
Elixir Language

#elixir

Table of Contents

About 1

Chapter 1: Getting started with Elixir Language 2

Remarks 2

Versions 2

Examples 2

Hello World 2

Hello World from IEx 3

Chapter 2: Basic .gitignore for elixir program 5

Chapter 3: Basic .gitignore for elixir program 6

Remarks 6

Examples 6

A basic .gitignore for Elixir 6

Example 6

Standalone elixir application 6

Phoenix application 7

Auto-generated .gitignore 7

Chapter 4: basic use of guard clauses 8

Examples 8

basic uses of guard clauses 8

Chapter 5: BEAM 10

Examples 10

Introduction 10

Chapter 6: Behaviours 11

Examples 11

Introduction 11

Chapter 7: Better debugging with IO.inspect and labels 12

Introduction 12

Remarks 12

Examples 12

Without labels 12

With labels 13

Chapter 8: Built-in types 14

Examples 14

Numbers 14

Atoms 15

Binaries and Bitstrings 15

Chapter 9: Conditionals 17

Remarks 17

Examples 17

case 17

if and unless 17

cond 18

with clause 18

Chapter 10: Constants 20

Remarks 20

Examples 20

Module-scoped constants 20

Constants as functions 20

Constants via macros 21

Chapter 11: Data Structures 23

Syntax 23

Remarks 23

Examples 23

Lists 23

Tuples 23

Chapter 12: Debugging Tips 24

Examples 24

Debugging with IEX.pry/0 24

Debugging with IO.inspect/1 24

Debug in pipe 25

Pry in pipe 25

Chapter 13: Doctests 27

Examples 27

Introduction 27

Generating HTML documentation based on doctest 27

Multiline doctests 27

Chapter 14: Ecto 29

Examples 29

Adding a Ecto.Repo in an elixir program 29

"and" clause in a Repo.get_by/3 29

Querying with dynamic fields 30

Add custom data types to migration and to schema 30

Chapter 15: Erlang 31

Examples 31

Using Erlang 31

Inspect an Erlang module 31

Chapter 16: ExDoc 32

Examples 32

Introduction 32

Chapter 17: ExUnit 33

Examples 33

Asserting Exceptions 33

Chapter 18: Functional programming in Elixir 34

Introduction 34

Examples 34

Map 34

Reduce 34

Chapter 19: Functions 36

Examples 36

Anonymous Functions 36

Using the capture operator 36

Multiple bodies 37

Keyword lists as function parameters 37

Named Functions & Private Functions 37

Pattern Matching 38

Guard clauses 38

Default Parameters 39

Capture functions 39

Chapter 20: Getting help in IEx console 41

Introduction 41

Examples 41

Listing Elixir modules and functions 41

Chapter 21: IEx Console Tips & Tricks 42

Examples 42

Recompile project with `recompile` 42

See documentation with `h` 42

Get value from last command with `v` 42

Get the value of a previous command with `v` 42

Exit IEx console 43

See information with `i` 43

Creating PID 44

Have your aliases ready when you start IEx 44

Persistent history 44

When Elixir console is stuck... 44

break out of incomplete expression 45

Load a module or script into the IEx session 46

Chapter 22: Installation 47

Examples 47

Fedora Installation 47

OSX Installation 47

Homebrew 47

Macports 47

Debian/Ubuntu Installation 47

Gentoo/Funtoo Installation 47

Chapter 23: Join Strings 49

Examples 49

Using String Interpolation 49

Using IO List 49

Using Enum.join 49

Chapter 24: Lists 50

Syntax 50

Examples 50

Keyword Lists 50

Char Lists 51

Cons Cells 52

Mapping Lists 52

List Comprehensions 53

Combined example 53

Summary 53

List difference 54

List Membership 54

Converting Lists to a Map 54

Chapter 25: Maps and Keyword Lists 55

Syntax 55

Remarks 55

Examples 55

Creating a Map 55

Creating a Keyword List 55

Difference between Maps and Keyword Lists 56

Chapter 26: Metaprogramming 57

Examples 57

Generate tests at compile time 57

Chapter 27: Mix 58

Examples 58

Create a Custom Mix Task 58

Custom mix task with command line arguments 58

Aliases 58

Get help on available mix tasks 59

Chapter 28: Modules 60

Remarks 60

Module Names 60

Examples 60

List a module's functions or macros 60

Using modules 60

Delegating functions to another module 61

Chapter 29: Nodes 62

Examples 62

List all visible nodes in the system 62

Connecting nodes on the same machine 62

Connecting nodes on different machines 62

Chapter 30: Operators 64

Examples 64

The Pipe Operator 64

Pipe operator and parentheses 64

Boolean operators 65

Comparison operators 66

Join operators 66

'In' operator 67

Chapter 31: Optimization 68

Examples 68

Always measure first! 68

Chapter 32: Pattern matching 69

Examples 69

Pattern matching functions 69

Pattern matching on a map 69

Pattern matching on a list 69

Get the sum of a list using pattern matching 70

Anonymous functions 70

Tuples 71

Reading a File 71

Pattern matching anonymous functions 71

Chapter 33: Polymorphism in Elixir 73

Introduction 73

Remarks 73

Examples 73

Polymorphism with Protocols 73

Chapter 34: Processes 75

Examples 75

Spawning a Simple Process 75

Sending and Receiving Messages 75

Recursion and Receive 75

Chapter 35: Protocols 77

Remarks 77

Examples 77

Introduction 77

Chapter 36: Sigils 78

Examples 78

Build a list of strings 78

Build a list of atoms 78

Custom sigils 78

Chapter 37: State Handling in Elixir 79

Examples 79

Managing a piece of state with an Agent 79

Chapter 38: Stream 80

Remarks 80

Examples 80

Chaining multiple operations 80

Chapter 39: Strings 81

Remarks 81

Examples 81

Convert to string 81

Get a substring 81

Split a string 81

String Interpolation 81

Check if String contains Substring 81

Join Strings 82

Chapter 40: Task 83

Syntax 83

Parameters 83

Examples 83

Doing work in the background 83

Parallel processing 83

Chapter 41: Tips and Tricks 84

Introduction 84

Examples 84

Creating Custom Sigils and Documenting 84

Multiple [OR] 84

iex Custom Configuration - iex Decoration 84

Credits 86

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: elixir-language

It is an unofficial and free Elixir Language ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official Elixir Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/elixir-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Elixir
Language

Remarks

Elixir is a dynamic, functional language designed for building scalable and maintainable
applications.

Elixir leverages the Erlang VM, known for running low-latency, distributed and fault-tolerant
systems, while also being successfully used in web development and the embedded software
domain.

Versions

Version Release Date

0.9 2013-05-23

1.0 2014-09-18

1.1 2015-09-28

1.2 2016-01-03

1.3 2016-06-21

1.4 2017-01-05

Examples

Hello World

For installation instructions on elixir check here, it describes instructions related to different
platforms.

Elixir is a programming language that is created using erlang, and uses erlang's BEAM runtime (like
JVM for java).

We can use elixir in two modes: interactive shell iex or directly running using elixir command.

Place the following in a file named hello.exs:

IO.puts "Hello world!"

https://riptutorial.com/ 2

http://elixir-lang.org/
http://elixir-lang.org/blog/2013/05/23/elixir-v0-9-0-released/
http://elixir-lang.org/blog/2014/09/18/elixir-v1-0-0-released/
http://elixir-lang.org/blog/2015/09/28/elixir-v1-1-0-released/
http://elixir-lang.org/blog/2016/01/03/elixir-v1-2-0-released/
http://elixir-lang.org/blog/2016/06/21/elixir-v1-3-0-released/
http://elixir-lang.org/blog/2017/01/05/elixir-v1-4-0-released/
http://elixir-lang.org/install.html

From the command line, type the following command to execute the Elixir source file:

$ elixir hello.exs

This should output:

Hello world!

This is known as the scripted mode of Elixir. In fact, Elixir programs can also be compiled (and
generally, they are) into bytecode for the BEAM virtual machine.

You can also use iex for interactive elixir shell (recommended), run the command you will get a
prompt like this:

Interactive Elixir (1.3.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Here you can try your elixir hello world examples:

iex(1)> IO.puts "hello, world"
hello, world
:ok
iex(2)>

You can also compile and run your modules through iex. For example, if you have a helloworld.ex
that contains:

defmodule Hello do
 def sample do
 IO.puts "Hello World!"
 end
end

Through iex, do:

iex(1)> c("helloworld.ex")
[Hello]
iex(2)> Hello.sample
Hello World!

Hello World from IEx

You can also use the IEx (Interactive Elixir) shell to evaluate expressions and execute code.

If you are on Linux or Mac, just type iex on your bash and press enter:

$ iex

If you are on a Windows machine, type:

https://riptutorial.com/ 3

C:\ iex.bat

Then you will enter into the IEx REPL (Read, Evaluate, Print, Loop), and you can just type
something like:

iex(1)> "Hello World"
"Hello World"

If you want to load a script while opening an IEx REPL, you can do this:

$ iex script.exs

Given script.exs is your script. You can now call functions from the script in the console.

Read Getting started with Elixir Language online: https://riptutorial.com/elixir/topic/954/getting-
started-with-elixir-language

https://riptutorial.com/ 4

https://riptutorial.com/elixir/topic/954/getting-started-with-elixir-language
https://riptutorial.com/elixir/topic/954/getting-started-with-elixir-language

Chapter 2: Basic .gitignore for elixir program

Read Basic .gitignore for elixir program online: https://riptutorial.com/elixir/topic/6493/basic--
gitignore-for-elixir-program

https://riptutorial.com/ 5

https://riptutorial.com/elixir/topic/6493/basic--gitignore-for-elixir-program
https://riptutorial.com/elixir/topic/6493/basic--gitignore-for-elixir-program

Chapter 3: Basic .gitignore for elixir program

Remarks

Note that the /rel folder may not be needed in your .gitignore file. This is generated if you are
using a release management tool such as exrm

Examples

A basic .gitignore for Elixir

/_build
/cover
/deps
erl_crash.dump
*.ez

Common additions for various operating systems:
MacOS
.DS_Store

Common additions for various editors:
JetBrains IDEA, IntelliJ, PyCharm, RubyMine etc.
.idea

Example

Elixir ###
/_build
/cover
/deps
erl_crash.dump
*.ez

Erlang ###
.eunit
deps
*.beam
*.plt
ebin
rel/example_project
.concrete/DEV_MODE
.rebar

Standalone elixir application

/_build
/cover
/deps
erl_crash.dump
*.ez

https://riptutorial.com/ 6

/rel

Phoenix application

/_build
/db
/deps
/*.ez
erl_crash.dump
/node_modules
/priv/static/
/config/prod.secret.exs
/rel

Auto-generated .gitignore

By default, mix new <projectname> will generate a .gitignore file in the project root that is suitable
for Elixir.

The directory Mix will write compiled artifacts to.
/_build

If you run "mix test --cover", coverage assets end up here.
/cover

The directory Mix downloads your dependencies sources to.
/deps

Where 3rd-party dependencies like ExDoc output generated docs.
/doc

If the VM crashes, it generates a dump, let's ignore it too.
erl_crash.dump

Also ignore archive artifacts (built via "mix archive.build").
*.ez

Read Basic .gitignore for elixir program online: https://riptutorial.com/elixir/topic/6526/basic--
gitignore-for-elixir-program

https://riptutorial.com/ 7

https://riptutorial.com/elixir/topic/6526/basic--gitignore-for-elixir-program
https://riptutorial.com/elixir/topic/6526/basic--gitignore-for-elixir-program

Chapter 4: basic use of guard clauses

Examples

basic uses of guard clauses

In Elixir, one can create multiple implementations of a function with the same name, and specify
rules which will be applied to the parameters of the function before calling the function in order to
determine which implementation to run.

These rules are marked by the keyword when, and they go between the def function_name(params)
and the do in the function definition. A trivial example:

defmodule Math do

 def is_even(num) when num === 1 do
 false
 end
 def is_even(num) when num === 2 do
 true
 end

 def is_odd(num) when num === 1 do
 true
 end
 def is_odd(num) when num === 2 do
 false
 end

end

Say I run Math.is_even(2) with this example. There are two implementations of is_even, with
differing guard clauses. The system will look at them in order, and run the first implementation
where the parameters satisfy the guard clause. The first one specifies that num === 1 which is not
true, so it moves on to the next one. The second one specifies that num === 2, which is true, so this
is the implementation that is used, and the return value will be true.

What if I run Math.is_odd(1)? The system looks at the first implementation, and sees that since num
is 1 the guard clause of the first implementation is satisfied. It will then use that implementation
and return true, and not bother looking at any other implementations.

Guards are limited in the types of operations they can run. The Elixir documentation lists every
allowed operation; in a nutshell they allow comparisons, math, binary operations, type-checking
(e.g. is_atom), and a handful of small convenience functions (e.g. length). It is possible to define
custom guard clauses, but it requires creating macros and is best left for a more advanced guide.

Note that guards do not throw errors; they are treated as normal failures of the guard clause, and
the system moves on to look at the next implementation. If you find that you're getting
(FunctionClauseError) no function clause matching when calling a guarded function with params

https://riptutorial.com/ 8

http://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses
http://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses

you expect to work, it may be that a guard clause which you expect to work is throwing an error
which is being swallowed up.

To see this for yourself, create and then call a function with a guard which makes no sense, such
as this which tries to divide by zero:

defmodule BadMath do
 def divide(a) when a / 0 === :foo do
 :bar
 end
end

Calling BadMath.divide("anything") will provide the somewhat-unhelpful error (FunctionClauseError)
no function clause matching in BadMath.divide/1 — whereas if you had tried to run "anything" / 0
directly, you would get a more helpful error: (ArithmeticError) bad argument in arithmetic
expression.

Read basic use of guard clauses online: https://riptutorial.com/elixir/topic/6121/basic-use-of-guard-
clauses

https://riptutorial.com/ 9

https://riptutorial.com/elixir/topic/6121/basic-use-of-guard-clauses
https://riptutorial.com/elixir/topic/6121/basic-use-of-guard-clauses

Chapter 5: BEAM

Examples

Introduction

iex> :observer.start
:ok

:observer.start opens the GUI observer interface, showing you CPU breakdown, memory usage,
and other information critical to understanding the usage patterns of your applications.

Read BEAM online: https://riptutorial.com/elixir/topic/3587/beam

https://riptutorial.com/ 10

https://riptutorial.com/elixir/topic/3587/beam

Chapter 6: Behaviours

Examples

Introduction

Behaviours are a list of functions specifications that another module can implement. They are
similar to interfaces in other languages.

Here’s an example behaviour:

defmodule Parser do
 @callback parse(String.t) :: any
 @callback extensions() :: [String.t]
end

And a module that implements it:

defmodule JSONParser do
 @behaviour Parser

 def parse(str), do: # ... parse JSON
 def extensions, do: ["json"]
end

The @behaviour module attribute above indicates that this module is expected to define every
function defined in the Parser module. Missing functions will result in undefined behaviour function
compilation errors.

Modules can have multiple @behaviour attributes.

Read Behaviours online: https://riptutorial.com/elixir/topic/3558/behaviours

https://riptutorial.com/ 11

https://riptutorial.com/elixir/topic/3558/behaviours

Chapter 7: Better debugging with IO.inspect
and labels

Introduction

IO.inspect is very useful when you try to debug your chains of method calling. It can get messy
though if you use it too often.

Since Elixir 1.4.0 the label option of IO.inspect can help

Remarks

Only works with Elixir 1.4+, but I can't tag that yet.

Examples

Without labels

url
 |> IO.inspect
 |> HTTPoison.get!
 |> IO.inspect
 |> Map.get(:body)
 |> IO.inspect
 |> Poison.decode!
 |> IO.inspect

This will result in a lot of output with no context:

"https://jsonplaceholder.typicode.com/posts/1"
%HTTPoison.Response{body: "{\n \"userId\": 1,\n \"id\": 1,\n \"title\": \"sunt aut facere
repellat provident occaecati excepturi optio reprehenderit\",\n \"body\": \"quia et
suscipit\\nsuscipit recusandae consequuntur expedita et cum\\nreprehenderit molestiae ut ut
quas totam\\nnostrum rerum est autem sunt rem eveniet architecto\"\n}",
 headers: [{"Date", "Thu, 05 Jan 2017 14:29:59 GMT"},
 {"Content-Type", "application/json; charset=utf-8"},
 {"Content-Length", "292"}, {"Connection", "keep-alive"},
 {"Set-Cookie",
 "__cfduid=d56d1be0a544fcbdbb262fee9477600c51483626599; expires=Fri, 05-Jan-18 14:29:59 GMT;
path=/; domain=.typicode.com; HttpOnly"},
 {"X-Powered-By", "Express"}, {"Vary", "Origin, Accept-Encoding"},
 {"Access-Control-Allow-Credentials", "true"},
 {"Cache-Control", "public, max-age=14400"}, {"Pragma", "no-cache"},
 {"Expires", "Thu, 05 Jan 2017 18:29:59 GMT"},
 {"X-Content-Type-Options", "nosniff"},
 {"Etag", "W/\"124-yv65LoT2uMHrpn06wNpAcQ\""}, {"Via", "1.1 vegur"},
 {"CF-Cache-Status", "HIT"}, {"Server", "cloudflare-nginx"},
 {"CF-RAY", "31c7a025e94e2d41-TXL"}], status_code: 200}
"{\n \"userId\": 1,\n \"id\": 1,\n \"title\": \"sunt aut facere repellat provident

https://riptutorial.com/ 12

occaecati excepturi optio reprehenderit\",\n \"body\": \"quia et suscipit\\nsuscipit
recusandae consequuntur expedita et cum\\nreprehenderit molestiae ut ut quas totam\\nnostrum
rerum est autem sunt rem eveniet architecto\"\n}"
%{"body" => "quia et suscipit\nsuscipit recusandae consequuntur expedita et cum\nreprehenderit
molestiae ut ut quas totam\nnostrum rerum est autem sunt rem eveniet architecto",
 "id" => 1,
 "title" => "sunt aut facere repellat provident occaecati excepturi optio reprehenderit",
 "userId" => 1}

With labels

using the label option to add context can help a lot:

url
 |> IO.inspect(label: "url")
 |> HTTPoison.get!
 |> IO.inspect(label: "raw http resonse")
 |> Map.get(:body)
 |> IO.inspect(label: "raw body")
 |> Poison.decode!
 |> IO.inspect(label: "parsed body")

url: "https://jsonplaceholder.typicode.com/posts/1"
raw http resonse: %HTTPoison.Response{body: "{\n \"userId\": 1,\n \"id\": 1,\n \"title\":
\"sunt aut facere repellat provident occaecati excepturi optio reprehenderit\",\n \"body\":
\"quia et suscipit\\nsuscipit recusandae consequuntur expedita et cum\\nreprehenderit
molestiae ut ut quas totam\\nnostrum rerum est autem sunt rem eveniet architecto\"\n}",
 headers: [{"Date", "Thu, 05 Jan 2017 14:33:06 GMT"},
 {"Content-Type", "application/json; charset=utf-8"},
 {"Content-Length", "292"}, {"Connection", "keep-alive"},
 {"Set-Cookie",
 "__cfduid=d22d817e48828169296605d27270af7e81483626786; expires=Fri, 05-Jan-18 14:33:06 GMT;
path=/; domain=.typicode.com; HttpOnly"},
 {"X-Powered-By", "Express"}, {"Vary", "Origin, Accept-Encoding"},
 {"Access-Control-Allow-Credentials", "true"},
 {"Cache-Control", "public, max-age=14400"}, {"Pragma", "no-cache"},
 {"Expires", "Thu, 05 Jan 2017 18:33:06 GMT"},
 {"X-Content-Type-Options", "nosniff"},
 {"Etag", "W/\"124-yv65LoT2uMHrpn06wNpAcQ\""}, {"Via", "1.1 vegur"},
 {"CF-Cache-Status", "HIT"}, {"Server", "cloudflare-nginx"},
 {"CF-RAY", "31c7a4b8ae042d77-TXL"}], status_code: 200}
raw body: "{\n \"userId\": 1,\n \"id\": 1,\n \"title\": \"sunt aut facere repellat
provident occaecati excepturi optio reprehenderit\",\n \"body\": \"quia et
suscipit\\nsuscipit recusandae consequuntur expedita et cum\\nreprehenderit molestiae ut ut
quas totam\\nnostrum rerum est autem sunt rem eveniet architecto\"\n}"
parsed body: %{"body" => "quia et suscipit\nsuscipit recusandae consequuntur expedita et
cum\nreprehenderit molestiae ut ut quas totam\nnostrum rerum est autem sunt rem eveniet
architecto",
 "id" => 1,
 "title" => "sunt aut facere repellat provident occaecati excepturi optio reprehenderit",
 "userId" => 1}

Read Better debugging with IO.inspect and labels online:
https://riptutorial.com/elixir/topic/8725/better-debugging-with-io-inspect-and-labels

https://riptutorial.com/ 13

https://riptutorial.com/elixir/topic/8725/better-debugging-with-io-inspect-and-labels

Chapter 8: Built-in types

Examples

Numbers

Elixir comes with integers and floating point numbers. An integer literal can be written in
decimal, binary, octal and hexadecimal formats.

iex> x = 291
291

iex> x = 0b100100011
291

iex> x = 0o443
291

iex> x = 0x123
291

As Elixir uses bignum arithmetic, the range of integer is only limited by the available memory
on the system.

Floating point numbers are double precision and follows IEEE-754 specification.

iex> x = 6.8
6.8

iex> x = 1.23e-11
1.23e-11

Note that Elixir also supports exponent form for floats.

iex> 1 + 1
2

iex> 1.0 + 1.0
2.0

First we added two integers numbers, and the result is an integer. Later we added two floating
point numbers, and the result is a floating point number.

Dividing in Elixir always returns a floating point number:

iex> 10 / 2
5.0

In the same way, if you add, subtract or multiply an integer by a floating point number the result
will be floating point:

https://riptutorial.com/ 14

iex> 40.0 + 2
42.0

iex> 10 - 5.0
5.0

iex> 3 * 3.0
9.0

For integer division, one can use the div/2 function:

iex> div(10, 2)
5

Atoms

Atoms are constants that represent a name of some thing. The value of an atom is it's name. An
atom name starts with a colon.

:atom # that's how we define an atom

An atom's name is unique. Two atoms with the same names always are equal.

iex(1)> a = :atom
:atom

iex(2)> b = :atom
:atom

iex(3)> a == b
true

iex(4)> a === b
true

Booleans true and false, actually are atoms.

iex(1)> true == :true
true

iex(2)> true === :true
true

Atoms are stored in special atoms table. It's very important to know that this table is not garbage-
collected. So, if you want (or accidentally it is a fact) constantly create atoms - it is a bad idea.

Binaries and Bitstrings

Binaries in elixir are created using the Kernel.SpecialForms construct <<>>.

They are a powerful tool which makes Elixir very useful for working with binary protocols and
encodings.

https://riptutorial.com/ 15

http://elixir-lang.org/docs/stable/elixir/Kernel.SpecialForms.html#%3C%3C%3E%3E/1

Binaries and bitstrings are specified using a comma delimited list of integers or variable values,
bookended by "<<" and ">>". They are composed of 'units', either a grouping of bits or a grouping
of bytes. The default grouping is a single byte (8 bits), specified using an integer:

<<222,173,190, 239>> # 0xDEADBEEF

Elixir strings also convert directly to binaries:

iex> <<0, "foo">>
<<0, 102, 111, 111>>

You can add "specifiers" to each "segment" of a binary, allowing you to encode:

Data Type•
Size•
Endianness•

These specifiers are encoded by following each value or variable with the "::" operator:

<<102::integer-native>>
<<102::native-integer>> # Same as above
<<102::unsigned-big-integer>>
<<102::unsigned-big-integer-size(8)>>
<<102::unsigned-big-integer-8>> # Same as above
<<102::8-integer-big-unsigned>>
<<-102::signed-little-float-64>> # -102 as a little-endian Float64
<<-102::native-little-float-64>> # -102 as a Float64 for the current machine

The available data types you can use are:

integer•
float•
bits (alias for bitstring)•
bitstring•
binary•
bytes (alias for binary)•
utf8•
utf16•
utf32•

Be aware that when specifying the 'size' of the binary segment, it varies according to the 'type'
chosen in the segment specifier:

integer (default) 1 bit•
float 1 bit•
binary 8 bits•

Read Built-in types online: https://riptutorial.com/elixir/topic/1774/built-in-types

https://riptutorial.com/ 16

https://riptutorial.com/elixir/topic/1774/built-in-types

Chapter 9: Conditionals

Remarks

Note that the do...end syntax is syntactic sugar for regular keyword lists, so you can actually do
this:

unless false, do: IO.puts("Condition is false")
Outputs "Condition is false"

With an `else`:
if false, do: IO.puts("Condition is true"), else: IO.puts("Condition is false")
Outputs "Condition is false"

Examples

case

 case {1, 2} do
 {3, 4} ->
 "This clause won't match."
 {1, x} ->
 "This clause will match and bind x to 2 in this clause."
 _ ->
 "This clause would match any value."
end

case is only used to match the given pattern of the particular data. Here , {1,2} is matching with
different case pattern that is given in the code example.

if and unless

if true do
 "Will be seen since condition is true."
end

if false do
 "Won't be seen since condition is false."
else
 "Will be seen.
end

unless false do
 "Will be seen."
end

unless true do
 "Won't be seen."
else
 "Will be seen."
end

https://riptutorial.com/ 17

cond

cond do
 0 == 1 -> IO.puts "0 = 1"
 2 == 1 + 1 -> IO.puts "1 + 1 = 2"
 3 == 1 + 2 -> IO.puts "1 + 2 = 3"
end

Outputs "1 + 1 = 2" (first condition evaluating to true)

cond will raise a CondClauseError if no conditions are true.

cond do
 1 == 2 -> "Hmmm"
 "foo" == "bar" -> "What?"
end
Error

This can be avoided by adding a condition that will always be true.

cond do
 ... other conditions
 true -> "Default value"
end

Unless it is never expected to reach the default case, and the program should in fact crash at that
point.

with clause

with clause is used to combine matching clauses. It looks like we combine anonymous functions
or handle function with multiple bodies (matching clauses). Consider the case: we create a user,
insert it into DB, then create greet email and then send it to the user.

Without the with clause we might write something like this (I omitted functions implementations):

case create_user(user_params) do
 {:ok, user} ->
 case Mailer.compose_email(user) do
 {:ok, email} ->
 Mailer.send_email(email)
 {:error, reason} ->
 handle_error
 end
 {:error, changeset} ->
 handle_error
end

Here we handle our business process's flow with case (it could be cond or if). That leads us to so-
called 'pyramid of doom', because we have to deal with possible conditions and decide: whether
move further or not. It would be much nicer to rewrite this code with with statement:

https://riptutorial.com/ 18

https://en.wikipedia.org/wiki/Pyramid_of_doom_(programming)

with {:ok, user} <- create_user(user_params),
 {:ok, email} <- Mailer.compose_email(user) do
 {:ok, Mailer.send_email}
else
 {:error, _reason} ->
 handle_error
end

In the code snippet above we've rewrite nested case clauses with with. Within with we invoke some
functions (either anonymous or named) and pattern match on their outputs. If all matched, with
return do block result, or else block result otherwise.

We can omit else so with will return either do block result or the first fail result.

So, the value of with statement is its do block result.

Read Conditionals online: https://riptutorial.com/elixir/topic/2118/conditionals

https://riptutorial.com/ 19

https://riptutorial.com/elixir/topic/2118/conditionals

Chapter 10: Constants

Remarks

So this is a summary analysis I've done based on the methods listed at How do you define
constants in Elixir modules?. I'm posting it for a couple reasons:

Most Elixir documentation is quite thorough, but I found this key architectural decision
lacking guidance - so I would have requested it as a topic.

•

I wanted to get a little visibility and comments from others about the topic.•
I also wanted to test out the new SO Documentation workflow. ;)•

I've also uploaded the entire code to the GitHub repo elixir-constants-concept.

Examples

Module-scoped constants

defmodule MyModule do
 @my_favorite_number 13
 @use_snake_case "This is a string (use double-quotes)"
end

These are only accessible from within this module.

Constants as functions

Declare:

defmodule MyApp.ViaFunctions.Constants do
 def app_version, do: "0.0.1"
 def app_author, do: "Felix Orr"
 def app_info, do: [app_version, app_author]
 def bar, do: "barrific constant in function"
end

Consume with require:

defmodule MyApp.ViaFunctions.ConsumeWithRequire do
 require MyApp.ViaFunctions.Constants

 def foo() do
 IO.puts MyApp.ViaFunctions.Constants.app_version
 IO.puts MyApp.ViaFunctions.Constants.app_author
 IO.puts inspect MyApp.ViaFunctions.Constants.app_info
 end

 # This generates a compiler error, cannot invoke `bar/0` inside a guard.
 # def foo(_bar) when is_bitstring(bar) do

https://riptutorial.com/ 20

http://stackoverflow.com/questions/33851536/how-do-you-define-constants-in-elixir-modules
http://stackoverflow.com/questions/33851536/how-do-you-define-constants-in-elixir-modules
https://github.com/bill-mybiz/elixir-constants-concept

 # IO.puts "We just used bar in a guard: #{bar}"
 # end
end

Consume with import:

defmodule MyApp.ViaFunctions.ConsumeWithImport do
 import MyApp.ViaFunctions.Constants

 def foo() do
 IO.puts app_version
 IO.puts app_author
 IO.puts inspect app_info
 end
end

This method allows for reuse of constants across projects, but they will not be usable within guard
functions that require compile-time constants.

Constants via macros

Declare:

defmodule MyApp.ViaMacros.Constants do
 @moduledoc """
 Apply with `use MyApp.ViaMacros.Constants, :app` or `import MyApp.ViaMacros.Constants,
:app`.

 Each constant is private to avoid ambiguity when importing multiple modules
 that each have their own copies of these constants.
 """

 def app do
 quote do
 # This method allows sharing module constants which can be used in guards.
 @bar "barrific module constant"
 defp app_version, do: "0.0.1"
 defp app_author, do: "Felix Orr"
 defp app_info, do: [app_version, app_author]
 end
 end

 defmacro __using__(which) when is_atom(which) do
 apply(__MODULE__, which, [])
 end
end

Consume with use:

defmodule MyApp.ViaMacros.ConsumeWithUse do
 use MyApp.ViaMacros.Constants, :app

 def foo() do
 IO.puts app_version
 IO.puts app_author
 IO.puts inspect app_info

https://riptutorial.com/ 21

 end

 def foo(_bar) when is_bitstring(@bar) do
 IO.puts "We just used bar in a guard: #{@bar}"
 end
end

This method allows you to use the @some_constant inside guards. I'm not even sure that the
functions would be strictly necessary.

Read Constants online: https://riptutorial.com/elixir/topic/6614/constants

https://riptutorial.com/ 22

https://riptutorial.com/elixir/topic/6614/constants

Chapter 11: Data Structures

Syntax

[head | tail] = [1, 2, 3, true] # one can use pattern matching to break up cons cells. This
assigns head to 1 and tail to [2, 3, true]

•

%{d: val} = %{d: 1, e: true} # this assigns val to 1; no variable d is created because the d on
the lhs is really just a symbol that is used to create the pattern %{:d => _} (note that hash
rocket notation allows one to have non-symbols as keys for maps just like in ruby)

•

Remarks

As for which data structure to us here are some brief remarks.

If you need an array data structure if you're going to be doing a lot of writing use lists. If instead
you are going to be doing a lot of read you should use tuples.

As for maps they are just simply how you do key value stores.

Examples

Lists

a = [1, 2, 3, true]

Note that these are stored in memory as linked lists. Id est this is a series of cons cells where the
head (List.hd/1) is the value of first item of the list and the tail (List.tail/1) is the value of the rest of
the list.

List.hd(a) = 1
List.tl(a) = [2, 3, true]

Tuples

b = {:ok, 1, 2}

Tuples are the equivalent of arrays in other languages. They are stored contiguously in memory.

Read Data Structures online: https://riptutorial.com/elixir/topic/1607/data-structures

https://riptutorial.com/ 23

https://riptutorial.com/elixir/topic/1607/data-structures

Chapter 12: Debugging Tips

Examples

Debugging with IEX.pry/0

Debugging with IEx.pry/0 is quite simple.

require IEx in your module1.
Find the line of code you want to inspect2.
Add IEx.pry after the line3.

Now start your project (e.g. iex -S mix).

When the line with IEx.pry/0 is reached the program will stop and you have the chance to inspect.
It is like a breakpoint in a traditional debugger.

When you are finished just type respawn into the console.

require IEx;

defmodule Example do
 def double_sum(x, y) do
 IEx.pry
 hard_work(x, y)
 end

 defp hard_work(x, y) do
 2 * (x + y)
 end
end

Debugging with IO.inspect/1

It is possible to use IO.inspect/1 as a tool to debug an elixir program.

defmodule MyModule do
 def myfunction(argument_1, argument_2) do
 IO.inspect(argument_1)
 IO.inspect(argument_2)
 end
end

It will print out argument_1 and argument_2 to the console. Since IO.inspect/1 returns its
argument it is very easy to include it in function calls or pipelines without breaking the flow:

do_something(a, b)
|> do_something_else(c)

can be adorned with IO.inspect, with no change in functionality:

https://riptutorial.com/ 24

do_something(IO.inspect(a), IO.inspect(b))
|> IO.inspect
do_something(IO.inspect(c))

Debug in pipe

defmodule Demo do
 def foo do
 1..10
 |> Enum.map(&(&1 * &1)) |> p
 |> Enum.filter(&rem(&1, 2) == 0) |> p
 |> Enum.take(3) |> p
 end

 defp p(e) do
 require Logger
 Logger.debug inspect e, limit: :infinity
 e
 end
end

iex(1)> Demo.foo

23:23:55.171 [debug] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

23:23:55.171 [debug] [4, 16, 36, 64, 100]

23:23:55.171 [debug] [4, 16, 36]

[4, 16, 36]

Pry in pipe

defmodule Demo do
 def foo do
 1..10
 |> Enum.map(&(&1 * &1))
 |> Enum.filter(&rem(&1, 2) == 0) |> pry
 |> Enum.take(3)
 end

 defp pry(e) do
 require IEx
 IEx.pry
 e
 end
end

iex(1)> Demo.foo
Request to pry #PID<0.117.0> at lib/demo.ex:11

 def pry(e) do
 require IEx

https://riptutorial.com/ 25

 IEx.pry
 e
 end

Allow? [Yn] Y

Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
pry(1)> e
[4, 16, 36, 64, 100]
pry(2)> respawn

Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
[4, 16, 36]
iex(1)>

Read Debugging Tips online: https://riptutorial.com/elixir/topic/2719/debugging-tips

https://riptutorial.com/ 26

https://riptutorial.com/elixir/topic/2719/debugging-tips

Chapter 13: Doctests

Examples

Introduction

When you document your code with @doc, you can supply code examples like so:

myproject/lib/my_module.exs

defmodule MyModule do
 @doc """
 Given a number, returns `true` if the number is even, otherwise `false`.

 ## Example
 iex> MyModule.even?(2)
 true
 iex> MyModule.even?(3)
 false
 """
 def even?(number) do
 rem(number, 2) == 0
 end
end

You can add the code examples as test cases into one of your test suites:

myproject/test/doc_test.exs

defmodule DocTest do
 use ExUnit.Case
 doctest MyModule
end

Then, you can then run your tests with mix test.

Generating HTML documentation based on doctest

Because generating documentation is based on markdown, you have to do 2 things :

1/ Write your doctest and make your doctest examples clear to improve readability (It is better to
give a headline, like "examples" or "tests"). When you write your tests, do not forget to give 4
spaces to your tests code so that it will be formatting as code in the HTML documentation.

2/ Then, enter "mix docs" in console at the root of your elixir project to generate the HTML
documentation in the doc directory located in the root of your elixir project.
$> mix docs

Multiline doctests

https://riptutorial.com/ 27

You can do a multiline doctest by using '...>' for the lines following the first

iex> Foo.Bar.somethingConditional("baz")
...> |> case do
...> {:ok, _} -> true
...> {:error, _} -> false
...> end
true

Read Doctests online: https://riptutorial.com/elixir/topic/2708/doctests

https://riptutorial.com/ 28

https://riptutorial.com/elixir/topic/2708/doctests

Chapter 14: Ecto

Examples

Adding a Ecto.Repo in an elixir program

This can be done in 3 steps :

You must define an elixir module which use Ecto.Repo and register your app as an otp_app.

defmodule Repo do
 use Ecto.Repo, otp_app: :custom_app
end

1.

You must also define some config for the Repo which will allow you to connect to the
database. Here is an example with postgres.

config :custom_app, Repo,
 adapter: Ecto.Adapters.Postgres,
 database: "ecto_custom_dev",
 username: "postgres_dev",
 password: "postgres_dev",
 hostname: "localhost",
 # OR use a URL to connect instead
 url: "postgres://postgres_dev:postgres_dev@localhost/ecto_custom_dev"

2.

Before using Ecto in your application, you need to ensure that Ecto is started before your
app is started. It can be done with registering Ecto in lib/custom_app.ex as a supervisor.

 def start(_type, _args) do
 import Supervisor.Spec

 children = [
 supervisor(Repo, [])
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end

3.

"and" clause in a Repo.get_by/3

If you have an Ecto.Queryable, named Post, which has a title and an description.

You can fetch the Post with title: "hello" and description : "world" by performing :

 MyRepo.get_by(Post, [title: "hello", description: "world"])

All of this is possible because Repo.get_by expects in second argument a Keyword List.

https://riptutorial.com/ 29

Querying with dynamic fields

To query a field which name is contained in a variable, use the field function.

some_field = :id
some_value = 10

from p in Post, where: field(p, ^some_field) == ^some_value

Add custom data types to migration and to schema

(From this answer)

The example below adds an enumerated type to a postgres database.

First, edit the migration file (created with mix ecto.gen.migration):

def up do
 # creating the enumerated type
 execute("CREATE TYPE post_status AS ENUM ('published', 'editing')")

 # creating a table with the column
 create table(:posts) do
 add :post_status, :post_status, null: false
 end
end

def down do
 drop table(:posts)
 execute("DROP TYPE post_status")
end

Second, in the model file either add a field with an Elixir type :

schema "posts" do
 field :post_status, :string
end

or implement the Ecto.Type behaviour.

A good example for the latter is the ecto_enum package and it can be used as a template. Its usage
is well documented on its github page.

This commit shows an example usage in a Phoenix project from adding enum_ecto to the project
and using the enumerated type in views and models.

Read Ecto online: https://riptutorial.com/elixir/topic/6524/ecto

https://riptutorial.com/ 30

https://hexdocs.pm/ecto/Ecto.Query.API.html#field/2
http://stackoverflow.com/questions/35245859/how-to-use-postgres-enumerated-type-with-ecto
https://www.postgresql.org/docs/current/static/datatype-enum.html
https://hexdocs.pm/ecto/Ecto.Type.html
https://hex.pm/packages/ecto_enum
https://github.com/gjaldon/ecto_enum
https://github.com/society-for-the-blind/timesheets/commit/6b1362a5a9b81bc46032b3a900af42824c6cd8cc
https://riptutorial.com/elixir/topic/6524/ecto

Chapter 15: Erlang

Examples

Using Erlang

Erlang modules are available as atoms. For example, the Erlang math module is available as
:math:

iex> :math.pi
3.141592653589793

Inspect an Erlang module

Use module_info on Erlang modules you wish to inspect:

iex> :math.module_info
 [module: :math,
 exports: [pi: 0, module_info: 0, module_info: 1, pow: 2, atan2: 2, sqrt: 1,
 log10: 1, log2: 1, log: 1, exp: 1, erfc: 1, erf: 1, atanh: 1, atan: 1,
 asinh: 1, asin: 1, acosh: 1, acos: 1, tanh: 1, tan: 1, sinh: 1, sin: 1,
 cosh: 1, cos: 1],
 attributes: [vsn: [113168357788724588783826225069997113388]],
 compile: [options: [{:outdir,
 '/private/tmp/erlang20160316-36404-xtp7cq/otp-OTP-18.3/lib/stdlib/src/../ebin'},
 {:i,
 '/private/tmp/erlang20160316-36404-xtp7cq/otp-OTP-18.3/lib/stdlib/src/../include'},
 {:i,
 '/private/tmp/erlang20160316-36404-xtp7cq/otp-OTP-
18.3/lib/stdlib/src/../../kernel/include'},
 :warnings_as_errors, :debug_info], version: '6.0.2',
 time: {2016, 3, 16, 16, 40, 35},
 source: '/private/tmp/erlang20160316-36404-xtp7cq/otp-OTP-18.3/lib/stdlib/src/math.erl'],
 native: false,
 md5: <<85, 35, 110, 210, 174, 113, 103, 228, 63, 252, 81, 27, 224, 15, 64,
 44>>]

Read Erlang online: https://riptutorial.com/elixir/topic/2716/erlang

https://riptutorial.com/ 31

https://riptutorial.com/elixir/topic/2716/erlang

Chapter 16: ExDoc

Examples

Introduction

To generate documentation in HTML format from @doc and @moduledoc attributes in your source code,
add ex_doc and a markdown processor, right now ExDoc supports Earmark, Pandoc, Hoedown
and Cmark, as dependencies into your mix.exs file:

config/mix.exs

def deps do
 [{:ex_doc, "~> 0.11", only: :dev},
 {:earmark, "~> 0.1", only: :dev}]
end

If you want to use another Markdown processor, you can find more information in the Changing
the Markdown tool section.

You can use Markdown within Elixir @doc and @moduledoc attributes.

Then, run mix docs.

One thing to keep in mind is that ExDoc allows configuration parameters, such as:

 def project do
 [app: :my_app,
 version: "0.1.0-dev",
 name: "My App",
 source_url: "https://github.com/USER/APP",
 homepage_url: "http://YOUR_PROJECT_HOMEPAGE",
 deps: deps(),
 docs: [logo: "path/to/logo.png",
 output: "docs",
 main: "README",
 extra_section: "GUIDES",
 extras: ["README.md", "CONTRIBUTING.md"]]]
 end

You can see more information about this configuration options with mix help docs

Read ExDoc online: https://riptutorial.com/elixir/topic/3582/exdoc

https://riptutorial.com/ 32

http://github.com/pragdave/earmark
http://johnmacfarlane.net/pandoc/
https://github.com/hoedown/hoedown
https://github.com/jgm/cmark
https://github.com/elixir-lang/ex_doc#changing-the-markdown-tool
https://github.com/elixir-lang/ex_doc#changing-the-markdown-tool
https://riptutorial.com/elixir/topic/3582/exdoc

Chapter 17: ExUnit

Examples

Asserting Exceptions

Use assert_raise to test if an exception was raised. assert_raise takes in an Exception and a
function to be executed.

 test "invalid block size" do
 assert_raise(MerkleTree.ArgumentError, (fn() -> MerkleTree.new ["a", "b", "c"] end))
 end

Wrap any code you want to test in an anonymous function and pass it to assert_raise.

Read ExUnit online: https://riptutorial.com/elixir/topic/3583/exunit

https://riptutorial.com/ 33

https://riptutorial.com/elixir/topic/3583/exunit

Chapter 18: Functional programming in Elixir

Introduction

Let's try to implement the basic higher orders functions like map and reduce using Elixir

Examples

Map

Map is a function which will take an array and a function and return an array after applying that
function to each element in that list

defmodule MyList do
 def map([], _func) do
 []
 end

 def map([head | tail], func) do
 [func.(head) | map(tail, func)]
 end
end

Copy paste in iex and execute:

MyList.map [1,2,3], fn a -> a * 5 end

Shorthand syntax is MyList.map [1,2,3], &(&1 * 5)

Reduce

Reduce is a function which will take an array, function and accumulator and use accumulator as
seed to start the iteration with the first element to give next accumulator and the iteration
continues for all the elements in the array (refer below example)

defmodule MyList do
 def reduce([], _func, acc) do
 acc
 end

 def reduce([head | tail], func, acc) do
 reduce(tail, func, func.(acc, head))
 end
end

Copy paste the above snippet in iex:

To add all numbers in an array: MyList.reduce [1,2,3,4], fn acc, element -> acc + element
end, 0

1.

https://riptutorial.com/ 34

To mutliply all numbers in an array: MyList.reduce [1,2,3,4], fn acc, element -> acc *
element end, 1

2.

Explanation for example 1:

Iteration 1 => acc = 0, element = 1 ==> 0 + 1 ===> 1 = next accumulator
Iteration 2 => acc = 1, element = 2 ==> 1 + 2 ===> 3 = next accumulator
Iteration 3 => acc = 3, element = 3 ==> 3 + 3 ===> 6 = next accumulator
Iteration 4 => acc = 6, element = 4 ==> 6 + 4 ===> 10 = next accumulator = result(as all
elements are done)

Filter the list using reduce

MyList.reduce [1,2,3,4], fn acc, element -> if rem(element,2) == 0 do acc else acc ++
[element] end end, []

Read Functional programming in Elixir online: https://riptutorial.com/elixir/topic/10186/functional-
programming-in-elixir

https://riptutorial.com/ 35

https://riptutorial.com/elixir/topic/10186/functional-programming-in-elixir
https://riptutorial.com/elixir/topic/10186/functional-programming-in-elixir

Chapter 19: Functions

Examples

Anonymous Functions

In Elixir, a common practice is to use anonymous functions. Creating an anonymous function is
simple:

iex(1)> my_func = fn x -> x * 2 end
#Function<6.52032458/1 in :erl_eval.expr/5>

The general syntax is:

fn args -> output end

For readability, you may put parenthesis around the arguments:

iex(2)> my_func = fn (x, y) -> x*y end
#Function<12.52032458/2 in :erl_eval.expr/5>

To invoke an anonymous function, call it by the assigned name and add . between the name and
arguments.

iex(3)>my_func.(7, 5)
35

It is possible to declare anonymous functions without arguments:

iex(4)> my_func2 = fn -> IO.puts "hello there" end
iex(5)> my_func2.()
hello there
:ok

Using the capture operator

To make anonymous functions more concise you can use the capture operator &. For example,
instead of:

iex(5)> my_func = fn (x) -> x*x*x end

You can write:

iex(6)> my_func = &(&1*&1*&1)

https://riptutorial.com/ 36

With multiple parameters, use the number corresponding to each argument, counting from 1:

iex(7)> my_func = fn (x, y) -> x + y end

iex(8)> my_func = &(&1 + &2) # &1 stands for x and &2 stands for y

iex(9)> my_func.(4, 5)
9

Multiple bodies

An anonymous function can also have multiple bodies (as a result of pattern matching):

my_func = fn
 param1 -> do_this
 param2 -> do_that
end

When you call a function with multiple bodies Elixir attempts to match the parameters you have
provided with the proper function body.

Keyword lists as function parameters

Use keyword lists for 'options'-style parameters that contains multiple key-value pairs:

def myfunc(arg1, opts \\ []) do
 # Function body
end

We can call the function above like so:

iex> myfunc "hello", pizza: true, soda: false

which is equivalent to:

iex> myfunc("hello", [pizza: true, soda: false])

The argument values are available as opts.pizza and opts.soda respectively.
Alternatively, you could use atoms: opts[:pizza] and opts[:soda].

Named Functions & Private Functions

Named Functions

defmodule Math do
 # one way
 def add(a, b) do
 a + b

https://riptutorial.com/ 37

http://www.riptutorial.com/elixir/topic/1602/pattern-matching

 end

 # another way
 def subtract(a, b), do: a - b
end

iex> Math.add(2, 3)
5
:ok
iex> Math.subtract(5, 2)
3
:ok

Private Functions

defmodule Math do
 def sum(a, b) do
 add(a, b)
 end

 # Private Function
 defp add(a, b) do
 a + b
 end
end

iex> Math.add(2, 3)
** (UndefinedFunctionError) undefined function Math.add/2
Math.add(3, 4)
iex> Math.sum(2, 3)
5

Pattern Matching

Elixir matches a function call to its body based on the value of its arguments.

defmodule Math do
 def factorial(0): do: 1
 def factorial(n): do: n * factorial(n - 1)
end

Here, factorial of positive numbers matches the second clause, while factorial(0) matches the
first. (ignoring negative numbers for the sake of simplicity). Elixir tries to match the functions from
top to bottom. If the second function is written above the first, we will an unexpected result as it
goes to an endless recursion. Because factorial(0) matches to factorial(n)

Guard clauses

Guard clauses enables us to check the arguments before executing the function. Guard clauses
are usually preferred to if and cond due to their readability, and to make a certain optimization
technique easier for the compiler. The first function definition where all guards match is executed.

Here is an example implementation of the factorial function using guards and pattern matching.

https://riptutorial.com/ 38

http://erlang.org/doc/efficiency_guide/functions.html
http://erlang.org/doc/efficiency_guide/functions.html

defmodule Math do
 def factorial(0), do: 1
 def factorial(n) when n > 0: do: n * factorial(n - 1)
end

The first pattern matches if (and only if) the argument is 0. If the argument is not 0, the pattern
match fails and the next function below is checked.

That second function definition has a guard clause: when n > 0. This means that this function only
matches if the argument n is greater than 0. After all, the mathematical factorial function is not
defined for negative integers.

If neither function definition (including their pattern matching and guard clauses) match, a
FunctionClauseError will be raised. This happens for this function when we pass a negative number
as the argument, since it is not defined for negative numbers.

Note that this FunctionClauseError itself, is not a mistake. Returning -1 or 0 or some other "error
value" as is common in some other languages would hide the fact that you called an undefined
function, hiding the source of the error, possibly creating a huge painful bug for a future developer.

Default Parameters

You can pass default parameters to any named function using the syntax: param \\ value:

defmodule Example do
 def func(p1, p2 \\ 2) do
 IO.inspect [p1, p2]
 end
end

Example.func("a") # => ["a", 2]
Example.func("b", 4) # => ["b", 4]

Capture functions

Use & to capture functions from other modules. You can use the captured functions directly as
function parameters or within anonymous functions.

Enum.map(list, fn(x) -> String.capitalize(x) end)

Can be made more concise using &:

Enum.map(list, &String.capitalize(&1))

Capturing functions without passing any arguments require you to explicitly specify its arity, e.g.
&String.capitalize/1:

defmodule Bob do
 def say(message, f \\ &String.capitalize/1) do
 f.(message)

https://riptutorial.com/ 39

 end
end

Read Functions online: https://riptutorial.com/elixir/topic/2442/functions

https://riptutorial.com/ 40

https://riptutorial.com/elixir/topic/2442/functions

Chapter 20: Getting help in IEx console

Introduction

IEx provides access to Elixir documentation. When Elixir is installed on your system you can start
IEx e.g. with iex command in a terminal. Then type h command on IEx command line followed by
the function name prepended by its module name e.g. h List.foldr

Examples

Listing Elixir modules and functions

To get the list of Elixir modules just type

h Elixir.[TAB]

Pressing [TAB] autocompletes modules and functions names. In this case it lists all modules. To
find all functions in a module e.g. List use

h List.[TAB]

Read Getting help in IEx console online: https://riptutorial.com/elixir/topic/10780/getting-help-in-
iex-console

https://riptutorial.com/ 41

https://riptutorial.com/elixir/topic/10780/getting-help-in-iex-console
https://riptutorial.com/elixir/topic/10780/getting-help-in-iex-console

Chapter 21: IEx Console Tips & Tricks

Examples

Recompile project with `recompile`

iex(1)> recompile
Compiling 1 file (.ex)
:ok

See documentation with `h`

iex(1)> h List.last

 def last(list)

Returns the last element in list or nil if list is empty.

Examples

┃ iex> List.last([])
┃ nil
┃
┃ iex> List.last([1])
┃ 1
┃
┃ iex> List.last([1, 2, 3])
┃ 3

Get value from last command with `v`

iex(1)> 1 + 1
2
iex(2)> v
2
iex(3)> 1 + v
3

See also: Get the value of a row with `v`

Get the value of a previous command with `v`

iex(1)> a = 10
10
iex(2)> b = 20
20
iex(3)> a + b
30

You can get a specific row passing the index of the row:

https://riptutorial.com/ 42

http://www.riptutorial.com/elixir/example/4395/get-the-value-of-a-previous-command-with--v-

iex(4)> v(3)
30

You can also specify an index relative to the current row:

iex(5)> v(-1) # Retrieves value of row (5-1) -> 4
30
iex(6)> v(-5) # Retrieves value of row (5-4) -> 1
10

The value can be reused in other calculations:

iex(7)> v(2) * 4
80

If you specify a non-existing row, IEx will raise an error:

iex(7)> v(100)
** (RuntimeError) v(100) is out of bounds
 (iex) lib/iex/history.ex:121: IEx.History.nth/2
 (iex) lib/iex/helpers.ex:357: IEx.Helpers.v/1

Exit IEx console

Use Ctrl + C, Ctrl + C to exit1.

iex(1)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution

Use Ctrl+ \ to immediately exit2.

See information with `i`

iex(1)> i :ok
Term
 :ok
Data type
 Atom
Reference modules
 Atom
iex(2)> x = "mystring"
"mystring"
iex(3)> i x
Term
 "mystring"
Data type
 BitString
Byte size
 8
Description
 This is a string: a UTF-8 encoded binary. It's printed surrounded by
 "double quotes" because all UTF-8 encoded codepoints in it are printable.

https://riptutorial.com/ 43

Raw representation
 <<109, 121, 115, 116, 114, 105, 110, 103>>
Reference modules
 String, :binary

Creating PID

This is useful when you didn't store the PID from a previous command

iex(1)> self()
#PID<0.138.0>
iex(2)> pid("0.138.0")
#PID<0.138.0>
iex(3)> pid(0, 138, 0)
#PID<0.138.0>

Have your aliases ready when you start IEx

If you put your commonly used aliases into an .iex.exs file at the root of your app, IEx will load
them for you on startup.

alias App.{User, Repo}

Persistent history

By default, user input history in IEx do not persist across different sessions.

erlang-history adds history support to both the Erlang shell and IEx:

git clone git@github.com:ferd/erlang-history.git
cd erlang-history
sudo make install

You can now access your previous inputs using the up and down arrow keys, even across
different IEx sessions.

When Elixir console is stuck...

Sometimes you might accidentally run something in the shell that ends up waiting forever, and
thus blocking the shell:

iex(2)> receive do _ -> :stuck end

In that case, press Ctrl-g. You'll see:

User switch command

Enter these commands in order:

k (to kill the shell process)•

https://riptutorial.com/ 44

s (to start a new shell process)•
c (to connect to the new shell process)•

You'll end up in a new Erlang shell:

Eshell V8.0.2 (abort with ^G)
1>

To start an Elixir shell, type:

'Elixir.IEx.CLI':local_start().

(don't forget the final dot!)

Then you'll see a new Elixir shell process coming up:

Interactive Elixir (1.3.2) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> "I'm back"
"I'm back"
iex(2)>

To escape from “awaiting-for-more-input” mode (due to unclosed quotation mark, bracket etc,)
type #iex:break, followed by carriage return (�):

iex(1)> "Hello, "world"
...(1)>
...(1)> #iex:break
** (TokenMissingError) iex:1: incomplete expression

iex(1)>

the above is specifically useful when copy-pasting a relatively huge snippet turns the console to
“awaiting-for-more-input” mode.

break out of incomplete expression

When you have entered something into IEx which expects a completion, such as a multiline string,
IEx will change the prompt to indicate that it is waiting for you finish by changing the prompt to
have an ellipsis (...) rather than iex.

If you find that IEx is waiting for you to finish an expression but you aren't sure what it needs to
terminate the expression, or you simply want to abort this line of input, enter #iex:break as the
console input. This will cause IEx to throw a TokenMissingError and cancel waiting for any more
input, returning you to a standard "top-level" console input.

iex:1> "foo"
"foo"
iex:2> "bar
...:2> #iex:break
** (TokenMissingError) iex:2: incomplete expression

https://riptutorial.com/ 45

More info is available at the IEx documentation.

Load a module or script into the IEx session

If you have an elixir file; a script or a module and want to load it into the current IEx session, you
can use the c/1 method:

iex(1)> c "lib/utils.ex"
iex(2)> Utils.some_method

This will compile and load the module in IEx, and you'll be able to call all of it's public methods.

For scripts, it will immediately execute the contents of the script:

iex(3)> c "/path/to/my/script.exs"
Called from within the script!

Read IEx Console Tips & Tricks online: https://riptutorial.com/elixir/topic/1283/iex-console-tips---
tricks

https://riptutorial.com/ 46

http://elixir-lang.org/docs/stable/iex/IEx.html#module-expressions-in-iex
https://riptutorial.com/elixir/topic/1283/iex-console-tips---tricks
https://riptutorial.com/elixir/topic/1283/iex-console-tips---tricks

Chapter 22: Installation

Examples

Fedora Installation

dnf install erlang elixir

OSX Installation

On OS X and MacOS, Elixir can be installed via the common package managers:

Homebrew

$ brew update
$ brew install elixir

Macports

 $ sudo port install elixir

Debian/Ubuntu Installation

Fetch and install package to setup access to the official APT repository
wget https://packages.erlang-solutions.com/erlang-solutions_1.0_all.deb
sudo dpkg -i erlang-solutions_1.0_all.deb

Update package index
sudo apt-get update

Install Erlang and Elixir
sudo apt-get install esl-erlang
sudo apt-get install elixir

Gentoo/Funtoo Installation

Elixir is available in main packages repository.
Update the packages list before installing any package:

emerge --sync

This is one step installation:

https://riptutorial.com/ 47

emerge --ask dev-lang/elixir

Read Installation online: https://riptutorial.com/elixir/topic/4208/installation

https://riptutorial.com/ 48

https://riptutorial.com/elixir/topic/4208/installation

Chapter 23: Join Strings

Examples

Using String Interpolation

iex(1)> [x, y] = ["String1", "String2"]
iex(2)> "#{x} #{y}"
"String1 String2"

Using IO List

["String1", " ", "String2"] |> IO.iodata_to_binary
"String1 String2"

This will gives some performances boosts as strings not duplicated in memory.
Alternative method:

iex(1)> IO.puts(["String1", " ", "String2"])
String1 String2

Using Enum.join

Enum.join(["String1", "String2"], " ")
"String1 String2"

Read Join Strings online: https://riptutorial.com/elixir/topic/9202/join-strings

https://riptutorial.com/ 49

https://riptutorial.com/elixir/topic/9202/join-strings

Chapter 24: Lists

Syntax

[]•
[1, 2, 3, 4]•
[1, 2] ++ [3, 4] # -> [1,2,3,4]•
hd([1, 2, 3, 4]) # -> 1•
tl([1, 2, 3, 4]) # -> [2,3,4]•
[head | tail]•
[1 | [2, 3, 4]] # -> [1,2,3,4]•
[1 | [2 | [3 | [4 | []]]]] -> [1,2,3,4]•
'hello' = [?h, ?e, ?l, ?l, ?o]•
keyword_list = [a: 123, b: 456, c: 789]•
keyword_list[:a] # -> 123•

Examples

Keyword Lists

Keyword lists are lists where each item in the list is a tuple of an atom followed by a value.

keyword_list = [{:a, 123}, {:b, 456}, {:c, 789}]

A shorthand notation for writing keyword lists is as follows:

keyword_list = [a: 123, b: 456, c: 789]

Keyword lists are useful for creating ordered key-value pair data structures, where multiple items
can exist for a given key.

The first item in a keyword list for a given key can be obtained like so:

iex> keyword_list[:b]
456

A use case for keyword lists could be a sequence of named tasks to run:

defmodule TaskRunner do
 def run_tasks(tasks) do
 # Call a function for each item in the keyword list.
 # Use pattern matching on each {:key, value} tuple in the keyword list
 Enum.each(tasks, fn
 {:delete, x} ->
 IO.puts("Deleting record " <> to_string(x) <> "...")
 {:add, value} ->

https://riptutorial.com/ 50

 IO.puts("Adding record \"" <> value <> "\"...")
 {:update, {x, value}} ->
 IO.puts("Setting record " <> to_string(x) <> " to \"" <> value <> "\"...")
 end)
 end
end

This code can be called with a keyword list like so:

iex> tasks = [
...> add: "foo",
...> add: "bar",
...> add: "test",
...> delete: 2,
...> update: {1, "asdf"}
...>]

iex> TaskRunner.run_tasks(tasks)
Adding record "foo"...
Adding record "bar"...
Adding record "test"...
Deleting record 2...
Setting record 1 to "asdf"...

Char Lists

Strings in Elixir are "binaries". However, in Erlang code, strings are traditionally "char lists", so
when calling Erlang functions, you may have to use char lists instead of regular Elixir strings.

While regular strings are written using double quotes ", char lists are written using single quotes ':

string = "Hello!"
char_list = 'Hello!'

Char lists are simply lists of integers representing the code points of each character.

'hello' = [104, 101, 108, 108, 111]

A string can be converted to a char list with to_charlist/1:

iex> to_charlist("hello")
'hello'

And the reverse can be done with to_string/1:

iex> to_string('hello')
"hello"

Calling an Erlang function and converting the output to a regular Elixir string:

iex> :os.getenv |> hd |> to_string
"PATH=/usr/local/bin:/usr/bin:/bin"

https://riptutorial.com/ 51

http://elixir-lang.org/docs/stable/elixir/Kernel.html#to_charlist/1
http://elixir-lang.org/docs/stable/elixir/Kernel.html#to_string/1

Cons Cells

Lists in Elixir are linked lists. This means that each item in a list consists of a value, followed by a
pointer to the next item in the list. This is implemented in Elixir using cons cells.

Cons cells are simple data structures with a "left" and a "right" value, or a "head" and a "tail".

A | symbol can be added before the last item in a list to notate an (improper) list with a given head
and tail. The following is a single cons cell with 1 as the head and 2 as the tail:

[1 | 2]

The standard Elixir syntax for a list is actually equivalent to writing a chain of nested cons cells:

[1, 2, 3, 4] = [1 | [2 | [3 | [4 | []]]]]

The empty list [] is used as the tail of a cons cell to represent the end of a list.

All lists in Elixir are equivalent to the form [head | tail], where head is the first item of the list and
tail is the rest of the list, minus the head.

iex> [head | tail] = [1, 2, 3, 4]
[1, 2, 3, 4]
iex> head
1
iex> tail
[2, 3, 4]

Using the [head | tail] notation is useful for pattern matching in recursive functions:

def sum([]), do: 0

def sum([head | tail]) do
 head + sum(tail)
end

Mapping Lists

map is a function in functional programming which given a list and a function, returns a new list with
the function applied to each item in that list. In Elixir, the map/2 function is in the Enum module.

iex> Enum.map([1, 2, 3, 4], fn(x) -> x + 1 end)
[2, 3, 4, 5]

Using the alternative capture syntax for anonymous functions:

iex> Enum.map([1, 2, 3, 4], &(&1 + 1))
[2, 3, 4, 5]

https://riptutorial.com/ 52

http://elixir-lang.org/docs/stable/elixir/Enum.html#map/2
http://elixir-lang.org/docs/stable/elixir/Enum.html

Referring to a function with capture syntax:

iex> Enum.map([1, 2, 3, 4], &to_string/1)
["1", "2", "3", "4"]

Chaining list operations using the pipe operator:

iex> [1, 2, 3, 4]
...> |> Enum.map(&to_string/1)
...> |> Enum.map(&("Chapter " <> &1))
["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]

List Comprehensions

Elixir doesn't have loops. Instead of them for lists there are great Enum and List modules, but there
are also List Comprehensions.

List Comprehensions can be useful to:

create new lists•

iex(1)> for value <- [1, 2, 3], do: value + 1
[2, 3, 4]

filtering lists, using guard expressions but you use them without when keyword.•

iex(2)> odd? = fn x -> rem(x, 2) == 1 end
iex(3)> for value <- [1, 2, 3], odd?.(value), do: value
[1, 3]

create custom map, using into keyword:•

iex(4)> for value <- [1, 2, 3], into: %{}, do: {value, value + 1}
%{1 => 2, 2=>3, 3 => 4}

Combined example

iex(5)> for value <- [1, 2, 3], odd?.(value), into: %{}, do: {value, value * value}
%{1 => 1, 3 => 9}

Summary

List Comprehensions:

uses for..do syntax with additional guards after commas and into keyword when returning
other structure than lists ie. map.

•

https://riptutorial.com/ 53

in other cases return new lists•
doesn't support accumulators•
can't stop processing when certain condition is met•
guard statements have to be first in order after for and before do or into symbols. Order of
symbols doesn't matter

•

According to these constraints List Comprehensions are limited only for simple usage. In more
advanced cases using functions from Enum and List modules would be the best idea.

List difference

iex> [1, 2, 3] -- [1, 3]
[2]

-- removes the first occurrence of an item on the left list for each item on the right.

List Membership

Use in operator to check if an element is a member of a list.

iex> 2 in [1, 2, 3]
true
iex> "bob" in [1, 2, 3]
false

Converting Lists to a Map

Use Enum.chunk/2 to group elements into sub-lists, and Map.new/2 to convert it into a Map:

[1, 2, 3, 4, 5, 6]
|> Enum.chunk(2)
|> Map.new(fn [k, v] -> {k, v} end)

Would give:

%{1 => 2, 3 => 4, 5 => 6}

Read Lists online: https://riptutorial.com/elixir/topic/1279/lists

https://riptutorial.com/ 54

https://riptutorial.com/elixir/topic/1279/lists

Chapter 25: Maps and Keyword Lists

Syntax

map = %{} // creates an empty map•
map = %{:a => 1, :b => 2} // creates a non-empty map•
list = [] // creates an empty list•
list = [{:a, 1}, {:b, 2}] // creates a non-empty keyword list•

Remarks

Elixir provides two associative data structures: maps and keyword lists.

Maps are the Elixir key-value (also called dictionary or hash in other languages) type.

Keyword lists are tuples of key/value that associate a value to a certain key. They are generally
used as options for a function call.

Examples

Creating a Map

Maps are the Elixir key-value (also called dictionary or hash in other languages) type. You create a
map using the %w{} syntax:

%{} // creates an empty map
%{:a => 1, :b => 2} // creates a non-empty map

Keys and values can use be any type:

%{"a" => 1, "b" => 2}
%{1 => "a", 2 => "b"}

Moreover, you can have maps with mixed types for both keys and values":

// keys are integer or strings
%{1 => "a", "b" => :foo}
// values are string or nil
%{1 => "a", 2 => nil}

When all the keys in a map are atoms, you can use the keyword syntax for convenience:

%{a: 1, b: 2}

Creating a Keyword List

https://riptutorial.com/ 55

Keyword lists are tuples of key/value, generally used as options for a function call.

[{:a, 1}, {:b, 2}] // creates a non-empty keyword list

Keyword lists can have the same key repeated more than once.

[{:a, 1}, {:a, 2}, {:b, 2}]
[{:a, 1}, {:b, 2}, {:a, 2}]

Keys and values can be any type:

[{"a", 1}, {:a, 2}, {2, "b"}]

Difference between Maps and Keyword Lists

Maps and keyword lists have different application. For instance, a map cannot have two keys with
the same value and it's not ordered. Conversely, a Keyword list can be a little bit hard to use in
pattern matching in some cases.

Here's a few use cases for maps vs keyword lists.

Use keyword lists when:

you need the elements to be ordered•
you need more than one element with the same key•

Use maps when:

you want to pattern-match against some keys/values•
you don't need more than one element with the same key•
whenever you don't explicitly need a keyword list•

Read Maps and Keyword Lists online: https://riptutorial.com/elixir/topic/2706/maps-and-keyword-
lists

https://riptutorial.com/ 56

https://riptutorial.com/elixir/topic/2706/maps-and-keyword-lists
https://riptutorial.com/elixir/topic/2706/maps-and-keyword-lists

Chapter 26: Metaprogramming

Examples

Generate tests at compile time

defmodule ATest do
 use ExUnit.Case

 [{1, 2, 3}, {10, 20, 40}, {100, 200, 300}]
 |> Enum.each(fn {a, b, c} ->
 test "#{a} + #{b} = #{c}" do
 assert unquote(a) + unquote(b) = unquote(c)
 end
 end)
end

Output:

.

 1) test 10 + 20 = 40 (Test.Test)
 test.exs:6
 match (=) failed
 code: 10 + 20 = 40
 rhs: 40
 stacktrace:
 test.exs:7

.

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
3 tests, 1 failure

Read Metaprogramming online: https://riptutorial.com/elixir/topic/4069/metaprogramming

https://riptutorial.com/ 57

https://riptutorial.com/elixir/topic/4069/metaprogramming

Chapter 27: Mix

Examples

Create a Custom Mix Task

lib/mix/tasks/mytask.ex
defmodule Mix.Tasks.MyTask do
 use Mix.Task

 @shortdoc "A simple mix task"
 def run(_) do
 IO.puts "YO!"
 end
end

Compile and run:

$ mix compile
$ mix my_task
"YO!"

Custom mix task with command line arguments

In a basic implementation the task module must define a run/1 function that takes a list of
arguments. E.g. def run(args) do ... end

defmodule Mix.Tasks.Example_Task do
 use Mix.Task

 @shortdoc "Example_Task prints hello + its arguments"
 def run(args) do
 IO.puts "Hello #{args}"
 end
end

Compile and run:

$ mix example_task world
"hello world"

Aliases

Elixir allows you to add aliases for your mix commands. Cool thing if you want to save yourself
some typing.

Open mix.exs in your Elixir project.

First, add aliases/0 function to the keyword list that the project function returns. Adding () at the

https://riptutorial.com/ 58

end of the aliases function will prevent compiler from throwing a warning.

 def project do
 [app: :my_app,
 ...
 aliases: aliases()]
 end

Then, define your aliases/0 function (e.g. at the bottom of your mix.exs file).

 ...

 defp aliases do
 [go: "phoenix.server",
 trident: "do deps.get, compile, go"]
 end

You can now use $ mix go to run your Phoenix server (if you're running a Phoenix application).
And use $ mix trident to tell mix to fetch all dependencies, compile, and run the server.

Get help on available mix tasks

To list available mix tasks use:

mix help

To get help on a specific task use mix help task e.g.:

mix help cmd

Read Mix online: https://riptutorial.com/elixir/topic/3585/mix

https://riptutorial.com/ 59

http://www.phoenixframework.org/
https://riptutorial.com/elixir/topic/3585/mix

Chapter 28: Modules

Remarks

Module Names

In Elixir, module names such as IO or String are just atoms under the hood and are converted to
the form :"Elixir.ModuleName" at compile time.

iex(1)> is_atom(IO)
true
iex(2)> IO == :"Elixir.IO"
true

Examples

List a module's functions or macros

The __info__/1 function takes one of the following atoms:

:functions - Returns a keyword list of public functions along with their arities•
:macros - Returns a keyword list of public macros along with their arities•

To list the Kernel module’s functions:

iex> Kernel.__info__ :functions
[!=: 2, !==: 2, *: 2, +: 1, +: 2, ++: 2, -: 1, -: 2, --: 2, /: 2, <: 2, <=: 2,
 ==: 2, ===: 2, =~: 2, >: 2, >=: 2, abs: 1, apply: 2, apply: 3, binary_part: 3,
 bit_size: 1, byte_size: 1, div: 2, elem: 2, exit: 1, function_exported?: 3,
 get_and_update_in: 3, get_in: 2, hd: 1, inspect: 1, inspect: 2, is_atom: 1,
 is_binary: 1, is_bitstring: 1, is_boolean: 1, is_float: 1, is_function: 1,
 is_function: 2, is_integer: 1, is_list: 1, is_map: 1, is_number: 1, is_pid: 1,
 is_port: 1, is_reference: 1, is_tuple: 1, length: 1, macro_exported?: 3,
 make_ref: 0, ...]

Replace Kernel with any module of your choosing.

Using modules

Modules have four associated keywords to make using them in other modules: alias, import, use,
and require.

alias will register a module under a different (usually shorter) name:

defmodule MyModule do
 # Will make this module available as `CoolFunctions`
 alias MyOtherModule.CoolFunctions
 # Or you can specify the name to use

https://riptutorial.com/ 60

 alias MyOtherModule.CoolFunctions, as: CoolFuncs
end

import will make all the functions in the module available with no name in front of them:

defmodule MyModule do
 import Enum
 def do_things(some_list) do
 # No need for the `Enum.` prefix
 join(some_list, " ")
 end
end

use allows a module to inject code into the current module - this is typically done as part of a
framework that creates its own functions to make your module confirm to some behaviour.

require loads macros from the module so that they can be used.

Delegating functions to another module

Use defdelegate to define functions that delegate to functions of the same name defined in another
module:

defmodule Math do
 defdelegate pi, to: :math
end

iex> Math.pi
3.141592653589793

Read Modules online: https://riptutorial.com/elixir/topic/2721/modules

https://riptutorial.com/ 61

https://riptutorial.com/elixir/topic/2721/modules

Chapter 29: Nodes

Examples

List all visible nodes in the system

iex(bob@127.0.0.1)> Node.list
[:"frank@127.0.0.1"]

Connecting nodes on the same machine

Start two named nodes in two terminal windows:

>iex --name bob@127.0.0.1
iex(bob@127.0.0.1)>
>iex --name frank@127.0.0.1
iex(frank@127.0.0.1)>

Connect two nodes by instructing one node to connect:

iex(bob@127.0.0.1)> Node.connect :"frank@127.0.0.1"
true

The two nodes are now connected and aware of each other:

iex(bob@127.0.0.1)> Node.list
[:"frank@127.0.0.1"]
iex(frank@127.0.0.1)> Node.list
[:"bob@127.0.0.1"]

You can execute code on other nodes:

iex(bob@127.0.0.1)> greet = fn() -> IO.puts("Hello from #{inspect(Node.self)}") end
iex(bob@127.0.0.1)> Node.spawn(:"frank@127.0.0.1", greet)
#PID<9007.74.0>
Hello from :"frank@127.0.0.1"
:ok

Connecting nodes on different machines

Start a named process on one IP address:

$ iex --name foo@10.238.82.82 --cookie chocolate
iex(foo@10.238.82.82)> Node.ping :"bar@10.238.82.85"
:pong
iex(foo@10.238.82.82)> Node.list
[:"bar@10.238.82.85"]

https://riptutorial.com/ 62

Start another named process on a different IP address:

$ iex --name bar@10.238.82.85 --cookie chocolate
iex(bar@10.238.82.85)> Node.list
[:"foo@10.238.82.82"]

Read Nodes online: https://riptutorial.com/elixir/topic/2065/nodes

https://riptutorial.com/ 63

https://riptutorial.com/elixir/topic/2065/nodes

Chapter 30: Operators

Examples

The Pipe Operator

The Pipe Operator |> takes the result of an expression on the left and feeds it as the first
parameter to a function on the right.

expression |> function

Use the Pipe Operator to chain expressions together and to visually document the flow of a series
of functions.

Consider the following:

Oven.bake(Ingredients.Mix([:flour, :cocoa, :sugar, :milk, :eggs, :butter]), :temperature)

In the example, Oven.bake comes before Ingredients.mix, but it is executed last. Also, it may not be
obvious that :temperature is a parameter of Oven.bake

Rewriting this example using the Pipe Operator:

[:flour, :cocoa, :sugar, :milk, :eggs, :butter]
|> Ingredients.mix
|> Oven.bake(:temperature)

gives the same result, but the order of execution is clearer. Furthermore, it is clear that
:temperature is a parameter to the Oven.bake call.

Note that when using the Pipe Operator, the first parameter for each function is relocated to before
the Pipe Operator, and so the function being called appears to have one fewer parameter. For
instance:

Enum.each([1, 2, 3], &(&1+1)) # produces [2, 3, 4]

is the same as:

[1, 2, 3]
|> Enum.each(&(&1+1))

Pipe operator and parentheses

Parentheses are needed to avoid ambiguity:

foo 1 |> bar 2 |> baz 3

https://riptutorial.com/ 64

Should be written as:

foo(1) |> bar(2) |> baz(3)

Boolean operators

There are two kinds of boolean operators in Elixir:

boolean operators (they expect either true or false as their first argument)•

x or y # true if x is true, otherwise y

x and y # false if x is false, otherwise y

not x # false if x is true, otherwise true

All of booleans operators will raise ArgumentError if first argument won't be strictly boolean value,
which means only true or false (nil is not boolean).

iex(1)> false and 1 # return false
iex(2)> false or 1 # return 1
iex(3)> nil and 1 # raise (ArgumentError) argument error: nil

relaxed boolean operators (work with any type, everything that neither false nor nil is
considered as true)

•

x || y # x if x is true, otherwise y

x && y # y if x is true, otherwise false

!x # false if x is true, otherwise true

Operator || will always return first argument if it's truthy (Elixir treats everything except nil and
false to be true in comparisions), otherwise will return second one.

iex(1)> 1 || 3 # return 1, because 1 is truthy
iex(2)> false || 3 # return 3
iex(3)> 3 || false # return 3
iex(4)> false || nil # return nil
iex(5)> nil || false # return false

Operator && will always return second argument if it's truthy. Otherwise will return respectively to
the arguments, false or nil.

iex(1)> 1 && 3 # return 3, first argument is truthy
iex(2)> false && 3 # return false
iex(3)> 3 && false # return false
iex(4)> 3 && nil # return nil
iex(5)> false && nil # return false
iex(6)> nil && false # return nil

https://riptutorial.com/ 65

Both && and || are short-circuit operators. They only execute the right side if the left side is not
enough to determine the result.

Operator ! will return boolean value of negation of current term:

iex(1)> !2 # return false
iex(2)> !false # return true
iex(3)> !"Test" # return false
iex(4)> !nil # return true

Simple way to get boolean value of selected term is to simply double this operator:

iex(1)> !!true # return true
iex(2)> !!"Test" # return true
iex(3)> !!nil # return false
iex(4)> !!false # return false

Comparison operators

Equality:

value equality x == y (1 == 1.0 # true)•
value inequality x == y (1 != 1.0 # false)•
strict equality x === y (1 === 1.0 # false)•
strict inequality x === y (1 !== 1.0 # true)•

Comparison:

x > y•
x >= y•
x < y•
x <= y•

If types are compatible, comparison uses natural ordering. Otherwise there is general types
comparison rule:

number < atom < reference < function < port < pid < tuple < map < list < binary

Join operators

You can join (concatenate) binaries (including strings) and lists:

iex(1)> [1, 2, 3] ++ [4, 5]
[1, 2, 3, 4, 5]

iex(2)> [1, 2, 3, 4, 5] -- [1, 3]
[2, 4, 5]

iex(3)> "qwe" <> "rty"
"qwerty"

https://riptutorial.com/ 66

'In' operator

in operator allows you to check whether a list or a range includes an item:

iex(4)> 1 in [1, 2, 3, 4]
true

iex(5)> 0 in (1..5)
false

Read Operators online: https://riptutorial.com/elixir/topic/1161/operators

https://riptutorial.com/ 67

https://riptutorial.com/elixir/topic/1161/operators

Chapter 31: Optimization

Examples

Always measure first!

These are general tips that in general improve performance. If your code is slow, it is always
important to profile it to figure out what parts are slow. Guessing is never enough. Improving the
execution speed of something that only takes up 1% of the execution time probably isn't worth the
effort. Look for the big time sinks.

To get somewhat accurate numbers, make sure the code you are optimizing is executed for at
least one second when profiling. If you spend 10% of the execution time in that function, make
sure the complete program execution takes up at least 10 seconds, and make sure you can run
the same exact data through the code multiple times, to get repeatable numbers.

ExProf is simple to get started with.

Read Optimization online: https://riptutorial.com/elixir/topic/6062/optimization

https://riptutorial.com/ 68

https://github.com/parroty/exprof
https://riptutorial.com/elixir/topic/6062/optimization

Chapter 32: Pattern matching

Examples

Pattern matching functions

#You can use pattern matching to run different
#functions based on which parameters you pass

#This example uses pattern matching to start,
#run, and end a recursive function

defmodule Counter do
 def count_to do
 count_to(100, 0) #No argument, init with 100
 end

 def count_to(counter) do
 count_to(counter, 0) #Initialize the recursive function
 end

 def count_to(counter, value) when value == counter do
 #This guard clause allows me to check my arguments against
 #expressions. This ends the recursion when the value matches
 #the number I am counting to.
 :ok
 end

 def count_to(counter, value) do
 #Actually do the counting
 IO.puts value
 count_to(counter, value + 1)
 end
end

Pattern matching on a map

%{username: username} = %{username: "John Doe", id: 1}
username == "John Doe"

%{username: username, id: 2} = %{username: "John Doe", id: 1}
** (MatchError) no match of right hand side value: %{id: 1, username: "John Doe"}

Pattern matching on a list

You can also pattern match on Elixir Data Structures such as Lists.

Lists

Matching on a list is quite simple.

https://riptutorial.com/ 69

[head | tail] = [1,2,3,4,5]
head == 1
tail == [2,3,4,5]

This works by matching the first (or more) elements in the list to the left hand side of the | (pipe)
and the rest of the list to the right hand side variable of the |.

We can also match on specific values of a list:

[1,2 | tail] = [1,2,3,4,5]
tail = [3,4,5]

[4 | tail] = [1,2,3,4,5]
** (MatchError) no match of right hand side value: [1, 2, 3, 4, 5]

Binding multiple consecutive values on the left of the | is also allowed:

[a, b | tail] = [1,2,3,4,5]
a == 1
b == 2
tail = [3,4,5]

Even more complex - we can match on a specific value, and match that against a variable:

iex(11)> [a = 1 | tail] = [1,2,3,4,5]
a == 1

Get the sum of a list using pattern matching

defmodule Math do
 # We start of by passing the sum/1 function a list of numbers.
 def sum(numbers) do
 do_sum(numbers, 0)
 end

 # Recurse over the list when it contains at least one element.
 # We break the list up into two parts:
 # head: the first element of the list
 # tail: a list of all elements except the head
 # Every time this function is executed it makes the list of numbers
 # one element smaller until it is empty.
 defp do_sum([head|tail], acc) do
 do_sum(tail, head + acc)
 end

 # When we have reached the end of the list, return the accumulated sum
 defp do_sum([], acc), do: acc
end

Anonymous functions

f = fn
 {:a, :b} -> IO.puts "Tuple {:a, :b}"

https://riptutorial.com/ 70

 [] -> IO.puts "Empty list"
end

f.({:a, :b}) # Tuple {:a, :b}
f.([]) # Empty list

Tuples

{ a, b, c } = { "Hello", "World", "!" }

IO.puts a # Hello
IO.puts b # World
IO.puts c # !

Tuples of different size won't match:

{ a, b, c } = { "Hello", "World" } # (MatchError) no match of right hand side value: {
"Hello", "World" }

Reading a File

Pattern matching is useful for an operation like file reading which returns a tuple.

If the file sample.txt contains This is a sample text, then:

{ :ok, file } = File.read("sample.txt")
=> {:ok, "This is a sample text"}

file
=> "This is a sample text"

Otherwise, if the file does not exist:

{ :ok, file } = File.read("sample.txt")
=> ** (MatchError) no match of right hand side value: {:error, :enoent}

{ :error, msg } = File.read("sample.txt")
=> {:error, :enoent}

Pattern matching anonymous functions

fizzbuzz = fn
 (0, 0, _) -> "FizzBuzz"
 (0, _, _) -> "Fizz"
 (_, 0, _) -> "Buzz"
 (_, _, x) -> x
end

my_function = fn(n) ->
 fizzbuzz.(rem(n, 3), rem(n, 5), n)
end

https://riptutorial.com/ 71

Read Pattern matching online: https://riptutorial.com/elixir/topic/1602/pattern-matching

https://riptutorial.com/ 72

https://riptutorial.com/elixir/topic/1602/pattern-matching

Chapter 33: Polymorphism in Elixir

Introduction

Polymorphism is the provision of a single interface to entities of different types. Basically, it allows
different data types respond to the same function. So, the same function shapes for different data
types to accomplish the same behavior. Elixir language has protocols to implement polymorphism
with a clean way.

Remarks

If you want to cover all data types you can define an implementation for Any data type. Lastly, if
you have time, check the source code of Enum and String.Char, which are good examples of
polymorphism in core Elixir.

Examples

Polymorphism with Protocols

Let's implement a basic protocol that converts Kelvin and Fahrenheit temperatures to Celsius.

defmodule Kelvin do
 defstruct name: "Kelvin", symbol: "K", degree: 0
end

defmodule Fahrenheit do
 defstruct name: "Fahrenheit", symbol: "°F", degree: 0
end

defmodule Celsius do
 defstruct name: "Celsius", symbol: "°C", degree: 0
end

defprotocol Temperature do
 @doc """
 Convert Kelvin and Fahrenheit to Celsius degree
 """
 def to_celsius(degree)
end

defimpl Temperature, for: Kelvin do
 @doc """
 Deduct 273.15
 """
 def to_celsius(kelvin) do
 celsius_degree = kelvin.degree - 273.15
 %Celsius{degree: celsius_degree}
 end
end

defimpl Temperature, for: Fahrenheit do

https://riptutorial.com/ 73

https://github.com/elixir-lang/elixir/blob/master/lib/elixir/lib/enum.ex#L3096
https://github.com/elixir-lang/elixir/blob/master/lib/elixir/lib/string/chars.ex#L3

 @doc """
 Deduct 32, then multiply by 5, then divide by 9
 """
 def to_celsius(fahrenheit) do
 celsius_degree = (fahrenheit.degree - 32) * 5 / 9
 %Celsius{degree: celsius_degree}
 end
end

Now, we implemented our converters for the Kelvin and Fahrenheit types. Let's make some
conversions:

iex> fahrenheit = %Fahrenheit{degree: 45}
%Fahrenheit{degree: 45, name: "Fahrenheit", symbol: "°F"}
iex> celsius = Temperature.to_celsius(fahrenheit)
%Celsius{degree: 7.22, name: "Celsius", symbol: "°C"}
iex> kelvin = %Kelvin{degree: 300}
%Kelvin{degree: 300, name: "Kelvin", symbol: "K"}
iex> celsius = Temperature.to_celsius(kelvin)
%Celsius{degree: 26.85, name: "Celsius", symbol: "°C"}

Let's try to convert any other data type which has no implementation for to_celsius function:

iex> Temperature.to_celsius(%{degree: 12})
** (Protocol.UndefinedError) protocol Temperature not implemented for %{degree: 12}
 iex:11: Temperature.impl_for!/1
 iex:15: Temperature.to_celsius/1

Read Polymorphism in Elixir online: https://riptutorial.com/elixir/topic/9519/polymorphism-in-elixir

https://riptutorial.com/ 74

https://riptutorial.com/elixir/topic/9519/polymorphism-in-elixir

Chapter 34: Processes

Examples

Spawning a Simple Process

In the following example, the greet function inside Greeter module is run in a separate process:

defmodule Greeter do
 def greet do
 IO.puts "Hello programmer!"
 end
end

iex> spawn(Greeter, :greet, [])
Hello
#PID<0.122.0>

Here #PID<0.122.0> is the process identifier for the spawned process.

Sending and Receiving Messages

defmodule Processes do
 def receiver do
 receive do
 {:ok, val} ->
 IO.puts "Received Value: #{val}"
 _ ->
 IO.puts "Received something else"
 end
 end
end

iex(1)> pid = spawn(Processes, :receiver, [])
#PID<0.84.0>
iex(2)> send pid, {:ok, 10}
Received Value: 10
{:ok, 10}

Recursion and Receive

Recursion can be used to receive multiple messages

defmodule Processes do
 def receiver do
 receive do
 {:ok, val} ->
 IO.puts "Received Value: #{val}"
 _ ->
 IO.puts "Received something else"
 end

https://riptutorial.com/ 75

 receiver
 end
end

iex(1)> pid = spawn Processes, :receiver, []
#PID<0.95.0>
iex(2)> send pid, {:ok, 10}
Received Value: 10
{:ok, 10}
iex(3)> send pid, {:ok, 42}
{:ok, 42}
Received Value: 42
iex(4)> send pid, :random
:random
Received something else

Elixir will use a tail-call recursion optimisation as long as the function call is the last thing that
happens in the function as it is in the example.

Read Processes online: https://riptutorial.com/elixir/topic/3173/processes

https://riptutorial.com/ 76

https://riptutorial.com/elixir/topic/3173/processes

Chapter 35: Protocols

Remarks

A note on structs

Instead of sharing protocol implementation with maps, structs require their own protocol
implementation.

Examples

Introduction

Protocols enable polymorphism in Elixir. Define protocols with defprotocol:

defprotocol Log do
 def log(value, opts)
end

Implement a protocol with defimpl:

require Logger
User and Post are custom structs

defimpl Log, for: User do
 def log(user, _opts) do
 Logger.info "User: #{user.name}, #{user.age}"
 end
end

defimpl Log, for: Post do
 def log(user, _opts) do
 Logger.info "Post: #{post.title}, #{post.category}"
 end
end

With the above implementations, we can do:

iex> Log.log(%User{name: "Yos", age: 23})
22:53:11.604 [info] User: Yos, 23
iex> Log.log(%Post{title: "Protocols", category: "Protocols"})
22:53:43.604 [info] Post: Protocols, Protocols

Protocols let you dispatch to any data type, so long as it implements the protocol. This includes
some built-in types such as Atom, BitString, Tuples, and others.

Read Protocols online: https://riptutorial.com/elixir/topic/3487/protocols

https://riptutorial.com/ 77

https://riptutorial.com/elixir/topic/3487/protocols

Chapter 36: Sigils

Examples

Build a list of strings

iex> ~w(a b c)
["a", "b", "c"]

Build a list of atoms

iex> ~w(a b c)a
[:a, :b, :c]

Custom sigils

Custom sigils can be made by creating a method sigil_X where X is the letter you want to use
(this can only be a single letter).

defmodule Sigils do
 def sigil_j(string, options) do
 # Split on the letter p, or do something more useful
 String.split string, "p"
 end
 # Use this sigil in this module, or import it to use it elsewhere
end

The options argument is a binary of the arguments given at the end of the sigil, for example:

~j/foople/abc # string is "foople", options are 'abc'
["foo", "le"]

Read Sigils online: https://riptutorial.com/elixir/topic/2204/sigils

https://riptutorial.com/ 78

https://riptutorial.com/elixir/topic/2204/sigils

Chapter 37: State Handling in Elixir

Examples

Managing a piece of state with an Agent

The simplest way to wrap and access a piece of state is Agent. The module allows one to spawn a
process that keeps an arbitrary data structure and allows one to send messages to read and
update that structure. Thanks to this the access to the structure is automatically serialized, as the
process only handles one message at a time.

iex(1)> {:ok, pid} = Agent.start_link(fn -> :initial_value end)
{:ok, #PID<0.62.0>}
iex(2)> Agent.get(pid, &(&1))
:initial_value
iex(3)> Agent.update(pid, fn(value) -> {value, :more_data} end)
:ok
iex(4)> Agent.get(pid, &(&1))
{:initial_value, :more_data}

Read State Handling in Elixir online: https://riptutorial.com/elixir/topic/6596/state-handling-in-elixir

https://riptutorial.com/ 79

https://riptutorial.com/elixir/topic/6596/state-handling-in-elixir

Chapter 38: Stream

Remarks

Streams are composable, lazy enumerables.

Due to their laziness, streams are useful when working with large (or even infinite) collections.
When chaining many operations with Enum, intermediate lists are created, while Stream creates a
recipe of computations that are executed at a later moment.

Examples

Chaining multiple operations

Stream is especially useful when you want to run multiple operations on a collection. This is
because Stream is lazy and only does one iteration (whereas Enum would do multiple iterations, for
example).

numbers = 1..100
|> Stream.map(fn(x) -> x * 2 end)
|> Stream.filter(fn(x) -> rem(x, 2) == 0 end)
|> Stream.take_every(3)
|> Enum.to_list

[2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110,
 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200]

Here, we chained 3 operations (map, filter and take_every), but the final iteration was only done
after Enum.to_list was called.

What Stream does internally, is that it waits until actual evaluation is required. Before that, it creates
a list of all the functions, but once evaluation is needed, it does goes through the collection once,
running all the functions on every item. This makes it more efficient than Enum, which in this case
would do 3 iterations, for example.

Read Stream online: https://riptutorial.com/elixir/topic/2553/stream

https://riptutorial.com/ 80

https://riptutorial.com/elixir/topic/2553/stream

Chapter 39: Strings

Remarks

A String in Elixir is a UTF-8 encoded binary.

Examples

Convert to string

Use Kernel.inspect to convert anything to string.

iex> Kernel.inspect(1)
"1"
iex> Kernel.inspect(4.2)
"4.2"
iex> Kernel.inspect %{pi: 3.14, name: "Yos"}
"%{pi: 3.14, name: \"Yos\"}"

Get a substring

iex> my_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
iex> String.slice my_string, 6..10
"ipsum"

Split a string

iex> String.split("Elixir, Antidote, Panacea", ",")
["Elixir", "Antidote", "Panacea"]

String Interpolation

iex(1)> name = "John"
"John"
iex(2)> greeting = "Hello, #{name}"
"Hello, John"
iex(3)> num = 15
15
iex(4)> results = "#{num} item(s) found."
"15 item(s) found."

Check if String contains Substring

iex(1)> String.contains? "elixir of life", "of"
true
iex(2)> String.contains? "elixir of life", ["life", "death"]
true

https://riptutorial.com/ 81

iex(3)> String.contains? "elixir of life", ["venus", "mercury"]
false

Join Strings

You can concatenate strings in Elixir using the <> operator:

"Hello" <> "World" # => "HelloWorld"

For a List of Strings, you can use Enum.join/2:

Enum.join(["A", "few", "words"], " ") # => "A few words"

Read Strings online: https://riptutorial.com/elixir/topic/2618/strings

https://riptutorial.com/ 82

https://riptutorial.com/elixir/topic/2618/strings

Chapter 40: Task

Syntax

Task.async(fun)•
Task.await(task)•

Parameters

Parameter Details

fun The function that should be executed in a separate process.

task The task returned by Task.async.

Examples

Doing work in the background

task = Task.async(fn -> expensive_computation end)
do_something_else
result = Task.await(task)

Parallel processing

crawled_site = ["http://www.google.com", "http://www.stackoverflow.com"]
|> Enum.map(fn site -> Task.async(fn -> crawl(site) end) end)
|> Enum.map(&Task.await/1)

Read Task online: https://riptutorial.com/elixir/topic/7588/task

https://riptutorial.com/ 83

https://riptutorial.com/elixir/topic/7588/task

Chapter 41: Tips and Tricks

Introduction

Elixir Advanced tips and tricks which save our time while coding.

Examples

Creating Custom Sigils and Documenting

Each x sigil call respective sigil_x definition

Defining Custom Sigils

defmodule MySigils do
 #returns the downcasing string if option l is given then returns the list of downcase
letters
 def sigil_l(string,[]), do: String.Casing.downcase(string)
 def sigil_l(string,[?l]), do: String.Casing.downcase(string) |> String.graphemes

 #returns the upcasing string if option l is given then returns the list of downcase letters
 def sigil_u(string,[]), do: String.Casing.upcase(string)
 def sigil_u(string,[?l]), do: String.Casing.upcase(string) |> String.graphemes
end

Multiple [OR]

This is just the other way of writing Multiple OR conditions. This is not the recommended approach
because in regular approach when the condition evaluates to true, it stops executing the remaining
conditions which save the time of evaluation, unlike this approach which evaluates all conditions
first in the list. This is just bad but good for discoveries.

Regular Approach
find = fn(x) when x>10 or x<5 or x==7 -> x end

Our Hack
hell = fn(x) when true in [x>10,x<5,x==7] -> x end

iex Custom Configuration - iex Decoration

Copy the content into a file and save the file as .iex.exs in your ~ home directory and see the
magic. You can also download the file HERE

IEx.configure colors: [enabled: true]
IEx.configure colors: [eval_result: [:cyan, :bright]]
IO.puts IO.ANSI.red_background() <> IO.ANSI.white() <> " ❄❄❄ Good Luck with Elixir ❄❄❄ " <> IO.ANSI.reset
Application.put_env(:elixir, :ansi_enabled, true)
IEx.configure(

https://riptutorial.com/ 84

https://gist.github.com/blackode/5728517116d7a4d08f0a4faddd8c145a

 colors: [
 eval_result: [:green, :bright] ,
 eval_error: [[:red,:bright,"Bug Bug ..!!"]],
 eval_info: [:yellow, :bright],
],
 default_prompt: [
 "\e[G", # ANSI CHA, move cursor to column 1
 :white,
 "I",
 :red,
 "❤" , # plain string
 :green,
 "%prefix",:white,"|",
 :blue,
 "%counter",
 :white,
 "|",
 :red,
 "▶" , # plain string
 :white,
 "▶▶" , # plain string
 # ❤ ❤-»" , # plain string
 :reset
] |> IO.ANSI.format |> IO.chardata_to_string

)

Read Tips and Tricks online: https://riptutorial.com/elixir/topic/10623/tips-and-tricks

https://riptutorial.com/ 85

https://riptutorial.com/elixir/topic/10623/tips-and-tricks

Credits

S.
No

Chapters Contributors

1
Getting started with
Elixir Language

alejosocorro, Andrey Chernykh, Ben Bals, Community, cwc,
Delameko, Douglas Correa, helcim, I Am Batman, JAlberto,
koolkat, leifg, MattW., rap-2-h, Simone Carletti, Stephan
Rodemeier, Vinicius Quaiato, Yedhu Krishnan, Zimm i48

2
Basic .gitignore for
elixir program

Yos Riady

3
basic use of guard
clauses

alxndr

4 BEAM Yos Riady

5 Behaviours Yos Riady

6
Better debugging
with IO.inspect and
labels

leifg

7 Built-in types
Andrey Chernykh, Arithmeticbird, Oskar, TreyE, Vinicius
Quaiato

8 Conditionals
Andrey Chernykh, evuez, javanut13, Musfiqur Rahman, Paweł
Obrok

9 Constants ibgib

10 Data Structures Sam Mercier, Simone Carletti, Stephan Rodemeier, Yos Riady

11 Debugging Tips
javanut13, Paweł Obrok, Pfitz, Philippe-Arnaud de MANGOU,
sbs

12 Doctests aholt, milmazz, Philippe-Arnaud de MANGOU, Yos Riady

13 Ecto fgutierr, Philippe-Arnaud de MANGOU, toraritte

14 Erlang 4444, Yos Riady

15 ExDoc milmazz, Yos Riady

16 ExUnit Yos Riady

Functional 17 Dinesh Balasubramanian

https://riptutorial.com/ 86

https://riptutorial.com/contributor/1330831/alejosocorro
https://riptutorial.com/contributor/3702776/andrey-chernykh
https://riptutorial.com/contributor/5078401/ben-bals
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1200865/cwc
https://riptutorial.com/contributor/125803/delameko
https://riptutorial.com/contributor/1743541/douglas-correa
https://riptutorial.com/contributor/446557/helcim
https://riptutorial.com/contributor/3872951/i-am-batman
https://riptutorial.com/contributor/2699576/jalberto
https://riptutorial.com/contributor/4087691/koolkat
https://riptutorial.com/contributor/1087469/leifg
https://riptutorial.com/contributor/4494/mattw-
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/3611461/stephan-rodemeier
https://riptutorial.com/contributor/3611461/stephan-rodemeier
https://riptutorial.com/contributor/2221669/vinicius-quaiato
https://riptutorial.com/contributor/2139625/yedhu-krishnan
https://riptutorial.com/contributor/3335288/zimm-i48
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/303896/alxndr
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/1087469/leifg
https://riptutorial.com/contributor/3702776/andrey-chernykh
https://riptutorial.com/contributor/5320537/arithmeticbird
https://riptutorial.com/contributor/2653611/oskar
https://riptutorial.com/contributor/489307/treye
https://riptutorial.com/contributor/2221669/vinicius-quaiato
https://riptutorial.com/contributor/2221669/vinicius-quaiato
https://riptutorial.com/contributor/3702776/andrey-chernykh
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/692410/javanut13
https://riptutorial.com/contributor/5570568/musfiqur-rahman
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/4275029/ibgib
https://riptutorial.com/contributor/1489652/sam-mercier
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/3611461/stephan-rodemeier
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/692410/javanut13
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/1059709/pfitz
https://riptutorial.com/contributor/6645711/philippe-arnaud-de-mangou
https://riptutorial.com/contributor/477068/sbs
https://riptutorial.com/contributor/4611801/aholt
https://riptutorial.com/contributor/6655973/milmazz
https://riptutorial.com/contributor/6645711/philippe-arnaud-de-mangou
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/4901448/fgutierr
https://riptutorial.com/contributor/6645711/philippe-arnaud-de-mangou
https://riptutorial.com/contributor/1498178/toraritte
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/6655973/milmazz
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/5305962/dinesh-balasubramanian

programming in Elixir

18 Functions
Andrey Chernykh, cwc, Dair, Eiji, Filip Haglund, PatNowak,
rainteller, Simone Carletti, Stephan Rodemeier, Yedhu Krishnan
, Yos Riady

19
Getting help in IEx
console

helcim

20
IEx Console Tips &
Tricks

alxndr, Cifer, fahrradflucht, legoscia, mudasobwa, muttonlamb,
PatNowak, Paweł Obrok, sbs, Sheharyar, Simone Carletti,
Stephan Rodemeier, Uniaika, Vincent, Yos Riady

21 Installation cwc, Douglas Correa, Eiji, JAlberto, MattW.

22 Join Strings Agung Santoso

23 Lists
Ben Bals, Candy Gumdrop, emoragaf, PatNowak, Sheharyar,
Yos Riady

24
Maps and Keyword
Lists

Sam Mercier, Simone Carletti, Yos Riady

25 Metaprogramming 4444, Paweł Obrok

26 Mix 4444, helcim, rainteller, Slava.K, Yos Riady

27 Modules Alex G, javanut13, Yos Riady

28 Nodes Yos Riady

29 Operators alxndr, Andrey Chernykh, Dair, Gazler, Mitkins, nirev, PatNowak

30 Optimization Filip Haglund, legoscia

31 Pattern matching
Alex Anderson, Dair, Danny Rosenblatt, evuez, Gabriel C, gmile
, Harrison Lucas, javanut13, Oskar, PatNowak, theIV, Thomas,
Yedhu Krishnan

32
Polymorphism in
Elixir

mustafaturan

33 Processes Alex G, Yedhu Krishnan

34 Protocols Yos Riady

35 Sigils javanut13, Yos Riady

36
State Handling in
Elixir

Paweł Obrok

https://riptutorial.com/ 87

https://riptutorial.com/contributor/3702776/andrey-chernykh
https://riptutorial.com/contributor/1200865/cwc
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/4455465/eiji
https://riptutorial.com/contributor/596041/filip-haglund
https://riptutorial.com/contributor/3741729/patnowak
https://riptutorial.com/contributor/6680175/rainteller
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/3611461/stephan-rodemeier
https://riptutorial.com/contributor/2139625/yedhu-krishnan
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/446557/helcim
https://riptutorial.com/contributor/303896/alxndr
https://riptutorial.com/contributor/4025428/cifer
https://riptutorial.com/contributor/4342960/fahrradflucht
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/2035262/mudasobwa
https://riptutorial.com/contributor/1849245/muttonlamb
https://riptutorial.com/contributor/3741729/patnowak
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/477068/sbs
https://riptutorial.com/contributor/1533054/sheharyar
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/3611461/stephan-rodemeier
https://riptutorial.com/contributor/2936186/uniaika
https://riptutorial.com/contributor/1893173/vincent
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/1200865/cwc
https://riptutorial.com/contributor/1743541/douglas-correa
https://riptutorial.com/contributor/4455465/eiji
https://riptutorial.com/contributor/2699576/jalberto
https://riptutorial.com/contributor/4494/mattw-
https://riptutorial.com/contributor/448050/agung-santoso
https://riptutorial.com/contributor/5078401/ben-bals
https://riptutorial.com/contributor/3371258/candy-gumdrop
https://riptutorial.com/contributor/315614/emoragaf
https://riptutorial.com/contributor/3741729/patnowak
https://riptutorial.com/contributor/1533054/sheharyar
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/1489652/sam-mercier
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/446557/helcim
https://riptutorial.com/contributor/6680175/rainteller
https://riptutorial.com/contributor/7362128/slava-k
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/5708972/alex-g
https://riptutorial.com/contributor/692410/javanut13
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/303896/alxndr
https://riptutorial.com/contributor/3702776/andrey-chernykh
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/219743/gazler
https://riptutorial.com/contributor/23401/mitkins
https://riptutorial.com/contributor/845972/nirev
https://riptutorial.com/contributor/3741729/patnowak
https://riptutorial.com/contributor/596041/filip-haglund
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/4697675/alex-anderson
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/5446054/danny-rosenblatt
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/1805095/gabriel-c
https://riptutorial.com/contributor/80851/gmile
https://riptutorial.com/contributor/6458966/harrison-lucas
https://riptutorial.com/contributor/692410/javanut13
https://riptutorial.com/contributor/2653611/oskar
https://riptutorial.com/contributor/3741729/patnowak
https://riptutorial.com/contributor/124674/theiv
https://riptutorial.com/contributor/2769304/thomas
https://riptutorial.com/contributor/2139625/yedhu-krishnan
https://riptutorial.com/contributor/960702/mustafaturan
https://riptutorial.com/contributor/5708972/alex-g
https://riptutorial.com/contributor/2139625/yedhu-krishnan
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/692410/javanut13
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/693166/pawel-obrok
https://riptutorial.com/contributor/693166/pawel-obrok

37 Stream Oskar

38 Strings Alex G, Sheharyar, Yos Riady

39 Task mario

40 Tips and Tricks Ankanna

https://riptutorial.com/ 88

https://riptutorial.com/contributor/2653611/oskar
https://riptutorial.com/contributor/5708972/alex-g
https://riptutorial.com/contributor/1533054/sheharyar
https://riptutorial.com/contributor/626511/yos-riady
https://riptutorial.com/contributor/803406/mario
https://riptutorial.com/contributor/4298554/ankanna

	About
	Chapter 1: Getting started with Elixir Language
	Remarks
	Versions
	Examples
	Hello World
	Hello World from IEx

	Chapter 2: Basic .gitignore for elixir program
	Chapter 3: Basic .gitignore for elixir program
	Remarks
	Examples
	A basic .gitignore for Elixir
	Example
	Standalone elixir application
	Phoenix application
	Auto-generated .gitignore

	Chapter 4: basic use of guard clauses
	Examples
	basic uses of guard clauses

	Chapter 5: BEAM
	Examples
	Introduction

	Chapter 6: Behaviours
	Examples
	Introduction

	Chapter 7: Better debugging with IO.inspect and labels
	Introduction
	Remarks
	Examples
	Without labels
	With labels

	Chapter 8: Built-in types
	Examples
	Numbers
	Atoms
	Binaries and Bitstrings

	Chapter 9: Conditionals
	Remarks
	Examples
	case
	if and unless
	cond
	with clause

	Chapter 10: Constants
	Remarks
	Examples
	Module-scoped constants
	Constants as functions
	Constants via macros

	Chapter 11: Data Structures
	Syntax
	Remarks
	Examples
	Lists
	Tuples

	Chapter 12: Debugging Tips
	Examples
	Debugging with IEX.pry/0
	Debugging with IO.inspect/1
	Debug in pipe
	Pry in pipe

	Chapter 13: Doctests
	Examples
	Introduction
	Generating HTML documentation based on doctest
	Multiline doctests

	Chapter 14: Ecto
	Examples
	Adding a Ecto.Repo in an elixir program
	"and" clause in a Repo.get_by/3
	Querying with dynamic fields
	Add custom data types to migration and to schema

	Chapter 15: Erlang
	Examples
	Using Erlang
	Inspect an Erlang module

	Chapter 16: ExDoc
	Examples
	Introduction

	Chapter 17: ExUnit
	Examples
	Asserting Exceptions

	Chapter 18: Functional programming in Elixir
	Introduction
	Examples
	Map
	Reduce

	Chapter 19: Functions
	Examples
	Anonymous Functions

	Using the capture operator
	Multiple bodies
	Keyword lists as function parameters
	Named Functions & Private Functions
	Pattern Matching
	Guard clauses
	Default Parameters
	Capture functions

	Chapter 20: Getting help in IEx console
	Introduction
	Examples
	Listing Elixir modules and functions

	Chapter 21: IEx Console Tips & Tricks
	Examples
	Recompile project with `recompile`
	See documentation with `h`
	Get value from last command with `v`
	Get the value of a previous command with `v`
	Exit IEx console
	See information with `i`
	Creating PID
	Have your aliases ready when you start IEx
	Persistent history
	When Elixir console is stuck...
	break out of incomplete expression
	Load a module or script into the IEx session

	Chapter 22: Installation
	Examples
	Fedora Installation
	OSX Installation

	Homebrew
	Macports
	Debian/Ubuntu Installation
	Gentoo/Funtoo Installation

	Chapter 23: Join Strings
	Examples
	Using String Interpolation
	Using IO List
	Using Enum.join

	Chapter 24: Lists
	Syntax
	Examples
	Keyword Lists
	Char Lists
	Cons Cells
	Mapping Lists
	List Comprehensions

	Combined example
	Summary
	List difference
	List Membership
	Converting Lists to a Map

	Chapter 25: Maps and Keyword Lists
	Syntax
	Remarks
	Examples
	Creating a Map
	Creating a Keyword List
	Difference between Maps and Keyword Lists

	Chapter 26: Metaprogramming
	Examples
	Generate tests at compile time

	Chapter 27: Mix
	Examples
	Create a Custom Mix Task
	Custom mix task with command line arguments
	Aliases
	Get help on available mix tasks

	Chapter 28: Modules
	Remarks
	Module Names
	Examples
	List a module's functions or macros
	Using modules
	Delegating functions to another module

	Chapter 29: Nodes
	Examples
	List all visible nodes in the system
	Connecting nodes on the same machine
	Connecting nodes on different machines

	Chapter 30: Operators
	Examples
	The Pipe Operator
	Pipe operator and parentheses
	Boolean operators
	Comparison operators
	Join operators
	'In' operator

	Chapter 31: Optimization
	Examples
	Always measure first!

	Chapter 32: Pattern matching
	Examples
	Pattern matching functions
	Pattern matching on a map
	Pattern matching on a list
	Get the sum of a list using pattern matching
	Anonymous functions
	Tuples

	Reading a File
	Pattern matching anonymous functions

	Chapter 33: Polymorphism in Elixir
	Introduction
	Remarks
	Examples
	Polymorphism with Protocols

	Chapter 34: Processes
	Examples
	Spawning a Simple Process
	Sending and Receiving Messages
	Recursion and Receive

	Chapter 35: Protocols
	Remarks
	Examples
	Introduction

	Chapter 36: Sigils
	Examples
	Build a list of strings
	Build a list of atoms
	Custom sigils

	Chapter 37: State Handling in Elixir
	Examples
	Managing a piece of state with an Agent

	Chapter 38: Stream
	Remarks
	Examples
	Chaining multiple operations

	Chapter 39: Strings
	Remarks
	Examples
	Convert to string
	Get a substring
	Split a string
	String Interpolation
	Check if String contains Substring
	Join Strings

	Chapter 40: Task
	Syntax
	Parameters
	Examples
	Doing work in the background
	Parallel processing

	Chapter 41: Tips and Tricks
	Introduction
	Examples
	Creating Custom Sigils and Documenting
	Multiple [OR]
	iex Custom Configuration - iex Decoration

	Credits

