t
ontext from its parent expression. The

general theory is dis
ussed in [Aho et al. 1986℄.

It is unfortunately not possible { in general { to determine at
ompile-time whether an expression

should be
ompiled with a stri
t
ontext. We therefore have to a

ept a
ompromise. In this

book we have only treated a limited set of expressions { the arithmeti
 expressions { in a spe
ial

way. Mu
h a
tive resear
h is
on
erned with extending this analysis to
over more general

expressions [Burn 1991℄.

3.8 Mark 6: Adding data stru
tures

In this se
tion we extend the G-ma
hine to deal with arbitrary data stru
tures. As dis
ussed in

Chapter 1, two new Core-language
onstru
ts are required for programs involving data stru
-

tures:
onstru
tors, EConstr; and
ase expressions, ECase. Our goal, in produ
ing the Mark 6

ma
hine, is to
ompile
ode for these expressions.

128

3.8.1 Overview

In Se
tion 1.1.4 we saw that a
onstru
tor with tag t and arity a was represented as Pa
k{t,a}

in the
ore language. For example, the usual list data type has two
onstru
tors: Pa
k{1,0}

and Pa
k{2,2}. These
orrespond to Miranda's [℄ and (:) respe
tively.

A
ase expression, whi
h has no dire
t
ounterpart in Miranda, is used to inspe
t the values

held in a
onstru
tor. For example, we
an write the length fun
tion for a list as:

length xs =
ase xs of

<1> -> 0;

<2> y ys -> 1 + length ys

It is instru
tive to look at the way we exe
ute the
ase expression

1. To evaluate the
ase expression, we �rst evaluate xs to WHNF.

2. On
e this evaluation has o

urred, we are able to tell whi
h of the alternatives to take.

The tag of the evaluated expression { whi
h must be a stru
tured data obje
t { determines

whi
h alternative we take. In the above example, for length:

� If the tag of the
onstru
tor for xs is 1 then the list is empty and we take the �rst

bran
h. We therefore return 0.

� If the tag is 2, then the list is non-empty. This time there are
omponents of the

onstru
tor (y and ys). The length of the list is one more than the length of ys.

We will assume that whenever we attempt to dismantle a
onstru
tor it has been applied to the

orre
t number of arguments. A
onstru
tor in this state is said to be saturated. As an example,

in Se
tion 1.1.3, Cons is de�ned to take two arguments, so it is saturated when it is applied to

two expressions.

We also note that a Core-language program
an now return a result that is a stru
tured data

obje
t. The Mark 5 G-ma
hine must be able to print the stru
tured data obje
t in a lazy

fashion. Let us �rst
onsider what additions will need to be made to the data stru
tures of the

Mark 5 ma
hine.

3.8.2 Data stru
tures

It would be ni
e to allow the ma
hine to return values whi
h are not just numbers. We would

like to be able to return values that
onsist of
onstru
tors. This will require us to evaluate the

omponents of the stru
ture re
ursively, and then return these values. To do this we need to

add yet another
omponent to the state: gmOutput. This will hold the result of the program.

> type GmState =

> (GmOutput, -- Current Output

> GmCode, -- Current Instru
tion Stream

> GmSta
k, -- Current Sta
k

> GmDump, -- The Dump

129

> GmHeap, -- Heap of Nodes

> GmGlobals, -- Global addresses in Heap

> GmStats) -- Statisti
s

This
omponent is de�ned to be a
hara
ter string.

> type GmOutput = [Char℄

We
an write the a

ess fun
tions in the obvious way.

> getOutput :: GmState -> GmOutput

> getOutput (o, i, sta
k, dump, heap, globals, stats) = o

> putOutput :: GmOutput -> GmState -> GmState

> putOutput o' (o, i, sta
k, dump, heap, globals, stats)

> = (o', i, sta
k, dump, heap, globals, stats)

Exer
ise 3.31. Make the appropriate
hanges to the remainder of the a

ess fun
tions.

To support
onstru
tor nodes in the heap, we augment the type node with NConstr; this takes

a positive number whi
h will represent a tag, and a list of
omponents whi
h we represent as the

list of the addresses of the nodes in heap.

> data Node

> = NNum Int -- Numbers

> | NAp Addr Addr -- Appli
ations

> | NGlobal Int GmCode -- Globals

> | NInd Addr

> | NConstr Int [Addr℄

> instan
e Eq Node

> where

> NNum a == NNum b = a == b -- needed to
he
k
onditions

> NAp a b == NAp
 d = False -- not needed

> NGlobal a b == NGlobal
 d = False -- not needed

> NInd a == NInd b = False -- not needed

> NConstr a b == NConstr
 d = False -- not needed

3.8.3 Printing the result

Be
ause we have a new state
omponent whi
h we wish to display, we must rede�ne the fun
tion

showState.

> showState :: GmState -> Iseq

> showState s

130

> = iCon
at [showOutput s, iNewline,

> showSta
k s, iNewline,

> showDump s, iNewline,

> showInstru
tions (getCode s), iNewline℄

The showOutput fun
tion is easy, be
ause the output
omponent is already a string.

> showOutput :: GmState -> Iseq

> showOutput s = iCon
at [iStr "Output:\"", iStr (getOutput s), iStr "\""℄

The only other
hange (apart from
hanging showInstru
tion for the new instru
tion set)

o

urs in showNode, be
ause we have extended the data type to in
lude
onstru
tor nodes.

> showNode :: GmState -> Addr -> Node -> Iseq

> showNode s a (NNum n) = iNum n

> showNode s a (NGlobal n g) = iCon
at [iStr "Global ", iStr v℄

> where v = head [n | (n,b) <- getGlobals s, a==b℄

> showNode s a (NAp a1 a2) = iCon
at [iStr "Ap ", iStr (showaddr a1),

> iStr " ", iStr (showaddr a2)℄

> showNode s a (NInd a1) = iCon
at [iStr "Ind ", iStr (showaddr a1)℄

> showNode s a (NConstr t as)

> = iCon
at [iStr "Cons ", iNum t, iStr " [",

> iInterleave (iStr ", ") (map (iStr.showaddr) as), iStr "℄"℄

3.8.4 The instru
tion set

The new instru
tion set is now de�ned. It simply adds four new instru
tions to the Mark 4

ma
hine.

> data Instru
tion

> = Slide Int

> | Allo
 Int

> | Update Int

> | Pop Int

> | Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

> | Eval

> | Add | Sub | Mul | Div

> | Neg

> | Eq | Ne | Lt | Le | Gt | Ge

> | Cond GmCode GmCode

The four new instru
tions that are added to the ma
hine are as follows:

131

> | Pa
k Int Int

> | Casejump [(Int, GmCode)℄

> | Split Int

> | Print

Exer
ise 3.32. Extend showInstru
tion to mat
h the new instru
tion set.

The Pa
k instru
tion is simple; it assumes that there are suÆ
ient arguments on the sta
k to

onstru
t a saturated
onstru
tor. When there are, it pro
eeds to make a saturated
onstru
tor;

if there are not enough arguments, then the instru
tion is unde�ned.

(3.30)

o Pa
k t n : i a

1

: : : : : a

n

: s d h m

=) o i a : s d h[a : NConstr t [a

1

; : : : ; a

n

℄℄ m

The transition rule for Casejump expe
ts (a) that the node on top of the sta
k is in WHNF,

and (b) that the node is a stru
tured data obje
t. Using the tag from this obje
t we sele
t one

of the alternative instru
tion sequen
es, and the
urrent instru
tion stream is then pre�xed by

the
ode for the parti
ular alternative sele
ted.

(3.31)

o Casejump [: : : ; t->i

0

; : : :℄ : i a : s d h[a : NConstr t ss℄ m

=) o i

0

++ i a : s d h m

This is a simple way to spe
ify a multiway jump and join. That is, by pre�xing the
urrent

ode i by the
ode for the alternative i

0

, we a
hieve the e�e
t of �rst running the
ode for the

alternative and then resuming with whatever the remainder of the
ode for the main expression

requires

3

.

The
ode for ea
h alternative begins with a Split n instru
tion and terminates with a Slide n

instru
tion. The value of n is determined by the number of
omponents in the
onstru
tor. The

Split instru
tion is used to gain a

ess to the
omponents of a
onstru
tor.

Consider the
ode sequen
e generated for the length fun
tion:

[Push 0, Eval,

Casejump [1 -> [Pushint 0℄

2 -> [Split 2, Push 1, Pushglobal "length", Mkap,

Eval, Pushint 1, Add, Slide 2℄℄,

Update 1,

Pop 1,

Unwind℄

The exe
ution of this pattern is shown in Figure 3.13, where we see that the Slide and Split

instru
tions are being used temporarily to extend the
urrent set of lo
al bindings. Assuming

3

It should be noted that
ode sequen
es using Casejump are not
at. We
an, however,
onstru
t the
at
ode

sequen
es we desire by labelling ea
h alternative and jumping to the labelled
ode addresses. We have not done

this as it unne
essarily
ompli
ates the
ode generation.

132

- -

-

-

-

-

-

-

-

(d) After Slide 2(
) After
ode for body

(b) After Split 2(a) On entering alternative

l

head

tail

head

tail

2 2

tail

head

l

Figure 3.13: Running
ompiled
ode for alternatives

that the length fun
tion was applied to a non-nil node, when we exe
ute the Casejump instru
-

tion, we take the alternative labelled 2. This is the initial diagram (a). The Split 2 instru
tion

`unpa
ks' the
onstru
tor node onto the sta
k. This is shown in diagram (b). After
ompleting

the body of the alternative, i.e. the
ode sequen
e

[Push 1, Pushglobal "length", Mkap, Eval, Pushint 1, Add℄

the length of the list argument to this
all of length will be on top of the sta
k labelled l in

diagram (
). To
omplete the exe
ution we remove the pointers to head and tail; this is shown

in diagram (d). The transition for Split is straightforward.

(3.32)

o Split n : i a : s d h[a : NConstr t [a

1

; : : : ; a

n

℄℄ m

=) o i a

1

: : : : : a

n

: s d h m

Next, we des
ribe the transitions for Print. There are two transitions for Print; one ea
h for

onstru
tors and numbers.

(3.33)

o Print : i a : s d h[a : NNum n℄ m

=) o ++ [n℄ i s d h m

The rule for
onstru
tors is more
omplex, as it must arrange to print ea
h
omponent of the

onstru
tor. For simpli
ity we will only print out the
omponents.

(3.34)

o Print : i a : s d h[a : NConstr t [a

1

; : : : ; a

n

℄℄ m

=) o i

0

++ i a

1

: : : : : a

n

: s d h m

133

E [[e℄℄ �
ompiles
ode that evaluates an expression e to WHNF in envi-

ronment �, leaving a pointer to the expression on top of the sta
k.

E [[
ase e of alts℄℄ � = E [[e℄℄ � ++ [Casejump D[[alts℄℄ �℄

E [[Pa
k{t,a} e

1

: : : e

a

℄℄ � = C[[e

a

℄℄ �

+0

++ : : : C[[e

1

℄℄ �

+(a�1)

++ [Pa
k t a℄

C[[e℄℄ � generates
ode whi
h
onstru
ts the graph of e in environment �,

leaving a pointer to it on top of the sta
k.

C[[Pa
k{t,a} e

1

: : : e

a

℄℄ � = C[[e

a

℄℄ �

+0

++ : : : C[[e

1

℄℄ �

+(a�1)

++ [Pa
k t a℄

D[[alts℄℄ �
ompiles the
ode for the alternatives in a
ase expression.

D[[alt

1

: : : alt

n

℄℄ � = [A[[alt

1

℄℄ � ; : : : ; A[[alt

n

℄℄ �℄

A[[alt ℄℄ �
ompiles the
ode for an alternative in a
ase expression.

A[[<t> x

1

: : : x

n

-> body ℄℄ � = t -> [Split n℄ ++ E [[body ℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! 0 : : : x

n

7! n � 1℄

Figure 3.14: Compilation s
hemes for
ase expressions

The
ode i

0

is simply:

[Eval; Print; : : : ; Eval; Print

| {z }

n

℄:

Lastly, we must add a new rule for Unwind, that tells it to return when unwinding an NConstr,

just like the rule for NNum.

(3.35)

[Unwind℄ a : s hi

0

; s

0

i : d h[a : NConstr n as℄ m

=) i

0

a : s

0

d h m

Exer
ise 3.33. Implement the new transitions and modify the dispat
h fun
tion.

3.8.5 The
ompiler

In Figure 3.14 the new
ases for the E and C
ompilation s
hemes are presented. They require

auxiliary
ompilation s
hemes, D and A, to deal with the alternatives that may be sele
ted in

a
ase expression. The fun
tion
ompileAlts (
orresponding to the D s
heme)
ompiles a list

of alternatives, using the
urrent environment, and produ
es a list of tagged
ode sequen
es.

It also uses the
omp argument (whi
h
orresponds to A) to
ompile the body of ea
h of the

alternatives. For the moment this argument will always be
ompileE'.

134

>
ompileAlts :: (Int -> GmCompiler) --
ompiler for alternative bodies

> -> [CoreAlt℄ -- the list of alternatives

> -> GmEnvironment -- the
urrent environment

> -> [(Int, GmCode)℄ -- list of alternative
ode sequen
es

>
ompileAlts
omp alts env

> = [(tag,
omp (length names) body (zip names [0..℄ ++ argOffset (length names) env))

> | (tag, names, body) <- alts℄

The
ompileE' s
heme is a small modi�
ation to the
ompileE s
heme. It simply pla
es a

Split and Slide around the
ode generated by the ordinary
ompileE s
heme.

>
ompileE' :: Int -> GmCompiler

>
ompileE' offset expr env

> = [Split offset℄ ++
ompileE expr env ++ [Slide offset℄

Exer
ise 3.34. Make the relevant
hanges to
ompile, and modify initialCode to have a �nal Print

instru
tion.

Exer
ise 3.35. Add the new
ases to the
ompiler fun
tions
ompileE and
ompileC.

Exer
ise 3.36. What
hanges are required to print out the output in `stru
tured form'. By this we

mean pla
ing the
onstru
tors and parentheses into the output
omponent gmOutput, as well as

integers.

3.8.6 Using the new boolean representation in
omparisons

In this se
tion we show how the Mark 6 ma
hine we have
onstru
ted,
an be modi�ed to use

our new representation of booleans. We �rst observe that we
an implement the booleans as

stru
tured data obje
ts; with True and False being represented as
onstru
tors of zero arity

and tags 2 and 1 respe
tively.

How do we implement
onditionals? This
an be done by adding a new de�nition to the program

for if. It returns either its se
ond or third argument, depending on the �rst argument.

if
 t f =
ase
 of

<1> -> f;

<2> -> t

The �rst
hange we require lies in the
omparison operations. These have the following generi

transition rule.

(3.36)

o � : i a

0

: a

1

: s d h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) o i a : s d h[a : Constr (n

0

� n

1

) [℄℄ m

For example, in the Eq instru
tion, we repla
e � with a fun
tion that returns 2 (the tag for

True) if the two numbers n

0

and n

1

are the same, and 1 (the tag for False) otherwise.

135

We
an implement the transitions qui
kly, by reusing some of the
ode we developed for the

Mark 4 ma
hine. In Se
tion 3.6.3 we saw how to represent some generi
 arithmeti
 and
om-

parison operators. In fa
t, be
ause of the way in whi
h we stru
tured the de�nition of the

omparison fun
tion, we
an almost immediately use our new representation of booleans.

The boxing fun
tion boxBoolean takes a
omparison operation and a state in whi
h there are

two integers on top of the sta
k. It returns the new state in whi
h there is the boolean result of

omparing the two integers on top of the sta
k.

> boxBoolean :: Bool -> GmState -> GmState

> boxBoolean b state

> = putSta
k (a: getSta
k state) (putHeap h' state)

> where (h',a) = hAllo
 (getHeap state) (NConstr b' [℄)

> b' | b = 2 -- 2 is tag of True

> | otherwise = 1 -- 1 is tag of False

Exer
ise 3.37. Run some example programs from Appendix B; for example try the fa
torial program:

fa
 n = if (n==0) 1 (n * fa
 (n-1))

3.8.7 Extending the language a

epted

As astute readers might have noti
ed, there are some legal expressions involving ECase and

EConstr for whi
h our
ompiler will fail. The legal expressions that we
annot
ompile fall into

two
lasses:

1. O

urren
es of ECase in non-stri
t
ontexts; i.e. in expressions
ompiled by the C s
heme.

2. O

urren
es of EConstr in expressions where it is applied to too few arguments.

Both problems
an be solved by using program transformation te
hniques. The solution for

ECase is to make the o�ending expressions into super
ombinators whi
h are then applied to

their free variables. For example, the program:

f x = Pa
k{2,2} (
ase x of <1> -> 1; <2> -> 2) Pa
k{1,0}

an be transformed into the equivalent program:

f x = Pa
k{2,2} (g x) Pa
k{1,0}

g x =
ase x of <1> -> 1; <2> -> 2

The tri
k for EConstr is to
reate a super
ombinator for ea
h
onstru
tor; this will be generated

with enough free variables to saturate the
onstru
tor. Here is an example.

prefix p xs = map (Pa
k{2,2} p) xs

This is transformed to:

136

prefix p xs = map (f p) xs

f p x = Pa
k{2,2} p x

Another way to solve this problem is to modify the Pushglobal instru
tion, so that it will work

for fun
tions with names of the form: `Pa
k{t,a}'. We
an then simply look for
onstru
tor

fun
tions, su
h as f in the example above, in the globals
omponent of the state. If the fun
tion

is not already present, we
an
reate a new global node to asso
iate with the fun
tion be
ause

the node has a parti
ularly simple stru
ture.

NGlobal a [Pa
k t a, Update 0, Unwind℄

The new transitions are, �rstly, if the fun
tion exists already:

(3.37)

o Pushglobal Pa
k{t,n} : i s d h m[Pa
k{t,n} : a℄

=) o i a : s d h m

and se
ondly when it does not already exist:

(3.38)

o Pushglobal Pa
k{t,n} : i s d h m

=) o i a : s d h[a : gNode

t;n

℄ m[Pa
k{t,n} : a℄

where gNode

t;n

is

NGlobal n [Pa
k t n; Update 0; Unwind℄

Our
ompiler
an then generate
ode for expressions with unsaturated
onstru
tor nodes dire
tly.

It does this by generating the following
ode for unsaturated
onstru
tors.

C[[Pa
k{t,a}℄℄ � = [Pushglobal "Pa
k{t,a}"℄

Exer
ise 3.38. Implement the extensions to the pushglobal fun
tion for the Pushglobal instru
tion

and modify the
ompiler.

3.9 Mark 7: Further improvements

Let us
onsider again the example program we saw when we developed the Mark 5
ompiler.

main = 3+4*5

This generates the following
ode when we use the Mark 6
ompiler:

[Pushint 5, Pushint 4, Mul, Pushint 3, Add℄

137

When exe
uted this
ode will use �ve heap nodes. Is it possible to redu
e this still further?

The answer is yes. We
an redu
e the number of heap a

esses for arithmeti
 further by using a

sta
k of numbers to represent intermediate values in the
omputation. In the Mark 7 ma
hine

these values are held in a new state
omponent
alled the V-sta
k. The problem is that pla
ing

numbers into the heap or extra
ting them is an expensive operation on a real ma
hine. It is

mu
h more eÆ
ient to use the ma
hine's register set or sta
k. In the Mark 7 G-ma
hine we will

use a sta
k; this means that we do not have to worry about running out of registers.

The new
ode for the program

main = 3+4*5

is very similar to that whi
h we previously generated:

[Pushbasi
 5, Pushbasi
 4, Mul, Pushbasi
 3, Add, Mkint℄

The �rst instru
tion Pushbasi
 5 pla
es 5 on top of the V-sta
k. Next we push 4 onto the

V-sta
k, following this by a multipli
ation. This instru
tion now expe
ts its arguments to be in

the V-sta
k. It will pla
e the answer into the V-sta
k as well. The next two instru
tions add 3

to the value on top of the V-sta
k. The �nal instru
tion, Mkint, takes the value on top of the

V-sta
k and pla
es it into a number node in the heap, leaving a pointer to this new node on top

of the S-sta
k.

3.9.1 Exe
uting the fa
torial fun
tion using the V-sta
k

We begin an investigation into the Mark 7 ma
hine, by way of an example. We will be looking

at the exe
ution of the fa
torial fun
tion, de�ned as follows:

fa
 n = if (n==0) 1 (n * fa
 (n-1))

Using the Mark 7
ompiler, we will generate the following
ode sequen
e for the body of the

super
ombinator.

[Pushbasi
 0, Push 0, Eval, Get, Eq,

Cond [Pushint 1, Update 1, Pop 1, Unwind℄

[Pushint 1, Push 1, Pushglobal "-", Mkap, Mkap, Pushglobal "fa
", Mkap,

Eval, Get, Push 0, Eval, Get, Mul, Mkint, Update 1, Pop 1, Unwind℄

When this
ode
ommen
es exe
ution, the V-sta
k is empty, and there is one item on the

ordinary sta
k. We will
all the latter the S-sta
k from now on to distinguish the two sorts of

sta
k. In Figure 3.15 { starting with diagram (a) { we see the initial state in whi
h a pointer

to the argument to fa
 is on top of the S-sta
k. In diagram (b) we see what happens when a

Pushbasi
 instru
tion is exe
uted: an integer is pushed onto the V-sta
k. Diagram (
) shows

that the argument to fa
 has now been evaluated, whilst in diagram (d) we see the e�e
t of a

Get instru
tion. It has extra
ted the value from the node in the heap, and pla
ed it into the

V-sta
k.

138

-

:

-

--

(d) After Get(
) After Push 0, Eval

(b) After Pushbasi
 0(a) State on entry to fa

1

0 1

SV

10

SV

0

e

SV

e

SV

Figure 3.15: Mark 7 ma
hine running fa

--

(f) After Cond(e) After Eq

1

SV

1 1

SV

Figure 3.16: Mark 7 ma
hine running fa

In diagram (e) (Figure 3.16) we see the state after an Eq instru
tion has exe
uted. It has

ompared the two items in the V sta
k, and dis
overed that they are not equal. The Mark 7

G-ma
hine represents the boolean value False by 1 in the V-sta
k. In diagram (f), the Cond

instru
tion has inspe
ted this value, and used it to sele
t whi
h bran
h to exe
ute.

In diagram (g) (Figure 3.17) the state after the
onstru
tion and evaluation of fa
 (1-1) is

shown. The next instru
tion is Get whi
h fet
hes the newly evaluated value into the V sta
k.

Diagram (i) shows that we evaluate and fet
h the value from the node 1 into the V-sta
k. In

diagram (j) a Mul instru
tion has multiplied the two values in the V-sta
k, pla
ing the result

ba
k there. In diagram (k) a Mkint instru
tion has moved this result from the V-sta
k to the

heap, re
ording the address of the newly
reated node on the S-sta
k.

In a ma
hine where there is a performan
e penalty for
reating and a

essing obje
ts in the

heap {
ompared with keeping the obje
ts in a sta
k { we expe
t the use of the V-sta
k to be

an improvement. Having seen how the V-sta
k works, we now make small modi�
ations to the

G-ma
hine to implement the Mark 7 ma
hine.

3.9.2 Data stru
tures

The use of the V-sta
k requires that ea
h G-ma
hine state has a new state
omponent gmVSta
k

added to its state.

> type GmState = (GmOutput, -- Current output

139

-

-

-

-

- -

-

(k) After Mkint

(j) After Mul(i) After Push 0, Eval, Get

(h) After Get(g) After Pushint 1, ... Mkap, Eval

1

1

SV

1

1

1

SV

1

1

SV V S

11

V S

11

Figure 3.17: Mark 7 ma
hine running fa

> GmCode, -- Current instru
tion stream

> GmSta
k, -- Current sta
k

> GmDump, -- Current dump

> GmVSta
k, -- Current V-sta
k

> GmHeap, -- Heap of nodes

> GmGlobals, -- Global addresses in heap

> GmStats) -- Statisti
s

As we have already stated this new
omponent behaves as a sta
k of numbers.

> type GmVSta
k = [Int℄

We add a

ess fun
tions for this
omponent.

> getVSta
k :: GmState -> GmVSta
k

> getVSta
k (o, i, sta
k, dump, vsta
k, heap, globals, stats) = vsta
k

> putVSta
k :: GmVSta
k -> GmState -> GmState

> putVSta
k vsta
k' (o, i, sta
k, dump, vsta
k, heap, globals, stats)

> = (o, i, sta
k, dump, vsta
k', heap, globals, stats)

Exer
ise 3.39. Make the relevant
hanges to the other a

ess fun
tions.

140

Displaying the states

The fun
tion showState is
hanged so that it prints out the V-sta
k
omponent.

> showState :: GmState -> Iseq

> showState s

> = iCon
at [showOutput s, iNewline,

> showSta
k s, iNewline,

> showDump s, iNewline,

> showVSta
k s, iNewline,

> showInstru
tions (getCode s), iNewline℄

To do this we de�ne the fun
tion showVSta
k.

> showVSta
k :: GmState -> Iseq

> showVSta
k s

> = iCon
at [iStr "Vsta
k:[",

> iInterleave (iStr ", ") (map iNum (getVSta
k s)),

> iStr "℄"℄

3.9.3 Instru
tion set

An obvious �rst requirement is that ea
h of the arithmeti
 transitions will now have to be

modi�ed to get their values from, and return their results to, the V-sta
k instead of the ordinary

sta
k. Let us �rst deal with the
ase of dyadi
 primitives. The generi
 transition for the

operation � is given below. It takes two arguments from the V-sta
k and pla
es the result of

the operation � ba
k onto the V-sta
k.

(3.39)

o � : i s d n

0

: n

1

: v h m

=) o i s d n

0

� n

1

: v h m

The Neg instru
tion now has the following transition: it simply repla
es the number on top of

the V-sta
k with its negation.

(3.40)

o Neg : i s d n : v h m

=) o i s d (�n) : v h m

We also need instru
tions to move values between the heap and the V-sta
k. We begin with

Pushbasi
, whi
h pushes an integer n onto the V-sta
k.

(3.41)

o Pushbasi
 n : i s d v h m

=) o i s d n : v h m

To move a value from the V-sta
k to the heap, we use two instru
tions: Mkbool and Mkint.

These treat the integer on top of the V-sta
k as booleans and integers respe
tively. We begin

with Mkbool.

141

(3.42)

o Mkbool : i s d t : v h m

=) o i a : s d v h[a : NConstr t [℄℄ m

The transition for Mkint is similar, ex
ept that it
reates a new integer node in the heap.

(3.43)

o Mkint : i s d n : v h m

=) o i a : s d v h[a : NNum n℄ m

To perform the inverse operation we use Get. This is spe
i�ed by two transitions. In the �rst

we see how Get treats a boolean on top of the sta
k.

(3.44)

o Get : i a : s d v h[a : NConstr t [℄℄ m

=) o i s d t : v h m

In the se
ond, we see how Get treats a number.

(3.45)

o Get : i a : s d v h[a : NNum n℄ m

=) o i s d n : v h m

Finally, to make use of booleans on the V-sta
k we use a simpli�ed Casejump instru
tion that

inspe
ts the V-sta
k to determine whi
h instru
tion stream to use. This new instru
tion is
alled

Cond, and is spe
i�ed by the following two transitions. In the �rst { with the value on top of

the V-sta
k being true { we sele
t the �rst
ode sequen
e: t .

(3.46)

o Cond t f : i s d 2 : v h m

=) o t ++ i s d v h m

In the se
ond transition we see that with a false value on top of the V-sta
k Cond sele
ts its

se
ond
ode sequen
e: f .

(3.47)

o Cond t f : i s d 1 : v h m

=) o f ++ i s d v h m

Exer
ise 3.40. Extend the instru
tion data type, rede�ne the showInstru
tion fun
tion, implement

the new instru
tion transitions and modify the dispat
h fun
tion.

We now
onsider the { rather extensive { modi�
ations to the
ompiler.

3.9.4 The
ompiler

Be
ause of the extra state
omponent, the
ompile fun
tion must initialise the V-sta
k
ompo-

nent to be empty.

142

>
ompile :: CoreProgram -> GmState

>
ompile program

> = ([℄, initialCode, [℄, [℄, [℄, heap, globals, statInitial)

> where (heap, globals) = buildInitialHeap program

Stri
tly speaking, this is all that is ne
essary to make the ma
hine work, but we have introdu
ed

the V-sta
k so that we
an
ompile arithmeti
 fun
tions `in-line', so this is what we intend our

ode to do.

> buildInitialHeap :: CoreProgram -> (GmHeap, GmGlobals)

> buildInitialHeap program

> = mapA

uml allo
ateS
 hInitial
ompiled

> where
ompiled = map
ompileS
 (preludeDefs ++ program ++ primitives)

Be
ause of the
hanges to the transitions for the primitive instru
tion, we must
hange the
ode

for ea
h
ompiled primitive. Instead of hand
ompiling this
ode { as we did for the Mark 6

ma
hine { we
an instead give this job to the
ompiler. This of
ourse relies on the fa
t that

the
ompiler is
lever enough to optimise the
ode it produ
es, otherwise we never generate any

Add instru
tions!

> primitives :: [(Name,[Name℄,CoreExpr)℄

> primitives

> = [("+", ["x","y"℄, (EAp (EAp (EVar "+") (EVar "x")) (EVar "y"))),

> ("-", ["x","y"℄, (EAp (EAp (EVar "-") (EVar "x")) (EVar "y"))),

> ("*", ["x","y"℄, (EAp (EAp (EVar "*") (EVar "x")) (EVar "y"))),

> ("/", ["x","y"℄, (EAp (EAp (EVar "/") (EVar "x")) (EVar "y"))),

We also need to add the negation fun
tion.

> ("negate", ["x"℄, (EAp (EVar "negate") (EVar "x"))),

Comparison fun
tions are almost identi
al to the dyadi
 arithmeti
 fun
tions.

> ("==", ["x","y"℄, (EAp (EAp (EVar "==") (EVar "x")) (EVar "y"))),

> ("~=", ["x","y"℄, (EAp (EAp (EVar "~=") (EVar "x")) (EVar "y"))),

> (">=", ["x","y"℄, (EAp (EAp (EVar ">=") (EVar "x")) (EVar "y"))),

> (">", ["x","y"℄, (EAp (EAp (EVar ">") (EVar "x")) (EVar "y"))),

> ("<=", ["x","y"℄, (EAp (EAp (EVar "<=") (EVar "x")) (EVar "y"))),

> ("<", ["x","y"℄, (EAp (EAp (EVar "<") (EVar "x")) (EVar "y"))),

Finally, we ought to in
lude the
onditional fun
tion, and some super
ombinators to represent

boolean values.

> ("if", ["
","t","f"℄,

> (EAp (EAp (EAp (EVar "if") (EVar "
")) (EVar "t")) (EVar "f"))),

> ("True", [℄, (EConstr 2 0)),

> ("False", [℄, (EConstr 1 0))℄

143

B[[e℄℄ �
ompiles
ode that evaluates an expression e to WHNF, in an

environment �, leaving the result on the V sta
k.

B[[i ℄℄ � = [Pushbasi
 i ℄

B[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

B[[e℄℄ �

0

++ [Pop n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

B[[letre
 x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo
 n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

B[[e℄℄ �

0

++ [Pop n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

B[[e

0

+ e

1

℄℄ � = B[[e

1

℄℄ � ++ B[[e

0

℄℄ � ++ [Add℄

And similarly for other arithmeti
 expressions

B[[e

0

== e

1

℄℄ � = B[[e

1

℄℄ � ++ B[[e

0

℄℄ � ++ [Eq℄

And similarly for other
omparison expressions

B[[negate e℄℄ � = B[[e℄℄ � ++ [Neg℄

B[[if e

0

e

1

e

2

℄℄ � = B[[e

0

℄℄ � ++ [Cond (B[[e

1

℄℄ �) (B[[e

2

℄℄ �)℄

B[[e℄℄ � = E [[e℄℄ � ++ [Get℄ the default
ase

Figure 3.18: The B
ompilation s
heme

The B
ompilation s
heme

The B s
heme, shown in Figure 3.18,
onstitutes another type of
ontext. To be
ompiled by

the B s
heme, an expression must not only be known to need evaluation to WHNF, it must also

be an expression of type integer or boolean. The following expressions will propagate through

the B s
heme:

� If let(re
) � in e o

urs in a B-stri
t
ontext then the expression e is also in a B-stri
t

ontext.

� If the expression if e

0

e

1

e

2

o

urs in a B-stri
t
ontext then the expressions e

0

, e

1

and

e

2

also o

ur in B-stri
t
ontexts.

� If e

0

� e

1

o

urs in a B-stri
t
ontext, with � being a
omparison or arithmeti
 operator,

then the expressions e

0

and e

1

also o

ur in B-stri
t
ontexts.

� If negate e o

urs in a B-stri
t
ontext then so does the expression e.

If we
annot re
ognise any of the spe
ial
ases of expression, then the
ompiled
ode will evaluate

the expression using the E s
heme, and then perform a Get instru
tion. The Get instru
tion

unboxes the value left on top of the sta
k by the E s
heme and moves it to the V-sta
k.

144

This has left unspe
i�ed how we know that an expression is initially in a B-stri
t
ontext. The

usual situation is that we generate a B-stri
t
ontext from the usual stri
t
ontext: E , with the

additional knowledge that the value is of type integer or boolean.

Exer
ise 3.41. Implement the B
ompiler s
heme.

The E
ompilation s
heme

The E s
heme { de�ned in Figure 3.19 { spe
i�es that we should give spe
ial treatment to arith-

meti
 and
omparison fun
tion
alls. It di�ers from the version we used for the Mark 6 ma
hine

be
ause we make use of the B s
heme to perform the arithmeti
 and
omparison operations. A-

gain, if there are no spe
ial
ases, then we must use a default method to
ompile the expression.

This is simply to build the graph, using the C s
heme, and then pla
e an Eval instru
tion in

the
ode stream. This will ensure that the graph is evaluated to WHNF.

Exer
ise 3.42. Implement the new E
ompiler s
heme.

The R
ompilation s
heme

We also take this opportunity to improve the R s
heme. Firstly, we wish to
reate opportunities

for the B s
heme to be used. We are also attempting to redu
e the number of instru
tions that

are exe
uted at the end of a fun
tion's
ode sequen
e. The new
ompilation s
hemes for the R

s
heme are given in Figure 3.20. It has been expanded from the version we used in the Mark 6

ma
hine; in that it now works like a
ontext. We refer to this
ontext as R-stri
t. An expression

being
ompiled in a R-stri
t
ontext will be evaluated to WHNF, and it will then be used to

overwrite the
urrent redex. It obeys the following rules of propagation.

� The expression in the body of a super
ombinator de�nition is in an R-stri
t
ontext.

� If let(re
) � in e o

urs in an R-stri
t
ontext then the expression e is also in an

R-stri
t
ontext.

� If the expression if e

0

e

1

e

2

o

urs in an R-stri
t
ontext then the expressions e

1

and e

2

are also in an R-stri
t
ontext. (The expression e

0

will now appear in a B-stri
t
ontext.)

� If
ase e of alts o

urs in an R-stri
t
ontext then the expression e is in a stri
t
ontext.

Furthermore, the expression part of ea
h alternative will o

ur in an R-stri
t
ontext.

Exer
ise 3.43. Implement the R s
heme in Figure 3.20. Note that you
an use the generality of the

ompileAlts fun
tion to implement both the A

R

and A

E

s
hemes.

One point worth noting about the Mark 7 ma
hine is that we did not de�ne the Eval instru
tion

to save the
urrent V-sta
k on the dump. This is in
ontrast to the G-ma
hine des
ribed in

[Peyton Jones 1987℄. Whether you do this is really a matter of taste in the abstra
t ma
hines

we have produ
ed in this book. In
ompiling
ode for a real ma
hine we would be likely to

try to minimise the number of sta
ks. When this is the
ase, we will wish to use the following

alternative transition for Eval.

145

E [[e℄℄ �
ompiles
ode that evaluates an expression e to WHNF in envi-

ronment �, leaving a pointer to the expression on top of the sta
k.

E [[i ℄℄ � = [Pushint i ℄

E [[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[letre
 x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo
 n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[
ase e of alts℄℄ � = E [[e℄℄ � ++ [Casejump D

E

[[alts℄℄ �℄

E [[Pa
k{t,a} e

1

: : : e

a

℄℄ � = C[[e

a

℄℄ � ++ : : : C[[e

1

℄℄ � ++ [Pa
k t a℄

E [[e

0

+ e

1

℄℄ � = B[[e

0

+ e

1

℄℄ � ++ [Mkint℄

And similarly for other arithmeti
 expressions

E [[e

0

== e

1

℄℄ � = B[[e

0

== e

1

℄℄ � ++ [Mkbool℄

And similarly for other
omparison expressions

E [[negate e℄℄ � = B[[negate e℄℄ � ++ [Mkint℄

E [[if e

0

e

1

e

2

℄℄ � = B[[e

0

℄℄ � ++ [Cond (E [[e

1

℄℄ �) (E [[e

2

℄℄ �)℄

E [[e℄℄ � = C[[e℄℄ � ++ [Eval℄ the default
ase

D

E

[[alts℄℄ �
ompiles the
ode for the alternatives in a
ase expression.

D

E

[[alt

1

: : : alt

n

℄℄ � = [A

E

[[alt

1

℄℄ �; : : : ; A

E

[[alt

n

℄℄ �℄

A

E

[[alt ℄℄ �
ompiles the
ode for an alternative in a
ase expression.

A

E

[[<t> x

1

: : : x

n

-> body ℄℄ �

= t -> [Split n℄ ++ E [[body ℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! 0 : : : x

n

7! n � 1℄

Figure 3.19: The Mark 7 E , D

E

and A

E

ompilation s
hemes

146

R[[e℄℄ � d generates
ode whi
h instantiates the expression e in environ-

ment �, for a super
ombinator of arity d , and then pro
eeds to unwind

the resulting sta
k.

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

R[[e℄℄ �

0

(n + d)

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

R[[letre
 x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= [Allo
 n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

R[[e℄℄ �

0

(n + d)

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

R[[if e

0

e

1

e

2

℄℄ � d = B[[e

0

℄℄ � ++ [Cond [R[[e

1

℄℄ � d ; R[[e

2

℄℄ � d ℄℄

R[[
ase e of alts℄℄ � d = E [[e℄℄ � ++ [Casejump D

R

[[alts℄℄ � d ℄

R[[e℄℄ � d = E [[e℄℄ � ++ [Update d ; Pop d ; Unwind℄ the default
ase

D

R

[[alts℄℄ � d
ompiles the
ode for the alternatives in a
ase expression.

D

R

[[alt

1

: : : alt

n

℄℄ � d = [A

R

[[alt

1

℄℄ � d ; : : : ; A

R

[[alt

n

℄℄ � d ℄

A

R

[[alt ℄℄ � d
ompiles the
ode for an alternative in a
ase expression.

A

R

[[<t> x

1

: : : x

n

-> body ℄℄ � d

= t -> [Split n℄ ++ R[[body ℄℄ �

0

(n + d)

where �

0

= �

+n

[x

1

7! 0 : : : x

n

7! n � 1℄

Figure 3.20: The Mark 7 R, D

R

, and A

R

ompilation s
hemes

(3.48)

o Eval : i a : s d v h m

=) o [Unwind℄ [a℄ hi ; s; vi : d [℄ h m

Exer
ise 3.44. Implement this alternative transition for Eval. What are the other instru
tions that

will need to be
hanged to allow for this new transition?

Exer
ise 3.45. What
ompilation rules would you
hange to produ
e optimised
ode for the boolean

operators &, | and not?

Exer
ise 3.46. Add a Return instru
tion with transition:

(3.49)

o [Return℄ [a

0

; : : : ; a

k

℄ hi ; si : d v h m

=) o i a

k

: s d v h m

147

This is used by the R s
heme in pla
e of Unwind when the item on top of the sta
k is known to be

in WHNF. Modify
ompileR to generate this new instru
tion.

Exer
ise 3.47. Write out the transition for UpdateInt n. This instru
tion performs the same a
tions as

the sequen
e [Mkint, Update n℄. Implement this transition and a similar one for UpdateBool n.

Modify
ompileR to generate these instru
tions instead of the original sequen
es.

Why are the new instru
tions preferred to the original sequen
es? (Hint: use the statisti
s from

some sample programs.)

3.10 Con
lusions

The approa
h that we have taken in this
hapter is a very useful one when designing large pie
es

of software. First we start with something very simple, and then by a number of gradual
hanges

we produ
e a very large and
ompli
ated pie
e of software. It would be misleading to
laim that

this is always possible by a pro
ess of small, in
remental,
hanges. In fa
t the material presented

as part of the Mark 1 ma
hine was spe
i�
ally designed with the Mark 7 ma
hine in mind.

For the moment, however, we have produ
ed a reasonably eÆ
ient ma
hine. In the next
hapter

we will look at the TIM.

148

> module Tim where

> import Utils

> import Language

149

Chapter 4

TIM: the three instru
tion ma
hine

TIM, the Three Instru
tion Ma
hine, at �rst appears to be a very di�erent form of redu
tion

ma
hine from those we have seen so far. Nevertheless, it turns out that we
an transform a G-

ma
hine into a TIM in a series of relatively simple steps. In this
hapter we des
ribe these steps,

thereby showing how the TIM works, de�ne a
omplete minimal TIM
ompiler and evaluator,

and then develop a sequen
e of improvements and optimisations to it.

TIM was invented by Fairbairn and Wray, and their original paper [Fairbairn and Wray 1987℄

is well worth reading. It des
ribes TIM in a
ompletely di�erent way from the approa
h taken

in this
hapter. The material developed in this
hapter goes
onsiderably beyond Fairbairn and

Wray's work, however, so the level of detail in
reases in later se
tions where less well-known

ideas are dis
ussed and implemented. Many of the new ideas presented are due to Guy Argo

and are presented in his FPCA paper [Argo 1989℄ and his Ph.D. thesis [Argo 1991℄.

4.1 Ba
kground: How TIM works

Consider the following fun
tion de�nition:

f x y = g E1 E2

where E1 and E2 are arbitrary (and perhaps
omplex) expressions, and g is some other fun
-

tion. Both the template instantiation ma
hine (Chapter 2) and the G-ma
hine (Chapter 3) will

perform the following redu
tion:

� redu
es to �

/ \ / \

� y � E2

/ \ / \

f x g E1

The G-ma
hine will take quite a few (simple) instru
tions to do this, whereas the template

ma
hine does it in one (
ompli
ated) step, but the net result is the same.

150

In this pi
ture, E1 and E2 are the graphs of the expressions E1 and E2. For example, if E1 was

(x+y)*(x-y), the �rst argument of g would be a graph of (x+y)*(x-y). This graph has to be

laboriously built in the heap (by
ode generated by the C
ompilation s
heme). Sadly this might

be wasted work, be
ause g might dis
ard its �rst argument without using it. We would like to

�nd some way of limiting the amount of graph-building done for arguments to fun
tions.

4.1.1 Flattening

Step 1 of our transformation does just this. Suppose we repla
e the de�nition of f with the

following new one:

f x y = g (
1 x y) (
2 x y)

1 x y = E1

2 x y = E2

We have invented two auxiliary fun
tions,
1 and
2. This de�nition is plainly equivalent to the

old one, but no matter how large or
ompli
ated E1 is, the only work done during the f redu
tion

is to build the graph of (
1 x y).

Better still, for a G-ma
hine implementation, there is a further bene�t whi
h we get automat-

i
ally. With the �rst de�nition, E1 would be
ompiled by the C s
heme; no advantage
an be

taken of the optimisations present in the E s
heme when
ompiling arithmeti
 expressions. But

with the se
ond de�nition, the expression E1 is now the right-hand side of a super
ombinator,

so all these optimisations apply. We
an evaluate (x+y)*(x-y) mu
h more eÆ
iently in this

way.

Of
ourse, E1 and E2 might themselves
ontain large expressions whi
h will get
ompiled with

the C s
heme (for example, suppose E2 was (h E3 E4)), so we must apply the transformation

again to the right-hand sides of
1 and
2. The result is a
attened program, so-
alled be
ause

no expression has a nested stru
ture.

4.1.2 Tupling

The next observation is that both
1 and
2 are applied to both x and y, so we have to
onstru
t

the graphs of (
1 x y) and (
2 x y) before
alling g. If
1 and
2 had lots of arguments,

rather than just two, the graphs
ould get quite big. The two graphs are so similar to ea
h

other that it is natural to ask whether these argument graphs
ould share some
ommon part to

avoid dupli
ation, and thereby redu
e heap allo
ation. We
an express this idea with a se
ond

transformation:

f x y = let tup = (x,y)

in g (
1 tup) (
2 tup)

1 (x,y) = E1

2 (x,y) = E2

The idea is that f �rst pa
kages up its arguments into a tuple, and then passes this single tuple

to
1 and
2. With this de�nition of f, the f-redu
tion looks like this:

151

� redu
es to �

/ \ / \

� y / �

/ \ � / \

f x / \
2 \

g � \

/ _____\

1 \

| -|---> x

| -|---> y

4.1.3 Spinelessness

Looking at the previous pi
ture, you
an see that the arguments pointed to by the spine are

always of the form (
 tup), for some super
ombinator
 and tuple tup. During redu
tion, we

build up a sta
k of pointers to these arguments. But sin
e they are now all of the same form,

we
ould instead sta
k the (root of) the arguments themselves! So, after the f-redu
tion, the

sta
k would look like this:

| | |

|-------------- |

|
2 | ----|---\

|---------------| \ ---------------

|
1 | ------------> | | | x

|---------------| |-------------|

| | | y

Ea
h item on the spine sta
k is now a pair of a
ode pointer and a pointer to a tuple. You
an

think of this pair as an appli
ation node, the
ode de�ning a fun
tion whi
h is being applied to

the tuple. On entry to f, the (roots of the) arguments x and y were on the sta
k, so the tuple

of x and y is a
tually a tuple of
ode pointer/tuple pointer pairs.

A
ode pointer/tuple pointer pair is
alled a
losure, and a tuple of su
h
losures is
alled a

frame. A pointer to a frame is
alled a frame pointer. Noti
e that there is no spine in the heap

any more; the sta
k is the spine of the expression being evaluated. TIM is a spineless ma
hine.

4.1.4 An example

It is time for an example of how a TIM program might work. Consider the fun
tion
ompose2,

de�ned like this:

ompose2 f g x = f (g x x)

152

The `
attened' form of
ompose2 would be

ompose2 f g x = f (
1 g x)

1 g x = g x x

When
ompose2 is entered, its three arguments will be on top of the sta
k, like this:

| | |

|---------------|

x | x-
ode| x-frm |

|---------------|

g | g-
ode| g-frm |

|---------------|

f | f-
ode| f-frm |

|---------------|

The �rst thing to do is to form the tuple (frame) of these three arguments in the heap. We
an

then remove them from the sta
k. We will keep a pointer to the new frame in a spe
ial register,

alled the frame pointer. This is done by the instru
tion

Take 3

The state of the ma
hine now looks like this:

| | |

|---------------|

Frame ptr ------------------------> f | f-
ode| f-frm |

|---------------|

g | g-
ode| g-frm |

|---------------|

x | x-
ode| x-frm |

Next, we have to prepare the arguments for f. There is only one, namely (g x x), and we want

to push a
losure for it onto the sta
k. The frame pointer for the
losure is just the
urrent

frame pointer register, and so the instru
tion need only supply a
ode label:

Push (Label "
1")

Finally, we want to jump to f. Sin
e f is an argument to
ompose, not a global super
ombinator,

f is represented by a
losure in the
urrent frame. What we must do is fet
h the
losure, load

its frame pointer into the frame pointer register, and its
ode pointer into the program
ounter.

This is done by the instru
tion:

Enter (Arg 1) -- f is argument 1

153

After this instru
tion, the state of the ma
hine is like this:

| | |

|---------------| -----------------

|
1 | ----|-----------> f | f-
ode| f-frm |

|---------------| |---------------|

g | g-
ode| g-frm |

Frame ptr: f-frm |---------------|

Program
tr: f-
ode x | x-
ode| x-frm |

That is it! The main body of
ompose2
onsists of just these three instru
tions:

ompose2: Take 3 -- 3 arguments

Push (Label "
1") --
losure for (g x x)

Enter (Arg 1) -- f is argument 1

We still need to deal with the label
1, though. When the
losure for (g x x) is needed, it will

be entered with the Enter instru
tion, so that the program
ounter will point to
1, and the

frame pointer to the original frame
ontaining f, g and x. At this point, all we need do is to

prepare the argument for g, namely x, and enter g:

1: Push (Arg 3) -- x is argument 3

Push (Arg 3) -- x again

Enter (Arg 2) -- g is argument 2

The Push (Arg 3) instru
tion fet
hes a
opy of the
losure for x from the
urrent frame, and

pushes it onto the sta
k. Then the Enter (Arg 2) instru
tion applies g to the argument(s) now

on the sta
k

1

.

4.1.5 De�ning the ma
hine with state transition rules

You
an see why it is
alled the Three Instru
tion Ma
hine: there are three dominant instru
-

tions: Take, Push and Enter. In some ways, it is rather optimisti
 to
laim that it has only three

instru
tions, be
ause Push and Enter both have several `addressing modes' and, furthermore,

we will need to invent quite a few brand new instru
tions in due
ourse. Still, it makes a ni
e

name.

As usual, we use state transition rules to express the pre
ise e�e
t of ea
h instru
tion. First of

all we must de�ne the state of the ma
hine. It is a quintuple:

(instru
tions, frame pointer, sta
k, heap,
ode store)

or (i ; f ; s; h;
) for short. The
ode store is the only item whi
h has not already been des
ribed.

It
ontains a
olle
tion of pie
es of
ode, ea
h of whi
h has a label. In pra
ti
e, the
ode

store
ontains the
ompiled super
ombinator de�nitions, ea
h labelled with the name of the

1

There might be more than just two if the sta
k was non-empty when the (g x x)
losure was entered.

154

super
ombinator, though in prin
iple it
ould also
ontain other labelled
ode fragments if that

proved useful.

We now develop the transition rules for ea
h of the instru
tions. Take n forms the top n elements

of the sta
k into a new frame, and makes the
urrent frame pointer point to it.

(4.1)

Take n : i f

1

: : : : :

n

: s h

=) i f

0

s h[f

0

: h

1

; : : : ;

n

i℄

Now we
ome to the rules for Push and Enter. These two instru
tions have just the same

addressing modes (Arg, Label and so on), and there is a very de�nite relationship between

them, whi
h we dignify with a formal statement:

The Push/Enter relationship. If the instru
tion Push arg pushes a
losure (i ; f) onto

the sta
k, then Enter arg will load i into the program
ounter and f into the
urrent

frame pointer.

The instru
tion Push (Arg n) fet
hes the nth
losure from the
urrent frame, and pushes it onto

the sta
k.

(4.2)

Push (Arg k) : i f s h[f : h(i

1

; f

1

); : : : ; (i

k

; f

k

); : : : ; (i

n

; f

n

)i℄

=) i f (i

k

; f

k

) : s h

Push (Label l) looks up the label l in the
ode store, and pushes a
losure
onsisting of this

ode pointer together with the
urrent frame pointer:

(4.3)

Push (Label l) : i f s h
[l : i

0

℄

=) i f (i

0

; f) : s h

In the
ompose example, we had to invent an arbitrary label
1. It is a nuisan
e having to invent

these labels, and instead we will simply add a new form for the push instru
tion, Push (Code i),

whi
h makes the target
ode sequen
e i part of the instru
tion itself. Thus, instead of

Push (Label "
1")

we
an write

Push (Code [Push (Arg 3), Push (Arg 3), Enter (Arg 2)℄)

Here is the appropriate state transition rule:

(4.4)

Push (Code i

0

) : i f s h

=) i f (i

0

; f) : s h

So far we have three `addressing modes': Arg, Code, Label. We need to add one more, IntConst,

for integer
onstants. For example, the
all (f 6) would
ompile to the
ode

155

Push (IntConst 6)

Enter (Label "f")

The Push instru
tion always pushes a
losure (that is, a
ode pointer/frame pointer pair) onto

the sta
k, but in the
ase of integer
onstants it is not at all obvious what
losure it should push.

Sin
e we need somewhere to store the integer itself, let us `steal' the frame pointer slot for that

purpose

2

. This de
ision leads to the following rule, where intCode is the (as yet undetermined)

ode sequen
e for integer
losures:

(4.5)

Push (IntConst n) : i f s h

=) i f (intCode;n) : s h

What should intCode do? For the present our ma
hine will do no arithmeti
, so an easy solution

is to make intCode the empty
ode sequen
e:

> intCode = [℄

If an integer
losure is ever entered, the ma
hine will jump to the empty
ode sequen
e, whi
h

will halt exe
ution. This will allow us to write programs whi
h return integers, whi
h is enough

for Mark 1.

So mu
h for the Push instru
tion. The rules for the Enter instru
tion, one for ea
h addressing

mode, follow dire
tly from the Push/Enter relationship:

(4.6)

[Enter (Label l)℄ f s h
[l : i ℄

=) i f s h

(4.7)

[Enter (Arg k)℄ f s h[f : h(i

1

; f

1

); : : : ; (i

k

; f

k

); : : : ; (i

n

; f

n

)i℄

=) i

k

f

k

s h

(4.8)

[Enter (Code i)℄ f s h

=) i f s h

(4.9)

[Enter (IntConst n)℄ f s h

=) intCode n s h

4.1.6 Compilation

We have now given a pre
ise statement of what ea
h TIM instru
tion does. It remains to

des
ribe how to translate a program into TIM instru
tions. This we do, as before, using a set

of
ompilation s
hemes. Ea
h super
ombinator is
ompiled with the SC s
heme, whi
h is given

in Figure 4.1. The initial environment passed into SC binds ea
h super
ombinator name to a

Label addressing mode for it. The SC s
heme just produ
es a Take instru
tion and invokes the

156

SC[[def ℄℄ � is the TIM
ode for the super
ombinator de�nition def , in the

environment �

SC[[f x

1

: : : x

n

= e℄℄ � = Take n : R[[e℄℄ �[x

1

7! Arg 1; : : : ; x

n

7! Arg n℄

R[[e℄℄ � is TIM
ode whi
h applies the value of the expression e in envi-

ronment � to the arguments on the sta
k.

R[[e

1

e

2

℄℄ � = Push (A[[e

2

℄℄ �) : R[[e

1

℄℄ �

R[[a℄℄ � = Enter (A[[a℄℄ �) where a is an integer, variable,

or super
ombinator

A[[e℄℄ � is a TIM addressing mode for expression e in environment �.

A[[x ℄℄ � = � x where x is bound by �

A[[n℄℄ � = IntConst n where n is an integer

A[[e℄℄ � = Code (R[[e℄℄ �) otherwise

Figure 4.1: The SC, R and A
ompilation s
hemes

R s
heme, passing it an environment augmented by bindings whi
h say what addressing mode

to use for ea
h argument.

The R s
heme (Figure 4.1) simply pushes arguments onto the sta
k until it �nds a variable or

super
ombinator, whi
h it enters. It uses the A s
heme to generate the
orre
t addressing mode.

Noti
e the way that the
attening pro
ess des
ribed in Se
tion 4.1.1 is
arried out `on the
y'

by these rules.

For the present, we omit arithmeti
, data stru
tures,
ase analysis and let(re
) expressions.

They will all be added later.

4.1.7 Updating

So far there has been no mention of updating. That is be
ause, now that the spine has van-

ished, there are no spine nodes to update! Indeed, the ma
hine as so far des
ribed is a tree-

redu
tion ma
hine. Shared arguments may be evaluated repeatedly. Doing updates properly

is the A
hilles' heel of spineless implementations. It is utterly ne
essary, be
ause otherwise an

unbounded amount of work
ould be dupli
ated, yet it adds
omplexity whi
h loses some of the

elegan
e and speed (dupli
ation aside) of the non-updating version.

We will return to updating later in Se
tion 4.5, but meanwhile it is enough to implement the

non-updating version.

2

We are making the impli
it assumption that an integer is no larger than a frame pointer, whi
h is usually

true in pra
ti
e.

157

4.2 Mark 1: A minimal TIM

In this se
tion we will develop a minimal, but
omplete, TIM implementation, without arith-

meti
, data stru
tures or updates. These will be added in subsequent se
tions.

4.2.1 Overall stru
ture

The stru
ture is mu
h the same as for the template instantiation interpreter. The run fun
tion

is the
omposition of four fun
tions, parse,
ompile, eval and showResults, just as before.

The type of parse is given in Chapter 1; the types for the other three are given below:

> runProg :: [Char℄ -> [Char℄

>
ompile :: CoreProgram -> TimState

> eval :: TimState -> [TimState℄

> showResults :: [TimState℄ -> [Char℄

>

> runProg = showResults . eval .
ompile . parse

It is often
onvenient to see all the intermediate states, so we also provide fullRun, whi
h uses

showFullResults to show ea
h state:

> fullRun :: [Char℄ -> [Char℄

> fullRun = showFullResults . eval .
ompile . parse

We need to import the language module:

4.2.2 Data type de�nitions

The data type for TIM instru
tions
orresponds dire
tly to the instru
tions introdu
ed so far.

> data Instru
tion = Take Int

> | Enter TimAMode

> | Push TimAMode

The type of addressing modes, timAMode, is separated out as a distin
t data type to stress the

relationship between Push and Enter.

> data TimAMode = Arg Int

> | Label [Char℄

> | Code [Instru
tion℄

> | IntConst Int

The state of the TIM ma
hine is given by the following de�nition:

158

> type TimState = ([Instru
tion℄, -- The
urrent instru
tion stream

> FramePtr, -- Address of
urrent frame

> TimSta
k, -- Sta
k of arguments

> TimValueSta
k, -- Value sta
k (not used yet)

> TimDump, -- Dump (not used yet)

> TimHeap, -- Heap of frames

> CodeStore, -- Labelled blo
ks of
ode

> TimStats) -- Statisti
s

The value sta
k and dump are only required later on in this
hapter, but it is more
onvenient

to add pla
eholders for them right away.

We
onsider the representation for ea
h of these
omponents in turn.

� The
urrent instru
tion stream is represented by a list of instru
tions. In a real ma
hine

this would be the program
ounter together with the program memory.

� The frame pointer is usually the address of a frame in the heap, but there are two other

possibilities: it might be used to hold an integer value, or it might be uninitialised. The

ma
hine always `knows' whi
h of these three possibilities to expe
t, but it is
onvenient in

our implementation to distinguish them by using an algebrai
 data type for framePtr:

> data FramePtr = FrameAddr Addr -- The address of a frame

> | FrameInt Int -- An integer value

> | FrameNull -- Uninitialised

If we do not do this, Miranda will (legitimately)
omplain of a type error when we try to

use an address as a number. Furthermore, having a
onstru
tor for the uninitialised state

FrameNull means that our interpreter will dis
over if we ever mistakenly try to use an

uninitialised value as a valid address.

� The sta
k
ontains
losures, ea
h of whi
h is a pair
ontaining a
ode pointer and a frame

pointer. We represent the sta
k as a list.

> type TimSta
k = [Closure℄

> type Closure = ([Instru
tion℄, FramePtr)

� The value sta
k and dump are not used at all to begin with, so we represent ea
h of them

with a dummy algebrai
 data type whi
h has just one nullary
onstru
tor. Later we will

repla
e these de�nitions with more interesting ones.

> data TimValueSta
k = DummyTimValueSta
k

> data TimDump = DummyTimDump

� The heap
ontains frames, ea
h of whi
h is a tuple of
losures. The data type of frames is

important enough to merit an abstra
t data type of its own.

159

> type TimHeap = Heap Frame

>

> fAllo
 :: TimHeap -> [Closure℄ -> (TimHeap, FramePtr)

> fGet :: TimHeap -> FramePtr -> Int -> Closure

> fUpdate :: TimHeap -> FramePtr -> Int -> Closure -> TimHeap

> fList :: Frame -> [Closure℄ -- Used when printing

These operations allow frames to be built, and
omponents to be extra
ted and updated.

The �rst element of the list given to fAllo
 is numbered 1 for the purposes of fGet and

fUpdate. Here is a simple implementation based on lists.

> type Frame = [Closure℄

>

> fAllo
 heap xs = (heap', FrameAddr addr)

> where

> (heap', addr) = hAllo
 heap xs

>

> fGet heap (FrameAddr addr) n = f !! (n-1)

> where

> f = hLookup heap addr

>

> fUpdate heap (FrameAddr addr) n
losure

> = hUpdate heap addr new_frame

> where

> frame = hLookup heap addr

> new_frame = take (n-1) frame ++ [
losure℄ ++ drop n frame

>

> fList f = f

� For ea
h label, the
ode store gives the
orresponding
ompiled
ode:

> type CodeStore = ASSOC Name [Instru
tion℄

We take the opportunity to provide a lookup fun
tion for labels, whi
h generates an error

message if it fails:

>
odeLookup :: CodeStore -> Name -> [Instru
tion℄

>
odeLookup
store l

> = aLookup
store l (error ("Attempt to jump to unknown label "

> ++ show l))

� As usual, we make the statisti
s into an abstra
t data type whi
h we
an add to easily:

> statInitial :: TimStats

> statIn
Steps :: TimStats -> TimStats

> statGetSteps :: TimStats -> Int

The �rst implementation, whi
h
ounts only the number of steps, is rather simple:

160

> type TimStats = Int -- The number of steps

> statInitial = 0

> statIn
Steps s = s+1

> statGetSteps s = s

Finally, we need the
ode for heaps and sta
ks:

> -- :a util.lhs -- heap data type and other library fun
tions

4.2.3 Compiling a program

ompile works very mu
h like the template instantiation
ompiler,
reating an initial ma
hine s-

tate from the program it is given. The main di�eren
e lies in the
ompilation fun
tion
ompileSC

whi
h is applied to ea
h super
ombinator.

>
ompile program

> = ([Enter (Label "main")℄, -- Initial instru
tions

> FrameNull, -- Null frame pointer

> initialArgSta
k, -- Argument sta
k

> initialValueSta
k, -- Value sta
k

> initialDump, -- Dump

> hInitial, -- Empty heap

>
ompiled_
ode, -- Compiled
ode for super
ombinators

> statInitial) -- Initial statisti
s

> where

> s
_defs = preludeDefs ++ program

>
ompiled_s
_defs = map (
ompileSC initial_env) s
_defs

>
ompiled_
ode =
ompiled_s
_defs ++
ompiledPrimitives

> initial_env = [(name, Label name) | (name, args, body) <- s
_defs℄

> ++ [(name, Label name) | (name,
ode) <-
ompiledPrimitives℄

For the moment, the argument sta
k is initialised to be empty.

> initialArgSta
k = [℄

For now the value sta
k and dump are initialised to their dummy values. Later we will
hange

these de�nitions.

> initialValueSta
k = DummyTimValueSta
k

> initialDump = DummyTimDump

The
ompiled super
ombinators,
ompiled_s
_defs, is obtained by
ompiling ea
h of the su-

per
ombinators in the program, using
ompileSC. The initial environment passed to
ompileSC

gives a suitable addressing mode for ea
h super
ombinator. The
ode store,
ompiled_
ode, is

obtained by
ombining
ompiled_s
_defs with
ompiledPrimitives. The latter is intended

to
ontain
ompiled
ode for built-in primitives, but it is empty for the present:

161

>
ompiledPrimitives = [℄

Unlike the template ma
hine and the G-ma
hine, the initial heap is empty. The reason for a

non-empty initial heap in those
ases was to retain sharing for CAFs (that is, super
ombinators

with no arguments { Se
tion 2.1.6). In this initial version of the TIM ma
hine, the
ompiled

TIM
ode for a CAF will be exe
uted ea
h time it is
alled, so the work of evaluating the CAF

is not shared. We will address this problem mu
h later, in Se
tion 4.7.

The heart of the
ompiler is a dire
t translation of the
ompilation s
hemes SC, R and A into the

fun
tions
ompileSC,
ompileR and
ompileA respe
tively. The environment, �, is represented

by an asso
iation list binding names to addressing modes. The G-ma
hine
ompiler used a

mapping from names to sta
k o�sets, but the extra
exibility of using addressing modes turns

out to be rather useful.

> type TimCompilerEnv = [(Name, TimAMode)℄

Now we are ready to de�ne
ompileSC:

>
ompileSC :: TimCompilerEnv -> CoreS
Defn -> (Name, [Instru
tion℄)

>
ompileSC env (name, args, body)

> = (name, Take (length args) : instru
tions)

> where

> instru
tions =
ompileR body new_env

> new_env = (zip2 args (map Arg [1..℄)) ++ env

ompileR takes an expression and an environment, and delivers a list of instru
tions:

>
ompileR :: CoreExpr -> TimCompilerEnv -> [Instru
tion℄

>
ompileR (EAp e1 e2) env = Push (
ompileA e2 env) :
ompileR e1 env

>
ompileR (EVar v) env = [Enter (
ompileA (EVar v) env)℄

>
ompileR (ENum n) env = [Enter (
ompileA (ENum n) env)℄

>
ompileR e env = error "
ompileR:
an't do this yet"

>
ompileA :: CoreExpr -> TimCompilerEnv -> TimAMode

>
ompileA (EVar v) env = aLookup env v (error ("Unknown variable " ++ v))

>
ompileA (ENum n) env = IntConst n

>
ompileA e env = Code (
ompileR e env)

4.2.4 The evaluator

Next we need to de�ne how the evaluator a
tually works. The de�nition of eval is exa
tly as

for the template instantiation ma
hine:

> eval state

> = state : rest_states where

162

> rest_states | timFinal state = [℄

> | otherwise = eval next_state

> next_state = doAdmin (step state)

>

> doAdmin state = applyToStats statIn
Steps state

The timFinal fun
tion says when a state is a �nal state. We
ould invent a Stop instru
tion,

but it is just as easy to say that we have �nished when the
ode sequen
e is empty:

> timFinal ([℄, frame, sta
k, vsta
k, dump, heap,
store, stats) = True

> timFinal state = False

The applyToStats fun
tion just applies a fun
tion to the statisti
s
omponent of the state:

> applyToStats stats_fun (instr, frame, sta
k, vsta
k,

> dump, heap,
store, stats)

> = (instr, frame, sta
k, vsta
k, dump, heap,
store, stats_fun stats)

Taking a step

step does the
ase analysis whi
h takes a single instru
tion and exe
utes it. The Take equation

is a straightforward transliteration of the
orresponding state transition rule (4.1):

> step ((Take n:instr), fptr, sta
k, vsta
k, dump, heap,
store,stats)

> | length sta
k >= n = (instr, fptr', drop n sta
k, vsta
k, dump, heap',
store, stats)

> | otherwise = error "Too few args for Take instru
tion"

> where (heap', fptr') = fAllo
 heap (take n sta
k)

The equations for Enter and Push take advantage of the Push/Enter relationship by using a

ommon fun
tion amToClosure whi
h
onverts a timAMode to a
losure:

> step ([Enter am℄, fptr, sta
k, vsta
k, dump, heap,
store, stats)

> = (instr', fptr', sta
k, vsta
k, dump, heap,
store, stats)

> where (instr',fptr') = amToClosure am fptr heap
store

> step ((Push am:instr), fptr, sta
k, vsta
k, dump, heap,
store, stats)

> = (instr, fptr, amToClosure am fptr heap
store : sta
k,

> vsta
k, dump, heap,
store, stats)

amToClosure delivers the
losure addressed by the addressing mode whi
h is its �rst argument:

> amToClosure :: TimAMode -> FramePtr -> TimHeap -> CodeStore -> Closure

> amToClosure (Arg n) fptr heap
store = fGet heap fptr n

> amToClosure (Code il) fptr heap
store = (il, fptr)

> amToClosure (Label l) fptr heap
store = (
odeLookup
store l, fptr)

> amToClosure (IntConst n) fptr heap
store = (intCode, FrameInt n)

163

4.2.5 Printing the results

As with the template instantiation version we need a rather boring
olle
tion of fun
tions to

print the results in a sensible way. It is often useful to print out the super
ombinator de�nitions,

so showResults begins by doing so, using the de�nitions in the �rst state:

> showFullResults states

> = iDisplay (iCon
at [

> iStr "Super
ombinator definitions", iNewline, iNewline,

> showSCDefns first_state, iNewline, iNewline,

> iStr "State transitions", iNewline,

> iLayn (map showState states), iNewline, iNewline,

> showStats (last states)

> ℄)

> where

> (first_state:rest_states) = states

showResults just shows the last state and some statisti
s:

> showResults states

> = iDisplay (iCon
at [

> showState last_state, iNewline, iNewline, showStats last_state

> ℄)

> where last_state = last states

The rest of the fun
tions are straightforward. showSCDefns displays the
ode for ea
h super-

ombinator.

> showSCDefns :: TimState -> Iseq

> showSCDefns (instr, fptr, sta
k, vsta
k, dump, heap,
store, stats)

> = iInterleave iNewline (map showSC
store)

> showSC :: (Name, [Instru
tion℄) -> Iseq

> showSC (name, il)

> = iCon
at [

> iStr "Code for ", iStr name, iStr ":", iNewline,

> iStr " ", showInstru
tions Full il, iNewline, iNewline

> ℄

showState displays a TIM ma
hine state.

> showState :: TimState -> Iseq

> showState (instr, fptr, sta
k, vsta
k, dump, heap,
store, stats)

> = iCon
at [

> iStr "Code: ", showInstru
tions Terse instr, iNewline,

> showFrame heap fptr,

164

> showSta
k sta
k,

> showValueSta
k vsta
k,

> showDump dump,

> iNewline

> ℄

showFrame shows the frame
omponent of a state, using showClosure to display ea
h of the

losures inside it.

> showFrame :: TimHeap -> FramePtr -> Iseq

> showFrame heap FrameNull = iStr "Null frame ptr" `iAppend` iNewline

> showFrame heap (FrameAddr addr)

> = iCon
at [

> iStr "Frame: <",

> iIndent (iInterleave iNewline

> (map showClosure (fList (hLookup heap addr)))),

> iStr ">", iNewline

> ℄

> showFrame heap (FrameInt n)

> = iCon
at [iStr "Frame ptr (int): ", iNum n, iNewline ℄

showSta
k displays the argument sta
k, using showClosure to display ea
h
losure.

> showSta
k :: TimSta
k -> Iseq

> showSta
k sta
k

> = iCon
at [iStr "Arg sta
k: [",

> iIndent (iInterleave iNewline (map showClosure sta
k)),

> iStr "℄", iNewline

> ℄

For the present, showValueSta
k and showDump, whi
h display the value sta
k and dump, are

stubs for now, be
ause we are not using these
omponents of the state.

> showValueSta
k :: TimValueSta
k -> Iseq

> showValueSta
k vsta
k = iNil

> showDump :: TimDump -> Iseq

> showDump dump = iNil

showClosure displays a
losure, using showFramePtr to display the frame pointer.

> showClosure :: Closure -> Iseq

> showClosure (i,f)

> = iCon
at [iStr "(", showInstru
tions Terse i, iStr ", ",

> showFramePtr f, iStr ")"

> ℄

165

> showFramePtr :: FramePtr -> Iseq

> showFramePtr FrameNull = iStr "null"

> showFramePtr (FrameAddr a) = iStr (show a)

> showFramePtr (FrameInt n) = iStr "int " `iAppend` iNum n

showStats is responsible for printing out a

umulated statisti
s:

> showStats :: TimState -> Iseq

> showStats (instr, fptr, sta
k, vsta
k, dump, heap,
ode, stats)

> = iCon
at [iStr "Steps taken = ", iNum (statGetSteps stats), iNewline,

> iStr "No of frames allo
ated = ", iNum (hSize heap),

> iNewline

> ℄

Printing instru
tions

We are going to need to print instru
tions and instru
tion sequen
es. If a sequen
e of instru
tions

is printed as one long line, it is rather hard to read, so it is worth writing some
ode to pretty-

print them.

In fa
t we want to be able to print either the entire
ode for an instru
tion sequen
e (for example

when printing a super
ombinator de�nition), or just some abbreviated form of it. An example

of the latter o

urs when printing the
ontents of the sta
k; it
an be helpful to see some part

of the
ode in ea
h
losure, but we do not want to see it all! A

ordingly, we give an extra

argument, d, to ea
h fun
tion to tell it how fully to print. The value of this argument is either

Full, Terse or None.

> data HowMu
hToPrint = Full | Terse | None

showInstru
tions turns a list of instru
tions into an iseq. When d is None, only an ellipsis is

printed. If d is Terse, the instru
tions are printed all on one line, and nested instru
tions are

printed with d as None. If d is Full, the instru
tions are laid out one per line, and printed in

full.

> showInstru
tions :: HowMu
hToPrint -> [Instru
tion℄ -> Iseq

> showInstru
tions None il = iStr "{..}"

> showInstru
tions Terse il

> = iCon
at [iStr "{", iIndent (iInterleave (iStr ", ") body), iStr "}"℄

> where

> instrs = map (showInstru
tion None) il

> body | length il <= nTerse = instrs

> | otherwise = (take nTerse instrs) ++ [iStr ".."℄

> showInstru
tions Full il

> = iCon
at [iStr "{ ", iIndent (iInterleave sep instrs), iStr " }"℄

> where

> sep = iStr "," `iAppend` iNewline

> instrs = map (showInstru
tion Full) il

166

showInstru
tion turns a single instru
tion into an iseq.

> showInstru
tion d (Take m) = (iStr "Take ") `iAppend` (iNum m)

> showInstru
tion d (Enter x) = (iStr "Enter ") `iAppend` (showArg d x)

> showInstru
tion d (Push x) = (iStr "Push ") `iAppend` (showArg d x)

> showArg d (Arg m) = (iStr "Arg ") `iAppend` (iNum m)

> showArg d (Code il) = (iStr "Code ") `iAppend` (showInstru
tions d il)

> showArg d (Label s) = (iStr "Label ") `iAppend` (iStr s)

> showArg d (IntConst n) = (iStr "IntConst ") `iAppend` (iNum n)

nTerse says how many instru
tions of a sequen
e should be printed in terse form.

> nTerse = 3

Exer
ise 4.1. Run the ma
hine using the following de�nition of main:

main = S K K 4

Sin
e S K K is the identity fun
tion, main should redu
e to 4, whi
h halts the ma
hine. Experiment

with making it a little more elaborate; for example

id = S K K ;

id1 = id id ;

main = id1 4

Exer
ise 4.2. Add more performan
e instrumentation. For example:

� Measure exe
ution time,
ounting one time unit for ea
h instru
tion ex
ept Take, for whi
h

you should
ount as many time units as the frame has elements.

� Measure the the heap usage, printing the total amount of heap allo
ated in a run. Take

a

ount of the size of the frames, so that you
an
ompare your results dire
tly with those

from the template instantiation version.

� Measure the maximum sta
k depth.

Exer
ise 4.3. If n = 0, then Take n does nothing useful. Adapt the de�nition of
ompileSC to spot

this optimisation by omitting the Take instru
tion altogether for CAFs.

4.2.6 Garbage
olle
tiony

Like any heap-based system, TIM requires a garbage
olle
tor, but it also requires one with a

little added sophisti
ation. As usual, the garbage
olle
tor �nds all the live data by starting

from the ma
hine state; that is, from the sta
k and the frame pointer. Ea
h
losure on the sta
k

points to a frame, whi
h must
learly be retained. But that frame in turn
ontains pointers to

further frames, and so on. The question arises: given a parti
ular frame, whi
h frame pointers

within it should be re
ursively followed?

The safe answer is `follow all of them', but this risks retaining far more data than required.

For example, the
losure for (g x x) in the
ompose2 example of Se
tion 4.1.4 has a pointer

167

to a frame
ontaining f, g and x, but it only requires the
losures for g and x. A naive

garbage
olle
tor might follow the frame pointer from f's
losure as well, thus retaining data

unne
essarily. This unwanted retention is
alled a spa
e leak, and
an
ause garbage
olle
tion

to o

ur mu
h more frequently than would otherwise be the
ase.

However, this parti
ular spa
e leak is straightforward, if rather tedious, to eliminate. Ea
h

losure
onsists of a
ode pointer paired with a frame pointer. The
ode `knows' whi
h frame

elements it is going to need, and this information
an be re
orded with the
ode, for the garbage

olle
tor to examine. For example, what we have been
alling a `
ode pointer'
ould a
tually

point to a pair,
onsisting of a list of slot numbers used by the
ode, and the
ode itself. (In a

real implementation the list might be en
oded as a bit-mask.) How
an the list of useful slots

be derived? It is simple: just �nd the free variables of the expression being
ompiled, and use

the environment to map them into slot numbers.

4.3 Mark 2: Adding arithmeti

In this se
tion we will add arithmeti
 to our ma
hine.

4.3.1 Overview: how arithmeti
 works

The original Fairbairn and Wray TIM ma
hine had a rather devious s
heme for doing arithmeti
.

Their main motivation was to keep the ma
hine minimal, but their approa
h is quite hard to

understand and requires
onsiderable massaging to give an eÆ
ient implementation.

Instead, we will modify the TIM in a way exa
tly analogous to the V-sta
k of the G-ma
hine

(Se
tion 3.9). We modify the state by introdu
ing a value sta
k, whi
h is a sta
k of (evaluated,

unboxed) integers. We extend the instru
tion set with a family of instru
tions Op op whi
h

perform the arithmeti
 operation op on the top elements of the value sta
k, leaving the result

on top of the value sta
k. For example, the Op Sub instru
tion removes the top two elements of

the value sta
k, subtra
ts them and pushes the result onto the value sta
k:

(4.10)

Op Sub : i f s n

1

: n

2

: v h

=) i f s (n

1

� n

2

) : v h

It is easy to de�ne a
omplete family of arithmeti
 instru
tions, Op Add, Op Sub, Op Mult,

Op Div, Op Neg and so on, in this way.

Now
onsider the following fun
tion sub:

sub a b = a - b

What
ode should we generate for sub? It has to take the following steps:

1. The usual Take 2 to form its arguments into a frame.

2. Evaluate b, putting its value on the value sta
k.

3. Evaluate a, doing likewise.

168

4. Subtra
t the value of b from the value of a, using the Op Sub instru
tion, whi
h leaves its

result on top of the value sta
k.

5. `Return' to the `
aller'.

We will
onsider the evaluation of a and b �rst. They are represented by
losures, held in the

urrent frame, and the only thing we
an do to a
losure is to enter it. So presumably to evaluate

a we must enter the
losure for a, but what does it mean to enter an integer-valued
losure? So

far we have only entered fun
tions, and integers are not fun
tions. Here is the key idea:

Integer invariant: when an integer-valued
losure is entered, it
omputes the value of

the integer, pushes it onto the value sta
k, and enters the top
losure on the argument

sta
k.

The
losure on top of the argument sta
k is
alled the
ontinuation, be
ause it says what

to do next, on
e the evaluation of the integer is
omplete. The
ontinuation
onsists of an

instru
tion sequen
e, saying what to do when evaluation of the integer is
omplete, and the

urrent frame pointer (in
ase it was disturbed by the evaluation of the integer). In other words,

the
ontinuation is a perfe
tly ordinary
losure.

So the
ode for sub looks like this:

sub: Take 2

Push (Label L1) -- Push the
ontinuation

Enter (Arg 2) -- Evaluate b

L1: Push (Label L2) -- Push another
ontinuation

Enter (Arg 1) -- Evaluate a

L2: Op Sub -- Compute a-b on value sta
k

Return

What should the Return instru
tion do? Sin
e the value returned by sub is an integer, and after

the Op Sub instru
tion this integer is on top of the value sta
k, all Return has to do is to pop

the
losure on top of the argument sta
k and enter it:

(4.11)

[Return℄ f (i

0

; f

0

) : s v h

=) i

0

f

0

s v h

We have used labels to write the
ode for sub. This is not the only way to do it; an alternative

is to use the Push Code instru
tion, whi
h avoids the tiresome ne
essity of inventing new labels.

In this style the
ode for sub be
omes:

sub: Take 2

Push (Code [Push (Code [Op Sub, Return℄),

Enter (Arg 1)

℄)

Enter (Arg 2)

169

Written like this, it is less easy to see what is going on than by using labels, so we will
ontinue

to use labels in the exposition where it makes
ode fragments easier to understand, but we will

use the Push Code version in the
ompiler.

Now we must return to the question of integer
onstants. Consider the expression (sub 4 2).

It will
ompile to the
ode

Push (IntConst 2)

Push (IntConst 4)

Enter (Label "sub")

The
ode for sub will soon enter the
losure (IntConst 2), whi
h will pla
e the integer 2 in

the frame pointer and jump to intCode. Currently, intCode is the empty
ode sequen
e (so

that the ma
hine stops if we ever enter an integer), but we need to
hange that. What should

intCode now do? The answer is given by the integer invariant: it must push the integer onto

the value sta
k and return, thus:

> intCode = [PushV FramePtr, Return℄

PushV FramePtr is a new instru
tion whi
h pushes the number
urrently masquerading as the

frame pointer onto the top of the value sta
k:

(4.12)

PushV FramePtr : i n s v h

=) i n s n : v h

4.3.2 Adding simple arithmeti
 to the implementation

Now we are ready to modify our implementation. We keep the modi�
ations to a minimum by

adding
ode for ea
h of the arithmeti
 fun
tions to
ompiledPrimitives. Re
all that when we

write (for example) p-q in a program, the parser
onverts it to

EAp (EAp (EVar "-") (EVar "p")) (EVar "q")

All we need do is to work out some suitable
ode for the primitive -, and add this
ode to

the
ode store. The
ompiler
an then treat - in the same way as any other super
ombinator.

Finally, the
ode for - that we want is exa
tly that whi
h we developed in the previous se
tion

for sub, and similar
ode is easy to write for other arithmeti
 operations.

So the steps required are as follows:

� Add the following type de�nition and initialisation for the value sta
k:

> type TimValueSta
k = [Int℄

> initialValueSta
k = [℄

� Add the new instru
tions PushV, Return and Op to the instru
tion data type. We take

the opportunity to add one further instru
tion, Cond, whi
h has not yet been dis
ussed

but is the subje
t of a later exer
ise. TIM is no longer a three instru
tion ma
hine!

170

> data Instru
tion = Take Int

> | Push TimAMode

> | PushV ValueAMode

> | Enter TimAMode

> | Return

> | Op Op

> | Cond [Instru
tion℄ [Instru
tion℄

> data Op = Add | Sub | Mult | Div | Neg

> | Gr | GrEq | Lt | LtEq | Eq | NotEq

> deriving (Eq) -- KH

So far the argument of a PushV instru
tion
an only be FramePtr, but we will shortly add

a se
ond form whi
h allows us to push literal
onstants onto the value sta
k. So it is worth

de
laring an algebrai
 data type for valueAMode:

> data ValueAMode = FramePtr

> | IntVConst Int

The showInstru
tion fun
tion must be altered to deal with this additional stru
ture.

� Modify the step fun
tion to implement the extra instru
tions. This is just a question of

translating the state transition rules into Miranda.

� Add to
ompiledPrimitives suitable de�nitions for +, - and so on.

� Now that intCode is no longer empty, we must initialise the sta
k to have a suitable

ontinuation (return address) for main to return to. The way to do this is to make
ompile

initialise the sta
k with the
losure ([℄,FrameNull), by rede�ning initialArgSta
k:

> initialArgSta
k = [([℄, FrameNull)℄

This
ontinuation has an empty
ode sequen
e, so the ma
hine will now halt with the

result on top of the value sta
k.

Exer
ise 4.4. Implement these
hanges on your prototype. Try it out on some simple examples; for

example

four = 2 * 2

main = four + four

Exer
ise 4.5. We still
annot exe
ute `interesting' programs, be
ause we do not yet have a
onditional,

and without a
onditional we
annot use re
ursion. A simple solution is to add a new instru
tion

Cond i1 i2, whi
h removes a value from the top of the value sta
k,
he
ks whether it was zero

and if so
ontinues with instru
tion sequen
e i1, otherwise
ontinues with i2. Here are its state

transition rules:

(4.13)

[Cond i

1

i

2

℄ f s 0 : v h

=) i

1

f s v h

[Cond i

1

i

2

℄ f s n : v h

=) i

2

f s v h

where n 6= 0

171

The �rst rule mat
hes if zero is on top of the value sta
k; otherwise the se
ond rule applies.

You also need to add a primitive if, whi
h behaves as follows:

if 0 t f = t

if n t f = f

You need to work out the TIM
ode for if, using the Cond instru
tion, and add it to

ompiledPrimitives. Finally, you
an test your improved system with the fa
torial fun
tion:

fa
torial n = if n 1 (n * fa
torial (n-1))

main = fa
torial 3

4.3.3 Compilation s
hemes for arithmeti

Just as with the G-ma
hine, we
an do a mu
h better job of
ompiling for our ma
hine than we

are doing at present. Consider a fun
tion su
h as

f x y z = (x+y) * z

As things stand, this will get parsed to

f x y z = * (+ x y) z

and
ode for f will get
ompiled whi
h will
all the standard fun
tions * and +. But we
ould

do mu
h better than this! Instead of building a
losure for (+ x y) and passing it to *, for

example, we
an just do the operations in-line, using the following steps:

1. evaluate x

2. evaluate y

3. add them

4. evaluate z

5. multiply

6. return

No
losures need be built and no jumps need o

ur (ex
ept those needed to evaluate x, y and

z).

To express this improvement, we introdu
e a new
ompilation s
heme to deal with expressions

whose value is an integer, the B s
heme. It is de�ned like this: for any expression e whose value

is an integer, and for any
ode sequen
e
ont ,

(B[[e℄℄ �
ont) is a
ode sequen
e whi
h, when exe
uted with a
urrent frame laid out

as des
ribed by �, will push the value of the expression e onto the value sta
k, and

then exe
ute the
ode sequen
e
ont.

172

R[[e℄℄ � is TIM
ode whi
h applies the value of the expression e in envi-

ronment � to the arguments on the sta
k.

R[[e℄℄ � = B[[e℄℄ � [Return℄ where e is an arithmeti
 ex-

pression, su
h as e

1

+ e

2

, or a

number

R[[e

1

e

2

℄℄ � = Push (A[[e

2

℄℄ �) : R[[e

1

℄℄ �

R[[a℄℄ � = Enter (A[[a℄℄ �) where a is a variable, or super-

ombinator

A[[e℄℄ � is a TIM addressing mode for expression e in environment �.

A[[x ℄℄ � = � x where x is bound by �

A[[n℄℄ � = IntConst n where n is an integer
onstant

A[[e℄℄ � = Code (R[[e℄℄ �) otherwise

B[[e℄℄ �
ont is TIM
ode whi
h evaluates e in environment �, and puts

its value, whi
h should be an integer, on top of the value sta
k, and then

ontinues with the
ode sequen
e
ont .

B[[e

1

+ e

2

℄℄ �
ont = B[[e

2

℄℄ � (B[[e

1

℄℄ � (Op Add :
ont))

. . . and similar rules for other arithmeti
 primitives

B[[n℄℄ �
ont = PushV (IntVConst n) :
ont where n is a number

B[[e℄℄ �
ont = Push (Code
ont) : R[[e℄℄ � otherwise

Figure 4.2: Revised
ompilation s
hemes for arithmeti

The
ompilation s
heme uses a
ontinuation-passing style, in whi
h the
ont argument says

what to do after the value has been
omputed. Figure 4.2 gives the B
ompilation s
heme,

together with the revised R and A s
hemes. When R �nds an expression whi
h is an arithmeti

expression it
alls B to
ompile it. B has spe
ial
ases for
onstants and appli
ations of arithmeti

operators, whi
h avoid expli
itly pushing the
ontinuation. If it en
ounters an expression whi
h

it
annot handle spe
ially, it just pushes the
ontinuation and
alls R.

There is one new instru
tion required, whi
h is used when B is asked to
ompile a
onstant.

Then we need an instru
tion PushV (IntVConst n) to push an integer
onstant on the value

sta
k. Its transition rule is quite simple:

(4.14)

PushV (IntVConst n) : i f s v h

=) i f s n : v h

Exer
ise 4.6. Implement the improved
ompilation s
heme. Compare the performan
e of your imple-

mentation with that from before.

173

Exer
ise 4.7. Add a new rule to the R s
heme to mat
h a (full) appli
ation of if. You should be able

to generate mu
h better
ode than you get by
alling the if primitive. Implement the
hange and

measure the improvement in performan
e.

Exer
ise 4.8. Suppose we want to generalise our
onditionals to deal with more general arithmeti

omparisons, su
h as that required by

fib n = if (n < 2) 1 (fib (n-1) + fib (n-2))

What is required is a new instru
tion Op Lt whi
h pops the top two items on the value sta
k,

ompares them, and pushes 1 or 0 onto the value sta
k depending on the result of the
omparison.

Now the Cond instru
tion
an inspe
t this result.

Implement a family of su
h
omparison instru
tions, and add spe
ial
ases for them to the B

s
heme, in exa
tly the same way as for the other arithmeti
 operators. Test your improvement.

Exer
ise 4.9. In the previous exer
ise, you may have wondered why we did not modify the Cond in-

stru
tion so that it had an extra `
omparison mode'. It
ould then
ompare the top two items on

the value sta
k a

ording to this mode, and a
t a

ordingly. Why did we not do this?

Hint: what would happen for programs like this?

multipleof3 x = ((x / 3) * 3) == x

f y = if (multipleof3 y) 0 1

The material of this se
tion is dis
ussed in [Argo 1989℄ and
orresponds pre
isely to the improved

G-ma
hine
ompilation s
hemes dis
ussed in Chapter 20 of [Peyton Jones 1987℄.

4.4 Mark 3: let(re
) expressions

At present the
ompiler
annot handle let(re
) expressions, a problem whi
h we remedy in

this se
tion. Two main new ideas are introdu
ed:

� We modify the Take instru
tion to allo
ate a frame with extra spa
e to
ontain the

let(re
)-bound variables, as well as the formal parameters.

� We introdu
e the idea of an indire
tion
losure.

4.4.1 let expressions

When we
ompile a let expression, we must generate
ode to build new
losures for the right-

hand sides of the de�nitions. Where should these new
losures be put? In order to treat

let(re
)-bound names in the same way as argument names, they have to be put in the
urrent

frame

3

. This requires two modi�
ations to the run-time ma
hinery:

� The Take instru
tion should allo
ate a frame large enough to
ontain
losures for all the

let de�nitions whi
h
an o

ur during the exe
ution of the super
ombinator. The Take

instru
tion must be modi�ed to the form Take t n, where t � n. This instru
tion allo
ates

a frame of size t , takes n
losures from the top of the sta
k, and puts them into the �rst

n lo
ations of the frame.

3

A hint of the material in this se
tion is in [Wakeling and Dix 1989℄, but it is not fully worked out.

174

� We need a new instru
tion, Move i a, for moving a new
losure a into slot i of the
urrent

frame. Here a is of type timAMode as for Push and Enter.

For example, the following de�nition:

f x = let y = f 3 in g x y

would
ompile to this
ode:

[Take 2 1,

Move 2 (Code [Push (IntConst 3), Enter (Label "f")℄),

Push (Arg 2),

Push (Arg 1),

Enter (Label "g")

℄

Here is a slightly more elaborate example:

f x = let y = f 3

in

g (let z = 4 in h z) y

whi
h generates the
ode:

[Take 3 1,

Move 2 (Code [Push (IntConst 3), Enter (Label "f")℄),

Push (Arg 2),

Push (Code [Move 3 (IntConst 4), Push (Arg 3), Enter (Label "h")℄),

Enter (Label "g")

℄

Noti
e the way that the initial Take allo
ates spa
e for all the slots required by any of the

losures in the body of the super
ombinator.

Exer
ise 4.10. Write state transition rules for the new Take and Move instru
tions.

Next, we need to modify the
ompiler to generate the new Take and Move instru
tions. When

we en
ounter a let expression we need to assign a free slot in the frame to ea
h bound variable,

so we need to keep tra
k of whi
h slots in the frame are in use and whi
h are free. To do this,

we add an extra parameter d to ea
h
ompilation s
heme, to re
ord that the frame slots from

d + 1 onwards are free, but that the slots from 1 to d might be o

upied.

The remaining
ompli
ation is that we need to dis
over the maximum value that d
an take, so

that we
an allo
ate a big enough frame with the initial Take instru
tion. This requires ea
h

ompilation s
heme to return a pair: the
ompiled
ode, and the maximum value taken by d .

The new
ompilation s
hemes are given in Figure 4.3. (In this �gure, and subsequently, we use

the notation is

1

++ is

2

to denote the
on
atenation of the instru
tion sequen
es is

1

and is

2

.)

175

SC[[def ℄℄ � is the TIM
ode for the super
ombinator de�nition def
om-

piled in environment �.

SC[[f x

1

: : : x

n

= e℄℄ � = Take d

0

n : is

where (d

0

; is) = R[[e℄℄ �[x

1

7! Arg 1; : : : ; x

n

7! Arg n℄ n

R[[e℄℄ � d is a pair (d

0

; is), where is is TIM
ode whi
h applies the value

of the expression e in environment � to the arguments on the sta
k. The

ode is assumes that the �rst d slots of the frame are o

upied, and it

uses slots (d + 1 : : : d

0

).

R[[e℄℄ � d = B[[e℄℄ � d [Return℄

where e is an arithmeti
 expression or a number

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= (d

0

; [Move (d + 1) am

1

; : : : ; Move (d + n) am

n

℄ ++ is)

where (d

1

; am

1

) = A[[e

1

℄℄ � (d + n)

(d

2

; am

2

) = A[[e

2

℄℄ � d

1

: : :

(d

n

; am

n

) = A[[e

n

℄℄ � d

n�1

�

0

= �[x

1

7! Arg (d + 1); : : : ; x

n

7! Arg (d + n)℄

(d

0

; is) = R[[e℄℄ �

0

d

n

R[[e

1

e

2

℄℄ � d = (d

2

; Push am : is)

where (d

1

; am) = A[[e

2

℄℄ � d

(d

2

; is) = R[[e

1

℄℄ � d

1

R[[a℄℄ � d = (d

0

; [Enter am℄)

where a is a
onstant, super
ombinator or lo
al variable

and (d

0

; am) = A[[a℄℄ � d

A[[e℄℄ � d is a pair (d

0

; am), where am is a TIM addressing mode for

expression e in environment �. The
ode assumes that the �rst d slots of

the frame are o

upied, and it uses slots (d + 1 : : : d

0

).

A[[x ℄℄ � d = (d ; � x) where x is bound by �

A[[n℄℄ � d = (d ; IntConst n) where n is an integer
onstant

A[[e℄℄ � d = (d

0

; Code is) otherwise

where (d

0

; is) = R[[e℄℄ � d

Figure 4.3: Compilation s
hemes for let expressions

176

In the SC s
heme you
an see how the maximum frame size d

0

, returned from the
ompilation of

the super
ombinator body, is used to de
ide how large a Take to perform. In the let expression

ase of the R s
heme, for ea
h de�nition we generate an instru
tion Move i a, where i is the

number of a free slot in the
urrent frame, and a is the result of
ompiling e with the A s
heme.

Noti
e the way in whi
h the
ompilation of ea
h right-hand side is given the index of the last

slot o

upied by the previous right-hand side, thus ensuring that all the right-hand sides use

di�erent slots.

Exer
ise 4.11. Implement the
hanges des
ribed in this se
tion: add the new instru
tions to the

instru
tion type, add new
ases to step and showInstru
tion to handle them, and implement

the new
ompilation s
hemes.

Exer
ise 4.12. Consider the program

f x y z = let p = x+y in p+x+y+z

main = f 1 2 3

In the absen
e of let expressions, it would have to be written using an auxiliary fun
tion, like this:

f' p x y z = p+x+y+z

f x y z = f' (x+y) x y z

main = f 1 2 3

Compare the
ode generated by these two programs, and measure the di�eren
e in store
onsumed

and steps exe
uted. What is the main saving obtained by implementing let expressions dire
tly?

4.4.2 letre
 expressions

What needs to be done to handle letre
 expressions as well? At �rst it seems very easy: the

letre

ase for the R s
heme is exa
tly the same as the let
ase, ex
ept that we need to repla
e

� by �

0

in the de�nitions of the am

i

. This is be
ause the x

i

are in s
ope in their own right-hand

sides.

Exer
ise 4.13. Implement this extra
ase in
ompileR, and try it out on the program

f x = letre
 p = if (x==0) 1 q ;

q = if (x==0) p 2

in p+q

main = f 1

Make sure you understand the
ode whi
h is generated, and test it.

Unfortunately there is a subtle bug in this implementation! Consider the
ode generated from:

f x = letre
 a = b ;

b = x

in a

whi
h is as follows:

[Take 3 1, Move 2 (Arg 3), Move 3 (Arg 1), Enter (Arg 2)℄

177

The
losure for b is
opied by the �rst Move before it is assigned by the se
ond Move!

There are two ways out of this. The �rst is to de
lare that this is a silly program; just repla
e

b by x in the s
ope of the binding for b. But there is a more interesting approa
h whi
h will be

instru
tive later, and whi
h allows even silly programs like the one above to work. Suppose we

generate instead the following
ode for the �rst Move:

Move 2 (Code [Enter (Arg 3)℄)

Now everything will be �ne: slot 3 will be assigned before the Enter (Arg 3) gets exe
uted. In

fa
t you
an think of the
losure ([Enter (Arg 3)℄, f) as an indire
tion to slot 3 of frame f.

This
ode
an be obtained by modifying the let(re
)
ase of the R
ompilation s
heme, so

that it re
ords an indire
tion addressing mode in the environment for ea
h variable bound by the

let(re
). Referring to Figure 4.3, the
hange required is to the rule for let in the R s
heme,

where the de�nition of �

0

be
omes

�

0

= �[x

1

7! I[[d + 1℄℄ ; : : : ; x

n

7! I[[d + n℄℄ ℄

where I[[d ℄℄ = Code [Enter (Arg d)℄

Of
ourse, this is rather
onservative: it returns an indire
tion in lots of
ases where it is not

ne
essary to do so, but the resulting
ode will still work �ne, albeit less eÆ
iently.

Exer
ise 4.14. Modify
ompileR to implement this idea, and
he
k that it generates
orre
t
ode for

the above example. In modifying
ompileR use the auxiliary fun
tion mkIndMode (
orresponding

to the I s
heme) to generate the indire
tion addressing modes in the new environment:

> mkIndMode :: Int -> TimAMode

> mkIndMode n = Code [Enter (Arg n)℄

4.4.3 Reusing frame slotsy

At present, every de�nition on the right-hand side of a super
ombinator de�nition gets its own

private slot in the frame. Sometimes you may be able to �gure out that you
an safely share

slots between di�erent let(re
)s. For example,
onsider the de�nition

f x = if x (let ... in ...) (let ... in ...)

Now it is plain that only one of the two let expressions
an ever be evaluated, so it would be

perfe
tly safe to use the same slots for their de�nitions.

Similarly, in the expression e

1

+ e

2

, any let(re
) slots used during the evaluation of e

1

will be

�nished with by the time e

2

is evaluated (or vi
e versa if + happened to evaluate its arguments

in the reverse order), so any let(re
)-bound variables in e

1

an share slots with those in e

2

.

Exer
ise 4.15. Modify your
ompiler to spot this and take advantage of it.

178

4.4.4 Garbage
olle
tiony

In Se
tion 4.2.6 we remarked that it would be desirable to re
ord whi
h frame slots were used by

a
ode sequen
e, so that spa
e leaks
an be avoided. If Take does not initialise the extra frame

slots whi
h it allo
ates, there is a danger that the garbage
olle
tor will treat the
ontents of

these uninitialised slots as valid pointers, with unpredi
table results. The easiest solution is to

initialise all slots, but this is quite expensive. It is better to adopt the solution of Se
tion 4.2.6,

and re
ord with ea
h
ode sequen
e the list of slots whi
h should be retained. Uninitialised slots

will then never be looked at by the garbage
olle
tor.

4.5 Mark 4: Updating

So far we have been performing tree redu
tion not graph redu
tion, be
ause we repeatedly

evaluate shared redexes. It is time to �x this. Figuring out exa
tly how the various ways of

performing TIM updates work is a little tri
ky, but at least we have a prototype implementation

so that our development will be quite
on
rete.

4.5.1 The basi
 te
hnology

The standard template instantiation ma
hine and the G-ma
hine perform an update after every

redu
tion. (The G-ma
hine has a few optimisations for tail
alls, but the prin
iple is the same.)

Be
ause TIM is a spineless ma
hine, its updating te
hnique has to be rather di�erent. The key

idea is this:

Updates are not performed after ea
h redu
tion, as the G-ma
hine does. Instead,

when evaluation of a
losure is started (that is, when the
losure is entered), the

following steps are taken:

� The
urrent sta
k, and the address of the
losure being entered, are pushed onto

the dump, a new
omponent of the ma
hine state.

� A `mouse-trap' is set up whi
h is triggered when evaluation of the
losure is

omplete.

� Evaluation of the
losure now pro
eeds normally, starting with an empty sta
k.

� When the mouse-trap is triggered, the
losure is updated with its normal form,

and the old sta
k is restored from the dump.

The `mouse-trap' is the following. Sin
e the evaluation of the
losure is
arried out

on a new sta
k, the evaluation must eventually grind to a halt, be
ause a Return

instru
tion �nds an empty sta
k, or a super
ombinator is being applied to too few

arguments. At this point the expression has rea
hed (head) normal form, so an update

should be performed.

To begin with, let us fo
us on updating a
losure whose value is of integer type. We will arrange

that just before the
losure is entered, a new instru
tion PushMarker x is exe
uted, whi
h sets up

179

the update me
hanism by pushing some information on the dump. Spe
i�
ally, PushMarker x

pushes onto the dump

4

:

� The
urrent sta
k.

� The
urrent frame pointer, whi
h points to the frame
ontaining the
losure to be updated.

� The index, x , of the
losure to be updated within the frame.

Now that it has saved the
urrent sta
k on the dump, PushMarker
ontinues with an empty

sta
k. Here is its state transition rule:

(4.15)

PushMarker x : i f s v d h

=) i f [℄ v (f ; x ; s) : d h

Some while later, evaluation of the
losure will be
omplete. Sin
e its value is an integer, its value

will be on top of the value sta
k, and a Return instru
tion will be exe
uted in the expe
tation

of returning to the
ontinuation on top of the sta
k. But the sta
k will be empty at this point!

This is what triggers the update: the dump is popped, the update is performed, and the Return

instru
tion is re-exe
uted with the restored sta
k. This a
tion is des
ribed by the following

transition rules:

(4.16)

[Return℄ f [℄ n : v (f

u

; x ; s) : d h

=) [Return℄ f s n : v d h

0

h

0

= h[f

u

: h: : : ; d

x�1

; (intCode;n); d

x+1

; : : :i℄

[Return℄ f (i ; f

0

) : s n : v d h

=) i f

0

s n : v d h

The �rst rule des
ribes the update of the x th
losure in frame f

u

, with the
losure (intCode;n).

This is a
losure whi
h when entered immediately pushes n onto the value sta
k and returns (see

Se
tion 4.3.1). Noti
e that the Return instru
tion is retried, in
ase there is a further update to

perform; this is indi
ated by the fa
t that the
ode sequen
e in the right-hand side of the rule

is still [Return℄.

The se
ond rule is just Rule 4.11 written out again. It
overs the
ase when there is no update

to be performed; the
ontinuation on top of the sta
k is loaded into the program
ounter and

urrent frame pointer.

4.5.2 Compiling PushMarker instru
tions

The exe
ution of the PushMarker and Return instru
tions is thus quite straightforward, but the

tri
ky question is: where should the
ompiler plant PushMarker instru
tions? To answer this

we have to re
all the motivation for the whole updating exer
ise: it is to ensure that ea
h redex

is only evaluated on
e, by overwriting the redex with its value on
e it has been evaluated. In

TIM, a `redex' is a
losure. The key insight is this:

4

In papers about TIM this operation is often
alled `pushing an update marker', be
ause the sta
k is `marked'

so that the attempt to use arguments below the `marker' will trigger an update.

180

we have to be very
areful when
opying
losures, be
ause on
e two
opies exist there

is no way we
an ever share their evaluation.

For example,
onsider the following fun
tion de�nitions:

g x = h x x

h p q = q - p

At present we will generate the following
ode for g:

[Take 1 1, Push (Arg 1), Push (Arg 1), Enter (Label "h") ℄

The two Push Arg instru
tions will ea
h take a
opy of the same
losure, and h will subsequently

evaluate ea
h of them independently.

What we really want to do is to push not a
opy of the
losure for x, but rather a pointer to it.

Re
alling the idea of an indire
tion
losure from Se
tion 4.4.2, this is easily done, by repla
ing

Push (Arg 1) with Push (Code [Enter (Arg 1)℄).

This gets us half-way; we are not dupli
ating the
losure, but we still are not updating it. But

now it is easy! All we need to is to pre
ede the Enter (Arg 1) instru
tion with PushMarker 1,

thus:

Push (Code [PushMarker 1, Enter (Arg 1)℄)

That is, just before entering the shared
losure, we set up the update me
hanism whi
h will

ause it to be updated when its evaluation is
omplete.

The addressing mode (Code [PushMarker n; Enter (Arg n)℄) is
alled an updating indire
tion

to the nth
losure of the frame, be
ause it is an indire
tion whi
h will
ause an update to take

pla
e. Exa
tly the same
onsiderations apply to entering an argument (rather than pushing it on

the sta
k). An updating indire
tion to the argument must be entered, rather than the argument

itself: Enter (Arg 1) must be repla
ed by Enter (Code [PushMarker 1, Enter (Arg 1)℄).

The
hanges to the
ompilation s
hemes are simple. Only the SC and R s
hemes are a�e
ted,

and they are both a�e
ted in the same way: where they build an environment, they should bind

ea
h variable to an updating indire
tion addressing mode. For example, in the let(re
)
ase

of the R s
heme, we now use the following de�nition for �

0

(
f. Figure 4.3):

�

0

= �[x

1

7! J [[d + 1℄℄ ; : : : ; x

n

7! J [[d + n℄℄ ℄

where J [[d ℄℄ = Code [PushMarker d ; Enter (Arg d)℄

4.5.3 Implementing the updating me
hanism

To implement the new updating me
hanism, we need to make the following
hanges:

� Give a type de�nition for the dump. It is just a sta
k of triples, represented as a list, and

initialised to be empty:

> type TimDump = [(FramePtr, -- The frame to be updated

181

> Int, -- Index of slot to be updated

> TimSta
k) -- Old sta
k

> ℄

> initialDump = [℄

� Add the PushMarker instru
tion to the instru
tion type, with appropriate modi�
ations

to showInstru
tion.

� Add a new
ase to step for the PushMarker instru
tion, and modify the
ase for Return.

� Modify
ompileSC and the ELet
ase of
ompileR to build environments whi
h bind ea
h

variable to an updating indire
tion addressing mode. Use the fun
tion mkUpdIndMode to

implement the J s
heme:

> mkUpdIndMode :: Int -> TimAMode

> mkUpdIndMode n = Code [PushMarker n, Enter (Arg n)℄

Exer
ise 4.16. Implement the updating me
hanism as des
ribed.

When running the new system on some test programs, you should be able to wat
h PushMarker

adding update information to the dump, and Return performing the updates. Here is one possible

test program:

f x = x + x

main = f (1+2)

The evaluation of (1+2) should only happen on
e!

Exer
ise 4.17. Here is an easy optimisation you
an perform. For a fun
tion su
h as:

ompose f g x = f (g x)

you will see that the
ode for
ompose is like this:

ompose: Take 3 3

Push (Code [...℄)

Enter (Code [PushMarker 1, Enter (Arg 1)℄)

where the [...℄ is
ode for (g x). The �nal instru
tion enters an updating indire
tion for f. But

it is a fa
t that

Enter (Code i) is equivalent to i

(This follows immediately from Rule 4.8.) So the equivalent
ode for
ompose is

ompose: Take 3 3

Push (Code [...℄)

PushMarker 1

Enter (Arg 1)

Implement this optimisation. Mu
h the ni
est way to do this is by repla
ing all expressions in the

ompiler of the form [Enter e℄ with (mkEnter e), where mkEnter is de�ned like this:

> mkEnter :: TimAMode -> [Instru
tion℄

> mkEnter (Code i) = i

> mkEnter other_am = [Enter other_am℄

182

mkEnter is an `a
tive' form of the Enter
onstru
tor, whi
h
he
ks for a spe
ial
ase before gener-

ating an Enter instru
tion.

There are a number of other improvements we
an make to this s
heme, and we will study them

in the following se
tions.

4.5.4 Problems with updating indire
tions

While it is simple enough, this updating me
hanism is horribly ineÆ
ient. There are two main

problems, whi
h were �rst distinguished by Argo [Argo 1989℄. The �rst problem is that of

identi
al updates. Consider the program given in the previous se
tion:

f x = x+x

main = f (1+2)

For ea
h use of x, f will enter an updating
losure to its argument x. The �rst time, x will be

updated with its value. The se
ond time, a se
ond (and entirely redundant) update will take

pla
e, whi
h overwrites the x with its value again. You should be able to wat
h this happening

as you exe
ute the example on your implementation.

In this
ase, of
ourse, a
lever
ompiler
ould spot that x was sure to be evaluated, and just

opy x instead of entering an indire
tion to it. But this
ompli
ates the
ompiler, and in general

may be impossible to spot. For example, suppose f was de�ned like this:

f x = g x x

Unless f analyses g to dis
over in whi
h order the di�erent x's are evaluated (and in general there

may be no one answer to this question), it has to be pessimisti
 and push updating indire
tions

as arguments to g.

The se
ond problem is that of indire
tion
hains. Consider the program

g x = x+x

f y = g y

main = f (1+2)

Here, f passes to g an updating indire
tion to its argument y; but g enters an updating indire
tion

to its argument x. Thus g enters an indire
tion to an indire
tion. In short,
hains of indire
tions

build up, be
ause an indire
tion is added every time an argument is passed on as an argument

to another fun
tion. Just imagine how many indire
tions to m
ould build up in the following

tail-re
ursive fun
tion!

horrid n m = if (n=0) m (horrid (n-1) m)

We will not solve these problems yet. Instead, the next se
tion shows how to deal with updates

for let(re
)-bound variables, and why these two problems do not arise. This points the way

to a better solution for super
ombinator arguments as well.

183

4.5.5 Updating shared let(re
)-bound variables

So far we have assumed that let(re
)-bound variables are updated in exa
tly the same way

as super
ombinator arguments, by always using an updating indire
tion addressing mode for

them. For example,
onsider the following super
ombinator de�nition:

f x = let y = ...

in

g y y

where the `...' stands for an arbitrary right-hand side for y. Treating y just the same as x, we

will generate this
ode for f:

f: Take 2 1 -- Frame with room for y

Move 2 (Code [...
ode for y...℄) -- Closure for y

Push (Code [PushMarker 2, Enter (Arg 2)℄) -- Indire
tion to y

Push (Code [PushMarker 2, Enter (Arg 2)℄) -- Indire
tion to y

Enter (Label "g")

where the `...
ode for y...' stands for the
ode generated from y's right-hand side. This

ode su�ers from the identi
al-update problem outlined earlier.

But a mu
h better solution is readily available. Suppose we generate the following
ode for f

instead:

f: Take 2 1 -- Frame with room for y

Move 2 (Code (PushMarker 2 :

[...
ode for y...℄)) -- Closure for y

Push (Code [Enter (Arg 2)℄) -- Non-updating indire
tion to y

Push (Code [Enter (Arg 2)℄) -- Indire
tion to y

Enter (Label "g")

The PushMarker instru
tion has moved from the uses of y to its de�nition. The
losure for

y built by the Move instru
tion is now a self-updating
losure; that is, when entered it will

set up the update me
hanism whi
h will update itself. On
e this has happened, it will never

happen again be
ause the pointer to the
ode with the PushMarker instru
tion has now been

overwritten!

In general, the idea is this:

� Use a self-updating
losure for the right-hand side of a let(re
) binding, by beginning

the
ode with a PushMarker instru
tion.

� Use ordinary (non-updating) indire
tion addressing modes when pushing let(re
)-bound

variables onto the sta
k. We still need to use indire
tions, rather than taking a
opy of

the
losure be
ause, until it is updated,
opying it would give rise to dupli
ated work.

The modi�
ations needed to implement this idea are:

184

U [[e℄℄ u � d is a pair (d

0

; am), where am is a TIM addressing mode for

expression e in environment �. If the
losure addressed by am is entered,

it will update slot u of the
urrent frame with its normal form. The
ode

assumes that the �rst d slots of the frame are o

upied, and it uses slots

(d + 1 : : : d

0

).

U [[e℄℄ u � d = (d

0

; Code (PushMarker u : is))

where (d

0

; is) = R[[e℄℄ � d

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= (d

0

; [Move (d + 1) am

1

; : : : ; Move (d + n) am

n

℄ ++ is)

where (d

1

; am

1

) = U [[e

1

℄℄ (d + 1) � (d + n)

(d

2

; am

2

) = U [[e

2

℄℄ (d + 2) � d

1

: : :

(d

n

; am

n

) = U [[e

n

℄℄ (d + n) � d

n�1

�

0

= �[x

1

7! I[[d + 1℄℄ ; : : : ; x

n

7! I[[d + n℄℄ ℄

where I[[d ℄℄ = Code [Enter (Arg d)℄

(d

0

; is) = R[[e℄℄ �

0

d

n

The letre

ase is similar, ex
ept that �

0

is passed to the
alls to U [[℄℄ instead of �.

Figure 4.4: The U
ompilation s
heme, and revised R rule for let

� Modify the R s
heme so that it generates non-updating indire
tions for let(re
)-bound

variables; that is, it builds the new environment using the I s
heme rather than J . (For

the present, SC should
ontinue to generate updating indire
tions, using J , for super
om-

binator arguments.)

� Modify the R s
heme for let(re
) expressions, so that it generates a PushMarker instru
-

tion at the start of the
ode for every right-hand side. This is most
onveniently done by

reating a new
ompilation s
heme, the U s
heme (see Figure 4.4), whi
h is used in the

let(re
)
ase of the R s
heme to
ompile the right-hand sides of de�nitions. U needs a

extra argument to tell it whi
h slot in the
urrent frame should be updated, and uses this

argument to generate an appropriate PushMarker instru
tion. Figure 4.4 also gives the

revised let equation for the R s
heme. The modi�
ation to the letre

ase is exa
tly

analogous.

Exer
ise 4.18. Try out this idea and measure its e�e
tiveness in terms of how many steps are saved.

Exer
ise 4.19. Consider the expression

let x = 3 in x+x

In this
ase, the right-hand side of the let expression is already in normal form, so there is no point

in the U s
heme generating a PushMarker instru
tion. Rather, U
an simply return an IntConst

addressing mode for this
ase.

185

Modify the U
ompilation s
heme, and the
orresponding
ompileU fun
tion, and
on�rm that the

modi�
ation works
orre
tly.

4.5.6 Eliminating indire
tion
hains

The idea of the previous se
tion shows how to eliminate identi
al updates for let(re
)-bound

variables. In this se
tion we show how to extend the idea to eliminate identi
al updates for

super
ombinator arguments as well and, at the same time, to eradi
ate the indire
tion
hain

problem. The idea was �rst proposed by Argo [Argo 1989℄.

We start with indire
tion
hains. As noted earlier, indire
tion
hains build up be
ause a super-

ombinator has to assume that it must not
opy any of its argument
losures, so if it uses them

more than on
e it had better use indire
tions. This gives rise to indire
tion
hains be
ause often

the argument
losure is an indire
tion already, and it would be perfe
tly safe to
opy it.

This suggests an alternative strategy:

adopt the
onvention that every argument
losure must be freely
opyable without loss

of sharing.

This
alling
onvention is
learly
onvenient for the
alled fun
tion, but how
an the
aller ensure

that it is met? An argument is either:

� a
onstant, whose
losure is freely
opyable;

� a super
ombinator, whi
h has the same property;

� a let(re
)-bound variable, whi
h also
an be freely
opied (using the ideas of the previous

se
tion);

� an argument to the
urrent super
ombinator, whi
h is freely
opyable be
ause of our new

onvention;

� a non-atomi
 expression, whose
losure (as things stand) is not freely
opyable.

It follows that all we have to do to adopt this new
alling
onvention is �nd some way of passing

non-atomi
 arguments as freely
opyable
losures. For example,
onsider the expression

f (fa
torial 20)

How
an the argument (fa
torial 20) be passed as a freely
opyable
losure. The solution is

simple: transform the expression to the following equivalent form:

let arg = fa
torial 20 in f arg

The let expression will allo
ate a slot in the
urrent frame for the
losure for (fa
torial 20),

will put a self-updating
losure in it, and an (ordinary) indire
tion to this
losure will be passed

to f. (Noti
e that this transformation need only be
arried out if the
losure passed to f might

186

R[[e a℄℄ � d = (d

1

; Push (A[[a℄℄ �) : is)

where a is a super
ombinator, lo
al variable, or
onstant

(d

1

; is) = R[[e℄℄ � d

R[[e

fun

e

arg

℄℄ � d = (d

2

; Move (d + 1) am

arg

: Push (Code [Enter (Arg (d + 1))℄) : is

fun

)

where (d

1

; am

arg

) = U [[e

arg

℄℄ (d + 1) � (d + 1)

(d

2

; is

fun

) = R[[e

fun

℄℄ � d

1

A[[n℄℄ � = IntConst n where n is a number

A[[x ℄℄ � = � x where x is bound by �

Figure 4.5: Modi�
ations to R and A for
opyable arguments

be entered more than on
e. There is an opportunity here for a global sharing analysis to be

used to generate more eÆ
ient
ode.)

On
e this transformation is done we
an freely
opy argument
losures, though we must still use

(non-updating) indire
tions for let(re
)-bound
losures. No indire
tion
hains will build up,

nor will identi
al updates take pla
e.

It is interesting to re
e
t on what has happened. At �rst it appeared as though TIM would

allo
ate mu
h less heap than a G-ma
hine, be
ause the entire allo
ation for a super
ombinator

all was the frame required to hold its arguments. However, using our new updating te
hniques,

we see that every sub-expression within the super
ombinator body requires a slot in the frame

to hold it. Similarly, sin
e most super
ombinator arguments are now indire
tions, TIM is be-

having quite like the G-ma
hine whi
h passes pointers to arguments rather than the arguments

themselves. So the problems of lazy updating have for
ed TIM to be
ome more G-ma
hine-like.

We have presented the te
hnique as a program transformation whi
h introdu
es a let expression

for every argument expression, but doing so is somewhat tiresome be
ause it involves inventing

new arbitrary variable names. It is easier to write the new
ompilation s
hemes more dire
tly.

The main alteration is to the appli
ation
ase of the R s
heme, whi
h is given in Figure 4.5.

The �rst equation deals with the
ase where the argument to the appli
ation is an atomi

expression (variable or
onstant), using the A s
heme to generate the appropriate addressing

mode as before. The se
ond equation deals with the
ase where the argument is a
ompound

expression; it initialises the next free slot in the frame with a self-updating
losure for the

argument expression, and pushes an indire
tion to this
losure.

The A s
heme, also given in Figure 4.5, now has one
ase fewer than before, be
ause it is only

invoked with an atomi
 expression (variable or
onstant) as its argument. For the same reason,

it no longer needs to take d as an argument and return it as a result, be
ause it never uses any

frame slots.

Exer
ise 4.20. Implement this revised s
heme, and measure the di�eren
e in performan
e from the

previous version.

187

4.5.7 Updating partial appli
ations

So far we have su

essfully dealt with the update of
losures whose value is an integer. When a

Return instru
tion �nds an empty sta
k, it performs an update and pops a new sta
k from the

dump.

But there is another instru
tion whi
h
onsumes items from the sta
k, namely Take. What

should happen if a Take instru
tion �nds fewer items on the sta
k than it requires? For example,

onsider the program

add a b = a+b

twi
e f x = f (f x)

g x = add (x*x)

main = twi
e (g 3) 4

When twi
e enters f it will do so via an indire
tion, whi
h will set up an update for f. In

this example, f will be bound to (g 3), whi
h evaluates to a partial appli
ation of add to one

argument. The Take 2 instru
tion at the beginning of the
ode for add will dis
over that there

is only one argument on the sta
k, whi
h indi
ates that an update should take pla
e, overwriting

the
losure for (g x) with one for (add (x*x)).

In general:

when a Take instru
tion �nds too few arguments on the sta
k, it should perform

an update on the
losure identi�ed by the top item on the dump, glue the items on

the
urrent sta
k on top of the sta
k re
overed from the dump, and retry the Take

instru
tion (in
ase another update is required).

The Take instru
tion is already
ompli
ated enough, and now it has a further task to perform.

To avoid Take getting too unwieldy, we split it into two instru
tions: UpdateMarkers, whi
h

performs the
he
k as to whether there are enough arguments, and Take whi
h a
tually builds

the new frame. An UpdateMarkers n instru
tion always immediately pre
edes every Take t n

instru
tion.

The transition rule for Take is therefore un
hanged. The rules for UpdateMarkers are as follows:

(4.17)

UpdateMarkers n : i f

1

: : : : :

m

: s v d h

=) i f

1

: : : : :

m

: s v d h

where m � n

UpdateMarkers n : i f

1

: : : : :

m

: [℄ v (f

u

; x ; s) : d h

=) UpdateMarkers n : i f

1

: : : : :

m

: s v d h

0

where m < n

h

0

= h[f

u

: h: : : ; d

x�1

; (i

0

; f

0

); d

x+1

; : : :i℄

The �rst rule deals with the
ase where there are enough arguments, so that UpdateMarkers

does nothing. The se
ond deals with the other
ase, where an update needs to take pla
e;

the appropriate
losure is updated, the
urrent sta
k is glued on top of the old one, and the

UpdateMarkers is retried.

188

In this rule, i

0

and f

0

are the
ode pointer and frame pointer whi
h overwrite the target
losure,

but so far we have not spe
i�ed just what values they should take. The way to �gure out

what they should be is to ask the question: what should happen when the
losure (i

0

; f

0

) is

entered? This
losure represents the partial appli
ation of the super
ombinator to the arguments

1

; : : : ;

m

. Hen
e, when it is entered, it should push

1

; : : : ;

m

, and then jump to the
ode for

the super
ombinator. It follows that

� f

0

must point to a newly allo
ated frame h

1

; : : : ;

m

i.

� i

0

must be the
ode sequen
e

Push (Arg m) : : : : : Push (Arg 1) : UpdateMarkers n : i

Here, the Push instru
tions pla
e the arguments of the partial appli
ation onto the sta
k,

the UpdateMarkers instru
tion
he
ks for any further updates that need to take pla
e,

and i is the rest of the
ode for the super
ombinator.

Exer
ise 4.21. Implement the UpdateMarkers instru
tion, and modify the
ompiler to pla
e one before

ea
h Take instru
tion. Test your implementation before and after the modi�
ation on the following

program. The program uses higher-order fun
tions to implement pairs (Se
tion 2.8.3). The pair w

is shared, and evaluates to a partial appli
ation of the pair fun
tion.

pair x y f = f x y

fst p = p K

snd p = p K1

main = let w = pair 2 3

in (fst w) * (snd w)

You should see w being updated with the partial appli
ation for (pair 2 3). To make it a little

more
onvin
ing, you
ould make the right-hand side of w involve a little more
omputation: for

example

main = let w = if (2*3 > 4) (pair 2 3) (pair 3 2)

in (fst w) * (snd w)

Exer
ise 4.22. Just as Take 0 0 does nothing, UpdateMarkers 0 does nothing. Modify
ompileSC so

that it omits both of these instru
tions when appropriate. (This is a simple extension of Exer-

ise 4.3.)

There are a few other points worth noti
ing:

� In a real implementation, the
ode i

0

would not be manufa
tured afresh whenever an

update takes pla
e, as the rule appears to say. Instead, the
ode for the super
ombinator

i
an be pre
eded by a sequen
e of Push instru
tions, and the
ode pointer for a partial

appli
ation
an just point into the appropriate pla
e in the sequen
e.

� The UpdateMarkers rule dupli
ates the
losures

1

; : : : ;

m

. This is �ne now that super-

ombinator arguments are freely
opyable, a modi�
ation we introdu
ed in Se
tion 4.5.6.

Prior to that modi�
ation, making su
h a
opy would have risked dupli
ating a redex, so

instead the UpdateMarkers rule would have been further
ompli
ated with indire
tions.

It is for this reason that the introdu
tion of UpdateMarkers has been left so late.

189

� Suppose we are
ompiling
ode for the expression (f e

1

e

2

), where f is known to be a

super
ombinator of 2 (or fewer) arguments. In this
ase, the UpdateMarkers instru
tion

at the start of f will
ertainly do nothing, be
ause the sta
k is sure to be deep enough to

satisfy it. So when
ompiling a
all to a super
ombinator applied to all its arguments (or

more) we
an enter its
ode after the UpdateMarkers instru
tion.

Many of the fun
tion appli
ations in a typi
al program are saturated appli
ations of known

super
ombinators, so this optimisation is frequently appli
able.

4.6 Mark 5: Stru
tured data

In this se
tion we will study how to add algebrai
 data types to TIM. It is possible to implement

data stru
tures without any of the material of this se
tion, using higher-order fun
tions as

des
ribed in Se
tion 2.8.3; but it is rather ineÆ
ient to do so. Instead, we will develop the

approa
h we used for arithmeti
 to be able to handle more general data stru
tures.

4.6.1 The general approa
h

Consider the fun
tion is_empty, whi
h returns 1 if its argument is an empty list, and 0 if not.

It is given in the
ontext of a program whi
h applies it to a singleton list.

is_empty xs =
ase xs of

<1> -> 1

<2> y ys -> 0

ons a b = Pa
k{2,2} a b

nil = Pa
k{1,0}

main = is_empty (
ons 1 nil)

Re
all from Se
tion 1.1.4 that
onstru
tors are denoted by Pa
k{tag ; arity}. In this program,

whi
h manipulates lists, the empty list
onstru
tor nil has tag 1 and arity 0, while the list

onstru
tor
ons has tag 2 and arity 2. Pattern mat
hing is performed only by
ase expressions;

nested patterns are mat
hed by nested
ase expressions.

We
onsider �rst what
ode we should generate for a
ase expression. Just as arithmeti

operators require their arguments to be evaluated, a
ase expression requires an expression, xs

in the is_empty example, to be evaluated. After this, a multi-way jump
an be taken depending

on the tag of the obje
t returned. Taking a similar approa
h to the one we used for arithmeti

operators suggests the following
onventions:

� To evaluate a
losure representing a data obje
t, a
ontinuation is pushed onto the argu-

ment sta
k, and the
losure is entered.

� When it is evaluated to (head) normal form, this
ontinuation is popped from the sta
k

and entered.

� The tag of the data obje
t is returned on top of the value sta
k.

190

� The
omponents of the data obje
t (if any) are returned in a frame pointed to by a new

register, the data frame pointer.

So the
ode we would produ
e for is_empty would be like this

5

:

is_empty: Take 1 1 -- One argument

Push (Label "
ont") -- Continuation

Enter (Arg 1) -- Evaluate xs

ont: Swit
h [1 -> [PushV (IntVConst 1), Return℄

2 -> [PushV (IntVConst 0), Return℄

℄

The Swit
h instru
tion does a multi-way jump based on the top item on the value sta
k. In

this example, both bran
hes of the
ase expression just return a
onstant number.

In this example the
omponents of the s
rutinised list
ell were not used. This is not always the

ase. Consider, for example, the sum fun
tion:

sum xs =
ase xs of

<1> -> 0

<2> y ys -> y + sum ys

sum
omputes the sum of the elements of a list. The new feature is that the expression

y + sum ys uses the
omponents, y and ys, of the list
ell. As indi
ated earlier, these
ompo-

nents are returned to the
ontinuation in a frame pointed to by the data frame pointer, a new

register. (Exer
ise: why
annot the ordinary frame pointer be used for this purpose?)

So far, every lo
al variable (that is, super
ombinator argument or let(re
)-bound variable)

has a slot in the
urrent frame whi
h
ontains its
losure, so it seems logi
al to extend the idea,

and add further slots for y and ys. All we need to do is to move the
losures out of the list
ell

frame, and into the
urrent frame. Here, then, is the
ode for sum:

sum: Take 3 1 -- One argument, two extra slots for y,ys

Push (Label "
ont") -- Continuation for
ase

Enter (Arg 1) -- Evalute xs

ont: Swit
h [

1 -> [PushV (IntVConst 0), Return℄

2 -> [Move 2 (Data 1)

Move 3 (Data 2)

...
ode to
ompute y + sum ys...

℄

℄

The Move instru
tions use a new addressing mode Data, whi
h addresses a
losure in the frame

pointed to by the data frame pointer. The two Move instru
tions
opy y and ys from the list

ell into the
urrent frame (the one whi
h
ontains xs).

5

As usual we write the
ode with expli
it labels for
ontinuations, but in reality we would
ompile uses of the

Code addressing mode so as to avoid generating fresh labels.

191

In summary, a
ase expression is
ompiled into �ve steps:

1. Push a
ontinuation.

2. Enter the
losure to be s
rutinised. When it is evaluated, it will enter the
ontinuation

pushed in Step 1.

3. The
ontinuation uses a Swit
h instru
tion to take a multi-way jump based on the tag,

whi
h is returned on top of the value sta
k.

4. Ea
h bran
h of the Swit
h begins with Move instru
tions to
opy the
ontents of the data

obje
t into the
urrent frame. Sin
e this
opies the
losure, we must be sure that all

losures in data obje
ts have the property that they
an freely be
opied (Se
tion 4.5.6).

5. Ea
h alternative then
ontinues with the
ode for that alternative,
ompiled exa
tly as

usual.

Finally, we
an ask what
ode should be generated for the expression Pa
k{tag ; arity}. Consider,

for example, the expression

Pa
k{1,2} e1 e2

whi
h builds a list
ell. The minimalist approa
h is to treat Pa
k{1,2} as a super
ombinator,

and generate the following
ode

6

:

Push (...addressing mode for e2...)

Push (...addressing mode for e1...)

Enter (Label "Pa
k{1,2}")

The
ode for Pa
k{1,2} is very simple:

Pa
k{1,2}: UpdateMarkers 2

Take 2 2

ReturnConstr 1

The �rst two instru
tions are just the same as for any other super
ombinator. The

UpdateMarkers instru
tion performs any ne
essary updates, and the Take instru
tion builds

the frame
ontaining the two
omponents of the list
ell, putting a pointer to it in the
ur-

rent frame pointer. Finally, a new instru
tion, ReturnConstr, enters the
ontinuation, while

pushing a tag of 1 onto the value sta
k, and
opying the
urrent frame pointer into the data

frame pointer. Like Return, ReturnConstr needs to
he
k for updates and perform them when

ne
essary.

4.6.2 Transition rules and
ompilation s
hemes for data stru
tures

Now that we have
ompleted the outline, we
an give the details of the transition rules and

ompilation s
hemes for the new
onstru
ts. The rule for Swit
h is as follows:

6

In prin
iple there are an in�nite number of possible
onstru
tors, so it seems that we need an in�nite family

of similar
ode fragments for them in the
ode store. In pra
ti
e this is easily avoided as will be seen when we

write the detailed
ompilation s
hemes.

192

(4.18)

[Swit
h [: : : t -> i : : :℄℄ f f

d

s t : v d h

=) i f f

d

s v d h

There are two rules for ReturnConstr, be
ause it has to a

ount for the possibility that an

update is required. The �rst is straightforward, when there is no update to be done:

(4.19)

[ReturnConstr t ℄ f f

d

(i ; f

0

) : s v d h

=) i f

0

f s t : v d h

The se
ond rule deals with updating, overwriting the
losure to be updated with a
ode sequen
e

ontaining only a ReturnConstr instru
tion, and the data frame pointer:

(4.20)

[ReturnConstr t ℄ f f

d

[℄ v (f

u

; x ; s) : d h

=) [ReturnConstr t ℄ f f

d

s v d h

0

where h

0

= h[f

u

: h: : : ; d

x�1

; ([ReturnConstr t ℄; f); d

x+1

; : : :i℄

The only
hanges to the
ompilation s
hemes are to add extra
ases to the R s
heme for
on-

stru
tors and for
ase expressions. The latter is stru
tured by the use of an auxiliary s
heme E ,

whi
h
ompiles a
ase alternative (Figure 4.6). Noti
e that
onstru
tors are
ompiled `in-line'

as they are en
ountered, whi
h avoids the need for an in�nite family of de�nitions to be added

to the
ode store.

4.6.3 Trying it out

We
an use the new ma
hinery to implement lists and booleans, by using the following extra

Core-language de�nitions:

ons = Pa
k{2,2}

nil = Pa
k{1,0}

true = Pa
k{2,0}

false = Pa
k{1,0}

if
ond tbran
h fbran
h =
ase
ond of

<1> -> fbran
h

<2> -> tbran
h

Noti
e that if, whi
h previously had a spe
ial instru
tion and
ase in the
ompilation s
hemes,

is now just a super
ombinator de�nition like any other. Even so, it is often
learer to write

programs using if rather than
ase, so you may want to leave the spe
ial
ase in your
ompiler;

but now you
an generate a Swit
h instru
tion rather than a Cond instru
tion. (The latter
an

vanish.)

Exer
ise 4.23. Implement the new instru
tions and
ompilation s
hemes.

Test your new implementation on the following program:

length xs =
ase xs of

<1> -> 0

193

R[[Pa
k{t,a}℄℄ � d = (d ; [UpdateMarkers a; Take a a; ReturnConstr t ℄)

R[[
ase e of alt

1

: : : alt

n

℄℄ � d = (d

0

; Push (Code [Swit
h [bran
h

1

: : : bran
h

n

℄℄) : is

e

)

where (d

1

; bran
h

1

) = E [[alt

1

℄℄ � d

: : :

(d

n

; bran
h

n

) = E [[alt

n

℄℄ � d

(d

0

; is

e

) = R[[e℄℄ � max (d

1

; : : : ; d

n

)

E [[alt ℄℄ � d , where alt is a
ase alternative, is a pair (d

0

; bran
h), where

bran
h is the Swit
h bran
h
ompiled in environment �. The
ode as-

sumes that the �rst d slots of the frame are o

upied, and it uses slots

(d + 1 : : : d

0

).

E [[<t> x

1

: : : x

n

-> body ℄℄ � d = (d

0

; t -> (is

moves

++ is

body

))

where is

moves

= [Move (d + 1) (Data 1);

: : : ;

Move (d + n) (Data n)℄

(d

0

; is

body

) = R[[body ℄℄ �

0

(d + n)

�

0

= �[x

1

7! Arg (d + 1);

: : : ;

x

n

7! Arg (d + n)℄

Figure 4.6: Compilation s
hemes for
ase expressions

<2> p ps -> 1 + length ps

main = length (
ons 1 (
ons 2 nil))

A more interesting example, whi
h will demonstrate whether your update
ode is working
orre
tly,

is this:

append xs ys =
ase xs of

<1> -> ys

<2> p ps ->
ons p (append ps ys)

main = let xs = append (
ons 1 nil) (
ons 2 nil)

in

length xs + length xs

Here xs is used twi
e, but the work of appending should only be done on
e.

Exer
ise 4.24. If the arity, a, of the
onstru
tor is zero, then R[[Pa
k{t,a}℄℄ will generate the
ode

[UpdateMarkers 0, Take 0 0, ReturnConstr t℄. Optimise the R s
heme and
ompileR fun
-

tion to generate better
ode for this
ase (
f. Exer
ise 4.22).

194

4.6.4 Printing a list

The example programs suggested so far have all returned an integer, but it would be ni
e to be

able to return and print a list instead.

The way we expressed this in the G-ma
hine
hapter was to add an extra
omponent to the

ma
hine state to represent the output, together with an instru
tion Print, whi
h appends a

number to the end of the output. In our
ase, numbers are returned on the value sta
k, so

Print
onsumes a number from the value sta
k and appends it to the output.

At present
ompile initialises the sta
k with the
ontinuation ([℄,FrameNull), whi
h has the

e�e
t of stopping the ma
hine when it is entered. All we need to do is
hange this
ontinuation

to do the printing. This time, the
ontinuation expe
ts the value of the program to be a list, so

it must do
ase analysis to de
ide how to pro
eed. If the list is empty, the ma
hine should halt,

so that bran
h
an just have the empty
ode sequen
e. Otherwise, the head of the list should

be evaluated and printed, and the tail then given the original
ontinuation again. Here is the

ode:

topCont: Swit
h [1 -> [℄

2 -> [Move 1 (Data 1) -- Head

Move 2 (Data 2) -- Tail

Push (Label "headCont")

Enter (Arg 1) -- Evaluate head

℄

℄

headCont: Print

Push (Label "topCont")

Enter (Arg 2) -- Do the same to tail

Noti
e that the topCont
ode needs a 2-slot frame for working storage, whi
h
ompile had

better provide for it.
ompile therefore initialises the sta
k with the
ontinuation

(topCont, frame)

where topCont is the
ode sequen
e above, and frame is the address of a 2-slot frame allo
ated

from the heap.

Exer
ise 4.25. Implement list printing as des
ribed. The only tiresome aspe
t is that you need to add

an extra
omponent to the ma
hine state (again).

As usual, you
an use Push (Code ...) instead of Push (Label "headCont"), and in fa
t you

an do the same for Push (Label "topCont"), by using a little re
ursion!

Test your work on the following program:

between n m = if (n>m) nil (
ons n (between (n+1) m))

main = between 1 4

Exer
ise 4.26. When running a program whose result is a list, it is ni
e to have the elements of the

list printed as soon as they be
ome available. With our present implementation, either we print

195

every state (if we use showFullResults) or we print only the last state (using showResults). In

the former
ase we get far too mu
h output, while in the latter we get no output at all until the

program terminates.

Modify showResults so that it prints the output as it is produ
ed. The easiest way to do this is

to
ompare the output
omponent of su

essive pairs of states, and to print the last element when

the output gets longer between one state and the next.

Another possible modi�
ation to showResults is to print a dot for ea
h state (or ten states), to

give a rough idea of how mu
h work is done between ea
h output step.

4.6.5 Using data stru
tures dire
tlyy

One might ask why we
annot use the
omponents of a data stru
ture dire
tly in the arms of

a Swit
h instru
tion, by using Data addressing modes in instru
tions other than Move. The

reason
an be found in the sum example, whi
h we repeat here:

sum xs =
ase xs of

<1> -> 0

<2> y ys -> y + sum ys

Now, let us follow the
ode for y + sum ys a little further. This
ode must �rst evaluate y,

whi
h may take a lot of
omputation,
ertainly using the data frame pointer register. Hen
e, by

the time it
omes to evaluate ys, the data frame pointer will have been
hanged, so ys will no

longer be a

essible via the data frame pointer. By moving the
ontents of the list
ell into the

urrent frame, we enable them to be preserved a
ross further evaluations.

Sometimes, no further evaluation is to be done, as in the head fun
tion:

head xs =
ase xs of

<1> -> error

<2> y ys -> y

In this
ase, as an optimisation we
ould use y dire
tly from the data frame; that is, the se
ond

bran
h of the Swit
h instru
tion would be simply [Enter (Data 1)℄.

Similarly, if a variable is not used at all in the bran
h of the
ase expression, there is no need

to move it into the
urrent frame.

4.7 Mark 6: Constant appli
ative forms and the
ode storey

As we mentioned earlier (Se
tion 4.2.3), our de
ision to represent the
ode store as an asso
iation

list of names and
ode sequen
es means that CAFs do not get updated. Instead, their
ode

is exe
uted ea
h time they are
alled, whi
h will perhaps dupli
ate work. We would like to

avoid this extra work, but the solution for the TIM is not quite as easy as that for our earlier

implementations.

In the
ase of the template instantiation ma
hine and the G-ma
hine, the solution was to allo
ate

a node in the heap to represent ea
h super
ombinator. When a CAF is
alled, the root of

196

the redex is the super
ombinator node itself, and so the node is updated with the result of

the redu
tion (that is, an instan
e of the right-hand side of the super
ombinator de�nition).

Any subsequent use of the super
ombinator will see this updated node instead of the original

super
ombinator. The trouble is that the TIM does not have heap nodes at all; what
orresponds

to a node is a
losure within a frame. So what we have to do is to allo
ate in the initial heap a

single giant frame, the global frame, whi
h
ontains a
losure for ea
h super
ombinator.

The
ode store is now represented by the address, f

G

, of the global frame, together with an

asso
iation list, g , mapping super
ombinator names to their o�set in the frame. The Label

addressing mode uses this asso
iation list to �nd the o�set, and then fet
hes the
losure for

the super
ombinator from the global frame. The new transition rule for Push Label formalises

these ideas:

(4.21)

Push (Label l) : i f s h[f

G

: h(i

1

; f

1

); : : : ; (i

n

; f

n

)i℄ (f

G

; g [l : k ℄)

=) i f (i

k

; f

k

) : s h (f

G

; g)

The rule for Enter Label follows dire
tly from the Push/Enter relationship. Ea
h
losure in the

global frame is a self-updating
losure, as des
ribed in the
ontext of let(re
)-bound variables

in Se
tion 4.5.5. Just as for let(re
)-bound variables, when pushing a super
ombinator on the

sta
k we should use a (non-updating) indire
tion (Se
tion 4.5.5).

4.7.1 Implementing CAFs

Here is what needs to be done to add proper updating for CAFs to a Mark 4 or Mark 5 TIM.

� The
ode store
omponent of the ma
hine state now
ontains the address of the global

frame and an asso
iation between super
ombinator names and frame o�sets:

> type CodeStore = (Addr, ASSOC Name Int)

The showSCDefns fun
tion must be altered to take a

ount of this
hange.

� The fun
tion amToClosure must take di�erent a
tion for a Label addressing mode, as

des
ribed above.

� The initial environment, initial_env,
omputed in the
ompile fun
tion, must be altered

to generate an indire
tion addressing mode for ea
h super
ombinator.

� The last modi�
ation involves most work. We need to alter the
ompile fun
tion to build

the initial heap, just as we did in the
ompile fun
tion of the template instantiation

ma
hine and the G-ma
hine.

The last of these items needs a little more dis
ussion. Instead of starting with an empty heap,

ompile now needs to build an initial heap, using an auxiliary fun
tion allo
ateInitialHeap.

allo
ateInitialHeap is passed the
ompiled_
ode from the
ompile fun
tion. It allo
ates a

single big frame
ontaining a
losure for ea
h element of
ompiled_
ode, and returns the initial

heap and the
odeStore:

197

> allo
ateInitialHeap :: [(Name, [Instru
tion℄)℄ -> (TimHeap, CodeStore)

> allo
ateInitialHeap
ompiled_
ode

> = (heap, (global_frame_addr, offsets))

> where

> indexed_
ode = zip2 [1..℄
ompiled_
ode

> offsets = [(name, offset) | (offset, (name,
ode)) <- indexed_
ode℄

>
losures = [(PushMarker offset :
ode, global_frame_addr) |

> (offset, (name,
ode)) <- indexed_
ode℄

> (heap, global_frame_addr) = fAllo
 hInitial
losures

allo
ateInitialHeap works as follows. First the
ompiled_
ode list is indexed, by pairing

ea
h element with a frame o�set, starting at 1. Now this list is separately pro
essed to produ
e

offsets, the mapping from super
ombinator names to addresses, and
losures, the list of

losures to be pla
ed in the global frame. Finally, the global frame is allo
ated, and the resulting

heap is returned together with the
ode store.

Noti
e that global_frame_addr is used in
onstru
ting
losures; the frame pointer of ea
h

super
ombinator
losure is the global frame pointer itself, so that the PushMarker instru
tion

pushes an update frame referring to the global frame.

Exer
ise 4.27. Make the required modi�
ations to showSCDefns,
ompileA, amToClosure and
ompile.

Test whether updating of CAFs does in fa
t take pla
e.

Exer
ise 4.28. The PushMarker instru
tion added inside allo
ateInitialHeap is only required for

CAFs, and is a waste of time for super
ombinators with one or more arguments. Modify

allo
ateInitialHeap to plant the PushMarker instru
tion only for CAFs. (Hint: you
an i-

dentify non-CAFs by the fa
t that their
ode begins with a Take n instru
tion, where n > 0.)

Measure the improvement.

Exer
ise 4.29. An indire
tion addressing mode is only required for CAFs, and not for non-CAF super-

ombinators. Modify the
onstru
tion of initial_env to take advantage of this fa
t.

4.7.2 Modelling the
ode store more faithfully

There is something a little odd about our handling of Labels so far. It is this: the names of

super
ombinators get looked up in the environment at
ompile-time (to map them to a Label

addressing mode), and then again at run-time (to map them to an o�set in the global frame

7

).

This is hardly realisti
: in a real
ompiler, names will be looked up at
ompile-time, but will be

linked to a hard ma
hine address before run-time, so no run-time lookups take pla
e.

We
an model this by
hanging the Label
onstru
tor to take two arguments instead of one,

thus:

timAMode ::= Label name num

| ...as before...

7

We are assuming that we have implemented the
hanges suggested in the previous se
tion for CAFs, but this

se
tion applies also to the pre-CAF versions of the ma
hine.

198

The name �eld re
ords the name of the super
ombinator as before, but now the num says what

o�set to use in the global frame. Just as in the NSuper
omb
onstru
tor of the template ma-

hine, the name �eld is only there for do
umentation and debugging purposes. The
ode store

omponent now be
omes simply the address of the global frame, as you
an see from the revised

rule for Push Label:

(4.22)

Push (Label l k) : i f s h[g : h(i

1

; f

1

); : : : ; (i

n

; f

n

)i℄ g

=) i f (i

k

; f

k

) : s h g

The rule for Enter follows from the Push/Enter relationship.

Exer
ise 4.30. Implement this idea. To do this:

� Change the timAMode type as des
ribed.

� Change the
odeStore type to
onsist only of a frame pointer.

� Change the
ompile fun
tion so that it generates the
orre
t initial state for the ma
hine. In

parti
ular, it must generate an initial_env with the right Label addressing modes.

� Adjust the show fun
tions to a

ount for these
hanges.

4.8 Summary

The �nal TIM
ompilation s
hemes are summarised in Figures 4.7 and 4.8. The obvious question

is `is the TIM better or worse than the G-ma
hine?'; it is a hard one to answer. Our prototypes

are very useful for exploring design
hoi
es, but really no good at all for making serious perfor-

man
e
omparisons. How
an one establish, for example, the relative
osts of a Take instru
tion

ompared with a G-ma
hine Mkap? About the only really
omparable measure we have available

is the heap
onsumption of the two.

Still, it
an be very illuminating to explore another evaluation model, as we have done in

this
hapter, be
ause it suggests other design avenues whi
h
ombine aspe
ts of the TIM

with those of the G-ma
hine. One attempt to do so is the Spineless Tagless G-ma
hine

[Peyton Jones and Salkild 1989, Peyton Jones 1991℄, whi
h adopts the spinelessness and update

me
hanism of TIM, but whose sta
k
onsists of pointers to heap obje
ts (like the G-ma
hine)

rather than
ode-frame pairs (as in TIM).

199

SC[[def ℄℄ � is the TIM
ode for the super
ombinator de�nition def
ompiled in envi-

ronment �.

SC[[f x

1

: : : x

n

= e℄℄ � = UpdateMarkers n : Take d

0

n : is

where (d

0

; is) = R[[e℄℄ �[x

1

7! Arg 1; : : : ; x

n

7! Arg n℄ n

R[[e℄℄ � d is a pair (d

0

; is), where is is TIM
ode whi
h applies the value of the expression

e in environment � to the arguments on the sta
k. The
ode is assumes that the �rst

d slots of the frame are o

upied, and it uses slots (d + 1 : : : d

0

).

R[[e℄℄ � d = B[[e℄℄ � d [Return℄

where e is an integer or arithmeti
 expression

R[[a℄℄ � d = (d ; [Enter (A[[a℄℄ �)℄)

where a is a super
ombinator or lo
al variable

R[[e a℄℄ � d = (d

1

; Push (A[[a℄℄ �) : is)

where a is a super
ombinator, lo
al variable, or integer

(d

1

; is) = R[[e℄℄ � d

R[[e

fun

e

arg

℄℄ � d = (d

2

; Move (d + 1) am

arg

: Push I[[d + 1℄℄ : is

fun

)

where (d

1

; am

arg

) = U [[e

arg

℄℄ (d + 1) � (d + 1)

(d

2

; is

fun

) = R[[e

fun

℄℄ � d

1

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= (d

0

; [Move (d + 1) am

1

; : : : ; Move (d + n) am

n

℄ ++ is)

where (d

1

; am

1

) = U [[e

1

℄℄ (d + 1) � (d + n)

(d

2

; am

2

) = U [[e

2

℄℄ (d + 2) � d

1

: : :

(d

n

; am

n

) = U [[e

n

℄℄ (d + n) � d

n�1

�

0

= �[x

1

7! I[[d + 1℄℄ ; : : : ; x

n

7! I[[d + n℄℄ ℄

(d

0

; is) = R[[e℄℄ �

0

d

n

The letre

ase is similar, ex
ept that �

0

is passed to the
alls to U [[℄℄ instead of �.

R[[Pa
k{t,a}℄℄ � d = (d ; [UpdateMarkers a; Take a a; ReturnConstr t ℄)

R[[
ase e of alt

1

: : : alt

n

℄℄ � d

= (d

0

; Push (Code [Swit
h [bran
h

1

: : : bran
h

n

℄℄) : is

e

)

where (d

1

; bran
h

1

) = E [[alt

1

℄℄ � d

: : :

(d

n

; bran
h

n

) = E [[alt

n

℄℄ � d

(d

0

; is

e

) = R[[e℄℄ � max (d

1

; : : : ; d

n

)

Figure 4.7: Final TIM
ompilation s
hemes (part 1)

200

E [[alt ℄℄ � d , where alt is a
ase alternative, is a pair (d

0

; bran
h), where bran
h is the

Swit
h bran
h
ompiled in environment �. The
ode assumes that the �rst d slots of

the frame are o

upied, and it uses slots (d + 1 : : : d

0

).

E [[<t> x

1

: : : x

n

-> body ℄℄ � d = (d

0

; t -> (is

moves

++ is

body

))

where is

moves

= [Move (d + 1) (Data 1);

: : : ;

Move (d + n) (Data n)℄

(d

0

; is

body

) = R[[e℄℄ �

0

(d + n)

�

0

= �[x

1

7! Arg (d + 1);

: : : ;

x

n

7! Arg (d + n)℄

U [[e℄℄ u � d is a pair (d

0

; am), where am is a TIM addressing mode for expression e

in environment �. If the
losure addressed by am is entered, it will update slot u of

the
urrent frame with its normal form. The
ode assumes that the �rst d slots of the

frame are o

upied, and it uses slots (d + 1 : : : d

0

).

U [[n℄℄ u � d = (d ; IntConst n) where n is an integer
onstant

U [[e℄℄ u � d = (d

0

; Code (PushMarker u : is)) otherwise

where (d

0

; is) = R[[e℄℄ � d

A[[e℄℄ � is a TIM addressing mode for expression e in environment �.

A[[n℄℄ � = IntConst n where n is a number

A[[x ℄℄ � = � x where x is bound by �

I[[d ℄℄ is an indire
tion addressing mode for frame o�set d

I[[d ℄℄ = Code [Enter (Arg d)℄

B[[e℄℄ � d
ont is a pair (d

0

; is), where is is TIM
ode whi
h evaluates e in environment �,

putting its value (whi
h should be an integer) on top of the value sta
k, and
ontinuing

with the
ode sequen
e
ont . The
ode assumes that the �rst d slots of the frame are

o

upied, and it uses slots (d + 1 : : : d

0

).

B[[e

1

+ e

2

℄℄ � d
ont = B[[e

2

℄℄ � d

1

is

1

where (d

1

; is

1

) = B[[e

1

℄℄ � d (Op Add :
ont)

. . . and similar rules for other arithmeti
 primitives

B[[n℄℄ � d
ont = (d ; PushV (IntVConst n) :
ont) where n is a number

B[[e℄℄ � d
ont = (d

0

; Push (Code
ont) : is) otherwise

where (d

0

; is) = R[[e℄℄ � d

Figure 4.8: Final TIM
ompilation s
hemes (part 2)

201

> module ParGM where

> import Utils

> import Language

> --import GM

202

Chapter 5

A Parallel G-ma
hine

5.1 Introdu
tion

In this
hapter we develop an abstra
t ma
hine and
ompiler for a parallel G-ma
hine. It is

based on a simpli�ed version of the parallel G-ma
hine developed as part of ESPRIT proje
t

415; interested readers are referred to [Kingdon et al 1991℄ for an easily a

essible a

ount. A

general introdu
tion to parallel graph redu
tion
an be found in [Peyton Jones 1989℄.

5.1.1 Parallel fun
tional programming

Writing parallel imperative programs is hard. Amongst the reasons for this are the following:

� The programmer has to
on
eive of a parallel algorithm whi
h meets the spe
i�
ation of

the problem.

� The algorithm must be translated into the programming language
onstru
ts provided

by the language. This is likely to entail: identi�
ation of
on
urrent tasks, de�ning the

interfa
es between tasks to allow them to syn
hronise and
ommuni
ate. Shared data may

need to be espe
ially prote
ted, to prevent more than one task a

essing a variable at on
e.

� The programmer may be responsible for assigning tasks to pro
essors, ensuring that tasks

that need to
ommuni
ate with one another are assigned to pro
essors that are physi
ally

onne
ted.

� Finally, in systems with no programmer
ontrol over the s
heduling poli
y, the programmer

must prove that the
olle
tion of
on
urrent tasks will exe
ute
orre
tly under all possible

interleavings of task operations.

In
ontrast, when programming in a fun
tional language, only the �rst of these points applies.

Consider the following (
ontrived) example program, psum n, whi
h
al
ulates the sum of the

numbers 1 : : : n.

psum n = dsum 1 n;

dsum lo hi = let mid = (lo+hi)/2 in

if (hi==lo) hi ((dsum lo mid)+(dsum (mid+1) hi))

203

The dsum fun
tion works by dividing the problem into two, roughly equal, parts. It then

ombines the two results together to generate the answer. This is a
lassi
 divide-and-
onquer

algorithm.

Noti
e that neither of the fun
tions dsum or psum in
ludes any mention of parallel primitives in

the language; so why is psum a parallel algorithm? For
omparison, we
an write a sequential

algorithm: ssum.

ssum n = if (n==1) 1 (n + ssum (n-1))

This fun
tion is a sequential algorithm be
ause its data dependen
ies are inherently sequential.

In the ssum example, what we mean by this is that the addition in ssum n
an only take pla
e

on
e ssum (n-1) has been evaluated. This in turn
an only take pla
e on
e we have evaluated

ssum (n-2), and so on. We may summarise this distin
tion as:

A fun
tion implements a parallel algorithm whenever it permits the
on
urrent eval-

uation of two or more sub-expressions of its body.

As with any other programming language, a parallel algorithm is essential. Noti
e, however, the

ontrasts with parallel imperative programming:

� No new language
onstru
ts are required to express parallelism, syn
hronisation or
om-

muni
ation. The
on
urren
y is impli
it, and new tasks are
reated dynami
ally to be

exe
uted by the ma
hine whenever it has spare
apa
ity.

� No spe
ial measures are taken to prote
t data shared between
on
urrent tasks. For

example, mid is safely shared between the two
on
urrent tasks in dsum.

� We need no new proof te
hniques to reason about the parallel programs, as all of the

te
hniques we use for sequentially exe
uted fun
tional programs still work. We also note

that deadlo
k
an only arise as a result of a self-dependen
y, su
h as

letre
 a = a+1 in a

Expressions depending on their own value are meaningless, and their non-termination is

the same behaviour as observed in the sequential implementation.

� The results of a program are determinate. It is not possible for the s
heduling algorithm

to
ause answers to di�er between two runs of the same program.

In summary, we suggest that these features allow us to express parallel algorithms
onveniently,

without having to solve a large number of low-level problems. Perhaps we
an
hara
terise this

as:

A parallel imperative program spe
i�es in detail resour
e allo
ation de
isions whi
h

a parallel fun
tional program does not even mention.

This means that the ma
hine will have to be able to make resour
e allo
ation de
isions au-

tomati
ally. We will pay, with a loss of exe
ution eÆ
ien
y, whenever these de
isions are not

optimal.

204

Annotations

The high level of abstra
tion o�ered by fun
tional languages pla
es heavy demands on the

ompile-time and run-time resour
e allo
ators. Rather than leave all resour
e allo
ation de
i-

sions to the system, we will introdu
e an annotation, par, whi
h initiates a new parallel thread.

The annotation is a meaning-preserving de
oration of the program text; in the
ase of par it

has the following syntax and meaning:

par E

1

E

2

= E

1

E

2

That is: par is a synonym for appli
ation. Where it di�ers is that we intend that the expression

E

2

should be evaluated by a
on
urrent task. As an example we will now rewrite the dsum

fun
tion using this annotation:

dsum lo hi = let mid = (lo+hi)/2 in

let add x y = x+y

if (lo==hi) hi (par (add (dsum lo mid))

(dsum (mid+1) hi))

We see that par
auses the se
ond argument to + to be evaluated in parallel. The par annotation

an be inserted by the programmer or, in prin
iple, by a
lever
ompiler. Su
h
leverness is,

however, beyond the s
ope of this book, so we will assume that the pars have already been

inserted.

5.1.2 Parallel graph redu
tion

We have seen in this book that graph redu
tion is a useful implementation te
hnique for se-

quential ma
hines; it will be no surprise that it is also suited to the implementation of parallel

ma
hines. In fa
t it has a number of bene�ts:

� There is no sequential
on
ept of program
ounter; graph redu
tion is de
entralised and

distributed.

� Redu
tions may take pla
e
on
urrently in many pla
es in the graph, and the relative

order in whi
h they are s
heduled
annot a�e
t the result.

� All
ommuni
ation and syn
hronisation takes pla
e via the graph.

A parallel model

A task is a sequential
omputation whose purpose is to redu
e a parti
ular sub-graph to WHNF.

At any moment there may be many tasks that are able to run; this
olle
tion of sparked tasks

is
alled the spark pool. A pro
essor in sear
h of work fet
hes a new task from the spark pool

and exe
utes it. A task
an be thought of as a virtual pro
essor.

Initially, there is only one task, whose job is to evaluate the whole program. During its exe
ution,

it will hopefully
reate new tasks to evaluate expressions that the main task will later need. These

205

are pla
ed in the spark pool, so that another pro
essor
an pi
k up the task if it has run out of

work. We
all the a
t of pla
ing a task into the spark pool sparking a
hild task.

It is useful to
onsider the intera
tion between parent and
hild tasks. In the evaluate-and-die

model of task management there is a lo
k bit on ea
h graph node. When the bit is on, a task

is exe
uting whi
h will evaluate the node; otherwise the bit is o�. When a parent task requires

the value of a sub-graph for whi
h a task has been sparked, there are three
ases to
onsider:

� the
hild task has not started yet,

� the
hild task has started, but not stopped yet, or

� the
hild task has
ompleted.

In the �rst
ase, the parent task
an evaluate the graph just as if the
hild task was not there.

Of
ourse this sets the lo
k bit, so that when an attempt is made to exe
ute the
hild task

it is immediately dis
arded. The interesting
ase is the se
ond one, in whi
h both parent and

hild are exe
uting. When this is the situation, the parent task must wait for the
hild task to

omplete before pro
eeding. We say that the
hild task is blo
king the parent task. In the third

ase, the node is now in WHNF and unlo
ked, so the parent task will not take very long to fet
h

the value of the graph.

The advantage of the evaluate-and-die model is that blo
king only o

urs when the parent and

hild a
tually
ollide. In all other
ases, the parent's exe
ution
ontinues unhindered. Noti
e

that the blo
king me
hanism is the only form of inter-task
ommuni
ation and syn
hronisation.

On
e a pie
e of graph has been evaluated to WHNF any number of tasks
an simultaneously

inspe
t it without
ontention.

An example

We begin with a sample exe
ution of the simplest parallel program:

main = par I (I 3)

As we will shortly see, the two redu
tions of the identity fun
tion
an take pla
e in parallel.

A good
ompiler will produ
e the following
ode for the main super
ombinator

1

:

e1 ++ par

where e1 = [Pushint 3, Pushglobal "I", Mkap, Push 0℄

par = [Par, Pushglobal "I", Mkap, Update 0, Pop 0, Unwind℄

Initially, there is only one task exe
uting; it is
onstru
ting the sub-expression (I 3). After

exe
uting the
ode sequen
e e1, the ma
hine will be in the state shown in diagram (a) of

Figure 5.1.

After exe
uting e1 the ma
hine en
ounters a Par instru
tion. This
auses it to
reate a new

task to evaluate the node pointed to from the top of the sta
k. We will refer to the new task as

1

Your
ompiler might not produ
e this
ode if it is not sophisti
ated enough.

206

�

-

-

1

-

-

(b)(a)

After Par Instru
tionAfter e1 newly
reated

Task 2:Task 1:Task 1:

�

main

I 3 3I

main

�

Figure 5.1: State after exe
uting e1
ode sequen
e and Par

)

w �

	

-

--

-

j

9

(d)(
)

Unwind

3I

�

Mkap

Task 2:Task 1:

UnwindPushglobal I

Task 2:Task 1:

�

mainmain

�

I 3

Figure 5.2: State after Task 1 exe
utes [Pushglobal I, Mkap℄

Task 2; the original task will be labelled Task 1. This situation is illustrated in diagram (b) of

Figure 5.1.

In diagram (
) (Figure 5.2), we see Task 1
ontinuing with its evaluation; it is performing a

Pushglobal I instru
tion. The newly
reated task { Task 2 { starts with the
ode sequen
e:

[Unwind℄; it therefore starts to unwind the graph it has been assigned to evaluate. Diagram

(d) shows Task 1
ompleting the instantiation of the body of main, and Task 2
ompleting its

unwinding.

Its body instantiated, Task 1 overwrites the redex node, whi
h is main. Task 2 performs a

Push 0 instru
tion, this being the �rst instru
tion in the
ode for the I super
ombinator. This

is shown in diagram (e) (Figure 5.3). In diagram (f) we see Task 1
ommen
e unwinding its

spine, whilst Task 2 performs its updating.

In Figure 5.4, we see Task 2 run to
ompletion. The remainder of the exe
ution of Task 1 is

the same as the sequential G-ma
hine, so we omit it.

This
on
ludes a brief overview of the parallel G-ma
hine's exe
ution with
on
urrent tasks. We

now provide a minimal parallel G-ma
hine.

207

	

U

q

/

�

w �

	

-

�w

(f)(e)

#

#

Update 1UnwindPush 0Update 0

3I

�

Task 2:Task 1:

� �

Task 1: Task 2:

I 3

Figure 5.3: State after Task 1 exe
utes [Update 0, Unwind℄

-

�

	

N

q

U

q

w w

(h)(g)

#

#

UnwindUnwindPop 1Unwind

3I

Task 2:Task 1:

� �

Task 1: Task 2:

I 3

Figure 5.4: State after Task 1 exe
utes [Unwind, Unwind℄

5.2 Mark 1: A minimal parallel G-ma
hine

The �rst ma
hine we present
an be based on any of the G-ma
hines from Chapter 3, ex
ept

the Mark 1; we need this restri
tion to ensure that updating is done. To this basi
 ma
hine we

need to add the ma
hinery for parallelism. We make the following basi
 assumptions.

1. There is a shared global graph, whi
h all pro
essors
an a

ess.

2. There are an in�nite number of pro
essors. This means that there is always a pro
essor

available to exe
ute a task.

3. There is no lo
king of graph nodes. This means that it is possible that di�erent tasks will

re-evaluate the same expression.

5.2.1 Data type de�nitions

We will be making
onsiderable use of state a

ess fun
tions in this
hapter. Although they are

not parti
ularly interesting, for
ompleteness they are in
luded in this se
tion.

208

In a parallel ma
hine the state pgmState is split into two
omponents: a global
omponent,

pgmGlobalState; and a lo
al
omponent, pgmLo
alState. The pgmLo
alState
ontains the

pro
essors that will exe
ute the program. The pgmGlobalState
ontains global data stru
tures

{ of whi
h the heap is the most frequently used { that are manipulated by the pro
essors.

> type PgmState = (PgmGlobalState, -- Current global state

> [PgmLo
alState℄) -- Current states of pro
essors

The global state
omponent

To a

ommodate all of the possible ma
hines you might use as a basis for your parallel imple-

mentation, the global state
onsists of �ve
omponents: gmOutput, whi
h is the output printed

as the answer to the evaluation of the program; gmHeap, whi
h is the heap; gmGlobals, whi
h is

used to point to the unique node in the heap for ea
h super
ombinator; gmSparks, whi
h is the

task pool and will be used to hold tasks before we begin to exe
ute them; and gmStats, whi
h

is a global
lo
k.

> type PgmGlobalState = (GmOutput, -- output stream

> GmHeap, -- Heap of nodes

> GmGlobals, -- Global addresses in heap

> GmSparks, -- Sparked task pool

> GmStats) -- Statisti
s

We
onsider ea
h of these
omponents in turn.

� The gmOutput
omponent was introdu
ed in the Mark 6 G-ma
hine (see Se
tion 3.8). It

is used to a

umulate the result of exe
uting programs that
an generate stru
tured data,

and is simply a string.

> type GmOutput = [Char℄

The fun
tion to get the gmOutput from a pgmState is pgmGetOutput is:

> pgmGetOutput :: PgmState -> GmOutput

> pgmGetOutput ((o, heap, globals, sparks, stats), lo
als) = o

� The heap data stru
ture is the same as we used for the sequential G-ma
hine.

> type GmHeap = Heap Node

To get the heap from a pgmState we use pgmGetHeap.

> pgmGetHeap :: PgmState -> GmHeap

> pgmGetHeap ((o, heap, globals, sparks, stats), lo
als) = heap

209

� The addresses of global nodes in the heap are stored in gmGlobals; this too is the same

stru
ture we used in the sequential G-ma
hine.

> type GmGlobals = ASSOC Name Addr

Obtaining the gmGlobals from a pgmState is performed using the pgmGetGlobals fun
-

tion.

> pgmGetGlobals :: PgmState -> GmGlobals

> pgmGetGlobals ((o, heap, globals, sparks, stats), lo
als) = globals

� The spark pool is represented by the gmSparks
omponent. It holds the addresses of nodes

in the graph whi
h have been marked by the par annotation as needing to be evaluated

on
urrently.

> type GmSparks = [Addr℄

A

ess to this
omponent is a
hieved by using the fun
tion pgmGetSparks.

> pgmGetSparks :: PgmState -> GmSparks

> pgmGetSparks ((o, heap, globals, sparks, stats), lo
als) = sparks

� Finally, in the parallel G-ma
hine we will hold the a

umulated statisti
s in the global

omponent. It is represented as a list of numbers; these detail how long ea
h task in the

ma
hine ran for, before it
ompleted.

> type GmStats = [Int℄

A

ess to this
omponent is a

omplished using pgmGetStats.

> pgmGetStats :: PgmState -> GmStats

> pgmGetStats ((o, heap, globals, sparks, stats), lo
als) = stats

The lo
al state
omponent

The lo
al
omponent of the parallel G-ma
hine
onsists of a list of pro
essors; a pro
essor is

represented as a task. Again, to make the parallel ma
hine
apable of exe
uting with any

G-ma
hine as its basis, we make the state of ea
h pro
essor a 5-tuple:

> type PgmLo
alState = (GmCode, -- Instru
tion stream

> GmSta
k, -- Pointer sta
k

> GmDump, -- Sta
k of dump items

> GmVSta
k, -- Value sta
k

> GmClo
k) -- Number of ti
ks the task

> -- has been a
tive

We now
onsider ea
h
omponent in turn.

210

� The
ode sequen
e is simply a list of instru
tions.

> type GmCode = [Instru
tion℄

� As in the sequential G-ma
hine, the sta
k is a list of addresses in heap.

> type GmSta
k = [Addr℄

� If you are using a Mark 4 G-ma
hine (or any later mark) as a basis for your parallel

implementation, then a dump is needed. This is used as a sta
k of dump items, ea
h of

type gmDumpItem.

> type GmDump = [GmDumpItem℄

> type GmDumpItem = (GmCode, GmSta
k)

� If you have used the Mark 7 G-ma
hine as the basis of your implementation you will need

a V-sta
k for ea
h pro
essor.

> type GmVSta
k = [Int℄

� We also provide ea
h pro
essor with a
lo
k. This re
ords how many instru
tions the task

has exe
uted:

> type GmClo
k = Int

State a

ess fun
tions

Although we have already de�ned some state a

ess fun
tions for the parallel ma
hine, we will

�nd it
onvenient to de�ne a few more. Ea
h pro
essor will make one state transition, during

whi
h it behaves as if it were a sequential ma
hine. If we make the state gmState a pair
onsisting

of the global
omponent of the
urrent ma
hine state and a single pro
essor state, then we have

a superset of the state
omponents of any of the sequential G-ma
hines.

> type GmState = (PgmGlobalState, PgmLo
alState)

It follows that we
an simply rede�ne the state a

ess fun
tions we used in the sequential ma
hine

to work with the new type of state. Here are the type signatures of the global put fun
tions:

> putOutput :: GmOutput -> GmState -> GmState

> putHeap :: GmHeap -> GmState -> GmState

> putSparks :: GmSparks -> GmState -> GmState

> putStats :: GmStats -> GmState -> GmState

The
orresponding get fun
tions have type-signatures:

211

> getOutput :: GmState -> GmOutput

> getHeap :: GmState -> GmHeap

> getGlobals :: GmState -> GmGlobals

> getSparks :: GmState -> GmSparks

> getStats :: GmState -> GmStats

For a

ess to the
omponents lo
al to a pro
essor we need put fun
tions with the following

type-signatures:

> putCode :: GmCode -> GmState -> GmState

> putSta
k :: GmSta
k -> GmState -> GmState

> putDump :: GmDump -> GmState -> GmState

> putVSta
k :: GmVSta
k -> GmState -> GmState

> putClo
k :: GmClo
k -> GmState -> GmState

The get fun
tions have types:

> getCode :: GmState -> GmCode

> getSta
k :: GmState -> GmSta
k

> getDump :: GmState -> GmDump

> getVSta
k :: GmState -> GmVSta
k

> getClo
k :: GmState -> GmClo
k

Exer
ise 5.1. Write the a

ess fun
tions with the types given above.

GOT HERE ZZZZ KH

5.2.2 The evaluator

The stru
ture of the evaluator eval will be familiar; it is the similar to the one used in the

G-ma
hine.

> eval :: PgmState -> [PgmState℄

> eval state = state: restStates

> where

> restStates | gmFinal state = [℄

> | otherwise = eval (doAdmin (steps state))

The di�eren
e is that we
all steps instead of step. The steps fun
tion must run down the

list of pro
essors doing a single step on ea
h. The pre
ise sequen
e of events is:

1. First we extra
t the addresses that were sparked in the previous
all to steps, from the

state.

2. Next, we turn them into pro
esses. This is labelled newtasks.

212

3. The spark pool
omponent of the state is set to empty.

4. We in
rement the
lo
k for ea
h pro
essor that is about to exe
ute.

5. Finally, we use mapA

uml to perform a sequen
e of step transitions, one for ea
h pro
essor.

> steps :: PgmState -> PgmState

> steps state

> = mapA

uml step global' lo
al'

> where ((out, heap, globals, sparks, stats), lo
al) = state

> newtasks = [makeTask a | a <- sparks℄

> global' = (out, heap, globals, [℄, stats)

> lo
al' = map ti
k (lo
al ++ newtasks)

To
reate a task to evaluate a node at address addr you must de�ne a makeTask fun
tion. For

ma
hines based on G-ma
hines 2 or 3 this will be:

> makeTask :: Addr -> PgmLo
alState

> makeTask addr = ([Unwind℄, [addr℄, [℄, [℄, 0)

For later marks of the G-ma
hine we use:

> makeTask addr = ([Eval℄, [addr℄, [℄, [℄, 0)

In
rementing the
lo
k
omponent of a pro
essor is a

omplished using ti
k.

> ti
k (i, sta
k, dump, vsta
k,
lo
k) = (i, sta
k, dump, vsta
k,
lo
k+1)

The ma
hine has terminated when there are no more sparks in the spark pool, and there are no

more pro
essors exe
uting tasks.

> gmFinal :: PgmState -> Bool

> gmFinal s = se
ond s == [℄ && pgmGetSparks s == [℄

We use the step fun
tion to perform a single step on a pro
essor.

> step :: PgmGlobalState -> PgmLo
alState -> GmState

> step global lo
al = dispat
h i (putCode is state)

> where (i:is) = getCode state

> state = (global, lo
al)

The doAdmin fun
tion eliminates pro
essors that have �nished exe
uting. A pro
essor has �n-

ished when the
ode
omponent is empty. When this is the
ase, we must update the statisti
s

omponent of the state, with the number of instru
tions it took the pro
essor to
omplete its

task.

213

> doAdmin :: PgmState -> PgmState

> doAdmin ((out, heap, globals, sparks, stats), lo
al)

> = ((out, heap, globals, sparks, stats'), lo
al')

> where (lo
al', stats') = foldr filter ([℄, stats) lo
al

> filter (i, sta
k, dump, vsta
k,
lo
k) (lo
al, stats)

> | i == [℄ = (lo
al,
lo
k:stats)

> | otherwise = ((i, sta
k, dump, vsta
k,
lo
k): lo
al, stats)

We now
onsider the new instru
tion transitions.

The transition for the Par instru
tion

The only new instru
tion that must be added is Par. Its e�e
t is to mark the node at the top of

the sta
k so that the ma
hine may
reate a task to evaluate the node to WHNF. To do this, the

instru
tion must modify the global
omponent of the state by adding the address of the node

to the spark pool.

(5.1)

hh m t i hPar : i a : si

=) hh m a : ti h i si

The �rst tuple {
onsisting of h, m and t { is the global state
omponent, with h, m and t being

the heap, global address map and spark pool respe
tively. The se
ond tuple {
onsisting of an

instru
tion stream and a sta
k { is a parti
ular task's lo
al state; depending on the version of

the G-ma
hine you have used as a basis you may need to add other
omponents to the lo
al

state.

The e�e
t of Par is to add the address a to the spark pool. It is implemented as follows:

> par :: GmState -> GmState

> par s = s

Exer
ise 5.2. Modify showInstru
tion, dispat
h and instru
tion so that Par is
orre
tly handled.

5.2.3 Compiling a program

A simple
ompiler
an be
onstru
ted for a parallel ma
hine based on any of the sequential

ma
hines (ex
ept the Mark 7), by providing a
ompiled primitive for the par fun
tion. More

extensive modi�
ations are required for the Mark 7 based ma
hines.

The other modi�
ation required lies in the
ompile fun
tion, where the various
omponents are

now to be found in di�erent lo
ations, and of
ourse there are now a number of pro
essors. The

new de�nition is:

>
ompile :: CoreProgram -> PgmState

>
ompile program

> = (([℄, heap, globals, [℄, [℄), [initialTask addr℄)

> where (heap, globals) = buildInitialHeap program

> addr = aLookup globals "main" (error "main undefined")

214

This sets the global
omponent to hold the heap and global map, as used in the sequential

G-ma
hine. We also pla
e a task in the lo
al
omponent, to initiate the exe
ution.

> initialTask :: Addr -> PgmLo
alState

> initialTask addr = (initialCode, [addr℄, [℄, [℄, 0)

If you use the Mark 2 or Mark 3 sequential G-ma
hine as a basis you need to de�ne initialCode

as:

> initialCode :: GmCode

> initialCode = [Unwind℄

For the Mark 4 or Mar 5 ma
hine this is
hanged to:

> initialCode = [Eval℄

And, to deal with data stru
tures, the Mark 6 and Mark 7 ma
hine has the following

initialCode:

> initialCode = [Eval, Print℄

We now
onsider how to add par to the primitive fun
tions of the ma
hine. We begin by

onsidering those ma
hines based on sequential G-ma
hines Marks 2 through to 6.

Using the Marks 2{6 G-ma
hine as a basis

We need to in
lude the following in the de�nition of
ompiledPrimitives:

> ("par", 2, [Push 1, Push 1, Mkap, Push 2, Par, Update 2, Pop 2, Unwind℄)

This rather
rypti
 pie
e of
ode performs the following task when the fun
tion par is applied

to the two arguments: E

1

and E

2

.

1. First we
onstru
t the appli
ation of E

1

to E

2

; this is the job of the sequen
e:

[Push 1, Push 1, Mkap℄

2. Next, Push 2 makes a
opy of the pointer to E

2

. The Par instru
tion then adds this

address to the spark pool.

3. Finally, we perform the usual updating and tidying-up after an instantiation.

215

Using the Mark 7 G-ma
hine as a basis

As mentioned above, this is a slightly tri
kier operation. We need to modify the
ompiler

fun
tions
ompileR and
ompileE to re
ognise the spe
ial
ases involving par. First
ompileR

needs the following
ase added:

>
ompileR (EAp (EAp (EVar "par") e1) e2) args

> =
ompileC e2 args ++ [Push 0, Par℄ ++

>
ompileC e1 (argOffset 1 args) ++ [Mkap, Update n, Pop n, Unwind℄

> where n = #args

This uses the C s
heme to
ompile e2, whi
h is then sparked. The expression e1 is
ompiled

using the C s
heme, before we make the appli
ation node. Finally, we perform the updating and

tidying-up of the sta
k.

Next, we modify
ompileE so that it has a
ase:

>
ompileE (EAp (EAp (EVar "par") e1) e2) args

> =
ompileC e2 args ++ [Push 0, Par℄ ++

>
ompileC e1 (argOffset 1 args) ++ [Mkap, Eval℄

This only di�ers from the
ase given for
ompileR be
ause it uses Eval to for
e the appli
ation

node that is
reated to WHNF.

With these two modi�
ations to the
ompiler, it suÆ
es to add the following to the primitives:

> ("par", ["x","y"℄, (EAp (EAp (EVar "par") (EVar "x")) (EVar "y")))

Noti
e that we
ould use this approa
h with the Mark 5 or Mark 6 based ma
hines.

Exer
ise 5.3. Make the modi�
ations to your
ompiler, so that there is a par fun
tion de�ned.

Exer
ise 5.4. Why do we perform the sparking of the graph for the se
ond argument before
onstru
ting

the �rst argument in the spe
ial
ases for

ompileR and
ompileE?

5.2.4 Printing the results

On
e we have
omputed the states of the ma
hine we
ontrol the display of them by using

showResults. This prints out: the
ode for the super
ombinators, the state transitions and the

statisti
s. It has type:

> showResults :: [PgmState℄ -> [Char℄

To print the super
ombinator
ode we use the same showSC fun
tions as that for the G-ma
hine;

it has type:

> showSC :: PgmState -> (Name, Addr) -> Iseq

216

The fun
tion showState is used to display the state of lo
al pro
esses during the transitions.

Be
ause we have a parallel ma
hine there is now likely to be more than one task exe
uting at

on
e. It has type:

> showState :: PgmState -> Iseq

Two other fun
tions need to be modi�ed: showStats and showOutput. They have types:

> showStats :: PgmState -> Iseq

> showOutput :: GmOutput -> Iseq

Exer
ise 5.5. Modify the fun
tions: showResults, showSC, showState, showStats and showOutput.

De�ne a new display fun
tion showSparks with type:

> showSparks :: GmSparks -> Iseq

Exer
ise 5.6. Try running the parallel G-ma
hine on the following program.

main = par (S K K) (S K K 3)

How long does it take in ma
hine
y
les? How long does it take for the equivalent sequential

program:

main = S K K (S K K 3)

Exer
ise 5.7. What happens when we run the program:

main = par I (I 3)

Is the use of par justi�ed in this program?

5.3 Mark 2: The evaluate-and-die model

A problem with the Mark 1 ma
hine is that it risks
reating many tasks to redu
e the same

node in the heap, thereby dupli
ating the work done by the ma
hine. The way to prevent this

is to lo
k the nodes during unwinding. This will blo
k any other task that en
ounters the same

node. We must also remember to unlo
k nodes on
e they be
ome free again; this allows blo
ked

tasks to resume.

The only instru
tion that
auses an unlo
ked node to be
ome lo
ked is Unwind; it does this

to ea
h node on the spine that it en
ounters. The reason we
hoose this instru
tion, rather

than Eval, is that it is possible to en
ounter a lo
ked node part way through unlo
king a spine;

using Eval we would not
at
h this
ase. Similarly, the only instru
tion that will blo
k a task

is Unwind. After all, it is the only instru
tion that needs to inspe
t a node's value.

Conversely, the only instru
tion that will unlo
k a lo
ked node is Update. A previously lo
ked

node is unlo
ked when it is known to be in WHNF. But we know that all nodes in the spine

below the redex are in WHNF, when we are about to update the redex, and hen
e we should

unlo
k all nodes below the root of the redex.

217

5.3.1 The node data stru
ture

The improvements we intend to in
orporate require very few
hanges to be made to the ma
hine's

data stru
tures. First, we must add two sorts of new nodes to the node data type: these will be

NLAp, the lo
ked appli
ation nodes; and NLGlobal, lo
ked super
ombinator nodes. We will see

how they are used in the se
tion on the new instru
tion transitions.

> data Node = NNum Int -- Numbers

> | NAp Addr Addr -- Appli
ations

> | NGlobal Int GmCode -- Globals

> | NInd Addr -- Indire
tions

> | NConstr Int [Addr℄ -- Constru
tors

> | NLAp Addr Addr -- Lo
ked appli
ations

> | NLGlobal Int GmCode -- Lo
ked globals

Exer
ise 5.8. Rewrite the showNode fun
tion to deal with the new lo
ked nodes.

5.3.2 The instru
tion set

The only
hange that needs to be made is to lo
k and unlo
k nodes at the right pla
es. We must

lo
k appli
ation nodes and super
ombinators with zero arguments as we unwind them. When a

node is updated all of the nodes in the spine below it must be unlo
ked. We use two fun
tions

to perform lo
king and unlo
king of heap nodes. The lo
k fun
tion turns an unlo
ked, but

possibly updatable, node into a lo
ked one. The nodes that need to be lo
ked are appli
ation

nodes, and global nodes with no arguments.

> lo
k :: Addr -> GmState -> GmState

> lo
k addr state

> = putHeap (newHeap (hLookup heap addr)) state

> where

> heap = getHeap state

> newHeap (NAp a1 a2) = hUpdate heap addr (NLAp a1 a2)

> newHeap (NGlobal n
) | n == 0 = hUpdate heap addr (NLGlobal n
)

> | otherwise = heap

When we unlo
k a lo
ked appli
ation node we need to ensure that the spine that it points to is

also unlo
ked; unlo
k is therefore re
ursive.

> unlo
k :: Addr -> GmState -> GmState

> unlo
k addr state

> = newState (hLookup heap addr)

> where

> heap = getHeap state

> newState (NLAp a1 a2)

> = unlo
k a1 (putHeap (hUpdate heap addr (NAp a1 a2)) state)

> newState (NLGlobal n
)

218

> = putHeap (hUpdate heap addr (NGlobal n
)) state

> newState n = state

The new step transitions for Unwind and Update should be de�ned in terms of lo
k and unlo
k;

these transitions are now de�ned. In the Rule 5.2, we see that apart from lo
king the appli
ation

node { whi
h is represented by *NAp { Unwind has the same transition as it did in the Mark 1

ma
hine.

(5.2)

hh[a : NAp a

1

a

2

℄ m ti h[Unwind℄ a : si

=) hh[a : *NAp a

1

a

2

℄ m ti h[Unwind℄ a

1

: a : si

The same is also true of the transition rule for Unwind when it has a super
ombinator of arity

zero on top of the sta
k. In this
ase *NGlobal is a lo
ked global node.

(5.3)

hh[a : NGlobal 0
℄ m ti h[Unwind℄ a : si

=) hh[a : *NGlobal 0
℄ m ti h
 a : si

In the new transition rule for Update, when we update the root of the redex, whose address is a,

we must unlo
k all of the nodes in the spine des
ending from a. The transition rule is therefore:

(5.4)

hh

2

6

6

6

6

6

4

a

0

1

: NGlobal n

a

0

2

: *NAp a

0

1

a

1

� � �

a

0

n�1

: *NAp a

0

n�2

a

n�2

a

n

: *NAp a

0

n�1

a

n�1

3

7

7

7

7

7

5

m ti hUpdate n : i a : a

1

: : : : : a

n

: si

=) hh

2

6

6

6

6

6

4

a

0

1

: NGlobal n

a

0

2

: NAp a

0

1

a

1

� � �

a

0

n�1

: NAp a

0

n�2

a

n�2

a

n

: NInd a

3

7

7

7

7

7

5

m ti h i a

1

: : : : : a

n

: si

Exer
ise 5.9. Modify the de�nitions of the transition fun
tions unwind and update. You should use

the lo
k and unlo
k fun
tions in your
ode.

You will also need to `look through' lo
ked nodes on rearranging the sta
k, so getArg be
omes:

> getArg (NLAp a1 a2) = a2

Exer
ise 5.10. Try running this program on your ma
hine:

main = twi
e' (twi
e' (twi
e' (S K K))) 3

twi
e' f x = par f (f x)

Exer
ise 5.11. A divide-and-
onquer program exe
utes a par instru
tion in ea
h running pro
ess every

thirty instru
tions. The pro
esses do not die. How many simulated
lo
k ti
ks pass before we have

one task for ea
h ele
tron in the universe? (Hint: there are approximately 10

85

ele
trons in the

universe.)

Exer
ise 5.12. If a pro
essor
osts $0.01, how long
an the program of Exer
ise 5.11 run before nobody

an a�ord the ma
hine? (Hint: the US federal budget is approximately $5� 10

12

.)

219

5.4 Mark 3: A realisti
 parallel G-ma
hine

As Exer
ises 5.11 and 5.12 will have shown there are physi
al and e
onomi
 limitations to the

amount of parallelism available in the real world. The model of parallelism that we are using is

not very realisti
. We are
reating a new pro
essor to exe
ute ea
h parallel task, and in the real

world we will very qui
kly run out of resour
es.

5.4.1 S
heduling poli
y

A more realisti
 model must involve restri
ting the amount of parallelism to that provided by

the hardware. This is easily a

omplished by pla
ing an upper limit on the number of pro
essors

that
an run at any one time. As a
onsequen
e, whenever there are no pro
essors available to

exe
ute a task, the task will remain un
hanged.

When there are more pro
essors than tasks, some pro
essors will be idle. On the other hand,

when the reverse is the
ase, we will be fa
ed with the problem of de
iding whi
h task we will

exe
ute next. This de
ision is
alled a s
heduling poli
y.

5.4.2 Conservative and spe
ulative parallelism

Some tasks will be more important than others. We
an usefully
lassify tasks into one of two

groups:

� tasks whose results will de�nitely be needed; and

� tasks whose results may be needed.

We refer to tasks in the �rst
ategory as
onservative tasks, whilst those in the se
ond are termed

spe
ulative tasks.

If we
hoose to allow spe
ulative parallel tasks, then we must address issues of priority in

s
heduling tasks. That is: we must rank the tasks in order of importan
e. We must also allow

di�erent tasks with the same priority the same amount of
omputing time. To see why this is

desirable,
onsider evaluating two bran
hes of a
ase expression { e1 and e2 { in parallel with

the evaluation of the dis
riminant expression e0.

ase e0 of

<1> -> e1

<2> -> e2

Until e0 has
ompleted its evaluation, we do not know whi
h of e1 or e2 will be required; it

therefore makes sense to try to evaluate an equal amount of ea
h. This sort of s
heduling poli
y

is termed fair s
heduling. Noti
e, in this example, that on
e e0 has
ompleted, one of the tasks

(e1 or e2) will be
ome needed, and the other should be killed. The priorities of a task therefore

need to be adjusted during the exe
ution of a task.

In this book we make no attempt to implement a ma
hine suitable for spe
ulative parallelism.

We make the ex
use that this is a `hard problem', and leave the matter alone. Hen
eforth, all

220

uses of the par primitive are assumed to o

ur in situations whi
h give rise only to
onservative

parallelism.

In the Mark 3 parallel G-ma
hine, we will only have a limited number of a
tive tasks within

the ma
hine. These are exe
uted by the pro
essors in the ma
hine. There will be only a �xed

number of pro
essors. This �xed number is: ma
hineSize, whi
h we have
urrently set to 4.

> ma
hineSize :: Int

> ma
hineSize = 4

The major
hange to the evaluator lies in the steps fun
tion, whi
h does not just add all of the

tasks that were
reated into the ma
hine. Instead it now uses s
heduler to pi
k repla
ement

tasks for any task that
annot pro
eed.

1. First, we extra
t the sparks in the task pool from the global state
omponent.

2. New tasks are then
reated for the sparks, and are added to the already exe
uting tasks.

3. The s
heduler fun
tion then sele
ts whi
h tasks to exe
ute.

Here is the way we
ode steps:

> steps :: PgmState -> PgmState

> steps state

> = s
heduler global' lo
al'

> where ((out, heap, globals, sparks, stats), lo
al) = state

> newtasks = [makeTask a | a <- sparks℄

> global' = (out, heap, globals, [℄, stats)

> lo
al' = lo
al ++ newtasks

The s
heduling poli
y is very simple: we sele
t the �rst ma
hineSize tasks and run them. These

tasks are then pla
ed at the end of the s
heduling queue. This s
heduling poli
y is usually
alled

a round-robin s
heduling poli
y.

> s
heduler :: PgmGlobalState -> [PgmLo
alState℄ -> PgmState

> s
heduler global tasks

> = (global', nonRunning ++ tasks')

> where running = map ti
k (take ma
hineSize tasks)

> nonRunning = drop ma
hineSize tasks

> (global', tasks') = mapA

uml step global running

Exer
ise 5.13. What happens if the tasks that are exe
uted are not pla
ed at the end of the s
heduling

queue for the next step. (Hint: try it!)

Exer
ise 5.14. One improvement we
an make is to
reate tasks from the spark pool only when there

are idle pro
essors. Modify steps to do this.

221

Exer
ise 5.15. Another improvement is only to s
hedule tasks that
an pro
eed. At the moment we

s
hedule tasks to evaluate nodes that are already in WHNF. We also s
hedule tasks that are blo
ked

be
ause they are attempting to unwind lo
ked nodes. Modify s
heduler so that this no longer

happens.

Exer
ise 5.16. Investigate the use of other s
heduling strategies. For example, try s
heduling the last

task in the task pool.

Does the s
heduling strategy make any di�eren
e to the exe
ution time of the program?

5.5 Mark 4: A better way to handle blo
king

So far we have left blo
ked tasks in the ma
hine's lo
al state, and required the s
heduler

fun
tion to sele
t runnable tasks. This means that the s
heduler fun
tion may have to skip

over a
onsiderable number of blo
ked tasks before
oming a
ross one that it
an run.

We
an do better than this! It would be a mu
h better idea to atta
h a blo
ked task to the

node That
aused it to blo
k. Be
ause a lo
ked node
an
ause an arbitrary number of tasks

to blo
k, we will need to allow a list of tasks to be pla
ed on the lo
ked node. We
all this the

pending list.

How do we use the pending list?

1. When a node is lo
ked, it has its pending list set to [℄.

2. When a task en
ounters a lo
ked node, the task pla
es itself on the pending list of the

lo
ked node.

3. When a lo
ked node is unlo
ked, all of the tasks in its pending list be
ome runnable, and

are transferred to the ma
hine's lo
al state.

To implement the Mark 4 ma
hine we must make the following
hanges to the data stru
tures

of the ma
hine.

5.5.1 Data stru
tures

First, ea
h lo
ked node must now have a pending list; this means that the node data type is

now:

> data Node = NNum Int -- Numbers

> | NAp Addr Addr -- Appli
ations

> | NGlobal Int GmCode -- Globals

> | NInd Addr -- Indire
tions

> | NConstr Int [Addr℄ -- Constru
tors

> | NLAp Addr Addr PgmPendingList -- Lo
ked appli
ations

> | NLGlobal Int GmCode PgmPendingList -- Lo
ked globals

A pending list is just a list of tasks. The tasks in a lo
ked node's pending list will be those that

have been blo
ked on the lo
ked node.

222

> type PgmPendingList = [PgmLo
alState℄

Exer
ise 5.17. Modify showNode to work with the new de�nition of node.

The other
hange is to the type of gmSparks. Instead of being a list of addresses { as it was in

previous parallel G-ma
hines { this is now a list of tasks.

> type GmSparks = [PgmLo
alState℄

Exer
ise 5.18. Modify the par transition so that it pla
es tasks into the spark pool and not addresses.

You should modify showSparks fun
tion to print the number of tasks in the spark pool, and the

steps fun
tion will need to be modi�ed be
ause it no longer needs to turn items in the spark pool

into tasks.

5.5.2 Lo
king and unlo
king

We have been building up to a new way to handle lo
king and unlo
king of nodes. Let us �rst

onsider what happens when a lo
ked node is about to be updated. The Update instru
tion will

be implemented using a
all to unlo
k. Ea
h node in the spine of the expression about to be

overwritten will need to have the tasks in its pending list transferred to the spark pool. To do

this we de�ne the following fun
tion that transfers tasks to the spark pool:

> emptyPendingList :: [PgmLo
alState℄ -> GmState -> GmState

> emptyPendingList tasks state

> = putSparks (tasks ++ getSparks state) state

Exer
ise 5.19. Modify the unlo
k fun
tion so that it empties the tasks in the pending lists into the

spark pool.

The lo
king operation o

urs as part of the Unwind instru
tion. As previously, we use the lo
k

fun
tion to perform the lo
king operation. Now it must give ea
h newly lo
ked node an empty

pending list.

Exer
ise 5.20. Modify the lo
k fun
tion so that it gives lo
ked nodes an empty pending list.

Finally, we dis
uss what happens when a task attempts to unwind a lo
ked node. Clearly, we

pla
e the task onto the node's pending list. But what do we repla
e the task with? Remember

that the type of step is:

> step :: gmState -> gmState

The solution we have adopted is to repla
e the task with an emptyTask:

> emptyTask :: PgmLo
alState

> emptyTask = ([℄, [℄, [℄, [℄, 0)

223

So we need two new transitions for Unwind. We begin with the one for lo
ked appli
ation nodes,

in whi
h we see that the task is pla
ed on the node's pending list and we see that the task is

repla
ed by the emptyTask.

(5.5)

hh[a : *NAp a

1

a

2

pl ℄ m ti h[Unwind℄ a : si

=) hh[a : *NAp a

1

a

2

h[Unwind℄; a : si : pl ℄ m ti emptyTask

The rule for lo
ked global nodes is similar: we see that the task is pla
ed onto the node's pending

list, and is itself repla
ed by the emptyTask.

(5.6)

hh[a : *NGlobal 0
 pl ℄ m ti h[Unwind℄ a : si

=) hh[a : *NGlobal 0
 h[Unwind℄; a : si : pl ℄ m ti emptyTask

Exer
ise 5.21. Modify the unwind fun
tion to implement the new transitions for the Unwind instru
tion.

You will also need to make the getArg fun
tion:

> getArg (NLAp a1 a2 pl) = a2

Exer
ise 5.22. Modify the s
heduler fun
tion to pla
e non-running tasks into the spark pool.

Exer
ise 5.23. Modify the doAdmin fun
tion to �lter out emptyTask's from the lo
al state.

5.6 Con
lusions

This
hapter has shown that, in prin
iple, a shared memory implementation of lazy fun
tional

languages is straightforward. Of
ourse, we have also seen that there are payo�s to be had by

arefully
onsidering optimisations to the simple s
heme we used initially in the Mark 1 ma
hine.

In all of our parallel ma
hines, the graph a
ts as a
ommuni
ation and syn
hronisation medium;

and in the Mark 2 and Mark 3 ma
hines, individual pro
esses will be blo
ked when trying to

a

ess lo
ked nodes in the heap.

So where are the
urrent
hallenges in the parallel implementation of lazy fun
tional languages?

The me
hanisms for parallelism in
luded in this book do not handle the deletion of pro
esses.

If spe
ulative parallelism is going to be used then realisti
 implementations will need to deal

with this problem. On the other hand, �nding the non-spe
ulative parallelism is often diÆ
ult,

and in large programs this may even be intra
table. Attempts have been made to use abstra
t

interpretation for this purpose, and although the results look promising, they should be regarded

tentatively.

One �nal area that we have not
overed is that of distributed memory parallel ma
hines. Again,

in prin
iple they are similar to shared memory ma
hines, but the pra
ti
alities are quite di�erent.

Arranging the message passing so as to avoid deadlo
k is something of a bla
k art.

224

Chapter 6

Lambda Lifting

6.1 Introdu
tion

In this
hapter

1

we will be looking at ways to extend the set of programs that are a

eptable to

the ma
hines we have looked at previously in the book. The extension that we introdu
e is to

allow lo
al fun
tion de�nitions. We are then fa
ed with alternative approa
hes:

� add a me
hanism to the ma
hines to deal with environments; or

� transform the program so that there are no lo
al fun
tion de�nitions; instead all fun
tions

are de�ned as super
ombinators.

In this book we have always assumed that the se
ond approa
h would be taken.

This
hapter is also an appropriate point at whi
h to introdu
e the
on
ept of full laziness. Again,

this desirable optimisation of fun
tional languages is a
hieved using a program transformation.

6.2 Improving the expr data type

Before we begin the program proper, we must import the language and utilities modules.

> module Lambda where

> import Utils

> import Language

Unfortunately, the data types de�ned there (
oreExpr,
oreProgram and so on) are insuÆ
iently

exible for our needs in this
hapter, so we will attend to this problem �rst. Many
ompiler

passes add information to the abstra
t syntax tree, and we need a systemati
 way to represent

this information. Examples of analyses whi
h generate this sort of information are: free-variable

analysis, binding level analysis, type inferen
e, stri
tness analysis and sharing analysis.

1

Some of the material in this
hapter was �rst published in [Peyton Jones and Lester 1991℄.

225

The most obvious way to add su
h information is to add a new
onstru
tor for annotations to

the expr data type, thus:

> expr * = EVar name

> | ...

> | EAnnot annotation (expr *)

together with an auxiliary data type for annotations, whi
h
an be extended as required:

> annotation ::= FreeVars (set name)

> | Level num

This allows annotations to appear freely throughout the syntax tree, whi
h appears admirably

exible. In pra
ti
e, it su�ers from two major disadvantages:

� It is easy enough to add annotation information in the form just des
ribed, but writing

a
ompiler pass whi
h uses information pla
ed there by a previous pass is downright

awkward. Suppose, for example, that a pass wishes to use the free-variable information

left at every node of the tree by a previous pass. Presumably this information is atta
hed

immediately above every node, but the data type would permit several annotation nodes to

appear above ea
h node, and worse still none (or more than one) might have a free-variable

annotation.

Even if the programmer is prepared to
ertify that there is exa
tly one annotation node

above every tree node, and that it is a free-variable annotation, the implementation will

still perform pattern mat
hing to
he
k these assertions when extra
ting the annotation.

Both of these problems, namely the requirement for un
he
kable programmer assertions

and some implementation overhead, are dire
tly attributable to the fa
t that every an-

notated tree has the rather uninformative type expr, whi
h says nothing about whi
h

annotations are present.

� The se
ond major problem is that further experimentation reveals that two distin
t forms

of annotation are required. The �rst annotates expressions as above, but the se
ond

annotates the binding o

urren
es of variables; that is, the o

urren
es on the left-hand

sides of let(re
) de�nitions, and the bound variables in lambda abstra
tions or
ase

expressions. We will
all these o

urren
es binders. An example of the need to annotate

binders
omes in type inferen
e, where the
ompiler infers a type for ea
h binder, as well

as for ea
h sub-expression.

It is possible to use the expression annotation to annotate binders, but it is
lumsy and

in
onvenient to do so.

We will address the se
ond problem �rst, sin
e it has an easy solution. Re
all from Se
tion 1.3

that the expr type was parameterised with respe
t to the type of its binders; we repeat its

de�nition here as a reminder:

> expr *

> ::= EVar name || Variables

226

> | ENum num || Numbers

> | EConstr num num || Constru
tor tag arity

> | EAp (expr *) (expr *) || Appli
ations

> | ELet || Let(re
) expressions

> isRe
 || boolean with True = re
ursive,

> [(*, expr *)℄ || Definitions

> (expr *) || Body of let(re
)

> | ECase || Case expression

> (expr *) || Expression to s
rutinise

> [alter *℄ || Alternatives

> | ELam [*℄ (expr *) || Lambda abstra
tions

The type
oreExpr is a spe
ialised form of expr in whi
h the binders are of type name. This is

expressed using a type synonym (also repeated from Se
tion 1.3):

>
oreExpr == expr name

The advantage of parameterising expr is that we
an also de�ne other spe
ialised forms. For

example, typedExpr is a data type in whi
h binders are names annotated with a type:

> typedExpr = expr (name, typeExpr)

where typeExpr is a data type representing type expressions.

Returning to annotations on expressions, we
an reuse the same te
hnique by parameterising the

data type of expressions with respe
t to the annotation type. We want to have an annotation on

every node of the tree, so one possibility would be to add an extra �eld to every
onstru
tor with

the annotation information. This is in
onvenient if, for example, you simply want to extra
t the

free-variable information at the top of a given expression without performing
ase analysis on

the root node. This leads to the following idea:

ea
h level of the tree is a pair, whose �rst
omponent is the annotation, and whose

se
ond
omponent is the abstra
t syntax tree node.

Here are the
orresponding Miranda data type de�nitions:

> type AnnExpr a b = (b, AnnExpr' a b)

> data AnnExpr' a b = AVar Name

> | ANum Int

> | AConstr Int Int

> | AAp (AnnExpr a b) (AnnExpr a b)

> | ALet Bool [AnnDefn a b℄ (AnnExpr a b)

> | ACase (AnnExpr a b) [AnnAlt a b℄

> | ALam [a℄ (AnnExpr a b)

227

> type AnnDefn a b = (a, AnnExpr a b)

> type AnnAlt a b = (Int, [a℄, (AnnExpr a b))

> type AnnProgram a b = [(Name, [a℄, AnnExpr a b)℄

Noti
e the way that the mutual re
ursion between annExpr and annExpr' ensures that every

node in the tree
arries an annotation. The sort of annotations
arried by an expression are

now manifested in the type of the expression. For example, an expression annotated with free

variables has type annExpr name (set name).

It is a real annoyan
e that annExpr' and expr have to de�ne two essentially identi
al sets of

onstru
tors. There appears to be no way around this within the Hindley-Milner type system. It

would be possible to abandon the expr type altogether, be
ause the expr * is nearly isomorphi

to annExpr * **, but there are two reasons why we
hoose not to do this. Firstly, the two types

are not quite isomorphi
, be
ause the latter distinguishes ((), ?) from ? while the former

does not. Se
ondly (and more seriously), it is very tiresome to write all the ()'s when building

and pattern mat
hing on trees of type annExpr * **.

This
ompletes our development of the
entral data type. The dis
ussion has revealed some

of the strengths, and a weakness, of the algebrai
 data types provided by modern fun
tional

programming languages.

Exer
ise 6.1. Our present pretty-printing fun
tion, pprint, de�ned in Se
tion 1.5, is only able to print

orePrograms. In order to print out intermediate stages in the lambda lifter we will need a

fun
tion pprintGen whi
h
an display values of type program *. (The `Gen' is short for `generi
'.)

pprintGen needs an extra argument to tell it how to print the binders:

> pprintGen :: (* -> iseq) || fun
tion from binders to iseq

> -> program * || the program to be formatted

> -> [
har℄ || result string

For example, on
e we have written pprintGen we
an de�ne pprint in terms of it:

> pprint prog = pprintGen iStr prog

Write a de�nition for pprintGen, and its asso
iated fun
tions pprExprGen, and so on.

Exer
ise 6.2. Do a similar job for printing values of type annProgram * **. Here you will need two

extra arguments, one for formatting the binders and one for formatting the annotations:

> pprintAnn :: (* -> iseq) || fun
tion from binders to iseq

> -> (** -> iseq) || fun
tion from annotations to iseq

> -> annProgram * ** || program to be displayed

> -> [
har℄ || result string

Write a de�nition for pprintAnn and its asso
iated auxiliary fun
tions.

228

6.3 Mark 1: A simple lambda lifter

Any implementation of a lexi
ally s
oped programming language has to
ope with the fa
-

t that a fun
tion or pro
edure may have free variables. Unless these are removed in some

way, an environment-based implementation has to manipulate linked environment frames, and

a redu
tion-based system is made signi�
antly more
omplex by the need to perform renaming

during substitution. A popular way of avoiding these problems, espe
ially in graph redu
tion

implementations, is to eliminate all free variables from fun
tion de�nitions by means of a trans-

formation known as lambda lifting. Lambda lifting is a term
oined by [Johnsson 1985℄, but the

transformation was independently developed by [Hughes 1983℄.

In our
ontext, lambda lifting transforms a Core-language program into an equivalent one in

whi
h there are no embedded lambda abstra
tions. To take a simple example,
onsider the

program

f x = let g = \y. x*x + y in (g 3 + g 4)

main = f 6

The \y abstra
tion
an be removed by de�ning a new super
ombinator $g whi
h takes x as an

extra parameter, but whose body is the o�ending abstra
tion, and repla
ing the \y abstra
tion

with an appli
ation of $g, giving the following set of super
ombinator de�nitions:

$g x y = x*x + y

f x = let g = $g x in (g 3 + g 4)

main = f 6

How did we de
ide to make just x into the extra parameter to $g? We did it be
ause x is a free

variable of the abstra
tion \y. x*x + y:

De�nition. An o

urren
e of a variable v in an expression e is said to be free in e

if the o

urren
e is not bound by an en
losing lambda or let(re
) expression in e.

On the other hand, y is not free in (\y. x*x + y), be
ause its o

urren
e is in the s
ope of an

en
losing lambda abstra
tion whi
h binds it.

Matters are no more
ompli
ated when re
ursion is involved. Suppose that g was re
ursive,

thus:

f x = letre
 g = \y.
ons (x*y) (g y) in g 3

main = f 6

Now x and g are both free in the \y abstra
tion, so the lambda lifter will make them both into

extra parameters of $g, produ
ing the following set of super
ombinators:

$g g x y =
ons (x*y) (g y)

f x = letre
 g = $g g x in g 3

main = f 6

229

Noti
e that the de�nition of g is still re
ursive, but the lambda lifter has eliminated the lo
al

lambda abstra
tion. The program is now dire
tly implementable by most
ompiler ba
k ends;

and in parti
ular by all of the abstra
t ma
hines in this book.

There one �nal gloss to add: there is no need to treat other top-level fun
tions as extra param-

eters. For example,
onsider the program

h p q = p*q

f x = let g = \y. (h x x) + y in (g 3 + g 4)

main = f 6

Here we do not want to treat h as a free variable of the \y abstra
tion, be
ause it is a
onstant

whi
h
an be referred to dire
tly from the body of the new $g super
ombinator. The same

applies, of
ourse, to the + and * fun
tions! In short, only super
ombinator arguments, and

variables bound by lambda abstra
tions or let(re
) expressions, are
andidates for being free

variables.

It is worth noting in passing that the lexi
al-s
oping issue is not restri
ted to fun
tional lan-

guages. For example, Pas
al allows a fun
tion to be de
lared lo
ally within another fun
tion,

and the inner fun
tion may have free variables bound by the outer s
ope. On the other hand,

the C language does not permit su
h lo
al de�nitions. In the absen
e of side e�e
ts, it is simple

to make a lo
al fun
tion de�nition into a global one: all we need do is add the free variables as

extra parameters, and add these parameters to every
all. This is exa
tly what lambda lifting

does.

6.3.1 Implementing a simple lambda lifter

We are now ready to develop a simple lambda lifter. It will take a
oreProgram and return an

equivalent
oreProgram in whi
h there are no o

urren
es of the ELam
onstru
tor.

> lambdaLift :: CoreProgram -> CoreProgram

The lambda lifter works in three passes:

� First, we annotate every node in the expression with its free variables. This is used by

the following pass to de
ide whi
h extra parameters to add to a lambda abstra
tion. The

freeVars fun
tion has type

> freeVars :: CoreProgram -> AnnProgram Name (Set Name)

The type set * is a standard abstra
t data type for sets, whose de�nition is given in

Appendix A.4.

� Se
ond, the fun
tion abstra
t abstra
ts from ea
h lambda abstra
tion \x

1

: : : x

n

.e its free

variables v

1

: : : v

m

, repla
ing the lambda abstra
tion with an expression of the form

(let s
 = \v

1

: : : v

m

x

1

: : : x

n

. e in s
) v

1

: : : v

m

We
ould use a dire
t appli
ation of the lambda abstra
tion to the free variables, but we

need to give the new super
ombinator a name, so we take the �rst step here by always

giving it the name s
. For example, the lambda abstra
tion

230

(\x. y*x + y*z)

would be transformed to

(let s
 = (\y z x. y*x + y*z) in s
) y z

abstra
t has the type signature:

> abstra
t :: AnnProgram Name (Set Name) -> CoreProgram

Noti
e, from the type signature, that abstra
t removes the free variable information,

whi
h is no longer required.

� Now we traverse the program giving a unique name to ea
h variable. This will have the

e�e
t of making unique all the s
 variables introdu
ed by the previous pass. Indeed, the

sole purpose of introdu
ing the extra let expressions in the �rst pla
e was to give ea
h

super
ombinator a name whi
h
ould then be made unique. As a side e�e
t, all other

names in the program will be make unique, but this does not matter, and it will turn out

to be useful later.

> rename :: CoreProgram -> CoreProgram

� Finally,
olle
tSCs
olle
ts all the super
ombinator de�nitions into a single list, and

pla
es them at the top level of the program.

>
olle
tSCs :: CoreProgram -> CoreProgram

The lambda lifter itself is the
omposition of these three fun
tions:

> lambdaLift =
olle
tSCs . rename . abstra
t . freeVars

To make it easier to see what is happening we de�ne the a fun
tion runS (the `S' stands for

`simple') to integrate the parser and printer:

> runS = pprint . lambdaLift . parse

It would of
ourse be possible to do all the work in a single pass, but the modularity provided

by separating them has a number of advantages: ea
h individual pass is easier to understand,

the passes may be reusable (for example, we reuse freeVars below) and modularity makes it

easier to
hange the algorithm somewhat.

As an example of the �nal point, some
ompilers are able to generate better
ode by omitting the

olle
tSCs pass, be
ause more is then known about the
ontext in whi
h the super
ombinator

is applied [Peyton Jones 1991℄. For example,
onsider the following expression, whi
h might be

produ
ed by the abstra
t pass:

let f = (\v x. v-x) v

in ...f...f...

231

Here abstra
t has removed v as a free variable from the \x abstra
tion

2

. Rather than
ompiling

the super
ombinator independently of its
ontext, a
ompiler
ould
onstru
t a
losure for f,

whose
ode a

esses v dire
tly from the
losure and x from the sta
k. The
alls to f thus do

not have to move v onto the sta
k. The more free variables there are the more bene�
ial this

be
omes. Nor do the
alls to f be
ome less eÆ
ient be
ause the de�nition is a lo
al one; the

ompiler
an see the binding for f and
an jump dire
tly to its
ode.

In the following se
tions we give de�nitions for ea
h of these passes. We omit the equations for

ase expressions, whi
h appear as Exer
ise 6.4.

6.3.2 Free variables

The
ore of the free-variable pass is fun
tion freeVars_e whi
h has type

> freeVars_e :: (Set Name) -- Candidates for free variables

> -> CoreExpr -- Expression to annotate

> -> AnnExpr Name (Set Name) -- Annotated result

Its �rst argument is the set of lo
al variables whi
h are in s
ope; these are the possible free

variables. The se
ond argument is the expression to be annotated, and the result is the annotated

expression. The main fun
tion freeVars just runs down the list of super
ombinator de�nitions,

applying freeVars_e to ea
h:

> freeVars prog = [(name, args, freeVars_e (setFromList args) body)

> | (name, args, body) <- prog

> ℄

The freeVars_e fun
tion runs over the expression re
ursively; in the
ase of numbers there are

no free variables, so this is what is returned in the annotated expression.

> freeVars_e lv (ENum k) = (setEmpty, ANum k)

In the
ase of a variable, we
he
k to see whether it is in the set of
andidates to de
ide whether

to return the empty set or a singleton set:

> freeVars_e lv (EVar v) | setElementOf v lv = (setSingleton v, AVar v)

> | otherwise = (setEmpty, AVar v)

The
ase for appli
ations is straightforward: we �rst annotate the expression e1 with its free

variables, then annotate e2, returning the union of the two sets of free variables as the free

variables of EAp e1 e2.

> freeVars_e lv (EAp e1 e2)

> = (setUnion (freeVarsOf e1') (freeVarsOf e2'), AAp e1' e2')

> where e1' = freeVars_e lv e1

> e2' = freeVars_e lv e2

2

We are ignoring the let expression whi
h abstra
t introdu
es to name the super
ombinator.

232

In the
ase of a lambda abstra
tions we need to add the args to the lo
al variables passed in,

and subtra
t them from the free variables passed out:

> freeVars_e lv (ELam args body)

> = (setSubtra
tion (freeVarsOf body') (setFromList args), ALam args body')

> where body' = freeVars_e new_lv body

> new_lv = setUnion lv (setFromList args)

The equation for let(re
) expressions has rather a lot of plumbing, but is quite straightforward.

The lo
al variables in s
ope that are passed to the body is body_lv; the set of lo
al variables

passed to ea
h right-hand side is rhs_lv. Next we annotate ea
h right-hand side with its free

variable set, giving rhss', from this we
an
onstru
t the annotated de�nitions: defns'. The

annotated body of the let(re
) is body'. The free variables of the de�nitions is
al
ulated to

be defnsFree, and those of the body are bodyFree.

> freeVars_e lv (ELet is_re
 defns body)

> = (setUnion defnsFree bodyFree, ALet is_re
 defns' body')

> where binders = bindersOf defns

> binderSet = setFromList binders

> body_lv = setUnion lv binderSet

> rhs_lv | is_re
 = body_lv

> | otherwise = lv

>

> rhss' = map (freeVars_e rhs_lv) (rhssOf defns)

> defns' = zip2 binders rhss'

> freeInValues = setUnionList (map freeVarsOf rhss')

> defnsFree | is_re
 = setSubtra
tion freeInValues binderSet

> | otherwise = freeInValues

> body' = freeVars_e body_lv body

> bodyFree = setSubtra
tion (freeVarsOf body') binderSet

The fun
tion zip2 in the de�nition of defns' is a standard fun
tion whi
h takes two lists

and returns a list
onsisting of pairs of
orresponding elements of the argument lists. The set

operations setUnion, setSubtra
tion and so on are de�ned in the utilities module, whose

interfa
e is given in Appendix A.4.

We postpone dealing with
ase and
onstru
tor expressions:

> freeVars_e lv (ECase e alts) = freeVars_
ase lv e alts

> freeVars_e lv (EConstr t a) = error "freeVars_e: no
ase for
onstru
tors"

> freeVars_
ase lv e alts = error "freeVars_
ase: not yet written"

freeVarsOf and freeVarsOf_alt are simple auxiliary fun
tions:

> freeVarsOf :: AnnExpr Name (Set Name) -> Set Name

> freeVarsOf (free_vars, expr) = free_vars

233

> freeVarsOf_alt :: AnnAlt Name (Set Name) -> Set Name

> freeVarsOf_alt (tag, args, rhs)

> = setSubtra
tion (freeVarsOf rhs) (setFromList args)

6.3.3 Generating super
ombinators

The next pass merely repla
es ea
h lambda abstra
tion, whi
h is now annotated with its free

variables, with a new abstra
tion (the super
ombinator) applied to its free variables.

> abstra
t prog = [(s
_name, args, abstra
t_e rhs)

> | (s
_name, args, rhs) <- prog

> ℄

As usual, we de�ne an auxiliary fun
tion abstra
t_e to do most of the work:

> abstra
t_e :: AnnExpr Name (Set Name) -> CoreExpr

It takes an expression annotated with the free variable information and returns an expression

with ea
h lambda abstra
tion repla
ed by a new abstra
tion applied to the free variables. There

is little to say about the �rst four
ases, they just re
ursively abstra
t ea
h expression.

> abstra
t_e (free, AVar v) = EVar v

> abstra
t_e (free, ANum k) = ENum k

> abstra
t_e (free, AAp e1 e2) = EAp (abstra
t_e e1) (abstra
t_e e2)

> abstra
t_e (free, ALet is_re
 defns body)

> = ELet is_re
 [(name, abstra
t_e body) | (name, body) <- defns℄

> (abstra
t_e body)

The fun
tion foldll is a standard fun
tion, de�ned in Appendix A.5; given a dyadi
 fun
tion �,

a value b, and a list xs = [x

1

; :::; x

n

℄, foldll � b xs
omputes (: : : ((b � x

1

) � x

2

) � : : : x

n

).

Noti
e the way that the free-variable information is dis
arded by the pass, sin
e it is no longer

required.

The �nal
ase we show is the heart of the abstra
t_e fun
tion. First we
reate a list of free

variables: fvList. We re
all that there is no ordering impli
it in a set; the fun
tion setToList

has indu
ed an ordering on the elements, but we do not mu
h
are what order this is. Next we

make a new super
ombinator. This involves

1. applying abstra
t_e to the body of the lambda expression; and

2. augmenting the argument list, by pre�xing the original one with the free-variable list.

Next, to allow the
olle
tSCs pass to dete
t this new super
ombinator, we wrap it into a let

expression. Finally, we apply the new super
ombinator to ea
h free variable in turn.

> abstra
t_e (free, ALam args body)

> = foldll EAp s
 (map EVar fvList)

234

> where

> fvList = setToList free

> s
 = ELet nonRe
ursive [("s
",s
_rhs)℄ (EVar "s
")

> s
_rhs = ELam (fvList ++ args) (abstra
t_e body)

ase expressions and
onstru
tors are deferred:

> abstra
t_e (free, AConstr t a) = error "abstra
t_e: no
ase for Constr"

> abstra
t_e (free, ACase e alts) = abstra
t_
ase free e alts

> abstra
t_
ase free e alts = error "abstra
t_
ase: not yet written"

It is worth observing that abstra
t_e treat-

s the two expressions (ELam args1 (ELam args2 body)) and (ELam (args1++args2) body)

di�erently. In the former
ase, the two abstra
tions will be treated separately, generating two

super
ombinators, while in the latter only one super
ombinator is produ
ed. It is
learly ad-

vantageous to merge dire
tly nested ELams before performing lambda lifting. This is equivalent

to the �-abstra
tion optimisation noted by [Hughes 1983℄.

6.3.4 Making all the variables unique

Next, we need to make ea
h variable so that all the s
 variables introdu
ed by abstra
t are

unique. The auxiliary fun
tion, rename_e, takes an environment mapping old names to new

names, a name supply and an expression. It returns a depleted name supply and a new expres-

sion.

> rename_e :: ASSOC Name Name -- Binds old names to new

> -> NameSupply -- Name supply

> -> CoreExpr -- Input expression

> -> (NameSupply, CoreExpr) -- Depleted supply and result

Now we
an de�ne rename in terms of rename_e, by applying the latter to ea
h super
ombinator

de�nition, plumbing the name supply along with mapA

uml.

> rename prog

> = se
ond (mapA

uml rename_s
 initialNameSupply prog)

> where

> rename_s
 ns (s
_name, args, rhs)

> = (ns2, (s
_name, args', rhs'))

> where

> (ns1, args', env) = newNames ns args

> (ns2, rhs') = rename_e env ns1 rhs

The fun
tion newNames takes a name supply and a list of names as its arguments. It allo
ates

a new name for ea
h old one from the name supply, returning the depleted name supply, a list

of new names and an asso
iation list mapping old names to new ones.

235

> newNames :: NameSupply -> [Name℄ -> (NameSupply, [Name℄, ASSOC Name Name)

> newNames ns old_names

> = (ns', new_names, env)

> where

> (ns', new_names) = getNames ns old_names

> env = zip2 old_names new_names

The de�nition of rename_e is now straightforward, albeit dull. When we meet a variable, we

look it up in the environment. For top-level fun
tions and built-in fun
tions (su
h as +) we will

�nd no substitution for it in the environment, so we just use the existing name:

> rename_e env ns (EVar v) = (ns, EVar (aLookup env v v))

Numbers and appli
ations are easy.

> rename_e env ns (ENum n) = (ns, ENum n)

> rename_e env ns (EAp e1 e2)

> = (ns2, EAp e1' e2')

> where

> (ns1, e1') = rename_e env ns e1

> (ns2, e2') = rename_e env ns1 e2

When we meet an ELam we need to invent new names for the arguments, using newNames, and

augment the environment with the mapping returned by newNames.

> rename_e env ns (ELam args body)

> = (ns1, ELam args' body')

> where

> (ns1, args', env') = newNames ns args

> (ns2, body') = rename_e (env' ++ env) ns1 body

let(re
) expressions work similarly:

> rename_e env ns (ELet is_re
 defns body)

> = (ns3, ELet is_re
 (zip2 binders' rhss') body')

> where

> (ns1, body') = rename_e body_env ns body

> binders = bindersOf defns

> (ns2, binders', env') = newNames ns1 binders

> body_env = env' ++ env

> (ns3, rhss') = mapA

uml (rename_e rhsEnv) ns2 (rhssOf defns)

> rhsEnv | is_re
 = body_env

> | otherwise = env

We leave
ase expressions as an exer
ise:

> rename_e env ns (EConstr t a) = error "rename_e: no
ase for
onstru
tors"

> rename_e env ns (ECase e alts) = rename_
ase env ns e alts

> rename_
ase env ns e alts = error "rename_
ase: not yet written"

236

6.3.5 Colle
ting super
ombinators

Finally, we have to name the super
ombinators and
olle
t them together. The main fun
tion,

olle
tSCs_e, therefore has to return the
olle
tion of super
ombinators it has found, as well

as the transformed expression.

>
olle
tSCs_e :: CoreExpr -> ([CoreS
Defn℄, CoreExpr)

olle
tSCs is de�ned using mapA

uml to do all the plumbing:

>
olle
tSCs prog

> =
on
at (map
olle
t_one_s
 prog)

> where

>
olle
t_one_s
 (s
_name, args, rhs)

> = (s
_name, args, rhs') : s
s

> where

> (s
s, rhs') =
olle
tSCs_e rhs

The
ode for
olle
tSCs_e is now easy to write. We just apply
olle
tSCs_e re
ursively to

the sub-expressions,
olle
ting up the super
ombinators thus produ
ed.

>
olle
tSCs_e (ENum k) = ([℄, ENum k)

>
olle
tSCs_e (EVar v) = ([℄, EVar v)

>
olle
tSCs_e (EAp e1 e2) = (s
s1 ++ s
s2, EAp e1' e2')

> where

> (s
s1, e1') =
olle
tSCs_e e1

> (s
s2, e2') =
olle
tSCs_e e2

>
olle
tSCs_e (ELam args body) = (s
s, ELam args body')

> where

> (s
s, body') =
olle
tSCs_e body

>
olle
tSCs_e (EConstr t a) = ([℄, EConstr t a)

>
olle
tSCs_e (ECase e alts)

> = (s
s_e ++ s
s_alts, ECase e' alts')

> where

> (s
s_e, e') =
olle
tSCs_e e

> (s
s_alts, alts') = mapA

uml
olle
tSCs_alt [℄ alts

>
olle
tSCs_alt s
s (tag, args, rhs) = (s
s++s
s_rhs, (tag, args, rhs'))

> where

> (s
s_rhs, rhs') =
olle
tSCs_e rhs

The
ase for let(re
) is the interesting one. We need to pro
ess the de�nitions re
ursively

and then split them into two groups: those of the form v = \args. e (the super
ombinators),

and the others (the non-super
ombinators). The super
ombinators are returned as part of the

super
ombinator list, and a new let(re
) is formed from the remaining non-super
ombinators:

>
olle
tSCs_e (ELet is_re
 defns body)

237

> = (rhss_s
s ++ body_s
s ++ lo
al_s
s, mkELet is_re
 non_s
s' body')

> where

> (rhss_s
s,defns') = mapA

uml
olle
tSCs_d [℄ defns

>

> s
s' = [(name,rhs) | (name,rhs) <- defns', isELam rhs ℄

> non_s
s' = [(name,rhs) | (name,rhs) <- defns', not (isELam rhs)℄

> lo
al_s
s = [(name,args,body) | (name,ELam args body) <- s
s'℄

>

> (body_s
s, body') =
olle
tSCs_e body

>

>
olle
tSCs_d s
s (name,rhs) = (s
s ++ rhs_s
s, (name, rhs'))

> where

> (rhs_s
s, rhs') =
olle
tSCs_e rhs

The auxiliary fun
tion isELam tests for an ELam
onstru
tor; it is used to identify super
ombi-

nators.

> isELam :: Expr a -> Bool

> isELam (ELam args body) = True

> isELam other = False

The mkELet fun
tion just builds an ELet expression:

> mkELet is_re
 defns body = ELet is_re
 defns body

6.4 Mark 2: Improving the simple lambda lifter

This
ompletes the de�nition of the simple lambda lifter. We now
onsider some simple im-

provements.

6.4.1 Simple extensions

Exer
ise 6.3. The simple lambda lifter generates lots of let expressions with an empty list of bindings,

be
ause
olle
tSCs removes the single binding from ea
h of the super
ombinator let expressions

introdu
ed by abstra
t. Modify mkELet to elide these redundant let expressions.

Exer
ise 6.4. Give de�nitions for freeVars_
ase, abstra
t_
ase and
olle
tSCs_
ase, and test

them.

6.4.2 Eliminating redundant super
ombinators

Consider the Core-language program

f = \x. x+1

238

This will be transformed by lambdaLift to

f = $f

$f x = x+1

It would be ni
er to avoid introdu
ing the redundant de�nition. This improvement will be
ome

rather more signi�
ant when we
ome to
onsider full laziness, be
ause many super
ombinators

of this form will be introdu
ed.

Exer
ise 6.5. Add a spe
ial
ase to the fun
tion
olle
t_one_s
 (in
olle
tSCs), to behave di�erently

when rhs is a lambda abstra
tion. You should be able to avoid introdu
ing a new super
ombinator

in this situation.

6.4.3 Eliminating redundant lo
al de�nitions

A similar situation
an arise with lo
al de�nitions. Consider the Core-language program

f x = let g = (\y. y+1) in g (g x)

The lambda lifter will produ
e the program

f x = let g = $g in g (g x)

$g y = y+1

Exer
ise 6.6. Improve the de�nition of
olle
tSCs_d (in the ELet
ase of
olle
tSCs_e), so that it

gives spe
ial treatment to de�nitions whose right-hand side is a lambda abstra
tion. For the above

example you should generate

f x = g (g x)

g y = y+1

6.5 Mark 3: Johnsson-style lambda lifting

There is an interesting variant of the lambda lifting te
hnique, whi
h was dis
overed by

[Johnsson 1985℄. One slight problem with our
urrent te
hnique is that it produ
es programs

in whi
h many of the
alls are to fun
tions whi
h are passed in as arguments. For example,

onsider the re
ursive example in Se
tion 6.3:

f x = letre
 g = \y.
ons (x*y) (g y) in g 3

main = f 6

Our
urrent lambda lifter produ
es the following set of super
ombinators:

$g g x y =
ons (x*y) (g y)

f x = letre
 g = $g g x in g 3

main = f 6

239

Noti
e that $g makes a
all to its argument g. In some implementations it would be more

eÆ
ient if $g was dire
tly re
ursive, like this:

$g x y =
ons (x*y) ($g x y)

f x = $g x 3

main = f 6

The inner letre
 has vanished altogether, and the super
ombinator g has be
ome dire
tly

re
ursive.

To get a more detailed idea of how to do Johnsson-style lambda lifting, we will look at a slightly

more
ompli
ated example:

f x y = letre

g = \p. ...h...x...

h = \q. ...g...y...

in

...g...h...

Here, g is meant to be a fun
tion whi
h
alls h, and mentions the variable x; similarly h
alls g

and mentions y. The �rst step is to transform the de�nition like this:

f x y = letre

g = \x y p. ...(h x y)...x...

h = \x y q. ...(g x y)...y...

in

...(g x y)...(h x y)...

This transformation, whi
h we
all the abstra
tion step, is a little tri
ky. It does the following:

� take the free variables of the right-hand sides of the letre
, namely g, h, x and y;

� ex
lude the variables being bound (g and h) to leave just x and y;

� make these variables into extra arguments of ea
h right-hand side;

� and repla
ed all o

urren
es of g with (g x y), similarly for h.

It is important that we make y into an extra parameter of g even though y does not o

ur

dire
tly in its right-hand side, be
ause g will need it to pass to h. In general, ea
h member of

the mutually re
ursive group must take as extra arguments the free variables of all the members

together.

Now all we need do is
oat the de�nitions of g and h out to the top level, leaving:

f x y = ...(g x y)...(h x y)...

g x y p = ...(h x y)...x...

h x y q = ...(g x y)...y...

240

One last point. Before doing this pro
ess it is important that all binders are unique. Otherwise

name
lashes
ould arise, in two ways. The obvious way is that two super
ombinators
ould

have the same name. The less obvious way is illustrated by the following variant of the same

example:

f x y = letre

g = \p. ...h...x...

h = \x. ...g...y...

in

...g...h...

Now h uses the same name for its argument as f, whi
h will
ause trouble when we try to make

the free variable of g, namely x, into an extra argument to h! All in all, it is mu
h easier simply

to rename the program before starting work.

6.5.1 Implementation

The Johnsson-style lambda lifter
an be implemented in several passes:

� The �rst pass renames the program so that all binders are unique. We
an reuse the

rename fun
tion for this purpose.

� Next, we annotate the program with its free-variable information, using the existing fun
-

tion freeVars.

� Now
omes the main abstra
tion step dis
ussed above:

> abstra
tJ :: AnnProgram Name (Set Name) -> CoreProgram

� Finally, we
an
olle
t super
ombinators with
olle
tSCs.

The full Johnsson-style lambda lifter is just the
omposition of these stages:

> lambdaLiftJ =
olle
tSCs . abstra
tJ . freeVars . rename

> runJ = pprint . lambdaLiftJ . parse

6.5.2 Abstra
ting free variables in fun
tions

The only new fun
tion we need is abstra
tJ. The abstra
tion pro
ess makes substitutions as it

goes along, repla
ing g with g v

1

: : : v

n

, where g is one of the new super
ombinators and v

1

; : : : ; v

n

are the free variables of its de
laration group. It follows that the auxiliary fun
tion abstra
tJ_e

needs to take an environment mapping ea
h super
ombinator g to the free variables of its group

v

1

; : : : ; v

n

:

> abstra
tJ_e :: ASSOC Name [Name℄ -- Maps ea
h new SC to

> -- the free vars of its group

> -> AnnExpr Name (Set Name) -- Input expression

> -> CoreExpr -- Result expression

241

To be fair, it looks as though the �rst argument
ould be of type asso
 name
oreExpr but,

as we shall see, we need to make use of the environment in another way as well, whi
h leads to

the type we suggest here.

It is now easy to de�ne abstra
tJ in terms of abstra
tJ_e, by applying the latter to ea
h

top-level de�nition:

> abstra
tJ prog = [(name,args,abstra
tJ_e [℄ rhs)

> | (name, args, rhs) <- prog℄

Now we
ome to abstra
tJ_e. The
ases for
onstants and appli
ations are easy.

> abstra
tJ_e env (free, ANum n) = ENum n

> abstra
tJ_e env (free, AConstr t a) = EConstr t a

> abstra
tJ_e env (free, AAp e1 e2) = EAp (abstra
tJ_e env e1)

> (abstra
tJ_e env e2)

When we
ome to a variable g , we look it up in the environment, getting ba
k a list of variables

v

1

; : : : ; v

n

. We then return the appli
ation g v

1

: : : v

n

. If g does not appear in the environment

we return the empty list from the environment lookup, and hen
e the `appli
ation' we
onstru
t

will simply be the variable g !

> abstra
tJ_e env (free, AVar g)

> = foldll EAp (EVar g) (map EVar (aLookup env g [℄))

Sometimes we may �nd a lambda abstra
tion on its own; for example:

f xs = map (\x. x+1) xs

The \x-abstra
tion is not the right-hand side of a let(re
) de�nition, so we treat it in just

same way as we did in the simple lambda lifter (see the ELam
ase of abstra
t).

There is just one important di�eren
e. Sin
e abstra
tJ_e is simultaneously performing a sub-

stitution on the expression, the free-variables information does not re
e
t the post-substitution

state of a�airs. Rather, we need to perform the substitution on the free-variable set too, to �nd

what variables are free in the result. This is done by the fun
tion a
tualFreeList, whi
h is

de�ned at the end of this se
tion. It was the need to perform this operation on the free-variable

information whi
h guided our
hoi
e of environment representation.

> abstra
tJ_e env (free, ALam args body)

> = foldll EAp s
 (map EVar fv_list)

> where

> fv_list = a
tualFreeList env free

> s
 = ELet nonRe
ursive [("s
",s
_rhs)℄ (EVar "s
")

> s
_rhs = ELam (fv_list ++ args) (abstra
tJ_e env body)

Lastly, we treat let(re
) expressions. Ea
h variable bound to a lambda abstra
tion will be

turned into a super
ombinator, while the others (not bound to a lambda abstra
tion) will not.

It follows that we need to treat separately these two kinds of de�nitions, whi
h we
all `fun
tion

de�nitions' and `variable de�nitions' respe
tively.

242

> abstra
tJ_e env (free, ALet isre
 defns body)

> = ELet isre
 (fun_defns' ++ var_defns') body'

> where

> fun_defns = [(name,rhs) | (name,rhs) <- defns, isALam rhs ℄

> var_defns = [(name,rhs) | (name,rhs) <- defns, not (isALam rhs)℄

Now that we have separated the fun
tion de�nitions from the variable de�nitions we
an
ompute

the set of variables to abstra
t from the fun
tions. We take the union of the free variables of

the fun
tion de�nitions, remove from this set the fun
tion names being bound, and then use

a
tualFreeList (for the same reason as in the ELam equation) to get the result:

> fun_names = bindersOf fun_defns

> free_in_funs = setSubtra
tion

> (setUnionList [freeVarsOf rhs | (name,rhs)<-fun_defns℄)

> (setFromList fun_names)

> vars_to_abstra
t = a
tualFreeList env free_in_funs

Next, we
ompute the new environment, to be used in the right-hand sides and in the body of

the let(re
):

> body_env = [(fun_name, vars_to_abstra
t) | fun_name <- fun_names℄ ++ env

> rhs_env | isre
 = body_env

> | otherwise = env

Lastly, we
ompute the new fun
tion de�nitions, variable de�nitions and body, by re
ursively

using abstra
tJ_E with the appropriate environment:

> fun_defns' = [(name, ELam (vars_to_abstra
t ++ args)

> (abstra
tJ_e rhs_env body))

> | (name, (free, ALam args body)) <- fun_defns

> ℄

> var_defns' = [(name, abstra
tJ_e rhs_env rhs) | (name, rhs) <- var_defns℄

> body' = abstra
tJ_e body_env body

The fun
tion a
tualFreeList takes the environment and a set of free variables, applies the

environment to the set, and returns a list (without dupli
ates) of the post-substitution free

variables.

> a
tualFreeList :: ASSOC Name [Name℄ -> Set Name -> [Name℄

> a
tualFreeList env free

> = setToList (setUnionList [setFromList (aLookup env name [name℄)

> | name <- setToList free

> ℄)

The fun
tion isALam identi�es ALam
onstru
tors.

> isALam :: AnnExpr a b -> Bool

> isALam (free, ALam args body) = True

> isALam other = False

243

This
on
ludes the Johnsson-style lambda lifter.

Exer
ise 6.7. Add a
ase for
ase expressions to the fun
tion abstra
tJ_e.

6.5.3 A tri
ky pointy

When a letre

ontains a mixture of fun
tion and variable de�nitions, the lambda lifter we

have designed may introdu
e some redundant parameters. For example,
onsider the de�nition

f x y = letre

g = \p. h p + x ;

h = \q. k + y + q;

k = g y

in

g 4 ;

The free variables of the g/h group are x, y and k, so we will transform to:

f x y = letre

k = g x y k y

in

g 4

g x y k p = h x y k p + x ;

h x y k q = k + y + q;

Here the extra parameter x is not a
tually used in h, so better de�nitions for g and h would be

g x y k p = h y k p + x ;

h y k q = k + y + q;

Exer
ise 6.8. yModify abstra
tJ to solve perform this more sophisti
ated transformation. Warning:

this is quite a diÆ
ult job!

6.6 Mark 4: A separate full laziness pass

We now turn our attention to an important property of fun
tional programs
alled full laziness.

Previous a

ounts of full laziness have invariably linked it to lambda lifting, by des
ribing `fully

lazy lambda lifting', whi
h turns out to be rather a
omplex pro
ess. [Hughes 1983℄ gives an

algorithm, but it is extremely subtle and does not handle let(re
) expressions. On the other

hand, [Peyton Jones 1987℄ does
over let(re
) expressions, but the des
ription is only informal

and no algorithm is given.

In this se
tion we show how full laziness and lambda lifting
an be
leanly separated. This

is done by means of a transformation involving let expressions. Lest it be supposed that we

have simpli�ed things in one way only by
ompli
ating them in another, we also show that

244

performing fully lazy lambda lifting without let(re
) expressions risks an unexpe
ted loss of

laziness. Furthermore, mu
h more eÆ
ient
ode
an be generated for let(re
) expressions in

later phases of most
ompilers than for their equivalent lambda expressions.

6.6.1 A review of full laziness

We begin by brie
y reviewing the
on
ept of full laziness. Consider again the example given in

Se
tion 6.3.

f x = let g = \y. x*x + y in (g 3 + g 4)

main = f 6

The simple lambda lifter generates the program:

$g x y = x*x + y

f x = let g = $g x in (g 3 + g 4)

main = f 6

In the body of f there are two
alls to g and hen
e to $g. But ($g x) is not a redu
ible

expression, so x*x will be
omputed twi
e. But x is �xed in the body of f, so some work is

being dupli
ated. It would be better to share the
al
ulation of x*x between the two
alls to

$g. This
an be a
hieved as follows: instead of making x a parameter to $g, we make x*x into

a parameter, like this:

$g p y = p + y

f x = let g = $g (x*x) in (g 3 + g 4)

(we omit the de�nition of main from now on, sin
e it does not
hange). So a fully lazy lambda

lifter will make ea
h maximal free sub-expresssion (rather than ea
h free variable) of a lambda

abstra
tion into an argument of the
orresponding super
ombinator. A maximal free expression

(or MFE) of a lambda abstra
tion is an expression whi
h
ontains no o

urren
es of the variable

bound by the abstra
tion, and is not a sub-expression of a larger expression with this property.

Full laziness
orresponds pre
isely to moving a loop-invariant expression outside the loop, so

that it is
omputed just on
e at the beginning rather than on
e for ea
h loop iteration.

How important is full laziness for `real' programs? No serious studies have yet been made of this

question, though we plan to do so. However, re
ent work by Holst suggests that the importan
e

of full laziness may be greater than might at �rst be supposed [Holst 1990℄. He shows how to

perform a transformation whi
h automati
ally enhan
es the e�e
t of full laziness, to the point

where the optimisations obtained
ompare favourably with those gained by partial evaluation

[Jones et al. 1989℄, though with mu
h less e�ort.

6.6.2 Fully-lazy lambda lifting in the presen
e of let(re
)s

Writing a fully lazy lambda lifter, as outlined in the previous se
tion, is surprisingly diÆ
ult.

Our language, whi
h in
ludes let(re
) expressions, appears to make this worse by introdu
ing

245

a new language
onstru
t. For example, suppose the de�nition of g in our running example was

slightly more
omplex, thus:

g = \y. let z = x*x

in let p = z*z

in p + y

Now, the sub-expression x*x is an MFE of the \y-abstra
tion, but sub-expression z*z is not

sin
e z is bound inside the \y-abstra
tion. Yet it is
lear that p depends only on x (albeit

indire
tly), and so we should ensure that z*z is only
omputed on
e.

Does a fully lazy lambda lifter spot this if let expressions are
oded as lambda appli
ations?

No, it does not. The de�nition of g would be
ome

g = \y. (\z. (\p. p+y) (z*z)) (x*x)

Now, x*x is free as before, but z*z is not. In other words, if the
ompiler does not treat let(re
)

expressions spe
ially, it may lose full laziness whi
h the programmer might reasonably expe
t to

be preserved.

Fortunately, there is a straightforward way to handle let(re
) expressions { des
ribed in

[Peyton Jones 1987, Chapter 15℄ { namely to `
oat' ea
h let(re
) de�nition outward until

it is outside any lambda abstra
tion in whi
h it is free. For example, all we need do is transform

the de�nition of g to the following:

g = let z = x*x

in let p = z*z

in \y. p + y

Now x*x and z*z will ea
h be
omputed only on
e. Noti
e that this property should hold

for any implementation of the language, not merely for one based on lambda lifting and graph

redu
tion. This is a
lue that full laziness and lambda lifting are not as
losely related as at

�rst appears, a topi
 to whi
h we will return in the next se
tion.

Meanwhile, how
an we de
ide how far out to
oat a de�nition? It is most easily done by using

lexi
al level numbers (or de Bruijn numbers). There are three steps:

� First, assign to ea
h lambda-bound variable a level number, whi
h says how many lambdas

en
lose it. Thus in our example, x would be assigned level number 1, and y level number

2.

� Now, assign a level number to ea
h let(re
)-bound variable (outermost �rst), whi
h is

the maximum of the level numbers of its free variables, or zero if there are none. In our

example, both p and z would be assigned level number 1. Some
are needs to be taken to

handle letre
s
orre
tly.

� Finally,
oat ea
h de�nition (whose binder has level n, say) outward, until it is outside the

lambda abstra
tion whose binder has level n + 1, but still inside the level-n abstra
tion.

There is some freedom in this step about exa
tly where between the two the de�nition

should be pla
ed.

246

Ea
h mutually re
ursive set of de�nitions de�ned in a letre
 should be
oated out together,

be
ause they depend on ea
h other and must remain in a single letre
. If, in fa
t, the de�nitions

are not mutually re
ursive despite appearing in the same letre
, this poli
y might lose laziness

by retaining in an inner s
ope a de�nition whi
h
ould otherwise be
oated further outwards.

The standard solution is to perform dependen
y analysis on the de�nitions in ea
h letre

expression, to break ea
h group of de�nitions into its minimal subgroups. We will look at this

in Se
tion 6.8.

Finally, a renaming pass should be
arried out before the
oating operation, so that there is no

risk that the bindings will be altered by the movement of the let(re
) de�nitions. For example,

the expression

\y. let y = x*x in y

is obviously not equivalent to

let y = x*x in \y->y

All that is required is to give every binder a unique name to eliminate the name
lash.

6.6.3 Full laziness without lambda lifting

At �rst it appears that the requirement to
oat let(re
)s outward in order to preserve full

laziness merely further
ompli
ates the already subtle fully lazy lambda lifting algorithm sug-

gested by Hughes. However, a simple transformation allows all the full laziness to be a
hieved

by let(re
)
oating, while lambda lifting is performed by the original simple lambda lifter.

The transformation is this: before
oating let(re
) de�nitions, repla
e ea
h MFE e with the

expression let v = e in v. This transformation both gives a name to the MFE and makes it

a

essible to the let(re
)
oating transformation, whi
h
an now
oat out the new de�nitions.

Ordinary lambda lifting
an then be performed. For example,
onsider the original de�nition of

g:

f x = let g = \y. x*x + y

in (g 3 + g 4)

main = f 6

The sub-expression x*x is an MFE, so it is repla
ed by a trivial let expression:

f x = let g = \y. (let v = x*x in v) + y

in (g 3 + g 4)

main = f 6

Now the let expression is
oated outward:

f x = let g = let v = x*x in \y. v + y

in (g 3 + g 4)

in

f 6

247

Finally, ordinary lambda lifting will dis
over that v is free in the \y-abstra
tion, and the resulting

program be
omes:

$g v y = v + y

f x = let g = let v = x*x in $g v

in (g 3 + g 4)

main = f 6

A few points should be noted here. Firstly, the original de�nition of a maximal free expression

was relative to a parti
ular lambda abstra
tion. The new algorithm we have just developed

transforms
ertain expressions into trivial let expressions. Whi
h expressions are so trans-

formed? Just the ones whi
h are MFEs of any en
losing lambda abstra
tion. For example, in

the expression:

\y. \z. (y + (x*x)) / z

two MFEs are identi�ed: (x*x), sin
e it is an MFE of the \y-abstra
tion, and (y + (x*x)),

sin
e it is an MFE of the \z-abstra
tion. After introdu
ing the trivial let bindings, the expres-

sion be
omes

\y. \z. (let v1 = y + (let v2 = x*x in v2) in v1) / z

Se
ondly, the newly introdu
ed variable v must either be unique, or the expression must be

uniquely renamed after the MFE-identi�
ation pass.

Thirdly, in the �nal form of the program v is only referen
ed on
e, so it would be sensible

to repla
e the referen
e by the right-hand side of the de�nition and eliminate the de�nition,

yielding exa
tly the program we obtained using Hughes's algorithm. This is a straightforward

transformation, and we will not dis
uss it further here, ex
ept to note that this property will

hold for all let de�nitions whi
h are
oated out past a lambda. In any
ase, many
ompiler ba
k

ends will generate the same
ode regardless of whether or not the transformation is performed.

6.6.4 A fully lazy lambda lifter

Now we are ready to de�ne the fully lazy lambda lifter. It
an be de
omposed into the following

stages:

� First we must make sure that ea
h ELam
onstru
tor and super
ombinator de�nition binds

only a single argument, be
ause the fully lazy lambda lifter must treat ea
h lambda indi-

vidually. It would be possible to en
ode this in later phases of the algorithm, by dealing

with a list of arguments, but it turns out that we
an express an important optimisation

by altering this pass alone.

> separateLams :: CoreProgram -> CoreProgram

� First we annotate all binders and expressions with level numbers, whi
h we represent by

natural numbers starting with zero:

248

> type Level = Int

> addLevels :: CoreProgram -> AnnProgram (Name, Level) Level

� Next we identify all MFEs, by repla
ing them with trivial let expressions. Level numbers

are no longer required on every sub-expression, only on binders.

> identifyMFEs :: AnnProgram (Name, Level) Level -> Program (Name, Level)

� A renaming pass makes all binders unique, so that
oating does not
ause name-
apture

errors. This must be done after identifyMFEs, whi
h introdu
es new bindings. Sadly, this

means that we
annot use our
urrent rename fun
tion be
ause it works on a
oreProgram,

whereas identifyMFEs has produ
ed a program (name, level). We invent a new fun
-

tion renameL for the purpose:

> renameL :: Program (Name, a) -> Program (Name, a)

� Now the let(re
) de�nitions
an be
oated outwards. The level numbers are not required

any further.

> float :: Program (Name,Level) -> CoreProgram

� Finally, ordinary lambda lifting
an be
arried out, using lambdaLift from Se
tion 6.3.1.

The fully lazy lambda lifter is just the
omposition of these passes:

> fullyLazyLift = float . renameL . identifyMFEs . addLevels . separateLams

> runF = pprint . lambdaLift . fullyLazyLift . parse

As before, we leave most of the equations for
ase expressions as an exer
ise.

6.6.5 Separating the lambdas

We de�ne separateLams in terms of an auxiliary fun
tion separateLams_e, whi
h re
ursively

separates variables bound in lambda abstra
tions in expressions:

> separateLams_e :: CoreExpr -> CoreExpr

> separateLams_e (EVar v) = EVar v

> separateLams_e (EConstr t a) = EConstr t a

> separateLams_e (ENum n) = ENum n

> separateLams_e (EAp e1 e2) = EAp (separateLams_e e1) (separateLams_e e2)

> separateLams_e (ECase e alts)

> = ECase (separateLams_e e) [(tag, args, separateLams_e e)

> | (tag, args, e) <- alts

> ℄

>

> separateLams_e (ELam args body) = mkSepLams args (separateLams_e body)

249

>

> separateLams_e (ELet is_re
 defns body)

> = ELet is_re
 [(name, separateLams_e rhs) | (name,rhs) <- defns℄

> (separateLams_e body)

> mkSepLams args body = foldr mkSepLam body args

> where mkSepLam arg body = ELam [arg℄ body

Now we return to the top-level fun
tion separateLams. The interesting question is what to do

about super
ombinator de�nitions. The easiest thing to do is to turn them into the equivalent

lambda abstra
tions!

> separateLams prog = [(name, [℄, mkSepLams args (separateLams_e rhs))

> | (name, args, rhs) <- prog

> ℄

6.6.6 Adding level numbers

There are a
ouple of
ompli
ations
on
erning annotating an expression with level numbers. At

�rst it looks as though it is suÆ
ient to write a fun
tion whi
h returns an expression annotated

with level numbers; then for an appli
ation, for example, one simply takes the maximum of

the levels of the two sub-expressions. Unfortunately, this approa
h loses too mu
h information,

be
ause there is no way of mapping the level number of the body of a lambda abstra
tion to the

level number of the abstra
tion itself. The easiest solution is �rst to annotate the expression

with its free variables, and then use a mapping freeSetToLevel from variables to level numbers,

to
onvert the free-variable annotations to level numbers.

> freeSetToLevel :: ASSOC Name Level -> Set Name -> Level

> freeSetToLevel env free

> = foldll max 0 [aLookup env n 0 | n <- setToList free℄

> -- If there are no free variables, return level zero

The se
ond
ompli
ation
on
erns letre
 expressions. What is the
orre
t level number to

attribute to the newly introdu
ed variables? The right thing to do is to take the maximum

of the levels of the free variables of all the right-hand sides without the re
ursive variables, or

equivalently map the re
ursive variables to level zero when taking this maximum. This level

should be attributed to ea
h of the new variables. let expressions are mu
h simpler: just

attribute to ea
h new variable the level number of its right-hand side.

Now we are ready to de�ne addLevels. It is the
omposition of two passes, the �rst of whi
h

annotates the expression with its free variables, while the se
ond uses this information to generate

level-number annotations.

> addLevels = freeToLevel . freeVars

We have de�ned the freeVars fun
tion already, so it remains to de�ne freeToLevel. The

main fun
tion will need to
arry around the
urrent level, and a mapping from variables to level

250

numbers, so as usual we de�ne freeToLevel in terms of freeToLevel_e whi
h does all the

work.

> freeToLevel_e :: Level -> -- Level of
ontext

> ASSOC Name Level -> -- Level of in-s
ope names

> AnnExpr Name (Set Name) -> -- Input expression

> AnnExpr (Name, Level) Level -- Result expression

We represent the name-to-level mapping as an asso
iation list, with type asso
 name level.

The interfa
e of asso
iation lists is given in Appendix A, but noti
e that it is not abstra
t. It

is so
onvenient to use all the standard fun
tions on lists, and notation for lists, rather than to

invent their analogues for asso
iations, that we have
ompromised the abstra
tion.

Now we
an de�ne freeToLevel, using an auxiliary fun
tion to pro
ess ea
h super
ombinator

de�nition. Remember that separateLams has removed all the arguments from super
ombinator

de�nitions:

> freeToLevel prog = map freeToLevel_s
 prog

>

> freeToLevel_s
 (s
_name, [℄, rhs) = (s
_name, [℄, freeToLevel_e 0 [℄ rhs)

For
onstants, variables and appli
ations, it is simpler and more eÆ
ient to ignore the free-

variable information and
al
ulate the level number dire
tly.

> freeToLevel_e level env (free, ANum k) = (0, ANum k)

> freeToLevel_e level env (free, AVar v) = (aLookup env v 0, AVar v)

> freeToLevel_e level env (free, AConstr t a) = (0, AConstr t a)

> freeToLevel_e level env (free, AAp e1 e2)

> = (max (levelOf e1') (levelOf e2'), AAp e1' e2')

> where

> e1' = freeToLevel_e level env e1

> e2' = freeToLevel_e level env e2

The same
annot be done for lambda abstra
tions; so we must
ompute the level number of

the abstra
tion using freeSetToLevel. We also assign a level number to ea
h variable in the

argument list. At present we expe
t there to be only one su
h variable, but we will allow there

to be several and assign them all the same level number. This works
orre
tly now, and turns

out to be just what is needed to support a useful optimisation later (Se
tion 6.7.3).

> freeToLevel_e level env (free, ALam args body)

> = (freeSetToLevel env free, ALam args' body')

> where

> body' = freeToLevel_e (level + 1) (args' ++ env) body

> args' = [(arg, level+1) | arg <- args℄

251

let(re
) expressions follow the s
heme outlined at the beginning of this se
tion.

> freeToLevel_e level env (free, ALet is_re
 defns body)

> = (levelOf new_body, ALet is_re
 new_defns new_body)

> where

> binders = bindersOf defns

> rhss = rhssOf defns

>

> new_binders = [(name,max_rhs_level) | name <- binders℄

> new_rhss = map (freeToLevel_e level rhs_env) rhss

> new_defns = zip2 new_binders new_rhss

> new_body = freeToLevel_e level body_env body

>

> free_in_rhss = setUnionList [free | (free,rhs) <- rhss℄

> max_rhs_level = freeSetToLevel level_rhs_env free_in_rhss

>

> body_env = new_binders ++ env

> rhs_env | is_re
 = body_env

> | otherwise = env

> level_rhs_env | is_re
 = [(name,0) | name <- binders℄ ++ env

> | otherwise = env

Noti
e that the level of the whole let(re
) expression is that of the body. This is valid provided

the body refers to all the binders dire
tly or indire
tly. If any de�nition is unused, we might

assign a level number to the letre
 whi
h would
ause it to be
oated outside the s
ope of some

variable mentioned in the unused de�nition. This is easily �xed, but it is simpler to assume that

the expression
ontains no redundant de�nitions; the dependen
y analysis whi
h we look at in

the next se
tion will eliminate su
h de�nitions.

ase expressions are deferred:

> freeToLevel_e level env (free, ACase e alts)

> = freeToLevel_
ase level env free e alts

> freeToLevel_
ase free e alts = error "freeToLevel_
ase: not yet written"

Lastly the auxiliary fun
tions levelOf extra
ts the level from an expression:

> levelOf :: AnnExpr a Level -> Level

> levelOf (level, e) = level

6.6.7 Identifying MFEs

It is simple to identify MFEs, by
omparing the level number of an expression with the level of

its
ontext. This requires an auxiliary parameter to give the level of the
ontext.

> identifyMFEs_e :: Level -- Level of
ontext

> -> AnnExpr (Name, Level) Level -- Input expression

> -> Expr (Name, Level) -- Result

252

> identifyMFEs prog = [(s
_name, [℄, identifyMFEs_e 0 rhs)

> | (s
_name, [℄, rhs) <- prog

> ℄

On
e an MFE e has been identi�ed, our strategy is to wrap it in a trivial let expression of the

form let v = e in v; but not all MFEs deserve spe
ial treatment in this way. For example, it

would be a waste of time to wrap su
h a let expression around an MFE
onsisting of a single

variable or
onstant. Other examples are given in Se
tion 6.7.3. We en
ode this knowledge of

whi
h MFEs deserve spe
ial treatment in a fun
tion notMFECandidate.

> notMFECandidate (AConstr t a) = True

> notMFECandidate (ANum k) = True

> notMFECandidate (AVar v) = True

> notMFECandidate ae = False -- For now everything else

> -- is a
andidate

identifyMFEs_e works by
omparing the level number of the expression with that of its
on-

text. If they are the same, or for some other reason the expression is not a
andidate for

spe
ial treatment, the expression is left un
hanged, ex
ept that identifyMFEs_e1 is used to

apply identifyMFEs_e to its sub-expressions; otherwise we use transformMFE to perform the

appropriate transformation.

> identifyMFEs_e
xt (level, e)

> | level ==
xt || notMFECandidate e = e'

> | otherwise = transformMFE level e'

> where

> e' = identifyMFEs_e1 level e

> transformMFE level e = ELet nonRe
ursive [(("v",level), e)℄ (EVar "v")

identifyMFEs_e1 applies identifyMFEs_e to the
omponents of the expression.

> identifyMFEs_e1 :: Level -- Level of
ontext

> -> AnnExpr' (Name,Level) Level -- Input expressions

> -> Expr (Name,Level) -- Result expression

> identifyMFEs_e1 level (AConstr t a) = EConstr t a

> identifyMFEs_e1 level (ANum n) = ENum n

> identifyMFEs_e1 level (AVar v) = EVar v

> identifyMFEs_e1 level (AAp e1 e2)

> = EAp (identifyMFEs_e level e1) (identifyMFEs_e level e2)

When identifyMFEs_e1 en
ounters a binder it
hanges the `
urrent' level number
arried down

as its �rst argument, as we
an see in the equations for lambda abstra
tions and let(re
)

expressions:

253

> identifyMFEs_e1 level (ALam args body)

> = ELam args (identifyMFEs_e arg_level body)

> where

> (name, arg_level) = hd args

> identifyMFEs_e1 level (ALet is_re
 defns body)

> = ELet is_re
 defns' body'

> where

> body' = identifyMFEs_e level body

> defns' = [((name, rhs_level), identifyMFEs_e rhs_level rhs)

> | ((name, rhs_level), rhs) <- defns

> ℄

ase expressions are deferred:

> identifyMFEs_e1 level (ACase e alts) = identifyMFEs_
ase1 level e alts

> identifyMFEs_
ase1 level e alts = error "identifyMFEs_
ase1: not written"

6.6.8 Renaming variables

As we remarked above, it would be ni
e to use the existing rename fun
tion to make the binders

unique, but it has the wrong type. It would be possible to write renameL by making a
opy of

rename and making some small alterations, but it would be mu
h ni
er to make a single generi

renaming fun
tion, renameGen, whi
h
an be spe
ialised to do either rename or renameL.

What should the type of renameGen be? The right question to ask is: `what use did we make in

rename of the fa
t that ea
h binder was a simple name?' or, alternatively, `what operations did

we perform on binders in rename?'.

There is a
tually just one su
h operation, whi
h
onstru
ts new binders. In rename_e this

fun
tion is
alled newNames; it takes a name supply and a list of names, and returns a depleted

name supply, a list of new names and an asso
iation list mapping old names to new ones:

> newNames :: nameSupply -> [name℄ -> (nameSupply, [name℄, asso
 name name)

Sin
e renameGen must be able to work over any kind of binder, not just those of type name,

we must pass the new-binders fun
tion into renameGen as an extra argument. So the type of

renameGen is:

> renameGen :: (NameSupply -> [a℄ -> (NameSupply, [a℄, ASSOC Name Name))

> -- New-binders fun
tion

> -> Program a -- Program to be renamed

> -> Program a -- Resulting program

Noti
e that the type of the binders is denoted by the type variable *, be
ause renameGen is

polymorphi
 in this type. Using renameGen, we
an now rede�ne the original rename fun
tion,

by passing newNames to renameGen as the new-binders fun
tion.

254

> rename :: CoreProgram -> CoreProgram

> rename prog = renameGen newNames prog

renameL is rather more interesting. Its binders are (name,level) pairs so we need to de�ne a

di�erent new-binders fun
tion:

> renameL :: Program (Name,Level) -> Program (Name,Level)

> renameL prog = renameGen newNamesL prog

The fun
tion newNamesL does just what newNames does, but it does it for binders whose type is

a (name,level) pair:

> newNamesL ns old_binders

> = (ns', new_binders, env)

> where

> old_names = [name | (name,level) <- old_binders℄

> levels = [level | (name,level) <- old_binders℄

> (ns', new_names) = getNames ns old_names

> new_binders = zip2 new_names levels

> env = zip2 old_names new_names

Now we
an turn our attention to writing renameGen. As usual we need an auxiliary fun
tion

renameGen_e whi
h
arries around some extra administrative information. Spe
i�
ally, like

rename_e, it needs to take a name supply and old-name to new-name mapping as arguments,

and return a depleted supply as part of its result. It also needs to be passed the new-binders

fun
tion:

> renameGen_e :: (NameSupply -> [a℄ -> (NameSupply, [a℄, ASSOC Name Name))

> -- New-binders fun
tion

> -> ASSOC Name Name -- Maps old names to new ones

> -> NameSupply -- Name supply

> -> Expr a -- Expression to be renamed

> -> (NameSupply, Expr a) -- Depleted name supply

> -- and result expression

Using renameGen_e we
an now write renameGen. Just like rename, renameGen applies a lo
al

fun
tion rename_s
 to ea
h super
ombinator de�nition.

> renameGen new_binders prog

> = se
ond (mapA

uml rename_s
 initialNameSupply prog)

> where

> rename_s
 ns (s
_name, args, rhs)

> = (ns2, (s
_name, args', rhs'))

> where

> (ns1, args', env) = new_binders ns args

> (ns2, rhs') = renameGen_e new_binders env ns1 rhs

255

Exer
ise 6.9. Write the fun
tion renameGen_e. It is very like rename_e, ex
ept that it takes the binder-

manipulation fun
tions as extra arguments. In the equations for ELet, ELam and ECase (whi
h ea
h

bind new variables), the fun
tion newBinders
an be used in just the same way as it is in rename_s

above.

Test your de�nition by
he
king that the simple lambda lifter still works with the new de�nition

of rename.

Exer
ise 6.10. The type signature we wrote for renameL is a
tually slightly more restri
tive than it

need be. How
ould it be made more general (without
hanging the
ode at all)? Hint: what use

does renameL make of the fa
t that the se
ond
omponent of a binder is of type level?

This se
tion provides a good illustration of the way in whi
h higher-order fun
tions
an help us

to make programs more modular.

6.6.9 Floating let(re
) expressions

The �nal pass
oats let(re
) expressions out to the appropriate level. The auxiliary fun
-

tion, whi
h works over expressions, has to return an expression together with the
olle
tion of

de�nitions whi
h should be
oated outside the expression.

> float_e :: Expr (Name, Level) -> (FloatedDefns, Expr Name)

There are many possible representations for the floatedDefns type, and we will
hoose a simple

one, by representing the de�nitions being
oated as a list, ea
h element of whi
h represents a

group of de�nitions, identi�ed by its level, and together with its isRe

ag.

> type FloatedDefns = [(Level, IsRe
, [(Name, Expr Name)℄)℄

Sin
e the de�nitions in the list may depend on one another, we add the following
onstraint:

a de�nition group may depend only on de�nition groups appearing earlier in the

floatedDefns list.

We
an now pro
eed to a de�nition of float_e. The
ases for variables,
onstants and appli
a-

tions are straightforward.

> float_e (EVar v) = ([℄, EVar v)

> float_e (EConstr t a) = ([℄, EConstr t a)

> float_e (ENum n) = ([℄, ENum n)

> float_e (EAp e1 e2) = (fd1 ++ fd2, EAp e1' e2')

> where

> (fd1, e1') = float_e e1

> (fd2, e2') = float_e e2

How far out should a de�nition be
oated? There is more than one possible
hoi
e, but here we

hoose to install a de�nition just inside the innermost lambda whi
h binds one its free variables

(re
all from Se
tion 6.6.6 that all variables bound by a single ELam
onstru
t are given the same

level):

256

> float_e (ELam args body)

> = (fd_outer, ELam args' (install fd_this_level body'))

> where

> args' = [arg | (arg,level) <- args℄

> (first_arg,this_level) = hd args

> (fd_body, body') = float_e body

> (fd_outer, fd_this_level) = partitionFloats this_level fd_body

The equation for a let(re
) expression adds its de�nition group to those
oated out from its

body, and from its right-hand sides. The latter must
ome �rst, sin
e the new de�nition group

may depend on them.

> float_e (ELet is_re
 defns body)

> = (rhsFloatDefns ++ [thisGroup℄ ++ bodyFloatDefns, body')

> where

> (bodyFloatDefns, body') = float_e body

> (rhsFloatDefns, defns') = mapA

uml float_defn [℄ defns

> thisGroup = (thisLevel, is_re
, defns')

> (name,thisLevel) = hd (bindersOf defns)

>

> float_defn floatedDefns ((name,level), rhs)

> = (rhsFloatDefns ++ floatedDefns, (name, rhs'))

> where

> (rhsFloatDefns, rhs') = float_e rhs

We defer
ase expressions:

> float_e (ECase e alts) = float_
ase e alts

> float_
ase e alts = error "float_
ase: not yet written"

The auxiliary fun
tion partitionFloats takes a floatedDefns and a level number, and sepa-

rates it into two: those belonging to an outer level and those belonging to the spe
i�ed level (or

an inner one):

> partitionFloats :: Level -> FloatedDefns -> (FloatedDefns, FloatedDefns)

> partitionFloats this_level fds

> = (filter is_outer_level fds, filter is_this_level fds)

> where

> is_this_level (level,is_re
,defns) = level >= this_level

> is_outer_level (level,is_re
,defns) = level < this_level

The fun
tion install wraps an expression in a nested set of let(re
)s
ontaining the spe
i�ed

de�nitions:

> install :: FloatedDefns -> Expr Name -> Expr Name

> install defnGroups e

> = foldr installGroup e defnGroups

> where

> installGroup (level, is_re
, defns) e = ELet is_re
 defns e

257

Finally, we
an de�ne the top-level fun
tion, float. It uses float_s
 to apply float_e to

ea
h super
ombinator, yielding a list of super
ombinators, in just the same way as
olle
tSCs

above.

> float prog =
on
at (map float_s
 prog)

The fun
tion float_s
 takes a super
ombinator de�nition to a list of super
ombinator de�ni-

tions,
onsisting of the transformed version of the original de�nition together with the level-zero

de�nitions
oated out from its body:

> float_s
 (name, [℄, rhs)

> = [(name, [℄, rhs')℄ ++
on
at (map to_s
s fds)

> where

> (fds, rhs') = float_e rhs

> to_s
s (level, is_re
, defns) = map make_s
 defns

> make_s
 (name, rhs) = (name, [℄, rhs)

The top level of a program is impli
itly mutually re
ursive, so we
an drop the isRe

ags. We

also have to give ea
h
oated de�nition an empty argument list, sin
e it is now a super
ombinator

de�nition.

6.7 Mark 5: Improvements to full laziness

That
ompletes the de�nition of the fully lazy lambda lifter. Its output is always
orre
t, but it

is larger and less eÆ
ient than it need be. In this se
tion we dis
uss some ways to improve the

full laziness transformation.

6.7.1 Adding
ase expressions

Exer
ise 6.11. Write de�nitions for freeToLevel_
ase, identifyMFEs_
ase1 and float_
ase. All

of them work in an analogous way to lambda abstra
tions. Hint: in float_
ase take
are with

alternatives whose argument list is empty.

6.7.2 Eliminating redundant super
ombinators

Consider the Core-language expression

\x. \y. x+y

Here the \y-abstra
tion has no MFEs apart from x itself, so the full-laziness pass will not a�e
t

the expression at all. Unfortunately, the simple lambda lifter, lambdaLift, will then generate

two super
ombinators, one for ea
h lambda, whereas only one is needed. It would be better to

ombine nested ELam expressions into a single ELam before passing the program to lambdaLift,

so that the latter would then generate just one super
ombinator. We
ould do this in a separate

pass, but it saves work to do it as part of the work of float.

258

Exer
ise 6.12. Modify the de�nition of the ELam
ase of float so that it
ombines nested ELam
on-

stru
tors. Hint: make use of the fun
tion:

> mkELam :: [Name℄ -> CoreExpr -> CoreExpr

> mkELam args (ELam args' body) = ELam (args++args') body

> mkELam args other_body = ELam args other_body

6.7.3 Avoiding redundant full laziness

Full laziness does not
ome for free. It has two main negative e�e
ts:

� Multiple lambda abstra
tions, su
h as \x y. E, turn into one super
ombinator under

the simple s
heme, but may turn into two under the fully lazy s
heme. Two redu
tions

instead of one are therefore required to apply it to two arguments, whi
h may well be more

expensive.

� Lifting out MFEs removes sub-expressions from their
ontext, and thereby redu
es oppor-

tunities for a
ompiler to perform optimisations. Su
h optimisations might be partially

restored by an interpro
edural analysis whi
h �gured out the
ontexts again, but it is

better still to avoid
reating the problem.

These points are elaborated by [Fairbairn 1985℄ and [Goldberg 1988℄. Furthermore, they point

out that often no bene�t arises from lifting out every MFE from every lambda abstra
tion. In

parti
ular:

� If no partial appli
ations of a multiple abstra
tion
an be shared, then nothing is gained

by
oating MFEs out to between the nested abstra
tions.

� Very little is gained by lifting out an MFE that is not a redu
ible expression. No work is

shared thereby, though there may be some saving in storage be
ause the
losure need only

be
onstru
ted on
e. This is more than outweighed by the loss of
ompiler optimisations

aused by removing the expression from its
ontext.

These observations suggest some improvements to the fully lazy lambda lifter, and they turn

out to be quite easy to in
orporate:

� If a multiple abstra
tion is not separated into separate ELam
onstru
tors by the

separateLam pass, then all the variables bound by it will be given the same level number.

It follows that no MFE will be identi�ed whi
h is free in the inner abstra
tion but not

the outer one. This ensures that no MFEs will be
oated out to between two abstra
tions

represented by a single ELam
onstru
tor.

All that is required is to modify the separateLams pass to keep in a single ELam
onstru
tor

ea
h multiple abstra
tion of whi
h partial appli
ations
annot be shared. This sharing

information is not trivial to dedu
e, but at least we have an elegant way to use its results

by modifying only a small part of our algorithm.

This is one reason why we allow ELam
onstru
tors to take a list of binders.

259

� identifyMFEs uses a predi
ate notMFECandidate to de
ide whether to identify a parti
ular

sub-expression as an MFE. This provides a
onvenient pla
e to add extra
onditions to

ex
lude from
onsideration expressions whi
h are not redexes. This
ondition, too, is

unde
idable in general, but a good approximation
an be made in many
ases; for example

(+ 3) is obviously not a redex.

This
on
ludes the presentation of the full laziness transformation.

6.8 Mark 6: Dependen
y analysisy

Consider the Core-language de�nition

f x = let

g = \y. letre

h = y+1 ;

k = x+2

in

h+k

in

g 4

The inner letre
 is not re
ursive at all! The program is equivalent to the following:

f x = let

g = \y. let h = y+1 in

let k = x+2 in

h+k

in

g 4

This transformation, whi
h breaks up let(re
) blo
ks into minimal-sized groups, and always

uses let in preferen
e to letre
, is
alled dependen
y analysis.

We have already alluded to the fa
t that better
ode
an be generated if the program has been

subje
ted to a dependen
y analysis. This has shown up in two pla
es:

� In Johnsson-style lambda lifting, we treated the free variables for a letre
 blo
k of def-

initions as a single entity. If we
ould in fa
t break the letre
 up into smaller blo
ks,

then there would be fewer free variables in ea
h blo
k. This will then redu
e the number

of free variables that must be added to a fun
tion de�nition by the abstra
tJ fun
tion.

� In the full-laziness transformation we always kept the de
larations in a let(re
) blo
k

together. If we �rst do dependen
y analysis, to break the de
larations into small groups,

then perhaps some of the groups
ould be
oated further out than before.

This se
tion explores how to do dependen
y analysis on Core programs.

260

6.8.1 Strongly
onne
ted
omponents

In order to dis
uss the dependen
y analysis we need to understand some graph theory. We

therefore begin with a de�nition.

De�nition 6.1 A dire
ted graph is a tuple (V ; E) of two
omponents:

� a set of verti
es (or nodes), V ;

� a set of edges, E. Ea
h edge is a pair: (v

0

; v

1

); where v

0

2 V is the sour
e of the edge,

and v

1

2 V is the target.

In the following expression we say that x depends on y and z, z depends on x and y, but that

y does not depend on any other variable.

letre

x = y + 7 * tl z;

y = 5

z = (x,y)

in e

The graph we
onstru
t for this de�nition blo
k has three verti
es, fx; y; zg, and the edges:

f(x; y); (x; z); (z; x); (z; y)g

The interpretation of the �rst edge is that x depends on y, and the absen
e of any edges from y

means that y does not depend on any other variables. Pi
torially, the graph is as follows:

=

w

�

-

y

zx

Be
ause we are not
on
erned with multiple edges between the same pairs of verti
es, we
an

instead formulate the information about the edges as a map: outs.

De�nition 6.2

outs v = fv

0

j (v ; v

0

) 2 Eg

The set outs v is therefore the set of verti
es that are targets for an edge whose sour
e is v . In

the example we have just looked at outs x = fy; zg, outs y = fg and outs z = fx; yg.

We
an
onstru
t a similar map, ins, whi
h is dual to the outs map.

De�nition 6.3

ins v = fv

0

j (v

0

; v) 2 Eg

261

This is the set of verti
es that are the sour
e of an edge pointing to v . In the example we have

just looked at ins x = fzg, insy = fx; zg and insz = fxg.

De�nition 6.4 The map r

�

is the transitive
losure of the map r. It
an be de�ned re
ursively

as:

� a 2 r

�

a,

� if b 2 r

�

a, then r b � r

�

a.

The set outs

�

a is the set of all verti
es that
an be rea
hed from the vertex a, by following the

edges of the graph. We say that b is rea
hable from a whenever b 2 outs

�

a. The set ins

�

a is

the set of all verti
es that
an rea
h the vertex a by following the edges of the graph.

Using the running example, we have outs

�

x = fx; y; zg, outs

�

y = fyg, and outs

�

z = fx; y; zg.

We also have ins

�

x = fx; zg, ins

�

y = fx; y; zg, and ins

�

z = fx; zg.

We are now in a position to de�ne a strongly
onne
ted
omponent of a graph. Informally, the

verti
es a and b are in the same
omponent whenever a is rea
hable from b and b is rea
hable

from a.

De�nition 6.5 The strongly
onne
ted
omponent of the graph
ontaining the vertex a is the

set of verti
es s

 a, de�ned as:

s

 a = outs

�

a \ ins

�

a

That is: a vertex b is in s

 a if and only if it is rea
hable from a and if a is rea
hable from b.

The graph in the running example has two strongly
onne
ted
omponents: fx; zg and fyg.

Exer
ise 6.13. Prove that the relation `in the same strongly
onne
ted
omponent' partitions the set

of verti
es into equivalen
e
lasses.

Topologi
al sorting

An ordering on verti
es
an be indu
ed by
onsidering the maps ins

�

and outs

�

. This is a partial

order whi
h we will represent as �.

De�nition 6.6 The vertex a is topologi
ally less than or equal to the vertex b, written a � b,

if and only if:

b 2 outs

�

a

In our example x � x, x � y, x � z, y � y, z � x, z � y and z � z.

Be
ause the strongly
onne
ted
omponents are disjoint, a similar ordering is indu
ed on them

by
onsidering the a
tion of � on their elements. In our running example the two
omponents

are ordered as: fx; zg � fyg.

De�nition 6.7 A sequen
e of verti
es (or strongly
onne
ted
omponents) are topologi
ally sort-

ed if, for all a and b in the sequen
e, a pre
edes b whenever a � b.

262

So, one possible topologi
ally sorted sequen
e would be: [x; z; y℄. The other is [z; x; y℄.

Having now determined that the two strongly
onne
ted
omponents are ordered as fx; zg � fyg,

we may transform the original expression into the following one:

letre

y = 5

in letre

x = y + 7 + se
ond z

z = (x, y)

in e

We next
onsider eÆ
ient ways to implement the strongly
onne
ted
omponent algorithm.

6.8.2 Implementing a strongly
onne
ted
omponent algorithm

Depth �rst sear
h

We will �rst
onsider the problem of implementing a depth �rst sear
h of a graph. The fun
tion

depthFirstSear
h is parameterised over the map from verti
es to their o�spring; this permits

us to reverse the dire
tion in whi
h the edges are traversed. Furthermore, we
hoose to make

the maps ins and outs into fun
tions from verti
es to sequen
es of verti
es. The reason for this

hange is that we have to traverse the o�spring in some order and this is easier to arrange if we

have a sequen
e rather than a set.

> depthFirstSear
h :: Ord a =>

> (a -> [a℄) -> -- Map

> (Set a, [a℄) -> -- State: visited set,

> --
urrent sequen
e of verti
es

> [a℄ -> -- Input verti
es sequen
e

> (Set a, [a℄) -- Final state

The fun
tion depthFirstSear
h updates a state as it runs down the input vertex sequen
e,

using foldll. The state
onsists of two parts: in the �rst we keep tra
k of all of the verti
es

that we have so far visited; in the se
ond we
onstru
t the sequen
e of verti
es that we will

output.

> depthFirstSear
h

> = foldll . sear
h

> where

The key part of the depth �rst sear
h is
oded into sear
h: if we have already visited the vertex

then the state is un
hanged.

> sear
h relation (visited, sequen
e) vertex

> | setElementOf vertex visited = (visited, sequen
e) -- KH

> -- KH Was: = (visited, sequen
e), setElementOf vertex visited

263

On the other hand, if this is the �rst time we have visited the vertex, then we must pro
eed to

sear
h from this vertex. When the state is returned from this sear
h, we must add the
urrent

vertex to the sequen
e.

> | otherwise = (visited', vertex: sequen
e') -- KH

> -- KH Was: = (visited', vertex: sequen
e'), otherwise

> where

The visited set must be updated with the
urrent vertex, before we begin the sear
h, and the

list of verti
es to sear
h from is determined by applying the map relation.

> (visited', sequen
e')

> = depthFirstSear
h relation

> (setUnion visited (setSingleton vertex), sequen
e)

> (relation vertex)

The result will be a set of verti
es visited, and a sequen
e of these visited verti
es, in topologi
al

sort order.

Exer
ise 6.14. Prove the following theorem:

depthFirstSear
h outs (fg; [℄)S = (V ; S

0

)

where S is a sequen
e of verti
es, V =

S

v2S

outs v , and S

0

is a topologi
ally sorted sequen
e of

the verti
es in V .

Spanning sear
h

The fun
tion spanningSear
h is a slight adaptation of the fun
tion depthFirstSear
h, in whi
h

we retain the stru
turing information obtained during the sear
h.

> spanningSear
h :: Ord a =>

> (a -> [a℄) -> -- The map

> (Set a, [Set a℄) -> -- Current state: visited set,

> --
urrent sequen
e of verti
e sets

> [a℄ -> -- Input sequen
e of verti
es

> (Set a, [Set a℄) -- Final state

Again, it is de�ned in terms of an auxiliary fun
tion sear
h

> spanningSear
h

> = foldll . sear
h

> where

If the
urrent vertex has been visited already then we return the
urrent state.

264

> sear
h relation (visited, setSequen
e) vertex

> | setElementOf vertex visited = (visited, setSequen
e) -- KH

> -- KH Was: = (visited, setSequen
e), setElementOf vertex visited

Alternatively, if this is the �rst time we have visited the
urrent vertex, then we sear
h { using

depthFirstSear
h { from the
urrent vertex. The sequen
e that is returned
onstitutes the

omponent asso
iated with the
urrent vertex. We therefore add it to the sequen
e of sets that

we are
onstru
ting.

> | otherwise = (visited', setFromList (vertex: sequen
e): setSequen
e) -- KH

> -- KH Was: = (visited', setFromList (vertex: sequen
e): setSequen
e)

> where

> (visited', sequen
e)

> = depthFirstSear
h relation

> (setUnion visited (setSingleton vertex), [℄)

> (relation vertex)

Strongly
onne
ted
omponents

The strongly
onne
ted
omponent algorithm
an now be implemented as the following fun
tion:

> s

 :: Ord a =>

> (a -> [a℄) -> -- The "ins" map

> (a -> [a℄) -> -- The "outs" map

> [a℄ -> -- The root verti
es

> [Set a℄ -- The topologi
ally sorted
omponents

The fun
tion s

onsists of two passes over the graph.

> s

 ins outs

> = spanning . depthFirst

In the �rst we
onstru
t a topologi
ally sorted sequen
e of the verti
es of the graph.

> where depthFirst = se
ond . depthFirstSear
h outs (setEmpty, [℄)

In the se
ond pass we
onstru
t the reverse of the topologi
ally sorted sequen
e of strongly

onne
ted
omponents.

> spanning = se
ond . spanningSear
h ins (setEmpty, [℄)

Let us
onsider what happens when we
onstru
t the �rst
omponent. At the head of the

sequen
e is the vertex a. Any other verti
es that satisfy a � b will o

ur later in the sequen
e.

There are no verti
es satisfying b � a. The
all to spanningSear
h with ins as its relational

parameter, will
onstru
t ins

�

a. The visited set will be augmented with ea
h vertex in the

omponent.

In the example we
onsidered earlier, we will be applying spanning to the list [x; z; y℄. This

expands to:

265

se
ond (sear
h ins (sear
h ins (sear
h ins ({},[℄) x) z) y)

Expanding the inner sear
h we obtain:

se
ond (sear
h ins (sear
h ins (vs, [setFromList (x:s)℄) z) y)

where (vs,s) = depthFirstSear
h ins ({x},[℄) (ins x)

But ins x = [z℄; this means that vs = fx; zg and s = [z℄. Hen
e we redu
e the expression to:

se
ond (sear
h ins (sear
h ins ({x,z}, [{x,z}℄) z) y)

Be
ause z is already in the visted set, this be
omes:

se
ond (sear
h ins ({x,z}, [{x,z}℄) y)

The sear
h expands as:

se
ond (vs, [setFromList (y:s), {x,z}℄)

where (vs,s) = depthFirstSear
h ins ({x,y,z},[℄) (ins y)

But ins y = [x; z℄; both of whi
h are already visited, so vs = fx; z; yg and s = [℄.

The �nal form of the expression be
omes:

[{y}, {x,z}℄

The visited set in spanningSear
h represents those verti
es that have already been

assigned to a strongly
onne
ted
omponent.

When we
ome a
ross a vertex in the input sequen
e that is already in the visited set, it behaves

as if it had been deleted from further
onsideration. Suppose that the vertex b is the next vertex

in the input sequen
e that has not already been visited. When we
ome to
ompute

depthFirstSear
h ins (fbg [visited; [℄) (ins b)

This will produ
e a new visited set (whi
h will be s

 a [s

 b) and a sequen
e whose elements

are the verti
es in s

 b.

Note that the strongly
onne
ted
omponents are output in reverse topologi
al order.

Exer
ise 6.15. Let

s

 ins outs R = S ;

and V =

S

fins

�

v j v 2 Rg. Prove that

� �rstly, that the sequen
e S
ontains all of the strongly
onne
ted
omponents, i.e.

setFromList S =

[

fs

 v j v 2 V g;

� se
ondly, that these
omponents are in reverse topologi
al order, i.e. if a � b then b o

urs

before a in the sequen
e S .

266

6.8.3 A dependen
y analysis

We
an now perform a dependen
y analysis on the program. Whenever we
ome a
ross a

let(re
) blo
k we must split it into strongly
onne
ted
omponents. In the
ase of let, this is

simple; there are no dependen
ies so we simply separate the list of de�nitions into a singleton

list for ea
h de�nition.

The dependen
y analysis is performed by the fun
tion dependen
y. This uses information from

a prior pass of freeVars to rearrange let(re
)s; this information is then used by the auxiliary

fun
tion depends.

> dependen
y :: CoreProgram -> CoreProgram

> dependen
y = depends . freeVars

> runD = pprint . dependen
y . parse

> depends :: AnnProgram Name (Set Name) -> CoreProgram

> depends prog = [(name,args, depends_e rhs) | (name, args, rhs) <- prog℄

The work is done by depends_e, whose only interesting
ase is that for let(re
).

> depends_e :: AnnExpr Name (Set Name) -> CoreExpr

> depends_e (free, ANum n) = ENum n

> depends_e (free, AConstr t a) = EConstr t a

> depends_e (free, AVar v) = EVar v

> depends_e (free, AAp e1 e2) = EAp (depends_e e1) (depends_e e2)

> depends_e (free, ACase body alts) = ECase (depends_e body)

> [(tag, args, depends_e e)

> | (tag, args, e) <- alts

> ℄

> depends_e (free, ALam ns body) = ELam ns (depends_e body)

In the
ase of letre
s we must
onstru
t the dependen
y graph, and then apply the s

 fun
tion

to determine the way to split the de�nitions. If defnGroups is [d

1

; d

2

; : : : ; d

n

℄ { and we are

pro
essing a letre
 { then the letre
 will be transformed to:

letre
 d

1

in letre
 d

2

in : : : letre
 d

n

in body:

> depends_e (free, ALet is_re
 defns body)

> = foldr (mkDependLet is_re
) (depends_e body) defnGroups

> where

> binders = bindersOf defns

The set of variables that we are interested in is derived from the binders, and is
alled the

binderSet.

267

> binderSet | is_re
 = setFromList binders

> | otherwise = setEmpty

From this we
an
onstru
t the edges of the dependen
y graph.

> edges = [(n, f) | (n, (free, e)) <- defns,

> f <- setToList (setInterse
tion free binderSet)℄

And thus the fun
tions ins and outs required by the strongly
onne
ted
omponent algorithm.

> ins v = [u | (u,w) <- edges, v==w℄

> outs v = [w | (u,w) <- edges, v==u℄

The resulting list of sets is
onverted into a list of lists,
alled
omponents.

>
omponents = map setToList (s

 ins outs binders)

We
onstru
t the defnGroups by looking up the expression bound to ea
h binder in the original

de�nitions, defns:

> defnGroups = [[(n, aLookup defns n (error "defnGroups"))

> | n <- ns℄

> | ns <-
omponents

> ℄

Finally, to join together ea
h group in defnGroups, we de�ne mkDependLet, whi
h re
ursively

does dependen
y analysis on ea
h right-hand side, and then builds the results into a let(re
)

expression: A simple de�nition is:

> mkDependLet is_re
 dfs e = ELet is_re
 [(n, depends_e e) | (n,e) <- dfs℄ e

Exer
ise 6.16. In addition to the de�nition groups from non-re
ursive lets we sometimes get non-

re
ursive de�nitions arising in letre
's. This is the
ase for y in the example we have used.

Rede�ne mkDependLet to make su
h bindings with a let and not a letre
. Hint: use the free-

variable information present in the right-hand sides of the de�nitions passed to mkDependLet.

6.9 Con
lusion

It is interesting to
ompare our approa
h to full laziness with Bird's very ni
e paper [Bird 1987℄

whi
h addresses a similar problem. Bird's obje
tive is to give a formal development of an eÆ
ient

fully lazy lambda lifter, by su

essive transformation of an initial spe
i�
ation. The resulting

algorithm is rather
omplex, and would be hard to write down dire
tly, thus fully justifying the

e�ort of a formal development.

In
ontrast, we have expressed our algorithm as a
omposition of a number of very simple phases,

ea
h of whi
h
an readily be spe
i�ed and written down dire
tly. The resulting program has a

268

onstant-fa
tor ineÆ
ien
y, be
ause it makes many traversals of the expression. This is easily

removed by folding together su

essive passes into a single fun
tion, eliminating the intermediate

data stru
ture. Unlike Bird's transformations, this is a straightforward pro
ess.

Our approa
h has the major advantage that is is modular. For example:

� We were able to reuse existing fun
tions on several o

asions (freeVars, rename,

olle
tSCs and so on).

� The multi-pass approa
h means that ea
h pass has a well-de�ned, simple purpose, whi
h

makes it easier to modify. For example, we modi�ed the identifyMFEs algorithm to be

more sele
tive about where full laziness is introdu
ed (Se
tion 6.7.3).

� We
ould use the major phases in various
ombinations to `snap together' a variety of

transformations. For example, we
ould
hoose whether or not to do dependen
y analysis

and full laziness, and whi
h lambda lifter to use, simply by
omposing the appropriate

fun
tions at the top level.

The main disadvantage of our approa
h is that we are unable to take advantage of one optimisa-

tion suggested by Hughes, namely ordering the parameters to a super
ombinator to redu
e the

number of MFEs. The reason for this is that the optimisation absolutely requires that lambda

lifting be entwined with the pro
ess of MFE identi�
ation, while we have
arefully separated

these a
tivities! Happily for us, the larger MFEs
reated by this optimisation are always par-

tial appli
ations, whi
h should probably not be identi�ed as MFEs be
ause no work is shared

thereby (Se
tion 6.7.3). Even so, matters might not have fallen out so fortuitously, and our

separation of
on
erns has
ertainly made some sorts of transformation rather diÆ
ult.

269

Appendix A

Utilities module

This appendix gives de�nitions for various useful types and fun
tions used throughout the book.

> module Utils where

> -- The following definitions are used to make some synonyms for routines

> -- in the Gofer prelude to be more Miranda
ompatible

> shownum n = show n

> hd :: [a℄ -> a

> hd = head -- in Gofer standard prelude

> tl :: [a℄ -> [a℄

> tl = tail -- in Gofer standard prelude

> zip2 :: [a℄ -> [b℄ -> [(a,b)℄

> zip2 = zip -- in Gofer standard prelude

> --
an't do anything about # = length, sin
e # not binary.

A.1 The heap type

The abstra
t data types heap and addr are used to represent the GHarbage-
olle
ted heap of

nodes for ea
h of our implementations.

A.1.1 Spe
i�
ation

A heap of * is a
olle
tion of obje
ts of type *, ea
h identi�ed by a unique address of type addr.

The following operations are provided:

> hInitial :: Heap a

> hAllo
 :: Heap a -> a -> (Heap a, Addr)

> hUpdate :: Heap a -> Addr -> a -> Heap a

> hFree :: Heap a -> Addr -> Heap a

270

hInitial returns an initialised empty heap. hAllo
 takes a heap and an obje
t, and returns

a new heap and an address; the new heap is exa
tly the same as the old one, ex
ept that the

spe
i�ed obje
t is found at the address returned. hUpdate takes a heap, an address and an

obje
t; it returns a new heap in whi
h the address is now asso
iated with the obje
t. hFree

takes a heap and an address and returns a new heap with the spe
i�ed obje
t removed.

> hLookup :: Heap a -> Addr -> a

> hAddresses :: Heap a -> [Addr℄

> hSize :: Heap a -> Int

hLookup takes a heap and an address and returns the obje
t asso
iated with that address.

hAddresses returns the addresses of all the obje
ts in the heap. hSize returns the number of

obje
ts in the heap.

> hNull :: Addr

> hIsnull :: Addr -> Bool

hNull is an address guaranteed to di�er from every address returned by hAllo
; hIsnull tells

whether an address is this distinguished value.

Finally, we add a show fun
tion so that addresses
an be printed easily.

> showaddr :: Addr -> [Char℄

By giving it the name show followed by the name of the type (addr), we inform Miranda that

when Miranda's built-in show fun
tion en
ounters an obje
t of type addr, it should use showaddr

to
onvert it to a list of
hara
ters.

A.1.2 Representation

The heap is represented as a triple,
ontaining:

� the number of obje
ts in the heap;

� a list of unused addresses;

� an asso
iation list mapping addresses to obje
ts.

Addresses are represented as numbers.

> type Heap a = (Int, [Int℄, [(Int, a)℄)

> type Addr = Int

We implement the operations in a (fairly) obvious manner.

> hInitial = (0, [1..℄, [℄)

> hAllo
 (size, (next:free),
ts) n = ((size+1, free, (next,n) :
ts),next)

> hUpdate (size, free,
ts) a n = (size, free, (a,n) : remove
ts a)

> hFree (size, free,
ts) a = (size-1, a:free, remove
ts a)

271

> hLookup (size,free,
ts) a

> = aLookup
ts a (error ("
an't find node " ++ showaddr a ++ " in heap"))

>

> hAddresses (size, free,
ts) = [addr | (addr, node) <-
ts℄

>

> hSize (size, free,
ts) = size

> hNull = 0

> hIsnull a = a == 0

> showaddr a = "#" ++ shownum a -- Print # to identify addresses

The auxiliary fun
tion remove removes an item from a heap
ontents:

> remove :: [(Int,a)℄ -> Int -> [(Int,a)℄

> remove [℄ a = error ("Attempt to update or free nonexistent address #" ++

> shownum a)

> remove ((a',n):
ts) a | a == a' =
ts

> | a /= a' = (a',n) : remove
ts a

A.2 The asso
iation list type

An asso
iation list asso
iates keys to values. It is represented by a list of (key,value) pairs, using

a type synonym. It is not an abstra
t type be
ause it turns out to be so
onvenient to use

list-manipulation operations on it.

> type ASSOC a b = [(a,b)℄

You
an use one asso
iation list, e

1

, to extend another, e

2

, using ordinary list append, thus

e

1

++ e

2

. A lookup in this extended environment will sear
h e

1

�rst and then e

2

.

GHiven a key, k , you
an �nd the asso
iated value using aLookup.

The
all aLookup alist key default sear
hes the asso
iation list alist starting from the head of

the list; if it �nds a (key ; val) pair it returns val , otherwise it returns default .

> aLookup [℄ k' def = def

> aLookup ((k,v):bs) k' def | k == k' = v

> | k /= k' = aLookup bs k' def

The fun
tions aDomain and aRange �nd the range and domain of the asso
iation list, respe
tively:

> aDomain :: ASSOC a b -> [a℄

> aDomain alist = [key | (key,val) <- alist℄

>

> aRange :: ASSOC a b -> [b℄

> aRange alist = [val | (key,val) <- alist℄

272

aEmpty is the empty asso
iation list:

> aEmpty = [℄

A.3 Generating unique names

In Chapter 6 we need to generate unique names for newly generated super
ombinators. The

abstra
t data type nameSupply a
ts as a supply of unique names.

> getName :: NameSupply -> [Char℄ -> (NameSupply, [Char℄)

> getNames :: NameSupply -> [[Char℄℄ -> (NameSupply, [[Char℄℄)

> initialNameSupply :: NameSupply

There are three operations. getName takes a name supply and a pre�x string, and returns a

depleted name supply together with a string whi
h is a new unique name; this string has the

spe
i�ed pre�x. getNames does the same thing for a list of pre�xes. Finally, initialNameSupply

is the initial, undepleted name supply.

A.3.1 Representation

A name supply is represented by a single integer.

> type NameSupply = Int

> initialNameSupply = 0

> getName name_supply prefix = (name_supply+1, makeName prefix name_supply)

> getNames name_supply prefixes

> = (name_supply + length prefixes, zipWith makeName prefixes [name_supply..℄)

> makeName prefix ns = prefix ++ "_" ++ shownum ns

A.4 Sets

The abstra
t data type of sets has the following signature.

> setFromList :: (Ord a) => [a℄ -> Set a

> setToList :: (Ord a) => Set a -> [a℄

> setUnion :: (Ord a) => Set a -> Set a -> Set a

> setInterse
tion :: (Ord a) => Set a -> Set a -> Set a

> setSubtra
tion :: (Ord a) => Set a -> Set a -> Set a

> setElementOf :: (Ord a) => a -> Set a -> Bool

> setEmpty :: (Ord a) => Set a

> setIsEmpty :: (Ord a) => Set a -> Bool

> setSingleton :: (Ord a) => a -> Set a

> setUnionList :: (Ord a) => [Set a℄ -> Set a

273

A.4.1 Representation

In this implementation, sets are represented by ordered lists.

> type Set a = [a℄ -- Ordered by the sort fun
tion

The implementation of the operations is straightforward.

> setEmpty = [℄

> setIsEmpty s = null s

> setSingleton x = [x℄

> setFromList = rmdup . sort

> where rmdup [℄ = [℄

> rmdup [x℄ = [x℄

> rmdup (x:y:xs) | x == y = rmdup (y:xs)

> | x /= y = x: rmdup (y:xs)

> setToList xs = xs

> setUnion [℄ [℄ = [℄

> setUnion [℄ (b:bs) = (b:bs)

> setUnion (a:as) [℄ = (a:as)

> setUnion (a:as) (b:bs) | a < b = a: setUnion as (b:bs)

> | a == b = a: setUnion as bs

> | a > b = b: setUnion (a:as) bs

> setInterse
tion [℄ [℄ = [℄

> setInterse
tion [℄ (b:bs) = [℄

> setInterse
tion (a:as) [℄ = [℄

> setInterse
tion (a:as) (b:bs) | a < b = setInterse
tion as (b:bs)

> | a == b = a: setInterse
tion as bs

> | a > b = setInterse
tion (a:as) bs

> setSubtra
tion [℄ [℄ = [℄

> setSubtra
tion [℄ (b:bs) = [℄

> setSubtra
tion (a:as) [℄ = (a:as)

> setSubtra
tion (a:as) (b:bs) | a < b = a: setSubtra
tion as (b:bs)

> | a == b = setSubtra
tion as bs

> | a > b = setSubtra
tion (a:as) bs

> setElementOf x [℄ = False

> setElementOf x (y:ys) = x==y || (x>y && setElementOf x ys)

> setUnionList = foldll setUnion setEmpty

274

A.5 Other useful fun
tion de�nitions

The de�nitions of fst and snd are present in later versions of Miranda, but not earlier ones.

We always use first and se
ond instead to avoid
ompatibility problems.

> first (a,b) = a

> se
ond (a,b) = b

The fun
tion zipWith zips together two lists,
ombining
orresponding elements with a given

fun
tion. The resulting list is as long as the shorter of the two input lists.

> -- zipWith is defined in standard prelude

The de�nition of foldl di�ers between di�erent versions of Miranda, so we avoid the problem

by writing our own fun
tion foldll, whi
h does the following: GHiven a dyadi
 fun
tion
, a

value b and a list xs = [x

1

; :::; x

n

℄, foldll
 b xs
omputes (: : : ((b
 x

1

)
 x

2

)
 : : : x

n

).

Se
tion 1.5.1
ontains a simple example of foldll in a
tion, together with a pi
ture.

> foldll :: (a -> b -> a) -> a -> [b℄ -> a

> foldll = foldl -- in Gofer standard prelude.

Finally, the fun
tion mapA

uml is a rather useful
ombination of map and foldll. It is given a

fun
tion, an a

umulator and a list. For ea
h element of the list it applies the fun
tion to the

urrent a

umulator and that list element, whi
h gives a new value of the a

umulator and a

new list element. The result of mapA

uml is the �nal value of the a

umulator, and the list of

all the results. The `l' in the fun
tion name says that the a

umulator is passed along from left

to right. Se
tion 2.3.4 has an example of mapA

uml in a
tion, together with a pi
ture.

> mapA

uml :: (a -> b -> (a,
)) -- Fun
tion of a

umulator and element

> -- input list, returning new

> -- a

umulator and element of result list

> -> a -- Initial a

umulator

> -> [b℄ -- Input list

> -> (a, [
℄) -- Final a

umulator and result list

>

> mapA

uml f a

 [℄ = (a

, [℄)

> mapA

uml f a

 (x:xs) = (a

2, x':xs')

> where (a

1, x') = f a

 x

> (a

2, xs') = mapA

uml f a

1 xs

> sort [℄ = [℄

> sort [x℄ = [x℄

> sort (x:xs) = [y | y <- xs, y < x℄ ++ x : [y | y <- xs, y >= x ℄

> spa
e n = take n (repeat ' ')

275

Appendix B

Example Core-language programs

In this Appendix we give a few Core-language programs whi
h are useful for testing some of the

implementations developed in the book. They assume that the fun
tions de�ned in the prelude

(Se
tion 1.4) are de�ned.

B.1 Basi
 programs

The programs in this se
tion require only integer
onstants and fun
tion appli
ation.

B.1.1 Ultra-basi
 tests

This program should return the value 3 rather qui
kly!

main = I 3

The next program requires a
ouple more steps before returning 3.

id = S K K ;

main = id 3

This one makes quite a few appli
ations of id (how many?).

id = S K K ;

main = twi
e twi
e twi
e id 3

B.1.2 Testing updating

This program should show up the di�eren
e between a system whi
h does updating and one

whi
h does not. If updating o

urs, the evaluation of (I I I) should take pla
e only on
e;

without updating it will take pla
e twi
e.

main = twi
e (I I I) 3

276

B.1.3 A more interesting example

This example uses a fun
tional representation of lists (see Se
tion 2.8.3) to build an in�nite list

of 4's, and then takes its se
ond element. The fun
tions for head and tail (hd and tl) return

abort if their argument is an empty list. The abort super
ombinator just generates an in�nite

loop.

ons a b

n =

 a b ;

nil

n =
n ;

hd list = list K abort ;

tl list = list K1 abort ;

abort = abort ;

infinite x =
ons x (infinite x) ;

main = hd (tl (infinite 4))

B.2 let and letre

If updating is implemented, then this program will exe
ute in fewer steps than if not, be
ause

the evaluation of id1 is shared.

main = let id1 = I I I

in id1 id1 3

We should test nested let expressions too:

o
t g x = let h = twi
e g

in let k = twi
e h

in k (k x) ;

main = o
t I 4

The next program tests letre
s, using `fun
tional lists' based on the earlier de�nitions of
ons,

nil, et
.

infinite x = letre
 xs =
ons x xs

in xs ;

main = hd (tl (tl (infinite 4)))

B.3 Arithmeti

B.3.1 No
onditionals

We begin with simple tests whi
h do not require the
onditional.

277

main = 4*5+(2-5)

This next program needs fun
tion
alls to work properly. Try repla
ing twi
e twi
e with

twi
e twi
e twi
e or twi
e twi
e twi
e twi
e. Predi
t what the result should be.

in
 x = x+1;

main = twi
e twi
e in
 4

Using fun
tional lists again, we
an write a length fun
tion:

length xs = xs length1 0 ;

length1 x xs = 1 + (length xs) ;

main = length (
ons 3 (
ons 3 (
ons 3 nil)))

B.3.2 With
onditionals

On
e we have
onditionals we
an at last write `interesting' programs. For example, fa
torial:

fa
 n = if (n==0) 1 (n * fa
 (n-1)) ;

main = fa
 5

The next program
omputes the greatest
ommon divisor of two integers, using Eu
lid's algo-

rithm:

g
d a b = if (a==b)

a

if (a<b) (g
d b a) (g
d b (a-b)) ;

main = g
d 6 10

The nfib fun
tion is interesting be
ause its result (an integer) gives a
ount of how many

fun
tion
alls were made during its exe
ution. So the result divided by the exe
ution time gives

a performan
e measure in fun
tion
alls per se
ond. As a result, nfib is quite widely used as

a ben
hmark. The `n�b-number' for a parti
ular implementation needs to be taken with an

enormous dose of salt, however, be
ause it is
riti
ally dependent on various rather spe
ialised

optimisations.

nfib n = if (n==0) 1 (1 + nfib (n-1) + nfib (n-2)) ;

main = nfib 4

B.4 Data stru
tures

This program returns a list of des
ending integers. The evaluator should be expe
ting a list as

the result of the program.
ons and nil are now expe
ted to be implemented in the prelude as

Pa
k{2,2} and Pa
k{1,0} respe
tively.

278

downfrom n = if (n == 0)

nil

(
ons n (downfrom (n-1))) ;

main = downfrom 4

The next program implements the Sieve of Eratosthenes to generate the in�nite list of primes,

and takes the �rst few elements of the result list. If you arrange that output is printed in
re-

mentally, as it is generated, you
an remove the
all to take and just print the in�nite list.

main = take 3 (sieve (from 2)) ;

from n =
ons n (from (n+1)) ;

sieve xs =
ase xs of

<1> -> nil ;

<2> p ps ->
ons p (sieve (filter (nonMultiple p) ps)) ;

filter predi
ate xs

=
ase xs of

<1> -> nil ;

<2> p ps -> let rest = filter predi
ate ps

in

if (predi
ate p) (
ons p rest) rest ;

nonMultiple p n = ((n/p)*p) ~= n ;

take n xs = if (n==0)

nil

(
ase xs of

<1> -> nil ;

<2> p ps ->
ons p (take (n-1) ps))

279

Bibliography

[Aho et al. 1986℄ Aho, A.V., R. Sethi and J. D. Ullman, (1986) Compilers: prin
iples,

te
hniques and tools, Addison Wesley.

[Argo 1989℄ Argo, G. (1989) Improving the three instru
tion ma
hine, Fun
tional

Programming Languages and Computer Ar
hite
ture, Addison Wes-

ley.

[Argo 1991℄ Argo, G. (1991) EÆ
ient laziness, Ph.D. thesis, Department of Com-

puting S
ien
e, University of Glasgow, De
. 1991 (to appear).

[Augustsson 1984℄ Augustsson, L. (1984) A Compiler for Lazy ML, in Pro
eedings of the

1984 ACM Symposium on Lisp and Fun
tional Programming, Austin,

Texas, Aug. 1984, pp. 218{227.

[Augustsson 1987℄ Augustsson, L. (1987) Compiling lazy fun
tional languages, part II,

Ph.D. thesis, Chalmers Tekniska H�ogskola, G�oteborg, Sweden.

[Baker 1978℄ Baker, H. (1978) List pro
essing in real time on a serial
omputer,

Communi
ations of the ACM 21(4), 280{294.

[Bird 1987℄ Bird, R. (1987) A formal development of an eÆ
ient super
ombinator

ompiler, S
ien
e of Computer Programming 8, 113{137.

[Bird and Wadler 1988℄ Bird, R., and P. L. Wadler, (1988) Introdu
tion to fun
tional program-

ming, Prenti
e Hall.

[Burn 1991℄ Burn, G.L. (1991) Lazy fun
tional languages: abstra
t interpretation

and
ompilation, Pitman.

[Cheney 1970℄ Cheney, C. J. (1970) A non-re
ursive list
ompa
tion algorithm, Com-

muni
ations of the ACM 13(11), 677{678.

[Cohen 1981℄ Cohen, J. (1981) Garbage
olle
tion of linked data stru
tures, ACM

Computing Surveys 13(3), 341{367.

[Fairbairn 1985℄ Fairbairn, J. (1985) Removing redundant laziness from super
ombi-

nators, Pro
eedings of the Aspenas workshop on implementation of

fun
tional languages, Chalmers University, Feb. 1985.

[Fairbairn 1986℄ Fairbairn, J. (1986) Making form follow fun
tion { an exer
ise in fun
-

tional programming style, TR 89, Computer Lab., Cambridge.

280

[Fairbairn and Wray 1987℄ Fairbairn, J. and S. Wray, (1987) TIM { a simple lazy abstra
t

ma
hine to exe
ute super
ombinators, Fun
tional Programming Lan-

guages and Computer Ar
hite
ture, LNCS 274, Springer Verlag.

[Feni
hel and Yo
helson 1969℄ Feni
hel, R. R. and J. C. Yo
helson, (1969) A Lisp garbage
ol-

le
tor for virtual memory
omputer systems, Communi
ations of the

ACM 12(11), 611{612.

[Goldberg 1988℄ Goldberg, B. F. (1988) Multipro
essor exe
ution of fun
tional pro-

grams, Ph.D. thesis, YALEU/DCS/RR-618, Department of Computer

S
ien
e, Yale University, April 1988.

[Holst 1990℄ Holst, C. K. (1990) Improving full laziness, in Fun
tional Program-

ming, Glasgow 1990, ed. Peyton Jones, Hutton & Holst, Workshops

in Computing, Springer Verlag.

[Holyer 1991℄ Holyer, I. (1991) Fun
tional programming with Miranda, Pitman.

[Hughes 1983℄ Hughes, R. J. M. (1983) The design and implementation of program-

ming languages, D.Phil. thesis, Programming Resear
h Group, Oxford,

July 1983.

[Johnsson 1984℄ Johnsson, T. (1984) EÆ
ient
ompilation of lazy evaluation, in Pro-

eedings of the SIGPLAN '84 Symposium on Compiler Constru
tion,

Montreal, Canada, June 1984, pp. 58{69.

[Johnsson 1985℄ Johnsson, T. (1985) Lambda lifting: transforming programs to re
ur-

sive equations, in Pro
eedings of the IFIP Conferen
e on Fun
tional

Programming and Computer Ar
hite
ture, ed. Jouannaud, LNCS 201,

Springer Verlag, pp. 190{205.

[Johnsson 1987℄ Johnsson, T. (1987) Compiling lazy fun
tional languages, Ph.D. thesis,

Chalmers Tekniska H�ogskola, G�oteborg, Sweden.

[Jones et al. 1989℄ Jones, N. D., P. Sestoft and H. S�ndergaard, (1989) Mix: a self-

appli
able partial evaluator for experiments in
ompiler generation,

Lisp and Symboli
 Computation 2(1), 9{50.

[Kingdon et al 1991℄ Kingdon, H., D. Lester and G. L. Burn, (1991) The HDG-ma
hine: a

highly distributed graph redu
er for a transputer network, The Com-

puter Journal 34(4), 290{302.

[Lester 1988℄ Lester, D. R. (1988) Combinator graph redu
tion: a
ongruen
e and

its appli
ations, D.Phil. Thesis, Te
hni
al Monograph PRG-73, Pro-

gramming Resear
h Group, Keble Rd, Oxford.

[Peyton Jones 1987℄ Peyton Jones, S. L. (1987) The Implementation of Fun
tional Pro-

gramming Languages. Prenti
e Hall International Series in Computer

S
ien
e. Prenti
e Hall, Hemel Hempstead.

[Peyton Jones 1989℄ Peyton Jones, S. L. (1989) Parallel implementations of fun
tional pro-

gramming languages, The Computer Journal 32(2), 175{186.

281

[Peyton Jones 1991℄ Peyton Jones, S. L. (1991) The Spineless Tagless G-ma
hine: a se
ond

attempt, in Pro
eedings of the Workshop on Parallel Implementation

of Fun
tional Languages, ed. Glaser & Hartel, CSTR 91{07, Depart-

ment of Ele
troni
s and Computer S
ien
e, University of Southamp-

ton.

[Peyton Jones and Lester 1991℄ Peyton Jones, S. L. and D. Lester, (1991) A modular, fully lazy

lambda lifter in Haskell, Software { Pra
ti
e and Experien
e 21(5),

479{506.

[Peyton Jones and Salkild 1989℄ Peyton Jones, S. L. and J. Salkild, (1989) The Spineless Tag-

less G-ma
hine, in Fun
tional Programming Languages and Computer

Ar
hite
ture, ed. Ma
Queen, Addison Wesley.

[S
horr and Waite 1967℄ S
horr, H. and W. Waite, (1967) An eÆ
ient ma
hine-independent

pro
edure for garbage
olle
tion, Communi
ations of the ACM 10(8),

501{506.

[Wadler 1985℄ Wadler, P. L. (1985) How to repla
e failure by a list of su

esses, in

Fun
tional Programming Languages and Computer Ar
hite
ture, Nan-

y, LNCS 201, Springer Verlag, pp. 113{128.

[Wadler 1987℄ Wadler, P. L. (1987) Proje
tions for Stri
tness Analysis, in Pro
eedings

of the Fun
tional Programming Languages and Computer Ar
hite
ture

Conferen
e, Portland, LNCS 274, Springer Verlag, pp. 385{407.

[Wakeling and Dix 1989℄ Wakeling, D. and A. Dix (1989) Optimising partial appli
ations in

TIM, Department of Computer S
ien
e, University of York, Mar
h

1989.

282

Subje
t index

Underlined entries in the index indi
ate where terms or
ompilation s
hemes are de�ned.

A, 128, 150, 155, 166, 169, 170, 180, 193,

194

A

E

, 138, 139

A

R

, 138, 140

B, 136, 137, 138{140, 165, 166, 167, 169, 193,

194

C, 96, 97, 98, 104, 108, 109, 120, 122, 128,

130, 131, 137{140, 208

D, 128

D

E

, 139

D

R

, 140

E , 120, 121, 122, 128, 137, 138, 139, 140,

186, 187, 193, 194

I, 171, 178, 193, 194

J , 174, 175, 178

R, 96, 97, 98, 104, 121, 122, 138, 140, 150,

155, 166, 167, 169, 170, 171, 174,

178, 180, 186, 187, 193, 194

SC, 96, 97, 149, 150, 155, 169, 170, 174, 178,

193

U , 178, 179, 180, 193, 194

., 29

\/, 30

abstra
t data type, 22

abstra
t ma
hine, 84

abstra
tion step, 232

a

ess fun
tions, 90

a

ess method, for variables, 105

a

umulator, 55, 267

addressing modes, 147, 148

ADT, see abstra
t data type

algebrai
 data types, see data stru
tures, 12

parameterised, 13

alternative

of
ase expression, 15, 123

annotation, in parallel fun
tional programs,

198

arithmeti

in G-ma
hine, 111, 115

in template-instantation ma
hine, 65

in TIM, 161

optimised, in G-ma
hine, 119

arity

of
onstru
tor, 14, 69, 183

asso
iation list, 264

asso
iativity, 16

atomi
 expressions, 19

ba
k end, 10

ba
kward pointer, 79

binders, 18, 218

blo
king, of tasks, 199, 209, 214

booleans, 13, 69, 129, 186

as higher-order fun
tions, 75

using
onstru
tors, 129

boxing

of values into the heap, 115

boxing fun
tion, 117

CAF, 11, 48, 63, 155, 160, 189

ase expressions

in G-ma
hine, 123

losure, 145

olle
ting super
ombinators pass, of lambda

lifter, 229

omparison operators, 117

in G-ma
hine, 117

ompilation

G-ma
hine example, 98

ompilation
ontext, 120, 138

lazy, 120

stri
t, 120

ompilation s
hemes, 149

in G-ma
hine, 96

ompile-time, 83

ompiler fun
tions

in G-ma
hine, 96

omponents

of
onstru
tor, 69, 124

omposition, 29

onditional, 70

in template-instantation ma
hine, 69

in TIM, 164

ongruen
e proof, of
ompiler
orre
tness, 87

onservative parallelism, 212

283

onstant appli
ative form, see CAF

onstru
tors, see data stru
tures, 13

in G-ma
hine, 123

ontinuation, 162

ontinuation-passing style, 166

Core language, 10

data types, 16

parser, 28

pretty printer, 20

program, 11

dangling else, 37

data dependen
ies, 197

data frame pointer, 184

data stru
tures, see algebrai
 data types

as higher-order fun
tions, 75

G-ma
hine Mark 3, 107

G-ma
hine Mark 4, 112

G-ma
hine Mark 6, 124

in G-ma
hine Mark 6, 123

in G-ma
hine Mark 7, 133

in template-instantiation ma
hine, 68

in TIM, 183

de Bruijn numbers, 238

deadlo
k, 197

dependen
y analysis, 252

use in full laziness, 252

use in Johnsson lambda lifter, 252

e�e
t on full laziness, 239

depth �rst sear
h, 255

divide-and-
onquer algorithm, 197

division-by-zero error, 120

dump, 46, 51, 65, 152, 172, 181

alternative representation, 75

in G-ma
hine, 112

in template-instantiation ma
hine, 66

in TIM, 152, 174

dump items, 203

dyadi
 arithmeti
 operator, 116

dyadi
 arithmeti
 operators, 115

eva
uated, 81

evaluate-and-die model of parallelism, 199

evaluator, 56

G-ma
hine Mark 3, 107

Example exe
ution

of G-ma
hine, 84

exe
ution tra
es

in G-ma
hine, 99

fair s
heduling, of tasks, 212

�nal state, 56

�xpoint
ombinator

knot-tying, 109

attening, 144, 150

attening, of a tree, 87

forward pointer, 79

forwarding pointer, 81

frame, 145

frame pointer, 145, 152

free variable, 221

from-spa
e, 81

front end, 10

full laziness, 217, 236

G-ma
hine, 83

ompiler, 96

ompiler Mark 2, 104

evaluator, 92

laziness, 102

Mark 1, 89

Mark 2, 102

Mark 3, 105

Mark 4, 111

Mark 7, 131

the Big Idea, 83

toplevel, 89

G-ma
hine
ompiler, 83

Mark 3, 108

Mark 4, 118

Mark 6, 128

Mark 7, 135

G-ma
hine sta
k layout

Mark 1, 89

revised, 105

garbage
olle
tion, 76, 160, 172

generalisation, 28

global, 51

global frame, 190

graph, 42

graph theory, 253

heap, 51, 152, 262

higher-order fun
tion, 55, 68, 115

indentation, 25

indire
tion, 171, 174

hains, 179

indire
tion
hains, 176

284

indire
tions, 48, 63, 65, 68, 80, 102

redu
ing o

urren
es of, 64

in�x operator, 15, 23

inherant sequentiality, 197

inherited attributes, 122

instantiation, 46, 58

in G-ma
hine, 85

integer

invariant (in TIM), 162

representation in TIM, 149

interfa
e

of abstra
t data type, 22

interpretive overhead

template traversal, 85

invariant, 49

lambda abstra
tions, 12

lambda lifter

Johnsson's, 231

Mark 1, 221

Mark 2, 230

Mark 3, 231

Mark 4, 236

Mark 5, 250

lambda lifting, 12, 217

left re
ursion, 38

let expressions

in G-ma
hine, 105

in template-instantiation ma
hine, 62

in TIM, 167

let(re
) expressions, 167

let(re
)-bound variables, 105

letre
 expressions

in G-ma
hine, 105

in template-instantiation ma
hine, 62

in TIM, 170

lexi
al analysis, 28

lexi
al level number, 238

lexi
al s
oping, 222

limits to parallelism, 212

e
onomi
, 211

physi
al, 211

linear sequen
e of instru
tions, 86

linearising, of a tree, 87

list
omprehension, 33

lists, 13, 72, 76, 186

lo
al de�nitions, 11

lo
al environment

of G-ma
hine, 85

lo
al fun
tion de�nitions, 217

lo
king, of node, 209, 214

look through, of appli
ation nodes, 105

ma
hine language instru
tions, 83

mark-s
an
olle
tion, 76

marker, 173

maximal free expression, 237

maximal free expression, identi�
ation of,

244

Miranda, 10

monadi
 arithmeti
 operator, 116

mouse-trap, 172

negation, 16

node, 51, 262

non-termination of evaluation, 120

normal form, 42

normal order redu
tion, 42

obje
ts, 262

operator pre
eden
e, 15, 26, 38

overwrite, 102

pairs, 71, 75, 182

parallel algorithm, 196

parallel fun
tional programming, 196

parallel G-Ma
hine, 196

parallel G-ma
hine, 212

an example exe
ution, 199

Mark 1, 200

Mark 2, 209

parallel graph redu
tion, 198

parameterised algebrai
 data type, 13

parser, 10, 28

partial appli
ations, 45, 181

pattern mat
hing, 12, 13

pending list, of node, 214

pointer reversal, 78

post�x
ode

to
onstru
t graphs, 88

post�x evalution

of arithmeti
 expressions, 86

pretty-printer, 10, 20

primitives, 45, 46, 65, 66

in G-ma
hine, 99

printing, 73, 188

pro
essors, 213

285

Push/Enter relationship, 148, 156

rea
hability, of nodes in a graph, 254

rearrange, 106

re
ursive-des
ent parsers, 40

redex, 42, 102, 173

redu
ible expression, 42

redu
tions, 42

redundant full laziness, 251

redundant lo
al de�nitions, in lambda lifter,

231

redundant super
ombinators, in lambda

lifter, 230, 250

renaming pass, of lambda lifter, 227

resour
e-allo
ation de
isions, 197

reusing frame slots, 171

run-time, 83

saturated
onstru
tor, 123, 126

s
avenged, 81

s
heduling

poli
y, 196, 212

priority, of tasks, 212

s
heduling poli
y, 212

round-robin, 213

se
tion, 35

self-updating
losure, 177

sets, 265

shared memory, 196

spa
e leak, 161

spanning sear
h, in strongly
onne
ted
om-

ponent algorithm, 256

spark pool, 198

sparking, of a
hild task, 199

spe
ulative parallelism, 212

spine sta
k, 51, 53, 57, 145

Spineless Tagless G-ma
hine, 192

spinelessness, 145, 172

sta
k, 45

in TIM, 152

sta
k lo
ations

in G-ma
hine, 88

sta
k under
ow
he
k, 46

standard prelude, 10, 19

state transition rules, 147

state transition system, 48

statisti
s, 54

strongly
onne
ted
omponents, 253

stru
tured data, see data stru
tures, 12

in TIM, 183

stru
tured types, 12

subroutine
all and return, 111

super
ombinator, 43

de�nition, 11

redu
tion, 51

syntax analysis, 28

tag

of
onstru
tor, 14, 69, 123, 124, 183

task, 198

ommuni
ation, 196

on
urrent, 196

syn
hronization, 196

tasks

interleaving, 196

template instantiation, 42, 58

template instantiation ma
hine

Mark 1, 50

Mark 2, 62

Mark 3, 63

Mark 4, 65

Mark 5, 68

termination, 42

termination
ondition

in G-ma
hine, 93

of G-ma
hine, 85

Three Instru
tion Ma
hine, see TIM

TIM, 143

Mark 1, 151

Mark 2, 161

Mark 3, 167

Mark 4, 172

Mark 5, 183

Mark 6, 189

to-spa
e, 81

tokens, 28

topologi
al sorting, 254

transitive
losure, 254

tuples, 13

tupling, 144

two-spa
e garbage
olle
tion, 80

type synonym, 18, 53

unboxing

of values from the heap, 115

unique names, 265

unlo
king, of node, 209

unwind, 45, 51, 57, 63

286

in G-ma
hine, 85

updates, 42, 47, 52, 150

identi
al, 176, 177, 179

in G-ma
hine, 102

in template-instantiation ma
hine, 63

in TIM, 172

updating indire
tion, 174

updating indire
tions, 176

V-sta
k, 131, 161

value sta
k, 152

in G-ma
hine, 131

in TIM, 152, 161

verti
al bar, 32

virtual pro
essor, 198

weak head normal form, 45, 111

WHNF, see weak head normal form

Y
ombinator, 109

287

Code index

This index indi
ates the point of de�nition of every Miranda fun
tion de�ned in the book (under-

lined entries), and every referen
e to typewriter-font material in running text (non-underlined

entries).

AAp, 219

abort, 73, 269

abstra
t, 222, 223, 224, 226, 227, 230, 234

abstra
tJ, 233, 234, 236, 252

abstype, 22

ACase, 219

aCompile, 87, 88

AConstr, 219

a
tualFreeList, 234, 235

Add, 66, 74, 111, 113, 119, 122, 126, 136, 137

add, 181

addLevels, 241, 242

addr, 53, 76, 79, 205, 262, 263

aDomain, 264, 265

aEmpty, 265

aEval, 87, 88

aExpr, 86{88

aInstru
tion, 86

aInterpret, 86, 87, 88

ALam, 219, 235

ALet, 219

Allo
, 107{109, 113, 122, 126, 137, 139, 140

allo
, 107, 108

allo
ateInitialHeap, 190, 191

allo
atePrim, 67

allo
ateSC, 56

allo
ateS
, 56, 67, 97

allo
Nodes, 107, 108

aLookup, 59, 264

amToClosure, 156, 190, 191

annExpr, 220

annotation, 218

anonymous, 8

ANum, 219

applyToStats, 54, 156

apStep, 57, 68

aRange, 264, 265

Arg, 148{150, 169, 171, 174, 178, 180, 182,

187, 193, 194

argOffset, 98

args, 225

arithmeti
1, 116

arithmeti
2, 116, 117

assembleOp, 39

asso
, 54

binders, 259

binderSet, 259

bindersOf, 18

Blue, 13{15

body, 62, 259

bodyFree, 225

box, 116

boxBoolean, 117, 129, 130

boxInteger, 115

Bran
h, 13{15

buildInitialHeap, 55, 56, 66, 67, 96, 97,

136

builtInDyadi
, 121

ase, 11, 12, 14, 15, 17, 19, 24, 36, 37, 39, 59,

68{71, 73, 123, 128, 138{140, 183{

187, 189, 193, 194, 224, 225, 227,

228, 236, 241, 244, 246, 249, 250,

275

Casejump, 126, 127, 128, 135, 139, 140

aseList, 68, 72, 73

asePair, 68, 71, 72

lex, 28{30

losures, 191

Code, 106, 148{150, 151, 166, 169, 171, 174,

175, 178, 180, 184, 187, 193, 194

odeLookup, 153

odeStore, 190, 192

olle
tSCs, 223, 226, 229, 230, 231, 233,

250, 261

olour, 13, 14

omp, 108, 128

omparison, 117, 129

ompile, 52, 53, 55, 74, 96, 118, 129, 135,

151, 154, 164, 188, 190{192, 206,

288

207

ompileA, 155, 191

ompileAlts, 128, 138

ompileArgs, 108, 109

ompileC, 96, 98, 99, 108, 109, 110, 129

ompiled, 97

ompiledPrimitives, 99, 118, 119, 154,

155, 163{165, 207

ompileE, 121, 128, 129, 208

ompileLet, 108

ompileLetre
, 108, 110

ompileR, 96, 98, 99, 104, 109, 121, 140, 155,

170, 171, 175, 187, 208

ompileSC, 154, 155, 160, 175, 182

ompileS
, 96, 97, 98, 109

ompileU, 179

omplex, 13, 14

omponents, 260

ompose, 146, 148, 175

ompose2, 145{147, 160

Cond, 113, 117{119, 122, 126, 132, 135, 137,

139, 140, 163, 164, 165, 167, 186

Cons, 13, 72, 73, 76, 123

ons, 183, 269, 270

Constr, 129

oreExpr, 10, 18, 21, 26, 105, 108, 217, 219

oreProgram, 10, 19, 20, 28, 36, 217, 220,

222, 241

Data, 184, 187, 189, 194

data, 18, 24, 26, 39, 53, 54, 63, 66, 69, 77,

79, 86, 87, 90, 91, 103, 113, 124,

126, 151, 152, 159, 164, 210, 214,

219

dataStep, 71

defnGroups, 259, 260

defns, 260

defnsFree, 225

defs, 62, 108

dependen
y, 259

depends, 259

depthFirstSear
h, 255, 256{258

digit, 29, 30

dispat
h, 57, 63, 67, 71, 93, 104, 106, 108,

117, 127, 135, 206

Div, 66, 113, 126, 164

doAdmin, 56, 76, 77, 92, 156, 205, 206, 216

Done, 79

double, 11

dropwhile, 29

dsum, 197, 198

dumpItem, 112

e2s, 22

EAnnot, 218

EAp, 18, 22, 38, 86, 219

ECase, 18, 123, 130, 219, 248

EConstr, 18, 69, 123, 130, 219

edges, 260

ELam, 18, 219, 222, 227, 228, 230, 234, 235,

240, 248, 250, 251

ELet, 18, 26, 62, 105, 175, 219, 230, 231, 248

emptyPendingList, 215

emptyTask, 215, 216

Enter, 147{150, 151, 156, 164, 166, 168, 169,

171, 174{176, 178, 180, 189, 190,

192{194, 278

ENum, 18, 37, 219

env, 61, 98, 108

Eq, 113, 126, 164

error, 73

eva
uateSta
k, 81

Eval, 111, 113, 114, 115, 117, 121, 122, 126,

127, 138, 139, 208, 209

eval, 52, 56, 59, 61, 92, 151, 155, 156, 204

evalMult, 50

EVar, 18, 37, 219

expr, 16, 18, 217, 218, 219, 220

extraPreludeDefs, 55, 70, 74, 75

fa
, 132

fa
20, 48

fAllo
, 153

False, 69, 70, 75, 117, 129, 132

fGet, 153

findDumpRoots, 76

findGlobalRoots, 76

findRoots, 77

findSta
kRoots, 76, 78

first, 267

flatten, 24, 25, 26, 28

fList, 153

float, 241, 250, 251

floatedDefns, 248, 249

foldl, 22, 267

foldll, 22, 226, 255, 267

foldr, 19

289

FoundOp, 39

frame, 188

FrameInt, 152

FrameNull, 152

FramePtr, 164

framePtr, 152

freeSetToLevel, 242, 243

freeToLevel, 242, 243

FreeVars, 218

freeVars, 222, 223, 224, 233, 242, 259, 261

freeVarsOf, 225

fst, 72, 267

Full, 159

fullRun, 151

fullyLazyLift, 241

fUpdate, 153

fvList, 226

Ge, 113, 126

Gen, 220

Get, 132, 134, 135, 137

get, 90, 204

getArg, 94, 95, 105, 211, 216

getArgs, 58, 67

getargs, 58

getClo
k, 204

getCode, 90, 204

getDump, 112, 204

getGlobals, 92, 204

getHeap, 91, 204

getName, 265

getNames, 265

getOutput, 124, 204

getSparks, 204

getSta
k, 91, 204

getStats, 92, 204

getVSta
k, 133, 204

globals, 55, 93, 96, 130

gmCode, 90

gmCompiler, 98

gmDumpItem, 203

gmEnvironment, 98

gmFinal, 92, 93, 205

gmGlobals, 91, 102, 201, 202

gmHeap, 201

gmOutput, 124, 129, 201

gmSparks, 201, 202, 215

gmSta
k, 90

gmState, 89, 203

gmStats, 92, 201

gmVSta
k, 133

gNode, 131

goodbye, 31

Gr, 164

Greater, 70, 71

GreaterEq, 70

Green, 13{15

GrEq, 164

Gt, 113, 126

guest, 8

hAddresses, 61, 77, 263, 264

hAllo
, 263, 264

head, 73, 127, 189

heap, 54, 61, 89, 93, 262

hello, 31

hFree, 76, 77, 263, 264

hInitial, 55, 56, 263, 264

hIsnull, 263, 264

hLookup, 67, 263, 264

hNull, 79, 80, 107, 263, 264

hSize, 76, 263, 264

hUpdate, 63, 67, 68, 77, 263, 264

IAppend, 24, 25, 26

iAppend, 22, 23, 24, 25

iCon
at, 23, 24

id1, 269

identifyMFEs, 241, 245, 252, 261

iDisplay, 22, 24, 25, 26, 28

iFWNum, 27

IIndent, 25, 26

iIndent, 22, 23, 24, 25, 26

iInterleave, 23, 24

iLayn, 27

import, 16, 41, 82, 142, 195, 217

IMult, 86, 87

indent, 26

INewline, 25, 26

iNewline, 22, 23, 24, 26

INil, 24{26

iNil, 22, 24

initialArgSta
k, 154, 164

initialCode, 97, 118, 129, 207

initialDump, 154, 175

initialNameSupply, 265

initialTask, 207

290

initialTiDump, 53, 66

initialValueSta
k, 154, 163

ins, 257, 258, 260

install, 249, 250

instan
e, 90, 103, 124

instantiate, 58, 59, 61, 62, 64, 69, 83, 85,

86

instantiateAndUpdate, 64

instantiateAndUpdateConstr, 70

instantiateConstr, 59, 69, 70

instantiateLet, 59

instantiateVar, 70

instru
tion, 90, 93, 107, 163, 170, 175, 206

intCode, 149, 163, 164, 173

IntConst, 148{150, 151, 166, 169, 178, 180,

194

IntVConst, 164, 166, 194

INum, 86, 87

iNum, 27

IPlus, 86, 87

isALam, 235, 236

isAtomi
Expr, 19

isDataNode, 57, 67, 70

isELam, 230

iseq, 22{28, 59, 159, 160

iseqRep, 24, 25

isIdChar, 30

isRe
, 18, 248, 250

IStr, 24, 25, 26

iStr, 22, 23, 24, 26

isWhiteSpa
e, 30

keywords, 36

Label, 148, 149, 151, 190{192

lambdaLift, 222, 223, 231, 241, 250

lambdaLiftJ, 233

language, 53

layn, 27, 50

Le, 113, 126

Leaf, 13{15

length, 6, 72, 123, 126, 127

Less, 70

LessEq, 70

let, 11, 12, 17, 18, 23, 36, 39, 46, 47, 62, 88,

106, 109, 122, 137, 139, 140, 167{

171, 178{180, 193, 223, 224, 226,

230, 236, 238{242, 245, 252, 259,

260, 269, 277

let(re
), 18, 59, 62, 64, 105, 106, 121, 136,

138, 150, 167, 171, 174, 176{180,

184, 190, 218, 221, 222, 225, 228,

229, 234{239, 241, 244, 245, 248,

249, 252, 259, 260, 277

letre
, 11, 12, 17, 18, 23, 39, 46, 47, 62,

88, 109{111, 122, 137, 139, 140, 170,

178, 193, 232, 236, 238, 239, 242,

244, 252, 259, 260, 269, 277

letter, 30

Level, 218

level, 248

levelOf, 244

lex, 28, 30

lo
k, 210, 211, 215

Lt, 113, 126, 164

LtEq, 164

ma
hineSize, 213

main, 11, 43, 55, 64, 73, 96, 97, 160, 164,

199, 200, 237

makeName, 265

makeTask, 205

map, 19, 267

mapA

uml, 55, 97, 205, 227, 229, 267

markFrom, 77, 78, 79{81

markFromDump, 78

markFromGlobals, 78

markFromSta
k, 78, 81

markState, 79

member, 30

mid, 197

Mkap, 85, 88, 90, 94, 97, 103, 109, 113, 126,

192

mkap, 94

Mkbool, 134, 139

mkDependLet, 260

mkELam, 251

mkELet, 230

mkEnter, 175, 176

mkIndMode, 171

Mkint, 131, 132, 134, 139

mkMultiAp, 21, 22

MkNumPair, 14, 15

mkSepLams, 242

mkUpdIndMode, 175

module, 16, 41, 82, 142, 195, 217, 262

291

Move, 168{171, 177, 178, 180, 184, 185, 187,

189, 193, 194

Mul, 66, 113, 119, 126, 132

Mult, 86, 164

multFinal, 50

name, 18, 54, 192, 219, 246

nameSupply, 265

NAp, 51, 65, 66, 69, 73, 74, 79, 80, 91, 94, 95,

103, 106, 124, 210, 211, 214

NConstr, 124, 126, 127, 134, 135, 210, 214

NData, 69, 70, 71, 75, 77, 79, 80

Ne, 113, 126

Neg, 65, 113, 115, 122, 126, 134, 137, 164

negate, 16, 67, 121, 122, 137, 139

newBinders, 248

newNames, 227, 228, 246, 247

newNamesL, 247

newState, 95

newtasks, 205

nfib, 270

NForward, 81

NGlobal, 91, 93, 96, 103, 106, 121, 124, 131,

210, 211, 214

Nil, 13, 72, 73

nil, 183, 269, 270

NInd, 63, 66, 69, 77, 78, 79, 80, 103, 104,

124, 210, 211, 214

NLAp, 210, 214

NLGlobal, 210, 214

NMarked, 77, 79, 80, 81

NNum, 51, 54, 63, 65, 66, 67, 68, 69, 70, 73,

77, 79, 80, 91, 94, 95, 102, 111, 114,

115, 117, 118, 127, 129, 134, 135

node, 54, 60, 63, 69, 70, 75, 77, 80, 81, 124,

214, 215

None, 159

nonRe
ursive, 18

not, 16, 70, 138

NotEq, 70, 164

notMFECandidate, 245, 252

NPrim, 66, 67, 69, 75, 77, 79, 80

NSuper
omb, 51, 54, 55, 60, 63, 66, 69, 77,

79, 80, 91, 192

nTerse, 160

num, 13, 192

numPair, 14

numStep, 57, 67, 68, 71

numval, 36

offsets, 191

Op, 164

outs, 260

Pa
k, 14, 15, 17, 69, 71, 123, 126, 128, 130,

131, 139, 183, 185, 187, 193, 270

pAexpr, 37

pair, 182

pAlt, 32

pApply, 35, 36{38

Par, 199, 200, 206, 207

par, 198, 202, 206, 207{209, 211, 213, 215

parse, 29, 52, 53, 151

partialExpr, 39

partitionFloats, 249

pEmpty, 34, 35

pExpr, 38

pExpr1, 39

pExpr1
, 39

pgmGetGlobals, 202

pgmGetHeap, 201, 202

pgmGetOutput, 201

pgmGetSparks, 202

pgmGetStats, 202

pgmGlobalState, 201

pgmLo
alState, 201

pgmState, 201, 202

pGreeting, 33, 34

pGreetings, 34

pGreetingsN, 35

pHelloOrGoodbye, 32, 33

pLit, 31, 32, 35

Plus, 86

pNum, 36, 37

Polar, 13{15

pOneOrMore, 34, 36

pOneOrMoreWithSep, 35

Pop, 102, 103, 104, 113, 122, 126, 137, 140

pprAExpr, 21, 24, 27

pprDefn, 23

pprDefns, 23

pprExpr, 21, 23, 24{27

pprExprGen, 220

pprint, 20, 21, 24, 37, 220

pprintAnn, 220

pprintGen, 220

pProgram, 36, 37

292

pprProgram, 24

preludeDefs, 20, 55, 64, 73

primAdd, 67

primArith, 68, 71

PrimCasePair, 72

primComp, 71

PrimConstr, 69{71

primConstr, 69, 71

primDyadi
, 71

primIf, 71

primitive, 66, 67, 69, 70, 72, 74

primitive1, 116, 117

primitive2, 116, 117

primitives, 67, 70, 74, 75, 136, 208

primNeg, 67

primStep, 67, 68, 69, 71, 74, 75

Print, 73, 74, 126, 127, 129, 188

pSat, 35, 36

pS
, 37

psum, 196, 197

pThen, 32, 33

pThen3, 34

pThen4, 34

Push, 84, 90, 94, 95, 97, 103, 105, 109, 113,

126, 147{150, 151, 156, 164, 166,

168, 169, 180, 182, 187, 190, 192{

194, 278

push, 94

Pushbasi
, 132, 134, 137

Pushglobal, 90, 93, 97, 102, 103, 109, 113,

126, 130, 131

pushglobal, 93, 94, 131

Pushint, 90, 94, 97, 102, 103, 109, 113, 122,

126, 139

pushint, 94, 102

PushMarker, 172{175, 177, 178, 191, 194

PushV, 163, 164, 166, 194

put, 90, 203, 204

putClo
k, 204

putCode, 90, 204

putDump, 112, 204

putGlobals, 102

putHeap, 91, 204

putOutput, 124, 204

putSparks, 204

putSta
k, 91, 204

putStats, 92, 204

putVSta
k, 133, 204

pVar, 32, 35{37

pZeroOrMore, 34

quadruple, 11

read, 28

README, 8

rearrange, 106

Re
t, 13{15

re
ursive, 18

Red, 13{15

relation, 256

remove, 264

rename, 223, 227, 233, 241, 246, 247, 248,

261

renameGen, 246, 247

renameL, 241, 246, 247, 248

Return, 138, 162, 163, 164, 166, 169, 172,

173, 175, 181, 185, 193

ReturnConstr, 185{187, 193

rhs, 231

rhssOf, 18, 19

run, 52, 89, 151

runD, 259

runF, 241

runJ, 233

runProg, 52, 89, 151

runS, 223

s
an, 80

s
anHeap, 77

s
avengeHeap, 81

s

, 257, 258, 259

s
heduler, 213, 214, 216

s
Step, 58, 61, 63, 64, 85

sear
h, 255, 256, 258

se
ond, 267

separateLam, 251

separateLams, 240, 241, 242, 243, 251

setElementOf, 265, 266

setEmpty, 265, 266

setFromList, 258, 265, 266

setInterse
tion, 265, 266

setIsEmpty, 265, 266

setSingleton, 265, 266

setSubtra
tion, 225, 265, 266

setToList, 226, 265, 266

setUnion, 225, 265, 266

setUnionList, 265, 266

293

shortShowInstru
tions, 114

shortShowSta
k, 114

show, 192, 263

showAddr, 61

showaddr, 263, 264

showArg, 160

showClosure, 158, 159

showDump, 113, 114, 158

showDumpItem, 114

showFrame, 158

showFramePtr, 158, 159

showFullResults, 151, 157, 189

showFWAddr, 61

showInstru
tion, 100, 103, 107, 113, 125,

126, 135, 160, 164, 170, 175, 206

showInstru
tions, 100, 159, 160

showNode, 60, 63, 66, 70, 101, 103, 125, 210,

215

shownum, 262

showOutput, 125, 209

showResults, 52, 59, 61, 99, 100, 151, 157,

189, 208, 209

showSC, 100, 157, 208, 209

showSCDefns, 157, 190, 191

showSparks, 209, 215

showSta
k, 60, 101, 158

showSta
kItem, 101

showState, 60, 61, 100, 101, 113, 125, 133,

134, 157, 158, 209

showStats, 61, 101, 159, 209

showStkNode, 60

showValueSta
k, 158

showVSta
k, 134

Slide, 88, 90, 95, 97{99, 102, 103, 106, 107,

109, 122, 126{128, 139

slide, 95

snd, 72, 267

sort, 267

spa
es, 26, 27

spanning, 257

spanningSear
h, 256, 257, 258

Split, 126, 127, 128, 139, 140

sqrt, 47

square, 43, 44

ssum, 197

statGetSteps, 92, 153, 154

statIn
Steps, 92, 153, 154

statInitial, 92, 153, 154

step, 56, 57, 67, 71, 92, 93, 156, 164, 170,

175, 204, 205, 215

stepMult, 50

steps, 204, 205, 213, 215

Stop, 73, 74, 156

Sub, 66, 74, 113, 126, 164

sub, 161{163

sum, 184, 189

Swit
h, 184{187, 189, 193, 194

syntax, 28, 29, 36, 37

tail, 73, 127

Take, 147{150, 156, 160, 167{170, 172, 181,

182, 185, 187, 191{193

take, 22, 271

takewhile, 29

Terse, 159

ti
k, 205

tiDump, 66

tiFinal, 56, 57, 68, 73, 75

tiGlobals, 91

timAMode, 151, 156, 168, 192

timFinal, 156

tiState, 52, 53, 74

tiStatGetSteps, 54

tiStatIn
Steps, 54

tiStatInitial, 54

tiStats, 54

token, 30

topCont, 188

transformMFE, 245

tree, 13, 14

True, 29, 30, 69, 70, 75, 117, 129

tup, 145

twi
e, 64, 181

twoCharOps, 30

type, 18, 19, 29, 31, 50, 53, 54, 66,

75, 90{92, 97, 98, 112, 124, 133,

152{155, 163, 175, 190, 201{203,

215, 219, 220, 241, 248, 263{266

typedExpr, 219

typeExpr, 219

unbox, 116

unboxInteger, 115, 116, 117

unlo
k, 210, 211, 215

Unwind, 85, 88, 95{97, 99, 102, 104{106, 113,

114, 115, 121, 122, 126, 127, 131,

138, 140, 209, 211, 215, 216

294

unwind, 95, 211, 216

Update, 102, 103, 104, 105, 107, 109, 113,

122, 126, 131, 137, 139, 140, 209,

211, 215

update, 211

UpdateMarkers, 181{183, 185, 187, 193

utils, 53, 54, 91

valueAMode, 164

visited, 258

Visits, 79

where, 11, 12, 55

xor, 70

z
at, 8

zip2, 225, 262

zipWith, 267

295

