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Prefae

This book gives a pratial approah to understanding implementations of non-strit funtional

languages using lazy graph redution. The book is intended to be a soure of pratial labwork

material, to help make funtional-language implementations `ome alive', by helping the reader

to develop, modify and experiment with some non-trivial ompilers.

The unusual aspet of the book is that it is meant to be exeuted as well as read. Rather than

merely presenting an abstrat desription of eah implementation tehnique, we present the

ode for a omplete working prototype of eah major method, and then work through a series

of improvements to it. All of the ode is available in mahine-readable form.

Overview of the book

The prinipal ontent of the book is a series of implementations of a small funtional language

alled the Core language. The Core language is designed to be as small as possible, so that it is

easy to implement, but still rih enough to allow modern non-strit funtional languages to be

translated into it without losing eÆieny. It is desribed in detail in Chapter 1, in whih we

also develop a parser and pretty-printer for the Core language.

Appendix B ontains a seletion of Core-language programs for use as test programs thoughout

the book.

The main body of the book onsists of four distint implementations of the Core language.

� Chapter 2 desribes the most diret implementation, based on template instantiation.

� Chapter 3 introdues the G-mahine, and shows how to ompile the program to sequenes

of instrutions (G-ode) whih an be further translated to mahine ode.

� Chapter 4 repeats the same exerise for a di�erent abstrat mahine, the Three Instrution

Mahine (TIM), whose evaluation model is very di�erent from that of the G-mahine. The

TIM was developed more reently than the G-mahine, so there is muh less other literature

about it. Chapter 4 therefore ontains a rather more detailed development of the TIM's

evaluation model than that given for the G-mahine.

� Finally, Chapter 5 adds a new dimension by showing how to ompile funtional programs

for a parallel G-mahine.

For eah of these implementations we disuss two main parts, the ompiler and the mahine
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Figure 1: Overview of the implementations

interpreter. The ompiler takes a Core-language program and translates it into a form suitable

for exeution by the mahine interpreter.

The mahine interpreter simulates the exeution of the ompiled program. In eah ase the

interpreter is modelled as a state transition system so that there is a very lear onnetion

between the mahine interpreter and a `real' implementation. Figure 1 summarises the struture

of our implementations.

One important way in whih the Core language is restritive is in its lak of loal funtion

de�nitions. There is a well-known transformation, alled lambda lifting, whih turns loal fun-

tion de�nitions into global ones, thus enabling loal funtion de�nitions to be written freely

and transformed out later. In Chapter 6 we develop a suitable lambda lifter. This hapter is

more than just a re-presentation of standard material. Full laziness is a property of funtional

programs whih had previously been seen as inseparable from lambda lifting. In Chapter 6 we

show that they are in fat quite distint, and show how to implement full laziness in a separate
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pass from lambda lifting.

Throughout the book we use a number of utility funtions and data types whih are de�ned in

Appendix A.

Some setions and exerises are a little more advaned, and an be omitted without major loss.

They are identi�ed with a dagger, thus: y.

The prototyping language

The question arises of what language to use for writing our implementations. We have hosen to

use an existing funtional language, Miranda

1

. One of the major uses of funtional languages is

for rapid prototyping, beause they allow us to express the fundamental aspets of the prototype

without getting bogged down in administrative detail. We hope that this book an serve as a

large example to substantiate this laim. In addition, working through this book should provide

useful experiene of writing substantial funtional programs.

This book is not an introdution to funtional programming. We assume that you have done

some programming in a funtional language already. (Suitable introdutions to funtional pro-

gramming inlude [Bird and Wadler 1988℄ and [Holyer 1991℄.) Nevertheless, the programs de-

veloped in this book are quite substantial, and we hope they will serve as a role model, to streth

and develop your ability to write lear, modular funtional programs.

Miranda ode is written in typewriter fount using the `inverse omment onvention'. For exam-

ple, here is a de�nition of a funtion whih takes the length of a list:

> length [℄ = 0

> length (x:xs) = 1 + length xs

The > mark in the left margin indiates that this is a line of exeutable Miranda ode. Not

only does this distinguish Miranda ode from Core-language programs (whih are also written

in typewriter fount), but Miranda itself reognises this onvention, so the text of eah hapter

of this book is exeutable Miranda ode! Indeed, it has all been exeuted. (Atually, a small

amount of pre-proessing is required before feeding the text to Miranda, beause we sometimes

write several versions of the same funtion, as we re�ne the implementation, and Miranda

objets to suh multiple de�nitions. The pre-proessing is simply a seletion proess to pik the

partiular version we are interested in.)

The text ontains all the ode required for the initial version of eah implementation. Oasion-

ally, this beomes rather tiresome, beause we have to present hunks of ode whih are not very

interesting. Suh hunks ould have been omitted from the printed text (though not from the

exeutable version), but we have hosen to inlude them, so that you an always �nd a de�nition

for every funtion. (The index ontains an entry for every Miranda funtion de�nition.)

Like most funtional languages, Miranda omes with a olletion of pre-delared funtions,

whih are automatially in sope. We make use of these throughout the text, referring to them

as standard funtions. You an �nd details of all the standard funtions in Miranda's online

manual.

1

Miranda is a trade mark of Researh Software Ltd.
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What this book does not over

We fous exlusively in this book on the `bak end' of funtional-language ompilers. We make

no attempt to disuss how to translate programs written in a fully edged funtional language,

suh as Miranda, into the Core language, or how to type-hek suh programs.

The development throughout is informal. It would be nie to give a formal proof of the equiva-

lene between the meaning of a Core program and its implementation, but this is quite a hard

task. Indeed, the only full proof of suh an equivalene whih we know of is [Lester 1988℄.

Relationship to The implementation of funtional programming languages

An earlier book by one of us, [Peyton Jones 1987℄, overs similar material to this one, but in a

less pratially oriented style. Our intention is that a student should be able to follow a ourse

on funtional-language implementations using the present book alone, without referene to the

other.

The sope of this book is somewhat more modest, orresponding to Parts 2 and 3 of [Peyton Jones 1987℄.

Part 1 of the latter, whih disusses how a high-level funtional language an be translated into

a ore language, is not overed here at all.

Getting the mahine-readable soures

You an get all the soure ode for this book, by network �le transfer (FTP) from the several

sites. In eah ase, you need only get the �le

pjlester-n.m.tar.Z

where n.m is the urrent version number of the book. There is always only one suh �le, but

the n.m may vary as we orret errors and otherwise improve the material. One you have got

the �le, run the ommand

zat pjlester-n.m.tar.Z | tar xf -

and then read or print the README �le, and the DVI �le installation.dvi. If you don't have

zat, do the following instead:

unompress pjlester-n.m.tar.Z

tar xf pjlester-n.m.tar

The sites where the soures are held are as follows.

Site Host name Host address Diretory

Glasgow ftp.ds.glasgow.a.uk 130.209.240.50 pub/pj-lester-book

Yale nebula.s.yale.edu 128.36.13.1 pub/pj-lester-book

Chalmers animal.s.halmers.se 129.16.2.27 pub/pj-lester-book

Log in as anonymous, and use your eletroni mail address as password. Here is a sample Internet

FTP session:
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% ftp nebula.s.yale.edu

Conneted to NEBULA.SYSTEMSZ.CS.YALE.EDU.

220 nebula FTP server (SunOS 4.0) ready.

Name (nebula.s.yale.edu:guestftp): anonymous

331 Guest login ok, send ident as password.

Password: simonpj�ds.glasgow.a.uk

230 Guest login ok, aess restritions apply.

ftp> type binary

200 Type set to I.

ftp> d pub/pj-lester-book

250 CWD ommand suessful.

ftp> get pjlester-1.2.tar.Z

<messages about a suessful transfer would ome here>

ftp> bye

Within the UK, you may get the above �le from uk.a.glasgow.ds by anonymous UK NIFTP

(binary mode; user: guest; password: your e-mail address); request:

<FP>/pj-lester-book/�lename

A typial ommand you might use on at least some Unix mahines is:

pf -b '<FP>/pj-lester-book/pjlester-1.2.tar.Z�uk.a.glasgow.ds'

pjlester-1.2.tar.Z

Errors

We would greatly appreiate your help in eliminating mistakes in the text. If you unover any

errors, please ontat one of us at the addresses given below.
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Chapter 1

The Core language

All our implementations take some program written in a simple Core language and exeute it.

The Core language is quite impoverished, and one would not want to write a large program in

it. Nevertheless it has been arefully hosen so that it is possible to translate programs in a

rih funtional language (suh as Miranda) into the Core language without losing expressiveness

or eÆieny. The Core language thus serves as a lean interfae between the `front end' of the

ompiler, whih is onerned with high-level language onstruts, and the `bak end', whih is

onerned with implementing the Core language in various di�erent ways.

We begin with an informal introdution to the Core language (Setion 1.1). Following this, we

de�ne the Core language more formally, by giving:

� Its syntax (Setion 1.2).

� Miranda data types oreProgram and oreExpr for Core-language programs and expres-

sions respetively (Setion 1.3). These will serve as the input data types for the ompilers

we build.

� De�nitions for a small standard prelude of Core-language funtions, whih will be made

available in any Core program (Setion 1.4).

� A pretty-printer, whih transforms a Core-language program into a harater string whih,

when printed, is a formatted version of the program (Setion 1.5).

� A parser, whih parses a harater string to produe a Core-language program (Se-

tion 1.6).

This hapter has a seond purpose: it introdues and uses many of the features of Miranda whih

we will use throughout the book before we get involved with any of our funtional-language

implementations.
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1.1 An overview of the Core language

Here is an example Core program

1

, whih evaluates to 42:

main = double 21

double x = x + x

A Core program onsists of a set of superombinator de�nitions, inluding a distinguished one,

main. To exeute the program, we evaluate main. Superombinators an de�ne funtions, suh

as the de�nition of double. double is a funtion of one argument, x, whih returns twie

its argument. The program looks quite similar to the top level of a Miranda sript, exept

that no pattern mathing is permitted for funtion arguments. Pattern mathing is performed

by a separate Core language onstrut, the ase expression, whih is disussed below. Eah

superombinator is de�ned by a single equation whose arguments are all simple variables.

Notie that not all superombinators have arguments. Some, suh as main, take no arguments.

Superombinators with no arguments are also alled onstant appliative forms or CAFs and,

as we shall see, often require speial treatment in an implementation.

1.1.1 Loal de�nitions

Superombinators an have loal de�nitions, using the let onstrut of the Core language:

main = quadruple 20 ;

quadruple x = let twie_x = x+x

in twie_x + twie_x

Here twie_x is de�ned loally within the body of quadruple to be x+x, and quadruple re-

turns twie_x + twie_x. Like Miranda where lauses, loal de�nitions are useful both to

name intermediate values, and to save reomputing the same value twie; the programmer an

reasonably hope that only two additions are performed by quadruple.

A let expression is non-reursive. For reursive de�nitions, the Core language uses the letre

onstrut, whih is exatly like let exept that its de�nitions an be reursive. For example:

infinite n = letre ns = ons n ns

in ns

The reason that we distinguish let from letre in the Core language (rather than providing

only letre) is that let is a bit simpler to implement than letre, and we may get slightly

better ode.

let and letre are similar to the Miranda where lause, but there are a number of important

di�erenes:

� The where lause always de�nes a reursive sope. There is no non-reursive form.

1

We use typewriter fount for Core programs, but without the initial > sign whih distinguishes exeutable

Miranda ode.
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� A where lause an be used to de�ne loal funtions, and to perform pattern mathing:

... where f x = x+y

(p,q) = zip xs ys

Neither of these failities is provided by the Core language let and letre expressions.

Funtions an only be de�ned at the top level, as superombinators, and pattern mathing

is done only by ase expressions.

In short, the left-hand side of a let or letre binding must be a simple variable.

� The let/letre onstrut is an expression. It is therefore quite legal to write (for exam-

ple):

quad_plus_one x = 1 + (let tx = x+x in tx+tx)

In ontrast a where lause in Miranda an only be attahed to de�nitions. (One reason

for this is that it allows the de�nitions in a Miranda where lause to range over several

guarded right-hand sides.)

1.1.2 Lambda abstrations

Funtions are usually expressed in the Core language using top-level superombinator de�nitions,

and for most of the book this is the only way in whih funtions an be denoted. However, it is

sometimes onvenient to be able to denote funtions using expliit lambda abstrations, and the

Core language provides a onstrut to do so. For example, in the program

double_list xs = map (\ x. 2*x) xs

the lambda abstration (\ x. 2*x) denotes the funtion whih doubles its argument.

It is possible to transform a program involving expliit lambda abstrations into an equivalent

one whih uses only top-level superombinator de�nitions. This proess is alled lambda lifting,

and is disussed in detail in Chapter 6. Throughout the other hapters we assume that this

lambda lifting proess has been done, so they make no use of expliit lambda abstrations.

The �nal major onstrut in the Core language is the ase expression, whih expresses pattern

mathing. There are several ways of handling pattern mathing, so we begin with a review of

strutured data types.

1.1.3 Strutured data types

A universal feature of all modern funtional programming languages is the provision of strutured

types, often alled algebrai data types. For example, here are a few algebrai type de�nitions,

written in Miranda:

olour ::= Red | Green | Blue

13



omplex ::= Ret num num | Polar num num

numPair ::= MkNumPair num num

tree * ::= Leaf * | Branh (tree *) (tree *)

Eah de�nition introdues a new type (suh as olour), together with one or more onstrutors

(suh as Red, Green). They an be read as follows: `A value of type olour is either Red or

Green or Blue', and `A omplex is either a Ret ontaining two nums, or a Polar ontaining

two nums'.

The type tree is an example of a parameterised algebrai data type; the type tree is parame-

terised with respet to the type variable *. It should be read as follows: `a tree of *'s is either

a Leaf ontaining a *, or a Branh ontaining two tree of *'s'. Any partiular tree must have

leaves of uniform type; for example, the type tree num is a tree with nums at its leaves, and the

type tree olour is a tree with olours at its leaves.

Strutured values are built with these onstrutors; for example the following expressions denote

strutured values:

Green

Ret 3 4

Branh (Leaf num) (Leaf num)

Strutured values are taken apart using pattern mathing. For example:

isRed Red = True

isRed Green = False

isRed Blue = False

first (MkNumPair n1 n2) = n1

depth (Leaf n) = 0

depth (Branh t1 t2) = 1 + max (depth t1) (depth t2)

Several data types usually thought of as `built in' are just speial ases of strutured types.

For example, booleans are a strutured type: they an be de�ned by the algebrai data type

delaration

bool ::= False | True

Apart from their speial syntax, the lists and tuples provided by Miranda are further examples

of strutured types. If we use Cons and Nil as onstrutors rather than the speial syntax of :

and [℄, we ould de�ne lists like this:

list * ::= Nil | Cons * (list *)

Chapter 4 of [Peyton Jones 1987℄ gives a fuller disussion of strutured types.
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The question arises, therefore: how are we to represent and manipulate strutured types in our

small Core language? In partiular, our goal is to avoid having data type delarations in the

Core language altogether. The approah we take breaks into two parts:

� Use a simple, uniform representation for onstrutors.

� Transform pattern mathing into simple ase expressions.

1.1.4 Representing onstrutors

Instead of allowing user-de�ned onstrutors suh as Red and Branh in our Core language, we

provide a single family of onstrutors

Pak{tag ; arity}

Here, tag is an integer whih uniquely identi�es the onstrutor, and arity tells how many

arguments it takes. For example, we ould represent the onstrutors of olour, omplex, tree

and numPair as follows:

Red = Pak{1,0}

Green = Pak{2,0}

Blue = Pak{3,0}

Ret = Pak{4,2}

Polar = Pak{5,2}

Leaf = Pak{6,1}

Branh = Pak{7,2}

MkNumPair = Pak{8,2}

So in the Core language one writes

Pak{7,2} (Pak{6,1} 3) (Pak{6,1} 4)

instead of

Branh (Leaf 3) (Leaf 4)

The tag is required so that objets built with di�erent onstrutors an be distinguished from one

another. In a well-typed program, objets of di�erent type will never need to be distinguished

at run-time, so tags only need to be unique within a data type. Hene, we an start the tag at

1 afresh for eah new data type, giving the following representation:
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Red = Pak{1,0}

Green = Pak{2,0}

Blue = Pak{3,0}

Ret = Pak{1,2}

Polar = Pak{2,2}

Leaf = Pak{1,1}

Branh = Pak{2,2}

MkNumPair = Pak{1,2}

1.1.5 ase expressions

In general, the pattern mathing allowed by modern funtional programming languages an be

rather omplex, with multiple nested patterns, overlapping patterns, guards and so on. For

the Core language, we eliminate these ompliations by outlawing all omplex forms of pattern

mathing! We do this by providing only ase expressions in the Core language. Their formal

syntax is given in Setion 1.2, but here are some examples:

isRed  = ase  of

<1> -> True ;

<2> -> False ;

<3> -> False

depth t = ase t of

<1> n -> 0 ;

<2> t1 t2 -> 1 + max (depth t1) (depth t2)

The important thing about ase expressions is that eah alternative onsists only of a tag

followed by a number of variables (whih should be the same as the arity of the onstrutor).

No nested patterns are allowed.

ase expressions have a very simple operational interpretation, rather like a multi-way jump:

evaluate the expression to be analysed, get the tag of the onstrutor it is built with and evaluate

the appropriate alternative.

1.2 Syntax of the Core language

Figure 1.1 gives the syntax for the Core language. The grammar allows in�x binary operators,

but (for brevity) is not expliit about their preedene. Instead we give the following table of

preedenes, where a higher preedene means tighter binding:
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Preedene Assoiativity Operator

6 Left Appliation

5 Right *

None /

4 Right +

None -

3 None == ~= > >= < <=

2 Right &

1 Right |

An operator's assoiativity determines when parentheses may be omitted around repetitions of

the operator. For example, + is right-assoiative, so x+y+z means the same as x+(y+z). On the

other hand, / is non-assoiative, so the expression x/y/z is illegal.

There is no speial operator symbol for unary negation. Instead, the negate funtion is provided,

whih behaves syntatially like any normal funtion. For example:

f x = x + (negate x)

The boolean negation operator, not, is handled in the same way.

1.3 Data types for the Core language

For eah of the implementations disussed in this book we will build a ompiler and a mahine

interpreter. The ompiler takes a Core program and translates it into a form suitable for

exeution by the mahine interpreter. To do this we need a Miranda data type to represent

Core programs, and that is what we will de�ne in this setion. In fat we will de�ne a type for

Core programs, one for Core expressions and a few other auxiliary types.

The data type of Core-language expression, expr, is de�ned as follows:

> module Language where

> import Utils

> data Expr a

> = EVar Name -- Variables

> | ENum Int -- Numbers

> | EConstr Int Int -- Construtor tag arity

> | EAp (Expr a) (Expr a) -- Appliations

> | ELet -- Let(re) expressions

> IsRe -- boolean with True = reursive,

> [(a, Expr a)℄ -- Definitions

> (Expr a) -- Body of let(re)

> | ECase -- Case expression

> (Expr a) -- Expression to srutinise

> [Alter a℄ -- Alternatives

> | ELam [a℄ (Expr a) -- Lambda abstrations

> deriving (Text)
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Programs program ! s

1

; : : : ; s

n

n � 1

Superombinators s ! var var

1

: : : var

n

= expr n � 0

Expressions expr ! expr aexpr Appliation

j expr

1

binop expr

2

In�x binary appliation

j let defns in expr Loal de�nitions

j letre defns in expr Loal reursive de�nitions

j ase expr of alts Case expression

j \ var

1

: : : var

n

. expr Lambda abstration (n � 1)

j aexpr Atomi expression

aexpr ! var Variable

j num Number

j Pak{num,num} Construtor

j ( expr ) Parenthesised expression

De�nitions defns ! defn

1

; : : : ; defn

n

n � 1

defn ! var = expr

Alternatives alts ! alt

1

; : : : ; alt

n

n � 1

alt ! <num> var

1

: : : var

n

-> expr n � 0

Binary operators binop ! arithop j relop j boolop

arithop ! + j - j * j / Arithmeti

relop ! < j <= j == j ~= j >= j > Comparison

boolop ! & j | Boolean

Variables var ! alpha varh

1

: : : varh

n

n � 0

alpha ! an alphabeti harater

varh ! alpha j digit j _

Numbers num ! digit

1

: : : digit

n

n � 1

Figure 1.1: BNF syntax for the Core language
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We hoose to parameterise the data type of expr with respet to its binders. A binder is the

name used at the binding ourrene of a variable; that is, on the left-hand side of a let(re)

de�nition, or in a lambda abstration. The delaration an be read `An expr of * is either an

EVar ontaining a name, or . . . , or an ELam ontaining a list of values of type * and an expr of

*'.

For the most of the book we always use name in these binding positions, so we use a type synonym

to de�ne the type of oreExpr, whih is the type we will normally use:

> type CoreExpr = Expr Name

The ability to use types other than name in binding positions is only used in Chapter 6.

Apart from this, the data type follows fairly diretly from the syntax given in the previous

setion, exept that various super�ial di�erenes are disarded. The biggest di�erene is that

in�x operators are expressed in pre�x form in the data type. For example, the expression

x + y

is represented by

EAp (EAp (EVar "+") (EVar "x")) (EVar "y")

Variables are represented by an EVar onstrutor ontaining the variable's name. A variable's

name is represented simply by a list of haraters, whih we express using another type synonym:

> type Name = String

Construtors are identi�ed by their arity and tag, as desribed in Setion 1.1.4.

let and letre expressions are represented by an ELet onstrutor ontaining: a ag of type

isRe to distinguish the reursive ase from the non-reursive one; a list of de�nitions; and

the expression whih is the body of the let(re). We hoose to represent isRe as a boolean

variable, and we de�ne the two boolean values as follows:

> type IsRe = Bool

> reursive, nonReursive :: IsRe

> reursive = True

> nonReursive = False

Eah de�nition is just a pair of the variable name being bound and the expression to whih it

is bound. We de�ne two useful funtions whih eah take a list of de�nitions: bindersOf piks

out the list of variables bound by the de�nitions, and rhssOf (short for `right-hand sides of')

extrats the list of right-hand sides to whih they are bound.

> bindersOf :: [(a,b)℄ -> [a℄

> bindersOf defns = [name | (name, rhs) <- defns℄
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> rhssOf :: [(a,b)℄ -> [b℄

> rhssOf defns = [rhs | (name, rhs) <- defns℄

ase expressions have an expression to analyse, and a list of alternatives. Eah alternative

ontains a tag, a list of the bound variables and the expression to the right of the arrow.

> type Alter a = (Int, [a℄, Expr a)

> type CoreAlt = Alter Name

We take the opportunity to de�ne a useful funtion on expressions, a boolean-valued funtion,

isAtomiExpr, whih identi�es `atomi' expressions; that is, expressions with no internal stru-

ture:

> isAtomiExpr :: Expr a -> Bool

> isAtomiExpr (EVar v) = True

> isAtomiExpr (ENum n) = True

> isAtomiExpr e = False

Finally, a Core-language program is just a list of superombinator de�nitions:

> type Program a = [SDefn a℄

> type CoreProgram = Program Name

A superombinator de�nition ontains the name of the superombinator, its arguments and its

body:

> type SDefn a = (Name, [a℄, Expr a)

> type CoreSDefn = SDefn Name

The argument list might be empty, in the ase of a superombinator with no arguments.

We onlude with a small example. Consider the following small program.

main = double 21 ;

double x = x+x

This program is represented by the following Miranda expression, of type oreProgram:

[("main", [℄, (EAp (EVar "double") (ENum 21))),

("double", ["x"℄, (EAp (EAp (EVar "+") (EVar "x")) (EVar "x")))

℄

1.4 A small standard prelude

Miranda has a standard prelude whih ontains de�nitions of various useful funtions (suh as

map, foldr and so on) whih are always available. We will do the same for the Core language,

by providing the following standard de�nitions:
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I x = x ;

K x y = x ;

K1 x y = y ;

S f g x = f x (g x) ;

ompose f g x = f (g x) ;

twie f = ompose f f

This `standard prelude' is neessarily rather small, beause we want it to work for all of our

implementations, inluding the most primitive ones whih will lak arithmeti and failities for

manipulating data strutures. All that is available in the simplest implementations is funtion

appliation!

The following de�nition for preludeDefs, whih will be used throughout the book, embodies

these de�nitions:

> preludeDefs :: CoreProgram

> preludeDefs

> = [ ("I", ["x"℄, EVar "x"),

> ("K", ["x","y"℄, EVar "x"),

> ("K1",["x","y"℄, EVar "y"),

> ("S", ["f","g","x"℄, EAp (EAp (EVar "f") (EVar "x"))

> (EAp (EVar "g") (EVar "x"))),

> ("ompose", ["f","g","x"℄, EAp (EVar "f")

> (EAp (EVar "g") (EVar "x"))),

> ("twie", ["f"℄, EAp (EAp (EVar "ompose") (EVar "f")) (EVar "f")) ℄

1.5 A pretty-printer for the Core language

One we have a value of type oreProgram it is often onvenient to be able to display it.

Miranda's built-in features are not muh help here. For example, if one types preludeDefs in

response to the Miranda prompt, the output produed is rather hard to understand. (Try it.)

What we require is a `pretty-printing' funtion pprint, with type

> pprint :: CoreProgram -> String

Then we ould type pprint preludeDefs, and expet to get a list of haraters whih, when

printed, looks like a niely formatted version of preludeDefs. Our goal in this setion is to

write suh a funtion.

When the result of a program is a list, Miranda usually prints out the list items separated by

ommas and surrounded by brakets. But in the speial ase when the result of the program is of

type [har℄, Miranda displays the list `all squashed up', without square brakets and ommas.

For example, the value "Hi\nthere" is displayed as

Hi

there
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and not as

['H', 'i', '\n', 't', 'h', 'e', 'r', 'e'℄

In this way, pprint an have omplete ontrol over the output format.

We will need some of the utility funtions de�ned in Appendix A, so we import them using the

%inlude diretive:

1.5.1 Pretty-printing using strings

Let us �rst onentrate on Core-language expressions. It looks as though we require a pretty-

printing funtion, pprExpr, de�ned something like this:

> pprExpr :: CoreExpr -> String

> pprExpr (ENum n) = show n

> pprExpr (EVar v) = v

> pprExpr (EAp e1 e2) = pprExpr e1 ++ " " ++ pprAExpr e2

(We have deliberately left out many of the ases for pprExpr for the moment.) pprAExpr has the

same type as pprExpr, but di�ers from it by plaing parentheses around the expression unless

it is a variable or number.

> pprAExpr :: CoreExpr -> String

> pprAExpr e = isAtomiExpr e | pprExpr e

> pprAExpr e = otherwise | "(" ++ pprExpr e ++ ")"

One an proeed in this fashion, but there is a serious problem with doing so. The pretty-printer

uses the list append funtion, ++, a great deal. This an give very nasty performane, as the

following example shows. Consider the expression

(xs1 ++ xs2) ++ xs3

The inner ++ takes time proportional to #xs1

2

, but then the outer ++ takes time proportional

to the length of xs1++xs2, so the total time taken is (2 � #xs1) + #xs2. In general, if we added

more lists to this nested append, the ost an be quadrati in the length of the result! Of ourse,

if we braket the expression the other way, the ost is linear in the length of the result, but

unfortunately we annot guarantee this in a pretty-printer.

To demonstrate this e�et, we will �rst write a funtion mkMultiAp, whih makes it easy for us

to build sample expressions of a given size. The all (mkMultiAp n e

1

e

2

) generates a oreExpr

representing the expression

e

1

e

2

e

2

: : : e

2

| {z }

n

2

The # funtion is a standard Miranda funtion for taking the length of a list.
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Figure 1.2: An illustration of foldll 
 a [x

1

; : : : ; x

n

℄

> mkMultiAp :: Int -> CoreExpr -> CoreExpr -> CoreExpr

> mkMultiAp n e1 e2 = foldll EAp e1 (take n e2s)

> where

> e2s = e2 : e2s

In this de�nition, take is a Miranda standard funtion whih takes the �rst n elements of

a list, disarding the rest of the list. The funtion foldll is a standard funtion, de�ned in

Appendix A

3

. Given a dyadi funtion
, a value a and a list xs = [x

1

; :::; x

n

℄, foldll
 a xs

omputes a

0

, where

a

0

= (: : : ((a 
 x

1

) 
 x

2

) 
 : : : x

n

)

This is illustrated by Figure 1.2. In mkMultiAp, foldll is used to build a left-branhing hain

of EAp nodes. The initial aumulator a is e1, and the ombining funtion 
 is the EAp

onstrutor. Finally, e2s is the in�nite list [e2, e2, : : : ℄; only its �rst n elements are used by

take.

Exerise 1.1. Measure the number of Miranda steps required to ompute

# (pprExpr (mkMultiAp n (EVar "f") (EVar "x")))

for various values of n. (You an use the Miranda diretive /ount to tell Miranda to print

exeution statistis. We take the length of the result so that the sreen does not �ll up with a huge

printout.) Sketh a graph whih shows how the exeution ost rises with n and hek that it is

roughly quadrati in n.

1.5.2 An abstrat data type for pretty-printing

A pretty-printer whose ost is quadrati in the size of the program to be printed is learly

unaeptable, so we had better �nd a way around it.

We an separate this problem into two parts: `what operations do we want to perform?', and

`what is an eÆient way to perform them?'. In ommon with other languages, Miranda provides

a way to make this distintion lear by introduing an abstrat data type.

3

We use foldll rather than the Miranda standard funtion foldl beause di�erent versions of Miranda have

di�erent de�nitions for foldl.
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> iNil :: Iseq -- The empty iseq

> iStr :: String -> Iseq -- Turn a string into an iseq

> iAppend :: Iseq -> Iseq -> Iseq -- Append two iseqs

> iNewline :: Iseq -- New line with indentation

> iIndent :: Iseq -> Iseq -- Indent an iseq

> iDisplay :: Iseq -> String -- Turn an iseq into a string

The abstype keyword introdues an abstrat data type, iseq. It is followed by the interfae of

the data type; that is, the operations whih an be performed on the data type iseq and their

type of eah operation.

Given suh a data type, we rewrite pprExpr to return an iseq instead of a list of haraters:

> pprExpr :: CoreExpr -> Iseq

> pprExpr (EVar v) = iStr v

> pprExpr (EAp e1 e2) = (pprExpr e1) `iAppend` (iStr " ") `iAppend` (pprAExpr e2)

We have simply replaed ++ by iAppend

4

, and added an iStr around literal strings.

What are the di�erenes between an iseq and a list of haraters? Firstly, we aim to produe

an implementation of iAppend whih does not have the unexpeted quadrati behaviour of list

append. Seondly, iseq provides new operations iIndent and iNewline whih will be useful

for ontrolling indentation. The idea is that iIndent indents its argument to line up with the

urrent olumn; it should work even if its argument spreads over many lines, and itself ontains

alls to iIndent. iNewline stands for a newline followed by a number of spaes determined by

the urrent level of indentation.

As an example of how iIndent and iNewline might be used, let us extend pprExpr to handle

let and letre expressions:

> pprExpr (ELet isre defns expr)

> = iConat [ iStr keyword, iNewline,

> iStr " ",iIndent (pprDefns defns),iNewline,

> iStr "in ",pprExpr expr ℄

> where

> keyword | not isre = "let"

> | isre = "letre"

> pprDefns :: [(Name,CoreExpr)℄ -> Iseq

> pprDefns defns = iInterleave sep (map pprDefn defns)

> where

> sep = iConat [ iStr ";", iNewline ℄

> pprDefn :: (Name, CoreExpr) -> Iseq

> pprDefn (name, expr)

> = iConat [ iStr name, iStr " = ", iIndent (pprExpr expr) ℄

4

In Miranda, writing a dollar sign in front of an identi�er turns it into an in�x operator, allowing us to write

iAppend between its arguments, instead of in front of them. Suh in�x operators are right-assoiative.
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To make the de�nitions more legible, we have used two new funtions, iConat and iInterleave,

with the types

> iConat :: [Iseq℄ -> Iseq

> iInterleave :: Iseq -> [Iseq℄ -> Iseq

iConat takes a list of iseqs and uses iAppend to onatenate them into a single iseq. iInterleave

is similar to iConat exept that it interleaves a spei�ed iseq between eah adjaent pair.

Exerise 1.2. De�ne iConat and iInterleave in terms of iAppend and iNil.

In general, all our pretty-printing funtions will return an iseq, and we apply iDisplay just

one at the top level, to the iseq representing the entire thing we want to display:

> pprint prog = iDisplay (pprProgram prog)

Exerise 1.3. Add a further equation to pprExpr to handle ase and lambda expressions, and write

de�nitions for pprAExpr and pprProgram in the same style.

1.5.3 Implementing iseq

Now we ome to the implementation of the iseq type. We begin by making an implementation

that ignores all indentation. To implement the abstrat data type we must say what type is

used to represent an iseq:

> data Iseq = INil

> | IStr String

> | IAppend Iseq Iseq

The �rst delaration says that the type iseqRep is used to represent an iseq, while the seond

delares iseqRep to be an algebrai data type with the three onstrutors INil, IStr and

IAppend.

The general idea of this partiular representation is to postpone all the work until the eventual

all of iDisplay. The operations iNil, iStr and iAppend all just use the relevant onstrutor:

> iNil = INil

> iAppend seq1 seq2 = IAppend seq1 seq2

> iStr str = IStr str

Sine we are ignoring indentation, iIndent and iNewline are de�ned trivially. We will improve

them in the next setion.

> iIndent seq = seq

> iNewline = IStr "\n"
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All the interest lies in the operation iDisplay whih turns an iseq into a list of haraters. The

goal is that it should only take time linear in the size of the iseq. It turns out to be onvenient

to de�ne iDisplay in terms of a more general funtion, flatten:

> flatten :: [Iseq℄ -> String

>

> iDisplay seq = flatten [seq℄

The funtion flatten takes a list of iseqReps, and returns the result of onatenating eah of

the iseqReps in the list. The reason for having this list is that is allows us to aumulate a list

of pending work, as we will soon see. Notie that flatten manipulates the representation type

iseqRep, rather than the abstrat type iseq.

We de�ne flatten by ase analysis on its argument, whih we all the work-list. If the work-list

is empty, we are done:

> flatten [℄ = ""

Otherwise, we work by doing ase analysis on the �rst element of the work-list. The INil ase

just pops an item from the work-list:

> flatten (INil : seqs) = flatten seqs

The IStr ase works by appending the spei�ed string with the result of attening the rest of

the work-list:

> flatten (IStr s : seqs) = s ++ (flatten seqs)

So far, the fat that flatten takes a list has not helped us muh. The justi�ation for the list

argument an be seen more learly when we deal with IAppend; all that need be done is to push

one more item onto the front of the work-list:

> flatten (IAppend seq1 seq2 : seqs) = flatten (seq1 : seq2 : seqs)

Exerise 1.4. What is the ost of flatten in terms of the size of the iseq?

Change pprExpr to use iseq as indiated above, and measure the e�et of the new implementation

using the same experiment as in the previous exerise. Remember to apply iDisplay to the result

of pprExpr.

Exerise 1.5. The key advantage of using an abstrat data type is that one an hange the implemen-

tation of the ADT without a�eting its interfae. As an example of this, rede�ne iAppend so that

it returns a simpli�ed result if either of its arguments is INil.

1.5.4 Layout and indentation

So far we have only given a rather trivial interpretation to the iIndent operation, and we now

turn to improving it. In the same spirit as before, we �rst expand the iseqRep type with

an extra two onstrutors, IIndent and INewline, and rede�ne their operations to use these

onstrutors:
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> data Iseq = INil

> | IStr String

> | IAppend Iseq Iseq

> | IIndent Iseq

> | INewline

>

> iIndent seq = IIndent seq

> iNewline = INewline

We must then make flatten more powerful. Firstly, it needs to keep trak of the urrent

olumn, and seondly, its work-list must onsist of (iseq, num) pairs, where the number gives

the indentation required for the orresponding iseq:

> flatten :: Int -- Current olumn; 0 for first olumn

> -> [(Iseq, Int)℄ -- Work list

> -> String -- Result

We need to hange iDisplay to initialise flatten appropriately:

> iDisplay seq = flatten 0 [(seq,0)℄

The interesting ase for flatten is when we deal with INewline, beause this is where we need

to perform indentation

5

:

> flatten ol ((INewline, indent) : seqs)

> = '\n' : (spae indent) ++ (flatten indent seqs)

Notie that the reursive all to atten has a urrent-olumn argument of indent sine we have

now moved on to a new line and added indent spaes.

The IIndent ase simply sets the urrent indentation from the urrent olumn:

> flatten ol ((IIndent seq, indent) : seqs)

> = flatten ol ((seq, ol) : seqs)

Exerise 1.6. Add equations for flatten for IAppend, IStr and INil.

Try pprExpr on an expression involving an ELet, and hek that the layout works properly.

Exerise 1.7. The pretty-printer will go wrong if a newline harater '\n' is embedded in a string given

to IStr. Modify iStr to hek for this, replaing the newline harater by a use of INewline.

1.5.5 Operator preedene

As disussed in Setion 1.3, the oreExpr type has no onstrut for in�x operator appliations.

Instead, suh appliations are expressed in pre�x form, just like any other funtion appliation.

It would be nie if our pretty-printer reognised suh appliations, and printed them in in�x

form. This is easily done by adding extra equations to pprExpr of the form

5

spaes is a standard Miranda funtion whih returns a list of a spei�ed number of spae haraters.
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pprExpr (EAp (EAp (EVar "+") e1) e2)

= iConat [ pprAExpr e1, iStr " + ", pprAExpr e2 ℄

This still does not do a very good job, beause it inserts too many parentheses. Would you

prefer to see the expression

x + y > p * length xs

or the fully parenthesised version?

(x + y) > (p * (length xs))

The easiest way to ahieve this is to give pprExpr an extra argument whih indiates the

preedene level of its ontext, and then use this to deide whether to add parentheses around

the expression it produes. (The funtion pprAExpr now beomes redundant.)

Exerise 1.8. Make these hanges to pprExpr and test them.

1.5.6 Other useful funtions on iseq

Later on it will be useful to have a few more funtions whih work on iseqs. They are all de�ned

in terms of the iseq interfae funtions, so the implementation an be hanged without altering

any of these de�nitions.

iNum maps a number to an iseq and iFWNum does the same exept that the result is left-padded

with spaes to a spei�ed width:

> iNum :: Int -> Iseq

> iNum n = iStr (show n)

> iFWNum :: Int -> Int -> Iseq

> iFWNum width n

> = iStr (spae (width - length digits) ++ digits)

> where

> digits = show n

(If the number is wider than the width required, a negative number will be passed to spaes,

whih then returns the empty list. So the net e�et is to return a �eld just wide enough to ontain

the number.) iLayn lays out a list, numbering the items and putting a newline harater after

eah, just as the standard funtion layn does.

> iLayn :: [Iseq℄ -> Iseq

> iLayn seqs = iConat (map lay_item (zip [1..℄ seqs))

> where

> lay_item (n, seq)

> = iConat [ iFWNum 4 n, iStr ") ", iIndent seq, iNewline ℄
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1.5.7 Summary

Our pretty-printer still has its shortomings. In partiular, a good pretty-printer will lay things

out on one line if they �t, and over many lines if they do not. It is quite possible to elaborate

the iseq data type so that it an do this, but we will not do so here.

The iseq type is useful for pretty-printing data other than programs, and we will use it for a

variety of purposes throughout the book.

There are two general points we would like to bring out from this setion:

� It is very often helpful to separate the interfae of an abstrat data type from its imple-

mentation. Miranda provides diret support for this abstration, by ensuring the funtions

over the abstrat type do not inspet the representation.

� The de�nition of iDisplay in terms of flatten exempli�es a very ommon tehnique

alled generalisation. We often de�ne the funtion we really want in terms of a simple

all to a more general funtion. This is usually beause the more general funtion arries

around some extra arguments whih it needs to keep the book-keeping straight.

It is hard to make general statements about when generalisation is an appropriate teh-

nique; indeed, working out a good generalisation is often the main reative step in writing

any program. However, there are plenty of examples of generalisation in this book, whih

we hope will help to onvey the idea.

1.6 A parser for the Core language

We will want to run eah of our implementations on a variety of Core programs. This means

that we want a way of taking a �le ontaining the Core program in its onrete syntax, and

parsing it to a value of type oreProgram.

Writing parsers is generally rather tiresome, so muh so that great e�ort has been devoted to

building tools whih aept a grammar and write a parser for you. The Unix Ya utility is an

example of suh a parser generator. In a funtional language, however, it is quite easy to write

a simple parser, and we will do so in this setion for the Core language. We split the task into

three stages:

� First, we obtain the ontents of the named �le, as a list of haraters. This is done by the

built-in Miranda funtion read.

� Next, the lexial analysis funtion lex breaks the input into a sequene of small hunks,

suh as identi�ers, numbers, symbols and so on. These small hunks are alled tokens:

> lex :: String -> [Token℄

� Finally, the syntax analysis funtion syntax onsumes this sequene of tokens and produes

a oreProgram:

> syntax :: [Token℄ -> CoreProgram
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The full parser is just the omposition of these three funtions:

> parse :: String -> CoreProgram

> parse = syntax . lex

> -- In Gofer I propose to ompose this with some funtion

> -- CoreProgram -> String, whih will illustrate some sort of

> -- exeution mahine, and then give this omposition to atWith

> -- from my utils

The symbol `.' is Miranda's in�x omposition operator, whih an be de�ned thus:

(f . g) x = f (g x)

We ould equivalently have de�ned parse without using omposition, like this:

parse filename = syntax (lex (read filename))

but it is nier style to use omposition, beause it makes it partiularly easy to see that we are

de�ning parse as a pipeline of three funtions.

1.6.1 Lexial analysis

We begin with the lexial analyser. We have not yet de�ned the type of a token. The easiest

thing to begin with is to do no proessing at all on the tokens, leaving them as (non-empty)

strings:

> type Token = String -- A token is never empty

Now the lexial analysis itself. It should throw away white spae (blanks, tabs, newlines):

> lex (:s) | isWhiteSpae  = lex s

It should reognise numbers as a single token:

> lex (:s) | isDigit  = num_token : lex rest_s

> where

> num_token =  : takeWhile isDigit s

> rest_s = dropWhile isDigit s

The standard funtion digit takes a harater and returns True if and only if the harater is

a deimal digit. takewhile and dropwhile are both also standard funtions; takewhile takes

elements from the front of a list while a prediate is satis�ed, and dropwhile removes elements

from the front of a list while the prediate is satis�ed. For example,

takewhile digit "123ab456"
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is the list "123".

The lexial analyser should also reognise variables, whih begin with an alphabeti letter, and

ontinue with a sequene of letters, digits and undersores:

> lex (:s) | isAlpha  = var_tok : lex rest_s

> where

> var_tok =  : takeWhile isIdChar s

> rest_s = dropWhile isIdChar s

Here letter is a standard funtion like digit whih returns True on alphabeti haraters, and

isIdChar is de�ned below.

If none of the above equations applies, the lexial analyser returns a token ontaining a single

harater.

> lex (:s) = [℄ : lex s

Lastly, when the input string is empty, lex returns an empty token list.

> lex [℄ = [℄

We onlude with the de�nitions of the auxiliary funtions used above. (The operator `\/' is

Miranda's boolean `or' operation.)

> isIdChar, isWhiteSpae :: Char -> Bool

> isIdChar  = isAlpha  || isDigit  || ( == '_')

> isWhiteSpae  =  `elem` " \t\n"

Exerise 1.9. Modify the lexial analyser so that it ignores omments as well as white spae. Use the

same onvention that a omment is introdued by a double vertial bar, ||, and extend to the end

of the line.

Exerise 1.10. The lexial analyser does not urrently reognise two-harater operators, suh as <=

and ==, as single tokens. We de�ne suh operators by giving a list of them:

> twoCharOps :: [String℄

> twoCharOps = ["==", "~=", ">=", "<=", "->"℄

Modify lex so that it reognises members of twoCharOps as tokens. (The standard funtion member

may be useful.)

Exerise 1.11. Sine the lexial analysis throws away white spae, the parser annot report the line

number of a syntax error. One way to solve this problem is to attah a line number to eah token;

that is, the type token beomes

token == (num, [har℄)

Alter the lexial analyser so that it does this. To do this you will need to add an extra parameter

to lex, being the urrent line number.
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1.6.2 Basi tools for parsing

In preparation for writing a parser for the Core language, we now develop some general-

purpose funtions to use when writing parsers. The tehniques desribed below are well known

[Fairbairn 1986, Wadler 1985℄, but make a rather nie demonstration of what an be done with

funtional programming. As a running example, we will use the following small grammar:

greeting ! hg person !

hg ! hello

j goodbye

where person is any token beginning with a letter.

Our general approah, whih is very ommon in funtional programming, is to try to build a

big parser by glueing together smaller parsers. The key question is: what should the type of a

parser be? It is a funtion whih takes a list of tokens as its argument, and at �rst it appears

that it should just return the parsed value. But this is insuÆiently general, for two reasons.

1. Firstly, it must also return the remaining list of tokens. If, for example, we want to parse

two items from the input, one after the other, we an apply the �rst parser to the input,

but we must then apply the seond parser to the remaining input returned by the �rst.

2. Seondly, the grammar may be ambiguous, so there is more than one way to parse the

input; or the input may not onform to the grammar, in whih ase there is no way to

suessfully parse the input. An elegant way to aommodate these possibilities is to

return a list of possible parses. This list is empty if there is no way to parse the input,

ontains one element if there is a unique way to parse it, and so on.

We an summarise our onlusion by de�ning the type of parsers using a type synonym, like

this:

> type Parser a = [Token℄ -> [(a, [Token℄)℄

That is, a parser for values of type * takes a list of tokens and returns a list of parses, eah of

whih onsists of a value of type * paired with the remaining list of tokens.

Now we are ready to de�ne some small parsers. The funtion pLit (`lit' is short for `literal')

takes a string and delivers a parser whih reognises only tokens ontaining that string, returning

the string as the value of the parse:

> pLit :: String -> Parser String

How does pLit work? It looks at the �rst token on the input and ompares it with the desired

string. If it mathes, pLit returns a singleton list, indiating a single suessful parse; if it does

not math, pLit returns an empty list, indiating failure to parse

6

:

6

This de�nition of pLit assumes that a token is just a string. If you have added line numbers to your tokens,

as suggested in Exerise 1.11, then pLit will need to strip o� the line number before making the omparison.
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> pLit s (tok:toks) = s == tok | [(s, toks)℄

> = otherwise | [℄

> pLit s [℄ = [℄

The seond equation takes are of the ase where the input stream is empty. We an use pLit

to de�ne parsers whih look for partiular tokens in the input. For example, the expression

pLit "hello" ["hello", "John", "!"℄

evaluates to

[("hello", ["John", "!"℄)℄

Similarly, we de�ne a parser pVar to parse a variable from the beginning of the input:

> pVar :: Parser String

> pVar [℄ = [℄

pVar deides whether a token is a variable or not by looking at its �rst harater. (The lexial

analyser ensures that no token is empty.) Atually, this is not quite right, beause it should not

treat keywords as variables, but we will �x this problem later (Exerise 1.17).

The whole point of this development is to build bigger parsers by gluing together smaller ones,

and we are now ready to do so. We will de�ne a funtion pAlt (`alt' is short for `alternative')

whih ombines two parsers, say p1 and p2. First it uses p1 to parse the input, and then it uses

p2 to parse the same input; it returns all the suessful parses returned by either p1 or p2. So

the type of pAlt is

> pAlt :: Parser a -> Parser a -> Parser a

The atual de�nition of pAlt is delightfully simple. All it needs to is append the lists of parses

returned by p1 and p2:

> pAlt p1 p2 toks = (p1 toks) ++ (p2 toks)

For example, pHelloOrGoodbye is a parser whih reognises either the token "hello" or "goodbye":

> pHelloOrGoodbye :: Parser String

> pHelloOrGoodbye = (pLit "hello") `pAlt` (pLit "goodbye")

It is easy to see that pAlt orresponds diretly to the vertial bar, j, of a BNF grammar (see

Figure 1.1, for example). We need one other fundamental parser-ombining funtion, pThen,

whih orresponds to the sequening of symbols in a BNF grammar.

Like pAlt, pThen ombines two parsers, say p1 and p2, returning a bigger parser whih behaves

as follows. First, it uses p1 to parse a value from the input, and then it uses p2 to parse a

seond value from the remaining input. What value should pThen return from a suessful

parse? Presumably some ombination of the values returned by p1 and p2, so the right thing

to do is to give pThen a third argument whih is the value-ombining funtion. So the type of

pThen is:
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> pThen :: (a -> b -> ) -> Parser a -> Parser b -> Parser 

The de�nition of pThen makes use of a list omprehension:

> pThen ombine p1 p2 toks

> = [ (ombine v1 v2, toks2) | (v1,toks1) <- p1 toks,

> (v2,toks2) <- p2 toks1℄

The right-hand side of this equation should be read as follows:

`the list of pairs (ombine v1 v2, toks2),

where (v1,toks1) is drawn from the list p1 toks,

and (v2,toks2) is drawn from the list p2 toks1'.

With the aid of pThen we an make a parser for greetings:

> pGreeting :: Parser (String, String)

> pGreeting = pThen mk_pair pHelloOrGoodbye pVar

> where

> mk_pair hg name = (hg, name)

For example, the expression

pGreeting ["goodbye", "James", "!"℄

would evaluate to

[(("goodbye", "James"), ["!"℄)℄

Notie that when writing pGreetingwe did not need to think about the fat that pHelloOrGoodbye

was itself a omposite parser. We simply built pGreeting out of its omponent parsers, eah

of whih has the same standard interfae. We ould subsequently hange pHelloOrGoodbye

without having to hange pGreeting as well.

1.6.3 Sharpening the tools

We have now ompleted the basi tools for developing parsers. In this setion we will develop

them in a number of ways.

The de�nition of pGreeting given above is not quite right, beause the grammar demands an

exlamation mark after the person's name. We ould �x the problem like this:

pGreeting = pThen keep_first

(pThen mk_pair pHelloOrGoodbye pVar)

(pLit "!")

where

keep_first hg_name exlamation = hg_name

mk_pair hg name = (hg, name)
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Sine the �nal exlamation mark is always present, we have hosen not to return it as part of

the parsed value; it is disarded by keep_first. This de�nition is rather lumsy, however. It

would be more onvenient to de�ne a new funtion pThen3, so that we ould write:

pGreeting = pThen3 mk_greeting

pHelloOrGoodbye

pVar

(pLit "!")

where

mk_greeting hg name exlamation = (hg, name)

Exerise 1.12. Give the type of pThen3, write down its de�nition, and test the new version of pGreeting.

Similarly, write pThen4, whih we will need later.

Another very ommon feature of grammars is to require zero or more repetitions of a symbol. To

reet this we would like a funtion, pZeroOrMore, whih takes a parser, p, and returns a new

parser whih reognises zero or more ourrenes of whatever p reognises. The value returned

by a suessful parse an be the list of the values returned by the suessive uses of p. So the

type of pZeroOrMore is

> pZeroOrMore :: Parser a -> Parser [a℄

For example, a parser to reognise zero or more greetings is

> pGreetings :: Parser [(String, String)℄

> pGreetings = pZeroOrMore pGreeting

We an de�ne pZeroOrMore by observing that it must either see one or more ourrenes, or

zero ourrenes:

> pZeroOrMore p = (pOneOrMore p) `pAlt` (pEmpty [℄)

Here, pEmpty is a parser whih always sueeds, removing nothing from the input, returning the

value it is given as its �rst argument:

> pEmpty :: a -> Parser a

The funtion pOneOrMore has the same type as pZeroOrMore.

> pOneOrMore :: Parser a -> Parser [a℄

Exerise 1.13. Write de�nitions for pOneOrMore and pEmpty. (Hint: you will �nd it onvenient to all

pZeroOrMore from pOneOrMore.) Test your de�nitions by using them to de�ne a parser to reognise

one or more greetings.

It is often onvenient to proess the values returned by suessful parses. For example, suppose

we wanted pGreetings to return the number of greetings rather than their ontent. To do this

we would like to apply the length funtion, #, to the value returned by pZeroOrMore:
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> pGreetingsN :: Parser Int

> pGreetingsN = (pZeroOrMore pGreeting) `pApply` length

Here pApply is a new parser-manipulation funtion, whih takes a parser and a funtion, and

applies the funtion to the values returned by the parser:

> pApply :: Parser a -> (a -> b) -> Parser b

Exerise 1.14. Write a de�nition for pApply, and test it. (Hint: use a list omprehension.)

Another very ommon pattern in grammars is to look for one or more ourrenes of a symbol,

separated by some other symbol. For example, a program in Figure 1.1 is a sequene of one or

more superombinator de�nitions, separated by semiolons. We need yet another parser-building

funtion, pOneOrMoreWithSep, whose type is

> pOneOrMoreWithSep :: Parser a -> Parser b -> Parser [a℄

The seond argument is the parser whih reognises the separators, whih are not returned as

part of the result; that is why there is only one ourrene of ** in the type.

Exerise 1.15. De�ne and test pOneOrMoreWithSep. It may help to think of the following grammar for

program:

program ! s programRest

programRest ! ; program

j �

where � is the empty string (orresponding to the pEmpty parser).

The parsers pLit and pVar are quite similar to eah other: they both test for some property of

the �rst token, and either fail (if it does not have the property) or sueed, returning the string

inside the token (if it does have the property). We ould generalise this idea by writing a parser

pSat (where `sat' is short for `satis�es'), with the type

> pSat :: (String -> Bool) -> Parser String

pSat takes a funtion whih tells whether or not the string inside the token has the desired

property, and returns a parser whih reognises a token with the property. Now we an write

pLit in terms of pSat

7

:

> pLit s = pSat (== s)

Exerise 1.16. De�ne pSat and test it. Write pVar in terms of pSat in a similar way to pLit.

7

The expression (= s) is alled a setion. It is the partial appliation of the equality operator = to one argument

s, produing a funtion whih tests whether its argument is equal to s.
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pSat adds a useful level of modularity. For example, pVar urrently reognises all alphabeti

tokens as variables, but ultimately we might want it not to reognise language keywords (suh

as let and ase) as variables.

Exerise 1.17. Modify the funtion passed to pSat in the de�nition of pVar above so that it does not

treat strings in the list keywords as variables.

> keywords :: [String℄

> keywords = ["let", "letre", "ase", "in", "of", "Pak"℄

Exerise 1.18. As another example, use pSat to de�ne a parser for numbers, with the type

> pNum :: Parser Int

pNum should use pSat to identify numeri tokens, and then pApply to onvert the string to a

number. (Miranda provides a standard funtion numval with type [har℄ -> num whih an be

used to do the hard work.)

There is an interesting performane problem assoiated with pOneOrMore and its related fun-

tions. Consider the following Core program:

f x = let x1 = x; x2 = x; ...; xn = x

of x1

The idea is that we have a big let expression with de�nitions for x1, x2, . . . , xn (the de�nitions

are rather trivial, but they serve the purpose). This program has a syntax error: we have written

`of' instead of `in' after the let expression.

Exerise 1.19. yCount how many Miranda steps it takes before the syntax error is reported, for n =

5; 10; 15; 20 and so on. (Use Miranda's /ount diretive to get a display of exeution statistis.)

How fast does the parsing ost rise, in terms of n?

To get an idea why this happens, try evaluating:

pOneOrMore (pLit "x") ["x", "x", "x", "x", "x", "x"℄

You should get a list of six possible parses. Based on this, an you work out why the parsing ost

in the previous example rises so fast?

How an this problem be solved? (Hint: apart from the �rst one, are any of the parses returned

by pOneOrMore useful? How ould the extra ones be eliminated?)

1.6.4 Parsing the Core language

We are �nally ready to de�ne a parser for the Core language. First we deal with the `wrapper'

funtion, syntax. Reall that it takes a list of tokens and delivers a result of type oreProgram.

It an do this by alling the parser pProgramwhih parses the non-terminal program (Figure 1.1),

and then seleting the �rst omplete parse it returns. If it returns no omplete parse | that is,

one in whih the sequene of tokens remaining after the parse is empty | syntax produes a

(horribly uninformative) error message.
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> syntax = take_first_parse . pProgram

> where

> take_first_parse ((prog,[℄) : others) = prog

> take_first_parse (parse : others) = take_first_parse others

> take_first_parse other = error "Syntax error"

The beauty of our parsing tools is that we an write parsers by merely transliterating the grammar

into Miranda. For example, onsider the produtions for program and s in Figure 1.1:

program ! s

1

; : : : ; s

n

(n � 1)

s ! var var

1

: : : var

n

= expr (n � 0)

We an transliterate these diretly into Miranda:

> pProgram :: Parser CoreProgram

> pProgram = pOneOrMoreWithSep pS (pLit ";")

> pS :: Parser CoreSDefn

> pS = pThen4 mk_s pVar (pZeroOrMore pVar) (pLit "=") pExpr

Exerise 1.20. Write the funtion mk_s. It takes four arguments returned by the four parsers used in

pS, and builds a value of type:

(name, [name℄, oreExpr)

It is a straightforward matter to omplete the de�nitions for the rest of the grammar, apart

from the produtions for appliation and in�x operators.

Exerise 1.21. Leaving these two produtions out, omplete the parser. A little are is needed for the

parser pAexpr, whih should have type parser oreExpr. The pApply funtion is required to

wrap an EVar onstrutor around the value returned by pVar, and an ENum onstrutor around

that returned by pNum.

Test your parser on the following program

f = 3 ;

g x y = let z = x in z ;

h x = ase (let y = x in y) of

<1> -> 2 ;

<2> -> 5

You will �nd that the output beomes illegible as you run the parser on larger programs. To solve

this, use the pretty-printing funtion pprint to format the output of your parser.

Exerise 1.22. Consider the program

f x y = ase x of

<1> -> ase y of

<1> -> 1;

<2> -> 2

Does the alternative starting with <2> attah to the inner ase or the outer one? Work out your

answer, and see if your parser behaves as you expet. This is known as the `dangling else' question.

Now we turn our attention to the two problems mentioned above.
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1.6.5 Left reursion

The problem with appliations is relatively easy to solve. The prodution for appliations looks

like this:

expr ! expr aexpr

If we simply transliterate this to

pExpr = pThen EAp pExpr pAexpr

then unfortunately pExpr will never terminate, beause it keeps alling itself inde�nitely. The

problem is that expr appears as the �rst symbol in a prodution of expr ; this is alled left

reursion. Our parsing tools simply annot ope with left-reursive grammars. Fortunately, it

is usually possible to transform the grammar so that it is no longer left-reursive, though the

resulting grammar does not then reet the struture of the result we are trying to onstrut.

In this ase, for example, we an simply use repetition, transforming the o�ending prodution

to

expr ! aexpr

1

: : : aexpr

n

(n � 1)

and now the parser (pOneOrMore pAexpr) an be used. The trouble is that this returns a list

of expressions, rather than a single expression built with EAp onstrutors. We an solve this

using pApply, giving the parser

(pOneOrMore pAexpr) $pApply mk_ap_hain

Exerise 1.23. De�ne the appropriate funtion mk_ap_hainwith type [oreExpr℄ -> oreExpr. Ad-

d the prodution for appliations to your parser and test it.

1.6.6 Adding in�x operators

The �rst problem with in�x operators is that their preedene is impliit in the grammar of

Figure 1.1. The standard way to make this expliit is to have several sorts of expression, as

shown in Figure 1.3.

Notie the way that this grammar expresses the fat that | and & are right-assoiative, whereas

relational operators are non-assoiative. Having to write out so many rules is rather tiresome,

but we are only making expliit what we meant all along. But now the seond problem arises:

a parser implemented diretly from these rules would be horribly ineÆient! Consider the

produtions for expr1. A naive parser would attempt to reognise an expr2, and then look for

a vertial bar |. If it did not �nd one (as will often be the ase), it will laboriously reparse the

original input to look for an expr2 again. Worse, eah attempt to parse an expr2 may involve

two attempts to parse an expr3, and hene four attempts to parse an expr4, and so on.

We want to share the parsing of the expr2 between the two produtions, and this is not hard to

do, by splitting the expr1 prodution into two:

expr1 ! expr2 expr1

expr1 ! | expr1

j �
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expr ! let defns in expr

j letre defns in expr

j ase expr of alts

j \ var

1

: : : var

n

. expr

j expr1

expr1 ! expr2 | expr1

j expr2

expr2 ! expr3 & expr2

j expr3

expr3 ! expr4 relop expr4

j expr4

expr4 ! expr5 + expr4

j expr5 - expr5

j expr5

expr5 ! expr6 * expr5

j expr6 / expr6

j expr6

expr6 ! aexpr

1

: : : aexpr

n

(n � 1)

Figure 1.3: Grammar expressing operator preedene and assoiativity

Here � stands for the empty string; the produtions for expr1 say that an expr1 is either a

vertial bar, |, followed by an expr1, or it is empty. We are almost there! The last question

is: what is the type of a parser for expr1. It annot be of type parser oreExpr, beause the

phrase | expr1 is only part of an expression, and the empty string � is not an expression either.

As usual, transforming the grammar has destroyed the struture.

The solution is fairly easy. We de�ne a new data type partialExpr, like this

> data PartialExpr = NoOp | FoundOp Name CoreExpr

Now we an de�ne the parser for expr1 like this:

> pExpr1 :: Parser PartialExpr

> pExpr1 = (pThen FoundOp (pLit "|") pExpr1) `pAlt` (pEmpty NoOp)

The parser for expr1 takes apart the intermediate result returned by pExpr1:

> pExpr1 :: Parser CoreExpr

> pExpr1 = pThen assembleOp pExpr2 pExpr1

> assembleOp :: CoreExpr -> PartialExpr -> CoreExpr

> assembleOp e1 NoOp = e1

> assembleOp e1 (FoundOp op e2) = EAp (EAp (EVar op) e1) e2

Exerise 1.24. Transform the grammar along the lines suggested, transliterate the hanges into Miranda

ode, and test the resulting parser.

40



1.6.7 Summary

The grammars that an be handled eÆiently by our library of parser-building funtions are

alled LL(1) grammars, exatly the same lass that an be dealt with by onventional reursive-

desent parsers [Aho et al. 1986℄.

Using the library we an easily write very onise parsers. This is an important and useful

property, beause almost any program has an input language of some sort, whih has to be

parsed by the program.

There are various things we have to take are about (left reursion, operator preedene, sharing),

but exatly the same issues arise in any reursive-desent parser, regardless of the language in

whih it is implemented.
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> module Template where

> import Language

> import Utils
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Chapter 2

Template instantiation

This hapter introdues the simplest possible implementation of a funtional language: a graph

reduer based on template instantiation.

The omplete soure ode for an initial version (Mark 1) is given, followed by a series of im-

provements and variations on the basi design. We begin with a review of graph redution and

template instantiation.

2.1 A review of template instantiation

We begin with a brief overview of template instantiation. This material is overed in more detail

in Chapters 11 and 12 of [Peyton Jones 1987℄.

We reall the following key fats:

� A funtional program is `exeuted' by evaluating an expression.

� The expression is represented by a graph.

� Evaluation takes plae by arrying out a sequene of redutions.

� A redution replaes (or updates) a reduible expression in the graph by its redued form.

The term `reduible expression' is often abbreviated to `redex'.

� Evaluation is omplete when there are no more redexes; we say that the expression is in

normal form.

� At any time there may be more than one redex in the expression being evaluated, so there

is a hoie about whih one to redue next. Fortunately, whatever redution sequene we

hoose, we will always get the same answer (that is, normal form). There is one aveat:

some redution sequenes may fail to terminate.

� However, if any hoie of redexes makes evaluation terminate, then the poliy of always

seleting the outermost redex will also do so. This hoie of redution order is alled

normal order redution, and it is the one we will always use.
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Thus the proess of evaluation an be desribed as follows:

until there are no more redexes

selet the outermost redex

redue it

update the (root of the) redex with the result

end

2.1.1 An example

As an example, onsider the following Core-language program:

square x = x * x ;

main = square (square 3)

The program onsists of a set of de�nitions, alled superombinators; square and main are both

superombinators. By onvention, the expression to be evaluated is the superombinator main.

Hene, to begin with the expression to be evaluated is represented by the following rather trivial

tree (remember that a tree is just a speial sort of graph):

main

Now, sine main has no arguments, it itself is a redex, so we replae it by its body:

main redues to �

/ \

square �

/ \

square 3

Appliations are represented by � signs in these pitures and all subsequent ones.

Now the outermost redex is the outer appliation of square. To redue a funtion appliation

we replae the redex with an instane of the body of the funtion, substituting a pointer to the

argument for eah ourrene of the formal parameter, thus:

�! redues to �!

/ \ / \

square � � \

/ \ / \___�

square 3 * / \

square 3

The root of the redex, whih is overwritten with the result, is marked with a !. Notie that the

inner square 3 redex has beome shared, so that the tree has beome a graph.

In the de�nition of square the expression x*x (in whih the * is written in�x) is just short for

((* x) x), the appliation of * to two arguments. We use urrying to write funtions of several
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arguments in terms of one-argument appliations: * is a funtion whih, when applied to an

argument p, gives a funtion whih, when applied to another argument q, returns the produt

of p and q.

Now the only redex is the inner appliation of square to 3. The appliation of * is not reduible

beause * requires its arguments to be evaluated. The inner appliation is redued like this:

� redues to �

/ \ / \

� \ � \

/ \___�! / \___�

* / \ * / \

square 3 � \

/ \___3

*

There is still only one redex, the inner multipliation. We replae the redex with the result of

the multipliation, 9:

� redues to �

/ \ / \

� \ � \

/ \___�! / \___9

* / \ *

� \

/ \___3

*

Notie that by physially updating the root of the redex with the result, both arguments of the

outer multipliation `see' the result of the inner multipliation. The �nal redution is simple:

� redues to 81

/ \

� \

/ \___9

*

2.1.2 The three steps

As we saw earlier, graph redution onsists of repeating the following three steps until a normal

form is reahed:

1. Find the next redex.

2. Redue it.

3. Update the (root of the) redex with the result.
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As an be seen from the example in the previous setion, there are two sorts of redex, whih are

redued in di�erent ways:

Superombinators. If the outermost funtion appliation is a superombinator appliation,

then it is ertainly also a redex, and it an be redued as desribed below (Setion 2.1.4).

Built-in primitives. If the outermost funtion appliation is the appliation of a built-in prim-

itive, then the appliation may or may not be a redex, depending on whether the arguments

are evaluated. If not, then the arguments must be evaluated. This is done using exatly

the same proess: repeatedly �nd the outermost redex of the argument and redue it.

One this is done, we an return to the redution of the outer appliation.

2.1.3 Unwinding the spine to �nd the next redex

The �rst step of the redution yle is to �nd the site of the next redution to be performed;

that is, the outermost reduible funtion appliation. It is easy to �nd the outermost funtion

appliation (though it may not be reduible) as follows:

1. Follow the left branh of the appliation nodes, starting at the root, until you get to a

superombinator or built-in primitive. This left-branhing hain of appliation nodes is

alled the spine of the expression, and this proess is alled unwinding the spine. Typially

a stak is used to remember the addresses of the nodes enountered on the way down.

2. Now, hek how many arguments the superombinator or primitive takes and go bak up

that number of appliation nodes; you have now found the root of the outermost funtion

appliation.

For example, in the expression (f E1 E2 E3), where f takes two arguments, say, the outermost

funtion appliation is (f E1 E2). The expression and stak would look like this:

Stak

-----------

| ---|-------> �

------- / \

| ---|-----> �! E3

------- / \

| ---|---> � E2

------- / \

| ---|-> f E1

-------

The (root of the) outermost funtion appliation is marked with a !.

If the result of an evaluation ould be a partial appliation, as would be the ase if f took four

arguments instead of two, then step 2 above needs to be preeded by a hek there are enough

appliation nodes in the spine. If not, the expression has reahed weak head normal form

(WHNF). The sub-expressions E1, E2 and E3 might still ontain redexes, but most evaluators

will stop when they reah WHNF rather than trying to redue the sub-expressions also. If the
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program has been type-heked, and the result is guaranteed to be a number, say, or a list, then

this underow hek an be omitted.

Notie that we have only found the root of the outermost funtion appliation. It may or may

not be a redex as well. If the funtion is a superombinator, then it will ertainly be a redex,

but if it is a primitive, suh as +, then it depends on whether its arguments are evaluated. If

they are, we have found the outermost redex. If not, we have more work to do.

If a primitive requires the value of a urrently unevaluated argument, we must evaluate the

argument before the primitive redution an proeed. To do this, we must put the urrent stak

on one side, and begin with a new stak to redue the argument, in the same way as before.

This was the situation in the example of the previous setion when we reahed the stage

�

/ \

� \

/ \___�

* / \

square 3

We need to evaluate the argument (square 3) on a new stak. During this evaluation, we

might again enounter a primitive with an unevaluated argument, so we would need to start a

new evaluation again. We need to keep trak of all the `old' staks, so that we ome bak to

them in the right order. This is onveniently done by keeping a stak of staks, alled the dump.

When we need to evaluate an argument, we push the urrent stak onto the dump; when we

have �nished an evaluation we pop the old stak o� the dump.

Of ourse, in a real implementation we would not opy whole staks! Sine the `new' stak will

be �nished with before the `old' one is again required, the `new' one ould be built physially on

top of the `old' one. The dump stak would then just keep trak of where the boundary between

`new' and `old' was. Coneptually, though, the dump is a stak of staks, and we will model it

in this way.

2.1.4 Superombinator redexes

A superombinator redex is redued by substituting the arguments into its body. More preisely:

Superombinator redution. A superombinator redex is redued by replaing the

redex with an instane of the superombinator body, substituting pointers to the atual

arguments for orresponding ourrenes of the formal parameters. Notie that the

arguments are not opied; rather, by the devie of using pointers to them, they are

shared.

A superombinator body may ontain let and letre expressions. For example:

f x = let y = x*x

in y+y
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let and letre expressions are treated as textual desriptions of a graph. Here, for example, is

a possible use of the de�nition of f:

� redues to �

/ \ / \

f 3 � \

/ \___�y

+ / \

� \

/ \___3

*

The let expression de�nes a sub-expression x*x, whih is named y. The body of the let

expression, y+y, uses pointers to the sub-expression in plae of y. Thus ordinary expressions

desribe trees; let expressions desribe ayli graphs; and letre expressions desribe yli

graphs.

2.1.5 Updates

After performing a redution, we must update the root of the redex with the result, so that if

the redex is shared (as it was in the example (square (square 3))) the redution is only done

one. This updating is the essene of lazy evaluation. A redex may not be evaluated at all but,

if it is evaluated, the update ensures that the ost of doing so is inurred at most one.

Omitting the updates does not ause any errors; it will just mean that some expressions may be

evaluated more than one, whih is ineÆient.

There is one ase that requires a little are when performing updates. Consider the program

id x = x

f p = (id p) * p

main = f (sqrt 4)

After the f redution has taken plae, the graph looks like this:

�

/ \

� \

/ \ \

* � \

/ \___�

id / \

sqrt 4

We assume sqrt is a built-in primitive for taking square roots. Now, suppose that the next

redex seleted is the �rst argument of the *, namely the appliation of id. (It might equally

well be the seond argument of *, sine neither argument is in normal form, but we will suppose

48



it is the �rst.) What should we overwrite the root of the redex with after performing the id

redution? We should ertainly not overwrite it with a opy of the (sqrt 4) appliation node,

beause then (sqrt 4) would be evaluated twie!

The easiest way out of this dilemma is to add a new sort of graph node, an indiretion node,

whih will be depited as a # sign. An indiretion node an be used to update the root of a

redex to point to the result of the redution:

� redues to �

/ \ / \

� \ � \

/ \ \ / \ \

* � \ * # \

/ \___� \___�

id / \ / \

sqrt 4 sqrt 4

Setion 12.4 of [Peyton Jones 1987℄ ontains further disussion of the issues involved in updates.

2.1.6 Constant appliative formsy

Some superombinators have no arguments; they are alled onstant appliative forms, or CAFs.

For example, fa20 is a CAF:

fa20 = fatorial 20

The interesting thing about CAFs is that the superombinator itself is a redex. We do not want

to instantiate a new opy of fatorial 20 whenever fa20 is alled, beause that would mean

repeating the omputation of fatorial 20. Rather, the superombinator fa20 is the root of

the fa20-redution, and should be overwritten with the result of instantiating its body.

The pratial onsequene is that superombinators should be represented by graph nodes, in

order that they an be updated in the usual way. We will see this happening in pratie in eah

of our implementations.

This onludes our review of graph redution.

2.2 State transition systems

We now turn our attention to implementing graph redution. We will desribe eah of our

implementations using a state transition system. In this setion we introdue state transition

systems.

A state transition system is a notation for desribing the behaviour of a sequential mahine. At

any time, the mahine is in some state, beginning with a spei�ed initial state. If the mahine's

state mathes one of the state transition rules, the rule �res and spei�es a new state for the

mahine. When no state transition rule mathes, exeution halts. If more than one rule mathes,
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then one is hosen arbitrarily to �re; the mahine is then non-deterministi. All our mahines

will be deterministi.

Here is a simple example of a state transition system used to speify a (rather ineÆient)

multipliation mahine. The state is a quadruple (n;m; d ; t). The numbers to be multiplied are

n and m, and the running total is t , and the mahine is initialised to the state (n;m; 0; 0).

The operation of the mahine is spei�ed by two transition rules. The d omponent is repeatedly

deremented towards zero while simultaneously inrementing t , as spei�ed by the �rst rule:

n m d t

=) n m d � 1 t + 1

where d > 0

We always write transition rules with eah omponent of the new state diretly underneath the

same omponent of the old state, so that it is easy to see whih omponents have hanged.

When d reahes zero it is initialised again to n, and m is deremented, until m reahes zero.

This is spei�ed by the seond rule:

n m 0 t

=) n m � 1 n t

where m > 0

The mahine terminates when no rule applies. At this point it will be in a state (n; 0; 0; t),

where t is the produt of n and m from the initial state.

Exerise 2.1. Run the mahine by hand starting with initial state (2; 3; 0; 0), speifying whih rule �res

at eah step. Verify that the �nal state is (2; 0; 0; 6).

Exerise 2.2. An invariant of a sequene of states is a prediate whih is true of all of the states. Find

an invariant whih expresses the relationship between the initial value of n and m (all them N and

M ), and the urrent values of m, d and t . Hene prove the onjeture that the mahine performs

multipliation. To do the proof you need to show that

1. The invariant is true for the initial state.

2. If the invariant is true for a partiular state, then it is true for its suessor state.

3. Given the invariant and the termination ondition (m = d = 0), then t = N �M .

4. The mahine terminates.

State transition systems are onvenient for our purposes, beause:

� They are suÆiently abstrat that we do not get tangled up in very low-level details.

� They are suÆiently onrete that we an be sure we are not `heating' by hiding a lot of

omplexity in the rules.

� We an transliterate a state transition system diretly into Miranda to give an exeutable

implementation of the system.
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To illustrate the last point, we will transliterate the multipliation mahine into Miranda. We

begin by giving a type synonym to de�ne the type of a state in this mahine:

> type MultState = (Int, Int, Int, Int) -- (n, m, d, t)

Next, the funtion evalMult takes a state and returns the list onsisting of that state followed

by all the states whih follow it:

> evalMult :: MultState -> [MultState℄

> evalMult state = if multFinal state

> then [state℄

> else state : evalMult (stepMult state)

The funtion stepMult takes a non-�nal state and returns the next state. There is one equation

for stepMult for eah transition rule:

> stepMult (n, m, d, t) | d > 0 = (n, m, d-1, t+1)

> stepMult (n, m, d, t) | d == 0 = (n, m-1, n, t)

The funtion multFinal takes a state and tests whether the state is a �nal state:

> multFinal :: MultState -> Bool

Exerise 2.3. De�ne the funtion multFinal, and run the resulting mahine on the initial state (2; 3; 0; 0),

heking that the last state of the result list is (2; 0; 0; 6). You may �nd the standard funtion layn

is useful to help lay out the results more legibly.

2.3 Mark 1: A minimal template instantiation graph reduer

We are now ready to begin the de�nition of a rather simple graph reduer. Even though it is

simple, it ontains many of the parts that more sophistiated graph reduers have, so it takes a

few pages to explain.

2.3.1 Transition rules for graph redution

The state of the template instantiation graph redution mahine is a quadruple

(stak, dump, heap, globals)

or (s,d,h,f) for short.

� The stak is a stak of addresses, eah of whih identi�es a node in the heap. These nodes

form the spine of the expression being evaluated. The notation a

1

: s denotes a stak

whose top element is a

1

and the rest of whih is s.
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� The dump reords the state of the spine stak prior to the evaluation of an argument of a

strit primitive. The dump will not be used at all in the Mark 1 mahine, but it will be

useful for subsequent versions.

� The heap is a olletion of tagged nodes. The notation h[a : node℄ means that in the heap

h the address a refers to the node node.

� For eah superombinator (and later for eah primitive), globals gives the address of heap

node representing the superombinator (or primitive).

A heap node an take one of three forms (for our most primitive mahine):

� NAp a

1

a

2

represents the appliation of the node whose address is a

1

to that whose address

is a

2

.

� NSuperomb args body represents a superombinator with arguments args and body body .

� NNum n represents the number n.

There are only two state transition rules for this primitive template instantiation mahine. The

�rst one desribes how to unwind a single appliation node onto the spine stak:

(2.1)

a : s d h[a : NAp a

1

a

2

℄ f

=) a

1

: a : s d h f

(The heap omponent of the seond line of this rule still inludes the mapping of address a to

NAp a

1

a

2

, but we do not write it out again, to save lutter.) Repeated appliation of this rule

will unwind the entire spine of the expression onto the stak, until the node on top of the stak

is no longer a NAp node.

The seond rule desribes how to perform a superombinator redution.

(2.2)

a

0

: a

1

: : : : : a

n

: s d h[a

0

: NSuperomb [x

1

; : : : ; x

n

℄ body ℄ f

=) a

r

: s d h

0

f

where (h

0

; a

r

) = instantiate body h f [x

1

7! a

1

; : : : ; x

n

7! a

n

℄

Most of the interest in this rule is hidden inside the funtion instantiate. Its arguments are:

� the expression to instantiate,

� a heap,

� the global mapping of names to heap addresses, f , augmented by the mapping of argument

names to their addresses obtained from the stak.

It returns a new heap and the address of the (root of the) newly onstruted instane. Suh a

powerful operation is really at variane with the spirit of state transition systems, where eah

step is meant to be a simple atomi ation, but that is the nature of the template instantiation

mahine. The implementations of later hapters will all have truly atomi ations!
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Notie that the root of the redex is not itself a�eted by this rule; it is merely replaed on the

stak by the root of the result. In other words, these rules desribe a tree-redution mahine,

whih does not update the root of the redex, rather than a graph-redution mahine. We will

improve on this later in Setion 2.5.

2.3.2 Struture of the implementation

Now that we have a spei�ation of our mahine, we are ready to embark on its implementation.

Sine we are writing the implementation in a funtional language, we must write a funtion run,

say, to do the job. What should its type be? It should take a �lename, run the program therein,

and print out the results, whih might be either the �nal result or some kind of exeution trae.

So the type of run is given by the following type signature:

> runProg :: [Char℄ -> [Char℄ -- name hanged to not onflit

Now we an think about how run might be built up. Running a program onsists of four stages:

1. Parse the program from the expression found in a spei�ed �le. The parse funtion takes

a �lename and returns the parsed program.

> parse :: [Char℄ -> CoreProgram

2. Translate the program into a form suitable for exeution. The ompile funtion, whih

performs this task, takes a program and produes the initial state of the template instan-

tiation mahine:

> ompile :: CoreProgram -> TiState

tiState is the type of the state of the template instantiation mahine. (The pre�x `ti' is

short for template instantiation.)

3. Exeute the program, by performing repeated state transitions until a �nal state is reahed.

The result is a list of all the states passed through; from this we an subsequently either

extrat the �nal state, or get a trae of all the states. For the present we will restrit

ourselves to programs whih return a number as their result, so we all this exeution

funtion eval.

> eval :: TiState -> [TiState℄

4. Format the results for printing. This is done by the funtion showResults, whih selets

whih information to print, and formats it into a list of haraters.

> showResults :: [TiState℄ -> [Char℄

The funtion run is just the omposition of these four funtions:

> runProg = showResults . eval . ompile . parse -- "run": name onflit

We will devote a subsetion to eah of these phases.
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2.3.3 The parser

The soure language, inluding the parse funtion, is de�ned in a separate module language,

de�ned in Chapter 1. We make it available using the %inlude diretive to import the module:

> -- import Language

2.3.4 The ompiler

In this setion we de�ne the ompile funtion. We will need the data types and funtions

de�ned in the utils module, so we use %inlude to make it available.

> -- import Utils

Now we need to onsider the representation of the data types the ompiler manipulates.

Data types

The ompiler produes the initial state of the mahine, whih has type tiState, so the next

thing to do is to de�ne how mahine states are represented, using a type synonym:

> type TiState = (TiStak, TiDump, TiHeap, TiGlobals, TiStats)

The state of the mahine is a quintuple whose �rst four omponents orrespond exatly to those

given in Setion 2.3.1, and whose �fth omponent is used to aumulate statistis.

Next, we need to onsider the representation of eah of these omponents.

� The spine stak is just a stak of heap addresses:

> type TiStak = [Addr℄

We hoose to represent the stak as a list. The elements of the stak are members of the

abstrat data type addr de�ned in the utilsmodule (Appendix A.1). They represent heap

addresses, and by making them abstrat we ensure that we an only use the operations

provided on them by the utils module. Thus it is impossible for us to add one to an

address, say, by mistake.

� The dump is not required until Setion 2.6, but we make it part of the state already

beause adding it later would require many tiresome alterations to the state transition

rules. For now we give it a trivial type de�nition, onsisting of just a single onstrutor

with no arguments.

> data TiDump = DummyTiDump

> initialTiDump = DummyTiDump
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� The heap is represented by the heap abstrat data type de�ned in the utils module. We

have to say what the heap ontains, namely objets of type node (yet to be de�ned):

> type TiHeap = Heap Node

Heap nodes are represented by the following algebrai data type delaration, whih orre-

sponds to the list of possibilities given in Setion 2.3.1:

> data Node = NAp Addr Addr -- Appliation

> | NSuperomb Name [Name℄ CoreExpr -- Superombinator

> | NNum Int -- A number

The only di�erene is that we have added an extra �eld of type name to the NSuperomb

onstrutor, whih is used to hold the name of the superombinator. This is used only for

doumentation and debugging purposes.

� The globals omponent assoiates eah superombinator name with the address of a heap

node ontaining its de�nition:

> type TiGlobals = ASSOC Name Addr

The asso type is de�ned in the utils module, along with its operations (Appendix A.2).

It is atually de�ned there as a type synonym (not an abstrat data type) beause it is so

onvenient to be able to manipulate assoiations using the built-in syntax for lists. There

is a tension here between abstration and ease of programming.

� The tiStats omponent of the state is not mentioned in the transition rules, but we will

use it to ollet run-time performane statistis on what the mahine does. So that we

an easily hange what statistis are olleted, we will make it an abstrat type. To begin

with, we will reord only the number of steps taken:

> tiStatInitial :: TiStats

> tiStatInSteps :: TiStats -> TiStats

> tiStatGetSteps :: TiStats -> Int

The implementation is rather simple:

> type TiStats = Int

> tiStatInitial = 0

> tiStatInSteps s = s+1

> tiStatGetSteps s = s

A useful funtion applyToStats applies a given funtion to the statistis omponent of

the state:

> applyToStats :: (TiStats -> TiStats) -> TiState -> TiState

> applyToStats stats_fun (stak, dump, heap, s_defs, stats)

> = (stak, dump, heap, s_defs, stats_fun stats)

This ompletes our de�nition of the data types involved.
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The ompiler itself

The business of the ompiler is to take a program, and from it reate the initial state of the

mahine:

> ompile program

> = (initial_stak, initialTiDump, initial_heap, globals, tiStatInitial)

> where

> s_defs = program ++ preludeDefs ++ extraPreludeDefs

>

> (initial_heap, globals) = buildInitialHeap s_defs

>

> initial_stak = [address_of_main℄

> address_of_main = aLookup globals "main" (error "main is not defined")

Let us onsider eah of the de�nitions in the where lause in turn. The �rst, s_defs, is just a

list of all the superombinator de�nitions involved in the program. Reall that preludeDefs was

de�ned in Setion 1.4 to be the list of standard superombinator de�nitions whih are always

inluded in every program. extraPreludeDefs is a list of any further standard funtions we

may want to add; for the present it is empty:

> extraPreludeDefs = [℄

The seond de�nition uses an auxiliary funtion, buildInitialHeap, to onstrut an initial

heap ontaining an NSuperomb node for eah superombinator, together with an assoiation

list globals whih maps eah superombinator name onto the address of its node.

Lastly, initial_stak is de�ned to ontain just one item, the address of the node for the

superombinator main, obtained from globals.

Now we need to onsider the de�nition of buildInitialHeap, whih is a little triky. We need

to do something for eah element of the list s_defs, but what makes it awkward is that the

`something' involves heap alloation. Sine eah heap alloation produes a new heap, we need

to �nd a way of passing the heap along from one element of s_defs to the next. This proess

starts with the empty heap, hInitial (Appendix A.1).

We enapsulate this idea in a higher-order funtion mapAuml, whih we will use quite a lot in

this book. mapAuml takes three arguments: f , the `proessing funtion'; a, the `aumulator';

and a list [x

1

; : : : ; x

n

℄. It takes eah element of the input list, and applies f to it and the urrent

aumulator. f returns a pair of results, an element of the result list and a new value for the

aumulator. mapAuml passes the aumulator along from one all of f to the next, and

eventually returns a pair of results: a

0

, the �nal value of the aumulator; and the result

list [y

1

; : : : ; y

n

℄. Figure 2.1 illustrates this plumbing. The de�nition of mapAuml is given in

Appendix A.5.

In our ase, the `aumulator' is the heap, with initial value hInitial. The list [x

1

; : : : ; x

n

℄ is the

superombinator de�nitions, s_defs, while the result list [y

1

; : : : ; y

n

℄ is the assoiation of super-

ombinator names and addresses, s_addrs. Here, then, is the de�nition of buildInitialHeap.

> buildInitialHeap :: [CoreSDefn℄ -> (TiHeap, TiGlobals)
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> buildInitialHeap s_defs = mapAuml alloateS hInitial s_defs

The `proessing funtion', whih we will all alloateSC, alloates a single superombinator,

returning a new heap and a member of the s_addrs assoiation list.

> alloateS :: TiHeap -> CoreSDefn -> (TiHeap, (Name, Addr))

> alloateS heap (name, args, body)

> = (heap', (name, addr))

> where

> (heap', addr) = hAllo heap (NSuperomb name args body)

That ompletes the de�nition of the ompiler. Next, we turn our attention to the evaluator.

2.3.5 The evaluator

The evaluator eval takes an initial mahine state, and runs the mahine one step at a time,

returning the list of all states it has been through.

eval always returns the urrent state as the �rst element of its result. If the urrent state is

a �nal state, no further states are returned; otherwise, eval is applied reursively to the next

state. The latter is obtained by taking a single step (using step), and then alling doAdmin to

do any administrative work required between steps.

> eval state = state : rest_states

> where

> rest_states | tiFinal state = [℄

> | otherwise = eval next_state

> next_state = doAdmin (step state)

57



> doAdmin :: TiState -> TiState

> doAdmin state = applyToStats tiStatInSteps state

Testing for a �nal state

The funtion tiFinal detets the �nal state. We are only �nished if the stak ontains a single

objet, and it is either a number or a data objet.

> tiFinal :: TiState -> Bool

>

> tiFinal ([sole_addr℄, dump, heap, globals, stats)

> = isDataNode (hLookup heap sole_addr)

>

> tiFinal ([℄, dump, heap, globals, stats) = error "Empty stak!"

> tiFinal state = False -- Stak ontains more than one item

Notie that the stak element is an address, whih we need to look up in the heap before we

an hek whether it is a number or not. We should also produe a sensible error message if the

stak should be empty (whih should never happen).

Finally, we an de�ne isDataNode:

> isDataNode :: Node -> Bool

> isDataNode (NNum n) = True

> isDataNode node = False

Taking a step

The funtion step maps one state into its suessor:

> step :: TiState -> TiState

It has to do ase analysis on the node on top of the spine stak, so it extrats this node from

the heap, and uses dispath to all an appropriate funtion to do the hard work for eah form

of node.

> step state

> = dispath (hLookup heap (hd stak))

> where

> (stak, dump, heap, globals, stats) = state

>

> dispath (NNum n) = numStep state n

> dispath (NAp a1 a2) = apStep state a1 a2

> dispath (NSuperomb s args body) = sStep state s args body
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We an deal with the ases for numbers and appliations with very little trouble. It is an error

for there to be a number on top of the stak, sine a number should never be applied as a

funtion. (If it was the only objet on the stak, exeution will have been halted by tiFinal.)

> numStep :: TiState -> Int -> TiState

> numStep state n = error "Number applied as a funtion!"

Dealing with an appliation node is desribed by the unwind rule (Rule 2.1), whih an be

translated diretly into Miranda:

> apStep :: TiState -> Addr -> Addr -> TiState

> apStep (stak, dump, heap, globals, stats) a1 a2

> = (a1 : stak, dump, heap, globals, stats)

Applying a superombinator

To apply a superombinator, we must instantiate its body, binding the argument names to the

argument addresses found in the stak (Rule 2.2). Then we disard the arguments from the

stak, inluding the root of the redex, and push the (root of the) result of the redution onto the

stak instead. (Remember, in this �rst version of the mahine we are not performing updates.)

> sStep :: TiState -> Name -> [Name℄ -> CoreExpr -> TiState

> sStep (stak, dump, heap, globals, stats) s_name arg_names body

> = (new_stak, dump, new_heap, globals, stats)

> where

> new_stak = result_addr : (drop (length arg_names+1) stak)

>

> (new_heap, result_addr) = instantiate body heap env

> env = arg_bindings ++ globals

> arg_bindings = zip2 arg_names (getargs heap stak)

In order to apply superombinators and primitives, we need an auxiliary funtion. The funtion

getArgs takes a stak (whih must onsist of a superombinator on top of a stak of appliation

nodes), and returns a list formed from the argument of eah of the appliation nodes on the

stak.

> -- now getargs sine getArgs onflits with Gofer standard.prelude

> getargs :: TiHeap -> TiStak -> [Addr℄

> getargs heap (s:stak)

> = map get_arg stak

> where get_arg addr = arg where (NAp fun arg) = hLookup heap addr

The instantiate funtion takes an expression, a heap and an environment assoiating names

with addresses. It reates an instane of the expression in the heap, and returns the new heap

and address of the root of the instane. The environment is used by instantiate to speify the

addresses to be substituted for superombinators and loal variables.
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> instantiate :: CoreExpr -- Body of superombinator

> -> TiHeap -- Heap before instantiation

> -> ASSOC Name Addr -- Assoiation of names to addresses

> -> (TiHeap, Addr) -- Heap after instantiation, and

> -- address of root of instane

The ase for numbers is quite straightforward.

> instantiate (ENum n) heap env = hAllo heap (NNum n)

The ase for appliations is also simple; just instantiate the two branhes, and build the appli-

ation node. Notie how we `thread' the heap though the reursive alls to instantiate. That

is, the �rst all to instantiate is given a heap and produes a new heap; the latter is given to

the seond all to instantiate, whih produes yet another heap; the latter is the heap in whih

the new appliation node is alloated, produing a �nal heap whih is returned to the aller.

> instantiate (EAp e1 e2) heap env

> = hAllo heap2 (NAp a1 a2) where (heap1, a1) = instantiate e1 heap env

> (heap2, a2) = instantiate e2 heap1 env

For variables, we simply look up the name in the environment we are given, produing a suitable

error message if we do not �nd a binding for it.

> instantiate (EVar v) heap env

> = (heap, aLookup env v (error ("Undefined name " ++ show v)))

aLookup, whih is de�ned in Appendix A.2, looks up a variable in an assoiation list, but returns

its third argument if the lookup fails.

We postpone the question of instantiating onstrutors and let(re) expressions by alling

auxiliary funtions instantiateConstr and instantiateLet, whih eah give errors for the

present; later we will replae them with operational de�nitions. Lastly, the template mahine is

unable to handle ase expressions at all, as we will see.

> instantiate (EConstr tag arity) heap env

> = instantiateConstr tag arity heap env

> instantiate (ELet isre defs body) heap env

> = instantiateLet isre defs body heap env

> instantiate (ECase e alts) heap env = error "Can't instantiate ase exprs"

> instantiateConstr tag arity heap env

> = error "Can't instantiate onstrutors yet"

> instantiateLet isre defs body heap env

> = error "Can't instantiate let(re)s yet"
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2.3.6 Formatting the results

The output from eval is a list of states, whih are rather voluminous if printed in their entirety.

Furthermore, sine the heaps and staks are abstrat objets, Miranda will not print them at all.

So the showResults funtion formats the output for us, using the iseq data type introdued in

Setion 1.5.

> showResults states

> = iDisplay (iConat [ iLayn (map showState states),

> showStats (last states)

> ℄)

We display the state just by showing the ontents of the stak. It is too tiresome to print the

heap in its entirety after eah step, so we will ontent ourselves with printing the ontents of

nodes referred to diretly from the stak. The other omponents of the state do not hange, so

we will not print them either.

> showState :: TiState -> Iseq

> showState (stak, dump, heap, globals, stats)

> = iConat [ showStak heap stak, iNewline ℄

We display the stak, topmost element �rst, by displaying the address on the stak, and the

ontents of the node to whih it points. Most of these nodes are appliation nodes, and for eah

of these we also display the ontents of its argument node.

> showStak :: TiHeap -> TiStak -> Iseq

> showStak heap stak

> = iConat [

> iStr "Stk [",

> iIndent (iInterleave iNewline (map show_stak_item stak)),

> iStr " ℄"

> ℄

> where

> show_stak_item addr

> = iConat [ showFWAddr addr, iStr ": ",

> showStkNode heap (hLookup heap addr)

> ℄

> showStkNode :: TiHeap -> Node -> Iseq

> showStkNode heap (NAp fun_addr arg_addr)

> = iConat [ iStr "NAp ", showFWAddr fun_addr,

> iStr " ", showFWAddr arg_addr, iStr " (",

> showNode (hLookup heap arg_addr), iStr ")"

> ℄

> showStkNode heap node = showNode node
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showNode displays the value of a node. It prints only the name stored inside NSuperomb nodes,

rather than printing the omplete value; indeed this is the only reason the name is stored inside

these nodes.

> showNode :: Node -> Iseq

> showNode (NAp a1 a2) = iConat [ iStr "NAp ", showAddr a1,

> iStr " ", showAddr a2

> ℄

> showNode (NSuperomb name args body) = iStr ("NSuperomb " ++ name)

> showNode (NNum n) = (iStr "NNum ") `iAppend` (iNum n)

> showAddr :: Addr -> Iseq

> showAddr addr = iStr (show addr)

>

> showFWAddr :: Addr -> Iseq -- Show address in field of width 4

> showFWAddr addr = iStr (spae (4 - length str) ++ str)

> where

> str = show addr

showStats is responsible for printing out the aumulated statistis:

> showStats :: TiState -> Iseq

> showStats (stak, dump, heap, globals, stats)

> = iConat [ iNewline, iNewline, iStr "Total number of steps = ",

> iNum (tiStatGetSteps stats)

> ℄

Exerise 2.4. Test the implementation given so far. Here is a suitable test program:

main = S K K 3

The result should be the number 3. Invent a ouple more test programs and hek that they work.

Remember, we have not yet de�ned any arithmeti operations!

Exerise 2.5. Modify showState so that it prints out the entire ontents of the heap. (Hint: use

hAddresses to disover the addresses of all the nodes in the heap.) In this way you an see how

the heap evolves from one step to the next.

Exerise 2.6. sStep will fail if the superombinator or primitive is applied to too few arguments. Add

a suitable hek and error message to sStep to detet this ase.

Exerise 2.7. Modify your interpreter to ollet more exeution statistis. For example, you ould

aumulate:

� The number of redutions, perhaps split into superombinator redutions and primitive re-

dutions.

� The number of eah kind of heap operation, espeially alloations. The most onvenient way

to do this is to modify the heap abstrat data type to aumulate this information itself,

though this only works for heap operations whih return a new heap as part of the result.
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� The maximum stak depth.

Exerise 2.8. In the de�nition of sStep, the environment env whih is passed to instantiate is

de�ned as

env = arg_bindings ++ globals

What di�erene would it make if the arguments to ++ were reversed?

Exerise 2.9. (Slightly triky.) You might think that the following de�nition for eval would be more

obvious than the one given:

eval state = [state℄, tiFinal state

= state : eval next_state, otherwise

(where next_state is de�ned as before). Why is this an inferior de�nition? (Hint: think about

what would happen if all the states were being formatted by showResults, and some error ourred

when evaluating tiFinal state, suh as an attempt to aess a non-existent heap node. Would

the state whih aused the error be printed? If not, why not?)

2.4 Mark 2: let(re) expressions

Our �rst enhanement is to make the mahine apable of dealing with let and letre expres-

sions. As disussed in Setion 2.1.4, the bodies of superombinators may ontain let(re)

expressions, whih are regarded as textual desriptions of a graph.

It follows that the only hange we have to make to our implementation is to enhane instantiate,

so that it has an equation for the ELet onstrutor.

Exerise 2.10. Add an equation to instantiate for non-reursive let expressions. What you will need

to do to instantiate (ELet nonReursive defs body) is:

1. instantiate the right-hand side of eah of the de�nitions in defs;

2. augment the environment to bind the names in defs to the addresses of the newly onstruted

instanes;

3. all instantiate passing the augmented environment and the expression body.

This still only takes are of let expressions. The result of instantiating a letre expression is

a yli graph, whereas let expressions give rise to ayli graphs.

Exerise 2.11. Copy your equation for the non-reursive ELet of instantiate, and modify it to work

for the reursive ase (or modify your de�nition to deal with both).

(Hint: do everything exatly as in the let ase, exept that in Step 1 pass the augmented environ-

ment (onstruted in Step 2) to instantiate, instead of the existing environment.)

The hint in this exerise seems urious, beause it requires the name-to-address bindings pro-

dued in Step 2 to be used as an input to Step 1. If you try this in Miranda it all works perfetly

beause, as in any non-strit funtional language, the inputs to a funtion do not have to be

evaluated before the funtion is alled. In a real implementation we would have to do this trik

`by hand', by working out the addresses at whih eah of the (root) nodes in the letre will be
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alloated, augmenting the environment to reet this information, and then instantiating the

right-hand sides.

Here is a test program, to see if your implementation works:

pair x y f = f x y ;

fst p = p K ;

snd p = p K1 ;

f x y = letre

a = pair x b ;

b = pair y a

in

fst (snd (snd (snd a))) ;

main = f 3 4

The result should be 4. Can you �gure out how this program works? (All will be revealed in

Setion 2.8.3.)

Exerise 2.12. Consider the program

main = letre f = f x in f

What happens if you run this program? Could this problem ever arise in a strongly typed language

suh as Miranda?

2.5 Mark 3: Adding updating

So far our redution mahine does not perform any updates, so shared sub-expressions may be

evaluated many times. As explained in Setion 2.1.5 the easiest way to �x the problem is to

update the root of the redex with an indiretion node pointing to the result.

We an express this by modifying the state transition rule (2.2) for superombinator redexes:

(2.3)

a

0

: a

1

: : : : : a

n

: s d h[a

0

: NSuperomb [x

1

; : : : ; x

n

℄ body ℄ f

=) a

r

: s d h

0

[a

n

: NInd a

r

℄ f

where (h

0

; a

r

) = instantiate body h f [x

1

7! a

1

; : : : ; x

n

7! a

n

℄

The di�erene is that the heap h

0

returned by the instantiate funtion is further modi�ed by

overwriting the node a

n

(the root of the redex) with an indiretion to a

r

(the root of the result,

returned by instantiate). Notie that if the superombinator is a CAF (see Setion 2.1.6), then

n = 0 and the node to be modi�ed is the superombinator node itself.

One further modi�ation is required. Sine we may now enounter indiretions during unwinding

the spine, we need to add a new rule to ope with this ase:

(2.4)

a : s d h[a : NInd a

1

℄ f

=) a

1

: s d h f
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The address of the indiretion node, a, is removed from the stak, just as if it had never been

there.

There are several things we need to do to implement these new rules:

� Add a new node onstrutor, NInd, to the node data type. This gives the following revised

de�nition:

> data Node = NAp Addr Addr -- Appliation

> | NSuperomb Name [Name℄ CoreExpr -- Superombinator

> | NNum Int -- Number

> | NInd Addr -- Indiretion

We need to add a new equation to showNode to take aount of this extra onstrutor.

� Modify sStep to use hUpdate to update the root of the redex with an indiretion to the

result (Rule 2.3).

� Add an equation to the de�nition of dispath to ope with indiretions (Rule 2.4).

Exerise 2.13. Make the modi�ations to perform updates with indiretion nodes. Try out the e�et

of your hanges by running the following program on both the Mark 1 and Mark 3 versions of your

redution mahine:

id x = x ;

main = twie twie id 3

(Reall that twie is de�ned in preludeDefs { Setion 1.4.) Try to �gure out what would happen

by reduing it by hand �rst. What happens if you de�ne main to be twie twie twie id 3?

2.5.1 Reduing the number of indiretions

Often we will be updating the root of the redex with an indiretion to a node newly reated by

instantiate (or, as we shall see, by a primitive). Under these irumstanes, rather than use

an indiretion, it would be safe to build the root node of the result diretly on top of the root

of the redex. Beause the root of the result is newly reated, no sharing an be lost by doing

this, and it saves building (and subsequently traversing) an extra indiretion node.

We an do this by de�ning a new instantiation funtion, instantiateAndUpdate, whih is just

like instantiate exept that it takes an extra argument, the address of the node to be updated

with the result, and it does not return the address of the resulting graph.

> instantiateAndUpdate

> :: CoreExpr -- Body of superombinator

> -> Addr -- Address of node to update

> -> TiHeap -- Heap before instantiation

> -> ASSOC Name Addr -- Assoiate parameters to addresses

> -> TiHeap -- Heap after instantiation

Here, for example, is the de�nition of instantiateAndUpdate in the ase when the expression

is an appliation:
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> instantiateAndUpdate (EAp e1 e2) upd_addr heap env

> = hUpdate heap2 upd_addr (NAp a1 a2)

> where

> (heap1, a1) = instantiate e1 heap env

> (heap2, a2) = instantiate e2 heap1 env

Notie that the reursive instantiations are still performed by the old instantiate; only the

root node needs to be updated.

Exerise 2.14. Complete the de�nition of instantiateAndUpdate. The following points need a little

are:

� When the expression to be instantiated is a simple variable, you will still need to use an

indiretion. Why?

� Think arefully about the reursive instantiations in the equations for let(re) expressions.

Modify sStep to all instantiateAndUpdate instead of instantiate, passing the root of the

redex as the address of the node to be updated. Remove the update ode from sStep itself.

Measure the e�et of this modi�ation on the number of redutions and the number of heap nodes

alloated.

2.6 Mark 4: Adding arithmeti

In this setion we will add arithmeti primitives. This will involve using the dump for the �rst

time.

2.6.1 Transition rules for arithmeti

First of all we develop the state transition rules for arithmeti. We begin with negation, beause

it is a simple unary operation. The rules for other arithmeti operations are similar. Here is a

plausible-looking rule when the argument is evaluated:

(2.5)

a : a

1

: [℄ d h

2

6

4

a : NPrim Neg

a

1

: NAp a b

b : NNum n

3

7

5

f

=) a

1

: [℄ d h[a

1

: NNum (�n)℄ f

Notie that the rule spei�es that the stak should ontain only the argument to the negation

operator, beause anything else would be a type error.

Suppose that the argument is not evaluated: what should happen then? We need to evaluate

the argument on a fresh stak (so that the evaluations do not get mixed up with eah other)

and, when this is omplete, restore the old stak and try again. We need a way to keep trak of

the old stak, so we introdue the dump for the �rst time. The dump is just a stak of staks.

The Neg rule to start an evaluation is like this:
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(2.6)

a : a

1

: [℄ d h

"

a : NPrim Neg

a

1

: NAp a b

#

f

=) b : [℄ (a : a

1

: [℄) : d h f

This rule is used only if the previous one (whih is a speial ase of this one, with the node at

address b being an NNum node) does not apply.

One the evaluation is omplete, we need a rule to restore the old stak:

(2.7)

a : [℄ s : d h[a : NNum n℄ f

=) s d h f

One the old stak has been restored, the negation primitive will be found on top of the stak

again, but this time the argument will be in normal form.

But we need to take are! The argument will indeed have been redued to normal form, but the

root node of the argument will have been updated, so it may now be an indiretion node. Hene,

the �rst rule for Neg will not see the NNum node diretly. (For example, onsider the expression

(negate (id 3)).)

The easiest way around this is to add an extra transition rule just before the rule whih unwinds

an appliation node (Rule 2.1). In the speial ase where the argument of the appliation is an

indiretion, the rule updates the appliation with a new one whose argument points past the

indiretion:

(2.8)
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In order to bring this rule into play, we need to modify Rule 2.6 so that it unwinds anew from

the root of the redex after the evaluation is ompleted:

(2.9)

a : a

1

: [℄ d h

"

a : NPrim Neg

a

1

: NAp a b

#

f

=) b : [℄ (a

1

: [℄) : d h f

This is rather tiresome; the implementations developed in subsequent hapters will do a better

job.

Exerise 2.15. Write the state transition rules for addition. (The other dyadi arithmeti operations

are pratially idential.)

2.6.2 Implementing arithmeti

To implement arithmeti we need to make a number of hanges. First, we need to rede�ne the

type tiDump to be a stak of staks, whose initial value is empty.

> type TiDump = [TiStak℄

> initialTiDump = [℄
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Next, we need to add a new kind of heap node: NPrim n p represents a primitive whose name

is n and whose value is p, where p is of type primitive. As in the ase of NSuperomb nodes,

the name is present in the NPrim node solely for debugging and doumentation reasons.

> data Node = NAp Addr Addr -- Appliation

> | NSuperomb Name [Name℄ CoreExpr -- Superombinator

> | NNum Int -- Number

> | NInd Addr -- Indiretion

> | NPrim Name Primitive -- Primitive

As usual, showNode needs to be augmented as well, to display NPrim nodes. The transition rules

given in the previous setion suggest that the data type primitive should be de�ned like this:

> data Primitive = Neg | Add | Sub | Mul | Div

with one onstrutor for eah desired primitive.

Now, just as we needed to alloate an NSuperomb node in the initial heap for eah superom-

binator, so we need to alloate an NPrim node in the initial heap for eah primitive. Then we

an add extra bindings to the globals omponent of the mahine state, whih map the name of

eah primitive to the address of its node, just as we did for superombinators. We an do this

easily by modifying the de�nition of buildInitialHeap, like this:

> buildInitialHeap :: [CoreSDefn℄ -> (TiHeap, TiGlobals)

> buildInitialHeap s_defs

> = (heap2, s_addrs ++ prim_addrs)

> where

> (heap1, s_addrs) = mapAuml alloateS hInitial s_defs

> (heap2, prim_addrs) = mapAuml alloatePrim heap1 primitives

We de�ne an assoiation list giving the mapping from variable names to primitives, thus:

> primitives :: ASSOC Name Primitive

> primitives = [ ("negate", Neg),

> ("+", Add), ("-", Sub),

> ("*", Mul), ("/", Div)

> ℄

To add further primitives, just add more onstrutors to the primitive type, and more elements

to the primitives assoiation list.

We an then de�ne alloatePrim, very muh as we de�ned alloateS:

> alloatePrim :: TiHeap -> (Name, Primitive) -> (TiHeap, (Name, Addr))

> alloatePrim heap (name, prim)

> = (heap', (name, addr))

> where

> (heap', addr) = hAllo heap (NPrim name prim)
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Next, we need to augment the dispath funtion in step to all primStep when it �nds a

NPrim node. primStep performs ase analysis on the primitive being used, and then alls one

of a family of auxiliary funtions, primNeg, primAdd and so on, whih atually perform the

operation. For the present we ontent ourselves with negation.

> primStep state Neg = primNeg state

primNeg needs to do the following:

� Use getArgs to extrat the address of the argument from the stak, and hLookup to get

the node pointed to by this address.

� Use the auxiliary funtion isDataNode to hek if the argument node is evaluated.

� If it is not evaluated, use Rule 2.9 to set up the new state ready to evaluate the argument.

This involves pushing the urrent stak on the dump, and making a new stak whose only

element is the argument to negate.

� If it is evaluated, use hUpdate to overwrite the root of the redex with an NNum node

ontaining the result, and return, having modi�ed the stak appropriately.

Next, we need to implement the new rules for unwinding and for numbers. The de�nition of

numStepmust be hanged to implement Rule 2.7. If the stak ontains just one item, the address

of an NNum node, and the dump is non-empty, numStep should pop the top element of the dump

and make it into the new stak. If these onditions do not apply, it should signal an error.

Similarly, the de�nition of apStep must be hanged to implement Rule 2.8. It an do this by

heking for an indiretion in the argument, and using hUpdate to update the heap if so.

Lastly, we need to make a hange to tiFinal. At present it halts exeution when the stak

ontains a single NNum; but it must now only do this if the dump is empty, otherwise the new

Rule 2.7 will never get a hane to exeute!

Exerise 2.16. Implement all these hanges to add negation, and test some programs involving negation.

For example,

main = negate 3

or

main = twie negate 3

You should also test the following program, to show that the handling of indiretions is working:

main = negate (I 3)

The obvious extension now is to implement addition, subtration and the other arithmeti

primitives. If we rush ahead blindly we will �nd that all these dyadi arithmeti primitives have

a rather stereotyped form; indeed they are idential exept for the fat that at one point we use

* or / rather than +.

To avoid this dupliation, we an instead de�ne a single generi funtion primArith and pass

to it the required operation as an argument, thus:
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> primStep state Add = primArith state (+)

> primStep state Sub = primArith state (-)

> primStep state Mul = primArith state (*)

> primStep state Div = primArith state (div)

> primArith :: TiState -> (Int -> Int -> Int) -> TiState

This is a simple example of the way in whih higher-order funtions an enable us to make

programs more modular.

Exerise 2.17. Implement primArith, and test your implementation.

2.7 Mark 5: Strutured data

In this setion we will add strutured data types to our redution mahine. It would be nie

to give an implementation for the ase expressions of our ore language, but it turns out that

it is rather hard to do so within the framework of a template instantiation mahine. (Our

later implementations will not have this problem.) Instead we will use a olletion of built-in

funtions, suh as if, asePair and aseList, whih allow us to manipulate ertain strutured

types. The template mahine will remain unable to handle general strutured objets.

Exerise 2.18. Why is it hard to introdue ase expressions into the template instantiation mahine?

(Hint: think about what instantiate would do with a ase expression.)

2.7.1 Building strutured data

Strutured data is built with the family of onstrutors Pak{t ; a} where t gives the tag of

the onstrutor, and a gives its arity (Setion 1.1.4), so we need a representation for these

onstrutor funtions in the graph. They are really a new form of primitive, so we an do

this by adding a new onstrutor PrimConstr to the primitive type. Now in the equa-

tion for instantiateConstr, we an instantiate an expression EConstr t a to the heap node

NPrim "Pak" (PrimConstr t a).

Next the question arises of how this primitive is implemented. We need to add a ase to primStep

to math the PrimConstr onstrutor, whih alls a new auxiliary funtion primConstr. This

should hek that it is given enough arguments, and if so build a strutured data objet in the

heap.

To do this we need to add a new onstrutor, NData, to the node type to represent strutured

data objets. The NData onstrutor ontains the tag of the objet, and its omponents.

> data Node = NAp Addr Addr -- Appliation

> | NSuperomb Name [Name℄ CoreExpr -- Superombinator

> | NNum Int -- Number

> | NInd Addr -- Indiretion

> | NPrim Name Primitive -- Primitive

> | NData Int [Addr℄ -- Tag, list of omponents
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We an now give the rule for NPrim (PrimConstr t n):

(2.10)
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So muh for building strutured objets. The next question is how to take them apart, whih

is expressed by ase expressions in the Core language. As already mentioned, it is hard to

implement ase expressions diretly, so we ontent ourselves with a few speial ases, beginning

with booleans.

2.7.2 Conditionals

The boolean type might be delared in Miranda like this:

boolean ::= False | True

There are two onstrutors, True and False. Eah has arity zero, and we arbitrarily assign a

tag of one to False and two to True. So we an give the following Core-language de�nitions:

False = Pak{1,0}

True = Pak{2,0}

Sine we annot have general ase expressions, it will suÆe to add a onditional primitive,

with the redution rules:

if Pak{2,0} t e = t

if Pak{1,0} t e = e

Operationally, if evaluates its �rst argument, whih it expets to be a data objet, examines its

tag, and selets either its seond or third argument depending on whether the tag is 2 (True)

or 1 (False) respetively.

Exerise 2.19. Write the state transition rules for the onditional primitive. You need three rules: two

to perform the redution if the boolean ondition is already evaluated; and one to start evaluation

if the ondition is not evaluated, by pushing the old stak on the dump, and pushing the address

of the ondition on the new empty stak (f. Rule 2.9). You should �nd that you need to use an

indiretion in the update for the �rst two rules.

One further rule is missing. What is it? (Hint: when evaluation of the ondition is omplete, how

does the onditional get re-tried?)

One you have if, you an give Core-language de�nitions for the other boolean operators in

terms of it and False and True. For example:

and x y = if x y False
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Exerise 2.20. Give Core-language de�nitions for or, xor and not. Add all of these Core-language

de�nitions to extraPreludeDefs.

Finally, we need some way of omparing numeri values, whih requires new primitives >, >=

and so on.

2.7.3 Implementing strutured data

Here is a list of the hanges required to the implementation to add strutured data objets,

onditionals and omparison operations.

� Add the NData onstrutor to the node data type. Extend showNode to display NData

nodes.

� Add PrimConstr, If, Greater, GreaterEq, Less, LessEq, Eq, NotEq to the primitive

type. For all exept the �rst, add suitable pairs to the primitives assoiation list, so that

the names of these primitives an be mapped to their values by instantiateVar.

� Add a de�nition for instantiateConstr (and instantiateAndUpdateConstr if nees-

sary).

� The isDataNode funtion should identify NData nodes as well as NNum nodes.

� The dispath ode in step needs an extra ase for NData nodes, alling a new auxiliary

funtion dataStep.

� De�ne dataStep; it is very similar to numStep.

� Extend primStep to ope with the new primitives PrimConstr, If, Greater and so on.

For PrimConstr and If it should all new auxiliary funtions primConstr and primIf.

The omparison primitives an almost, but not quite, use primArith. What we need is a

slight generalisation of primArith:

> primDyadi :: TiState -> (Node -> Node -> Node) -> TiState

whih takes a node-ombining funtion instead of a number-ombining one. It is simple

to de�ne primArith, and a similar funtion primComp for omparison primitives, in terms

of primDyadi; and to de�ne primDyadi by generalising the de�nition of primArith.

Exerise 2.21. Make all these hanges. Now, at last, we an write sensible reursive funtions, beause

we have a onditional to terminate the reursion. Try, for example, the fatorial funtion

fa n = if (n == 0) 1 (n * fa (n-1)) ;

main = fa 3

2.7.4 Pairs

The onstrutors for booleans both have arity zero. Next, we will add the data type of pairs,

whih might be delared in Miranda like this:
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pair * ** ::= MkPair * **

We an build pairs using the Pak{1,2} onstrutor:

MkPair = Pak{1,2}

How about taking them apart, still without using ase expressions? For example, onsider the

following Core-language program involving a ase expression:

f p = ase p of

<1> a b -> b*a*a end

Laking ase expressions, we an translate it instead as follows:

f p = asePair p f'

f' a b = b*a*a

Here, f' is an auxiliary funtion, and asePair is a built-in primitive de�ned like this:

asePair (Pak{1,2} a b) f = f a b

Operationally, asePair evaluates its �rst argument, whih it expets to yield a pair; it then

applies its seond argument to the two omponents of the pair. You an implement this by

adding yet another onstrutor PrimCasePair to the primitive type, and writing some more

ode to handle it.

We an, for example, de�ne fst and snd whih extrat the �rst and seond omponents of a

pair, with the following Core-language de�nitions:

fst p = asePair p K

snd p = asePair p K1

Exerise 2.22. Write the state transition rules for asePair. As usual, you will need two rules: one to

perform the redution if the �rst argument is evaluated, and one to start its evaluation if not.

Make the neessary hanges to implement pairs, as desribed above.

Test your implementation with the following program (and others of your own):

main = fst (snd (fst (MkPair (MkPair 1 (MkPair 2 3)) 4)))

2.7.5 Lists

Now that you have done pairs and booleans, lists should be easy. The list data type might be

de�ned in Miranda like this:

list * ::= Nil | Cons * (list *)
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We assign the tag 1 to Nil and 2 to Cons.

The only question is what exatly the aseList primitive, whih takes a list apart, should do.

We reall that the asePair has one `ontinuation', a funtion whih takes the omponents of

the pair as its arguments. if has two `ontinuations', and selets one or other depending on the

value of its �rst argument. So aseList is just a ombination of both these ideas:

aseList Pak{1,0} n  = n

aseList (Pak{2,2} x xs) n  =  x xs

It takes three arguments, and evaluates the �rst one. If it is an empty list (i.e. has a tag of 1

and no omponents) then aseList simply selets its seond argument n. Otherwise it must

be a list ell (i.e. a tag of 2 and two omponents), and aseList applies its third argument 

to these omponents.

For example, suppose we wanted to implement the length funtion, whih in Miranda would

be written

length [℄ = 0

length (x:xs) = 1 + length xs

With the aid of aseList we ould write length like this:

length xs = aseList xs 0 length'

length' x xs = 1 + length xs

Exerise 2.23. Write Core-language de�nitions for Cons, Nil, head and tail. To de�ne head and tail,

you will need to introdue a new primitive abort, whih is returned if you take the head or tail

of an empty list. abort an onveniently be implemented by alling Miranda's error primitive to

stop the program.

Exerise 2.24. Write the state transition rules for aseList, implement it and abort, and add de�ni-

tions to preludeDefs for Cons, Nil, head and tail.

Write some programs to test your implementation.

You should now be able to write a suitable ase primitive for any strutured data type you are

to think of.

Exerise 2.25. What is the main disadvantage of taking apart strutured data types with ase primi-

tives, rather than implementing full ase expressions?

2.7.6 Printing lists

So far we have been impliitly assuming that the result of the whole program is a number.

What would we have to do to allow a list of numbers to be the result? If this was the ase, after

evaluating main for a while, we would eventually expet to �nd the address of a list objet on

top of the stak. If it is an empty list, the program terminates. If it is a Cons ell, and its head

is not evaluated we need to begin a reursive evaluation of its head; if the head is evaluated we

need to print the head, and then repeat the whole exerise on the tail.
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As soon as we start to write state transition rules to desribe this, we have to deide how to

express the idea of `printing a number' in our state transition world. The neatest solution is

to add a new omponent to the state, alled the output, and model `printing a number' by

`appending a number to the output'. We will also add two new primitives, Print and Stop.

The Stop primitive is easy: it makes the stak empty. (tiFinal will be altered to stop the

mahine when it sees an empty stak, rather than giving an error, whih is what it does now.)

Stop expets the dump to be empty.

(2.11)
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The Print primitive evaluates its �rst argument to an integer, and attahes its value to the

output list; then it returns its seond argument as its result. It also expets the dump to be

empty. The �rst rule applies if the �rst argument is already evaluated:
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Print is a rather weird superombinator, beause it has a side-e�et on the output o. Print

must obviously be used with are! The seond rule applies if Print's �rst argument is not

evaluated: it starts an evaluation in the usual way.

(2.13)
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Now, we de�ne the following extra funtions in extraPreludeDefs:

printList xs = aseList xs stop printCons

printCons h t = print h (printList t)

where "print" is bound by primitives to the Print primitive, and "stop" is bound to Stop.

Finally, we modify the ompile funtion so that the stak initially ontains the address of the

expression (printList main). It should not take long to onvine yourself that this does the

right thing.

Exerise 2.26. Implement these hanges, and test your implementation by writing a program whih

returns a list of numbers.

2.8 Alternative implementationsy

These exerises explore some alternative implementations for things we have done.
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2.8.1 An alternative representation for primitives

Sine the only thing we ever do to a primitive is exeute it, we an play the following trik:

instead of making primitive be an enumeration type on whih we perform ase analysis, we

ould make it a funtion whih takes a tiState to a tiState, like this:

> Type Primitive = TiState -> TiState

The onstrutors Add, Sub and so on have vanished altogether. Now the `ase analysis' done by

primStep is rather easy: just apply the funtion! Here are the revised de�nitions for primStep

and primitives.

> primStep state prim = prim state

> primitives = [ ("negate", primNeg),

> ("+", primArith (+)), ("-", primArith (-)),

> ("*", primArith (*)), ("/", primArith (/))

> ℄

This has a diret ounterpart in real implementations: instead of storing a small integer tag in a

NPrim node to distinguish among primitives, we store a ode pointer, and jump to it to exeute

the primitive.

Exerise 2.27. Implement and test this hange.

2.8.2 An alternative representation of the dump

At present we have implemented the dump as a stak of staks, but in a real implementation

we would doubtless build the new stak diretly on top of the old one. The dump would then

ontain o�sets from the base of the spine stak, telling where one sub-stak ends and the next

begins.

We an model this diretly in our mahine with the following type delaration:

> type TiDump = Stak Num

Exerise 2.28. Implement and test this hange. You will need to modify the equations that deal with

beginning and ending an evaluation of an argument, and the de�nition of tiFinal.

2.8.3 An alternative representation for data values

There is another way to implement booleans whih is quite instrutive. The redution rules

given in Setion 2.7.2 for if simply selet one or other of the seond or third arguments. Now,

suppose that instead of representing a boolean value as a strutured data objet, we represented

it as a funtion, whih selets one or other of its arguments. That is, True and False are

rede�ned like this:
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True t f = t

False t f = f

Now boolean operators an be de�ned like this:

if = I

and b1 b2 t f = b1 (b2 t f) f

or b1 b2 t f = b1 t (b2 t f)

not b t f = b f t

These de�nitions an all be inluded in extraPreludeDefs. Now the only primitives required

are the arithmeti omparison operators! There is no need to de�ne a primitive if, or to add

NData to the node type.

We an apply exatly the same trik for pairs. A pair is represented as a funtion whih takes

a single argument and applies it to the two omponents of the pair:

pair a b f = f a b

asePair = I

fst p = p K

snd p = p K1

The same trik works for lists, but now we need two `extra' arguments, one to use if the list is

a Cons ell, and the other to use if it is empty:

ons a b n  =  a b

nil n  = n

aseList = I

Exerise 2.29. Implement booleans, pairs and lists in this way, and measure their performane. What

advantages and disadvantages an you see relative to the previous implementation?

2.9 Garbage olletiony

As exeution proeeds, more and more nodes will be alloated in the heap, so the Miranda data

struture representing the heap will beome larger and larger. Eventually, Miranda will run out

of spae. This omes as no surprise, beause it orresponds diretly to real implementations.

As nodes are alloated, the heap beomes larger and larger, and eventually �lls up. We need to

perform garbage olletion to free up some spae.

More spei�ally, we need to de�ne a funtion g, with type

whose result state behaves exatly like its input state, exept that it has a (hopefully) smaller

heap. This smaller heap ontains all the nodes whih are aessible from the other omponents

of the mahine state, diretly or indiretly. g makes the heap smaller by alling hFree on the

addresses of nodes whih are no longer required (see Appendix A.1 for a desription of hFree).

The doAdmin funtion an hek the heap size (using hSize) after eah step, and all the garbage

olletor if it is larger than some given size.
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2.9.1 Mark-san olletion

To begin with, we will develop a mark-san olletor. This works in three phases:

1. The �rst phase identi�es all the roots; that is, all the heap addresses ontained in the

mahine state. Where an suh addresses be lurking? We an easily �nd out by looking

at the types involved in the mahine state for ourrenes of addr. The answer is that

addresses an our in the stak, the dump and the globals. So we need the following

funtions:

> findStakRoots :: TiStak -> [Addr℄

> findDumpRoots :: TiDump -> [Addr℄

> findGlobalRoots :: TiGlobals -> [Addr℄

2. In the mark phase, eah node whose address is in the mahine state is marked. When a

node is marked, all its desendants are also marked, and so on reursively. The markFrom

funtion takes a heap and an address, and returns a new heap in whih all the nodes

aessible from the address have been marked.

> markFrom :: TiHeap -> Addr -> TiHeap

3. In the san phase, all the nodes in the heap (whether marked or not) are examined.

Unmarked nodes are freed, and marked nodes are unmarked.

> sanHeap :: TiHeap -> TiHeap

Exerise 2.30. Write a de�nition for g in terms of findRoots, markFrom and sanHeap, and all it

appropriately from doAdmin.

Exerise 2.31. Write a de�nition for findRoots.

Before we an implement markFrom and sanHeap we need to have a way to mark a node. In a

real implementation this is done by using a bit in the node to indiate whether or not the node

is marked. We will model this by adding a new onstrutor, the node type, as follows:

> data Node = NAp Addr Addr -- Appliation

> | NSuperomb Name [Name℄ CoreExpr -- Superombinator

> | NNum Int -- Number

> | NInd Addr -- Indiretion

> | NPrim Name Primitive -- Primitive

> | NData Int [Addr℄ -- Tag, list of omponents

> | NMarked Node -- Marked node

The new kind of node is an NMarked node, and it ontains inside it the node whih was there

before the marking happened. The node inside an NMarked node is never another NMarked node.

Now we are ready to de�ne markFrom. Given an address a and a heap h, it does the following:
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Figure 2.2: Eliminating indiretions during garbage olletion

1. It looks up a in h, giving a node n. If it is already marked, markFrom returns immediately.

This is what prevents the marking proess from going on forever when it enounters a

yli struture in the heap.

2. It marks the node by using hUpdate to replae it with NMarked n.

3. It extrats any addresses from inside n (there may be zero or more suh addresses), and

alls markFrom on eah of them.

All that remains is sanHeap. It uses hAddresses to extrat the list of all the addresses used

in the heap, and examines eah in turn. If the node to whih it refers is unmarked (that is, not

an NMarked node), it alls hFree to free the node. Otherwise, it unmarks the node by using

hUpdate to replae it with the node found inside the NMarked onstrutor.

Exerise 2.32. Write de�nitions for markFrom and sanHeap.

That ompletes the mark-san garbage olletor.

Mark-san is not the only way to perform garbage olletion, and we now suggest some diretions

for further exploration. A brief survey of garbage-olletion tehniques an be found in Chapter

17 of [Peyton Jones 1987℄; a more omprehensive review is [Cohen 1981℄.

2.9.2 Eliminating indiretions

We begin with an optimisation to the olletor we have just developed. During evaluation we

may introdue indiretion nodes, and it would be nie to eliminate them, by readjusting pointers
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as suggested in Figure 2.2. To do this, we need to hange the funtionality of markFrom a bit.

It should now take an address and a heap, mark all the nodes aessible from the address, and

return a new heap together with a new address whih should be used instead of the old one.

> markFrom :: TiHeap -> Addr -> (TiHeap, Addr)

In the piture, alling markFrom with the address of node (a) should mark node () (but not

node (b)), and return the address of node ().

How do we make use of the address returned by markFrom? It must be inserted in plae of

the address with whih markFrom was alled. The easiest way to do this is to merge the �rst

two phases, so that as eah root is identi�ed in the mahine state, markFrom is alled, and

the returned address is used to replae the original root in the mahine state. So we replae

findStakRoots and its ompanions with:

> markFromStak :: TiHeap -> TiStak -> (TiHeap,TiStak)

> markFromDump :: TiHeap -> TiDump -> (TiHeap,TiDump)

> markFromGlobals :: TiHeap -> TiGlobals -> (TiHeap,TiGlobals)

Exerise 2.33. Implement the revised version of markFrom, making it `skip over' indiretions without

marking them, and update the addresses inside eah node as it alls itself reursively. Then

implement the other marking funtions in terms of markFrom, and glue them together with a new

version of g. Measure the improvement, by omparing the heap sizes obtained with this new

olletor to the ones you obtained before. (You an easily revert to the one before by removing the

speial handling of NInd from markFrom.)

2.9.3 Pointer reversal

If all the N nodes in the heap happened to be linked together into a single long list, then

markFrom would all itself reursively N times. In a real implementation this would build up

a stak whih is as deep as the heap is large. It is very tiresome to have to alloate a stak as

large as the heap to aount for a very unlikely situation!

There is a neat trik alled pointer reversal, whih an eliminate the stak by linking together

the very nodes whih are being marked [Shorr and Waite 1967℄. The only extra requirement

plaed by the algorithm is that marked nodes need a few extra bits of state information. We

an express this by expanding the NMarked onstrutor somewhat:

> data Node = NAp Addr Addr -- Appliation

> | NSuperomb Name [Name℄ CoreExpr -- Superombinator

> | NNum Int -- Number

> | NInd Addr -- Indiretion

> | NPrim Name Primitive -- Primitive

> | NData Int [Addr℄ -- Tag, list of omponents

> | NMarked MarkState Node -- Marked node

> data markState = Done -- Marking on this node finished

> | Visits Int -- Node visited n times so far
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The meaning of the onstrutors for markState will be explained shortly.

We an desribe the pointer-reversal algorithm with the aid of another (quite separate) state

transition system. The state of the marking mahine has three omponents (f ; b; h), the forward

pointer, the bakward pointer and the heap. Eah all to markFrom initiates a new run of the

mahine. When markFrom is alled with address a and heap h

init

the mahine is started from

the state

(a; hNull; h

init

)

(hNull is a distinguished value of type addr whih does not address any objet in the heap, and

whih an be distinguished from ordinary addresses.) The mahine terminates when it is in a

state

(f ; hNull; h[f : NMarked Done n℄)

that is, when f points to a marked node, and b = hNull. (It is possible that the initial state is

also a �nal state, if the node pointed to by f is already marked.)

We begin the transition rules by desribing how the mahine handles unmarked nodes. NData

nodes will be ignored for the present. First, we deal with the ase of appliations. When we

enounter an unmarked appliation, we `go down' into its �rst sub-graph, reording the old

bak-pointer in the �rst �eld of the NAp node. The new forward-pointer addresses the �rst sub-

graph, and the new bak-pointer addresses the appliation node itself. The state information,

Visits 1, reords the fat that the bak-pointer is kept in the �rst �eld of the NAp node.

f b h[f : NAp a

1

a

2

℄

=) a

1

f h[f : NMarked (Visits 1) (NAp b a

2

)℄

This is illustrated in Figure 2.3(a) and (b). In this �gure the marks are abbreviated to `V1'

for `Visits 1', `V2' for `Visits 2' and `D' for `Done'. Notie the way that a hain of reversed

pointers builds up in the appliation nodes whih have been visited.

The next rule says that unmarked NPrim nodes should be marked as ompleted, using the

NMarked Done onstrutor (Figure 2.3()):

f b h[f : NPrim p℄

=) f b h[f : NMarked Done (NPrim p)℄

NSuperomb and NNum nodes are treated similarly, sine they do not ontain any further address-

es.

So muh for unmarked nodes. When the mahine �nds that f points to a marked node, it

inspets the node whih b points to. If it is hNull, the mahine terminates. Otherwise, it

must be a marked NAp node. Let us deal �rst with the ase where the state information is

(Visits 1), saying that the node has been visited one. We have therefore ompleted marking

the �rst sub-graph of the NAp node, and should now mark the seond, whih we do by making f

point to it, leaving b unhanged, moving the bak-pointer saved in the node (b

0

) from the �rst

�eld to the seond, and hanging the state information (Figure 2.3(d)):

f b h

"

f : NMarked Done n

b : NMarked (Visits 1) (NAp b

0

a

2

)

#

=) a

2

b h[b : NMarked (Visits 2) (NAp f b

0

)℄
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Figure 2.3: Marking a graph using pointer reversal

82



Some time later, the mahine will omplete marking the seond sub-graph, in whih ase it

an restore the node to its original form, and bak up the hain of bak-pointers one stage

(Figure 2.3(e)):

f b h

"

f : NMarked Done n

b : NMarked (Visits 2) (NAp a

1

b

0

)

#

=) b b

0

h[b : NMarked Done (NAp a

1

f )℄

Lastly, we deal with indiretions. They are skipped over by hanging f but not b. The heap is

left unhanged, so the indiretion itself is not marked. When garbage olletion is ompleted,

all indiretions will therefore be relaimed. As you an see, `shorting out' indiretions during

garbage olletion is very easy with this marking algorithm.

f b h[f : NInd a℄

=) a b h

That ompletes the state transitions for the pointer-reversal algorithm.

Exerise 2.34. Add rules for the NData node.

Exerise 2.35. Implement the algorithm. The main hanges required are to the node type and to

the markFrom funtion. san needs to hange in a trivial way, beause the format of NMarked

onstrutors has hanged.

2.9.4 Two-spae garbage olletion

Another very popular way of performing garbage olletion is to opy all the live data from one

heap to another, the so-alled two-spae olletor invented by [Fenihel and Yohelson 1969℄ (see

also [Baker 1978, Cheney 1970℄). The olletor works in two stages:

1. All the nodes pointed to by the mahine state (stak, dump, et.) are evauated from the

old heap (alled from-spae) into the initially empty new heap (alled to-spae). A node is

evauated by alloating a opy of it in to-spae, and overwriting the from-spae opy with

a forwarding pointer ontaining the to-spae address of the new node. Like markFrom, the

evauation routine returns the to-spae address of the new node, whih is used to replae

the old address in the mahine state.

2. Then all the nodes in to-spae are sanned linearly, starting at the �rst, and eah is

savenged. A node n is savenged by evauating any nodes to whih it points, replaing

their addresses in n with their new to-spae addresses. Sanning stops when the sanning

pointer athes up with the alloation pointer.

To implement this, we have to add yet another variant of the node type, this time with an

NForward onstrutor, whih ontains a single adddress (the to-spae address). (NMarked is not

needed for this olletor.) Instead of markFromStak we need evauateStak with type:

> evauateStak :: TiHeap -> TiHeap -> TiStak -> (TiHeap, TiStak)
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The all (evauateStak fromheap toheap stk) evauates all the nodes in fromheap referred to

from stk into toheap, returning the new toheap and the new stk . Similar funtions are required

for the dump and globals.

Lastly, we need a funtion

> savengeHeap :: TiHeap -> TiHeap -> TiHeap

where the all (savengeHeap fromheap toheap) savenges nodes in toheap, evauating when

neessary nodes from fromheap into toheap.

Exerise 2.36. Implement this garbage olletor.
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> module GM where

> import Language

> import Utils
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Chapter 3

The G-mahine

In this hapter we introdue our �rst ompiler-based implementation, the G-mahine, whih

was developed at the Chalmers Institute of Tehnology, G�oteborg, Sweden, by Augustsson and

Johnsson. The material in this hapter is based on their series of papers [Augustsson 1984,

Johnsson 1984℄ ulminating in their Ph.D. theses [Augustsson 1987, Johnsson 1987℄.

3.1 Introdution to the G-mahine

The fundamental operation of the template instantiation mahine was to onstrut an instane

of a superombinator body, implemented by the instantiate funtion. This is a rather slow op-

eration, beause instantiate must reursively traverse the template eah time an instantiation

is performed. When we think of the mahine instrutions that are exeuted by instantiate,

we see that they will be of two kinds: those onerned with traversing the template, and those

onerned with atually onstruting the instane.

The `Big Idea' of the G-mahine, and other ompiled implementations, is this:

Before running the program, translate eah superombinator body to a sequene of

instrutions whih, when exeuted, will onstrut an instane of the superombinator

body.

Exeuting this ode should be faster than alling an instantiation funtion, beause all the

instrutions are onerned with onstruting the instane. There are no instrutions required to

traverse the template, beause all that has been done during the translation proess. Running

a program is thereby split into two stages. In the �rst stage a ompiler is used to produe some

intermediate form of the program; this is referred to as ompile-time. In the seond stage the

intermediate form is exeuted; this is alled run-time.

Sine all we ever do to a superombinator is to instantiate it, we an disard the original

superombinators one the translation is done, keeping only the ompiled ode.

In priniple, then, we use a G-mahine ompiler to turn a program in our soure language into

a sequene of mahine language instrutions. Beause we may wish to implement our language

on many di�erent piees of hardware (68000 based, or VAX, et.) it is useful to have an abstrat
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mahine. A good abstrat mahine has two properties: �rstly, it an be easily translated into

any onrete mahine ode (for example 68000 assembler); seondly, it is easy to generate the

abstrat mahine ode from the soure.

Notie that we are faed with a trade-o� here. We an ideally satisfy the �rst property (easy

onrete ode generation) by making the abstrat mahine the same as the real mahine. But

this makes the seond property muh harder to ful�l. An abstrat mahine is therefore a

stepping-stone between the soure language and a partiular mahine ode.

3.1.1 An example

Here is a small example of the G-mahine ompiler in ation. Consider the funtion

f g x = K (g x)

This would be ompiled to the sequene of G-ode instrutions:

Push 1

Push 1

Mkap

Pushglobal K

Mkap

Slide 3

Unwind

In Figure 3.1, we show how this ode will exeute. On the left-hand side of eah diagram is the

stak, whih grows downwards. The remainder of eah diagram is the heap. The appliation

nodes are represented by an � harater, expressions are labelled with lower-ase letters, and

superombinators are labelled with upper-ase letters.

In Figure 3.1, diagram (a), we see the state of the mahine before exeuting the sequene of

instrutions for f. The spine has been unwound, just as it was in the template mahine. The

top two items on the stak are pointers to the appliation nodes, whose right-hand parts are the

expressions to be bound for g and x.

The Push instrution uses addressing relative to the top of the stak. Ignoring the pointer to

the superombinator node f, the �rst stak item is numbered 0, the next is numbered 1 and so

on. The next diagram (b) shows the hanged stak, after exeuting a Push 1 instrution. This

pushes a pointer to the expression x onto the stak, x being two stak items down the stak.

After another Push 1 we have a pointer to g on top of the stak; again this is two stak items

down the stak, beause the previous instrution pushed a new pointer onto the stak. The new

diagram is ().

Diagram (d) shows what happens when a Mkap instrution is exeuted. It takes two pointers

from the stak and makes an appliation node from them; leaving a pointer to the result on

the stak. In diagram (e) we exeute a Pushglobal K instrution, with the e�et of pushing a

pointer to the K superombinator. Another Mkap instrution ompletes the instantiation of the

body of f, as shown in diagram (f).
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Figure 3.1: Exeution of ode for the f superombinator

We an now replae the original expression, f g x, with the newly instantiated body: K (g x).

In the �rst version of the G-mahine { whih is not lazy { we simply slide the body down three

plaes on the stak, disarding the three pointers that were there. This is ahieved by using

a Slide 3 instrution, as shown in diagram (g). The �nal Unwind instrution will ause the

mahine to ontinue to evaluate.

This onludes a brief overview of the exeution of the G-mahine.

3.1.2 Further optimisations

A modest performane gain an be ahieved by eliminating the interpretive overhead of travers-

ing the template, as we have disussed. However, it turns out that ompilation also opens

the door to a whole host of short-uts and optimisations whih are simply not available to the

template instantiation mahine. For example, onsider the following de�nition:

f x = x + x

The template mahine would evaluate x twie; on the seond oasion it would of ourse �nd

that it was already evaluated. A ompiled implementation an spot at ompile-time that x will

already be evaluated, and omit the evaluation step.
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3.2 Code sequenes for building templates

We reall that the template instantiator operates in the following way:

� The mahine has terminated when the single item on top of the stak is a pointer to an

integer.

� If this is not the ase then we unwind any appliation nodes we ome aross until we reah

a superombinator node. We then instantiate a opy of the superombinator body, making

substitutions for its arguments.

At the heart of the Mark 1 template mahine are the two funtions sStep and instantiate,

whih are de�ned on pages 58 and 58. If we take a look at the de�nitions of sStep and

instantiate, we an give the following desription to the operation of instantiating a super-

ombinator:

1. Construt a loal environment of variable names to addresses in the heap.

2. Using this loal environment, make an instane of the superombinator body in the heap.

Variables are not opied; instead the orresponding address is used.

3. Remove the pointers to the appliation nodes and the superombinator node from the

stak.

4. Push the address of the newly reated instane of the superombinator onto the stak.

In the template instantiator, making an instane of a superombinator involves traversing the

tree struture of the expression whih is the body of the superombinator. Beause expressions

are de�ned reursively, the tree-traversal funtion instantiate is de�ned reursively. For ex-

ample, look at the de�nition of instantiate { on page 58 { for the ase of EAp e1 e2. First

we all instantiate for e1 and then for e2, holding on to the addresses of the graph for eah

sub-expression. Finally we ombine the two addresses by building an appliation node in the

graph.

We would like to ompile a linear sequene of instrutions to perform the operation of instanti-

ating an expression.

3.2.1 Post�x evaluation of arithmeti

The desire to onstrut a linear sequene of instrutions to instantiate an expression is reminis-

ent of the post�x evaluation of arithmeti expressions. We explore this analogy further before

returning to the G-mahine.

The language of arithmeti expressions onsists of: numbers, addition and multipliation. We

an represent this language as the type aExpr.

> data AExpr = Num Int

> | Plus AExpr AExpr

> | Mult AExpr AExpr
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It is intended that the language should have an `obvious' meaning; we an give this using the

funtion aInterpret.

> aInterpret :: AExpr -> Int

> aInterpret (Num n) = n

> aInterpret (Plus e1 e2) = aInterpret e1 + aInterpret e2

> aInterpret (Mult e1 e2) = aInterpret e1 * aInterpret e2

Alternatively, we an ompile the expression into a post�x sequene of operators (or instru-

tions). To evaluate the expression we use the ompiled operators and a stak of values. For

example, the arithmeti expression 2 + 3� 4 would be represented as the sequene

[INum 2; INum 3; INum 4; IMult; IPlus℄

We an give the instrutions for our post�x mahine as the type aInstrution.

> data AInstrution = INum Int

> | IPlus

> | IMult

The state of the evaluator is a pair, whih is a sequene of operators and a stak of numbers.

The meaning of a ode sequene is then given in the following transition rules.

(3.1)

[℄ [n℄

=) n

(3.2)

INum n : i ns

=) i n : ns

(3.3)

IPlus : i n

0

: n

1

: ns

=) i (n

1

+ n

0

) : ns

(3.4)

IMult : i n

0

: n

1

: ns

=) i (n

1

� n

0

) : ns

Translating these transition rules into Miranda gives:

> aEval :: ([AInstrution℄, [Int℄) -> Int

> aEval ([℄, [n℄) = n

> aEval (INum n:is, s) = aEval (is, n: s)

> aEval (IPlus: is, n0:n1:s) = aEval (is, n1+n0:s)

> aEval (IMult: is, n0:n1:s) = aEval (is, n1*n0:s)

To generate the sequene of post�x ode for an expression we must de�ne a ompiler. This takes

an expression and delivers a sequene of instrutions, whih when exeuted will ompute the

value of the expression.
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> aCompile :: AExpr -> [AInstrution℄

> aCompile (Num n) = [INum n℄

> aCompile (Plus e1 e2) = aCompile e1 ++ aCompile e2 ++ [IPlus℄

> aCompile (Mult e1 e2) = aCompile e1 ++ aCompile e2 ++ [IMult℄

The key idea from this is given by the type of the aCompile funtion. It returns a list of

instrutions.

The post�x representation of expressions is a way of attening or linearising an ex-

pression tree, so that the expression an be represented by a at sequene of operators.

Exerise 3.1. Using strutural indution, or otherwise, prove that the post�x evaluation of arithmeti

expressions results in the same answer as the tree evaluation of expressions. That is: prove that

for all expressions e of type aExpr,

aInterpret e = aEval (aCompile e; [℄)

This is an example of a ongruene proof.

Exerise 3.2. Extend the funtions aInterpret, aCompile and aEval to handle let expressions. Prove

that for all expressions in e of type aExpr, these new funtions satisfy the relation:

aInterpret e = aEval (aCompile e; [℄)

Can you extend the language to even more ompliated expressions, e.g. letre expressions? Can

you prove that you have orretly implemented these extensions?

3.2.2 Using post�x ode to onstrut graphs

We an use the same tehnique to reate an instane of a superombinator body. In this ase

the `values' on the stak will be addresses of parts of the expression being instantiated.

The operations of the template onstrution instrutions will be di�erent from those we saw in

the arithmeti example above, in that the instrutions generally have the side-e�et of alloating

nodes in the heap. As an example, onsider introduing an Mkap instrution. This instrution

makes an appliation node, in the heap, from the top two addresses on the stak. It leaves a

pointer to this new node on the stak upon ompletion.

There is no reason to invent a new evaluation stak of addresses, as our template instantiation

mahine already has suh a stak. However, there is an important point to remember if we do

make use of this stak:

The map of the stak loations orresponding to variable names will hange as we

pop and push objets from the stak. We must therefore keep trak of this when we

are ompiling expressions.

Our aess to items in the stak is relative to the top of the stak. So, if an item is added, the

o�set to reah that item is inreased by one; similarly, when an item is popped, the o�set is

dereased by one.
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Figure 3.2: The stak layout for the Mark 1 mahine

3.2.3 What happens after an instantiation has been made?

One the instantiation of the superombinator body has been made we must tidy up the stak,

and arrange the ontinuation of the evaluation proess. On ompleting the evaluation of the

post�x sequene for a superombinator with n arguments, the stak will have the following form:

� On top there will be the address in heap of the newly instantiated body, e.

� Next there are the n + 1 pointers. From these we an aess the arguments used in the

instantiation proess.

� The last of the n+1 pointers points to the root of the expression we have just instantiated.

This is shown in Figure 3.2.

We must replae the redex with the newly instantiated body, and pop o� n items from the stak,

using the Slide instrution. To �nd the next superombinator we must now start unwinding

again, using the Unwind instrution. By adding operations to do the tidying and unwinding to

the post�x operator sequene, we have transformed the template instantiator into our Mark 1

G-mahine.

The ode for the funtion f x1 ... xn = e is:

<ode to onstrut an instane of e>

Slide n+1

Unwind
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3.3 Mark 1: A minimal G-mahine

We now present the ode for a omplete G-mahine and its ompiler. It does not perform

updates (whih are introdued in Setion 3.4) or arithmeti (whih is introdued in Setion 3.6).

3.3.1 Overall struture

At the top level the G-mahine is very similar to the template instantiator; as usual the whole

system is knitted together with a run funtion.

> -- The funtion run is already defined in gofers standard.prelude

> runProg :: [Char℄ -> [Char℄

> runProg = showResults . eval . ompile . parse

The parser data strutures and funtions are inluded beause we will need aess to them.

> -- :a language.lhs -- parser data types

3.3.2 Data type de�nitions

Fundamental to graph redution implementation tehniques is the graph. We use the heap data

type, amongst others, from the utilities provided in Appendix A.

> -- :a util.lhs -- heap data type and other library funtions

The Mark 1 G-mahine uses the �ve-tuple, gmState, as its state. A gmState holds all the

information that we need during the exeution of the ompiled program.

> type GmState

> = (GmCode, -- Current instrution stream

> GmStak, -- Current stak

> GmHeap, -- Heap of nodes

> GmGlobals, -- Global addresses in heap

> GmStats) -- Statistis

In desribing the G-mahine, we will make use of state aess funtions to aess the omponents

of a state. The advantage of this approah is that when we modify the state to aommodate

new omponents, we may reuse most of the original ode we have written. We will use the

pre�x get to denote an aess funtion that gets a omponent from a state, and the pre�x put

to replae a omponent in a state.

We onsider the type de�nitions of eah of the �ve omponents of the state, and their aess

funtions, in turn.

� The instrution stream is of type gmCode and is simply a list of instrutions.
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> type GmCode = [Instrution℄

To get onvenient aess to the ode, when the state is later augmented with extra om-

ponents, we de�ne two funtions: getCode and putCode.

> getCode :: GmState -> GmCode

> getCode (i, stak, heap, globals, stats) = i

> putCode :: GmCode -> GmState -> GmState

> putCode i' (i, stak, heap, globals, stats)

> = (i', stak, heap, globals, stats)

There are only six instrutions initially. We will desribe these in more detail in subse-

tion 3.3.3.

> data Instrution

> = Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

> | Slide Int

> instane Eq Instrution

> where

> Unwind == Unwind = True

> Pushglobal a == Pushglobal b = a == b

> Pushint a == Pushint b = a == b

> Push a == Push b = a == b

> Mkap == Mkap = True

> Slide a == Slide b = a == b

> _ == _ = False

� The G-mahine stak gmStak is a list of addresses in the heap.

> type GmStak = [Addr℄

To get onvenient aess to the stak, when the state is later augmented with extra om-

ponents, we de�ne two funtions getStak and putStak

> getStak :: GmState -> GmStak

> getStak (i, stak, heap, globals, stats) = stak

> putStak :: GmStak -> GmState -> GmState

> putStak stak' (i, stak, heap, globals, stats)

> = (i, stak', heap, globals, stats)
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� Just as we did in the ase of the template instantiator, we use the heap data struture

from utils to implement heaps.

> type GmHeap = Heap Node

Again, to aess this omponent of the state we de�ne aess funtions.

> getHeap :: GmState -> GmHeap

> getHeap (i, stak, heap, globals, stats) = heap

> putHeap :: GmHeap -> GmState -> GmState

> putHeap heap' (i, stak, heap, globals, stats)

> = (i, stak, heap', globals, stats)

In the minimal G-mahine there are only three types of nodes: numbers, NNum; appliations,

NAp; and globals, NGlobal.

> data Node

> = NNum Int -- Numbers

> | NAp Addr Addr -- Appliations

> | NGlobal Int GmCode -- Globals

Number nodes ontain the relevant number; appliation nodes apply the funtion at the

�rst address to the expression at the seond address. The NGlobal node ontains the

number of arguments that the global expets and the ode sequene to be exeuted when

the global has enough arguments. This replaes the NSuperomb nodes of the template

instantiator, whih held a template instead of the arity and ode.

� Beause we will later be making a lazy implementation it is important that there is only

one node for eah global. The address of a global an be determined by looking up its

value in the assoiation list gmGlobals. This orresponds to the tiGlobals omponent of

the template mahine.

> type GmGlobals = ASSOC Name Addr

The aess funtion we use is getGlobals; in the Mark 1 mahine, this omponent is

onstant so we do not need a orresponding put funtion.

> getGlobals :: GmState -> GmGlobals

> getGlobals (i, stak, heap, globals, stats) = globals

� The statistis omponent of the state is implemented as an abstrat data type.

> statInitial :: GmStats

> statInSteps :: GmStats -> GmStats

> statGetSteps :: GmStats -> Int

The implementation of gmStats is now given.
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> type GmStats = Int

> statInitial = 0

> statInSteps s = s+1

> statGetSteps s = s

To aess this omponent we de�ne getStats and putStats:

> getStats :: GmState -> GmStats

> getStats (i, stak, heap, globals, stats) = stats

> putStats :: GmStats -> GmState -> GmState

> putStats stats' (i, stak, heap, globals, stats)

> = (i, stak, heap, globals, stats')

3.3.3 The evaluator

The G-mahine evaluator, eval, is de�ned to produe a list of states. The �rst one is the one

onstruted by the ompiler. If there is a last state, then the result of the evaluation will be on

the top of the stak omponent of the last state.

> eval :: GmState -> [GmState℄

> eval state = state: restStates

> where

> restStates | gmFinal state = [℄

> | otherwise = eval nextState

> nextState = doAdmin (step state)

The funtion doAdmin uses statInSteps to modify the statistis omponent of the state.

> doAdmin :: GmState -> GmState

> doAdmin s = putStats (statInSteps (getStats s)) s

The important parts of the evaluator are the funtions gmFinal and step whih we will now

look at.

Testing for a �nal state

The G-mahine interpreter has �nished when the ode sequene that it is exeuting is empty.

We express this ondition in the gmFinal funtion.

> gmFinal :: GmState -> Bool

> gmFinal s = ase (getCode s) of

> [℄ -> True

> otherwise -> False
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Taking a step

The step funtion is de�ned so that it makes a state transition based on the instrution it is

exeuting.

> step :: GmState -> GmState

> step state = dispath i (putCode is state)

> where (i:is) = getCode state

We dispath on the urrent instrution i and replae the urrent ode sequene with the ode

sequene is; this orresponds to advaning the program ounter in a real mahine.

> dispath :: Instrution -> GmState -> GmState

> dispath (Pushglobal f) = pushglobal f

> dispath (Pushint n) = pushint n

> dispath Mkap = mkap

> dispath (Push n) = push n

> dispath (Slide n) = slide n

> dispath Unwind = unwind

As we an see, the dispath funtion simply selets a state transition to exeute.

Let us begin by looking at the transition rules for the post�x instrutions. There will be one for

eah syntati objet in instrution. We begin with the Pushglobal instrution, whih uses

the globals omponent of the state to �nd the unique NGlobal node in the heap that holds the

global f . If it annot �nd one, it prints a suitable error message.

(3.5)

Pushglobal f : i s h m[f : a℄

=) i a : s h m

We implement this rule using the pushglobal funtion.

> pushglobal :: Name -> GmState -> GmState

> pushglobal f state

> = putStak (a: getStak state) state

> where a = aLookup (getGlobals state) f (error ("Undelared global " ++ f))

The remaining transitions are for onstruting the body of a superombinator. The transition

for Pushint plaes an integer node into the heap.

(3.6)

Pushint n : i s h m

=) i a : s h[a : NNum n℄ m

The orresponding funtion is pushint. The number is plaed in the new heap heap' with

address a. We then plae the heap and stak bak into the state.
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> pushint :: Int -> GmState -> GmState

> pushint n state

> = putHeap heap' (putStak (a: getStak state) state)

> where (heap', a) = hAllo (getHeap state) (NNum n)

The Mkap instrution uses the two addresses on the top of the stak to onstrut an appliation

node in the heap. It has the following transition rule.

(3.7)

Mkap : i a

1

: a

2

: s h m

=) i a : s h[a : NAp a

1

a

2

℄ m

This transition beomes mkap. Again heap' and a are respetively the new heap and the address

of the new node.

> mkap :: GmState -> GmState

> mkap state

> = putHeap heap' (putStak (a:as') state)

> where (heap', a) = hAllo (getHeap state) (NAp a1 a2)

> (a1:a2:as') = getStak state

The Push instrution is used to take a opy of an argument whih was passed to a funtion. To

do this it has to `look through' the appliation node whih is pointed to from the stak. We

must also remember to skip over the superombinator node whih is on the stak.

(3.8)

Push n : i a

0

: : : : : a

n+1

: s h[a

n+1

: NAp a

n

a

0

n

℄ m

=) i a

0

n

: a

0

: : : : : a

n+1

: s h m

> push :: Int -> GmState -> GmState

> push n state

> = putStak (a:as) state

> where as = getStak state

> a = getArg (hLookup (getHeap state) (as !! (n+1)))

This uses the auxiliary funtion getArg to selet the required expression from an appliation

node.

> getArg :: Node -> Addr

> getArg (NAp a1 a2) = a2

Beause of the stak struture we have hanged the addressing mode of the Push

instrution from that used in [Peyton Jones 1987℄.

Next, the tidying up of the stak, whih ours after a superombinator has been instantiated

and before ontinuing unwinding, is performed by the Slide instrution.
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(3.9)

Slide n : i a

0

: : : : : a

n

: s h m

=) i a

0

: s h m

> slide :: Int -> GmState -> GmState

> slide n state

> = putStak (a: drop n as) state

> where (a:as) = getStak state

Unwind is the most omplex instrution beause it replaes the outer loop of our template

instantiator. The Unwind instrution is always the last instrution of a sequene, as we shall see

in the next setion. The newState onstruted depends on the item on top of the stak; this

depends on the transition rule that is �red, whih also depends on the item on top of the stak.

> unwind :: GmState -> GmState

> unwind state

> = newState (hLookup heap a)

> where

> (a:as) = getStak state

> heap = getHeap state

We �rst onsider the ase where there is a number on top of the stak. In this ase, we are

�nished; the G-mahine has terminated, and we plae [℄ in the ode omponent to signify this

fat.

(3.10)

[Unwind℄ a : s h[a : NNum n℄ m

=) [℄ a : s h m

> newState (NNum n) = state

If there is an appliation node on top of the stak then we must ontinue to unwind from the

next node.

(3.11)

[Unwind℄ a : s h[a : NAp a

1

a

2

℄ m

=) [Unwind℄ a

1

: a : s h m

> newState (NAp a1 a2) = putCode [Unwind℄ (putStak (a1:a:as) state)

The most ompliated rule ours when there is a global node on top of the stak. There

are two ases to onsider, depending on whether there are enough arguments to redue the

superombinator appliation.

Firstly, if there are not enough arguments to redue the superombinator appliation then the

program was ill-typed. We will ignore this ase for the Mark 1 G-mahine. Alternatively,

when there are enough arguments, it is possible to redue the superombinator, by `jumping

to' the ode for the superombinator. In the transition rule this is expressed by moving the

superombinator ode into the ode omponent of the mahine.
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SC[[d ℄℄ is the G-mahine ode for the superombinator de�nition d .

SC[[f x

1

: : : x

n

= e℄℄ = R[[e℄℄ [x

1

7! 0; : : : ; x

n

7! n � 1℄ n

R[[e℄℄ � d generates ode whih instantiates the expression e in environ-

ment �, for a superombinator of arity d , and then proeeds to unwind

the resulting stak.

R[[e℄℄ � d = C[[e℄℄ � ++ [Slide d + 1; Unwind℄

C[[e℄℄ � generates ode whih onstruts the graph of e in environment �,

leaving a pointer to it on top of the stak.

C[[f ℄℄ � = [Pushglobal f ℄ where f is a superombinator

C[[x ℄℄ � = [Push (� x )℄ where x is a loal variable

C[[i ℄℄ � = [Pushint i ℄

C[[e

0

e

1

℄℄ � = C[[e

1

℄℄ � ++ C[[e

0

℄℄ �

+1

++ [Mkap℄ where �

+n

x = (� x ) + n

Figure 3.3: The SC, R and C ompilation shemes

(3.12)

[Unwind℄ a

0

: : : : : a

n

: s h[a

0

: NGlobal n ℄ m

=)  a

0

: : : : : a

n

: s h m

> newState (NGlobal n )

> | length as < n = error "Unwinding with too few arguments"

> | otherwise = putCode  state

We have now seen how the instrutions are de�ned, but we have not seen how to generate the

post�x sequenes of operators, or instrution sequenes as we shall refer to them from now on.

This is the subjet of the next subsetion.

3.3.4 Compiling a program

We desribe the ompiler using a set of ompilation shemes. Eah superombinator de�nition

is ompiled using the ompilation sheme SC. The ompiled ode generated for eah superom-

binator is de�ned in Figure 3.3. Corresponding to the ompilation shemes SC, R and C are

ompiler funtions ompileS, ompileR and ompileC. We onsider eah of these in turn.

The ompile funtion turns a program into an initial state for the G-mahine. The initial ode

sequene �nds the global main and then evaluates it. The heap is initialised so that it ontains

a node for eah global delared. globals ontains the map from global names to the NGlobal

nodes provided for them.

> ompile :: CoreProgram -> GmState
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> ompile program

> = (initialCode, [℄, heap, globals, statInitial)

> where (heap, globals) = buildInitialHeap program

To onstrut the initial heap and to provide the map of the global nodes for eah global de�ned

we use buildInitialHeap. This is just as it was in the template mahine.

> buildInitialHeap :: CoreProgram -> (GmHeap, GmGlobals)

> buildInitialHeap program

> = mapAuml alloateS hInitial ompiled

> --where ompiled = map ompileS (preludeDefs ++ program) ++

> -- ompiledPrimitives

> where ompiled = map ompileS program

The buildInitialHeap funtion uses mapAuml to alloate nodes for eah ompiled global; the

ompilation ourring (where neessary) in ompiled, whih has type [gmCompiledSC℄.

> type GmCompiledSC = (Name, Int, GmCode)

The funtion alloateS alloates a new global for its ompiled superombinator argument,

returning the new heap and the address where the global is stored.

> alloateS :: GmHeap -> GmCompiledSC -> (GmHeap, (Name, Addr))

> alloateS heap (name, nargs, instns)

> = (heap', (name, addr))

> where (heap', addr) = hAllo heap (NGlobal nargs instns)

In the initial state, we want the mahine to evaluate the value of the program. We reall that

this is just the value of the global main.

> initialCode :: GmCode

> initialCode = [Pushglobal "main", Unwind℄

Eah superombinator is ompiled using ompileS, whih implements the SC sheme of Fig-

ure 3.3. It returns a triple ontaining the superombinator name, the number of arguments

the superombinator needs before it an be redued, and the ode sequene assoiated with the

superombinator.

> ompileS :: (Name, [Name℄, CoreExpr) -> GmCompiledSC

> ompileS (name, env, body)

> = (name, length env, ompileR body (zip2 env [0..℄))

This in turn uses ompileR, whih orresponds to the R sheme of Figure 3.3.

> ompileR :: GmCompiler

> ompileR e env = ompileC e env ++ [Slide (length env + 1), Unwind℄

> ompileR e env = ompileC e env ++ [Slide (length env + 1), Unwind℄
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Eah of the ompiler shemes has the same type: gmCompiler.

> type GmCompiler = CoreExpr -> GmEnvironment -> GmCode

We use the fat that we an represent the map � from the ompilation sheme as an assoiation

list. Not only an we look up the o�sets for a variable from this list, but we may also alulate

how many arguments there are on the stak. This is used in ompileR to �nd out how many

stak elements to squeeze out with a Slide instrution. The list has type gmEnvironment, whih

is de�ned as:

> type GmEnvironment = ASSOC Name Int

This onstruts the instantiation of the superombinator body using ompileC, whih orre-

sponds to the C sheme of Figure 3.3.

> ompileC :: GmCompiler

> ompileC (EVar v) env

> | elem v (aDomain env) = [Push n℄

> | otherwise = [Pushglobal v℄

> where n = aLookup env v (error "Can't happen")

> ompileC (ENum n) env = [Pushint n℄

> ompileC (EAp e1 e2) env = ompileC e2 env ++

> ompileC e1 (argOffset 1 env) ++

> [Mkap℄

We an hange the stak o�sets using the funtion argOffset. If env implements �, then

(argOffset n env) implements �

+n

.

> argOffset :: Int -> GmEnvironment -> GmEnvironment

> argOffset n env = [(v, n+m) | (v,m) <- env℄

An example ompilation

Let us look at the ompilation of the K ombinator. When ompiling this funtion, we will begin

by evaluating the following expression.

ompileS ("K", ["x", "y"℄, EVar "x")

The �rst element of the tuple is the name (K in this ase); the seond is the argument list (in

this ase we have two variables: x and y); and the third omponent of the tuple is the body of

the superombinator (whih for this example is just the variable x).

When we rewrite this expression, we get:

("K", 2, ompileR (EVar "x") [("x", 0), ("y", 1)℄)

102



The resulting triple onsists of the name (K), the number of arguments we need to redue the

superombinator (two in this ase), and the ode sequene to perform the instantiation. When

we rewrite this expression we will generate the ode sequene for this superombinator. Notie

that the environment is represented by the expression [("x", 0), ("y", 1)℄; this tells us that

when we instantiate the body, a pointer to x will be on top of the argument stak and a pointer

to y will be immediately below x on the stak.

("K", 2, ompileC (EVar "x") [("x", 0), ("y", 1)℄ ++ [Slide 3, Unwind℄)

The ompileR funtion is de�ned to ompile the body using ompileC, and to add a Slide and

an Unwind instrution at the end.

To ompile the body we look up x and �nd that it is on top of the stak. We generate ode to

make a opy of the top of the stak, using Push 0.

("K", 2, [Push 0, Slide 3, Unwind℄)

Exerise 3.3. Write out the equivalent sequene of transformations for the S ombinator from the

prelude de�nitions. Reall that S is de�ned as:

S f g x = f x (g x)

Chek the �nal result by running the ompiler and mahine with any of the simple programs given

in Appendix B. (S is in the standard prelude.)

Primitives

In this minimal G-mahine there are no primitives, so there is nothing to implement!

> ompiledPrimitives :: [GmCompiledSC℄

> ompiledPrimitives = [℄

3.3.5 Printing the results

Beause a number of the state omponents are abstrat data types (and are therefore not diretly

printable) we must de�ne a pretty-printer for the states that the mahine produes. It is also a

fat that the output is voluminous and not very informative if it is all displayed at one. The

printing is ontrolled by showResults. It produes three piees of output: the super-ombinator

ode sequenes, the state transitions and the �nal statistis.

> showResults :: [GmState℄ -> [Char℄

> showResults states

> = iDisplay (iConat [

> iStr "Superombinator definitions", iNewline,

> iInterleave iNewline (map (showSC s) (getGlobals s)),

> iNewline, iNewline, iStr "State transitions", iNewline, iNewline,

> iLayn (map showState states),
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> iNewline, iNewline,

> showStats (last states)℄)

> where (s:ss) = states

Taking eah of these in turn, we begin with showSC. This �nds the ode for the superombinator

in the unique global heap node assoiated with the global, and prints the ode sequene using

showInstrutions.

> showSC :: GmState -> (Name, Addr) -> Iseq

> showSC s (name, addr)

> = iConat [ iStr "Code for ", iStr name, iNewline,

> showInstrutions ode, iNewline, iNewline℄

> where (NGlobal arity ode) = (hLookup (getHeap s) addr)

Then showInstrutions is used to output a ode sequene.

> showInstrutions :: GmCode -> Iseq

> showInstrutions is

> = iConat [iStr " Code:{",

> iIndent (iInterleave iNewline (map showInstrution is)),

> iStr "}", iNewline℄

The output for eah individual instrution is given by showInstrution.

> showInstrution :: Instrution -> Iseq

> showInstrution Unwind = iStr "Unwind"

> showInstrution (Pushglobal f) = (iStr "Pushglobal ") `iAppend` (iStr f)

> showInstrution (Push n) = (iStr "Push ") `iAppend` (iNum n)

> showInstrution (Pushint n) = (iStr "Pushint ") `iAppend` (iNum n)

> showInstrution Mkap = iStr "Mkap"

> showInstrution (Slide n) = (iStr "Slide ") `iAppend` (iNum n)

The next major piee of output is the state transitions; these are individually dealt with using

showState.

> showState :: GmState -> Iseq

> showState s

> = iConat [showStak s, iNewline,

> showInstrutions (getCode s), iNewline℄

To orrespond with our diagrams, we would like to have the top of stak at the bottom of the

printed stak. To this end we reverse the stak.

> showStak :: GmState -> Iseq

> showStak s

> = iConat [iStr " Stak:[",

> iIndent (iInterleave iNewline

> (map (showStakItem s) (reverse (getStak s)))),

> iStr "℄"℄
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Eah stak item is displayed using showStakItem. It prints the address stored in the stak and

the objet in the heap to whih it points.

> showStakItem :: GmState -> Addr -> Iseq

> showStakItem s a

> = iConat [iStr (showaddr a), iStr ": ",

> showNode s a (hLookup (getHeap s) a)℄

The funtion showNode needs to invert the assoiation list of global names and heap addresses

to display the global nodes it omes aross.

> showNode :: GmState -> Addr -> Node -> Iseq

> showNode s a (NNum n) = iNum n

> showNode s a (NGlobal n g) = iConat [iStr "Global ", iStr v℄

> where v = head [n | (n,b) <- getGlobals s, a==b℄

> showNode s a (NAp a1 a2) = iConat [iStr "Ap ", iStr (showaddr a1),

> iStr " ", iStr (showaddr a2)℄

Finally, we print the aumulated statistis, using showStats.

> showStats :: GmState -> Iseq

> showStats s

> = iConat [ iStr "Steps taken = ", iNum (statGetSteps (getStats s))℄

This onludes the desription of the basi G-mahine. We now move on to onsider ways to

make it more sophistiated.

3.3.6 Improvements to the Mark 1 G-mahine

Exerise 3.4. Run the program main = S K K 3. How many steps does it take? Why is it di�erent

from that obtained for the template mahine? Do you think that omparing steps taken is a fair

omparison of the mahines?

Exerise 3.5. Try running some other programs from Appendix B. Remember, there is no arithmeti

in this simple mahine.

Exerise 3.6. It is possible to use the same trik we used for Pushglobal to implement Pushint: for

eah distint number we reate a unique node in the heap. For example, when we �rst exeute

Pushint 2, we update gmGlobals so that it assoiates "2" with the address in heap of the node

NNum 2.

In the transition rules, if there is already a global alled n, then we an reuse this global node.

(3.13)

Pushint n : i s h m[n : a℄

=) i a : s h m

Alternatively, when this is not the ase, we will reate a new node and add it to the global map.

(3.14)

Pushint n : i s h m

=) i a : s h[a : NNum n℄ m[n : a℄
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Figure 3.4: Mark 1 G-mahine (exeuting Slide n+1)

The advantage of this sheme is that we an reuse the same number node in the heap eah time a

Pushint is exeuted.

Implement this new transition pushint for the Pushint instrution. You should de�ne an aess

funtion for the global omponent, alling it putGlobals.

3.4 Mark 2: Making it lazy

We will now make a number of small hanges to the Mark 1 G-mahine in order to make it

lazy. The Mark 1 mahine is not lazy at the moment beause it does not overwrite the root

node of the original expression before unwinding. This updating is desribed in Setion 2.1.5.

In the Mark 2 mahine, the idea is that after instantiating the body of the superombinator,

we will overwrite the root of the original redex with an indiretion node pointing to the newly

onstruted instane. The e�et is that the mahine `remembers' the value that was instantiated

last time the redex was redued, and hene does not need to realulate it.

We implement this hange as follows. In the Mark 1 mahine the ode for eah superom-

binator onluded with [Slide (n + 1); Unwind℄. To apture updating we replae this with

[Update n; Pop n; Unwind℄. This is illustrated in the following diagrams, in whih we use # to

represent indiretion nodes.

Figure 3.4 shows how the Mark 1 mahine exeutes a Slide n +1 instrution. In Figure 3.5 we

see the Mark 2 mahine exeuting the sequene [Update n; Pop n℄; this being the sequene we

propose to use as a lazy replaement for [Slide n+1℄. The Update instrution is responsible for

overwriting the root node with the newly reated instane of the body of the superombinator.

The Pop instrution is used to remove the arguments from the stak, as they are now no longer

needed.

Let us �rst onsider the neessary modi�ations to the data strutures.
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Figure 3.5: Mark 2 G-mahine (exeuting [Update n, Pop n℄)

3.4.1 Data strutures

In plae of the single instrution Slide n + 1 that we generated last time we now generate the

sequene of instrutions [Update n; Pop n℄. Therefore we are going to have to inlude these

instrutions in the new instrution set.

> data Instrution = Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

> | Update Int

> | Pop Int

> instane Eq Instrution

> where

> Unwind == Unwind = True

> Pushglobal a == Pushglobal b = a == b

> Pushint a == Pushint b = a == b

> Push a == Push b = a == b

> Mkap == Mkap = True

> Update a == Update b = a == b

> _ == _ = False

Exerise 3.7. Modify the funtion showInstrution, so that it displays the new instrutions.

To implement the indiretion nodes we must have a new node type in the heap: NInd whih we

use for indiretions.
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> data Node

> = NNum Int -- Numbers

> | NAp Addr Addr -- Appliations

> | NGlobal Int GmCode -- Globals

> | NInd Addr -- Indiretions

> instane Eq Node

> where

> NNum a == NNum b = a == b -- needed to hek onditions

> NAp a b == NAp  d = False -- not needed

> NGlobal a b == NGlobal  d = False -- not needed

> NInd a == NInd b = False -- not needed

Again we must rede�ne the display funtion showNode, so that it reets the extension of the

data type.

Exerise 3.8. Make the neessary hange to showNode.

We have not yet given a semantis to the two new instrutions. This is done below.

3.4.2 The evaluator

The e�et of an Update n instrution is to overwrite the n + 1

th

stak item with an indiretion

to the item on top of the stak. Notie that this addressing mode is di�erent from that used

in [Peyton Jones 1987℄. For the intended appliation of this instrution the a

1

: : : a

n

are the n

appliation nodes forming the spine, and a

0

is the funtion node.

(3.15)

Update n : i a : a

0

: : : : : a

n

: s h m

=) i a

0

: : : : : a

n

: s h[a

n

: NInd a℄ m

The Pop n instrution simply removes n stak items. Again, in the Mark 2 G-mahine a

1

: : : a

n

are the appliation nodes forming the spine of the redex.

(3.16)

Pop n : i a

1

: : : : : a

n

: s h m

=) i s h m

We must also de�ne a transition for Unwind when the top of stak item is an indiretion. The

e�et is to replae the urrent stak item with the item that the indiretion points to.

(3.17)

[Unwind℄ a

0

: s h[a

0

: NInd a℄ m

=) [Unwind℄ a : s h m

Exerise 3.9. Modify the dispath funtion of the Mark 1 mahine to inorporate the new instrutions;

implement the new transition rules.
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R[[e℄℄ � d generates ode whih instantiates the expression e in environ-

ment �, for a superombinator of arity d , and then proeeds to unwind

the resulting stak.

R[[e℄℄ � d = C[[e℄℄ � ++ [Update d ; Pop d ; Unwind℄

Figure 3.6: The R ompilation sheme for Mark 2 G-mahine

3.4.3 The ompiler

The only hange to the ompiler lies in the ode generated by the R sheme. The new de�nition

is given in Figure 3.6.

Exerise 3.10. Modify ompileR to implement the new R sheme.

Exerise 3.11. Run the lazy evaluator on the program:

twie f x = f (f x)

id x = x

main = twie twie id 3

How many steps does it take? Why is it di�erent from that obtained for the Mark 1 mahine? Is

it fair to ompare the number of steps taken for the mahines?

3.5 Mark 3: let(re) expressions

We now extend the language so that the ompiler will aept superombinators whose body

inludes let(re)-bound variables. These are represented in the data type oreExpr by the

onstrutor ELet. It takes three arguments: a boolean ag whih says whether the de�nitions

are to be treated reursively, the de�nitions themselves and an expression in whih the de�nitions

are to be used.

Before we attempt to extend the mahine by adding loal de�nitions, we will have another look

at the stak. In partiular we will try to de�ne a more eÆient aess method for variables.

Besides the eÆieny argument, we also wish to make aess to loally bound variables the same

as that used to bind funtion parameters.

Argument aess from the stak

Suppose that the unwinding proess has reahed a superombinator node f, and that the super-

ombinator takes n arguments. In the Mark 1 mahine the stak will be in the state shown in

the left-hand diagram of Figure 3.7.

Having reahed the superombinator f, in the Mark 3 G-mahine, the stak is slightly modi�ed.

The equivalent Mark 3 stak is shown in the right-hand diagram of Figure 3.7; the top n elements

now point diretly to the expressions e1 . . . en. The important point here is that we have faster
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Figure 3.7: Stak layout on entry to funtion f

aess to the variables (provided that the variable is aessed at least one). This is beause we

only look at the appliation node one, to get its right-hand argument.

This improves the eÆieny of aess to the expressions that will be substituted for the formal

parameters in the superombinator. In terms of the Mark 1 mahine:

� we no longer need the funtion getArg in the Push instrution,

� but we do need to rearrange the stak when we Unwind a superombinator with suÆient

arguments.

Notie that we have retained a pointer to the root of the redex so that we an perform an

Update.

The e�ets on instrutions

When we hoose to use the new stak layout, we neessarily have to modify ertain of the mahine

instrutions to ope. The instrutions a�eted are Push and Unwind. The Push instrution will

have to hange beause we do not need to `look through' the appliation node to get at the

argument.
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(3.18)

Push n : i a

0

: : : : : a

n

: s h m

=) i a

n

: a

0

: : : : : a

n

: s h m

The other modi�ation required for the new stak layout is that Unwind must rearrange the

stak. This rearrangement is required whenever a superombinator with suÆient arguments is

found on the top of the stak. The new transition rule for Unwind is:

(3.19)

[Unwind℄ a

0

: : : : : a

n

: s h

2

6

6

6

4

a

0

: NGlobal n 

a

1

: NAp a

0

a

0

1

� � �

a

n

: NAp a

n�1

a

0

n

3

7

7

7

5

m

=)  a

0

1

: : : : : a

0

n

: a

n

: s h m

Notie that this de�nition of Unwind will work properly for the ase where n is zero.

Exerise 3.12. Rewrite the dispath funtion and the new transitions for the new instrution set. You

should make use of the funtion rearrange to rearrange the stak.

> rearrange :: Int -> GmHeap -> GmStak -> GmStak

> rearrange n heap as

> = take n as' ++ drop n as

> where as' = map (getArg . hLookup heap) (tl as)

Exerise 3.13. Test the ompiler and new abstrat mahine on some sample programs from Appendix B,

to ensure that the implementation still works.

3.5.1 Loally bound variables

Now we return to the implementation of let(re) expressions, onsidering the non-reursive

ase �rst. The variables x

1

: : : x

n

, in the expression let x

1

=e

1

; : : : ; x

n

= e

n

in e, an be

treated in the same way as the arguments to a superombinator, one the expressions e

1

: : : e

n

have been reated. That is, we aess the variables x

1

: : : x

n

via o�sets into the stak, using the

environment to reord their loations.

Suppose that the ode to build the loal de�nitions is alled Code, then the sequene of ations

shown in Figure 3.8 will be neessary. Initially, the stak will ontain pointers to the arguments

to the superombinator. After the ode to build the loal de�nitions has exeuted we will have

n new pointers on the stak. We an now proeed to build the body of the let expression, in a

new environment that maps x

i

to the pointer to e

i

. Finally, we need to throw away the pointers

to the expressions e

1

: : : e

n

from the stak.

Beause we have added n new variables to the stak (x

1

: : : x

n

) we must note this fat in the

variable map we use to ompile e. The ode to onstrut the loal bindings { whih we have

alled Code { will simply build the graph of eah expression e

1

: : : e

n

in turn, leaving the address

of the piee of graph on the stak.

After building the body expression e { whih may use any of the variables x

1

: : : x

n

{ we must

remove the pointers to e

1

: : : e

n

from the stak. This is aomplished by using a Slide instru-

tion. The omplete sheme for ompiling a non-reursive loal de�nition is given in Figure 3.10

(p.109).
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The situation with reursive loal de�nitions is more ompliated: eah of the expressions

e

1

: : : e

n

must be ompiled so that the variables x

1

: : : x

n

are in sope. To do this we reate

empty nodes in the graph, leaving pointers to them on the stak. Eah expression e

1

: : : e

n

is

then ompiled using the same variable map that we used for the ompilation of the body of the

non-reursive ase. At the end of eah expression's ompiled ode we plae an Update instru-

tion that will overwrite the empty node with the orret piee of graph. To do this we need one

new instrution { Allo n { whih will reate n empty graph nodes for us. In Figure 3.9 the

empty graph nodes are represented by a ? symbol.

The proess shown in Figure 3.9 needs to be repeated until eah of the expressions e

1

: : : e

n

has been proessed. Compiling ode for the body e is then the same as the previous ase for

non-reursive loal de�nitions. We now add the new data types for the Mark 3 mahine.
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3.5.2 Data strutures

The instrution data type inludes all of the instrutions of the Mark 2 mahine, with the new

Allo instrution and the Slide instrution from the Mark 1 mahine.

Exerise 3.14. Modify the data type instrution so that it inludes Allo and Slide. You will also

need to modify the funtion showInstrution, to aommodate these new instrutions.

3.5.3 The evaluator

For the Mark 3 G-mahine we will need to add the Allo instrution whih reates n loations in

the heap. We use these loations to mark the plaes we will store the loally bound expressions.

These nodes are initially reated as indiretion nodes that point to an illegal heap address:

hNull. Beause these nodes reated by Allo are going to be overwritten, it does not really

matter what value we assign them.

(3.20)

Allo n : i s h m

=) i a

1

: : : : : a

n

: s h

2

6

4

a

1

: NInd hNull

� � �

a

n

: NInd hNull

3

7

5

m

To implement allo, the transition funtion for the Allo instrution, we use an auxiliary

funtion alloNodes. Given the number of nodes required and the urrent heap, it returns a

pair onsisting of the modi�ed heap and the list of addresses of the indiretion nodes.

> alloNodes :: Int -> GmHeap -> (GmHeap, [Addr℄)

> alloNodes 0 heap = (heap, [℄)

> alloNodes (n+1) heap = (heap2, a:as)

> where (heap1, as) = alloNodes n heap

> (heap2, a) = hAllo heap1 (NInd hNull)

Exerise 3.15. Extend the dispath funtion, with ases for the new instrutions. You should use

alloNodes to implement allo, the transition funtion for the Allo instrution.

3.5.4 The ompiler

The only hange to the ompiler is that there are now two more ases for whih the C sheme

an ompile ode. The modi�ation to ompileC is simple. It an now ope with a wider range

of oreExprs. We need two new funtions: ompileLetre and ompileLet.

> ompileC :: GmCompiler

> ompileC (EVar v) args

> | elem v (aDomain args) = [Push n℄

> | otherwise = [Pushglobal v℄

> where n = aLookup args v (error "")
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C[[e℄℄ � generates ode whih onstruts the graph of e in environment �,

leaving a pointer to it on top of the stak.

C[[f ℄℄ � = [Pushglobal f ℄ where f is a superombinator

C[[x ℄℄ � = [Push (� x )℄ where x is a loal variable

C[[i ℄℄ � = [Pushint i ℄

C[[e

0

e

1

℄℄ � = C[[e

1

℄℄ � ++ C[[e

0

℄℄ �

+1

++ [Mkap℄ where �

+n

x is (� x ) + n

C[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

C[[e℄℄ �

0

++ [Slide n℄ where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

C[[letre x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

C[[e℄℄ �

0

++ [Slide n℄ where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

Figure 3.10: The modi�ed C ompilation sheme for let and letre

> ompileC (ENum n) env = [Pushint n℄

> ompileC (EAp e1 e2) env = ompileC e2 env ++

> ompileC e1 (argOffset 1 env) ++

> [Mkap℄

> ompileC (ELet reursive defs e) args

> | reursive = ompileLetre ompileC defs e args

> | otherwise = ompileLet ompileC defs e args

The de�nition of ompileLet follows the spei�ation given in Figure 3.10. It takes as arguments:

the ompilation sheme omp for the body e, the de�nitions defs and the urrent environment

env. We have provided the ompiler parameter so that in later versions of the mahine we do

not have to rewrite this funtion.

> ompileLet :: GmCompiler -> [(Name, CoreExpr)℄ -> GmCompiler

> ompileLet omp defs expr env

> = ompileLet' defs env ++ omp expr env' ++ [Slide (length defs)℄

> where env' = ompileArgs defs env

The ompilation of the new de�nitions is aomplished by the funtion ompileLet'.

> ompileLet' :: [(Name, CoreExpr)℄ -> GmEnvironment -> GmCode

> ompileLet' [℄ env = [℄

> ompileLet' ((name, expr):defs) env

> = ompileC expr env ++ ompileLet' defs (argOffset 1 env)

ompileLet also uses ompileArgs to modify the o�sets into the stak for the ompilation of

the body, e.
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> ompileArgs :: [(Name, CoreExpr)℄ -> GmEnvironment -> GmEnvironment

> ompileArgs defs env

> = zip (map first defs) [n-1, n-2 .. 0℄ ++ argOffset n env

> where n = length defs

An example

In this example we will show how the ode for the �xpoint ombinator Y is ompiled. The

de�nition we will use is:

Y f = letre x = f x in x

This is the so-alled `knot-tying' �xpoint ombinator; we will see why it has this name when

we run the resulting ode. When the above de�nition is ompiled, the ompileS funtion will

need to produe ode for the superombinator.

ompileS ("Y", ["f"℄, ELet True [("x", EAp (EVar "f") (EVar "x"))℄ (EVar "x"))

This in turn alls the ompileR funtion with an environment for the variable f; having �rst

reated a name for the superombinator (Y) and its number of arguments (1).

("Y", 1, ompileR e [("f", 0)℄)

where e = ELet True [("x", EAp (EVar "f") (EVar "x"))℄ (EVar "x")

For onveniene we will refer to the body of the expression as e. The funtion ompileR alls

ompileC, plaing the tidying-up ode at the end.

("Y", 1, ompileC e [("f", 0)℄ ++ [Update 1, Pop 1, Unwind℄)

Referring to the ompilation sheme in Figure 3.10, we see that to ompile a letre we �rst

reate a new environment. In the �gure this is alled �

0

; in this example we will all it p. It is an

extension of the initial environment in whih we also give a stak loation to the loal variable

x.

("Y", 1, [Allo 1℄ ++

ompileC (EAp (EVar "f") (EVar "x")) p ++ [Update 0℄ ++

ompileC (EVar "x") p ++ [Slide 1℄ ++

[Update 1, Pop 1, Unwind℄)

where p = [("x", 0), ("f", 1)℄

The ode generation is laid out in the same fashion as the ompilation sheme. When the

expressions involving ompileC are simpli�ed we get:

("Y", 1, [Allo 1℄ ++

[Push 0, Push 2, Mkap℄ ++ [Update 0℄ ++

[Push 0℄ ++ [Slide 1℄ ++

[Update 1, Pop 1, Unwind℄)
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Figure 3.11: Exeution of ode for Y

Whih gives the following ode sequene:

("Y", 1, [Allo 1, Push 0, Push 2, Mkap, Update 0, Push 0,

Slide 1, Update 1, Pop 1, Unwind℄)

We an see the way in whih this ode exeutes in Figure 3.11. This de�nition of the Y su-

perombinator is alled `knot-tying' beause we are tying a knot in the graph when we do the

Update 0 as the �fth instrution. We have not shown the remainder of the instrutions, as this

is left as Exerise 3.18.

Exerise 3.16. The ompilation of letres is de�ned in Figure 3.10. Implement the funtion ompileLetre

to perform this operation.

Exerise 3.17. What test programs would you use to show that the new ompiler and instrution set

work properly?

Exerise 3.18. By running the ode generated for the superombinator Y, or otherwise, draw the re-

mainder of the state transitions in the style of Figure 3.11.

Exerise 3.19. Give a shorter, alternative, ode sequene for the superombinator Y. It should still

onstrut a `knot-tying' version.

Exerise 3.20. In the absene of a letre onstrut in the language, how would you de�ne the �xpoint

ombinator Y? How is this de�nition di�erent from the one we used in the example?
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3.6 Mark 4: Adding primitives

In this setion we add primitive operations to the G-mahine; this makes it useful. By primitive

operations we mean operations like addition, multipliation and so on. We will use addition as

a running example throughout this setion.

The addition instrution will be alled Add; whih adds two numbers from the heap, plaing the

result into a new node in the heap. The addresses of the two arguments are on top of the stak,

and this is where the address of the result is subsequently plaed. It has the following transition

rule.

(3.21)

Add : i a

0

: a

1

: s h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) i a : s h[a : NNum n

0

+ n

1

℄ m

We ould ontinue to expand the G-mahine with other instrutions to implement the remainder

of the operations required, but before we do, let us pause to onsider whether we have missed

something here. The problem is that the rule only applies if the two objets on top of the stak

are numbers. Sine we are working on a mahine that supports lazy evaluation there is no good

reason to suppose that this will always be the ase. In the template mahine Add heked that

its arguments were evaluated. In the G-mahine we want to keep the instrutions simple, so we

will only use Add in situations where we guarantee that the arguments are already evaluated.

What we do instead is to augment the instrution set further with an Eval instrution. This

satis�es the following onstraint:

Suppose that we are in a state:

Eval : i a : s h m

Whenever exeution resumes with instrution sequene i, the state will be:

i a : s h

0

m

and the item on top of the stak will be in WHNF.

It is also possible for Eval to fail to terminate; this will be the ase when the node

pointed to from the top of the stak has no WHNF.

If the node whose address is on top of the stak is already in WHNF, then the Eval instrution

does nothing. If there is redution to be performed, then the ation of Eval is to perform

an evaluation to WHNF. If this all terminates then exeution resumes with nothing exept

the heap omponent hanged. This is similar to the struture of subroutine all and return

traditionally used in programming language implementation. We reall that the lassi way to

implement this feature is to use a stak. The stak will save suÆient of the mahine's urrent

ontext that it an resume when the subroutine all ompletes.

In the Mark 4 G-mahine this stak is alled the dump, and is a stak of pairs, whose �rst

omponent is a ode sequene, and whose seond omponent is a stak. This is similar to the

dump in the template mahine (see Setion 2.6), exept we now have to restore the original ode

sequene as well as the original stak. Hene both omponents are kept on the dump.
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3.6.1 Data strutures

We extend the G-mahine state by adding a dump omponent. As previously disussed, this is

used to implement reursive alls to the evaluator.

> type GmState = ( GmCode, -- urrent Instrution

> GmStak, -- urrent Stak

> GmDump, -- urrent Dump

> GmHeap, -- Heap of Nodes

> GmGlobals, -- Global adresses in Heap

> GmStats) -- Statistis

The dump itself is a stak of dumpItem. Eah of these is a pair onsisting of the instrution

stream and stak to use when we resume the original omputation.

> type GmDump = [GmDumpItem℄

> type GmDumpItem = (GmCode, GmStak)

When we add this new omponent we must hange all of the previously spei�ed aess funtions.

We must also add aess funtions for the dump.

> getDump :: GmState -> GmDump

> getDump (i, stak, dump, heap, globals, stats) = dump

> putDump :: GmDump -> GmState -> GmState

> putDump dump' (i, stak, dump, heap, globals, stats)

> = (i, stak, dump', heap, globals, stats)

Notie that it is only in the aess funtions that we have done pattern mathing on G-mahine

states. Changes to other funtions as a result of adding new omponents to the state are no

longer needed.

Exerise 3.21. Make the relevant hanges to the other aess funtions.

In addition to the new de�nition of state, we also need some new instrutions. We reuse all of

the instrutions from the Mark 3 mahine.

> data Instrution

> = Slide Int

> | Allo Int

> | Update Int

> | Pop Int

> | Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap
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In addition we inlude the Eval instrution,

> | Eval

the following arithmeti instrutions:

> | Add | Sub | Mul | Div | Neg

and the following omparison instrutions:

> | Eq | Ne | Lt | Le | Gt | Ge

We also inlude a primitive form of onditional in the Cond instrution.

> | Cond GmCode GmCode

Exerise 3.22. Add ases to showInstrution to print all of the new instrutions.

3.6.2 Printing the state

We take this opportunity to revise the de�nition of showState, so that it displays the dump

omponent.

> showState :: GmState -> Iseq

> showState s

> = iConat [showStak s, iNewline,

> showDump s, iNewline,

> showInstrutions (getCode s), iNewline℄

We therefore need to de�ne showDump.

> showDump :: GmState -> Iseq

> showDump s

> = iConat [iStr " Dump:[",

> iIndent (iInterleave iNewline

> (map showDumpItem (reverse (getDump s)))),

> iStr "℄"℄

This in turn needs the funtion showDumpItem.

> showDumpItem :: GmDumpItem -> Iseq

> showDumpItem (ode, stak)

> = iConat [iStr "<",

> shortShowInstrutions 3 ode, iStr ", ",

> shortShowStak stak, iStr ">"℄
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We use the funtion shortShowInstrutions to print only the �rst three instrutions of the in-

strution stream in the dump items. This is usually suÆient to indiate where the omputation

will resume.

> shortShowInstrutions :: Int -> GmCode -> Iseq

> shortShowInstrutions number ode

> = iConat [iStr "{", iInterleave (iStr "; ") dotodes, iStr "}"℄

> where odes = map showInstrution (take number ode)

> dotodes | length ode > number = odes ++ [iStr "..."℄

> | otherwise = odes

Similarly, we do not need the full details of the stak omponent of the dump item either, so we

use shortShowStak.

> shortShowStak :: GmStak -> Iseq

> shortShowStak stak

> = iConat [iStr "[",

> iInterleave (iStr ", ") (map (iStr . showaddr) stak),

> iStr "℄"℄

3.6.3 The new instrution transitions

Evaluator instrutions

There are atually very few instrutions that manipulate the dump. First, there is Eval itself,

whih reates a new dump item whenever the node on top of the stak is not in WHNF. Seondly,

there is a modi�ation to the Unwind instrution that pops a dump item when an evaluation is

ompleted.

We �rst desribe the new Unwind instrution. When the expression held in the stak is in

WHNF, Unwind an restore the old ontext from the dump, plaing the last address in the stak

on the restored old stak. We see this learly in the transition for the ase of numbers.

1

(3.22)

[Unwind℄ a : s hi

0

; s

0

i : d h[a : NNum n℄ m

=) i

0

a : s

0

d h m

The expression with address a is in WHNF beause it is an integer, so we restore the old

instrution sequene i

0

and the stak is now the old stak s

0

with the address a on top. All other

transitions for Unwind remain the same as they were in the Mark 3 mahine (exept that they

have the dump omponent in their state).

We are now in a position to speify the rule for Eval. It saves the remainder of the stak s

and the rest of the instrutions i as a dump item on the dump. The new ode sequene is just

unwinding and the new stak ontains the singleton a.

(3.23)

Eval : i a : s d h m

=) [Unwind℄ [a℄ hi ; si : d h m

1

The rule only applies if the dump is non-empty; if the dump is empty then the mahine has terminated.
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Arithmeti instrutions

The dyadi arithmeti operators all have the following generi transition rule. Let us suppose

that the arithmeti operator we wish to implement is �; the transition rule for the instrution

� is then:

(3.24)

� : i a

0

: a

1

: s d h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) i a : s d h[a : NNum (n

0

� n

1

)℄ m

What has happened is that the two numbers on top of the stak have had the dyadi operator

� applied to them. The result, whih is entered into the heap, has its address plaed on the

stak. The Neg instrution negates the number on top of the stak, so it has transition rule:

(3.25)

Neg : i a : s d h[a : NNum n℄ m

=) i a

0

: s d h[a

0

: NNum (�n)℄ m

Notie how similar all of the dyadi operations are. First we extrat the two numbers from

the heap, then we perform the operation, and �nally we plae the answer bak in the heap.

This suggests that we should write some higher-order funtions that are parameterised over the

extration from heap (whih we all `unboxing' the value), and insertion bak into the heap

(whih we all `boxing' the value), along with the spei� operation we wish to perform.

Let us write the boxing operations �rst. boxInteger takes a number and an initial state, and

returns a new state in whih the number has been plaed into the heap, and a pointer to this

new node left on top of the stak.

> boxInteger :: Int -> GmState -> GmState

> boxInteger n state

> = putStak (a: getStak state) (putHeap h' state)

> where (h', a) = hAllo (getHeap state) (NNum n)

Now to extrat an integer at address a from a state, we will use unboxInteger.

> unboxInteger :: Addr -> GmState -> Int

> unboxInteger a state

> = ub (hLookup (getHeap state) a)

> where ub (NNum i) = i

> ub n = error "Unboxing a non-integer"

A generi monadi operator an now be spei�ed in terms of its boxing funtion, box, its

unboxing funtion unbox, and the operator op on the unboxed values.

> primitive1 :: (b -> GmState -> GmState) -- boxing funtion

> -> (Addr -> GmState -> a) -- unbixing funtion

> -> (a -> b) -- operator

> -> (GmState -> GmState) -- state transition
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> primitive1 box unbox op state

> = box (op (unbox a state)) (putStak as state)

> where (a:as) = getStak state

The generi dyadi operators an now be implemented in a similar way using primitive2.

> primitive2 :: (b -> GmState -> GmState) -- boxing funtion

> -> (Addr -> GmState -> a) -- unbixing funtion

> -> (a -> a -> b) -- operator

> -> (GmState -> GmState) -- state transition

> primitive2 box unbox op state

> = box (op (unbox a0 state) (unbox a1 state)) (putStak as state)

> where (a0:a1:as) = getStak state

To be even more expliit, arithmeti1 implements all monadi arithmeti, and arithmeti2

implements all dyadi arithmeti.

> arithmeti1 :: (Int -> Int) -- arithmeti operator

> -> (GmState -> GmState) -- state transition

> arithmeti1 = primitive1 boxInteger unboxInteger

> arithmeti2 :: (Int -> Int -> Int) -- arithmeti operation

> -> (GmState -> GmState) -- state transition

> arithmeti2 = primitive2 boxInteger unboxInteger

As the alert reader would expet, we will be taking advantage of the generality of these funtions

later in the hapter.

Exerise 3.23. Implement all of the new instrution transitions for the mahine. Modify the dispath

funtion to deal with the new instrutions. You should use the higher-order funtions primitive1

and primitive2 to implement the operators.

Exerise 3.24. Why are indiretion nodes never left on top of the stak on ompleting an Eval instru-

tion?
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Comparison instrutions

The omparison operators all have the following generi transition rule. Let us suppose that

the omparison operator we wish to implement is �; the transition rule for the instrution � is

then:

(3.26)

� : i a

0

: a

1

: s d h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) i a : s d h[a : NNum (n

0

� n

1

)℄ m

What has happened is that the two numbers on top of the stak have had the dyadi operator

� applied to them. The result, whih is entered into the heap, has its address plaed on the

stak. This is almost the same as arithmeti.

The di�erene is that an operation, == say, returns a boolean and not an integer. To �x this we

turn booleans into integers using the following rule:

� we represent True by the integer 1;

� we represent False by the integer 0.

To make the use of primitive2 possible, we de�ne boxBoolean

> boxBoolean :: Bool -> GmState -> GmState

> boxBoolean b state

> = putStak (a: getStak state) (putHeap h' state)

> where (h',a) = hAllo (getHeap state) (NNum b')

> b' | b = 1

> | otherwise = 0

Using this de�nition we an write a generi omparison funtion, whih we all omparison.

This funtion takes a boxing funtion for the booleans, the unboxing funtion for integers

(unboxInteger), and a omparison operator; it returns a state transition.

> omparison :: (Int -> Int -> Bool) -> GmState -> GmState

> omparison = primitive2 boxBoolean unboxInteger

Finally, we implement the Cond instrution, whih we will use to ompile the if funtion. It

has two transition rules:

(3.27)

Cond i

1

i

2

: i a : s d h[a : NNum 1℄ m

=) i

1

++ i s d h m

In the �rst ase { where there is the number 1 on top of the stak { we take the �rst branh.

This means that we exeute the instrutions i

1

before ontinuing to exeute the instrutions i .

(3.28)

Cond i

1

i

2

: i a : s d h[a : NNum 0℄ m

=) i

2

++ i s d h m
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Alternatively, if the number on top of the stak is 0, we exeute the instrution sequene i

2

�rst,

and then the sequene i .

Exerise 3.25. Implement the transitions for the omparison instrutions and the Cond instrution.

3.6.4 The ompiler

The ompiler will eventually need to be hanged to take advantage of these new instrutions to

ompile arithmeti expressions. For the moment we make only the minimum set of hanges that

will allow us to use the arithmeti instrutions we have so laboriously added. First, the ompile

funtion must reate a new initial state in whih the initial dump is empty and in whih the

initial ode sequene di�ers from the one we have used so far.

> ompile :: CoreProgram -> GmState

> ompile program

> = (initialCode, [℄, [℄, heap, globals, statInitial)

> where (heap, globals) = buildInitialHeap program

> initialCode :: GmCode

> initialCode = [Pushglobal "main", Eval℄

Exerise 3.26. Why has the initial instrution sequene been hanged? What happens if we retain the

old one?

The simplest way to extend the ompiler is simply to add G-mahine ode for eah of the new

built-in funtions to the ompiledPrimitives. The initial four instrutions of the sequene

ensure that the arguments have been evaluated to integers.

> ompiledPrimitives :: [GmCompiledSC℄

> ompiledPrimitives

> = [("+", 2, [Push 1, Eval, Push 1, Eval, Add, Update 2, Pop 2, Unwind℄),

> ("-", 2, [Push 1, Eval, Push 1, Eval, Sub, Update 2, Pop 2, Unwind℄),

> ("*", 2, [Push 1, Eval, Push 1, Eval, Mul, Update 2, Pop 2, Unwind℄),

> ("/", 2, [Push 1, Eval, Push 1, Eval, Div, Update 2, Pop 2, Unwind℄),

We also need to add the negation funtion. As this only takes one argument, we only evaluate

one argument.

> ("negate", 1, [Push 0, Eval, Neg, Update 1, Pop 1, Unwind℄),

The omparison operations are implemented as follows.

> ("==", 2, [Push 1, Eval, Push 1, Eval, Eq, Update 2, Pop 2, Unwind℄),

> ("~=", 2, [Push 1, Eval, Push 1, Eval, Ne, Update 2, Pop 2, Unwind℄),

> ("<", 2, [Push 1, Eval, Push 1, Eval, Lt, Update 2, Pop 2, Unwind℄),
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> ("<=", 2, [Push 1, Eval, Push 1, Eval, Le, Update 2, Pop 2, Unwind℄),

> (">", 2, [Push 1, Eval, Push 1, Eval, Gt, Update 2, Pop 2, Unwind℄),

> (">=", 2, [Push 1, Eval, Push 1, Eval, Ge, Update 2, Pop 2, Unwind℄),

The if funtion is ompiled so that it uses Cond for the branhing.

> ("if", 3, [Push 0, Eval, Cond [Push 1℄ [Push 2℄,

> Update 3, Pop 3, Unwind℄)℄

Exerise 3.27. What test programs from Appendix B would you use in order to hek that the new

instrutions and ompiler work?

3.7 Mark 5: Towards better handling of arithmeti

The way the G-mahine is implemented at the moment, eah arithmeti operator is alled via

one of the ompiled primitives. We an improve on this arrangement by observing that often we

an all the arithmeti operator diretly. For example, onsider the following simple program:

main = 3+4*5

This generates the following ode when we use the urrent ompiler:

[Pushint 5, Pushint 4, Pushglobal "*", Mkap, Mkap,

Pushint 3, Pushglobal "+", Mkap, Mkap, Eval℄

When exeuted this ode will take 33 steps and use 11 heap nodes. Our �rst thought must

surely be that we an use the instrutions Add and Mul in plae of alls to the funtions `+' and

`*'. This leads to the following improved ode:

[Pushint 5, Pushint 4, Mul, Pushint 3, Add℄

This will take only �ve steps to exeute and uses �ve heap nodes.

3.7.1 A problem

A possible problem arises when we onsider our next example program.

main = K 1 (1/0)

This generates the following ode:

[Pushint 0, Pushint 1, Pushglobal "/", Mkap, Mkap,

Pushint 1, Pushglobal "K", Mkap, Mkap, Eval℄

If we follow the pattern of the previous example we might try generating the ode:
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[Pushint 0, Pushint 1, Div,

Pushint 1, Pushglobal "K", Mkap, Mkap, Eval℄

The problem is that the division operator is applied before we redue K, with the result that a

division-by-zero error is generated. A orret ompiler must generate ode that will not give

suh errors.

What has happened is that our ode is too strit. The ode is evaluating expressions that it

need not { whih results in errors arising where they should not. A similar problem will also

arise when non-terminating expressions are inadvertently evaluated.

3.7.2 The solution

The solution to the problem is to keep trak of the ontext in whih an expression appears. We

will distinguish two ontexts

2

:

Strit The value of the expression will be required in WHNF.

Lazy The value of the expression may or may not be required in WHNF.

Corresponding to eah ontext, we have a ompilation sheme whih will ompile an expression

to a sequene of G-mahine instrutions. In the strit ontext this ompilation sheme is the E

sheme; in the lazy ontext we will use the C sheme we have seen already.

We would like to �nd as many strit ontexts as possible, sine these ontexts allow us to generate

better ode. We make the following observation: whenever a superombinator is instantiated it

is beause we wish to evaluate its value to WHNF. From this we onlude that the body of a

superombinator an always be evaluated in a strit ontext. There are also expressions where

we know that some sub-expressions will be evaluated to WHNF if the expression is evaluated to

WHNF.

The lass of strit ontext expressions an be desribed reursively.

� The expression in the body of a superombinator de�nition is in a strit ontext.

� If e

0

� e

1

ours in a strit ontext, where � is an arithmeti or omparison operator,

then the expressions e

0

and e

1

are also in a strit ontext.

� If negate e ours in a strit ontext, then the expression e also does.

� If the expression if e

0

e

1

e

2

ours in a strit ontext, then so do the expressions e

0

, e

1

,

and e

2

.

� If let(re) � in e ours in a strit ontext then the expression e is also in a strit

ontext.

An example should make this lear; onsider the body of the superombinator f:

2

It is possible to distinguish more ontexts. Projetion analysis [Wadler 1987℄ and evaluation transformers

[Burn 1991℄ are two ways to do this.
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R[[e℄℄ � d generates ode whih instantiates the expression e in environ-

ment �, for a superombinator of arity d , and then proeeds to unwind

the resulting stak.

R[[e℄℄ � d = E [[e℄℄ � ++ [Update d ; Pop d ; Unwind℄

E [[e℄℄ � ompiles ode that evaluates an expression e to WHNF in envi-

ronment �, leaving a pointer to the expression on top of the stak.

E [[i ℄℄ � = [Pushint i ℄

E [[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[letre x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[e

0

+ e

1

℄℄ � = E [[e

1

℄℄ � ++ E [[e

0

℄℄ �

+1

++ [Add℄

And similarly for other arithmeti and omparison expressions

E [[negate e℄℄ � = E [[e℄℄ � ++ [Neg℄

E [[if e

0

e

1

e

2

℄℄ � = E [[e

0

℄℄ � ++ [Cond (E [[e

1

℄℄ �) (E [[e

2

℄℄ �)℄

E [[e℄℄ � = C[[e℄℄ � ++ [Eval℄ the default ase

Figure 3.12: The R and E ompilation shemes for the Mark 5 mahine

f x y = (x+y) + g (x*y)

Both (x+y) and g (x*y) will be evaluated in a strit ontext { beause the body of the super-

ombinator is. In the �rst ase this auses x and y to be evaluated in a strit ontext { beause

+ propagates the strit ontext. In the seond expression, the presene of a user-de�ned super-

ombinator means that the sub-expression x*y will be ompiled assuming that the expression

may not be evaluated.

This suggests that we an implement the strit-ontext ompiler, E , in a reursive manner.

Beause the body of eah superombinator is evaluated in a strit ontext we will need to all

the E sheme funtion from the R sheme. This satis�es the �rst of the points above. To

propagate the ontext information into sub-expressions we will reursively invoke the E sheme

for arithmeti expressions.

The new ompiler shemes are de�ned in Figure 3.12.

To make it easier to extend the set of built-in operators that an be ompiled using the new

sheme, we de�ne builtInDyadi.
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> builtInDyadi :: ASSOC Name Instrution

> builtInDyadi

> = [("+", Add), ("-", Sub), ("*", Mul), ("div", Div),

> ("==", Eq), ("~=", Ne), (">=", Ge),

> (">", Gt), ("<=", Le), ("<", Lt)℄

Exerise 3.28. Modify the existing ompiler funtions ompileR and ompileE so that they implement

the R sheme and E sheme of Figure 3.12. You should use builtInDyadi.

Oasionally the mahine will fail when the new ompiler is used. What we need is to introdue

a new rule for the Unwind instrution.

(3.29)

[Unwind℄ [a

0

; : : : ; a

k

℄ hi ; si : d h[a

0

: NGlobal n ℄ m

=) i a

k

: s d h m when k < n

This allows us to use Eval to evaluate any objet to WHNF, and not just numbers.

Exerise 3.29. Implement the new transition for Unwind. Write a program that fails without the new

Unwind transition.

Exerise 3.30. Compare the exeution of the example program used at the start of this setion, with

its exeution on the Mark 4 mahine.

main = 3+4*5

Try some other programs from Appendix B.

The way we implemented the strit ontext in the ompiler is addis simple example of the

inherited attributes from ompiler theory. If we regard the strit ontext as an attribute of an

expression, then a sub-expression inherits its strit ontext from its parent expression. The

general theory is disussed in [Aho et al. 1986℄.

It is unfortunately not possible { in general { to determine at ompile-time whether an expression

should be ompiled with a strit ontext. We therefore have to aept a ompromise. In this

book we have only treated a limited set of expressions { the arithmeti expressions { in a speial

way. Muh ative researh is onerned with extending this analysis to over more general

expressions [Burn 1991℄.

3.8 Mark 6: Adding data strutures

In this setion we extend the G-mahine to deal with arbitrary data strutures. As disussed in

Chapter 1, two new Core-language onstruts are required for programs involving data stru-

tures: onstrutors, EConstr; and ase expressions, ECase. Our goal, in produing the Mark 6

mahine, is to ompile ode for these expressions.
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3.8.1 Overview

In Setion 1.1.4 we saw that a onstrutor with tag t and arity a was represented as Pak{t,a}

in the ore language. For example, the usual list data type has two onstrutors: Pak{1,0}

and Pak{2,2}. These orrespond to Miranda's [℄ and (:) respetively.

A ase expression, whih has no diret ounterpart in Miranda, is used to inspet the values

held in a onstrutor. For example, we an write the length funtion for a list as:

length xs = ase xs of

<1> -> 0;

<2> y ys -> 1 + length ys

It is instrutive to look at the way we exeute the ase expression

1. To evaluate the ase expression, we �rst evaluate xs to WHNF.

2. One this evaluation has ourred, we are able to tell whih of the alternatives to take.

The tag of the evaluated expression { whih must be a strutured data objet { determines

whih alternative we take. In the above example, for length:

� If the tag of the onstrutor for xs is 1 then the list is empty and we take the �rst

branh. We therefore return 0.

� If the tag is 2, then the list is non-empty. This time there are omponents of the

onstrutor (y and ys). The length of the list is one more than the length of ys.

We will assume that whenever we attempt to dismantle a onstrutor it has been applied to the

orret number of arguments. A onstrutor in this state is said to be saturated. As an example,

in Setion 1.1.3, Cons is de�ned to take two arguments, so it is saturated when it is applied to

two expressions.

We also note that a Core-language program an now return a result that is a strutured data

objet. The Mark 5 G-mahine must be able to print the strutured data objet in a lazy

fashion. Let us �rst onsider what additions will need to be made to the data strutures of the

Mark 5 mahine.

3.8.2 Data strutures

It would be nie to allow the mahine to return values whih are not just numbers. We would

like to be able to return values that onsist of onstrutors. This will require us to evaluate the

omponents of the struture reursively, and then return these values. To do this we need to

add yet another omponent to the state: gmOutput. This will hold the result of the program.

> type GmState =

> (GmOutput, -- Current Output

> GmCode, -- Current Instrution Stream

> GmStak, -- Current Stak

> GmDump, -- The Dump
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> GmHeap, -- Heap of Nodes

> GmGlobals, -- Global addresses in Heap

> GmStats) -- Statistis

This omponent is de�ned to be a harater string.

> type GmOutput = [Char℄

We an write the aess funtions in the obvious way.

> getOutput :: GmState -> GmOutput

> getOutput (o, i, stak, dump, heap, globals, stats) = o

> putOutput :: GmOutput -> GmState -> GmState

> putOutput o' (o, i, stak, dump, heap, globals, stats)

> = (o', i, stak, dump, heap, globals, stats)

Exerise 3.31. Make the appropriate hanges to the remainder of the aess funtions.

To support onstrutor nodes in the heap, we augment the type node with NConstr; this takes

a positive number whih will represent a tag, and a list of omponents whih we represent as the

list of the addresses of the nodes in heap.

> data Node

> = NNum Int -- Numbers

> | NAp Addr Addr -- Appliations

> | NGlobal Int GmCode -- Globals

> | NInd Addr

> | NConstr Int [Addr℄

> instane Eq Node

> where

> NNum a == NNum b = a == b -- needed to hek onditions

> NAp a b == NAp  d = False -- not needed

> NGlobal a b == NGlobal  d = False -- not needed

> NInd a == NInd b = False -- not needed

> NConstr a b == NConstr  d = False -- not needed

3.8.3 Printing the result

Beause we have a new state omponent whih we wish to display, we must rede�ne the funtion

showState.

> showState :: GmState -> Iseq

> showState s
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> = iConat [showOutput s, iNewline,

> showStak s, iNewline,

> showDump s, iNewline,

> showInstrutions (getCode s), iNewline℄

The showOutput funtion is easy, beause the output omponent is already a string.

> showOutput :: GmState -> Iseq

> showOutput s = iConat [iStr "Output:\"", iStr (getOutput s), iStr "\""℄

The only other hange (apart from hanging showInstrution for the new instrution set)

ours in showNode, beause we have extended the data type to inlude onstrutor nodes.

> showNode :: GmState -> Addr -> Node -> Iseq

> showNode s a (NNum n) = iNum n

> showNode s a (NGlobal n g) = iConat [iStr "Global ", iStr v℄

> where v = head [n | (n,b) <- getGlobals s, a==b℄

> showNode s a (NAp a1 a2) = iConat [iStr "Ap ", iStr (showaddr a1),

> iStr " ", iStr (showaddr a2)℄

> showNode s a (NInd a1) = iConat [iStr "Ind ", iStr (showaddr a1)℄

> showNode s a (NConstr t as)

> = iConat [iStr "Cons ", iNum t, iStr " [",

> iInterleave (iStr ", ") (map (iStr.showaddr) as), iStr "℄"℄

3.8.4 The instrution set

The new instrution set is now de�ned. It simply adds four new instrutions to the Mark 4

mahine.

> data Instrution

> = Slide Int

> | Allo Int

> | Update Int

> | Pop Int

> | Unwind

> | Pushglobal Name

> | Pushint Int

> | Push Int

> | Mkap

> | Eval

> | Add | Sub | Mul | Div

> | Neg

> | Eq | Ne | Lt | Le | Gt | Ge

> | Cond GmCode GmCode

The four new instrutions that are added to the mahine are as follows:
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> | Pak Int Int

> | Casejump [(Int, GmCode)℄

> | Split Int

> | Print

Exerise 3.32. Extend showInstrution to math the new instrution set.

The Pak instrution is simple; it assumes that there are suÆient arguments on the stak to

onstrut a saturated onstrutor. When there are, it proeeds to make a saturated onstrutor;

if there are not enough arguments, then the instrution is unde�ned.

(3.30)

o Pak t n : i a

1

: : : : : a

n

: s d h m

=) o i a : s d h[a : NConstr t [a

1

; : : : ; a

n

℄℄ m

The transition rule for Casejump expets (a) that the node on top of the stak is in WHNF,

and (b) that the node is a strutured data objet. Using the tag from this objet we selet one

of the alternative instrution sequenes, and the urrent instrution stream is then pre�xed by

the ode for the partiular alternative seleted.

(3.31)

o Casejump [: : : ; t->i

0

; : : :℄ : i a : s d h[a : NConstr t ss℄ m

=) o i

0

++ i a : s d h m

This is a simple way to speify a multiway jump and join. That is, by pre�xing the urrent

ode i by the ode for the alternative i

0

, we ahieve the e�et of �rst running the ode for the

alternative and then resuming with whatever the remainder of the ode for the main expression

requires

3

.

The ode for eah alternative begins with a Split n instrution and terminates with a Slide n

instrution. The value of n is determined by the number of omponents in the onstrutor. The

Split instrution is used to gain aess to the omponents of a onstrutor.

Consider the ode sequene generated for the length funtion:

[Push 0, Eval,

Casejump [1 -> [Pushint 0℄

2 -> [Split 2, Push 1, Pushglobal "length", Mkap,

Eval, Pushint 1, Add, Slide 2℄℄,

Update 1,

Pop 1,

Unwind℄

The exeution of this pattern is shown in Figure 3.13, where we see that the Slide and Split

instrutions are being used temporarily to extend the urrent set of loal bindings. Assuming

3

It should be noted that ode sequenes using Casejump are not at. We an, however, onstrut the at ode

sequenes we desire by labelling eah alternative and jumping to the labelled ode addresses. We have not done

this as it unneessarily ompliates the ode generation.
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(d) After Slide 2() After ode for body

(b) After Split 2(a) On entering alternative

l

head

tail

head

tail

2 2

tail

head

l

Figure 3.13: Running ompiled ode for alternatives

that the length funtion was applied to a non-nil node, when we exeute the Casejump instru-

tion, we take the alternative labelled 2. This is the initial diagram (a). The Split 2 instrution

`unpaks' the onstrutor node onto the stak. This is shown in diagram (b). After ompleting

the body of the alternative, i.e. the ode sequene

[Push 1, Pushglobal "length", Mkap, Eval, Pushint 1, Add℄

the length of the list argument to this all of length will be on top of the stak labelled l in

diagram (). To omplete the exeution we remove the pointers to head and tail; this is shown

in diagram (d). The transition for Split is straightforward.

(3.32)

o Split n : i a : s d h[a : NConstr t [a

1

; : : : ; a

n

℄℄ m

=) o i a

1

: : : : : a

n

: s d h m

Next, we desribe the transitions for Print. There are two transitions for Print; one eah for

onstrutors and numbers.

(3.33)

o Print : i a : s d h[a : NNum n℄ m

=) o ++ [n℄ i s d h m

The rule for onstrutors is more omplex, as it must arrange to print eah omponent of the

onstrutor. For simpliity we will only print out the omponents.

(3.34)

o Print : i a : s d h[a : NConstr t [a

1

; : : : ; a

n

℄℄ m

=) o i

0

++ i a

1

: : : : : a

n

: s d h m
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E [[e℄℄ � ompiles ode that evaluates an expression e to WHNF in envi-

ronment �, leaving a pointer to the expression on top of the stak.

E [[ase e of alts℄℄ � = E [[e℄℄ � ++ [Casejump D[[alts℄℄ �℄

E [[Pak{t,a} e

1

: : : e

a

℄℄ � = C[[e

a

℄℄ �

+0

++ : : : C[[e

1

℄℄ �

+(a�1)

++ [Pak t a℄

C[[e℄℄ � generates ode whih onstruts the graph of e in environment �,

leaving a pointer to it on top of the stak.

C[[Pak{t,a} e

1

: : : e

a

℄℄ � = C[[e

a

℄℄ �

+0

++ : : : C[[e

1

℄℄ �

+(a�1)

++ [Pak t a℄

D[[alts℄℄ � ompiles the ode for the alternatives in a ase expression.

D[[alt

1

: : : alt

n

℄℄ � = [A[[alt

1

℄℄ � ; : : : ; A[[alt

n

℄℄ �℄

A[[alt ℄℄ � ompiles the ode for an alternative in a ase expression.

A[[<t> x

1

: : : x

n

-> body ℄℄ � = t -> [Split n℄ ++ E [[body ℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! 0 : : : x

n

7! n � 1℄

Figure 3.14: Compilation shemes for ase expressions

The ode i

0

is simply:

[Eval; Print; : : : ; Eval; Print

| {z }

n

℄:

Lastly, we must add a new rule for Unwind, that tells it to return when unwinding an NConstr,

just like the rule for NNum.

(3.35)

[Unwind℄ a : s hi

0

; s

0

i : d h[a : NConstr n as℄ m

=) i

0

a : s

0

d h m

Exerise 3.33. Implement the new transitions and modify the dispath funtion.

3.8.5 The ompiler

In Figure 3.14 the new ases for the E and C ompilation shemes are presented. They require

auxiliary ompilation shemes, D and A, to deal with the alternatives that may be seleted in

a ase expression. The funtion ompileAlts (orresponding to the D sheme) ompiles a list

of alternatives, using the urrent environment, and produes a list of tagged ode sequenes.

It also uses the omp argument (whih orresponds to A) to ompile the body of eah of the

alternatives. For the moment this argument will always be ompileE'.
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> ompileAlts :: (Int -> GmCompiler) -- ompiler for alternative bodies

> -> [CoreAlt℄ -- the list of alternatives

> -> GmEnvironment -- the urrent environment

> -> [(Int, GmCode)℄ -- list of alternative ode sequenes

> ompileAlts omp alts env

> = [(tag, omp (length names) body (zip names [0..℄ ++ argOffset (length names) env))

> | (tag, names, body) <- alts℄

The ompileE' sheme is a small modi�ation to the ompileE sheme. It simply plaes a

Split and Slide around the ode generated by the ordinary ompileE sheme.

> ompileE' :: Int -> GmCompiler

> ompileE' offset expr env

> = [Split offset℄ ++ ompileE expr env ++ [Slide offset℄

Exerise 3.34. Make the relevant hanges to ompile, and modify initialCode to have a �nal Print

instrution.

Exerise 3.35. Add the new ases to the ompiler funtions ompileE and ompileC.

Exerise 3.36. What hanges are required to print out the output in `strutured form'. By this we

mean plaing the onstrutors and parentheses into the output omponent gmOutput, as well as

integers.

3.8.6 Using the new boolean representation in omparisons

In this setion we show how the Mark 6 mahine we have onstruted, an be modi�ed to use

our new representation of booleans. We �rst observe that we an implement the booleans as

strutured data objets; with True and False being represented as onstrutors of zero arity

and tags 2 and 1 respetively.

How do we implement onditionals? This an be done by adding a new de�nition to the program

for if. It returns either its seond or third argument, depending on the �rst argument.

if  t f = ase  of

<1> -> f;

<2> -> t

The �rst hange we require lies in the omparison operations. These have the following generi

transition rule.

(3.36)

o � : i a

0

: a

1

: s d h[a

0

: NNum n

0

; a

1

: NNum n

1

℄ m

=) o i a : s d h[a : Constr (n

0

� n

1

) [℄℄ m

For example, in the Eq instrution, we replae � with a funtion that returns 2 (the tag for

True) if the two numbers n

0

and n

1

are the same, and 1 (the tag for False) otherwise.
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We an implement the transitions quikly, by reusing some of the ode we developed for the

Mark 4 mahine. In Setion 3.6.3 we saw how to represent some generi arithmeti and om-

parison operators. In fat, beause of the way in whih we strutured the de�nition of the

omparison funtion, we an almost immediately use our new representation of booleans.

The boxing funtion boxBoolean takes a omparison operation and a state in whih there are

two integers on top of the stak. It returns the new state in whih there is the boolean result of

omparing the two integers on top of the stak.

> boxBoolean :: Bool -> GmState -> GmState

> boxBoolean b state

> = putStak (a: getStak state) (putHeap h' state)

> where (h',a) = hAllo (getHeap state) (NConstr b' [℄)

> b' | b = 2 -- 2 is tag of True

> | otherwise = 1 -- 1 is tag of False

Exerise 3.37. Run some example programs from Appendix B; for example try the fatorial program:

fa n = if (n==0) 1 (n * fa (n-1))

3.8.7 Extending the language aepted

As astute readers might have notied, there are some legal expressions involving ECase and

EConstr for whih our ompiler will fail. The legal expressions that we annot ompile fall into

two lasses:

1. Ourrenes of ECase in non-strit ontexts; i.e. in expressions ompiled by the C sheme.

2. Ourrenes of EConstr in expressions where it is applied to too few arguments.

Both problems an be solved by using program transformation tehniques. The solution for

ECase is to make the o�ending expressions into superombinators whih are then applied to

their free variables. For example, the program:

f x = Pak{2,2} (ase x of <1> -> 1; <2> -> 2) Pak{1,0}

an be transformed into the equivalent program:

f x = Pak{2,2} (g x) Pak{1,0}

g x = ase x of <1> -> 1; <2> -> 2

The trik for EConstr is to reate a superombinator for eah onstrutor; this will be generated

with enough free variables to saturate the onstrutor. Here is an example.

prefix p xs = map (Pak{2,2} p) xs

This is transformed to:
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prefix p xs = map (f p) xs

f p x = Pak{2,2} p x

Another way to solve this problem is to modify the Pushglobal instrution, so that it will work

for funtions with names of the form: `Pak{t,a}'. We an then simply look for onstrutor

funtions, suh as f in the example above, in the globals omponent of the state. If the funtion

is not already present, we an reate a new global node to assoiate with the funtion beause

the node has a partiularly simple struture.

NGlobal a [Pak t a, Update 0, Unwind℄

The new transitions are, �rstly, if the funtion exists already:

(3.37)

o Pushglobal Pak{t,n} : i s d h m[Pak{t,n} : a℄

=) o i a : s d h m

and seondly when it does not already exist:

(3.38)

o Pushglobal Pak{t,n} : i s d h m

=) o i a : s d h[a : gNode

t;n

℄ m[Pak{t,n} : a℄

where gNode

t;n

is

NGlobal n [Pak t n; Update 0; Unwind℄

Our ompiler an then generate ode for expressions with unsaturated onstrutor nodes diretly.

It does this by generating the following ode for unsaturated onstrutors.

C[[Pak{t,a}℄℄ � = [Pushglobal "Pak{t,a}"℄

Exerise 3.38. Implement the extensions to the pushglobal funtion for the Pushglobal instrution

and modify the ompiler.

3.9 Mark 7: Further improvements

Let us onsider again the example program we saw when we developed the Mark 5 ompiler.

main = 3+4*5

This generates the following ode when we use the Mark 6 ompiler:

[Pushint 5, Pushint 4, Mul, Pushint 3, Add℄
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When exeuted this ode will use �ve heap nodes. Is it possible to redue this still further?

The answer is yes. We an redue the number of heap aesses for arithmeti further by using a

stak of numbers to represent intermediate values in the omputation. In the Mark 7 mahine

these values are held in a new state omponent alled the V-stak. The problem is that plaing

numbers into the heap or extrating them is an expensive operation on a real mahine. It is

muh more eÆient to use the mahine's register set or stak. In the Mark 7 G-mahine we will

use a stak; this means that we do not have to worry about running out of registers.

The new ode for the program

main = 3+4*5

is very similar to that whih we previously generated:

[Pushbasi 5, Pushbasi 4, Mul, Pushbasi 3, Add, Mkint℄

The �rst instrution Pushbasi 5 plaes 5 on top of the V-stak. Next we push 4 onto the

V-stak, following this by a multipliation. This instrution now expets its arguments to be in

the V-stak. It will plae the answer into the V-stak as well. The next two instrutions add 3

to the value on top of the V-stak. The �nal instrution, Mkint, takes the value on top of the

V-stak and plaes it into a number node in the heap, leaving a pointer to this new node on top

of the S-stak.

3.9.1 Exeuting the fatorial funtion using the V-stak

We begin an investigation into the Mark 7 mahine, by way of an example. We will be looking

at the exeution of the fatorial funtion, de�ned as follows:

fa n = if (n==0) 1 (n * fa (n-1))

Using the Mark 7 ompiler, we will generate the following ode sequene for the body of the

superombinator.

[Pushbasi 0, Push 0, Eval, Get, Eq,

Cond [Pushint 1, Update 1, Pop 1, Unwind℄

[Pushint 1, Push 1, Pushglobal "-", Mkap, Mkap, Pushglobal "fa", Mkap,

Eval, Get, Push 0, Eval, Get, Mul, Mkint, Update 1, Pop 1, Unwind℄

When this ode ommenes exeution, the V-stak is empty, and there is one item on the

ordinary stak. We will all the latter the S-stak from now on to distinguish the two sorts of

stak. In Figure 3.15 { starting with diagram (a) { we see the initial state in whih a pointer

to the argument to fa is on top of the S-stak. In diagram (b) we see what happens when a

Pushbasi instrution is exeuted: an integer is pushed onto the V-stak. Diagram () shows

that the argument to fa has now been evaluated, whilst in diagram (d) we see the e�et of a

Get instrution. It has extrated the value from the node in the heap, and plaed it into the

V-stak.
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(d) After Get() After Push 0, Eval

(b) After Pushbasi 0(a) State on entry to fa

1
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SV
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e
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Figure 3.15: Mark 7 mahine running fa

--

(f) After Cond(e) After Eq

1

SV

1 1

SV

Figure 3.16: Mark 7 mahine running fa

In diagram (e) (Figure 3.16) we see the state after an Eq instrution has exeuted. It has

ompared the two items in the V stak, and disovered that they are not equal. The Mark 7

G-mahine represents the boolean value False by 1 in the V-stak. In diagram (f), the Cond

instrution has inspeted this value, and used it to selet whih branh to exeute.

In diagram (g) (Figure 3.17) the state after the onstrution and evaluation of fa (1-1) is

shown. The next instrution is Get whih fethes the newly evaluated value into the V stak.

Diagram (i) shows that we evaluate and feth the value from the node 1 into the V-stak. In

diagram (j) a Mul instrution has multiplied the two values in the V-stak, plaing the result

bak there. In diagram (k) a Mkint instrution has moved this result from the V-stak to the

heap, reording the address of the newly reated node on the S-stak.

In a mahine where there is a performane penalty for reating and aessing objets in the

heap { ompared with keeping the objets in a stak { we expet the use of the V-stak to be

an improvement. Having seen how the V-stak works, we now make small modi�ations to the

G-mahine to implement the Mark 7 mahine.

3.9.2 Data strutures

The use of the V-stak requires that eah G-mahine state has a new state omponent gmVStak

added to its state.

> type GmState = (GmOutput, -- Current output
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Figure 3.17: Mark 7 mahine running fa

> GmCode, -- Current instrution stream

> GmStak, -- Current stak

> GmDump, -- Current dump

> GmVStak, -- Current V-stak

> GmHeap, -- Heap of nodes

> GmGlobals, -- Global addresses in heap

> GmStats) -- Statistis

As we have already stated this new omponent behaves as a stak of numbers.

> type GmVStak = [Int℄

We add aess funtions for this omponent.

> getVStak :: GmState -> GmVStak

> getVStak (o, i, stak, dump, vstak, heap, globals, stats) = vstak

> putVStak :: GmVStak -> GmState -> GmState

> putVStak vstak' (o, i, stak, dump, vstak, heap, globals, stats)

> = (o, i, stak, dump, vstak', heap, globals, stats)

Exerise 3.39. Make the relevant hanges to the other aess funtions.
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Displaying the states

The funtion showState is hanged so that it prints out the V-stak omponent.

> showState :: GmState -> Iseq

> showState s

> = iConat [showOutput s, iNewline,

> showStak s, iNewline,

> showDump s, iNewline,

> showVStak s, iNewline,

> showInstrutions (getCode s), iNewline℄

To do this we de�ne the funtion showVStak.

> showVStak :: GmState -> Iseq

> showVStak s

> = iConat [iStr "Vstak:[",

> iInterleave (iStr ", ") (map iNum (getVStak s)),

> iStr "℄"℄

3.9.3 Instrution set

An obvious �rst requirement is that eah of the arithmeti transitions will now have to be

modi�ed to get their values from, and return their results to, the V-stak instead of the ordinary

stak. Let us �rst deal with the ase of dyadi primitives. The generi transition for the

operation � is given below. It takes two arguments from the V-stak and plaes the result of

the operation � bak onto the V-stak.

(3.39)

o � : i s d n

0

: n

1

: v h m

=) o i s d n

0

� n

1

: v h m

The Neg instrution now has the following transition: it simply replaes the number on top of

the V-stak with its negation.

(3.40)

o Neg : i s d n : v h m

=) o i s d (�n) : v h m

We also need instrutions to move values between the heap and the V-stak. We begin with

Pushbasi, whih pushes an integer n onto the V-stak.

(3.41)

o Pushbasi n : i s d v h m

=) o i s d n : v h m

To move a value from the V-stak to the heap, we use two instrutions: Mkbool and Mkint.

These treat the integer on top of the V-stak as booleans and integers respetively. We begin

with Mkbool.
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(3.42)

o Mkbool : i s d t : v h m

=) o i a : s d v h[a : NConstr t [℄℄ m

The transition for Mkint is similar, exept that it reates a new integer node in the heap.

(3.43)

o Mkint : i s d n : v h m

=) o i a : s d v h[a : NNum n℄ m

To perform the inverse operation we use Get. This is spei�ed by two transitions. In the �rst

we see how Get treats a boolean on top of the stak.

(3.44)

o Get : i a : s d v h[a : NConstr t [℄℄ m

=) o i s d t : v h m

In the seond, we see how Get treats a number.

(3.45)

o Get : i a : s d v h[a : NNum n℄ m

=) o i s d n : v h m

Finally, to make use of booleans on the V-stak we use a simpli�ed Casejump instrution that

inspets the V-stak to determine whih instrution stream to use. This new instrution is alled

Cond, and is spei�ed by the following two transitions. In the �rst { with the value on top of

the V-stak being true { we selet the �rst ode sequene: t .

(3.46)

o Cond t f : i s d 2 : v h m

=) o t ++ i s d v h m

In the seond transition we see that with a false value on top of the V-stak Cond selets its

seond ode sequene: f .

(3.47)

o Cond t f : i s d 1 : v h m

=) o f ++ i s d v h m

Exerise 3.40. Extend the instrution data type, rede�ne the showInstrution funtion, implement

the new instrution transitions and modify the dispath funtion.

We now onsider the { rather extensive { modi�ations to the ompiler.

3.9.4 The ompiler

Beause of the extra state omponent, the ompile funtion must initialise the V-stak ompo-

nent to be empty.
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> ompile :: CoreProgram -> GmState

> ompile program

> = ([℄, initialCode, [℄, [℄, [℄, heap, globals, statInitial)

> where (heap, globals) = buildInitialHeap program

Stritly speaking, this is all that is neessary to make the mahine work, but we have introdued

the V-stak so that we an ompile arithmeti funtions `in-line', so this is what we intend our

ode to do.

> buildInitialHeap :: CoreProgram -> (GmHeap, GmGlobals)

> buildInitialHeap program

> = mapAuml alloateS hInitial ompiled

> where ompiled = map ompileS (preludeDefs ++ program ++ primitives)

Beause of the hanges to the transitions for the primitive instrution, we must hange the ode

for eah ompiled primitive. Instead of hand ompiling this ode { as we did for the Mark 6

mahine { we an instead give this job to the ompiler. This of ourse relies on the fat that

the ompiler is lever enough to optimise the ode it produes, otherwise we never generate any

Add instrutions!

> primitives :: [(Name,[Name℄,CoreExpr)℄

> primitives

> = [("+", ["x","y"℄, (EAp (EAp (EVar "+") (EVar "x")) (EVar "y"))),

> ("-", ["x","y"℄, (EAp (EAp (EVar "-") (EVar "x")) (EVar "y"))),

> ("*", ["x","y"℄, (EAp (EAp (EVar "*") (EVar "x")) (EVar "y"))),

> ("/", ["x","y"℄, (EAp (EAp (EVar "/") (EVar "x")) (EVar "y"))),

We also need to add the negation funtion.

> ("negate", ["x"℄, (EAp (EVar "negate") (EVar "x"))),

Comparison funtions are almost idential to the dyadi arithmeti funtions.

> ("==", ["x","y"℄, (EAp (EAp (EVar "==") (EVar "x")) (EVar "y"))),

> ("~=", ["x","y"℄, (EAp (EAp (EVar "~=") (EVar "x")) (EVar "y"))),

> (">=", ["x","y"℄, (EAp (EAp (EVar ">=") (EVar "x")) (EVar "y"))),

> (">", ["x","y"℄, (EAp (EAp (EVar ">") (EVar "x")) (EVar "y"))),

> ("<=", ["x","y"℄, (EAp (EAp (EVar "<=") (EVar "x")) (EVar "y"))),

> ("<", ["x","y"℄, (EAp (EAp (EVar "<") (EVar "x")) (EVar "y"))),

Finally, we ought to inlude the onditional funtion, and some superombinators to represent

boolean values.

> ("if", ["","t","f"℄,

> (EAp (EAp (EAp (EVar "if") (EVar "")) (EVar "t")) (EVar "f"))),

> ("True", [℄, (EConstr 2 0)),

> ("False", [℄, (EConstr 1 0))℄
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B[[e℄℄ � ompiles ode that evaluates an expression e to WHNF, in an

environment �, leaving the result on the V stak.

B[[i ℄℄ � = [Pushbasi i ℄

B[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

B[[e℄℄ �

0

++ [Pop n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

B[[letre x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

B[[e℄℄ �

0

++ [Pop n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

B[[e

0

+ e

1

℄℄ � = B[[e

1

℄℄ � ++ B[[e

0

℄℄ � ++ [Add℄

And similarly for other arithmeti expressions

B[[e

0

== e

1

℄℄ � = B[[e

1

℄℄ � ++ B[[e

0

℄℄ � ++ [Eq℄

And similarly for other omparison expressions

B[[negate e℄℄ � = B[[e℄℄ � ++ [Neg℄

B[[if e

0

e

1

e

2

℄℄ � = B[[e

0

℄℄ � ++ [Cond (B[[e

1

℄℄ �) (B[[e

2

℄℄ �)℄

B[[e℄℄ � = E [[e℄℄ � ++ [Get℄ the default ase

Figure 3.18: The B ompilation sheme

The B ompilation sheme

The B sheme, shown in Figure 3.18, onstitutes another type of ontext. To be ompiled by

the B sheme, an expression must not only be known to need evaluation to WHNF, it must also

be an expression of type integer or boolean. The following expressions will propagate through

the B sheme:

� If let(re) � in e ours in a B-strit ontext then the expression e is also in a B-strit

ontext.

� If the expression if e

0

e

1

e

2

ours in a B-strit ontext then the expressions e

0

, e

1

and

e

2

also our in B-strit ontexts.

� If e

0

� e

1

ours in a B-strit ontext, with � being a omparison or arithmeti operator,

then the expressions e

0

and e

1

also our in B-strit ontexts.

� If negate e ours in a B-strit ontext then so does the expression e.

If we annot reognise any of the speial ases of expression, then the ompiled ode will evaluate

the expression using the E sheme, and then perform a Get instrution. The Get instrution

unboxes the value left on top of the stak by the E sheme and moves it to the V-stak.
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This has left unspei�ed how we know that an expression is initially in a B-strit ontext. The

usual situation is that we generate a B-strit ontext from the usual strit ontext: E , with the

additional knowledge that the value is of type integer or boolean.

Exerise 3.41. Implement the B ompiler sheme.

The E ompilation sheme

The E sheme { de�ned in Figure 3.19 { spei�es that we should give speial treatment to arith-

meti and omparison funtion alls. It di�ers from the version we used for the Mark 6 mahine

beause we make use of the B sheme to perform the arithmeti and omparison operations. A-

gain, if there are no speial ases, then we must use a default method to ompile the expression.

This is simply to build the graph, using the C sheme, and then plae an Eval instrution in

the ode stream. This will ensure that the graph is evaluated to WHNF.

Exerise 3.42. Implement the new E ompiler sheme.

The R ompilation sheme

We also take this opportunity to improve the R sheme. Firstly, we wish to reate opportunities

for the B sheme to be used. We are also attempting to redue the number of instrutions that

are exeuted at the end of a funtion's ode sequene. The new ompilation shemes for the R

sheme are given in Figure 3.20. It has been expanded from the version we used in the Mark 6

mahine; in that it now works like a ontext. We refer to this ontext as R-strit. An expression

being ompiled in a R-strit ontext will be evaluated to WHNF, and it will then be used to

overwrite the urrent redex. It obeys the following rules of propagation.

� The expression in the body of a superombinator de�nition is in an R-strit ontext.

� If let(re) � in e ours in an R-strit ontext then the expression e is also in an

R-strit ontext.

� If the expression if e

0

e

1

e

2

ours in an R-strit ontext then the expressions e

1

and e

2

are also in an R-strit ontext. (The expression e

0

will now appear in a B-strit ontext.)

� If ase e of alts ours in an R-strit ontext then the expression e is in a strit ontext.

Furthermore, the expression part of eah alternative will our in an R-strit ontext.

Exerise 3.43. Implement the R sheme in Figure 3.20. Note that you an use the generality of the

ompileAlts funtion to implement both the A

R

and A

E

shemes.

One point worth noting about the Mark 7 mahine is that we did not de�ne the Eval instrution

to save the urrent V-stak on the dump. This is in ontrast to the G-mahine desribed in

[Peyton Jones 1987℄. Whether you do this is really a matter of taste in the abstrat mahines

we have produed in this book. In ompiling ode for a real mahine we would be likely to

try to minimise the number of staks. When this is the ase, we will wish to use the following

alternative transition for Eval.
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E [[e℄℄ � ompiles ode that evaluates an expression e to WHNF in envi-

ronment �, leaving a pointer to the expression on top of the stak.

E [[i ℄℄ � = [Pushint i ℄

E [[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[letre x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ �

= [Allo n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

E [[e℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

E [[ase e of alts℄℄ � = E [[e℄℄ � ++ [Casejump D

E

[[alts℄℄ �℄

E [[Pak{t,a} e

1

: : : e

a

℄℄ � = C[[e

a

℄℄ � ++ : : : C[[e

1

℄℄ � ++ [Pak t a℄

E [[e

0

+ e

1

℄℄ � = B[[e

0

+ e

1

℄℄ � ++ [Mkint℄

And similarly for other arithmeti expressions

E [[e

0

== e

1

℄℄ � = B[[e

0

== e

1

℄℄ � ++ [Mkbool℄

And similarly for other omparison expressions

E [[negate e℄℄ � = B[[negate e℄℄ � ++ [Mkint℄

E [[if e

0

e

1

e

2

℄℄ � = B[[e

0

℄℄ � ++ [Cond (E [[e

1

℄℄ �) (E [[e

2

℄℄ �)℄

E [[e℄℄ � = C[[e℄℄ � ++ [Eval℄ the default ase

D

E

[[alts℄℄ � ompiles the ode for the alternatives in a ase expression.

D

E

[[alt

1

: : : alt

n

℄℄ � = [A

E

[[alt

1

℄℄ �; : : : ; A

E

[[alt

n

℄℄ �℄

A

E

[[alt ℄℄ � ompiles the ode for an alternative in a ase expression.

A

E

[[<t> x

1

: : : x

n

-> body ℄℄ �

= t -> [Split n℄ ++ E [[body ℄℄ �

0

++ [Slide n℄

where �

0

= �

+n

[x

1

7! 0 : : : x

n

7! n � 1℄

Figure 3.19: The Mark 7 E , D

E

and A

E

ompilation shemes
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R[[e℄℄ � d generates ode whih instantiates the expression e in environ-

ment �, for a superombinator of arity d , and then proeeds to unwind

the resulting stak.

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= C[[e

1

℄℄ �

+0

++ : : : ++

C[[e

n

℄℄ �

+(n�1)

++

R[[e℄℄ �

0

(n + d)

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

R[[letre x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= [Allo n℄ ++

C[[e

1

℄℄ �

0

++ [Update n � 1℄ ++ : : : ++

C[[e

n

℄℄ �

0

++ [Update 0℄ ++

R[[e℄℄ �

0

(n + d)

where �

0

= �

+n

[x

1

7! n � 1; : : : ; x

n

7! 0℄

R[[if e

0

e

1

e

2

℄℄ � d = B[[e

0

℄℄ � ++ [Cond [R[[e

1

℄℄ � d ; R[[e

2

℄℄ � d ℄℄

R[[ase e of alts℄℄ � d = E [[e℄℄ � ++ [Casejump D

R

[[alts℄℄ � d ℄

R[[e℄℄ � d = E [[e℄℄ � ++ [Update d ; Pop d ; Unwind℄ the default ase

D

R

[[alts℄℄ � d ompiles the ode for the alternatives in a ase expression.

D

R

[[alt

1

: : : alt

n

℄℄ � d = [A

R

[[alt

1

℄℄ � d ; : : : ; A

R

[[alt

n

℄℄ � d ℄

A

R

[[alt ℄℄ � d ompiles the ode for an alternative in a ase expression.

A

R

[[<t> x

1

: : : x

n

-> body ℄℄ � d

= t -> [Split n℄ ++ R[[body ℄℄ �

0

(n + d)

where �

0

= �

+n

[x

1

7! 0 : : : x

n

7! n � 1℄

Figure 3.20: The Mark 7 R, D

R

, and A

R

ompilation shemes

(3.48)

o Eval : i a : s d v h m

=) o [Unwind℄ [a℄ hi ; s; vi : d [℄ h m

Exerise 3.44. Implement this alternative transition for Eval. What are the other instrutions that

will need to be hanged to allow for this new transition?

Exerise 3.45. What ompilation rules would you hange to produe optimised ode for the boolean

operators &, | and not?

Exerise 3.46. Add a Return instrution with transition:

(3.49)

o [Return℄ [a

0

; : : : ; a

k

℄ hi ; si : d v h m

=) o i a

k

: s d v h m
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This is used by the R sheme in plae of Unwind when the item on top of the stak is known to be

in WHNF. Modify ompileR to generate this new instrution.

Exerise 3.47. Write out the transition for UpdateInt n. This instrution performs the same ations as

the sequene [Mkint, Update n℄. Implement this transition and a similar one for UpdateBool n.

Modify ompileR to generate these instrutions instead of the original sequenes.

Why are the new instrutions preferred to the original sequenes? (Hint: use the statistis from

some sample programs.)

3.10 Conlusions

The approah that we have taken in this hapter is a very useful one when designing large piees

of software. First we start with something very simple, and then by a number of gradual hanges

we produe a very large and ompliated piee of software. It would be misleading to laim that

this is always possible by a proess of small, inremental, hanges. In fat the material presented

as part of the Mark 1 mahine was spei�ally designed with the Mark 7 mahine in mind.

For the moment, however, we have produed a reasonably eÆient mahine. In the next hapter

we will look at the TIM.
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> module Tim where

> import Utils

> import Language
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Chapter 4

TIM: the three instrution mahine

TIM, the Three Instrution Mahine, at �rst appears to be a very di�erent form of redution

mahine from those we have seen so far. Nevertheless, it turns out that we an transform a G-

mahine into a TIM in a series of relatively simple steps. In this hapter we desribe these steps,

thereby showing how the TIM works, de�ne a omplete minimal TIM ompiler and evaluator,

and then develop a sequene of improvements and optimisations to it.

TIM was invented by Fairbairn and Wray, and their original paper [Fairbairn and Wray 1987℄

is well worth reading. It desribes TIM in a ompletely di�erent way from the approah taken

in this hapter. The material developed in this hapter goes onsiderably beyond Fairbairn and

Wray's work, however, so the level of detail inreases in later setions where less well-known

ideas are disussed and implemented. Many of the new ideas presented are due to Guy Argo

and are presented in his FPCA paper [Argo 1989℄ and his Ph.D. thesis [Argo 1991℄.

4.1 Bakground: How TIM works

Consider the following funtion de�nition:

f x y = g E1 E2

where E1 and E2 are arbitrary (and perhaps omplex) expressions, and g is some other fun-

tion. Both the template instantiation mahine (Chapter 2) and the G-mahine (Chapter 3) will

perform the following redution:

� redues to �

/ \ / \

� y � E2

/ \ / \

f x g E1

The G-mahine will take quite a few (simple) instrutions to do this, whereas the template

mahine does it in one (ompliated) step, but the net result is the same.
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In this piture, E1 and E2 are the graphs of the expressions E1 and E2. For example, if E1 was

(x+y)*(x-y), the �rst argument of g would be a graph of (x+y)*(x-y). This graph has to be

laboriously built in the heap (by ode generated by the C ompilation sheme). Sadly this might

be wasted work, beause g might disard its �rst argument without using it. We would like to

�nd some way of limiting the amount of graph-building done for arguments to funtions.

4.1.1 Flattening

Step 1 of our transformation does just this. Suppose we replae the de�nition of f with the

following new one:

f x y = g (1 x y) (2 x y)

1 x y = E1

2 x y = E2

We have invented two auxiliary funtions, 1 and 2. This de�nition is plainly equivalent to the

old one, but no matter how large or ompliated E1 is, the only work done during the f redution

is to build the graph of (1 x y).

Better still, for a G-mahine implementation, there is a further bene�t whih we get automat-

ially. With the �rst de�nition, E1 would be ompiled by the C sheme; no advantage an be

taken of the optimisations present in the E sheme when ompiling arithmeti expressions. But

with the seond de�nition, the expression E1 is now the right-hand side of a superombinator,

so all these optimisations apply. We an evaluate (x+y)*(x-y) muh more eÆiently in this

way.

Of ourse, E1 and E2 might themselves ontain large expressions whih will get ompiled with

the C sheme (for example, suppose E2 was (h E3 E4)), so we must apply the transformation

again to the right-hand sides of 1 and 2. The result is a attened program, so-alled beause

no expression has a nested struture.

4.1.2 Tupling

The next observation is that both 1 and 2 are applied to both x and y, so we have to onstrut

the graphs of (1 x y) and (2 x y) before alling g. If 1 and 2 had lots of arguments,

rather than just two, the graphs ould get quite big. The two graphs are so similar to eah

other that it is natural to ask whether these argument graphs ould share some ommon part to

avoid dupliation, and thereby redue heap alloation. We an express this idea with a seond

transformation:

f x y = let tup = (x,y)

in g (1 tup) (2 tup)

1 (x,y) = E1

2 (x,y) = E2

The idea is that f �rst pakages up its arguments into a tuple, and then passes this single tuple

to 1 and 2. With this de�nition of f, the f-redution looks like this:
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� redues to �

/ \ / \

� y / �

/ \ � / \

f x / \ 2 \

g � \

/ \_____\

1 \

-----

| -|---> x

-----

| -|---> y

-----

4.1.3 Spinelessness

Looking at the previous piture, you an see that the arguments pointed to by the spine are

always of the form ( tup), for some superombinator  and tuple tup. During redution, we

build up a stak of pointers to these arguments. But sine they are now all of the same form,

we ould instead stak the (root of) the arguments themselves! So, after the f-redution, the

stak would look like this:

| | |

|-------------- |

| 2 | ----|---\

|---------------| \ ---------------

| 1 | ------------> | | | x

|---------------| |-------------|

| | | y

---------------

Eah item on the spine stak is now a pair of a ode pointer and a pointer to a tuple. You an

think of this pair as an appliation node, the ode de�ning a funtion whih is being applied to

the tuple. On entry to f, the (roots of the) arguments x and y were on the stak, so the tuple

of x and y is atually a tuple of ode pointer/tuple pointer pairs.

A ode pointer/tuple pointer pair is alled a losure, and a tuple of suh losures is alled a

frame. A pointer to a frame is alled a frame pointer. Notie that there is no spine in the heap

any more; the stak is the spine of the expression being evaluated. TIM is a spineless mahine.

4.1.4 An example

It is time for an example of how a TIM program might work. Consider the funtion ompose2,

de�ned like this:

ompose2 f g x = f (g x x)
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The `attened' form of ompose2 would be

ompose2 f g x = f (1 g x)

1 g x = g x x

When ompose2 is entered, its three arguments will be on top of the stak, like this:

| | |

|---------------|

x | x-ode| x-frm |

|---------------|

g | g-ode| g-frm |

|---------------|

f | f-ode| f-frm |

|---------------|

The �rst thing to do is to form the tuple (frame) of these three arguments in the heap. We an

then remove them from the stak. We will keep a pointer to the new frame in a speial register,

alled the frame pointer. This is done by the instrution

Take 3

The state of the mahine now looks like this:

| | |

|---------------|

-----------------

Frame ptr ------------------------> f | f-ode| f-frm |

|---------------|

g | g-ode| g-frm |

|---------------|

x | x-ode| x-frm |

-----------------

Next, we have to prepare the arguments for f. There is only one, namely (g x x), and we want

to push a losure for it onto the stak. The frame pointer for the losure is just the urrent

frame pointer register, and so the instrution need only supply a ode label:

Push (Label "1")

Finally, we want to jump to f. Sine f is an argument to ompose, not a global superombinator,

f is represented by a losure in the urrent frame. What we must do is feth the losure, load

its frame pointer into the frame pointer register, and its ode pointer into the program ounter.

This is done by the instrution:

Enter (Arg 1) -- f is argument 1
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After this instrution, the state of the mahine is like this:

| | |

|---------------| -----------------

| 1 | ----|-----------> f | f-ode| f-frm |

|---------------| |---------------|

g | g-ode| g-frm |

Frame ptr: f-frm |---------------|

Program tr: f-ode x | x-ode| x-frm |

-----------------

That is it! The main body of ompose2 onsists of just these three instrutions:

ompose2: Take 3 -- 3 arguments

Push (Label "1") -- losure for (g x x)

Enter (Arg 1) -- f is argument 1

We still need to deal with the label 1, though. When the losure for (g x x) is needed, it will

be entered with the Enter instrution, so that the program ounter will point to 1, and the

frame pointer to the original frame ontaining f, g and x. At this point, all we need do is to

prepare the argument for g, namely x, and enter g:

1: Push (Arg 3) -- x is argument 3

Push (Arg 3) -- x again

Enter (Arg 2) -- g is argument 2

The Push (Arg 3) instrution fethes a opy of the losure for x from the urrent frame, and

pushes it onto the stak. Then the Enter (Arg 2) instrution applies g to the argument(s) now

on the stak

1

.

4.1.5 De�ning the mahine with state transition rules

You an see why it is alled the Three Instrution Mahine: there are three dominant instru-

tions: Take, Push and Enter. In some ways, it is rather optimisti to laim that it has only three

instrutions, beause Push and Enter both have several `addressing modes' and, furthermore,

we will need to invent quite a few brand new instrutions in due ourse. Still, it makes a nie

name.

As usual, we use state transition rules to express the preise e�et of eah instrution. First of

all we must de�ne the state of the mahine. It is a quintuple:

(instrutions, frame pointer, stak, heap, ode store)

or (i ; f ; s; h; ) for short. The ode store is the only item whih has not already been desribed.

It ontains a olletion of piees of ode, eah of whih has a label. In pratie, the ode

store ontains the ompiled superombinator de�nitions, eah labelled with the name of the

1

There might be more than just two if the stak was non-empty when the (g x x) losure was entered.
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superombinator, though in priniple it ould also ontain other labelled ode fragments if that

proved useful.

We now develop the transition rules for eah of the instrutions. Take n forms the top n elements

of the stak into a new frame, and makes the urrent frame pointer point to it.

(4.1)

Take n : i f 

1

: : : : : 

n

: s h 

=) i f

0

s h[f

0

: h

1

; : : : ; 

n

i℄ 

Now we ome to the rules for Push and Enter. These two instrutions have just the same

addressing modes (Arg, Label and so on), and there is a very de�nite relationship between

them, whih we dignify with a formal statement:

The Push/Enter relationship. If the instrution Push arg pushes a losure (i ; f ) onto

the stak, then Enter arg will load i into the program ounter and f into the urrent

frame pointer.

The instrution Push (Arg n) fethes the nth losure from the urrent frame, and pushes it onto

the stak.

(4.2)

Push (Arg k) : i f s h[f : h(i

1

; f

1

); : : : ; (i

k

; f

k

); : : : ; (i

n

; f

n

)i℄ 

=) i f (i

k

; f

k

) : s h 

Push (Label l) looks up the label l in the ode store, and pushes a losure onsisting of this

ode pointer together with the urrent frame pointer:

(4.3)

Push (Label l) : i f s h [l : i

0

℄

=) i f (i

0

; f ) : s h 

In the ompose example, we had to invent an arbitrary label 1. It is a nuisane having to invent

these labels, and instead we will simply add a new form for the push instrution, Push (Code i),

whih makes the target ode sequene i part of the instrution itself. Thus, instead of

Push (Label "1")

we an write

Push (Code [Push (Arg 3), Push (Arg 3), Enter (Arg 2)℄)

Here is the appropriate state transition rule:

(4.4)

Push (Code i

0

) : i f s h 

=) i f (i

0

; f ) : s h 

So far we have three `addressing modes': Arg, Code, Label. We need to add one more, IntConst,

for integer onstants. For example, the all (f 6) would ompile to the ode
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Push (IntConst 6)

Enter (Label "f")

The Push instrution always pushes a losure (that is, a ode pointer/frame pointer pair) onto

the stak, but in the ase of integer onstants it is not at all obvious what losure it should push.

Sine we need somewhere to store the integer itself, let us `steal' the frame pointer slot for that

purpose

2

. This deision leads to the following rule, where intCode is the (as yet undetermined)

ode sequene for integer losures:

(4.5)

Push (IntConst n) : i f s h 

=) i f (intCode;n) : s h 

What should intCode do? For the present our mahine will do no arithmeti, so an easy solution

is to make intCode the empty ode sequene:

> intCode = [℄

If an integer losure is ever entered, the mahine will jump to the empty ode sequene, whih

will halt exeution. This will allow us to write programs whih return integers, whih is enough

for Mark 1.

So muh for the Push instrution. The rules for the Enter instrution, one for eah addressing

mode, follow diretly from the Push/Enter relationship:

(4.6)

[Enter (Label l)℄ f s h [l : i ℄

=) i f s h 

(4.7)

[Enter (Arg k)℄ f s h[f : h(i

1

; f

1

); : : : ; (i

k

; f

k

); : : : ; (i

n

; f

n

)i℄ 

=) i

k

f

k

s h 

(4.8)

[Enter (Code i)℄ f s h 

=) i f s h 

(4.9)

[Enter (IntConst n)℄ f s h 

=) intCode n s h 

4.1.6 Compilation

We have now given a preise statement of what eah TIM instrution does. It remains to

desribe how to translate a program into TIM instrutions. This we do, as before, using a set

of ompilation shemes. Eah superombinator is ompiled with the SC sheme, whih is given

in Figure 4.1. The initial environment passed into SC binds eah superombinator name to a

Label addressing mode for it. The SC sheme just produes a Take instrution and invokes the

156



SC[[def ℄℄ � is the TIM ode for the superombinator de�nition def , in the

environment �

SC[[f x

1

: : : x

n

= e℄℄ � = Take n : R[[e℄℄ �[x

1

7! Arg 1; : : : ; x

n

7! Arg n℄

R[[e℄℄ � is TIM ode whih applies the value of the expression e in envi-

ronment � to the arguments on the stak.

R[[e

1

e

2

℄℄ � = Push (A[[e

2

℄℄ �) : R[[e

1

℄℄ �

R[[a℄℄ � = Enter (A[[a℄℄ �) where a is an integer, variable,

or superombinator

A[[e℄℄ � is a TIM addressing mode for expression e in environment �.

A[[x ℄℄ � = � x where x is bound by �

A[[n℄℄ � = IntConst n where n is an integer

A[[e℄℄ � = Code (R[[e℄℄ �) otherwise

Figure 4.1: The SC, R and A ompilation shemes

R sheme, passing it an environment augmented by bindings whih say what addressing mode

to use for eah argument.

The R sheme (Figure 4.1) simply pushes arguments onto the stak until it �nds a variable or

superombinator, whih it enters. It uses the A sheme to generate the orret addressing mode.

Notie the way that the attening proess desribed in Setion 4.1.1 is arried out `on the y'

by these rules.

For the present, we omit arithmeti, data strutures, ase analysis and let(re) expressions.

They will all be added later.

4.1.7 Updating

So far there has been no mention of updating. That is beause, now that the spine has van-

ished, there are no spine nodes to update! Indeed, the mahine as so far desribed is a tree-

redution mahine. Shared arguments may be evaluated repeatedly. Doing updates properly

is the Ahilles' heel of spineless implementations. It is utterly neessary, beause otherwise an

unbounded amount of work ould be dupliated, yet it adds omplexity whih loses some of the

elegane and speed (dupliation aside) of the non-updating version.

We will return to updating later in Setion 4.5, but meanwhile it is enough to implement the

non-updating version.

2

We are making the impliit assumption that an integer is no larger than a frame pointer, whih is usually

true in pratie.
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4.2 Mark 1: A minimal TIM

In this setion we will develop a minimal, but omplete, TIM implementation, without arith-

meti, data strutures or updates. These will be added in subsequent setions.

4.2.1 Overall struture

The struture is muh the same as for the template instantiation interpreter. The run funtion

is the omposition of four funtions, parse, ompile, eval and showResults, just as before.

The type of parse is given in Chapter 1; the types for the other three are given below:

> runProg :: [Char℄ -> [Char℄

> ompile :: CoreProgram -> TimState

> eval :: TimState -> [TimState℄

> showResults :: [TimState℄ -> [Char℄

>

> runProg = showResults . eval . ompile . parse

It is often onvenient to see all the intermediate states, so we also provide fullRun, whih uses

showFullResults to show eah state:

> fullRun :: [Char℄ -> [Char℄

> fullRun = showFullResults . eval . ompile . parse

We need to import the language module:

4.2.2 Data type de�nitions

The data type for TIM instrutions orresponds diretly to the instrutions introdued so far.

> data Instrution = Take Int

> | Enter TimAMode

> | Push TimAMode

The type of addressing modes, timAMode, is separated out as a distint data type to stress the

relationship between Push and Enter.

> data TimAMode = Arg Int

> | Label [Char℄

> | Code [Instrution℄

> | IntConst Int

The state of the TIM mahine is given by the following de�nition:
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> type TimState = ([Instrution℄, -- The urrent instrution stream

> FramePtr, -- Address of urrent frame

> TimStak, -- Stak of arguments

> TimValueStak, -- Value stak (not used yet)

> TimDump, -- Dump (not used yet)

> TimHeap, -- Heap of frames

> CodeStore, -- Labelled bloks of ode

> TimStats) -- Statistis

The value stak and dump are only required later on in this hapter, but it is more onvenient

to add plaeholders for them right away.

We onsider the representation for eah of these omponents in turn.

� The urrent instrution stream is represented by a list of instrutions. In a real mahine

this would be the program ounter together with the program memory.

� The frame pointer is usually the address of a frame in the heap, but there are two other

possibilities: it might be used to hold an integer value, or it might be uninitialised. The

mahine always `knows' whih of these three possibilities to expet, but it is onvenient in

our implementation to distinguish them by using an algebrai data type for framePtr:

> data FramePtr = FrameAddr Addr -- The address of a frame

> | FrameInt Int -- An integer value

> | FrameNull -- Uninitialised

If we do not do this, Miranda will (legitimately) omplain of a type error when we try to

use an address as a number. Furthermore, having a onstrutor for the uninitialised state

FrameNull means that our interpreter will disover if we ever mistakenly try to use an

uninitialised value as a valid address.

� The stak ontains losures, eah of whih is a pair ontaining a ode pointer and a frame

pointer. We represent the stak as a list.

> type TimStak = [Closure℄

> type Closure = ([Instrution℄, FramePtr)

� The value stak and dump are not used at all to begin with, so we represent eah of them

with a dummy algebrai data type whih has just one nullary onstrutor. Later we will

replae these de�nitions with more interesting ones.

> data TimValueStak = DummyTimValueStak

> data TimDump = DummyTimDump

� The heap ontains frames, eah of whih is a tuple of losures. The data type of frames is

important enough to merit an abstrat data type of its own.
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> type TimHeap = Heap Frame

>

> fAllo :: TimHeap -> [Closure℄ -> (TimHeap, FramePtr)

> fGet :: TimHeap -> FramePtr -> Int -> Closure

> fUpdate :: TimHeap -> FramePtr -> Int -> Closure -> TimHeap

> fList :: Frame -> [Closure℄ -- Used when printing

These operations allow frames to be built, and omponents to be extrated and updated.

The �rst element of the list given to fAllo is numbered 1 for the purposes of fGet and

fUpdate. Here is a simple implementation based on lists.

> type Frame = [Closure℄

>

> fAllo heap xs = (heap', FrameAddr addr)

> where

> (heap', addr) = hAllo heap xs

>

> fGet heap (FrameAddr addr) n = f !! (n-1)

> where

> f = hLookup heap addr

>

> fUpdate heap (FrameAddr addr) n losure

> = hUpdate heap addr new_frame

> where

> frame = hLookup heap addr

> new_frame = take (n-1) frame ++ [losure℄ ++ drop n frame

>

> fList f = f

� For eah label, the ode store gives the orresponding ompiled ode:

> type CodeStore = ASSOC Name [Instrution℄

We take the opportunity to provide a lookup funtion for labels, whih generates an error

message if it fails:

> odeLookup :: CodeStore -> Name -> [Instrution℄

> odeLookup store l

> = aLookup store l (error ("Attempt to jump to unknown label "

> ++ show l))

� As usual, we make the statistis into an abstrat data type whih we an add to easily:

> statInitial :: TimStats

> statInSteps :: TimStats -> TimStats

> statGetSteps :: TimStats -> Int

The �rst implementation, whih ounts only the number of steps, is rather simple:
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> type TimStats = Int -- The number of steps

> statInitial = 0

> statInSteps s = s+1

> statGetSteps s = s

Finally, we need the ode for heaps and staks:

> -- :a util.lhs -- heap data type and other library funtions

4.2.3 Compiling a program

ompile works very muh like the template instantiation ompiler, reating an initial mahine s-

tate from the program it is given. The main di�erene lies in the ompilation funtion ompileSC

whih is applied to eah superombinator.

> ompile program

> = ([Enter (Label "main")℄, -- Initial instrutions

> FrameNull, -- Null frame pointer

> initialArgStak, -- Argument stak

> initialValueStak, -- Value stak

> initialDump, -- Dump

> hInitial, -- Empty heap

> ompiled_ode, -- Compiled ode for superombinators

> statInitial) -- Initial statistis

> where

> s_defs = preludeDefs ++ program

> ompiled_s_defs = map (ompileSC initial_env) s_defs

> ompiled_ode = ompiled_s_defs ++ ompiledPrimitives

> initial_env = [(name, Label name) | (name, args, body) <- s_defs℄

> ++ [(name, Label name) | (name, ode) <- ompiledPrimitives℄

For the moment, the argument stak is initialised to be empty.

> initialArgStak = [℄

For now the value stak and dump are initialised to their dummy values. Later we will hange

these de�nitions.

> initialValueStak = DummyTimValueStak

> initialDump = DummyTimDump

The ompiled superombinators, ompiled_s_defs, is obtained by ompiling eah of the su-

perombinators in the program, using ompileSC. The initial environment passed to ompileSC

gives a suitable addressing mode for eah superombinator. The ode store, ompiled_ode, is

obtained by ombining ompiled_s_defs with ompiledPrimitives. The latter is intended

to ontain ompiled ode for built-in primitives, but it is empty for the present:

161



> ompiledPrimitives = [℄

Unlike the template mahine and the G-mahine, the initial heap is empty. The reason for a

non-empty initial heap in those ases was to retain sharing for CAFs (that is, superombinators

with no arguments { Setion 2.1.6). In this initial version of the TIM mahine, the ompiled

TIM ode for a CAF will be exeuted eah time it is alled, so the work of evaluating the CAF

is not shared. We will address this problem muh later, in Setion 4.7.

The heart of the ompiler is a diret translation of the ompilation shemes SC, R and A into the

funtions ompileSC, ompileR and ompileA respetively. The environment, �, is represented

by an assoiation list binding names to addressing modes. The G-mahine ompiler used a

mapping from names to stak o�sets, but the extra exibility of using addressing modes turns

out to be rather useful.

> type TimCompilerEnv = [(Name, TimAMode)℄

Now we are ready to de�ne ompileSC:

> ompileSC :: TimCompilerEnv -> CoreSDefn -> (Name, [Instrution℄)

> ompileSC env (name, args, body)

> = (name, Take (length args) : instrutions)

> where

> instrutions = ompileR body new_env

> new_env = (zip2 args (map Arg [1..℄)) ++ env

ompileR takes an expression and an environment, and delivers a list of instrutions:

> ompileR :: CoreExpr -> TimCompilerEnv -> [Instrution℄

> ompileR (EAp e1 e2) env = Push (ompileA e2 env) : ompileR e1 env

> ompileR (EVar v) env = [Enter (ompileA (EVar v) env)℄

> ompileR (ENum n) env = [Enter (ompileA (ENum n) env)℄

> ompileR e env = error "ompileR: an't do this yet"

> ompileA :: CoreExpr -> TimCompilerEnv -> TimAMode

> ompileA (EVar v) env = aLookup env v (error ("Unknown variable " ++ v))

> ompileA (ENum n) env = IntConst n

> ompileA e env = Code (ompileR e env)

4.2.4 The evaluator

Next we need to de�ne how the evaluator atually works. The de�nition of eval is exatly as

for the template instantiation mahine:

> eval state

> = state : rest_states where
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> rest_states | timFinal state = [℄

> | otherwise = eval next_state

> next_state = doAdmin (step state)

>

> doAdmin state = applyToStats statInSteps state

The timFinal funtion says when a state is a �nal state. We ould invent a Stop instrution,

but it is just as easy to say that we have �nished when the ode sequene is empty:

> timFinal ([℄, frame, stak, vstak, dump, heap, store, stats) = True

> timFinal state = False

The applyToStats funtion just applies a funtion to the statistis omponent of the state:

> applyToStats stats_fun (instr, frame, stak, vstak,

> dump, heap, store, stats)

> = (instr, frame, stak, vstak, dump, heap, store, stats_fun stats)

Taking a step

step does the ase analysis whih takes a single instrution and exeutes it. The Take equation

is a straightforward transliteration of the orresponding state transition rule (4.1):

> step ((Take n:instr), fptr, stak, vstak, dump, heap, store,stats)

> | length stak >= n = (instr, fptr', drop n stak, vstak, dump, heap', store, stats)

> | otherwise = error "Too few args for Take instrution"

> where (heap', fptr') = fAllo heap (take n stak)

The equations for Enter and Push take advantage of the Push/Enter relationship by using a

ommon funtion amToClosure whih onverts a timAMode to a losure:

> step ([Enter am℄, fptr, stak, vstak, dump, heap, store, stats)

> = (instr', fptr', stak, vstak, dump, heap, store, stats)

> where (instr',fptr') = amToClosure am fptr heap store

> step ((Push am:instr), fptr, stak, vstak, dump, heap, store, stats)

> = (instr, fptr, amToClosure am fptr heap store : stak,

> vstak, dump, heap, store, stats)

amToClosure delivers the losure addressed by the addressing mode whih is its �rst argument:

> amToClosure :: TimAMode -> FramePtr -> TimHeap -> CodeStore -> Closure

> amToClosure (Arg n) fptr heap store = fGet heap fptr n

> amToClosure (Code il) fptr heap store = (il, fptr)

> amToClosure (Label l) fptr heap store = (odeLookup store l, fptr)

> amToClosure (IntConst n) fptr heap store = (intCode, FrameInt n)

163



4.2.5 Printing the results

As with the template instantiation version we need a rather boring olletion of funtions to

print the results in a sensible way. It is often useful to print out the superombinator de�nitions,

so showResults begins by doing so, using the de�nitions in the �rst state:

> showFullResults states

> = iDisplay (iConat [

> iStr "Superombinator definitions", iNewline, iNewline,

> showSCDefns first_state, iNewline, iNewline,

> iStr "State transitions", iNewline,

> iLayn (map showState states), iNewline, iNewline,

> showStats (last states)

> ℄)

> where

> (first_state:rest_states) = states

showResults just shows the last state and some statistis:

> showResults states

> = iDisplay (iConat [

> showState last_state, iNewline, iNewline, showStats last_state

> ℄)

> where last_state = last states

The rest of the funtions are straightforward. showSCDefns displays the ode for eah super-

ombinator.

> showSCDefns :: TimState -> Iseq

> showSCDefns (instr, fptr, stak, vstak, dump, heap, store, stats)

> = iInterleave iNewline (map showSC store)

> showSC :: (Name, [Instrution℄) -> Iseq

> showSC (name, il)

> = iConat [

> iStr "Code for ", iStr name, iStr ":", iNewline,

> iStr " ", showInstrutions Full il, iNewline, iNewline

> ℄

showState displays a TIM mahine state.

> showState :: TimState -> Iseq

> showState (instr, fptr, stak, vstak, dump, heap, store, stats)

> = iConat [

> iStr "Code: ", showInstrutions Terse instr, iNewline,

> showFrame heap fptr,
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> showStak stak,

> showValueStak vstak,

> showDump dump,

> iNewline

> ℄

showFrame shows the frame omponent of a state, using showClosure to display eah of the

losures inside it.

> showFrame :: TimHeap -> FramePtr -> Iseq

> showFrame heap FrameNull = iStr "Null frame ptr" `iAppend` iNewline

> showFrame heap (FrameAddr addr)

> = iConat [

> iStr "Frame: <",

> iIndent (iInterleave iNewline

> (map showClosure (fList (hLookup heap addr)))),

> iStr ">", iNewline

> ℄

> showFrame heap (FrameInt n)

> = iConat [ iStr "Frame ptr (int): ", iNum n, iNewline ℄

showStak displays the argument stak, using showClosure to display eah losure.

> showStak :: TimStak -> Iseq

> showStak stak

> = iConat [ iStr "Arg stak: [",

> iIndent (iInterleave iNewline (map showClosure stak)),

> iStr "℄", iNewline

> ℄

For the present, showValueStak and showDump, whih display the value stak and dump, are

stubs for now, beause we are not using these omponents of the state.

> showValueStak :: TimValueStak -> Iseq

> showValueStak vstak = iNil

> showDump :: TimDump -> Iseq

> showDump dump = iNil

showClosure displays a losure, using showFramePtr to display the frame pointer.

> showClosure :: Closure -> Iseq

> showClosure (i,f)

> = iConat [ iStr "(", showInstrutions Terse i, iStr ", ",

> showFramePtr f, iStr ")"

> ℄
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> showFramePtr :: FramePtr -> Iseq

> showFramePtr FrameNull = iStr "null"

> showFramePtr (FrameAddr a) = iStr (show a)

> showFramePtr (FrameInt n) = iStr "int " `iAppend` iNum n

showStats is responsible for printing out aumulated statistis:

> showStats :: TimState -> Iseq

> showStats (instr, fptr, stak, vstak, dump, heap, ode, stats)

> = iConat [ iStr "Steps taken = ", iNum (statGetSteps stats), iNewline,

> iStr "No of frames alloated = ", iNum (hSize heap),

> iNewline

> ℄

Printing instrutions

We are going to need to print instrutions and instrution sequenes. If a sequene of instrutions

is printed as one long line, it is rather hard to read, so it is worth writing some ode to pretty-

print them.

In fat we want to be able to print either the entire ode for an instrution sequene (for example

when printing a superombinator de�nition), or just some abbreviated form of it. An example

of the latter ours when printing the ontents of the stak; it an be helpful to see some part

of the ode in eah losure, but we do not want to see it all! Aordingly, we give an extra

argument, d, to eah funtion to tell it how fully to print. The value of this argument is either

Full, Terse or None.

> data HowMuhToPrint = Full | Terse | None

showInstrutions turns a list of instrutions into an iseq. When d is None, only an ellipsis is

printed. If d is Terse, the instrutions are printed all on one line, and nested instrutions are

printed with d as None. If d is Full, the instrutions are laid out one per line, and printed in

full.

> showInstrutions :: HowMuhToPrint -> [Instrution℄ -> Iseq

> showInstrutions None il = iStr "{..}"

> showInstrutions Terse il

> = iConat [iStr "{", iIndent (iInterleave (iStr ", ") body), iStr "}"℄

> where

> instrs = map (showInstrution None) il

> body | length il <= nTerse = instrs

> | otherwise = (take nTerse instrs) ++ [iStr ".."℄

> showInstrutions Full il

> = iConat [iStr "{ ", iIndent (iInterleave sep instrs), iStr " }"℄

> where

> sep = iStr "," `iAppend` iNewline

> instrs = map (showInstrution Full) il
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showInstrution turns a single instrution into an iseq.

> showInstrution d (Take m) = (iStr "Take ") `iAppend` (iNum m)

> showInstrution d (Enter x) = (iStr "Enter ") `iAppend` (showArg d x)

> showInstrution d (Push x) = (iStr "Push ") `iAppend` (showArg d x)

> showArg d (Arg m) = (iStr "Arg ") `iAppend` (iNum m)

> showArg d (Code il) = (iStr "Code ") `iAppend` (showInstrutions d il)

> showArg d (Label s) = (iStr "Label ") `iAppend` (iStr s)

> showArg d (IntConst n) = (iStr "IntConst ") `iAppend` (iNum n)

nTerse says how many instrutions of a sequene should be printed in terse form.

> nTerse = 3

Exerise 4.1. Run the mahine using the following de�nition of main:

main = S K K 4

Sine S K K is the identity funtion, main should redue to 4, whih halts the mahine. Experiment

with making it a little more elaborate; for example

id = S K K ;

id1 = id id ;

main = id1 4

Exerise 4.2. Add more performane instrumentation. For example:

� Measure exeution time, ounting one time unit for eah instrution exept Take, for whih

you should ount as many time units as the frame has elements.

� Measure the the heap usage, printing the total amount of heap alloated in a run. Take

aount of the size of the frames, so that you an ompare your results diretly with those

from the template instantiation version.

� Measure the maximum stak depth.

Exerise 4.3. If n = 0, then Take n does nothing useful. Adapt the de�nition of ompileSC to spot

this optimisation by omitting the Take instrution altogether for CAFs.

4.2.6 Garbage olletiony

Like any heap-based system, TIM requires a garbage olletor, but it also requires one with a

little added sophistiation. As usual, the garbage olletor �nds all the live data by starting

from the mahine state; that is, from the stak and the frame pointer. Eah losure on the stak

points to a frame, whih must learly be retained. But that frame in turn ontains pointers to

further frames, and so on. The question arises: given a partiular frame, whih frame pointers

within it should be reursively followed?

The safe answer is `follow all of them', but this risks retaining far more data than required.

For example, the losure for (g x x) in the ompose2 example of Setion 4.1.4 has a pointer
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to a frame ontaining f, g and x, but it only requires the losures for g and x. A naive

garbage olletor might follow the frame pointer from f's losure as well, thus retaining data

unneessarily. This unwanted retention is alled a spae leak, and an ause garbage olletion

to our muh more frequently than would otherwise be the ase.

However, this partiular spae leak is straightforward, if rather tedious, to eliminate. Eah

losure onsists of a ode pointer paired with a frame pointer. The ode `knows' whih frame

elements it is going to need, and this information an be reorded with the ode, for the garbage

olletor to examine. For example, what we have been alling a `ode pointer' ould atually

point to a pair, onsisting of a list of slot numbers used by the ode, and the ode itself. (In a

real implementation the list might be enoded as a bit-mask.) How an the list of useful slots

be derived? It is simple: just �nd the free variables of the expression being ompiled, and use

the environment to map them into slot numbers.

4.3 Mark 2: Adding arithmeti

In this setion we will add arithmeti to our mahine.

4.3.1 Overview: how arithmeti works

The original Fairbairn and Wray TIM mahine had a rather devious sheme for doing arithmeti.

Their main motivation was to keep the mahine minimal, but their approah is quite hard to

understand and requires onsiderable massaging to give an eÆient implementation.

Instead, we will modify the TIM in a way exatly analogous to the V-stak of the G-mahine

(Setion 3.9). We modify the state by introduing a value stak, whih is a stak of (evaluated,

unboxed) integers. We extend the instrution set with a family of instrutions Op op whih

perform the arithmeti operation op on the top elements of the value stak, leaving the result

on top of the value stak. For example, the Op Sub instrution removes the top two elements of

the value stak, subtrats them and pushes the result onto the value stak:

(4.10)

Op Sub : i f s n

1

: n

2

: v h 

=) i f s (n

1

� n

2

) : v h 

It is easy to de�ne a omplete family of arithmeti instrutions, Op Add, Op Sub, Op Mult,

Op Div, Op Neg and so on, in this way.

Now onsider the following funtion sub:

sub a b = a - b

What ode should we generate for sub? It has to take the following steps:

1. The usual Take 2 to form its arguments into a frame.

2. Evaluate b, putting its value on the value stak.

3. Evaluate a, doing likewise.
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4. Subtrat the value of b from the value of a, using the Op Sub instrution, whih leaves its

result on top of the value stak.

5. `Return' to the `aller'.

We will onsider the evaluation of a and b �rst. They are represented by losures, held in the

urrent frame, and the only thing we an do to a losure is to enter it. So presumably to evaluate

a we must enter the losure for a, but what does it mean to enter an integer-valued losure? So

far we have only entered funtions, and integers are not funtions. Here is the key idea:

Integer invariant: when an integer-valued losure is entered, it omputes the value of

the integer, pushes it onto the value stak, and enters the top losure on the argument

stak.

The losure on top of the argument stak is alled the ontinuation, beause it says what

to do next, one the evaluation of the integer is omplete. The ontinuation onsists of an

instrution sequene, saying what to do when evaluation of the integer is omplete, and the

urrent frame pointer (in ase it was disturbed by the evaluation of the integer). In other words,

the ontinuation is a perfetly ordinary losure.

So the ode for sub looks like this:

sub: Take 2

Push (Label L1) -- Push the ontinuation

Enter (Arg 2) -- Evaluate b

L1: Push (Label L2) -- Push another ontinuation

Enter (Arg 1) -- Evaluate a

L2: Op Sub -- Compute a-b on value stak

Return

What should the Return instrution do? Sine the value returned by sub is an integer, and after

the Op Sub instrution this integer is on top of the value stak, all Return has to do is to pop

the losure on top of the argument stak and enter it:

(4.11)

[Return℄ f (i

0

; f

0

) : s v h 

=) i

0

f

0

s v h 

We have used labels to write the ode for sub. This is not the only way to do it; an alternative

is to use the Push Code instrution, whih avoids the tiresome neessity of inventing new labels.

In this style the ode for sub beomes:

sub: Take 2

Push (Code [ Push (Code [Op Sub, Return℄),

Enter (Arg 1)

℄)

Enter (Arg 2)
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Written like this, it is less easy to see what is going on than by using labels, so we will ontinue

to use labels in the exposition where it makes ode fragments easier to understand, but we will

use the Push Code version in the ompiler.

Now we must return to the question of integer onstants. Consider the expression (sub 4 2).

It will ompile to the ode

Push (IntConst 2)

Push (IntConst 4)

Enter (Label "sub")

The ode for sub will soon enter the losure (IntConst 2), whih will plae the integer 2 in

the frame pointer and jump to intCode. Currently, intCode is the empty ode sequene (so

that the mahine stops if we ever enter an integer), but we need to hange that. What should

intCode now do? The answer is given by the integer invariant: it must push the integer onto

the value stak and return, thus:

> intCode = [PushV FramePtr, Return℄

PushV FramePtr is a new instrution whih pushes the number urrently masquerading as the

frame pointer onto the top of the value stak:

(4.12)

PushV FramePtr : i n s v h 

=) i n s n : v h 

4.3.2 Adding simple arithmeti to the implementation

Now we are ready to modify our implementation. We keep the modi�ations to a minimum by

adding ode for eah of the arithmeti funtions to ompiledPrimitives. Reall that when we

write (for example) p-q in a program, the parser onverts it to

EAp (EAp (EVar "-") (EVar "p")) (EVar "q")

All we need do is to work out some suitable ode for the primitive -, and add this ode to

the ode store. The ompiler an then treat - in the same way as any other superombinator.

Finally, the ode for - that we want is exatly that whih we developed in the previous setion

for sub, and similar ode is easy to write for other arithmeti operations.

So the steps required are as follows:

� Add the following type de�nition and initialisation for the value stak:

> type TimValueStak = [Int℄

> initialValueStak = [℄

� Add the new instrutions PushV, Return and Op to the instrution data type. We take

the opportunity to add one further instrution, Cond, whih has not yet been disussed

but is the subjet of a later exerise. TIM is no longer a three instrution mahine!
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> data Instrution = Take Int

> | Push TimAMode

> | PushV ValueAMode

> | Enter TimAMode

> | Return

> | Op Op

> | Cond [Instrution℄ [Instrution℄

> data Op = Add | Sub | Mult | Div | Neg

> | Gr | GrEq | Lt | LtEq | Eq | NotEq

> deriving (Eq) -- KH

So far the argument of a PushV instrution an only be FramePtr, but we will shortly add

a seond form whih allows us to push literal onstants onto the value stak. So it is worth

delaring an algebrai data type for valueAMode:

> data ValueAMode = FramePtr

> | IntVConst Int

The showInstrution funtion must be altered to deal with this additional struture.

� Modify the step funtion to implement the extra instrutions. This is just a question of

translating the state transition rules into Miranda.

� Add to ompiledPrimitives suitable de�nitions for +, - and so on.

� Now that intCode is no longer empty, we must initialise the stak to have a suitable

ontinuation (return address) for main to return to. The way to do this is to make ompile

initialise the stak with the losure ([℄,FrameNull), by rede�ning initialArgStak:

> initialArgStak = [([℄, FrameNull)℄

This ontinuation has an empty ode sequene, so the mahine will now halt with the

result on top of the value stak.

Exerise 4.4. Implement these hanges on your prototype. Try it out on some simple examples; for

example

four = 2 * 2

main = four + four

Exerise 4.5. We still annot exeute `interesting' programs, beause we do not yet have a onditional,

and without a onditional we annot use reursion. A simple solution is to add a new instrution

Cond i1 i2, whih removes a value from the top of the value stak, heks whether it was zero

and if so ontinues with instrution sequene i1, otherwise ontinues with i2. Here are its state

transition rules:

(4.13)

[Cond i

1

i

2

℄ f s 0 : v h 

=) i

1

f s v h 

[Cond i

1

i

2

℄ f s n : v h 

=) i

2

f s v h 

where n 6= 0
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The �rst rule mathes if zero is on top of the value stak; otherwise the seond rule applies.

You also need to add a primitive if, whih behaves as follows:

if 0 t f = t

if n t f = f

You need to work out the TIM ode for if, using the Cond instrution, and add it to

ompiledPrimitives. Finally, you an test your improved system with the fatorial funtion:

fatorial n = if n 1 (n * fatorial (n-1))

main = fatorial 3

4.3.3 Compilation shemes for arithmeti

Just as with the G-mahine, we an do a muh better job of ompiling for our mahine than we

are doing at present. Consider a funtion suh as

f x y z = (x+y) * z

As things stand, this will get parsed to

f x y z = * (+ x y) z

and ode for f will get ompiled whih will all the standard funtions * and +. But we ould

do muh better than this! Instead of building a losure for (+ x y) and passing it to *, for

example, we an just do the operations in-line, using the following steps:

1. evaluate x

2. evaluate y

3. add them

4. evaluate z

5. multiply

6. return

No losures need be built and no jumps need our (exept those needed to evaluate x, y and

z).

To express this improvement, we introdue a new ompilation sheme to deal with expressions

whose value is an integer, the B sheme. It is de�ned like this: for any expression e whose value

is an integer, and for any ode sequene ont ,

(B[[e℄℄ � ont) is a ode sequene whih, when exeuted with a urrent frame laid out

as desribed by �, will push the value of the expression e onto the value stak, and

then exeute the ode sequene ont.
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R[[e℄℄ � is TIM ode whih applies the value of the expression e in envi-

ronment � to the arguments on the stak.

R[[e℄℄ � = B[[e℄℄ � [Return℄ where e is an arithmeti ex-

pression, suh as e

1

+ e

2

, or a

number

R[[e

1

e

2

℄℄ � = Push (A[[e

2

℄℄ �) : R[[e

1

℄℄ �

R[[a℄℄ � = Enter (A[[a℄℄ �) where a is a variable, or super-

ombinator

A[[e℄℄ � is a TIM addressing mode for expression e in environment �.

A[[x ℄℄ � = � x where x is bound by �

A[[n℄℄ � = IntConst n where n is an integer onstant

A[[e℄℄ � = Code (R[[e℄℄ �) otherwise

B[[e℄℄ � ont is TIM ode whih evaluates e in environment �, and puts

its value, whih should be an integer, on top of the value stak, and then

ontinues with the ode sequene ont .

B[[e

1

+ e

2

℄℄ � ont = B[[e

2

℄℄ � (B[[e

1

℄℄ � (Op Add : ont))

. . . and similar rules for other arithmeti primitives

B[[n℄℄ � ont = PushV (IntVConst n) : ont where n is a number

B[[e℄℄ � ont = Push (Code ont) : R[[e℄℄ � otherwise

Figure 4.2: Revised ompilation shemes for arithmeti

The ompilation sheme uses a ontinuation-passing style, in whih the ont argument says

what to do after the value has been omputed. Figure 4.2 gives the B ompilation sheme,

together with the revised R and A shemes. When R �nds an expression whih is an arithmeti

expression it alls B to ompile it. B has speial ases for onstants and appliations of arithmeti

operators, whih avoid expliitly pushing the ontinuation. If it enounters an expression whih

it annot handle speially, it just pushes the ontinuation and alls R.

There is one new instrution required, whih is used when B is asked to ompile a onstant.

Then we need an instrution PushV (IntVConst n) to push an integer onstant on the value

stak. Its transition rule is quite simple:

(4.14)

PushV (IntVConst n) : i f s v h 

=) i f s n : v h 

Exerise 4.6. Implement the improved ompilation sheme. Compare the performane of your imple-

mentation with that from before.
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Exerise 4.7. Add a new rule to the R sheme to math a (full) appliation of if. You should be able

to generate muh better ode than you get by alling the if primitive. Implement the hange and

measure the improvement in performane.

Exerise 4.8. Suppose we want to generalise our onditionals to deal with more general arithmeti

omparisons, suh as that required by

fib n = if (n < 2) 1 (fib (n-1) + fib (n-2))

What is required is a new instrution Op Lt whih pops the top two items on the value stak,

ompares them, and pushes 1 or 0 onto the value stak depending on the result of the omparison.

Now the Cond instrution an inspet this result.

Implement a family of suh omparison instrutions, and add speial ases for them to the B

sheme, in exatly the same way as for the other arithmeti operators. Test your improvement.

Exerise 4.9. In the previous exerise, you may have wondered why we did not modify the Cond in-

strution so that it had an extra `omparison mode'. It ould then ompare the top two items on

the value stak aording to this mode, and at aordingly. Why did we not do this?

Hint: what would happen for programs like this?

multipleof3 x = ((x / 3) * 3) == x

f y = if (multipleof3 y) 0 1

The material of this setion is disussed in [Argo 1989℄ and orresponds preisely to the improved

G-mahine ompilation shemes disussed in Chapter 20 of [Peyton Jones 1987℄.

4.4 Mark 3: let(re) expressions

At present the ompiler annot handle let(re) expressions, a problem whih we remedy in

this setion. Two main new ideas are introdued:

� We modify the Take instrution to alloate a frame with extra spae to ontain the

let(re)-bound variables, as well as the formal parameters.

� We introdue the idea of an indiretion losure.

4.4.1 let expressions

When we ompile a let expression, we must generate ode to build new losures for the right-

hand sides of the de�nitions. Where should these new losures be put? In order to treat

let(re)-bound names in the same way as argument names, they have to be put in the urrent

frame

3

. This requires two modi�ations to the run-time mahinery:

� The Take instrution should alloate a frame large enough to ontain losures for all the

let de�nitions whih an our during the exeution of the superombinator. The Take

instrution must be modi�ed to the form Take t n, where t � n. This instrution alloates

a frame of size t , takes n losures from the top of the stak, and puts them into the �rst

n loations of the frame.

3

A hint of the material in this setion is in [Wakeling and Dix 1989℄, but it is not fully worked out.
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� We need a new instrution, Move i a, for moving a new losure a into slot i of the urrent

frame. Here a is of type timAMode as for Push and Enter.

For example, the following de�nition:

f x = let y = f 3 in g x y

would ompile to this ode:

[ Take 2 1,

Move 2 (Code [Push (IntConst 3), Enter (Label "f")℄),

Push (Arg 2),

Push (Arg 1),

Enter (Label "g")

℄

Here is a slightly more elaborate example:

f x = let y = f 3

in

g (let z = 4 in h z) y

whih generates the ode:

[ Take 3 1,

Move 2 (Code [Push (IntConst 3), Enter (Label "f")℄),

Push (Arg 2),

Push (Code [Move 3 (IntConst 4), Push (Arg 3), Enter (Label "h")℄),

Enter (Label "g")

℄

Notie the way that the initial Take alloates spae for all the slots required by any of the

losures in the body of the superombinator.

Exerise 4.10. Write state transition rules for the new Take and Move instrutions.

Next, we need to modify the ompiler to generate the new Take and Move instrutions. When

we enounter a let expression we need to assign a free slot in the frame to eah bound variable,

so we need to keep trak of whih slots in the frame are in use and whih are free. To do this,

we add an extra parameter d to eah ompilation sheme, to reord that the frame slots from

d + 1 onwards are free, but that the slots from 1 to d might be oupied.

The remaining ompliation is that we need to disover the maximum value that d an take, so

that we an alloate a big enough frame with the initial Take instrution. This requires eah

ompilation sheme to return a pair: the ompiled ode, and the maximum value taken by d .

The new ompilation shemes are given in Figure 4.3. (In this �gure, and subsequently, we use

the notation is

1

++ is

2

to denote the onatenation of the instrution sequenes is

1

and is

2

.)
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SC[[def ℄℄ � is the TIM ode for the superombinator de�nition def om-

piled in environment �.

SC[[f x

1

: : : x

n

= e℄℄ � = Take d

0

n : is

where (d

0

; is) = R[[e℄℄ �[x

1

7! Arg 1; : : : ; x

n

7! Arg n℄ n

R[[e℄℄ � d is a pair (d

0

; is), where is is TIM ode whih applies the value

of the expression e in environment � to the arguments on the stak. The

ode is assumes that the �rst d slots of the frame are oupied, and it

uses slots (d + 1 : : : d

0

).

R[[e℄℄ � d = B[[e℄℄ � d [Return℄

where e is an arithmeti expression or a number

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= (d

0

; [Move (d + 1) am

1

; : : : ; Move (d + n) am

n

℄ ++ is)

where (d

1

; am

1

) = A[[e

1

℄℄ � (d + n)

(d

2

; am

2

) = A[[e

2

℄℄ � d

1

: : :

(d

n

; am

n

) = A[[e

n

℄℄ � d

n�1

�

0

= �[x

1

7! Arg (d + 1); : : : ; x

n

7! Arg (d + n)℄

(d

0

; is) = R[[e℄℄ �

0

d

n

R[[e

1

e

2

℄℄ � d = (d

2

; Push am : is)

where (d

1

; am) = A[[e

2

℄℄ � d

(d

2

; is) = R[[e

1

℄℄ � d

1

R[[a℄℄ � d = (d

0

; [Enter am℄)

where a is a onstant, superombinator or loal variable

and (d

0

; am) = A[[a℄℄ � d

A[[e℄℄ � d is a pair (d

0

; am), where am is a TIM addressing mode for

expression e in environment �. The ode assumes that the �rst d slots of

the frame are oupied, and it uses slots (d + 1 : : : d

0

).

A[[x ℄℄ � d = (d ; � x ) where x is bound by �

A[[n℄℄ � d = (d ; IntConst n) where n is an integer onstant

A[[e℄℄ � d = (d

0

; Code is) otherwise

where (d

0

; is) = R[[e℄℄ � d

Figure 4.3: Compilation shemes for let expressions
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In the SC sheme you an see how the maximum frame size d

0

, returned from the ompilation of

the superombinator body, is used to deide how large a Take to perform. In the let expression

ase of the R sheme, for eah de�nition we generate an instrution Move i a, where i is the

number of a free slot in the urrent frame, and a is the result of ompiling e with the A sheme.

Notie the way in whih the ompilation of eah right-hand side is given the index of the last

slot oupied by the previous right-hand side, thus ensuring that all the right-hand sides use

di�erent slots.

Exerise 4.11. Implement the hanges desribed in this setion: add the new instrutions to the

instrution type, add new ases to step and showInstrution to handle them, and implement

the new ompilation shemes.

Exerise 4.12. Consider the program

f x y z = let p = x+y in p+x+y+z

main = f 1 2 3

In the absene of let expressions, it would have to be written using an auxiliary funtion, like this:

f' p x y z = p+x+y+z

f x y z = f' (x+y) x y z

main = f 1 2 3

Compare the ode generated by these two programs, and measure the di�erene in store onsumed

and steps exeuted. What is the main saving obtained by implementing let expressions diretly?

4.4.2 letre expressions

What needs to be done to handle letre expressions as well? At �rst it seems very easy: the

letre ase for the R sheme is exatly the same as the let ase, exept that we need to replae

� by �

0

in the de�nitions of the am

i

. This is beause the x

i

are in sope in their own right-hand

sides.

Exerise 4.13. Implement this extra ase in ompileR, and try it out on the program

f x = letre p = if (x==0) 1 q ;

q = if (x==0) p 2

in p+q

main = f 1

Make sure you understand the ode whih is generated, and test it.

Unfortunately there is a subtle bug in this implementation! Consider the ode generated from:

f x = letre a = b ;

b = x

in a

whih is as follows:

[Take 3 1, Move 2 (Arg 3), Move 3 (Arg 1), Enter (Arg 2)℄
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The losure for b is opied by the �rst Move before it is assigned by the seond Move!

There are two ways out of this. The �rst is to delare that this is a silly program; just replae

b by x in the sope of the binding for b. But there is a more interesting approah whih will be

instrutive later, and whih allows even silly programs like the one above to work. Suppose we

generate instead the following ode for the �rst Move:

Move 2 (Code [Enter (Arg 3)℄)

Now everything will be �ne: slot 3 will be assigned before the Enter (Arg 3) gets exeuted. In

fat you an think of the losure ([Enter (Arg 3)℄, f) as an indiretion to slot 3 of frame f.

This ode an be obtained by modifying the let(re) ase of the R ompilation sheme, so

that it reords an indiretion addressing mode in the environment for eah variable bound by the

let(re). Referring to Figure 4.3, the hange required is to the rule for let in the R sheme,

where the de�nition of �

0

beomes

�

0

= �[x

1

7! I[[d + 1℄℄ ; : : : ; x

n

7! I[[d + n℄℄ ℄

where I[[d ℄℄ = Code [Enter (Arg d)℄

Of ourse, this is rather onservative: it returns an indiretion in lots of ases where it is not

neessary to do so, but the resulting ode will still work �ne, albeit less eÆiently.

Exerise 4.14. Modify ompileR to implement this idea, and hek that it generates orret ode for

the above example. In modifying ompileR use the auxiliary funtion mkIndMode (orresponding

to the I sheme) to generate the indiretion addressing modes in the new environment:

> mkIndMode :: Int -> TimAMode

> mkIndMode n = Code [Enter (Arg n)℄

4.4.3 Reusing frame slotsy

At present, every de�nition on the right-hand side of a superombinator de�nition gets its own

private slot in the frame. Sometimes you may be able to �gure out that you an safely share

slots between di�erent let(re)s. For example, onsider the de�nition

f x = if x (let ... in ...) (let ... in ...)

Now it is plain that only one of the two let expressions an ever be evaluated, so it would be

perfetly safe to use the same slots for their de�nitions.

Similarly, in the expression e

1

+ e

2

, any let(re) slots used during the evaluation of e

1

will be

�nished with by the time e

2

is evaluated (or vie versa if + happened to evaluate its arguments

in the reverse order), so any let(re)-bound variables in e

1

an share slots with those in e

2

.

Exerise 4.15. Modify your ompiler to spot this and take advantage of it.
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4.4.4 Garbage olletiony

In Setion 4.2.6 we remarked that it would be desirable to reord whih frame slots were used by

a ode sequene, so that spae leaks an be avoided. If Take does not initialise the extra frame

slots whih it alloates, there is a danger that the garbage olletor will treat the ontents of

these uninitialised slots as valid pointers, with unpreditable results. The easiest solution is to

initialise all slots, but this is quite expensive. It is better to adopt the solution of Setion 4.2.6,

and reord with eah ode sequene the list of slots whih should be retained. Uninitialised slots

will then never be looked at by the garbage olletor.

4.5 Mark 4: Updating

So far we have been performing tree redution not graph redution, beause we repeatedly

evaluate shared redexes. It is time to �x this. Figuring out exatly how the various ways of

performing TIM updates work is a little triky, but at least we have a prototype implementation

so that our development will be quite onrete.

4.5.1 The basi tehnology

The standard template instantiation mahine and the G-mahine perform an update after every

redution. (The G-mahine has a few optimisations for tail alls, but the priniple is the same.)

Beause TIM is a spineless mahine, its updating tehnique has to be rather di�erent. The key

idea is this:

Updates are not performed after eah redution, as the G-mahine does. Instead,

when evaluation of a losure is started (that is, when the losure is entered), the

following steps are taken:

� The urrent stak, and the address of the losure being entered, are pushed onto

the dump, a new omponent of the mahine state.

� A `mouse-trap' is set up whih is triggered when evaluation of the losure is

omplete.

� Evaluation of the losure now proeeds normally, starting with an empty stak.

� When the mouse-trap is triggered, the losure is updated with its normal form,

and the old stak is restored from the dump.

The `mouse-trap' is the following. Sine the evaluation of the losure is arried out

on a new stak, the evaluation must eventually grind to a halt, beause a Return

instrution �nds an empty stak, or a superombinator is being applied to too few

arguments. At this point the expression has reahed (head) normal form, so an update

should be performed.

To begin with, let us fous on updating a losure whose value is of integer type. We will arrange

that just before the losure is entered, a new instrution PushMarker x is exeuted, whih sets up

179



the update mehanism by pushing some information on the dump. Spei�ally, PushMarker x

pushes onto the dump

4

:

� The urrent stak.

� The urrent frame pointer, whih points to the frame ontaining the losure to be updated.

� The index, x , of the losure to be updated within the frame.

Now that it has saved the urrent stak on the dump, PushMarker ontinues with an empty

stak. Here is its state transition rule:

(4.15)

PushMarker x : i f s v d h 

=) i f [℄ v (f ; x ; s) : d h 

Some while later, evaluation of the losure will be omplete. Sine its value is an integer, its value

will be on top of the value stak, and a Return instrution will be exeuted in the expetation

of returning to the ontinuation on top of the stak. But the stak will be empty at this point!

This is what triggers the update: the dump is popped, the update is performed, and the Return

instrution is re-exeuted with the restored stak. This ation is desribed by the following

transition rules:

(4.16)

[Return℄ f [℄ n : v (f

u

; x ; s) : d h 

=) [Return℄ f s n : v d h

0



h

0

= h[f

u

: h: : : ; d

x�1

; (intCode;n); d

x+1

; : : :i℄

[Return℄ f (i ; f

0

) : s n : v d h 

=) i f

0

s n : v d h 

The �rst rule desribes the update of the x th losure in frame f

u

, with the losure (intCode;n).

This is a losure whih when entered immediately pushes n onto the value stak and returns (see

Setion 4.3.1). Notie that the Return instrution is retried, in ase there is a further update to

perform; this is indiated by the fat that the ode sequene in the right-hand side of the rule

is still [Return℄.

The seond rule is just Rule 4.11 written out again. It overs the ase when there is no update

to be performed; the ontinuation on top of the stak is loaded into the program ounter and

urrent frame pointer.

4.5.2 Compiling PushMarker instrutions

The exeution of the PushMarker and Return instrutions is thus quite straightforward, but the

triky question is: where should the ompiler plant PushMarker instrutions? To answer this

we have to reall the motivation for the whole updating exerise: it is to ensure that eah redex

is only evaluated one, by overwriting the redex with its value one it has been evaluated. In

TIM, a `redex' is a losure. The key insight is this:

4

In papers about TIM this operation is often alled `pushing an update marker', beause the stak is `marked'

so that the attempt to use arguments below the `marker' will trigger an update.
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we have to be very areful when opying losures, beause one two opies exist there

is no way we an ever share their evaluation.

For example, onsider the following funtion de�nitions:

g x = h x x

h p q = q - p

At present we will generate the following ode for g:

[ Take 1 1, Push (Arg 1), Push (Arg 1), Enter (Label "h") ℄

The two Push Arg instrutions will eah take a opy of the same losure, and h will subsequently

evaluate eah of them independently.

What we really want to do is to push not a opy of the losure for x, but rather a pointer to it.

Realling the idea of an indiretion losure from Setion 4.4.2, this is easily done, by replaing

Push (Arg 1) with Push (Code [Enter (Arg 1)℄).

This gets us half-way; we are not dupliating the losure, but we still are not updating it. But

now it is easy! All we need to is to preede the Enter (Arg 1) instrution with PushMarker 1,

thus:

Push (Code [PushMarker 1, Enter (Arg 1)℄)

That is, just before entering the shared losure, we set up the update mehanism whih will

ause it to be updated when its evaluation is omplete.

The addressing mode (Code [PushMarker n; Enter (Arg n)℄) is alled an updating indiretion

to the nth losure of the frame, beause it is an indiretion whih will ause an update to take

plae. Exatly the same onsiderations apply to entering an argument (rather than pushing it on

the stak). An updating indiretion to the argument must be entered, rather than the argument

itself: Enter (Arg 1) must be replaed by Enter (Code [PushMarker 1, Enter (Arg 1)℄).

The hanges to the ompilation shemes are simple. Only the SC and R shemes are a�eted,

and they are both a�eted in the same way: where they build an environment, they should bind

eah variable to an updating indiretion addressing mode. For example, in the let(re) ase

of the R sheme, we now use the following de�nition for �

0

(f. Figure 4.3):

�

0

= �[x

1

7! J [[d + 1℄℄ ; : : : ; x

n

7! J [[d + n℄℄ ℄

where J [[d ℄℄ = Code [PushMarker d ; Enter (Arg d)℄

4.5.3 Implementing the updating mehanism

To implement the new updating mehanism, we need to make the following hanges:

� Give a type de�nition for the dump. It is just a stak of triples, represented as a list, and

initialised to be empty:

> type TimDump = [(FramePtr, -- The frame to be updated
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> Int, -- Index of slot to be updated

> TimStak) -- Old stak

> ℄

> initialDump = [℄

� Add the PushMarker instrution to the instrution type, with appropriate modi�ations

to showInstrution.

� Add a new ase to step for the PushMarker instrution, and modify the ase for Return.

� Modify ompileSC and the ELet ase of ompileR to build environments whih bind eah

variable to an updating indiretion addressing mode. Use the funtion mkUpdIndMode to

implement the J sheme:

> mkUpdIndMode :: Int -> TimAMode

> mkUpdIndMode n = Code [PushMarker n, Enter (Arg n)℄

Exerise 4.16. Implement the updating mehanism as desribed.

When running the new system on some test programs, you should be able to wath PushMarker

adding update information to the dump, and Return performing the updates. Here is one possible

test program:

f x = x + x

main = f (1+2)

The evaluation of (1+2) should only happen one!

Exerise 4.17. Here is an easy optimisation you an perform. For a funtion suh as:

ompose f g x = f (g x)

you will see that the ode for ompose is like this:

ompose: Take 3 3

Push (Code [...℄)

Enter (Code [PushMarker 1, Enter (Arg 1)℄)

where the [...℄ is ode for (g x). The �nal instrution enters an updating indiretion for f. But

it is a fat that

Enter (Code i) is equivalent to i

(This follows immediately from Rule 4.8.) So the equivalent ode for ompose is

ompose: Take 3 3

Push (Code [...℄)

PushMarker 1

Enter (Arg 1)

Implement this optimisation. Muh the niest way to do this is by replaing all expressions in the

ompiler of the form [Enter e℄ with (mkEnter e), where mkEnter is de�ned like this:

> mkEnter :: TimAMode -> [Instrution℄

> mkEnter (Code i) = i

> mkEnter other_am = [Enter other_am℄
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mkEnter is an `ative' form of the Enter onstrutor, whih heks for a speial ase before gener-

ating an Enter instrution.

There are a number of other improvements we an make to this sheme, and we will study them

in the following setions.

4.5.4 Problems with updating indiretions

While it is simple enough, this updating mehanism is horribly ineÆient. There are two main

problems, whih were �rst distinguished by Argo [Argo 1989℄. The �rst problem is that of

idential updates. Consider the program given in the previous setion:

f x = x+x

main = f (1+2)

For eah use of x, f will enter an updating losure to its argument x. The �rst time, x will be

updated with its value. The seond time, a seond (and entirely redundant) update will take

plae, whih overwrites the x with its value again. You should be able to wath this happening

as you exeute the example on your implementation.

In this ase, of ourse, a lever ompiler ould spot that x was sure to be evaluated, and just

opy x instead of entering an indiretion to it. But this ompliates the ompiler, and in general

may be impossible to spot. For example, suppose f was de�ned like this:

f x = g x x

Unless f analyses g to disover in whih order the di�erent x's are evaluated (and in general there

may be no one answer to this question), it has to be pessimisti and push updating indiretions

as arguments to g.

The seond problem is that of indiretion hains. Consider the program

g x = x+x

f y = g y

main = f (1+2)

Here, f passes to g an updating indiretion to its argument y; but g enters an updating indiretion

to its argument x. Thus g enters an indiretion to an indiretion. In short, hains of indiretions

build up, beause an indiretion is added every time an argument is passed on as an argument

to another funtion. Just imagine how many indiretions to m ould build up in the following

tail-reursive funtion!

horrid n m = if (n=0) m (horrid (n-1) m)

We will not solve these problems yet. Instead, the next setion shows how to deal with updates

for let(re)-bound variables, and why these two problems do not arise. This points the way

to a better solution for superombinator arguments as well.
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4.5.5 Updating shared let(re)-bound variables

So far we have assumed that let(re)-bound variables are updated in exatly the same way

as superombinator arguments, by always using an updating indiretion addressing mode for

them. For example, onsider the following superombinator de�nition:

f x = let y = ...

in

g y y

where the `...' stands for an arbitrary right-hand side for y. Treating y just the same as x, we

will generate this ode for f:

f: Take 2 1 -- Frame with room for y

Move 2 (Code [...ode for y...℄) -- Closure for y

Push (Code [PushMarker 2, Enter (Arg 2)℄) -- Indiretion to y

Push (Code [PushMarker 2, Enter (Arg 2)℄) -- Indiretion to y

Enter (Label "g")

where the `...ode for y...' stands for the ode generated from y's right-hand side. This

ode su�ers from the idential-update problem outlined earlier.

But a muh better solution is readily available. Suppose we generate the following ode for f

instead:

f: Take 2 1 -- Frame with room for y

Move 2 (Code (PushMarker 2 :

[...ode for y...℄)) -- Closure for y

Push (Code [Enter (Arg 2)℄) -- Non-updating indiretion to y

Push (Code [Enter (Arg 2)℄) -- Indiretion to y

Enter (Label "g")

The PushMarker instrution has moved from the uses of y to its de�nition. The losure for

y built by the Move instrution is now a self-updating losure; that is, when entered it will

set up the update mehanism whih will update itself. One this has happened, it will never

happen again beause the pointer to the ode with the PushMarker instrution has now been

overwritten!

In general, the idea is this:

� Use a self-updating losure for the right-hand side of a let(re) binding, by beginning

the ode with a PushMarker instrution.

� Use ordinary (non-updating) indiretion addressing modes when pushing let(re)-bound

variables onto the stak. We still need to use indiretions, rather than taking a opy of

the losure beause, until it is updated, opying it would give rise to dupliated work.

The modi�ations needed to implement this idea are:

184



U [[e℄℄ u � d is a pair (d

0

; am), where am is a TIM addressing mode for

expression e in environment �. If the losure addressed by am is entered,

it will update slot u of the urrent frame with its normal form. The ode

assumes that the �rst d slots of the frame are oupied, and it uses slots

(d + 1 : : : d

0

).

U [[e℄℄ u � d = (d

0

; Code (PushMarker u : is))

where (d

0

; is) = R[[e℄℄ � d

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= (d

0

; [Move (d + 1) am

1

; : : : ; Move (d + n) am

n

℄ ++ is)

where (d

1

; am

1

) = U [[e

1

℄℄ (d + 1) � (d + n)

(d

2

; am

2

) = U [[e

2

℄℄ (d + 2) � d

1

: : :

(d

n

; am

n

) = U [[e

n

℄℄ (d + n) � d

n�1

�

0

= �[x

1

7! I[[d + 1℄℄ ; : : : ; x

n

7! I[[d + n℄℄ ℄

where I[[d ℄℄ = Code [Enter (Arg d)℄

(d

0

; is) = R[[e℄℄ �

0

d

n

The letre ase is similar, exept that �

0

is passed to the alls to U [[℄℄ instead of �.

Figure 4.4: The U ompilation sheme, and revised R rule for let

� Modify the R sheme so that it generates non-updating indiretions for let(re)-bound

variables; that is, it builds the new environment using the I sheme rather than J . (For

the present, SC should ontinue to generate updating indiretions, using J , for superom-

binator arguments.)

� Modify the R sheme for let(re) expressions, so that it generates a PushMarker instru-

tion at the start of the ode for every right-hand side. This is most onveniently done by

reating a new ompilation sheme, the U sheme (see Figure 4.4), whih is used in the

let(re) ase of the R sheme to ompile the right-hand sides of de�nitions. U needs a

extra argument to tell it whih slot in the urrent frame should be updated, and uses this

argument to generate an appropriate PushMarker instrution. Figure 4.4 also gives the

revised let equation for the R sheme. The modi�ation to the letre ase is exatly

analogous.

Exerise 4.18. Try out this idea and measure its e�etiveness in terms of how many steps are saved.

Exerise 4.19. Consider the expression

let x = 3 in x+x

In this ase, the right-hand side of the let expression is already in normal form, so there is no point

in the U sheme generating a PushMarker instrution. Rather, U an simply return an IntConst

addressing mode for this ase.
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Modify the U ompilation sheme, and the orresponding ompileU funtion, and on�rm that the

modi�ation works orretly.

4.5.6 Eliminating indiretion hains

The idea of the previous setion shows how to eliminate idential updates for let(re)-bound

variables. In this setion we show how to extend the idea to eliminate idential updates for

superombinator arguments as well and, at the same time, to eradiate the indiretion hain

problem. The idea was �rst proposed by Argo [Argo 1989℄.

We start with indiretion hains. As noted earlier, indiretion hains build up beause a super-

ombinator has to assume that it must not opy any of its argument losures, so if it uses them

more than one it had better use indiretions. This gives rise to indiretion hains beause often

the argument losure is an indiretion already, and it would be perfetly safe to opy it.

This suggests an alternative strategy:

adopt the onvention that every argument losure must be freely opyable without loss

of sharing.

This alling onvention is learly onvenient for the alled funtion, but how an the aller ensure

that it is met? An argument is either:

� a onstant, whose losure is freely opyable;

� a superombinator, whih has the same property;

� a let(re)-bound variable, whih also an be freely opied (using the ideas of the previous

setion);

� an argument to the urrent superombinator, whih is freely opyable beause of our new

onvention;

� a non-atomi expression, whose losure (as things stand) is not freely opyable.

It follows that all we have to do to adopt this new alling onvention is �nd some way of passing

non-atomi arguments as freely opyable losures. For example, onsider the expression

f (fatorial 20)

How an the argument (fatorial 20) be passed as a freely opyable losure. The solution is

simple: transform the expression to the following equivalent form:

let arg = fatorial 20 in f arg

The let expression will alloate a slot in the urrent frame for the losure for (fatorial 20),

will put a self-updating losure in it, and an (ordinary) indiretion to this losure will be passed

to f. (Notie that this transformation need only be arried out if the losure passed to f might
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R[[e a℄℄ � d = (d

1

; Push (A[[a℄℄ �) : is)

where a is a superombinator, loal variable, or onstant

(d

1

; is) = R[[e℄℄ � d

R[[e

fun

e

arg

℄℄ � d = (d

2

; Move (d + 1) am

arg

: Push (Code [Enter (Arg (d + 1))℄) : is

fun

)

where (d

1

; am

arg

) = U [[e

arg

℄℄ (d + 1) � (d + 1)

(d

2

; is

fun

) = R[[e

fun

℄℄ � d

1

A[[n℄℄ � = IntConst n where n is a number

A[[x ℄℄ � = � x where x is bound by �

Figure 4.5: Modi�ations to R and A for opyable arguments

be entered more than one. There is an opportunity here for a global sharing analysis to be

used to generate more eÆient ode.)

One this transformation is done we an freely opy argument losures, though we must still use

(non-updating) indiretions for let(re)-bound losures. No indiretion hains will build up,

nor will idential updates take plae.

It is interesting to reet on what has happened. At �rst it appeared as though TIM would

alloate muh less heap than a G-mahine, beause the entire alloation for a superombinator

all was the frame required to hold its arguments. However, using our new updating tehniques,

we see that every sub-expression within the superombinator body requires a slot in the frame

to hold it. Similarly, sine most superombinator arguments are now indiretions, TIM is be-

having quite like the G-mahine whih passes pointers to arguments rather than the arguments

themselves. So the problems of lazy updating have fored TIM to beome more G-mahine-like.

We have presented the tehnique as a program transformation whih introdues a let expression

for every argument expression, but doing so is somewhat tiresome beause it involves inventing

new arbitrary variable names. It is easier to write the new ompilation shemes more diretly.

The main alteration is to the appliation ase of the R sheme, whih is given in Figure 4.5.

The �rst equation deals with the ase where the argument to the appliation is an atomi

expression (variable or onstant), using the A sheme to generate the appropriate addressing

mode as before. The seond equation deals with the ase where the argument is a ompound

expression; it initialises the next free slot in the frame with a self-updating losure for the

argument expression, and pushes an indiretion to this losure.

The A sheme, also given in Figure 4.5, now has one ase fewer than before, beause it is only

invoked with an atomi expression (variable or onstant) as its argument. For the same reason,

it no longer needs to take d as an argument and return it as a result, beause it never uses any

frame slots.

Exerise 4.20. Implement this revised sheme, and measure the di�erene in performane from the

previous version.
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4.5.7 Updating partial appliations

So far we have suessfully dealt with the update of losures whose value is an integer. When a

Return instrution �nds an empty stak, it performs an update and pops a new stak from the

dump.

But there is another instrution whih onsumes items from the stak, namely Take. What

should happen if a Take instrution �nds fewer items on the stak than it requires? For example,

onsider the program

add a b = a+b

twie f x = f (f x)

g x = add (x*x)

main = twie (g 3) 4

When twie enters f it will do so via an indiretion, whih will set up an update for f. In

this example, f will be bound to (g 3), whih evaluates to a partial appliation of add to one

argument. The Take 2 instrution at the beginning of the ode for add will disover that there

is only one argument on the stak, whih indiates that an update should take plae, overwriting

the losure for (g x) with one for (add (x*x)).

In general:

when a Take instrution �nds too few arguments on the stak, it should perform

an update on the losure identi�ed by the top item on the dump, glue the items on

the urrent stak on top of the stak reovered from the dump, and retry the Take

instrution (in ase another update is required).

The Take instrution is already ompliated enough, and now it has a further task to perform.

To avoid Take getting too unwieldy, we split it into two instrutions: UpdateMarkers, whih

performs the hek as to whether there are enough arguments, and Take whih atually builds

the new frame. An UpdateMarkers n instrution always immediately preedes every Take t n

instrution.

The transition rule for Take is therefore unhanged. The rules for UpdateMarkers are as follows:

(4.17)

UpdateMarkers n : i f 

1

: : : : : 

m

: s v d h 

=) i f 

1

: : : : : 

m

: s v d h 

where m � n

UpdateMarkers n : i f 

1

: : : : : 

m

: [℄ v (f

u

; x ; s) : d h 

=) UpdateMarkers n : i f 

1

: : : : : 

m

: s v d h

0



where m < n

h

0

= h[f

u

: h: : : ; d

x�1

; (i

0

; f

0

); d

x+1

; : : :i℄

The �rst rule deals with the ase where there are enough arguments, so that UpdateMarkers

does nothing. The seond deals with the other ase, where an update needs to take plae;

the appropriate losure is updated, the urrent stak is glued on top of the old one, and the

UpdateMarkers is retried.
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In this rule, i

0

and f

0

are the ode pointer and frame pointer whih overwrite the target losure,

but so far we have not spei�ed just what values they should take. The way to �gure out

what they should be is to ask the question: what should happen when the losure (i

0

; f

0

) is

entered? This losure represents the partial appliation of the superombinator to the arguments



1

; : : : ; 

m

. Hene, when it is entered, it should push 

1

; : : : ; 

m

, and then jump to the ode for

the superombinator. It follows that

� f

0

must point to a newly alloated frame h

1

; : : : ; 

m

i.

� i

0

must be the ode sequene

Push (Arg m) : : : : : Push (Arg 1) : UpdateMarkers n : i

Here, the Push instrutions plae the arguments of the partial appliation onto the stak,

the UpdateMarkers instrution heks for any further updates that need to take plae,

and i is the rest of the ode for the superombinator.

Exerise 4.21. Implement the UpdateMarkers instrution, and modify the ompiler to plae one before

eah Take instrution. Test your implementation before and after the modi�ation on the following

program. The program uses higher-order funtions to implement pairs (Setion 2.8.3). The pair w

is shared, and evaluates to a partial appliation of the pair funtion.

pair x y f = f x y

fst p = p K

snd p = p K1

main = let w = pair 2 3

in (fst w) * (snd w)

You should see w being updated with the partial appliation for (pair 2 3). To make it a little

more onvining, you ould make the right-hand side of w involve a little more omputation: for

example

main = let w = if (2*3 > 4) (pair 2 3) (pair 3 2)

in (fst w) * (snd w)

Exerise 4.22. Just as Take 0 0 does nothing, UpdateMarkers 0 does nothing. Modify ompileSC so

that it omits both of these instrutions when appropriate. (This is a simple extension of Exer-

ise 4.3.)

There are a few other points worth notiing:

� In a real implementation, the ode i

0

would not be manufatured afresh whenever an

update takes plae, as the rule appears to say. Instead, the ode for the superombinator

i an be preeded by a sequene of Push instrutions, and the ode pointer for a partial

appliation an just point into the appropriate plae in the sequene.

� The UpdateMarkers rule dupliates the losures 

1

; : : : ; 

m

. This is �ne now that super-

ombinator arguments are freely opyable, a modi�ation we introdued in Setion 4.5.6.

Prior to that modi�ation, making suh a opy would have risked dupliating a redex, so

instead the UpdateMarkers rule would have been further ompliated with indiretions.

It is for this reason that the introdution of UpdateMarkers has been left so late.
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� Suppose we are ompiling ode for the expression (f e

1

e

2

), where f is known to be a

superombinator of 2 (or fewer) arguments. In this ase, the UpdateMarkers instrution

at the start of f will ertainly do nothing, beause the stak is sure to be deep enough to

satisfy it. So when ompiling a all to a superombinator applied to all its arguments (or

more) we an enter its ode after the UpdateMarkers instrution.

Many of the funtion appliations in a typial program are saturated appliations of known

superombinators, so this optimisation is frequently appliable.

4.6 Mark 5: Strutured data

In this setion we will study how to add algebrai data types to TIM. It is possible to implement

data strutures without any of the material of this setion, using higher-order funtions as

desribed in Setion 2.8.3; but it is rather ineÆient to do so. Instead, we will develop the

approah we used for arithmeti to be able to handle more general data strutures.

4.6.1 The general approah

Consider the funtion is_empty, whih returns 1 if its argument is an empty list, and 0 if not.

It is given in the ontext of a program whih applies it to a singleton list.

is_empty xs = ase xs of

<1> -> 1

<2> y ys -> 0

ons a b = Pak{2,2} a b

nil = Pak{1,0}

main = is_empty (ons 1 nil)

Reall from Setion 1.1.4 that onstrutors are denoted by Pak{tag ; arity}. In this program,

whih manipulates lists, the empty list onstrutor nil has tag 1 and arity 0, while the list

onstrutor ons has tag 2 and arity 2. Pattern mathing is performed only by ase expressions;

nested patterns are mathed by nested ase expressions.

We onsider �rst what ode we should generate for a ase expression. Just as arithmeti

operators require their arguments to be evaluated, a ase expression requires an expression, xs

in the is_empty example, to be evaluated. After this, a multi-way jump an be taken depending

on the tag of the objet returned. Taking a similar approah to the one we used for arithmeti

operators suggests the following onventions:

� To evaluate a losure representing a data objet, a ontinuation is pushed onto the argu-

ment stak, and the losure is entered.

� When it is evaluated to (head) normal form, this ontinuation is popped from the stak

and entered.

� The tag of the data objet is returned on top of the value stak.
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� The omponents of the data objet (if any) are returned in a frame pointed to by a new

register, the data frame pointer.

So the ode we would produe for is_empty would be like this

5

:

is_empty: Take 1 1 -- One argument

Push (Label "ont") -- Continuation

Enter (Arg 1) -- Evaluate xs

ont: Swith [ 1 -> [PushV (IntVConst 1), Return℄

2 -> [PushV (IntVConst 0), Return℄

℄

The Swith instrution does a multi-way jump based on the top item on the value stak. In

this example, both branhes of the ase expression just return a onstant number.

In this example the omponents of the srutinised list ell were not used. This is not always the

ase. Consider, for example, the sum funtion:

sum xs = ase xs of

<1> -> 0

<2> y ys -> y + sum ys

sum omputes the sum of the elements of a list. The new feature is that the expression

y + sum ys uses the omponents, y and ys, of the list ell. As indiated earlier, these ompo-

nents are returned to the ontinuation in a frame pointed to by the data frame pointer, a new

register. (Exerise: why annot the ordinary frame pointer be used for this purpose?)

So far, every loal variable (that is, superombinator argument or let(re)-bound variable)

has a slot in the urrent frame whih ontains its losure, so it seems logial to extend the idea,

and add further slots for y and ys. All we need to do is to move the losures out of the list ell

frame, and into the urrent frame. Here, then, is the ode for sum:

sum: Take 3 1 -- One argument, two extra slots for y,ys

Push (Label "ont") -- Continuation for ase

Enter (Arg 1) -- Evalute xs

ont: Swith [

1 -> [PushV (IntVConst 0), Return℄

2 -> [Move 2 (Data 1)

Move 3 (Data 2)

...ode to ompute y + sum ys...

℄

℄

The Move instrutions use a new addressing mode Data, whih addresses a losure in the frame

pointed to by the data frame pointer. The two Move instrutions opy y and ys from the list

ell into the urrent frame (the one whih ontains xs).

5

As usual we write the ode with expliit labels for ontinuations, but in reality we would ompile uses of the

Code addressing mode so as to avoid generating fresh labels.
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In summary, a ase expression is ompiled into �ve steps:

1. Push a ontinuation.

2. Enter the losure to be srutinised. When it is evaluated, it will enter the ontinuation

pushed in Step 1.

3. The ontinuation uses a Swith instrution to take a multi-way jump based on the tag,

whih is returned on top of the value stak.

4. Eah branh of the Swith begins with Move instrutions to opy the ontents of the data

objet into the urrent frame. Sine this opies the losure, we must be sure that all

losures in data objets have the property that they an freely be opied (Setion 4.5.6).

5. Eah alternative then ontinues with the ode for that alternative, ompiled exatly as

usual.

Finally, we an ask what ode should be generated for the expression Pak{tag ; arity}. Consider,

for example, the expression

Pak{1,2} e1 e2

whih builds a list ell. The minimalist approah is to treat Pak{1,2} as a superombinator,

and generate the following ode

6

:

Push (...addressing mode for e2...)

Push (...addressing mode for e1...)

Enter (Label "Pak{1,2}")

The ode for Pak{1,2} is very simple:

Pak{1,2}: UpdateMarkers 2

Take 2 2

ReturnConstr 1

The �rst two instrutions are just the same as for any other superombinator. The

UpdateMarkers instrution performs any neessary updates, and the Take instrution builds

the frame ontaining the two omponents of the list ell, putting a pointer to it in the ur-

rent frame pointer. Finally, a new instrution, ReturnConstr, enters the ontinuation, while

pushing a tag of 1 onto the value stak, and opying the urrent frame pointer into the data

frame pointer. Like Return, ReturnConstr needs to hek for updates and perform them when

neessary.

4.6.2 Transition rules and ompilation shemes for data strutures

Now that we have ompleted the outline, we an give the details of the transition rules and

ompilation shemes for the new onstruts. The rule for Swith is as follows:

6

In priniple there are an in�nite number of possible onstrutors, so it seems that we need an in�nite family

of similar ode fragments for them in the ode store. In pratie this is easily avoided as will be seen when we

write the detailed ompilation shemes.
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(4.18)

[Swith [: : : t -> i : : :℄℄ f f

d

s t : v d h 

=) i f f

d

s v d h 

There are two rules for ReturnConstr, beause it has to aount for the possibility that an

update is required. The �rst is straightforward, when there is no update to be done:

(4.19)

[ReturnConstr t ℄ f f

d

(i ; f

0

) : s v d h 

=) i f

0

f s t : v d h 

The seond rule deals with updating, overwriting the losure to be updated with a ode sequene

ontaining only a ReturnConstr instrution, and the data frame pointer:

(4.20)

[ReturnConstr t ℄ f f

d

[℄ v (f

u

; x ; s) : d h 

=) [ReturnConstr t ℄ f f

d

s v d h

0



where h

0

= h[f

u

: h: : : ; d

x�1

; ([ReturnConstr t ℄; f ); d

x+1

; : : :i℄

The only hanges to the ompilation shemes are to add extra ases to the R sheme for on-

strutors and for ase expressions. The latter is strutured by the use of an auxiliary sheme E ,

whih ompiles a ase alternative (Figure 4.6). Notie that onstrutors are ompiled `in-line'

as they are enountered, whih avoids the need for an in�nite family of de�nitions to be added

to the ode store.

4.6.3 Trying it out

We an use the new mahinery to implement lists and booleans, by using the following extra

Core-language de�nitions:

ons = Pak{2,2}

nil = Pak{1,0}

true = Pak{2,0}

false = Pak{1,0}

if ond tbranh fbranh = ase ond of

<1> -> fbranh

<2> -> tbranh

Notie that if, whih previously had a speial instrution and ase in the ompilation shemes,

is now just a superombinator de�nition like any other. Even so, it is often learer to write

programs using if rather than ase, so you may want to leave the speial ase in your ompiler;

but now you an generate a Swith instrution rather than a Cond instrution. (The latter an

vanish.)

Exerise 4.23. Implement the new instrutions and ompilation shemes.

Test your new implementation on the following program:

length xs = ase xs of

<1> -> 0
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R[[Pak{t,a}℄℄ � d = (d ; [UpdateMarkers a; Take a a; ReturnConstr t ℄)

R[[ase e of alt

1

: : : alt

n

℄℄ � d = (d

0

; Push (Code [Swith [branh

1

: : : branh

n

℄℄) : is

e

)

where (d

1

; branh

1

) = E [[alt

1

℄℄ � d

: : :

(d

n

; branh

n

) = E [[alt

n

℄℄ � d

(d

0

; is

e

) = R[[e℄℄ � max (d

1

; : : : ; d

n

)

E [[alt ℄℄ � d , where alt is a ase alternative, is a pair (d

0

; branh), where

branh is the Swith branh ompiled in environment �. The ode as-

sumes that the �rst d slots of the frame are oupied, and it uses slots

(d + 1 : : : d

0

).

E [[<t> x

1

: : : x

n

-> body ℄℄ � d = (d

0

; t -> (is

moves

++ is

body

))

where is

moves

= [Move (d + 1) (Data 1);

: : : ;

Move (d + n) (Data n)℄

(d

0

; is

body

) = R[[body ℄℄ �

0

(d + n)

�

0

= �[x

1

7! Arg (d + 1);

: : : ;

x

n

7! Arg (d + n)℄

Figure 4.6: Compilation shemes for ase expressions

<2> p ps -> 1 + length ps

main = length (ons 1 (ons 2 nil))

A more interesting example, whih will demonstrate whether your update ode is working orretly,

is this:

append xs ys = ase xs of

<1> -> ys

<2> p ps -> ons p (append ps ys)

main = let xs = append (ons 1 nil) (ons 2 nil)

in

length xs + length xs

Here xs is used twie, but the work of appending should only be done one.

Exerise 4.24. If the arity, a, of the onstrutor is zero, then R[[Pak{t,a}℄℄ will generate the ode

[UpdateMarkers 0, Take 0 0, ReturnConstr t℄. Optimise the R sheme and ompileR fun-

tion to generate better ode for this ase (f. Exerise 4.22).
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4.6.4 Printing a list

The example programs suggested so far have all returned an integer, but it would be nie to be

able to return and print a list instead.

The way we expressed this in the G-mahine hapter was to add an extra omponent to the

mahine state to represent the output, together with an instrution Print, whih appends a

number to the end of the output. In our ase, numbers are returned on the value stak, so

Print onsumes a number from the value stak and appends it to the output.

At present ompile initialises the stak with the ontinuation ([℄,FrameNull), whih has the

e�et of stopping the mahine when it is entered. All we need to do is hange this ontinuation

to do the printing. This time, the ontinuation expets the value of the program to be a list, so

it must do ase analysis to deide how to proeed. If the list is empty, the mahine should halt,

so that branh an just have the empty ode sequene. Otherwise, the head of the list should

be evaluated and printed, and the tail then given the original ontinuation again. Here is the

ode:

topCont: Swith [ 1 -> [℄

2 -> [ Move 1 (Data 1) -- Head

Move 2 (Data 2) -- Tail

Push (Label "headCont")

Enter (Arg 1) -- Evaluate head

℄

℄

headCont: Print

Push (Label "topCont")

Enter (Arg 2) -- Do the same to tail

Notie that the topCont ode needs a 2-slot frame for working storage, whih ompile had

better provide for it. ompile therefore initialises the stak with the ontinuation

(topCont, frame)

where topCont is the ode sequene above, and frame is the address of a 2-slot frame alloated

from the heap.

Exerise 4.25. Implement list printing as desribed. The only tiresome aspet is that you need to add

an extra omponent to the mahine state (again).

As usual, you an use Push (Code ...) instead of Push (Label "headCont"), and in fat you

an do the same for Push (Label "topCont"), by using a little reursion!

Test your work on the following program:

between n m = if (n>m) nil (ons n (between (n+1) m))

main = between 1 4

Exerise 4.26. When running a program whose result is a list, it is nie to have the elements of the

list printed as soon as they beome available. With our present implementation, either we print
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every state (if we use showFullResults) or we print only the last state (using showResults). In

the former ase we get far too muh output, while in the latter we get no output at all until the

program terminates.

Modify showResults so that it prints the output as it is produed. The easiest way to do this is

to ompare the output omponent of suessive pairs of states, and to print the last element when

the output gets longer between one state and the next.

Another possible modi�ation to showResults is to print a dot for eah state (or ten states), to

give a rough idea of how muh work is done between eah output step.

4.6.5 Using data strutures diretlyy

One might ask why we annot use the omponents of a data struture diretly in the arms of

a Swith instrution, by using Data addressing modes in instrutions other than Move. The

reason an be found in the sum example, whih we repeat here:

sum xs = ase xs of

<1> -> 0

<2> y ys -> y + sum ys

Now, let us follow the ode for y + sum ys a little further. This ode must �rst evaluate y,

whih may take a lot of omputation, ertainly using the data frame pointer register. Hene, by

the time it omes to evaluate ys, the data frame pointer will have been hanged, so ys will no

longer be aessible via the data frame pointer. By moving the ontents of the list ell into the

urrent frame, we enable them to be preserved aross further evaluations.

Sometimes, no further evaluation is to be done, as in the head funtion:

head xs = ase xs of

<1> -> error

<2> y ys -> y

In this ase, as an optimisation we ould use y diretly from the data frame; that is, the seond

branh of the Swith instrution would be simply [Enter (Data 1)℄.

Similarly, if a variable is not used at all in the branh of the ase expression, there is no need

to move it into the urrent frame.

4.7 Mark 6: Constant appliative forms and the ode storey

As we mentioned earlier (Setion 4.2.3), our deision to represent the ode store as an assoiation

list of names and ode sequenes means that CAFs do not get updated. Instead, their ode

is exeuted eah time they are alled, whih will perhaps dupliate work. We would like to

avoid this extra work, but the solution for the TIM is not quite as easy as that for our earlier

implementations.

In the ase of the template instantiation mahine and the G-mahine, the solution was to alloate

a node in the heap to represent eah superombinator. When a CAF is alled, the root of
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the redex is the superombinator node itself, and so the node is updated with the result of

the redution (that is, an instane of the right-hand side of the superombinator de�nition).

Any subsequent use of the superombinator will see this updated node instead of the original

superombinator. The trouble is that the TIM does not have heap nodes at all; what orresponds

to a node is a losure within a frame. So what we have to do is to alloate in the initial heap a

single giant frame, the global frame, whih ontains a losure for eah superombinator.

The ode store is now represented by the address, f

G

, of the global frame, together with an

assoiation list, g , mapping superombinator names to their o�set in the frame. The Label

addressing mode uses this assoiation list to �nd the o�set, and then fethes the losure for

the superombinator from the global frame. The new transition rule for Push Label formalises

these ideas:

(4.21)

Push (Label l) : i f s h[f

G

: h(i

1

; f

1

); : : : ; (i

n

; f

n

)i℄ (f

G

; g [l : k ℄)

=) i f (i

k

; f

k

) : s h (f

G

; g)

The rule for Enter Label follows diretly from the Push/Enter relationship. Eah losure in the

global frame is a self-updating losure, as desribed in the ontext of let(re)-bound variables

in Setion 4.5.5. Just as for let(re)-bound variables, when pushing a superombinator on the

stak we should use a (non-updating) indiretion (Setion 4.5.5).

4.7.1 Implementing CAFs

Here is what needs to be done to add proper updating for CAFs to a Mark 4 or Mark 5 TIM.

� The ode store omponent of the mahine state now ontains the address of the global

frame and an assoiation between superombinator names and frame o�sets:

> type CodeStore = (Addr, ASSOC Name Int)

The showSCDefns funtion must be altered to take aount of this hange.

� The funtion amToClosure must take di�erent ation for a Label addressing mode, as

desribed above.

� The initial environment, initial_env, omputed in the ompile funtion, must be altered

to generate an indiretion addressing mode for eah superombinator.

� The last modi�ation involves most work. We need to alter the ompile funtion to build

the initial heap, just as we did in the ompile funtion of the template instantiation

mahine and the G-mahine.

The last of these items needs a little more disussion. Instead of starting with an empty heap,

ompile now needs to build an initial heap, using an auxiliary funtion alloateInitialHeap.

alloateInitialHeap is passed the ompiled_ode from the ompile funtion. It alloates a

single big frame ontaining a losure for eah element of ompiled_ode, and returns the initial

heap and the odeStore:
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> alloateInitialHeap :: [(Name, [Instrution℄)℄ -> (TimHeap, CodeStore)

> alloateInitialHeap ompiled_ode

> = (heap, (global_frame_addr, offsets))

> where

> indexed_ode = zip2 [1..℄ ompiled_ode

> offsets = [(name, offset) | (offset, (name, ode)) <- indexed_ode℄

> losures = [(PushMarker offset : ode, global_frame_addr) |

> (offset, (name, ode)) <- indexed_ode℄

> (heap, global_frame_addr) = fAllo hInitial losures

alloateInitialHeap works as follows. First the ompiled_ode list is indexed, by pairing

eah element with a frame o�set, starting at 1. Now this list is separately proessed to produe

offsets, the mapping from superombinator names to addresses, and losures, the list of

losures to be plaed in the global frame. Finally, the global frame is alloated, and the resulting

heap is returned together with the ode store.

Notie that global_frame_addr is used in onstruting losures; the frame pointer of eah

superombinator losure is the global frame pointer itself, so that the PushMarker instrution

pushes an update frame referring to the global frame.

Exerise 4.27. Make the required modi�ations to showSCDefns, ompileA, amToClosure and ompile.

Test whether updating of CAFs does in fat take plae.

Exerise 4.28. The PushMarker instrution added inside alloateInitialHeap is only required for

CAFs, and is a waste of time for superombinators with one or more arguments. Modify

alloateInitialHeap to plant the PushMarker instrution only for CAFs. (Hint: you an i-

dentify non-CAFs by the fat that their ode begins with a Take n instrution, where n > 0.)

Measure the improvement.

Exerise 4.29. An indiretion addressing mode is only required for CAFs, and not for non-CAF super-

ombinators. Modify the onstrution of initial_env to take advantage of this fat.

4.7.2 Modelling the ode store more faithfully

There is something a little odd about our handling of Labels so far. It is this: the names of

superombinators get looked up in the environment at ompile-time (to map them to a Label

addressing mode), and then again at run-time (to map them to an o�set in the global frame

7

).

This is hardly realisti: in a real ompiler, names will be looked up at ompile-time, but will be

linked to a hard mahine address before run-time, so no run-time lookups take plae.

We an model this by hanging the Label onstrutor to take two arguments instead of one,

thus:

timAMode ::= Label name num

| ...as before...

7

We are assuming that we have implemented the hanges suggested in the previous setion for CAFs, but this

setion applies also to the pre-CAF versions of the mahine.
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The name �eld reords the name of the superombinator as before, but now the num says what

o�set to use in the global frame. Just as in the NSuperomb onstrutor of the template ma-

hine, the name �eld is only there for doumentation and debugging purposes. The ode store

omponent now beomes simply the address of the global frame, as you an see from the revised

rule for Push Label:

(4.22)

Push (Label l k) : i f s h[g : h(i

1

; f

1

); : : : ; (i

n

; f

n

)i℄ g

=) i f (i

k

; f

k

) : s h g

The rule for Enter follows from the Push/Enter relationship.

Exerise 4.30. Implement this idea. To do this:

� Change the timAMode type as desribed.

� Change the odeStore type to onsist only of a frame pointer.

� Change the ompile funtion so that it generates the orret initial state for the mahine. In

partiular, it must generate an initial_env with the right Label addressing modes.

� Adjust the show funtions to aount for these hanges.

4.8 Summary

The �nal TIM ompilation shemes are summarised in Figures 4.7 and 4.8. The obvious question

is `is the TIM better or worse than the G-mahine?'; it is a hard one to answer. Our prototypes

are very useful for exploring design hoies, but really no good at all for making serious perfor-

mane omparisons. How an one establish, for example, the relative osts of a Take instrution

ompared with a G-mahine Mkap? About the only really omparable measure we have available

is the heap onsumption of the two.

Still, it an be very illuminating to explore another evaluation model, as we have done in

this hapter, beause it suggests other design avenues whih ombine aspets of the TIM

with those of the G-mahine. One attempt to do so is the Spineless Tagless G-mahine

[Peyton Jones and Salkild 1989, Peyton Jones 1991℄, whih adopts the spinelessness and update

mehanism of TIM, but whose stak onsists of pointers to heap objets (like the G-mahine)

rather than ode-frame pairs (as in TIM).
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SC[[def ℄℄ � is the TIM ode for the superombinator de�nition def ompiled in envi-

ronment �.

SC[[f x

1

: : : x

n

= e℄℄ � = UpdateMarkers n : Take d

0

n : is

where (d

0

; is) = R[[e℄℄ �[x

1

7! Arg 1; : : : ; x

n

7! Arg n℄ n

R[[e℄℄ � d is a pair (d

0

; is), where is is TIM ode whih applies the value of the expression

e in environment � to the arguments on the stak. The ode is assumes that the �rst

d slots of the frame are oupied, and it uses slots (d + 1 : : : d

0

).

R[[e℄℄ � d = B[[e℄℄ � d [Return℄

where e is an integer or arithmeti expression

R[[a℄℄ � d = (d ; [Enter (A[[a℄℄ �)℄)

where a is a superombinator or loal variable

R[[e a℄℄ � d = (d

1

; Push (A[[a℄℄ �) : is)

where a is a superombinator, loal variable, or integer

(d

1

; is) = R[[e℄℄ � d

R[[e

fun

e

arg

℄℄ � d = (d

2

; Move (d + 1) am

arg

: Push I[[d + 1℄℄ : is

fun

)

where (d

1

; am

arg

) = U [[e

arg

℄℄ (d + 1) � (d + 1)

(d

2

; is

fun

) = R[[e

fun

℄℄ � d

1

R[[let x

1

=e

1

; : : : ; x

n

=e

n

in e℄℄ � d

= (d

0

; [Move (d + 1) am

1

; : : : ; Move (d + n) am

n

℄ ++ is)

where (d

1

; am

1

) = U [[e

1

℄℄ (d + 1) � (d + n)

(d

2

; am

2

) = U [[e

2

℄℄ (d + 2) � d

1

: : :

(d

n

; am

n

) = U [[e

n

℄℄ (d + n) � d

n�1

�

0

= �[x

1

7! I[[d + 1℄℄ ; : : : ; x

n

7! I[[d + n℄℄ ℄

(d

0

; is) = R[[e℄℄ �

0

d

n

The letre ase is similar, exept that �

0

is passed to the alls to U [[℄℄ instead of �.

R[[Pak{t,a}℄℄ � d = (d ; [UpdateMarkers a; Take a a; ReturnConstr t ℄)

R[[ase e of alt

1

: : : alt

n

℄℄ � d

= (d

0

; Push (Code [Swith [branh

1

: : : branh

n

℄℄) : is

e

)

where (d

1

; branh

1

) = E [[alt

1

℄℄ � d

: : :

(d

n

; branh

n

) = E [[alt

n

℄℄ � d

(d

0

; is

e

) = R[[e℄℄ � max (d

1

; : : : ; d

n

)

Figure 4.7: Final TIM ompilation shemes (part 1)

200



E [[alt ℄℄ � d , where alt is a ase alternative, is a pair (d

0

; branh), where branh is the

Swith branh ompiled in environment �. The ode assumes that the �rst d slots of

the frame are oupied, and it uses slots (d + 1 : : : d

0

).

E [[<t> x

1

: : : x

n

-> body ℄℄ � d = (d

0

; t -> (is

moves

++ is

body

))

where is

moves

= [Move (d + 1) (Data 1);

: : : ;

Move (d + n) (Data n)℄

(d

0

; is

body

) = R[[e℄℄ �

0

(d + n)

�

0

= �[x

1

7! Arg (d + 1);

: : : ;

x

n

7! Arg (d + n)℄

U [[e℄℄ u � d is a pair (d

0

; am), where am is a TIM addressing mode for expression e

in environment �. If the losure addressed by am is entered, it will update slot u of

the urrent frame with its normal form. The ode assumes that the �rst d slots of the

frame are oupied, and it uses slots (d + 1 : : : d

0

).

U [[n℄℄ u � d = (d ; IntConst n) where n is an integer onstant

U [[e℄℄ u � d = (d

0

; Code (PushMarker u : is)) otherwise

where (d

0

; is) = R[[e℄℄ � d

A[[e℄℄ � is a TIM addressing mode for expression e in environment �.

A[[n℄℄ � = IntConst n where n is a number

A[[x ℄℄ � = � x where x is bound by �

I[[d ℄℄ is an indiretion addressing mode for frame o�set d

I[[d ℄℄ = Code [Enter (Arg d)℄

B[[e℄℄ � d ont is a pair (d

0

; is), where is is TIM ode whih evaluates e in environment �,

putting its value (whih should be an integer) on top of the value stak, and ontinuing

with the ode sequene ont . The ode assumes that the �rst d slots of the frame are

oupied, and it uses slots (d + 1 : : : d

0

).

B[[e

1

+ e

2

℄℄ � d ont = B[[e

2

℄℄ � d

1

is

1

where (d

1

; is

1

) = B[[e

1

℄℄ � d (Op Add : ont)

. . . and similar rules for other arithmeti primitives

B[[n℄℄ � d ont = (d ; PushV (IntVConst n) : ont) where n is a number

B[[e℄℄ � d ont = (d

0

; Push (Code ont) : is) otherwise

where (d

0

; is) = R[[e℄℄ � d

Figure 4.8: Final TIM ompilation shemes (part 2)
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> module ParGM where

> import Utils

> import Language

> --import GM
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Chapter 5

A Parallel G-mahine

5.1 Introdution

In this hapter we develop an abstrat mahine and ompiler for a parallel G-mahine. It is

based on a simpli�ed version of the parallel G-mahine developed as part of ESPRIT projet

415; interested readers are referred to [Kingdon et al 1991℄ for an easily aessible aount. A

general introdution to parallel graph redution an be found in [Peyton Jones 1989℄.

5.1.1 Parallel funtional programming

Writing parallel imperative programs is hard. Amongst the reasons for this are the following:

� The programmer has to oneive of a parallel algorithm whih meets the spei�ation of

the problem.

� The algorithm must be translated into the programming language onstruts provided

by the language. This is likely to entail: identi�ation of onurrent tasks, de�ning the

interfaes between tasks to allow them to synhronise and ommuniate. Shared data may

need to be espeially proteted, to prevent more than one task aessing a variable at one.

� The programmer may be responsible for assigning tasks to proessors, ensuring that tasks

that need to ommuniate with one another are assigned to proessors that are physially

onneted.

� Finally, in systems with no programmer ontrol over the sheduling poliy, the programmer

must prove that the olletion of onurrent tasks will exeute orretly under all possible

interleavings of task operations.

In ontrast, when programming in a funtional language, only the �rst of these points applies.

Consider the following (ontrived) example program, psum n, whih alulates the sum of the

numbers 1 : : : n.

psum n = dsum 1 n;

dsum lo hi = let mid = (lo+hi)/2 in

if (hi==lo) hi ((dsum lo mid)+(dsum (mid+1) hi))
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The dsum funtion works by dividing the problem into two, roughly equal, parts. It then

ombines the two results together to generate the answer. This is a lassi divide-and-onquer

algorithm.

Notie that neither of the funtions dsum or psum inludes any mention of parallel primitives in

the language; so why is psum a parallel algorithm? For omparison, we an write a sequential

algorithm: ssum.

ssum n = if (n==1) 1 (n + ssum (n-1))

This funtion is a sequential algorithm beause its data dependenies are inherently sequential.

In the ssum example, what we mean by this is that the addition in ssum n an only take plae

one ssum (n-1) has been evaluated. This in turn an only take plae one we have evaluated

ssum (n-2), and so on. We may summarise this distintion as:

A funtion implements a parallel algorithm whenever it permits the onurrent eval-

uation of two or more sub-expressions of its body.

As with any other programming language, a parallel algorithm is essential. Notie, however, the

ontrasts with parallel imperative programming:

� No new language onstruts are required to express parallelism, synhronisation or om-

muniation. The onurreny is impliit, and new tasks are reated dynamially to be

exeuted by the mahine whenever it has spare apaity.

� No speial measures are taken to protet data shared between onurrent tasks. For

example, mid is safely shared between the two onurrent tasks in dsum.

� We need no new proof tehniques to reason about the parallel programs, as all of the

tehniques we use for sequentially exeuted funtional programs still work. We also note

that deadlok an only arise as a result of a self-dependeny, suh as

letre a = a+1 in a

Expressions depending on their own value are meaningless, and their non-termination is

the same behaviour as observed in the sequential implementation.

� The results of a program are determinate. It is not possible for the sheduling algorithm

to ause answers to di�er between two runs of the same program.

In summary, we suggest that these features allow us to express parallel algorithms onveniently,

without having to solve a large number of low-level problems. Perhaps we an haraterise this

as:

A parallel imperative program spei�es in detail resoure alloation deisions whih

a parallel funtional program does not even mention.

This means that the mahine will have to be able to make resoure alloation deisions au-

tomatially. We will pay, with a loss of exeution eÆieny, whenever these deisions are not

optimal.
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Annotations

The high level of abstration o�ered by funtional languages plaes heavy demands on the

ompile-time and run-time resoure alloators. Rather than leave all resoure alloation dei-

sions to the system, we will introdue an annotation, par, whih initiates a new parallel thread.

The annotation is a meaning-preserving deoration of the program text; in the ase of par it

has the following syntax and meaning:

par E

1

E

2

= E

1

E

2

That is: par is a synonym for appliation. Where it di�ers is that we intend that the expression

E

2

should be evaluated by a onurrent task. As an example we will now rewrite the dsum

funtion using this annotation:

dsum lo hi = let mid = (lo+hi)/2 in

let add x y = x+y

if (lo==hi) hi (par (add (dsum lo mid))

(dsum (mid+1) hi))

We see that par auses the seond argument to + to be evaluated in parallel. The par annotation

an be inserted by the programmer or, in priniple, by a lever ompiler. Suh leverness is,

however, beyond the sope of this book, so we will assume that the pars have already been

inserted.

5.1.2 Parallel graph redution

We have seen in this book that graph redution is a useful implementation tehnique for se-

quential mahines; it will be no surprise that it is also suited to the implementation of parallel

mahines. In fat it has a number of bene�ts:

� There is no sequential onept of program ounter; graph redution is deentralised and

distributed.

� Redutions may take plae onurrently in many plaes in the graph, and the relative

order in whih they are sheduled annot a�et the result.

� All ommuniation and synhronisation takes plae via the graph.

A parallel model

A task is a sequential omputation whose purpose is to redue a partiular sub-graph to WHNF.

At any moment there may be many tasks that are able to run; this olletion of sparked tasks

is alled the spark pool. A proessor in searh of work fethes a new task from the spark pool

and exeutes it. A task an be thought of as a virtual proessor.

Initially, there is only one task, whose job is to evaluate the whole program. During its exeution,

it will hopefully reate new tasks to evaluate expressions that the main task will later need. These
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are plaed in the spark pool, so that another proessor an pik up the task if it has run out of

work. We all the at of plaing a task into the spark pool sparking a hild task.

It is useful to onsider the interation between parent and hild tasks. In the evaluate-and-die

model of task management there is a lok bit on eah graph node. When the bit is on, a task

is exeuting whih will evaluate the node; otherwise the bit is o�. When a parent task requires

the value of a sub-graph for whih a task has been sparked, there are three ases to onsider:

� the hild task has not started yet,

� the hild task has started, but not stopped yet, or

� the hild task has ompleted.

In the �rst ase, the parent task an evaluate the graph just as if the hild task was not there.

Of ourse this sets the lok bit, so that when an attempt is made to exeute the hild task

it is immediately disarded. The interesting ase is the seond one, in whih both parent and

hild are exeuting. When this is the situation, the parent task must wait for the hild task to

omplete before proeeding. We say that the hild task is bloking the parent task. In the third

ase, the node is now in WHNF and unloked, so the parent task will not take very long to feth

the value of the graph.

The advantage of the evaluate-and-die model is that bloking only ours when the parent and

hild atually ollide. In all other ases, the parent's exeution ontinues unhindered. Notie

that the bloking mehanism is the only form of inter-task ommuniation and synhronisation.

One a piee of graph has been evaluated to WHNF any number of tasks an simultaneously

inspet it without ontention.

An example

We begin with a sample exeution of the simplest parallel program:

main = par I (I 3)

As we will shortly see, the two redutions of the identity funtion an take plae in parallel.

A good ompiler will produe the following ode for the main superombinator

1

:

e1 ++ par

where e1 = [Pushint 3, Pushglobal "I", Mkap, Push 0℄

par = [Par, Pushglobal "I", Mkap, Update 0, Pop 0, Unwind℄

Initially, there is only one task exeuting; it is onstruting the sub-expression (I 3). After

exeuting the ode sequene e1, the mahine will be in the state shown in diagram (a) of

Figure 5.1.

After exeuting e1 the mahine enounters a Par instrution. This auses it to reate a new

task to evaluate the node pointed to from the top of the stak. We will refer to the new task as

1

Your ompiler might not produe this ode if it is not sophistiated enough.

206



�

-

-

1

-

-

(b)(a)

After Par InstrutionAfter e1 newly reated

Task 2:Task 1:Task 1:

�

main

I 3 3I

main

�

Figure 5.1: State after exeuting e1 ode sequene and Par
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Task 2:Task 1:

UnwindPushglobal I

Task 2:Task 1:

�

mainmain

�

I 3

Figure 5.2: State after Task 1 exeutes [Pushglobal I, Mkap℄

Task 2; the original task will be labelled Task 1. This situation is illustrated in diagram (b) of

Figure 5.1.

In diagram () (Figure 5.2), we see Task 1 ontinuing with its evaluation; it is performing a

Pushglobal I instrution. The newly reated task { Task 2 { starts with the ode sequene:

[Unwind℄; it therefore starts to unwind the graph it has been assigned to evaluate. Diagram

(d) shows Task 1 ompleting the instantiation of the body of main, and Task 2 ompleting its

unwinding.

Its body instantiated, Task 1 overwrites the redex node, whih is main. Task 2 performs a

Push 0 instrution, this being the �rst instrution in the ode for the I superombinator. This

is shown in diagram (e) (Figure 5.3). In diagram (f) we see Task 1 ommene unwinding its

spine, whilst Task 2 performs its updating.

In Figure 5.4, we see Task 2 run to ompletion. The remainder of the exeution of Task 1 is

the same as the sequential G-mahine, so we omit it.

This onludes a brief overview of the parallel G-mahine's exeution with onurrent tasks. We

now provide a minimal parallel G-mahine.
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Figure 5.4: State after Task 1 exeutes [Unwind, Unwind℄

5.2 Mark 1: A minimal parallel G-mahine

The �rst mahine we present an be based on any of the G-mahines from Chapter 3, exept

the Mark 1; we need this restrition to ensure that updating is done. To this basi mahine we

need to add the mahinery for parallelism. We make the following basi assumptions.

1. There is a shared global graph, whih all proessors an aess.

2. There are an in�nite number of proessors. This means that there is always a proessor

available to exeute a task.

3. There is no loking of graph nodes. This means that it is possible that di�erent tasks will

re-evaluate the same expression.

5.2.1 Data type de�nitions

We will be making onsiderable use of state aess funtions in this hapter. Although they are

not partiularly interesting, for ompleteness they are inluded in this setion.
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In a parallel mahine the state pgmState is split into two omponents: a global omponent,

pgmGlobalState; and a loal omponent, pgmLoalState. The pgmLoalState ontains the

proessors that will exeute the program. The pgmGlobalState ontains global data strutures

{ of whih the heap is the most frequently used { that are manipulated by the proessors.

> type PgmState = (PgmGlobalState, -- Current global state

> [PgmLoalState℄) -- Current states of proessors

The global state omponent

To aommodate all of the possible mahines you might use as a basis for your parallel imple-

mentation, the global state onsists of �ve omponents: gmOutput, whih is the output printed

as the answer to the evaluation of the program; gmHeap, whih is the heap; gmGlobals, whih is

used to point to the unique node in the heap for eah superombinator; gmSparks, whih is the

task pool and will be used to hold tasks before we begin to exeute them; and gmStats, whih

is a global lok.

> type PgmGlobalState = (GmOutput, -- output stream

> GmHeap, -- Heap of nodes

> GmGlobals, -- Global addresses in heap

> GmSparks, -- Sparked task pool

> GmStats) -- Statistis

We onsider eah of these omponents in turn.

� The gmOutput omponent was introdued in the Mark 6 G-mahine (see Setion 3.8). It

is used to aumulate the result of exeuting programs that an generate strutured data,

and is simply a string.

> type GmOutput = [Char℄

The funtion to get the gmOutput from a pgmState is pgmGetOutput is:

> pgmGetOutput :: PgmState -> GmOutput

> pgmGetOutput ((o, heap, globals, sparks, stats), loals) = o

� The heap data struture is the same as we used for the sequential G-mahine.

> type GmHeap = Heap Node

To get the heap from a pgmState we use pgmGetHeap.

> pgmGetHeap :: PgmState -> GmHeap

> pgmGetHeap ((o, heap, globals, sparks, stats), loals) = heap
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� The addresses of global nodes in the heap are stored in gmGlobals; this too is the same

struture we used in the sequential G-mahine.

> type GmGlobals = ASSOC Name Addr

Obtaining the gmGlobals from a pgmState is performed using the pgmGetGlobals fun-

tion.

> pgmGetGlobals :: PgmState -> GmGlobals

> pgmGetGlobals ((o, heap, globals, sparks, stats), loals) = globals

� The spark pool is represented by the gmSparks omponent. It holds the addresses of nodes

in the graph whih have been marked by the par annotation as needing to be evaluated

onurrently.

> type GmSparks = [Addr℄

Aess to this omponent is ahieved by using the funtion pgmGetSparks.

> pgmGetSparks :: PgmState -> GmSparks

> pgmGetSparks ((o, heap, globals, sparks, stats), loals) = sparks

� Finally, in the parallel G-mahine we will hold the aumulated statistis in the global

omponent. It is represented as a list of numbers; these detail how long eah task in the

mahine ran for, before it ompleted.

> type GmStats = [Int℄

Aess to this omponent is aomplished using pgmGetStats.

> pgmGetStats :: PgmState -> GmStats

> pgmGetStats ((o, heap, globals, sparks, stats), loals) = stats

The loal state omponent

The loal omponent of the parallel G-mahine onsists of a list of proessors; a proessor is

represented as a task. Again, to make the parallel mahine apable of exeuting with any

G-mahine as its basis, we make the state of eah proessor a 5-tuple:

> type PgmLoalState = (GmCode, -- Instrution stream

> GmStak, -- Pointer stak

> GmDump, -- Stak of dump items

> GmVStak, -- Value stak

> GmClok) -- Number of tiks the task

> -- has been ative

We now onsider eah omponent in turn.
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� The ode sequene is simply a list of instrutions.

> type GmCode = [Instrution℄

� As in the sequential G-mahine, the stak is a list of addresses in heap.

> type GmStak = [Addr℄

� If you are using a Mark 4 G-mahine (or any later mark) as a basis for your parallel

implementation, then a dump is needed. This is used as a stak of dump items, eah of

type gmDumpItem.

> type GmDump = [GmDumpItem℄

> type GmDumpItem = (GmCode, GmStak)

� If you have used the Mark 7 G-mahine as the basis of your implementation you will need

a V-stak for eah proessor.

> type GmVStak = [Int℄

� We also provide eah proessor with a lok. This reords how many instrutions the task

has exeuted:

> type GmClok = Int

State aess funtions

Although we have already de�ned some state aess funtions for the parallel mahine, we will

�nd it onvenient to de�ne a few more. Eah proessor will make one state transition, during

whih it behaves as if it were a sequential mahine. If we make the state gmState a pair onsisting

of the global omponent of the urrent mahine state and a single proessor state, then we have

a superset of the state omponents of any of the sequential G-mahines.

> type GmState = (PgmGlobalState, PgmLoalState)

It follows that we an simply rede�ne the state aess funtions we used in the sequential mahine

to work with the new type of state. Here are the type signatures of the global put funtions:

> putOutput :: GmOutput -> GmState -> GmState

> putHeap :: GmHeap -> GmState -> GmState

> putSparks :: GmSparks -> GmState -> GmState

> putStats :: GmStats -> GmState -> GmState

The orresponding get funtions have type-signatures:
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> getOutput :: GmState -> GmOutput

> getHeap :: GmState -> GmHeap

> getGlobals :: GmState -> GmGlobals

> getSparks :: GmState -> GmSparks

> getStats :: GmState -> GmStats

For aess to the omponents loal to a proessor we need put funtions with the following

type-signatures:

> putCode :: GmCode -> GmState -> GmState

> putStak :: GmStak -> GmState -> GmState

> putDump :: GmDump -> GmState -> GmState

> putVStak :: GmVStak -> GmState -> GmState

> putClok :: GmClok -> GmState -> GmState

The get funtions have types:

> getCode :: GmState -> GmCode

> getStak :: GmState -> GmStak

> getDump :: GmState -> GmDump

> getVStak :: GmState -> GmVStak

> getClok :: GmState -> GmClok

Exerise 5.1. Write the aess funtions with the types given above.

GOT HERE ZZZZ KH

5.2.2 The evaluator

The struture of the evaluator eval will be familiar; it is the similar to the one used in the

G-mahine.

> eval :: PgmState -> [PgmState℄

> eval state = state: restStates

> where

> restStates | gmFinal state = [℄

> | otherwise = eval (doAdmin (steps state))

The di�erene is that we all steps instead of step. The steps funtion must run down the

list of proessors doing a single step on eah. The preise sequene of events is:

1. First we extrat the addresses that were sparked in the previous all to steps, from the

state.

2. Next, we turn them into proesses. This is labelled newtasks.
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3. The spark pool omponent of the state is set to empty.

4. We inrement the lok for eah proessor that is about to exeute.

5. Finally, we use mapAuml to perform a sequene of step transitions, one for eah proessor.

> steps :: PgmState -> PgmState

> steps state

> = mapAuml step global' loal'

> where ((out, heap, globals, sparks, stats), loal) = state

> newtasks = [makeTask a | a <- sparks℄

> global' = (out, heap, globals, [℄, stats)

> loal' = map tik (loal ++ newtasks)

To reate a task to evaluate a node at address addr you must de�ne a makeTask funtion. For

mahines based on G-mahines 2 or 3 this will be:

> makeTask :: Addr -> PgmLoalState

> makeTask addr = ([Unwind℄, [addr℄, [℄, [℄, 0)

For later marks of the G-mahine we use:

> makeTask addr = ([Eval℄, [addr℄, [℄, [℄, 0)

Inrementing the lok omponent of a proessor is aomplished using tik.

> tik (i, stak, dump, vstak, lok) = (i, stak, dump, vstak, lok+1)

The mahine has terminated when there are no more sparks in the spark pool, and there are no

more proessors exeuting tasks.

> gmFinal :: PgmState -> Bool

> gmFinal s = seond s == [℄ && pgmGetSparks s == [℄

We use the step funtion to perform a single step on a proessor.

> step :: PgmGlobalState -> PgmLoalState -> GmState

> step global loal = dispath i (putCode is state)

> where (i:is) = getCode state

> state = (global, loal)

The doAdmin funtion eliminates proessors that have �nished exeuting. A proessor has �n-

ished when the ode omponent is empty. When this is the ase, we must update the statistis

omponent of the state, with the number of instrutions it took the proessor to omplete its

task.

213



> doAdmin :: PgmState -> PgmState

> doAdmin ((out, heap, globals, sparks, stats), loal)

> = ((out, heap, globals, sparks, stats'), loal')

> where (loal', stats') = foldr filter ([℄, stats) loal

> filter (i, stak, dump, vstak, lok) (loal, stats)

> | i == [℄ = (loal, lok:stats)

> | otherwise = ((i, stak, dump, vstak, lok): loal, stats)

We now onsider the new instrution transitions.

The transition for the Par instrution

The only new instrution that must be added is Par. Its e�et is to mark the node at the top of

the stak so that the mahine may reate a task to evaluate the node to WHNF. To do this, the

instrution must modify the global omponent of the state by adding the address of the node

to the spark pool.

(5.1)

hh m t i hPar : i a : si

=) hh m a : ti h i si

The �rst tuple { onsisting of h, m and t { is the global state omponent, with h, m and t being

the heap, global address map and spark pool respetively. The seond tuple { onsisting of an

instrution stream and a stak { is a partiular task's loal state; depending on the version of

the G-mahine you have used as a basis you may need to add other omponents to the loal

state.

The e�et of Par is to add the address a to the spark pool. It is implemented as follows:

> par :: GmState -> GmState

> par s = s

Exerise 5.2. Modify showInstrution, dispath and instrution so that Par is orretly handled.

5.2.3 Compiling a program

A simple ompiler an be onstruted for a parallel mahine based on any of the sequential

mahines (exept the Mark 7), by providing a ompiled primitive for the par funtion. More

extensive modi�ations are required for the Mark 7 based mahines.

The other modi�ation required lies in the ompile funtion, where the various omponents are

now to be found in di�erent loations, and of ourse there are now a number of proessors. The

new de�nition is:

> ompile :: CoreProgram -> PgmState

> ompile program

> = (([℄, heap, globals, [℄, [℄), [initialTask addr℄)

> where (heap, globals) = buildInitialHeap program

> addr = aLookup globals "main" (error "main undefined")
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This sets the global omponent to hold the heap and global map, as used in the sequential

G-mahine. We also plae a task in the loal omponent, to initiate the exeution.

> initialTask :: Addr -> PgmLoalState

> initialTask addr = (initialCode, [addr℄, [℄, [℄, 0)

If you use the Mark 2 or Mark 3 sequential G-mahine as a basis you need to de�ne initialCode

as:

> initialCode :: GmCode

> initialCode = [Unwind℄

For the Mark 4 or Mar 5 mahine this is hanged to:

> initialCode = [Eval℄

And, to deal with data strutures, the Mark 6 and Mark 7 mahine has the following

initialCode:

> initialCode = [Eval, Print℄

We now onsider how to add par to the primitive funtions of the mahine. We begin by

onsidering those mahines based on sequential G-mahines Marks 2 through to 6.

Using the Marks 2{6 G-mahine as a basis

We need to inlude the following in the de�nition of ompiledPrimitives:

> ("par", 2, [Push 1, Push 1, Mkap, Push 2, Par, Update 2, Pop 2, Unwind℄)

This rather rypti piee of ode performs the following task when the funtion par is applied

to the two arguments: E

1

and E

2

.

1. First we onstrut the appliation of E

1

to E

2

; this is the job of the sequene:

[Push 1, Push 1, Mkap℄

2. Next, Push 2 makes a opy of the pointer to E

2

. The Par instrution then adds this

address to the spark pool.

3. Finally, we perform the usual updating and tidying-up after an instantiation.
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Using the Mark 7 G-mahine as a basis

As mentioned above, this is a slightly trikier operation. We need to modify the ompiler

funtions ompileR and ompileE to reognise the speial ases involving par. First ompileR

needs the following ase added:

> ompileR (EAp (EAp (EVar "par") e1) e2) args

> = ompileC e2 args ++ [Push 0, Par℄ ++

> ompileC e1 (argOffset 1 args) ++ [Mkap, Update n, Pop n, Unwind℄

> where n = #args

This uses the C sheme to ompile e2, whih is then sparked. The expression e1 is ompiled

using the C sheme, before we make the appliation node. Finally, we perform the updating and

tidying-up of the stak.

Next, we modify ompileE so that it has a ase:

> ompileE (EAp (EAp (EVar "par") e1) e2) args

> = ompileC e2 args ++ [Push 0, Par℄ ++

> ompileC e1 (argOffset 1 args) ++ [Mkap, Eval℄

This only di�ers from the ase given for ompileR beause it uses Eval to fore the appliation

node that is reated to WHNF.

With these two modi�ations to the ompiler, it suÆes to add the following to the primitives:

> ("par", ["x","y"℄, (EAp (EAp (EVar "par") (EVar "x")) (EVar "y")))

Notie that we ould use this approah with the Mark 5 or Mark 6 based mahines.

Exerise 5.3. Make the modi�ations to your ompiler, so that there is a par funtion de�ned.

Exerise 5.4. Why do we perform the sparking of the graph for the seond argument before onstruting

the �rst argument in the speial ases for

ompileR and ompileE?

5.2.4 Printing the results

One we have omputed the states of the mahine we ontrol the display of them by using

showResults. This prints out: the ode for the superombinators, the state transitions and the

statistis. It has type:

> showResults :: [PgmState℄ -> [Char℄

To print the superombinator ode we use the same showSC funtions as that for the G-mahine;

it has type:

> showSC :: PgmState -> (Name, Addr) -> Iseq
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The funtion showState is used to display the state of loal proesses during the transitions.

Beause we have a parallel mahine there is now likely to be more than one task exeuting at

one. It has type:

> showState :: PgmState -> Iseq

Two other funtions need to be modi�ed: showStats and showOutput. They have types:

> showStats :: PgmState -> Iseq

> showOutput :: GmOutput -> Iseq

Exerise 5.5. Modify the funtions: showResults, showSC, showState, showStats and showOutput.

De�ne a new display funtion showSparks with type:

> showSparks :: GmSparks -> Iseq

Exerise 5.6. Try running the parallel G-mahine on the following program.

main = par (S K K) (S K K 3)

How long does it take in mahine yles? How long does it take for the equivalent sequential

program:

main = S K K (S K K 3)

Exerise 5.7. What happens when we run the program:

main = par I (I 3)

Is the use of par justi�ed in this program?

5.3 Mark 2: The evaluate-and-die model

A problem with the Mark 1 mahine is that it risks reating many tasks to redue the same

node in the heap, thereby dupliating the work done by the mahine. The way to prevent this

is to lok the nodes during unwinding. This will blok any other task that enounters the same

node. We must also remember to unlok nodes one they beome free again; this allows bloked

tasks to resume.

The only instrution that auses an unloked node to beome loked is Unwind; it does this

to eah node on the spine that it enounters. The reason we hoose this instrution, rather

than Eval, is that it is possible to enounter a loked node part way through unloking a spine;

using Eval we would not ath this ase. Similarly, the only instrution that will blok a task

is Unwind. After all, it is the only instrution that needs to inspet a node's value.

Conversely, the only instrution that will unlok a loked node is Update. A previously loked

node is unloked when it is known to be in WHNF. But we know that all nodes in the spine

below the redex are in WHNF, when we are about to update the redex, and hene we should

unlok all nodes below the root of the redex.
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5.3.1 The node data struture

The improvements we intend to inorporate require very few hanges to be made to the mahine's

data strutures. First, we must add two sorts of new nodes to the node data type: these will be

NLAp, the loked appliation nodes; and NLGlobal, loked superombinator nodes. We will see

how they are used in the setion on the new instrution transitions.

> data Node = NNum Int -- Numbers

> | NAp Addr Addr -- Appliations

> | NGlobal Int GmCode -- Globals

> | NInd Addr -- Indiretions

> | NConstr Int [Addr℄ -- Construtors

> | NLAp Addr Addr -- Loked appliations

> | NLGlobal Int GmCode -- Loked globals

Exerise 5.8. Rewrite the showNode funtion to deal with the new loked nodes.

5.3.2 The instrution set

The only hange that needs to be made is to lok and unlok nodes at the right plaes. We must

lok appliation nodes and superombinators with zero arguments as we unwind them. When a

node is updated all of the nodes in the spine below it must be unloked. We use two funtions

to perform loking and unloking of heap nodes. The lok funtion turns an unloked, but

possibly updatable, node into a loked one. The nodes that need to be loked are appliation

nodes, and global nodes with no arguments.

> lok :: Addr -> GmState -> GmState

> lok addr state

> = putHeap (newHeap (hLookup heap addr)) state

> where

> heap = getHeap state

> newHeap (NAp a1 a2) = hUpdate heap addr (NLAp a1 a2)

> newHeap (NGlobal n ) | n == 0 = hUpdate heap addr (NLGlobal n )

> | otherwise = heap

When we unlok a loked appliation node we need to ensure that the spine that it points to is

also unloked; unlok is therefore reursive.

> unlok :: Addr -> GmState -> GmState

> unlok addr state

> = newState (hLookup heap addr)

> where

> heap = getHeap state

> newState (NLAp a1 a2)

> = unlok a1 (putHeap (hUpdate heap addr (NAp a1 a2)) state)

> newState (NLGlobal n )
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> = putHeap (hUpdate heap addr (NGlobal n )) state

> newState n = state

The new step transitions for Unwind and Update should be de�ned in terms of lok and unlok;

these transitions are now de�ned. In the Rule 5.2, we see that apart from loking the appliation

node { whih is represented by *NAp { Unwind has the same transition as it did in the Mark 1

mahine.

(5.2)

hh[a : NAp a

1

a

2

℄ m ti h[Unwind℄ a : si

=) hh[a : *NAp a

1

a

2

℄ m ti h[Unwind℄ a

1

: a : si

The same is also true of the transition rule for Unwind when it has a superombinator of arity

zero on top of the stak. In this ase *NGlobal is a loked global node.

(5.3)

hh[a : NGlobal 0 ℄ m ti h[Unwind℄ a : si

=) hh[a : *NGlobal 0 ℄ m ti h  a : si

In the new transition rule for Update, when we update the root of the redex, whose address is a,

we must unlok all of the nodes in the spine desending from a. The transition rule is therefore:

(5.4)

hh

2

6

6

6

6

6

4

a

0

1

: NGlobal n 

a

0

2

: *NAp a

0

1

a

1

� � �

a

0

n�1

: *NAp a

0

n�2

a

n�2

a

n

: *NAp a

0

n�1

a

n�1

3

7

7

7

7

7

5

m ti hUpdate n : i a : a

1

: : : : : a

n

: si

=) hh

2

6

6

6

6

6

4

a

0

1

: NGlobal n 

a

0

2

: NAp a

0

1

a

1

� � �

a

0

n�1

: NAp a

0

n�2

a

n�2

a

n

: NInd a

3

7

7

7

7

7

5

m ti h i a

1

: : : : : a

n

: si

Exerise 5.9. Modify the de�nitions of the transition funtions unwind and update. You should use

the lok and unlok funtions in your ode.

You will also need to `look through' loked nodes on rearranging the stak, so getArg beomes:

> getArg (NLAp a1 a2) = a2

Exerise 5.10. Try running this program on your mahine:

main = twie' (twie' (twie' (S K K))) 3

twie' f x = par f (f x)

Exerise 5.11. A divide-and-onquer program exeutes a par instrution in eah running proess every

thirty instrutions. The proesses do not die. How many simulated lok tiks pass before we have

one task for eah eletron in the universe? (Hint: there are approximately 10

85

eletrons in the

universe.)

Exerise 5.12. If a proessor osts $0.01, how long an the program of Exerise 5.11 run before nobody

an a�ord the mahine? (Hint: the US federal budget is approximately $5� 10

12

.)
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5.4 Mark 3: A realisti parallel G-mahine

As Exerises 5.11 and 5.12 will have shown there are physial and eonomi limitations to the

amount of parallelism available in the real world. The model of parallelism that we are using is

not very realisti. We are reating a new proessor to exeute eah parallel task, and in the real

world we will very quikly run out of resoures.

5.4.1 Sheduling poliy

A more realisti model must involve restriting the amount of parallelism to that provided by

the hardware. This is easily aomplished by plaing an upper limit on the number of proessors

that an run at any one time. As a onsequene, whenever there are no proessors available to

exeute a task, the task will remain unhanged.

When there are more proessors than tasks, some proessors will be idle. On the other hand,

when the reverse is the ase, we will be faed with the problem of deiding whih task we will

exeute next. This deision is alled a sheduling poliy.

5.4.2 Conservative and speulative parallelism

Some tasks will be more important than others. We an usefully lassify tasks into one of two

groups:

� tasks whose results will de�nitely be needed; and

� tasks whose results may be needed.

We refer to tasks in the �rst ategory as onservative tasks, whilst those in the seond are termed

speulative tasks.

If we hoose to allow speulative parallel tasks, then we must address issues of priority in

sheduling tasks. That is: we must rank the tasks in order of importane. We must also allow

di�erent tasks with the same priority the same amount of omputing time. To see why this is

desirable, onsider evaluating two branhes of a ase expression { e1 and e2 { in parallel with

the evaluation of the disriminant expression e0.

ase e0 of

<1> -> e1

<2> -> e2

Until e0 has ompleted its evaluation, we do not know whih of e1 or e2 will be required; it

therefore makes sense to try to evaluate an equal amount of eah. This sort of sheduling poliy

is termed fair sheduling. Notie, in this example, that one e0 has ompleted, one of the tasks

(e1 or e2) will beome needed, and the other should be killed. The priorities of a task therefore

need to be adjusted during the exeution of a task.

In this book we make no attempt to implement a mahine suitable for speulative parallelism.

We make the exuse that this is a `hard problem', and leave the matter alone. Heneforth, all
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uses of the par primitive are assumed to our in situations whih give rise only to onservative

parallelism.

In the Mark 3 parallel G-mahine, we will only have a limited number of ative tasks within

the mahine. These are exeuted by the proessors in the mahine. There will be only a �xed

number of proessors. This �xed number is: mahineSize, whih we have urrently set to 4.

> mahineSize :: Int

> mahineSize = 4

The major hange to the evaluator lies in the steps funtion, whih does not just add all of the

tasks that were reated into the mahine. Instead it now uses sheduler to pik replaement

tasks for any task that annot proeed.

1. First, we extrat the sparks in the task pool from the global state omponent.

2. New tasks are then reated for the sparks, and are added to the already exeuting tasks.

3. The sheduler funtion then selets whih tasks to exeute.

Here is the way we ode steps:

> steps :: PgmState -> PgmState

> steps state

> = sheduler global' loal'

> where ((out, heap, globals, sparks, stats), loal) = state

> newtasks = [makeTask a | a <- sparks℄

> global' = (out, heap, globals, [℄, stats)

> loal' = loal ++ newtasks

The sheduling poliy is very simple: we selet the �rst mahineSize tasks and run them. These

tasks are then plaed at the end of the sheduling queue. This sheduling poliy is usually alled

a round-robin sheduling poliy.

> sheduler :: PgmGlobalState -> [PgmLoalState℄ -> PgmState

> sheduler global tasks

> = (global', nonRunning ++ tasks')

> where running = map tik (take mahineSize tasks)

> nonRunning = drop mahineSize tasks

> (global', tasks') = mapAuml step global running

Exerise 5.13. What happens if the tasks that are exeuted are not plaed at the end of the sheduling

queue for the next step. (Hint: try it!)

Exerise 5.14. One improvement we an make is to reate tasks from the spark pool only when there

are idle proessors. Modify steps to do this.
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Exerise 5.15. Another improvement is only to shedule tasks that an proeed. At the moment we

shedule tasks to evaluate nodes that are already in WHNF. We also shedule tasks that are bloked

beause they are attempting to unwind loked nodes. Modify sheduler so that this no longer

happens.

Exerise 5.16. Investigate the use of other sheduling strategies. For example, try sheduling the last

task in the task pool.

Does the sheduling strategy make any di�erene to the exeution time of the program?

5.5 Mark 4: A better way to handle bloking

So far we have left bloked tasks in the mahine's loal state, and required the sheduler

funtion to selet runnable tasks. This means that the sheduler funtion may have to skip

over a onsiderable number of bloked tasks before oming aross one that it an run.

We an do better than this! It would be a muh better idea to attah a bloked task to the

node That aused it to blok. Beause a loked node an ause an arbitrary number of tasks

to blok, we will need to allow a list of tasks to be plaed on the loked node. We all this the

pending list.

How do we use the pending list?

1. When a node is loked, it has its pending list set to [℄.

2. When a task enounters a loked node, the task plaes itself on the pending list of the

loked node.

3. When a loked node is unloked, all of the tasks in its pending list beome runnable, and

are transferred to the mahine's loal state.

To implement the Mark 4 mahine we must make the following hanges to the data strutures

of the mahine.

5.5.1 Data strutures

First, eah loked node must now have a pending list; this means that the node data type is

now:

> data Node = NNum Int -- Numbers

> | NAp Addr Addr -- Appliations

> | NGlobal Int GmCode -- Globals

> | NInd Addr -- Indiretions

> | NConstr Int [Addr℄ -- Construtors

> | NLAp Addr Addr PgmPendingList -- Loked appliations

> | NLGlobal Int GmCode PgmPendingList -- Loked globals

A pending list is just a list of tasks. The tasks in a loked node's pending list will be those that

have been bloked on the loked node.
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> type PgmPendingList = [PgmLoalState℄

Exerise 5.17. Modify showNode to work with the new de�nition of node.

The other hange is to the type of gmSparks. Instead of being a list of addresses { as it was in

previous parallel G-mahines { this is now a list of tasks.

> type GmSparks = [PgmLoalState℄

Exerise 5.18. Modify the par transition so that it plaes tasks into the spark pool and not addresses.

You should modify showSparks funtion to print the number of tasks in the spark pool, and the

steps funtion will need to be modi�ed beause it no longer needs to turn items in the spark pool

into tasks.

5.5.2 Loking and unloking

We have been building up to a new way to handle loking and unloking of nodes. Let us �rst

onsider what happens when a loked node is about to be updated. The Update instrution will

be implemented using a all to unlok. Eah node in the spine of the expression about to be

overwritten will need to have the tasks in its pending list transferred to the spark pool. To do

this we de�ne the following funtion that transfers tasks to the spark pool:

> emptyPendingList :: [PgmLoalState℄ -> GmState -> GmState

> emptyPendingList tasks state

> = putSparks (tasks ++ getSparks state) state

Exerise 5.19. Modify the unlok funtion so that it empties the tasks in the pending lists into the

spark pool.

The loking operation ours as part of the Unwind instrution. As previously, we use the lok

funtion to perform the loking operation. Now it must give eah newly loked node an empty

pending list.

Exerise 5.20. Modify the lok funtion so that it gives loked nodes an empty pending list.

Finally, we disuss what happens when a task attempts to unwind a loked node. Clearly, we

plae the task onto the node's pending list. But what do we replae the task with? Remember

that the type of step is:

> step :: gmState -> gmState

The solution we have adopted is to replae the task with an emptyTask:

> emptyTask :: PgmLoalState

> emptyTask = ([℄, [℄, [℄, [℄, 0)
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So we need two new transitions for Unwind. We begin with the one for loked appliation nodes,

in whih we see that the task is plaed on the node's pending list and we see that the task is

replaed by the emptyTask.

(5.5)

hh[a : *NAp a

1

a

2

pl ℄ m ti h[Unwind℄ a : si

=) hh[a : *NAp a

1

a

2

h[Unwind℄; a : si : pl ℄ m ti emptyTask

The rule for loked global nodes is similar: we see that the task is plaed onto the node's pending

list, and is itself replaed by the emptyTask.

(5.6)

hh[a : *NGlobal 0  pl ℄ m ti h[Unwind℄ a : si

=) hh[a : *NGlobal 0  h[Unwind℄; a : si : pl ℄ m ti emptyTask

Exerise 5.21. Modify the unwind funtion to implement the new transitions for the Unwind instrution.

You will also need to make the getArg funtion:

> getArg (NLAp a1 a2 pl) = a2

Exerise 5.22. Modify the sheduler funtion to plae non-running tasks into the spark pool.

Exerise 5.23. Modify the doAdmin funtion to �lter out emptyTask's from the loal state.

5.6 Conlusions

This hapter has shown that, in priniple, a shared memory implementation of lazy funtional

languages is straightforward. Of ourse, we have also seen that there are payo�s to be had by

arefully onsidering optimisations to the simple sheme we used initially in the Mark 1 mahine.

In all of our parallel mahines, the graph ats as a ommuniation and synhronisation medium;

and in the Mark 2 and Mark 3 mahines, individual proesses will be bloked when trying to

aess loked nodes in the heap.

So where are the urrent hallenges in the parallel implementation of lazy funtional languages?

The mehanisms for parallelism inluded in this book do not handle the deletion of proesses.

If speulative parallelism is going to be used then realisti implementations will need to deal

with this problem. On the other hand, �nding the non-speulative parallelism is often diÆult,

and in large programs this may even be intratable. Attempts have been made to use abstrat

interpretation for this purpose, and although the results look promising, they should be regarded

tentatively.

One �nal area that we have not overed is that of distributed memory parallel mahines. Again,

in priniple they are similar to shared memory mahines, but the pratialities are quite di�erent.

Arranging the message passing so as to avoid deadlok is something of a blak art.
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Chapter 6

Lambda Lifting

6.1 Introdution

In this hapter

1

we will be looking at ways to extend the set of programs that are aeptable to

the mahines we have looked at previously in the book. The extension that we introdue is to

allow loal funtion de�nitions. We are then faed with alternative approahes:

� add a mehanism to the mahines to deal with environments; or

� transform the program so that there are no loal funtion de�nitions; instead all funtions

are de�ned as superombinators.

In this book we have always assumed that the seond approah would be taken.

This hapter is also an appropriate point at whih to introdue the onept of full laziness. Again,

this desirable optimisation of funtional languages is ahieved using a program transformation.

6.2 Improving the expr data type

Before we begin the program proper, we must import the language and utilities modules.

> module Lambda where

> import Utils

> import Language

Unfortunately, the data types de�ned there (oreExpr, oreProgram and so on) are insuÆiently

exible for our needs in this hapter, so we will attend to this problem �rst. Many ompiler

passes add information to the abstrat syntax tree, and we need a systemati way to represent

this information. Examples of analyses whih generate this sort of information are: free-variable

analysis, binding level analysis, type inferene, stritness analysis and sharing analysis.

1

Some of the material in this hapter was �rst published in [Peyton Jones and Lester 1991℄.
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The most obvious way to add suh information is to add a new onstrutor for annotations to

the expr data type, thus:

> expr * = EVar name

> | ...

> | EAnnot annotation (expr *)

together with an auxiliary data type for annotations, whih an be extended as required:

> annotation ::= FreeVars (set name)

> | Level num

This allows annotations to appear freely throughout the syntax tree, whih appears admirably

exible. In pratie, it su�ers from two major disadvantages:

� It is easy enough to add annotation information in the form just desribed, but writing

a ompiler pass whih uses information plaed there by a previous pass is downright

awkward. Suppose, for example, that a pass wishes to use the free-variable information

left at every node of the tree by a previous pass. Presumably this information is attahed

immediately above every node, but the data type would permit several annotation nodes to

appear above eah node, and worse still none (or more than one) might have a free-variable

annotation.

Even if the programmer is prepared to ertify that there is exatly one annotation node

above every tree node, and that it is a free-variable annotation, the implementation will

still perform pattern mathing to hek these assertions when extrating the annotation.

Both of these problems, namely the requirement for unhekable programmer assertions

and some implementation overhead, are diretly attributable to the fat that every an-

notated tree has the rather uninformative type expr, whih says nothing about whih

annotations are present.

� The seond major problem is that further experimentation reveals that two distint forms

of annotation are required. The �rst annotates expressions as above, but the seond

annotates the binding ourrenes of variables; that is, the ourrenes on the left-hand

sides of let(re) de�nitions, and the bound variables in lambda abstrations or ase

expressions. We will all these ourrenes binders. An example of the need to annotate

binders omes in type inferene, where the ompiler infers a type for eah binder, as well

as for eah sub-expression.

It is possible to use the expression annotation to annotate binders, but it is lumsy and

inonvenient to do so.

We will address the seond problem �rst, sine it has an easy solution. Reall from Setion 1.3

that the expr type was parameterised with respet to the type of its binders; we repeat its

de�nition here as a reminder:

> expr *

> ::= EVar name || Variables
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> | ENum num || Numbers

> | EConstr num num || Construtor tag arity

> | EAp (expr *) (expr *) || Appliations

> | ELet || Let(re) expressions

> isRe || boolean with True = reursive,

> [(*, expr *)℄ || Definitions

> (expr *) || Body of let(re)

> | ECase || Case expression

> (expr *) || Expression to srutinise

> [alter *℄ || Alternatives

> | ELam [*℄ (expr *) || Lambda abstrations

The type oreExpr is a speialised form of expr in whih the binders are of type name. This is

expressed using a type synonym (also repeated from Setion 1.3):

> oreExpr == expr name

The advantage of parameterising expr is that we an also de�ne other speialised forms. For

example, typedExpr is a data type in whih binders are names annotated with a type:

> typedExpr = expr (name, typeExpr)

where typeExpr is a data type representing type expressions.

Returning to annotations on expressions, we an reuse the same tehnique by parameterising the

data type of expressions with respet to the annotation type. We want to have an annotation on

every node of the tree, so one possibility would be to add an extra �eld to every onstrutor with

the annotation information. This is inonvenient if, for example, you simply want to extrat the

free-variable information at the top of a given expression without performing ase analysis on

the root node. This leads to the following idea:

eah level of the tree is a pair, whose �rst omponent is the annotation, and whose

seond omponent is the abstrat syntax tree node.

Here are the orresponding Miranda data type de�nitions:

> type AnnExpr a b = (b, AnnExpr' a b)

> data AnnExpr' a b = AVar Name

> | ANum Int

> | AConstr Int Int

> | AAp (AnnExpr a b) (AnnExpr a b)

> | ALet Bool [AnnDefn a b℄ (AnnExpr a b)

> | ACase (AnnExpr a b) [AnnAlt a b℄

> | ALam [a℄ (AnnExpr a b)
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> type AnnDefn a b = (a, AnnExpr a b)

> type AnnAlt a b = (Int, [a℄, (AnnExpr a b))

> type AnnProgram a b = [(Name, [a℄, AnnExpr a b)℄

Notie the way that the mutual reursion between annExpr and annExpr' ensures that every

node in the tree arries an annotation. The sort of annotations arried by an expression are

now manifested in the type of the expression. For example, an expression annotated with free

variables has type annExpr name (set name).

It is a real annoyane that annExpr' and expr have to de�ne two essentially idential sets of

onstrutors. There appears to be no way around this within the Hindley-Milner type system. It

would be possible to abandon the expr type altogether, beause the expr * is nearly isomorphi

to annExpr * **, but there are two reasons why we hoose not to do this. Firstly, the two types

are not quite isomorphi, beause the latter distinguishes ((), ? ) from ? while the former

does not. Seondly (and more seriously), it is very tiresome to write all the ()'s when building

and pattern mathing on trees of type annExpr * **.

This ompletes our development of the entral data type. The disussion has revealed some

of the strengths, and a weakness, of the algebrai data types provided by modern funtional

programming languages.

Exerise 6.1. Our present pretty-printing funtion, pprint, de�ned in Setion 1.5, is only able to print

orePrograms. In order to print out intermediate stages in the lambda lifter we will need a

funtion pprintGen whih an display values of type program *. (The `Gen' is short for `generi'.)

pprintGen needs an extra argument to tell it how to print the binders:

> pprintGen :: (* -> iseq) || funtion from binders to iseq

> -> program * || the program to be formatted

> -> [har℄ || result string

For example, one we have written pprintGen we an de�ne pprint in terms of it:

> pprint prog = pprintGen iStr prog

Write a de�nition for pprintGen, and its assoiated funtions pprExprGen, and so on.

Exerise 6.2. Do a similar job for printing values of type annProgram * **. Here you will need two

extra arguments, one for formatting the binders and one for formatting the annotations:

> pprintAnn :: (* -> iseq) || funtion from binders to iseq

> -> (** -> iseq) || funtion from annotations to iseq

> -> annProgram * ** || program to be displayed

> -> [har℄ || result string

Write a de�nition for pprintAnn and its assoiated auxiliary funtions.
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6.3 Mark 1: A simple lambda lifter

Any implementation of a lexially soped programming language has to ope with the fa-

t that a funtion or proedure may have free variables. Unless these are removed in some

way, an environment-based implementation has to manipulate linked environment frames, and

a redution-based system is made signi�antly more omplex by the need to perform renaming

during substitution. A popular way of avoiding these problems, espeially in graph redution

implementations, is to eliminate all free variables from funtion de�nitions by means of a trans-

formation known as lambda lifting. Lambda lifting is a term oined by [Johnsson 1985℄, but the

transformation was independently developed by [Hughes 1983℄.

In our ontext, lambda lifting transforms a Core-language program into an equivalent one in

whih there are no embedded lambda abstrations. To take a simple example, onsider the

program

f x = let g = \y. x*x + y in (g 3 + g 4)

main = f 6

The \y abstration an be removed by de�ning a new superombinator $g whih takes x as an

extra parameter, but whose body is the o�ending abstration, and replaing the \y abstration

with an appliation of $g, giving the following set of superombinator de�nitions:

$g x y = x*x + y

f x = let g = $g x in (g 3 + g 4)

main = f 6

How did we deide to make just x into the extra parameter to $g? We did it beause x is a free

variable of the abstration \y. x*x + y:

De�nition. An ourrene of a variable v in an expression e is said to be free in e

if the ourrene is not bound by an enlosing lambda or let(re) expression in e.

On the other hand, y is not free in (\y. x*x + y), beause its ourrene is in the sope of an

enlosing lambda abstration whih binds it.

Matters are no more ompliated when reursion is involved. Suppose that g was reursive,

thus:

f x = letre g = \y. ons (x*y) (g y) in g 3

main = f 6

Now x and g are both free in the \y abstration, so the lambda lifter will make them both into

extra parameters of $g, produing the following set of superombinators:

$g g x y = ons (x*y) (g y)

f x = letre g = $g g x in g 3

main = f 6
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Notie that the de�nition of g is still reursive, but the lambda lifter has eliminated the loal

lambda abstration. The program is now diretly implementable by most ompiler bak ends;

and in partiular by all of the abstrat mahines in this book.

There one �nal gloss to add: there is no need to treat other top-level funtions as extra param-

eters. For example, onsider the program

h p q = p*q

f x = let g = \y. (h x x) + y in (g 3 + g 4)

main = f 6

Here we do not want to treat h as a free variable of the \y abstration, beause it is a onstant

whih an be referred to diretly from the body of the new $g superombinator. The same

applies, of ourse, to the + and * funtions! In short, only superombinator arguments, and

variables bound by lambda abstrations or let(re) expressions, are andidates for being free

variables.

It is worth noting in passing that the lexial-soping issue is not restrited to funtional lan-

guages. For example, Pasal allows a funtion to be delared loally within another funtion,

and the inner funtion may have free variables bound by the outer sope. On the other hand,

the C language does not permit suh loal de�nitions. In the absene of side e�ets, it is simple

to make a loal funtion de�nition into a global one: all we need do is add the free variables as

extra parameters, and add these parameters to every all. This is exatly what lambda lifting

does.

6.3.1 Implementing a simple lambda lifter

We are now ready to develop a simple lambda lifter. It will take a oreProgram and return an

equivalent oreProgram in whih there are no ourrenes of the ELam onstrutor.

> lambdaLift :: CoreProgram -> CoreProgram

The lambda lifter works in three passes:

� First, we annotate every node in the expression with its free variables. This is used by

the following pass to deide whih extra parameters to add to a lambda abstration. The

freeVars funtion has type

> freeVars :: CoreProgram -> AnnProgram Name (Set Name)

The type set * is a standard abstrat data type for sets, whose de�nition is given in

Appendix A.4.

� Seond, the funtion abstrat abstrats from eah lambda abstration \x

1

: : : x

n

.e its free

variables v

1

: : : v

m

, replaing the lambda abstration with an expression of the form

(let s = \v

1

: : : v

m

x

1

: : : x

n

. e in s) v

1

: : : v

m

We ould use a diret appliation of the lambda abstration to the free variables, but we

need to give the new superombinator a name, so we take the �rst step here by always

giving it the name s. For example, the lambda abstration
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(\x. y*x + y*z)

would be transformed to

(let s = (\y z x. y*x + y*z) in s) y z

abstrat has the type signature:

> abstrat :: AnnProgram Name (Set Name) -> CoreProgram

Notie, from the type signature, that abstrat removes the free variable information,

whih is no longer required.

� Now we traverse the program giving a unique name to eah variable. This will have the

e�et of making unique all the s variables introdued by the previous pass. Indeed, the

sole purpose of introduing the extra let expressions in the �rst plae was to give eah

superombinator a name whih ould then be made unique. As a side e�et, all other

names in the program will be make unique, but this does not matter, and it will turn out

to be useful later.

> rename :: CoreProgram -> CoreProgram

� Finally, olletSCs ollets all the superombinator de�nitions into a single list, and

plaes them at the top level of the program.

> olletSCs :: CoreProgram -> CoreProgram

The lambda lifter itself is the omposition of these three funtions:

> lambdaLift = olletSCs . rename . abstrat . freeVars

To make it easier to see what is happening we de�ne the a funtion runS (the `S' stands for

`simple') to integrate the parser and printer:

> runS = pprint . lambdaLift . parse

It would of ourse be possible to do all the work in a single pass, but the modularity provided

by separating them has a number of advantages: eah individual pass is easier to understand,

the passes may be reusable (for example, we reuse freeVars below) and modularity makes it

easier to hange the algorithm somewhat.

As an example of the �nal point, some ompilers are able to generate better ode by omitting the

olletSCs pass, beause more is then known about the ontext in whih the superombinator

is applied [Peyton Jones 1991℄. For example, onsider the following expression, whih might be

produed by the abstrat pass:

let f = (\v x. v-x) v

in ...f...f...
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Here abstrat has removed v as a free variable from the \x abstration

2

. Rather than ompiling

the superombinator independently of its ontext, a ompiler ould onstrut a losure for f,

whose ode aesses v diretly from the losure and x from the stak. The alls to f thus do

not have to move v onto the stak. The more free variables there are the more bene�ial this

beomes. Nor do the alls to f beome less eÆient beause the de�nition is a loal one; the

ompiler an see the binding for f and an jump diretly to its ode.

In the following setions we give de�nitions for eah of these passes. We omit the equations for

ase expressions, whih appear as Exerise 6.4.

6.3.2 Free variables

The ore of the free-variable pass is funtion freeVars_e whih has type

> freeVars_e :: (Set Name) -- Candidates for free variables

> -> CoreExpr -- Expression to annotate

> -> AnnExpr Name (Set Name) -- Annotated result

Its �rst argument is the set of loal variables whih are in sope; these are the possible free

variables. The seond argument is the expression to be annotated, and the result is the annotated

expression. The main funtion freeVars just runs down the list of superombinator de�nitions,

applying freeVars_e to eah:

> freeVars prog = [ (name, args, freeVars_e (setFromList args) body)

> | (name, args, body) <- prog

> ℄

The freeVars_e funtion runs over the expression reursively; in the ase of numbers there are

no free variables, so this is what is returned in the annotated expression.

> freeVars_e lv (ENum k) = (setEmpty, ANum k)

In the ase of a variable, we hek to see whether it is in the set of andidates to deide whether

to return the empty set or a singleton set:

> freeVars_e lv (EVar v) | setElementOf v lv = (setSingleton v, AVar v)

> | otherwise = (setEmpty, AVar v)

The ase for appliations is straightforward: we �rst annotate the expression e1 with its free

variables, then annotate e2, returning the union of the two sets of free variables as the free

variables of EAp e1 e2.

> freeVars_e lv (EAp e1 e2)

> = (setUnion (freeVarsOf e1') (freeVarsOf e2'), AAp e1' e2')

> where e1' = freeVars_e lv e1

> e2' = freeVars_e lv e2

2

We are ignoring the let expression whih abstrat introdues to name the superombinator.
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In the ase of a lambda abstrations we need to add the args to the loal variables passed in,

and subtrat them from the free variables passed out:

> freeVars_e lv (ELam args body)

> = (setSubtration (freeVarsOf body') (setFromList args), ALam args body')

> where body' = freeVars_e new_lv body

> new_lv = setUnion lv (setFromList args)

The equation for let(re) expressions has rather a lot of plumbing, but is quite straightforward.

The loal variables in sope that are passed to the body is body_lv; the set of loal variables

passed to eah right-hand side is rhs_lv. Next we annotate eah right-hand side with its free

variable set, giving rhss', from this we an onstrut the annotated de�nitions: defns'. The

annotated body of the let(re) is body'. The free variables of the de�nitions is alulated to

be defnsFree, and those of the body are bodyFree.

> freeVars_e lv (ELet is_re defns body)

> = (setUnion defnsFree bodyFree, ALet is_re defns' body')

> where binders = bindersOf defns

> binderSet = setFromList binders

> body_lv = setUnion lv binderSet

> rhs_lv | is_re = body_lv

> | otherwise = lv

>

> rhss' = map (freeVars_e rhs_lv) (rhssOf defns)

> defns' = zip2 binders rhss'

> freeInValues = setUnionList (map freeVarsOf rhss')

> defnsFree | is_re = setSubtration freeInValues binderSet

> | otherwise = freeInValues

> body' = freeVars_e body_lv body

> bodyFree = setSubtration (freeVarsOf body') binderSet

The funtion zip2 in the de�nition of defns' is a standard funtion whih takes two lists

and returns a list onsisting of pairs of orresponding elements of the argument lists. The set

operations setUnion, setSubtration and so on are de�ned in the utilities module, whose

interfae is given in Appendix A.4.

We postpone dealing with ase and onstrutor expressions:

> freeVars_e lv (ECase e alts) = freeVars_ase lv e alts

> freeVars_e lv (EConstr t a) = error "freeVars_e: no ase for onstrutors"

> freeVars_ase lv e alts = error "freeVars_ase: not yet written"

freeVarsOf and freeVarsOf_alt are simple auxiliary funtions:

> freeVarsOf :: AnnExpr Name (Set Name) -> Set Name

> freeVarsOf (free_vars, expr) = free_vars
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> freeVarsOf_alt :: AnnAlt Name (Set Name) -> Set Name

> freeVarsOf_alt (tag, args, rhs)

> = setSubtration (freeVarsOf rhs) (setFromList args)

6.3.3 Generating superombinators

The next pass merely replaes eah lambda abstration, whih is now annotated with its free

variables, with a new abstration (the superombinator) applied to its free variables.

> abstrat prog = [ (s_name, args, abstrat_e rhs)

> | (s_name, args, rhs) <- prog

> ℄

As usual, we de�ne an auxiliary funtion abstrat_e to do most of the work:

> abstrat_e :: AnnExpr Name (Set Name) -> CoreExpr

It takes an expression annotated with the free variable information and returns an expression

with eah lambda abstration replaed by a new abstration applied to the free variables. There

is little to say about the �rst four ases, they just reursively abstrat eah expression.

> abstrat_e (free, AVar v) = EVar v

> abstrat_e (free, ANum k) = ENum k

> abstrat_e (free, AAp e1 e2) = EAp (abstrat_e e1) (abstrat_e e2)

> abstrat_e (free, ALet is_re defns body)

> = ELet is_re [ (name, abstrat_e body) | (name, body) <- defns℄

> (abstrat_e body)

The funtion foldll is a standard funtion, de�ned in Appendix A.5; given a dyadi funtion �,

a value b, and a list xs = [x

1

; :::; x

n

℄, foldll � b xs omputes (: : : ((b � x

1

) � x

2

) � : : : x

n

).

Notie the way that the free-variable information is disarded by the pass, sine it is no longer

required.

The �nal ase we show is the heart of the abstrat_e funtion. First we reate a list of free

variables: fvList. We reall that there is no ordering impliit in a set; the funtion setToList

has indued an ordering on the elements, but we do not muh are what order this is. Next we

make a new superombinator. This involves

1. applying abstrat_e to the body of the lambda expression; and

2. augmenting the argument list, by pre�xing the original one with the free-variable list.

Next, to allow the olletSCs pass to detet this new superombinator, we wrap it into a let

expression. Finally, we apply the new superombinator to eah free variable in turn.

> abstrat_e (free, ALam args body)

> = foldll EAp s (map EVar fvList)
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> where

> fvList = setToList free

> s = ELet nonReursive [("s",s_rhs)℄ (EVar "s")

> s_rhs = ELam (fvList ++ args) (abstrat_e body)

ase expressions and onstrutors are deferred:

> abstrat_e (free, AConstr t a) = error "abstrat_e: no ase for Constr"

> abstrat_e (free, ACase e alts) = abstrat_ase free e alts

> abstrat_ase free e alts = error "abstrat_ase: not yet written"

It is worth observing that abstrat_e treat-

s the two expressions (ELam args1 (ELam args2 body)) and (ELam (args1++args2) body)

di�erently. In the former ase, the two abstrations will be treated separately, generating two

superombinators, while in the latter only one superombinator is produed. It is learly ad-

vantageous to merge diretly nested ELams before performing lambda lifting. This is equivalent

to the �-abstration optimisation noted by [Hughes 1983℄.

6.3.4 Making all the variables unique

Next, we need to make eah variable so that all the s variables introdued by abstrat are

unique. The auxiliary funtion, rename_e, takes an environment mapping old names to new

names, a name supply and an expression. It returns a depleted name supply and a new expres-

sion.

> rename_e :: ASSOC Name Name -- Binds old names to new

> -> NameSupply -- Name supply

> -> CoreExpr -- Input expression

> -> (NameSupply, CoreExpr) -- Depleted supply and result

Now we an de�ne rename in terms of rename_e, by applying the latter to eah superombinator

de�nition, plumbing the name supply along with mapAuml.

> rename prog

> = seond (mapAuml rename_s initialNameSupply prog)

> where

> rename_s ns (s_name, args, rhs)

> = (ns2, (s_name, args', rhs'))

> where

> (ns1, args', env) = newNames ns args

> (ns2, rhs') = rename_e env ns1 rhs

The funtion newNames takes a name supply and a list of names as its arguments. It alloates

a new name for eah old one from the name supply, returning the depleted name supply, a list

of new names and an assoiation list mapping old names to new ones.
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> newNames :: NameSupply -> [Name℄ -> (NameSupply, [Name℄, ASSOC Name Name)

> newNames ns old_names

> = (ns', new_names, env)

> where

> (ns', new_names) = getNames ns old_names

> env = zip2 old_names new_names

The de�nition of rename_e is now straightforward, albeit dull. When we meet a variable, we

look it up in the environment. For top-level funtions and built-in funtions (suh as +) we will

�nd no substitution for it in the environment, so we just use the existing name:

> rename_e env ns (EVar v) = (ns, EVar (aLookup env v v))

Numbers and appliations are easy.

> rename_e env ns (ENum n) = (ns, ENum n)

> rename_e env ns (EAp e1 e2)

> = (ns2, EAp e1' e2')

> where

> (ns1, e1') = rename_e env ns e1

> (ns2, e2') = rename_e env ns1 e2

When we meet an ELam we need to invent new names for the arguments, using newNames, and

augment the environment with the mapping returned by newNames.

> rename_e env ns (ELam args body)

> = (ns1, ELam args' body')

> where

> (ns1, args', env') = newNames ns args

> (ns2, body') = rename_e (env' ++ env) ns1 body

let(re) expressions work similarly:

> rename_e env ns (ELet is_re defns body)

> = (ns3, ELet is_re (zip2 binders' rhss') body')

> where

> (ns1, body') = rename_e body_env ns body

> binders = bindersOf defns

> (ns2, binders', env') = newNames ns1 binders

> body_env = env' ++ env

> (ns3, rhss') = mapAuml (rename_e rhsEnv) ns2 (rhssOf defns)

> rhsEnv | is_re = body_env

> | otherwise = env

We leave ase expressions as an exerise:

> rename_e env ns (EConstr t a) = error "rename_e: no ase for onstrutors"

> rename_e env ns (ECase e alts) = rename_ase env ns e alts

> rename_ase env ns e alts = error "rename_ase: not yet written"
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6.3.5 Colleting superombinators

Finally, we have to name the superombinators and ollet them together. The main funtion,

olletSCs_e, therefore has to return the olletion of superombinators it has found, as well

as the transformed expression.

> olletSCs_e :: CoreExpr -> ([CoreSDefn℄, CoreExpr)

olletSCs is de�ned using mapAuml to do all the plumbing:

> olletSCs prog

> = onat (map ollet_one_s prog)

> where

> ollet_one_s (s_name, args, rhs)

> = (s_name, args, rhs') : ss

> where

> (ss, rhs') = olletSCs_e rhs

The ode for olletSCs_e is now easy to write. We just apply olletSCs_e reursively to

the sub-expressions, olleting up the superombinators thus produed.

> olletSCs_e (ENum k) = ([℄, ENum k)

> olletSCs_e (EVar v) = ([℄, EVar v)

> olletSCs_e (EAp e1 e2) = (ss1 ++ ss2, EAp e1' e2')

> where

> (ss1, e1') = olletSCs_e e1

> (ss2, e2') = olletSCs_e e2

> olletSCs_e (ELam args body) = (ss, ELam args body')

> where

> (ss, body') = olletSCs_e body

> olletSCs_e (EConstr t a) = ([℄, EConstr t a)

> olletSCs_e (ECase e alts)

> = (ss_e ++ ss_alts, ECase e' alts')

> where

> (ss_e, e') = olletSCs_e e

> (ss_alts, alts') = mapAuml olletSCs_alt [℄ alts

> olletSCs_alt ss (tag, args, rhs) = (ss++ss_rhs, (tag, args, rhs'))

> where

> (ss_rhs, rhs') = olletSCs_e rhs

The ase for let(re) is the interesting one. We need to proess the de�nitions reursively

and then split them into two groups: those of the form v = \args. e (the superombinators),

and the others (the non-superombinators). The superombinators are returned as part of the

superombinator list, and a new let(re) is formed from the remaining non-superombinators:

> olletSCs_e (ELet is_re defns body)
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> = (rhss_ss ++ body_ss ++ loal_ss, mkELet is_re non_ss' body')

> where

> (rhss_ss,defns') = mapAuml olletSCs_d [℄ defns

>

> ss' = [(name,rhs) | (name,rhs) <- defns', isELam rhs ℄

> non_ss' = [(name,rhs) | (name,rhs) <- defns', not (isELam rhs)℄

> loal_ss = [(name,args,body) | (name,ELam args body) <- ss'℄

>

> (body_ss, body') = olletSCs_e body

>

> olletSCs_d ss (name,rhs) = (ss ++ rhs_ss, (name, rhs'))

> where

> (rhs_ss, rhs') = olletSCs_e rhs

The auxiliary funtion isELam tests for an ELam onstrutor; it is used to identify superombi-

nators.

> isELam :: Expr a -> Bool

> isELam (ELam args body) = True

> isELam other = False

The mkELet funtion just builds an ELet expression:

> mkELet is_re defns body = ELet is_re defns body

6.4 Mark 2: Improving the simple lambda lifter

This ompletes the de�nition of the simple lambda lifter. We now onsider some simple im-

provements.

6.4.1 Simple extensions

Exerise 6.3. The simple lambda lifter generates lots of let expressions with an empty list of bindings,

beause olletSCs removes the single binding from eah of the superombinator let expressions

introdued by abstrat. Modify mkELet to elide these redundant let expressions.

Exerise 6.4. Give de�nitions for freeVars_ase, abstrat_ase and olletSCs_ase, and test

them.

6.4.2 Eliminating redundant superombinators

Consider the Core-language program

f = \x. x+1
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This will be transformed by lambdaLift to

f = $f

$f x = x+1

It would be nier to avoid introduing the redundant de�nition. This improvement will beome

rather more signi�ant when we ome to onsider full laziness, beause many superombinators

of this form will be introdued.

Exerise 6.5. Add a speial ase to the funtion ollet_one_s (in olletSCs), to behave di�erently

when rhs is a lambda abstration. You should be able to avoid introduing a new superombinator

in this situation.

6.4.3 Eliminating redundant loal de�nitions

A similar situation an arise with loal de�nitions. Consider the Core-language program

f x = let g = (\y. y+1) in g (g x)

The lambda lifter will produe the program

f x = let g = $g in g (g x)

$g y = y+1

Exerise 6.6. Improve the de�nition of olletSCs_d (in the ELet ase of olletSCs_e), so that it

gives speial treatment to de�nitions whose right-hand side is a lambda abstration. For the above

example you should generate

f x = g (g x)

g y = y+1

6.5 Mark 3: Johnsson-style lambda lifting

There is an interesting variant of the lambda lifting tehnique, whih was disovered by

[Johnsson 1985℄. One slight problem with our urrent tehnique is that it produes programs

in whih many of the alls are to funtions whih are passed in as arguments. For example,

onsider the reursive example in Setion 6.3:

f x = letre g = \y. ons (x*y) (g y) in g 3

main = f 6

Our urrent lambda lifter produes the following set of superombinators:

$g g x y = ons (x*y) (g y)

f x = letre g = $g g x in g 3

main = f 6
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Notie that $g makes a all to its argument g. In some implementations it would be more

eÆient if $g was diretly reursive, like this:

$g x y = ons (x*y) ($g x y)

f x = $g x 3

main = f 6

The inner letre has vanished altogether, and the superombinator g has beome diretly

reursive.

To get a more detailed idea of how to do Johnsson-style lambda lifting, we will look at a slightly

more ompliated example:

f x y = letre

g = \p. ...h...x...

h = \q. ...g...y...

in

...g...h...

Here, g is meant to be a funtion whih alls h, and mentions the variable x; similarly h alls g

and mentions y. The �rst step is to transform the de�nition like this:

f x y = letre

g = \x y p. ...(h x y)...x...

h = \x y q. ...(g x y)...y...

in

...(g x y)...(h x y)...

This transformation, whih we all the abstration step, is a little triky. It does the following:

� take the free variables of the right-hand sides of the letre, namely g, h, x and y;

� exlude the variables being bound (g and h) to leave just x and y;

� make these variables into extra arguments of eah right-hand side;

� and replaed all ourrenes of g with (g x y), similarly for h.

It is important that we make y into an extra parameter of g even though y does not our

diretly in its right-hand side, beause g will need it to pass to h. In general, eah member of

the mutually reursive group must take as extra arguments the free variables of all the members

together.

Now all we need do is oat the de�nitions of g and h out to the top level, leaving:

f x y = ...(g x y)...(h x y)...

g x y p = ...(h x y)...x...

h x y q = ...(g x y)...y...
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One last point. Before doing this proess it is important that all binders are unique. Otherwise

name lashes ould arise, in two ways. The obvious way is that two superombinators ould

have the same name. The less obvious way is illustrated by the following variant of the same

example:

f x y = letre

g = \p. ...h...x...

h = \x. ...g...y...

in

...g...h...

Now h uses the same name for its argument as f, whih will ause trouble when we try to make

the free variable of g, namely x, into an extra argument to h! All in all, it is muh easier simply

to rename the program before starting work.

6.5.1 Implementation

The Johnsson-style lambda lifter an be implemented in several passes:

� The �rst pass renames the program so that all binders are unique. We an reuse the

rename funtion for this purpose.

� Next, we annotate the program with its free-variable information, using the existing fun-

tion freeVars.

� Now omes the main abstration step disussed above:

> abstratJ :: AnnProgram Name (Set Name) -> CoreProgram

� Finally, we an ollet superombinators with olletSCs.

The full Johnsson-style lambda lifter is just the omposition of these stages:

> lambdaLiftJ = olletSCs . abstratJ . freeVars . rename

> runJ = pprint . lambdaLiftJ . parse

6.5.2 Abstrating free variables in funtions

The only new funtion we need is abstratJ. The abstration proess makes substitutions as it

goes along, replaing g with g v

1

: : : v

n

, where g is one of the new superombinators and v

1

; : : : ; v

n

are the free variables of its delaration group. It follows that the auxiliary funtion abstratJ_e

needs to take an environment mapping eah superombinator g to the free variables of its group

v

1

; : : : ; v

n

:

> abstratJ_e :: ASSOC Name [Name℄ -- Maps eah new SC to

> -- the free vars of its group

> -> AnnExpr Name (Set Name) -- Input expression

> -> CoreExpr -- Result expression
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To be fair, it looks as though the �rst argument ould be of type asso name oreExpr but,

as we shall see, we need to make use of the environment in another way as well, whih leads to

the type we suggest here.

It is now easy to de�ne abstratJ in terms of abstratJ_e, by applying the latter to eah

top-level de�nition:

> abstratJ prog = [ (name,args,abstratJ_e [℄ rhs)

> | (name, args, rhs) <- prog℄

Now we ome to abstratJ_e. The ases for onstants and appliations are easy.

> abstratJ_e env (free, ANum n) = ENum n

> abstratJ_e env (free, AConstr t a) = EConstr t a

> abstratJ_e env (free, AAp e1 e2) = EAp (abstratJ_e env e1)

> (abstratJ_e env e2)

When we ome to a variable g , we look it up in the environment, getting bak a list of variables

v

1

; : : : ; v

n

. We then return the appliation g v

1

: : : v

n

. If g does not appear in the environment

we return the empty list from the environment lookup, and hene the `appliation' we onstrut

will simply be the variable g !

> abstratJ_e env (free, AVar g)

> = foldll EAp (EVar g) (map EVar (aLookup env g [℄))

Sometimes we may �nd a lambda abstration on its own; for example:

f xs = map (\x. x+1) xs

The \x-abstration is not the right-hand side of a let(re) de�nition, so we treat it in just

same way as we did in the simple lambda lifter (see the ELam ase of abstrat).

There is just one important di�erene. Sine abstratJ_e is simultaneously performing a sub-

stitution on the expression, the free-variables information does not reet the post-substitution

state of a�airs. Rather, we need to perform the substitution on the free-variable set too, to �nd

what variables are free in the result. This is done by the funtion atualFreeList, whih is

de�ned at the end of this setion. It was the need to perform this operation on the free-variable

information whih guided our hoie of environment representation.

> abstratJ_e env (free, ALam args body)

> = foldll EAp s (map EVar fv_list)

> where

> fv_list = atualFreeList env free

> s = ELet nonReursive [("s",s_rhs)℄ (EVar "s")

> s_rhs = ELam (fv_list ++ args) (abstratJ_e env body)

Lastly, we treat let(re) expressions. Eah variable bound to a lambda abstration will be

turned into a superombinator, while the others (not bound to a lambda abstration) will not.

It follows that we need to treat separately these two kinds of de�nitions, whih we all `funtion

de�nitions' and `variable de�nitions' respetively.
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> abstratJ_e env (free, ALet isre defns body)

> = ELet isre (fun_defns' ++ var_defns') body'

> where

> fun_defns = [(name,rhs) | (name,rhs) <- defns, isALam rhs ℄

> var_defns = [(name,rhs) | (name,rhs) <- defns, not (isALam rhs)℄

Now that we have separated the funtion de�nitions from the variable de�nitions we an ompute

the set of variables to abstrat from the funtions. We take the union of the free variables of

the funtion de�nitions, remove from this set the funtion names being bound, and then use

atualFreeList (for the same reason as in the ELam equation) to get the result:

> fun_names = bindersOf fun_defns

> free_in_funs = setSubtration

> (setUnionList [freeVarsOf rhs | (name,rhs)<-fun_defns℄)

> (setFromList fun_names)

> vars_to_abstrat = atualFreeList env free_in_funs

Next, we ompute the new environment, to be used in the right-hand sides and in the body of

the let(re):

> body_env = [(fun_name, vars_to_abstrat) | fun_name <- fun_names℄ ++ env

> rhs_env | isre = body_env

> | otherwise = env

Lastly, we ompute the new funtion de�nitions, variable de�nitions and body, by reursively

using abstratJ_E with the appropriate environment:

> fun_defns' = [ (name, ELam (vars_to_abstrat ++ args)

> (abstratJ_e rhs_env body))

> | (name, (free, ALam args body)) <- fun_defns

> ℄

> var_defns' = [(name, abstratJ_e rhs_env rhs) | (name, rhs) <- var_defns℄

> body' = abstratJ_e body_env body

The funtion atualFreeList takes the environment and a set of free variables, applies the

environment to the set, and returns a list (without dupliates) of the post-substitution free

variables.

> atualFreeList :: ASSOC Name [Name℄ -> Set Name -> [Name℄

> atualFreeList env free

> = setToList (setUnionList [ setFromList (aLookup env name [name℄)

> | name <- setToList free

> ℄)

The funtion isALam identi�es ALam onstrutors.

> isALam :: AnnExpr a b -> Bool

> isALam (free, ALam args body) = True

> isALam other = False
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This onludes the Johnsson-style lambda lifter.

Exerise 6.7. Add a ase for ase expressions to the funtion abstratJ_e.

6.5.3 A triky pointy

When a letre ontains a mixture of funtion and variable de�nitions, the lambda lifter we

have designed may introdue some redundant parameters. For example, onsider the de�nition

f x y = letre

g = \p. h p + x ;

h = \q. k + y + q;

k = g y

in

g 4 ;

The free variables of the g/h group are x, y and k, so we will transform to:

f x y = letre

k = g x y k y

in

g 4

g x y k p = h x y k p + x ;

h x y k q = k + y + q;

Here the extra parameter x is not atually used in h, so better de�nitions for g and h would be

g x y k p = h y k p + x ;

h y k q = k + y + q;

Exerise 6.8. yModify abstratJ to solve perform this more sophistiated transformation. Warning:

this is quite a diÆult job!

6.6 Mark 4: A separate full laziness pass

We now turn our attention to an important property of funtional programs alled full laziness.

Previous aounts of full laziness have invariably linked it to lambda lifting, by desribing `fully

lazy lambda lifting', whih turns out to be rather a omplex proess. [Hughes 1983℄ gives an

algorithm, but it is extremely subtle and does not handle let(re) expressions. On the other

hand, [Peyton Jones 1987℄ does over let(re) expressions, but the desription is only informal

and no algorithm is given.

In this setion we show how full laziness and lambda lifting an be leanly separated. This

is done by means of a transformation involving let expressions. Lest it be supposed that we

have simpli�ed things in one way only by ompliating them in another, we also show that
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performing fully lazy lambda lifting without let(re) expressions risks an unexpeted loss of

laziness. Furthermore, muh more eÆient ode an be generated for let(re) expressions in

later phases of most ompilers than for their equivalent lambda expressions.

6.6.1 A review of full laziness

We begin by briey reviewing the onept of full laziness. Consider again the example given in

Setion 6.3.

f x = let g = \y. x*x + y in (g 3 + g 4)

main = f 6

The simple lambda lifter generates the program:

$g x y = x*x + y

f x = let g = $g x in (g 3 + g 4)

main = f 6

In the body of f there are two alls to g and hene to $g. But ($g x) is not a reduible

expression, so x*x will be omputed twie. But x is �xed in the body of f, so some work is

being dupliated. It would be better to share the alulation of x*x between the two alls to

$g. This an be ahieved as follows: instead of making x a parameter to $g, we make x*x into

a parameter, like this:

$g p y = p + y

f x = let g = $g (x*x) in (g 3 + g 4)

(we omit the de�nition of main from now on, sine it does not hange). So a fully lazy lambda

lifter will make eah maximal free sub-expresssion (rather than eah free variable) of a lambda

abstration into an argument of the orresponding superombinator. A maximal free expression

(or MFE) of a lambda abstration is an expression whih ontains no ourrenes of the variable

bound by the abstration, and is not a sub-expression of a larger expression with this property.

Full laziness orresponds preisely to moving a loop-invariant expression outside the loop, so

that it is omputed just one at the beginning rather than one for eah loop iteration.

How important is full laziness for `real' programs? No serious studies have yet been made of this

question, though we plan to do so. However, reent work by Holst suggests that the importane

of full laziness may be greater than might at �rst be supposed [Holst 1990℄. He shows how to

perform a transformation whih automatially enhanes the e�et of full laziness, to the point

where the optimisations obtained ompare favourably with those gained by partial evaluation

[Jones et al. 1989℄, though with muh less e�ort.

6.6.2 Fully-lazy lambda lifting in the presene of let(re)s

Writing a fully lazy lambda lifter, as outlined in the previous setion, is surprisingly diÆult.

Our language, whih inludes let(re) expressions, appears to make this worse by introduing
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a new language onstrut. For example, suppose the de�nition of g in our running example was

slightly more omplex, thus:

g = \y. let z = x*x

in let p = z*z

in p + y

Now, the sub-expression x*x is an MFE of the \y-abstration, but sub-expression z*z is not

sine z is bound inside the \y-abstration. Yet it is lear that p depends only on x (albeit

indiretly), and so we should ensure that z*z is only omputed one.

Does a fully lazy lambda lifter spot this if let expressions are oded as lambda appliations?

No, it does not. The de�nition of g would beome

g = \y. (\z. (\p. p+y) (z*z)) (x*x)

Now, x*x is free as before, but z*z is not. In other words, if the ompiler does not treat let(re)

expressions speially, it may lose full laziness whih the programmer might reasonably expet to

be preserved.

Fortunately, there is a straightforward way to handle let(re) expressions { desribed in

[Peyton Jones 1987, Chapter 15℄ { namely to `oat' eah let(re) de�nition outward until

it is outside any lambda abstration in whih it is free. For example, all we need do is transform

the de�nition of g to the following:

g = let z = x*x

in let p = z*z

in \y. p + y

Now x*x and z*z will eah be omputed only one. Notie that this property should hold

for any implementation of the language, not merely for one based on lambda lifting and graph

redution. This is a lue that full laziness and lambda lifting are not as losely related as at

�rst appears, a topi to whih we will return in the next setion.

Meanwhile, how an we deide how far out to oat a de�nition? It is most easily done by using

lexial level numbers (or de Bruijn numbers). There are three steps:

� First, assign to eah lambda-bound variable a level number, whih says how many lambdas

enlose it. Thus in our example, x would be assigned level number 1, and y level number

2.

� Now, assign a level number to eah let(re)-bound variable (outermost �rst), whih is

the maximum of the level numbers of its free variables, or zero if there are none. In our

example, both p and z would be assigned level number 1. Some are needs to be taken to

handle letres orretly.

� Finally, oat eah de�nition (whose binder has level n, say) outward, until it is outside the

lambda abstration whose binder has level n + 1, but still inside the level-n abstration.

There is some freedom in this step about exatly where between the two the de�nition

should be plaed.
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Eah mutually reursive set of de�nitions de�ned in a letre should be oated out together,

beause they depend on eah other and must remain in a single letre. If, in fat, the de�nitions

are not mutually reursive despite appearing in the same letre, this poliy might lose laziness

by retaining in an inner sope a de�nition whih ould otherwise be oated further outwards.

The standard solution is to perform dependeny analysis on the de�nitions in eah letre

expression, to break eah group of de�nitions into its minimal subgroups. We will look at this

in Setion 6.8.

Finally, a renaming pass should be arried out before the oating operation, so that there is no

risk that the bindings will be altered by the movement of the let(re) de�nitions. For example,

the expression

\y. let y = x*x in y

is obviously not equivalent to

let y = x*x in \y->y

All that is required is to give every binder a unique name to eliminate the name lash.

6.6.3 Full laziness without lambda lifting

At �rst it appears that the requirement to oat let(re)s outward in order to preserve full

laziness merely further ompliates the already subtle fully lazy lambda lifting algorithm sug-

gested by Hughes. However, a simple transformation allows all the full laziness to be ahieved

by let(re) oating, while lambda lifting is performed by the original simple lambda lifter.

The transformation is this: before oating let(re) de�nitions, replae eah MFE e with the

expression let v = e in v. This transformation both gives a name to the MFE and makes it

aessible to the let(re) oating transformation, whih an now oat out the new de�nitions.

Ordinary lambda lifting an then be performed. For example, onsider the original de�nition of

g:

f x = let g = \y. x*x + y

in (g 3 + g 4)

main = f 6

The sub-expression x*x is an MFE, so it is replaed by a trivial let expression:

f x = let g = \y. (let v = x*x in v) + y

in (g 3 + g 4)

main = f 6

Now the let expression is oated outward:

f x = let g = let v = x*x in \y. v + y

in (g 3 + g 4)

in

f 6
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Finally, ordinary lambda lifting will disover that v is free in the \y-abstration, and the resulting

program beomes:

$g v y = v + y

f x = let g = let v = x*x in $g v

in (g 3 + g 4)

main = f 6

A few points should be noted here. Firstly, the original de�nition of a maximal free expression

was relative to a partiular lambda abstration. The new algorithm we have just developed

transforms ertain expressions into trivial let expressions. Whih expressions are so trans-

formed? Just the ones whih are MFEs of any enlosing lambda abstration. For example, in

the expression:

\y. \z. (y + (x*x)) / z

two MFEs are identi�ed: (x*x), sine it is an MFE of the \y-abstration, and (y + (x*x)),

sine it is an MFE of the \z-abstration. After introduing the trivial let bindings, the expres-

sion beomes

\y. \z. (let v1 = y + (let v2 = x*x in v2) in v1) / z

Seondly, the newly introdued variable v must either be unique, or the expression must be

uniquely renamed after the MFE-identi�ation pass.

Thirdly, in the �nal form of the program v is only referened one, so it would be sensible

to replae the referene by the right-hand side of the de�nition and eliminate the de�nition,

yielding exatly the program we obtained using Hughes's algorithm. This is a straightforward

transformation, and we will not disuss it further here, exept to note that this property will

hold for all let de�nitions whih are oated out past a lambda. In any ase, many ompiler bak

ends will generate the same ode regardless of whether or not the transformation is performed.

6.6.4 A fully lazy lambda lifter

Now we are ready to de�ne the fully lazy lambda lifter. It an be deomposed into the following

stages:

� First we must make sure that eah ELam onstrutor and superombinator de�nition binds

only a single argument, beause the fully lazy lambda lifter must treat eah lambda indi-

vidually. It would be possible to enode this in later phases of the algorithm, by dealing

with a list of arguments, but it turns out that we an express an important optimisation

by altering this pass alone.

> separateLams :: CoreProgram -> CoreProgram

� First we annotate all binders and expressions with level numbers, whih we represent by

natural numbers starting with zero:
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> type Level = Int

> addLevels :: CoreProgram -> AnnProgram (Name, Level) Level

� Next we identify all MFEs, by replaing them with trivial let expressions. Level numbers

are no longer required on every sub-expression, only on binders.

> identifyMFEs :: AnnProgram (Name, Level) Level -> Program (Name, Level)

� A renaming pass makes all binders unique, so that oating does not ause name-apture

errors. This must be done after identifyMFEs, whih introdues new bindings. Sadly, this

means that we annot use our urrent rename funtion beause it works on a oreProgram,

whereas identifyMFEs has produed a program (name, level). We invent a new fun-

tion renameL for the purpose:

> renameL :: Program (Name, a) -> Program (Name, a)

� Now the let(re) de�nitions an be oated outwards. The level numbers are not required

any further.

> float :: Program (Name,Level) -> CoreProgram

� Finally, ordinary lambda lifting an be arried out, using lambdaLift from Setion 6.3.1.

The fully lazy lambda lifter is just the omposition of these passes:

> fullyLazyLift = float . renameL . identifyMFEs . addLevels . separateLams

> runF = pprint . lambdaLift . fullyLazyLift . parse

As before, we leave most of the equations for ase expressions as an exerise.

6.6.5 Separating the lambdas

We de�ne separateLams in terms of an auxiliary funtion separateLams_e, whih reursively

separates variables bound in lambda abstrations in expressions:

> separateLams_e :: CoreExpr -> CoreExpr

> separateLams_e (EVar v) = EVar v

> separateLams_e (EConstr t a) = EConstr t a

> separateLams_e (ENum n) = ENum n

> separateLams_e (EAp e1 e2) = EAp (separateLams_e e1) (separateLams_e e2)

> separateLams_e (ECase e alts)

> = ECase (separateLams_e e) [ (tag, args, separateLams_e e)

> | (tag, args, e) <- alts

> ℄

>

> separateLams_e (ELam args body) = mkSepLams args (separateLams_e body)
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>

> separateLams_e (ELet is_re defns body)

> = ELet is_re [(name, separateLams_e rhs) | (name,rhs) <- defns℄

> (separateLams_e body)

> mkSepLams args body = foldr mkSepLam body args

> where mkSepLam arg body = ELam [arg℄ body

Now we return to the top-level funtion separateLams. The interesting question is what to do

about superombinator de�nitions. The easiest thing to do is to turn them into the equivalent

lambda abstrations!

> separateLams prog = [ (name, [℄, mkSepLams args (separateLams_e rhs))

> | (name, args, rhs) <- prog

> ℄

6.6.6 Adding level numbers

There are a ouple of ompliations onerning annotating an expression with level numbers. At

�rst it looks as though it is suÆient to write a funtion whih returns an expression annotated

with level numbers; then for an appliation, for example, one simply takes the maximum of

the levels of the two sub-expressions. Unfortunately, this approah loses too muh information,

beause there is no way of mapping the level number of the body of a lambda abstration to the

level number of the abstration itself. The easiest solution is �rst to annotate the expression

with its free variables, and then use a mapping freeSetToLevel from variables to level numbers,

to onvert the free-variable annotations to level numbers.

> freeSetToLevel :: ASSOC Name Level -> Set Name -> Level

> freeSetToLevel env free

> = foldll max 0 [aLookup env n 0 | n <- setToList free℄

> -- If there are no free variables, return level zero

The seond ompliation onerns letre expressions. What is the orret level number to

attribute to the newly introdued variables? The right thing to do is to take the maximum

of the levels of the free variables of all the right-hand sides without the reursive variables, or

equivalently map the reursive variables to level zero when taking this maximum. This level

should be attributed to eah of the new variables. let expressions are muh simpler: just

attribute to eah new variable the level number of its right-hand side.

Now we are ready to de�ne addLevels. It is the omposition of two passes, the �rst of whih

annotates the expression with its free variables, while the seond uses this information to generate

level-number annotations.

> addLevels = freeToLevel . freeVars

We have de�ned the freeVars funtion already, so it remains to de�ne freeToLevel. The

main funtion will need to arry around the urrent level, and a mapping from variables to level
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numbers, so as usual we de�ne freeToLevel in terms of freeToLevel_e whih does all the

work.

> freeToLevel_e :: Level -> -- Level of ontext

> ASSOC Name Level -> -- Level of in-sope names

> AnnExpr Name (Set Name) -> -- Input expression

> AnnExpr (Name, Level) Level -- Result expression

We represent the name-to-level mapping as an assoiation list, with type asso name level.

The interfae of assoiation lists is given in Appendix A, but notie that it is not abstrat. It

is so onvenient to use all the standard funtions on lists, and notation for lists, rather than to

invent their analogues for assoiations, that we have ompromised the abstration.

Now we an de�ne freeToLevel, using an auxiliary funtion to proess eah superombinator

de�nition. Remember that separateLams has removed all the arguments from superombinator

de�nitions:

> freeToLevel prog = map freeToLevel_s prog

>

> freeToLevel_s (s_name, [℄, rhs) = (s_name, [℄, freeToLevel_e 0 [℄ rhs)

For onstants, variables and appliations, it is simpler and more eÆient to ignore the free-

variable information and alulate the level number diretly.

> freeToLevel_e level env (free, ANum k) = (0, ANum k)

> freeToLevel_e level env (free, AVar v) = (aLookup env v 0, AVar v)

> freeToLevel_e level env (free, AConstr t a) = (0, AConstr t a)

> freeToLevel_e level env (free, AAp e1 e2)

> = (max (levelOf e1') (levelOf e2'), AAp e1' e2')

> where

> e1' = freeToLevel_e level env e1

> e2' = freeToLevel_e level env e2

The same annot be done for lambda abstrations; so we must ompute the level number of

the abstration using freeSetToLevel. We also assign a level number to eah variable in the

argument list. At present we expet there to be only one suh variable, but we will allow there

to be several and assign them all the same level number. This works orretly now, and turns

out to be just what is needed to support a useful optimisation later (Setion 6.7.3).

> freeToLevel_e level env (free, ALam args body)

> = (freeSetToLevel env free, ALam args' body')

> where

> body' = freeToLevel_e (level + 1) (args' ++ env) body

> args' = [(arg, level+1) | arg <- args℄
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let(re) expressions follow the sheme outlined at the beginning of this setion.

> freeToLevel_e level env (free, ALet is_re defns body)

> = (levelOf new_body, ALet is_re new_defns new_body)

> where

> binders = bindersOf defns

> rhss = rhssOf defns

>

> new_binders = [(name,max_rhs_level) | name <- binders℄

> new_rhss = map (freeToLevel_e level rhs_env) rhss

> new_defns = zip2 new_binders new_rhss

> new_body = freeToLevel_e level body_env body

>

> free_in_rhss = setUnionList [free | (free,rhs) <- rhss℄

> max_rhs_level = freeSetToLevel level_rhs_env free_in_rhss

>

> body_env = new_binders ++ env

> rhs_env | is_re = body_env

> | otherwise = env

> level_rhs_env | is_re = [(name,0) | name <- binders℄ ++ env

> | otherwise = env

Notie that the level of the whole let(re) expression is that of the body. This is valid provided

the body refers to all the binders diretly or indiretly. If any de�nition is unused, we might

assign a level number to the letre whih would ause it to be oated outside the sope of some

variable mentioned in the unused de�nition. This is easily �xed, but it is simpler to assume that

the expression ontains no redundant de�nitions; the dependeny analysis whih we look at in

the next setion will eliminate suh de�nitions.

ase expressions are deferred:

> freeToLevel_e level env (free, ACase e alts)

> = freeToLevel_ase level env free e alts

> freeToLevel_ase free e alts = error "freeToLevel_ase: not yet written"

Lastly the auxiliary funtions levelOf extrats the level from an expression:

> levelOf :: AnnExpr a Level -> Level

> levelOf (level, e) = level

6.6.7 Identifying MFEs

It is simple to identify MFEs, by omparing the level number of an expression with the level of

its ontext. This requires an auxiliary parameter to give the level of the ontext.

> identifyMFEs_e :: Level -- Level of ontext

> -> AnnExpr (Name, Level) Level -- Input expression

> -> Expr (Name, Level) -- Result
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> identifyMFEs prog = [ (s_name, [℄, identifyMFEs_e 0 rhs)

> | (s_name, [℄, rhs) <- prog

> ℄

One an MFE e has been identi�ed, our strategy is to wrap it in a trivial let expression of the

form let v = e in v; but not all MFEs deserve speial treatment in this way. For example, it

would be a waste of time to wrap suh a let expression around an MFE onsisting of a single

variable or onstant. Other examples are given in Setion 6.7.3. We enode this knowledge of

whih MFEs deserve speial treatment in a funtion notMFECandidate.

> notMFECandidate (AConstr t a) = True

> notMFECandidate (ANum k) = True

> notMFECandidate (AVar v) = True

> notMFECandidate ae = False -- For now everything else

> -- is a andidate

identifyMFEs_e works by omparing the level number of the expression with that of its on-

text. If they are the same, or for some other reason the expression is not a andidate for

speial treatment, the expression is left unhanged, exept that identifyMFEs_e1 is used to

apply identifyMFEs_e to its sub-expressions; otherwise we use transformMFE to perform the

appropriate transformation.

> identifyMFEs_e xt (level, e)

> | level == xt || notMFECandidate e = e'

> | otherwise = transformMFE level e'

> where

> e' = identifyMFEs_e1 level e

> transformMFE level e = ELet nonReursive [(("v",level), e)℄ (EVar "v")

identifyMFEs_e1 applies identifyMFEs_e to the omponents of the expression.

> identifyMFEs_e1 :: Level -- Level of ontext

> -> AnnExpr' (Name,Level) Level -- Input expressions

> -> Expr (Name,Level) -- Result expression

> identifyMFEs_e1 level (AConstr t a) = EConstr t a

> identifyMFEs_e1 level (ANum n) = ENum n

> identifyMFEs_e1 level (AVar v) = EVar v

> identifyMFEs_e1 level (AAp e1 e2)

> = EAp (identifyMFEs_e level e1) (identifyMFEs_e level e2)

When identifyMFEs_e1 enounters a binder it hanges the `urrent' level number arried down

as its �rst argument, as we an see in the equations for lambda abstrations and let(re)

expressions:
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> identifyMFEs_e1 level (ALam args body)

> = ELam args (identifyMFEs_e arg_level body)

> where

> (name, arg_level) = hd args

> identifyMFEs_e1 level (ALet is_re defns body)

> = ELet is_re defns' body'

> where

> body' = identifyMFEs_e level body

> defns' = [ ((name, rhs_level), identifyMFEs_e rhs_level rhs)

> | ((name, rhs_level), rhs) <- defns

> ℄

ase expressions are deferred:

> identifyMFEs_e1 level (ACase e alts) = identifyMFEs_ase1 level e alts

> identifyMFEs_ase1 level e alts = error "identifyMFEs_ase1: not written"

6.6.8 Renaming variables

As we remarked above, it would be nie to use the existing rename funtion to make the binders

unique, but it has the wrong type. It would be possible to write renameL by making a opy of

rename and making some small alterations, but it would be muh nier to make a single generi

renaming funtion, renameGen, whih an be speialised to do either rename or renameL.

What should the type of renameGen be? The right question to ask is: `what use did we make in

rename of the fat that eah binder was a simple name?' or, alternatively, `what operations did

we perform on binders in rename?'.

There is atually just one suh operation, whih onstruts new binders. In rename_e this

funtion is alled newNames; it takes a name supply and a list of names, and returns a depleted

name supply, a list of new names and an assoiation list mapping old names to new ones:

> newNames :: nameSupply -> [name℄ -> (nameSupply, [name℄, asso name name)

Sine renameGen must be able to work over any kind of binder, not just those of type name,

we must pass the new-binders funtion into renameGen as an extra argument. So the type of

renameGen is:

> renameGen :: (NameSupply -> [a℄ -> (NameSupply, [a℄, ASSOC Name Name))

> -- New-binders funtion

> -> Program a -- Program to be renamed

> -> Program a -- Resulting program

Notie that the type of the binders is denoted by the type variable *, beause renameGen is

polymorphi in this type. Using renameGen, we an now rede�ne the original rename funtion,

by passing newNames to renameGen as the new-binders funtion.
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> rename :: CoreProgram -> CoreProgram

> rename prog = renameGen newNames prog

renameL is rather more interesting. Its binders are (name,level) pairs so we need to de�ne a

di�erent new-binders funtion:

> renameL :: Program (Name,Level) -> Program (Name,Level)

> renameL prog = renameGen newNamesL prog

The funtion newNamesL does just what newNames does, but it does it for binders whose type is

a (name,level) pair:

> newNamesL ns old_binders

> = (ns', new_binders, env)

> where

> old_names = [name | (name,level) <- old_binders℄

> levels = [level | (name,level) <- old_binders℄

> (ns', new_names) = getNames ns old_names

> new_binders = zip2 new_names levels

> env = zip2 old_names new_names

Now we an turn our attention to writing renameGen. As usual we need an auxiliary funtion

renameGen_e whih arries around some extra administrative information. Spei�ally, like

rename_e, it needs to take a name supply and old-name to new-name mapping as arguments,

and return a depleted supply as part of its result. It also needs to be passed the new-binders

funtion:

> renameGen_e :: (NameSupply -> [a℄ -> (NameSupply, [a℄, ASSOC Name Name))

> -- New-binders funtion

> -> ASSOC Name Name -- Maps old names to new ones

> -> NameSupply -- Name supply

> -> Expr a -- Expression to be renamed

> -> (NameSupply, Expr a) -- Depleted name supply

> -- and result expression

Using renameGen_e we an now write renameGen. Just like rename, renameGen applies a loal

funtion rename_s to eah superombinator de�nition.

> renameGen new_binders prog

> = seond (mapAuml rename_s initialNameSupply prog)

> where

> rename_s ns (s_name, args, rhs)

> = (ns2, (s_name, args', rhs'))

> where

> (ns1, args', env) = new_binders ns args

> (ns2, rhs') = renameGen_e new_binders env ns1 rhs
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Exerise 6.9. Write the funtion renameGen_e. It is very like rename_e, exept that it takes the binder-

manipulation funtions as extra arguments. In the equations for ELet, ELam and ECase (whih eah

bind new variables), the funtion newBinders an be used in just the same way as it is in rename_s

above.

Test your de�nition by heking that the simple lambda lifter still works with the new de�nition

of rename.

Exerise 6.10. The type signature we wrote for renameL is atually slightly more restritive than it

need be. How ould it be made more general (without hanging the ode at all)? Hint: what use

does renameL make of the fat that the seond omponent of a binder is of type level?

This setion provides a good illustration of the way in whih higher-order funtions an help us

to make programs more modular.

6.6.9 Floating let(re) expressions

The �nal pass oats let(re) expressions out to the appropriate level. The auxiliary fun-

tion, whih works over expressions, has to return an expression together with the olletion of

de�nitions whih should be oated outside the expression.

> float_e :: Expr (Name, Level) -> (FloatedDefns, Expr Name)

There are many possible representations for the floatedDefns type, and we will hoose a simple

one, by representing the de�nitions being oated as a list, eah element of whih represents a

group of de�nitions, identi�ed by its level, and together with its isRe ag.

> type FloatedDefns = [(Level, IsRe, [(Name, Expr Name)℄)℄

Sine the de�nitions in the list may depend on one another, we add the following onstraint:

a de�nition group may depend only on de�nition groups appearing earlier in the

floatedDefns list.

We an now proeed to a de�nition of float_e. The ases for variables, onstants and applia-

tions are straightforward.

> float_e (EVar v) = ([℄, EVar v)

> float_e (EConstr t a) = ([℄, EConstr t a)

> float_e (ENum n) = ([℄, ENum n)

> float_e (EAp e1 e2) = (fd1 ++ fd2, EAp e1' e2')

> where

> (fd1, e1') = float_e e1

> (fd2, e2') = float_e e2

How far out should a de�nition be oated? There is more than one possible hoie, but here we

hoose to install a de�nition just inside the innermost lambda whih binds one its free variables

(reall from Setion 6.6.6 that all variables bound by a single ELam onstrut are given the same

level):
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> float_e (ELam args body)

> = (fd_outer, ELam args' (install fd_this_level body'))

> where

> args' = [arg | (arg,level) <- args℄

> (first_arg,this_level) = hd args

> (fd_body, body') = float_e body

> (fd_outer, fd_this_level) = partitionFloats this_level fd_body

The equation for a let(re) expression adds its de�nition group to those oated out from its

body, and from its right-hand sides. The latter must ome �rst, sine the new de�nition group

may depend on them.

> float_e (ELet is_re defns body)

> = (rhsFloatDefns ++ [thisGroup℄ ++ bodyFloatDefns, body')

> where

> (bodyFloatDefns, body') = float_e body

> (rhsFloatDefns, defns') = mapAuml float_defn [℄ defns

> thisGroup = (thisLevel, is_re, defns')

> (name,thisLevel) = hd (bindersOf defns)

>

> float_defn floatedDefns ((name,level), rhs)

> = (rhsFloatDefns ++ floatedDefns, (name, rhs'))

> where

> (rhsFloatDefns, rhs') = float_e rhs

We defer ase expressions:

> float_e (ECase e alts) = float_ase e alts

> float_ase e alts = error "float_ase: not yet written"

The auxiliary funtion partitionFloats takes a floatedDefns and a level number, and sepa-

rates it into two: those belonging to an outer level and those belonging to the spei�ed level (or

an inner one):

> partitionFloats :: Level -> FloatedDefns -> (FloatedDefns, FloatedDefns)

> partitionFloats this_level fds

> = (filter is_outer_level fds, filter is_this_level fds)

> where

> is_this_level (level,is_re,defns) = level >= this_level

> is_outer_level (level,is_re,defns) = level < this_level

The funtion install wraps an expression in a nested set of let(re)s ontaining the spei�ed

de�nitions:

> install :: FloatedDefns -> Expr Name -> Expr Name

> install defnGroups e

> = foldr installGroup e defnGroups

> where

> installGroup (level, is_re, defns) e = ELet is_re defns e
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Finally, we an de�ne the top-level funtion, float. It uses float_s to apply float_e to

eah superombinator, yielding a list of superombinators, in just the same way as olletSCs

above.

> float prog = onat (map float_s prog)

The funtion float_s takes a superombinator de�nition to a list of superombinator de�ni-

tions, onsisting of the transformed version of the original de�nition together with the level-zero

de�nitions oated out from its body:

> float_s (name, [℄, rhs)

> = [(name, [℄, rhs')℄ ++ onat (map to_ss fds)

> where

> (fds, rhs') = float_e rhs

> to_ss (level, is_re, defns) = map make_s defns

> make_s (name, rhs) = (name, [℄, rhs)

The top level of a program is impliitly mutually reursive, so we an drop the isRe ags. We

also have to give eah oated de�nition an empty argument list, sine it is now a superombinator

de�nition.

6.7 Mark 5: Improvements to full laziness

That ompletes the de�nition of the fully lazy lambda lifter. Its output is always orret, but it

is larger and less eÆient than it need be. In this setion we disuss some ways to improve the

full laziness transformation.

6.7.1 Adding ase expressions

Exerise 6.11. Write de�nitions for freeToLevel_ase, identifyMFEs_ase1 and float_ase. All

of them work in an analogous way to lambda abstrations. Hint: in float_ase take are with

alternatives whose argument list is empty.

6.7.2 Eliminating redundant superombinators

Consider the Core-language expression

\x. \y. x+y

Here the \y-abstration has no MFEs apart from x itself, so the full-laziness pass will not a�et

the expression at all. Unfortunately, the simple lambda lifter, lambdaLift, will then generate

two superombinators, one for eah lambda, whereas only one is needed. It would be better to

ombine nested ELam expressions into a single ELam before passing the program to lambdaLift,

so that the latter would then generate just one superombinator. We ould do this in a separate

pass, but it saves work to do it as part of the work of float.
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Exerise 6.12. Modify the de�nition of the ELam ase of float so that it ombines nested ELam on-

strutors. Hint: make use of the funtion:

> mkELam :: [Name℄ -> CoreExpr -> CoreExpr

> mkELam args (ELam args' body) = ELam (args++args') body

> mkELam args other_body = ELam args other_body

6.7.3 Avoiding redundant full laziness

Full laziness does not ome for free. It has two main negative e�ets:

� Multiple lambda abstrations, suh as \x y. E, turn into one superombinator under

the simple sheme, but may turn into two under the fully lazy sheme. Two redutions

instead of one are therefore required to apply it to two arguments, whih may well be more

expensive.

� Lifting out MFEs removes sub-expressions from their ontext, and thereby redues oppor-

tunities for a ompiler to perform optimisations. Suh optimisations might be partially

restored by an interproedural analysis whih �gured out the ontexts again, but it is

better still to avoid reating the problem.

These points are elaborated by [Fairbairn 1985℄ and [Goldberg 1988℄. Furthermore, they point

out that often no bene�t arises from lifting out every MFE from every lambda abstration. In

partiular:

� If no partial appliations of a multiple abstration an be shared, then nothing is gained

by oating MFEs out to between the nested abstrations.

� Very little is gained by lifting out an MFE that is not a reduible expression. No work is

shared thereby, though there may be some saving in storage beause the losure need only

be onstruted one. This is more than outweighed by the loss of ompiler optimisations

aused by removing the expression from its ontext.

These observations suggest some improvements to the fully lazy lambda lifter, and they turn

out to be quite easy to inorporate:

� If a multiple abstration is not separated into separate ELam onstrutors by the

separateLam pass, then all the variables bound by it will be given the same level number.

It follows that no MFE will be identi�ed whih is free in the inner abstration but not

the outer one. This ensures that no MFEs will be oated out to between two abstrations

represented by a single ELam onstrutor.

All that is required is to modify the separateLams pass to keep in a single ELam onstrutor

eah multiple abstration of whih partial appliations annot be shared. This sharing

information is not trivial to dedue, but at least we have an elegant way to use its results

by modifying only a small part of our algorithm.

This is one reason why we allow ELam onstrutors to take a list of binders.
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� identifyMFEs uses a prediate notMFECandidate to deide whether to identify a partiular

sub-expression as an MFE. This provides a onvenient plae to add extra onditions to

exlude from onsideration expressions whih are not redexes. This ondition, too, is

undeidable in general, but a good approximation an be made in many ases; for example

(+ 3) is obviously not a redex.

This onludes the presentation of the full laziness transformation.

6.8 Mark 6: Dependeny analysisy

Consider the Core-language de�nition

f x = let

g = \y. letre

h = y+1 ;

k = x+2

in

h+k

in

g 4

The inner letre is not reursive at all! The program is equivalent to the following:

f x = let

g = \y. let h = y+1 in

let k = x+2 in

h+k

in

g 4

This transformation, whih breaks up let(re) bloks into minimal-sized groups, and always

uses let in preferene to letre, is alled dependeny analysis.

We have already alluded to the fat that better ode an be generated if the program has been

subjeted to a dependeny analysis. This has shown up in two plaes:

� In Johnsson-style lambda lifting, we treated the free variables for a letre blok of def-

initions as a single entity. If we ould in fat break the letre up into smaller bloks,

then there would be fewer free variables in eah blok. This will then redue the number

of free variables that must be added to a funtion de�nition by the abstratJ funtion.

� In the full-laziness transformation we always kept the delarations in a let(re) blok

together. If we �rst do dependeny analysis, to break the delarations into small groups,

then perhaps some of the groups ould be oated further out than before.

This setion explores how to do dependeny analysis on Core programs.
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6.8.1 Strongly onneted omponents

In order to disuss the dependeny analysis we need to understand some graph theory. We

therefore begin with a de�nition.

De�nition 6.1 A direted graph is a tuple (V ; E ) of two omponents:

� a set of verties (or nodes), V ;

� a set of edges, E. Eah edge is a pair: (v

0

; v

1

); where v

0

2 V is the soure of the edge,

and v

1

2 V is the target.

In the following expression we say that x depends on y and z, z depends on x and y, but that

y does not depend on any other variable.

letre

x = y + 7 * tl z;

y = 5

z = (x,y)

in e

The graph we onstrut for this de�nition blok has three verties, fx; y; zg, and the edges:

f(x; y); (x; z); (z; x); (z; y)g

The interpretation of the �rst edge is that x depends on y, and the absene of any edges from y

means that y does not depend on any other variables. Pitorially, the graph is as follows:

=

w

�

-

y

zx

Beause we are not onerned with multiple edges between the same pairs of verties, we an

instead formulate the information about the edges as a map: outs.

De�nition 6.2

outs v = fv

0

j (v ; v

0

) 2 Eg

The set outs v is therefore the set of verties that are targets for an edge whose soure is v . In

the example we have just looked at outs x = fy; zg, outs y = fg and outs z = fx; yg.

We an onstrut a similar map, ins, whih is dual to the outs map.

De�nition 6.3

ins v = fv

0

j (v

0

; v) 2 Eg
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This is the set of verties that are the soure of an edge pointing to v . In the example we have

just looked at ins x = fzg, insy = fx; zg and insz = fxg.

De�nition 6.4 The map r

�

is the transitive losure of the map r. It an be de�ned reursively

as:

� a 2 r

�

a,

� if b 2 r

�

a, then r b � r

�

a.

The set outs

�

a is the set of all verties that an be reahed from the vertex a, by following the

edges of the graph. We say that b is reahable from a whenever b 2 outs

�

a. The set ins

�

a is

the set of all verties that an reah the vertex a by following the edges of the graph.

Using the running example, we have outs

�

x = fx; y; zg, outs

�

y = fyg, and outs

�

z = fx; y; zg.

We also have ins

�

x = fx; zg, ins

�

y = fx; y; zg, and ins

�

z = fx; zg.

We are now in a position to de�ne a strongly onneted omponent of a graph. Informally, the

verties a and b are in the same omponent whenever a is reahable from b and b is reahable

from a.

De�nition 6.5 The strongly onneted omponent of the graph ontaining the vertex a is the

set of verties s a, de�ned as:

s a = outs

�

a \ ins

�

a

That is: a vertex b is in s a if and only if it is reahable from a and if a is reahable from b.

The graph in the running example has two strongly onneted omponents: fx; zg and fyg.

Exerise 6.13. Prove that the relation `in the same strongly onneted omponent' partitions the set

of verties into equivalene lasses.

Topologial sorting

An ordering on verties an be indued by onsidering the maps ins

�

and outs

�

. This is a partial

order whih we will represent as �.

De�nition 6.6 The vertex a is topologially less than or equal to the vertex b, written a � b,

if and only if:

b 2 outs

�

a

In our example x � x, x � y, x � z, y � y, z � x, z � y and z � z.

Beause the strongly onneted omponents are disjoint, a similar ordering is indued on them

by onsidering the ation of � on their elements. In our running example the two omponents

are ordered as: fx; zg � fyg.

De�nition 6.7 A sequene of verties (or strongly onneted omponents) are topologially sort-

ed if, for all a and b in the sequene, a preedes b whenever a � b.
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So, one possible topologially sorted sequene would be: [x; z; y℄. The other is [z; x; y℄.

Having now determined that the two strongly onneted omponents are ordered as fx; zg � fyg,

we may transform the original expression into the following one:

letre

y = 5

in letre

x = y + 7 + seond z

z = (x, y)

in e

We next onsider eÆient ways to implement the strongly onneted omponent algorithm.

6.8.2 Implementing a strongly onneted omponent algorithm

Depth �rst searh

We will �rst onsider the problem of implementing a depth �rst searh of a graph. The funtion

depthFirstSearh is parameterised over the map from verties to their o�spring; this permits

us to reverse the diretion in whih the edges are traversed. Furthermore, we hoose to make

the maps ins and outs into funtions from verties to sequenes of verties. The reason for this

hange is that we have to traverse the o�spring in some order and this is easier to arrange if we

have a sequene rather than a set.

> depthFirstSearh :: Ord a =>

> (a -> [a℄) -> -- Map

> (Set a, [a℄) -> -- State: visited set,

> -- urrent sequene of verties

> [a℄ -> -- Input verties sequene

> (Set a, [a℄) -- Final state

The funtion depthFirstSearh updates a state as it runs down the input vertex sequene,

using foldll. The state onsists of two parts: in the �rst we keep trak of all of the verties

that we have so far visited; in the seond we onstrut the sequene of verties that we will

output.

> depthFirstSearh

> = foldll . searh

> where

The key part of the depth �rst searh is oded into searh: if we have already visited the vertex

then the state is unhanged.

> searh relation (visited, sequene) vertex

> | setElementOf vertex visited = (visited, sequene ) -- KH

> -- KH Was: = (visited, sequene ), setElementOf vertex visited
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On the other hand, if this is the �rst time we have visited the vertex, then we must proeed to

searh from this vertex. When the state is returned from this searh, we must add the urrent

vertex to the sequene.

> | otherwise = (visited', vertex: sequene') -- KH

> -- KH Was: = (visited', vertex: sequene'), otherwise

> where

The visited set must be updated with the urrent vertex, before we begin the searh, and the

list of verties to searh from is determined by applying the map relation.

> (visited', sequene')

> = depthFirstSearh relation

> (setUnion visited (setSingleton vertex), sequene)

> (relation vertex)

The result will be a set of verties visited, and a sequene of these visited verties, in topologial

sort order.

Exerise 6.14. Prove the following theorem:

depthFirstSearh outs (fg; [℄)S = (V ; S

0

)

where S is a sequene of verties, V =

S

v2S

outs v , and S

0

is a topologially sorted sequene of

the verties in V .

Spanning searh

The funtion spanningSearh is a slight adaptation of the funtion depthFirstSearh, in whih

we retain the struturing information obtained during the searh.

> spanningSearh :: Ord a =>

> (a -> [a℄) -> -- The map

> (Set a, [Set a℄) -> -- Current state: visited set,

> -- urrent sequene of vertie sets

> [a℄ -> -- Input sequene of verties

> (Set a, [Set a℄) -- Final state

Again, it is de�ned in terms of an auxiliary funtion searh

> spanningSearh

> = foldll . searh

> where

If the urrent vertex has been visited already then we return the urrent state.
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> searh relation (visited, setSequene) vertex

> | setElementOf vertex visited = (visited, setSequene ) -- KH

> -- KH Was: = (visited, setSequene ), setElementOf vertex visited

Alternatively, if this is the �rst time we have visited the urrent vertex, then we searh { using

depthFirstSearh { from the urrent vertex. The sequene that is returned onstitutes the

omponent assoiated with the urrent vertex. We therefore add it to the sequene of sets that

we are onstruting.

> | otherwise = (visited', setFromList (vertex: sequene): setSequene) -- KH

> -- KH Was: = (visited', setFromList (vertex: sequene): setSequene)

> where

> (visited', sequene)

> = depthFirstSearh relation

> (setUnion visited (setSingleton vertex), [℄)

> (relation vertex)

Strongly onneted omponents

The strongly onneted omponent algorithm an now be implemented as the following funtion:

> s :: Ord a =>

> (a -> [a℄) -> -- The "ins" map

> (a -> [a℄) -> -- The "outs" map

> [a℄ -> -- The root verties

> [Set a℄ -- The topologially sorted omponents

The funtion s onsists of two passes over the graph.

> s ins outs

> = spanning . depthFirst

In the �rst we onstrut a topologially sorted sequene of the verties of the graph.

> where depthFirst = seond . depthFirstSearh outs (setEmpty, [℄)

In the seond pass we onstrut the reverse of the topologially sorted sequene of strongly

onneted omponents.

> spanning = seond . spanningSearh ins (setEmpty, [℄)

Let us onsider what happens when we onstrut the �rst omponent. At the head of the

sequene is the vertex a. Any other verties that satisfy a � b will our later in the sequene.

There are no verties satisfying b � a. The all to spanningSearh with ins as its relational

parameter, will onstrut ins

�

a. The visited set will be augmented with eah vertex in the

omponent.

In the example we onsidered earlier, we will be applying spanning to the list [x; z; y℄. This

expands to:
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seond (searh ins (searh ins (searh ins ({},[℄) x) z) y)

Expanding the inner searh we obtain:

seond (searh ins (searh ins (vs, [setFromList (x:s)℄) z) y)

where (vs,s) = depthFirstSearh ins ({x},[℄) (ins x)

But ins x = [z℄; this means that vs = fx; zg and s = [z℄. Hene we redue the expression to:

seond (searh ins (searh ins ({x,z}, [{x,z}℄) z) y)

Beause z is already in the visted set, this beomes:

seond (searh ins ({x,z}, [{x,z}℄) y)

The searh expands as:

seond (vs, [setFromList (y:s), {x,z}℄)

where (vs,s) = depthFirstSearh ins ({x,y,z},[℄) (ins y)

But ins y = [x; z℄; both of whih are already visited, so vs = fx; z; yg and s = [℄.

The �nal form of the expression beomes:

[{y}, {x,z}℄

The visited set in spanningSearh represents those verties that have already been

assigned to a strongly onneted omponent.

When we ome aross a vertex in the input sequene that is already in the visited set, it behaves

as if it had been deleted from further onsideration. Suppose that the vertex b is the next vertex

in the input sequene that has not already been visited. When we ome to ompute

depthFirstSearh ins (fbg [ visited; [℄) (ins b)

This will produe a new visited set (whih will be s a [ s b) and a sequene whose elements

are the verties in s b.

Note that the strongly onneted omponents are output in reverse topologial order.

Exerise 6.15. Let

s ins outs R = S ;

and V =

S

fins

�

v j v 2 Rg. Prove that

� �rstly, that the sequene S ontains all of the strongly onneted omponents, i.e.

setFromList S =

[

fs v j v 2 V g;

� seondly, that these omponents are in reverse topologial order, i.e. if a � b then b ours

before a in the sequene S .
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6.8.3 A dependeny analysis

We an now perform a dependeny analysis on the program. Whenever we ome aross a

let(re) blok we must split it into strongly onneted omponents. In the ase of let, this is

simple; there are no dependenies so we simply separate the list of de�nitions into a singleton

list for eah de�nition.

The dependeny analysis is performed by the funtion dependeny. This uses information from

a prior pass of freeVars to rearrange let(re)s; this information is then used by the auxiliary

funtion depends.

> dependeny :: CoreProgram -> CoreProgram

> dependeny = depends . freeVars

> runD = pprint . dependeny . parse

> depends :: AnnProgram Name (Set Name) -> CoreProgram

> depends prog = [(name,args, depends_e rhs) | (name, args, rhs) <- prog℄

The work is done by depends_e, whose only interesting ase is that for let(re).

> depends_e :: AnnExpr Name (Set Name) -> CoreExpr

> depends_e (free, ANum n) = ENum n

> depends_e (free, AConstr t a) = EConstr t a

> depends_e (free, AVar v) = EVar v

> depends_e (free, AAp e1 e2) = EAp (depends_e e1) (depends_e e2)

> depends_e (free, ACase body alts) = ECase (depends_e body)

> [ (tag, args, depends_e e)

> | (tag, args, e) <- alts

> ℄

> depends_e (free, ALam ns body) = ELam ns (depends_e body)

In the ase of letres we must onstrut the dependeny graph, and then apply the s funtion

to determine the way to split the de�nitions. If defnGroups is [d

1

; d

2

; : : : ; d

n

℄ { and we are

proessing a letre { then the letre will be transformed to:

letre d

1

in letre d

2

in : : : letre d

n

in body:

> depends_e (free, ALet is_re defns body)

> = foldr (mkDependLet is_re) (depends_e body) defnGroups

> where

> binders = bindersOf defns

The set of variables that we are interested in is derived from the binders, and is alled the

binderSet.
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> binderSet | is_re = setFromList binders

> | otherwise = setEmpty

From this we an onstrut the edges of the dependeny graph.

> edges = [(n, f) | (n, (free, e)) <- defns,

> f <- setToList (setIntersetion free binderSet)℄

And thus the funtions ins and outs required by the strongly onneted omponent algorithm.

> ins v = [u | (u,w) <- edges, v==w℄

> outs v = [w | (u,w) <- edges, v==u℄

The resulting list of sets is onverted into a list of lists, alled omponents.

> omponents = map setToList (s ins outs binders)

We onstrut the defnGroups by looking up the expression bound to eah binder in the original

de�nitions, defns:

> defnGroups = [ [ (n, aLookup defns n (error "defnGroups"))

> | n <- ns℄

> | ns <- omponents

> ℄

Finally, to join together eah group in defnGroups, we de�ne mkDependLet, whih reursively

does dependeny analysis on eah right-hand side, and then builds the results into a let(re)

expression: A simple de�nition is:

> mkDependLet is_re dfs e = ELet is_re [(n, depends_e e) | (n,e) <- dfs℄ e

Exerise 6.16. In addition to the de�nition groups from non-reursive lets we sometimes get non-

reursive de�nitions arising in letre's. This is the ase for y in the example we have used.

Rede�ne mkDependLet to make suh bindings with a let and not a letre. Hint: use the free-

variable information present in the right-hand sides of the de�nitions passed to mkDependLet.

6.9 Conlusion

It is interesting to ompare our approah to full laziness with Bird's very nie paper [Bird 1987℄

whih addresses a similar problem. Bird's objetive is to give a formal development of an eÆient

fully lazy lambda lifter, by suessive transformation of an initial spei�ation. The resulting

algorithm is rather omplex, and would be hard to write down diretly, thus fully justifying the

e�ort of a formal development.

In ontrast, we have expressed our algorithm as a omposition of a number of very simple phases,

eah of whih an readily be spei�ed and written down diretly. The resulting program has a
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onstant-fator ineÆieny, beause it makes many traversals of the expression. This is easily

removed by folding together suessive passes into a single funtion, eliminating the intermediate

data struture. Unlike Bird's transformations, this is a straightforward proess.

Our approah has the major advantage that is is modular. For example:

� We were able to reuse existing funtions on several oasions (freeVars, rename,

olletSCs and so on).

� The multi-pass approah means that eah pass has a well-de�ned, simple purpose, whih

makes it easier to modify. For example, we modi�ed the identifyMFEs algorithm to be

more seletive about where full laziness is introdued (Setion 6.7.3).

� We ould use the major phases in various ombinations to `snap together' a variety of

transformations. For example, we ould hoose whether or not to do dependeny analysis

and full laziness, and whih lambda lifter to use, simply by omposing the appropriate

funtions at the top level.

The main disadvantage of our approah is that we are unable to take advantage of one optimisa-

tion suggested by Hughes, namely ordering the parameters to a superombinator to redue the

number of MFEs. The reason for this is that the optimisation absolutely requires that lambda

lifting be entwined with the proess of MFE identi�ation, while we have arefully separated

these ativities! Happily for us, the larger MFEs reated by this optimisation are always par-

tial appliations, whih should probably not be identi�ed as MFEs beause no work is shared

thereby (Setion 6.7.3). Even so, matters might not have fallen out so fortuitously, and our

separation of onerns has ertainly made some sorts of transformation rather diÆult.
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Appendix A

Utilities module

This appendix gives de�nitions for various useful types and funtions used throughout the book.

> module Utils where

> -- The following definitions are used to make some synonyms for routines

> -- in the Gofer prelude to be more Miranda ompatible

> shownum n = show n

> hd :: [a℄ -> a

> hd = head -- in Gofer standard prelude

> tl :: [a℄ -> [a℄

> tl = tail -- in Gofer standard prelude

> zip2 :: [a℄ -> [b℄ -> [(a,b)℄

> zip2 = zip -- in Gofer standard prelude

> -- an't do anything about # = length, sine # not binary.

A.1 The heap type

The abstrat data types heap and addr are used to represent the GHarbage-olleted heap of

nodes for eah of our implementations.

A.1.1 Spei�ation

A heap of * is a olletion of objets of type *, eah identi�ed by a unique address of type addr.

The following operations are provided:

> hInitial :: Heap a

> hAllo :: Heap a -> a -> (Heap a, Addr)

> hUpdate :: Heap a -> Addr -> a -> Heap a

> hFree :: Heap a -> Addr -> Heap a
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hInitial returns an initialised empty heap. hAllo takes a heap and an objet, and returns

a new heap and an address; the new heap is exatly the same as the old one, exept that the

spei�ed objet is found at the address returned. hUpdate takes a heap, an address and an

objet; it returns a new heap in whih the address is now assoiated with the objet. hFree

takes a heap and an address and returns a new heap with the spei�ed objet removed.

> hLookup :: Heap a -> Addr -> a

> hAddresses :: Heap a -> [Addr℄

> hSize :: Heap a -> Int

hLookup takes a heap and an address and returns the objet assoiated with that address.

hAddresses returns the addresses of all the objets in the heap. hSize returns the number of

objets in the heap.

> hNull :: Addr

> hIsnull :: Addr -> Bool

hNull is an address guaranteed to di�er from every address returned by hAllo; hIsnull tells

whether an address is this distinguished value.

Finally, we add a show funtion so that addresses an be printed easily.

> showaddr :: Addr -> [Char℄

By giving it the name show followed by the name of the type (addr), we inform Miranda that

when Miranda's built-in show funtion enounters an objet of type addr, it should use showaddr

to onvert it to a list of haraters.

A.1.2 Representation

The heap is represented as a triple, ontaining:

� the number of objets in the heap;

� a list of unused addresses;

� an assoiation list mapping addresses to objets.

Addresses are represented as numbers.

> type Heap a = (Int, [Int℄, [(Int, a)℄)

> type Addr = Int

We implement the operations in a (fairly) obvious manner.

> hInitial = (0, [1..℄, [℄)

> hAllo (size, (next:free), ts) n = ((size+1, free, (next,n) : ts),next)

> hUpdate (size, free, ts) a n = (size, free, (a,n) : remove ts a)

> hFree (size, free, ts) a = (size-1, a:free, remove ts a)
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> hLookup (size,free,ts) a

> = aLookup ts a (error ("an't find node " ++ showaddr a ++ " in heap"))

>

> hAddresses (size, free, ts) = [addr | (addr, node) <- ts℄

>

> hSize (size, free, ts) = size

> hNull = 0

> hIsnull a = a == 0

> showaddr a = "#" ++ shownum a -- Print # to identify addresses

The auxiliary funtion remove removes an item from a heap ontents:

> remove :: [(Int,a)℄ -> Int -> [(Int,a)℄

> remove [℄ a = error ("Attempt to update or free nonexistent address #" ++

> shownum a)

> remove ((a',n):ts) a | a == a' = ts

> | a /= a' = (a',n) : remove ts a

A.2 The assoiation list type

An assoiation list assoiates keys to values. It is represented by a list of (key,value) pairs, using

a type synonym. It is not an abstrat type beause it turns out to be so onvenient to use

list-manipulation operations on it.

> type ASSOC a b = [(a,b)℄

You an use one assoiation list, e

1

, to extend another, e

2

, using ordinary list append, thus

e

1

++ e

2

. A lookup in this extended environment will searh e

1

�rst and then e

2

.

GHiven a key, k , you an �nd the assoiated value using aLookup.

The all aLookup alist key default searhes the assoiation list alist starting from the head of

the list; if it �nds a (key ; val) pair it returns val , otherwise it returns default .

> aLookup [℄ k' def = def

> aLookup ((k,v):bs) k' def | k == k' = v

> | k /= k' = aLookup bs k' def

The funtions aDomain and aRange �nd the range and domain of the assoiation list, respetively:

> aDomain :: ASSOC a b -> [a℄

> aDomain alist = [key | (key,val) <- alist℄

>

> aRange :: ASSOC a b -> [b℄

> aRange alist = [val | (key,val) <- alist℄
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aEmpty is the empty assoiation list:

> aEmpty = [℄

A.3 Generating unique names

In Chapter 6 we need to generate unique names for newly generated superombinators. The

abstrat data type nameSupply ats as a supply of unique names.

> getName :: NameSupply -> [Char℄ -> (NameSupply, [Char℄)

> getNames :: NameSupply -> [[Char℄℄ -> (NameSupply, [[Char℄℄)

> initialNameSupply :: NameSupply

There are three operations. getName takes a name supply and a pre�x string, and returns a

depleted name supply together with a string whih is a new unique name; this string has the

spei�ed pre�x. getNames does the same thing for a list of pre�xes. Finally, initialNameSupply

is the initial, undepleted name supply.

A.3.1 Representation

A name supply is represented by a single integer.

> type NameSupply = Int

> initialNameSupply = 0

> getName name_supply prefix = (name_supply+1, makeName prefix name_supply)

> getNames name_supply prefixes

> = (name_supply + length prefixes, zipWith makeName prefixes [name_supply..℄)

> makeName prefix ns = prefix ++ "_" ++ shownum ns

A.4 Sets

The abstrat data type of sets has the following signature.

> setFromList :: (Ord a) => [a℄ -> Set a

> setToList :: (Ord a) => Set a -> [a℄

> setUnion :: (Ord a) => Set a -> Set a -> Set a

> setIntersetion :: (Ord a) => Set a -> Set a -> Set a

> setSubtration :: (Ord a) => Set a -> Set a -> Set a

> setElementOf :: (Ord a) => a -> Set a -> Bool

> setEmpty :: (Ord a) => Set a

> setIsEmpty :: (Ord a) => Set a -> Bool

> setSingleton :: (Ord a) => a -> Set a

> setUnionList :: (Ord a) => [Set a℄ -> Set a
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A.4.1 Representation

In this implementation, sets are represented by ordered lists.

> type Set a = [a℄ -- Ordered by the sort funtion

The implementation of the operations is straightforward.

> setEmpty = [℄

> setIsEmpty s = null s

> setSingleton x = [x℄

> setFromList = rmdup . sort

> where rmdup [℄ = [℄

> rmdup [x℄ = [x℄

> rmdup (x:y:xs) | x == y = rmdup (y:xs)

> | x /= y = x: rmdup (y:xs)

> setToList xs = xs

> setUnion [℄ [℄ = [℄

> setUnion [℄ (b:bs) = (b:bs)

> setUnion (a:as) [℄ = (a:as)

> setUnion (a:as) (b:bs) | a < b = a: setUnion as (b:bs)

> | a == b = a: setUnion as bs

> | a > b = b: setUnion (a:as) bs

> setIntersetion [℄ [℄ = [℄

> setIntersetion [℄ (b:bs) = [℄

> setIntersetion (a:as) [℄ = [℄

> setIntersetion (a:as) (b:bs) | a < b = setIntersetion as (b:bs)

> | a == b = a: setIntersetion as bs

> | a > b = setIntersetion (a:as) bs

> setSubtration [℄ [℄ = [℄

> setSubtration [℄ (b:bs) = [℄

> setSubtration (a:as) [℄ = (a:as)

> setSubtration (a:as) (b:bs) | a < b = a: setSubtration as (b:bs)

> | a == b = setSubtration as bs

> | a > b = setSubtration (a:as) bs

> setElementOf x [℄ = False

> setElementOf x (y:ys) = x==y || (x>y && setElementOf x ys)

> setUnionList = foldll setUnion setEmpty
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A.5 Other useful funtion de�nitions

The de�nitions of fst and snd are present in later versions of Miranda, but not earlier ones.

We always use first and seond instead to avoid ompatibility problems.

> first (a,b) = a

> seond (a,b) = b

The funtion zipWith zips together two lists, ombining orresponding elements with a given

funtion. The resulting list is as long as the shorter of the two input lists.

> -- zipWith is defined in standard prelude

The de�nition of foldl di�ers between di�erent versions of Miranda, so we avoid the problem

by writing our own funtion foldll, whih does the following: GHiven a dyadi funtion 
, a

value b and a list xs = [x

1

; :::; x

n

℄, foldll 
 b xs omputes (: : : ((b 
 x

1

) 
 x

2

) 
 : : : x

n

).

Setion 1.5.1 ontains a simple example of foldll in ation, together with a piture.

> foldll :: (a -> b -> a) -> a -> [b℄ -> a

> foldll = foldl -- in Gofer standard prelude.

Finally, the funtion mapAuml is a rather useful ombination of map and foldll. It is given a

funtion, an aumulator and a list. For eah element of the list it applies the funtion to the

urrent aumulator and that list element, whih gives a new value of the aumulator and a

new list element. The result of mapAuml is the �nal value of the aumulator, and the list of

all the results. The `l' in the funtion name says that the aumulator is passed along from left

to right. Setion 2.3.4 has an example of mapAuml in ation, together with a piture.

> mapAuml :: (a -> b -> (a, )) -- Funtion of aumulator and element

> -- input list, returning new

> -- aumulator and element of result list

> -> a -- Initial aumulator

> -> [b℄ -- Input list

> -> (a, [℄) -- Final aumulator and result list

>

> mapAuml f a [℄ = (a, [℄)

> mapAuml f a (x:xs) = (a2, x':xs')

> where (a1, x') = f a x

> (a2, xs') = mapAuml f a1 xs

> sort [℄ = [℄

> sort [x℄ = [x℄

> sort (x:xs) = [ y | y <- xs, y < x℄ ++ x : [ y | y <- xs, y >= x ℄

> spae n = take n (repeat ' ')
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Appendix B

Example Core-language programs

In this Appendix we give a few Core-language programs whih are useful for testing some of the

implementations developed in the book. They assume that the funtions de�ned in the prelude

(Setion 1.4) are de�ned.

B.1 Basi programs

The programs in this setion require only integer onstants and funtion appliation.

B.1.1 Ultra-basi tests

This program should return the value 3 rather quikly!

main = I 3

The next program requires a ouple more steps before returning 3.

id = S K K ;

main = id 3

This one makes quite a few appliations of id (how many?).

id = S K K ;

main = twie twie twie id 3

B.1.2 Testing updating

This program should show up the di�erene between a system whih does updating and one

whih does not. If updating ours, the evaluation of (I I I) should take plae only one;

without updating it will take plae twie.

main = twie (I I I) 3
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B.1.3 A more interesting example

This example uses a funtional representation of lists (see Setion 2.8.3) to build an in�nite list

of 4's, and then takes its seond element. The funtions for head and tail (hd and tl) return

abort if their argument is an empty list. The abort superombinator just generates an in�nite

loop.

ons a b  n =  a b ;

nil  n = n ;

hd list = list K abort ;

tl list = list K1 abort ;

abort = abort ;

infinite x = ons x (infinite x) ;

main = hd (tl (infinite 4))

B.2 let and letre

If updating is implemented, then this program will exeute in fewer steps than if not, beause

the evaluation of id1 is shared.

main = let id1 = I I I

in id1 id1 3

We should test nested let expressions too:

ot g x = let h = twie g

in let k = twie h

in k (k x) ;

main = ot I 4

The next program tests letres, using `funtional lists' based on the earlier de�nitions of ons,

nil, et.

infinite x = letre xs = ons x xs

in xs ;

main = hd (tl (tl (infinite 4)))

B.3 Arithmeti

B.3.1 No onditionals

We begin with simple tests whih do not require the onditional.
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main = 4*5+(2-5)

This next program needs funtion alls to work properly. Try replaing twie twie with

twie twie twie or twie twie twie twie. Predit what the result should be.

in x = x+1;

main = twie twie in 4

Using funtional lists again, we an write a length funtion:

length xs = xs length1 0 ;

length1 x xs = 1 + (length xs) ;

main = length (ons 3 (ons 3 (ons 3 nil)))

B.3.2 With onditionals

One we have onditionals we an at last write `interesting' programs. For example, fatorial:

fa n = if (n==0) 1 (n * fa (n-1)) ;

main = fa 5

The next program omputes the greatest ommon divisor of two integers, using Eulid's algo-

rithm:

gd a b = if (a==b)

a

if (a<b) (gd b a) (gd b (a-b)) ;

main = gd 6 10

The nfib funtion is interesting beause its result (an integer) gives a ount of how many

funtion alls were made during its exeution. So the result divided by the exeution time gives

a performane measure in funtion alls per seond. As a result, nfib is quite widely used as

a benhmark. The `n�b-number' for a partiular implementation needs to be taken with an

enormous dose of salt, however, beause it is ritially dependent on various rather speialised

optimisations.

nfib n = if (n==0) 1 (1 + nfib (n-1) + nfib (n-2)) ;

main = nfib 4

B.4 Data strutures

This program returns a list of desending integers. The evaluator should be expeting a list as

the result of the program. ons and nil are now expeted to be implemented in the prelude as

Pak{2,2} and Pak{1,0} respetively.
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downfrom n = if (n == 0)

nil

(ons n (downfrom (n-1))) ;

main = downfrom 4

The next program implements the Sieve of Eratosthenes to generate the in�nite list of primes,

and takes the �rst few elements of the result list. If you arrange that output is printed inre-

mentally, as it is generated, you an remove the all to take and just print the in�nite list.

main = take 3 (sieve (from 2)) ;

from n = ons n (from (n+1)) ;

sieve xs = ase xs of

<1> -> nil ;

<2> p ps -> ons p (sieve (filter (nonMultiple p) ps)) ;

filter prediate xs

= ase xs of

<1> -> nil ;

<2> p ps -> let rest = filter prediate ps

in

if (prediate p) (ons p rest) rest ;

nonMultiple p n = ((n/p)*p) ~= n ;

take n xs = if (n==0)

nil

(ase xs of

<1> -> nil ;

<2> p ps -> ons p (take (n-1) ps))

279



Bibliography

[Aho et al. 1986℄ Aho, A.V., R. Sethi and J. D. Ullman, (1986) Compilers: priniples,

tehniques and tools, Addison Wesley.

[Argo 1989℄ Argo, G. (1989) Improving the three instrution mahine, Funtional

Programming Languages and Computer Arhiteture, Addison Wes-

ley.

[Argo 1991℄ Argo, G. (1991) EÆient laziness, Ph.D. thesis, Department of Com-

puting Siene, University of Glasgow, De. 1991 (to appear).

[Augustsson 1984℄ Augustsson, L. (1984) A Compiler for Lazy ML, in Proeedings of the

1984 ACM Symposium on Lisp and Funtional Programming, Austin,

Texas, Aug. 1984, pp. 218{227.

[Augustsson 1987℄ Augustsson, L. (1987) Compiling lazy funtional languages, part II,

Ph.D. thesis, Chalmers Tekniska H�ogskola, G�oteborg, Sweden.

[Baker 1978℄ Baker, H. (1978) List proessing in real time on a serial omputer,

Communiations of the ACM 21(4), 280{294.

[Bird 1987℄ Bird, R. (1987) A formal development of an eÆient superombinator

ompiler, Siene of Computer Programming 8, 113{137.

[Bird and Wadler 1988℄ Bird, R., and P. L. Wadler, (1988) Introdution to funtional program-

ming, Prentie Hall.

[Burn 1991℄ Burn, G.L. (1991) Lazy funtional languages: abstrat interpretation

and ompilation, Pitman.

[Cheney 1970℄ Cheney, C. J. (1970) A non-reursive list ompation algorithm, Com-

muniations of the ACM 13(11), 677{678.

[Cohen 1981℄ Cohen, J. (1981) Garbage olletion of linked data strutures, ACM

Computing Surveys 13(3), 341{367.

[Fairbairn 1985℄ Fairbairn, J. (1985) Removing redundant laziness from superombi-

nators, Proeedings of the Aspenas workshop on implementation of

funtional languages, Chalmers University, Feb. 1985.

[Fairbairn 1986℄ Fairbairn, J. (1986) Making form follow funtion { an exerise in fun-

tional programming style, TR 89, Computer Lab., Cambridge.

280



[Fairbairn and Wray 1987℄ Fairbairn, J. and S. Wray, (1987) TIM { a simple lazy abstrat

mahine to exeute superombinators, Funtional Programming Lan-

guages and Computer Arhiteture, LNCS 274, Springer Verlag.

[Fenihel and Yohelson 1969℄ Fenihel, R. R. and J. C. Yohelson, (1969) A Lisp garbage ol-

letor for virtual memory omputer systems, Communiations of the

ACM 12(11), 611{612.

[Goldberg 1988℄ Goldberg, B. F. (1988) Multiproessor exeution of funtional pro-

grams, Ph.D. thesis, YALEU/DCS/RR-618, Department of Computer

Siene, Yale University, April 1988.

[Holst 1990℄ Holst, C. K. (1990) Improving full laziness, in Funtional Program-

ming, Glasgow 1990, ed. Peyton Jones, Hutton & Holst, Workshops

in Computing, Springer Verlag.

[Holyer 1991℄ Holyer, I. (1991) Funtional programming with Miranda, Pitman.

[Hughes 1983℄ Hughes, R. J. M. (1983) The design and implementation of program-

ming languages, D.Phil. thesis, Programming Researh Group, Oxford,

July 1983.

[Johnsson 1984℄ Johnsson, T. (1984) EÆient ompilation of lazy evaluation, in Pro-

eedings of the SIGPLAN '84 Symposium on Compiler Constrution,

Montreal, Canada, June 1984, pp. 58{69.

[Johnsson 1985℄ Johnsson, T. (1985) Lambda lifting: transforming programs to reur-

sive equations, in Proeedings of the IFIP Conferene on Funtional

Programming and Computer Arhiteture, ed. Jouannaud, LNCS 201,

Springer Verlag, pp. 190{205.

[Johnsson 1987℄ Johnsson, T. (1987) Compiling lazy funtional languages, Ph.D. thesis,

Chalmers Tekniska H�ogskola, G�oteborg, Sweden.

[Jones et al. 1989℄ Jones, N. D., P. Sestoft and H. S�ndergaard, (1989) Mix: a self-

appliable partial evaluator for experiments in ompiler generation,

Lisp and Symboli Computation 2(1), 9{50.

[Kingdon et al 1991℄ Kingdon, H., D. Lester and G. L. Burn, (1991) The HDG-mahine: a

highly distributed graph reduer for a transputer network, The Com-

puter Journal 34(4), 290{302.

[Lester 1988℄ Lester, D. R. (1988) Combinator graph redution: a ongruene and

its appliations, D.Phil. Thesis, Tehnial Monograph PRG-73, Pro-

gramming Researh Group, Keble Rd, Oxford.

[Peyton Jones 1987℄ Peyton Jones, S. L. (1987) The Implementation of Funtional Pro-

gramming Languages. Prentie Hall International Series in Computer

Siene. Prentie Hall, Hemel Hempstead.

[Peyton Jones 1989℄ Peyton Jones, S. L. (1989) Parallel implementations of funtional pro-

gramming languages, The Computer Journal 32(2), 175{186.

281



[Peyton Jones 1991℄ Peyton Jones, S. L. (1991) The Spineless Tagless G-mahine: a seond

attempt, in Proeedings of the Workshop on Parallel Implementation

of Funtional Languages, ed. Glaser & Hartel, CSTR 91{07, Depart-

ment of Eletronis and Computer Siene, University of Southamp-

ton.

[Peyton Jones and Lester 1991℄ Peyton Jones, S. L. and D. Lester, (1991) A modular, fully lazy

lambda lifter in Haskell, Software { Pratie and Experiene 21(5),

479{506.

[Peyton Jones and Salkild 1989℄ Peyton Jones, S. L. and J. Salkild, (1989) The Spineless Tag-

less G-mahine, in Funtional Programming Languages and Computer

Arhiteture, ed. MaQueen, Addison Wesley.

[Shorr and Waite 1967℄ Shorr, H. and W. Waite, (1967) An eÆient mahine-independent

proedure for garbage olletion, Communiations of the ACM 10(8),

501{506.

[Wadler 1985℄ Wadler, P. L. (1985) How to replae failure by a list of suesses, in

Funtional Programming Languages and Computer Arhiteture, Nan-

y, LNCS 201, Springer Verlag, pp. 113{128.

[Wadler 1987℄ Wadler, P. L. (1987) Projetions for Stritness Analysis, in Proeedings

of the Funtional Programming Languages and Computer Arhiteture

Conferene, Portland, LNCS 274, Springer Verlag, pp. 385{407.

[Wakeling and Dix 1989℄ Wakeling, D. and A. Dix (1989) Optimising partial appliations in

TIM, Department of Computer Siene, University of York, Marh

1989.

282



Subjet index

Underlined entries in the index indiate where terms or ompilation shemes are de�ned.

A, 128, 150, 155, 166, 169, 170, 180, 193,

194

A

E

, 138, 139

A

R

, 138, 140

B, 136, 137, 138{140, 165, 166, 167, 169, 193,

194

C, 96, 97, 98, 104, 108, 109, 120, 122, 128,

130, 131, 137{140, 208

D, 128

D

E

, 139

D

R

, 140

E , 120, 121, 122, 128, 137, 138, 139, 140,

186, 187, 193, 194

I, 171, 178, 193, 194

J , 174, 175, 178

R, 96, 97, 98, 104, 121, 122, 138, 140, 150,

155, 166, 167, 169, 170, 171, 174,

178, 180, 186, 187, 193, 194

SC, 96, 97, 149, 150, 155, 169, 170, 174, 178,

193

U , 178, 179, 180, 193, 194

., 29

\/, 30

abstrat data type, 22

abstrat mahine, 84

abstration step, 232

aess funtions, 90

aess method, for variables, 105

aumulator, 55, 267

addressing modes, 147, 148

ADT, see abstrat data type

algebrai data types, see data strutures, 12

parameterised, 13

alternative

of ase expression, 15, 123

annotation, in parallel funtional programs,

198

arithmeti

in G-mahine, 111, 115

in template-instantation mahine, 65

in TIM, 161

optimised, in G-mahine, 119

arity

of onstrutor, 14, 69, 183

assoiation list, 264

assoiativity, 16

atomi expressions, 19

bak end, 10

bakward pointer, 79

binders, 18, 218

bloking, of tasks, 199, 209, 214

booleans, 13, 69, 129, 186

as higher-order funtions, 75

using onstrutors, 129

boxing

of values into the heap, 115

boxing funtion, 117

CAF, 11, 48, 63, 155, 160, 189

ase expressions

in G-mahine, 123

losure, 145

olleting superombinators pass, of lambda

lifter, 229

omparison operators, 117

in G-mahine, 117

ompilation

G-mahine example, 98

ompilation ontext, 120, 138

lazy, 120

strit, 120

ompilation shemes, 149

in G-mahine, 96

ompile-time, 83

ompiler funtions

in G-mahine, 96

omponents

of onstrutor, 69, 124

omposition, 29

onditional, 70

in template-instantation mahine, 69

in TIM, 164

ongruene proof, of ompiler orretness, 87

onservative parallelism, 212
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onstant appliative form, see CAF

onstrutors, see data strutures, 13

in G-mahine, 123

ontinuation, 162

ontinuation-passing style, 166

Core language, 10

data types, 16

parser, 28

pretty printer, 20

program, 11

dangling else, 37

data dependenies, 197

data frame pointer, 184

data strutures, see algebrai data types

as higher-order funtions, 75

G-mahine Mark 3, 107

G-mahine Mark 4, 112

G-mahine Mark 6, 124

in G-mahine Mark 6, 123

in G-mahine Mark 7, 133

in template-instantiation mahine, 68

in TIM, 183

de Bruijn numbers, 238

deadlok, 197

dependeny analysis, 252

use in full laziness, 252

use in Johnsson lambda lifter, 252

e�et on full laziness, 239

depth �rst searh, 255

divide-and-onquer algorithm, 197

division-by-zero error, 120

dump, 46, 51, 65, 152, 172, 181

alternative representation, 75

in G-mahine, 112

in template-instantiation mahine, 66

in TIM, 152, 174

dump items, 203

dyadi arithmeti operator, 116

dyadi arithmeti operators, 115

evauated, 81

evaluate-and-die model of parallelism, 199

evaluator, 56

G-mahine Mark 3, 107

Example exeution

of G-mahine, 84

exeution traes

in G-mahine, 99

fair sheduling, of tasks, 212

�nal state, 56

�xpoint ombinator

knot-tying, 109

attening, 144, 150

attening, of a tree, 87

forward pointer, 79

forwarding pointer, 81

frame, 145

frame pointer, 145, 152

free variable, 221

from-spae, 81

front end, 10

full laziness, 217, 236

G-mahine, 83

ompiler, 96

ompiler Mark 2, 104

evaluator, 92

laziness, 102

Mark 1, 89

Mark 2, 102

Mark 3, 105

Mark 4, 111

Mark 7, 131

the Big Idea, 83

toplevel, 89

G-mahine ompiler, 83

Mark 3, 108

Mark 4, 118

Mark 6, 128

Mark 7, 135

G-mahine stak layout

Mark 1, 89

revised, 105

garbage olletion, 76, 160, 172

generalisation, 28

global, 51

global frame, 190

graph, 42

graph theory, 253

heap, 51, 152, 262

higher-order funtion, 55, 68, 115

indentation, 25

indiretion, 171, 174

hains, 179

indiretion hains, 176
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indiretions, 48, 63, 65, 68, 80, 102

reduing ourrenes of, 64

in�x operator, 15, 23

inherant sequentiality, 197

inherited attributes, 122

instantiation, 46, 58

in G-mahine, 85

integer

invariant (in TIM), 162

representation in TIM, 149

interfae

of abstrat data type, 22

interpretive overhead

template traversal, 85

invariant, 49

lambda abstrations, 12

lambda lifter

Johnsson's, 231

Mark 1, 221

Mark 2, 230

Mark 3, 231

Mark 4, 236

Mark 5, 250

lambda lifting, 12, 217

left reursion, 38

let expressions

in G-mahine, 105

in template-instantiation mahine, 62

in TIM, 167

let(re) expressions, 167

let(re)-bound variables, 105

letre expressions

in G-mahine, 105

in template-instantiation mahine, 62

in TIM, 170

lexial analysis, 28

lexial level number, 238

lexial soping, 222

limits to parallelism, 212

eonomi, 211

physial, 211

linear sequene of instrutions, 86

linearising, of a tree, 87

list omprehension, 33

lists, 13, 72, 76, 186

loal de�nitions, 11

loal environment

of G-mahine, 85

loal funtion de�nitions, 217

loking, of node, 209, 214

look through, of appliation nodes, 105

mahine language instrutions, 83

mark-san olletion, 76

marker, 173

maximal free expression, 237

maximal free expression, identi�ation of,

244

Miranda, 10

monadi arithmeti operator, 116

mouse-trap, 172

negation, 16

node, 51, 262

non-termination of evaluation, 120

normal form, 42

normal order redution, 42

objets, 262

operator preedene, 15, 26, 38

overwrite, 102

pairs, 71, 75, 182

parallel algorithm, 196

parallel funtional programming, 196

parallel G-Mahine, 196

parallel G-mahine, 212

an example exeution, 199

Mark 1, 200

Mark 2, 209

parallel graph redution, 198

parameterised algebrai data type, 13

parser, 10, 28

partial appliations, 45, 181

pattern mathing, 12, 13

pending list, of node, 214

pointer reversal, 78

post�x ode

to onstrut graphs, 88

post�x evalution

of arithmeti expressions, 86

pretty-printer, 10, 20

primitives, 45, 46, 65, 66

in G-mahine, 99

printing, 73, 188

proessors, 213
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Push/Enter relationship, 148, 156

reahability, of nodes in a graph, 254

rearrange, 106

reursive-desent parsers, 40

redex, 42, 102, 173

reduible expression, 42

redutions, 42

redundant full laziness, 251

redundant loal de�nitions, in lambda lifter,

231

redundant superombinators, in lambda

lifter, 230, 250

renaming pass, of lambda lifter, 227

resoure-alloation deisions, 197

reusing frame slots, 171

run-time, 83

saturated onstrutor, 123, 126

savenged, 81

sheduling

poliy, 196, 212

priority, of tasks, 212

sheduling poliy, 212

round-robin, 213

setion, 35

self-updating losure, 177

sets, 265

shared memory, 196

spae leak, 161

spanning searh, in strongly onneted om-

ponent algorithm, 256

spark pool, 198

sparking, of a hild task, 199

speulative parallelism, 212

spine stak, 51, 53, 57, 145

Spineless Tagless G-mahine, 192

spinelessness, 145, 172

stak, 45

in TIM, 152

stak loations

in G-mahine, 88

stak underow hek, 46

standard prelude, 10, 19

state transition rules, 147

state transition system, 48

statistis, 54

strongly onneted omponents, 253

strutured data, see data strutures, 12

in TIM, 183

strutured types, 12

subroutine all and return, 111

superombinator, 43

de�nition, 11

redution, 51

syntax analysis, 28

tag

of onstrutor, 14, 69, 123, 124, 183

task, 198

ommuniation, 196

onurrent, 196

synhronization, 196

tasks

interleaving, 196

template instantiation, 42, 58

template instantiation mahine

Mark 1, 50

Mark 2, 62

Mark 3, 63

Mark 4, 65

Mark 5, 68

termination, 42

termination ondition

in G-mahine, 93

of G-mahine, 85

Three Instrution Mahine, see TIM

TIM, 143

Mark 1, 151

Mark 2, 161

Mark 3, 167

Mark 4, 172

Mark 5, 183

Mark 6, 189

to-spae, 81

tokens, 28

topologial sorting, 254

transitive losure, 254

tuples, 13

tupling, 144

two-spae garbage olletion, 80

type synonym, 18, 53

unboxing

of values from the heap, 115

unique names, 265

unloking, of node, 209

unwind, 45, 51, 57, 63
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in G-mahine, 85

updates, 42, 47, 52, 150

idential, 176, 177, 179

in G-mahine, 102

in template-instantiation mahine, 63

in TIM, 172

updating indiretion, 174

updating indiretions, 176

V-stak, 131, 161

value stak, 152

in G-mahine, 131

in TIM, 152, 161

vertial bar, 32

virtual proessor, 198

weak head normal form, 45, 111

WHNF, see weak head normal form

Y ombinator, 109
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Code index

This index indiates the point of de�nition of every Miranda funtion de�ned in the book (under-

lined entries), and every referene to typewriter-font material in running text (non-underlined

entries).

AAp, 219

abort, 73, 269

abstrat, 222, 223, 224, 226, 227, 230, 234

abstratJ, 233, 234, 236, 252

abstype, 22

ACase, 219

aCompile, 87, 88

AConstr, 219

atualFreeList, 234, 235

Add, 66, 74, 111, 113, 119, 122, 126, 136, 137

add, 181

addLevels, 241, 242

addr, 53, 76, 79, 205, 262, 263

aDomain, 264, 265

aEmpty, 265

aEval, 87, 88

aExpr, 86{88

aInstrution, 86

aInterpret, 86, 87, 88

ALam, 219, 235

ALet, 219

Allo, 107{109, 113, 122, 126, 137, 139, 140

allo, 107, 108

alloateInitialHeap, 190, 191

alloatePrim, 67

alloateSC, 56

alloateS, 56, 67, 97

alloNodes, 107, 108

aLookup, 59, 264

amToClosure, 156, 190, 191

annExpr, 220

annotation, 218

anonymous, 8

ANum, 219

applyToStats, 54, 156

apStep, 57, 68

aRange, 264, 265

Arg, 148{150, 169, 171, 174, 178, 180, 182,

187, 193, 194

argOffset, 98

args, 225

arithmeti1, 116

arithmeti2, 116, 117

assembleOp, 39

asso, 54

binders, 259

binderSet, 259

bindersOf, 18

Blue, 13{15

body, 62, 259

bodyFree, 225

box, 116

boxBoolean, 117, 129, 130

boxInteger, 115

Branh, 13{15

buildInitialHeap, 55, 56, 66, 67, 96, 97,

136

builtInDyadi, 121

ase, 11, 12, 14, 15, 17, 19, 24, 36, 37, 39, 59,

68{71, 73, 123, 128, 138{140, 183{

187, 189, 193, 194, 224, 225, 227,

228, 236, 241, 244, 246, 249, 250,

275

Casejump, 126, 127, 128, 135, 139, 140

aseList, 68, 72, 73

asePair, 68, 71, 72

lex, 28{30

losures, 191

Code, 106, 148{150, 151, 166, 169, 171, 174,

175, 178, 180, 184, 187, 193, 194

odeLookup, 153

odeStore, 190, 192

olletSCs, 223, 226, 229, 230, 231, 233,

250, 261

olour, 13, 14

omp, 108, 128

omparison, 117, 129

ompile, 52, 53, 55, 74, 96, 118, 129, 135,

151, 154, 164, 188, 190{192, 206,
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207

ompileA, 155, 191

ompileAlts, 128, 138

ompileArgs, 108, 109

ompileC, 96, 98, 99, 108, 109, 110, 129

ompiled, 97

ompiledPrimitives, 99, 118, 119, 154,

155, 163{165, 207

ompileE, 121, 128, 129, 208

ompileLet, 108

ompileLetre, 108, 110

ompileR, 96, 98, 99, 104, 109, 121, 140, 155,

170, 171, 175, 187, 208

ompileSC, 154, 155, 160, 175, 182

ompileS, 96, 97, 98, 109

ompileU, 179

omplex, 13, 14

omponents, 260

ompose, 146, 148, 175

ompose2, 145{147, 160

Cond, 113, 117{119, 122, 126, 132, 135, 137,

139, 140, 163, 164, 165, 167, 186

Cons, 13, 72, 73, 76, 123

ons, 183, 269, 270

Constr, 129

oreExpr, 10, 18, 21, 26, 105, 108, 217, 219

oreProgram, 10, 19, 20, 28, 36, 217, 220,

222, 241

Data, 184, 187, 189, 194

data, 18, 24, 26, 39, 53, 54, 63, 66, 69, 77,

79, 86, 87, 90, 91, 103, 113, 124,

126, 151, 152, 159, 164, 210, 214,

219

dataStep, 71

defnGroups, 259, 260

defns, 260

defnsFree, 225

defs, 62, 108

dependeny, 259

depends, 259

depthFirstSearh, 255, 256{258

digit, 29, 30

dispath, 57, 63, 67, 71, 93, 104, 106, 108,

117, 127, 135, 206

Div, 66, 113, 126, 164

doAdmin, 56, 76, 77, 92, 156, 205, 206, 216

Done, 79

double, 11

dropwhile, 29

dsum, 197, 198

dumpItem, 112

e2s, 22

EAnnot, 218

EAp, 18, 22, 38, 86, 219

ECase, 18, 123, 130, 219, 248

EConstr, 18, 69, 123, 130, 219

edges, 260

ELam, 18, 219, 222, 227, 228, 230, 234, 235,

240, 248, 250, 251

ELet, 18, 26, 62, 105, 175, 219, 230, 231, 248

emptyPendingList, 215

emptyTask, 215, 216

Enter, 147{150, 151, 156, 164, 166, 168, 169,

171, 174{176, 178, 180, 189, 190,

192{194, 278

ENum, 18, 37, 219

env, 61, 98, 108

Eq, 113, 126, 164

error, 73

evauateStak, 81

Eval, 111, 113, 114, 115, 117, 121, 122, 126,

127, 138, 139, 208, 209

eval, 52, 56, 59, 61, 92, 151, 155, 156, 204

evalMult, 50

EVar, 18, 37, 219

expr, 16, 18, 217, 218, 219, 220

extraPreludeDefs, 55, 70, 74, 75

fa, 132

fa20, 48

fAllo, 153

False, 69, 70, 75, 117, 129, 132

fGet, 153

findDumpRoots, 76

findGlobalRoots, 76

findRoots, 77

findStakRoots, 76, 78

first, 267

flatten, 24, 25, 26, 28

fList, 153

float, 241, 250, 251

floatedDefns, 248, 249

foldl, 22, 267

foldll, 22, 226, 255, 267

foldr, 19
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FoundOp, 39

frame, 188

FrameInt, 152

FrameNull, 152

FramePtr, 164

framePtr, 152

freeSetToLevel, 242, 243

freeToLevel, 242, 243

FreeVars, 218

freeVars, 222, 223, 224, 233, 242, 259, 261

freeVarsOf, 225

fst, 72, 267

Full, 159

fullRun, 151

fullyLazyLift, 241

fUpdate, 153

fvList, 226

Ge, 113, 126

Gen, 220

Get, 132, 134, 135, 137

get, 90, 204

getArg, 94, 95, 105, 211, 216

getArgs, 58, 67

getargs, 58

getClok, 204

getCode, 90, 204

getDump, 112, 204

getGlobals, 92, 204

getHeap, 91, 204

getName, 265

getNames, 265

getOutput, 124, 204

getSparks, 204

getStak, 91, 204

getStats, 92, 204

getVStak, 133, 204

globals, 55, 93, 96, 130

gmCode, 90

gmCompiler, 98

gmDumpItem, 203

gmEnvironment, 98

gmFinal, 92, 93, 205

gmGlobals, 91, 102, 201, 202

gmHeap, 201

gmOutput, 124, 129, 201

gmSparks, 201, 202, 215

gmStak, 90

gmState, 89, 203

gmStats, 92, 201

gmVStak, 133

gNode, 131

goodbye, 31

Gr, 164

Greater, 70, 71

GreaterEq, 70

Green, 13{15

GrEq, 164

Gt, 113, 126

guest, 8

hAddresses, 61, 77, 263, 264

hAllo, 263, 264

head, 73, 127, 189

heap, 54, 61, 89, 93, 262

hello, 31

hFree, 76, 77, 263, 264

hInitial, 55, 56, 263, 264

hIsnull, 263, 264

hLookup, 67, 263, 264

hNull, 79, 80, 107, 263, 264

hSize, 76, 263, 264

hUpdate, 63, 67, 68, 77, 263, 264

IAppend, 24, 25, 26

iAppend, 22, 23, 24, 25

iConat, 23, 24

id1, 269

identifyMFEs, 241, 245, 252, 261

iDisplay, 22, 24, 25, 26, 28

iFWNum, 27

IIndent, 25, 26

iIndent, 22, 23, 24, 25, 26

iInterleave, 23, 24

iLayn, 27

import, 16, 41, 82, 142, 195, 217

IMult, 86, 87

indent, 26

INewline, 25, 26

iNewline, 22, 23, 24, 26

INil, 24{26

iNil, 22, 24

initialArgStak, 154, 164

initialCode, 97, 118, 129, 207

initialDump, 154, 175

initialNameSupply, 265

initialTask, 207
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initialTiDump, 53, 66

initialValueStak, 154, 163

ins, 257, 258, 260

install, 249, 250

instane, 90, 103, 124

instantiate, 58, 59, 61, 62, 64, 69, 83, 85,

86

instantiateAndUpdate, 64

instantiateAndUpdateConstr, 70

instantiateConstr, 59, 69, 70

instantiateLet, 59

instantiateVar, 70

instrution, 90, 93, 107, 163, 170, 175, 206

intCode, 149, 163, 164, 173

IntConst, 148{150, 151, 166, 169, 178, 180,

194

IntVConst, 164, 166, 194

INum, 86, 87

iNum, 27

IPlus, 86, 87

isALam, 235, 236

isAtomiExpr, 19

isDataNode, 57, 67, 70

isELam, 230

iseq, 22{28, 59, 159, 160

iseqRep, 24, 25

isIdChar, 30

isRe, 18, 248, 250

IStr, 24, 25, 26

iStr, 22, 23, 24, 26

isWhiteSpae, 30

keywords, 36

Label, 148, 149, 151, 190{192

lambdaLift, 222, 223, 231, 241, 250

lambdaLiftJ, 233

language, 53

layn, 27, 50

Le, 113, 126

Leaf, 13{15

length, 6, 72, 123, 126, 127

Less, 70

LessEq, 70

let, 11, 12, 17, 18, 23, 36, 39, 46, 47, 62, 88,

106, 109, 122, 137, 139, 140, 167{

171, 178{180, 193, 223, 224, 226,

230, 236, 238{242, 245, 252, 259,

260, 269, 277

let(re), 18, 59, 62, 64, 105, 106, 121, 136,

138, 150, 167, 171, 174, 176{180,

184, 190, 218, 221, 222, 225, 228,

229, 234{239, 241, 244, 245, 248,

249, 252, 259, 260, 277

letre, 11, 12, 17, 18, 23, 39, 46, 47, 62,

88, 109{111, 122, 137, 139, 140, 170,

178, 193, 232, 236, 238, 239, 242,

244, 252, 259, 260, 269, 277

letter, 30

Level, 218

level, 248

levelOf, 244

lex, 28, 30

lok, 210, 211, 215

Lt, 113, 126, 164

LtEq, 164

mahineSize, 213

main, 11, 43, 55, 64, 73, 96, 97, 160, 164,

199, 200, 237

makeName, 265

makeTask, 205

map, 19, 267

mapAuml, 55, 97, 205, 227, 229, 267

markFrom, 77, 78, 79{81

markFromDump, 78

markFromGlobals, 78

markFromStak, 78, 81

markState, 79

member, 30

mid, 197

Mkap, 85, 88, 90, 94, 97, 103, 109, 113, 126,

192

mkap, 94

Mkbool, 134, 139

mkDependLet, 260

mkELam, 251

mkELet, 230

mkEnter, 175, 176

mkIndMode, 171

Mkint, 131, 132, 134, 139

mkMultiAp, 21, 22

MkNumPair, 14, 15

mkSepLams, 242

mkUpdIndMode, 175

module, 16, 41, 82, 142, 195, 217, 262
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Move, 168{171, 177, 178, 180, 184, 185, 187,

189, 193, 194

Mul, 66, 113, 119, 126, 132

Mult, 86, 164

multFinal, 50

name, 18, 54, 192, 219, 246

nameSupply, 265

NAp, 51, 65, 66, 69, 73, 74, 79, 80, 91, 94, 95,

103, 106, 124, 210, 211, 214

NConstr, 124, 126, 127, 134, 135, 210, 214

NData, 69, 70, 71, 75, 77, 79, 80

Ne, 113, 126

Neg, 65, 113, 115, 122, 126, 134, 137, 164

negate, 16, 67, 121, 122, 137, 139

newBinders, 248

newNames, 227, 228, 246, 247

newNamesL, 247

newState, 95

newtasks, 205

nfib, 270

NForward, 81

NGlobal, 91, 93, 96, 103, 106, 121, 124, 131,

210, 211, 214

Nil, 13, 72, 73

nil, 183, 269, 270

NInd, 63, 66, 69, 77, 78, 79, 80, 103, 104,

124, 210, 211, 214

NLAp, 210, 214

NLGlobal, 210, 214

NMarked, 77, 79, 80, 81

NNum, 51, 54, 63, 65, 66, 67, 68, 69, 70, 73,

77, 79, 80, 91, 94, 95, 102, 111, 114,

115, 117, 118, 127, 129, 134, 135

node, 54, 60, 63, 69, 70, 75, 77, 80, 81, 124,

214, 215

None, 159

nonReursive, 18

not, 16, 70, 138

NotEq, 70, 164

notMFECandidate, 245, 252

NPrim, 66, 67, 69, 75, 77, 79, 80

NSuperomb, 51, 54, 55, 60, 63, 66, 69, 77,

79, 80, 91, 192

nTerse, 160

num, 13, 192

numPair, 14

numStep, 57, 67, 68, 71

numval, 36

offsets, 191

Op, 164

outs, 260

Pak, 14, 15, 17, 69, 71, 123, 126, 128, 130,

131, 139, 183, 185, 187, 193, 270

pAexpr, 37

pair, 182

pAlt, 32

pApply, 35, 36{38

Par, 199, 200, 206, 207

par, 198, 202, 206, 207{209, 211, 213, 215

parse, 29, 52, 53, 151

partialExpr, 39

partitionFloats, 249

pEmpty, 34, 35

pExpr, 38

pExpr1, 39

pExpr1, 39

pgmGetGlobals, 202

pgmGetHeap, 201, 202

pgmGetOutput, 201

pgmGetSparks, 202

pgmGetStats, 202

pgmGlobalState, 201

pgmLoalState, 201

pgmState, 201, 202

pGreeting, 33, 34

pGreetings, 34

pGreetingsN, 35

pHelloOrGoodbye, 32, 33

pLit, 31, 32, 35

Plus, 86

pNum, 36, 37

Polar, 13{15

pOneOrMore, 34, 36

pOneOrMoreWithSep, 35

Pop, 102, 103, 104, 113, 122, 126, 137, 140

pprAExpr, 21, 24, 27

pprDefn, 23

pprDefns, 23

pprExpr, 21, 23, 24{27

pprExprGen, 220

pprint, 20, 21, 24, 37, 220

pprintAnn, 220

pprintGen, 220

pProgram, 36, 37
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pprProgram, 24

preludeDefs, 20, 55, 64, 73

primAdd, 67

primArith, 68, 71

PrimCasePair, 72

primComp, 71

PrimConstr, 69{71

primConstr, 69, 71

primDyadi, 71

primIf, 71

primitive, 66, 67, 69, 70, 72, 74

primitive1, 116, 117

primitive2, 116, 117

primitives, 67, 70, 74, 75, 136, 208

primNeg, 67

primStep, 67, 68, 69, 71, 74, 75

Print, 73, 74, 126, 127, 129, 188

pSat, 35, 36

pS, 37

psum, 196, 197

pThen, 32, 33

pThen3, 34

pThen4, 34

Push, 84, 90, 94, 95, 97, 103, 105, 109, 113,

126, 147{150, 151, 156, 164, 166,

168, 169, 180, 182, 187, 190, 192{

194, 278

push, 94

Pushbasi, 132, 134, 137

Pushglobal, 90, 93, 97, 102, 103, 109, 113,

126, 130, 131

pushglobal, 93, 94, 131

Pushint, 90, 94, 97, 102, 103, 109, 113, 122,

126, 139

pushint, 94, 102

PushMarker, 172{175, 177, 178, 191, 194

PushV, 163, 164, 166, 194

put, 90, 203, 204

putClok, 204

putCode, 90, 204

putDump, 112, 204

putGlobals, 102

putHeap, 91, 204

putOutput, 124, 204

putSparks, 204

putStak, 91, 204

putStats, 92, 204

putVStak, 133, 204

pVar, 32, 35{37

pZeroOrMore, 34

quadruple, 11

read, 28

README, 8

rearrange, 106

Ret, 13{15

reursive, 18

Red, 13{15

relation, 256

remove, 264

rename, 223, 227, 233, 241, 246, 247, 248,

261

renameGen, 246, 247

renameL, 241, 246, 247, 248

Return, 138, 162, 163, 164, 166, 169, 172,

173, 175, 181, 185, 193

ReturnConstr, 185{187, 193

rhs, 231

rhssOf, 18, 19

run, 52, 89, 151

runD, 259

runF, 241

runJ, 233

runProg, 52, 89, 151

runS, 223

san, 80

sanHeap, 77

savengeHeap, 81

s, 257, 258, 259

sheduler, 213, 214, 216

sStep, 58, 61, 63, 64, 85

searh, 255, 256, 258

seond, 267

separateLam, 251

separateLams, 240, 241, 242, 243, 251

setElementOf, 265, 266

setEmpty, 265, 266

setFromList, 258, 265, 266

setIntersetion, 265, 266

setIsEmpty, 265, 266

setSingleton, 265, 266

setSubtration, 225, 265, 266

setToList, 226, 265, 266

setUnion, 225, 265, 266

setUnionList, 265, 266
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shortShowInstrutions, 114

shortShowStak, 114

show, 192, 263

showAddr, 61

showaddr, 263, 264

showArg, 160

showClosure, 158, 159

showDump, 113, 114, 158

showDumpItem, 114

showFrame, 158

showFramePtr, 158, 159

showFullResults, 151, 157, 189

showFWAddr, 61

showInstrution, 100, 103, 107, 113, 125,

126, 135, 160, 164, 170, 175, 206

showInstrutions, 100, 159, 160

showNode, 60, 63, 66, 70, 101, 103, 125, 210,

215

shownum, 262

showOutput, 125, 209

showResults, 52, 59, 61, 99, 100, 151, 157,

189, 208, 209

showSC, 100, 157, 208, 209

showSCDefns, 157, 190, 191

showSparks, 209, 215

showStak, 60, 101, 158

showStakItem, 101

showState, 60, 61, 100, 101, 113, 125, 133,

134, 157, 158, 209

showStats, 61, 101, 159, 209

showStkNode, 60

showValueStak, 158

showVStak, 134

Slide, 88, 90, 95, 97{99, 102, 103, 106, 107,

109, 122, 126{128, 139

slide, 95

snd, 72, 267

sort, 267

spaes, 26, 27

spanning, 257

spanningSearh, 256, 257, 258

Split, 126, 127, 128, 139, 140

sqrt, 47

square, 43, 44

ssum, 197

statGetSteps, 92, 153, 154

statInSteps, 92, 153, 154

statInitial, 92, 153, 154

step, 56, 57, 67, 71, 92, 93, 156, 164, 170,

175, 204, 205, 215

stepMult, 50

steps, 204, 205, 213, 215

Stop, 73, 74, 156

Sub, 66, 74, 113, 126, 164

sub, 161{163

sum, 184, 189

Swith, 184{187, 189, 193, 194

syntax, 28, 29, 36, 37

tail, 73, 127

Take, 147{150, 156, 160, 167{170, 172, 181,

182, 185, 187, 191{193

take, 22, 271

takewhile, 29

Terse, 159

tik, 205

tiDump, 66

tiFinal, 56, 57, 68, 73, 75

tiGlobals, 91

timAMode, 151, 156, 168, 192

timFinal, 156

tiState, 52, 53, 74

tiStatGetSteps, 54

tiStatInSteps, 54

tiStatInitial, 54

tiStats, 54

token, 30

topCont, 188

transformMFE, 245

tree, 13, 14

True, 29, 30, 69, 70, 75, 117, 129

tup, 145

twie, 64, 181

twoCharOps, 30

type, 18, 19, 29, 31, 50, 53, 54, 66,

75, 90{92, 97, 98, 112, 124, 133,

152{155, 163, 175, 190, 201{203,

215, 219, 220, 241, 248, 263{266

typedExpr, 219

typeExpr, 219

unbox, 116

unboxInteger, 115, 116, 117

unlok, 210, 211, 215

Unwind, 85, 88, 95{97, 99, 102, 104{106, 113,

114, 115, 121, 122, 126, 127, 131,

138, 140, 209, 211, 215, 216
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unwind, 95, 211, 216

Update, 102, 103, 104, 105, 107, 109, 113,

122, 126, 131, 137, 139, 140, 209,

211, 215

update, 211

UpdateMarkers, 181{183, 185, 187, 193

utils, 53, 54, 91

valueAMode, 164

visited, 258

Visits, 79

where, 11, 12, 55

xor, 70

zat, 8

zip2, 225, 262

zipWith, 267

295


