
Kotlin

#kotlin

Table of Contents

About 1

Chapter 1: Getting started with Kotlin 2

Remarks 2

Compiling Kotlin 2

Versions 2

Examples 3

Hello World 3

Hello World using an Object Declaration 3

Hello World using a Companion Object 4

Main methods using varargs 5

Compile and Run Kotlin Code in Command Line 5

Reading input from Command Line 5

Chapter 2: Annotations 7

Examples 7

Declaring an annotation 7

Meta-annotations 7

Chapter 3: Arrays 9

Examples 9

Generic Arrays 9

Arrays of Primitives 9

Extensions 10

Iterate Array 10

Create an array 10

Create an array using a closure 10

Create an uninitialized array 11

Chapter 4: Basic Lambdas 12

Syntax 12

Remarks 12

Examples 13

Lambda as parameter to filter function 13

Lambda passed as a variable 13

Lambda for benchmarking a function call 13

Chapter 5: Basics of Kotlin 14

Introduction 14

Remarks 14

Examples 14

Basic examples 14

Chapter 6: Class Delegation 16

Introduction 16

Examples 16

Delegate a method to another class 16

Chapter 7: Class Inheritance 17

Introduction 17

Syntax 17

Parameters 17

Examples 17

Basics: the 'open' keyword 17

Inheriting fields from a class 18

Defining the base class: 18

Defining the derived class: 18

Using the subclass: 18

Inheriting methods from a class 18

Defining the base class: 18

Defining the derived class: 18

The Ninja has access to all of the methods in Person 18

Overriding properties and methods 19

Overriding properties (both read-only and mutable): 19

Overriding methods: 19

Chapter 8: Collections 20

Introduction 20

Syntax 20

Examples 20

Using list 20

Using map 20

Using set 20

Chapter 9: Conditional Statements 21

Remarks 21

Examples 21

Standard if-statement 21

If-statement as an expression 21

When-statement instead of if-else-if chains 22

When-statement argument matching 22

When-statement as expression 23

When-statement with enums 23

Chapter 10: Configuring Kotlin build 25

Examples 25

Gradle configuration 25

Targeting JVM 25

Targeting Android 25

Targeting JS 25

Using Android Studio 26

Install the plugin 26

Configure a project 26

Converting Java 26

Migrating from Gradle using Groovy script to Kotlin script 27

Chapter 11: coroutines 29

Introduction 29

Examples 29

Simple coroutine which delay's 1 second but not blocks 29

Chapter 12: Delegated properties 30

Introduction 30

Examples 30

Lazy initialization 30

Observable properties 30

Map-backed properties 30

Custom delegation 30

Delegate Can be used as a layer to reduce boilerplate 31

Chapter 13: DSL Building 33

Introduction 33

Examples 33

Infix approach to build DSL 33

Overriding invoke method to build DSL 33

Using operators with lambdas 33

Using extensions with lambdas 34

Chapter 14: Enum 35

Remarks 35

Examples 35

Initialization 35

Functions and Properties in enums 35

Simple enum 36

Mutability 36

Chapter 15: Exceptions 37

Examples 37

Catching exception with try-catch-finally 37

Chapter 16: Extension Methods 38

Syntax 38

Remarks 38

Examples 38

Top-Level Extensions 38

Potential Pitfall: Extensions are Resolved Statically 38

Sample extending long to render a human readable string 39

Sample extending Java 7+ Path class 39

Using extension functions to improve readability 39

Sample extending Java 8 Temporal classes to render an ISO formatted string 40

Extension functions to Companion Objects (appearance of Static functions) 40

Lazy extension property workaround 41

Extensions for easier reference View from code 41

Extensions 41

Usage 42

Chapter 17: Functions 43

Syntax 43

Parameters 43

Examples 43

Functions Taking Other Functions 43

Lambda Functions 44

Function References 44

Basic Functions 46

Shorthand Functions 46

Inline Functions 46

Operator functions 47

Chapter 18: Generics 48

Introduction 48

Syntax 48

Parameters 48

Remarks 48

Implied Upper Bound is Nullable 48

Examples 49

Declaration-site variance 49

Use-site variance 49

Chapter 19: Idioms 51

Examples 51

Creating DTOs (POJOs/POCOs) 51

Filtering a list 51

Delegate to a class without providing it in the public constructor 51

Serializable and serialVersionUid in Kotlin 52

Fluent methods in Kotlin 52

Use let or also to simplify working with nullable objects 53

Use apply to initialize objects or to achieve method chaining 53

Chapter 20: Interfaces 55

Remarks 55

Examples 55

Basic Interface 55

Interface with default implementations 55

Properties 55

Multiple implementations 56

Properties in Interfaces 56

Conflicts when Implementing Multiple Interfaces with Default Implementations 57

super keyword 57

Chapter 21: Java 8 Stream Equivalents 59

Introduction 59

Remarks 59

About laziness 59

Why are there no Types?!? 59

Reusing Streams 60

See also: 60

Examples 61

Accumulate names in a List 61

Convert elements to strings and concatenate them, separated by commas 61

Compute sum of salaries of employee 61

Group employees by department 61

Compute sum of salaries by department 61

Partition students into passing and failing 62

Names of male members 62

Group names of members in roster by gender 62

Filter a list to another list 62

Finding shortest string a list 62

Different Kinds of Streams #2 - lazily using first item if exists 63

Different Kinds of Streams #3 - iterate a range of Integers 63

Different Kinds of Streams #4 - iterate an array, map the values, calculate the average 63

Different Kinds of Streams #5 - lazily iterate a list of strings, map the values, convert 63

Different Kinds of Streams #6 - lazily iterate a stream of Ints, map the values, print res 64

Different Kinds of Streams #7 - lazily iterate Doubles, map to Int, map to String, print e 64

Counting items in a list after filter is applied 64

How streams work - filter, upper case, then sort a list 64

Different Kinds of Streams #1 - eager using first item if it exists 65

Collect example #5 - find people of legal age, output formatted string 65

Collect example #6 - group people by age, print age and names together 66

Collect example #7a - Map names, join together with delimiter 67

Collect example #7b - Collect with SummarizingInt 67

Chapter 22: JUnit 69

Examples 69

Rules 69

Chapter 23: Kotlin Android Extensions 70

Introduction 70

Examples 70

Configuration 70

Using Views 70

Product flavors 71

Painfull listener for getting notice, when the view is completely drawn now is so simple a 72

Chapter 24: Kotlin Caveats 73

Examples 73

Calling a toString() on a nullable type 73

Chapter 25: Kotlin for Java Developers 74

Introduction 74

Examples 74

Declaring Variables 74

Quick Facts 74

Equality & Identity 75

IF, TRY and others are expressions, not statements 75

Chapter 26: logging in kotlin 76

Remarks 76

Examples 76

kotlin.logging 76

Chapter 27: Loops in Kotlin 77

Remarks 77

Examples 77

Repeat an action x times 77

Looping over iterables 77

While Loops 78

Break and continue 78

Iterating over a Map in kotlin 78

Recursion 79

Functional constructs for iteration 79

Chapter 28: Null Safety 80

Examples 80

Nullable and Non-Nullable types 80

Safe call operator 80

Idiom: calling multiple methods on the same, null-checked object 80

Smart casts 81

Eliminate nulls from an Iterable and array 81

Null Coalescing / Elvis Operator 81

Assertion 82

Elvis Operator (?:) 82

Chapter 29: Ranges 83

Introduction 83

Examples 83

Integral Type Ranges 83

downTo() function 83

step() function 83

until function 83

Chapter 30: RecyclerView in Kotlin 84

Introduction 84

Examples 84

Main class and Adapter 84

Chapter 31: Reflection 86

Introduction 86

Remarks 86

Examples 86

Referencing a class 86

Referencing a function 86

Inter-operating with Java reflection 86

Getting values of all properties of a class 87

Setting values of all properties of a class 87

Chapter 32: Regex 90

Examples 90

Idioms for Regex Matching in When Expression 90

Using immutable locals: 90

Using anonymous temporaries: 90

Using the visitor pattern: 90

Introduction to regular expressions in Kotlin 91

The RegEx class 91

Null safety with regular expressions 91

Raw strings in regex patterns 92

find(input: CharSequence, startIndex: Int): MatchResult? 92

findAll(input: CharSequence, startIndex: Int): Sequence 92

matchEntire(input: CharSequence): MatchResult? 93

matches(input: CharSequence): Boolean 93

containsMatchIn(input: CharSequence): Boolean 93

split(input: CharSequence, limit: Int): List 93

replace(input: CharSequence, replacement: String): String 94

Chapter 33: Singleton objects 95

Introduction 95

Examples 95

Use as repalcement of static methods/fields of java 95

Use as a singleton 95

Chapter 34: Strings 97

Examples 97

Elements of String 97

String Literals 97

String Templates 98

String Equality 98

Chapter 35: Type aliases 100

Introduction 100

Syntax 100

Remarks 100

Examples 100

Function type 100

Generic type 100

Chapter 36: Type-Safe Builders 101

Remarks 101

A typical structure of a type-safe builder 101

Type-safe builders in Kotlin libraries 101

Examples 101

Type-safe tree structure builder 101

Chapter 37: Vararg Parameters in Functions 103

Syntax 103

Examples 103

Basics: Using the vararg keyword 103

Spread Operator: Passing arrays into vararg functions 103

Chapter 38: Visibility Modifiers 105

Introduction 105

Syntax 105

Examples 105

Code Sample 105

Credits 106

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: kotlin

It is an unofficial and free Kotlin ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Kotlin.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/kotlin
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Kotlin

Remarks

Kotlin is a statically-typed object-oriented programming language developed by JetBrains primarily
targeting the JVM. Kotlin is developed with the goals of being quick to compile, backwards-
compatible, very type safe, and 100% interoperable with Java. Kotlin is also developed with the
goal of providing many of the features wanted by Java developers. Kotlin's standard compiler
allows it to be compiled both into Java bytecode for the JVM and into JavaScript.

Compiling Kotlin

Kotlin has a standard IDE plugin for Eclipse and IntelliJ. Kotlin can also be compiled using Maven,
using Ant, and using Gradle, or through the command line.

It is worth noting in $ kotlinc Main.kt will output a java class file, in this case MainKt.class (Note
the Kt appended to the class name). However if one was to run the class file using $ java MainKt
java will throw the following exception:

Exception in thread "main" java.lang.NoClassDefFoundError: kotlin/jvm/internal/Intrinsics
 at MainKt.main(Main.kt)
Caused by: java.lang.ClassNotFoundException: kotlin.jvm.internal.Intrinsics
 at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:335)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
 ... 1 more

In order to run the resulting class file using Java, one must include the Kotlin runt-time jar file to
the current class path.

java -cp .:/path/to/kotlin/runtime/jar/kotlin-runtime.jar MainKt

Versions

Version Release Date

1.0.0 2016-02-15

1.0.1 2016-03-16

1.0.2 2016-05-13

1.0.3 2016-06-30

1.0.4 2016-09-22

https://riptutorial.com/ 2

http://kotlinlang.org
http://kotlinlang.org/docs/reference/using-maven.html
http://kotlinlang.org/docs/reference/using-ant.html
http://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/tutorials/command-line.html

Version Release Date

1.0.5 2016-11-08

1.0.6 2016-12-27

1.1.0 2017-03-01

1.1.1 2017-03-14

1.1.2 2017-04-25

1.1.3 2017-06-23

Examples

Hello World

All Kotlin programs start at the main function. Here is an example of a simple Kotlin "Hello World"
program:

package my.program

fun main(args: Array<String>) {
 println("Hello, world!")
}

Place the above code into a file named Main.kt (this filename is entirely arbitrary)

When targeting the JVM, the function will be compiled as a static method in a class with a name
derived from the filename. In the above example, the main class to run would be my.program.MainKt
.

To change the name of the class that contains top-level functions for a particular file, place the
following annotation at the top of the file above the package statement:

@file:JvmName("MyApp")

In this example, the main class to run would now be my.program.MyApp.

See also:

Package level functions including @JvmName annotation.•
Annotation use-site targets•

Hello World using an Object Declaration

You can alternatively use an Object Declaration that contains the main function for a Kotlin
program.

https://riptutorial.com/ 3

https://blog.jetbrains.com/kotlin/2016/11/kotlin-1-0-5-is-here/
https://blog.jetbrains.com/kotlin/2016/12/kotlin-1-0-6-is-here/
https://blog.jetbrains.com/kotlin/2017/03/kotlin-1-1/
https://blog.jetbrains.com/kotlin/2017/03/kotlin-1-1-1-is-out/
https://blog.jetbrains.com/kotlin/2017/04/kotlin-1-1-2-is-out/
https://blog.jetbrains.com/kotlin/2017/06/kotlin-1-1-3-is-out/
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#package-level-functions
https://kotlinlang.org/docs/reference/annotations.html#annotation-use-site-targets
https://kotlinlang.org/docs/reference/object-declarations.html#object-declarations

package my.program

object App {
 @JvmStatic fun main(args: Array<String>) {
 println("Hello World")
 }
}

The class name that you will run is the name of your object, in this case is my.program.App.

The advantage to this method over a top-level function is that the class name to run is more self-
evident, and any other functions you add are scoped into the class App. You then also have a
singleton instance of App to store state and do other work.

See also:

Static Methods including the @JvmStatic annotation•

Hello World using a Companion Object

Similar to using an Object Declaration, you can define the main function of a Kotlin program using a
Companion Object of a class.

package my.program

class App {
 companion object {
 @JvmStatic fun main(args: Array<String>) {
 println("Hello World")
 }
 }
}

The class name that you will run is the name of your class, in this case is my.program.App.

The advantage to this method over a top-level function is that the class name to run is more self-
evident, and any other functions you add are scoped into the class App. This is similar to the Object
Declaration example, other than you are in control of instantiating any classes to do further work.

A slight variation that instantiates the class to do the actual "hello":

class App {
 companion object {
 @JvmStatic fun main(args: Array<String>) {
 App().run()
 }
 }

 fun run() {
 println("Hello World")
 }
}

https://riptutorial.com/ 4

https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#static-methods
https://kotlinlang.org/docs/reference/object-declarations.html#companion-objects

See also:

Static Methods including the @JvmStatic annotation•

Main methods using varargs

All of these main method styles can also be used with varargs:

package my.program

fun main(vararg args: String) {
 println("Hello, world!")
}

Compile and Run Kotlin Code in Command Line

As java provide two different commands to compile and run Java code. Same as Kotlin also
provide you different commands.

javac to compile java files. java to run java files.

Same as kotlinc to compile kotlin files kotlin to run kotlin files.

Reading input from Command Line

The arguments passed from the console can be received in the Kotlin program and it can be used
as an input. You can pass N (1 2 3 and so on) numbers of arguments from the command prompt.

A simple example of a command-line argument in Kotlin.

fun main(args: Array<String>) {

 println("Enter Two number")
 var (a, b) = readLine()!!.split(' ') // !! this operator use for
NPE(NullPointerException).

 println("Max number is : ${maxNum(a.toInt(), b.toInt())}")
}

fun maxNum(a: Int, b: Int): Int {

 var max = if (a > b) {
 println("The value of a is $a");
 a
 } else {
 println("The value of b is $b")
 b
 }

 return max;

}

https://riptutorial.com/ 5

https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#static-methods
https://kotlinlang.org/docs/reference/functions.html#variable-number-of-arguments-varargs

Here, Enter two number from the command line to find the maximum number. Output :

Enter Two number
71 89 // Enter two number from command line

The value of b is 89
Max number is: 89

For !! Operator Please check Null Safety.

Note: Above example compile and run on Intellij.

Read Getting started with Kotlin online: https://riptutorial.com/kotlin/topic/490/getting-started-with-
kotlin

https://riptutorial.com/ 6

https://kotlinlang.org/docs/reference/null-safety.html
https://riptutorial.com/kotlin/topic/490/getting-started-with-kotlin
https://riptutorial.com/kotlin/topic/490/getting-started-with-kotlin

Chapter 2: Annotations

Examples

Declaring an annotation

Annotations are means of attaching metadata to code. To declare an annotation, put the
annotation modifier in front of a class:

annotation class Strippable

Annotations can have meta-anotations:

 @Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION,
AnnotationTarget.VALUE_PARAMETER, AnnotationTarget.EXPRESSION)
 annotation class Strippable

Annotations, like other classes, can have constructors:

annotation class Strippable(val importanceValue: Int)

But unlike other classes, is limited to the following types:

types that correspond to Java primitive types (Int, Long etc.);•
strings•
classes (Foo:: class)•
enums•
other annotations•
arrays of the types listed above•

Meta-annotations

When declaring an annotation, meta-info can be included using the following meta-annotations:

@Target: specifies the possible kinds of elements which can be annotated with the annotation
(classes, functions, properties, expressions etc.)

•

@Retention specifies whether the annotation is stored in the compiled class files and whether
it's visible through reflection at runtime (by default, both are true.)

•

@Repeatable allows using the same annotation on a single element multiple times.•

@MustBeDocumented specifies that the annotation is part of the public API and should be
included in the class or method signature shown in the generated API documentation.

•

Example:

https://riptutorial.com/ 7

@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION,
 AnnotationTarget.VALUE_PARAMETER, AnnotationTarget.EXPRESSION)
@Retention(AnnotationRetention.SOURCE)
@MustBeDocumented
annotation class Fancy

Read Annotations online: https://riptutorial.com/kotlin/topic/4074/annotations

https://riptutorial.com/ 8

https://riptutorial.com/kotlin/topic/4074/annotations

Chapter 3: Arrays

Examples

Generic Arrays

Generic arrays in Kotlin are represented by Array<T>.

To create an empty array, use emptyArray<T>() factory function:

val empty = emptyArray<String>()

To create an array with given size and initial values, use the constructor:

var strings = Array<String>(size = 5, init = { index -> "Item #$index" })
print(Arrays.toString(a)) // prints "[Item #0, Item #1, Item #2, Item #3, Item #4]"
print(a.size) // prints 5

Arrays have get(index: Int): T and set(index: Int, value: T) functions:

strings.set(2, "ChangedItem")
print(strings.get(2)) // prints "ChangedItem"

// You can use subscription as well:
strings[2] = "ChangedItem"
print(strings[2]) // prints "ChangedItem"

Arrays of Primitives

These types do not inherit from Array<T> to avoid boxing, however, they have the same attributes
and methods.

Kotlin type Factory function JVM type

BooleanArray booleanArrayOf(true, false) boolean[]

ByteArray byteArrayOf(1, 2, 3) byte[]

CharArray charArrayOf('a', 'b', 'c') char[]

DoubleArray doubleArrayOf(1.2, 5.0) double[]

FloatArray floatArrayOf(1.2, 5.0) float[]

IntArray intArrayOf(1, 2, 3) int[]

LongArray longArrayOf(1, 2, 3) long[]

ShortArray shortArrayOf(1, 2, 3) short[]

https://riptutorial.com/ 9

Extensions

average() is defined for Byte, Int, Long, Short, Double, Float and always returns Double:

val doubles = doubleArrayOf(1.5, 3.0)
print(doubles.average()) // prints 2.25

val ints = intArrayOf(1, 4)
println(ints.average()) // prints 2.5

component1(), component2(), ... component5() return an item of the array

getOrNull(index: Int) returns null if index is out of bounds, otherwise an item of the array

first(), last()

toHashSet() returns a HashSet<T> of all elements

sortedArray(), sortedArrayDescending() creates and returns a new array with sorted elements of
current

sort(), sortDescending sort the array in-place

min(), max()

Iterate Array

You can print the array elements using the loop same as the Java enhanced loop, but you need to
change keyword from : to in.

val asc = Array(5, { i -> (i * i).toString() })
for(s : String in asc){
 println(s);
}

You can also change data type in for loop.

val asc = Array(5, { i -> (i * i).toString() })
for(s in asc){
 println(s);
}

Create an array

val a = arrayOf(1, 2, 3) // creates an Array<Int> of size 3 containing [1, 2, 3].

Create an array using a closure

val a = Array(3) { i -> i * 2 } // creates an Array<Int> of size 3 containing [0, 2, 4]

https://riptutorial.com/ 10

Create an uninitialized array

val a = arrayOfNulls<Int>(3) // creates an Array<Int?> of [null, null, null]

The returned array will always have a nullable type. Arrays of non-nullable items can't be created
uninitialized.

Read Arrays online: https://riptutorial.com/kotlin/topic/5722/arrays

https://riptutorial.com/ 11

https://riptutorial.com/kotlin/topic/5722/arrays

Chapter 4: Basic Lambdas

Syntax

Explicit parameters:•

{ parameterName: ParameterType, otherParameterName: OtherParameterType ->
anExpression() }

•

Inferred parameters:•

val addition: (Int, Int) -> Int = { a, b -> a + b }•

Single parameter it shorthand•

val square: (Int) -> Int = { it*it }•

Signature:•

() -> ResultType•

(InputType) -> ResultType•

(InputType1, InputType2) -> ResultType•

Remarks

Input type parameters can be left out when they can be left out when they can be inferred from the
context. For example say you have a function on a class that takes a function:

data class User(val fistName: String, val lastName: String) {
 fun username(userNameGenerator: (String, String) -> String) =
 userNameGenerator(firstName, secondName)
}

You can use this function by passing a lambda, and since the parameters are already specified in
the function signature there's no need to re-declare them in the lambda expression:

val user = User("foo", "bar")
println(user.userName { firstName, secondName ->
 "${firstName.toUppercase}"_"${secondName.toUppercase}"
 }) // prints FOO_BAR

This also applies when you are assigning a lambda to a variable:

//valid:
val addition: (Int, Int) = { a, b -> a + b }
//valid:
val addition = { a: Int, b: Int -> a + b }

https://riptutorial.com/ 12

//error (type inference failure):
val addition = { a, b -> a + b }

When the lambda takes one parameter, and the type can be inferred from the context, you can
refer to the parameter by it.

listOf(1,2,3).map { it * 2 } // [2,4,6]

Examples

Lambda as parameter to filter function

val allowedUsers = users.filter { it.age > MINIMUM_AGE }

Lambda passed as a variable

val isOfAllowedAge = { user: User -> user.age > MINIMUM_AGE }
val allowedUsers = users.filter(isOfAllowedAge)

Lambda for benchmarking a function call

General-purpose stopwatch for timing how long a function takes to run:

object Benchmark {
 fun realtime(body: () -> Unit): Duration {
 val start = Instant.now()
 try {
 body()
 } finally {
 val end = Instant.now()
 return Duration.between(start, end)
 }
 }
}

Usage:

val time = Benchmark.realtime({
 // some long-running code goes here ...
})
println("Executed the code in $time")

Read Basic Lambdas online: https://riptutorial.com/kotlin/topic/5878/basic-lambdas

https://riptutorial.com/ 13

https://riptutorial.com/kotlin/topic/5878/basic-lambdas

Chapter 5: Basics of Kotlin

Introduction

This topic covers the basics of Kotlin for beginners.

Remarks

Kotlin file has an extension .kt.1.
All classes in Kotlin have a common superclass Any, that is a default super for a class with
no supertypes declared(similar to Object in Java).

2.

Variables can be declared as val(immutable- assign once) or var(mutables- value can be
changed)

3.

Semicolon is not needed at end of statement.4.
If a function does not return any useful value, its return type is Unit.It is also optional.
6.Referential equality is checked by the === operation. a === b evaluates to true if and only
if a and b point to the same object.

5.

Examples

Basic examples

1.The Unit return type declaration is optional for functions. The following codes are equivalent.

 fun printHello(name: String?): Unit {
 if (name != null)
 println("Hello ${name}")
 }

 fun printHello(name: String?) {
 ...
 }

2.Single-Expression functions:When a function returns a single expression, the curly braces can
be omitted and the body is specified after = symbol

 fun double(x: Int): Int = x * 2

Explicitly declaring the return type is optional when this can be inferred by the compiler

 fun double(x: Int) = x * 2

3.String interpolation: Using string values is easy.

In java:
 int num=10

https://riptutorial.com/ 14

 String s = "i =" + i;

In Kotlin
 val num = 10
 val s = "i = $num"

4.In Kotlin, the type system distinguishes between references that can hold null (nullable
references) and those that can not (non-null references). For example, a regular variable of type
String can not hold null:

var a: String = "abc"
a = null // compilation error

To allow nulls, we can declare a variable as nullable string, written String?:

var b: String? = "abc"
b = null // ok

5.In Kotlin,== actually checks for equality of values.By convention, an expression like a == b is
translated to

 a?.equals(b) ?: (b === null)

Read Basics of Kotlin online: https://riptutorial.com/kotlin/topic/10648/basics-of-kotlin

https://riptutorial.com/ 15

https://riptutorial.com/kotlin/topic/10648/basics-of-kotlin

Chapter 6: Class Delegation

Introduction

A Kotlin class may implement an interface by delegating its methods and properties to another
object that implements that interface. This provides a way to compose behavior using association
rather than inheritance.

Examples

Delegate a method to another class

interface Foo {
 fun example()
}

class Bar {
 fun example() {
 println("Hello, world!")
 }
}

class Baz(b : Bar) : Foo by b

Baz(Bar()).example()

The example prints Hello, world!

Read Class Delegation online: https://riptutorial.com/kotlin/topic/10575/class-delegation

https://riptutorial.com/ 16

https://riptutorial.com/kotlin/topic/10575/class-delegation

Chapter 7: Class Inheritance

Introduction

Any object-oriented programming language has some form of class inheritance. Let me revise:

Imagine you had to program a bunch of fruit: Apples, Oranges and Pears. They all differ in size,
shape and color, that's why we have different classes.

But let's say their differences don't matter for a second and you just want a Fruit, no matter which
exactly? What return type would getFruit() have?

The answer is class Fruit. We create a new class and make all fruits inherit from it!

Syntax

open {Base Class}•
class {Derived Class} : {Base Class}({Init Arguments})•
override {Function Definition}•
{DC-Object} is {Base Class} == true•

Parameters

Parameter Details

Base Class Class that is inherited from

Derived Class Class that inherits from Base Class

Init Arguments Arguments passed to constructor of Base Class

Function
Definition

Function in Derived Class that has different code than the same in the
Base Class

DC-Object ”Derived Class-Object“ Object that has the type of the Derived Class

Examples

Basics: the 'open' keyword

In Kotlin, classes are final by default which means they cannot be inherited from.

To allow inheritance on a class, use the open keyword.

https://riptutorial.com/ 17

open class Thing {
 // I can now be extended!
}

Note: abstract classes, sealed classes and interfaces will be open by default.

Inheriting fields from a class

Defining the base class:

open class BaseClass {
 val x = 10
}

Defining the derived class:

class DerivedClass: BaseClass() {
 fun foo() {
 println("x is equal to " + x)
 }
}

Using the subclass:

fun main(args: Array<String>) {
 val derivedClass = DerivedClass()
 derivedClass.foo() // prints: 'x is equal to 10'
}

Inheriting methods from a class

Defining the base class:

open class Person {
 fun jump() {
 println("Jumping...")
 }
}

Defining the derived class:

class Ninja: Person() {
 fun sneak() {
 println("Sneaking around...")
 }
}

The Ninja has access to all of the methods in Person

https://riptutorial.com/ 18

fun main(args: Array<String>) {
 val ninja = Ninja()
 ninja.jump() // prints: 'Jumping...'
 ninja.sneak() // prints: 'Sneaking around...'
}

Overriding properties and methods

Overriding properties (both read-only and mutable):

abstract class Car {
 abstract val name: String;
 open var speed: Int = 0;
}

class BrokenCar(override val name: String) : Car() {
 override var speed: Int
 get() = 0
 set(value) {
 throw UnsupportedOperationException("The car is bloken")
 }
}

fun main(args: Array<String>) {
 val car: Car = BrokenCar("Lada")
 car.speed = 10
}

Overriding methods:

interface Ship {
 fun sail()
 fun sink()
}

object Titanic : Ship {

 var canSail = true

 override fun sail() {
 sink()
 }

 override fun sink() {
 canSail = false
 }
}

Read Class Inheritance online: https://riptutorial.com/kotlin/topic/5622/class-inheritance

https://riptutorial.com/ 19

https://riptutorial.com/kotlin/topic/5622/class-inheritance

Chapter 8: Collections

Introduction

Unlike many languages, Kotlin distinguishes between mutable and immutable collections (lists,
sets, maps, etc). Precise control over exactly when collections can be edited is useful for
eliminating bugs, and for designing good APIs.

Syntax

listOf, mapOf and setOf returns read-only objects that you cannot add or remove items.•
If you want to add or remove items you have to use arrayListOf, hashMapOf, hashSetOf,
linkedMapOf (LinkedHashMap), linkedSetOf (LinkedHashSet), mutableListOf (The Kotlin
MultableList collection), mutableMapOf (The Kotlin MultableMap collection), mutableSetOf
(The Kotlin MultableSet collection), sortedMapOf or sortedSetOf

•

Each collection has methods like first(), last(), get() and lambda functions like filter, map, join,
reduce and many others.

•

Examples

Using list

// Create a new read-only List<String>
val list = listOf("Item 1", "Item 2", "Item 3")
println(list) // prints "[Item 1, Item 2, Item 3]"

Using map

// Create a new read-only Map<Integer, String>
val map = mapOf(Pair(1, "Item 1"), Pair(2, "Item 2"), Pair(3, "Item 3"))
println(map) // prints "{1=Item 1, 2=Item 2, 3=Item 3}"

Using set

// Create a new read-only Set<String>
val set = setOf(1, 3, 5)
println(set) // prints "[1, 3, 5]"

Read Collections online: https://riptutorial.com/kotlin/topic/8846/collections

https://riptutorial.com/ 20

https://riptutorial.com/kotlin/topic/8846/collections

Chapter 9: Conditional Statements

Remarks

In contrast to Java's switch, the when statement has no fall-through behavior. This means, that if a
branch is matched, the control flow returns after its execution and no break statement is required. If
you want to combine the bahaviors for multiple arguments, you can write multiple arguments
separated by commas:

when (x) {
 "foo", "bar" -> println("either foo or bar")
 else -> println("didn't match anything")
}

Examples

Standard if-statement

val str = "Hello!"
if (str.length == 0) {
 print("The string is empty!")
} else if (str.length > 5) {
 print("The string is short!")
} else {
 print("The string is long!")
}

The else-branches are optional in normal if-statements.

If-statement as an expression

If-statements can be expressions:

val str = if (condition) "Condition met!" else "Condition not met!"

Note that the else-branch is not optional if the if-statement is used as an expression.

This can also been done with a multi-line variant with curly brackets and multiple else if
statements.

val str = if (condition1){
 "Condition1 met!"
 } else if (condition2) {
 "Condition2 met!"
 } else {
 "Conditions not met!"
 }

https://riptutorial.com/ 21

TIP: Kotlin can infer the type of the variable for you but if you want to be sure of the
type just annotate it on the variable like: val str: String = this will enforce the type and
will make it easier to read.

When-statement instead of if-else-if chains

The when-statement is an alternative to an if-statement with multiple else-if-branches:

when {
 str.length == 0 -> print("The string is empty!")
 str.length > 5 -> print("The string is short!")
 else -> print("The string is long!")
}

Same code written using an if-else-if chain:

if (str.length == 0) {
 print("The string is empty!")
} else if (str.length > 5) {
 print("The string is short!")
} else {
 print("The string is long!")
}

Just like with the if-statement, the else-branch is optional, and you can add as many or as few
branches as you like. You can also have multiline-branches:

when {
 condition -> {
 doSomething()
 doSomeMore()
 }
 else -> doSomethingElse()
}

When-statement argument matching

When given an argument, the when-statement matches the argument against the branches in
sequence. The matching is done using the == operator which performs null checks and compares
the operands using the equals function. The first matching one will be executed.

when (x) {
 "English" -> print("How are you?")
 "German" -> print("Wie geht es dir?")
 else -> print("I don't know that language yet :(")
}

The when statement also knows some more advanced matching options:

val names = listOf("John", "Sarah", "Tim", "Maggie")
when (x) {
 in names -> print("I know that name!")

https://riptutorial.com/ 22

 !in 1..10 -> print("Argument was not in the range from 1 to 10")
 is String -> print(x.length) // Due to smart casting, you can use String-functions here
}

When-statement as expression

Like if, when can also be used as an expression:

val greeting = when (x) {
 "English" -> "How are you?"
 "German" -> "Wie geht es dir?"
 else -> "I don't know that language yet :("
}
print(greeting)

To be used as an expression, the when-statement must be exhaustive, i.e. either have an else
branch or cover all possibilities with the branches in another way.

When-statement with enums

when can be used to match enum values:

enum class Day {
 Sunday,
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday
}

fun doOnDay(day: Day) {
 when(day) {
 Day.Sunday -> // Do something
 Day.Monday, Day.Tuesday -> // Do other thing
 Day.Wednesday -> // ...
 Day.Thursday -> // ...
 Day.Friday -> // ...
 Day.Saturday -> // ...
 }
}

As you can see in second case line (Monday and Tuedsay) it is also possible to combine two or more
enum values.

If your cases are not exhaustive the compile will show an error. You can use else to handle default
cases:

fun doOnDay(day: Day) {
 when(day) {
 Day.Monday -> // Work
 Day.Tuesday -> // Work hard
 Day.Wednesday -> // ...

https://riptutorial.com/ 23

 Day.Thursday -> //
 Day.Friday -> //
 else -> // Party on weekend
 }
}

Though the same can be done using if-then-else construct, when takes care of missing enum values
and makes it more natural.

Check here for more information about kotlin enum

Read Conditional Statements online: https://riptutorial.com/kotlin/topic/2685/conditional-statements

https://riptutorial.com/ 24

http://www.riptutorial.com/kotlin/topic/2286/enum
https://riptutorial.com/kotlin/topic/2685/conditional-statements

Chapter 10: Configuring Kotlin build

Examples

Gradle configuration

kotlin-gradle-plugin is used to compile Kotlin code with Gradle. Basically, its version should
correspond to the Kotlin version you want to use. E.g. if you want to use Kotlin 1.0.3, then you
need to aplly kotlin-gradle-plugin version 1.0.3 too.

It's a good idea to externalize this version in gradle.properties or in ExtraPropertiesExtension:

buildscript {
 ext.kotlin_version = '1.0.3'

 repositories {
 mavenCentral()
 }

 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}

Then you need to apply this plugin to your project. The way you do this differs when targeting
different platforms:

Targeting JVM

apply plugin: 'kotlin'

Targeting Android

apply plugin: 'kotlin-android'

Targeting JS

apply plugin: 'kotlin2js'

These are the default paths:

kotlin sources: src/main/kotlin•
java sources: src/main/java•
kotlin tests: src/test/kotlin•
java tests: src/test/java•

https://riptutorial.com/ 25

https://docs.gradle.org/current/userguide/build_environment.html#sec:gradle_configuration_properties
https://docs.gradle.org/current/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

runtime resources: src/main/resources•
test resources: src/test/resources•

You may need to configure SourceSets if you're using custom project layout.

Finally, you'll need to add Kotlin standard library dependency to your project:

dependencies {
 compile "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
}

If you want to use Kotlin Reflection you'll also need to add compile "org.jetbrains.kotlin:kotlin-
reflect:$kotlin_version"

Using Android Studio

Android Studio can configure Kotlin automatically in an Android project.

Install the plugin

To install the Kotlin plugin, go to File > Settings > Editor > Plugins > Install JetBrains Plugin... >
Kotlin > Install, then restart Android Studio when prompted.

Configure a project

Create an Android Studio project as normal, then press Ctrl + Shift + A. In the search box, type
"Configure Kotlin in Project" and press Enter.

Android Studio will alter your Gradle files to add all the necessary dependencies.

Converting Java

To convert your Java files to Kotlin files, press Ctrl + Shift + A and find "Convert Java File to Kotlin
File". This will change the current file's extension to .kt and convert the code to Kotlin.

https://riptutorial.com/ 26

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html
http://i.stack.imgur.com/w8LnT.png

Migrating from Gradle using Groovy script to Kotlin script

Steps:

clone the gradle-script-kotlin project•

copy/paste from the cloned project to your project:

build.gradle.kts○

gradlew○

gradlew.bat○

settings.gradle○

•

update the content of the build.gradle.kts based on your needs, you can use as inspiration
the scripts in the project just cloned or in one of its samples

•

now open Intellij and open your project, in the explorer window, it should be recognized as a
Gradle project, if not, expand it first.

•

after opening, let Intellij works, open build.gradle.kts and check if there are any error. If the •

https://riptutorial.com/ 27

http://i.imgur.com/mIwlMyp.gif
https://github.com/gradle/gradle-script-kotlin

highlighting is not working and/or is everything marked red, then close and reopen Intellij

open the Gradle window and refresh it•

If you are on Windows, you may encounter this bug, download the full Gradle 3.3 distribution and
use that instead the one provided. Related.

OSX and Ubuntu work out of the box.

Small bonus, if you want to avoid all the hassle of publicing on Maven and similar, use Jitpack, the
lines to add are almost identical compared to Groovy. You can take inspiration from this project of
mine.

Read Configuring Kotlin build online: https://riptutorial.com/kotlin/topic/2501/configuring-kotlin-build

https://riptutorial.com/ 28

https://github.com/gradle/gradle-script-kotlin/issues/220
https://github.com/gradle/gradle-script-kotlin/issues/220
https://github.com/elect86/glm/blob/master/build.gradle.kts
https://github.com/elect86/glm/blob/master/build.gradle.kts
https://riptutorial.com/kotlin/topic/2501/configuring-kotlin-build

Chapter 11: coroutines

Introduction

Examples of Kotlin's experimental(yet) implementation of coroutines

Examples

Simple coroutine which delay's 1 second but not blocks

(from official doc)

fun main(args: Array<String>) {
 launch(CommonPool) { // create new coroutine in common thread pool
 delay(1000L) // non-blocking delay for 1 second (default time unit is ms)
 println("World!") // print after delay
 }
 println("Hello,") // main function continues while coroutine is delayed
 Thread.sleep(2000L) // block main thread for 2 seconds to keep JVM alive
}

result

Hello,
World!

Read coroutines online: https://riptutorial.com/kotlin/topic/10936/coroutines

https://riptutorial.com/ 29

https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md#your-first-coroutine
https://riptutorial.com/kotlin/topic/10936/coroutines

Chapter 12: Delegated properties

Introduction

Kotlin can delegate the implementation of a property to a handler object. Some standard handlers
are included, such as lazy initialization or observable properties. Custom handlers can also be
created.

Examples

Lazy initialization

val foo : Int by lazy { 1 + 1 }
println(foo)

The example prints 2.

Observable properties

var foo : Int by Delegates.observable("1") { property, oldValue, newValue ->
 println("${property.name} was changed from $oldValue to $newValue")
}
foo = 2

The example prints foo was changed from 1 to 2

Map-backed properties

val map = mapOf("foo" to 1)
val foo : String by map
println(foo)

The example prints 1

Custom delegation

class MyDelegate {
 operator fun getValue(owner: Any?, property: KProperty<*>): String {
 return "Delegated value"
 }
}

val foo : String by MyDelegate()
println(foo)

The example prints Delegated value

https://riptutorial.com/ 30

Delegate Can be used as a layer to reduce boilerplate

Consider Kotlin's Null Type system and WeakReference<T>.

So let's say we have to save some sort of reference and we wanted to avoid memory leaks, here
is where WeakReference comes in.

take for example this:

class MyMemoryExpensiveClass {
 companion object {
 var reference: WeakReference<MyMemoryExpensiveClass>? = null

 fun doWithReference(block: (MyMemoryExpensiveClass) -> Unit) {
 reference?.let {
 it.get()?.let(block)
 }
 }
 }

 init {
 reference = WeakReference(this)
 }
}

Now this is just with one WeakReference. To Reduce this boilerplate, we can use a custom
property delegate to help us like so:

class WeakReferenceDelegate<T>(initialValue: T? = null) : ReadWriteProperty<Any, T?> {
 var reference = WeakReference(initialValue)
 private set

 override fun getValue(thisRef: Any, property: KProperty<*>): T? = reference.get()

 override fun setValue(thisRef: Any, property: KProperty<*>, value: T?) {
 reference = WeakReference(value)
 }
}

So Now we can use variables that are wrapped with WeakReference just like normal nullable
variables !

class MyMemoryExpensiveClass {
 companion object {
 var reference: MyMemoryExpensiveClass? by
WeakReferenceDelegate<MyMemoryExpensiveClass>()

 fun doWithReference(block: (MyMemoryExpensiveClass) -> Unit) {
 reference?.let(block)
 }
 }

 init {
 reference = this
 }

https://riptutorial.com/ 31

}

Read Delegated properties online: https://riptutorial.com/kotlin/topic/10571/delegated-properties

https://riptutorial.com/ 32

https://riptutorial.com/kotlin/topic/10571/delegated-properties

Chapter 13: DSL Building

Introduction

Focus on the syntax details to design internal DSLs in Kotlin.

Examples

Infix approach to build DSL

If you have:

infix fun <T> T?.shouldBe(expected: T?) = assertEquals(expected, this)

you can write the following DSL-like code in your tests:

@Test
fun test() {
 100.plusOne() shouldBe 101
}

Overriding invoke method to build DSL

If you have:

class MyExample(val i: Int) {
 operator fun <R> invoke(block: MyExample.() -> R) = block()
 fun Int.bigger() = this > i
}

you can write the following DSL-like code in your production code:

fun main2(args: Array<String>) {
 val ex = MyExample(233)
 ex {
 // bigger is defined in the context of `ex`
 // you can only call this method inside this context
 if (777.bigger()) kotlin.io.println("why")
 }
}

Using operators with lambdas

If you have:

val r = Random(233)
infix inline operator fun Int.rem(block: () -> Unit) {

https://riptutorial.com/ 33

https://en.wikipedia.org/wiki/Domain-specific_language

 if (r.nextInt(100) < this) block()
}

You can write the following DSL-like code:

20 % { println("The possibility you see this message is 20%") }

Using extensions with lambdas

If you have:

operator fun <R> String.invoke(block: () -> R) = {
 try { block.invoke() }
 catch (e: AssertException) { System.err.println("$this\n${e.message}") }
}

You can write the following DSL-like code:

"it should return 2" {
 parse("1 + 1").buildAST().evaluate() shouldBe 2
}

If you feel confused with shouldBe above, see the example Infix approach to build DSL.

Read DSL Building online: https://riptutorial.com/kotlin/topic/10042/dsl-building

https://riptutorial.com/ 34

https://riptutorial.com/kotlin/topic/10042/dsl-building

Chapter 14: Enum

Remarks

Just like in Java, enum classes in Kotlin have synthetic methods allowing to list the defined enum
constants and to get an enum constant by its name. The signatures of these methods are as
follows (assuming the name of the enum class is EnumClass):

EnumClass.valueOf(value: String): EnumClass
EnumClass.values(): Array<EnumClass>

The valueOf() method throws an IllegalArgumentException if the specified name does not match
any of the enum constants defined in the class.

Every enum constant has properties to obtain its name and position in the enum class declaration:

val name: String
val ordinal: Int

The enum constants also implement the Comparable interface, with the natural order being the
order in which they are defined in the enum class.

Examples

Initialization

Enum classes as any other classes can have a constructor and be initialized

enum class Color(val rgb: Int) {
 RED(0xFF0000),
 GREEN(0x00FF00),
 BLUE(0x0000FF)
}

Functions and Properties in enums

Enum classes can also declare members (i.e. properties and functions). A semicolon (;) must be
placed between the last enum object and the first member declaration.

If a member is abstract, the enum objects must implement it.

enum class Color {
 RED {
 override val rgb: Int = 0xFF0000
 },
 GREEN {
 override val rgb: Int = 0x00FF00

https://riptutorial.com/ 35

 },
 BLUE {
 override val rgb: Int = 0x0000FF
 }

 ;

 abstract val rgb: Int

 fun colorString() = "#%06X".format(0xFFFFFF and rgb)
}

Simple enum

enum class Color {
 RED, GREEN, BLUE
}

Each enum constant is an object. Enum constants are separated with commas.

Mutability

Enums can be mutable, this is another way to obtain a singleton behavior:

enum class Planet(var population: Int = 0) {
 EARTH(7 * 100000000),
 MARS();

 override fun toString() = "$name[population=$population]"
}

 println(Planet.MARS) // MARS[population=0]
 Planet.MARS.population = 3
 println(Planet.MARS) // MARS[population=3]

Read Enum online: https://riptutorial.com/kotlin/topic/2286/enum

https://riptutorial.com/ 36

https://riptutorial.com/kotlin/topic/2286/enum

Chapter 15: Exceptions

Examples

Catching exception with try-catch-finally

Catching exceptions in Kotlin looks very similar to Java

try {
 doSomething()
}
catch(e: MyException) {
 handle(e)
}
finally {
 cleanup()
}

You can also catch multiple exceptions

try {
 doSomething()
}
catch(e: FileSystemException) {
 handle(e)
}
catch(e: NetworkException) {
 handle(e)
}
catch(e: MemoryException) {
 handle(e)
}
finally {
 cleanup()
}

try is also an expression and may return value

val s: String? = try { getString() } catch (e: Exception) { null }

Kotlin doesn't have checked exceptions, so you don't have to catch any exceptions.

fun fileToString(file: File) : String {
 //readAllBytes throws IOException, but we can omit catching it
 fileContent = Files.readAllBytes(file)
 return String(fileContent)
}

Read Exceptions online: https://riptutorial.com/kotlin/topic/7246/exceptions

https://riptutorial.com/ 37

https://riptutorial.com/kotlin/topic/7246/exceptions

Chapter 16: Extension Methods

Syntax

fun TypeName.extensionName(params, ...) { /* body */ } // Declaration•
fun <T: Any> TypeNameWithGenerics<T>.extensionName(params, ...) { /* body */ } //
Declaration with Generics

•

myObj.extensionName(args, ...) // invocation•

Remarks

Extensions are resolved statically. This means that the extension method to be used is
determined by the reference-type of the variable you are accessing; it doesn't matter what the
variable's type is at runtime, the same extension method will always be called. This is because
declaring an extension method doesn't actually add a member to the receiver type.

Examples

Top-Level Extensions

Top-level extension methods are not contained within a class.

fun IntArray.addTo(dest: IntArray) {
 for (i in 0 .. size - 1) {
 dest[i] += this[i]
 }
}

Above an extension method is defined for the type IntArray. Note that the object for which the
extension method is defined (called the receiver) is accessed using the keyword this.

This extension can be called like so:

val myArray = intArrayOf(1, 2, 3)
intArrayOf(4, 5, 6).addTo(myArray)

Potential Pitfall: Extensions are Resolved Statically

The extension method to be called is determined at compile-time based on the reference-type of
the variable being accessed. It doesn't matter what the variable's type is at runtime, the same
extension method will always be called.

open class Super

class Sub : Super()

https://riptutorial.com/ 38

fun Super.myExtension() = "Defined for Super"

fun Sub.myExtension() = "Defined for Sub"

fun callMyExtension(myVar: Super) {
 println(myVar.myExtension())
}

callMyExtension(Sub())

The above example will print "Defined for Super", because the declared type of the variable myVar
is Super.

Sample extending long to render a human readable string

Given any value of type Int or Long to render a human readable string:

fun Long.humanReadable(): String {
 if (this <= 0) return "0"
 val units = arrayOf("B", "KB", "MB", "GB", "TB", "EB")
 val digitGroups = (Math.log10(this.toDouble())/Math.log10(1024.0)).toInt();
 return DecimalFormat("#,##0.#").format(this/Math.pow(1024.0, digitGroups.toDouble())) + "
" + units[digitGroups];
}

fun Int.humanReadable(): String {
 return this.toLong().humanReadable()
}

Then easily used as:

println(1999549L.humanReadable())
println(someInt.humanReadable())

Sample extending Java 7+ Path class

A common use case for extension methods is to improve an existing API. Here are examples of
adding exist, notExists and deleteRecursively to the Java 7+ Path class:

fun Path.exists(): Boolean = Files.exists(this)
fun Path.notExists(): Boolean = !this.exists()
fun Path.deleteRecursively(): Boolean = this.toFile().deleteRecursively()

Which can now be invoked in this example:

val dir = Paths.get(dirName)
if (dir.exists()) dir.deleteRecursively()

Using extension functions to improve readability

In Kotlin you could write code like:

https://riptutorial.com/ 39

val x: Path = Paths.get("dirName").apply {
 if (Files.notExists(this)) throw IllegalStateException("The important file does not
exist")
}

But the use of apply is not that clear as to your intent. Sometimes it is clearer to create a similar
extension function to in effect rename the action and make it more self-evident. This should not be
allowed to get out of hand, but for very common actions such as verification:

infix inline fun <T> T.verifiedBy(verifyWith: (T) -> Unit): T {
 verifyWith(this)
 return this
}

infix inline fun <T: Any> T.verifiedWith(verifyWith: T.() -> Unit): T {
 this.verifyWith()
 return this
}

You could now write the code as:

val x: Path = Paths.get("dirName") verifiedWith {
 if (Files.notExists(this)) throw IllegalStateException("The important file does not
exist")
}

Which now let's people know what to expect within the lambda parameter.

Note that the type parameter T for verifiedBy is same as T: Any? meaning that even nullable types
will be able to use that version of the extension. Although verifiedWith requires non-nullable.

Sample extending Java 8 Temporal classes to render an ISO formatted string

With this declaration:

fun Temporal.toIsoString(): String = DateTimeFormatter.ISO_INSTANT.format(this)

You can now simply:

val dateAsString = someInstant.toIsoString()

Extension functions to Companion Objects (appearance of Static functions)

If you want to extend a class as-if you are a static function, for example for class Something add
static looking function fromString, this can only work if the class has a companion object and that
the extension function has been declared upon the companion object:

class Something {
 companion object {}
}

https://riptutorial.com/ 40

https://kotlinlang.org/docs/reference/object-declarations.html#companion-objects

class SomethingElse {
}

fun Something.Companion.fromString(s: String): Something = ...

fun SomethingElse.fromString(s: String): SomethingElse = ...

fun main(args: Array<String>) {
 Something.fromString("") //valid as extension function declared upon the
 //companion object

 SomethingElse().fromString("") //valid, function invoked on instance not
 //statically

 SomethingElse.fromString("") //invalid
}

Lazy extension property workaround

Assume you want to create an extension property that is expensive to compute. Thus you would
like to cache the computation, by using the lazy property delegate and refer to current instance (
this), but you cannot do it, as explained in the Kotlin issues KT-9686 and KT-13053. However,
there is an official workaround provided here.

In the example, the extension property is color. It uses an explicit colorCache which can be used
with this as no lazy is necessary:

class KColor(val value: Int)

private val colorCache = mutableMapOf<KColor, Color>()

val KColor.color: Color
 get() = colorCache.getOrPut(this) { Color(value, true) }

Extensions for easier reference View from code

You can use extensions for reference View, no more boilerplate after you created the views.

Original Idea is by Anko Library

Extensions

inline fun <reified T : View> View.find(id: Int): T = findViewById(id) as T
inline fun <reified T : View> Activity.find(id: Int): T = findViewById(id) as T
inline fun <reified T : View> Fragment.find(id: Int): T = view?.findViewById(id) as T
inline fun <reified T : View> RecyclerView.ViewHolder.find(id: Int): T =
itemView?.findViewById(id) as T

inline fun <reified T : View> View.findOptional(id: Int): T? = findViewById(id) as? T
inline fun <reified T : View> Activity.findOptional(id: Int): T? = findViewById(id) as? T
inline fun <reified T : View> Fragment.findOptional(id: Int): T? = view?.findViewById(id) as?
T
inline fun <reified T : View> RecyclerView.ViewHolder.findOptional(id: Int): T? =

https://riptutorial.com/ 41

https://kotlinlang.org/docs/reference/delegated-properties.html#lazy
https://youtrack.jetbrains.com/issue/KT-9686
https://youtrack.jetbrains.com/issue/KT-13053
https://youtrack.jetbrains.com/issue/KT-13053#comment=27-1510399
https://github.com/Kotlin/anko

itemView?.findViewById(id) as? T

Usage

val yourButton by lazy { find<Button>(R.id.yourButtonId) }
val yourText by lazy { find<TextView>(R.id.yourTextId) }
val yourEdittextOptional by lazy { findOptional<EditText>(R.id.yourOptionEdittextId) }

Read Extension Methods online: https://riptutorial.com/kotlin/topic/613/extension-methods

https://riptutorial.com/ 42

https://riptutorial.com/kotlin/topic/613/extension-methods

Chapter 17: Functions

Syntax

fun Name(Params) = ...•
fun Name(Params) {...}•
fun Name(Params): Type {...}•
fun <Type Argument> Name(Params): Type {...}•
inline fun Name(Params): Type {...}•
{ ArgName: ArgType -> ... }•
{ ArgName -> ... }•
{ ArgNames -> ... }•
{ (ArgName: ArgType): Type -> ... }•

Parameters

Parameter Details

Name Name of the function

Params Values given to the function with a name and type: Name:Type

Type Return type of the function

Type Argument Type parameter used in generic programming (not necessarily return type)

ArgName Name of value given to the function

ArgType Type specifier for ArgName

ArgNames List of ArgName separated by commas

Examples

Functions Taking Other Functions

As seen in "Lambda Functions", functions can take other functions as a parameter. The "function
type" which you'll need to declare functions which take other functions is as follows:

Takes no parameters and returns anything
() -> Any?

Takes a string and an integer and returns ReturnType
(arg1: String, arg2: Int) -> ReturnType

https://riptutorial.com/ 43

http://www.riptutorial.com/kotlin/topic/1147/generics

For example, you could use the vaguest type, () -> Any?, to declare a function which executes a
lambda function twice:

fun twice(x: () -> Any?) {
 x(); x();
}

fun main() {
 twice {
 println("Foo")
 } # => Foo
 # => Foo
}

Lambda Functions

Lambda functions are anonymous functions which are usually created during a function call to act
as a function parameter. They are declared by surrounding expressions with {braces} - if
arguments are needed, these are put before an arrow ->.

{ name: String ->
 "Your name is $name" //This is returned
}

The last statement inside a lambda function is automatically the return value.

The type's are optional, if you put the lambda on a place where the compiler can infer the types.

Multiple arguments:

{ argumentOne:String, argumentTwo:String ->
 "$argumentOne - $argumentTwo"
}

If the lambda function only needs one argument, then the argument list can be omitted and the
single argument be referred to using it instead.

{ "Your name is $it" }

If the only argument to a function is a lambda function, then parentheses can be completely
omitted from the function call.

These are identical
listOf(1, 2, 3, 4).map { it + 2 }
listOf(1, 2, 3, 4).map({ it + 2 })

Function References

We can reference a function without actually calling it by prefixing the function's name with ::. This
can then be passed to a function which accepts some other function as a parameter.

https://riptutorial.com/ 44

fun addTwo(x: Int) = x + 2
listOf(1, 2, 3, 4).map(::addTwo) # => [3, 4, 5, 6]

Functions without a receiver will be converted to (ParamTypeA, ParamTypeB, ...) -> ReturnType
where ParamTypeA, ParamTypeB ... are the type of the function parameters and `ReturnType1 is the
type of function return value.

fun foo(p0: Foo0, p1: Foo1, p2: Foo2): Bar {
 //...
}
println(::foo::class.java.genericInterfaces[0])
// kotlin.jvm.functions.Function3<Foo0, Foo1, Foo2, Bar>
// Human readable type: (Foo0, Foo1, Foo2) -> Bar

Functions with a receiver (be it an extension function or a member function) has a different syntax.
You have to add the type name of the receiver before the double colon:

class Foo
fun Foo.foo(p0: Foo0, p1: Foo1, p2: Foo2): Bar {
 //...
}
val ref = Foo::foo
println(ref::class.java.genericInterfaces[0])
// kotlin.jvm.functions.Function4<Foo, Foo0, Foo1, Foo2, Bar>
// Human readable type: (Foo, Foo0, Foo1, Foo2) -> Bar
// takes 4 parameters, with receiver as first and actual parameters following, in their order

// this function can't be called like an extension function, though
val ref = Foo::foo
Foo().ref(Foo0(), Foo1(), Foo2()) // compile error

class Bar {
 fun bar()
}
print(Bar::bar) // works on member functions, too.

However, when a function's receiver is an object, the receiver is omitted from parameter list,
because these is and only is one instance of such type.

object Foo
fun Foo.foo(p0: Foo0, p1: Foo1, p2: Foo2): Bar {
 //...
}
val ref = Foo::foo
println(ref::class.java.genericInterfaces[0])
// kotlin.jvm.functions.Function3<Foo0, Foo1, Foo2, Bar>
// Human readable type: (Foo0, Foo1, Foo2) -> Bar
// takes 3 parameters, receiver not needed

object Bar {
 fun bar()
}
print(Bar::bar) // works on member functions, too.

Since kotlin 1.1, function reference can also be bounded to a variable, which is then called a

https://riptutorial.com/ 45

bounded function reference.

1.1.0

fun makeList(last: String?): List<String> {
 val list = mutableListOf("a", "b", "c")
 last?.let(list::add)
 return list
}

Note this example is given only to show how bounded function reference works. It's bad practice in all other senses.

There is a special case, though. An extension function declared as a member can't be referenced.

class Foo
class Bar {
 fun Foo.foo() {}
 val ref = Foo::foo // compile error
}

Basic Functions

Functions are declared using the fun keyword, followed by a function name and any parameters.
You can also specify the return type of a function, which defaults to Unit. The body of the function
is enclosed in braces {}. If the return type is other than Unit, the body must issue a return
statement for every terminating branch within the body.

fun sayMyName(name: String): String {
 return "Your name is $name"
}

A shorthand version of the same:

fun sayMyName(name: String): String = "Your name is $name"

And the type can be omitted since it can be inferred:

fun sayMyName(name: String) = "Your name is $name"

Shorthand Functions

If a function contains just one expression, we can omit the brace brackets and use an equals
instead, like a variable assignment. The result of the expression is returned automatically.

fun sayMyName(name: String): String = "Your name is $name"

Inline Functions

Functions can be declared inline using the inline prefix, and in this case they act like macros in C

https://riptutorial.com/ 46

- rather than being called, they are replaced by the function's body code at compile time. This can
lead to performance benefits in some circumstances, mainly where lambdas are used as function
parameters.

inline fun sayMyName(name: String) = "Your name is $name"

One difference from C macros is that inline functions can't access the scope from which they're
called:

inline fun sayMyName() = "Your name is $name"

fun main() {
 val name = "Foo"
 sayMyName() # => Unresolved reference: name
}

Operator functions

Kotlin allows us to provide implementations for a predefined set of operators with fixed symbolic
representation (like + or *) and fixed precedence. To implement an operator, we provide a member
function or an extension function with a fixed name, for the corresponding type. Functions that
overload operators need to be marked with the operator modifier:

data class IntListWrapper (val wrapped: List<Int>) {
 operator fun get(position: Int): Int = wrapped[position]
}

val a = IntListWrapper(listOf(1, 2, 3))
a[1] // == 2

More operator functions can be found in here

Read Functions online: https://riptutorial.com/kotlin/topic/1280/functions

https://riptutorial.com/ 47

https://kotlinlang.org/docs/reference/operator-overloading.html
https://riptutorial.com/kotlin/topic/1280/functions

Chapter 18: Generics

Introduction

A List can hold numbers, words or really anything. That's why we call the List generic.

Generics are basically used to define which types a class can hold and which type an object
currently holds.

Syntax

class ClassName<TypeName>•
class ClassName<*>•
ClassName<in UpperBound>•
ClassName<out LowerBound>•
class Name<TypeName:UpperBound>•

Parameters

Parameter Details

TypeName Type Name of generic parameter

UpperBound Covariant Type

LowerBound Contravariant Type

ClassName Name of the class

Remarks

Implied Upper Bound is Nullable

In Kotlin Generics, the upper bound of type parameter T would be Any?. Therefore for this class:

class Consumer<T>

The type parameter T is really T: Any?. To make a non-nullable upper bound, explicitly specific T:
Any. For example:

class Consumer<T: Any>

https://riptutorial.com/ 48

Examples

Declaration-site variance

Declaration-site variance can be thought of as declaration of use-site variance once and for all the
use-sites.

 class Consumer<in T> { fun consume(t: T) { ... } }

 fun charSequencesConsumer() : Consumer<CharSequence>() = ...

 val stringConsumer : Consumer<String> = charSequenceConsumer() // OK since in-projection
 val anyConsumer : Consumer<Any> = charSequenceConsumer() // Error, Any cannot be passed

 val outConsumer : Consumer<out CharSequence> = ... // Error, T is `in`-parameter

Widespread examples of declaration-site variance are List<out T>, which is immutable so that T
only appears as the return value type, and Comparator<in T>, which only receives T as argument.

Use-site variance

Use-site variance is similar to Java wildcards:

Out-projection:

 val takeList : MutableList<out SomeType> = ... // Java: List<? extends SomeType>

 val takenValue : SomeType = takeList[0] // OK, since upper bound is SomeType

 takeList.add(takenValue) // Error, lower bound for generic is not specified

In-projection:

 val putList : MutableList<in SomeType> = ... // Java: List<? super SomeType>

 val valueToPut : SomeType = ...
 putList.add(valueToPut) // OK, since lower bound is SomeType

 putList[0] // This expression has type Any, since no upper bound is specified

Star-projection

 val starList : MutableList<*> = ... // Java: List<?>

 starList[0] // This expression has type Any, since no upper bound is specified
 starList.add(someValue) // Error, lower bound for generic is not specified

See also:

Variant Generics interoperability when calling Kotlin from Java.•

https://riptutorial.com/ 49

https://kotlinlang.org/docs/reference/generics.html#declaration-site-variance
https://kotlinlang.org/docs/reference/generics.html#use-site-variance-type-projections
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#variant-generics

Read Generics online: https://riptutorial.com/kotlin/topic/1147/generics

https://riptutorial.com/ 50

https://riptutorial.com/kotlin/topic/1147/generics

Chapter 19: Idioms

Examples

Creating DTOs (POJOs/POCOs)

Data classes in kotlin are classes created to do nothing but hold data. Such classes are marked as
data:

data class User(var firstname: String, var lastname: String, var age: Int)

The code above creates a User class with the following automatically generated:

Getters and Setters for all properties (getters only for vals)•
equals()•
hashcode()•
toString()•
copy()•
componentN() (where N is the corresponding property in order of declaration)•

Just as with a function, default values can also be specified:

data class User(var firstname: String = "Joe", var lastname: String = "Bloggs", var age: Int =
20)

More details can be found here Data Classes.

Filtering a list

val list = listOf(1,2,3,4,5,6)

//filter out even numbers

val even = list.filter { it % 2 == 0 }

println(even) //returns [2,4]

Delegate to a class without providing it in the public constructor

Assume you want to delegate to a class but you do not want to provide the delegated-to class in
the constructor parameter. Instead, you want to construct it privately, making the constructor caller
unaware of it. At first this might seem impossible because class delegation allows to delegate only
to constructor parameters. However, there is a way to do it, as given in this answer:

class MyTable private constructor(table: Table<Int, Int, Int>) : Table<Int, Int, Int> by table
{

 constructor() : this(TreeBasedTable.create()) // or a different type of table if desired

https://riptutorial.com/ 51

https://kotlinlang.org/docs/reference/data-classes.html
https://kotlinlang.org/docs/reference/delegation.html#class-delegation
http://stackoverflow.com/a/37598292/986533

}

With this, you can just call the constructor of MyTable like that: MyTable(). The Table<Int, Int, Int>
to which MyTable delegates will be created privately. Constructor caller knows nothing about it.

This example is based on this SO question.

Serializable and serialVersionUid in Kotlin

To create the serialVersionUID for a class in Kotlin you have a few options all involving adding a
member to the companion object of the class.

The most concise bytecode comes from a private const val which will become a private static
variable on the containing class, in this case MySpecialCase:

class MySpecialCase : Serializable {
 companion object {
 private const val serialVersionUID: Long = 123
 }
}

You can also use these forms, each with a side effect of having getter/setter methods which
are not necessary for serialization...

class MySpecialCase : Serializable {
 companion object {
 private val serialVersionUID: Long = 123
 }
}

This creates the static field but also creates a getter as well getSerialVersionUID on the companion
object which is unnecessary.

class MySpecialCase : Serializable {
 companion object {
 @JvmStatic private val serialVersionUID: Long = 123
 }
}

This creates the static field but also creates a static getter as well getSerialVersionUID on the
containing class MySpecialCase which is unnecessary.

But all work as a method of adding the serialVersionUID to a Serializable class.

Fluent methods in Kotlin

Fluent methods in Kotlin can be the same as Java:

fun doSomething() {
 someOtherAction()

https://riptutorial.com/ 52

http://stackoverflow.com/q/37593738/986533

 return this
}

But you can also make them more functional by creating an extension function such as:

fun <T: Any> T.fluently(func: ()->Unit): T {
 func()
 return this
}

Which then allows more obviously fluent functions:

fun doSomething() {
 return fluently { someOtherAction() }
}

Use let or also to simplify working with nullable objects

let in Kotlin creates a local binding from the object it was called upon. Example:

val str = "foo"
str.let {
 println(it) // it
}

This will print "foo" and will return Unit.

The difference between let and also is that you can return any value from a let block. also in the
other hand will always reutrn Unit.

Now why this is useful, you ask? Because if you call a method which can return null and you want
to run some code only when that return value is not null you can use let or also like this:

val str: String? = someFun()
str?.let {
 println(it)
}

This piece of code will only run the let block when str is not null. Note the null safety operator (?
).

Use apply to initialize objects or to achieve method chaining

The documentation of apply says the following:

calls the specified function block with this value as its receiver and returns this value.

While the kdoc is not so helpful apply is indeed an useful function. In layman's terms apply
establishes a scope in which this is bound to the object you called apply on. This enables you to
spare some code when you need to call multiple methods on an object which you will then return

https://riptutorial.com/ 53

later. Example:

File(dir).apply { mkdirs() }

This is the same as writing this:

fun makeDir(String path): File {
 val result = new File(path)
 result.mkdirs()
 return result
}

Read Idioms online: https://riptutorial.com/kotlin/topic/2273/idioms

https://riptutorial.com/ 54

https://riptutorial.com/kotlin/topic/2273/idioms

Chapter 20: Interfaces

Remarks

See also: Kotlin reference documentation for Interfaces: Interfaces

Examples

Basic Interface

A Kotlin interface contains declarations of abstract methods, and default method implementations
although they cannot store state.

interface MyInterface {
 fun bar()
}

This interface can now be implemented by a class as follows:

class Child : MyInterface {
 override fun bar() {
 print("bar() was called")
 }
}

Interface with default implementations

An interface in Kotlin can have default implementations for functions:

interface MyInterface {
 fun withImplementation() {
 print("withImplementation() was called")
 }
}

Classes implementing such interfaces will be able to use those functions without reimplementing

class MyClass: MyInterface {
 // No need to reimplement here
}
val instance = MyClass()
instance.withImplementation()

Properties

Default implementations also work for property getters and setters:

https://riptutorial.com/ 55

https://kotlinlang.org/docs/reference/interfaces.html

interface MyInterface2 {
 val helloWorld
 get() = "Hello World!"
}

Interface accessors implementations can't use backing fields

interface MyInterface3 {
 // this property won't compile!
 var helloWorld: Int
 get() = field
 set(value) { field = value }
}

Multiple implementations

When multiple interfaces implement the same function, or all of them define with one or more
implementing, the derived class needs to manually resolve proper call

interface A {
 fun notImplemented()
 fun implementedOnlyInA() { print("only A") }
 fun implementedInBoth() { print("both, A") }
 fun implementedInOne() { print("implemented in A") }
}

interface B {
 fun implementedInBoth() { print("both, B") }
 fun implementedInOne() // only defined
}

class MyClass: A, B {
 override fun notImplemented() { print("Normal implementation") }

 // implementedOnlyInA() can by normally used in instances

 // class needs to define how to use interface functions
 override fun implementedInBoth() {
 super.implementedInBoth()
 super<A>.implementedInBoth()
 }

 // even if there's only one implementation, there multiple definitions
 override fun implementedInOne() {
 super<A>.implementedInOne()
 print("implementedInOne class implementation")
 }
}

Properties in Interfaces

You can declare properties in interfaces. Since an interface cannot have state you can only
declare a property as abstract or by providing default implementation for the accessors.

https://riptutorial.com/ 56

interface MyInterface {
 val property: Int // abstract

 val propertyWithImplementation: String
 get() = "foo"

 fun foo() {
 print(property)
 }
}

class Child : MyInterface {
 override val property: Int = 29
}

Conflicts when Implementing Multiple Interfaces with Default Implementations

When implementing more than one interface that have methods of the same name that include
default implementations, it is ambiguous to the compiler which implementation should be used. In
the case of a conflict, the developer must override the conflicting method and provide a custom
implementation. That implementation may chose to delegate to the default implementations or not.

interface FirstTrait {
 fun foo() { print("first") }
 fun bar()
}

interface SecondTrait {
 fun foo() { print("second") }
 fun bar() { print("bar") }
}

class ClassWithConflict : FirstTrait, SecondTrait {
 override fun foo() {
 super<FirstTrait>.foo() // delegate to the default implementation of FirstTrait
 super<SecondTrait>.foo() // delegate to the default implementation of SecondTrait
 }

 // function bar() only has a default implementation in one interface and therefore is ok.
}

super keyword

interface MyInterface {
 fun funcOne() {
 //optional body
 print("Function with default implementation")
 }
}

If the method in the interface has its own default implementation, we can use super keyword to
access it.

super.funcOne()

https://riptutorial.com/ 57

Read Interfaces online: https://riptutorial.com/kotlin/topic/900/interfaces

https://riptutorial.com/ 58

https://riptutorial.com/kotlin/topic/900/interfaces

Chapter 21: Java 8 Stream Equivalents

Introduction

Kotlin provides many extension methods on collections and iterables for applying functional-style
operations. A dedicated Sequence type allows for lazy composition of several such operations.

Remarks

About laziness

If you want to lazy process a chain, you can convert to a Sequence using asSequence() before the
chain. At the end of the chain of functions, you usually end up with a Sequence as well. Then you
can use toList(), toSet(), toMap() or some other function to materialize the Sequence at the end.

// switch to and from lazy
val someList = items.asSequence().filter { ... }.take(10).map { ... }.toList()

// switch to lazy, but sorted() brings us out again at the end
val someList = items.asSequence().filter { ... }.take(10).map { ... }.sorted()

Why are there no Types?!?

You will notice the Kotlin examples do not specify the types. This is because Kotlin has full type
inference and is completely type safe at compile time. More so than Java because it also has
nullable types and can help prevent the dreaded NPE. So this in Kotlin:

val someList = people.filter { it.age <= 30 }.map { it.name }

is the same as:

val someList: List<String> = people.filter { it.age <= 30 }.map { it.name }

Because Kotlin knows what people is, and that people.age is Int therefore the filter expression only
allows comparison to an Int, and that people.name is a String therefore the map step produces a
List<String> (readonly List of String).

Now, if people were possibly null, as-in a List<People>? then:

val someList = people?.filter { it.age <= 30 }?.map { it.name }

Returns a List<String>? that would need to be null checked (or use one of the other Kotlin
operators for nullable values, see this Kotlin idiomatic way to deal with nullable values and also
Idiomatic way of handling nullable or empty list in Kotlin)

https://riptutorial.com/ 59

http://stackoverflow.com/questions/34498562/in-kotlin-what-is-the-idiomatic-way-to-deal-with-nullable-values-referencing-o
http://stackoverflow.com/questions/26341225/idiomatic-way-of-handling-nullable-or-empty-list-in-kotlin

Reusing Streams

In Kotlin, it depends on the type of collection whether it can be consumed more than once. A
Sequence generates a new iterator every time, and unless it asserts "use only once" it can reset to
the start each time it is acted upon. Therefore while the following fails in Java 8 stream, but works
in Kotlin:

// Java:
Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c").filter(s -> s.startsWith("b"));

stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception

// Kotlin:
val stream = listOf("d2", "a2", "b1", "b3", "c").asSequence().filter { it.startsWith('b') }

stream.forEach(::println) // b1, b2

println("Any B ${stream.any { it.startsWith('b') }}") // Any B true
println("Any C ${stream.any { it.startsWith('c') }}") // Any C false

stream.forEach(::println) // b1, b2

And in Java to get the same behavior:

// Java:
Supplier<Stream<String>> streamSupplier =
 () -> Stream.of("d2", "a2", "b1", "b3", "c")
 .filter(s -> s.startsWith("a"));

streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok

Therefore in Kotlin the provider of the data decides if it can reset back and provide a new iterator
or not. But if you want to intentionally constrain a Sequence to one time iteration, you can use
constrainOnce() function for Sequence as follows:

val stream = listOf("d2", "a2", "b1", "b3", "c").asSequence().filter { it.startsWith('b') }
 .constrainOnce()

stream.forEach(::println) // b1, b2
stream.forEach(::println) // Error:java.lang.IllegalStateException: This sequence can be
consumed only once.

See also:

API Reference for extension functions for Iterable•
API reference for extension functions for Array•
API reference for extension functions for List•
API reference for extension functions to Map•

https://riptutorial.com/ 60

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/kotlin.-iterable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/kotlin.-array/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/kotlin.-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/kotlin.-map/index.html

Examples

Accumulate names in a List

// Java:
List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());

// Kotlin:
val list = people.map { it.name } // toList() not needed

Convert elements to strings and concatenate them, separated by commas

// Java:
String joined = things.stream()
 .map(Object::toString)
 .collect(Collectors.joining(", "));

// Kotlin:
val joined = things.joinToString() // ", " is used as separator, by default

Compute sum of salaries of employee

// Java:
int total = employees.stream()
 .collect(Collectors.summingInt(Employee::getSalary)));

// Kotlin:
val total = employees.sumBy { it.salary }

Group employees by department

// Java:
Map<Department, List<Employee>> byDept
 = employees.stream()
 .collect(Collectors.groupingBy(Employee::getDepartment));

// Kotlin:
val byDept = employees.groupBy { it.department }

Compute sum of salaries by department

// Java:
Map<Department, Integer> totalByDept
 = employees.stream()
 .collect(Collectors.groupingBy(Employee::getDepartment,
 Collectors.summingInt(Employee::getSalary)));

https://riptutorial.com/ 61

// Kotlin:
val totalByDept = employees.groupBy { it.dept }.mapValues { it.value.sumBy { it.salary }}

Partition students into passing and failing

// Java:
Map<Boolean, List<Student>> passingFailing =
 students.stream()
 .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));

// Kotlin:
val passingFailing = students.partition { it.grade >= PASS_THRESHOLD }

Names of male members

// Java:
List<String> namesOfMaleMembersCollect = roster
 .stream()
 .filter(p -> p.getGender() == Person.Sex.MALE)
 .map(p -> p.getName())
 .collect(Collectors.toList());

// Kotlin:
val namesOfMaleMembers = roster.filter { it.gender == Person.Sex.MALE }.map { it.name }

Group names of members in roster by gender

// Java:
Map<Person.Sex, List<String>> namesByGender =
 roster.stream().collect(
 Collectors.groupingBy(
 Person::getGender,
 Collectors.mapping(
 Person::getName,
 Collectors.toList())));

// Kotlin:
val namesByGender = roster.groupBy { it.gender }.mapValues { it.value.map { it.name } }

Filter a list to another list

// Java:
List<String> filtered = items.stream()
 .filter(item -> item.startsWith("o"))
 .collect(Collectors.toList());

// Kotlin:
val filtered = items.filter { item.startsWith('o') }

Finding shortest string a list

https://riptutorial.com/ 62

// Java:
String shortest = items.stream()
 .min(Comparator.comparing(item -> item.length()))
 .get();

// Kotlin:
val shortest = items.minBy { it.length }

Different Kinds of Streams #2 - lazily using first item if exists

// Java:
Stream.of("a1", "a2", "a3")
 .findFirst()
 .ifPresent(System.out::println);

// Kotlin:
sequenceOf("a1", "a2", "a3").firstOrNull()?.apply(::println)

Different Kinds of Streams #3 - iterate a range of Integers

// Java:
IntStream.range(1, 4).forEach(System.out::println);

// Kotlin: (inclusive range)
(1..3).forEach(::println)

Different Kinds of Streams #4 - iterate an array, map the values, calculate the
average

// Java:
Arrays.stream(new int[] {1, 2, 3})
 .map(n -> 2 * n + 1)
 .average()
 .ifPresent(System.out::println); // 5.0

// Kotlin:
arrayOf(1,2,3).map { 2 * it + 1}.average().apply(::println)

Different Kinds of Streams #5 - lazily iterate a list of strings, map the values,
convert to Int, find max

// Java:
Stream.of("a1", "a2", "a3")
 .map(s -> s.substring(1))
 .mapToInt(Integer::parseInt)
 .max()
 .ifPresent(System.out::println); // 3

// Kotlin:

https://riptutorial.com/ 63

sequenceOf("a1", "a2", "a3")
 .map { it.substring(1) }
 .map(String::toInt)
 .max().apply(::println)

Different Kinds of Streams #6 - lazily iterate a stream of Ints, map the values,
print results

// Java:
IntStream.range(1, 4)
 .mapToObj(i -> "a" + i)
 .forEach(System.out::println);

// a1
// a2
// a3

// Kotlin: (inclusive range)
(1..3).map { "a$it" }.forEach(::println)

Different Kinds of Streams #7 - lazily iterate Doubles, map to Int, map to
String, print each

// Java:
Stream.of(1.0, 2.0, 3.0)
 .mapToInt(Double::intValue)
 .mapToObj(i -> "a" + i)
 .forEach(System.out::println);

// a1
// a2
// a3

// Kotlin:
sequenceOf(1.0, 2.0, 3.0).map(Double::toInt).map { "a$it" }.forEach(::println)

Counting items in a list after filter is applied

// Java:
long count = items.stream().filter(item -> item.startsWith("t")).count();

// Kotlin:
val count = items.filter { it.startsWith('t') }.size
// but better to not filter, but count with a predicate
val count = items.count { it.startsWith('t') }

How streams work - filter, upper case, then sort a list

// Java:
List<String> myList = Arrays.asList("a1", "a2", "b1", "c2", "c1");

https://riptutorial.com/ 64

myList.stream()
 .filter(s -> s.startsWith("c"))
 .map(String::toUpperCase)
 .sorted()
 .forEach(System.out::println);

// C1
// C2

// Kotlin:
val list = listOf("a1", "a2", "b1", "c2", "c1")
list.filter { it.startsWith('c') }.map (String::toUpperCase).sorted()
 .forEach (::println)

Different Kinds of Streams #1 - eager using first item if it exists

// Java:
Arrays.asList("a1", "a2", "a3")
 .stream()
 .findFirst()
 .ifPresent(System.out::println);

// Kotlin:
listOf("a1", "a2", "a3").firstOrNull()?.apply(::println)

or, create an extension function on String called ifPresent:

// Kotlin:
inline fun String?.ifPresent(thenDo: (String)->Unit) = this?.apply { thenDo(this) }

// now use the new extension function:
listOf("a1", "a2", "a3").firstOrNull().ifPresent(::println)

See also: apply() function

See also: Extension Functions

See also: ?. Safe Call operator, and in general nullability:
http://stackoverflow.com/questions/34498562/in-kotlin-what-is-the-idiomatic-way-to-deal-with-
nullable-values-referencing-o/34498563#34498563

Collect example #5 - find people of legal age, output formatted string

// Java:
String phrase = persons
 .stream()
 .filter(p -> p.age >= 18)
 .map(p -> p.name)
 .collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));

System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.

https://riptutorial.com/ 65

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html
https://kotlinlang.org/docs/reference/extensions.html
https://kotlinlang.org/docs/reference/null-safety.html#safe-calls
https://kotlinlang.org/docs/reference/null-safety.html#safe-calls
http://stackoverflow.com/questions/34498562/in-kotlin-what-is-the-idiomatic-way-to-deal-with-nullable-values-referencing-o/34498563#34498563
http://stackoverflow.com/questions/34498562/in-kotlin-what-is-the-idiomatic-way-to-deal-with-nullable-values-referencing-o/34498563#34498563

// Kotlin:
val phrase = persons
 .filter { it.age >= 18 }
 .map { it.name }
 .joinToString(" and ", "In Germany ", " are of legal age.")

println(phrase)
// In Germany Max and Peter and Pamela are of legal age.

And as a side note, in Kotlin we can create simple data classes and instantiate the test data as
follows:

// Kotlin:
// data class has equals, hashcode, toString, and copy methods automagically
data class Person(val name: String, val age: Int)

val persons = listOf(Person("Tod", 5), Person("Max", 33),
 Person("Frank", 13), Person("Peter", 80),
 Person("Pamela", 18))

Collect example #6 - group people by age, print age and names together

// Java:
Map<Integer, String> map = persons
 .stream()
 .collect(Collectors.toMap(
 p -> p.age,
 p -> p.name,
 (name1, name2) -> name1 + ";" + name2));

System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}

Ok, a more interest case here for Kotlin. First the wrong answers to explore variations of creating a
Map from a collection/sequence:

// Kotlin:
val map1 = persons.map { it.age to it.name }.toMap()
println(map1)
// output: {18=Max, 23=Pamela, 12=David}
// Result: duplicates overridden, no exception similar to Java 8

val map2 = persons.toMap({ it.age }, { it.name })
println(map2)
// output: {18=Max, 23=Pamela, 12=David}
// Result: same as above, more verbose, duplicates overridden

val map3 = persons.toMapBy { it.age }
println(map3)
// output: {18=Person(name=Max, age=18), 23=Person(name=Pamela, age=23), 12=Person(name=David,
age=12)}
// Result: duplicates overridden again

val map4 = persons.groupBy { it.age }
println(map4)
// output: {18=[Person(name=Max, age=18)], 23=[Person(name=Peter, age=23), Person(name=Pamela,

https://riptutorial.com/ 66

https://kotlinlang.org/docs/reference/data-classes.html

age=23)], 12=[Person(name=David, age=12)]}
// Result: closer, but now have a Map<Int, List<Person>> instead of Map<Int, String>

val map5 = persons.groupBy { it.age }.mapValues { it.value.map { it.name } }
println(map5)
// output: {18=[Max], 23=[Peter, Pamela], 12=[David]}
// Result: closer, but now have a Map<Int, List<String>> instead of Map<Int, String>

And now for the correct answer:

// Kotlin:
val map6 = persons.groupBy { it.age }.mapValues { it.value.joinToString(";") { it.name } }

println(map6)
// output: {18=Max, 23=Peter;Pamela, 12=David}
// Result: YAY!!

We just needed to join the matching values to collapse the lists and provide a transformer to
joinToString to move from Person instance to the Person.name.

Collect example #7a - Map names, join together with delimiter

// Java (verbose):
Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
 () -> new StringJoiner(" | "), // supplier
 (j, p) -> j.add(p.name.toUpperCase()), // accumulator
 (j1, j2) -> j1.merge(j2), // combiner
 StringJoiner::toString); // finisher

String names = persons
 .stream()
 .collect(personNameCollector);

System.out.println(names); // MAX | PETER | PAMELA | DAVID

// Java (concise)
String names = persons.stream().map(p -> p.name.toUpperCase()).collect(Collectors.joining(" |
"));

// Kotlin:
val names = persons.map { it.name.toUpperCase() }.joinToString(" | ")

Collect example #7b - Collect with SummarizingInt

// Java:
IntSummaryStatistics ageSummary =
 persons.stream()
 .collect(Collectors.summarizingInt(p -> p.age));

System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}

// Kotlin:

https://riptutorial.com/ 67

// something to hold the stats...
data class SummaryStatisticsInt(var count: Int = 0,
 var sum: Int = 0,
 var min: Int = Int.MAX_VALUE,
 var max: Int = Int.MIN_VALUE,
 var avg: Double = 0.0) {
 fun accumulate(newInt: Int): SummaryStatisticsInt {
 count++
 sum += newInt
 min = min.coerceAtMost(newInt)
 max = max.coerceAtLeast(newInt)
 avg = sum.toDouble() / count
 return this
 }
}

// Now manually doing a fold, since Stream.collect is really just a fold
val stats = persons.fold(SummaryStatisticsInt()) { stats, person ->
stats.accumulate(person.age) }

println(stats)
// output: SummaryStatisticsInt(count=4, sum=76, min=12, max=23, avg=19.0)

But it is better to create an extension function, 2 actually to match styles in Kotlin stdlib:

// Kotlin:
inline fun Collection<Int>.summarizingInt(): SummaryStatisticsInt
 = this.fold(SummaryStatisticsInt()) { stats, num -> stats.accumulate(num) }

inline fun <T: Any> Collection<T>.summarizingInt(transform: (T)->Int): SummaryStatisticsInt =
 this.fold(SummaryStatisticsInt()) { stats, item -> stats.accumulate(transform(item)) }

Now you have two ways to use the new summarizingInt functions:

val stats2 = persons.map { it.age }.summarizingInt()

// or

val stats3 = persons.summarizingInt { it.age }

And all of these produce the same results. We can also create this extension to work on Sequence
and for appropriate primitive types.

Read Java 8 Stream Equivalents online: https://riptutorial.com/kotlin/topic/707/java-8-stream-
equivalents

https://riptutorial.com/ 68

https://riptutorial.com/kotlin/topic/707/java-8-stream-equivalents
https://riptutorial.com/kotlin/topic/707/java-8-stream-equivalents

Chapter 22: JUnit

Examples

Rules

To add a JUnit rule to a test fixture:

@Rule @JvmField val myRule = TemporaryFolder()

The @JvmField annotation is necessary to expose the backing field with the same visibility (public)
as the myRule property (see answer). JUnit rules require the annotated rule field to be public.

Read JUnit online: https://riptutorial.com/kotlin/topic/6973/junit

https://riptutorial.com/ 69

https://github.com/junit-team/junit4/wiki/rules
http://stackoverflow.com/questions/32899947/kotlin-junit-rules
https://riptutorial.com/kotlin/topic/6973/junit

Chapter 23: Kotlin Android Extensions

Introduction

Kotlin has a built-in view injection for Android, allowing to skip manual binding or need for
frameworks such as ButterKnife. Some of the advantages are a nicer syntax, better static typing
and thus being less error-prone.

Examples

Configuration

Start with a properly configured gradle project.

In your project-local (not top-level) build.gradle append extensions plugin declaration below your
Kotlin plugin, on top-level indentation level.

buildscript {
 ...
}

apply plugin: "com.android.application"
...
apply plugin: "kotlin-android"
apply plugin: "kotlin-android-extensions"
...

Using Views

Assuming we have an activity with an example layout called activity_main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/my_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My button"/>
</LinearLayout>

We can use Kotlin extensions to call the button without any additional binding like so:

import kotlinx.android.synthetic.main.activity_main.my_button

class MainActivity: Activity() {
 override fun onCreate(savedInstanceBundle: Bundle?) {
 super.onCreate(savedInstanceBundle)

https://riptutorial.com/ 70

http://www.riptutorial.com/kotlin/example/8269/gradle-configuration

 setContentView(R.layout.activity_main)
 // my_button is already casted to a proper type of "Button"
 // instead of being a "View"
 my_button.setText("Kotlin rocks!")
 }
}

You can also import all ids appearing in layout with a * notation

// my_button can be used the same way as before
import kotlinx.android.synthetic.main.activity_main.*

Synthetic views can't be used outside of Activities/Fragments/Views with that layout inflated:

import kotlinx.android.synthetic.main.activity_main.my_button

class NotAView {
 init {
 // This sample won't compile!
 my_button.setText("Kotlin rocks!")
 }
}

Product flavors

Android extensions also work with multiple Android Product Flavors. For example if we have
flavors in build.gradle like so:

android {
 productFlavors {
 paid {
 ...
 }
 free {
 ...
 }
 }
}

And for example, only the free flavor has a buy button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:id="@+id/buy_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Buy full version"/>
</LinearLayout>

We can bind to the flavor specifically:

https://riptutorial.com/ 71

import kotlinx.android.synthetic.free.main_activity.buy_button

Painfull listener for getting notice, when the view is completely drawn now is
so simple and awesome with Kotlin's extension

mView.afterMeasured {
 // inside this block the view is completely drawn
 // you can get view's height/width, it.height / it.width
}

Under the hood

inline fun View.afterMeasured(crossinline f: View.() -> Unit) {
viewTreeObserver.addOnGlobalLayoutListener(object : ViewTreeObserver.OnGlobalLayoutListener {
 override fun onGlobalLayout() {
 if (measuredHeight > 0 && measuredWidth > 0) {
 viewTreeObserver.removeOnGlobalLayoutListener(this)
 f()
 }
 }
})
}

Read Kotlin Android Extensions online: https://riptutorial.com/kotlin/topic/9474/kotlin-android-
extensions

https://riptutorial.com/ 72

https://riptutorial.com/kotlin/topic/9474/kotlin-android-extensions
https://riptutorial.com/kotlin/topic/9474/kotlin-android-extensions

Chapter 24: Kotlin Caveats

Examples

Calling a toString() on a nullable type

A thing to look out for when using the toString method in Kotlin is the handling of null in
combination with the String?.

For example you want to get text from an EditText in Android.

You would have a piece of code like:

// Incorrect:
val text = view.textField?.text.toString() ?: ""

You would expect that if the field did not exists the value would be empty string but in this case it is
"null".

// Correct:
val text = view.textField?.text?.toString() ?: ""

Read Kotlin Caveats online: https://riptutorial.com/kotlin/topic/6608/kotlin-caveats

https://riptutorial.com/ 73

https://riptutorial.com/kotlin/topic/6608/kotlin-caveats

Chapter 25: Kotlin for Java Developers

Introduction

Most people coming to Kotlin do have a programming background in Java.

This topic collects examples comparing Java to Kotlin, highlighting the most important differences
and those gems Kotlin offers over Java.

Examples

Declaring Variables

In Kotlin, variable declarations look a bit different than Java's:

val i : Int = 42

They start with either val or var, making the declaration final ("value") or variable.•

The type is noted after the name, separated by a :•

Thanks to Kotlin's type inference the explicit type declaration can be obmitted if there is an
assignment with a type the compiler is able to unambigously detect

•

Java Kotlin

int i = 42; var i = 42 (or var i : Int = 42)

final int i = 42; val i = 42

Quick Facts

Kotlin does not need ; to end statements•
Kotlin is null-safe•
Kotlin is 100% Java interoperable•
Kotlin has no primitives (but optimizes their object counterparts for the JVM, if possible)•
Kotlin classes have properties, not fields•
Kotlin offers data classes with auto-generated equals/hashCode methods and field accessors•
Kotlin only has runtime Exceptions, no checked Exceptions•
Kotlin has no new keyword. Creating objects is done just by calling the constructor like any
other method.

•

Kotlin supports (limited) operator overloading. For example, accessing a value of a map
can be written like: val a = someMap["key"]

•

Kotlin can not only be compiled to byte code for the JVM, but also into Java Script, enabling
you to write both backend and frontend code in Kotlin

•

https://riptutorial.com/ 74

Kotlin is fully compatible with Java 6, which is especially interesting in regards for support
of (not so) old Android devices

•

Kotlin is an officially supported language for Android development•
Kotlin's collections have built-in disctinction between mutable and immutable collections.•
Kotlin supports Coroutines (experimental)•

Equality & Identity

Kotlin uses == for equality (that is, calls equals internally) and === for referential identity.

Java Kotlin

a.equals(b); a == b

a == b; a === b

a != b; a !== b

See: https://kotlinlang.org/docs/reference/equality.html

IF, TRY and others are expressions, not statements

In Kotlin, if, try and others are expressions (so they do return a value) rather than (void)
statements.

So, for example, Kotlin does not have Java's ternary Elvis Operator, but you can write something
like this:

val i = if (someBoolean) 33 else 42

Even more unfamiliar, but equally expressive, is the try expression:

val i = try {
 Integer.parseInt(someString)
}
catch (ex : Exception)
{
 42
}

Read Kotlin for Java Developers online: https://riptutorial.com/kotlin/topic/10099/kotlin-for-java-
developers

https://riptutorial.com/ 75

https://kotlinlang.org/docs/reference/equality.html
https://riptutorial.com/kotlin/topic/10099/kotlin-for-java-developers
https://riptutorial.com/kotlin/topic/10099/kotlin-for-java-developers

Chapter 26: logging in kotlin

Remarks

Related question: Idiomatic way of logging in Kotlin

Examples

kotlin.logging

class FooWithLogging {
 companion object: KLogging()

 fun bar() {
 logger.info { "hello $name" }
 }

 fun logException(e: Exception) {
 logger.error(e) { "Error occured" }
 }
}

Using kotlin.logging framework

Read logging in kotlin online: https://riptutorial.com/kotlin/topic/3258/logging-in-kotlin

https://riptutorial.com/ 76

http://stackoverflow.com/q/34416869/986533
https://github.com/MicroUtils/kotlin.logging
https://riptutorial.com/kotlin/topic/3258/logging-in-kotlin

Chapter 27: Loops in Kotlin

Remarks

In Kotlin, loops are compiled down to optimized loops wherever possible. For example, if you
iterate over a number range, the bytecode will be compiled down to a corresponding loop based
on plain int values to avoid the overhead of object creation.

Examples

Repeat an action x times

repeat(10) { i ->
 println("This line will be printed 10 times")
 println("We are on the ${i + 1}. loop iteration")
}

Looping over iterables

You can loop over any iterable by using the standard for-loop:

val list = listOf("Hello", "World", "!")
for(str in list) {
 print(str)
}

Lots of things in Kotlin are iterable, like number ranges:

for(i in 0..9) {
 print(i)
}

If you need an index while iterating:

for((index, element) in iterable.withIndex()) {
 print("$element at index $index")
}

There is also a functional approach to iterating included in the standard library, without apparent
language constructs, using the forEach function:

iterable.forEach {
 print(it.toString())
}

it in this example implicitly holds the current element, see Lambda Functions

https://riptutorial.com/ 77

http://www.riptutorial.com/kotlin/example/4199/lambda-functions

While Loops

While and do-while loops work like they do in other languages:

while(condition) {
 doSomething()
}

do {
 doSomething()
} while (condition)

In the do-while loop, the condition block has access to values and variables declared in the loop
body.

Break and continue

Break and continue keywords work like they do in other languages.

while(true) {
 if(condition1) {
 continue // Will immediately start the next iteration, without executing the rest of
the loop body
 }
 if(condition2) {
 break // Will exit the loop completely
 }
}

If you have nested loops, you can label the loop statements and qualify the break and continue
statements to specify which loop you want to continue or break:

outer@ for(i in 0..10) {
 inner@ for(j in 0..10) {
 break // Will break the inner loop
 break@inner // Will break the inner loop
 break@outer // Will break the outer loop
 }
}

This approach won't work for the functional forEach construct, though.

Iterating over a Map in kotlin

//iterates over a map, getting the key and value at once

var map = hashMapOf(1 to "foo", 2 to "bar", 3 to "baz")

for ((key, value) in map) {
 println("Map[$key] = $value")
}

https://riptutorial.com/ 78

Recursion

Looping via recursion is also possible in Kotlin as in most programming languages.

fun factorial(n: Long): Long = if (n == 0) 1 else n * factorial(n - 1)

println(factorial(10)) // 3628800

In the example above, the factorial function will be called repeatedly by itself until the given
condition is met.

Functional constructs for iteration

The Kotlin Standard Library also provides numerous useful functions to iteratively work upon
collections.

For example, the map function can be used to transform a list of items.

val numbers = listOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
val numberStrings = numbers.map { "Number $it" }

One of the many advantages of this style is it allows to chain operations in a similar fashion. Only
a minor modification would be required if say, the list above were needed to be filtered for even
numbers. The filter function can be used.

val numbers = listOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
val numberStrings = numbers.filter { it % 2 == 0 }.map { "Number $it" }

Read Loops in Kotlin online: https://riptutorial.com/kotlin/topic/2727/loops-in-kotlin

https://riptutorial.com/ 79

https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html
https://riptutorial.com/kotlin/topic/2727/loops-in-kotlin

Chapter 28: Null Safety

Examples

Nullable and Non-Nullable types

Normal types, like String, are not nullable. To make them able to hold null values, you have to
explicitly denote that by putting a ? behind them: String?

var string : String = "Hello World!"
var nullableString: String? = null

string = nullableString // Compiler error: Can't assign nullable to non-nullable type.
nullableString = string // This will work however!

Safe call operator

To access functions and properties of nullable types, you have to use special operators.

The first one, ?., gives you the property or function you're trying to access, or it gives you null if the
object is null:

val string: String? = "Hello World!"
print(string.length) // Compile error: Can't directly access property of nullable type.
print(string?.length) // Will print the string's length, or "null" if the string is null.

Idiom: calling multiple methods on the same, null-checked
object

An elegant way to call multiple methods of a null-checked object is using Kotlin's apply like this:

obj?.apply {
 foo()
 bar()
}

This will call foo and bar on obj (which is this in the apply block) only if obj is non-null, skipping the
entire block otherwise.

To bring a nullable variable into scope as a non-nullable reference without making it the implicit
receiver of function and property calls, you can use let instead of apply:

nullable?.let { notnull ->
 notnull.foo()
 notnull.bar()
}

https://riptutorial.com/ 80

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/let.html

notnull could be named anything, or even left out and used through the implicit lambda parameter
it.

Smart casts

If the compiler can infer that an object can't be null at a certain point, you don't have to use the
special operators anymore:

var string: String? = "Hello!"
print(string.length) // Compile error
if(string != null) {
 // The compiler now knows that string can't be null
 print(string.length) // It works now!
}

Note: The compiler won't allow you to smart cast mutable variables that could
potentially be modified between the null-check and the intended usage.

If a variable is accessible from outside the scope of the current block (because they are
members of a non-local object, for example), you need to create a new, local reference
which you can then smart cast and use.

Eliminate nulls from an Iterable and array

Sometimes we need to change type from Collection<T?> to Collections<T>. In that case,
filterNotNull is our solution.

val a: List<Int?> = listOf(1, 2, 3, null)
val b: List<Int> = a.filterNotNull()

Null Coalescing / Elvis Operator

Sometimes it is desirable to evaluate a nullable expression in an if-else fashion. The elvis
operator, ?:, can be used in Kotlin for such a situation.

For instance:

val value: String = data?.first() ?: "Nothing here."

The expression above returns "Nothing here" if data?.first() or data itself yield a null value else
the result of data?.first().

It is also possible to throw exceptions using the same syntax to abort code execution.

val value: String = data?.second()
 ?: throw IllegalArgumentException("Value can't be null!")

Reminder: NullPointerExceptions can be thrown using the assertion operator (e.g.
data!!.second()!!)

https://riptutorial.com/ 81

http://www.riptutorial.com/kotlin/example/4199/lambda-functions
http://www.riptutorial.com/kotlin/example/4199/lambda-functions
http://www.riptutorial.com/kotlin/example/4199/lambda-functions
http://www.riptutorial.com/kotlin/example/12693/assertion

Assertion

!! suffixes ignore nullability and returns a non-null version of that type. KotlinNullPointerException
will be thrown if the object is a null.

val message: String? = null
println(message!!) //KotlinNullPointerException thrown, app crashes

Elvis Operator (?:)

In Kotlin, we can declare variable which can hold null reference. Suppose we have a nullable
reference a, we can say "if a is not null, use it, otherwise use some non-null value x"

var a: String? = "Nullable String Value"

Now, a can be null. So when we need to access value of a, then we need to perform safety check,
whether it contains value or not. We can perform this safety check by conventional if...else
statement.

val b: Int = if (a != null) a.length else -1

But here comes advance operator Elvis(Operator Elvis : ?:). Above if...else can be expressed
with the Elvis operator as below:

val b = a?.length ?: -1

If the expression to the left of ?: (here : a?.length) is not null, the elvis operator returns it, otherwise
it returns the expression to the right (here: -1). Right-hand side expression is evaluated only if the
left-hand side is null.

Read Null Safety online: https://riptutorial.com/kotlin/topic/2080/null-safety

https://riptutorial.com/ 82

https://riptutorial.com/kotlin/topic/2080/null-safety

Chapter 29: Ranges

Introduction

Range expressions are formed with rangeTo functions that have the operator form .. which is
complemented by in and !in. Range is defined for any comparable type, but for integral primitive
types it has an optimized implementation

Examples

Integral Type Ranges

Integral type ranges (IntRange , LongRange , CharRange) have an extra feature: they can be
iterated over. The compiler takes care of converting this analogously to Java's indexed for-loop,
without extra overhead

for (i in 1..4) print(i) // prints "1234"
for (i in 4..1) print(i) // prints nothing

downTo() function

if you want to iterate over numbers in reverse order? It's simple. You can use the downTo()
function defined in the standard library

for (i in 4 downTo 1) print(i) // prints "4321"

step() function

Is it possible to iterate over numbers with arbitrary step, not equal to 1? Sure, the step() function
will help you

for (i in 1..4 step 2) print(i) // prints "13"
for (i in 4 downTo 1 step 2) print(i) // prints "42"

until function

To create a range which does not include its end element, you can use the until function:

for (i in 1 until 10) { // i in [1, 10), 10 is excluded
println(i)
}

Read Ranges online: https://riptutorial.com/kotlin/topic/10121/ranges

https://riptutorial.com/ 83

https://riptutorial.com/kotlin/topic/10121/ranges

Chapter 30: RecyclerView in Kotlin

Introduction

I just want to share my little bit knowledge and code of RecyclerView using Kotlin.

Examples

Main class and Adapter

I am assuming that you have aware about the some syntax of Kotlin and how to use, just add
RecyclerView in activity_main.xml file and set with adapter class.

class MainActivity : AppCompatActivity(){

 lateinit var mRecyclerView : RecyclerView
 val mAdapter : RecyclerAdapter = RecyclerAdapter()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 val toolbar = findViewById(R.id.toolbar) as Toolbar
 setSupportActionBar(toolbar)

 mRecyclerView = findViewById(R.id.recycler_view) as RecyclerView

 mRecyclerView.setHasFixedSize(true)
 mRecyclerView.layoutManager = LinearLayoutManager(this)
 mAdapter.RecyclerAdapter(getList(), this)
 mRecyclerView.adapter = mAdapter
 }

 private fun getList(): ArrayList<String> {
 var list : ArrayList<String> = ArrayList()
 for (i in 1..10) { // equivalent of 1 <= i && i <= 10
 println(i)
 list.add("$i")
 }
 return list
 }
 }

this one is your recycler view adapter class and create main_item.xml file what you want

class RecyclerAdapter : RecyclerView.Adapter<RecyclerAdapter.ViewHolder>() {

 var mItems: ArrayList<String> = ArrayList()
 lateinit var mClick : OnClick

 fun RecyclerAdapter(item : ArrayList<String>, mClick : OnClick){
 this.mItems = item
 this.mClick = mClick;
 }

https://riptutorial.com/ 84

 override fun onBindViewHolder(holder: ViewHolder, position: Int) {
 val item = mItems[position]
 holder.bind(item, mClick, position)
 }

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): ViewHolder {
 val layoutInflater = LayoutInflater.from(parent.context)
 return ViewHolder(layoutInflater.inflate(R.layout.main_item, parent, false))
 }

 override fun getItemCount(): Int {
 return mItems.size
 }

 class ViewHolder(view: View) : RecyclerView.ViewHolder(view) {
 val card = view.findViewById(R.id.card) as TextView
 fun bind(str: String, mClick: OnClick, position: Int){
 card.text = str
 card.setOnClickListener { view ->
 mClick.onClickListner(position)
 }
 }
 }
}

Read RecyclerView in Kotlin online: https://riptutorial.com/kotlin/topic/10143/recyclerview-in-kotlin

https://riptutorial.com/ 85

https://riptutorial.com/kotlin/topic/10143/recyclerview-in-kotlin

Chapter 31: Reflection

Introduction

Reflection is a language's ability to inspect code at runtime instead of compile time.

Remarks

Reflection is a mechanism to introspect language constructs (classes and functions) at the
runtime.

When targeting JVM platform, runtime reflection features are distributed in separate JAR: kotlin-
reflect.jar. This is done to reduce runtime size, cut unused features and make it possible to
target another (like JS) platforms.

Examples

Referencing a class

To obtain a reference to a KClass object representing some class use double colons:

val c1 = String::class
val c2 = MyClass::class

Referencing a function

Functions are first-class citizens in Kotlin. You can obtain a reference on it using double colons
and then pass it to another function:

fun isPositive(x: Int) = x > 0

val numbers = listOf(-2, -1, 0, 1, 2)
println(numbers.filter(::isPositive)) // [1, 2]

Inter-operating with Java reflection

To obtain a Java's Class object from Kotlin's KClass use the .java extension property:

val stringKClass: KClass<String> = String::class
val c1: Class<String> = stringKClass.java

val c2: Class<MyClass> = MyClass::class.java

The latter example will be optimized by the compiler to not allocate an intermediate KClass
instance.

https://riptutorial.com/ 86

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/index.html

Getting values of all properties of a class

Given Example class extending BaseExample class with some properties:

open class BaseExample(val baseField: String)

class Example(val field1: String, val field2: Int, baseField: String):
 BaseExample(baseField) {

 val field3: String
 get() = "Property without backing field"

 val field4 by lazy { "Delegated value" }

 private val privateField: String = "Private value"
}

One can get hold of all properties of a class:

val example = Example(field1 = "abc", field2 = 1, baseField = "someText")

example::class.memberProperties.forEach { member ->
 println("${member.name} -> ${member.get(example)}")
}

Running this code will cause an exception to be thrown. Property private val privateField is
declared private and calling member.get(example) on it will not succeed. One way to handle this it to
filter out private properties. To do that we have to check the visibility modifier of a property's Java
getter. In case of private val the getter does not exist so we can assume private access.

The helper function and it's usage might look like this:

fun isFieldAccessible(property: KProperty1<*, *>): Boolean {
 return property.javaGetter?.modifiers?.let { !Modifier.isPrivate(it) } ?: false
}

val example = Example(field1 = "abc", field2 = 1, baseField = "someText")

example::class.memberProperties.filter { isFieldAccessible(it) }.forEach { member ->
 println("${member.name} -> ${member.get(example)}")
}

Another approach is to make private properties accessible using reflection:

example::class.memberProperties.forEach { member ->
 member.isAccessible = true
 println("${member.name} -> ${member.get(example)}")
}

Setting values of all properties of a class

As an example we want to set all string properties of a sample class

https://riptutorial.com/ 87

class TestClass {
 val readOnlyProperty: String
 get() = "Read only!"

 var readWriteString = "asd"
 var readWriteInt = 23

 var readWriteBackedStringProperty: String = ""
 get() = field + '5'
 set(value) { field = value + '5' }

 var readWriteBackedIntProperty: Int = 0
 get() = field + 1
 set(value) { field = value - 1 }

 var delegatedProperty: Int by TestDelegate()

 private var privateProperty = "This should be private"

 private class TestDelegate {
 private var backingField = 3

 operator fun getValue(thisRef: Any?, prop: KProperty<*>): Int {
 return backingField
 }

 operator fun setValue(thisRef: Any?, prop: KProperty<*>, value: Int) {
 backingField += value
 }
 }
}

Getting mutable properties builds on getting all properties, filtering mutable properties by type. We
also need to check visibility, as reading private properties results in run time exception.

val instance = TestClass()
TestClass::class.memberProperties
 .filter{ prop.visibility == KVisibility.PUBLIC }
 .filterIsInstance<KMutableProperty<*>>()
 .forEach { prop ->
 System.out.println("${prop.name} -> ${prop.get(instance)")
 }

To set all String properties to "Our Value" we can additionally filter by the return type. Since Kotlin
is based on Java VM, Type Erasure is in effect, and thus Properties returning generic types such
as List<String> will be the same as List<Any>. Sadly reflection is not a golden bullet and there is no
sensible way to avoid this, so you need to watch out in your use-cases.

val instance = TestClass()
TestClass::class.memberProperties
 .filter{ prop.visibility == KVisibility.PUBLIC }
 // We only want strings
 .filter{ it.returnType.isSubtypeOf(String::class.starProjectedType) }
 .filterIsInstance<KMutableProperty<*>>()
 .forEach { prop ->
 // Instead of printing the property we set it to some value
 prop.setter.call(instance, "Our Value")

https://riptutorial.com/ 88

http://stackoverflow.com/questions/339699/java-generics-type-erasure-when-and-what-happens

 }

Read Reflection online: https://riptutorial.com/kotlin/topic/2402/reflection

https://riptutorial.com/ 89

https://riptutorial.com/kotlin/topic/2402/reflection

Chapter 32: Regex

Examples

Idioms for Regex Matching in When Expression

Using immutable locals:

Uses less horizontal space but more vertical space than the "anonymous temporaries" template.
Preferable over the "anonymous temporaries" template if the when expression is in a loop--in that
case, regex definitions should be placed outside the loop.

import kotlin.text.regex

var string = /* some string */

val regex1 = Regex(/* pattern */)
val regex2 = Regex(/* pattern */)
/* etc */

when {
 regex1.matches(string) -> /* do stuff */
 regex2.matches(string) -> /* do stuff */
 /* etc */
}

Using anonymous temporaries:

Uses less vertical space but more horizontal space than the "immutable locals" template. Should
not be used if then when expression is in a loop.

import kotlin.text.regex

var string = /* some string */

when {
 Regex(/* pattern */).matches(string) -> /* do stuff */
 Regex(/* pattern */).matches(string) -> /* do stuff */
 /* etc */
}

Using the visitor pattern:

Has the benefit of closely emulating the "argument-ful" when syntax. This is beneficial because it
more clearly indicates the argument of the when expression, and also precludes certain
programmer mistakes that could arise from having to repeat the when argument in every whenEntry.

https://riptutorial.com/ 90

Either the "immutable locals" or the "anonymous temporaries" template may be used with this
implementation the visitor pattern.

import kotlin.text.regex

var string = /* some string */

when (RegexWhenArgument(string)) {
 Regex(/* pattern */) -> /* do stuff */
 Regex(/* pattern */) -> /* do stuff */
 /* etc */
}

And the minimal definition of the wrapper class for the when expression argument:

class RegexWhenArgument (val whenArgument: CharSequence) {
 operator fun equals(whenEntry: Regex) = whenEntry.matches(whenArgument)
 override operator fun equals(whenEntry: Any?) = (whenArgument == whenEntry)
}

Introduction to regular expressions in Kotlin

This post shows how to use most of the functions in the Regex class, work with null safely related to
the Regex functions, and how raw strings makes it easier to write and read regex patterns.

The RegEx class

To work with regular expressions in Kotlin, you need to use the Regex(pattern: String) class and
invoke functions like find(..) or replace(..) on that regex object.

An example on how to use the Regex class that returns true if the input string contains c or d:

val regex = Regex(pattern = "c|d")
val matched = regex.containsMatchIn(input = "abc") // matched: true

The essential thing to understand with all the Regex functions is that the result is based on
matching the regex pattern and the input string. Some of the functions requires a full match, while
the rest requires only a partial match. The containsMatchIn(..) function used in the example
requires a partial match and is explained later in this post.

Null safety with regular expressions

Both find(..) and matchEntire(..) will return a MatchResult? object. The ? character after
MatchResult is necessary for Kotlin to handle null safely.

An example that demonstrates how Kotlin handles null safely from a Regex function, when the
find(..) function returns null:

https://riptutorial.com/ 91

https://kotlinlang.org/docs/reference/null-safety.html

val matchResult =
 Regex("c|d").find("efg") // matchResult: null
val a = matchResult?.value // a: null
val b = matchResult?.value.orEmpty() // b: ""
a?.toUpperCase() // Still needs question mark. => null
b.toUpperCase() // Accesses the function directly. => ""

With the orEmpty() function, b can't be null and the ? character is unnecessary when you call
functions on b.

If you don't care about this safe handling of null values, Kotlin allows you to work with null values
like in Java with the !! characters:

a!!.toUpperCase() // => KotlinNullPointerException

Raw strings in regex patterns

Kotlin provides an improvement over Java with a raw string that makes it possible to write pure
regex patterns without double backslashes, that are necessary with a Java string. A raw string is
represented with a triple quote:

"""\d{3}-\d{3}-\d{4}""" // raw Kotlin string
"\\d{3}-\\d{3}-\\d{4}" // standard Java string

find(input: CharSequence, startIndex: Int):
MatchResult?

The input string will be matched against the pattern in the Regex object. It returns a Matchresult?
object with the first matched text after the startIndex, or null if the pattern didn't match the input
string. The result string is retrieved from the MatchResult? object's value property. The startIndex
parameter is optional with the default value 0.

To extract the first valid phone number from a string with contact details:

val phoneNumber :String? = Regex(pattern = """\d{3}-\d{3}-\d{4}""")
 .find(input = "phone: 123-456-7890, e..")?.value // phoneNumber: 123-456-7890

With no valid phone number in the input string, the variable phoneNumber will be null.

findAll(input: CharSequence, startIndex: Int):
Sequence

Returns all the matches from the input string that matches the regex pattern.

https://riptutorial.com/ 92

https://kotlinlang.org/docs/reference/basic-types.html#string-literals

To print out all numbers separated with space, from a text with letters and digits:

val matchedResults = Regex(pattern = """\d+""").findAll(input = "ab12cd34ef")
val result = StringBuilder()
for (matchedText in matchedResults) {
 result.append(matchedText.value + " ")
}

println(result) // => 12 34

The matchedResults variable is a sequence with MatchResult objects. With an input string without
digits, the findAll(..) function will return an empty sequence.

matchEntire(input: CharSequence):
MatchResult?

If all the characters in the input string matches the regex pattern, a string equal to the input will be
returned. Else, null will be returned.

Returns the input string if the whole input string is a number:

val a = Regex("""\d+""").matchEntire("100")?.value // a: 100
val b = Regex("""\d+""").matchEntire("100 dollars")?.value // b: null

matches(input: CharSequence): Boolean

Returns true if the whole input string matches the regex pattern. False otherwise.

Tests if two strings contains only digits:

val regex = Regex(pattern = """\d+""")
regex.matches(input = "50") // => true
regex.matches(input = "50 dollars") // => false

containsMatchIn(input: CharSequence):
Boolean

Returns true if part of the input string matches the regex pattern. False otherwise.

Test if two strings contains at least one digit:

Regex("""\d+""").containsMatchIn("50 dollars") // => true
Regex("""\d+""").containsMatchIn("Fifty dollars") // => false

https://riptutorial.com/ 93

split(input: CharSequence, limit: Int): List

Returns a new list without all the regex matches.

To return lists without digits:

val a = Regex("""\d+""").split("ab12cd34ef") // a: [ab, cd, ef]
val b = Regex("""\d+""").split("This is a test") // b: [This is a test]

There is one element in the list for each split. The first input string has three numbers. That results
in a list with three elements.

replace(input: CharSequence, replacement:
String): String

Replaces all matches of the regex pattern in the input string with the replacement string.

To replace all digits in a string with an x:

val result = Regex("""\d+""").replace("ab12cd34ef", "x") // result: abxcdxef

Read Regex online: https://riptutorial.com/kotlin/topic/8364/regex

https://riptutorial.com/ 94

https://riptutorial.com/kotlin/topic/8364/regex

Chapter 33: Singleton objects

Introduction

An object is a special kind of class, which can be declared using object keyword. Objects are
similar to Singletons (a design pattern) in java. It also functions as the static part of java.
Beginners who are switching from java to kotlin can vastly use this feature, in place of static, or
singletons.

Examples

Use as repalcement of static methods/fields of java

object CommonUtils {

 var anyname: String ="Hello"

 fun dispMsg(message: String) {
 println(message)
 }
}

From any other class, just invoke the variable and functions in this way:

CommonUtils.anyname
CommonUtils.dispMsg("like static call")

Use as a singleton

Kotlin objects are actually just singletons. Its primary advantage is that you don't have to use
SomeSingleton.INSTANCE to get the instance of the singleton.

In java your singleton looks like this:

public enum SharedRegistry {
 INSTANCE;
 public void register(String key, Object thing) {}
}

public static void main(String[] args) {
 SharedRegistry.INSTANCE.register("a", "apple");
 SharedRegistry.INSTANCE.register("b", "boy");
 SharedRegistry.INSTANCE.register("c", "cat");
 SharedRegistry.INSTANCE.register("d", "dog");
}

In kotlin, the equivalent code is

https://riptutorial.com/ 95

object SharedRegistry {
 fun register(key: String, thing: Object) {}
}

fun main(Array<String> args) {
 SharedRegistry.register("a", "apple")
 SharedRegistry.register("b", "boy")
 SharedRegistry.register("c", "cat")
 SharedRegistry.register("d", "dog")
}

It's obvoiusly less verbose to use.

Read Singleton objects online: https://riptutorial.com/kotlin/topic/10152/singleton-objects

https://riptutorial.com/ 96

https://riptutorial.com/kotlin/topic/10152/singleton-objects

Chapter 34: Strings

Examples

Elements of String

Elements of String are characters that can be accessed by the indexing operation string[index].

val str = "Hello, World!"
println(str[1]) // Prints e

String elements can be iterated with a for-loop.

for (c in str) {
 println(c)
}

String Literals

Kotlin has two types of string literals:

Escaped string•
Raw string•

Escaped string handles special characters by escaping them. Escaping is done with a backslash.
The following escape sequences are supported: \t, \b, \n, \r, \', \", \\ and \$. To encode any
other character, use the Unicode escape sequence syntax: \uFF00.

val s = "Hello, world!\n"

Raw string delimited by a triple quote """, contains no escaping and can contain newlines and
any other characters

val text = """
 for (c in "foo")
 print(c)
"""

Leading whitespace can be removed with trimMargin() function.

val text = """
 |Tell me and I forget.
 |Teach me and I remember.
 |Involve me and I learn.
 |(Benjamin Franklin)
 """.trimMargin()

https://riptutorial.com/ 97

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/trim-margin.html

Default margin prefix is pipe character |, this can be set as a parameter to trimMargin; e.g.
trimMargin(">").

String Templates

Both escaped strings and raw strings can contain template expressions. Template expression is a
piece of code which is evaluated and its result is concatenated into string. It starts with a dollar
sign $ and consists of either a variable name:

val i = 10
val s = "i = $i" // evaluates to "i = 10"

Or an arbitrary expression in curly braces:

val s = "abc"
val str = "$s.length is ${s.length}" // evaluates to "abc.length is 3"

To include a literal dollar sign in a string, escape it using a backslash:

val str = "\$foo" // evaluates to "$foo"

The exception is raw strings, which do not support escaping. In raw strings you can use the
following syntax to represent a dollar sign.

val price = """
${'$'}9.99
"""

String Equality

In Kotlin strings are compared with == operator which chect for their structural equality.

val str1 = "Hello, World!"
val str2 = "Hello," + " World!"
println(str1 == str2) // Prints true

Referential equality is checked with === operator.

val str1 = """
 |Hello, World!
 """.trimMargin()

val str2 = """
 #Hello, World!
 """.trimMargin("#")

val str3 = str1

println(str1 == str2) // Prints true
println(str1 === str2) // Prints false
println(str1 === str3) // Prints true

https://riptutorial.com/ 98

Read Strings online: https://riptutorial.com/kotlin/topic/8285/strings

https://riptutorial.com/ 99

https://riptutorial.com/kotlin/topic/8285/strings

Chapter 35: Type aliases

Introduction

With type aliases, we can give a alias to other type. It's ideal for giving a name to function types
like (String) -> Boolean or generic type like Pair<Person, Person>.

Type aliases support generics. An alias can replace a type with generics and an alias can be
generics.

Syntax

typealias alias-name = existing-type•

Remarks

Type aliases is a feature of the compiler. Nothing is added in the generated code for the JVM. All
aliases will be replaced by the real type.

Examples

Function type

typealias StringValidator = (String) -> Boolean
typealias Reductor<T, U, V> = (T, U) -> V

Generic type

typealias Parents = Pair<Person, Person>
typealias Accounts = List<Account>

Read Type aliases online: https://riptutorial.com/kotlin/topic/9453/type-aliases

https://riptutorial.com/ 100

https://riptutorial.com/kotlin/topic/9453/type-aliases

Chapter 36: Type-Safe Builders

Remarks

A type-safe builder is a concept, rather than a language feature, so it is not strictly formalized.

A typical structure of a type-safe builder

A single builder function usually consists of 3 steps:

Create an object.1.
Execute lambda to initialize the object.2.
Add the object to structure or return it.3.

Type-safe builders in Kotlin libraries

The concept of type-safe builders is widely used in some Kotlin libraries and frameworks, eg.:

Anko•
Wasabi•
Ktor•
Spec•

Examples

Type-safe tree structure builder

Builders can be defined as a set of extension functions taking lambda expressions with receivers
as arguments. In this example, a menu of a JFrame is being built:

import javax.swing.*

fun JFrame.menuBar(init: JMenuBar.() -> Unit) {
 val menuBar = JMenuBar()
 menuBar.init()
 setJMenuBar(menuBar)
}

fun JMenuBar.menu(caption: String, init: JMenu.() -> Unit) {
 val menu = JMenu(caption)
 menu.init()
 add(menu)
}

fun JMenu.menuItem(caption: String, init: JMenuItem.() -> Unit) {
 val menuItem = JMenuItem(caption)
 menuItem.init()
 add(menuItem)

https://riptutorial.com/ 101

}

These functions can then be used to build a tree structure of objects in an easy way:

class MyFrame : JFrame() {
 init {
 menuBar {
 menu("Menu1") {
 menuItem("Item1") {
 // Initialize MenuItem with some Action
 }
 menuItem("Item2") {}
 }
 menu("Menu2") {
 menuItem("Item3") {}
 menuItem("Item4") {}
 }
 }
 }
}

Read Type-Safe Builders online: https://riptutorial.com/kotlin/topic/6010/type-safe-builders

https://riptutorial.com/ 102

https://riptutorial.com/kotlin/topic/6010/type-safe-builders

Chapter 37: Vararg Parameters in Functions

Syntax

Vararg Keyword: vararg is used in a method declaration to indicate that a variable number
of parameters will be accepted.

•

Spread Operator: An asterisk (*) before an array that is used in function calls to "unfold" the
contents into individual parameters.

•

Examples

Basics: Using the vararg keyword

Define the function using the vararg keyword.

fun printNumbers(vararg numbers: Int) {
 for (number in numbers) {
 println(number)
 }
}

Now you can pass as many parameters (of the correct type) into the function as you want.

printNumbers(0, 1) // Prints "0" "1"
printNumbers(10, 20, 30, 500) // Prints "10" "20" "30" "500"

Notes: Vararg parameters must be the last parameter in the parameter list.

Spread Operator: Passing arrays into vararg functions

Arrays can be passed into vararg functions using the Spread Operator, *.

Assuming the following function exists...

fun printNumbers(vararg numbers: Int) {
 for (number in numbers) {
 println(number)
 }
}

You can pass an array into the function like so...

val numbers = intArrayOf(1, 2, 3)
printNumbers(*numbers)

// This is the same as passing in (1, 2, 3)

https://riptutorial.com/ 103

The spread operator can also be used in the middle of the parameters...

val numbers = intArrayOf(1, 2, 3)
printNumbers(10, 20, *numbers, 30, 40)

// This is the same as passing in (10, 20, 1, 2, 3, 30, 40)

Read Vararg Parameters in Functions online: https://riptutorial.com/kotlin/topic/5835/vararg-
parameters-in-functions

https://riptutorial.com/ 104

https://riptutorial.com/kotlin/topic/5835/vararg-parameters-in-functions
https://riptutorial.com/kotlin/topic/5835/vararg-parameters-in-functions

Chapter 38: Visibility Modifiers

Introduction

In Kotlin, there are 4 types of visibility modifiers are available.

Public: This can be accessed from anywhere.

Private: This can only be accessed from the module code.

Protected: This can only be accessed from the class defining it and any derived classes.

Internal: This can only be accessed from the scope of the class defining it.

Syntax

<visibility modifier> val/var <variable name> = <value>•

Examples

Code Sample

Public: public val name = "Avijit"

Private: private val name = "Avijit"

Protected: protected val name = "Avijit"

Internal: internal val name = "Avijit"

Read Visibility Modifiers online: https://riptutorial.com/kotlin/topic/10019/visibility-modifiers

https://riptutorial.com/ 105

https://riptutorial.com/kotlin/topic/10019/visibility-modifiers

Credits

S.
No

Chapters Contributors

1
Getting started with
Kotlin

babedev, Community, cyberscientist, ganesshkumar, Ihor
Kucherenko, Jayson Minard, mnoronha, neworld, Parker Hoyes,
Ruckus T-Boom, Sach, Sean Reilly, Sheigutn, Simón Oroño,
UnKnown, Urko Pineda

2 Annotations Brad Larson, Caelum, Héctor, Mood, piotrek1543, Sapan Zaveri

3 Arrays egor.zhdan, Sam, UnKnown

4 Basic Lambdas memoizr, Rich Kuzsma

5 Basics of Kotlin Shinoo Goyal

6 Class Delegation Sam

7 Class Inheritance byxor, KeksArmee, piotrek1543, Slav

8 Collections Ascension

9
Conditional
Statements

Abdullah, Alex Facciorusso, jpmcosta, Kirill Rakhman, Robin,
Spidfire

10
Configuring Kotlin
build

Aaron Christiansen, elect, madhead

11 coroutines Jemo Mgebrishvili

12 Delegated properties Sam, Seaskyways

13 DSL Building Dmitriy L, ice1000

14 Enum David Soroko, Kirill Rakhman, SerCe

15 Exceptions Brad Larson, jereksel, Sapan Zaveri

16 Extension Methods
Dávid Tímár, Jayson Minard, Kevin Robatel, Konrad Jamrozik,
olivierlemasle, Parker Hoyes, razzledazzle

17 Functions
Aaron Christiansen, baha, Caelum, glee8e, Jayson Minard,
KeksArmee, madhead, Spidfire

18 Generics hotkey, Jayson Minard, KeksArmee

Aaron Christiansen, Adam Arold, Brad Larson, Héctor, Jayson 19 Idioms

https://riptutorial.com/ 106

https://riptutorial.com/contributor/6224750/babedev
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/825957/cyberscientist
https://riptutorial.com/contributor/1184750/ganesshkumar
https://riptutorial.com/contributor/7891076/ihor-kucherenko
https://riptutorial.com/contributor/7891076/ihor-kucherenko
https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/312161/neworld
https://riptutorial.com/contributor/1772838/parker-hoyes
https://riptutorial.com/contributor/2094298/ruckus-t-boom
https://riptutorial.com/contributor/3416642/sach
https://riptutorial.com/contributor/8313/sean-reilly
https://riptutorial.com/contributor/4592646/sheigutn
https://riptutorial.com/contributor/3001663/simon-orono
https://riptutorial.com/contributor/2769917/unknown
https://riptutorial.com/contributor/7321132/urko-pineda
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/2104648/caelum
https://riptutorial.com/contributor/3026283/hector
https://riptutorial.com/contributor/2244090/mood
https://riptutorial.com/contributor/4730812/piotrek1543
https://riptutorial.com/contributor/7023615/sapan-zaveri
https://riptutorial.com/contributor/1796907/egor-zhdan
https://riptutorial.com/contributor/4618331/sam
https://riptutorial.com/contributor/2769917/unknown
https://riptutorial.com/contributor/4850160/memoizr
https://riptutorial.com/contributor/2312060/rich-kuzsma
https://riptutorial.com/contributor/7856490/shinoo-goyal
https://riptutorial.com/contributor/4618331/sam
https://riptutorial.com/contributor/5601284/byxor
https://riptutorial.com/contributor/2639234/keksarmee
https://riptutorial.com/contributor/4730812/piotrek1543
https://riptutorial.com/contributor/4568679/slav
https://riptutorial.com/contributor/1464430/ascension
https://riptutorial.com/contributor/4094366/abdullah
https://riptutorial.com/contributor/2329437/alex-facciorusso
https://riptutorial.com/contributor/485986/jpmcosta
https://riptutorial.com/contributor/615306/kirill-rakhman
https://riptutorial.com/contributor/3887813/robin
https://riptutorial.com/contributor/333291/spidfire
https://riptutorial.com/contributor/2626000/aaron-christiansen
https://riptutorial.com/contributor/1047713/elect
https://riptutorial.com/contributor/750510/madhead
https://riptutorial.com/contributor/6882303/jemo-mgebrishvili
https://riptutorial.com/contributor/4618331/sam
https://riptutorial.com/contributor/1978013/seaskyways
https://riptutorial.com/contributor/3833294/dmitriy-l
https://riptutorial.com/contributor/7083401/ice1000
https://riptutorial.com/contributor/239101/david-soroko
https://riptutorial.com/contributor/615306/kirill-rakhman
https://riptutorial.com/contributor/1542319/serce
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/2511670/jereksel
https://riptutorial.com/contributor/7023615/sapan-zaveri
https://riptutorial.com/contributor/4637283/david-timar
https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/244702/kevin-robatel
https://riptutorial.com/contributor/986533/konrad-jamrozik
https://riptutorial.com/contributor/625158/olivierlemasle
https://riptutorial.com/contributor/1772838/parker-hoyes
https://riptutorial.com/contributor/4803633/razzledazzle
https://riptutorial.com/contributor/2626000/aaron-christiansen
https://riptutorial.com/contributor/1380499/baha
https://riptutorial.com/contributor/2104648/caelum
https://riptutorial.com/contributor/5818889/glee8e
https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/2639234/keksarmee
https://riptutorial.com/contributor/750510/madhead
https://riptutorial.com/contributor/333291/spidfire
https://riptutorial.com/contributor/2196460/hotkey
https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/2639234/keksarmee
https://riptutorial.com/contributor/2626000/aaron-christiansen
https://riptutorial.com/contributor/485337/adam-arold
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/3026283/hector
https://riptutorial.com/contributor/3679676/jayson-minard

Minard, Konrad Jamrozik, madhead, mayojava, razzledazzle,
Sapan Zaveri, Serge Nikitin, yole

20 Interfaces Divya, Jan Vladimir Mostert, Jayson Minard, Ritave, Robin

21
Java 8 Stream
Equivalents

Brad, Gerson, Jayson Minard, Piero Divasto, Sam

22 JUnit jenglert

23
Kotlin Android
Extensions

Jemo Mgebrishvili, Ritave

24 Kotlin Caveats Grigory Konushev, Spidfire

25
Kotlin for Java
Developers

Thorsten Schleinzer

26 logging in kotlin Konrad Jamrozik, olivierlemasle, oshai

27 Loops in Kotlin Ben Leggiero, JaseAnderson, mayojava, razzledazzle, Robin

28 Null Safety
KeksArmee, Kirill Rakhman, piotrek1543, razzledazzle, Robin,
SerCe, Spidfire, technerd, Thorsten Schleinzer

29 Ranges Nihal Saxena

30
RecyclerView in
Kotlin

Mohit Suthar

31 Reflection atok, Kirill Rakhman, madhead, Ritave, Sup

32 Regex Espen, Travis

33 Singleton objects Divya, glee8e

34 Strings Januson, Sam

35 Type aliases Kevin Robatel

36 Type-Safe Builders Slav

37
Vararg Parameters
in Functions

byxor, piotrek1543, Sam

38 Visibility Modifiers Avijit Karmakar

https://riptutorial.com/ 107

https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/986533/konrad-jamrozik
https://riptutorial.com/contributor/750510/madhead
https://riptutorial.com/contributor/997537/mayojava
https://riptutorial.com/contributor/4803633/razzledazzle
https://riptutorial.com/contributor/7023615/sapan-zaveri
https://riptutorial.com/contributor/6151836/serge-nikitin
https://riptutorial.com/contributor/147024/yole
https://riptutorial.com/contributor/4473737/divya
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/4783965/ritave
https://riptutorial.com/contributor/3887813/robin
https://riptutorial.com/contributor/713106/brad
https://riptutorial.com/contributor/502362/gerson
https://riptutorial.com/contributor/3679676/jayson-minard
https://riptutorial.com/contributor/1714910/piero-divasto
https://riptutorial.com/contributor/4618331/sam
https://riptutorial.com/contributor/237814/jenglert
https://riptutorial.com/contributor/6882303/jemo-mgebrishvili
https://riptutorial.com/contributor/4783965/ritave
https://riptutorial.com/contributor/6601236/grigory-konushev
https://riptutorial.com/contributor/333291/spidfire
https://riptutorial.com/contributor/93091/thorsten-schleinzer
https://riptutorial.com/contributor/986533/konrad-jamrozik
https://riptutorial.com/contributor/625158/olivierlemasle
https://riptutorial.com/contributor/411965/oshai
https://riptutorial.com/contributor/3939277/ben-leggiero
https://riptutorial.com/contributor/4138/jaseanderson
https://riptutorial.com/contributor/997537/mayojava
https://riptutorial.com/contributor/4803633/razzledazzle
https://riptutorial.com/contributor/3887813/robin
https://riptutorial.com/contributor/2639234/keksarmee
https://riptutorial.com/contributor/615306/kirill-rakhman
https://riptutorial.com/contributor/4730812/piotrek1543
https://riptutorial.com/contributor/4803633/razzledazzle
https://riptutorial.com/contributor/3887813/robin
https://riptutorial.com/contributor/1542319/serce
https://riptutorial.com/contributor/333291/spidfire
https://riptutorial.com/contributor/3045336/technerd
https://riptutorial.com/contributor/93091/thorsten-schleinzer
https://riptutorial.com/contributor/5935969/nihal-saxena
https://riptutorial.com/contributor/4951663/mohit-suthar
https://riptutorial.com/contributor/1356130/atok
https://riptutorial.com/contributor/615306/kirill-rakhman
https://riptutorial.com/contributor/750510/madhead
https://riptutorial.com/contributor/4783965/ritave
https://riptutorial.com/contributor/4233180/sup
https://riptutorial.com/contributor/148608/espen
https://riptutorial.com/contributor/5029307/travis
https://riptutorial.com/contributor/4473737/divya
https://riptutorial.com/contributor/5818889/glee8e
https://riptutorial.com/contributor/2392960/januson
https://riptutorial.com/contributor/4618331/sam
https://riptutorial.com/contributor/244702/kevin-robatel
https://riptutorial.com/contributor/4568679/slav
https://riptutorial.com/contributor/5601284/byxor
https://riptutorial.com/contributor/4730812/piotrek1543
https://riptutorial.com/contributor/4618331/sam
https://riptutorial.com/contributor/5294091/avijit-karmakar

	About
	Chapter 1: Getting started with Kotlin
	Remarks
	Compiling Kotlin
	Versions
	Examples
	Hello World
	Hello World using an Object Declaration
	Hello World using a Companion Object
	Main methods using varargs
	Compile and Run Kotlin Code in Command Line
	Reading input from Command Line

	Chapter 2: Annotations
	Examples
	Declaring an annotation
	Meta-annotations

	Chapter 3: Arrays
	Examples
	Generic Arrays
	Arrays of Primitives
	Extensions
	Iterate Array
	Create an array
	Create an array using a closure
	Create an uninitialized array

	Chapter 4: Basic Lambdas
	Syntax
	Remarks
	Examples
	Lambda as parameter to filter function
	Lambda passed as a variable
	Lambda for benchmarking a function call

	Chapter 5: Basics of Kotlin
	Introduction
	Remarks
	Examples
	Basic examples

	Chapter 6: Class Delegation
	Introduction
	Examples
	Delegate a method to another class

	Chapter 7: Class Inheritance
	Introduction
	Syntax
	Parameters
	Examples
	Basics: the 'open' keyword
	Inheriting fields from a class
	Defining the base class:
	Defining the derived class:
	Using the subclass:
	Inheriting methods from a class
	Defining the base class:
	Defining the derived class:
	The Ninja has access to all of the methods in Person
	Overriding properties and methods

	Overriding properties (both read-only and mutable):
	Overriding methods:

	Chapter 8: Collections
	Introduction
	Syntax
	Examples
	Using list
	Using map
	Using set

	Chapter 9: Conditional Statements
	Remarks
	Examples
	Standard if-statement
	If-statement as an expression
	When-statement instead of if-else-if chains
	When-statement argument matching
	When-statement as expression
	When-statement with enums

	Chapter 10: Configuring Kotlin build
	Examples
	Gradle configuration

	Targeting JVM
	Targeting Android
	Targeting JS
	Using Android Studio

	Install the plugin
	Configure a project
	Converting Java
	Migrating from Gradle using Groovy script to Kotlin script

	Chapter 11: coroutines
	Introduction
	Examples
	Simple coroutine which delay's 1 second but not blocks

	Chapter 12: Delegated properties
	Introduction
	Examples
	Lazy initialization
	Observable properties
	Map-backed properties
	Custom delegation
	Delegate Can be used as a layer to reduce boilerplate

	Chapter 13: DSL Building
	Introduction
	Examples
	Infix approach to build DSL
	Overriding invoke method to build DSL
	Using operators with lambdas
	Using extensions with lambdas

	Chapter 14: Enum
	Remarks
	Examples
	Initialization
	Functions and Properties in enums
	Simple enum
	Mutability

	Chapter 15: Exceptions
	Examples
	Catching exception with try-catch-finally

	Chapter 16: Extension Methods
	Syntax
	Remarks
	Examples
	Top-Level Extensions
	Potential Pitfall: Extensions are Resolved Statically
	Sample extending long to render a human readable string
	Sample extending Java 7+ Path class
	Using extension functions to improve readability
	Sample extending Java 8 Temporal classes to render an ISO formatted string
	Extension functions to Companion Objects (appearance of Static functions)
	Lazy extension property workaround
	Extensions for easier reference View from code

	Extensions
	Usage

	Chapter 17: Functions
	Syntax
	Parameters
	Examples
	Functions Taking Other Functions
	Lambda Functions
	Function References
	Basic Functions
	Shorthand Functions
	Inline Functions
	Operator functions

	Chapter 18: Generics
	Introduction
	Syntax
	Parameters
	Remarks

	Implied Upper Bound is Nullable
	Examples
	Declaration-site variance
	Use-site variance

	Chapter 19: Idioms
	Examples
	Creating DTOs (POJOs/POCOs)
	Filtering a list
	Delegate to a class without providing it in the public constructor
	Serializable and serialVersionUid in Kotlin
	Fluent methods in Kotlin
	Use let or also to simplify working with nullable objects
	Use apply to initialize objects or to achieve method chaining

	Chapter 20: Interfaces
	Remarks
	Examples
	Basic Interface
	Interface with default implementations

	Properties
	Multiple implementations
	Properties in Interfaces
	Conflicts when Implementing Multiple Interfaces with Default Implementations
	super keyword

	Chapter 21: Java 8 Stream Equivalents
	Introduction
	Remarks
	About laziness
	Why are there no Types?!?
	Reusing Streams
	See also:
	Examples
	Accumulate names in a List
	Convert elements to strings and concatenate them, separated by commas
	Compute sum of salaries of employee
	Group employees by department
	Compute sum of salaries by department
	Partition students into passing and failing
	Names of male members
	Group names of members in roster by gender
	Filter a list to another list
	Finding shortest string a list
	Different Kinds of Streams #2 - lazily using first item if exists
	Different Kinds of Streams #3 - iterate a range of Integers
	Different Kinds of Streams #4 - iterate an array, map the values, calculate the average
	Different Kinds of Streams #5 - lazily iterate a list of strings, map the values, convert to Int, find max
	Different Kinds of Streams #6 - lazily iterate a stream of Ints, map the values, print results
	Different Kinds of Streams #7 - lazily iterate Doubles, map to Int, map to String, print each
	Counting items in a list after filter is applied
	How streams work - filter, upper case, then sort a list
	Different Kinds of Streams #1 - eager using first item if it exists
	Collect example #5 - find people of legal age, output formatted string
	Collect example #6 - group people by age, print age and names together
	Collect example #7a - Map names, join together with delimiter
	Collect example #7b - Collect with SummarizingInt

	Chapter 22: JUnit
	Examples
	Rules

	Chapter 23: Kotlin Android Extensions
	Introduction
	Examples
	Configuration
	Using Views
	Product flavors
	Painfull listener for getting notice, when the view is completely drawn now is so simple and awesome with Kotlin's extension

	Chapter 24: Kotlin Caveats
	Examples
	Calling a toString() on a nullable type

	Chapter 25: Kotlin for Java Developers
	Introduction
	Examples
	Declaring Variables
	Quick Facts
	Equality & Identity
	IF, TRY and others are expressions, not statements

	Chapter 26: logging in kotlin
	Remarks
	Examples
	kotlin.logging

	Chapter 27: Loops in Kotlin
	Remarks
	Examples
	Repeat an action x times
	Looping over iterables
	While Loops
	Break and continue
	Iterating over a Map in kotlin
	Recursion
	Functional constructs for iteration

	Chapter 28: Null Safety
	Examples
	Nullable and Non-Nullable types
	Safe call operator

	Idiom: calling multiple methods on the same, null-checked object
	Smart casts
	Eliminate nulls from an Iterable and array
	Null Coalescing / Elvis Operator
	Assertion
	Elvis Operator (?:)

	Chapter 29: Ranges
	Introduction
	Examples
	Integral Type Ranges
	downTo() function
	step() function
	until function

	Chapter 30: RecyclerView in Kotlin
	Introduction
	Examples
	Main class and Adapter

	Chapter 31: Reflection
	Introduction
	Remarks
	Examples
	Referencing a class
	Referencing a function
	Inter-operating with Java reflection
	Getting values of all properties of a class
	Setting values of all properties of a class

	Chapter 32: Regex
	Examples
	Idioms for Regex Matching in When Expression

	Using immutable locals:
	Using anonymous temporaries:
	Using the visitor pattern:
	Introduction to regular expressions in Kotlin

	The RegEx class
	Null safety with regular expressions
	Raw strings in regex patterns
	find(input: CharSequence, startIndex: Int): MatchResult?
	findAll(input: CharSequence, startIndex: Int): Sequence
	matchEntire(input: CharSequence): MatchResult?
	matches(input: CharSequence): Boolean
	containsMatchIn(input: CharSequence): Boolean
	split(input: CharSequence, limit: Int): List
	replace(input: CharSequence, replacement: String): String
	Chapter 33: Singleton objects
	Introduction
	Examples
	Use as repalcement of static methods/fields of java
	Use as a singleton

	Chapter 34: Strings
	Examples
	Elements of String
	String Literals
	String Templates
	String Equality

	Chapter 35: Type aliases
	Introduction
	Syntax
	Remarks
	Examples
	Function type
	Generic type

	Chapter 36: Type-Safe Builders
	Remarks
	A typical structure of a type-safe builder
	Type-safe builders in Kotlin libraries
	Examples
	Type-safe tree structure builder

	Chapter 37: Vararg Parameters in Functions
	Syntax
	Examples
	Basics: Using the vararg keyword
	Spread Operator: Passing arrays into vararg functions

	Chapter 38: Visibility Modifiers
	Introduction
	Syntax
	Examples
	Code Sample

	Credits

