

The Common Lisp Cookbook

Diving into the programmable
programming language
The Common Lisp Cookbook contributors

© 2023 December, 13th, vindarel vindarel@mailz.org. This e-book is free
of charge, but you can pay what you want for it.

mailto:vindarel@mailz.org
https://ko-fi.com/s/01fee22a32

The Common Lisp Cookbook
Home
Content

Getting started
Language basics
Advanced topics
Outside world
Download in EPUB
Translations

Other CL Resources
Further remarks
License
Getting started with Common Lisp

Install an implementation
With your package manager
With the asdf-vm package manager
With Roswell
With Docker
On Windows

Start a REPL
Libraries

Some terminology
Install Quicklisp
Install libraries
Advanced dependencies management

Working with projects
Creating a new project
How to load an existing project

More settings
See also
Credits

Editor support
Emacs

Installing SLIME

Using Emacs as an IDE
Vim & Neovim
Pulsar (ex Atom)
VSCode

Using VSCode with Alive
JetBrains - NEW in Jan, 2023!
Eclipse
Lem
Sublime Text
LispWorks (proprietary)
Geany (experimental)
Notebooks
REPLs
Others

Emacs
Using Emacs as an IDE

Why Use Emacs?
Emacs Lisp vs Common Lisp
Finding one’s way into Emacs’ built-in documentation
Working with Lisp Code
Lisp Documentation in Emacs - Learning About Lisp Symbols
Miscellaneous
Questions/Answers
Appendix
See also

Using VSCode with Alive
Prerequisites
Recipes
Optional Custom Configurations

LispWorks review
LispWorks features

Free edition limitations
Licencing model

LispWorks IDE
The editor
Keybindings
Searching keybindings by name

Tweaking the IDE
The listener
The stepper. Breakpoints.
The class browser
The function call browser
The Process Browser
Saving images
Misc

Using LispWorks from Emacs and Slime
See also

Functions
Named functions: defun
Arguments

Base case: required arguments
Optional arguments: &optional
Named parameters: &key
Default values to key parameters
Was a key parameter specified?
Variable number of arguments: &rest
Defining key arguments, and allowing more: &allow-other-keys

Return values
Multiple return values: values, multiple-value-bind and nth-
value

Anonymous functions: lambda
Calling functions programmatically: funcall and apply

Referencing functions by name: single quote ' or sharpsign-quote
#'?

Higher order functions: functions that return functions
Closures
setf functions
Currying

Concept
With the Alexandria library

Documentation
Data structures

Lists
Building lists. Cons cells, lists.

Circular lists
car/cdr or first/rest (and second… to tenth)
last, butlast, nbutlast (&optional n)
reverse, nreverse
append
push (item, place)
pop
nthcdr (index, list)
car/cdr and composites (cadr, caadr…) - accessing lists inside lists
destructuring-bind (parameter*, list)
Predicates: null, listp
ldiff, tailp, list*, make-list, fill, revappend, nreconc, consp, atom
member (elt, list)
Replacing objects in a tree: subst, sublis

Sequences
Predicates: every, some,…
Functions
mapping (map, mapcar, remove-if[-not],…)
Flatten a list (Alexandria)
Creating lists with variables
Comparing lists

Set
intersection of lists
Remove the elements of list-b from list-a (set-difference)
Join two lists with uniq elements (union)
Remove elements that are in both lists (set-exclusive-or)
Add an element to a set (adjoin)
Check if this is a subset (subsetp)

Fset - immutable data structure
Arrays and vectors

Create an array, one or many dimensions
Access: aref (array i [j …])
Sizes
Vectors
Transforming a vector to a list.

Hash Table
Creating a Hash Table

Adding an Element to a Hash Table
Getting a value from a Hash Table
Testing for the Presence of a Key in a Hash Table
Deleting from a Hash Table
Deleting a Hash Table
Traversing a Hash Table
Counting the Entries in a Hash Table
Printing a Hash Table readably
Thread-safe Hash Tables
Performance Issues: The Size of your Hash Table

Alist
Definition
Construction
Access
Insert and remove entries
Update entries

Plist
Structures

Creation
Slot access
Setting
Predicate
Single inheritance
Limitations

Tree
Sycamore - purely functional weight-balanced binary trees

Controlling how much of data to print (*print-length*, *print-
level*)
Appendix A - generic and nested access of alists, plists, hash-tables
and CLOS slots
Appendix B - accessing nested data structures

Strings
Creating strings
Accessing Substrings
Accessing Individual Characters
Remove or replace characters from a string
Concatenating Strings

Processing a String One Character at a Time
Reversing a String by Word or Character
Dealing with unicode strings

Sorting unicode strings alphabetically
Breaking strings into graphenes, sentences, lines and words

Controlling Case
With the format function

Trimming Blanks from the Ends of a String
Converting between Symbols and Strings
Converting between Characters and Strings
Finding an Element of a String
Finding a Substring of a String
Converting a String to a Number

To an integer: parse-integer
Extracting many integers from a string: ppcre:all-matches-as-
strings
To any number: read-from-string
To a float: the parse-float library

Converting a Number to a String
Comparing Strings
String formatting

Structure of format
Basic primitive: ~A or ~a (Aesthetics)
Newlines: ~% and ~&
Tabs
Justifying text / add padding on the right
Justifying decimals
Iteration
Formatting a format string (~v, ~?)
Conditional Formatting

Capturing what is is printed into a stream
Cleaning up strings

Removing accentuated letters
Removing punctuation

Appendix
All format directives

See also

Numbers
Introduction

Integer types
Rational types
Floating point types
Complex types

Reading numbers from strings
Converting numbers

Convert float to rational
Convert rational to integer

Rounding floating-point and rational numbers
Comparing numbers
Operating on a series of numbers
Working with Roman numerals
Generating random numbers
Bit-wise Operation

Loop, iteration, mapping
Introduction: loop, iterate, for, mapcar, series
Recipes

Looping forever, return
Looping a fixed number of times
Looping an infinite number of times, cycling over a circular list
Iterate’s for loop
Looping over a list
Looping over a vector
Looping over a hash-table
Looping over two lists in parallel
Nested loops
Computing an intermediate value
Loop with a counter
Ascending, descending order, limits
Steps
Loop and conditionals
Begin the loop with a clause (initially)
Terminate the loop with a test (until, while)
Loop, print and return a result
Named loops and early exit

Count
Summation
max, min
Destructuring, aka pattern matching against the list or dotted pairs

Iterate unique features lacking in loop
No rigid order for clauses
Accumulating clauses can be nested
Finders: finding
Control flow: next-iteration
Generators
Variable backtracking (previous) VS parallel binding
More clauses
Iterate is extensible

Custom series scanners
Shorter series expressions
Loop gotchas
Iterate gotchas
Appendix: list of loop keywords
Credit and references

Loop
Iterate
Series
Others

Multidimensional arrays
Creating

Random numbers
Accessing elements

Row major indexing
Infix syntax

Element-wise operations
Vectorising expressions
Calling BLAS
Reductions

Linear algebra
Matrix multiplication
Matrix inverse
Singular value decomposition

Matlisp
Creating tensors
Element access
Element-wise operations

Dates and Times
Built-in time functions

Universal Time
Internal Time

The local-time library
Create timestamps (encode-timestamp, universal-to-timestamp)
Get today’s date (now, today)
Add or substract times (timestamp+, timestamp-)
Modify timestamps with any offset (adjust-timestamp)
Compare timestamps (timestamp<, timestamp<, timestamp= …)
Find the minimum or maximum timestamp
Maximize or minimize a timestamp according to a time unit
(timestamp-maximize-part, timestamp-minimize-part)
Querying timestamp objects (get the day, the day of week, the days
in month…)
Formatting time strings (format, format-timestring, +iso-8601-
format+)
Defining format strings (format-timestring (:year “-” :month “-”
:day))
Parsing time strings
Misc

Pattern Matching
Common destructuring patterns

cons
list, list*
vector, vector*
Class and structure pattern
type, satisfies
assoc, property, alist, plist
Array, simple-array, row-major-array patterns

Logic based patterns
and, or
not

Guards
Nesting patterns
See more

Regular Expressions
PPCRE

Looking for matching patterns: scan, create-scanner
Extracting information
Replacing text: regex-replace, regex-replace-all
Syntactic sugar

See more
Input/Output

Redirecting the Standard Output of your Program
Faithful Output with Character Streams

CLISP
AllegroCL
LispWorks
Example

Fast Bulk I/O
Files and Directories

Getting the components of a pathname
Testing whether a file exists
Expanding a file or a directory name with a tilde (~)
Turning a pathname into a string with Windows’ directory separator
Creating directories
Deleting directories
Merging files and directories
Get the current working directory (CWD)
Get the current directory relative to a Lisp project
Setting the current working directory
Opening a file
Reading files
Writing content to a file
Getting file attributes (size, access time,…)
Listing files and directories

Error and exception handling
Ignoring all errors, returning nil
Catching any condition (handler-case)

Catching a specific condition
handler-case VS handler-bind
Defining and making conditions
Signaling (throwing) conditions: error, warn, signal

Conditions hierarchy
Custom error messages (:report)

Inspecting the stacktrace
Restarts, interactive choices in the debugger

Using assert’s optional restart
Defining restarts (restart-case)
Changing a variable with restarts
Calling restarts programmatically (handler-bind, invoke-restart)
Using other restarts (find-restart)
Hiding and showing restarts

Handling conditions (handler-bind)
Running some code, condition or not (“finally”) (unwind-protect)
Conclusion
Resources
See also

Packages
Creating a package

Accessing symbols from a package
Exporting symbols
Importing symbols from another package
Importing all symbols
About “use”-ing packages being a bad practice

List all Symbols in a Package (do-external-symbols)
Package nickname

Nickname Provided by Packages
Package locks

See also
Macros

How Macros Work
Quote
Macroexpand
Note: Slime tips
Macros VS functions

Evaluation context
Backquote and comma
Getting Macros Right

Gensym
What Macros are For
See also

Fundamentals of CLOS
Classes and instances

Diving in
Defining classes (defclass)
Creating objects (make-instance)
Slots
find-class, class-name, class-of
Subclasses and inheritance
Multiple inheritance
Redefining and changing a class
Pretty printing
Classes of traditional lisp types
Introspection
See also

Methods
Diving in
Generic functions (defgeneric, defmethod)
Multimethods
Controlling setters (setf-ing methods)
Dispatch mechanism and next methods
Method qualifiers (before, after, around)
Other method combinations
Debugging: tracing method combination
Difference between defgeneric and defmethod: redefinition
Removing a method

MOP
Metaclasses
Controlling the initialization of instances (initialize-instance)
Controlling the update of instances (update-instance-for-redefined-
class)

Controlling the update of instances to new classes (update-instance-
for-different-class)

Type System
Values Have Types, Not Variables
Type Hierarchy
Checking Types
Type Specifier
Defining New Types
Run-time type Checking
Compile-time type checking

Declaring the type of variables
Composing types
Declaring the input and output types of functions
Declaring &key parameters
Declaring &rest parameters
Declaring class slots types
Alternative type checking syntax: defstar, serapeum
Limitations

See also
TCP/UDP programming with sockets

TCP/IP
UDP/IP
Credit

Interfacing with your OS
Accessing Environment variables
Accessing the command line arguments

Basics
Parsing command line arguments

Running external programs
Synchronously
Asynchronously
Input and output from subprocess
Capturing standard and error output
Running visual commands (htop)

Piping
Get Lisp’s current Process ID (PID)

Foreign Function Interfaces

Example: Calling ‘gethostname’ from CLISP
Example: Calling ‘gethostname’ from Allegro CL

Threads, concurrency, parallelism
Introduction

Why bother?
What is Concurrency? What is Parallelism?

Bordeaux threads
Installing Bordeaux Threads
Checking for thread support in Common Lisp
Basics — list current thread, list all threads, get thread name
Create a thread: print a message onto the top-level
Print a message onto the top-level — fixed
Print a message onto the top-level — read-time eval macro
Modify a shared resource from multiple threads
Modify a shared resource from multiple threads — fixed using locks
Modify a shared resource from multiple threads — using atomic
operations
Joining on a thread, destroying a thread
Timeouts
Useful functions

SBCL threads
Basics — list current thread, list all threads, get thread name
Update a global variable from a thread
Print a message onto the top-level using a thread
Print a message onto the top-level — better
Modify a shared resource from multiple threads
Modify a shared resource from multiple threads — fixed using locks
Modify a shared resource from multiple threads — using atomic
operations
Joining on a thread, destroying a thread example
Useful functions

Wrap-up
Parallel programming with lparallel

Installation
Preamble - get the number of cores
Common Setup
Using channels and queues

Killing tasks
Using promises and futures
Using cognates - parallel equivalents of Common Lisp counterparts
Error handling

Monitoring and controlling threads with Slime
References

Defining Systems
ASDF
Simple examples

Loading a system definition
Loading a system
Testing a system
Designating a system
How to write a trivial system definition
How to write a trivial testing definition

Create a project skeleton
Debugging

Print debugging
Logging
Using the powerful REPL
Inspect and describe
Trace

Trace options
Trace options: break
Trace options: trace on conditions, trace if called from another
function
Tracing method invocation

The interactive debugger
Compile with maximum debugging information

Step
Resume a program execution from anywhere in the stack

Break
Breakpoints in Slime

Advise and watch
Cross-referencing
SLY stepper and SLY stickers
Unit tests

Remote debugging
References

Performance Tuning and Tips
Finding Bottlenecks

Acquiring Execution Time
Know your Lisp’s statistical profiler
Use flamegraphs and other tracing profilers
Checking Assembly Code

Using Declare Expression
Speed and Safety
Type Hints
More on Type Declaration with declaim
Declaring function types
Code Inline

Optimizing Generic Functions
Using Static Dispatch

Block compilation
Scripting. Command line arguments. Executables.

Scripting with Common Lisp
Quickloading dependencies from a script

Building a self-contained executable
With SBCL - Images and Executables
With ASDF
With Deploy - ship foreign libraries dependencies
With Roswell or Buildapp
For web apps
Size and startup times of executables per implementation
Building a smaller binary with SBCL’s core compression

Parsing command line arguments
Declaring options
Top-level command
Testing options parsing on the REPL
Handling options
Main entry point

Catching a C-c termination signal
Continuous delivery of executables
See also

Credit
Testing the code

Testing with FiveAM
Install and load
Defining suites (def-suite, def-suite*)
Defining tests
Running tests
Custom and shorter tests explanations
Fixtures
Random checking
ASDF integration
Running tests on the terminal
Testing report customization

Interactively fixing unit tests
Code coverage

Generating an html test coverage output
Continuous Integration

GitHub Actions, Circle CI, Travis… with CI-Utils
Gitlab CI
SourceHut

Emacs integration: running tests using Slite
References
See also

Database Access and Persistence
The Mito ORM and SxQL

Overview
Connecting to a DB
Models
Migrations
Queries
Triggers
Inflation/Deflation
Eager loading
Schema versioning
Introspection
Testing

See also

GUI toolkits
Introduction

Tk (Ltk and nodgui)
Qt4 (Qtools)
Gtk+3 (cl-cffi-gtk)
IUP (lispnik/IUP)
Nuklear (Bodge-Nuklear)

Getting started
Tk
Qt4
Gtk3
IUP
Nuklear

Conclusion
Web development

Overview
Installation
Simple webserver

Serve local files
Access your server from the internet

Hunchentoot
Routing

Simple routes
Accessing GET and POST parameters
Accessing a JSON request body

Error handling
Hunchentoot
Clack

Weblocks - solving the “JavaScript problem”©
Templates

Djula - HTML markup
Spinneret - lispy templates

Serve static assets
Hunchentoot

Connecting to a database
Checking a user is logged-in
Encrypting passwords

Runnning and building
Running the application from source
Building a self-contained executable
Continuous delivery with Travis CI or Gitlab CI
Multi-platform delivery with Electron

Deployment
Deploying manually
Systemd: Daemonizing, restarting in case of crashes, handling logs
With Docker
With Guix
Running behind Nginx
Deploying on Heroku and other services

Monitoring
Connecting to a remote Lisp image
Hot reload
See also
Credits

Web Scraping
HTTP Requests
Parsing and extracting content with CSS selectors
Async requests

WebSockets
The websocket-driver Concept
Defining Handlers for Chat Server Logic
Defining A Server
A Quick HTML Chat Client
Check it out!
All The Code

APPENDIX: Contributors

Home
Cookbook, n. a book containing recipes and other information about
the preparation and cooking of food.

A Cookbook is an invaluable resource, as it shows how to do various things
in a clear fashion without all the theoretical context. Sometimes you just
need to look things up. While cookbooks can never replace proper
documentation such as the HyperSpec or books such as Practical Common
Lisp, every language deserves a good cookbook, Common Lisp included.

The CL Cookbook aims to tackle all sort of topics, for the beginner as for
the more advanced developer.

Content
Getting started

License
Getting started

How to install a Common Lisp implementation
How to start a Lisp REPL
How to install third-party libraries with Quicklisp
How to work with projects

Editor support
Using Emacs as an IDE
The LispWorks IDE
Using VSCode with Alive

Language basics

Functions
Data Structures
Strings

Regular Expressions
Numbers
Loops, iteration, mapping
Multidimensional Arrays
Dates and Times
Pattern Matching
Input/Output
Files and Directories
CLOS (the Common Lisp Object System)

Advanced topics

Packages
Defining Systems

Error and condition handling
Debugging
Macros and Backquote
Type System
Concurrency and Parallelism
Performance Tuning
Testing and Continuous Integration
Scripting. Building executables

Outside world

Interfacing with your OS
Databases
Foreign Function Interfaces
GUI programming
Sockets
WebSockets
Web development
Web Scraping

Download in EPUB

The Cookbook is also available in EPUB (and PDF) format.

You can download it directly in EPUB and PDF, and you can pay what you
want to further support its development:

Donate and download the EPUB version

Thank you!

Translations

The Cookbook has been translated to:

Chinese simplified (Github)

clbr://internal.invalid/book/EPUB/text/process.html
https://github.com/LispCookbook/cl-cookbook/releases/download/2023-12-13/common-lisp-cookbook.epub
https://github.com/LispCookbook/cl-cookbook/releases/download/2023-12-13/common-lisp-cookbook.pdf
https://ko-fi.com/s/01fee22a32
https://oneforalone.github.io/cl-cookbook-cn/#/
https://github.com/oneforalone/cl-cookbook-cn

Portuguese (Brazilian) (Github)

https://book.lisp.com.br/
https://github.com/commonlispbr/cl-cookbook

Other CL Resources
lisp-lang.org: success stories, tutorials and style guide
Awesome-cl, a curated list of libraries
List of Lisp Communities
Lisp Koans - a language learning exercise, which guides the learner
progressively through many language features.
Learn X in Y minutes - Where X = Common Lisp - Small Common
Lisp tutorial covering the essentials.
Common Lisp Libraries Read the Docs - the documentation of popular
libraries ported to the modern and good looking Read The Docs style.
lisp-tips
Articulate Common Lisp, an initiation manual for the uninitiated
Lisp and Elements of Style by Nick Levine
Pascal Costanza’s Highly Opinionated Guide to Lisp
Cliki, Common Lisp’s wiki
📹 Common Lisp programming: from novice to effective developer, a
video course on the Udemy platform (paywall), by one of the main
Cookbook contributor. “Thanks for supporting my work on Udemy.
You can ask me for a free coupon if you are a student.” vindarel

and also: Common Lisp Pitfalls by Jeff Dalton.

Books

Practical Common Lisp by Peter Seibel
Common Lisp Recipes by Edmund Weitz, published in 2016,
Common Lisp: A Gentle Introduction to Symbolic Computation by
David S. Touretzky
Successful Lisp: How to Understand and Use Common Lisp by David
B. Lamkins
On Lisp by Paul Graham
Common Lisp the Language, 2nd Edition by Guy L. Steele
A Tutorial on Good Lisp Style by Peter Norvig and Kent Pitman

http://lisp-lang.org/
https://github.com/CodyReichert/awesome-cl
https://github.com/CodyReichert/awesome-cl#community
https://github.com/google/lisp-koans/
https://learnxinyminutes.com/docs/common-lisp/
https://common-lisp-libraries.readthedocs.io/
https://github.com/lisp-tips/lisp-tips/issues/
http://articulate-lisp.com/
http://web.archive.org/web/20190316190256/https://www.nicklevine.org/declarative/lectures/
http://www.p-cos.net/lisp/guide.html
http://www.cliki.net/
https://www.udemy.com/course/common-lisp-programming/?referralCode=2F3D698BBC4326F94358
https://github.com/LispCookbook/cl-cookbook/issues/479
http://www.gigamonkeys.com/book/
http://weitz.de/cl-recipes/
http://www-2.cs.cmu.edu/~dst/LispBook/
https://successful-lisp.blogspot.com/p/httpsdrive.html
http://www.paulgraham.com/onlisptext.html
http://www-2.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf

Advanced books

Loving Lisp - the Savy Programmer’s Secret Weapon by Mark Watson
Programming Algorithms - A comprehensive guide to writing efficient
programs with examples in Lisp.

Specifications

The Common Lisp HyperSpec by Kent M. Pitman (also available in
Dash, Zeal and Velocity)
The Common Lisp Community Spec - a new rendering produced from
the ANSI specification draft, that everyone has the right to edit.

https://leanpub.com/lovinglisp/
https://leanpub.com/progalgs
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
https://kapeli.com/dash
https://zealdocs.org/
https://velocity.silverlakesoftware.com/
https://cl-community-spec.github.io/pages/index.html

Further remarks
This is a collaborative project that aims to provide for Common Lisp
something similar to the Perl Cookbook published by O’Reilly. More
details about what it is and what it isn’t can be found in this thread from
comp.lang.lisp.

If you want to contribute to the CL Cookbook, please send a pull request in
or file a ticket!

Yes, we’re talking to you! We need contributors - write a chapter that’s
missing and add it, find an open question and provide an answer, find bugs
and report them, (If you have no idea what might be missing but would like
to help, take a look at the table of contents of the Perl Cookbook.) Don’t
worry about the formatting, just send plain text if you like - we’ll take care
about that later.

Thanks in advance for your help!

The pages here on Github are kept up to date. You can also download a up
to date zip file for offline browsing. More info can be found at the Github
project page.

http://www.oreilly.com/catalog/cookbook/
http://groups.google.com/groups?threadm=m3it9soz3m.fsf%40bird.agharta.de
news:comp.lang.lisp
http://www.oreilly.com/catalog/cookbook/
https://github.com/LispCookbook/cl-cookbook/archive/master.zip
https://github.com/LispCookbook/cl-cookbook

License
Redistribution and use of the “Common Lisp Cookbook” in its original
form (HTML) or in ‘derived’ forms (PDF, Postscript, RTF and so forth)
with or without modification, are permitted provided that the following
condition is met:

Redistributions must reproduce the above copyright notice, this and
the following disclaimer in the document itself and/or other materials
provided with the distribution.

IMPORTANT: This document is provided by the Common Lisp Cookbook
Project “as is” and any expressed or implied warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose are disclaimed. In no event shall the Common Lisp
Cookbook Project be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits; or
business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this documentation, even if
advised of the possibility of such damage.

LispCookbook Github Group addendum: this document is now managed in
a modified format.

Copyright: 2015-2022 LispCookbook Github Group 2002-2007 The
Common Lisp Cookbook Project, # Foreword

Cookbook, n. a book containing recipes and other information about
the preparation and cooking of food.

The Common Lisp Cookbook is a collaborative resource to help you learn
Common Lisp the language, its ecosystem and to get you started in a wide

range of programming areas. It can be used by Lisp newcomers as a tutorial
(getting started, functions, etc) and by everybody as a reference (loop!).

We hope that these EPUB and PDF versions make the learning experience
even more practical and enjoyable.

Vincent “vindarel” Dardel, for the Cookbook contributors

Getting started with Common Lisp
We’ll begin with presenting easy steps to install a development environment
and to start a new Common Lisp project.

Want a 2-clicks install? Then get Portacle, a portable and multi-platform
Common Lisp environment. It ships Emacs, SBCL (the implementation),
Quicklisp (package manager), SLIME (IDE) and Git. It’s the most
straightforward way to get going!

Install an implementation

With your package manager

If you don’t know which implementation of Common Lisp to use, try
SBCL:

apt-get install sbcl

Common Lisp has been standardized via an ANSI document, so it can be
implemented in different ways. See Wikipedia’s list of implementations.

The following implementations are packaged for Debian and most other
popular Linux distributions:

Steel Bank Common Lisp (SBCL)
Embeddable Common Lisp (ECL), which compiles to C,
CLISP

Other well-known implementations include:

ABCL, to interface with the JVM,
ClozureCL, a good implementation with very fast build times (see this
Debian package for Clozure CL),

https://shinmera.github.io/portacle/
https://en.wikipedia.org/wiki/Common_Lisp#Implementations
http://www.sbcl.org/
https://gitlab.com/embeddable-common-lisp/ecl/
https://clisp.sourceforge.io/
http://abcl.org/
https://ccl.clozure.com/
http://mr.gy/blog/clozure-cl-deb.html

CLASP, that interoperates with C++ libraries using LLVM for
compilation to native code,
AllegroCL (proprietary)
LispWorks (proprietary)

and older implementations:

CMUCL, originally developed at Carnegie Mellon University, from
which SBCL is derived, and
GNU Common Lisp
and there is more!

With the asdf-vm package manager

The asdf-vm tool can be used to manage a large ecosystem of runtimes and
tools.

Steel Bank Common Lisp (SBCL) is available via this plugin for asdf-
vm

With Roswell

Roswell is:

an implementation manager: it makes it easy to install a Common Lisp
implementation (ros install ecl), an exact version of an
implementation (ros install sbcl/1.2.0), to change the default one
being used (ros use ecl),
a scripting environment (helps to run Lisp from the shell, to get the
command line arguments,…),
a script installer,
a testing environment (to run tests, including on popular Continuous
Integration platforms),
a building utility (to build images and executables in a portable way).

You’ll find several ways of installation on its wiki (Debian package,
Windows installer, Brew/Linux Brew,…).

https://github.com/drmeister/clasp
https://franz.com/products/allegrocl/
http://www.lispworks.com/
https://gitlab.common-lisp.net/cmucl/cmucl
https://en.wikipedia.org/wiki/GNU_Common_Lisp
http://asdf-vm.com/
http://www.sbcl.org/
https://github.com/smashedtoatoms/asdf-sbcl
http://asdf-vm.com/
https://github.com/roswell/roswell/wiki

With Docker

If you already know Docker, you can get started with Common Lisp pretty
quickly. The clfoundation/cl-devel image comes with recent versions of
SBCL, CCL, ECL and ABCL, plus Quicklisp installed in the home
(/home/cl), so than we can ql:quickload libraries straight away.

Docker works on GNU/Linux, Mac and Windows.

The following command will download the required image (around 1.0GB
compressed), put your local sources inside the Docker image where
indicated, and drop you into an SBCL REPL:

docker run --rm -it -v /path/to/local/code:/home/cl/common-
lisp/source clfoundation/cl-devel:latest sbcl

We still want to develop using Emacs and SLIME, so we need to connect
SLIME to the Lisp inside Docker. See slime-docker, which is a library that
helps on setting that up.

On Windows

All implementations above can be installed on Windows.

Portacle is multiplatform and works on Windows.

You can also try:

ρEmacs, a preconfigured distribution of GNU Emacs specifically for
Microsoft Windows. It ships with many CL implementations: CCL,
SBCL, CLISP, ABCL and ECL, and also has components for other
programming languages (Python, Racket, Java, C++…).
Corman Lisp, for Windows XP, Windows 2000, Windows ME or
Windows NT. It is fully integrated with the Win32 API, and all the
Windows API functions are readily available from Lisp.

Start a REPL

https://docs.docker.com/
https://hub.docker.com/r/clfoundation/cl-devel
https://gitlab.common-lisp.net/cl-docker-images/slime-docker
https://shinmera.github.io/portacle/
https://rho-emacs.sourceforge.io/
https://github.com/sharplispers/cormanlisp

Just launch the implementation executable on the command line to enter the
REPL (Read Eval Print Loop), i.e. the interactive interpreter.

Quit with (quit) or ctr-d (on some implementations).

Here is a sample session:

user@debian:~$ sbcl
This is SBCL 1.3.14.debian, an implementation of ANSI Common
Lisp.
More information about SBCL is available at
<http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no
warranty.
It is mostly in the public domain; some portions are provided
under
BSD-style licenses. See the CREDITS and COPYING files in the
distribution for more information.
* (+ 1 2)

3
* (quit)
user@debian:~$

You can slightly enhance the REPL (the arrow keys do not work, it has no
history,…) with rlwrap:

apt-get install rlwrap

and:

rlwrap sbcl

But we’ll setup our editor to offer a better experience instead of working in
this REPL. See editor-support.

Lisp is interactive by nature, so in case of an error we enter the debugger.
This can be annoying in certain cases, so you might want to use SBCL’s --
disable-debugger option.

TIP: The CLISP implementation has a better default REPL for the
terminal (readline capabilities, completion of symbols). You can even
use clisp -on-error abort to have error messages without the
debugger. It’s handy to try things out, but we recommend to set-up
your editor and to use SBCL or CCL.

TIP: By adding the -c switch to rlwrap, you can autocomplete file
names.

Libraries

Common Lisp has thousands of libraries available under a free software
license. See:

Quickdocs - the library documentation hosting for CL.
the Awesome-cl list, a curated list of libraries.
Cliki, the Common Lisp wiki.

Some terminology

In the Common Lisp world, a package is a way of grouping symbols
together and of providing encapsulation. It is similar to a C++
namespace, a Python module or a Java package.

A system is a collection of CL source files bundled with an .asd file
which tells how to compile and load them. There is often a one-to-one
relationship between systems and packages, but this is in no way
mandatory. A system may declare a dependency on other systems.
Systems are managed by ASDF (Another System Definition Facility),

http://quickdocs.org/
https://github.com/CodyReichert/awesome-cl
http://www.cliki.net/
https://common-lisp.net/project/asdf/asdf.html

which offers functionalities similar to those of make and ld.so, and has
become a de facto standard.

A Common Lisp library or project typically consists of one or several
ASDF systems (and is distributed as one Quicklisp project).

Install Quicklisp

Quicklisp is more than a package manager, it is also a central repository (a
dist) that ensures that all libraries build together.

It provides its own dist but it is also possible to build our own.

To install it, we can either:

1- run this command, anywhere:

curl -O https://beta.quicklisp.org/quicklisp.lisp

and enter a Lisp REPL and load this file:

sbcl --load quicklisp.lisp

or

2- install the Debian package:

apt-get install cl-quicklisp

and load it, from a REPL:

Then, in both cases, still from the REPL:

This will create the ~/quicklisp/ directory, where Quicklisp will maintain
its state and downloaded projects.

(load "/usr/share/common-lisp/source/quicklisp/quicklisp.lisp")

(quicklisp-quickstart:install)

https://www.quicklisp.org/beta/

If you wish, you can install Quicklisp to a different location. For instance,
to install it to a hidden folder on Unix systems:

If you want Quicklisp to always be loaded in your Lisp sessions, run
(ql:add-to-init-file): this adds the right stuff to the init file of your CL
implementation. Otherwise, you have to run (load
"~/quicklisp/setup.lisp") in every session if you want to use Quicklisp
or any of the libraries installed through it.

It adds the following in your (for example) ~/.sbclrc:

Install libraries

In the REPL:

For example, this installs the “str” string manipulation library:

and voilà. You can use it right away:

SEE MORE: To understand the package:a-symbol notation,
read the packages page, section “Accessing symbols from a
package”.

(quicklisp-quickstart:install :path "~/.quicklisp")

#-quicklisp
 (let ((quicklisp-init (merge-pathnames
 "quicklisp/setup.lisp"
 (user-homedir-pathname))))
 (when (probe-file quicklisp-init)
 (load quicklisp-init)))

(ql:quickload "system-name")

(ql:quickload "str")

(str:title-case "HELLO LISP!")

https://github.com/vindarel/cl-str/
clbr://internal.invalid/book/EPUB/text/packages.html

We can install more than one library at once. Here we install cl-ppcre for
regular-expressions, and Alexandria, a utility library:

Anytime you want to use a third-party library in your Lisp REPL, you can
run this ql:quickload command. It will not hit the network a second time
if it finds that the library is already installed on your file system. Libraries
are by default installed in ~/quicklisp/dist/quicklisp/.

Note also that dozens of Common Lisp libraries are packaged in Debian.
The package names usually begin with the cl- prefix (use apt-cache
search --names-only "^cl-.*" to list them all).

For example, in order to use the cl-ppcre library, one should first install
the cl-ppcre package.

Then, in SBCL, it can be used like this:

Here we pretend we don’t have Quicklisp installed and we use require to
load a module that is available on the file system. In doubt, you can use
ql:quickload.

See Quicklisp’s documentation for more commands. For instance, see how
to upgrade or rollback your Quicklisp’s distribution.

Advanced dependencies management

You can drop Common Lisp projects into any of those folders:

~/quicklisp/local-projects
~/common-lisp,
~/.local/share/common-lisp/source,

(ql:quickload '("str" "cl-ppcre" "alexandria"))

(require "asdf")
(require "cl-ppcre")
(cl-ppcre:regex-replace "fo+" "foo bar" "frob")

https://edicl.github.io/cl-ppcre/
https://alexandria.common-lisp.dev/draft/alexandria.html

A library installed here is automatically available for every project.

For a complete list, see the values of:

and

Providing our own version of a library. Cloning projects.

Given the property above, we can clone any library into the
~/quicklisp/local-projects/ directory and it will be found by ASDF
(and Quicklisp) and available right-away:

or

The practical different between the two is that ql:quickload first tries to
fetch the system from the Internet if it is not already installed.

Note that symlinks in local-projects to another location of your liking works
too.

How to work with local versions of libraries

If we need libraries to be installed locally, for only one project, or in order
to easily ship a list of dependencies with an application, we can use Qlot or
CLPM.

Quicklisp also provides Quicklisp bundles. They are self-contained sets of
systems that are exported from Quicklisp and loadable without involving
Quicklisp.

(asdf/source-registry:default-user-source-registry)

asdf:*central-registry*

(asdf:load-system "system")

(ql:quickload "system")

https://github.com/fukamachi/qlot
https://clpm.dev/
https://www.quicklisp.org/beta/bundles.html

At last, there’s Quicklisp controller to help us build dists.

Working with projects

Now that we have Quicklisp and our editor ready, we can start writing Lisp
code in a file and interacting with the REPL.

But what if we want to work with an existing project or create a new one,
how do we proceed, what’s the right sequence of defpackage, what to put
in the .asd file, how to load the project into the REPL ?

Creating a new project

Some project builders help to scaffold the project structure. We like cl-
project that also sets up a tests skeleton.

In short:

it will create a directory structure like this:

|-- my-project.asd
|-- my-project-test.asd
|-- README.markdown
|-- README.org
|-- src
| `-- my-project.lisp
`-- tests
 `-- my-project.lisp

Where my-project.asd resembles this:

(ql:quickload "cl-project")
(cl-project:make-project #P"./path-to-project/root/")

(asdf:defsystem "my-project"
 :version "0.1.0"
 :author ""
 :license ""
 :depends-on () ;; <== list of Quicklisp dependencies
 :components ((:module "src"

https://github.com/quicklisp/quicklisp-controller
https://github.com/fukamachi/cl-project

and src/my-project.lisp this:

ASDF documentation: defining a system with defsystem

How to load an existing project

You have created a new project, or you have an existing one, and you want
to work with it on the REPL, but Quicklisp doesn’t know it. How can you
do ?

Well first, if you create it or clone it into one of ~/common-lisp,
~/.local/share/common-lisp/source/ or ~/quicklisp/local-projects,
you’ll be able to (ql:quickload …) it with no further ado.

Otherwise you’ll need to compile and load its system definition (.asd) first.
In SLIME with the slime-asdf contrib loaded, type C-c C-k (slime-
compile-and-load-file) in the .asd, then you can (ql:quickload …) it.

You can use (asdf:load-asd "my-project.asd") programmatically
instead of C-c C-k.

Usually you want to “enter” the system in the REPL at this stage:

Lastly, you can compile or eval the sources (my-project.lisp) with C-c
C-k or C-c C-c (slime-compile-defun) in a form, and see its result in the
REPL.

 :components
 ((:file "my-project"))))
 :description ""
 :long-description
 #.(read-file-string
 (subpathname *load-pathname* "README.markdown"))
 :in-order-to ((test-op (test-op "my-project-test"))))

(defpackage footest
 (:use :cl))
(in-package :footest)

(in-package :my-project)

https://common-lisp.net/project/asdf/asdf.html#Defining-systems-with-defsystem

Another solution is to use ASDF’s list of known projects:

and since ASDF is integrated into Quicklisp, we can quickload our project
right away.

Happy hacking !

More settings

You might want to set SBCL’s default encoding format to utf-8:

(setf sb-impl::*default-external-format* :utf-8)

You can add this to your ~/.sbclrc.

If you dislike the REPL to print all symbols upcase, add this:

(setf *print-case* :downcase)

Warning: This might break the behaviour of some packages like it
happened with Mito. Avoid doing this in production.

See also

cl-cookieproject - a project skeleton for a ready-to-use project with an
entry point and unit tests. With a src/ subdirectory, some more
metadata, a 5AM test suite, a way to build a binary, an example CLI
args parsing, Roswell integration.
Source code organization, libraries and packages:
https://lispmethods.com/libraries.html

Credits

https://wiki.debian.org/CommonLisp

;; startup file like ~/.sbclrc
(pushnew "~/path-to/project/" asdf:*central-registry* :test #'eq

https://github.com/fukamachi/mito/issues/45
https://github.com/vindarel/cl-cookieproject
https://lispmethods.com/libraries.html
https://wiki.debian.org/CommonLisp

http://articulate-lisp.com/project/new-project.html

http://articulate-lisp.com/project/new-project.html

Editor support
The editor of choice is still Emacs, but it is not the only one.

Emacs

SLIME is the Superior Lisp Interaction Mode for Emacs. It has support for
interacting with a running Common Lisp process for compilation,
debugging, documentation lookup, cross-references, and so on. It works with
many implementations.

Portacle is a portable and multi-platform Common Lisp environment. It
ships Emacs, SBCL, Quicklisp, SLIME and Git.

Installing SLIME

SLIME is in the official GNU ELPA repository of Emacs Lisp packages (in
Emacs24 and forward). Install with:

M-x package-install RET slime RET

https://www.gnu.org/software/emacs/
https://github.com/slime/slime/
https://shinmera.github.io/portacle/

Since SLIME is heavily modular and the defaults only do the bare minimum
(not even the SLIME REPL), you might want to enable more features with

For more details, consult the documentation (also available as an Info page).

Now you can run SLIME with M-x slime and/or M-x slime-connect.

See also:

https://wikemacs.org/wiki/SLIME - configuration examples and
extensions.

Using Emacs as an IDE

See “Using Emacs as an IDE”.

Vim & Neovim

Slimv is a full-blown environment for Common Lisp inside of Vim.

Vlime is a Common Lisp dev environment for Vim (and Neovim), similar to
SLIME for Emacs and SLIMV for Vim.

(slime-setup '(slime-fancy slime-quicklisp slime-asdf))

https://common-lisp.net/project/slime/doc/html/
https://wikemacs.org/wiki/SLIME
https://github.com/kovisoft/slimv
https://github.com/vlime/vlime

cl-neovim makes it possible to write Neovim plugins in Common Lisp.

quicklisp.nvim is a Neovim frontend for Quicklisp.

Slimv_box brings Vim, SBCL, ABCL, and tmux in a Docker container for a
quick installation.

See also:

Lisp in Vim demonstrates usage and compares both Slimv and Vlime

Pulsar (ex Atom)

See SLIMA. This package allows you to interactively develop Common
Lisp code, turning Atom, or now Pulsar, into a pretty good Lisp IDE. It
features:

REPL

https://github.com/adolenc/cl-neovim/
https://gitlab.com/HiPhish/quicklisp.nvim
https://github.com/justin2004/slimv_box
https://susam.net/blog/lisp-in-vim.html
https://github.com/neil-lindquist/slima
https://github.com/pulsar-edit/pulsar

integrated debugger
(not a stepping debugger yet)

jump to definition
autocomplete suggestions based on your code
compile this function, compile this file
function arguments order
integrated profiler
interactive object inspection.

It is based on the Swank backend, like Slime for Emacs.

VSCode

Alive makes VSCode a powerful Common Lisp development. It hooks
directly into the Swank server that Emacs Slime uses and is fully compatible
with VSCode’s ability to develop remotely in containers, WSL, Remote
machines, etc. It has no dependencies beyond a version of Common Lisp on
which to run the Swank server. It can be configured to run with Quicklisp,
CLPM, and Roswell. It currently supports:

Syntax highlighting

https://marketplace.visualstudio.com/items?itemName=rheller.alive

Code completion
Code formatter
Jump to definition
Snippets
REPL integration
Interactive Debugger
REPL history
Inline evaluation
Macro expand
Disassemble
Inspector
Hover Text
Rename function args and let bindings
Code folding

commonlisp-vscode extension works via the cl-lsp language server and it’s
possible to write LSP client that works in other editors. It depends heavily on
Roswell. It currently supports:

running a REPL
evaluate code
auto indent,
code completion
go to definition
documentation on hover

https://marketplace.visualstudio.com/items?itemName=ailisp.commonlisp-vscode
https://github.com/ailisp/cl-lsp
https://roswell.github.io/Home.html

Using VSCode with Alive

See Using VSCode with Alive.

JetBrains - NEW in Jan, 2023!

SLT is a new (published on January, 2023) plugin for the suite of JetBrains’
IDEs. It uses a modified SLIME/Swank protocol to commmunicate with
SBCL, providing IDE capabilities for Common Lisp.

It has a very good user guide.

At the time of writing, for its version 0.4, it supports:

REPL
symbol completion
send expressions to the REPL
interactive debugging, breakpoints
documentation display
cross-references
find symbol by name, global class/symbol search

https://github.com/Enerccio/SLT
https://github.com/Enerccio/SLT/wiki/User-Guide

inspector (read-only)
graphical threads list
SDK support, automatic download for Windows users
multiple implementations support: SBCL, CCL, ABCL and AllegroCL.

Eclipse

Dandelion is a plugin for the Eclipse IDE.

Available for Windows, Mac and Linux, built-in SBCL and CLISP support
and possibility to connect other environments, interactive debugger with
restarts, macro-expansion, parenthesis matching,…

https://github.com/Ragnaroek/dandelion

Lem

Lem is an editor tailored for Common Lisp development. Once you install it,
you can start developing. Its interface resembles Emacs and SLIME (same
shortcuts). It comes with an ncurses and an SDL2 frontend, and other
programming modes thanks to its built-in LSP client: Python, Go, Rust, JS,
Nim, Scheme, HTML, CSS, plus a directory mode, a vim layer, and more.

https://github.com/lem-project/lem/

It can be started as a REPL right away in the terminal. Run it with:

lem --eval "(lem-lisp-mode:start-lisp-repl t)"

So you probably want a shell alias:

alias ilem='lem --eval "(lem-lisp-mode:start-lisp-repl t)"'

Sublime Text

Sublime Text has now good support for Common Lisp.

First install the “SublimeREPL” package and then see the options in
Tools/SublimeREPL to choose your CL implementation.

Then Slyblime ships IDE-like features to interact with the running Lisp
image. It is an implementation of SLY and it uses the same backend
(SLYNK). It provides advanced features including a debugger with stack
frame inspection.

http://www.sublimetext.com/3
https://github.com/s-clerc/slyblime

LispWorks (proprietary)

LispWorks is a Common Lisp implementation that comes with its own
Integrated Development Environment (IDE) and its share of unique features,
such as the CAPI GUI toolkit. It is proprietary and provides a free limited
version.

You can read our LispWorks review here.

http://www.lispworks.com/

Geany (experimental)

Geany-lisp is an experimental lisp mode for the Geany editor. It features
completion of symbols, smart indenting, jump to definition, compilation of
the current file and highlighting of errors and warnings, a REPL, and a
project skeleton creator.

https://github.com/jasom/geany-lisp
https://geany.org/

Notebooks

common-lisp-jupyter is a Common Lisp kernel for Jupyter notebooks.

https://github.com/yitzchak/common-lisp-jupyter

You can see a live Jupyter notebook written in Lisp here. It is easy to install
(Roswell, repo2docker and Docker recipes).

There is also Darkmatter, a notebook-style Common Lisp environment, built
in Common Lisp.

REPLs

cl-repl is an ipython-like REPL. It supports symbol completion, magic and
shell commands, editing command in a file and a simple debugger.

You might also like sbcli, an even simpler REPL with readline capabilities.
It handles errors gracefully instead of showing a debugger.

https://nbviewer.jupyter.org/github/yitzchak/common-lisp-jupyter/blob/master/examples/about.ipynb
https://github.com/tamamu/darkmatter
https://github.com/koji-kojiro/cl-repl
https://github.com/hellerve/sbcli

Others

There are some more editors out there, more or less discontinued, and free
versions of other Lisp vendors, such as Allegro CL.

Emacs
Using Emacs as an IDE

This page is meant to provide an introduction to using Emacs as a Lisp IDE.

Note: Portacle is a portable and multi-platform CL development
environment, a straightforward way to get going.

Why Use Emacs?

Emacs has fantastic support for working with Lisp code
Not tying yourself into a single CL vendor’s editor
Runs on virtually every OS and CL implementation
Extensible: awesome-emacs.

https://www.gnu.org/software/emacs/
https://shinmera.github.io/portacle/
https://github.com/emacs-tw/awesome-emacs

Can be customized to do many common tasks
Built-in support for different source code version control systems
Vast number of add-on packages
Emacs will probably always be around
Emacs works well either with a mouse or without a mouse
Emacs works well either in GUI mode or in the terminal
Emacs has a large user base with multiple newsgroups
Benefits of using Emacs far outweigh the effort spent in learning it
Because Org-mode
Because Magit
Because Emacs Rocks !

Emacs Lisp vs Common Lisp

Learning Emacs Lisp is useful and similar (but different from CL):
Dynamic scope is everywhere
There are no reader (or reader-related) functions
Does not support all the types that are supported in CL
Incomplete implementation of CLOS (with the add-on EIEIO
package)
Not all of CL is supported
No numerical tower support

Some good Emacs Lisp learning resources:
An Introduction to Programming in Emacs Lisp
Writing GNU Emacs Extensions
Wikemacs

SLIME: Superior Lisp Interaction Mode for Emacs

SLIME is the goto major mode for CL programming.

Pros:
Provides REPL which is hooked to implementation directly in
Emacs
Has integrated Common Lisp debugger with Emacs interface
Interactive object-inspector in Emacs buffer
Has its own minor mode which enhances lisp-mode in many ways

http://orgmode.org/
https://magit.vc/
http://emacsrocks.com/
https://www.gnu.org/software/emacs/manual/eintr.html
http://www.oreilly.com/catalog/gnuext/
http://wikemacs.org/wiki/Category:Emacs_Lisp
http://common-lisp.net/project/slime/

Supports every common Common Lisp implementation
Readily available from MELPA
Actively maintained
Symbol completion
Cross-referencing
Can perform macroexpansions

Cons:
Installing SLIME without MELPA can be tricky

Setup:
Installing it from MELPA is straightforward. Search package-list-
packages for ‘slime’ and click to install. If MELPA is configured
correctly, it will install itself and all dependencies.
Enable the desired contribs (SLIME does very little by defaults),
e.g. (slime-setup '(slime-fancy slime-quicklisp slime-
asdf)).
Run SLIME with M-x slime.

Check out this video tutorial ! (and the author’s channel, full of great stuff)

SLIME fancy, contrib packages and other extensions

SLIME’s functionalities live in packages and so-called contrib modules must
be loaded to add further functionalities. The default slime-fancy includes:

slime-autodoc
slime-c-p-c
slime-editing-commands
slime-fancy-inspector
slime-fancy-trace
slime-fontifying-fu
slime-fuzzy
slime-mdot-fu
slime-macrostep
slime-presentations
slime-references
slime-repl
slime-scratch
slime-package-fu

http://wikemacs.org/wiki/Melpa
https://www.youtube.com/watch?v=sBcPNr1CKKw
https://common-lisp.net/project/slime/doc/html/Contributed-Packages.html

slime-trace-dialog

SLIME also has some nice extensions like Helm-SLIME which features,
among others:

Fuzzy completion,
REPL and connection listing,
Fuzzy-search of the REPL history,
Fuzzy-search of the apropos documentation.

REPL interactions

From the SLIME REPL, press , to prompt for commands. There is
completion over the available systems and packages. Examples:

,load-system
,reload-system
,in-package
,restart-inferior-lisp

and many more.

With the slime-quicklisp contrib, you can also ,ql to list all systems
available for installation.

SLY: Sylvester the Cat’s Common Lisp IDE

SLY is a SLIME fork that contains the following improvements:

Completely redesigned REPL based on Emacs’s own full-featured
comint.el
Live code annotations via a new sly-stickers contrib
Consistent interactive button interface. Everything can be copied to the
REPL.
Multiple inspectors with independent history
Regexp-capable M-x sly-apropos
Contribs are first class SLY citizens, enabled by default, loaded with
ASDF on demand.

https://github.com/emacs-helm/helm-slime
https://github.com/joaotavora/sly
https://joaotavora.github.io/sly/#Stickers

Support for NAMED-READTABLES, macrostep.el and quicklisp.

Finding one’s way into Emacs’ built-in documentation

Emacs comes with built-in tutorials and documentation. Moreover, it is a
self-documented and self-discoverable editor, capable of introspection to let
you know about the current keybindings, to let you search about function
documentation, available variables,source code, tutorials, etc. Whenever you
ask yourself questions like “what are the available shortcuts to do x” or
“what does this keybinding really do”, the answer is most probably a
keystroke away, right inside Emacs. You should learn a few keybindings to
be able to discover Emacs with Emacs flawlessly.

The help on the topic is here:

Help page: commands for asking Emacs about its commands

The help keybindings start with either C-h or F1. Important ones are:

C-h k <keybinding>: what function does this keybinding call?
C-h f <function name>: what keybinding is linked to this function?
C-h a <topic>: show a list of commands whose name match the given
topic. It accepts a keyword, a list of keywords or a regular expression.
C-h i: show the Info page, a menu of major topics.

Some Emacs packages give even more help.

More help and discoverability packages

Sometimes, you start typing a key sequence but you can’t remember it
completely. Or, you wonder what other keybindings are related. Comes
which-key-mode. This packages will display all possible keybindings
starting with the key(s) you just typed.

For example, I know there are useful keybindings under C-x but I don’t
remember which ones… I just type C-x, I wait for half a second, and which-
key shows all the ones available.

https://github.com/joaotavora/sly-named-readtables
https://github.com/joaotavora/sly-macrostep
https://github.com/joaotavora/sly-quicklisp
https://www.gnu.org/software/emacs/manual/html_node/emacs/Help.html#Help
https://github.com/justbur/emacs-which-key

Just try it with C-h too!

See also Helpful, an alternative to the built-in Emacs help that provides
much more contextual information.

https://github.com/Wilfred/helpful

Learn Emacs with the built-in tutorial

Emacs ships its own tutorial. You should give it a look to learn the most
important keybindings and concepts.

Call it with M-x help-with-tutorial (where M-x is alt-x).

Working with Lisp Code

In this short tutorial we’ll see how to:

edit Lisp code
evaluate and compile Lisp code
search Lisp code

Packages for structured editing

In addition to the built-in Emacs commands, you have several packages at
your disposal that will help to keep the parens and/or the indentation
balanced. The list below is somewhat sorted by age of the extension,
according to the history of Lisp editing:

Paredit - Paredit is a classic. It defines the must-have commands (move,
kill, split, join a sexp,…). (visual tutorial)
Smartparens - Smartparens not only deals with parens but with
everything that comes in pairs (html tags,…) and thus has features for
non-lispy languages.
Lispy - Lispy reimagines Paredit with the goal to have the shortest
bindings (mostly one key) that only act depending on the point position.
Paxedit - Paxedit adds commands based on the context (in a symbol, a
sexp,…) and puts efforts on whitespace cleanup and context
refactoring.
Parinfer - Parinfer automatically fixes the parens depending on the
indentation, or the other way round (or both !).

We personally advice to try Parinfer and the famous Paredit, then to go up
the list. See explanations and even more on Wikemacs.

Editing

Emacs has, of course, built-in commands to deal with s-expressions.

Forward/Backward/Up/Down movement and selection by s-expressions

Use C-M-f and C-M-b (forward-sexp and backward-sexp) to move in units
of s-expressions.

Use C-M-t to swap the first addition sexp and the second one. Put the cursor
on the open parens of “(+ x” in defun c and press

Use C-M-@ to highlight an entire sexp. Then press C-M-u to expand the
selection “upwards” and C-M-d to move forward down one level of
parentheses.

Deleting s-expressions

https://github.com/shaunlebron/history-of-lisp-editing
https://www.emacswiki.org/emacs/ParEdit
http://danmidwood.com/content/2014/11/21/animated-paredit.html
https://github.com/Fuco1/smartparens
https://github.com/abo-abo/lispy
https://github.com/promethial/paxedit
http://shaunlebron.github.io/parinfer/
http://wikemacs.org/wiki/Lisp_editing

Use C-M-k (kill-sexp) and C-M-backspace (backward-kill-sexp) (but
caution: this keybinding may restart the system on GNU/Linux).

For example, if point is before (progn (I’ll use [] as an indication where the
cursor is):

and you press C-M-k, you get:

Indenting s-expressions

Indentation is automatic for Lisp forms.

Pressing TAB will indent incorrectly indented code. For example, put the
point at the beginning of the (+ 3 3) form and press TAB:

you correctly get

Use C-M-q (slime-reindent-defun) to indent the current function
definition:

(defun d ()
 (if t
 (+ 3 3)
 [](progn
 (+ 1 1)
 (if t
 (+ 2 2)
 (+ 3 3)))
 (+ 4 4)))

(defun d ()
 (if t
 (+ 3 3)
 []
 (+ 4 4)))

(progn
(+ 3 3))

(progn
 (+ 3 3))

You can also select a region and call M-x indent-region.

Support for parenthesis

Use M-(to insert a pair of parenthesis (()) and the same keybinding with a
prefix argument, C-u M-(, to enclose the expression in front of the cursor
with a pair of parens.

For example, we start with the cursor before the first paren:

Press C-u M-(to enclose it with parens:

;; Put the cursor on the open parens of "(defun ..."
;; and press "C-M-q" to indent the code:
(defun e ()
"A badly indented function."
(let ((x 20))
(loop for i from 0 to x
do (loop for j from 0 below 10
do (print j))
(if (< i 10)
(let ((z nil))
(setq z (format t "x=~d" i))
(print z))))))

;; This is the result:

(defun e ()
 "A badly indented function (now correctly indented)."
 (let ((x 20))
 (loop for i from 0 to x
 do (loop for j from 0 below 10
 do (print j))
 (if (< i 10)
 (let ((z nil))
 (setq z (format t "x=~d" i))
 (print z))))))

CL-USER> |(- 2 2)

With a numbered prefix argument (C-u 2 M-(), wrap around this number of
s-expressions.

Additionnaly, use M-x check-parens to spot malformed s-exps and C-c C-]
(slime-close-all-parens-in-sexp) to insert the required number of
closing parenthesis.

Code completion

Use the built-in C-c TAB to complete symbols in SLIME. You can get
tooltips with company-mode.

In the REPL, it’s simply TAB.

CL-USER> (|(- 2 2))
;; now write anything.
CL-USER> (zerop (- 2 2))

http://company-mode.github.io/

Use Emacs’ hippie-expand, bound to M-/, to complete any string present in
other open buffers.

Hiding/showing code

Use C-x n n (narrow-to-region) and C-x n w to widen back.

See also code folding.

Comments

Insert a comment, comment a region with M-;, adjust text with M-q.

Evaluating and Compiling Lisp in SLIME

Compile the entire buffer by pressing C-c C-k (slime-compile-and-load-
file).

Compile a region with M-x slime-compile-region.

Compile a defun by putting the cursor inside it and pressing C-c C-c
(slime-compile-defun).

To evaluate rather than compile:

evaluate the sexp before the point by putting the cursor after its closing
paren and pressing C-x C-e (slime-eval-last-expression). The
result is printed in the minibuffer.
similarly, use C-c C-p (slime-pprint-eval-last-expression) to eval
and pretty-print the expression before point. It shows the result in a new
“slime-description” window.
evaluate a region with C-c C-r,
evaluate a defun with C-M-x,
type C-c C-e (slime-interactive-eval) to get a prompt that asks for
code to eval in the current context. It prints the result in the minibuffer.
With a prefix argument, insert the result into the current buffer.
type C-c C-j (slime-eval-last-expression-in-repl), when the
cursor is after the closing parenthesis of an expression, to send this

http://wikemacs.org/wiki/Folding

expression to the REPL and evaluate it.

See also other commands in the menu.

EVALUATION VS COMPILATION

There are a couple of pragmatic differences when choosing between
compiling or evaluating. In general, it is better to compile top-level forms,
for two reasons:

Compiling a top-level form highlights warnings and errors in the editor,
whereas evaluation does not.
SLIME keeps track of line-numbers of compiled forms, but when a top-
level form is evaluated, the file line number information is lost. That’s
problematic for code navigation afterwards.

eval is still useful to observe results from individual non top-level forms.
For example, say you have this function:

Go to the end of the OPEN expression and evaluate it (C-x C-e), to observe
the result:

=> #<SB-SYS:FD-STREAM for "file /mnt/e6b00b8f-9dad-4bf4-bd40-
34b1e6d31f0a/home/marian/test.lisp" {1003AAAB53}>

Or on this example, with the cursor on the last parentheses, press C-x C-e to
evaluate the let:

You should see numbers printed in the REPL.

See also eval-in-repl to send any form to the repl.

(defun foo ()
 (let ((f (open "/home/mariano/test.lisp")))
 ...))

(let ((n 20))
 (loop for i from 0 below n
 do (print i)))

https://github.com/kaz-yos/eval-in-repl

Searching Lisp Code

Standard Emacs text search (isearch forward/backward, regexp searches, search/replace)

C-s does an incremental search forward (e.g. - as each key is the search
string is entered, the source file is searched for the first match. This can
make finding specific text much quicker as you only need to type in the
unique characters. Repeat searches (using the same search characters) can be
done by repeatedly pressing C-s

C-r does an incremental search backward

C-s RET and C-r RET both do conventional string searches (forward and
backward respectively)

C-M-s and C-M-r both do regular expression searches (forward and backward
respectively)

M-% does a search/replace while C-M-% does a regular expression
search/replace

Finding occurrences (occur, grep)

Use M-x grep, rgrep, occur…

See also interactive versions with helm-swoop, helm-occur, ag.el.

Go to definition

Put the cursor on any symbol and press M-. (slime-edit-definition) to go
to its definition. Press M-, to come back.

Go to symbol, list symbols in current source

Use C-u M-. (slime-edit-definition with a prefix argument, also
available as M-- M-.) to autocomplete the symbol and navigate to it. This
command always asks for a symbol even if the cursor is on one. It works
with any loaded definition. Here’s a little demonstration video.

http://wikemacs.org/wiki/Helm-swoop
https://github.com/Wilfred/ag.el
https://www.youtube.com/watch?v=ZAEt73JHup8

You can think of it as a imenu completion that always work for any Lisp
symbol. Add in Slime’s fuzzy completion for maximum powerness!

Crossreferencing: find who’s calling, referencing, setting a symbol

Slime has nice cross-referencing facilities. For example, you can ask what
calls a particular function, what expands a macro, or where a global variable
is being used.

Results are presented in a new buffer, listing the places which reference a
particular entity. From there, we can press Enter to go to the corresponding
source line, or more interestingly we can recompile the place at point by
pressing C-c C-c on that line. Likewise, C-c C-k will recompile all the
references. This is useful when modifying macros, inline functions, or
constants.

The bindings are the following (they are also shown in Slime’s menu):

C-c C-w c (slime-who-calls) callers of a function
C-c C-w m (slime-who-macroexpands) places where a macro is
expanded
C-c C-w r (slime-who-references) global variable references
C-c C-w b (slime-who-bind) global variable bindings
C-c C-w s (slime-who-sets) global variable setters
C-c C-w a (slime-who-specializes) methods specialized on a symbol

And when the slime-asdf contrib is enabled, C-c C-w d (slime-who-
depends-on) lists dependent ASDF systems

And a general binding: M-? or **M-_** (slime-edit-uses) combines all of
the above, it lists every kind of references.

Lisp Documentation in Emacs - Learning About Lisp Symbols

Argument lists

When you put the cursor on a function, SLIME will show its signature in the
minibuffer.

https://common-lisp.net/project/slime/doc/html/Fuzzy-Completion.html

Documentation lookup

The main shortcut to know is:

C-c C-d d shows the symbols’ documentation on a new window (same
result as using describe).

Other bindings which may be useful:

C-c C-d f describes a function
C-c C-d h looks up the symbol documentation in CLHS by opening the
web browser. But it works only on symbols, so there are two more
bindings:
C-c C-d # for reader macros
C-c C-d ~ for format directives

You can enhance the help buffer with the Slime extension slime-doc-
contribs. It will show more information in a nice looking buffer.

Inspect

You can call (inspect 'symbol) from the REPL or call it with C-c I from a
source file.

Macroexpand

Use C-c M-m to macroexpand a macro call

Consult the Hyper Spec (CLHS) offline

The Common Lisp Hyper Spec is the official online version of the ANSI
Common Lisp standard. We can start browsing it from starting points: a
shortened table of contents of highlights, a symbols index, a glossary, a
master index.

Since January of 2023, we have the Common Lisp Community Spec:
https://cl-community-spec.github.io/pages/index.html, a new web rendering

https://github.com/mmontone/slime-doc-contribs
http://www.lispworks.com/documentation/common-lisp.html
http://www.lispworks.com/documentation/HyperSpec/Front/StartPts.htm
http://www.lispworks.com/documentation/HyperSpec/Front/Hilights.htm
http://www.lispworks.com/documentation/HyperSpec/Front/Hilights.htm
https://cl-community-spec.github.io/pages/index.html

of the specification. It is a more modern rendering:

it has a search box
it has syntax highlihgting
it is hosted on GitHub and we have the right to modify it:
https://github.com/fonol/cl-community-spec

If you want other tools to do a quick look-up of symbols on the CLHS, since
the official website doesn’t have a search bar, you can use: * Xach’s website
search utility: https://www.xach.com/clhs?q=with-open-file * the l1sp.org
website: http://l1sp.org/search?q=with-open-file, * and we can use
Duckduckgo’s or Brave Search’s !clhs “bang”.

We can browse the CLHS offline with Dash on MacOS, Zeal on
GNU/Linux and Velocity on Windows.

But we can also browse it offline from Emacs. We have to install a CL
package and to configure the Emacs side with one command:

Then add this to your Emacs configuration:

Now, you can use C-c C-d h to look-up the symbol at point in the
HyperSpec. This will open your browser, but look at its URL starting with
“file://home/”: it opens a local file.

Other commands are available:

when you want to look-up a reader macro, such as #' (sharpsign-quote)
or ((left-parenthesis), use M-x common-lisp-hyperspec-lookup-
reader-macro, bound to C-c C-d #.
to look-up a format directive, such as ~A, use M-x common-lisp-
hyperspec-format, bound to C-c C-d ~.

of course, you can TAB-complete on Emacs’ minibuffer prompt to
see all the available format directives.

(ql:quickload "clhs")
(clhs:install-clhs-use-local)

(load "~/quicklisp/clhs-use-local.el" 'noerror)

https://www.xach.com/clhs?q=with-open-file
http://l1sp.org/search?q=with-open-file
https://kapeli.com/dash
https://zealdocs.org/
https://velocity.silverlakesoftware.com/

you can also look-up glossary terms (for example, you can look-up
“function” instead of “defun”), use M-x common-lisp-hyperspec-
glossary-term, bound to C-c C-d g.

Miscellaneous

Synchronizing packages

C-c ~ (slime-sync-package-and-default-directory): When run in a
buffer with a lisp file it will change the current package of the REPL to the
package of that file and also set the current directory of the REPL to the
parent directory of the file.

Calling code

C-c C-y (slime-call-defun): When the point is inside a defun and C-c C-y
is pressed,

(I’ll use [] as an indication where the cursor is)

then (foo []) will be inserted into the REPL, so that you can write
additional arguments and run it.

If foo was in a different package than the package of the REPL,
(package:foo) or (package::foo) will be inserted.

This feature is very useful for testing a function you just wrote.

That works not only for defun, but also for defgeneric, defmethod, defmacro,
and define-compiler-macro in the same fashion as for defun.

For defvar, defparameter, defconstant: [] *foo* will be inserted (the cursor
is positioned before the symbol so that you can easily wrap it into a function
call).

(defun foo ()
nil[])

For defclass: (make-instance ‘class-name).

Inserting calls to frames in the debugger

C-y in SLDB on a frame will insert a call to that frame into the REPL, e.g.,

(/ 0) =>
…
1: (CCL::INTEGER-/-INTEGER 1 0)
…

C-y will insert (CCL::INTEGER-/-INTEGER 1 0).

(thanks to Slime tips)

Exporting symbols

C-c x (slime-export-symbol-at-point) from the slime-package-fu contrib:
takes the symbol at point and modifies the :export clause of the
corresponding defpackage form. It also exports the symbol. When called
with a negative argument (C-u C-c x) it will remove the symbol from
:export and unexport it.

M-x slime-export-class does the same but with symbols defined by a
structure or a class, like accessors, constructors, and so on. It works on
structures only on SBCL and Clozure CL so far. Classes should work
everywhere with MOP.

Customization

There are different styles of how symbols are presented in defpackage, the
default is to use uninterned symbols (#:foo). This can be changed:

to use keywords:

or strings:

(setq slime-export-symbol-representation-function
 (lambda (n) (format ":%s" n)))

https://slime-tips.tumblr.com/page/2

Project Management

ASDF is the de-facto build facility. It is shipped in most Common Lisp
implementations.

ASDF
ASDF best practices

Searching Quicklisp libraries

From the REPL, we can use ,ql to install a package known by name already.

In addition, we can use the Quicklisp-systems Slime extension to search,
browse and load Quicklisp systems from Emacs.

Questions/Answers

utf-8 encoding

You might want to set this to your init file:

and for Sly:

This will avoid getting ascii stream decoding errors when you have
non-ascii characters in files you evaluate with SLIME.

Default cut/copy/paste keybindings

(setq slime-export-symbol-representation-function
(lambda (n) (format "\"%s\"" (upcase n))))

(set-language-environment "UTF-8")
(setenv "LC_CTYPE" "en_US.UTF-8")

(setf sly-lisp-implementations
 '((sbcl ("/usr/local/bin/sbcl") :coding-system utf-8-unix)
))

https://common-lisp.net/project/asdf/
https://gitlab.common-lisp.net/asdf/asdf/blob/master/doc/best_practices.md
https://github.com/mmontone/quicklisp-systems

I am so used to C-c, C-v and friends to copy and paste text that the default
Emacs shortcuts don’t make any sense to me.

Luckily, you have a solution! Install cua-mode and you can continue to use
these shortcuts.

Appendix

All Slime REPL shortcuts

Here is the reference of all Slime shortcuts that work in the REPL.

To see them, go in a REPL, type C-h m and go to the Slime REPL map
section.

REPL mode defined in ‘slime-repl.el’:
Major mode for interacting with a superior Lisp.
key binding
 -

C-c Prefix Command
C-j slime-repl-newline-and-indent
RET slime-repl-return
C-x Prefix Command
ESC Prefix Command
SPC slime-space
 (that binding is currently shadowed by another mode)
, slime-handle-repl-shortcut
DEL backward-delete-char-untabify
<C-down> slime-repl-forward-input
<C-return> slime-repl-closing-return
<C-up> slime-repl-backward-input
<return> slime-repl-return

C-x C-e slime-eval-last-expression

C-c C-c slime-interrupt
C-c C-n slime-repl-next-prompt
C-c C-o slime-repl-clear-output
C-c C-p slime-repl-previous-prompt

;; C-z=Undo, C-c=Copy, C-x=Cut, C-v=Paste (needs cua.el)
(require 'cua) (CUA-mode t)

http://www.emacswiki.org/cgi-bin/wiki.pl?CuaMode

C-c C-s slime-complete-form
C-c C-u slime-repl-kill-input
C-c C-z other-window
C-c ESC Prefix Command
C-c I slime-repl-inspect

M-RET slime-repl-closing-return
M-n slime-repl-next-input
M-p slime-repl-previous-input
M-r slime-repl-previous-matching-input
M-s previous-line

C-c C-z run-lisp
 (that binding is currently shadowed by another mode)

C-M-x lisp-eval-defun

C-M-q indent-sexp

C-M-q prog-indent-sexp
 (that binding is currently shadowed by another mode)

C-c M-e macrostep-expand
C-c M-i slime-fuzzy-complete-symbol
C-c M-o slime-repl-clear-buffer

All other Slime shortcuts

Here are all the default keybindings defined by Slime mode.

To see them, go in a .lisp file, type C-h m and go to the Slime section.

Commands to compile the current buffer’s source file and
visually
highlight any resulting compiler notes and warnings:
C-c C-k - Compile and load the current buffer’s file.
C-c M-k - Compile (but not load) the current buffer’s file.
C-c C-c - Compile the top-level form at point.

Commands for visiting compiler notes:
M-n - Goto the next form with a compiler note.
M-p - Goto the previous form with a compiler note.
C-c M-c - Remove compiler-note annotations in buffer.

Finding definitions:
M-.

- Edit the definition of the function called at point.
M-,
- Pop the definition stack to go back from a definition.

Documentation commands:
C-c C-d C-d - Describe symbol.
C-c C-d C-a - Apropos search.
C-c M-d - Disassemble a function.

Evaluation commands:
C-M-x - Evaluate top-level from containing point.
C-x C-e - Evaluate sexp before point.
C-c C-p - Evaluate sexp before point, pretty-print result.

Full set of commands:
key binding
 -

C-c Prefix Command
C-x Prefix Command
ESC Prefix Command
SPC slime-space

C-c C-c slime-compile-defun
C-c C-j slime-eval-last-expression-in-repl
C-c C-k slime-compile-and-load-file
C-c C-s slime-complete-form
C-c C-y slime-call-defun
C-c ESC Prefix Command
C-c C-] slime-close-all-parens-in-sexp
C-c x slime-export-symbol-at-point
C-c ~ slime-sync-package-and-default-directory

C-M-a slime-beginning-of-defun
C-M-e slime-end-of-defun
M-n slime-next-note
M-p slime-previous-note

C-M-, slime-previous-location
C-M-. slime-next-location

C-c TAB completion-at-point
C-c RET slime-expand-1
C-c C-p slime-pprint-eval-last-expression
C-c C-u slime-undefine-function
C-c ESC Prefix Command

C-c C-b slime-interrupt

C-c C-d slime-doc-map
C-c C-e slime-interactive-eval
C-c C-l slime-load-file
C-c C-r slime-eval-region
C-c C-t slime-toggle-fancy-trace
C-c C-v Prefix Command
C-c C-w slime-who-map
C-c C-x Prefix Command
C-c C-z slime-switch-to-output-buffer
C-c ESC Prefix Command
C-c : slime-interactive-eval
C-c < slime-list-callers
C-c > slime-list-callees
C-c E slime-edit-value
C-c I slime-inspect

C-x C-e slime-eval-last-expression
C-x 4 Prefix Command
C-x 5 Prefix Command

C-M-x slime-eval-defun
M-, slime-pop-find-definition-stack
M-. slime-edit-definition
M-? slime-edit-uses
M-_ slime-edit-uses

C-c M-c slime-remove-notes
C-c M-e macrostep-expand
C-c M-i slime-fuzzy-complete-symbol
C-c M-k slime-compile-file
C-c M-q slime-reindent-defun

C-c M-m slime-macroexpand-all

C-c C-v C-d slime-describe-presentation-at-point
C-c C-v TAB slime-inspect-presentation-at-point
C-c C-v C-n slime-next-presentation
C-c C-v C-p slime-previous-presentation
C-c C-v C-r slime-copy-presentation-at-point-to-repl
C-c C-v C-w slime-copy-presentation-at-point-to-kill-ring
C-c C-v ESC Prefix Command
C-c C-v SPC slime-mark-presentation
C-c C-v d slime-describe-presentation-at-point
C-c C-v i slime-inspect-presentation-at-point
C-c C-v n slime-next-presentation
C-c C-v p slime-previous-presentation
C-c C-v r slime-copy-presentation-at-point-to-repl
C-c C-v w slime-copy-presentation-at-point-to-kill-ring

C-c C-v C-SPC slime-mark-presentation

C-c C-w C-a slime-who-specializes
C-c C-w C-b slime-who-binds
C-c C-w C-c slime-who-calls
C-c C-w RET slime-who-macroexpands
C-c C-w C-r slime-who-references
C-c C-w C-s slime-who-sets
C-c C-w C-w slime-calls-who
C-c C-w a slime-who-specializes
C-c C-w b slime-who-binds
C-c C-w c slime-who-calls
C-c C-w d slime-who-depends-on
C-c C-w m slime-who-macroexpands
C-c C-w r slime-who-references
C-c C-w s slime-who-sets
C-c C-w w slime-calls-who

C-c C-d C-a slime-apropos
C-c C-d C-d slime-describe-symbol
C-c C-d C-f slime-describe-function
C-c C-d C-g common-lisp-hyperspec-glossary-term
C-c C-d C-p slime-apropos-package
C-c C-d C-z slime-apropos-all
C-c C-d # common-lisp-hyperspec-lookup-reader-macro
C-c C-d a slime-apropos
C-c C-d d slime-describe-symbol
C-c C-d f slime-describe-function
C-c C-d g common-lisp-hyperspec-glossary-term
C-c C-d h slime-documentation-lookup
C-c C-d p slime-apropos-package
C-c C-d z slime-apropos-all
C-c C-d ~ common-lisp-hyperspec-format
C-c C-d C-# common-lisp-hyperspec-lookup-reader-macro
C-c C-d C-~ common-lisp-hyperspec-format

C-c C-x c slime-list-connections
C-c C-x n slime-next-connection
C-c C-x p slime-prev-connection
C-c C-x t slime-list-threads

C-c M-d slime-disassemble-symbol
C-c M-p slime-repl-set-package

C-x 5 . slime-edit-definition-other-frame

C-x 4 . slime-edit-definition-other-window

C-c C-v M-o slime-clear-presentations

See also

Common Lisp REPL exploration guide - a concise and curated set of
highlights to find one’s way in the REPL.

https://bnmcgn.github.io/lisp-guide/lisp-exploration.html

Using VSCode with Alive
The Alive extension makes VSCode a powerful Common Lisp development
platform. Alive hooks directly into the Swank server that Emacs Slime uses
and is fully compatible with VSCode’s ability to develop remotely in
containers, WSL, Remote machines, etc. It has no dependencies beyond a
version of Common Lisp running on the target platform that can run the
Swank server. It currently supports:

Syntax highlighting
Code completion
Code formatter
Jump to definition
Snippets
REPL integration
Interactive Debugger
REPL history
Inline evaluation
Macro expand
Disassemble
Inspector
Hover Text
Rename function args and let bindings
Code folding

https://marketplace.visualstudio.com/items?itemName=rheller.alive
https://code.visualstudio.com/

Prerequisites

The Alive extension in VSCode is compatible with ANSI Common Lisp,
and these instructions should work for any of them as long as the Alive
REPL starts up successfully. The examples all use SBCL.

VsCode with command line installed running the Alive extension.
SBCL

Connect VSCode to a REPL

https://code.visualstudio.com/
https://code.visualstudio.com/docs/setup/mac#_launching-from-the-command-line
https://marketplace.visualstudio.com/items?itemName=rheller.alive
http://www.sbcl.org/

1. Inside of VSCode, open a lisp file that you want to edit.
If you don’t have one, create a new one called hello.lisp

2. Inside of VSCode, open the Command Palette on the menu at the top
where it says View/Command Palette and start an instance of SBCL
running a Swank server attached to your VSCode REPL by choosing:
Alive: Start REPL And Attach.

You will see a small window pop up that says REPL Connected
If you don’t get a REPL Connected message, open up VSCode’s
Output on the menu at the top where it says View:Output and
choose Swank Trace from the pulldown. This output is the output
from the running lisp image and will get you started on figuring
out what might be going wrong.

Congrats, You now have a VSCode instance running a REPL attached to a
Swank server running on port 4005 of a running SBCL image. You can now
evaluate statements in your file and they will be processed in your running
SBCL instance.

To disconnect your REPL and shut down your SBCL instance, open the
Command Palette on the menu at the top where it says View/Command
Palette and choose: Alive: Detach from REPL

There are keybindings for every operation, feel free to explore and modify
those as needed.

Recipes

All recipes assume you have a file open in VSCode running with an attached
REPL unless otherwise stated.

When evaluating an expression, you choose the expression to evaluate by
putting your cursor anywhere in or immediately following the s-expression
that you wish to evaluate.

Evaluate a statement in-line

1. In your open file in your editor window, enter:

(+ 2 2)

2. Open the Command Palette on the menu at the top View/Command
Palette and choose Alive: Inline Eval

3. You will see a small pop up that says => 4 (3 bits, #x4, #o4,
#b100), which is the result

Evaluating a statement in-line is exactly the same as sending it to the
REPL. The only difference is how it is displayed.

Evaluate a statement

1. In your open file in your editor window, enter:

2. Open the Command Palette on the menu at the top View/Command
Palette and choose Alive: Send To REPL

3. You will see the expression show up in the REPL along with the result.

Compile a file

(+ 2 2)

CL-USER>
(+ 2 2)
4
CL-USER>

1. In your open file in your editor window, enter:

2. Open the Command Palette on the menu at the top View/Command
Palette and choose Alive: Compile

3. You will see details about the compile in your repl, and a fasl file in
your filesystem.

CL-USER>

; compiling file "/Users/jason/Desktop/hello.lisp" (written 14
SEP 2021 04:24:37 AM):

; wrote /Users/jason/Desktop/hello.fasl

; compilation finished in 0:00:00.001

Use the Interactive Debugger to abort

(+ 2 2)

1. In your open file in your editor window, enter:

2. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Inline Eval to load your define function into
your image.

3. In your open file, add another new line and enter:

(defun divide (x y)
 (/ x y))

(divide 1 0)

4. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Inline Eval to run your divide function in your
image.

5. You will see the Interactive Debugger pop up. In the Restarts section,
choose option 2 to Abort.

6. You’re now back to your editor and still-running REPL and can
continue like it never happened.

Use the Interactive Debugger to fix a problem at runtime

1. In your open file in your editor window, enter:

2. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Inline Eval to load your define function into
your image.

3. In your open file, add another new line and enter:

4. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Inline Eval to run your divide function in your
image.

5. You will see the Interactive Debugger pop up. In the Restarts section,
choose option 0 to “Retry assertion with new value for Y”.

6. In the popup menu, enter `y’
7. In the next popup menu, enter 1
8. You should now see a small pop up that says => 1 (1 bit, #x1, #o1,

#b1), which is the result of the new value. You’re now back to your
editor and still-running REPL after crashing out into the debugger,
having it let you change the value that caused the crash, and then
proceeding like you never typed that bad 0 value.

More ideas for what can be done with the debugger can be found on the
error handling page.

Expand a macro

(defun divide (x y)
 (assert (not (zerop y))
 (y)
 "The second argument can not be zero.")
 (/ x y))

(divide 1 0)

clbr://internal.invalid/book/EPUB/text/error_handling.md

1. In your open file in your editor window, enter:

2. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Macro Expand to expand the for-loop macro.

3. You should see something like this:

(loop for x in '(a b c d e) do
 (print x))

(BLOCK NIL
 (LET ((X NIL)
 (#:LOOP-LIST-559

Disassemble a function

 (SB-KERNEL:THE* (LIST :USE-ANNOTATIONS T
 :SOURCE-FORM '(A B C D E))
 '(A B C D E))))
 (DECLARE (IGNORABLE #:LOOP-LIST-559)
 (IGNORABLE X))
 (TAGBODY
 SB-LOOP::NEXT-LOOP
 (SETQ X (CAR #:LOOP-LIST-559))
 (SETQ #:LOOP-LIST-559 (CDR #:LOOP-LIST-559))
 (PRINT X)
 (IF (ENDP #:LOOP-LIST-559)
 (GO SB-LOOP::END-LOOP))
 (GO SB-LOOP::NEXT-LOOP)
 SB-LOOP::END-LOOP)))

1. In your open file in your editor window, enter:

2. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Inline Eval to load the function into your image.

3. Put your cursor after the last parenthesis if it isn’t already there. Open
the Command Palette on the menu at the top View/Command Palette
and choose Alive: Disassemble print out the machine code of your
compiled function.

4. It will start something like this:

(defun hello (name)
 (format t "Hello, ~A~%" name))

; disassembly for HELLO
; Size: 172 bytes. Origin: #x70052478B4 ;
HELLO
; 8B4: AC0A40F9 LDR R2, [THREAD, #16] ;
binding-stack-pointer
; 8B8: 4C0F00F9 STR R2, [CFP, #24]
; 8BC: AC4642F9 LDR R2, [THREAD, #1160] ;
tls: *STANDARD-OUTPUT*
; 8C0: 9F8501F1 CMP R2, #97
; 8C4: 61000054 BNE L0
; 8C8: 4AFDFF58 LDR R0, #x7005247870 ;
'*STANDARD-OUTPUT*
; 8CC: 4C1140F8 LDR R2, [R0, #1]
; 8D0: L0: 4C1700F9 STR R2, [CFP, #40]
; 8D4: E0031BAA MOV NL0, CSP
; 8D8: 7A0701F8 STR CFP, [CSP], #16
; 8DC: EAFCFF58 LDR R0, #x7005247878 ;
"Hello, "
; 8E0: 4B1740F9 LDR R1, [CFP, #40]
; 8E4: B6FBFF58 LDR LEXENV, #x7005247858 ;
#<SB-KERNEL:FDEFN WRITE-STRING>
; 8E8: 970080D2 MOVZ NARGS, #4
; 8EC: FA0300AA MOV CFP, NL0
; 8F0: DE9240F8 LDR LR, [LEXENV, #9]
; 8F4: C0033FD6 BLR LR
; 8F8: 3B039B9A CSEL CSP, OCFP, CSP, EQ
; 8FC: E0031BAA MOV NL0, CSP
; 900: 7A0701F8 STR CFP, [CSP], #16
; 904: 4A2F42A9 LDP R0, R1, [CFP, #32]
; 908: D6FAFF58 LDR LEXENV, #x7005247860 ;
#<SB-KERNEL:FDEFN PRINC>
; 90C: 970080D2 MOVZ NARGS, #4
; 910: FA0300AA MOV CFP, NL0
; 914: DE9240F8 LDR LR, [LEXENV, #9]
; 918: C0033FD6 BLR LR
; 91C: 3B039B9A CSEL CSP, OCFP, CSP, EQ
; 920: E0031BAA MOV NL0, CSP
; 924: 7A0701F8 STR CFP, [CSP], #16
; 928: 2A4981D2 MOVZ R0, #2633
; 92C: 4B1740F9 LDR R1, [CFP, #40]
; 930: D6F9FF58 LDR LEXENV, #x7005247868 ;
#<SB-KERNEL:FDEFN WRITE-CHAR>
; 934: 970080D2 MOVZ NARGS, #4
; 938: FA0300AA MOV CFP, NL0
; 93C: DE9240F8 LDR LR, [LEXENV, #9]
; 940: C0033FD6 BLR LR
; 944: 3B039B9A CSEL CSP, OCFP, CSP, EQ
; 948: EA031DAA MOV R0, NULL

; 94C: FB031AAA MOV CSP, CFP
; 950: 5A7B40A9 LDP CFP, LR, [CFP]
; 954: BF0300F1 CMP NULL, #0
; 958: C0035FD6 RET
; 95C: E00120D4 BRK #15 ;
Invalid argument count trap

Create a skeleton Common Lisp system

This recipe creates a new Common Lisp System, so it does not need a
running REPL.

1. Create a folder called experiment for your new project

2. Open vscode in your newly created directory

3. Create new Common Lisp System.

Inside of VSCode, Open Command Palette on the menu at the top
View/Command Palette and generate a system skeleton: Alive:
System Skeleton
The previous command should have generated the following directory
structure:

experiment.asd
src/

app.lisp
test/

all.lisp

The content of those files is as follows:

experiment.asd:

src/app.lisp:

cd experiment
code .

(in-package :asdf-user)

(defsystem "experiment"
 :class :package-inferred-system
 :depends-on ("experiment/src/app")
 :description ""
 :in-order-to ((test-op (load-op "experiment/test/all")))
 :perform (test-op (o c) (symbol-call :test/all :test-suite)))

(defsystem "experiment/test"
 :depends-on ("experiment/test/all"))

(register-system-packages "experiment/src/app" '(:app))
(register-system-packages "experiment/test/all" '(:test/all))

test/all.lisp:

Optional Custom Configurations

Configuring VSCode Alive to work with Quicklisp

Assuming that you have quicklisp installed and configured to load on init,
quicklisp just works.

Configuring VSCode Alive to work with CLPM in the default context

Assuming that you have CLPM installed and configured, modify your
vscode settings to look like this:

1. Add the following to to your VSCode settings:

(defpackage :app
 (:use :cl))

(in-package :app)

(defpackage :test/all
 (:use :cl
 :app)
 (:export :test-suite))

(in-package :test/all)

(defun test-suite ()
 (format T "Test Suite~%"))

 "alive.swank.startupCommand":[
 "clpm",
 "exec",
 "--",
 "sbcl",
 "--eval",
 "(asdf:load-system :swank)",
 "--eval",

https://clpm.dev/
https://code.visualstudio.com/docs/getstarted/settings

This will start up sbcl in the default clpm context

Configuring VSCode Alive to work with CLPM using a bundle clpmfile

Assuming that you have CLPM installed and configured and a bundle
configured in the root of your home directory that contains swank as a dev
dependency, modify your vscode settings to look like this:

1. Add the following to your VSCode settings:

This will start up sbcl in your bundle’s clpm context

Configuring VSCode Alive to work with Roswell

Assuming that you have Roswell installed, modify your vscode settings to
look like this:

 "(swank:create-server)"
],

 "alive.swank.startupCommand":[
 "clpm",
 "bundle",
 "exec",
 "--",
 "sbcl",
 "--eval",
 "(asdf:load-system :swank)",
 "--eval",
 "(swank:create-server)"
],

 "alive.swank.startupCommand": [
 "ros",
 "run",
 "--eval",
 "(require :asdf)",
 "--eval",
 "(asdf:load-system :swank)",
 "--eval",

https://clpm.dev/
https://code.visualstudio.com/docs/getstarted/settings
https://roswell.github.io/
https://code.visualstudio.com/docs/getstarted/settings

Connecting VSCode Alive to a Docker container

These instructions will work for remote connections, wsl connections, and
github Codespaces as well using the Remote - SSH and Remote - WSL, and
Github Codespaces extensions, respectively assuming you have the
extensions installed. For this example, make sure you have the Containers
extension installed and configured.

1. Pull a docker image that has sbcl installed, in this example, we’ll use
the latest clfoundations sbcl.

 "(swank:create-server)"
]

https://code.visualstudio.com/docs/remote/containers

2. Run bash in the docker image to start it up and keep it running.

3. In the VSCode Side Bar, click the Remote Explorer icon.
4. In the list of Dev Containers, right click on clfoundation/sbcl and

choose Attach to Container.
5. In the VSCode Side Bar of the new VSCode window that opens up,

click on Explorer. You may need to tell it to view the files in your
container if it isn’t already showing them.

6. Once you’re viewing the files in the container, right click in the
VSCode Side Bar and choose New File. Name the file hello.lisp

7. In the VSCode Site Bar, click the Extensions icon
8. Click the Install in Container... button for the Alive plugin
9. Open up your hello.lisp file and follow the “Connect VSCode to a

REPL” instructions at the beginning of these recipes
10. You now have VSCode running a REPL hooked to a Slime server

running on an SBCL image in a docker container.

docker pull clfoundation/sbcl

docker run -it clfoundation/sbcl bash

LispWorks review
LispWorks is a Common Lisp implementation that comes with its own Integrated
Development Environment (IDE) and its share of unique features, such as the
CAPI GUI toolkit. It is proprietary and provides a free limited version.

Here, we will mainly explore its IDE, asking ourselves what it can offer to a
seasoned lisper used to Emacs and Slime. The short answer is: more graphical
tools, such as an easy to use graphical stepper, a tracer, a code coverage browser
or again a class browser. Setting and using breakpoints was easier than on Slime.

LispWorks also provides more integrated tools (the Process browser lists all
processes running in the Lisp image and we can stop, break or debug them) and
presents many information in the form of graphs (for example, a graph of
function calls or a graph of all the created windows).

LispWorks’ listener and editor in the Mate desktop environment

LispWorks features

We can see a matrix of LispWorks features by edition and platform here:
http://www.lispworks.com/products/features.html.

http://www.lispworks.com/
http://www.lispworks.com/products/features.html

We highlight:

32-bit, 64-bit and ARM support on Windows, MacOS, Linux, Solaris,
FreeBSD,
CAPI portable GUI toolkit: provides native look-and-feel on Windows,
Cocoa, GTK+ and Motif.

comes with a graphical “Interface Builder” (think QtCreator) (though
not available on MacOS (nor on mobile))

LispWorks for mobile runtime, for Android and iOS,
optimized application delivery: LispWorks can use a tree shaker to remove
unused lisp code from the delivered applicatiion, thus shipping lighter
binaries than existing open-source implementations.
ability to deliver a dynamic library,
a Java interface, allowing to call from Lisp to Java or the other way around,
an Objective-C and Cocoa interface, with drag and drop and multi-touch
support,
a Foreign Language Interface,
TCP/UDP sockets with SSL & IPv6 support,
natived threads and symmetric multiprocessing, unicode support, and all
other Common Lisp features, and all other LispWorks Enterprise features.

And, of course, a built-in IDE.

LispWorks is used in diverse areas of the industry. They maintain a list of success
stories. As for software that we can use ourselves, we find ScoreCloud amazing
(a music notation software: you play an instrument, sing or whistle and it writes
the music) or OpenMusic (opensource composition environment).

Free edition limitations

The download instructions and the limitations are given on the download page.

The limitations are the following:

There is a heap size limit which, if exceeded, causes the image to exit. A
warning is provided when the limit is approached.

What does it prevent us to do? As an illustration, we can not load this set of
libraries together in the same image:

http://www.lispworks.com/documentation/lw61/CAPRM/html/capiref.htm
http://www.lispworks.com/products/lw4mr.html
http://www.lispworks.com/documentation/lw71/LW/html/lw-113.htm
http://www.lispworks.com/success-stories/index.html
https://scorecloud.com/
https://github.com/openmusic-project/openmusic/
http://www.lispworks.com/downloads/index.html

There is a time limit of 5 hours for each session, after which LispWorks
Personal exits, possibly without saving your work or performing cleanups
such as removing temporary files. You are warned after 4 hours of use.

It is impossible to build a binary. Indeed, the functions save-image, deliver
(the function to create a stand-alone executable), and load-all-patches are not
available.

Initialization files are not loaded. If you are used to initializing Quicklisp
from your ~/.sbclrc on Emacs, you’ll have to load an init file manually
every time you start LispWorks ((load #p"~/.your-init-file)).

For the record, the snippet provided by Quicklisp to put in one’s startup file is the
following:

You’ll have to paste it to the listener window (with the C-y key, y as “yank”).

Layered products that are part of LispWorks Professional and Enterprise
Editions (CLIM, KnowledgeWorks, Common SQL and LispWorks ORB)
are not included. But we can try the CAPI toolkit.

The installation process requires you to fill an HTML form to receive a download
link, then to run a first script that makes you accept the terms and the licence,
then to run a second script that installs the software.

Licencing model

LispWorks actually comes in four paid editions. It’s all explained by themselves
here: http://www.lispworks.com/products/lispworks.html. In short, there is:

a Hobbyist edition with save-image and load-all-patches, to apply
updates of minor versions, without the obvious limitations, for non-

(ql:quickload '("alexandria" "serapeum" "bordeaux-threads"
 "lparallel" "dexador" "hunchentoot" "quri"
 "cl-ppcre" "mito"))

;; provided you installed quicklisp in ~/quicklisp/
(let ((quicklisp-init (merge-pathnames "quicklisp/setup.lisp"
 (user-homedir-pathname))))
 (when (probe-file quicklisp-init)
 (load quicklisp-init)))

http://www.lispworks.com/documentation/lw71/LW/html/lw-95.htm
http://www.lispworks.com/documentation/lw71/DV/html/delivery-4.htm#pgfId-852223
http://www.lispworks.com/products/lispworks.html

commercial and non-academic use,
a HobbyistDV edition with the deliver function to create executables (still
for non-commercial and non-academic uses),
a Professional edition, with the deliver function, for commercial and
academic uses,
an Enterprise one, with their enterprise modules: the Common SQL
interface, LispWorks ORB, KnowledgeWorks.

At the time of writing, the licence of the hobbyist edition costs 750 USD, the pro
version the double. They are bought for a LW version, per platform. They have
no limit of time.

NB: Please double check their upstream resources and don’t hesitate to contact
them.

LispWorks IDE

The LispWorks IDE is self-contained, but it is also possible to use LispWorks-
the-implementation from Emacs and Slime (see below). The IDE runs inside the
Common Lisp image, unlike Emacs which is an external program that
communicates with the Lisp image through Swank and Slime. User code runs in
the same process.

The editor

The editor offers what’s expected: a TAB-completion pop-up, syntax
highlighting, Emacs-like keybindings (including the M-x extended command).
The menus help the discovery.

We personally found the editing experience a bit “raw”. For example:

indention after a new line is not automatic, one has to press TAB again.
the auto-completion is not fuzzy.
there are no plugins similar to Paredit (there is a brand new (2021) Paredit
for LispWorks) or Lispy, nor a Vim layer.

We also had an issue, in that the go-to-source function bound to M-. did not work
out for built-in Lisp symbols. Apparently, LispWorks doesn’t provide much
source code, and mostly code of the editor. Some other commercial Lisps, like
Allegro CL, provide more source code

https://github.com/g000001/lw-paredit

The editor provides an interesting tab: Changed Definitions. It lists the functions
and methods that were redefined since, at our choosing: the first edit of the
session, the last save, the last compile.

See also:

the Editor User Guide.

Keybindings

Most of the keybindings are similar to Emacs, but not all. Here are some
differences:

to compile a function, use C-S-c (control, shift and c), instead of C-c C-c.
to compile the current buffer, use C-S-b (instead of C-c C-k).

Similar ones include:

C-g to cancel what you’re doing,
C-x C-s to save the current buffer,
M-w and C-y to copy and paste,
M-b, M-f, C-a, C-e… to move around words, to go to the beginning or the
end of the line,
C-k to kill until the end of the line, C-w to kill a selected region,
M-. to find the source of a symbol,
C-x C-e to evaluate the current defun,
…

Some useful functions don’t have a keybinding by default, for example:

clear the REPL with M-x Clear Listener
Backward Kill Line

It is possible to use classical keybindings, à la KDE/Gnome. Go to the
Preferences menu, Environment and in the Emulation tab.

There is no Vim layer.

Searching keybindings by name

http://www.lispworks.com/documentation/lw71/EDUG-U/html/eduser-u.htm

It is possible to search for a keybinding associated to a function, or a function
name from its keybinding, with the menu (Help -> Editing -> Key to Command /
Command to Key) or with C-h followed by a key, as in Emacs. For example type
C-h k then enter a keybinding to get the command name. See more with C-h ?.

Tweaking the IDE

It is possible to change keybindings. The editor’s state is accessible from the
editor package, and the editor is built with the CAPI framework, so we can use
the capi interface too. Useful functions include:

Here’s how you can bind keys:

Here’s how to define a new command. We make the) key to go past the next
closing parenthesis.

`
editor:bind-key
editor:defcommand
editor:current-point
editor:with-point ;; save point location
editor:move-point
editor:*buffer-list*
editor:*in-listener* ;; returns T when we are in the REPL
…

;; Indent new lines.
;; By default, the point is not indented after a Return.
(editor:bind-key "Indent New Line" #\Return :mode "Lisp")

;; Insert pairs.
(editor:bind-key "Insert Parentheses For Selection" #\(:mode "Lisp")
(editor:bind-key "Insert Double Quotes For Selection"
 #\"
 :mode "Lisp")

(editor:defcommand "Move Over ()" (p)
 "Move past the next close parenthesis.

Any indentation preceeding the parenthesis is deleted."
 "Move past the next close parenthesis."
 ;; thanks to Thomas Hermann
 ;; https://github.com/ThomasHermann/LispWorks/blob/master/editor.li
 (declare (ignore p))

And here’s how you can change indentation for special forms:

See also:

a list of LispWork keybindings:
https://www.nicklevine.org/declarative/lectures/additional/key-binds.html

The listener

The listener is the REPL we are expecting to find, but it has a slight difference
from Slime.

It doesn’t evaluate the input line by line or form by form, instead it parses the
input while typing. So we get some errors instantly. For example, we type (abc.
So far so good. Once we type a colon to get (abc:, an error message is printed
just above our input:

Error while reading: Reader cannot find package ABC.

CL-USER 1 > (abc:

Indeed, now abc: references a package, but such a package doesn’t exist.

Its interactive debugger is primarily textual but you can also interact with it with
graphical elements. For example, you can use the Abort button of the menu bar,
which brings you back to the top level. You can invoke the graphical debugger to

 (let ((point (editor:current-point)))
 (editor:with-point ((m point))
 (cond ((editor::forward-up-list m)
 (editor:move-point point m)
 (editor::point-before point)
 (loop (editor:with-point ((back point))
 (editor::back-to-indentation back)
 (unless (editor:point= back point)
 (return)))
 (editor::delete-indentation point))
 (editor::point-after point))
 (t (editor:editor-error))))))

(editor:bind-key "Move Over ()" #\) :mode "Lisp")

(editor:setup-indent "if" 1 4 1)

https://www.nicklevine.org/declarative/lectures/additional/key-binds.html

see the stacktraces and interact with them. See the Debugger button at the very
end of the toolbar.

If you see the name of your function in the stacktraces (you will if you wrote and
compiled your code in a file, and not directly wrote it in the REPL), you can
double-click on its name to go back to the editor and have it highlight the part of
your code that triggered the error.

NB: this is equivalent of pressing M-v in Slime.

It is possible to choose the graphical debugger to appear by default, instead of the
textual one.

The listener provides some helper commands, not unlike Slime’s ones starting
with a comma ,:

CL-USER 1 > :help

:bug-form <subject> &key <filename>
 Print out a bug report form, optionally to a file.
:get <variable> <command identifier>
 Get a previous command (found by its number or a
symbol/subform within it) and put it in a variable.
:help Produce this list.
:his &optional <n1> <n2>
 List the command history, optionally the last n1 or range
n1 to n2.
:redo &optional <command identifier>
 Redo a previous command, found by its number or a
symbol/subform within it.
:use <new> <old> &optional <command identifier>
 Do variant of a previous command, replacing old
symbol/subform with new symbol/subform.

The stepper. Breakpoints.

The stepper is one of the areas where LispWorks shines.

When your are writing code in the editor window, you can set breakpoints with
the big red “Breakpoint” button (or by calling M-x Stepper Breakpoint). This
puts a red mark in your code.

The next time your code is executed, you’ll get a comprehensive Stepper pop-up
window showing:

your source code, with an indicator showing what expression is being
evaluated
a lower pane with two tabs:

the backtrace, showing the intermediate variables, thus showing their
evolution during the execution of the program
the listener, in the context of this function call, where you can evaluate
expressions

and the menu bar with the stepper controls: you can step into the next
expression, step on the next function call, continue execution until the
position of the cursor, continue the execution until the next breakpoint, etc.

That’s not all. The non-visual, REPL-oriented stepper is also nice. It shows the
forms that are being evaluated and their results.

http://www.lispworks.com/documentation/lw61/IDE-W/html/ide-w-496.htm

In this example, we use :s to “step” though the current form and its subforms. We
are using the usual listener, we can write any Lisp code after the prompt (the little
-> here), and we have access to the local variables (X).

Here are the available stepper commands (see :?):

:s Step this form and all of its subforms (optional +ve
integer arg)
:st Step this form without stepping its subforms
:si Step this form without stepping its arguments if it is a
function call
:su Step up out of this form without stepping its subforms
:sr Return a value to use for this form

CL-USER 4 > (defun my-abs (x)
 (cond ((> x 0) x) ((< x 0) (- x)) (t 0)))

CL-USER 5 > (step (my-abs -5))
(MY-ABS -5) -> :s
 -5 -> :s
 -5
 (COND ((> X 0) X) ((< X 0) (- X)) (T 0)) <=> (IF (> X 0) (PROGN X)
 ;; Access to the local variables:
 (IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0))) -> (format t "

Is X equal to -5? yes
 (IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0))) -> :s
 (> X 0) -> :s
 X -> :s
 -5
 0 -> :s
 0
 NIL
 (IF (< X 0) (- X) (PROGN 0)) -> :s
 (< X 0) -> :s
 X -> :s
 -5
 0 -> :s
 0
 T
 (- X) -> :s
 X -> :s
 -5
 5
 5
 5

5

:sq Quit from the current stepper level
:bug-form <subject> &key <filename>
 Print out a bug report form, optionally to a file.
:get <variable> <command identifier>
 Get a previous command (found by its number or a
symbol/subform within it) and put it in a variable.
:help Produce this list.
:his &optional <n1> <n2>
 List the command history, optionally the last n1 or range
n1 to n2.
:redo &optional <command identifier>
 Redo a previous command, found by its number or a
symbol/subform within it.
:use <new> <old> &optional <command identifier>
 Do variant of a previous command, replacing old
symbol/subform with new symbol/subform.

The class browser

The class browser allows us to examine a class’s slots, parent classes, available
methods, and some more.

Let’s create a simple class:

Now call the class browser:

use the “Class” button from the listener,
or use the menu Expression -> Class,
or put the cursor on the class and call M-x Describe class.

(defclass person ()
 ((name :accessor name
 :initarg :name
 :initform "")
 (lisper :accessor lisperp
 :initform t)))

It is composed of several panes:

the class hierarchy, showing the superclasses on the left and the subclasses
on the right, with their description to the bottom,
the superclasses viewer, in the form of a simple schema, and the same for
subclasses,
the slots pane (the default),
the available initargs,
the existing generic functions for that class
and the class precedence list.

The Functions pane lists all methods applicable to that class, so we can discover
public methods provided by the CLOS object system: initialize-instance,
print-object, shared-initialize, etc. We can double-click on them to go to
their source. We can choose not to include the inherited methods too (see the
“include inherited” checkbox).

You’ll find buttons on the toolbar (for example, Inspect a generic function) and
more actions on the Methods menu, such as a way to see the functions calls, a
menu to undefine or trace a function.

See more:

Chapter 8 of the documentation: the Class Browser

The function call browser

The function call browser allows us to see a graph of the callers and the callees of
a function. It provides several ways to filter the displayed information and to
further inspect the call stack.

NB: The Slime functions to find such cross-references are slime-who-[calls,
references, binds, sets, depends-on, specializes, macroexpands].

After loading a couple packages, here’s a simple example showing who calls the
string-trim function.

http://www.lispworks.com/documentation/lw71/IDE-U/html/ide-u-55.htm#pgfId-871798

The function call browser

It shows functions from all packages, but there is a select box to restrict it further,
for example to the “current and used” or only to the current packages.

Double click on a function shown in the graph to go to its source. Again, as in
many LispWorks views, the Function menu allows to further manipulate selected
functions: trace, undefine, listen (paste the object to the Listener)…

The Text tab shows the same information, but textually, the callers and callees
side by side.

We can see cross references for compiled code, and we must ensure the feature is
on. When we compile code, LispWorks shows a compilation output likes this:

;;; Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 1
;;; Compilation speed = 1, Debug = 2, Fixnum safety = 3
;;; Source level debugging is on
;;; Source file recording is on
;;; Cross referencing is on

We see that cross referencing is on. Otherwise, activate it with (toggle-source-
debugging t).

See more:

Chapter 15: the function call browser

The Process Browser

The Process Browser shows us a list of all threads running. The input area allows
to filter by name. It accepts regular expressions. Then we can stop, inspect, listen,
break into these processes.

http://www.lispworks.com/documentation/lw71/IDE-U/html/ide-u-114.htm#pgfId-852601

“The process browser”

See more:

Chapter 28: the Process Browser

Saving images

Saving images with LispWorks is different than with SBCL:

we can save an image now, or schedule snapshots later in time
the new created image becomes the default core image for our LispWorks
environment
the REPL session is saved
the windows configuration is saved
threads are saved

So, effectively, we can save an image and have our development environment
back to the same state, effectively allowing to take snapshots of our current work
and to continue where we left of.

For example, we can start a game from the REPL, play a little bit in its window,
save an image, and when restored we will get the game and its state back.

http://www.lispworks.com/documentation/lw71/IDE-U/html/ide-u-178.htm#pgfId-852666

Misc

We like the Search Files functionality. It is like a recursive grep, but we get a
typical LispWorks graphical window that displays the results, allows to double-
click on them and that offers some more actions.

Last but not least, have a look at the compilation conditions browser.
LispWorks puts all warnings and errors into a special browser when we compile a
system. From now on we can work on fixing them and see them disappear from
the browser. That helps keeping track of warnings and errors during development.

Using LispWorks from Emacs and Slime

To do that, you have two possibilities. The first one is to start LispWorks
normally, start a Swank server and connect to it from Emacs (Swank is the
backend part of Slime).

First, let’s load the dependencies:

Start a server:

From Emacs, run M-x slime-connect, choose localhost and 9876 for the port.

You should be connected. Check with: (lisp-implementation-type). You are
now able to use LispWorks’ features:

The second possibility is to create a non-GUI LispWorks image, with Swank
loaded, and to run this image from SLIME or SLY. For example, to create a so-
called console image with multiprocessing enabled:

(ql:quickload "swank")
;; or
(load "~/.emacs.d/elpa/slime-20xx/swank-loader.lisp")

(swank:create-server :port 9876)
;; Swank started at port: 9876.
9876

(setq button
 (make-instance 'capi:push-button
 :data "Button"))

(capi:contain button)

and run LispWorks like this to create the new image ~/lw-console:

lispworks-7-0-0-x86-linux -build /tmp/resave.lisp

However: console is implemented only for Windows and Mac.

See LispWorks’ documentation.

See also

LispWorks IDE User Guide (check out the sections we didn’t cover)
LispWorks on Wikipedia
the Awesome LispWorks list
Real Image-based approach in Common Lisp - differences between SBCL
and LispWorks.

(in-package "CL-USER")
(load-all-patches)
(save-image "~/lw-console"
 :console t
 :multiprocessing t
 :environment nil)

http://www.lispworks.com/documentation/lw71/IDE-U/html/ide-u.htm
https://en.wikipedia.org/wiki/LispWorks
https://github.com/fourier/awesome-lispworks
https://www.youtube.com/watch?v=nsKx40ab9SY

Functions
Named functions: defun

Creating named functions is done with the defun keyword. It follows this
model:

The return value is the value returned by the last expression of the body
(see below for more). There is no “return xx” statement.

So, for example:

Call it:

Arguments

Base case: required arguments

Add in arguments like this:

(defun <name> (list of arguments)
 "docstring"
 (function body))

(defun hello-world ()
 ;; ^^ no arguments
 (print "hello world!"))

(hello-world)
;; "hello world!" <-- output
;; "hello world!" <-- a string is returned.

(defun hello (name)
 "Say hello to `name'."
 (format t "hello ~a !~&" name))
;; HELLO

(where ~a is the most used format directive to print a variable aesthetically
and ~& prints a newline)

Call the function:

If you don’t specify the right amount of arguments, you’ll be trapped into
the interactive debugger with an explicit error message:

(hello)

invalid number of arguments: 0

Optional arguments: &optional

Optional arguments are declared after the &optional keyword in the
lambda list. They are ordered, they must appear one after another.

This function:

must be called like this:

Named parameters: &key

It is not always convenient to remember the order of the arguments. It is
thus possible to supply arguments by name: we declare them using &key
<name>, we set them with :name <value> in the function call, and we use
name as a regular variable in the function body. They are nil by default.

(hello "me")
;; hello me ! <-- this is printed by `format`
;; NIL <-- return value: `format t` prints a string
;; to standard output and returns nil.

(defun hello (name &optional age gender) …)

(hello "me") ;; a value for the required argument,
 ;; zero optional arguments
(hello "me" "7") ;; a value for age
(hello "me" 7 :h) ;; a value for age and gender

The following calls are possible:

(hello "me")
(hello "me" :happy t)
(hello "me" :happy nil) ;; useless, equivalent to (hello "me")

and this is not valid: (hello "me" :happy):

odd number of &KEY arguments

A similar example of a function declaration, with several key parameters:

it can be called with zero or more key parameters, in any order:

Last but not least, you would quickly realize it, but we can choose the keys
programmatically (they can be variables):

Mixing optional and key parameters

It is generally a style warning, but it is possible.

(defun hello (name &key happy)
 "If `happy' is `t', print a smiley"
 (format t "hello ~a " name)
 (when happy
 (format t ":)~&")))

(defun hello (name &key happy lisper cookbook-contributor-p) …)

(hello "me" :lisper t)
(hello "me" :lisper t :happy t)
(hello "me" :cookbook-contributor-p t :happy t)

(let ((key :happy)
 (val t))
 (hello "me" key val))
;; hello me :)
;; NIL

(defun hello (&optional name &key happy)
 (format t "hello ~a " name)

In SBCL, this yields:

; in: DEFUN HELLO
; (SB-INT:NAMED-LAMBDA HELLO
; (&OPTIONAL NAME &KEY HAPPY)
; (BLOCK HELLO (FORMAT T "hello ~a " NAME) (WHEN HAPPY
(FORMAT T ":)~&"))))
;
; caught STYLE-WARNING:
; &OPTIONAL and &KEY found in the same lambda list:
(&OPTIONAL (NAME "John") &KEY
; HAPPY)
;
; compilation unit finished
; caught 1 STYLE-WARNING condition

We can call it:

Default values to key parameters

In the lambda list, use pairs to give a default value to an optional or a key
argument, like (happy t) below:

Now happy is true by default.

Was a key parameter specified?

You can skip this tip for now if you want, but come back later to it as it can
turn handy.

We saw that a default key parameter is nil by default ((defun hello
(name &key happy) …)). But how can be distinguish between “the value is

 (when happy
 (format t ":)~&")))

(hello "me" :happy t)
;; hello me :)
;; NIL

(defun hello (name &key (happy t))

NIL by default” and “the user wants it to be NIL”?

We saw how to use a tuple to set its default value:

&key (:happy t)

To answer our question, use a triple like this:

&key (happy t happy-p)

where happy-p serves as a predicate variable (using -p is only a
convention, give it the name you want) to know if the key was supplied. If
it was, then it will be T.

So now, we will print a sad face if :happy was explicitely set to NIL. We
don’t print it by default.

Variable number of arguments: &rest

Sometimes you want a function to accept a variable number of arguments.
Use &rest <variable>, where <variable> will be a list.

(defun hello (name &key (happy nil happy-p))
 (format t "Key supplied? ~a~&" happy-p)
 (format t "hello ~a " name)
 (when happy-p
 (if happy
 (format t ":)")
 (format t ":("))))

(defun mean (x &rest numbers)
 (/ (apply #'+ x numbers)
 (1+ (length numbers))))

(mean 1)
(mean 1 2) ;; => 3/2 (yes, it is printed as a ratio)
(mean 1 2 3 4 5) ;; => 3

Defining key arguments, and allowing more: &allow-other-
keys

Observe:

whereas

We might need &allow-other-keys when passing around arguments or
with higher level manipulation of functions.

Here’s a real example. We define a function to open a file that always uses
:if-exists :supersede, but still passes any other keys to the open
function.

In the case of a duplicated :if-exists argument, our first one takes
precedence.

Return values

The return value of the function is the value returned by the last executed
form of the body.

(defun hello (name &key happy)
 (format t "hello ~a~&" name))

(hello "me" :lisper t)
;; => Error: unknown keyword argument

(defun hello (name &key happy &allow-other-keys)
 (format t "hello ~a~&" name))

(hello "me" :lisper t)
;; hello me

(defun open-supersede (f &rest other-keys &key &allow-other-keys
 (apply #'open f :if-exists :supersede other-keys))

There are ways for non-local exits (return-from <function name>
<value>), but they are usually not needed.

Common Lisp has also the concept of multiple return values.

Multiple return values: values, multiple-value-bind and nth-
value

Returning multiple values is not like returning a tuple or a list of results ;)
This is a common misconception.

Multiple values are specially useful and powerful because a change in them
needs little to no refactoring.

This function returns a.

We use values to return multiple values:

Observe here that *res* is still :A.

All functions that use the return value of foo need not to change, they still
work. If we had returned a list or an array, this would be different.

multiple-value-bind

We destructure multiple values with multiple-value-bind (or mvb+TAB in
Slime for short) and we can get one given its position with nth-value:

(defun foo (a b c)
 a)

(defvar *res* (foo :a :b :c))
;; :A

(defun foo (a b c)
 (values a b c))

(setf *res* (foo :a :b :c))
;; :A

Its general form is

The variables var-n are not available outside the scope of multiple-
value-bind.

With nth-value:

Look here too that values is different from a list:

Note that (values) with no values returns… no values at all.

multiple-value-list

While we are at it: multiple-value-list turns multiple values to a list:

The reverse is values-list, it turns a list to multiple values:

(multiple-value-bind (res1 res2 res3)
 (foo :a :b :c)
 (format t "res1 is ~a, res2 is ~a, res2 is ~a~&"
 res1 res2 res3))
;; res1 is A, res2 is B, res2 is C
;; NIL

(multiple-value-bind (var-1 .. var-n) expr
 body)

(nth-value 0 (values :a :b :c)) ;; => :A
(nth-value 2 (values :a :b :c)) ;; => :C
(nth-value 9 (values :a :b :c)) ;; => NIL

(nth-value 0 '(:a :b :c)) ;; => (:A :B :C)
(nth-value 1 '(:a :b :c)) ;; => NIL

(multiple-value-list (values 1 2 3))
;; (1 2 3)

(values-list '(1 2 3))
;; 1
;; 2
;; 3

http://www.lispworks.com/documentation/HyperSpec/Body/m_mult_1.htm

Anonymous functions: lambda

Anonymous functions are created with lambda:

We can call a lambda with funcall or apply (see below).

If the first element of an unquoted list is a lambda expression, the lambda is
called:

Calling functions programmatically: funcall and
apply

funcall is to be used with a known number of arguments, when apply can
be used on a list, for example from &rest:

Referencing functions by name: single quote ' or sharpsign-
quote #'?

In the example above, we used #', but a single quote also works, and we
can encounter it in the wild. Which one to use?

It is generally safer to use #', because it respects lexical scope. Observe:

(lambda (x) (print x))

((lambda (x) (print x)) "hello")
;; hello

(funcall #'+ 1 2)
(apply #'+ '(1 2))

(defun foo (x)
 (* x 100))

(flet ((foo (x) (1+ x)))
 (funcall #'foo 1))
;; => 2, as expected

#' is actually the shorthand for (function …):

Using function or the #' shorthand allows us to refer to local functions. If
we pass instead a symbol to funcall, what is called is always the function
named by that symbol in the global environment.

In addition, #' catches the function by value. If the function is redefined,
bindings that refered to this function by #' will still run its original
behaviour.

Let’s assign a function to a parameter:

Now, if we redefine foo, the behaviour of *foo-caller* will not change:

;; But:

(flet ((foo (x) (1+ x)))
 (funcall 'foo 1))
;; => 100

(function +)
;; #<FUNCTION +>

(flet ((foo (x) (1+ x)))
 (print (function foo))
 (funcall (function foo) 1))
;; #<FUNCTION (FLET FOO) {1001C0ACFB}>
;; 2

(defparameter *foo-caller* #'foo)
(funcall *foo-caller* 1)
;; => 100

(defun foo (x) (1+ x))
;; WARNING: redefining CL-USER::FOO in DEFUN
;; FOO

(funcall *foo-caller* 1)
;; 100 ;; and not 2

If we bind the caller with 'foo, a single quote, the function will be resolved
at runtime:

The behaviour you want depends on your use case. Generally, using
sharpsign-quote is less surprising. But if you are running a tight loop and
you want live-update mechanisms (think a game or live visualisations), you
might want to use a single quote so that your loop picks up the user’s new
function definition.

Higher order functions: functions that return
functions

Writing functions that return functions is simple enough:

Here we have defined the function adder which returns an object of type
function.

To call the resulting function, we must use funcall or apply:

(defun foo (x) (* x 100)) ;; back to original behavior.
(defparameter *foo-caller-2* 'foo)
;; *FOO-CALLER-2*
(funcall *foo-caller-2* 1)
;; 100

;; We change the definition:
(defun foo (x) (1+ x))
;; WARNING: redefining CL-USER::FOO in DEFUN
;; FOO

;; We try again:
(funcall *foo-caller-2* 1)
;; 2

(defun adder (n)
 (lambda (x) (+ x n)))
;; ADDER

http://www.lispworks.com/documentation/HyperSpec/Body/t_fn.htm

Trying to call it right away leads to an illegal function call:

Indeed, CL has different namespaces for functions and variables, i.e. the
same name can refer to different things depending on its position in a form
that’s evaluated.

(adder 5)
;; #<CLOSURE (LAMBDA (X) :IN ADDER) {100994ACDB}>
(funcall (adder 5) 3)
;; 8

((adder 3) 5)
In: (ADDER 3) 5
 ((ADDER 3) 5)
Error: Illegal function call.

;; The symbol foo is bound to nothing:
CL-USER> (boundp 'foo)
NIL
CL-USER> (fboundp 'foo)
NIL
;; We create a variable:
CL-USER> (defparameter foo 42)
FOO
* foo
42
;; Now foo is "bound":
CL-USER> (boundp 'foo)
T
;; but still not as a function:
CL-USER> (fboundp 'foo)
NIL
;; So let's define a function:
CL-USER> (defun foo (x) (* x x))
FOO
;; Now the symbol foo is bound as a function too:
CL-USER> (fboundp 'foo)
T
;; Get the function:
CL-USER> (function foo)
#<FUNCTION FOO>
;; and the shorthand notation:

To simplify a bit, you can think of each symbol in CL having (at least) two
“cells” in which information is stored. One cell - sometimes referred to as
its value cell - can hold a value that is bound to this symbol, and you can
use boundp to test whether the symbol is bound to a value (in the global
environment). You can access the value cell of a symbol with symbol-
value.

The other cell - sometimes referred to as its function cell - can hold the
definition of the symbol’s (global) function binding. In this case, the symbol
is said to be fbound to this definition. You can use fboundp to test whether a
symbol is fbound. You can access the function cell of a symbol (in the
global environment) with symbol-function.

Now, if a symbol is evaluated, it is treated as a variable in that its value cell
is returned (just foo). If a compound form, i.e. a cons, is evaluated and its
car is a symbol, then the function cell of this symbol is used (as in (foo
3)).

In Common Lisp, as opposed to Scheme, it is not possible that the car of the
compound form to be evaluated is an arbitrary form. If it is not a symbol, it
must be a lambda expression, which looks like (lambdalambda-list
form*).

This explains the error message we got above - (adder 3) is neither a
symbol nor a lambda expression.

If we want to be able to use the symbol *my-fun* in the car of a compound
form, we have to explicitly store something in its function cell (which is
normally done for us by the macro defun):

* #'foo
#<FUNCTION FOO>
;; We call it:
(funcall (function adder) 5)
#<CLOSURE (LAMBDA (X) :IN ADDER) {100991761B}>
;; and call the lambda:
(funcall (funcall (function adder) 5) 3)
8

http://www.lispworks.com/documentation/HyperSpec/Body/f_boundp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fbound.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm

Read the CLHS section about form evaluation for more.

Closures

Closures allow to capture lexical bindings:

Or similarly:

;;; continued from above
CL-USER> (fboundp '*my-fun*)
NIL
CL-USER> (setf (symbol-function '*my-fun*) (adder 3))
#<CLOSURE (LAMBDA (X) :IN ADDER) {10099A5EFB}>
CL-USER> (fboundp '*my-fun*)
T
CL-USER> (*my-fun* 5)
8

(let ((limit 3)
 (counter -1))
 (defun my-counter ()
 (if (< counter limit)
 (incf counter)
 (setf counter 0))))

(my-counter)
0
(my-counter)
1
(my-counter)
2
(my-counter)
3
(my-counter)
0

(defun repeater (n)
 (let ((counter -1))
 (lambda ()
 (if (< counter n)
 (incf counter)

http://www.lispworks.com/documentation/HyperSpec/Body/03_aba.htm

See more on Practical Common Lisp.

setf functions

A function name can also be a list of two symbols with setf as the first
one, and where the first argument is the new value:

This mechanism is particularly used for CLOS methods.

A silly example:

 (setf counter 0)))))

(defparameter *my-repeater* (repeater 3))
;; *MY-REPEATER*
(funcall *my-repeater*)
0
(funcall *my-repeater*)
1
(funcall *my-repeater*)
2
(funcall *my-repeater*)
3
(funcall *my-repeater*)
0

(defun (setf <name>) (new-value <other arguments>)
 body)

(defparameter *current-name* ""
 "A global name.")

(defun hello (name)
 (format t "hello ~a~&" name))

(defun (setf hello) (new-value)
 (hello new-value)
 (setf *current-name* new-value)
 (format t "current name is now ~a~&" new-value))

http://www.gigamonkeys.com/book/variables.html

Currying

Concept

A related concept is that of currying which you might be familiar with if
you’re coming from a functional language. After we’ve read the last section
that’s rather easy to implement:

With the Alexandria library

Now that you know how to do it, you may appreciate using the
implementation of the Alexandria library (in Quicklisp).

(setf (hello) "Alice")
;; hello Alice
;; current name is now Alice
;; NIL

CL-USER> (defun curry (function &rest args)
 (lambda (&rest more-args)
 (apply function (append args more-args))))
CURRY
CL-USER> (funcall (curry #'+ 3) 5)
8
CL-USER> (funcall (curry #'+ 3) 6)
9
CL-USER> (setf (symbol-function 'power-of-ten) (curry #'expt 10)
#<Interpreted Function "LAMBDA (FUNCTION &REST ARGS)" {482DB969}
CL-USER> (power-of-ten 3)
1000

(ql:quickload "alexandria")

(defun adder (foo bar)
 "Add the two arguments."
 (+ foo bar))

(defvar add-one (alexandria:curry #'adder 1) "Add 1 to the argum

https://en.wikipedia.org/wiki/Currying
https://common-lisp.net/project/alexandria/draft/alexandria.html#Data-and-Control-Flow

Documentation

functions:
http://www.lispworks.com/documentation/HyperSpec/Body/t_fn.htm#f
unction
ordinary lambda lists:
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
multiple-value-bind: http://clhs.lisp.se/Body/m_multip.htm

(funcall add-one 10) ;; => 11

(setf (symbol-function 'add-one) add-one)
(add-one 10) ;; => 11

Data structures
We hope to give here a clear reference of the common data structures. To
really learn the language, you should take the time to read other resources.
The following resources, which we relied upon, also have many more
details:

Practical CL, by Peter Seibel
CL Recipes, by E. Weitz, full of explanations and tips,
the CL standard with a nice TOC, functions reference, extensive
descriptions, more examples and warnings (i.e: everything). PDF
mirror
a Common Lisp quick reference

Don’t miss the appendix and when you need more data structures, have a
look at the awesome-cl list and Quickdocs.

Lists

Building lists. Cons cells, lists.

A list is also a sequence, so we can use the functions shown below.

The list basic element is the cons cell. We build lists by assembling cons
cells.

It looks like this:

[o|o]--- 2
 |
 1

(cons 1 2)
;; => (1 . 2) ;; representation with a point, a dotted pair.

http://gigamonkeys.com/book/they-called-it-lisp-for-a-reason-list-processing.html
http://weitz.de/cl-recipes/
http://cberr.us/tech_writings/notes/common_lisp_standard_draft.html
https://gitlab.com/vancan1ty/clstandard_build/-/blob/master/cl-ansi-standard-draft-w-sidebar.pdf
http://clqr.boundp.org/
https://github.com/CodyReichert/awesome-cl#data-structures
https://quickdocs.org/-/search?q=data%20structure

If the cdr of the first cell is another cons cell, and if the cdr of this last one
is nil, we build a list:

It looks like this:

[o|o]---[o|/]
 | |
 1 2

(ascii art by draw-cons-tree).

See that the representation is not a dotted pair ? The Lisp printer
understands the convention.

Finally we can simply build a literal list with list:

or by calling quote:

which is shorthand notation for the function call (quote (1 2)).

Circular lists

A cons cell car or cdr can refer to other objects, including itself or other
cells in the same list. They can therefore be used to define self-referential
structures such as circular lists.

Before working with circular lists, tell the printer to recognise them and not
try to print the whole list by setting *print-circle* to T:

(cons 1 (cons 2 nil))
;; => (1 2)

(list 1 2)
;; => (1 2)

'(1 2)
;; => (1 2)

(setf *print-circle* t)

https://github.com/cbaggers/draw-cons-tree
http://clhs.lisp.se/Body/v_pr_cir.htm

A function which modifies a list, so that the last cdr points to the start of
the list is:

The list-length function recognises circular lists, returning nil.

The reader can also create circular lists, using Sharpsign Equal-Sign
notation. An object (like a list) can be prefixed with #n= where n is an
unsigned decimal integer (one or more digits). The label #n# can be used to
refer to the object later in the expression:

Note that the label given to the reader (n=42) is discarded after reading, and
the printer defines a new label (n=1).

Further reading

Let over Lambda section on cyclic expressions

car/cdr or first/rest (and second… to tenth)

We can assign any new value with setf.

(defun circular! (items)
 "Modifies the last cdr of list ITEMS, returning a circular lis
 (setf (cdr (last items)) items))

(circular! (list 1 2 3))
;; => #1=(1 2 3 . #1#)

(fifth (circular! (list 1 2 3)))
;; => 2

'#42=(1 2 3 . #42#)
;; => #1=(1 2 3 . #1#)

(car (cons 1 2)) ;; => 1
(cdr (cons 1 2)) ;; => 2
(first (cons 1 2)) ;; => 1
(first '(1 2 3)) ;; => 1
(rest '(1 2 3)) ;; => (2 3)

http://www.lispworks.com/documentation/HyperSpec/Body/f_list_l.htm#list-length
http://www.lispworks.com/documentation/HyperSpec/Body/02_dho.htm
https://letoverlambda.com/index.cl/guest/chap4.html#sec_5

last, butlast, nbutlast (&optional n)

return the last cons cell in a list (or the nth last cons cells).

In Alexandria, lastcar is equivalent of (first (last …)):

reverse, nreverse

reverse and nreverse return a new sequence.

nreverse is destructive. The N stands for non-consing, meaning it doesn’t
need to allocate any new cons cells. It might (but in practice, does) reuse
and modify the original sequence:

append

append takes any number of list arguments and returns a new list containing
the elements of all its arguments:

(last '(1 2 3))
;; => (3)
(car (last '(1 2 3))) ;; or (first (last …))
;; => 3
(butlast '(1 2 3))
;; => (1 2)

(alexandria:lastcar '(1 2 3))
;; => 3

(defparameter mylist '(1 2 3))
;; => (1 2 3)
(reverse mylist)
;; => (3 2 1)
mylist
;; => (1 2 3)
(nreverse mylist)
;; => (3 2 1)
mylist
;; => (1) in SBCL but implementation dependent.

https://common-lisp.net/project/alexandria/draft/alexandria.html#Conses

The new list shares some cons cells with the (3 4):

http://gigamonkeys.com/book/figures/after-append.png

nconc is the recycling equivalent.

push (item, place)

push prepends item to the list that is stored in place, stores the resulting list
in place, and returns the list.

push is equivalent to (setf place (cons item place)) except that the
subforms of place are evaluated only once, and item is evaluated before
place.

There is no built-in function to add to the end of a list. It is a more costly
operation (have to traverse the whole list). So if you need to do this: either
consider using another data structure, either just reverse your list when
needed.

pop

a destructive operation.

nthcdr (index, list)

(append (list 1 2) (list 3 4))
;; => (1 2 3 4)

(defparameter mylist '(1 2 3))
(push 0 mylist)
;; => (0 1 2 3)

(defparameter x ’(a (b c) d))
;; => (A (B C) D)
(push 5 (cadr x))
;; => (5 B C)
x
;; => (A (5 B C) D)

Use this if first, second and the rest up to tenth are not enough.

car/cdr and composites (cadr, caadr…) - accessing lists inside
lists

They make sense when applied to lists containing other lists.

destructuring-bind (parameter*, list)

It binds the parameter values to the list elements. We can destructure trees,
plists and even provide defaults.

Simple matching:

Matching inside sublists:

The parameter list can use the usual &optional, &rest and &key
parameters.

(caar (list 1 2 3)) ==> error
(caar (list (list 1 2) 3)) ==> 1
(cadr (list (list 1 2) (list 3 4))) ==> (3 4)
(caadr (list (list 1 2) (list 3 4))) ==> 3

(destructuring-bind (x y z) (list 1 2 3)
 (list :x x :y y :z z))
;; => (:X 1 :Y 2 :Z 3)

(destructuring-bind (x (y1 y2) z) (list 1 (list 2 20) 3)
 (list :x x :y1 y1 :y2 y2 :z z))
;; => (:X 1 :Y1 2 :Y2 20 :Z 3)

(destructuring-bind (x (y1 &optional y2) z) (list 1 (list 2) 3)
 (list :x x :y1 y1 :y2 y2 :z z))
;; => (:X 1 :Y1 2 :Y2 NIL :Z 3)

(destructuring-bind (&key x y z) (list :z 1 :y 2 :x 3)
 (list :x x :y y :z z))
;; => (:X 3 :Y 2 :Z 1)

The &whole parameter is bound to the whole list. It must be the first one and
others can follow.

Destructuring a plist, giving defaults:

(example from Common Lisp Recipes, by E. Weitz, Apress, 2016)

If this gives you the will to do pattern matching, see pattern matching.

Predicates: null, listp

null is equivalent to not, but considered better style.

listp tests whether an object is a cons cell or nil.

and sequences’ predicates.

ldiff, tailp, list*, make-list, fill, revappend, nreconc, consp, atom

member (elt, list)

(destructuring-bind (&whole whole-list &key x y z)
 (list :z 1 :y 2 :x 3)
 (list :x x :y y :z z :whole whole-list))
;; => (:X 3 :Y 2 :Z 1 :WHOLE-LIST (:Z 1 :Y 2 :X 3))

(destructuring-bind (&key a (b :not-found) c
 &allow-other-keys)
 ’(:c 23 :d "D" :a #\A :foo :whatever)
 (list a b c))
;; => (#\A :NOT-FOUND 23)

(make-list 3 :initial-element "ta")
;; => ("ta" "ta" "ta")

(make-list 3)
;; => (NIL NIL NIL)
(fill * "hello")
;; => ("hello" "hello" "hello")

Returns the tail of list beginning with the first element satisfying eqlity.

Accepts :test, :test-not, :key (functions or symbols).

Replacing objects in a tree: subst, sublis

subst and subst-if search and replace occurences of an element or
subexpression in a tree (when it satisfies the optional test):

sublis allows to replace many objects at once. It substitutes the objects
given in alist and found in tree with their new values given in the alist:

sublis accepts the :test and :key arguments. :test is a function that
takes two arguments, the key and the subtree.

Sequences

lists and vectors (and thus strings) are sequences.

Note: see also the strings page.

(member 2 '(1 2 3))
;; (2 3)

(subst 'one 1 '(1 2 3))
;; => (ONE 2 3)

(subst '(1 . one) '(1 . 1) '((1 . 1) (2 . 2)) :test #'equal)
;; ((1 . ONE) (2 . 2))

(sublis '((x . 10) (y . 20))
 '(* x (+ x y) (* y y)))
;; (* 10 (+ 10 20) (* 20 20))

(sublis '((t . "foo"))
 '("one" 2 ("three" (4 5)))
 :key #'stringp)
;; ("foo" 2 ("foo" (4 5)))

http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sublis.htm

Many of the sequence functions take keyword arguments. All keyword
arguments are optional and, if specified, may appear in any order.

Pay attention to the :test argument. It defaults to eql (for strings, use
:equal).

The :key argument should be passed either nil, or a function of one
argument. This key function is used as a filter through which the elements
of the sequence are seen. For instance, this:

is similar to (assoc* x y): It searches for an element of the list whose car
equals x, rather than for an element which equals x itself. If :key is omitted
or nil, the filter is effectively the identity function.

Example with an alist (see definition below):

For more, use a lambda that takes one parameter.

Predicates: every, some,…

every, notevery (test, sequence): return nil or t, respectively, as soon
as one test on any set of the corresponding elements of sequences returns
nil.

(find x y :key 'car)

(defparameter my-alist (list (cons 'foo "foo")
 (cons 'bar "bar")))
;; => ((FOO . "foo") (BAR . "bar"))
(find 'bar my-alist)
;; => NIL
(find 'bar my-alist :key 'car)
;; => (BAR . "bar")

(find 'bar my-alist :key (lambda (it) (car it)))

(find 'bar my-alist :key ^(car %))
(find 'bar my-alist :key (lm (it) (car it)))

with a list of strings:

some, notany (test, sequence): return either the value of the test, or nil.

Functions

See also sequence functions defined in Alexandria: starts-with, ends-
with, ends-with-subseq, length=, emptyp,…

length (sequence)

elt (sequence, index) - find by index

beware, here the sequence comes first.

count (foo sequence)

Return the number of elements in sequence that match foo.

Additional paramaters: :from-end, :start, :end.

See also count-if, count-not (test-function sequence).

subseq (sequence start, [end])

(defparameter foo '(1 2 3))
(every #'evenp foo)
;; => NIL
(some #'evenp foo)
;; => T

(defparameter str '("foo" "bar" "team"))
(every #'stringp str)
;; => T
(some (lambda (it) (= 3 (length it))) str)
;; => T

https://common-lisp.net/project/alexandria/draft/alexandria.html#Sequences

However, watch out if the end is larger than the list:

To this end, use alexandria-2:subseq*:

subseq is “setf”able, but only works if the new sequence has the same
length of the one to replace.

sort, stable-sort (sequence, test [, key function])

These sort functions are destructive, so one may prefer to copy the sequence
with copy-seq before sorting:

Unlike sort, stable-sort guarantees to keep the order of the argument. In
theory, the result of this:

could be either ((1 :A) (1 :B)), either ((1 :B) (1 :A)). On my tests,
the order is preserved, but the standard does not guarantee it.

find, position (foo, sequence) - get index

also find-if, find-if-not, position-if, position-if-not (test
sequence). See :key and :test parameters.

(subseq (list 1 2 3) 0)
;; (1 2 3)
(subseq (list 1 2 3) 1 2)
;; (2)

(subseq (list 1 2 3) 0 99)
;; => Error: the bounding indices 0 and 99
;; are bad for a sequence of length 3.

(alexandria-2:subseq* (list 1 2 3) 0 99)
;; (1 2 3)

(sort (copy-seq seq) :test #'string<)

(sort '((1 :a) (1 :b)) #'< :key #'first)

search and mismatch (sequence-a, sequence-b)

search searches in sequence-b for a subsequence that matches sequence-a.
It returns the position in sequence-b, or NIL. It has the from-end, end1,
end2 and the usual test and key parameters.

mismatch returns the position where the two sequences start to differ:

substitute, nsubstitute[if,if-not]

Return a sequence of the same kind as sequence with the same elements,
except that all elements equal to old are replaced with new.

(find 20 '(10 20 30))
;; 20
(position 20 '(10 20 30))
;; 1

(search '(20 30) '(10 20 30 40))
;; 1
(search '("b" "c") '("a" "b" "c"))
;; NIL
(search '("b" "c") '("a" "b" "c") :test #'equal)
;; 1
(search "bc" "abc")
;; 1

(mismatch '(10 20 99) '(10 20 30))
;; 2
(mismatch "hellolisper" "helloworld")
;; 5
(mismatch "same" "same")
;; NIL
(mismatch "foo" "bar")
;; 0

(substitute #\o #\x "hellx") ;; => "hello"
(substitute :a :x '(:a :x :x)) ;; => (:A :A :A)
(substitute "a" "x" '("a" "x" "x") :test #'string=)
;; => ("a" "a" "a")

sort, stable-sort, merge

(see above)

replace (sequence-a, sequence-b, &key start1, end1)

Destructively replace elements of sequence-a with elements of sequence-b.

The full signature is:

Elements are copied to the subseqeuence bounded by START1 and END1,
from the subsequence bounded by START2 and END2. If these
subsequences are not of the same length, then the shorter length determines
how many elements are copied.

remove, delete (foo sequence)

Make a copy of sequence without elements matching foo. Has :start/end,
:key and :count parameters.

delete is the recycling version of remove.

(replace sequence1 sequence2
 &rest args
 &key (start1 0) (end1 nil) (start2 0) (end2 nil))

(replace "xxx" "foo")
"foo"

(replace "xxx" "foo" :start1 1)
"xfo"

(replace "xxx" "foo" :start1 1 :start2 1)
"xoo"

(replace "xxx" "foo" :start1 1 :start2 1 :end2 2)
"xox"

see also remove-if[-not] below.

remove-duplicates, delete-duplicates (sequence)

remove-duplicates returns a new sequence with uniq elements. delete-
duplicates may modify the original sequence.

remove-duplicates accepts the following, usual arguments: from-end
test test-not start end key.

mapping (map, mapcar, remove-if[-not],…)

If you’re used to map and filter in other languages, you probably want
mapcar. But it only works on lists, so to iterate on vectors (and produce
either a vector or a list, use (map 'list function vector).

mapcar also accepts multiple lists with &rest more-seqs. The mapping
stops as soon as the shortest sequence runs out.

map takes the output-type as first argument ('list, 'vector or 'string):

reduce (function, sequence). Special parameter: :initial-value.

(remove "foo" '("foo" "bar" "foo") :test 'equal)
;; => ("bar")

(remove-duplicates '(:foo :foo :bar))
(:FOO :BAR)

(remove-duplicates '("foo" "foo" "bar"))
("foo" "foo" "bar")

(remove-duplicates '("foo" "foo" "bar") :test #'string-equal)
("foo" "bar")

(defparameter foo '(1 2 3))
(map 'list (lambda (it) (* 10 it)) foo)

http://clhs.lisp.se/Body/f_rm_dup.htm

Filter is here called remove-if-not.

Flatten a list (Alexandria)

With Alexandria, we have the flatten function.

Creating lists with variables

That’s one use of the backquote:

Second try, with backquote interpolation:

The backquote first warns we’ll do interpolation, the comma introduces the
value of the variable.

If our variable is a list:

E. Weitz warns that “objects generated this way will very likely share
structure (see Recipe 2-7)”.

(reduce '- '(1 2 3 4))
;; => -8
(reduce '- '(1 2 3 4) :initial-value 100)
;; => 90

(defparameter *var* "bar")
;; First try:
'("foo" *var* "baz") ;; no backquote
;; => ("foo" *VAR* "baz") ;; nope

`("foo" ,*var* "baz") ;; backquote, comma
;; => ("foo" "bar" "baz") ;; good

(defparameter *var* '("bar" "baz"))
;; First try:
`("foo" ,*var*)
;; => ("foo" ("bar" "baz")) ;; nested list
`("foo" ,@*var*) ;; backquote, comma-@ to
;; => ("foo" "bar" "baz")

https://common-lisp.net/project/alexandria/draft/alexandria.html

Comparing lists

We can use sets functions.

Set

We show below how to use set operations on lists.

A set doesn’t contain twice the same element and is unordered.

Most of these functions have recycling (modifying) counterparts, starting
with “n”: nintersection,… They all accept the usual :key and :test
arguments, so use the test #'string= or #'equal if you are working with
strings.

For more, see functions in Alexandria: setp, set-equal,… and the FSet
library, shown in the next section.

intersection of lists

What elements are both in list-a and list-b ?

Remove the elements of list-b from list-a (set-difference)

Join two lists with uniq elements (union)

(defparameter list-a '(0 1 2 3))
(defparameter list-b '(0 2 4))
(intersection list-a list-b)
;; => (2 0)

(set-difference list-a list-b)
;; => (3 1)
(set-difference list-b list-a)
;; => (4)

(union list-a list-b)
;; => (3 1 0 2 4) ;; order can be different in your lisp

https://common-lisp.net/project/alexandria/draft/alexandria.html#Conses

Remove elements that are in both lists (set-exclusive-or)

Add an element to a set (adjoin)

A new set is returned, the original set is not modified.

Check if this is a subset (subsetp)

Fset - immutable data structure

You may want to have a look at the FSet library (in Quicklisp).

Arrays and vectors

(set-exclusive-or list-a list-b)
;; => (4 3 1)

(adjoin 3 list-a)
;; => (0 1 2 3) ;; <-- nothing was changed, 3 was already ther

(adjoin 5 list-a)
;; => (5 0 1 2 3) ;; <-- element added in front.

list-a
;; => (0 1 2 3) ;; <-- original list unmodified.

(subsetp '(1 2 3) list-a)
;; => T

(subsetp '(1 1 1) list-a)
;; => T

(subsetp '(3 2 1) list-a)
;; => T

(subsetp '(0 3) list-a)
;; => T

https://common-lisp.net/project/fset/Site/FSet-Tutorial.html

Arrays have constant-time access characteristics.

They can be fixed or adjustable. A simple array is neither displaced (using
:displaced-to, to point to another array) nor adjustable (:adjust-array),
nor does it have a fill pointer (fill-pointer, that moves when we add or
remove elements).

A vector is an array with rank 1 (of one dimension). It is also a sequence
(see above).

A simple vector is a simple array that is also not specialized (it doesn’t use
:element-type to set the types of the elements).

Create an array, one or many dimensions

make-array (sizes-list :adjustable bool)

adjust-array (array, sizes-list, :element-type, :initial-element)

Access: aref (array i [j …])

aref (array i j k …) or row-major-aref (array i) equivalent to (aref i i
i …).

The result is setfable.

Sizes

array-total-size (array): how many elements will fit in the array ?

(defparameter myarray (make-array '(2 2 2) :initial-element 1))
myarray
;; => #3A(((1 1) (1 1)) ((1 1) (1 1)))
(aref myarray 0 0 0)
;; => 1
(setf (aref myarray 0 0 0) 9)
;; => 9
(row-major-aref myarray 0)
;; => 9

array-dimensions (array): list containing the length of the array’s
dimensions.

array-dimension (array i): length of the ith dimension.

array-rank number of dimensions of the array.

Vectors

Create with vector or the reader macro #(). It returns a simple vector.

vector-push (foo vector): replace the vector element pointed to by the fill
pointer by foo. Can be destructive.

vector-push-extend (foo vector [extension-num])t

vector-pop (vector): return the element of vector its fill pointer points to.

fill-pointer (vector). setfable.

and see also the sequence functions.

(defparameter myarray (make-array '(2 2 2)))
;; => MYARRAY
myarray
;; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
(array-rank myarray)
;; => 3
(array-dimensions myarray)
;; => (2 2 2)
(array-dimension myarray 0)
;; => 2
(array-total-size myarray)
;; => 8

(vector 1 2 3)
;; => #(1 2 3)
#(1 2 3)
;; => #(1 2 3)

Transforming a vector to a list.

If you’re mapping over it, see the map function whose first parameter is the
result type.

Or use (coerce vector 'list).

Hash Table

Hash Tables are a powerful data structure, associating keys with values in a
very efficient way. Hash Tables are often preferred over association lists
whenever performance is an issue, but they introduce a little overhead that
makes assoc lists better if there are only a few key-value pairs to maintain.

Alists can be used sometimes differently though:

they can be ordered
we can push cons cells that have the same key, remove the one in front
and we have a stack
they have a human-readable printed representation
they can be easily (de)serialized
because of RASSOC, keys and values in alists are essentially
interchangeable; whereas in hash tables, keys and values play very
different roles (as usual, see CL Recipes for more).

Creating a Hash Table

Hash Tables are created using the function make-hash-table. It has no
required argument. Its most used optional keyword argument is :test,
specifying the function used to test the equality of keys.

Note: see shorter notations in the Serapeum or Rutils libraries. For
example, Serapeum has dict, and Rutils a #h reader macro.

Adding an Element to a Hash Table

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_has.htm
https://github.com/ruricolist/serapeum/
https://github.com/vseloved/rutils

If you want to add an element to a hash table, you can use gethash, the
function to retrieve elements from the hash table, in conjunction with setf.

With Serapeum’s dict, we can create a hash-table and add elements to it in
one go:

Getting a value from a Hash Table

The function gethash takes two required arguments: a key and a hash table.
It returns two values: the value corresponding to the key in the hash table
(or nil if not found), and a boolean indicating whether the key was found in
the table. That second value is necessary since nil is a valid value in a key-
value pair, so getting nil as first value from gethash does not necessarily
mean that the key was not found in the table.

Getting a key that does not exist with a default value

gethash has an optional third argument:

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'one-entry *my-hash*) "one")
"one"
CL-USER> (setf (gethash 'another-entry *my-hash*) 2/4)
1/2
CL-USER> (gethash 'one-entry *my-hash*)
"one"
T
CL-USER> (gethash 'another-entry *my-hash*)
1/2
T

(defparameter *my-hash* (dict :one-entry "one"
 :another-entry 2/4))
;; =>
(dict
 :ONE-ENTRY "one"
 :ANOTHER-ENTRY 1/2
)

http://www.lispworks.com/documentation/HyperSpec/Body/m_setf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gethas.htm

Getting all keys or all values of a hash table

The Alexandria library (in Quicklisp) has the functions hash-table-keys
and hash-table-values for that.

Testing for the Presence of a Key in a Hash Table

The first value returned by gethash is the object in the hash table that’s
associated with the key you provided as an argument to gethash or nil if
no value exists for this key. This value can act as a generalized boolean if
you want to test for the presence of keys.

But note that this does not work if nil is amongst the values that you want
to store in the hash.

(gethash 'bar *my-hash* "default-bar")
;; => "default-bar"
;; NIL

(ql:quickload "alexandria")
;; […]
(alexandria:hash-table-keys *my-hash*)
;; => (BAR)

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'one-entry *my-hash*) "one")
"one"
CL-USER> (if (gethash 'one-entry *my-hash*)
 "Key exists"
 "Key does not exist")
"Key exists"
CL-USER> (if (gethash 'another-entry *my-hash*)
 "Key exists"
 "Key does not exist")
"Key does not exist"

CL-USER> (setf (gethash 'another-entry *my-hash*) nil)
NIL
CL-USER> (if (gethash 'another-entry *my-hash*)

https://common-lisp.net/project/alexandria/draft/alexandria.html
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_g.htm#generalized_boolean%22%3Egeneralized%20boolean

In this case you’ll have to check the second return value of gethash which
will always return nil if no value is found and T otherwise.

Deleting from a Hash Table

Use remhash to delete a hash entry. Both the key and its associated value
will be removed from the hash table. remhash returns T if there was such an
entry, nil otherwise.

 "Key exists"
 "Key does not exist")
"Key does not exist"

CL-USER> (if (nth-value 1 (gethash 'another-entry *my-hash*))
 "Key exists"
 "Key does not exist")
"Key exists"
CL-USER> (if (nth-value 1 (gethash 'no-entry *my-hash*))
 "Key exists"
 "Key does not exist")
"Key does not exist"

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'first-key *my-hash*) 'one)
ONE
CL-USER> (gethash 'first-key *my-hash*)
ONE
T
CL-USER> (remhash 'first-key *my-hash*)
T
CL-USER> (gethash 'first-key *my-hash*)
NIL
NIL
CL-USER> (gethash 'no-entry *my-hash*)
NIL
NIL
CL-USER> (remhash 'no-entry *my-hash*)
NIL
CL-USER> (gethash 'no-entry *my-hash*)

http://www.lispworks.com/documentation/HyperSpec/Body/f_remhas.htm

Deleting a Hash Table

Use clrhash to delete a hash table. This will remove all of the data from the
hash table and return the deleted table.

Traversing a Hash Table

If you want to perform an action on each entry (i.e., each key-value pair) in
a hash table, you have several options:

You can use maphash which iterates over all entries in the hash table. Its
first argument must be a function which accepts two arguments, the key and
the value of each entry. Note that due to the nature of hash tables you can’t
control the order in which the entries are provided by maphash (or other
traversing constructs). maphash always returns nil.

NIL
NIL

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'first-key *my-hash*) 'one)
ONE
CL-USER> (setf (gethash 'second-key *my-hash*) 'two)
TWO
CL-USER> *my-hash*
#<hash-table :TEST eql :COUNT 2 {10097BF4E3}>
CL-USER> (clrhash *my-hash*)
#<hash-table :TEST eql :COUNT 0 {10097BF4E3}>
CL-USER> (gethash 'first-key *my-hash*)
NIL
NIL
CL-USER> (gethash 'second-key *my-hash*)
NIL
NIL

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'first-key *my-hash*) 'one)
ONE

http://www.lispworks.com/documentation/HyperSpec/Body/f_clrhas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_maphas.htm

You can also use with-hash-table-iterator, a macro which turns (via
macrolet) its first argument into an iterator that on each invocation returns
three values per hash table entry - a generalized boolean that’s true if an
entry is returned, the key of the entry, and the value of the entry. If there are
no more entries, only one value is returned - nil.

Note the following caveat from the HyperSpec: “It is unspecified what
happens if any of the implicit interior state of an iteration is returned outside
the dynamic extent of the with-hash-table-iterator form such as by
returning some closure over the invocation form.”

CL-USER> (setf (gethash 'second-key *my-hash*) 'two)
TWO
CL-USER> (setf (gethash 'third-key *my-hash*) nil)
NIL
CL-USER> (setf (gethash nil *my-hash*) 'nil-value)
NIL-VALUE
CL-USER> (defun print-hash-entry (key value)
 (format t "The value associated with the key ~S is ~S~%"
 key value))
PRINT-HASH-ENTRY
CL-USER> (maphash #'print-hash-entry *my-hash*)
The value associated with the key FIRST-KEY is ONE
The value associated with the key SECOND-KEY is TWO
The value associated with the key THIRD-KEY is NIL
The value associated with the key NIL is NIL-VALUE

;;; same hash-table as above
CL-USER> (with-hash-table-iterator (my-iterator *my-hash*)
 (loop
 (multiple-value-bind (entry-p key value)
 (my-iterator)
 (if entry-p
 (print-hash-entry key value)
 (return)))))
The value associated with the key FIRST-KEY is ONE
The value associated with the key SECOND-KEY is TWO
The value associated with the key THIRD-KEY is NIL
The value associated with the key NIL is NIL-VALUE
NIL

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_hash.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm

And there’s always loop:

Traversing keys or values

To map over keys or values we can again rely on Alexandria with maphash-
keys and maphash-values.

;;; same hash-table as above
CL-USER> (loop for key being the hash-keys of *my-hash*
 do (print key))
FIRST-KEY
SECOND-KEY
THIRD-KEY
NIL
NIL
CL-USER> (loop for key being the hash-keys of *my-hash*
 using (hash-value value)
 do (format t "The value associated with the key ~S is
 key value))
The value associated with the key FIRST-KEY is ONE
The value associated with the key SECOND-KEY is TWO
The value associated with the key THIRD-KEY is NIL
The value associated with the key NIL is NIL-VALUE
NIL
CL-USER> (loop for value being the hash-values of *my-hash*
 do (print value))
ONE
TWO

NIL
NIL-VALUE
NIL
CL-USER> (loop for value being the hash-values of *my-hash*
 using (hash-key key)
 do (format t "~&~A -> ~A" key value))
FIRST-KEY -> ONE
SECOND-KEY -> TWO
THIRD-KEY -> NIL
NIL -> NIL-VALUE
NIL

http://www.lispworks.com/documentation/HyperSpec/Body/06_a.htm

Counting the Entries in a Hash Table

No need to use your fingers - Common Lisp has a built-in function to do it
for you: hash-table-count.

Printing a Hash Table readably

With print-object (non portable)

It is very tempting to use print-object. It works under several
implementations, but this method is actually not portable. The standard
doesn’t permit to do so, so this is undefined behaviour.

gives:

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (hash-table-count *my-hash*)
0
CL-USER> (setf (gethash 'first *my-hash*) 1)
1
CL-USER> (setf (gethash 'second *my-hash*) 2)
2
CL-USER> (setf (gethash 'third *my-hash*) 3)
3
CL-USER> (hash-table-count *my-hash*)
3
CL-USER> (setf (gethash 'second *my-hash*) 'two)
TWO
CL-USER> (hash-table-count *my-hash*)
3
CL-USER> (clrhash *my-hash*)
#<EQL hash table, 0 entries {48205F35}>
CL-USER> (hash-table-count *my-hash*)
0

(defmethod print-object ((object hash-table) stream)
 (format stream "#HASH{~{~{(~a : ~a)~}~^ ~}}"
 (loop for key being the hash-keys of object
 using (hash-value value)
 collect (list key value))))

http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_1.htm

;; WARNING:
;; redefining PRINT-OBJECT (#<STRUCTURE-CLASS COMMON-
LISP:HASH-TABLE>
;; #<SB-PCL:SYSTEM-CLASS COMMON-
LISP:T>) in DEFMETHOD
;; #<STANDARD-METHOD COMMON-LISP:PRINT-OBJECT (HASH-TABLE T)
{1006A0D063}>

and let’s try it:

With a custom function (portable way)

Here’s a portable way.

This snippets prints the keys, values and the test function of a hash-table,
and uses alexandria:alist-hash-table to read it back in:

Example output:

#.(ALEXANDRIA:ALIST-HASH-TABLE
'((ONE . 1))
 :TEST 'EQL)
#<HASH-TABLE :TEST EQL :COUNT 1 {10046D4863}>

(let ((ht (make-hash-table)))
 (setf (gethash :foo ht) :bar)
 ht)
;; #HASH{(FOO : BAR)}

;; https://github.com/phoe/phoe-toolbox/blob/master/phoe-toolbox
(defun print-hash-table-readably (hash-table
 &optional
 (stream *standard-output*))
 "Prints a hash table readably using ALEXANDRIA:ALIST-HASH-TABL
 (let ((test (hash-table-test hash-table))
 (*print-circle* t)
 (*print-readably* t))
 (format stream "#.(ALEXANDRIA:ALIST-HASH-TABLE '(~%")
 (maphash (lambda (k v) (format stream " (~S . ~S)~%" k v))
 (format stream ") :TEST '~A)" test)
 hash-table))

This output can be read back in to create a hash-table:

With Serapeum (readable and portable)

The Serapeum library has the dict constructor, the function pretty-print-
hash-table and the toggle-pretty-print-hash-table switch, all which
do not use print-object under the hood.

This printed representation can be read back in.

Thread-safe Hash Tables

The standard hash-table in Common Lisp is not thread-safe. That means
that simple access operations can be interrupted in the middle and return a
wrong result.

Implementations offer different solutions.

With SBCL, we can create thread-safe hash tables with the :synchronized
keyword to make-hash-table: http://www.sbcl.org/manual/#Hash-Table-
Extensions.

(read-from-string
(with-output-to-string (s)
 (print-hash-table-readably
 (alexandria:alist-hash-table
 '((a . 1) (b . 2) (c . 3))) s)))
;; #<HASH-TABLE :TEST EQL :COUNT 3 {1009592E23}>
;; 83

CL-USER> (serapeum:toggle-pretty-print-hash-table)
T
CL-USER> (serapeum:dict :a 1 :b 2 :c 3)
(dict
 :A 1
 :B 2
 :C 3
)

https://github.com/ruricolist/serapeum/blob/master/REFERENCE.md#hash-tables
http://www.sbcl.org/manual/#Hash-Table-Extensions

If nil (the default), the hash-table may have multiple concurrent
readers, but results are undefined if a thread writes to the hash-table
concurrently with another reader or writer. If t, all concurrent accesses
are safe, but note that clhs 3.6 (Traversal Rules and Side Effects)
remains in force. See also: sb-ext:with-locked-hash-table.

But, operations that expand to two accesses, like the modify macros (incf)
or this:

need to be wrapped around sb-ext:with-locked-hash-table:

Limits concurrent accesses to HASH-TABLE for the duration of
BODY. If HASH-TABLE is synchronized, BODY will execute with
exclusive ownership of the table. If HASH-TABLE is not
synchronized, BODY will execute with other WITH-LOCKED-
HASH-TABLE bodies excluded – exclusion of hash-table accesses not
surrounded by WITH-LOCKED-HASH-TABLE is unspecified.

In LispWorks, hash-tables are thread-safe by default. But likewise, there is
no guarantee of atomicity between access operations, so we can use with-
hash-table-locked.

Ultimately, you might like what the cl-gserver library proposes. It offers
helper functions around hash-tables and its actors/agent system to allow
thread-safety. They also maintain the order of updates and reads.

Performance Issues: The Size of your Hash Table

The make-hash-table function has a couple of optional parameters which
control the initial size of your hash table and how it’ll grow if it needs to
grow. This can be an important performance issue if you’re working with

(defparameter *my-hash* (make-hash-table :synchronized t))

(setf (gethash :a *my-hash*) :new-value)

(sb-ext:with-locked-hash-table (*my-hash*)
 (setf (gethash :a *my-hash*) :new-value))

http://www.lispworks.com/documentation/HyperSpec/Body/03_f.htm
http://www.lispworks.com/documentation/lw71/LW/html/lw-144.htm#pgfId-900768
https://mdbergmann.github.io/cl-gserver/index.html#toc-2-4-1-hash-table-agent

large hash tables. Here’s an (admittedly not very scientific) example with
CMUCL pre-18d on Linux:

The values for hash-table-size and hash-table-rehash-size are
implementation-dependent. In our case, CMUCL chooses and initial size of
65, and it will increase the size of the hash by 50 percent whenever it needs
to grow. Let’s see how often we have to re-size the hash until we reach the
final size…

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (hash-table-size *my-hash*)
65
CL-USER> (hash-table-rehash-size *my-hash*)
1.5
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.27 seconds of real time
 0.25 seconds of user run time
 0.02 seconds of system run time
 0 page faults and
 8754768 bytes consed.
NIL
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.05 seconds of real time
 0.05 seconds of user run time
 0.0 seconds of system run time
 0 page faults and
 0 bytes consed.
NIL

http://www.cons.org/cmucl
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_4.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_hash_2.htm

The hash has to be re-sized 19 times until it’s big enough to hold 100,000
entries. That explains why we saw a lot of consing and why it took rather
long to fill the hash table. It also explains why the second run was much
faster - the hash table already had the correct size.

Here’s a faster way to do it: If we know in advance how big our hash will
be, we can start with the right size:

CL-USER> (log (/ 100000 65) 1.5)
18.099062
CL-USER> (let ((size 65))
 (dotimes (n 20)
 (print (list n size))
 (setq size (* 1.5 size))))
(0 65)
(1 97.5)
(2 146.25)
(3 219.375)
(4 329.0625)
(5 493.59375)
(6 740.3906)
(7 1110.5859)
(8 1665.8789)
(9 2498.8184)
(10 3748.2275)
(11 5622.3413)
(12 8433.512)
(13 12650.268)
(14 18975.402)
(15 28463.104)
(16 42694.656)
(17 64041.984)
(18 96062.98)
(19 144094.47)
NIL

CL-USER> (defparameter *my-hash* (make-hash-table :size 100000))
MY-HASH
CL-USER> (hash-table-size *my-hash*)
100000
CL-USER> (time (dotimes (n 100000)

 (setf (gethash n *my-hash*) n)))

That’s obviously much faster. And there was no consing involved because
we didn’t have to re-size at all. If we don’t know the final size in advance
but can guess the growth behaviour of our hash table we can also provide
this value to make-hash-table. We can provide an integer to specify
absolute growth or a float to specify relative growth.

Also rather fast (we only needed one re-size) but much more consing
because almost the whole hash table (minus 65 initial elements) had to be
built during the loop.

((g y))))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.04 seconds of real time
 0.04 seconds of user run time
 0.0 seconds of system run time
 0 page faults and
 0 bytes consed.
NIL

CL-USER> (defparameter *my-hash* (make-hash-table :rehash-size 1
MY-HASH
CL-USER> (hash-table-size *my-hash*)
65
CL-USER> (hash-table-rehash-size *my-hash*)
100000
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.07 seconds of real time
 0.05 seconds of user run time
 0.01 seconds of system run time
 0 page faults and
 2001360 bytes consed.
NIL

Note that you can also specify the rehash-threshold while creating a new
hash table. One final remark: Your implementation is allowed to completely
ignore the values provided for rehash-size and rehash-threshold…

Alist

Definition

An association list is a list of cons cells.

This simple example:

looks like this:

[o|o]---[o|/]
 | |
 | [o|o]---"bar"
 | |
 | BAR
 |
[o|o]---"foo"
 |
FOO

Construction

We can construct an alist like its representation:

The constructor pairlis associates a list of keys and a list of values:

(defparameter *my-alist* (list (cons 'foo "foo")
 (cons 'bar "bar")))
;; => ((FOO . "foo") (BAR . "bar"))

(setf *my-alist* '((:foo . "foo")
 (:bar . "bar")))

(pairlis '(:foo :bar)
 '("foo" "bar"))
;; => ((:BAR . "bar") (:FOO . "foo"))

Alists are just lists, so you can have the same key multiple times in the
same alist:

Access

To get a key, we have assoc (use :test 'equal when your keys are strings,
as usual). It returns the whole cons cell, so you may want to use cdr or
second to get the value, or even assoc-value list key from Alexandria.

There is assoc-if, and rassoc to get a cons cell by its value:

If the alist has repeating (duplicate) keys, you can use remove-if-not, for
example, to retrieve all of them.

(setf *alist-with-duplicate-keys*
 '((:a . 1)
 (:a . 2)
 (:b . 3)
 (:a . 4)
 (:c . 5)))

(assoc :foo *my-alist*)
;; (:FOO . "foo")
(cdr *)
;; "foo"

(alexandria:assoc-value *my-alist* :foo)
;; "foo"
;; (:FOO . "FOO")
;; It actually returned 2 values.

(rassoc "foo" *my-alist*)
;; NIL
;; bummer! The value "foo" is a string, so use:
(rassoc "foo" *my-alist* :test #'equal)
;; (:FOO . "foo")

(remove-if-not
 (lambda (entry)
 (eq :a entry))

Insert and remove entries

To add a key, we push another cons cell:

We can use pop and other functions that operate on lists, like remove:

Remove only one element with :count:

Update entries

Replace a value:

 alist-with-duplicate-keys
 :key #'car)

(push (cons 'team "team") *my-alist*)
;; => ((TEAM . "team") (FOO . "foo") (BAR . "bar"))

(remove :team *my-alist*)
;; ((:TEAM . "team") (FOO . "foo") (BAR . "bar"))
;; => didn't remove anything
(remove :team *my-alist* :key 'car)
;; ((FOO . "foo") (BAR . "bar"))
;; => returns a copy

(push (cons 'bar "bar2") *my-alist*)
;; ((BAR . "bar2") (TEAM . "team") (FOO . "foo") (BAR . "bar"))
;; => twice the 'bar key

(remove 'bar *my-alist* :key 'car :count 1)
;; ((TEAM . "team") (FOO . "foo") (BAR . "bar"))

;; because otherwise:
(remove 'bar *my-alist* :key 'car)
;; ((TEAM . "team") (FOO . "foo"))
;; => no more 'bar

my-alist
;; => '((:FOO . "foo") (:BAR . "bar"))
(assoc :foo *my-alist*)

Replace a key:

In the Alexandria library, see more functions like hash-table-alist,
alist-plist,…

Plist

A property list is simply a list that alternates a key, a value, and so on,
where its keys are symbols (we can not set its :test). More precisely, it
first has a cons cell whose car is the key, whose cdr points to the following
cons cell whose car is the value.

For example this plist:

looks like this:

[o|o]---[o|o]---[o|o]---[o|/]
 | | | |
FOO "foo" BAR "bar"

We access an element with getf (list elt) (it returns the value) (the list
comes as first element),

we remove an element with remf.

;; => (:FOO . "foo")
(setf (cdr (assoc :foo *my-alist*)) "new-value")
;; => "new-value"
my-alist
;; => '((:foo . "new-value") (:BAR . "bar"))

my-alist
;; => '((:FOO . "foo") (:BAR . "bar")))
(setf (car (assoc :bar *my-alist*)) :new-key)
;; => :NEW-KEY
my-alist
;; => '((:FOO . "foo") (:NEW-KEY . "bar")))

(defparameter my-plist (list 'foo "foo" 'bar "bar"))

https://common-lisp.net/project/alexandria/draft/alexandria.html#Conses

Structures

Structures offer a way to store data in named slots. They support single
inheritance.

Classes provided by the Common Lisp Object System (CLOS) are more
flexible however structures may offer better performance (see for example
the SBCL manual).

Creation

Use defstruct:

At creation slots are optional and default to nil.

To set a default value:

Also specify the type after the default value:

We create an instance with the generated constructor make- + <structure-
name>, so make-person:

(defparameter my-plist (list 'foo "foo" 'bar "bar"))
;; => (FOO "foo" BAR "bar")
(setf (getf my-plist 'foo) "foo!!!")
;; => "foo!!!"

(defstruct person
 id name age)

(defstruct person
 id
 (name "john doe")
 age)

(defstruct person
 id
 (name "john doe" :type string)
 age)

note that printed representations can be read back by the reader.

With a bad name type:

Invalid initialization argument:
 :NAME
in call for class #<STRUCTURE-CLASS PERSON>.
 [Condition of type SB-PCL::INITARG-ERROR]

We can set the structure’s constructor so as to create the structure without
using keyword arguments, which can be more convenient sometimes. We
give it a name and the order of the arguments:

Our new constructor is create-person:

However, the default make-person does not work any more:

Slot access

We access the slots with accessors created by <name-of-the-struct>- +
slot-name:

(defparameter *me* (make-person))
me
#S(PERSON :ID NIL :NAME "john doe" :AGE NIL)

(defparameter *bad-name* (make-person :name 123))

(defstruct (person (:constructor create-person (id name age)))
 id
 name
 age)

(create-person 1 "me" 7)
#S(PERSON :ID 1 :NAME "me" :AGE 7)

(make-person :name "me")
;; debugger:
obsolete structure error for a structure of type PERSON
[Condition of type SB-PCL::OBSOLETE-STRUCTURE]

we then also have person-age and person-id.

Setting

Slots are setf-able:

Predicate

A predicate function is generated:

Single inheritance

Use single inheritance with the :include <struct> argument:

Note that the CLOS object system is more powerful.

Limitations

After a change, instances are not updated.

If we try to add a slot (email below), we have the choice to lose all
instances, or to continue using the new definition of person. But the effects
of redefining a structure are undefined by the standard, so it is best to re-
compile and re-run the changed code.

(person-name *me*)
;; "john doe"

(setf (person-name *me*) "Cookbook author")
(person-name *me*)
;; "Cookbook author"

(person-p *me*)
T

(defstruct (female (:include person))
 (gender "female" :type string))
(make-female :name "Lilie")
;; #S(FEMALE :ID NIL :NAME "Lilie" :AGE NIL :GENDER "female")

gives an error and we drop in the debugger:

attempt to redefine the STRUCTURE-OBJECT class PERSON
incompatibly with the current definition
 [Condition of type SIMPLE-ERROR]

Restarts:
 0: [CONTINUE] Use the new definition of PERSON, invalidating
already-loaded code and instances.
 1: [RECKLESSLY-CONTINUE] Use the new definition of PERSON as
if it were compatible, allowing old accessors to use new
instances and allowing new accessors to use old instances.
 2: [CLOBBER-IT] (deprecated synonym for RECKLESSLY-CONTINUE)
 3: [RETRY] Retry SLIME REPL evaluation request.
 4: [*ABORT] Return to SLIME's top level.
 5: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING
{1002A0FFA3}>)

If we choose restart 0, to use the new definition, we lose access to *me*:

There is also very little introspection. Portable Common Lisp does not
define ways of finding out defined super/sub-structures nor what slots a
structure has.

The Common Lisp Object System (which came after into the language)
doesn’t have such limitations. See the CLOS section.

structures on the hyperspec
David B. Lamkins, “Successful Lisp, How to Understand and Use
Common Lisp”.

Tree

(defstruct person
 id
 (name "john doe" :type string)
 age
 email)

me
obsolete structure error for a structure of type PERSON
 [Condition of type SB-PCL::OBSOLETE-STRUCTURE]

http://www.lispworks.com/documentation/HyperSpec/Body/08_.htm
http://www.communitypicks.com/r/lisp/s/17592186045679-successful-lisp-how-to-understand-and-use-common

tree-equal, copy-tree. They descend recursively into the car and the cdr
of the cons cells they visit.

Sycamore - purely functional weight-balanced binary trees

https://github.com/ndantam/sycamore

Features:

Fast, purely functional weight-balanced binary trees.
Leaf nodes are simple-vectors, greatly reducing tree height.

Interfaces for tree Sets and Maps (dictionaries).
Ropes
Purely functional pairing heaps
Purely functional amortized queue.

Controlling how much of data to print (*print-
length*, *print-level*)

Use *print-length* and *print-level*.

They are both nil by default.

If you have a very big list, printing it on the REPL or in a stacktrace can
take a long time and bring your editor or even your server down. Use
print-length to choose the maximum of elements of the list to print,
and to show there is a rest with a ... placeholder:

And if you have a very nested data structure, set *print-level* to choose
the depth to print:

(setf *print-length* 2)
(list :A :B :C :D :E)
;; (:A :B ...)

(let ((*print-level* 2))
 (print '(:a (:b (:c (:d :e))))))
;; (:A (:B #)) <= *print-level* in action

https://github.com/ndantam/sycamore
http://en.wikipedia.org/wiki/Rope_(data_structure)
http://en.wikipedia.org/wiki/Pairing_heap

print-length will be applied at each level.

Reference: the HyperSpec.

Appendix A - generic and nested access of alists,
plists, hash-tables and CLOS slots

The solutions presented below might help you getting started, but keep in
mind that they’ll have a performance impact and that error messages will be
less explicit.

the access library (battle tested, used by the Djula templating system)
has a generic (access my-var :elt) (blog post). It also has accesses
(plural) to access and set nested values.
rutils as a generic generic-elt or ?,

Appendix B - accessing nested data structures

Sometimes we work with nested data structures, and we might want an
easier way to access a nested element than intricated “getf” and “assoc” and
all. Also, we might want to just be returned a nil when an intermediary key
doesn’t exist.

The access library given above provides this, with (accesses var key1
key2…).

;; (:A (:B (:C (:D :E))))
;; => the list is returned,
;; the let binding is not in effect anymore.

http://clhs.lisp.se/Body/v_pr_lev.htm
https://github.com/AccelerationNet/access
https://lisp-journey.gitlab.io/blog/generice-consistent-access-of-data-structures-dotted-path/
https://github.com/vseloved/rutils

Strings
The most important thing to know about strings in Common Lisp is
probably that they are arrays and thus also sequences. This implies that all
concepts that are applicable to arrays and sequences also apply to strings. If
you can’t find a particular string function, make sure you’ve also searched
for the more general array or sequence functions. We’ll only cover a
fraction of what can be done with and to strings here.

ASDF3, which is included with almost all Common Lisp implementations,
includes Utilities for Implementation- and OS- Portability (UIOP), which
defines functions to work on strings (strcat, string-prefix-p, string-
enclosed-p, first-char, last-char, split-string, stripln).

Some external libraries available on Quicklisp bring some more
functionality or some shorter ways to do.

str defines trim, words, unwords, lines, unlines, concat, split,
shorten, repeat, replace-all, starts-with?, ends-with?, blankp,
emptyp, …
Serapeum is a large set of utilities with many string manipulation
functions.
cl-change-case has functions to convert strings between camelCase,
param-case, snake_case and more. They are also included into str.
mk-string-metrics has functions to calculate various string metrics
efficiently (Damerau-Levenshtein, Hamming, Jaro, Jaro-Winkler,
Levenshtein, etc),
and cl-ppcre can come in handy, for example ppcre:replace-
regexp-all. See the regexp section.

Last but not least, when you’ll need to tackle the format construct, don’t
miss the following resources:

the official CLHS documentation
a quick reference

http://www.gigamonkeys.com/book/collections.html
https://gitlab.common-lisp.net/asdf/asdf/blob/master/uiop/README.md
https://github.com/vindarel/cl-str
https://github.com/ruricolist/serapeum/blob/master/REFERENCE.md#strings
https://github.com/rudolfochrist/cl-change-case
https://github.com/cbaggers/mk-string-metrics
http://www.lispworks.com/documentation/HyperSpec/Body/22_c.htm
http://clqr.boundp.org/

a CLHS summary on HexstreamSoft
the list of all format directives at the end of this document.
plus a Slime tip: type C-c C-d ~ plus a letter of a format directive to
open up its documentation. Use TAB-completion to list them all.
Again more useful with ivy-mode or helm-mode.

Creating strings

A string is created with double quotes, all right, but we can recall these
other ways:

using format nil doesn’t print but returns a new string (see more
examples of format below):

make-string count creates a string of the given length. The
:initial-element character is repeated count times:

Accessing Substrings

As a string is a sequence, you can access substrings with the SUBSEQ
function. The index into the string is, as always, zero-based. The third,
optional, argument is the index of the first character which is not a part of
the substring, it is not the length of the substring.

(defparameter *person* "you")
(format nil "hello ~a" *person*) ;; => "hello you"

(make-string 3 :initial-element #\♥) ;; => "♥♥♥"

(defparameter *my-string* (string "Groucho Marx"))
MY-STRING
(subseq *my-string* 8)
"Marx"
(subseq *my-string* 0 7)
"Groucho"
(subseq *my-string* 1 5)
"rouc"

https://www.hexstreamsoft.com/articles/common-lisp-format-reference/clhs-summary/#subsections-summary-table

You can also manipulate the substring if you use SUBSEQ together with
SETF.

But note that the string isn’t “stretchable”. To cite from the HyperSpec: “If
the subsequence and the new sequence are not of equal length, the shorter
length determines the number of elements that are replaced.” For example:

Accessing Individual Characters

You can use the function CHAR to access individual characters of a string.
CHAR can also be used in conjunction with SETF.

* (defparameter *my-string* (string "Harpo Marx"))
MY-STRING
* (subseq *my-string* 0 5)
"Harpo"
* (setf (subseq *my-string* 0 5) "Chico")
"Chico"
* *my-string*
"Chico Marx"

* (defparameter *my-string* (string "Karl Marx"))
MY-STRING
* (subseq *my-string* 0 4)
"Karl"
* (setf (subseq *my-string* 0 4) "Harpo")
"Harpo"
* *my-string*
"Harp Marx"
* (subseq *my-string* 4)
" Marx"
* (setf (subseq *my-string* 4) "o Marx")
"o Marx"
* *my-string*
"Harpo Mar"

* (defparameter *my-string* (string "Groucho Marx"))
MY-STRING
* (char *my-string* 11)
#\x
* (char *my-string* 7)

Note that there’s also SCHAR. If efficiency is important, SCHAR can be a
bit faster where appropriate.

Because strings are arrays and thus sequences, you can also use the more
generic functions AREF and ELT (which are more general while CHAR
might be implemented more efficiently).

Each character in a string has an integer code. The range of recognized
codes and Lisp’s ability to print them is directed related to your
implementation’s character set support, e.g. ISO-8859-1, or Unicode. Here
are some examples in SBCL of UTF-8 which encodes characters as 1 to 4 8
bit bytes. The first example shows a character outside the first 128 chars, or
what is considered the normal Latin character set. The second example
shows a multibyte encoding (beyond the value 255). Notice the Lisp reader
can round-trip characters by name.

#\Space
* (char *my-string* 6)
#\o
* (setf (char *my-string* 6) #\y)
#\y
* *my-string*
"Grouchy Marx"

* (defparameter *my-string* (string "Groucho Marx"))
MY-STRING
* (aref *my-string* 3)
#\u
* (elt *my-string* 8)
#\M

* (stream-external-format *standard-output*)

:UTF-8
* (code-char 200)

#\LATIN_CAPITAL_LETTER_E_WITH_GRAVE
* (char-code #\LATIN_CAPITAL_LETTER_E_WITH_GRAVE)

200

Check out the UTF-8 Wikipedia article for the range of supported
characters and their encodings.

Remove or replace characters from a string

There’s a slew of (sequence) functions that can be used to manipulate a
string and we’ll only provide some examples here. See the sequences
dictionary in the HyperSpec for more.

remove one character from a string:

Replace one character with substitute (non destructive) or replace
(destructive):

* (code-char 2048)
#\SAMARITAN_LETTER_ALAF

* (char-code #\SAMARITAN_LETTER_ALAF)
2048

* (remove #\o "Harpo Marx")
"Harp Marx"
* (remove #\a "Harpo Marx")
"Hrpo Mrx"
* (remove #\a "Harpo Marx" :start 2)
"Harpo Mrx"
* (remove-if #'upper-case-p "Harpo Marx")
"arpo arx"

* (substitute #\u #\o "Groucho Marx")
"Gruuchu Marx"
* (substitute-if #_ #'upper-case-p "Groucho Marx")
"_roucho _arx"
* (defparameter *my-string* (string "Zeppo Marx"))
MY-STRING
* (replace *my-string* "Harpo" :end1 5)
"Harpo Marx"
* *my-string*
"Harpo Marx"

Concatenating Strings

The name says it all: CONCATENATE is your friend. Note that this is a
generic sequence function and you have to provide the result type as the
first argument.

With UIOP, use strcat:

or with the library str, use concat:

If you have to construct a string out of many parts, all of these calls to
CONCATENATE seem wasteful, though. There are at least three other
good ways to construct a string piecemeal, depending on what exactly your
data is. If you build your string one character at a time, make it an
adjustable VECTOR (a one-dimensional ARRAY) of type character with a
fill-pointer of zero, then use VECTOR-PUSH-EXTEND on it. That way,
you can also give hints to the system if you can estimate how long the string
will be. (See the optional third argument to VECTOR-PUSH-EXTEND.)

* (concatenate 'string "Karl" " " "Marx")
"Karl Marx"
* (concatenate 'list "Karl" " " "Marx")
(#\K #\a #\r #\l #\Space #\M #\a #\r #\x)

* (uiop:strcat "karl" " " marx")

* (str:concat "foo" "bar")

* (defparameter *my-string* (make-array 0
 :element-type 'character
 :fill-pointer 0
 :adjustable t))
MY-STRING
* *my-string*
""
* (dolist (char '(#\Z #\a #\p #\p #\a))
 (vector-push-extend char *my-string*))
NIL
* *my-string*
"Zappa"

If the string will be constructed out of (the printed representations of)
arbitrary objects, (symbols, numbers, characters, strings, …), you can use
FORMAT with an output stream argument of NIL. This directs FORMAT to
return the indicated output as a string.

We can use the looping constructs of the FORMAT mini language to
emulate CONCATENATE.

FORMAT can do a lot more processing but it has a relatively arcane syntax.
After this last example, you can find the details in the CLHS section about
formatted output.

Another way to create a string out of the printed representation of various
object is using WITH-OUTPUT-TO-STRING. The value of this handy
macro is a string containing everything that was output to the string stream
within the body to the macro. This means you also have the full power of
FORMAT at your disposal, should you need it.

Processing a String One Character at a Time

Use the MAP function to process a string one character at a time.

* (format nil "This is a string with a list ~A in it"
 '(1 2 3))
"This is a string with a list (1 2 3) in it"

* (format nil "The Marx brothers are:~{ ~A~}."
 '("Groucho" "Harpo" "Chico" "Zeppo" "Karl"))
"The Marx brothers are: Groucho Harpo Chico Zeppo Karl."

* (format nil "The Marx brothers are:~{ ~A~^,~}."
 '("Groucho" "Harpo" "Chico" "Zeppo" "Karl"))
"The Marx brothers are: Groucho, Harpo, Chico, Zeppo, Karl."

* (with-output-to-string (stream)
 (dolist (char '(#\Z #\a #\p #\p #\a #\, #\Space))
 (princ char stream))
 (format stream "~S - ~S" 1940 1993))
"Zappa, 1940 - 1993"

Or do it with LOOP.

Reversing a String by Word or Character

Reversing a string by character is easy using the built-in REVERSE
function (or its destructive counterpart NREVERSE).

There’s no one-liner in CL to reverse a string by word (like you would do it
in Perl with split and join). You either have to use functions from an
external library like SPLIT-SEQUENCE or you have to roll your own
solution.

Here’s an attempt with the str library:

* (defparameter *my-string* (string "Groucho Marx"))
MY-STRING
* (map 'string (lambda (c) (print c)) *my-string*)
#\G
#\r
#\o
#\u
#\c
#\h
#\o
#\Space
#\M
#\a
#\r
#\x
"Groucho Marx"

* (loop for char across "Zeppo"
 collect char)
(#\Z #\e #\p #\p #\o)

*(defparameter *my-string* (string "DSL"))
MY-STRING
* (reverse *my-string*)
"LSD"

And here’s another one with no external dependencies:

* (defparameter *singing* "singing in the rain")
SINGING
* (str:words *SINGING*)
("singing" "in" "the" "rain")
* (reverse *)
("rain" "the" "in" "singing")
* (str:unwords *)
"rain the in singing"

* (defun split-by-one-space (string)
 "Returns a list of substrings of string
 divided by ONE space each.
 Note: Two consecutive spaces will be seen as
 if there were an empty string between them."
 (loop for i = 0 then (1+ j)
 as j = (position #\Space string :start i)
 collect (subseq string i j)
 while j))
SPLIT-BY-ONE-SPACE
* (split-by-one-space "Singing in the rain")
("Singing" "in" "the" "rain")
* (split-by-one-space "Singing in the rain")
("Singing" "in" "the" "" "rain")
* (split-by-one-space "Cool")
("Cool")
* (split-by-one-space " Cool ")
("" "Cool" "")
* (defun join-string-list (string-list)
 "Concatenates a list of strings
and puts spaces between the elements."
 (format nil "~{~A~^ ~}" string-list))
JOIN-STRING-LIST
* (join-string-list '("We" "want" "better" "examples"))
"We want better examples"
* (join-string-list '("Really"))
"Really"
* (join-string-list '())
""
* (join-string-list
 (nreverse
 (split-by-one-space

Dealing with unicode strings

We’ll use here SBCL’s string operations. More generally, see SBCL’s
unicode support.

Sorting unicode strings alphabetically

Sorting unicode strings with string-lessp as the comparison function isn’t
satisfying:

With SBCL, use sb-unicode:unicode<:

Breaking strings into graphenes, sentences, lines and words

These functions use SBCL’s sb-unicode: they are SBCL specific.

Use sb-unicode:sentences to break a string into sentences according to
the default sentence breaking rules.

Use sb-unicode:lines to break a string into lines that are no wider than
the :margin keyword argument. Combining marks will always be kept
together with their base characters, and spaces (but not other types of
whitespace) will be removed from the end of lines. If :margin is
unspecified, it defaults to 80 characters

 "Reverse this sentence by word")))
"word by sentence this Reverse"

(sort '("Aaa" "Ééé" "Zzz") #'string-lessp)
;; ("Aaa" "Zzz" "Ééé")

(sort '("Aaa" "Ééé" "Zzz") #'sb-unicode:unicode<)
;; ("Aaa" "Ééé" "Zzz")

(sb-unicode:lines "A first sentence. A second somewhat long one.
;; => ("A first"
 "sentence."
 "A second"
 "somewhat"

http://www.sbcl.org/manual/index.html#String-operations
http://www.sbcl.org/manual/index.html#Unicode-Support
http://www.sbcl.org/manual/#String-operations
http://www.sbcl.org/manual/#String-operations

See also sb-unicode:words and sb-unicode:graphenes.

Tip: you can ensure these functions are run only in SBCL with a feature
flag:

#+sbcl
(runs on sbcl)
#-sbcl
(runs on other implementations)

Controlling Case

Common Lisp has a couple of functions to control the case of a string.

These functions take the :start and :end keyword arguments so you can
optionally only manipulate a part of the string. They also have destructive
counterparts whose names starts with “N”.

 "long one.")

* (string-upcase "cool")
"COOL"
* (string-upcase "Cool")
"COOL"
* (string-downcase "COOL")
"cool"
* (string-downcase "Cool")
"cool"
* (string-capitalize "cool")
"Cool"
* (string-capitalize "cool example")
"Cool Example"

* (string-capitalize "cool example" :start 5)
"cool Example"
* (string-capitalize "cool example" :end 5)
"Cool example"
* (defparameter *my-string* (string "BIG"))
MY-STRING
* (defparameter *my-downcase-string* (nstring-downcase *my-strin
MY-DOWNCASE-STRING

Note this potential caveat: according to the HyperSpec,

for STRING-UPCASE, STRING-DOWNCASE, and STRING-
CAPITALIZE, string is not modified. However, if no characters in
string require conversion, the result may be either string or a copy of it,
at the implementation’s discretion.

This implies that the last result in the following example is implementation-
dependent - it may either be “BIG” or “BUG”. If you want to be sure, use
COPY-SEQ.

With the format function

The format function has directives to change the case of words:

To lower case: ~(~)

Capitalize every word: ~:(~)

* *my-downcase-string*
"big"
* *my-string*
"big"

* (defparameter *my-string* (string "BIG"))
MY-STRING
* (defparameter *my-upcase-string* (string-upcase *my-string*))
MY-UPCASE-STRING
* (setf (char *my-string* 1) #\U)
#\U
* *my-string*
"BUG"
* *my-upcase-string*
"BIG"

(format t "~(~a~)" "HELLO WORLD")
;; => hello world

Capitalize the first word: ~@(~)

To upper case: ~@:(~)

Where we re-use the colon and the @:

Trimming Blanks from the Ends of a String

Not only can you trim blanks, but you can get rid of arbitrary characters.
The functions STRING-TRIM, STRING-LEFT-TRIM and STRING-
RIGHT-TRIM return a substring of their second argument where all
characters that are in the first argument are removed off the beginning
and/or the end. The first argument can be any sequence of characters.

(format t "~:(~a~)" "HELLO WORLD")
Hello World
NIL

(format t "~@(~a~)" "hello world")
Hello world
NIL

(format t "~@:(~a~)" "hello world")
HELLO WORLD
NIL

* (string-trim " " " trim me ")
"trim me"
* (string-trim " et" " trim me ")
"rim m"
* (string-left-trim " et" " trim me ")
"rim me "
* (string-right-trim " et" " trim me ")
" trim m"
* (string-right-trim '(#\Space #\e #\t) " trim me ")
" trim m"
* (string-right-trim '(#\Space #\e #\t #\m) " trim me ")

Note: The caveat mentioned in the section about Controlling Case also
applies here.

Converting between Symbols and Strings

The function INTERN will “convert” a string to a symbol. Actually, it will
check whether the symbol denoted by the string (its first argument) is
already accessible in the package (its second, optional, argument which
defaults to the current package) and enter it, if necessary, into this package.
It is beyond the scope of this chapter to explain all the concepts involved
and to address the second return value of this function. See the CLHS
chapter about packages for details.

Note that the case of the string is relevant.

To do the opposite, convert from a symbol to a string, use SYMBOL-
NAME or STRING.

* (in-package "COMMON-LISP-USER")
#<The COMMON-LISP-USER package, 35/44 internal, 0/9 external>
* (intern "MY-SYMBOL")
MY-SYMBOL
NIL
* (intern "MY-SYMBOL")
MY-SYMBOL
:INTERNAL
* (export 'MY-SYMBOL)
T
* (intern "MY-SYMBOL")
MY-SYMBOL
:EXTERNAL
* (intern "My-Symbol")
|My-Symbol|
NIL
* (intern "MY-SYMBOL" "KEYWORD")
:MY-SYMBOL
NIL
* (intern "MY-SYMBOL" "KEYWORD")
:MY-SYMBOL
:EXTERNAL

Converting between Characters and Strings

You can use COERCE to convert a string of length 1 to a character. You can
also use COERCE to convert any sequence of characters into a string. You
can not use COERCE to convert a character to a string, though - you’ll have
to use STRING instead.

* (symbol-name 'MY-SYMBOL)
"MY-SYMBOL"
* (symbol-name 'my-symbol)
"MY-SYMBOL"
* (symbol-name '|my-symbol|)
"my-symbol"
* (string 'howdy)
"HOWDY"

* (coerce "a" 'character)
#\a
* (coerce (subseq "cool" 2 3) 'character)
#\o
* (coerce "cool" 'list)
(#\c #\o #\o #\l)
* (coerce '(#\h #\e #\y) 'string)
"hey"
* (coerce (nth 2 '(#\h #\e #\y)) 'character)
#\y
* (defparameter *my-array* (make-array 5 :initial-element #\x))
MY-ARRAY
* *my-array*
#(#\x #\x #\x #\x #\x)
* (coerce *my-array* 'string)
"xxxxx"
* (string 'howdy)
"HOWDY"
* (string #\y)
"y"
* (coerce #\y 'string)
#\y can't be converted to type STRING.
 [Condition of type SIMPLE-TYPE-ERROR]

Finding an Element of a String

Use find, position, and their …-if counterparts to find characters in a
string, with the appropriate :test parameter:

Or use count and friends to count characters in a string:

Finding a Substring of a String

The function search can find substrings of a string.

(find #\t "Tea time." :test #'equal)
#\t
* (find #\t "Tea time." :test #'equalp)
#\T
* (find #\z "Tea time." :test #'equalp)
NIL
* (find-if #'digit-char-p "Tea time.")
#\1
* (find-if #'digit-char-p "Tea time." :from-end t)
#\0

(position #\t "Tea time." :test #'equal)
4 ;; <= the first lowercase t
(position #\t "Tea time." :test #'equalp)
0 ;; <= the first capital T
(position-if #'digit-char-p "Tea time is at 5'00.")
15
(position-if #'digit-char-p "Tea time is at 5'00." :from-end t)
18

(count #\t "Tea time." :test #'equal)
1 ;; <= equal ignores the capital T
(count #\t "Tea time." :test #'equalp)
2 ;; <= equalp counts the capital T
(count-if #'digit-char-p "Tea time is at 5'00.")
3
(count-if #'digit-char-p "Tea time is at 5'00." :start 18)
1

* (search "we" "If we can't be free we can at least be cheap")

Converting a String to a Number

To an integer: parse-integer

CL provides the parse-integer function to convert a string representation
of an integer to the corresponding numeric value. The second return value is
the index into the string where the parsing stopped.

 (search we If we can t be free we can at least be cheap)
3
* (search "we" "If we can't be free we can at least be cheap"
 :from-end t)
20
* (search "we" "If we can't be free we can at least be cheap"
 :start2 4)
20
* (search "we" "If we can't be free we can at least be cheap"
 :end2 5 :from-end t)
3
* (search "FREE" "If we can't be free we can at least be cheap")
NIL
* (search "FREE" "If we can't be free we can at least be cheap"
 :test #'char-equal)
15

(parse-integer "42")
42
2
(parse-integer "42" :start 1)
2
2
(parse-integer "42" :end 1)
4
1
(parse-integer "42" :radix 8)
34
2
(parse-integer " 42 ")
42
3
(parse-integer " 42 is forty-two" :junk-allowed t)

parse-integer doesn’t understand radix specifiers like #X, nor is there a
built-in function to parse other numeric types. You could use read-from-
string in this case.

Extracting many integers from a string: ppcre:all-matches-
as-strings

We show this in the Regular Expressions chapter but while we are on this
topic, you can find it super useful:

To any number: read-from-string

Be aware that the full reader is in effect if you’re using this function. This
can lead to vulnerability issues. You should use a library like parse-number
or parse-float instead.

42
3
(parse-integer " 42 is forty-two")

Error in function PARSE-INTEGER:
 There's junk in this string: " 42 is forty-two".

* (ppcre:all-matches-as-strings "-?\\d+" "42 is 41 plus 1")
;; ("42" "41" "1")

* (mapcar #'parse-integer *)
;; (42 41 1)

(read-from-string "#X23")
35
4
(read-from-string "4.5")
4.5
3
(read-from-string "6/8")
3/4
3
(read-from-string "#C(6/8 1)")
#C(3/4 1)

To a float: the parse-float library

There is no built-in function similar to parse-integer to parse other
number types. The external library parse-float does exactly that. It doesn’t
use read-from-string so it is safe to use.

LispWorks also has a parse-float function.

See also parse-number.

Converting a Number to a String

The general function WRITE-TO-STRING or one of its simpler variants
PRIN1-TO-STRING or PRINC-TO-STRING may be used to convert a
number to a string. With WRITE-TO-STRING, the :base keyword
argument may be used to change the output base for a single call. To change
the output base globally, set print-base which defaults to 10. Remember in
Lisp, rational numbers are represented as quotients of two integers even
when converted to strings.

9
(read-from-string "1.2e2")
120.00001
5
(read-from-string "symbol")
SYMBOL
6
(defparameter *foo* 42)
FOO
(read-from-string "#.(setq *foo* \"gotcha\")")
"gotcha"
23
foo
"gotcha"

(ql:quickload "parse-float")
(parse-float:parse-float "1.2e2")
;; 120.00001
;; 5

https://github.com/soemraws/parse-float
http://www.lispworks.com/documentation/lw51/LWRM/html/lwref-228.htm
https://github.com/sharplispers/parse-number

Comparing Strings

The general functions EQUAL and EQUALP can be used to test whether
two strings are equal. The strings are compared element-by-element, either
in a case-sensitive manner (EQUAL) or not (EQUALP). There’s also a
bunch of string-specific comparison functions. You’ll want to use these if
you’re deploying implementation-defined attributes of characters. Check
your vendor’s documentation in this case.

Here are a few examples. Note that all functions that test for inequality
return the position of the first mismatch as a generalized boolean. You can
also use the generic sequence function MISMATCH if you need more
versatility.

(write-to-string 250)
"250"
(write-to-string 250.02)
"250.02"
(write-to-string 250 :base 5)
"2000"
(write-to-string (/ 1 3))
"1/3"
*

(string= "Marx" "Marx")
T
(string= "Marx" "marx")
NIL
(string-equal "Marx" "marx")
T
(string< "Groucho" "Zeppo")
0
(string< "groucho" "Zeppo")
NIL
(string-lessp "groucho" "Zeppo")
0
(mismatch "Harpo Marx" "Zeppo Marx" :from-end t :test #'char=)
3

String formatting

The format function has a lot of directives to print strings, numbers, lists,
going recursively, even calling Lisp functions, etc. We’ll focus here on a
few things to print and format strings.

The need of our examples arise when we want to print many strings and
justify them. Let’s work with this list of movies:

We want an aligned and justified result like this:

 1 Matrix 5
10 Matrix Trilogy swe sub 3.3

We’ll use mapcar to iterate over our movies and experiment with the format
constructs.

which prints:

1 Matrix 5
10 Matrix Trilogy swe sub 3.3

Structure of format

Format directives start with ~. A final character like A or a (they are case
insensitive) defines the directive. In between, it can accept coma-separated
options and parameters.

Print a tilde with ~~, or 10 with ~10~.

(defparameter movies '(
 (1 "Matrix" 5)
 (10 "Matrix Trilogy swe sub" 3.3)
))

(mapcar (lambda (it)
 (format t "~a ~a ~a~%" (first it) (second it) (third i
 movies)

Other directives include:

R: Roman (e.g., prints in English): (format t "~R" 20) => “twenty”.
$: monetary: (format t "~$" 21982) => 21982.00
D, B, O, X: Decimal, Binary, Octal, Hexadecimal.
F: fixed-format Floating point.
P: plural: (format nil "~D famil~:@P/~D famil~:@P" 7 1) => “7
families/1 family”

Basic primitive: ~A or ~a (Aesthetics)

(format t "~a" movies) is the most basic primitive.

Newlines: ~% and ~&

~% is the newline character. ~10% prints 10 newlines.

~& does not print a newline if the output stream is already at one.

Tabs

with ~T. Also ~10T works.

Also i for indentation.

Justifying text / add padding on the right

Use a number as parameter, like ~2a:

(format nil "~a" movies)
;; => "((1 Matrix 5) (10 Matrix Trilogy swe sub 3.3))"

(format nil "~20a" "yo")
;; "yo "

(mapcar (lambda (it)
 (format t "~2a ~a ~a~%" (first it) (second it) (third
 movies)

1 Matrix 5
10 Matrix Trilogy swe sub 3.3

So, expanding:

1 Matrix 5
10 Matrix Trilogy swe sub 3.3

text is justified on the right (this would be with option :).

Justifying on the left: @

Use a @ as in ~2@A:

 1 Matrix 5
10 Matrix Trilogy swe sub 3.3

Justifying decimals

In ~,2F, 2 is the number of decimals and F the floats directive: (format t
"~,2F" 20.1) => “20.10”.

With ~2,2f:

(mapcar (lambda (it)
 (format t "~2a ~25a ~2a~%" (first it) (second it) (thi
 movies)

(format nil "~20@a" "yo")
;; " yo"

(mapcar (lambda (it)
 (format nil "~2@a ~25@a ~2a~%" (first it) (second it)
 movies)

(mapcar (lambda (it)
 (format t "~2@a ~25a ~2,2f~%" (first it) (second it) (
 movies)

 1 Matrix 5.00
10 Matrix Trilogy swe sub 3.30

And we’re happy with this result.

Iteration

Create a string from a list with iteration construct ~{str~}:

using ~^ to avoid printing the comma and space after the last element:

~:{str~} is similar but for a list of sublists:

~@{str~} is similar to ~{str~}, but instead of using one argument that is a
list, all the remaining arguments are used as the list of arguments for the
iteration:

Formatting a format string (~v, ~?)

Sometimes you want to justify a string, but the length is a variable itself.
You can’t hardcode its value as in (format nil "~30a" "foo"). Enters the
v directive. We can use it in place of the comma-separated prefix
parameters:

(format nil "~{~A, ~}" '(a b c))
;; "A, B, C, "

(format nil "~{~A~^, ~}" '(a b c))
;; "A, B, C"

(format nil "~:{~S are ~S. ~}" '((pigeons birds) (dogs mammals))
;; "PIGEONS are BIRDS. DOGS are MAMMALS. "

(format nil "~@{~S are ~S. ~}" 'pigeons 'birds 'dogs 'mammals)
;; "PIGEONS are BIRDS. DOGS are MAMMALS. "

(let ((padding 30))
 (format nil "~va" padding "foo"))
;; "foo "

Other times, you would like to insert a complete format directive at run
time. Enters the ? directive.

or, using ~@?:

Of course, it is always possible to format a format string beforehand:

Conditional Formatting

Choose one value out of many options by specifying a number:

If the number is out of range, the default option (after ~:;) is returned:

Combine it with ~:* to implement irregular plural:

(format nil "~?" "~30a" '("foo"))
;; ^ a list

(format nil "~@?" "~30a" "foo")
;; ^ not a list

(let* ((length 30)
 (directive (format nil "~~~aa" length)))
(format nil directive "foo"))

(format nil "~[dog~;cat~;bird~:;default~]" 0)
;; "dog"

(format nil "~[dog~;cat~;bird~:;default~]" 1)
;; "cat"

(format nil "~[dog~;cat~;bird~:;default~]" 9)
;; "default"

(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 0)
;; => "I saw zero elves."
(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 1)
;; => "I saw one elf."
(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 2)
;; => "I saw two elves."

Capturing what is is printed into a stream

Inside (with-output-to-string (mystream) …), everything that is printed
into the stream mystream is captured and returned as a string:

Cleaning up strings

The following examples use the cl-slug library which, internally, iterates
over the characters of the string and uses ppcre:regex-replace-all.

(ql:quickload "cl-slug")

Then it can be used with the slug prefix.

Its main function is to transform a string to a slug, suitable for a website’s
url:

Removing accentuated letters

Use slug:asciify to replace accentuated letters by their ascii equivalent:

This function supports many (western) languages:

(defun greet (name &key (stream t))
 ;; by default, print to standard output.
 (format stream "hello ~a" name))

(let ((output (with-output-to-string (stream)
 (greet "you" :stream stream))))
 (format t "Output is: '~a'. It is indeed a ~a, aka a string.~
;; Output is: 'hello you'. It is indeed a (SIMPLE-ARRAY CHARACTE
;; NIL

(slug:slugify "My new cool article, for the blog (V. 2).")
;; "my-new-cool-article-for-the-blog-v-2"

(slug:asciify "ñ é ß ğ ö")
;; => "n e ss g o"

https://github.com/EuAndreh/cl-slug/

slug:*available-languages*
((:TR . "Türkçe (Turkish)") (:SV . "Svenska (Swedish)") (:FI .
"Suomi (Finnish)")
 (:UK . "українська (Ukrainian)") (:RU . "Ру́сский (Russian)")
(:RO . "Română (Romanian)")
 (:RM . "Rumàntsch (Romansh)") (:PT . "Português (Portuguese)")
(:PL . "Polski (Polish)")
 (:NO . "Norsk (Norwegian)") (:LT . "Lietuvių (Lithuanian)")
(:LV . "Latviešu (Latvian)")
 (:LA . "Lingua Latīna (Latin)") (:IT . "Italiano (Italian)")
(:EL . "ελληνικά (Greek)")
 (:FR . "Français (French)") (:EO . "Esperanto") (:ES .
"Español (Spanish)") (:EN . "English")
 (:DE . "Deutsch (German)") (:DA . "Dansk (Danish)") (:CS .
"Čeština (Czech)")
 (:CURRENCY . "Currency"))

Removing punctuation

Use (str:remove-punctuation s) or (str:no-case s) (same as (cl-
change-case:no-case s)):

They strip the punctuation with one ppcre unicode regexp ((ppcre:regex-
replace-all "[^\\p{L}\\p{N}]+" where p{L} is the “letter” category and
p{N} any kind of numeric character).

Appendix

All format directives

All directives are case-insensivite: ~A is the same as ~a.

$ - Monetary Floating-Point
% - Newline
& - Fresh-line
(- Case Conversion

(str:remove-punctuation "HEY! What's up ??")
;; "HEY What s up"

(str:no-case "HEY! What's up ??")
;; "hey what s up"

) - End of Case Conversion
* - Go-To
/ - Call Function
; - Clause Separator
< - Justification
< - Logical Block
> - End of Justification
? - Recursive Processing
A - Aesthetic
B - Binary
C - Character
D - Decimal
E - Exponential Floating-Point
F - Fixed-Format Floating-Point
G - General Floating-Point
I - Indent
Missing and Additional FORMAT Arguments
Nesting of FORMAT Operations
Newline: Ignored Newline
O - Octal
P - Plural
R - Radix
S - Standard
T - Tabulate
W - Write
X - Hexadecimal
[- Conditional Expression
] - End of Conditional Expression
^ - Escape Upward
_ - Conditional Newline
{ - Iteration
| - Page
} - End of Iteration
~ - Tilde

See also

Pretty printing table data, in ASCII art, a tutorial as a Jupyter
notebook.

https://gist.github.com/WetHat/a49e6f2140b401a190d45d31e052af8f

Numbers
Common Lisp has a rich set of numerical types, including integer, rational,
floating point, and complex.

Some sources:

Numbers in Common Lisp the Language, 2nd Edition
Numbers, Characters and Strings in Practical Common Lisp

Introduction

Integer types

Common Lisp provides a true integer type, called bignum, limited only by
the total memory available (not the machine word size). For example this
would overflow a 64 bit integer by some way:

For efficiency, integers can be limited to a fixed number of bits, called a
fixnum type. The range of integers which can be represented is given by:

Functions which operate on or evaluate to integers include:

isqrt, which returns the greatest integer less than or equal to the exact
positive square root of natural.

* (expt 2 200)
1606938044258990275541962092341162602522202993782792835301376

* most-positive-fixnum
4611686018427387903
* most-negative-fixnum
-4611686018427387904

* (isqrt 10)
3

https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node16.html#SECTION00610000000000000000
http://www.gigamonkeys.com/book/numbers-characters-and-strings.html
http://clhs.lisp.se/Body/f_sqrt_.htm

gcd to find the Greatest Common Denominator
lcm for the Least Common Multiple.

Like other low-level programming languages, Common Lisp provides
literal representation for hexadecimals and other radixes up to 36. For
example:

Rational types

Rational numbers of type ratio consist of two bignums, the numerator and
denominator. Both can therefore be arbitrarily large:

It is a subtype of the rational class, along with integer.

Floating point types

See Common Lisp the Language, 2nd Edition, section 2.1.3.

Floating point types attempt to represent the continuous real numbers using
a finite number of bits. This means that many real numbers cannot be
represented, but are approximated. This can lead to some nasty surprises,

* (isqrt 4)
2

* #xFF
255
* #2r1010
10
* #4r33
15
* #8r11
9
* #16rFF
255
* #36rz
35

* (/ (1+ (expt 2 100)) (expt 2 100))
1267650600228229401496703205377/1267650600228229401496703205376

http://clhs.lisp.se/Body/f_gcd.htm
http://clhs.lisp.se/Body/f_lcm.htm#lcm
http://clhs.lisp.se/Body/t_ratio.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_ration.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/t_intege.htm
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node19.html

particularly when converting between base-10 and the base-2 internal
representation. If you are working with floating point numbers then reading
What Every Computer Scientist Should Know About Floating-Point
Arithmetic is highly recommended.

The Common Lisp standard allows for several floating point types. In order
of increasing precision these are: short-float, single-float, double-
float, and long-float. Their precisions are implementation dependent,
and it is possible for an implementation to have only one floating point
precision for all types.

The constants short-float-epsilon, single-float-epsilon, double-
float-epsilon and long-float-epsilon give a measure of the precision
of the floating point types, and are implementation dependent.

Floating point literals

When reading floating point numbers, the default type is set by the special
variable *read-default-float-format*. By default this is SINGLE-FLOAT,
so if you want to ensure that a number is read as double precision then put a
d0 suffix at the end

Other suffixes are s (short), f (single float), d (double float), l (long float)
and e (default; usually single float).

The default type can be changed, but note that this may break packages
which assume single-float type.

* (type-of 1.24)
SINGLE-FLOAT

* (type-of 1.24d0)
DOUBLE-FLOAT

* (setq *read-default-float-format* 'double-float)
* (type-of 1.24)
DOUBLE-FLOAT

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://clhs.lisp.se/Body/v_short_.htm
http://clhs.lisp.se/Body/v_rd_def.htm

Note that unlike in some languages, appending a single decimal point to the
end of a number does not make it a float:

Floating point errors

If the result of a floating point calculation is too large then a floating point
overflow occurs. By default in SBCL (and other implementations) this
results in an error condition:

The error can be caught and handled, or this behaviour can be changed, to
return +infinity. In SBCL this is:

The calculation now silently continues, without an error condition.

A similar functionality to disable floating overflow errors exists in CCL:

In SBCL the floating point modes can be inspected:

* (type-of 10.)
(INTEGER 0 4611686018427387903)

* (type-of 10.0)
SINGLE-FLOAT

* (exp 1000)
; Evaluation aborted on #<FLOATING-POINT-OVERFLOW {10041720B3}>.

* (sb-int:set-floating-point-modes :traps '(:INVALID :DIVIDE-BY-

* (exp 1000)
#.SB-EXT:SINGLE-FLOAT-POSITIVE-INFINITY

* (/ 1 (exp 1000))
0.0

* (set-fpu-mode :overflow nil)

* (sb-int:get-floating-point-modes)

http://www.sbcl.org/
https://ccl.clozure.com/

Arbitrary precision

For arbitrary high precision calculations there is the computable-reals
library on QuickLisp:

The precision to print is set by *PRINT-PREC*, by default 20

Complex types

There are 5 types of complex number: The real and imaginary parts must be
of the same type, and can be rational, or one of the floating point types
(short, single, double or long).

Complex values can be created using the #C reader macro or the function
complex. The reader macro does not allow the use of expressions as real
and imaginary parts:

 (sb int:get floating point modes)
(:TRAPS (:OVERFLOW :INVALID :DIVIDE-BY-ZERO) :ROUNDING-MODE :NEA
:CURRENT-EXCEPTIONS NIL :ACCRUED-EXCEPTIONS NIL :FAST-MODE NIL)

* (ql:quickload :computable-reals)
* (use-package :computable-reals)

* (sqrt-r 2)
+1.41421356237309504880...

* (sin-r (/r +pi-r+ 2))
+1.00000000000000000000...

* (setq *PRINT-PREC* 50)
* (sqrt-r 2)
+1.41421356237309504880168872420969807856967187537695...

* #C(1 1)
#C(1 1)

* #C((+ 1 2) 5)
; Evaluation aborted on #<TYPE-ERROR expected-type: REAL datum:

http://quickdocs.org/computable-reals/
http://www.lispworks.com/documentation/lw70/CLHS/Body/t_comple.htm

If constructed with mixed types then the higher precision type will be used
for both parts.

The real and imaginary parts of a complex number can be extracted using
realpart and imagpart:

Complex arithmetic

Common Lisp’s mathematical functions generally handle complex
numbers, and return complex numbers when this is the true result. For
example:

* (complex (+ 1 2) 5)
#C(3 5)

* (type-of #C(1 1))
(COMPLEX (INTEGER 1 1))

* (type-of #C(1.0 1))
(COMPLEX (SINGLE-FLOAT 1.0 1.0))

* (type-of #C(1.0 1d0))
(COMPLEX (DOUBLE-FLOAT 1.0d0 1.0d0))

* (realpart #C(7 9))
7
* (imagpart #C(4.2 9.5))
9.5

* (sqrt -1)
#C(0.0 1.0)

* (exp #C(0.0 0.5))
#C(0.87758255 0.47942555)

* (sin #C(1.0 1.0))
#C(1.2984576 0.63496387)

http://clhs.lisp.se/Body/f_realpa.htm

Reading numbers from strings

The parse-integer function reads an integer from a string.

The parse-float library provides a parser which cannot evaluate arbitrary
expressions, so should be safer to use on untrusted input:

See the strings section on converting between strings and numbers.

Converting numbers

Most numerical functions automatically convert types as needed. The
coerce function converts objects from one type to another, including
numeric types.

See Common Lisp the Language, 2nd Edition, section 12.6.

Convert float to rational

The rational and rationalize functions convert a real numeric argument
into a rational. rational assumes that floating point arguments are exact;
rationalize exploits the fact that floating point numbers are only exact to
their precision, so can often find a simpler rational number.

Convert rational to integer

If the result of a calculation is a rational number where the numerator is a
multiple of the denominator, then it is automatically converted to an integer:

* (ql:quickload :parse-float)
* (use-package :parse-float)

* (parse-float "23.4e2" :type 'double-float)
2340.0d0
6

http://clhs.lisp.se/Body/f_parse_.htm
https://github.com/soemraws/parse-float/blob/master/parse-float.lisp
https://lispcookbook.github.io/cl-cookbook/strings.html#converting-a-string-to-a-number
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node130.html
http://clhs.lisp.se/Body/f_ration.htm

Rounding floating-point and rational numbers

The ceiling, floor, round and truncate functions convert floating point
or rational numbers to integers. The difference between the result and the
input is returned as the second value, so that the input is the sum of the two
outputs.

There is a difference between floor and truncate for negative numbers:

* (type-of (* 1/2 4))
(INTEGER 0 4611686018427387903)

* (ceiling 1.42)
2
-0.58000004

* (floor 1.42)
1
0.41999996

* (round 1.42)
1
0.41999996

* (truncate 1.42)
1
0.41999996

* (truncate -1.42)
-1
-0.41999996

* (floor -1.42)
-2
0.58000004

* (ceiling -1.42)
-1
-0.41999996

http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm

Similar functions fceiling, ffloor, fround and ftruncate return the
result as floating point, of the same type as their argument:

Comparing numbers

See Common Lisp the Language, 2nd Edition, Section 12.3.

The = predicate returns T if all arguments are numerically equal. Note that
comparison of floating point numbers includes some margin for error, due
to the fact that they cannot represent all real numbers and accumulate
errors.

The constant single-float-epsilon is the smallest number which will
cause an = comparison to fail, if it is added to 1.0:

Note that this does not mean that a single-float is always precise to
within 6e-8:

* (ftruncate 1.3)
1.0
0.29999995

* (type-of (ftruncate 1.3))
SINGLE-FLOAT

* (type-of (ftruncate 1.3d0))
DOUBLE-FLOAT

* (= (+ 1s0 5e-8) 1s0)
T
* (= (+ 1s0 6e-8) 1s0)
NIL

* (= (+ 10s0 4e-7) 10s0)
T
* (= (+ 10s0 5e-7) 10s0)
NIL

https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node124.html
http://clhs.lisp.se/Body/v_short_.htm

Instead this means that single-float is precise to approximately seven
digits. If a sequence of calculations are performed, then error can
accumulate and a larger error margin may be needed. In this case the
absolute difference can be compared:

When comparing numbers with = mixed types are allowed. To test both
numerical value and type use eql:

Operating on a series of numbers

Many Common Lisp functions operate on sequences, which can be either
lists or vectors (1D arrays). See the section on mapping.

Operations on multidimensional arrays are discussed in this section.

Libraries are available for defining and operating on lazy sequences,
including “infinite” sequences of numbers. For example

Clazy which is on QuickLisp.
folio2 on QuickLisp. Includes an interface to the
Series package for efficient sequences.
lazy-seq.

Working with Roman numerals

The format function can convert numbers to roman numerals with the ~@r
directive:

* (< (abs (- (+ 10s0 5e-7)
 10s0))
 1s-6)
T

* (= 3 3.0)
T

* (eql 3 3.0)
NIL

https://lispcookbook.github.io/cl-cookbook/data-structures.html#mapping-map-mapcar-remove-if-not
https://lispcookbook.github.io/cl-cookbook/arrays.html
https://common-lisp.net/project/clazy/
https://github.com/mikelevins/folio2
https://github.com/tokenrove/series/wiki/Documentation
https://github.com/fredokun/lisp-lazy-seq

There is a gist by tormaroe for reading roman numerals.

Generating random numbers

The random function generates either integer or floating point random
numbers, depending on the type of its argument.

In SBCL a Mersenne Twister pseudo-random number generator is used. See
section 7.13 of the SBCL manual for details.

The random seed is stored in *random-state* whose internal representation
is implementation dependent. The function make-random-state can be used
to make new random states, or copy existing states.

To use the same set of random numbers multiple times, (make-random-
state nil) makes a copy of the current *random-state*:

* (format nil "~@r" 42)
"XLII"

* (random 10)
7

* (type-of (random 10))
(INTEGER 0 4611686018427387903)
* (type-of (random 10.0))
SINGLE-FLOAT
* (type-of (random 10d0))
DOUBLE-FLOAT

* (dotimes (i 3)
 (let ((*random-state* (make-random-state nil)))
 (format t "~a~%"
 (loop for i from 0 below 10 collecting (random 10)

(8 3 9 2 1 8 0 0 4 1)
(8 3 9 2 1 8 0 0 4 1)
(8 3 9 2 1 8 0 0 4 1)

https://gist.github.com/tormaroe/90ddd9dc7cc191040be4
http://clhs.lisp.se/Body/f_random.htm#random
https://en.wikipedia.org/wiki/Mersenne_Twister
http://www.sbcl.org/manual/#Random-Number-Generation
http://quickdocs.org/random-state/
http://clhs.lisp.se/Body/f_mk_rnd.htm

This generates 10 random numbers in a loop, but each time the sequence is
the same because the *random-state* special variable is dynamically
bound to a copy of its state before the let form.

Other resources:

The random-state package is available on QuickLisp, and provides a
number of portable random number generators.

Bit-wise Operation

Common Lisp also provides many functions to perform bit-wise arithmetic
operations. Some commonly used ones are listed below, together with their
C/C++ equivalence.

Common
Lisp C/C++ Description

(logand a b c) a & b &
c Bit-wise AND of multiple operands

(logior a b c) a | b | c Bit-wise OR of multiple operands

(lognot a) ~a Bit-wise NOT of single operands

(logxor a b c) a ^ b ^ c Bit-wise exclusive or (XOR) of multiple
operands

(ash a 3) a << 3 Bit-wise left shift

(ash a -3) a >> 3 Bit-wise right shift

Negative numbers are treated as two’s-complements. If you have forgotten
this, please refer to the Wiki page.

For example:

* (logior 1 2 4 8)
15
;; Explanation:

http://quickdocs.org/random-state/
https://en.wikipedia.org/wiki/Twos_complement

;; 0001
;; 0010
;; 0100
;; | 1000
;; -------
;; 1111

* (logand 2 -3 4)
0

;; Explanation:
;; 0010 (2)
;; 1101 (two's complement of -3)
;; & 0100 (4)
;; -------
;; 0000

* (logxor 1 3 7 15)
10

;; Explanation:
;; 0001
;; 0011
;; 0111
;; ^ 1111
;; -------
;; 1010

* (lognot -1)
0
;; Explanation:
;; 11 -> 00

* (lognot -3)
2
;; 101 -> 010

* (ash 3 2)
12
;; Explanation:
;; 11 -> 1100

Please see the CLHS page for a more detailed explanation or other bit-wise
functions.

* (ash -5 -2)
-2
;; Explanation
;; 11011 -> 110

http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm

Loop, iteration, mapping
Introduction: loop, iterate, for, mapcar, series

loop is the built-in macro for iteration.

Its simplest form is (loop (print "hello")): this will print forever.

A simple iteration over a list is:

It prints what’s needed but returns nil.

If you want to return a list, use collect:

The Loop macro is different than most Lisp expressions in having a
complex internal domain-specific language that doesn’t use s-expressions.
So you need to read Loop expressions with half of your brain in Lisp mode,
and the other half in Loop mode. You love it or you hate it.

Think of Loop expressions as having four parts: expressions that set up
variables that will be iterated, expressions that conditionally terminate the
iteration, expressions that do something on each iteration, and expressions
that do something right before the Loop exits. In addition, Loop expressions
can return a value. It is very rare to use all of these parts in a given Loop
expression, but you can combine them in many ways.

iterate is a popular iteration macro that aims at being simpler, “lispier” and
more predictable than loop, besides being extensible. However it isn’t built-
in, so you have to import it:

(loop for x in '(1 2 3)
 do (print x))

(loop for x in '(1 2 3)
 collect (* x 10))
;; (10 20 30)

http://www.lispworks.com/documentation/lw51/CLHS/Body/m_loop.htm
https://common-lisp.net/project/iterate/doc/index.html

(ql:quickload “iterate”) (use-package :iterate)

Iterate looks like this:

(if you use loop and iterate in the same package, you might run into name
conflicts)

Iterate also comes with display-iterate-clauses that can be quite handy:

(display-iterate-clauses '(for))
;; FOR PREVIOUS &OPTIONAL INITIALLY BACK Previous value of
a variable
;; FOR FIRST THEN Set var on first, and then on
subsequent iterations
;; ...

Much of the examples on this page that are valid for loop are also valid for
iterate, with minor modifications.

for is an extensible iteration macro that is often shorter than loop, that
“unlike loop is extensible and sensible, and unlike iterate does not require
code-walking and is easier to extend”.

It has the other advantage of having one construct that works for all data
structures (lists, vectors, hash-tables…): in doubt, just use for… over:

You also have to quickload it:

(ql:quickload “for”)

We’ll also give examples with mapcar and map, and eventually with their
friends mapcon, mapcan, maplist, mapc and mapl which E. Weitz
categorizes very well in his “Common Lisp Recipes”, chap. 7. The one you
are certainly accustomed to from other languages is mapcar: it takes a

(iter (for i from 1 to 5)
 (collect (* i i)))

(for:for ((x over <your data structure>))
 (print …))

https://github.com/Shinmera/for/

function, one or more lists as arguments, applies the function on each
element of the lists one by one and returns a list of result.

map is generic, it accepts list and vectors as arguments, and expects the type
for its result as first argument:

The other constructs have their advantages in some situations ;) They either
process the tails of lists, or concatenate the return values, or don’t return
anything. We’ll see some of them.

If you like mapcar, use it a lot, and would like a quicker and shorter way to
write lambdas, then you might like one of those lambda shorthand libraries.

Here is an example with cl-punch:

and voilà :) We won’t use this more in this recipe, but feel free to do.

Last but not least, you might like series, a library that describes itself as
combining aspects of sequences, streams, and loops. Series expressions
look like operations on sequences (= functional programming), but can
achieve the same high level of efficiency as a loop. Series first appeared in
“Common Lisp the Language”, in the appendix A (it nearly became part of
the language). Series looks like this:

(mapcar (lambda (it) (+ it 10)) '(1 2 3))
(11 12 13)

(map 'vector (lambda (it) (+ it 10)) '(1 2 3))
;; #(11 12 13)
(map 'list (lambda (it) (+ it 10)) #(1 2 3))
;; (11 12 13)
(map 'string (lambda (it) (code-char it)) '#(97 98 99))
;; "abc"

(mapcar ^(* _ 10) '(1 2 3))
;; (10 20 30)

(collect
 (mapping ((x (scan-range :from 1 :upto 5)))

https://github.com/CodyReichert/awesome-cl#lambda-shorthands
https://github.com/windymelt/cl-punch/
http://series.sourceforge.net/

series is good, but its function names are different from what we find in
functional languages today. You might like the “Generators The Way I Want
Them Generated” library. It is a lazy sequences library, similar to series
although younger and not as complete, with a “modern” API with words
like take, filter, for or fold, and that is easy to use.

At the time of writing, GTWIWTG is licensed under the GPLv3.

Recipes

Looping forever, return

return can return a result:

Looping a fixed number of times

dotimes

 (* x x)))
;; (1 4 9 16 25)

(range :from 20)
;; #<GTWIWTG::GENERATOR! {1001A90CA3}>

(take 4 (range :from 20))
;; (20 21 22 23)

(loop
 (print "hello"))

(loop for i in '(1 2 3)
 when (> i 1)
 return i)
2

(dotimes (n 3)
 (print n))
;; =>
;; 0

https://github.com/cbeo/gtwiwtg

Here dotimes returns nil. There are two ways to return a value. First, you
can set a result form in the lambda list:

Or you can use return with return values:

loop… repeat

This prints 10 times “hello” and returns nil.

with collect, this returns a list.

Series

;; 1
;; 2
;; NIL

(dotimes (n 3 :done)
 ;; ^^^^^ result form. It can be a s-expression.
 (print n))
;; =>
;; 0
;; 1
;; 2
;; :DONE

(dotimes (i 3)
 (if (> i 1)
 (return :early-exit!)
 (print i)))
;; =>
;; 0
;; 1
;; :EARLY-EXIT!

(loop repeat 10
 do (format t "Hello!~%"))

(loop repeat 10 collect (random 10))
;; (5 1 3 5 4 0 7 4 9 1)

Looping an infinite number of times, cycling over a circular list

First, as shown above, we can simply use (loop ...) to loop infinitely.
Here we show how to loop on a list forever.

We can build an infinite list by setting its last element to the list itself:

Illustration: (last '(1 2 3)) is (3), a list, or rather a cons cell, whose car
is 3 and cdr is NIL. See the data-structures chapter for a reminder. This is
the representation of (list 3):

[o|/]
 |
 3

The representation of (list 1 2 3):

[o|o]---[o|o]---[o|/]
 | | |
 1 2 3

By setting the cdr of the last element to the list itself, we make it recur on
itself.

A notation shortcut is possible with the #= syntax:

If you need to alternate only between two values, use for … then:

(iterate ((n (scan-range :below 10)))
 (print n))

(loop with list-a = '(1 2 3)
 with infinite-list = (setf (cdr (last list-a)) list-a)
 for item in infinite-list
 repeat 8
 collect item)
;; (1 2 3 1 2 3 1 2)

(defparameter *list-a* '#1=(1 2 3 . #1#))
(setf *print-circle* t) ;; don't print circular lists forever
list-a

Iterate’s for loop

For lists and vectors:

or, a generalized iteration clause for lists and vectors, use in-sequence
(you’ll pay a speed penalty).

Looping over a hash-table is also straightforward:

In fact, take a look here, or (display-iterate-clauses '(for)) to know
about iterating over

symbols in-package
forms - or lines, or whatever-you-wish - in-file, or in-stream
elements in-sequence - sequences can be vectors or lists

Looping over a list

(loop repeat 4
 for up = t then (not up)
 do (print up))
T
NIL
T
NIL

(iter (for item in '(1 2 3))
 (print item))
(iter (for i in-vector #(1 2 3))
 (print i))

(let ((h (let ((h (make-hash-table)))
 (setf (gethash 'a h) 1)
 (setf (gethash 'b h) 2)
 h)))
 (iter (for (k v) in-hashtable h)
 (print k)))
;; b
;; a

https://common-lisp.net/project/iterate/doc/Sequence-Iteration.html

dolist

dolist returns nil.

loop

with in, no surprises:

With on, we loop over the cdr of the list:

mapcar

mapcar returns the results of the lambda function as a list.

(dolist (item '(1 2 3))
 (print item))

(loop for x in '(a b c)
 do (print x))
;; A
;; B
;; C
;; NIL

(loop for x in '(a b c)
 collect x)
;; (A B C)

(loop for i on '(1 2 3) do (print i))
;; (1 2 3)
;; (2 3)
;; (3)

(mapcar (lambda (x)
 (print (* x 10)))
 '(1 2 3))
10
20
30
(10 20 30)

Series

scan-sublists is the equivalent of loop for ... on:

Looping over a vector

loop: across

Series

Looping over a hash-table

We create a hash-table:

Looping over keys and values

Looping over keys:

(iterate ((item (scan '(1 2 3))))
 (print item))

(iterate ((i (scan-sublists '(1 2 3))))
 (print i))

(loop for i across #(1 2 3) do (print i))

(iterate ((i (scan #(1 2 3))))
 (print i))

(defparameter h (make-hash-table))
(setf (gethash 'a h) 1)
(setf (gethash 'b h) 2)

(loop for k being the hash-key of h do (print k))
;; b
;; a

Looping over values uses the same concept but with the hash-value
keyword instead of hash-key:

Looping over key-values pairs:

iterate

Use in-hashtable:

for

the same with for:

maphash

The lambda function of maphash takes two arguments: the key and the
value:

(loop for k being the hash-value of h do (print k))
;; 1
;; 2

(loop for k
 being the hash-key
 using (hash-value v) of h
 do (format t "~a ~a~%" k v))
b 2
a 1

(iter (for (key value) in-hashtable h)
 (collect (list key value)))

(for:for ((it over h))
 (print it))
(A 1)
(B 2)
NIL

See also with-hash-table-iterator.

dohash

Only because we like this topic, we introduce another library, trivial-do. It
has the dohash macro, that ressembles dolist:

Series

Looping over two lists in parallel

loop

To return a flat list, use nconcing instead of collect:

If a list is smaller than the other one, loop stops at the end of the small one:

(maphash (lambda (key val)
 (format t "key: ~a val:~a~&" key val))
 h)
;; key: A val:1
;; key: B val:2
;; NIL

(dohash (key value h)
 (format t "key: ~A, value: ~A~%" key value))

(iterate (((k v) (scan-hash h)))
 (format t "~&~a ~a~%" k v))

(loop for x in '(a b c)
 for y in '(1 2 3)
 collect (list x y))
;; ((A 1) (B 2) (C 3))

(loop for x in '(a b c)
 for y in '(1 2 3)
 nconcing (list x y))
(A 1 B 2 C 3)

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_hash.htm
https://github.com/yitzchak/trivial-do/

We could loop over the biggest list and manually access the elements of the
smaller one by index, but it would quickly be inefficient. Instead, we can
tell loop to extend the short list.

The trick is that the notation for … = … then (cdr …) (note the = and the
role of then) shortens our intermediate list at each iteration (thanks to cdr).
It will first be '(a b c), the initial value, then we will get the cdr: (2 3),
then (3), then NIL. And both (car NIL) and (cdr NIL) return NIL, so we
are good.

mapcar

or simply:

Return a flat list:

(loop for x in '(a b c)
 for y in '(1 2 3 4 5)
 collect (list x y))
;; ((A 1) (B 2) (C 3))

(loop for y in '(1 2 3 4 5)
 for x-list = '(a b c) then (cdr x-list)
 for x = (or (car x-list) 'z)
 collect (list x y))
;; ((A 1) (B 2) (C 3) (Z 4) (Z 5))

(mapcar (lambda (x y)
 (list x y))
 '(a b c)
 '(1 2 3))
;; ((A 1) (B 2) (C 3))

(mapcar #'list
 '(a b c)
 '(1 2 3))
;; ((A 1) (B 2) (C 3))

(mapcan (lambda (x y)
 (list x y))

Series

A more efficient way, when the lists are known to be of equal length:

Return a flat list:

Nested loops

loop

To return a flat list, use nconcing instead of the first collect.

iterate

 '(a b c)
 '(1 2 3))
;; (A 1 B 2 C 3)

(collect
 (#Mlist (scan '(a b c))
 (scan '(1 2 3))))

(collect
 (mapping (((x y) (scan-multiple 'list
 '(a b c)
 '(1 2 3))))
 (list x y)))

(collect-append ; or collect-nconc
(mapping (((x y) (scan-multiple 'list
 '(a b c)
 '(1 2 3))))
 (list x y)))

(loop for x from 1 to 3
 collect (loop for y from 1 to x
 collect y))
;; ((1) (1 2) (1 2 3))

Series

Computing an intermediate value

Use =.

With for:

With with, the difference being that the value is computed only once:

The HyperSpec defines the with clause like this:

with-clause::= with var1 [type-spec] [= form1] {and var2 [type-spec] [=
form2]}*

so it turns out we can specify the type before the = and chain the with with
and:

(iter outer
 (for i below 2)
 (iter (for j below 3)
 (in outer (collect (list i j)))))
;; ((0 0) (0 1) (0 2) (1 0) (1 1) (1 2))

(collect
 (mapping ((x (scan-range :from 1 :upto 3)))
 (collect (scan-range :from 1 :upto x))))

(loop for x from 1 to 3
 for y = (* x 10)
 collect y)
;; (10 20 30)

(loop for x from 1 to 3
 for y = (* x 10)
 with z = x
 collect (list x y z))
;; ((1 10 1) (2 20 1) (3 30 1))

We can also give for a then clause that will be called at each iteration:

Here’s a trick to alternate a boolean:

Loop with a counter

loop

Iterate through a list, and have a counter iterate in parallel. The length of the
list determines when the iteration ends. Two sets of actions are defined, one
of which is executed conditionally.

(loop for x from 1 to 3
 for y integer = (* x 10)
 with z integer = x
 collect (list x y z))

(loop for x upto 3
 with foo = :foo
 and bar = :bar
 collect (list x foo bar))

(loop repeat 3
 for intermediate = 10 then (incf intermediate)
 do (print intermediate))
10
11
12

(loop repeat 4
 for up = t then (not up)
 do (print up))

T
NIL
T
NIL

* (loop for x in '(a b c d e)
 for y from 1

We could also write the preceding loop using the IF construct.

Series

By iterating on multiple series in parallel, and using an infinite range, we
can make a counter.

Ascending, descending order, limits

loop

from… to…:

 when (> y 1)
 do (format t ", ")

 do (format t "~A" x)
)

A, B, C, D, E
NIL

* (loop for x in '(a b c d e)
 for y from 1

 if (> y 1)
 do (format t ", ~A" x)
 else do (format t "~A" x)
)

A, B, C, D, E
NIL

(iterate ((x (scan '(a b c d e)))
 (y (scan-range :from 1)))
 (when (> y 1) (format t ", "))
 (format t "~A" x))

from… below…: this stops at 9:

Similarly, use from 10 downto 0 (10…0) and from 10 above 0 (10…1).

Series

:from ... :upto, including the upper limit:

:from ... :below, excluding the upper limit:

Steps

loop

with by:

if you use by (1+ (random 3)), the random is evaluated only once, as if it
was in a closure:

(loop for i from 0 to 10
 do (print i))
;; 0 1 2 3 4 5 6 7 8 9 10

(loop for i from 0 below 10
 do (print i))

(iterate ((i (scan-range :from 0 :upto 10)))
 (print i))

(iterate ((i (scan-range :from 0 :below 10)))
 (print i))

(loop for i from 1 to 10 by 2
 do (print i))

(let ((step (random 3)))
 (loop for i from 1 to 10 by (+ 1 step)
 do (print i)))

The step must always be a positive number. If you want to count down, see
above.

Series

with :by:

Loop and conditionals

loop

with if, else and finally:

(42 82 24 92 92)
(55 89 59 13 49)

Combining multiple clauses in an if body requires special syntax (and do,
and count):

(iterate ((i (scan-range :from 1 :upto 10 :by 2)))
 (print i))

(loop repeat 10
 for x = (random 100)
 if (evenp x)
 collect x into evens
 else
 collect x into odds
 finally (return (values evens odds)))

(loop repeat 10
 for x = (random 100)
 if (evenp x)
 collect x into evens
 and do (format t "~a is even!~%" x)
 else
 collect x into odds
 and count t into n-odds
 finally (return (values evens odds n-odds)))

46 is even!
8 is even!
76 is even!
58 is even!
0 is even!
(46 8 76 58 0)
(7 45 43 15 69)
5

iterate

Translating (or even writing!) the above example using iterate is straight-
forward:

Series

The preceding loop would be done a bit differently in Series. split sorts
one series into multiple according to provided boolean series.

(iter (repeat 10)
 (for x = (random 100))
 (if (evenp x)
 (progn
 (collect x into evens)
 (format t "~a is even!~%" x))
 (progn
 (collect x into odds)
 (count t into n-odds)))
 (finally (return (values evens odds n-odds))))

(let* ((number (#M(lambda (n) (random 100))
 (scan-range :below 10)))
 (parity (#Mevenp number)))
 (iterate ((n number) (p parity))
 (when p (format t "~a is even!~%" n)))
 (multiple-value-bind (evens odds) (split number parity)
 (values (collect evens)
 (collect odds)
 (collect-length odds))))

Note that although iterate and the three collect expressions are written
sequentially, only one iteration is performed, the same as the example with
loop.

Begin the loop with a clause (initially)

initially also exists with iterate.

Terminate the loop with a test (until, while)

loop

the same, with while:

Series

We truncate the series with until-if, then collect from its result.

Loop, print and return a result

(loop initially
 (format t "~a " 'loop-begin)
 for x below 3
 do (format t "~a " x))
;; LOOP-BEGIN 0 1 2

(loop for x in '(1 2 3 4 5)
 until (> x 3)
 collect x)
;; (1 2 3)

(loop for x in '(1 2 3 4 5)
 while (< x 4)
 collect x)

(collect
 (until-if (lambda (i) (> i 3))
 (scan '(1 2 3 4 5))))

loop

do and collect can be combined in one expression

Series

By mapping, we can perform a side effect and also collect items

Named loops and early exit

loop

The special loop named foo syntax allows you to create a loop that you can
exit early from. The exit is performed using return-from, and can be used
from within nested loops.

(loop for x in '(1 2 3 4 5)
 while (< x 4)
 do (format t "x is ~a~&" x)
 collect x)
x is 1
x is 2
x is 3
(1 2 3)

(collect
 (mapping ((x (until-if (complement (lambda (x) (< x 4)))
 (scan '(1 2 3 4 5)))))
 (format t "x is ~a~&" x)
 x))

;; useless example
(loop named loop-1
 for x from 0 to 10 by 2
 do (loop for y from 0 to 100 by (1+ (random 3))
 when (< x y)
 do (return-from loop-1 (values x y))))
0
2

Sometimes, you want to return early but execute the finally clause
anyways. Use loop-finish.

It is most needed when some computation must take place in the finally
clause.

Loop shorthands for when/return

Several actions provide shorthands for combinations of when/return:

(loop for x from 0 to 100
 do (print x)
 when (>= x 3)
 return x
 finally (print :done)) ;; <-- not printed
;; 0
;; 1
;; 2
;; 3
;; 3

(loop for x from 0 to 100
 do (print x)
 when (>= x 3)
 do (loop-finish)
 finally (print :done)
 (return x))
;; 0
;; 1
;; 2
;; 3
;; :DONE
;; 3

* (loop for x in '(foo 2)
 thereis (numberp x))
T

* (loop for x in '(foo 2)
 never (numberp x))
NIL

http://www.lispworks.com/documentation/HyperSpec/Body/m_loop_f.htm#loop-finish

They correspond to the functions some, notany and every:

Series

A block is manually created and returned from.

Count

loop

Series

Summation

loop

* (loop for x in '(foo 2)
 always (numberp x))
NIL

(some #'numberp '(foo 2))
(notany #'numberp '(foo 2))
(every #'numberp '(foo 2))

(block loop-1
 (iterate ((x (scan-range :from 0 :upto 10 :by 2)))
 (iterate ((y (scan-range :from 0 :upto 100 :by (1+ (random 3
 (when (< x y)
 (return-from loop-1 (values x y))))))

(loop for i from 1 to 3 count (oddp i))
;; 2

(collect-length (choose-if #'oddp (scan-range :from 1 :upto 3)))

(loop for i from 1 to 3 sum (* i i))
;; 14

Summing into a variable:

Series

max, min

loop

and minimize.

Series

and collect-min.

Destructuring, aka pattern matching against the list or dotted
pairs

loop

(loop for i from 1 to 3
 sum (* i i) into total
 do (print i)
 finally (print total))
1
2
3
14

(collect-sum (#M(lambda (i) (* i i))
 (scan-range :from 1 :upto 3)))

(loop for i from 1 to 3 maximize (mod i 3))
;; 2

(collect-max (#M(lambda (i) (mod i 3))
 (scan-range :from 1 :upto 3)))

Use nil to ignore a term:

Iterating 2 by 2 over a list

To iterate over a list, 2 items at a time we use a combination of on, by and
destructuring.

We use on to loop over the rest (the cdr) of the list.

We use by to skip one element at every iteration ((cddr list) is equivalent
to (rest (rest list)))

Then we add destructuring to bind only the first two items at each iteration:

Series

In general, with destructuring-bind:

(loop for (a b) in '((x 1) (y 2) (z 3))
 collect (list b a))
;; ((1 X) (2 Y) (3 Z))

(loop for (x . y) in '((1 . a) (2 . b) (3 . c)) collect y)
;; (A B C)

(loop for (a nil) in '((x 1) (y 2) (z 3))
 collect a)
;; (X Y Z)

(loop for rest on '(a 2 b 2 c 3)
 collect rest)
;; ((A 2 B 2 C 3) (2 B 2 C 3) (B 2 C 3) (2 C 3) (C 3) (3))

(loop for rest on '(a 2 b 2 c 3) by #'cddr
 collect rest)
;; ((A 2 B 2 C 3) (B 2 C 3) (C 3))

(loop for (key value) on '(a 2 b 2 c 3) by #'cddr
 collect (list key (* 2 value)))
;; ((A 2) (B 4) (C 6))

But for alists, scan-alist is provided:

Iterate unique features lacking in loop

iterate has some other things unique to it.

If you are a newcomer in Lisp, it’s perfectly OK to keep this section for
later. You could very well spend your career in Lisp without resorting to
those features… although they might turn out useful one day.

No rigid order for clauses

loop requires that all for clauses appear before the loop body, for example
before a while. It’s ok for iter to not follow this order:

Accumulating clauses can be nested

collect, appending and other accumulating clauses can appear anywhere:

(collect
 (mapping ((l (scan '((x 1) (y 2) (z 3)))))
 (destructuring-bind (a b) l
 (list b a))))

(collect
 (mapping (((a b) (scan-alist '((1 . a) (2 . b) (3 . c)))))
 b))

(iter (for x in '(1 2 99)
 (while (< x 10))
 (for y = (print x))
 (collect (list x y)))

(iter (for x in '(1 2 3))
 (case x
 (1 (collect :a))
 ;; ^^ iter keyword, nested in a s-expression.
 (2 (collect :b))))

Finders: finding

iterate has finders.

A finder is a clause whose value is an expression that meets some
condition.

We can use finding followed by maximizing, minimizing or such-that.

Here’s how to find the longest list in a list of lists:

The rough equivalent in LOOP would be:

There could be more than one such-that clause:

We can also write such-that #'evenp and such-that #'oddp.

Control flow: next-iteration

(iter (for elt in '((a) (b c d) (e f)))
 (finding elt maximizing (length elt)))
=> (B C D)

(loop with max-elt = nil
 with max-key = 0
 for elt in '((a) (b c d) (e f))
 for key = (length elt)
 do
 (when (> key max-key)
 (setf max-elt elt
 max-key key))
 finally (return max-elt))
=> (B C D)

(iter (for i in '(7 -4 2 -3))
 (if (plusp i)
 (finding i such-that (evenp i))
 (finding (- i) such-that (oddp i))))
;; => 2

https://common-lisp.net/project/iterate/doc/Finders.html#Finders

It is like “continue” and loop doesn’t have it.

Skips the remainder of the loop body and begins the next iteration of
the loop.

iterate also has first-iteration-p and (if-first-time then else).

See control flow.

Generators

Use generate and next. A generator is lazy, it goes to the next value when
said explicitly.

Variable backtracking (previous) VS parallel binding

iterate allows us to get the previous value of a variable:

In this case however we can do it with loop’s parallel binding and, which is
unsupported in iterate:

More clauses

(iter (for i in '(1 2 3 4 5))
 (generate c in-string "black")
 (if (oddp i) (next c))
 (format t "~a " c))
;; b b l l a
;; NIL

(iter (for el in '(a b c d e))
 (for prev-el previous el)
 (collect (list el prev-el)))
;; => ((A NIL) (B A) (C B) (D C) (E D))

(loop for el in '(a b c d e)
 and prev-el = nil then el
 collect (list el prev-el))

https://common-lisp.net/project/iterate/doc/Control-Flow.html#Control-Flow

in-string can be used explicitly to iterate character by character over
a string. With loop, use across.

loop offers collecting, nconcing, and appending. iterate has these
and also adjoining, unioning, nunioning, and accumulating.

(adjoin is a set operation)

loop has summing, counting, maximizing, and minimizing. iterate
also includes multiplying and reducing. reducing is the generalized
reduction builder:

Iterate is extensible

but there is more to it, see the documentation.

We saw libraries extending loop, for example CLSQL, but they are full of
feature flag checks (#+(or allegro clisp-aloop cmu openmcl sbcl
scl)) and they call internal modules (ansi-loop::add-loop-path, sb-
loop::add-loop-path etc).

(iter (for c in-string "hello")
 (collect c))
;; => (#\h #\e #\l #\l #\o)

(iter (for el in '(a b c a d b))
 (adjoining el))
;; => (A B C D)

(iter (with dividend = 100)
 (for divisor in '(10 5 2))
 (reducing divisor by #'/ initial-value dividend))
;; => 1

(defmacro dividing-by (num &keys (initial-value 0))
 `(reducing ,num by #'/ initial-value ,initial-value))

(iter (for i in '(10 5 2))
 (dividing-by i :initial-value 100))
=> 1

https://common-lisp.net/project/iterate/doc/Rolling-Your-Own.html#Rolling-Your-Own
http://clsql.kpe.io/manual/loop-tuples.html

Custom series scanners

If we often scan the same type of object, we can write our own scanner for
it: the iteration itself can be factored out. Taking the example above, of
scanning a list of two-element lists, we’ll write a scanner that returns a
series of the first elements and a series of the second.

Shorter series expressions

Consider this series expression:

It’s a bit longer than it needs to be, the mapping form’s only purpose is to
bind the variable i, and i is used in only one place. Series has a “hidden
feature” that allows us to simplify this expression to the following:

This is called implicit mapping and can be enabled in the call to
series::install:

When using implicit mapping, the #M reader macro demonstrated above
becomes redundant.

(defun scan-listlist (listlist)
 (declare (optimizable-series-function 2))
 (map-fn '(values t t)
 (lambda (l)
 (destructuring-bind (a b) l
 (values a b)))
 (scan listlist)))

(collect
 (mapping (((a b) (scan-listlist '((x 1) (y 2) (z 3)))))
 (list b a)))

(collect-sum (mapping ((i (scan-range :length 5)))
 (* i 2)))

(collect-sum (* 2 (scan-range :length 5)))

(series::install :implicit-map t)

Loop gotchas

the keyword it, often used in functional constructs, can be recognized
as a loop keyword. Don’t use it inside a loop.

Iterate gotchas

It breaks on the function count:

It doesn’t recognize the built-in count function and instead signals a
condition.

It works in loop:

Appendix: list of loop keywords

Name Clause

named

Variable Clauses

initially finally for as with

Main Clauses

do collect collecting append
appending nconc nconcing into count
counting sum summing maximize return loop-finish
maximizing minimize minimizing doing
thereis always never if when
unless repeat while until

(iter (for i from 1 to 10)
 (sum (count i '(1 3 5))))

(loop for i from 1 to 10
 sum (count i '(1 3 5 99)))
;; 3

These don’t introduce clauses:

= and it else end from upfrom
above below to upto downto downfrom
in on then across being each the hash-key
hash-keys of using hash-value hash-values
symbol symbols present-symbol
present-symbols external-symbol
external-symbols fixnum float t nil of-type

But note that it’s the parsing that determines what is a keyword. For
example in:

Only for and in are keywords.

©Dan Robertson on Stack Overflow.

Credit and references

Loop

Tutorial for the Common Lisp Loop Macro by Peter D. Karp
Common Lisp’s Loop Macro Examples for Beginners by Yusuke
Shinyama
Section 6.1 The LOOP Facility, of the draft Common Lisp Standard
(X3J13/94-101R) - the (draft) standard provides background
information on Loop development, specification and examples. Single
PDF file available
26. Loop by Jon L White, edited and expanded by Guy L. Steele Jr. -
from the book “Common Lisp the Language, 2nd Edition”. Strong
connection to the draft above, with supplementing comments and
examples.

Iterate

The Iterate Manual -by Jonathan Amsterdam and Luís Oliveira
iterate - Pseudocodic Iteration - by Shubhamkar Ayare

(loop for key in hash-values)

https://stackoverflow.com/questions/52236803/list-of-loop-keywords
http://www.ai.sri.com/pkarp/loop.html
http://www.unixuser.org/~euske/doc/cl/loop.html
https://gitlab.com/vancan1ty/clstandard_build
https://gitlab.com/vancan1ty/clstandard_build/-/blob/master/cl-ansi-standard-draft-w-sidebar.pdf
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node235.html
https://common-lisp.net/project/iterate/doc/index.html
https://common-lisp-libraries.readthedocs.io/iterate/

Loop v Iterate - SabraOnTheHill
Comparing loop and iterate - by Stephen Bach (web archive)

Series

Common Lisp the Language (2nd Edition) - Appendix A. Series
SERIES for Common Lisp - Richard C. Waters

Others

See also: more functional constructs (do-repeat, take,…)

https://sites.google.com/site/sabraonthehill/loop-v-iter
https://web.archive.org/web/20170713081006/https://items.sjbach.com/211/comparing-loop-and-iterate
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node347.html
http://series.sourceforge.net/
https://lisp-journey.gitlab.io/blog/snippets-functional-style-more/

Multidimensional arrays
Common Lisp has native support for multidimensional arrays, with some
special treatment for 1-D arrays, called vectors. Arrays can be generalised
and contain any type (element-type t), or they can be specialised to
contain specific types such as single-float or integer. A good place to
start is Practical Common Lisp Chapter 11, Collections by Peter Seibel.

A quick reference to some common operations on arrays is given in the
section on Arrays and vectors.

Some libraries available on Quicklisp for manipulating arrays:

array-operations maintained by @Symbolics defines functions
generate, permute, displace, flatten, split, combine, reshape. It
also defines each, for element-wise operations. This is a fork of
bendudson/array-operations which is a fork of tpapp/array-operations,
the original author.
cmu-infix includes array indexing syntax for multidimensional arrays.
lla is a library for linear algebra, calling BLAS and LAPACK libraries.
It differs from most CL linear algebra packages in using intuitive
function names, and can operate on native arrays as well as CLOS
objects.

This page covers what can be done with the built-in multidimensional
arrays, but there are limitations. In particular:

Interoperability with foreign language arrays, for example when
calling libraries such as BLAS, LAPACK or GSL.
Extending arithmetic and other mathematical operators to handle
arrays, for example so that (+ a b) works when a and/or b are arrays.

Both of these problems can be solved by using CLOS to define an extended
array class, with native arrays as a special case. Some libraries available
through quicklisp which take this approach are:

http://www.gigamonkeys.com/book/collections.html
https://www.quicklisp.org/beta/
https://github.com/Lisp-Stat/array-operations
https://github.com/bendudson/array-operations
https://github.com/tpapp/array-operations
https://github.com/rigetticomputing/cmu-infix
https://github.com/tpapp/lla
https://www.quicklisp.org/beta/

matlisp, some of which is described in sections below.
MGL-MAT, which has a manual and provides bindings to BLAS and
CUDA. This is used in a machine learning library MGL.
cl-ana, a data analysis package with a manual, which includes
operations on arrays.
Antik, used in GSLL, a binding to the GNU Scientific Library.

A relatively new but actively developed package is MAGICL, which
provides wrappers around BLAS and LAPACK libraries. At the time of
writing this package is not on Quicklisp, and only works under SBCL and
CCL. It seems to be particularly focused on complex arrays, but not
exclusively. To install, clone the repository in your quicklisp local-
projects directory e.g. under Linux/Unix:

Instructions for installing dependencies (BLAS, LAPACK and Expokit) are
given on the github web pages. Low-level routines wrap foreign functions,
so have the Fortran names e.g magicl.lapack-cffi::%zgetrf. Higher-
level interfaces to some of these functions also exist, see the source
directory and documentation.

Taking this further, domain specific languages have been built on Common
Lisp, which can be used for numerical calculations with arrays. At the time
of writing the most widely used and supported of these are:

Maxima
Axiom

CLASP is a project which aims to ease interoperability of Common Lisp
with other languages (particularly C++), by using LLVM. One of the main
applications of this project is to numerical/scientific computing.

Creating

The function CLHS: make-array can create arrays filled with a single value

$ cd ~/quicklisp/local-projects
$ git clone https://github.com/rigetticomputing/magicl.git

* (defparameter *my array* (make array '(3 2) :initial element 1

https://github.com/bharath1097/matlisp/
https://github.com/melisgl/mgl-mat
https://github.com/melisgl/mgl
https://github.com/ghollisjr/cl-ana/wiki
https://www.common-lisp.net/project/antik/
https://common-lisp.net/project/gsll/
https://github.com/rigetticomputing/magicl
https://github.com/rigetticomputing/magicl
https://github.com/rigetti/magicl/blob/master/src/high-level/
https://github.com/quil-lang/magicl/blob/master/doc/high-level.md
http://maxima.sourceforge.net/documentation.html
https://github.com/daly/axiom
https://github.com/drmeister/clasp
http://llvm.org/
http://clhs.lisp.se/Body/f_mk_ar.htm

More complicated array values can be generated by first making an array,
and then iterating over the elements to fill in the values (see section below
on element access).

The array-operations library provides generate, a convenient function for
creating arrays which wraps this iteration.

Note that the nickname for array-operations is aops. The generate
function can also iterate over the array subscripts by passing the key
:subscripts. See the Array Operations manual on generate for more
examples.

Random numbers

To create an 3x3 array containing random numbers drawn from a uniform
distribution, generate can be used to call the CL random function:

* (defparameter *my-array* (make-array '(3 2) :initial-element 1
MY-ARRAY
* *my-array*
#2A((1.0 1.0) (1.0 1.0) (1.0 1.0))

* (ql:quickload :array-operations)
To load "array-operations":
 Load 1 ASDF system:
 array-operations
; Loading "array-operations"

(:ARRAY-OPERATIONS)

* (aops:generate #'identity 7 :position)
#(0 1 2 3 4 5 6)

* (aops:generate (lambda () (random 1.0)) '(3 3))
#2A((0.99292254 0.929777 0.93538976)
 (0.31522608 0.45167792 0.9411855)
 (0.96221936 0.9143338 0.21972346))

https://github.com/tpapp/array-operations
https://lisp-stat.dev/docs/manuals/array-operations/#generate
http://clhs.lisp.se/Body/f_random.htm

An array of Gaussian (normal) random numbers with mean of zero and
standard deviation of one, using the alexandria package:

Note that this is not particularly efficient: It requires a function call for each
element, and although gaussian-random returns two random numbers, only
one of them is used.

For more efficient implementations, and a wider range of probability
distributions, there are packages available on Quicklisp. See CLiki for a list.

Accessing elements

To access the individual elements of an array there are the aref and row-
major-aref functions.

The aref function takes the same number of index arguments as the array
has dimensions. Indexing is from 0 and row-major as in C, but not Fortran.

* (ql:quickload :alexandria)
To load "alexandria":
 Load 1 ASDF system:
 alexandria
; Loading "alexandria"

(:ALEXANDRIA)

* (aops:generate #'alexandria:gaussian-random 4)
#(0.5522547885338768d0 -1.2564808468164517d0 0.9488161476129733d
 -0.10372852118266523d0)

* (defparameter *a* #(1 2 3 4))
A
* (aref *a* 0)
1
* (aref *a* 3)
4
* (defparameter *b* #2A((1 2 3) (4 5 6)))
B
* (aref *b* 1 0)

https://common-lisp.net/project/alexandria/
https://www.cliki.net/statistics
http://clhs.lisp.se/Body/f_aref.htm
http://clhs.lisp.se/Body/f_row_ma.htm#row-major-aref
http://clhs.lisp.se/Body/f_aref.htm

The range of these indices can be found using array-dimensions:

* (array-dimensions *a*)
(4)
* (array-dimensions *b*)
(2 3)

or the rank of the array can be found, and then the size of each dimension
queried:

To loop over an array nested loops can be used, such as:

4
* (aref *b* 0 2)
3

* (array-rank *a*)
1
* (array-dimension *a* 0)
4
* (array-rank *b*)
2
* (array-dimension *b* 0)
2
* (array-dimension *b* 1)
3

* (defparameter a #2A((1 2 3) (4 5 6)))
A
* (destructuring-bind (n m) (array-dimensions a)
 (loop for i from 0 below n do
 (loop for j from 0 below m do
 (format t "a[~a ~a] = ~a~%" i j (aref a i j)))))

a[0 0] = 1
a[0 1] = 2
a[0 2] = 3
a[1 0] = 4
a[1 1] = 5
a[1 2] = 6
NIL

http://clhs.lisp.se/Body/f_ar_d_1.htm

A utility macro which does this for multiple dimensions is nested-loop:

(defmacro nested-loop (syms dimensions &body body)
 "Iterates over a multidimensional range of indices.

 SYMS must be a list of symbols, with the first symbol
 corresponding to the outermost loop.

 DIMENSIONS will be evaluated, and must be a list of
 dimension sizes, of the same length as SYMS.

 Example:
 (nested-loop (i j) '(10 20) (format t '~a ~a~%' i j))

 "
 (unless syms (return-from nested-loop `(progn ,@body))) ; No s

 ;; Generate gensyms for dimension sizes
 (let* ((rank (length syms))
 ;; reverse our symbols list,
 ;; since we start from the innermost.
 (syms-rev (reverse syms))
 ;; innermost dimension first:
 (dims-rev (loop for i from 0 below rank
 collecting (gensym)))
 ;; start with innermost expression
 (result `(progn ,@body)))
 ;; Wrap previous result inside a loop for each dimension
 (loop for sym in syms-rev for dim in dims-rev do
 (unless (symbolp sym)
 (error "~S is not a symbol. First argument to nested-
 (setf result
 `(loop for ,sym from 0 below ,dim do
 ,result)))
 ;; Add checking of rank and dimension types,
 ;; and get dimensions into gensym list.
 (let ((dims (gensym)))
 `(let ((,dims ,dimensions))
 (unless (= (length ,dims) ,rank)
 (error "Incorrect number of dimensions: Expected ~a b
 (dolist (dim ,dims)
 (unless (integerp dim)

so that the contents of a 2D array can be printed using:

[Note: This macro is available in this fork of array-operations, but not
Quicklisp]

Row major indexing

In some cases, particularly element-wise operations, the number of
dimensions does not matter. To write code which is independent of the
number of dimensions, array element access can be done using a single
flattened index via row-major-aref. The array size is given by array-total-
size, with the flattened index starting at 0.

 (error "Dimensions must be integers: ~S" dim)))
 ;; dimensions reversed so that innermost is last:
 (destructuring-bind ,(reverse dims-rev) ,dims
 ,result)))))

* (defparameter a #2A((1 2 3) (4 5 6)))
A
* (nested-loop (i j) (array-dimensions a)
 (format t "a[~a ~a] = ~a~%" i j (aref a i j)))

a[0 0] = 1
a[0 1] = 2
a[0 2] = 3
a[1 0] = 4
a[1 1] = 5
a[1 2] = 6
NIL

* (defparameter a #2A((1 2 3) (4 5 6)))
A
* (array-total-size a)
6
* (loop for i from 0 below (array-total-size a) do
 (setf (row-major-aref a i) (+ 2.0 (row-major-aref a i))))
NIL
* a
#2A((3.0 4.0 5.0) (6.0 7.0 8.0))

https://github.com/bendudson/array-operations
http://clhs.lisp.se/Body/f_row_ma.htm#row-major-aref
http://clhs.lisp.se/Body/f_ar_tot.htm

Infix syntax

The cmu-infix library provides some different syntax which can make
mathematical expressions easier to read:

A matrix-matrix multiply operation can be implemented as:

* (ql:quickload :cmu-infix)
To load "cmu-infix":
 Load 1 ASDF system:
 cmu-infix
; Loading "cmu-infix"

(:CMU-INFIX)

* (named-readtables:in-readtable cmu-infix:syntax)
(("COMMON-LISP-USER" . #<NAMED-READTABLE CMU-INFIX:SYNTAX {10030
...)

* (defparameter arr (make-array '(3 2) :initial-element 1.0))
ARR

* #i(arr[0 1] = 2.0)
2.0

* arr
#2A((1.0 2.0) (1.0 1.0) (1.0 1.0))

(let ((A #2A((1 2) (3 4)))
 (B #2A((5 6) (7 8)))
 (result (make-array '(2 2) :initial-element 0.0)))

 (loop for i from 0 to 1 do
 (loop for j from 0 to 1 do
 (loop for k from 0 to 1 do
 #i(result[i j] += A[i k] * B[k j]))))
 result)

https://github.com/rigetticomputing/cmu-infix

See the section below on linear algebra, for alternative matrix-multiply
implementations.

Element-wise operations

To multiply two arrays of numbers of the same size, pass a function to each
in the array-operations library:

For improved efficiency there is the aops:each* function, which takes a
type as first argument to specialise the result array.

To add a constant to all elements of an array:

Note that each is not destructive, but makes a new array. All arguments to
each must be arrays of the same size, so (aops:each #'+ 42 *a*) is not
valid.

Vectorising expressions

An alternative approach to the each function above, is to use a macro to
iterate over all elements of an array:

* (aops:each #'* #(1 2 3) #(2 3 4))
#(2 6 12)

* (defparameter *a* #(1 2 3 4))
A
* (aops:each (lambda (it) (+ 42 it)) *a*)
#(43 44 45 46)
* *a*
#(1 2 3 4)

(defmacro vectorize (variables &body body)
 ;; Check that variables is a list of only symbols
 (dolist (var variables)
 (if (not (symbolp var))
 (error "~S is not a symbol" var)))

 ;; Get the size of the first variable, and create a new arra
;; of the same type for the result

https://github.com/Lisp-Stat/array-operations

[Note: Expanded versions of this macro are available in this fork of array-
operations, but not Quicklisp]

This can be used as:

Inside the body of the expression (second form in vectorize expression)
the symbol *a* is bound to a single element. This means that the built-in
mathematical functions can be used:

and combined with cmu-infix:

 ;; of the same type for the result
 `(let ((size (array-total-size ,(first variables))) ; Total
 (result (make-array (array-dimensions ,(first variabl
 :element-type (array-element-type
 ;; Check that all variables have the same sizeo
 ,@(mapcar (lambda (var) `(if (not (equal (array-dimension
 (array-dimension
 (error "~S and ~S have diffe
 (rest variables))

 (dotimes (indx size)
 ;; Locally redefine variables to be scalars at a given
 (let ,(mapcar (lambda (var) (list var `(row-major-aref
 ;; User-supplied function body now evaluated for each
 (setf (row-major-aref result indx) (progn ,@body))))
 result))

* (defparameter *a* #(1 2 3 4))
A
* (vectorize (*a*) (* 2 *a*))
#(2 4 6 8)

* (defparameter a #(1 2 3 4))
A
* (defparameter b #(2 3 4 5))
B
* (vectorize (a b) (* a (sin b)))
#(0.9092974 0.28224 -2.2704074 -3.8356972)

https://github.com/bendudson/array-operations

Calling BLAS

Several packages provide wrappers around BLAS, for fast matrix
manipulation.

The lla package in quicklisp includes calls to some functions:

Scale an array

scaling by a constant factor:

AXPY

This calculates a * x + y where a is a constant, x and y are arrays. The
lla:axpy! function is destructive, modifying the last argument (y).

If the y array is complex, then this operation calls the complex number
versions of these operators:

* (vectorize (a b) #i(a * sin(b)))
#(0.9092974 0.28224 -2.2704074 -3.8356972)

* (defparameter a #(1 2 3))
* (lla:scal! 2.0 a)
* a
#(2.0d0 4.0d0 6.0d0)

* (defparameter x #(1 2 3))
A
* (defparameter y #(2 3 4))
B
* (lla:axpy! 0.5 x y)
#(2.5d0 4.0d0 5.5d0)
* x
#(1.0d0 2.0d0 3.0d0)
* y
#(2.5d0 4.0d0 5.5d0)

* (defparameter x #(1 2 3))
* (defparameter y (make-array 3 :element-type '(complex double-f

https://github.com/tpapp/lla

Dot product

The dot product of two vectors:

Reductions

The reduce function operates on sequences, including vectors (1D arrays),
but not on multidimensional arrays. To get around this, multidimensional
arrays can be displaced to create a 1D vector. Displaced arrays share storage
with the original array, so this is a fast operation which does not require
copying data:

The array-operations package contains flatten, which returns a
displaced array i.e doesn’t copy data:

An SBCL extension, array-storage-vector provides an efficient but not
portable way to achieve the same thing:

(p y (y yp (p
 :initial-element #C(1d0 1d0)))
* y
#(#C(1.0d0 1.0d0) #C(1.0d0 1.0d0) #C(1.0d0 1.0d0))

* (lla:axpy! #C(0.5 0.5) a b)
#(#C(1.5d0 1.5d0) #C(2.0d0 2.0d0) #C(2.5d0 2.5d0))

* (defparameter x #(1 2 3))
* (defparameter y #(2 3 4))
* (lla:dot x y)
20.0d0

* (defparameter a #2A((1 2) (3 4)))
A
* (reduce #'max (make-array (array-total-size a) :displaced-to a
4

* (reduce #'max (aops:flatten a))

http://clhs.lisp.se/Body/f_reduce.htm
http://www.sbcl.org/manual/#index-array_002dstorage_002dvector

More complex reductions are sometimes needed, for example finding the
maximum absolute difference between two arrays. Using the above
methods we could do:

This involves allocating an array to hold the intermediate result, which for
large arrays could be inefficient. Similarly to vectorize defined above, a
macro which does not allocate can be defined as:

* (reduce #'max (array-storage-vector a))
4

* (defparameter a #2A((1 2) (3 4)))
A
* (defparameter b #2A((1 3) (5 4)))
B
* (reduce #'max (aops:flatten
 (aops:each
 (lambda (a b) (abs (- a b))) a b)))
2

(defmacro vectorize-reduce (fn variables &body body)
 "Performs a reduction using FN over all elements in a vectoriz
 on array VARIABLES.

 VARIABLES must be a list of symbols bound to arrays.
 Each array must have the same dimensions. These are
 checked at compile and run-time respectively.
 "
 ;; Check that variables is a list of only symbols
 (dolist (var variables)
 (if (not (symbolp var))
 (error "~S is not a symbol" var)))

 (let ((size (gensym)) ; Total array size (same for all variabl
 (result (gensym)) ; Returned value
 (indx (gensym))) ; Index inside loop from 0 to size

 ;; Get the size of the first variable
 `(let ((,size (array-total-size ,(first variables))))
 ;; Check that all variables have the same size
 ,@(mapcar (lambda (var) `(if (not (equal (array-dimension

(array-dimension

[Note: This macro is available in this fork of array-operations, but not
Quicklisp]

Using this macro, the maximum value in an array A (of any shape) is:

The maximum absolute difference between two arrays A and B, of any
shape as long as they have the same shape, is:

Linear algebra

Several packages provide bindings to BLAS and LAPACK libraries,
including:

lla
MAGICL

A longer list of available packages is on CLiki’s linear algebra page.

In the examples below the lla package is loaded:

 (array dimension
 (error "~S and ~S have diffe
 (rest variables))

 ;; Apply FN with the first two elements (or fewer if size
 (let ((,result (apply ,fn (loop for ,indx below (min ,siz
 (let ,(map 'list (lambda (
 (progn ,@body))))))

 ;; Loop over the remaining indices
 (loop for ,indx from 2 below ,size do
 ;; Locally redefine variables to be scalars at a giv
 (let ,(mapcar (lambda (var) (list var `(row-major-
 ;; User-supplied function body now evaluated for
 (setf ,result (funcall ,fn ,result (progn ,@body
 ,result))))

* (vectorize-reduce #'max (a) a)

* (vectorize-reduce #'max (a b) (abs (- a b)))

https://github.com/bendudson/array-operations
https://github.com/tpapp/lla
https://github.com/rigetticomputing/magicl
https://www.cliki.net/linear%20algebra

Matrix multiplication

The lla function mm performs vector-vector, matrix-vector and matrix-matrix
multiplication.

Vector dot product

Note that one vector is treated as a row vector, and the other as column:

Matrix-vector product

which has performed the sum over j of A[i j] * x[j]

Matrix-matrix multiply

which summed over j in A[i j] * B[j k]

Note that the type of the returned arrays are simple arrays, specialised to
element type double-float

* (ql:quickload :lla)

To load "lla":
 Load 1 ASDF system:
 lla
; Loading "lla"
.
(:LLA)

* (lla:mm #(1 2 3) #(2 3 4))
20

* (lla:mm #2A((1 1 1) (2 2 2) (3 3 3)) #(2 3 4))
#(9.0d0 18.0d0 27.0d0)

* (lla:mm #2A((1 2 3) (1 2 3) (1 2 3)) #2A((2 3 4) (2 3 4) (2 3
#2A((12.0d0 18.0d0 24.0d0) (12.0d0 18.0d0 24.0d0) (12.0d0 18.0d0

https://github.com/tpapp/lla

Outer product

The array-operations package contains a generalised outer product function:

which has created a new 2D array A[i j] = B[i] * C[j]. This outer
function can take an arbitrary number of inputs, and inputs with multiple
dimensions.

Matrix inverse

The direct inverse of a dense matrix can be calculated with invert

e.g

* (type-of (lla:mm #2A((1 0 0) (0 1 0) (0 0 1)) #(1 2 3)))
(SIMPLE-ARRAY DOUBLE-FLOAT (3))

* (ql:quickload :array-operations)
To load "array-operations":
 Load 1 ASDF system:
 array-operations
; Loading "array-operations"

(:ARRAY-OPERATIONS)
* (aops:outer #'* #(1 2 3) #(2 3 4))
#2A((2 3 4) (4 6 8) (6 9 12))

* (lla:invert #2A((1 0 0) (0 1 0) (0 0 1)))
#2A((1.0d0 0.0d0 -0.0d0) (0.0d0 1.0d0 -0.0d0) (0.0d0 0.0d0 1.0d0

* (defparameter a #2A((1 2 3) (0 2 1) (1 3 2)))
A
* (defparameter b (lla:invert a))
B
* (lla:mm a b)
#2A((1.0d0 2.220446049250313d-16 0.0d0)
 (0.0d0 1.0d0 0.0d0)
 (0.0d0 1.1102230246251565d-16 0.9999999999999998d0))

https://github.com/Lisp-Stat/array-operations
https://en.wikipedia.org/wiki/Outer_product

Calculating the direct inverse is generally not advisable, particularly for
large matrices. Instead the LU decomposition can be calculated and used for
multiple inversions.

Singular value decomposition

The svd function calculates the singular value decomposition of a given
matrix, returning an object with slots for the three returned matrices:

The diagonal matrix (singular values) and vectors can be accessed with
functions:

* (defparameter a #2A((1 2 3) (0 2 1) (1 3 2)))
A
* (defparameter b (lla:mm a #(1 2 3)))
B
* (lla:solve (lla:lu a) b)
#(1.0d0 2.0d0 3.0d0)

* (defparameter a #2A((1 2 3) (0 2 1) (1 3 2)))
A
* (defparameter a-svd (lla:svd a))
A-SVD
* a-svd
#S(LLA:SVD
 :U #2A((-0.6494608633564334d0 0.7205486773948702d0 0.24292013
 (-0.3744175632000917d0 -0.5810891192666799d0 0.7225973
 (-0.6618248071322363d0 -0.3783451320875919d0 -0.647180
 :D #S(CL-NUM-UTILS.MATRIX:DIAGONAL-MATRIX
 :ELEMENTS #(5.593122609997059d0 1.2364443401235103d0
 0.43380279311714376d0))
 :VT #2A((-0.2344460799312531d0 -0.7211054639318696d0 -0.65195
 (0.2767642134809678d0 -0.6924017945853318d0 0.6663192
 (-0.9318994611765425d0 -0.02422116311440764d0 0.36190

(lla:svd-u a-svd)
#2A((-0.6494608633564334d0 0.7205486773948702d0 0.24292013188045
 (-0.3744175632000917d0 -0.5810891192666799d0 0.7225973455785
 (-0.6618248071322363d0 -0.3783451320875919d0 -0.647180721043

* (lla:svd-d a-svd)

https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition

Matlisp

The Matlisp scientific computation library provides high performance
operations on arrays, including wrappers around BLAS and LAPACK
functions. It can be loaded using quicklisp:

The nickname for matlisp is m. To avoid typing matlisp: or m: in front of
each symbol, you can define your own package which uses matlisp (See the
PCL section on packages):

and to use the #i infix reader (note the same name as for cmu-infix), run:

Creating tensors

 (lla:svd d a svd)
#S(CL-NUM-UTILS.MATRIX:DIAGONAL-MATRIX
 :ELEMENTS #(5.593122609997059d0 1.2364443401235103d0 0.433802

* (lla:svd-vt a-svd)
#2A((-0.2344460799312531d0 -0.7211054639318696d0 -0.651952410450
 (0.2767642134809678d0 -0.6924017945853318d0 0.66631923654602
 (-0.9318994611765425d0 -0.02422116311440764d0 0.361907073039

* (ql:quickload :matlisp)

* (defpackage :my-new-code
 (:use :common-lisp :matlisp))
#<PACKAGE "MY-NEW-CODE">

* (in-package :my-new-code)

* (named-readtables:in-readtable :infix-dispatch-table)

* (matlisp:zeros '(2 2))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.000 0.000
 0.000 0.000
>

https://github.com/bharath1097/matlisp/
http://www.gigamonkeys.com/book/programming-in-the-large-packages-and-symbols.html

Note that by default matrix storage types are double-float. To create a
complex array using zeros, ones and eye, specify the type:

As well as zeros and ones there is eye which creates an identity matrix:

Ranges

To generate 1D arrays there are the range and linspace functions:

The range function rounds down it’s final argument to an integer:

* (matlisp:zeros '(2 2) '((complex double-float)))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: (COMPLEX DOUBLE-FLOAT)>| #(2
 0.000 0.000
 0.000 0.000
>

* (matlisp:eye '(3 3) '((complex double-float)))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: (COMPLEX DOUBLE-FLOAT)>| #(3
 1.000 0.000 0.000
 0.000 1.000 0.000
 0.000 0.000 1.000
>

* (matlisp:range 1 10)
#<|<SIMPLE-DENSE-TENSOR: (INTEGER 0 4611686018427387903)>| #(9)
1 2 3 4 5 6 7 8 9
>

* (matlisp:range 1 -3.5)
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: SINGLE-FLOAT>| #(5)
1.000 0.000 -1.000 -2.000 -3.000
>
* (matlisp:range 1 3.3)
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: SINGLE-FLOAT>| #(3)
1.000 2.000 3.000
>

Linspace is a bit more general, and the values returned include the end
point.

Currently linspace requires real inputs, and doesn’t work with complex
numbers.

Random numbers

There are functions for other distributions, including random-exponential,
random-beta, random-gamma and random-pareto.

Reader macros

The #d and #e reader macros provide a way to create double-float and
single-float tensors:

* (matlisp:linspace 1 10)
#<|<SIMPLE-DENSE-TENSOR: (INTEGER 0 4611686018427387903)>| #(10)
1 2 3 4 5 6 7 8 9 10
>

* (matlisp:linspace 0 (* 2 pi) 5)
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(5)
0.000 1.571 3.142 4.712 6.283
>

* (matlisp:random-uniform '(2 2))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.7287 0.9480
 2.6703E-2 0.1834
>

(matlisp:random-normal '(2 2))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.3536 -1.291
-0.3877 -1.371
>

Note that the comma separators are needed.

Tensors from arrays

Common lisp arrays can be converted to Matlisp tensors by copying:

Instances of the tensor class can also be created, specifying the
dimensions. The internal storage of tensor objects is a 1D array (simple-
vector) in a slot store.

For example, to create a double-float type tensor:

Arrays from tensors

The array store can be accessed using slots:

* #d[1,2,3]
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(3)
1.000 2.000 3.000
>

* #d[[1,2,3],[4,5,6]]
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 1.000 2.000 3.000
 4.000 5.000 6.000
>

* (copy #2A((1 2 3)
 (4 5 6))
 '#.(tensor 'double-float))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 1.000 2.000 3.000
 4.000 5.000 6.000
>

(make-instance (tensor 'double-float)
 :dimensions (coerce '(2) '(simple-array index-type (*)))
 :store (make-array 2 :element-type 'double-float))

Multidimensional tensors are also stored in 1D arrays, and are stored in
column-major order rather than the row-major ordering used for common
lisp arrays. A displaced array will therefore be transposed.

The contents of a tensor can be copied into an array

or a list:

Element access

The ref function is the equivalent of aref for standard CL arrays, and is
also setf-able:

Element-wise operations

* (defparameter vec (m:range 0 5))
* vec
#<|<SIMPLE-DENSE-TENSOR: (INTEGER 0 4611686018427387903)>| #(5)
0 1 2 3 4
>
* (slot-value vec 'm:store)
#(0 1 2 3 4)

* (let ((tens (m:ones '(2 3))))
 (m:copy tens 'array))
#2A((1.0d0 1.0d0 1.0d0) (1.0d0 1.0d0 1.0d0))

* (m:copy (m:ones '(2 3)) 'cons)
((1.0d0 1.0d0 1.0d0) (1.0d0 1.0d0 1.0d0))

* (defparameter a (matlisp:ones '(2 3)))

* (setf (ref a 1 1) 2.0)
2.0d0
* a
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 1.000 1.000 1.000
 1.000 2.000 1.000
>

The matlisp-user package, loaded when matlisp is loaded, contains
functions for operating element-wise on tensors.

This includes arithmetic operators ‘+’, ‘-’, ’*‘,’/’ and ‘expt’, but also
sqrt,sin,cos,tan, hyperbolic functions, and their inverses. The #i reader
macro recognises many of these, and uses the matlisp-user functions:

* (matlisp-user:* 2 (ones '(2 3)))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 2.000 2.000 2.000
 2.000 2.000 2.000
>

* (let ((a (ones '(2 2)))
 (b (random-normal '(2 2))))
 #i(2 * a + b))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.9684 3.250
 1.593 1.508
>

* (let ((a (ones '(2 2)))
 (b (random-normal '(2 2))))
 (macroexpand-1 '#i(2 * a + b)))
(MATLISP-USER:+ (MATLISP-USER:* 2 A) B)

Dates and Times
Common Lisp provides two different ways of looking at time: universal
time, meaning time in the “real world”, and run time, meaning time as seen
by your computer’s CPU. We will deal with both of them separately.

Built-in time functions

Universal Time

Universal time is represented as the number of seconds that have elapsed
since 00:00 of January 1, 1900 in the GMT time zone. The function get-
universal-time returns the current universal time:

Of course this value is not very readable, so you can use the function
decode-universal-time to turn it into a “calendar time” representation:

NB: in the next section we’ll use the local-time library to get more user-
friendy functions, such as (local-time:universal-to-timestamp (get-
universal-time)) which returns @2021-06-25T09:16:29.000000+02:00.

CL-USER> (get-universal-time)
3220993326

CL-USER> (decode-universal-time 3220993326)
6
22
19
25
1
2002
4
NIL
5

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_un.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_un.htm

This call to decode-universal-time returns nine values: seconds,
minutes, hours, day, month, year, day of the week, daylight
savings time flag and time zone. Note that the day of the week is
represented as an integer in the range 0..6 with 0 being Monday and 6 being
Sunday. Also, the time zone is represented as the number of hours you need
to add to the current time in order to get GMT time.

So in this example the decoded time would be 19:22:06 of Friday,
January 25, 2002, in the EST time zone, with no daylight savings in
effect. This, of course, relies on the computer’s own clock, so make sure
that it is set correctly (including the time zone you are in and the DST flag).
As a shortcut, you can use get-decoded-time to get the calendar time
representation of the current time directly:

is equivalent to

Here is an example of how to use these functions in a program (but frankly,
use the local-time library instead):

CL-USER> (get-decoded-time)

CL-USER> (decode-universal-time (get-universal-time))

CL-USER> (defconstant *day-names*
 '("Monday" "Tuesday" "Wednesday"
 "Thursday" "Friday" "Saturday"
 "Sunday"))
DAY-NAMES

CL-USER> (multiple-value-bind
 (second minute hour day month year day-of-week dst-p
 (get-decoded-time)
 (format t "It is now ~2,'0d:~2,'0d:~2,'0d of ~a, ~d/~
 hour
 minute
 second
 (nth day-of-week *day-names*)
 month
 day
 year

(- tz)))

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_un.htm

Of course the call to get-decoded-time above could be replaced by
(decode-universal-time n), where n is any integer number, to print an
arbitrary date. You can also go the other way around: the function encode-
universal-time lets you encode a calendar time into the corresponding
universal time. This function takes six mandatory arguments (seconds,
minutes, hours, day, month and year) and one optional argument (the time
zone) and it returns a universal time:

Note that the result is automatically adjusted for daylight savings time if the
time zone is not supplied. If it is supplied, than Lisp assumes that the
specified time zone already accounts for daylight savings time, and no
adjustment is performed.

Since universal times are simply numbers, they are easier and safer to
manipulate than calendar times. Dates and times should always be stored as
universal times if possible, and only converted to string representations for
output purposes. For example, it is straightforward to know which of two
dates came before the other, by simply comparing the two corresponding
universal times with <.

Internal Time

Internal time is the time as measured by your Lisp environment, using your
computer’s clock. It differs from universal time in three important respects.
First, internal time is not measured starting from a specified point in time: it
could be measured from the instant you started your Lisp, from the instant
you booted your machine, or from any other arbitrary time point in the past.
As we will see shortly, the absolute value of an internal time is almost
always meaningless; only differences between internal times are useful. The
second difference is that internal time is not measured in seconds, but in a
(usually smaller) unit whose value can be deduced from internal-time-
units-per-second:

 (- tz)))
It is now 17:07:17 of Saturday, 1/26/2002 (GMT-5)

CL-USER> (encode-universal-time 6 22 19 25 1 2002)
3220993326

http://www.lispworks.com/documentation/HyperSpec/Body/f_encode.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_intern.htm

This means that in the Lisp environment used in this example, internal time
is measured in milliseconds.

Finally, what is being measured by the “internal time” clock? There are
actually two different internal time clocks in your Lisp:

one of them measures the passage of “real” time (the same time that
universal time measures, but in different units), and
the other one measures the passage of CPU time, that is, the time your
CPU spends doing actual computation for the current Lisp process.

On most modern computers these two times will be different, since your
CPU will never be entirely dedicated to your program (even on single-user
machines, the CPU has to devote part of its time to processing interrupts,
performing I/O, etc). The two functions used to retrieve internal times are
called get-internal-real-time and get-internal-run-time respectively.
Using them, we can solve the above problem about measuring a function’s
run time, which is what the time built-in macro does.

The local-time library

The local-time library (GitHub) is a very handy extension to the somewhat
limited functionalities as defined by the standard.

In particular, it can

CL-USER> internal-time-units-per-second
1000

CL-USER> (time (sleep 1))
Evaluation took:
 1.000 seconds of real time
 0.000049 seconds of total run time (0.000044 user, 0.000005 sy
 0.00% CPU
 2,594,553,447 processor cycles
 0 bytes consed

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_in.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get__1.htm
https://common-lisp.net/project/local-time/
https://github.com/dlowe-net/local-time/

print timestamps in various standard or custom formats (e.g. RFC1123
or RFC3339)
parse timestrings,
perform time arithmetic,
convert Unix times, timestamps, and universal times to and from.

We present below what we find the most useful functions. See its manual
for the full details.

It is available in Quicklisp:

Create timestamps (encode-timestamp, universal-to-timestamp)

Create a timestamp with encode-timestamp, giving it its number of
nanoseconds, seconds, minutes, days, months and years:

The complete signature is:

encode-timestamp nsec sec minute hour day month year &key timezone
offset into

The offset is the number of seconds offset from UTC of the locale. If offset
is not specified, the offset will be guessed from the timezone. If a
timestamp is passed as the into argument, its value will be set and that
timestamp will be returned. Otherwise, a new timestamp is created.

Create a timestamp from a universal time with universal-to-timestamp:

You can also parse a human-readable time string:

CL-USER> (ql:quickload "local-time")

(local-time:encode-timestamp 0 0 0 0 1 1 1984)
@1984-01-01T00:00:00.000000+01:00

(get-universal-time)
3833588757
(local-time:universal-to-timestamp (get-universal-time))
@2021-06-25T07:45:59.000000+02:00

https://common-lisp.net/project/local-time/manual.html

But see the section on parsing timestrings for more.

Get today’s date (now, today)

Use now or today:

“today” is the midnight of the current day in the UTC zone.

To compute “yesterday” and “tomorrow”, see below.

Add or substract times (timestamp+, timestamp-)

Use timestamp+ and timestamp-. Each takes 3 arguments: a date, a number
and a unit (and optionally a timezone and an offset):

The available units are :sec :minute :hour :day :year.

This operation is also possible with adjust-timestamp, which can do a bit
more as we’ll see right in the next section (it can do many operations at
once).

(local-time:parse-timestring "1984-01-01")
@1984-01-01T01:00:00.000000+01:00

(local-time:now)
@2019-11-13T20:02:13.529541+01:00

(local-time:today)
@2019-11-13T01:00:00.000000+01:00

(local-time:now)
@2021-06-25T07:19:39.836973+02:00

(local-time:timestamp+ (local-time:now) 1 :day)
@2021-06-26T07:16:58.086226+02:00

(local-time:timestamp- (local-time:now) 1 :day)
@2021-06-24T07:17:02.861763+02:00

Here’s yesterday and tomorrow defined from today:

Modify timestamps with any offset (adjust-timestamp)

adjust-timestamp’s first argument is the timestamp we operate on, and
then it accepts a full &body changes where a “change” is in the form
(offset :part value):

Please point to the previous Monday:

We can apply many changes at once. Travel in time:

There is a destructive version, adjust-timestamp!.

Compare timestamps (timestamp<, timestamp<, timestamp=
…)

(local-time:timestamp+ (today) 3 :day)
@2021-06-28T02:00:00.000000+02:00

(local-time:adjust-timestamp (today) (offset :day 3))
@2021-06-28T02:00:00.000000+02:00

(defun yesterday ()
 "Returns a timestamp representing the day before today."
 (timestamp- (today) 1 :day))

(defun tomorrow ()
 "Returns a timestamp representing the day after today."
 (timestamp+ (today) 1 :day))

(local-time:adjust-timestamp (today) (offset :day-of-week :monda
@2021-06-21T02:00:00.000000+02:00

(local-time:adjust-timestamp (today)
 (offset :day 3)
 (offset :year 110)
 (offset :month -1))
@2131-05-28T02:00:00.000000+01:00

These should be self-explanatory.

Find the minimum or maximum timestamp

Use timestamp-minimum and timestamp-maximum. They accept any number
of arguments.

If you have a list of timestamps, use (apply #'timestamp-minimum <your
list of timestamps>).

Maximize or minimize a timestamp according to a time unit
(timestamp-maximize-part, timestamp-minimize-part)

We can answer quite a number of questions with this handy function.

Here’s an example: please give me the last day of this month:

Querying timestamp objects (get the day, the day of week, the
days in month…)

Use:

timestamp< time-a time-b
timestamp<= time-a time-b
timestamp> time-a time-b
timestamp>= time-a time-b
timestamp= time-a time-b
timestamp/= time-a time-b

(local-time:timestamp-minimum (local-time:today)
 (local-time:timestamp- (local-time
@1921-06-25T02:00:00.000000+01:00

(let ((in-february (local-time:parse-timestring "1984-02-01")))
 (local-time:timestamp-maximize-part in-february :day))

@1984-02-29T23:59:59.999999+01:00

timestamp-[year month day hour minute second millisecond

Get all the values at once with decode-timestamp.

Bind a variable to a value of your choice with this convenient macro:

You can of course bind each time unit (:sec :minute :day) to its variable,
in any order.

See also (days-in-month <month> <year>).

Formatting time strings (format, format-timestring, +iso-8601-
format+)

local-time’s date representation starts with @. We can format them as usual,
with the aesthetic directive for instance, to get a usual date representation.

We can use format-timestring, which can be used like format (thus it
takes a stream as first argument):

Here nil returns a new string. t would print to *standard-output*.

timestamp [year, month, day, hour, minute, second, millisecond,
 day-of-week (starts at 0 for sunday),
 millenium, century, decade]

(local-time:with-decoded-timestamp (:hour h)
 (now)
 (print h))

8
8

(local-time:now)
@2019-11-13T18:07:57.425654+01:00

(format nil "~a" (local-time:now))
"2019-11-13T18:08:23.312664+01:00"

(local-time:format-timestring nil (local-time:now))
"2019-11-13T18:09:06.313650+01:00"

But format-timestring also accepts a :format argument. We can use
predefined date formats as well as give our own in s-expression friendly
way (see next section).

Its default value is +iso-8601-format+, with the output shown above. The
+rfc3339-format+ format defaults to it.

With +rfc-1123-format+:

With +asctime-format+:

With +iso-week-date-format+:

Putting all this together, here is a function that returns Unix times as a
human readable string:

Defining format strings (format-timestring (:year “-” :month
“-” :day))

(local-time:format-timestring nil (local-time:now) :format local
"Wed, 13 Nov 2019 18:11:38 +0100"

(local-time:format-timestring nil (local-time:now) :format local
"Wed Nov 13 18:13:15 2019"

(local-time:format-timestring nil (local-time:now) :format local
"2019-W46-3"

(defun unix-time-to-human-string (unix-time)
 (local-time:format-timestring
 nil
 (local-time:unix-to-timestamp unix-time)
 :format local-time:+asctime-format+))

(unix-time-to-human-string (get-universal-time))
"Mon Jun 25 06:46:49 2091"

We can pass a custom :format argument to format-timestring.

The syntax consists of a list made of symbols with special meanings (:year,
:day…), strings and characters:

The list of symbols is available in the documentation: https://common-
lisp.net/project/local-time/manual.html#Parsing-and-Formatting

There are :year :month :day :weekday :hour :hour12 :min :sec
:msec, long and short notations (:long-weekday for “Monday”, :short-
weekday for “Mon.”, :minimal-weekday for “Mo.” as well as :long-month
for “January” and :short-month for “Jan.”), gmt offset, timezone markers,
:ampm, :ordinal-day (1st, 23rd), iso numbers and more.

The +rfc-1123-format+ itself is defined like this:

We see the form (:day 2): the 2 is for padding, to ensure that the day is
printed with two digits (not only 1, but 01). There could be an optional third
argument, the character with which to fill the padding (by default, #\0).

Parsing time strings

Use parse-timestring to parse timestrings, in the form 2019-11-
13T18:09:06.313650+01:00. It works in a variety of formats by default,
and we can change parameters to adapt it to our needs.

To parse more formats such as “Thu Jul 23 19:42:23 2013” (asctime), we’ll
use the cl-date-time-parser library.

(local-time:format-timestring nil (local-time:now) :format '(:ye
"2019-11-13"

(defparameter +rfc-1123-format+
 ;; Sun, 06 Nov 1994 08:49:37 GMT
 '(:short-weekday ", " (:day 2) #\space :short-month #\space (:
 (:hour 2) #\: (:min 2) #\: (:sec 2) #\space :gmt-offset-hhmm
 "See the RFC 1123 for the details about the possible values of

https://common-lisp.net/project/local-time/manual.html#Parsing-and-Formatting
https://github.com/tkych/cl-date-time-parser

The parse-timestring docstring is:

Parses a timestring and returns the corresponding timestamp. Parsing
begins at start and stops at the end position. If there are invalid
characters within timestring and fail-on-error is T, then an invalid-
timestring error is signaled, otherwise NIL is returned.

If there is no timezone specified in timestring then offset is used as the
default timezone offset (in seconds).

Examples:

This custom format fails by default: “2019/11/13”, but we can set the
:date-separator to “/”:

There is also a :time-separator (defaulting to #\:) and :date-time-
separator (#\T).

Other options include:

the start and end positions
fail-on-error (defaults to t)
(allow-missing-elements t)
(allow-missing-date-part allow-missing-elements)
(allow-missing-time-part allow-missing-elements)
(allow-missing-timezone-part allow-missing-elements)
(offset 0)

Now a format like "“Wed Nov 13 18:13:15 2019” will fail. We’ll use the
cl-date-time-parser library:

(local-time:parse-timestring "2019-11-13T18:09:06.313650+01:00")
;; @2019-11-13T18:09:06.313650+01:00

(local-time:parse-timestring "2019-11-13")
;; @2019-11-13T01:00:00.000000+01:00

(local-time:parse-timestring "2019/11/13" :date-separator #\/)
;; @2019-11-13T19:42:32.394092+01:00

It returns the universal time which, in turn, we can ingest with the local-
time library:

Misc

To find out if it’s Alice anniversary, use timestamp-whole-year-
difference time-a time-b.

(cl-date-time-parser:parse-date-time "Wed Nov 13 18:13:15 2019")
;; 3782657595
;; 0

(local-time:universal-to-timestamp *)
;; @2019-11-13T19:13:15.000000+01:00

Pattern Matching
The ANSI Common Lisp standard does not include facilities for pattern
matching, but libraries existed for this task and Trivia became a community
standard.

For an introduction to the concepts of pattern matching, see Trivia’s wiki.

Trivia matches against a lot of lisp objects and is extensible.

The library is in Quicklisp:

For the following examples, let’s use the library:

Common destructuring patterns

cons

list, list*

list is a strict pattern, it expects the length of the matched object to be the
same length as its subpatterns.

(ql:quickload "trivia")

(use-package :trivia)

(match '(1 2 3)
 ((cons x y)
 ; ^^ pattern
 (print x)
 (print y)))
;; |-> 1
;; |-> (2 3)

https://github.com/guicho271828/trivia
https://github.com/guicho271828/trivia/wiki/What-is-pattern-matching%3F-Benefits%3F

Without the _ placeholder, it would not match:

The list* pattern is flexible on the object’s length:

However pay attention that if list* receives only one object, that object is
returned, regardless of whether or not it is a list:

This is related to the definition of list* in the HyperSpec:
http://clhs.lisp.se/Body/f_list_.htm.

vector, vector*

vector checks if the object is a vector, if the lengths are the same, and if the
contents matches against each subpatterns.

(match '(something 2 3)
 ((list a b _)
 (values a b)))
SOMETHING
2

(match '(something 2 3)
 ((list a b)
 (values a b)))
NIL

(match '(something 2 3)
 ((list* a b)
 (values a b)))
SOMETHING
(2 3)

(match '(1 2 . 3)
 ((list* _ _ x)
 x))
3

(match #(0 1 2)
 ((list* a)
 a))
#(0 1 2)

vector* is similar, but called a soft-match variant that allows if the length
is larger-than-equal to the length of subpatterns.

<vector-pattern> : vector | simple-vector
 bit-vector | simple-bit-vector
 string | simple-string
 base-string | simple-base-string | sequence
(<vector-pattern> &rest subpatterns)

Class and structure pattern

There are three styles that are equivalent:

(match #(1 2 3)
 ((vector _ x _)
 x))
;; -> 2

(match #(1 2 3 4)
 ((vector _ x _)
 x))
;; -> NIL : does not match

(match #(1 2 3 4)
 ((vector* _ x _)
 x))
;; -> 2 : soft match.

(defstruct foo bar baz)
(defvar *x* (make-foo :bar 0 :baz 1)

(match *x*
 ;; make-instance style
 ((foo :bar a :baz b)
 (values a b))
 ;; with-slots style
 ((foo (bar a) (baz b))
 (values a b))
 ;; slot name style
 ((foo bar baz)
 (values bar baz)))

type, satisfies

The type pattern matches if the object is of type. satisfies matches if the
predicate returns true for the object. A lambda form is acceptable.

assoc, property, alist, plist

All these patterns first check if the pattern is a list. If that is satisfied, then
they obtain the contents, and the value is matched against the subpattern.

Array, simple-array, row-major-array patterns

See https://github.com/guicho271828/trivia/wiki/Type-Based-
Destructuring-Patterns#array-simple-array-row-major-array-pattern !

Logic based patterns

We can combine any pattern with some logic.

and, or

The following:

matches against both (1 2) and (4 . 3) and returns 2 and 4, respectively.

not

It does not match when subpattern matches. The variables used in the
subpattern are not visible in the body.

Guards

(match x
 ((or (list 1 a)
 (cons a 3))
 a))

Guards allow us to use patterns and to verify them against a predicate.

The syntax is guard + subpattern + a test form, and the body.

If the subpattern is true, the test form is evaluated, and if it is true it is
matched against subpattern1.

Nesting patterns

Patterns can be nested:

returns 4.

See more

See special patterns: place, bind and access.

(match (list 2 5)
 ((guard (list x y) ; subpattern1
 (= 10 (* x y))) ; test-form
 :ok))

(match '(:a (3 4) 5)
 ((list :a (list _ c) _)
 c))

https://github.com/guicho271828/trivia/wiki/Special-Patterns

Regular Expressions
The ANSI Common Lisp standard does not include facilities for regular
expressions, but a couple of libraries exist for this task, for instance: cl-
ppcre.

See also the respective Cliki: regexp page for more links.

Note that some CL implementations include regexp facilities, notably
CLISP and ALLEGRO CL. If in doubt, check your manual or ask your
vendor.

The description provided below is far from complete, so don’t forget to
check the reference manual that comes along with the CL-PPCRE library.

PPCRE

CL-PPCRE (abbreviation for Portable Perl-compatible regular expressions)
is a portable regular expression library for Common Lisp with a broad set of
features and good performance. It has been ported to a number of Common
Lisp implementations and can be easily installed (or added as a
dependency) via Quicklisp:

Basic operations with the CL-PPCRE library functions are described below.

Looking for matching patterns: scan, create-scanner

The scan function tries to match the given pattern and on success returns
four multiple-values values - the start of the match, the end of the match,
and two arrays denoting the beginnings and ends of register matches. On
failure returns NIL.

(ql:quickload "cl-ppcre")

http://www.lispworks.com/documentation/HyperSpec/index.html
https://github.com/edicl/cl-ppcre
http://www.cliki.net/Regular%20Expression
http://clisp.sourceforge.net/impnotes.html#regexp
https://franz.com/support/documentation/current/doc/regexp.htm
https://github.com/edicl/cl-ppcre

A regular expression pattern can be compiled with the create-scanner
function call. A “scanner” will be created that can be used by other
functions.

For example:

will yield the same results as:

but will require less time for repeated scan calls as parsing the expression
and compiling it is done only once.

Extracting information

CL-PPCRE provides several ways to extract matching fragments.

all-matches, all-matches-as-strings

The function all-matches-as-strings is very handy: it returns a list of
matches:

The function all-matches is similar, but it returns a list of positions:

Look carefully: it actually return a list containing the start and end positions
of all matches: 9 and 10 are the start and end for the first number (1), and so
on.

If you wanted to extract integers from this example string, simply map
parse-integer to the result:

(let ((ptrn (ppcre:create-scanner "(a)*b")))
 (ppcre:scan ptrn "xaaabd"))

(ppcre:scan "(a)*b" "xaaabd")

(ppcre:all-matches-as-strings "\\d+" "numbers: 1 10 42")
;; => ("1" "10" "42")

(ppcre:all-matches "\\d+" "numbers: 1 10 42")
;; => (9 10 11 13 14 16)

The two functions accept the usual :start and :end key arguments.
Additionnaly, all-matches-as-strings accepts a :sharedp argument:

If SHAREDP is true, the substrings may share structure with
TARGET-STRING.

scan-to-strings, register-groups-bind

The scan-to-strings function is similar to scan but returns substrings of
target-string instead of positions. This function returns two values on
success: the whole match as a string plus an array of substrings (or NILs)
corresponding to the matched registers.

The register-groups-bind function tries to match the given pattern
against the target string and binds matching fragments with the given
variables.

CL-PPCRE also provides a shortcut for calling a function before assigning
the matching fragment to the variable:

Replacing text: regex-replace, regex-replace-all

CL-USER> (ppcre:all-matches-as-strings "\\d+" "numbers: 1 10 42"
;; ("1" "10" "42")
CL-USER> (mapcar #'parse-integer *)
(1 10 42)

(ppcre:register-groups-bind (first second third fourth)
 ("((a)|(b)|(c))+" "abababc" :sharedp t)
 (list first second third fourth))
;; => ("c" "a" "b" "c")

(ppcre:register-groups-bind
 (fname lname (#'parse-integer date month year))
 ("(\\w+)\\s+(\\w+)\\s+(\\d{1,2})\\.(\\d{1,2})\\.(\\d{4})"
 "Frank Zappa 21.12.1940")
 (list fname lname date month year))
;; => ("Frank" "Zappa" 21 12 1940)

Syntactic sugar

You might like to use CL-PPCRE with the cl-interpol library. cl-interpol is
a library for Common Lisp which modifies the reader in a way that
introduces interpolation within strings similar to Perl, Scala, or Unix Shell
scripts.

In addition to loading the CL-INTERPOL library, initialization call must be
made to properly configure the Lisp reader. This is accomplished by either
calling the enable-interpol-syntax function from the REPL or placing
that call in the source file before using any of its features:

In this mode you can write regular expressions in-between #?/ and /.

See more

cl-ppcre on common-lisp-libraries.readthedocs.io and read on: do-
matches, do-matches-as-strings, do-register-groups, do-scans,
parse-string, regex-apropos, quote-meta-chars, split…

(ppcre:regex-replace "a" "abc" "A") ;; => "Abc"
;; or
(let ((pat (ppcre:create-scanner "a")))
 (ppcre:regex-replace pat "abc" "A"))

(interpol:enable-interpol-syntax)

https://edicl.github.io/cl-interpol/#regular
https://common-lisp-libraries.readthedocs.io/cl-ppcre/

Input/Output
Redirecting the Standard Output of your
Program

You do it like this:

Because *STANDARD-OUTPUT* is a dynamic variable, all references to it
during execution of the body of the LET form refer to the stream that you
bound it to. After exiting the LET form, the old value of *STANDARD-OUTPUT*
is restored, no matter if the exit was by normal execution, a RETURN-FROM
leaving the whole function, an exception, or what-have-you. (This is,
incidentally, why global variables lose much of their brokenness in
Common Lisp compared to other languages: since they can be bound for
the execution of a specific form without the risk of losing their former value
after the form has finished, their use is quite safe; they act much like
additional parameters that are passed to every function.)

If the output of the program should go to a file, you can do the following:

WITH-OPEN-FILE opens the file - creating it if necessary - binds *STANDARD-
OUTPUT*, executes its body, closes the file, and restores *STANDARD-OUTPUT*
to its former value. It doesn’t get more comfortable than this!

Faithful Output with Character Streams

(let ((*standard-output* <some form generating a stream>))
 ...)

(with-open-file (*standard-output* "somefile.dat"
 :direction :output
 :if-exists :supersede)
 ...)

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm

By faithful output I mean that characters with codes between 0 and 255 will
be written out as is. It means, that I can (PRINC (CODE-CHAR 0..255) s) to
a stream and expect 8-bit bytes to be written out, which is not obvious in
the times of Unicode and 16 or 32 bit character representations. It does not
require that the characters ä, ß, or þ must have their CHAR-CODE in the range
0..255 - the implementation is free to use any code. But it does require that
no #\Newline to CRLF translation takes place, among others.

Common Lisp has a long tradition of distinguishing character from byte
(binary) I/O, e.g. READ-BYTE and READ-CHAR are in the standard. Some
implementations let both functions be called interchangeably. Others allow
either one or the other. (The simple stream proposal defines the notion of a
bivalent stream where both are possible.)

Varying element-types are useful as some protocols rely on the ability to
send 8-Bit output on a channel. E.g. with HTTP, the header is normally
ASCII and ought to use CRLF as line terminators, whereas the body can
have the MIME type application/octet-stream, where CRLF translation
would destroy the data. (This is how the Netscape browser on MS-Windows
destroys data sent by incorrectly configured Webservers which declare
unknown files as having MIME type text/plain - the default in most Apache
configurations).

What follows is a list of implementation dependent choices and behaviours
and some code to experiment.

CLISP

On CLISP, faithful output is possible using

You can also use (SETF (STREAM-ELEMENT-TYPE F) '(UNSIGNED-BYTE
8)), where the ability to SETF is a CLISP-specific extension. Using
:EXTERNAL-FORMAT :UNIX will cause portability problems, since the default

:external-format
(ext:make-encoding :charset 'charset:iso-8859-1
 :line-terminator :unix)

http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm
https://www.cliki.net/simple-stream

character set on MS-Windows is CHARSET:CP1252. CHARSET:CP1252 doesn’t
allow output of e.g. (CODE-CHAR #x81):

;*** - Character #\u0080 cannot be represented in the character
set CHARSET:CP1252

Characters with code > 127 cannot be represented in ASCII:

;*** - Character #\u0080 cannot be represented in the character
set CHARSET:ASCII

AllegroCL

#+(AND ALLEGRO UNIX) :DEFAULT (untested) - seems enough on UNIX, but
would not work on the MS-Windows port of AllegroCL.

LispWorks

:EXTERNAL-FORMAT '(:LATIN-1 :EOL-STYLE :LF) (confirmed by Marc
Battyani)

Example

Here’s some sample code to play with:

(defvar *unicode-test-file* "faithtest-out.txt")

(defun generate-256 (&key (filename *unicode-test-file*)
 #+CLISP (charset 'charset:iso-8859-1)
 external-format)
 (let ((e (or external-format
 #+CLISP (ext:make-encoding :charset charset
 :line-terminator :unix))))
 (describe e)
 (with-open-file (f filename :direction :output

 :external-format e)
 (write-sequence
 (loop with s = (make-string 256)
 for i from 0 to 255

do (setf (char s i) (code-char i))

 do (setf (char s i) (code char i))
 finally (return s))
 f)
 (file-position f))))

;(generate-256 :external-format :default)
;#+CLISP (generate-256 :external-format :unix)
;#+CLISP (generate-256 :external-format 'charset:ascii)
;(generate-256)

(defun check-256 (&optional (filename *unicode-test-file*))
 (with-open-file (f filename :direction :input
 :element-type '(unsigned-byte 8))
 (loop for i from 0
 for c = (read-byte f nil nil)
 while c
 unless (= c i)
 do (format t "~&Position ~D found ~D(#x~X)." i c c)
 when (and (= i 33) (= c 32))
 do (let ((c (read-byte f)))
 (format t "~&Resync back 1 byte ~D(#x~X) - cause CRLF
 (file-length f)))

#| CLISP
(check-256 *unicode-test-file*)
(progn (generate-256 :external-format :unix) (check-256))
; uses UTF-8 -> 385 bytes

(progn (generate-256 :charset 'charset:iso-8859-1) (check-256))

(progn (generate-256 :external-format :default) (check-256))
; uses UTF-8 + CRLF(on MS-Windows) -> 387 bytes

(progn (generate-256 :external-format
 (ext:make-encoding :charset 'charset:iso-8859-1 :line-terminat
(progn (generate-256 :external-format

 (ext:make-encoding :charset 'charset:iso-8859-1 :line-terminat
|#

Fast Bulk I/O

If you need to copy a lot of data and the source and destination are both
streams (of the same element type), it’s very fast to use READ-SEQUENCE and
WRITE-SEQUENCE:

(let ((buf (make-array 4096 :element-type (stream-element-type i
 (loop for pos = (read-sequence buf input-stream)
 while (plusp pos)
 do (write-sequence buf output-stream :end pos)))

http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_e.htm#element_type
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm

Files and Directories
We’ll see here a handful of functions and libraries to operate on files and
directories.

In this chapter, we use mainly namestrings to specify filenames. In a recipe
or two we also use pathnames.

Many functions will come from UIOP, so we suggest you have a look
directly at it:

UIOP/filesystem
UIOP/pathname

Of course, do not miss:

Files and File I/O in Practical Common Lisp

Getting the components of a pathname

File name (sans directory)

Use file-namestring to get a file name from a pathname:

File extension

The file extension is called “pathname type” in Lisp parlance:

File basename

The basename is called the “pathname name” -

(file-namestring #p"/path/to/file.lisp") ;; => "file.lisp"

(pathname-type "~/foo.org") ;; => "org"

http://www.lispworks.com/documentation/HyperSpec/Body/19_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/19_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/19_ab.htm
https://common-lisp.net/project/asdf/uiop.html#UIOP_002fFILESYSTEM
https://common-lisp.net/project/asdf/uiop.html#UIOP_002fPATHNAME
http://gigamonkeys.com/book/files-and-file-io.html

If a directory pathname has a trailing slash, pathname-name may return nil;
use pathname-directory instead -

Parent directory

Testing whether a file exists

Use the function probe-file which will return a generalized boolean -
either nil if the file doesn’t exists, or its truename (which might be
different from the argument you supplied).

For more portability, use uiop:probe-file* or uiop:file-exists-p which
will return the file pathname (if it exists).

Expanding a file or a directory name with a tilde (~)

For portability, use uiop:native-namestring:

(pathname-name "~/foo.org") ;; => "foo"
(pathname-name "~/foo") ;; => "foo"

(pathname-name "~/foo/") ;; => NIL
(first (last (pathname-directory #P"~/foo/"))) ;; => "foo"

(uiop:pathname-parent-directory-pathname #P"/foo/bar/quux/")
;; => #P"/foo/bar/"

$ ln -s /etc/passwd foo

* (probe-file "/etc/passwd")
#p"/etc/passwd"

* (probe-file "foo")
#p"/etc/passwd"

* (probe-file "bar")
NIL

http://www.lispworks.com/documentation/HyperSpec/Body/f_probe_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_g.htm#generalized_boolean
http://www.lispworks.com/documentation/HyperSpec/Body/20_ac.htm

It also expand the tilde with files and directories that don’t exist:

On several implementations (CCL, ABCL, ECL, CLISP, LispWorks),
namestring works similarly. On SBCL, if the file or directory doesn’t exist,
namestring doesn’t expand the path but returns the argument, with the
tilde.

With files that exist, you can also use truename. But, at least on SBCL, it
returns an error if the path doesn’t exist.

Turning a pathname into a string with Windows’ directory
separator

Use again uiop:native-namestring:

See also uiop:parse-native-namestring for the inverse operation.

Creating directories

The function ensure-directories-exist creates the directories if they do not
exist:

This may create foo, bar and baz. Don’t forget the trailing slash.

Deleting directories

(uiop:native-namestring "~/.emacs.d/")
"/home/me/.emacs.d/"

(uiop:native-namestring "~/foo987.txt")
:: "/home/me/foo987.txt"

CL-USER> (uiop:native-namestring #p"~/foo/")
"C:\\Users\\You\\foo\\"

(ensure-directories-exist "foo/bar/baz/")

http://www.lispworks.com/documentation/HyperSpec/Body/f_ensu_1.htm

Use uiop:delete-directory-tree with a pathname (#p), a trailing slash
and the :validate key:

You can use pathname around a string that designates a directory:

UIOP also has delete-empty-directory

cl-fad has (fad:delete-directory-and-files "dirtest").

Merging files and directories

Use merge-pathnames, with one thing to note: if you want to append
directories, the second argument must have a trailing /.

As always, look at UIOP functions. We have a uiop:merge-pathnames*
equivalent which fixes corner cases.

So, here’s how to append a directory to another one:

Look at the difference: if you don’t include a trailing slash to either paths,
otherpath and projects are seen as files, so otherpath is appended to the
base directory containing projects:

or again, with otherpath/ (a trailing /) but projects seen as a file:

;; mkdir dirtest
(uiop:delete-directory-tree #p"dirtest/" :validate t)

(defun rmdir (path)
 (uiop:delete-directory-tree (pathname path) :validate t))

(merge-pathnames "otherpath" "/home/vince/projects/")
;; important: ^^
;; a trailing / denotes a directory.
;; => #P"/home/vince/projects/otherpath"

(merge-pathnames "otherpath" "/home/vince/projects")
;; #P"/home/vince/otherpath"
;; ^^ no "projects", because it was seen as a file

https://edicl.github.io/cl-fad/

Get the current working directory (CWD)

Use uiop/os:getcwd:

Get the current directory relative to a Lisp project

Use asdf:system-relative-pathname system path.

Say you are working inside mysystem. It has an ASDF system declaration,
the system is loaded in your Lisp image. This ASDF file is somewhere on
your filesystem and you want the path to src/web/. Do this:

This will work on another user’s machine, where the system sources are
located in another location.

Setting the current working directory

Use uiop:chdir path:

The trailing slash in path is optional.

Or, to set for the current directory for the next operation only, use
uiop:with-current-directory:

(merge-pathnames "otherpath/" "/home/vince/projects")
;; #P"/home/vince/otherpath/projects"
;; ^^ inserted here

(uiop/os:getcwd)
;; #P"/home/vince/projects/cl-cookbook/"
;; ^ with a trailing slash, u

(asdf:system-relative-pathname "mysystem" "src/web/")
;; => #P"/home/vince/projects/mysystem/src/web/"

(uiop:chdir "/bin/")
0

https://asdf.common-lisp.dev/uiop.html#Function-uiop_002fos_003achdir

Opening a file

Common Lisp has open and close functions which resemble the functions
of the same denominator from other programming languages you’re
probably familiar with. However, it is almost always recommendable to use
the macro with-open-file instead. Not only will this macro open the file
for you and close it when you’re done, it’ll also take care of it if your code
leaves the body abnormally (such as by a use of throw). A typical use of
with-open-file looks like this:

str is a variable which’ll be bound to the stream which is created by
opening the file.
<_file-spec_> will be a truename or a pathname.
<_direction_> is usually :input (meaning you want to read from the
file), :output (meaning you want to write to the file) or :io (which is
for reading and writing at the same time) - the default is :input.
<_if-exists_> specifies what to do if you want to open a file for
writing and a file with that name already exists - this option is ignored
if you just want to read from the file. The default is :error which
means that an error is signalled. Other useful options are :supersede
(meaning that the new file will replace the old one), :append (content
is added to the file), nil (the stream variable will be bound to nil),
and :rename (i.e. the old file is renamed).
<_if-does-not-exist_> specifies what to do if the file you want to
open does not exist. It is one of :error for signalling an error, :create
for creating an empty file, or nil for binding the stream variable to
nil. The default is, to be brief, to do the right thing depending on the
other options you provided. See the CLHS for details.

(let ((dir "/path/to/another/directory/"))
 (uiop:with-current-directory (dir)
 (directory-files "./")))

(with-open-file (str <_file-spec_>
 :direction <_direction_>
 :if-exists <_if-exists_>
 :if-does-not-exist <_if-does-not-exist_>)
 (your code here))

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_close.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_throw.htm

Note that there are a lot more options to with-open-file. See the CLHS
entry for open for all the details. You’ll find some examples on how to use
with-open-file below. Also note that you usually don’t need to provide
any keyword arguments if you just want to open an existing file for reading.

Reading files

Reading a file into a string or a list of lines

It’s quite common to need to access the contents of a file in string form, or
to get a list of lines.

uiop is included in ASDF (there is no extra library to install or system to
load) and has the following functions:

and

Otherwise, this can be achieved by using read-line or read-char
functions, that probably won’t be the best solution. The file might not be
divided into multiple lines or reading one character at a time might bring
significant performance problems. To solve this problems, you can read
files using buckets of specific sizes.

Furthermore, you’re free to change the format of the read/written data,
instead of using elements of type character every time. For instance, you
can set :element-type type argument of with-output-to-string, with-

(uiop:read-file-string "file.txt")

(uiop:read-file-lines "file.txt")

(with-output-to-string (out)
 (with-open-file (in "/path/to/big/file")
 (loop with buffer = (make-array 8192 :element-type 'characte
 for n-characters = (read-sequence buffer in)
 while (< 0 n-characters)
 do (write-sequence buffer out :start 0 :end n-characte

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

open-file and make-array functions to '(unsigned-byte 8) to read data
in octets.

Reading with an utf-8 encoding

To avoid an ASCII stream decoding error you might want to specify an
UTF-8 encoding:

Set SBCL’s default encoding format to utf-8

Sometimes you don’t control the internals of a library, so you’d better set
the default encoding to utf-8. Add this line to your ~/.sbclrc:

(setf sb-impl::default-external-format :utf-8)

and optionally

(setf sb-alien::default-c-string-external-format :utf-8)

Reading a file one line at a time

read-line will read one line from a stream (which defaults to standard
input) the end of which is determined by either a newline character or the
end of the file. It will return this line as a string without the trailing newline
character. (Note that read-line has a second return value which is true if
there was no trailing newline, i.e. if the line was terminated by the end of
the file.) read-line will by default signal an error if the end of the file is
reached. You can inhibit this by supplying NIL as the second argument. If
you do this, read-line will return nil if it reaches the end of the file.

(with-open-file (in "/path/to/big/file"
 :external-format :utf-8)
 ...

(with-open-file (stream "/etc/passwd")
 (do ((line (read-line stream nil)
 (read-line stream nil)))

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_lin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_s.htm#standard_input

You can also supply a third argument which will be used instead of nil to
signal the end of the file:

Reading a file one character at a time

read-char is similar to read-line, but it only reads one character as
opposed to one line. Of course, newline characters aren’t treated differently
from other characters by this function.

Looking one character ahead

You can ‘look at’ the next character of a stream without actually removing
it from there - this is what the function peek-char is for. It can be used for
three different purposes depending on its first (optional) argument (the
second one being the stream it reads from): If the first argument is nil,
peek-char will just return the next character that’s waiting on the stream:

 ((null line))
 (print line)))

(with-open-file (stream "/etc/passwd")
 (loop for line = (read-line stream nil 'foo)
 until (eq line 'foo)
 do (print line)))

(with-open-file (stream "/etc/passwd")
 (do ((char (read-char stream nil)
 (read-char stream nil)))
 ((null char))
 (print char)))

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (peek-char nil stream))
 (print (read-char stream))
 (values))

#\I

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_peek_c.htm

If the first argument is T, peek-char will skip whitespace characters, i.e. it
will return the next non-whitespace character that’s waiting on the stream.
The whitespace characters will vanish from the stream as if they had been
read by read-char:

If the first argument to peek-char is a character, the function will skip all
characters until that particular character is found:

Note that peek-char has further optional arguments to control its behaviour
on end-of-file similar to those for read-line and read-char (and it will

#\'
#\'

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (peek-char t stream))
 (print (read-char stream))
 (print (read-char stream))
 (values))

#\I
#\'
#\m
#\n
#\n
#\o

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (peek-char #\a stream))
 (print (read-char stream))
 (print (read-char stream))
 (values))

#\I
#\a
#\a
#\m

http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_w.htm#whitespace

signal an error by default):

You can also put one character back onto the stream with the function
unread-char. You can use it as if, after you have read a character, you
decide that you’d better used peek-char instead of read-char:

Note that the front of a stream doesn’t behave like a stack: You can only put
back exactly one character onto the stream. Also, you must put back the
same character that has been read previously, and you can’t unread a
character if none has been read before.

Random access to a File

Use the function file-position for random access to a file. If this function
is used with one argument (a stream), it will return the current position
within the stream. If it’s used with two arguments (see below), it will
actually change the file position in the stream.

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (peek-char #\d stream))
 (print (read-char stream))
 (print (peek-char nil stream nil 'the-end))
 (values))

#\I
#\d
#\d
THE-END

CL-USER> (with-input-from-string (stream "I'm not amused")
 (let ((c (read-char stream)))
 (print c)
 (unread-char c stream)
 (print (read-char stream))
 (values)))

#\I
#\I

http://www.lispworks.com/documentation/HyperSpec/Body/f_unrd_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_f.htm#file_position

Writing content to a file

With with-open-file, specify :direction :output and use write-
sequence inside:

If the file exists, you can also :append content to it.

If it doesn’t exist, you can :error out. See the standard for more details.

Using libraries

The library Alexandria has a function called write-string-into-file

Alternatively, the library str has the to-file function.

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (file-position stream))
 (print (read-char stream))
 (print (file-position stream))
 (file-position stream 4)
 (print (file-position stream))
 (print (read-char stream))
 (print (file-position stream))
 (values))

0
#\I
1
4
#\n
5

(with-open-file (f <pathname> :direction :output
 :if-exists :supersede
 :if-does-not-exist :create)
 (write-sequence s f))

(alexandria:write-string-into-file content "file.txt")

(str:to-file "file.txt" content) ;; with optional options

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
https://common-lisp.net/project/alexandria/draft/alexandria.html#Conses
https://gitlab.common-lisp.net/alexandria/alexandria/-/blob/master/alexandria-1/io.lisp#L73
https://github.com/vindarel/cl-str

Both alexandria:write-string-into-file and str:to-file take the
same keyword arguments as cl:open that controls file creation: :if-exists
and if-does-not-exists.

Getting file attributes (size, access time,…)

Osicat is a lightweight operating system interface for Common Lisp on
POSIX-like systems, including Windows. With Osicat we can get and set
environment variables (now doable with uiop:getenv), manipulate files
and directories, pathnames and a bit more.

file-attributes is a newer and lighter OS portability library specifically for
getting file attributes, using system calls (cffi).

SBCL with its sb-posix contrib can be used too.

File attributes (Osicat)

Once Osicat is installed, it also defines the osicat-posix system, which
permits us to get file attributes.

We can get the other attributes with the following methods:

osicat-posix:stat-dev
osicat-posix:stat-gid
osicat-posix:stat-ino
osicat-posix:stat-uid
osicat-posix:stat-mode
osicat-posix:stat-rdev
osicat-posix:stat-size
osicat-posix:stat-atime
osicat-posix:stat-ctime
osicat-posix:stat-mtime
osicat-posix:stat-nlink

(ql:quickload "osicat")

(let ((stat (osicat-posix:stat #P"./files.md")))
 (osicat-posix:stat-size stat)) ;; => 10629

https://www.common-lisp.net/project/osicat/
https://github.com/Shinmera/file-attributes/

osicat-posix:stat-blocks
osicat-posix:stat-blksize

File attributes (file-attributes)

Install the library with

(ql:quickload “file-attributes”)

Its package is org.shirakumo.file-attributes. You can use a package-
local nickname for a shorter access to its functions, for example:

Then simply use the functions:

access-time, modification-time, creation-time. You can setf
them.
owner, group, and attributes. The values used are OS specific for
these functions. The attributes flag can be decoded and encoded via a
standardised form with decode-attributes and encode-attributes.

See its documentation.

File attributes (sb-posix)

This contrib is loaded by default on POSIX systems.

First get a stat object for a file, then get the stat you want:

(uiop:add-package-local-nickname :file-attributes :org.shirakumo

CL-USER> (file-attributes:decode-attributes
 (file-attributes:attributes #p"test.txt"))
(:READ-ONLY NIL :HIDDEN NIL :SYSTEM-FILE NIL :DIRECTORY NIL :ARC
NIL :NORMAL NIL :TEMPORARY NIL :SPARSE NIL :LINK NIL :COMPRESSE
NIL :NOT-INDEXED NIL :ENCRYPTED NIL :INTEGRITY NIL :VIRTUAL NIL
:RECALL NIL)

https://shinmera.github.io/file-attributes

Listing files and directories

Some functions below return pathnames, so you might need the following:

Listing files in a directory

Returns a list of pathnames:

(#P"/home/vince/projects/cl-cookbook/.emacs"
 #P"/home/vince/projects/cl-cookbook/.gitignore"
 #P"/home/vince/projects/cl-cookbook/AppendixA.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixB.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixC.jpg"
 #P"/home/vince/projects/cl-cookbook/CHANGELOG"
 #P"/home/vince/projects/cl-cookbook/CONTRIBUTING.md"
 […]

Listing sub-directories

(#P"/home/vince/projects/cl-cookbook/.git/"
 #P"/home/vince/projects/cl-cookbook/.sass-cache/"
 #P"/home/vince/projects/cl-cookbook/_includes/"
 #P"/home/vince/projects/cl-cookbook/_layouts/"
 #P"/home/vince/projects/cl-cookbook/_site/"
 #P"/home/vince/projects/cl-cookbook/assets/")

CL-USER> (sb-posix:stat "test.txt")
#<SB-POSIX:STAT {10053FCBE3}>

CL-USER> (sb-posix:stat-mtime *)
1686671405

(namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/baz.tx
(directory-namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/"
(file-namestring #p"/foo/bar/baz.txt") ==> "baz.txt"

(uiop:directory-files "./")

(uiop:subdirectories "./")

Traversing (walking) directories recursively

See uiop/filesystem:collect-sub*directories. It takes as arguments:

a directory
a collectp function
a recursep function
a collector function

Given a directory, when collectp returns true with the directory, call the
collector function on the directory, and recurse each of its subdirectories
on which recursep returns true.

This function will thus let you traverse a filesystem hierarchy, superseding
the functionality of cl-fad:walk-directory.

The behavior in presence of symlinks is not portable. Use IOlib to handle
such situations.

Examples:

this collects only subdirectories:

this collects files and subdirectories:

(defparameter *dirs* nil "All recursive directories.")

(uiop:collect-sub*directories "~/cl-cookbook"
 (constantly t)
 (constantly t)
 (lambda (it) (push it *dirs*)))

(let ((results))
 (uiop:collect-sub*directories
 "./"
 (constantly t)
 (constantly t)
 (lambda (subdir)
 (setf results
 (nconc results

we can do the same with the cl-fad library:

and of course, we can use an external tool: the good ol’ unix find, or
the newer fd (fdfind on Debian) that has a simpler syntax and filters
out a set of common files and directories by default (node_modules,
.git…):

Here with the help of the str library.

Finding files matching a pattern

Below we simply list files of a directory and check that their name contains
a given string.

(#P"/home/vince/projects/cl-cookbook/AppendixA.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixB.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixC.jpg")

We used namestring to convert a pathname to a string, thus a sequence that
search can deal with.

 ;; A detail: we return strings, not pathname
 (loop for path in (append (uiop:subdirectori
 (uiop:directory-fi
 collect (namestring path))))))
 results)

(cl-fad:walk-directory "./"
 (lambda (name)
 (format t "~A~%" name))
 :directories t)

(str:lines (uiop:run-program (list "find" ".") :output :string))
;; or
(str:lines (uiop:run-program (list "fdfind") :output :string))

(remove-if-not (lambda (it)
 (search "App" (namestring it)))
 (uiop:directory-files "./"))

Finding files with a wildcard

We can not transpose unix wildcards to portable Common Lisp.

In pathname strings we can use * and ** as wildcards. This works in
absolute and relative pathnames.

Change the default pathname

The concept of . denoting the current directory does not exist in portable
Common Lisp. This may exist in specific filesystems and specific
implementations.

Also ~ to denote the home directory does not exist. They may be recognized
by some implementations as non-portable extensions.

*default-pathname-defaults*provides a default for some pathname
operations.

See also (user-homedir-pathname).

(directory #P"*.jpg")

(directory #P"**/*.png")

(let ((*default-pathname-defaults* (pathname "/bin/")))
 (directory "*sh"))
(#P"/bin/zsh" #P"/bin/tcsh" #P"/bin/sh" #P"/bin/ksh" #P"/bin/csh

Error and exception handling
Common Lisp has mechanisms for error and condition handling as found in
other languages, and can do more.

What is a condition ?

Just like in languages that support exception handling (Java, C++,
Python, etc.), a condition represents, for the most part, an “exceptional”
situation. However, even more so than those languages, a condition in
Common Lisp can represent a general situation where some branching
in program logic needs to take place, not necessarily due to some error
condition. Due to the highly interactive nature of Lisp development
(the Lisp image in conjunction with the REPL), this makes perfect
sense in a language like Lisp rather than say, a language like Java or
even Python, which has a very primitive REPL. In most cases,
however, we may not need (or even allow) the interactivity that this
system offers us. Thankfully, the same system works just as well even
in non-interactive mode.

z0ltan

Let’s dive into it step by step. More resources are given afterwards.

Ignoring all errors, returning nil

Sometimes you know that a function can fail and you just want to ignore it:
use ignore-errors:

(ignore-errors
 (/ 3 0))
; in: IGNORE-ERRORS (/ 3 0)
; (/ 3 0)
;
; caught STYLE-WARNING:
; Lisp error during constant folding:

https://z0ltan.wordpress.com/2016/08/06/conditions-and-restarts-in-common-lisp/
http://www.lispworks.com/documentation/HyperSpec/Body/m_ignore.htm

We get a welcome division-by-zero warning but the code runs well and it
returns two things: nil and the condition that was signaled. We could not
choose what to return.

Remember that we can inspect the condition with a right click in Slime.

Catching any condition (handler-case)

ignore-errors is built from handler-case. We can write the previous
example by catching the general error but now we can return whatever we
want:

We also returned two values, 0 and the signaled condition.

The general form of handler-case is

; arithmetic error DIVISION-BY-ZERO signalled
; Operation was (/ 3 0).
;
; compilation unit finished
; caught 1 STYLE-WARNING condition
NIL
#<DIVISION-BY-ZERO {1008FF5F13}>

(handler-case (/ 3 0)
 (error (c)
 (format t "We caught a condition.~&")
 (values 0 c)))
; in: HANDLER-CASE (/ 3 0)
; (/ 3 0)
;
; caught STYLE-WARNING:
; Lisp error during constant folding:
; Condition DIVISION-BY-ZERO was signalled.
;
; compilation unit finished
; caught 1 STYLE-WARNING condition
We caught a condition.
0
#<DIVISION-BY-ZERO {1004846AE3}>

http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm

Catching a specific condition

We can specify what condition to handle:

This workflow is similar to a try/catch as found in other languages, but we
can do more.

handler-case VS handler-bind

handler-case is similar to the try/catch forms that we find in other
languages.

handler-bind (see the next examples), is what to use when we need absolute
control over what happens when a signal is raised. It allows us to use the
debugger and restarts, either interactively or programmatically.

If some library doesn’t catch all conditions and lets some bubble out to us,
we can see the restarts (established by restart-case) anywhere deep in the
stack, including restarts established by other libraries that this library called.
And we can see the stack trace, with every frame that was called and, in
some lisps, even see local variables and such. Once we handler-case, we
“forget” about this, everything is unwound. handler-bind does not rewind
the stack.

(handler-case (code that errors out)
 (condition-type (the-condition) ;; <-- optional argument
 (code))
 (another-condition (the-condition)
 ...))

(handler-case (/ 3 0)
 (division-by-zero (c)
 (format t "Caught division by zero: ~a~%" c)))
;; …
;; Caught division by zero: arithmetic error DIVISION-BY-ZERO sig
;; Operation was (/ 3 0).
;; NIL

http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm

Before we properly see handler-bind, let’s study conditions and restarts.

Defining and making conditions

We define conditions with define-condition and we make (initialize) them
with make-condition.

It’s better if we give more information to it when we create a condition, so
let’s use slots:

Now when we’ll “signal” or “throw” the condition in our code we’ll be able
to populate it with information to be consumed later:

Note: here’s a quick reminder on classes, if you are not fully operational on
the Common Lisp Object System.

and :reader dividend created a generic function that is a “getter” for the
dividend of a my-division-by-zero object:

(define-condition my-division-by-zero (error)
 ())

(make-condition 'my-division-by-zero)
;; #<MY-DIVISION-BY-ZERO {1005A5FE43}>

(define-condition my-division-by-zero (error)
 ((dividend :initarg :dividend
 :initform nil
 :reader dividend)) ;; <-- we'll get the dividend wi
 (:documentation "Custom error when we encounter a division by

(make-condition 'my-division-by-zero :dividend 3)
;; #<MY-DIVISION-BY-ZERO {1005C18653}>

(make-condition 'my-division-by-zero :dividend 3)
;; ^^ this is the ":initarg"

(make-condition 'my-division-by-zero :dividend 3)
;; #<MY-DIVISION-BY-ZERO {1005C18653}>

http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_cnd.htm
clbr://internal.invalid/book/EPUB/text/clos.html

an “:accessor” would be both a getter and a setter.

So, the general form of define-condition looks and feels like a regular
class definition, but despite the similarities, conditions are not standard
objects.

A difference is that we can’t use slot-value on slots.

Signaling (throwing) conditions: error, warn,
signal

We can use error in two ways:

(error "some text"): signals a condition of type simple-error, and
opens-up the interactive debugger.
(error 'my-error :message "We did this and that and it
didn't work."): creates and throws a custom condition with its slot
“message” and opens-up the interactive debugger.

With our own condition we can do:

Throwing these conditions will enter the interactive debugger, where the
user may select a restart.

warn will not enter the debugger (create warning conditions by subclassing
simple-warning).

Use signal if you do not want to enter the debugger, but you still want to
signal to the upper levels that something exceptional happened.

(dividend *)
;; 3

(error 'my-division-by-zero :dividend 3)
;; which is a shortcut for
(error (make-condition 'my-division-by-zero :dividend 3))

http://www.lispworks.com/documentation/HyperSpec/Body/e_error.htm#error
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_wa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_signal.htm

And that can be anything. For example, it can be used to track progress
during an operation. You would create a condition with a percent slot,
signal one when progress is made, and the higher level code would handle it
and display it to the user. See the resources below for more.

Conditions hierarchy

The class precedence list of simple-error is simple-error, simple-
condition, error, serious-condition, condition, t.

The class precedence list of simple-warning is simple-warning, simple-
condition, warning, condition, t.

Custom error messages (:report)

So far, when throwing our error, we saw this default text in the debugger:

Condition COMMON-LISP-USER::MY-DIVISION-BY-ZERO was signalled.
 [Condition of type MY-DIVISION-BY-ZERO]

We can do better by giving a :report function in our condition declaration:

Now:

(define-condition my-division-by-zero (error)
 ((dividend :initarg :dividend
 :initform nil
 :accessor dividend))
 ;; the :report is the message into the debugger:
 (:report (lambda (condition stream)
 (format stream
 "You were going to divide ~a by zero.~&"
 (dividend condition)))))

(error 'my-division-by-zero :dividend 3)
;; Debugger:
;;
;; You were going to divide 3 by zero.
;; [Condition of type MY-DIVISION-BY-ZERO]

Inspecting the stacktrace

That’s another quick reminder, not a Slime tutorial. In the debugger, you can
inspect the stacktrace, the arguments to the function calls, go to the
erroneous source line (with v in Slime), execute code in the context (e), etc.

Often, you can edit a buggy function, compile it (with the C-c C-c shortcut
in Slime), choose the “RETRY” restart and see your code pass.

All this depends on compiler options, wether it is optimized for debugging,
speed or security.

See our debugging section.

Restarts, interactive choices in the debugger

Restarts are the choices we get in the debugger, which always has the RETRY
and ABORT ones.

By handling restarts we can start over the operation as if the error didn’t
occur (as seen in the stack).

Using assert’s optional restart

In its simple form assert does what we know:

When the assertion fails, we are prompted into the debugger:

(assert (realp 3))
;; NIL = passed

(defun divide (x y)
 (assert (not (zerop y)))
 (/ x y))

(divide 3 0)
;; The assertion (NOT #1=(ZEROP Y)) failed with #1# = T.
;; [Condition of type SIMPLE-ERROR]

It also accepts an optional parameter to offer to change values:

Now we get a new restart that offers to change the value of Y:

and when we choose it, we are prompted for a new value in the REPL:

The old value of Y is 0.
Do you want to supply a new value? (y or n) y

Type a form to be evaluated:
2
3/2 ;; and our result.

Defining restarts (restart-case)

All this is good but we might want more custom choices. We can add
restarts on the top of the list by wrapping our function call inside restart-
case.

;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion.
;; 1: [RETRY] Retry SLIME REPL evaluation request.
;; …

(defun divide (x y)
 (assert (not (zerop y))
 (y) ;; list of values that we can change.
 "Y can not be zero. Please change it") ;; custom error
 (/ x y))

(divide 3 0)
;; Y can not be zero. Please change it
;; [Condition of type SIMPLE-ERROR]
;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion with new value for Y. <--- new
;; 1: [RETRY] Retry SLIME REPL evaluation request.
;; …

http://www.lispworks.com/documentation/HyperSpec/Body/m_rst_ca.htm

In case of any error (we’ll improve on that with handler-bind), we’ll get
those two new choices at the top of the debugger:

That’s allright but let’s just write more human-friendy “reports”:

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero () ;; <-- creates a new restart called "RETURN
 0)
 (divide-by-one ()
 (/ x 1))))
(divide-with-restarts 3 0)

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero ()
 :report "Return 0" ;; <-- added
 0)
 (divide-by-one ()
 :report "Divide by 1"
 (/ x 1))))
(divide-with-restarts 3 0)
;; Nicer restarts:
;; 0: [RETURN-ZERO] Return 0
;; 1: [DIVIDE-BY-ONE] Divide by 1

That’s better, but we lack the ability to change an operand, as we did with
the assert example above.

Changing a variable with restarts

The two restarts we defined didn’t ask for a new value. To do this, we add
an :interactive lambda function to the restart, that asks for the user a new
value with the input method of its choice. Here, we’ll use the regular read.

When calling it, we are offered a new restart, we enter a new value, and we
get our result:

(divide-with-restarts 3 0)
;; Debugger:
;;
;; 2: [SET-NEW-DIVISOR] Enter a new divisor

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero ()
 :report "Return 0"
 0)
 (divide-by-one ()
 :report "Divide by 1"
 (/ x 1))
 (set-new-divisor (value)
 :report "Enter a new divisor"
 ;;
 ;; Ask the user for a new value:
 :interactive (lambda () (prompt-new-value "Please enter a
 ;;
 ;; and call the divide function with the new value…
 ;; … possibly catching bad input again!
 (divide-with-restarts x value))))

(defun prompt-new-value (prompt)
 (format *query-io* prompt) ;; *query-io*: the special stream t
 (force-output *query-io*) ;; Ensure the user sees what he typ
 (list (read *query-io*))) ;; We must return a list.

(divide-with-restarts 3 0)

;;
;; Please enter a new divisor: 10
;;
;; 3/10

Oh, you prefer a graphical user interface? We can use the zenity command
line interface on GNU/Linux.

Now try again and you should get a little window asking for a new number:

That’s fun, but that’s not all. Choosing restarts manually is not always (or
often?) satisfactory. And by handling restarts we can start over the operation
as if the error didn’t occur, as seen in the stack.

Calling restarts programmatically (handler-bind, invoke-
restart)

(defun prompt-new-value (prompt)
 (list
 (let ((input
 ;; We capture the program's output to a string.
 (with-output-to-string (s)
 (let* ((*standard-output* s))
 (uiop:run-program `("zenity"
 "--forms"
 ,(format nil "--add-entry=~a"
 :output s)))))
 ;; We get a string and we want a number.
 ;; We could also use parse-integer, the parse-number library
 (read-from-string input))))

We have a piece of code that we know can throw conditions. Here, divide-
with-restarts can signal an error about a division by zero. What we want
to do, is our higher-level code to automatically handle it and call the
appropriate restart.

We can do this with handler-bind and invoke-restart:

Using other restarts (find-restart)

Use find-restart.

find-restart 'name-of-restart will return the most recent bound restart
with the given name, or nil.

Hiding and showing restarts

Restarts can be hidden. In restart-case, in addition to :report and
:interactive, they also accept a :test key:

(defun divide-and-handle-error (x y)
 (handler-bind
 ((division-by-zero (lambda (c)
 (format t "Got error: ~a~%" c) ;; error-message
 (format t "and will divide by 1~&")
 (invoke-restart 'divide-by-one))))
 (divide-with-restarts x y)))

(divide-and-handle-error 3 0)
;; Got error: arithmetic error DIVISION-BY-ZERO signalled
;; Operation was (/ 3 0).
;; and will divide by 1
;; 3

(restart-case
 (return-zero ()
 :test (lambda ()
 (some-test))
 ...

http://www.lispworks.com/documentation/HyperSpec/Body/f_invo_1.htm#invoke-restart
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_r.htm#find-restart

Handling conditions (handler-bind)

We just saw a use for handler-bind.

Its general form is:

If the handler returns normally (it declines to handle the condition), the
condition continues to bubble up, searching for another handler, and it will
find the interactive debugger (when it’s an error, not when it’s a simple
condition).

We can study a real example with the unix-opts library, that parses
command line arguments. It defined some conditions: unknown-option,
missing-arg and arg-parser-failed, and it is up to us to write what to do
in these cases.

Our unknown-option function is simple and looks like this:

it takes the condition as parameter, so we can read information from it if
needed. Here we get the name of the erroneous option with the condition’s
reader (opts:option condition).

Running some code, condition or not (“finally”)
(unwind-protect)

(handler-bind ((a-condition #'function-to-handle-it)
 (another-one #'another-function))
 (code that can...)
 (...error out))

(handler-bind ((opts:unknown-option #'unknown-option)
 (opts:missing-arg #'missing-arg)
 (opts:arg-parser-failed #'arg-parser-failed))
 (opts:get-opts))

(defun unknown-option (condition)
 (format t "~s option is unknown.~%" (opts:option condition))
 (opts:describe)
 (exit)) ;; <-- we return to the command line, no debugger.

http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
https://github.com/mrkkrp/unix-opts

The “finally” part of others try/catch/finally forms is done with unwind-
protect.

It is the construct used in “with-” macros, like with-open-file, which
always closes the file after it.

With this example:

We do get the interactive debugger (we didn’t use handler-bind or anything),
but our message is printed afterwards anyway.

Conclusion

You’re now more than ready to write some code and to dive into other
resources!

Resources

Practical Common Lisp: “Beyond Exception Handling: Conditions and
Restarts” - the go-to tutorial, more explanations and primitives.
Common Lisp Recipes, chap. 12, by E. Weitz
language reference
Video tutorial: introduction on conditions and restarts, by Patrick Stein.
Condition Handling in the Lisp family of languages
z0ltan.wordpress.com (the article this recipe is heavily based upon)

See also

Algebraic effects - You can touch this ! - how to use conditions and
restarts to implement progress reporting and aborting of a long-running
calculation, possibly in an interactive or GUI context.
A tutorial on conditions and restarts, based around computing the roots
of a real function. It was presented by the author at a Bay Area Julia
meetup on may 2019 (talk slides here).

(unwind-protect (/ 3 0)
 (format t "This place is safe.~&"))

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node317.html
http://nklein.com/2011/03/tutorial-introduction-to-conditions-and-restarts/
http://www.nhplace.com/kent/Papers/Condition-Handling-2001.html
https://z0ltan.wordpress.com/2016/08/06/conditions-and-restarts-in-common-lisp/
http://jacek.zlydach.pl/blog/2019-07-24-algebraic-effects-you-can-touch-this.html
https://github.com/stylewarning/lisp-random/blob/master/talks/4may19/root.lisp
https://github.com/stylewarning/talks/blob/master/4may19-julia-meetup/Bay%20Area%20Julia%20Users%20Meetup%20-%204%20May%202019.pdf

lisper.in - example with parsing a csv file and using restarts with
success, in a flight travel company.
https://github.com/svetlyak40wt/python-cl-conditions - implementation
of the CL conditions system in Python.

https://lisper.in/restarts#signaling-validation-errors
https://www.reddit.com/r/lisp/comments/7k85sf/a_tutorial_on_conditions_and_restarts/drceozm/
https://github.com/svetlyak40wt/python-cl-conditions

Packages
See: The Complete Idiot’s Guide to Common Lisp Packages

Creating a package

Here’s an example package definition. It takes a name, and you probably
want to :use the Common Lisp symbols and functions.

To start writing code for this package, go inside it:

This in-package macro puts you “inside” a package:

any new variable or function will be created in this package, aka in the
“namespace” of this package.
you can call all this package’s symbols directly, without using the
package prefix.

Just try!

We can also use in-package to try packages on the REPL. Note that on a
new Lisp REPL session, we are “inside” the CL-USER package. It is a
regular package.

Let’s show you an example. We open a new .lisp file and we create a new
package with a function inside our package:

(defpackage :my-package
 (:use :cl))

(in-package :my-package)

;; in test-package.lisp
(defpackage :my-package
 (:use :cl))

http://www.flownet.com/gat/packages.pdf

This “hello” function lives inside “my-package”. It is not exported yet.

Continue below to see how to call it.

Accessing symbols from a package

As soon as you have defined a package or loaded one (with Quicklisp, or if
it was defined as a dependency in your .asd system definition), you can
access its symbols with package:a-symbol, using a colon as delimiter.

For example:

When the symbol is not exported (it is “private”), use a double colon:

Continuing our example: in the REPL, be sure to be in my-package and not
in CL-USER. There you can call “hello” directly:

But now, come back to the CL-USER package and try to call “hello”: we
get an error.

(in-package :my-package)

(defun hello ()
 (print "Hello from my package."))

(str:concat …)

(package::non-exported-symbol)
(my-package::hello)

CL-USER> (in-package :my-package)
#<PACKAGE "MY-PACKAGE">
;; ^^^ this creates a package object.
MY-PACKAGE> (hello)
;; ^^^^ the REPL shows you the current package.
"Hello from my package."

MY-PACKAGE> (in-package :cl-user)
#<PACKAGE "COMMON-LISP-USER">
CL-USER> (hello)

We have to “namespace” our hello function with its package name:

Let’s export the function.

Exporting symbols

Augment our defpackage declaration to export our “hello” function like so:

Compile this (C-c C-c in Slime), and now you can call

with a single colon.

You can also use the export function:

Observation:

exporting :hello without the sharpsign (#:hello) works too, but it
will always create a new symbol. The #: notation does not create a
new symbol. More precisely: it doesn’t intern a new symbol in our
current package. It is a detail and at this point, a personal preference to

=> you get the interactive debugger that says:

The function COMMON-LISP-USER::HELLO is undefined.

(quit)

CL-USER> (my-package::hello)
"Hello from my package."

(defpackage :my-package
 (:use :cl)
 (:export
 #:hello))

CL-USER> (my-package:hello)

(in-package :my-package)
(export #:hello)

use it or not. It can be helpful to not clutter our symbols namespace,
specially when we import and re-export symbols from other libraries.
That way, our editor’s symbols completion only shows relevant results.
It is not useful for us at this point, don’t worry.

Now we might want to import individual symbols in order to access them
right away, without the package prefix.

Importing symbols from another package

You can import exactly the symbols you need with :import-from:

Now you can call regex-replace from inside my-package, without the
ppcre package prefix. regex-replace is a new symbol inside your package.
It is not exported.

Sometimes, we see (:import-from :ppcre), without an explicit import.
This helps people using ASDF’s package inferred system.

You can also use the import function from outside a package definition:

Importing all symbols

It is a better practice to carefully choose what symbols you import from
another package (read below), but we can also import all symbols at once
with :use:

Now you can access all variables, functions and macros of cl-ppcre from
your my-package package.

(defpackage :my-package
 (:import-from :ppcre #:regex-replace)
 (:use :cl))

CL-USER> (import 'ppcre:regex-replace)
CL-USER> (regex-replace …)

(defpackage :my-package
 (:use :cl :ppcre))

You can also use the use-package function:

About “use”-ing packages being a bad practice

:use is a well spread idiom. You could do:

and now, all symbols that are exported by cl-ppcre (aka ppcre) are
available to use directly in your package. However, this should be
considered bad practice, unless you use another package of your project
that you control. Indeed, if the external package adds a symbol, it could
conflict with one of yours, or you could add one which will hide the
external symbol and you might not see a warning.

To quote this thorough explanation (a recommended read):

USE is a bad idea in contemporary code except for internal packages
that you fully control, where it is a decent idea until you forget that
you mutate the symbol of some other package while making that brand
new shiny DEFUN. USE is the reason why Alexandria cannot
nowadays even add a new symbol to itself, because it might cause
name collisions with other packages that already have a symbol with
the same name from some external source.

List all Symbols in a Package (do-external-
symbols)

Common Lisp provides some macros to iterate through the symbols of a
package. The two most interesting are: DO-SYMBOLS and DO-EXTERNAL-
SYMBOLS. DO-SYMBOLS iterates over the symbols accessible in the package
and DO-EXTERNAL-SYMBOLS only iterates over the external symbols (you can
see them as the real package API).

CL-USER> (use-package 'cl-ppcre)

(defpackage :my-package
 (:use :cl :ppcre))

https://gist.github.com/phoe/2b63f33a2a4727a437403eceb7a6b4a3
http://www.lispworks.com/documentation/HyperSpec/Body/m_do_sym.htm

To print all exported symbols of a package named “PACKAGE”, you can
write:

You can also collect all these symbols in a list by writing:

Or you can do it with LOOP.

Package nickname

Package Local Nicknames (PLN)

Sometimes it is handy to give a local name to an imported package to save
some typing, especially when the imported package does not provide nice
global nicknames.

Many implementations (SBCL, CCL, ECL, Clasp, ABCL, ACL, LispWorks
>= 7.2…) support Package Local Nicknames (PLN).

To use a PLN you can simply do the following, for example, if you’d like to
try out a local nickname in an ad-hoc fashion:

You can also set up a PLN in a defpackage form. The effect of PLN is
totally within mypackage i.e. the nickname won’t work in other packages

(do-external-symbols (s (find-package "PACKAGE"))
 (print s))

(let (symbols)
 (do-external-symbols (s (find-package "PACKAGE"))
 (push s symbols))
 symbols)

(loop for s being the external-symbols of (find-package "PACKAGE
 collect s)

(uiop:add-package-local-nickname :a :alexandria)
(a:iota 12) ; (0 1 2 3 4 5 6 7 8 9 10 11)

http://www.lispworks.com/documentation/HyperSpec/Body/06_a.htm

unless defined there too. So, you don’t have to worry about unintended
package name clash in other libraries.

Another facility exists for adding nicknames to packages. The function
RENAME-PACKAGE can be used to replace the name and nicknames of a
package. But it’s use would mean that other libraries may not be able to
access the package using the original name or nicknames. There is rarely
any situation to use this. Use Package Local Nicknames instead.

Nickname Provided by Packages

When defining a package, it is trivial to give it a nickname for better user
experience. But this mechanism is global, a nickname defined here is
visible by all other packages everywhere. If you were thinking in giving a
short name to a package you use often, you can get a conflict with another
package. That’s why package-local nicknames appeared. You should use
them instead.

Here’s an example anyways, from the prove package:

Afterwards, a user may use a nickname instead of the package name to refer
to this package. For example:

(defpackage :mypackage
 (:use :cl)
 (:local-nicknames (:nickname :original-package-name)
 (:alex :alexandria)
 (:re :cl-ppcre)))

(in-package :mypackage)

;; You can use :nickname instead of :original-package-name
(nickname:some-function "a" "b")

(defpackage prove
 (:nicknames :cl-test-more :test-more)
 (:export #:run
 #:is
 #:ok)

http://www.lispworks.com/documentation/HyperSpec/Body/f_rn_pkg.htm

Please note that although Common Lisp allows defining multiple
nicknames for one package, too many nicknames may bring maintenance
complexity to the users. Thus the nicknames shall be meaningful and
straightforward. For example:

Package locks

The package common-lisp and SBCL internal implementation packages are
locked by default, including sb-ext.

In addition, any user-defined package can be declared to be locked so that it
cannot be modified by the user. Attempts to change its symbol table or
redefine functions which its symbols name result in an error.

More detailed information can be obtained from documents of SBCL and
CLisp.

For example, if you try the following code:

You will get the following error (on SBCL):

Lock on package ALEXANDRIA violated when renaming as ALEX while
in package COMMON-LISP-USER.
 [Condition of type PACKAGE-LOCKED-ERROR]
See also:
 SBCL Manual, Package Locks [:node]

Restarts:

(prove:run)
(cl-test-more:is)
(test-more:ok)

(defpackage #:iterate
 (:nicknames #:iter))

(defpackage :cl-ppcre
 (:nicknames :ppcre)

(asdf:load-system :alexandria)
(rename-package :alexandria :alex)

http://www.sbcl.org/manual/#Package-Locks
https://clisp.sourceforge.io/impnotes/pack-lock.html

 0: [CONTINUE] Ignore the package lock.
 1: [IGNORE-ALL] Ignore all package locks in the context of
this operation.
 2: [UNLOCK-PACKAGE] Unlock the package.
 3: [RETRY] Retry SLIME REPL evaluation request.
 4: [*ABORT] Return to SLIME's top level.
 5: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING
{10047A8433}>)

...

If a modification is required anyway, a package named cl-package-lock can
be used to ignore package locks. For example:

See also

Package Local Nicknames in Common Lisp article.

(cl-package-locks:without-package-locks
 (rename-package :alexandria :alex))

https://www.cliki.net/CL-PACKAGE-LOCKS
https://gist.github.com/phoe/2b63f33a2a4727a437403eceb7a6b4a3

Macros
The word macro is used generally in computer science to mean a syntactic
extension to a programming language. (Note: The name comes from the
word “macro-instruction,” which was a useful feature of many second-
generation assembly languages. A macro-instruction looked like a single
instruction, but expanded into a sequence of actual instructions. The basic
idea has since been used many times, notably in the C preprocessor. The
name “macro” is perhaps not ideal, since it connotes nothing relevant to
what it names, but we’re stuck with it.) Although many languages have a
macro facility, none of them are as powerful as Lisp’s. The basic
mechanism of Lisp macros is simple, but has subtle complexities, so
learning your way around it takes a bit of practice.

How Macros Work

A macro is an ordinary piece of Lisp code that operates on another piece of
putative Lisp code, translating it into (a version closer to) executable Lisp.
That may sound a bit complicated, so let’s give a simple example. Suppose
you want a version of setq that sets two variables to the same value. So if
you write

when z=8 then both x and y are set to 11. (I can’t think of any use for this,
but it’s just an example.)

It should be obvious that we can’t define setq2 as a function. If x=50 and
y=-5, this function would receive the values 50, -5, and 11; it would have no
knowledge of what variables were supposed to be set. What we really want
to say is, When you (the Lisp system) see:

then treat it as equivalent to:

(setq2 x y (+ z 3))

(setq2 v1 v2 e)

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

Actually, this isn’t quite right, but it will do for now. A macro allows us to
do precisely this, by specifying a program for transforming the input pattern
(setq2 v1 v2 e) into the output pattern (progn ...).

Quote

Here’s how we could define the setq2 macro:

It takes as parameters two variables and one expression.

Then it returns a piece of code. In Lisp, because code is represented as lists,
we can simply return a list that represents code.

We also use the quote, a special operator (not a function nor a macro, but
one of a few special operators forming the core of Lisp).

Each quoted object evaluates to itself, aka it is returned as is:

(+ 1 2) evaluates to 3 but (quote (+ 1 2)) evaluates to (+ 1 2)
(quote (foo bar baz)) evaluates to (foo bar baz)
' is a shortcut for quote: (quote foo) and 'foo are equvalent - both
evaluate to foo.

So, our macro returns the following bits:

the symbol progn,
a second list, that contains

the symbol setq
the variable v1: note that the variable is not evaluated inside the
macro!
the expression e: it is not evaluated either!

a second list, with v2.

(progn
 (setq v1 e)
 (setq v2 e))

(defmacro setq2 (v1 v2 e)
 (list 'progn (list 'setq v1 e) (list 'setq v2 e)))

We can use it like this:

We can check, v1 and v2 were set to 3.

Macroexpand

We must start writing a macro when we know what code we want to
generate. Once we’ve begun writing one, it becomes very useful to check
effectively what code does the macro generate. The function for that is
macroexpand. It is a function, and we give it some code, as a list (so, we
quote the code snippet we give it):

Yay, our macro expands to the code we wanted!

More interestingly:

We can confirm that our expression e, here (+ z 3), was not evaluated. We
will see how to control the evaluation of arguments with the comma: ,.

Note: Slime tips

With Slime, you can call macroexpand by putting the cursor at the left of
the parenthesis of the s-expr to expand and call the functionM-x slime-
macroexpand-[1,all], or C-c M-m:

(defparameter v1 1)
(defparameter v2 2)
(setq2 v1 v2 3)
;; 3

(macroexpand '(setq2 v1 v2 3))
;; (PROGN (SETQ V1 3) (SETQ V2 3))
;; T

(macroexpand '(setq2 v1 v2 (+ z 3)))
;; (PROGN (SETQ V1 (+ z 3)) (SETQ V2 (+ z 3)))
;; T

Another tip: on a macro name, type C-c C-w m (or M-x slime-who-
macroexpands) to get a new buffer with all the places where the macro was
expanded. Then type the usual C-c C-k (slime-compile-and-load-file)
to recompile all of them.

Macros VS functions

Our macro is very close to the following function definition:

If we evaluated (setq2-function 'x 'y '(+ z 3)) (note that each
argument is quoted, so it isn’t evaluated when we call the function), we
would get

This is a perfectly ordinary Lisp computation, whose sole point of interest is
that its output is a piece of executable Lisp code. What defmacro does is
create this function implicitly and make sure that whenever an expression of
the form (setq2 x y (+ z 3)) is seen, setq2-function is called with the
pieces of the form as arguments, namely x, y, and (+ z 3). The resulting
piece of code then replaces the call to setq2, and execution resumes as if
the new piece of code had occurred in the first place. The macro form is
said to expand into the new piece of code.

Evaluation context

This is all there is to it, except, of course, for the myriad subtle
consequences. The main consequence is that run time for the setq2 macro
is compile time for its context. That is, suppose the Lisp system is compiling
a function, and midway through it finds the expression (setq2 x y (+ z

[|](setq2 v1 v2 3)
;^ cursor
; C-c M-m
; =>
; (PROGN (SETQ V1 3) (SETQ V2 3))

(defun setq2-function (v1 v2 e)
 (list 'progn (list 'setq v1 e) (list 'setq v2 e)))

(progn (setq x (+ z 3)) (setq y (+ z 3)))

3)). The job of the compiler is, of course, to translate source code into
something executable, such as machine language or perhaps byte code.
Hence it doesn’t execute the source code, but operates on it in various
mysterious ways. However, once the compiler sees the setq2 expression, it
must suddenly switch to executing the body of the setq2 macro. As I said,
this is an ordinary piece of Lisp code, which can in principle do anything
any other piece of Lisp code can do. That means that when the compiler is
running, the entire Lisp (run-time) system must be present.

We’ll stress this once more: at compile-time, you have the full language at
your disposal.

Novices often make the following sort of mistake. Suppose that the setq2
macro needs to do some complex transformation on its e argument before
plugging it into the result. Suppose this transformation can be written as a
Lisp procedure some-computation. The novice will often write:

The mistake is to suppose that once a macro is called, the Lisp system
enters a “macro world,” so naturally everything in that world must be
defined using defmacro. This is the wrong picture. The right picture is that
defmacro enables a step into the ordinary Lisp world, but in which the
principal object of manipulation is Lisp code. Once that step is taken, one
uses ordinary Lisp function definitions:

One possible explanation for this mistake may be that in other languages,
such as C, invoking a preprocessor macro does get you into a different

(defmacro setq2 (v1 v2 e)
 (let ((e1 (some-computation e)))
 (list 'progn (list 'setq v1 e1) (list 'setq v2 e1))))

(defmacro some-computation (exp) ...) ;; _Wrong!_

(defmacro setq2 (v1 v2 e)
 (let ((e1 (some-computation e)))
 (list 'progn (list 'setq v1 e1) (list 'setq v2 e1))))

(defun some-computation (exp) ...) ;; _Right!_

world; you can’t run an arbitrary C program. It might be worth pausing to
think about what it might mean to be able to.

Another subtle consequence is that we must spell out how the arguments to
the macro get distributed to the hypothetical behind-the-scenes function
(called setq2-function in my example). In most cases, it is easy to do so:
In defining a macro, we use all the usual lambda-list syntax, such as
&optional, &rest, &key, but what gets bound to the formal parameters are
pieces of the macro form, not their values (which are mostly unknown, this
being compile time for the macro form). So if we defined a macro thus:

then

if we call it with (foo a), the parameters’ values are: x=a, y=nil,
cxt=null.
calling (foo (+ a 1) (- y 1)) gives: x=(+ a 1), y=(- y 1),
cxt=null.
and (foo a b :cxt (zap zip)) gives: x=a, y=b, cxt=(zap zip).

Note that the values of the variables are the actual expressions (+ a 1) and
(zap zip). There is no requirement that these expressions’ values be
known, or even that they have values. The macro can do anything it likes
with them. For instance, here’s an even more useless variant of setq:
(setq-reversible e1 e2 d) behaves like (setq e1 e2) if d=:normal, and
behaves like (setq e2 e1) if d=:backward. It could be defined thus:

Here’s how it expands:

(defmacro foo (x &optional y &key (cxt 'null)) ...)

(defmacro setq-reversible (e1 e2 direction)
 (case direction
 (:normal (list 'setq e1 e2))
 (:backward (list 'setq e2 e1))
 (t (error "Unknown direction: ~a" direction))))

(macroexpand '(setq-reversible x y :normal))
(SETQ X Y)
T

And with a wrong direction:

We get an error and are prompted into the debugger!

We’ll see the backquote and comma mechanism in the next section, but
here’s a fix:

Now when we call (setq-reversible v1 v2 :other-way-around) we
still get the error and the debugger, but at least not when using
macroexpand.

Backquote and comma

Before taking another step, we need to introduce a piece of Lisp notation
that is indispensable to defining macros, even though technically it is quite
independent of macros. This is the backquote facility. As we saw above, the
main job of a macro, when all is said and done, is to define a piece of Lisp
code, and that means evaluating expressions such as (list 'prog (list
'setq ...) ...). As these expressions grow in complexity, it becomes
hard to read them and write them. What we find ourselves wanting is a
notation that provides the skeleton of an expression, with some of the pieces

(macroexpand '(setq-reversible x y :backward))
(SETQ Y X)
T

(macroexpand '(setq-reversible x y :other-way-around))

(defmacro setq-reversible (v1 v2 direction)
 (case direction
 (:normal (list 'setq v1 v2))
 (:backward (list 'setq v2 v1))
 (t `(error "Unknown direction: ~a" ,direction))))
 ;; ^^ backquote ^^ comma: get the value i

(macroexpand '(SETQ-REVERSIBLE v1 v2 :other-way-around))

;; (ERROR "Unknown direction: ~a" :OTHER-WAY-AROUND)
;; T

filled in with new expressions. That’s what backquote provides. Instead of
the list expression given above, one writes

The backquote (`) character signals that in the expression that follows,
every subexpression not preceded by a comma is to be quoted, and every
subexpression preceded by a comma is to be evaluated.

You can think of it, and use it, as data interpolation:

That’s mostly all there is to backquote. There are just two extra items to
point out.

Comma-splice ,@

First, if you write “,@e” instead of “,e” then the value of e is spliced (or
“joined”, “combined”, “interleaved”) into the result. So if v equals (oh
boy), then

evaluates to

The second occurrence of v is replaced by its value. The first is replaced by
the elements of its value. If v had had value (), it would have disappeared
entirely: the value of (zap ,@v ,v) would have been (zap ()), which is
the same as (zap nil).

Quote-comma ’,

 `(progn (setq ,v1 ,e) (setq ,v2 ,e))
;;^ backquote ^ ^ ^ ^ commas

`(v1 = ,v1) ;; => (V1 = 3)

`(zap ,@v ,v)

(zap oh boy (oh boy))
;; ^^^^^ elements of v (two elements), spliced.
;; ^^ v itself (a list)

When we are inside a backquote context and we want to print an expression
literally, we have no choice but to use the combination of quote and
comma:

See by yourself:

Nested backquotes

Second, one might wonder what happens if a backquote expression occurs
inside another backquote. The answer is that the backquote becomes
essentially unreadable and unwriteable; using nested backquote is usually a
tedious debugging exercise. The reason, in my not-so-humble opinion, is
that backquote is defined wrong. A comma pairs up with the innermost
backquote when the default should be that it pairs up with the outermost.

(defmacro explain-exp (exp)
 `(format t "~S = ~S" ',exp ,exp))
 ;; ^^

(explain-exp (+ 2 3))
;; (+ 2 3) = 5

;; Defmacro with no quote at all:
(defmacro explain-exp (exp)
 (format t "~a = ~a" exp exp))
(explain-exp v1)
;; V1 = V1

;; OK, with a backquote and a comma to get the value of exp:
(defmacro explain-exp (exp)
 ;; WRONG example
 `(format t "~a = ~a" exp ,exp))
(explain-exp v1)
;; => error: The variable EXP is unbound.

;; We then must use quote-comma:
(defmacro explain-exp (exp)
 `(format t "~a = ~a" ',exp ,exp))
(explain-exp (+ 1 2))
;; (+ 1 2) = 3

But this is not the place for a rant; consult your favorite Lisp reference for
the exact behavior of nested backquote plus some examples.

Building lists with backquote

One problem with backquote is that once you learn it you tend to use for
every list-building occasion. For instance, you might write

which yields ((a) 15 15) when some-list = (a 6 15). The problem is
that mapcan destructively alters the results returned by the lambda-
expression. Can we be sure that the lists returned by that expression are
“fresh,” that is, they are different (in the eq sense) from the structures
returned on other calls of that lambda expression? In the present case, close
analysis will show that they must be fresh, but in general backquote is not
obligated to return a fresh list every time (whether it does or not is
implementation-dependent). If the example above got changed to

then backquote may well treat (low) as if it were '(low); the list will be
allocated at load time, and every time the lambda is evaluated, that same
chunk of storage will be returned. So if we evaluate the expression with
some-list = (a 6 15), we will get ((a) low 15 15), but as a side effect
the constant (low) will get clobbered to become (low 15 15). If we then
evaluate the expression with, say, some-list = (8 oops), the result will be
(low 15 15 (oops)), and now the “constant” that started off as '(low)
will be (low 15 15 (oops)). (Note: The bug exemplified here takes other
forms, and has often bit newbies - as well as experienced programmers - in

(mapcan (lambda (x)
 (cond ((symbolp x) `((,x)))
 ((> x 10) `(,x ,x))
 (t '())))
 some-list)

(mapcan (lambda (x)
 (cond ((symbolp x) `((,x)))
 ((> x 10) `(,x ,x))
 ((>= x 0) `(low))
 (t '())))
 some-list)

http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_lambda.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_f.htm#fresh
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

the ass. The general form is that a constant list is produced as the value of
something that is later destructively altered. The first line of defense against
this bug is never to destructively alter any list. For newbies, this is also the
last line of defense. For those of us who imagine we’re more sophisticated,
the next line of defense is to think very carefully any time you use nconc or
mapcan).

To fix the bug, you can write (map 'list ...) instead of mapcan.
However, if you are determined to use mapcan, write the expression this
way:

My personal preference is to use backquote only to build S-expressions, that
is, hierarchical expressions that consist of symbols, numbers, and strings,
and that are not conceptualized as changing in length. For instance, I would
never write

If sk is being used as a stack, that is, it’s going to be popped in the normal
course of things, I would write (push x sk). If not, I would write (setq sk
(cons x sk)).

Getting Macros Right

I said in the first section that my definition of setq2 wasn’t quite right, and
now it’s time to fix it.

Suppose we write (setq2 x y (+ x 2)), when x=8. Then according to the
definition given above, this form will expand into

(mapcan (lambda (x)
 (cond ((symbolp x) (list `(,x)))
 ((> x 10) (list x x))
 ((>= x 0) (list 'low))
 (t '())))
 some-list)

(setq sk `(,x ,@sk))

(progn
 (setq x (+ x 2))

http://www.lispworks.com/documentation/HyperSpec/Body/f_nconc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pop.htm

so that x will have value 10 and y will have value 12. Indeed, here’s its
macroexpansion:

Chances are that isn’t what the macro is expected to do (although you never
know). Another problematic case is (setq2 x y (pop l)), which causes l
to be popped twice; again, probably not right.

The solution is to evaluate the expression e just once, save it in a temporary
variable, and then set v1 and v2 to it.

Gensym

To make temporary variables, we use the gensym function, which returns a
fresh variable guaranteed to appear nowhere else. Here is what the macro
should look like:

Now (setq2 x y (+ x 2)) expands to

Here gensym has returned the symbol #:g2003, which prints in this funny
way because it won’t be recognized by the reader. (Nor is there any need for
the reader to recognize it, since it exists only long enough for the code that
contains it to be compiled.)

Exercise: Verify that this new version works correctly for the case (setq2 x
y (pop l1)).

 (setq y (+ x 2)))

(macroexpand '(setq2 x y (+ x 2)))
;;(PROGN (SETQ X (+ X 2)) (SETQ Y (+ X 2)))

(defmacro setq2 (v1 v2 e)
 (let ((tempvar (gensym)))
 `(let ((,tempvar ,e))
 (progn (setq ,v1 ,tempvar)
 (setq ,v2 ,tempvar)))))

(let ((#:g2003 (+ x 2)))
 (progn (setq x #:g2003) (setq y #:g2003)))

Exercise: Try writing the new version of the macro without using
backquote. If you can’t do it, you have done the exercise correctly, and
learned what backquote is for!

The moral of this section is to think carefully about which expressions in a
macro get evaluated and when. Be on the lookout for situations where the
same expression gets plugged into the output twice (as e was in my original
macro design). For complex macros, watch out for cases where the order
that expressions are evaluated differs from the order in which they are
written. This is sure to trip up some user of the macro - even if you are the
only user.

What Macros are For

Macros are for making syntactic extensions to Lisp. One often hears it said
that macros are a bad idea, that users can’t be trusted with them, and so
forth. Balderdash. It is just as reasonable to extend a language syntactically
as to extend it by defining your own procedures. It may be true that the
casual reader of your code can’t understand the code without seeing the
macro definitions, but then the casual reader can’t understand it without
seeing function definitions either. Having defmethods strewn around
several files contributes far more to unclarity than macros ever have, but
that’s a different diatribe.

Before surveying what sorts of syntactic extensions I have found useful, let
me point out what sorts of syntactic extensions are generally not useful, or
best accomplished using means other than macros. Some novices think
macros are useful for open-coding functions. So, instead of defining

they might define

So that (sqone (* z 13)) might expand into

(defun sqone (x)
 (let ((y (+ x 1))) (* y y)))

(defmacro sqone (x)
 `(let ((y (+ ,x 1))) (* y y)))

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

This is correct, but a waste of effort. For one thing, the amount of time
saved is almost certainly negligible. If it’s really important that sqone be
expanded inline, one can put (declaim (inline sqone)) before sqone is
defined (although the compiler is not obligated to honor this declaration).
For another, once sqone is defined as a macro, it becomes impossible to
write (mapcar #'sqone ll), or to do anything else with it except call it.

But macros have a thousand and one legitimate uses. Why write (lambda
(x) ...) when you can write (\\ (x) ...)? Just define \\ as a macro:
(defmacro \ (&rest list) `(lambda ,@list)).

Many people find mapcar and mapcan a bit too obscure, especially when
used with large lambda expressions. Rather than write something like

we might prefer to write

This macro might be defined thus:

(let ((y (+ (* z 13) 1)))
 (* y y))

(mapcar (lambda (x)
 (let ((y (hairy-fun1 x))
 (z (hairy-fun2 x)))
 (dolist (y1 y)
 (dolist (z1 z)
 ... and further meaningless
 space-filling nonsense...
))))
 list)

(for (x :in list)
 (let ((y (hairy-fun1 x))
 (z (hairy-fun2 x)))
 (dolist (y1 y)
 (dolist (z1 z)
 ... and further meaningless
 space-filling nonsense...
))))

(This is a simplified version of a macro by Chris Riesbeck.)

It’s worth stopping for a second to discuss the role the keyword :in plays in
this macro. It serves as a sort of “local syntax marker,” in that it has no
meaning as far as Lisp is concerned, but does serve as a syntactic guidepost
for the macro itself. I will refer to these markers as guide symbols. (Here its
job may seem trivial, but if we generalized the for macro to allow multiple
list arguments and an implicit progn in the body the :ins would be crucial
in telling us where the arguments stopped and the body began.)

It is not strictly necessary for the guide symbols of a macro to be in the
keyword package, but it is a good idea, for two reasons. First, they highlight
to the reader that something idiosyncratic is going on. A form like (for ((x
in (foobar a b 'oof))) (something-hairy x (list x))) looks a bit
wrong already, because of the double parentheses before the x. But using
“:in” makes it more obvious.

Second, notice that I wrote (eq (second listspec) ':in) in the macro
definition to check for the presence of the guide symbol. If I had used in
instead, I would have had to think about which package my in lives in and
which package the macro user’s in lives in. One way to avoid trouble
would be to write

(defmacro for (listspec exp)
 ;; ^^ listspec = (x :in list), a list of length 3.
 ;; ^^ exp = the rest of the code.
 (cond
 ((and (= (length listspec) 3)
 (symbolp (first listspec))
 (eq (second listspec) ':in))
 `(mapcar (lambda (,(first listspec))
 ,exp)
 ,(third listspec)))
 (t (error "Ill-formed for spec: ~A" listspec)))))

(and (symbolp (second listspec))
 (eq (intern (symbol-name (second listspec))
 :keyword)
 ':in))

http://www.lispworks.com/documentation/HyperSpec/Body/11_abc.htm

Another would be to write

which neither of which is particularly clear or aesthetic. The keyword
package is there to provide a home for symbols whose home is not per se
relevant to anything; you might as well use it. (Note: In ANSI Lisp, I could
have written "IN" instead of (symbol-name 'in), but there are Lisp
implementations that do not convert symbols’ names to uppercase. Since I
think the whole uppercase conversion idea is an embarrassing relic, I try to
write code that is portable to those implementations.)

Let’s look at another example, both to illustrate a nice macro, and to
provide an auxiliary function for some of the discussion below. One often
wants to create new symbols in Lisp, and gensym is not always adequate for
building them. Here is a description of an alternative facility called build-
symbol:

(build-symbol [(:package p)] -pieces-) builds a symbol by
concatenating the given pieces and interns it as specified by p. For
each element of pieces, if it is a …

… string: The string is added to the new symbol’s name.
… symbol: The name of the symbol is added to the new symbol’s
name.
… expression of the form (:< e): e should evaluate to a string,
symbol, or number; the characters of the value of e (as printed by
princ) are concatenated into the new symbol’s name.
… expression of the form (:++ p): p should be a place
expression (i.e., appropriate as the first argument to setf), whose
value is an integer; the value is incremented by 1, and the new
value is concatenated into the new symbol’s name.

If the :package specification is omitted, it defaults to the value of
package. If p is nil, the symbol is interned nowhere. Otherwise, it

(and (symbolp (second listspec))
 (string= (symbol-name (second listspec)) (symbol-name 'in))

should evaluate to a package designator (usually, a keyword whose
name is the same of a package).

For example, (build-symbol (:< x) "-" (:++ *x-num*)), when x = foo
and *x-num* = 8, sets *x-num* to 9 and evaluates to FOO-9. If evaluated
again, the result will be FOO-10, and so forth.

Obviously, build-symbol can’t be implemented as a function; it has to be a
macro. Here is an implementation:

(defmacro build-symbol (&rest list)
 (let ((p (find-if (lambda (x)
 (and (consp x)
 (eq (car x) ':package)))
 list)))
 (when p
 (setq list (remove p list)))
 (let ((pkg (cond ((eq (second p) 'nil)
 nil)
 (t `(find-package ',(second p))))))
 (cond (p
 (cond (pkg
 `(values (intern ,(symstuff list) ,pkg)))
 (t
 `(make-symbol ,(symstuff list)))))
 (t
 `(values (intern ,(symstuff list))))))))

(defun symstuff (list)
 `(concatenate 'string
 ,@(for (x :in list)
 (cond ((stringp x)
 `',x)
 ((atom x)
 `',(format nil "~a" x))
 ((eq (car x) ':<)
 `(format nil "~a" ,(second x)))
 ((eq (car x) ':++)
 `(format nil "~a" (incf ,(second x))))
 (t
 `(format nil "~a" ,x))))))

(Another approach would be have symstuff return a single call of the form
(format nil format-string -forms-), where the forms are derived from
the pieces, and the format-string consists of interleaved ~a’s and strings.)

Sometimes a macro is needed only temporarily, as a sort of syntactic
scaffolding. Suppose you need to define 12 functions, but they fall into 3
stereotyped groups of 4:

Where the omitted pieces are the same in all similarly named functions.
(That is, the “…” in zep-deactivate is the same code as the “…” in zip-
deactivate, and so forth.) Here, for the sake of concreteness, if not
plausibility, zip, zap, and zep are behaving like odd little data structures.
The functions could be rather large, and it would get tedious keeping them
all in sync as they are debugged. An alternative would be to use a macro:

(defun make-a-zip (y z)
 (vector 2 'zip y z))
(defun test-whether-zip (x)
 (and (vectorp x) (eq (aref x 1) 'zip)))
(defun zip-copy (x) ...)
(defun zip-deactivate (x) ...)

(defun make-a-zap (u v w)
 (vector 3 'zap u v w))
(defun test-whether-zap (x) ...)
(defun zap-copy (x) ...)
(defun zap-deactivate (x) ...)

(defun make-a-zep ()
 (vector 0 'zep))
(defun test-whether-zep (x) ...)
(defun zep-copy (x) ...)
(defun zep-deactivate (x) ...)

(defmacro odd-define (name buildargs)
 `(progn (defun ,(build-symbol make-a- (:< name))
 ,buildargs
 (vector ,(length buildargs) ',name ,@buildargs))
 (defun ,(build-symbol test-whether- (:< name)) (x)
 (and (vectorp x) (eq (aref x 1) ',name))

If all the uses of this macro are collected in this one place, it might be
clearer to make it a local macro using macrolet:

Finally, macros are essential for defining “command languages.” A
command is a function with a short name for use by users in interacting
with Lisp’s read-eval-print loop. A short name is useful and possible
because we want it to be easy to type and we don’t care much whether the
name clashes some other command; if two command names clash, we can
change one of them.

As an example, let’s define a little command language for debugging
macros. (You may actually find this useful.) There are just two commands,

 (defun ,(build-symbol (:< name) -copy) (x)
 ...)
 (defun ,(build-symbol (:< name) -deactivate) (x)
 ...))))

(odd-define zip (y z))
(odd-define zap (u v w))
(odd-define zep ())

(macrolet ((odd-define (name buildargs)
 `(progn
 (defun ,(build-symbol make-a- (:< name))
 ,buildargs
 (vector ,(length buildargs)
 ',name
 ,@buildargs))
 (defun ,(build-symbol test-whether- (:< name))
 (x)
 (and (vectorp x) (eq (aref x 1) ',name))
 (defun ,(build-symbol (:< name) -copy) (x)
 ...)
 (defun ,(build-symbol (:< name) -deactivate) (
 ...)))))
(odd-define zip (y z))
(odd-define zap (u v w))
(odd-define zep ()))

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm

ex and fi. They keep track of a “current form,” the thing to be macro-
expanded or the result of such an expansion:

1. (ex [form]): Apply macroexpand-1 to form (if supplied) or the
current form, and make the result the current form. Then pretty-print
the current form.

2. (fi s [k]): Find the k’th subexpression of the current form whose
car is s. (k defaults to 0.) Make that subexpression the current form
and pretty-print it.

Suppose you’re trying to debug a macro hair-squared that expands into
something complex containing a subform that is itself a macro form
beginning with the symbol odd-define. You suspect there is a bug in the
subform. You might issue the following commands:

Once again, it is clear that ex and fi cannot be functions, although they
could easily be made into functions if we were willing to type a quote
before their arguments. But using “quote” often seems inappropriate in
commands. For one thing, having to type it is a nuisance in a context where
we are trying to save keystrokes, especially if the argument in question is
always quoted. For another, in many cases it just seems inappropriate. If we
had a command that took a symbol as one of its arguments and set it to a
value, it would just be strange to write (command ’x …) instead of
(command x …), because we want to think of the command as a variant of
setq.

Here is how ex and fi might be defined:

(ex (hair-squared ...))
(PROGN (DEFUN ...)
 (ODD-DEFINE ZIP (U V W))
 ...)

(fi odd-define)
(ODD-DEFINE ZIP (U V W))

(ex)
(PROGN (DEFUN MAKE-A-ZIP (U V W) ...)
 ...)

The ex macro expands to a form containing a call to macroexpand-1, a
built-in function that does one step of macro expansion to a form whose car
is the name of a macro. (If given some other form, it returns the form
unchanged.) pprint is a built-in function that pretty-prints its argument.
Because we are using ex and fi at a read-eval-print loop, any value
returned by their expansions will be printed. Here the expansion is executed
for side effect, so we arrange to return no values at all by having the
expansion return (values).

In some Lisp implementations, read-eval-print loops routinely print results
using pprint. In those implementations we could simplify ex and fi by
having them print nothing, but just return the value of *current-form*,
which the read-eval-print loop will then print prettily. Use your judgment.

I leave the definition of find-nth-occurrence as an exercise. You might
also want to define a command that just sets and prints the current form:
(cf e).

One caution: In general, command languages will consist of a mixture of
macros and functions, with convenience for their definer (and usually sole
user) being the main consideration. If a command seems to “want” to

(defvar *current-form*)

(defmacro ex (&optional (form nil form-supplied))
 `(progn
 (pprint (setq *current-form*
 (macroexpand-1
 ,(cond (form-supplied
 `',form)
 (t '*current-form*)))))
 (values)))

(defmacro fi (s &optional (k 0))
 `(progn
 (pprint (setq *current-form*
 (find-nth-occurrence ',s *current-form* ,k)))
 (values)))

evaluate some of its arguments sometimes, you have to decide whether to
define two (or more) versions of it, or just one, a function whose arguments
must be quoted to prevent their being evaluated. For the cf command
mentioned in the previous paragraph, some users might prefer cf to be a
function, some a macro.

See also

A gentle introduction to Compile-Time Computing — Part 1

Safely dealing with scientific units of variables at compile time (a
gentle introduction to Compile-Time Computing — part 3)

The following video, from the series “Little bits of Lisp” by cbaggers,
is a two hours long talk on macros, showing simple to advanced
concepts such as compiler macros: https://www.youtube.com/watch?
v=ygKXeLKhiTI It also shows how to manipulate macros (and their
expansion) in Emacs.

https://medium.com/@MartinCracauer/a-gentle-introduction-to-compile-time-computing-part-1-d4d96099cea0
https://medium.com/@MartinCracauer/a-gentle-introduction-to-compile-time-computing-part-3-scientific-units-8e41d8a727ca
https://www.youtube.com/user/CBaggers/playlists
https://github.com/cbaggers/
https://www.youtube.com/watch?v=ygKXeLKhiTI
https://www.youtube.com/watch?v=ygKXeLKhiTI

the article “Reader macros in Common Lisp”: https://lisper.in/reader-
macros

Fundamentals of CLOS
CLOS is the “Common Lisp Object System”, arguably one of the most
powerful object systems available in any language.

Some of its features include:

it is dynamic, making it a joy to work with in a Lisp REPL. For
example, changing a class definition will update the existing objects,
given certain rules which we have control upon.
it supports multiple dispatch and multiple inheritance,
it is different from most object systems in that class and method
definitions are not tied together,
it has excellent introspection capabilities,
it is provided by a meta-object protocol, which provides a standard
interface to the CLOS, and can be used to create new object systems.

The functionality belonging to this name was added to the Common Lisp
language between the publication of Steele’s first edition of “Common Lisp,
the Language” in 1984 and the formalization of the language as an ANSI
standard ten years later.

This page aims to give a good understanding of how to use CLOS, but only
a brief introduction to the MOP.

To learn the subjects in depth, you will need two books:

Object-Oriented Programming in Common Lisp: a Programmer’s
Guide to CLOS, by Sonya Keene,
the Art of the Metaobject Protocol, by Gregor Kiczales, Jim des
Rivières et al.

But see also

the introduction in Practical Common Lisp (online), by Peter Seibel.
Common Lisp, the Language

http://www.communitypicks.com/r/lisp/s/17592186046723-object-oriented-programming-in-common-lisp-a-programmer
http://www.communitypicks.com/r/lisp/s/17592186045709-the-art-of-the-metaobject-protocol
http://www.gigamonkeys.com/book/object-reorientation-generic-functions.html
https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node260.html#SECTION003200000000000000000

and for reference, the complete CLOS-MOP specifications.

Classes and instances

Diving in

Let’s dive in with an example showing class definition, creation of objects,
slot access, methods specialized for a given class, and inheritance.

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

;; => #<STANDARD-CLASS PERSON>

(defvar p1 (make-instance 'person :name "me"))
;; ^^^^ initarg
;; => #<PERSON {1006234593}>

(name p1)
;;^^^ accessor
;; => "me"

(lisper p1)
;; => nil
;; ^^ initform (slot unbound by default)

(setf (lisper p1) t)

(defclass child (person)
 ())

(defclass child (person)
 ((can-walk-p

https://clos-mop.hexstreamsoft.com/

Defining classes (defclass)

The macro used for defining new data types in CLOS is defclass.

We used it like this:

This gives us a CLOS type (or class) called person and two slots, named
name and lisper.

The general form of defclass is:

(defclass <class-name> (list of super classes)
 ((slot-1
 :slot-option slot-argument)
 (slot-2, etc))
 (:optional-class-option
 :another-optional-class-option))

So, our person class doesn’t explicitly inherit from another class (it gets the
empty parentheses ()). However it still inherits by default from the class t

 :accessor can-walk-p
 :initform t)))
;; #<STANDARD-CLASS CHILD>

(can-walk-p (make-instance 'child))
;; T

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

(class-of p1)
#<STANDARD-CLASS PERSON>

(type-of p1)
PERSON

and from standard-object. See below under “inheritance”.

We could write a minimal class definition without slot options like this:

or even without slot specifiers: (defclass point () ()).

Creating objects (make-instance)

We create instances of a class with make-instance:

It is generally good practice to define a constructor:

This has the direct advantage that you can control the required arguments.
You should now export the constructor from your package and not the class
itself.

Slots

A function that always works (slot-value)

The function to access any slot anytime is (slot-value <object> <slot-
name>).

Given our point class above, which didn’t define any slot accessors:

(defclass point ()
 (x y z))

(defvar p1 (make-instance 'person :name "me"))

(defun make-person (name &key lisper)
 (make-instance 'person :name name :lisper lisper))

(defvar pt (make-instance 'point))

(inspect pt)
The object is a STANDARD-OBJECT of type POINT.
0. X: "unbound"

We got an object of type POINT, but slots are unbound by default: trying
to access them will raise an UNBOUND-SLOT condition:

slot-value is setf-able:

Initial and default values (initarg, initform)

:initarg :foo is the keyword we can pass to make-instance to give
a value to this slot:

(again: slots are unbound by default)

:initform <val> is the default value in case we didn’t specify an
initarg. This form is evaluated each time it’s needed, in the lexical
environment of the defclass.

Sometimes we see the following trick to clearly require a slot:

Getters and setters (accessor, reader, writer)

1. Y: "unbound"
2. Z: "unbound"

(slot-value pt 'x) ;; => condition: the slot is unbound

(setf (slot-value pt 'x) 1)
(slot-value pt 'x) ;; => 1

(make-instance 'person :name "me")

(defclass foo ()
 ((a
 :initarg :a
 :initform (error "you didn't supply an initial value for s
;; #<STANDARD-CLASS FOO>

(make-instance 'foo) ;; => enters the debugger.

:accessor foo: an accessor is both a getter and a setter. Its argument
is a name that will become a generic function.

:reader and :writer do what you expect. Only the :writer is setf-
able.

If you don’t specify any of these, you can still use slot-value.

You can give a slot more than one :accessor, :reader or :initarg.

We introduce two macros to make the access to slots shorter in some
situations:

1- with-slots allows to abbreviate several calls to slot-value. The first
argument is a list of slot names. The second argument evaluates to a CLOS
instance. This is followed by optional declarations and an implicit progn.
Lexically during the evaluation of the body, an access to any of these names
as a variable is equivalent to accessing the corresponding slot of the
instance with slot-value.

or

2- with-accessors is equivalent, but instead of a list of slots it takes a list
of accessor functions. Any reference to the variable inside the macro is
equivalent to a call to the accessor function.

(name p1) ;; => "me"

(type-of #'name)
STANDARD-GENERIC-FUNCTION

(with-slots (name lisper)
 c1
 (format t "got ~a, ~a~&" name lisper))

(with-slots ((n name)
 (l lisper))
 c1
 (format t "got ~a, ~a~&" n l))

Class VS instance slots

:allocation specifies whether this slot is local or shared.

a slot is local by default, that means it can be different for each
instance of the class. In that case :allocation equals :instance.

a shared slot will always be equal for all instances of the class. We set
it with :allocation :class.

In the following example, note how changing the value of the class slot
species of p2 affects all instances of the class (whether or not those
instances exist yet).

(with-accessors ((name name)
 ^^variable ^^accessor
 (lisper lisper))
 p1
 (format t "name: ~a, lisper: ~a" name lisper))

(defclass person ()
 ((name :initarg :name :accessor name)
 (species
 :initform 'homo-sapiens
 :accessor species

 :allocation :class)))

;; Note that the slot "lisper" was removed in existing instances
(inspect p1)
;; The object is a STANDARD-OBJECT of type PERSON.
;; 0. NAME: "me"
;; 1. SPECIES: HOMO-SAPIENS
;; > q

(defvar p2 (make-instance 'person))

(species p1)
(species p2)
;; HOMO-SAPIENS

Slot documentation

Each slot accepts one :documentation option. To obtain its documentation
via documentation, you need to obtain the slot object. This can be done
compatibly using a library such as closer-mop. For instance:

Note however that generally it may be better to document slot accessors
instead, as a popular viewpoint is that slots are implementation details and
not part of the public interface.

Slot type

The :type slot option may not do the job you expect it does. If you are new
to the CLOS, we suggest you skip this section and use your own
constructors to manually check slot types.

(setf (species p2) 'homo-numericus)
;; HOMO-NUMERICUS

(species p1)
;; HOMO-NUMERICUS

(species (make-instance 'person))
;; HOMO-NUMERICUS

(let ((temp (make-instance 'person)))
 (setf (species temp) 'homo-lisper))
;; HOMO-LISPER
(species (make-instance 'person))
;; HOMO-LISPER

(closer-mop:class-direct-slots (find-class 'my-class))
;; => list of slots (objects)
(find 'my-slot * :key #'closer-mop:slot-definition-name)
;; => find desired slot by name
(documentation * t) ; obtain its documentation

https://github.com/pcostanza/closer-mop

Indeed, whether slot types are being checked or not is undefined. See the
Hyperspec.

Few implementations will do it. Clozure CL does it, SBCL does it since its
version 1.5.9 (November, 2019) or when safety is high ((declaim
(optimise safety))).

To do it otherwise, see this Stack-Overflow answer, and see also quid-pro-
quo, a contract programming library.

find-class, class-name, class-of

CLOS classes are also instances of a CLOS class, and we can find out what
that class is, as in the example below:

Note: this is your first introduction to the MOP. You don’t need that to get
started !

The object my-point is an instance of the class named point, and the class
named point is itself an instance of the class named standard-class. We
say that the class named standard-class is the metaclass (i.e. the class of
the class) of my-point. We can make good uses of metaclasses, as we’ll see
later.

(find-class 'point)
;; #<STANDARD-CLASS POINT 275B78DC>

(class-name (find-class 'point))
;; POINT

(class-of my-point)
;; #<STANDARD-CLASS POINT 275B78DC>

(typep my-point (class-of my-point))
;; T

(class-of (class-of my-point))
;; #<STANDARD-CLASS STANDARD-CLASS 20306534>

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm#defclass
https://stackoverflow.com/questions/51723992/how-to-force-slots-type-to-be-checked-during-make-instance
https://github.com/sellout/quid-pro-quo

Subclasses and inheritance

As illustrated above, child is a subclass of person.

All objects inherit from the class standard-object and t.

Every child instance is also an instance of person.

The closer-mop library is the portable way to do CLOS/MOP operations.

A subclass inherits all of its parents’ slots, and it can override any of their
slot options. Common Lisp makes this process dynamic, great for REPL
session, and we can even control parts of it (like, do something when a
given slot is removed/updated/added, etc).

The class precedence list of a child is thus:

child <- person <– standard-object <- t

Which we can get with:

(type-of c1)
;; CHILD

(subtypep (type-of c1) 'person)
;; T

(ql:quickload "closer-mop")
;; ...

(closer-mop:subclassp (class-of c1) 'person)
;; T

(closer-mop:class-precedence-list (class-of c1))
;; (#<standard-class child>
;; #<standard-class person>
;; #<standard-class standard-object>
;; #<sb-pcl::slot-class sb-pcl::slot-object>
;; #<sb-pcl:system-class t>)

https://github.com/pcostanza/closer-mop

However, the direct superclass of a child is only:

We can further inspect our classes with class-direct-[subclasses,
slots, default-initargs] and many more functions.

How slots are combined follows some rules:

:accessor and :reader are combined by the union of accessors and
readers from all the inherited slots.

:initarg: the union of initialization arguments from all the inherited
slots.

:initform: we get the most specific default initial value form, i.e. the
first :initform for that slot in the precedence list.

:allocation is not inherited. It is controlled solely by the class being
defined and defaults to :instance.

Last but not least, be warned that inheritance is fairly easy to misuse, and
multiple inheritance is multiply so, so please take a little care. Ask yourself
whether foo really wants to inherit from bar, or whether instances of foo
want a slot containing a bar. A good general guide is that if foo and bar are
“same sort of thing” then it’s correct to mix them together by inheritance,
but if they’re really separate concepts then you should use slots to keep
them apart.

Multiple inheritance

CLOS supports multiple inheritance.

The first class on the list of parent classes is the most specific one, child’s
slots will take precedence over the person’s. Note that both child and

(closer-mop:class-direct-superclasses (class-of c1))
;; (#<standard-class person>)

(defclass baby (child person)
 ())

person have to be defined prior to defining baby in this example.

Redefining and changing a class

This section briefly covers two topics:

redefinition of an existing class, which you might already have done
by following our code snippets, and what we do naturally during
development, and
changing an instance of one class into an instance of another, a
powerful feature of CLOS that you’ll probably won’t use very often.

We’ll gloss over the details. Suffice it to say that everything’s configurable
by implementing methods exposed by the MOP.

To redefine a class, simply evaluate a new defclass form. This then takes
the place of the old definition, the existing class object is updated, and all
instances of the class (and, recursively, its subclasses) are lazily updated
to reflect the new definition. You don’t have to recompile anything other
than the new defclass, nor to invalidate any of your objects. Think about it
for a second: this is awesome !

For example, with our person class:

Changing, adding, removing slots,…

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

(setf p1 (make-instance 'person :name "me"))

(lisper p1)
;; NIL

(defclass person ()

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform t ;; <-- from nil to t

 :accessor lisper)))

(lisper p1)
;; NIL (of course!)

(lisper (make-instance 'person :name "You"))
;; T

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)
 (age ;; <-- new slot
 :initarg :arg
 :initform 18 ;; <-- default value
 :accessor age)))

(age p1)
;; => 18. Correct. This is the default initform for this new slo

(slot-value p1 'bwarf)
;; => "the slot bwarf is missing from the object #<person…>"

(setf (age p1) 30)
(age p1) ;; => 30

(defclass person ()
 ((name
 :initarg :name
 :accessor name)))

(slot-value p1 'lisper) ;; => slot lisper is missing.
(lisper p1) ;; => there is no applicable method for the generic

To change the class of an instance, use change-class:

In the above example, I became a child, and I inherited the can-walk-p
slot, which is true by default.

Pretty printing

Every time we printed an object so far we got an output like

#<PERSON {1006234593}>

which doesn’t say much.

What if we want to show more information ? Something like

#

Pretty printing is done by specializing the generic print-object method for
this class:

It gives:

(lisper p1) ;; => there is no applicable method for the generic

(change-class p1 'child)
;; we can also set slots of the new class:
(change-class p1 'child :can-walk-p nil)

(class-of p1)
;; #<STANDARD-CLASS CHILD>

(can-walk-p p1)
;; T

(defmethod print-object ((obj person) stream)
 (print-unreadable-object (obj stream :type t)
 (with-accessors ((name name)
 (lisper lisper))
 obj
 (format stream "~a, lisper: ~a" name lisper))))

print-unreadable-object prints the #<...>, that says to the reader that
this object can not be read back in. Its :type t argument asks to print the
object-type prefix, that is, PERSON. Without it, we get #<me, lisper: T>.

We used the with-accessors macro, but of course for simple cases this is
enough:

Caution: trying to access a slot that is not bound by default will lead to an
error. Use slot-boundp.

For reference, the following reproduces the default behaviour:

Here, :identity to t prints the {1006234593} address.

Classes of traditional lisp types

Where we approach that we don’t need CLOS objects to use CLOS.

Generously, the functions introduced in the last section also work on lisp
objects which are not CLOS instances:

p1
;; #<PERSON me, lisper: T>

(defmethod print-object ((obj person) stream)
 (print-unreadable-object (obj stream :type t)
 (format stream "~a, lisper: ~a" (name obj) (lisper obj))))

(defmethod print-object ((obj person) stream)
 (print-unreadable-object (obj stream :type t :identity t)))

(find-class 'symbol)
;; #<BUILT-IN-CLASS SYMBOL>
(class-name *)
;; SYMBOL
(eq ** (class-of 'symbol))
;; T
(class-of ***)
;; #<STANDARD-CLASS BUILT-IN-CLASS>

We see here that symbols are instances of the system class symbol. This is
one of 75 cases in which the language requires a class to exist with the same
name as the corresponding lisp type. Many of these cases are concerned
with CLOS itself (for example, the correspondence between the type
standard-class and the CLOS class of that name) or with the condition
system (which might or might not be built using CLOS classes in any given
implementation). However, 33 correspondences remain relating to
“traditional” lisp types:

array hash-table readtable

bit-vector integer real

broadcast-stream list sequence

character logical-pathname stream

complex null string

concatenated-stream number string-stream

cons package symbol

echo-stream pathname synonym-stream

file-stream random-state t

float ratio two-way-stream

function rational vector

Note that not all “traditional” lisp types are included in this list. (Consider:
atom, fixnum, short-float, and any type not denoted by a symbol.)

The presence of t is interesting. Just as every lisp object is of type t, every
lisp object is also a member of the class named t. This is a simple example
of membership of more then one class at a time, and it brings into question
the issue of inheritance, which we will consider in some detail later.

(find-class t)
;; #<BUILT-IN-CLASS T 20305AEC>

In addition to classes corresponding to lisp types, there is also a CLOS class
for every structure type you define:

The metaclass of a structure-object is the class structure-class. It is
implementation-dependent whether the metaclass of a “traditional” lisp
object is standard-class, structure-class, or built-in-class.
Restrictions:

built-in-class: May not use make-instance, may not use slot-value,
may not use defclass to modify, may not create subclasses.

structure-class: May not use make-instance, might work with slot-
value (implementation-dependent). Use defstruct to subclass application
structure types. Consequences of modifying an existing structure-class
are undefined: full recompilation may be necessary.

standard-class: None of these restrictions.

Introspection

We already saw some introspection functions.

Your best option is to discover the closer-mop library and to keep the CLOS
& MOP specifications at hand.

More functions:

closer-mop:class-default-initargs
closer-mop:class-direct-default-initargs
closer-mop:class-direct-slots
closer-mop:class-direct-subclasses
closer-mop:class-direct-superclasses
closer-mop:class-precedence-list
closer-mop:class-slots

(defstruct foo)
FOO

(class-of (make-foo))
;; #<STRUCTURE-CLASS FOO 21DE8714>

https://github.com/pcostanza/closer-mop
https://clos-mop.hexstreamsoft.com/

closer-mop:classp
closer-mop:extract-lambda-list
closer-mop:extract-specializer-names
closer-mop:generic-function-argument-precedence-order
closer-mop:generic-function-declarations
closer-mop:generic-function-lambda-list
closer-mop:generic-function-method-class
closer-mop:generic-function-method-combination
closer-mop:generic-function-methods
closer-mop:generic-function-name
closer-mop:method-combination
closer-mop:method-function
closer-mop:method-generic-function
closer-mop:method-lambda-list
closer-mop:method-specializers
closer-mop:slot-definition
closer-mop:slot-definition-allocation
closer-mop:slot-definition-initargs
closer-mop:slot-definition-initform
closer-mop:slot-definition-initfunction
closer-mop:slot-definition-location
closer-mop:slot-definition-name
closer-mop:slot-definition-readers
closer-mop:slot-definition-type
closer-mop:slot-definition-writers
closer-mop:specializer-direct-generic-functions
closer-mop:specializer-direct-methods
closer-mop:standard-accessor-method

See also

defclass/std: write shorter classes

The library defclass/std provides a macro to write shorter defclass forms.

By default, it adds an accessor, an initarg and an initform to nil to your
slots definition:

This:

(defclass/std example ()
 ((slot1 slot2 slot3)))

https://github.com/EuAndreh/defclass-std

expands to:

It does much more and it is very flexible, however it is seldom used by the
Common Lisp community: use at your own risk©.

Methods

Diving in

Recalling our person and child classes from the beginning:

Below we create methods, we specialize them, we use method combination
(before, after, around), and qualifiers.

(defclass example ()
 ((slot1
 :accessor slot1
 :initarg :slot1
 :initform nil)
 (slot2
 :accessor slot2
 :initarg :slot2
 :initform nil)
 (slot3
 :accessor slot3
 :initarg :slot3
 :initform nil)))

(defclass person ()
 ((name
 :initarg :name
 :accessor name)))
;; => #<STANDARD-CLASS PERSON>

(defclass child (person)
 ())
;; #<STANDARD-CLASS CHILD>

(setf p1 (make-instance 'person :name "me"))
(setf c1 (make-instance 'child :name "Alice"))

(defmethod greet (obj)
 (format t "Are you a person ? You are a ~a.~&" (type-of obj)))
;; style-warning: Implicitly creating new generic function commo
;; #<STANDARD-METHOD GREET (t) {1008EE4603}>

(greet :anything)
;; Are you a person ? You are a KEYWORD.
;; NIL
(greet p1)
;; Are you a person ? You are a PERSON.

(defgeneric greet (obj)
 (:documentation "say hello"))
;; STYLE-WARNING: redefining COMMON-LISP-USER::GREET in DEFGENER
;; #<STANDARD-GENERIC-FUNCTION GREET (2)>

(defmethod greet ((obj person))
 (format t "Hello ~a !~&" (name obj)))
;; #<STANDARD-METHOD GREET (PERSON) {1007C26743}>

(greet p1) ;; => "Hello me !"

(greet c1) ;; => "Hello Alice !"

(defmethod greet ((obj child))
 (format t "ur so cute~&"))
;; #<STANDARD-METHOD GREET (CHILD) {1008F3C1C3}>

(greet p1) ;; => "Hello me !"
(greet c1) ;; => "ur so cute"

;;
;;; Method combination: before, after, around.
;;

(defmethod greet :before ((obj person))
 (format t "-- before person~&"))
#<STANDARD-METHOD GREET :BEFORE (PERSON) {100C94A013}>

(greet p1)
;; -- before person
;; Hello me

;; e o e

(defmethod greet :before ((obj child))
 (format t "-- before child~&"))
;; #<STANDARD-METHOD GREET :BEFORE (CHILD) {100AD32A43}>
(greet c1)
;; -- before child
;; -- before person
;; ur so cute

(defmethod greet :after ((obj person))
 (format t "-- after person~&"))
;; #<STANDARD-METHOD GREET :AFTER (PERSON) {100CA2E1A3}>
(greet p1)
;; -- before person
;; Hello me
;; -- after person

(defmethod greet :after ((obj child))
 (format t "-- after child~&"))
;; #<STANDARD-METHOD GREET :AFTER (CHILD) {10075B71F3}>
(greet c1)

;; -- before child
;; -- before person
;; ur so cute
;; -- after person
;; -- after child

(defmethod greet :around ((obj child))
 (format t "Hello my dear~&"))
;; #<STANDARD-METHOD GREET :AROUND (CHILD) {10076658E3}>
(greet c1) ;; Hello my dear

;; call-next-method

(defmethod greet :around ((obj child))
 (format t "Hello my dear~&")
 (when (next-method-p)
 (call-next-method)))
;; #<standard-method greet :around (child) {100AF76863}>

(greet c1)
;; Hello my dear
;; -- before child
;; -- before person
;; ur so cute
;; -- after person
;; -- after child

;;;;;;;;;;;;;;;;;
;; Adding in &key
;;;;;;;;;;;;;;;;;

;; In order to add "&key" to our generic method, we need to remo
(fmakunbound 'greet) ;; with Slime: C-c C-u (slime-undefine-fun
(defmethod greet ((obj person) &key talkative)
 (format t "Hello ~a~&" (name obj))
 (when talkative
 (format t "blah")))

(defgeneric greet (obj &key &allow-other-keys)
 (:documentation "say hi"))

(defmethod greet (obj &key &allow-other-keys)
 (format t "Are you a person ? You are a ~a.~&" (type-of obj)))

(defmethod greet ((obj person) &key talkative &allow-other-keys)
 (format t "Hello ~a !~&" (name obj))
 (when talkative
 (format t "blah")))

(greet p1 :talkative t) ;; ok
(greet p1 :foo t) ;; still ok

;;;;;;;;;;;;;;;;;;;;;;;

(defgeneric greet (obj)
 (:documentation "say hello")
 (:method (obj)
 (format t "Are you a person ? You are a ~a~&." (type-of obj)
(:method ((obj person))

Generic functions (defgeneric, defmethod)

A generic function is a lisp function which is associated with a set of
methods and dispatches them when it’s invoked. All the methods with the
same function name belong to the same generic function.

The defmethod form is similar to a defun. It associates a body of code with
a function name, but that body may only be executed if the types of the
arguments match the pattern declared by the lambda list.

 (:method ((obj person))
 (format t "Hello ~a !~&" (name obj)))
 (:method ((obj child))
 (format t "ur so cute~&")))

;;;;;;;;;;;;;;;;
;;; Specializers
;;;;;;;;;;;;;;;;

(defgeneric feed (obj meal-type)
 (:method (obj meal-type)
 (declare (ignorable meal-type))
 (format t "eating~&")))

(defmethod feed (obj (meal-type (eql :dessert)))
 (declare (ignorable meal-type))
 (format t "mmh, dessert !~&"))

(feed c1 :dessert)
;; mmh, dessert !

(defmethod feed ((obj child) (meal-type (eql :soup)))
 (declare (ignorable meal-type))
 (format t "bwark~&"))

(feed p1 :soup)
;; eating
(feed c1 :soup)
;; bwark

They can have optional, keyword and &rest arguments.

The defgeneric form defines the generic function. If we write a defmethod
without a corresponding defgeneric, a generic function is automatically
created (see examples).

It is generally a good idea to write the defgenerics. We can add a default
implementation and even some documentation.

The required parameters in the method’s lambda list may take one of the
following three forms:

1- a simple variable:

This method can take any argument, it is always applicable.

The variable foo is bound to the corresponding argument value, as usual.

2- a variable and a specializer, as in:

In this case, the variable foo is bound to the corresponding argument only if
that argument is of specializer class person or a subclass, like child
(indeed, a “child” is also a “person”).

If any argument fails to match its specializer then the method is not
applicable and it cannot be executed with those arguments.We’ll get an
error message like “there is no applicable method for the generic function
xxx when called with arguments yyy”.

(defgeneric greet (obj)
 (:documentation "says hi")
 (:method (obj)
 (format t "Hi")))

(defmethod greet (foo)
 ...)

(defmethod greet ((foo person))
 ...)

Only required parameters can be specialized. We can’t specialize on
optional &key arguments.

3- a variable and an eql specializer

In place of a simple symbol (:soup), the eql specializer can be any lisp
form. It is evaluated at the same time of the defmethod.

You can define any number of methods with the same function name but
with different specializers, as long as the form of the lambda list is
congruent with the shape of the generic function. The system chooses the
most specific applicable method and executes its body. The most specific
method is the one whose specializers are nearest to the head of the class-
precedence-list of the argument (classes on the left of the lambda list are
more specific). A method with specializers is more specific to one without
any.

Notes:

It is an error to define a method with the same function name as an
ordinary function. If you really want to do that, use the shadowing
mechanism.

To add or remove keys or rest arguments to an existing generic
method’s lambda list, you will need to delete its declaration with
fmakunbound (or C-c C-u (slime-undefine-function) with the cursor on
the function in Slime) and start again. Otherwise, you’ll see:

attempt to add the method
 #<STANDARD-METHOD NIL (#<STANDARD-CLASS CHILD>) {1009504233}>
to the generic function
 #<STANDARD-GENERIC-FUNCTION GREET (2)>;
but the method and generic function differ in whether they

(defmethod feed ((obj child) (meal-type (eql :soup)))
 (declare (ignorable meal-type))
 (format t "bwark~&"))

(feed c1 :soup)
;; "bwark"

accept
&REST or &KEY arguments.

Methods can be redefined (exactly as for ordinary functions).

The order in which methods are defined is irrelevant, although any
classes on which they specialize must already exist.

An unspecialized argument is more or less equivalent to being
specialized on the class t. The only difference is that all specialized
arguments are implicitly taken to be “referred to” (in the sense of
declare ignore.)

Each defmethod form generates (and returns) a CLOS instance, of
class standard-method.

An eql specializer won’t work as is with strings. Indeed, strings need
equal or equalp to be compared. But, we can assign our string to a
variable and use the variable both in the eql specializer and for the
function call.

All the methods with the same function name belong to the same
generic function.

All slot accessors and readers defined by defclass are methods. They
can override or be overridden by other methods on the same generic
function.

See more about defmethod on the CLHS.

Multimethods

Multimethods explicitly specialize more than one of the generic function’s
required parameters.

They don’t belong to a particular class. Meaning, we don’t have to decide
on the class that would be best to host this method, as we might have to in
other languages.

http://www.lispworks.com/documentation/lw70/CLHS/Body/m_defmet.htm

Read more on Practical Common Lisp.

Controlling setters (setf-ing methods)

In Lisp, we can define setf counterparts of functions or methods. We might
want this to have more control on how to update an object.

If you know Python, this behaviour is provided by the @property decorator.

Dispatch mechanism and next methods

When a generic function is invoked, the application cannot directly invoke
a method. The dispatch mechanism proceeds as follows:

1. compute the list of applicable methods
2. if no method is applicable then signal an error
3. sort the applicable methods in order of specificity
4. invoke the most specific method.

Our greet generic function has three applicable methods:

(defgeneric hug (a b)
 (:documentation "Hug between two persons."))
;; #<STANDARD-GENERIC-FUNCTION HUG (0)>

(defmethod hug ((a person) (b person))
 :person-person-hug)

(defmethod hug ((a person) (b child))
 :person-child-hug)

(defmethod (setf name) (new-val (obj person))
 (if (equalp new-val "james bond")
 (format t "Dude that's not possible.~&")
 (setf (slot-value obj 'name) new-val)))

(setf (name p1) "james bond") ;; -> no rename

http://www.gigamonkeys.com/book/object-reorientation-generic-functions.html#multimethods

During the execution of a method, the remaining applicable methods are
still accessible, via the local function call-next-method. This function has
lexical scope within the body of a method but indefinite extent. It invokes
the next most specific method, and returns whatever value that method
returned. It can be called with either:

no arguments, in which case the next method will receive exactly the
same arguments as this method did, or

explicit arguments, in which case it is required that the sorted set of
methods applicable to the new arguments must be the same as that
computed when the generic function was first called.

For example:

Calling call-next-method when there is no next method signals an error.
You can find out whether a next method exists by calling the local function
next-method-p (which also has has lexical scope and indefinite extent).

Note finally that the body of every method establishes a block with the
same name as the method’s generic function. If you return-from that name
you are exiting the current method, not the call to the enclosing generic
function.

(closer-mop:generic-function-methods #'greet)
(#<STANDARD-METHOD GREET (CHILD) {10098406A3}>
#<STANDARD-METHOD GREET (PERSON) {1009008EC3}>
#<STANDARD-METHOD GREET (T) {1008E6EBB3}>)

(defmethod greet ((obj child))
 (format t "ur so cute~&")
 (when (next-method-p)
 (call-next-method)))
;; STYLE-WARNING: REDEFINING GREET (#<STANDARD-CLASS CHILD>) in
;; #<STANDARD-METHOD GREET (child) {1003D3DB43}>

(greet c1)
;; ur so cute
;; Hello Alice !

Method qualifiers (before, after, around)

In our “Diving in” examples, we saw some use of the :before, :after and
:around qualifiers:

(defmethod foo :before (obj) (...))
(defmethod foo :after (obj) (...))
(defmethod foo :around (obj) (...))

By default, in the standard method combination framework provided by
CLOS, we can only use one of those three qualifiers, and the flow of
control is as follows:

a before-method is called, well, before the applicable primary method.
If they are many before-methods, all are called. The most specific
before-method is called first (child before person).
the most specific applicable primary method (a method without
qualifiers) is called (only one).
all applicable after-methods are called. The most specific one is called
last (after-method of person, then after-method of child).

The generic function returns the value of the primary method. Any
values of the before or after methods are ignored. They are used for their
side effects.

And then we have around-methods. They are wrappers around the core
mechanism we just described. They can be useful to catch return values or
to set up an environment around the primary method (set up a catch, a lock,
timing an execution,…).

If the dispatch mechanism finds an around-method, it calls it and returns its
result. If the around-method has a call-next-method, it calls the next most
applicable around-method. It is only when we reach the primary method
that we start calling the before and after-methods.

Thus, the full dispatch mechanism for generic functions is as follows:

1. compute the applicable methods, and partition them into separate lists
according to their qualifier;

2. if there is no applicable primary method then signal an error;
3. sort each of the lists into order of specificity;
4. execute the most specific :around method and return whatever that

returns;
5. if an :around method invokes call-next-method, execute the next

most specific :around method;

6. if there were no :around methods in the first place, or if an :around
method invokes call-next-method but there are no further :around
methods to call, then proceed as follows:

a. run all the :before methods, in order, ignoring any return values
and not permitting calls to call-next-method or next-method-p;

b. execute the most specific primary method and return whatever
that returns;

c. if a primary method invokes call-next-method, execute the next
most specific primary method;

d. if a primary method invokes call-next-method but there are no
further primary methods to call then signal an error;

e. after the primary method(s) have completed, run all the :after
methods, in reverse order, ignoring any return values and not
permitting calls to call-next-method or next-method-p.

Think of it as an onion, with all the :around methods in the outermost
layer, :before and :after methods in the middle layer, and primary
methods on the inside.

Other method combinations

The default method combination type we just saw is named standard, but
other method combination types are available, and no need to say that you
can define your own.

The built-in types are:

progn + list nconc and max or append min

You notice that these types are named after a lisp operator. Indeed, what
they do is they define a framework that combines the applicable primary
methods inside a call to the lisp operator of that name. For example, using
the progn combination type is equivalent to calling all the primary methods
one after the other:

Here, unlike the standard mechanism, all the primary methods applicable
for a given object are called, the most specific first.

To change the combination type, we set the :method-combination option
of defgeneric and we use it as the methods’ qualifier:

An example with progn:

(progn
 (method-1 args)
 (method-2 args)
 (method-3 args))

(defgeneric foo (obj)
 (:method-combination progn))

(defmethod foo progn ((obj obj))
 (...))

(defgeneric dishes (obj)
 (:method-combination progn)
 (:method progn (obj)
 (format t "- clean and dry.~&"))
 (:method progn ((obj person))
 (format t "- bring a person's dishes~&"))
 (:method progn ((obj child))
 (format t "- bring the baby dishes~&")))
;; #<STANDARD-GENERIC-FUNCTION DISHES (3)>

(dishes c1)

Similarly, using the list type is equivalent to returning the list of the values
of the methods.

Around methods are accepted:

;; - bring the baby dishes
;; - bring a person's dishes
;; - clean and dry.

(greet c1)
;; ur so cute --> only the most applicable method was called.

(list
 (method-1 args)
 (method-2 args)
 (method-3 args))

(defgeneric tidy (obj)
 (:method-combination list)
 (:method list (obj)
 :foo)
 (:method list ((obj person))
 :books)
 (:method list ((obj child))
 :toys))
;; #<STANDARD-GENERIC-FUNCTION TIDY (3)>

(tidy c1)
;; (:toys :books :foo)

(defmethod tidy :around (obj)
 (let ((res (call-next-method)))
 (format t "I'm going to clean up ~a~&" res)
 (when (> (length res)
 1)
 (format t "that's too much !~&"))))

(tidy c1)
;; I'm going to clean up (toys book foo)
;; that's too much !

Note that these operators don’t support before, after and around methods
(indeed, there is no room for them anymore). They do support around
methods, where call-next-method is allowed, but they don’t support
calling call-next-method in the primary methods (it would indeed be
redundant since all primary methods are called, or clunky to not call one).

CLOS allows us to define a new operator as a method combination type, be
it a lisp function, macro or special form. We’ll let you refer to the books if
you feel the need.

Debugging: tracing method combination

It is possible to trace the method combination, but this is implementation
dependent.

In SBCL, we can use (trace foo :methods t). See this post by an SBCL
core developer.

For example, given a generic:

Let’s trace it:

(defgeneric foo (x)
 (:method (x) 3))
(defmethod foo :around ((x fixnum))
 (1+ (call-next-method)))
(defmethod foo ((x integer))
 (* 2 (call-next-method)))
(defmethod foo ((x float))
 (* 3 (call-next-method)))
(defmethod foo :before ((x single-float))
 'single)
(defmethod foo :after ((x double-float))
'double)

(trace foo :methods t)

(foo 2.0d0)
 0: (FOO 2.0d0)
 1: ((SB-PCL::COMBINED-METHOD FOO) 2.0d0)

http://www.xach.com/clhs?q=trace
http://christophe.rhodes.io/notes/blog/posts/2018/sbcl_method_tracing/

Difference between defgeneric and defmethod: redefinition

There is a difference between declaring methods inside a defgeneric body
or by writing multiple defmethods: the two methods handle re-definition of
methods differently. defgeneric will delete methods that are not in its body
anymore.

Below we define a new generic function, using two defmethod that
specialize on person and child:

You can try them with (goodbye (make-instance 'person :name
"you")).

Now, later in your work session, you decide that you don’t need the one
specializing on child any more. You delete its source code. But the
method still exists in the image. You have to programmatically remove the
method, see below.

Had you used defgeneric, all the methods would have been updated, added
or deleted. We have defined the tidy generic function already with three
methods:

 2: ((METHOD FOO (FLOAT)) 2.0d0)
 3: ((METHOD FOO (T)) 2.0d0)
 3: (METHOD FOO (T)) returned 3
 2: (METHOD FOO (FLOAT)) returned 9
 2: ((METHOD FOO :AFTER (DOUBLE-FLOAT)) 2.0d0)
 2: (METHOD FOO :AFTER (DOUBLE-FLOAT)) returned DOUBLE
 1: (SB-PCL::COMBINED-METHOD FOO) returned 9
 0: FOO returned 9
9

(defmethod goodbye ((p person))
 (format t "goodbye ~a.~&" (name p)))

(defmethod goodbye ((c child))
 (format t "love you lil' one <3~&"))

(defgeneric tidy (obj)
 (:method-combination list)

It works for any object type, a person or a child. Try it on a string: (tidy
"tidy what?"), it works.

Now remove this declaration from the defgeneric:

Try to call it again: you get a “no applicable method” error:

There is no applicable method for the generic function
 #<STANDARD-GENERIC-FUNCTION TRADESIGNAL::TIDY (2)>
when called with arguments
 ("tidy what?").

This might or might not be important to you during development, but
knowing this can help you keep your lisp image in sync with your source
code. Otherwise, you can remove an old method when it gets on your way.

Removing a method

First, we need to find the method object:

find-method takes as arguments: a function reference, a qualifier (like
before, after or around), and a list of class specializers.

 (:method list (obj)
 :foo)
 (:method list ((obj person))
 :books)
 (:method list ((obj child))
 :toys))

(defgeneric tidy (obj)
 (:method-combination list)
 ;;(:method list (obj) ;; <--- commented out
 ;; :foo)
 (:method list ((obj person))
 :books)
 (:method list ((obj child))
 :toys))

(find-method #'goodbye nil (list (find-class 'child)))
;; => #<STANDARD-METHOD GOODBYE (CHILD) {10073EFD73}>

Once you found the method, use remove-method.

You could use (fmakunbound 'goodbye), but this makes all methods
unbound.

MOP

We gather here some examples that make use of the framework provided by
the meta-object protocol, the configurable object system that rules Lisp’s
object system. We touch advanced concepts so, new reader, don’t worry:
you don’t need to understand this section to start using the Common Lisp
Object System.

We won’t explain much about the MOP here, but hopefully sufficiently to
make you see its possibilities or to help you understand how some CL
libraries are built. We invite you to read the books referenced in the
introduction.

Metaclasses

Metaclasses are needed to control the behaviour of other classes.

As announced, we won’t talk much. See also Wikipedia for metaclasses or
CLOS.

The standard metaclass is standard-class:

But we’ll change it to one of our own, so that we’ll be able to count the
creation of instances. This same mechanism could be used to auto
increment the primary key of a database system (this is how the Postmodern
or Mito libraries do), to log the creation of objects, etc.

Our metaclass inherits from standard-class:

(class-of p1) ;; #<STANDARD-CLASS PERSON>

(defclass counted-class (standard-class)
 ((counter :initform 0)))
#<STANDARD CLASS COUNTED CLASS>

https://en.wikipedia.org/wiki/Metaclass
https://en.wikipedia.org/wiki/Common_Lisp_Object_System

The :metaclass class option can appear only once.

Actually you should have gotten a message asking to implement validate-
superclass. So, still with the closer-mop library:

Now we can control the creation of new person instances:

See that an :after qualifier is the safest choice, we let the standard method
run as usual and return a new instance.

The &key is necessary, remember that make-instance is given initargs.

Now testing:

#<STANDARD-CLASS COUNTED-CLASS>

(unintern 'person)
;; this is necessary to change the metaclass of person.
;; or (setf (find-class 'person) nil)
;; https://stackoverflow.com/questions/38811931/how-to-change-cl

(defclass person ()
 ((name
 :initarg :name
 :accessor name))
 (:metaclass counted-class)) ;; <- metaclass
;; #<COUNTED-CLASS PERSON>
;; ^^^ not standard-class anymore.

(defmethod closer-mop:validate-superclass ((class counted-class)
 (superclass standard-
 t)

(defmethod make-instance :after ((class counted-class) &key)
 (incf (slot-value class 'counter)))
;; #<STANDARD-METHOD MAKE-INSTANCE :AFTER (COUNTED-CLASS) {10077

(defvar p3 (make-instance 'person :name "adam"))
#<PERSON {1007A8F5B3}>

It’s working.

Controlling the initialization of instances (initialize-instance)

To further control the creation of object instances, we can specialize the
method initialize-instance. It is called by make-instance, just after a
new instance was created but wasn’t initialized yet with the default initargs
and initforms.

It is recommended (Keene) to create an after method, since creating a
primary method would prevent slots’ initialization.

A typical example would be to validate the initial values. Here we’ll check
that the person’s name is longer than 3 characters:

So this call doesn’t work anymore:

(slot-value p3 'counter)
;; => error. No, our new slot isn't on the person class.
(slot-value (find-class 'person) 'counter)
;; 1

(make-instance 'person :name "eve")
;; #<PERSON {1007AD5773}>
(slot-value (find-class 'person) 'counter)
;; 2

(defmethod initialize-instance :after ((obj person) &key)
;; note the &key in the arglist: ^^^^
 (do something with obj))

(defmethod initialize-instance :after ((obj person) &key)
 (with-slots (name) obj
 (assert (>= (length name) 3))))

(make-instance 'person :name "me")
;; The assertion (>= #1=(LENGTH NAME) 3) failed with #1# = 2.
;; [Condition of type SIMPLE-ERROR]

We are prompted into the interactive debugger and we are given a choice of
restarts (continue, retry, abort).

So while we’re at it, here’s an assertion that uses the debugger features to
offer to change “name”. We give assert a list of places that can be changed
from the debugger:

We get:

The value of name is me. It should be longer than 3 characters.
 [Condition of type SIMPLE-ERROR]

Restarts:
 0: [CONTINUE] Retry assertion with new value for NAME.
 ^^^^^^^^^^^^ our new restart
 1: [RETRY] Retry SLIME REPL evaluation request.
 2: [*ABORT] Return to SLIME's top level.

Another rationale. The CLOS implementation of make-instance is in two
stages: allocate the new object, and then pass it along with all the make-
instance keyword arguments, to the generic function initialize-
instance. Implementors and application writers define :after methods on
initialize-instance, to initialize the slots of the instance. The system-
supplied primary method does this with regard to (a) :initform and
:initarg values supplied with the class was defined and (b) the keywords
passed through from make-instance. Other methods can extend this
behaviour as they see fit. For example, they might accept an additional
keyword which invokes a database access to fill certain slots. The lambda
list for initialize-instance is:

initialize-instance instance &rest initargs &key &allow-other-
keys

(defmethod INITIALIZE-INSTANCE :after ((obj person) &key)
 (with-slots (name) obj
 (assert (>= (length name) 3)
 (name) ;; <-- list of places
 "The value of name is ~a. It should be longer than 3

Controlling the update of instances (update-instance-for-
redefined-class)

Suppose you created a “circle” class, with coordinates and a diameter. Later
on, you decide to replace the diameter by a radius. You want all the existing
objects to be cleverly updated: the radius should have the diameter value,
divided by 2. Use update-instance-for-redefined-class.

Its parameters are:

instance: the object instance that is being updated
added-slots: a list of added slots
discarded-slots: a list of discarded slots
property-list: a plist that captured the slot names and values of all the
discarded-slots with values in the original instance.
initargs: an initialization argument list. &key catches them below.

and it returns an object.

We actually don’t call the method direcly, but we use a :before method:

Here’s how to try it. Start with a circle class:

and create a circle object:

inspect it or check its diameter value.

Now write and compile a new class definition:

(defmethod update-instance-for-redefined-class
 :before ((obj circle) added deleted plist-values &key)
 (format t "plist values: ~a~&" plist-values)
 (let ((diameter (getf plist-values 'diameter)))
 (setf (radius obj) (/ diameter 2))))

(defclass circle ()
 ((diameter :accessor diameter :initform 9)))

(make-instance 'circle)

Nothing happens yet, you don’t see the output of our “plist values” print.

Inspect or describe the object: now it will be updated, and you’ll find the
radius slot.

Existing objects are updated lazily.

See more on the HyperSpec or on the Community Spec.

Controlling the update of instances to new classes (update-
instance-for-different-class)

Now imagine you are working with the circle class, but you realize you
only need a surface kind of objects. You will discard the circle class
altogether, but you want your existing objects to be updated -to this new
class, and compute new slots intelligently. Use update-instance-for-
different-class.

See more on the HyperSpec or on the Community Spec.

And see more in the books!

(defclass circle ()
 ((radius :accessor radius)))

https://www.lispworks.com/documentation/HyperSpec/Body/f_upda_1.htm
https://cl-community-spec.github.io/pages/update_002dinstance_002dfor_002dredefined_002dclass.html
https://www.lispworks.com/documentation/HyperSpec/Body/f_update.htm
https://cl-community-spec.github.io/pages/update_002dinstance_002dfor_002ddifferent_002dclass.html

Type System
Common Lisp has a complete and flexible type system and corresponding
tools to inspect, check and manipulate types. It allows creating custom
types, adding type declarations to variables and functions and thus to get
compile-time warnings and errors.

Values Have Types, Not Variables

Being different from some languages such as C/C++, variables in Lisp are
just placeholders for objects1. When you setf a variable, an object is
“placed” in it. You can place another value to the same variable later, as you
wish.

This implies a fact that in Common Lisp objects have types, while
variables do not. This might be surprising at first if you come from a C/C++
background.

For example:

The function type-of returns the type of the given object. The returned
result is a type-specifier. In this case the first element is the type and the
remaining part is extra information (lower and upper bound) of that type.
You can safely ignore it for now. Also remember that integers in Lisp have
no limit!

Now let’s try to setf the variable:

(defvar *var* 1234)
VAR

(type-of *var*)
(INTEGER 0 4611686018427387903)

http://www.lispworks.com/documentation/lw50/CLHS/Body/m_setf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm
http://www.lispworks.com/documentation/lw51/CLHS/Body/04_bc.htm
http://www.lispworks.com/documentation/lw50/CLHS/Body/m_setf_.htm

You see, type-of returns a different result: simple-array of length 5 with
contents of type character. This is because *var* is evaluated to string
"hello" and the function type-of actually returns the type of object
"hello" instead of variable *var*.

Type Hierarchy

The inheritance relationship of Lisp types consists a type graph and the root
of all types is T. For example:

The function describe shows that the symbol integer is a primitive type-
specifier that has optional information lower bound and upper bound.
Meanwhile, it is a built-in class. But why?

Most common Lisp types are implemented as CLOS classes. Some types
are simply “wrappers” of other types. Each CLOS class maps to a
corresponding type. In Lisp types are referred to indirectly by the use of
type specifiers.

* (setf *var* "hello")
"hello"

* (type-of *var*)
(SIMPLE-ARRAY CHARACTER (5))

* (describe 'integer)
COMMON-LISP:INTEGER
 [symbol]

INTEGER names the built-in-class #<BUILT-IN-CLASS COMMON-LISP:IN
 Class precedence-list: INTEGER, RATIONAL, REAL, NUMBER, T
 Direct superclasses: RATIONAL
 Direct subclasses: FIXNUM, BIGNUM
 No direct slots.

INTEGER names a primitive type-specifier:
 Lambda-list: (&OPTIONAL (SB-KERNEL::LOW '*) (SB-KERNEL::HIGH '

http://www.lispworks.com/documentation/lw70/CLHS/Body/t_smp_ar.htm
http://www.lispworks.com/documentation/lcl50/ics/ics-14.html
http://www.lispworks.com/documentation/lw51/CLHS/Body/f_descri.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/t_intege.htm
http://www.lispworks.com/documentation/lw51/CLHS/Body/04_bc.htm

There are some differences between the function type-of and class-of.
The function type-of returns the type of a given object in type specifier
format while class-of returns the implementation details.

Checking Types

The function typep can be used to check if the first argument is of the given
type specified by the second argument.

The function subtypep can be used to inspect if a type inherits from the
another one. It returns 2 values:

T, T means first argument is sub-type of the second one.
NIL, T means first argument is not sub-type of the second one.
NIL, NIL means “not determined”.

For example:

Sometimes you may want to perform different actions according to the type
of an argument. The macro typecase is your friend:

* (type-of 1234)
(INTEGER 0 4611686018427387903)

* (class-of 1234)
#<BUILT-IN-CLASS COMMON-LISP:FIXNUM>

* (typep 1234 'integer)
T

* (subtypep 'integer 'number)
T
T

* (subtypep 'string 'number)
NIL
T

http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_clas_1.htm
http://www.lispworks.com/documentation/lw51/CLHS/Body/f_typep.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/f_subtpp.htm
http://www.lispworks.com/documentation/lw60/CLHS/Body/m_tpcase.htm

Type Specifier

A type specifier is a form specifying a type. As mentioned above, returning
value of the function type-of and the second argument of typep are both
type specifiers.

As shown above, (type-of 1234) returns (INTEGER 0
4611686018427387903). This kind of type specifiers are called compound
type specifier. It is a list whose head is a symbol indicating the type. The
rest part of it is complementary information.

Here the complementary information of the type vector is its elements type
and size respectively.

The rest part of a compound type specifier can be a *, which means
“anything”. For example, the type specifier (vector number *) denotes a
vector consisting of any number of numbers.

* (defun plus1 (arg)
 (typecase arg
 (integer (+ arg 1))
 (string (concatenate 'string arg "1"))
 (t 'error)))
PLUS1

* (plus1 100)
101 (7 bits, #x65, #o145, #b1100101)

* (plus1 "hello")
"hello1"

* (plus1 'hello)
ERROR

* (typep '#(1 2 3) '(vector number 3))
T

* (typep '#(1 2 3) '(vector number *))
T

The trailing parts can be omitted, the omitted elements are treated as *s:

As you may have guessed, the type specifier above can be shortened as
following:

You may refer to the CLHS page for more information.

Defining New Types

You can use the macro deftype to define a new type-specifier.

Its argument list can be understood as a direct mapping to elements of rest
part of a compound type specifier. They are defined as optional to allow
symbol type specifier.

Its body should be a macro checking whether given argument is of this type
(see defmacro).

We can use member to define enum types, for example:

Now let us define a new data type. The data type should be a array with at
most 10 elements. Also each element should be a number smaller than 10.
See following code for an example:

* (typep '#(1 2 3) '(vector number))
T

* (typep '#(1 2 3) '(vector))
T

* (typep '#(1 2 3) 'vector)
T

(deftype fruit () '(member :apple :orange :pear))

* (defun small-number-array-p (thing)
 (and (arrayp thing)
 (<= (length thing) 10)
 (every #'numberp thing)

http://www.lispworks.com/documentation/lw51/CLHS/Body/04_bc.htm
http://www.lispworks.com/documentation/lw51/CLHS/Body/m_deftp.htm
http://www.lispworks.com/documentation/lw70/CLHS/Body/m_defmac.htm

Run-time type Checking

Common Lisp supports run-time type checking via the macro check-type.
It accepts a place and a type specifier as arguments and signals an type-
error if the contents of place are not of the given type.

 (every (lambda (x) (< x 10)) thing)))

* (deftype small-number-array (&optional type)
 `(and (array ,type 1)
 (satisfies small-number-array-p)))

* (typep '#(1 2 3 4) '(small-number-array number))
T

* (typep '#(1 2 3 4) 'small-number-array)
T

* (typep '#(1 2 3 4 100) 'small-number-array)
NIL

* (small-number-array-p '#(1 2 3 4 5 6 7 8 9 0 1))
NIL

* (defun plus1 (arg)
 (check-type arg number)
 (1+ arg))
PLUS1

* (plus1 1)
2 (2 bits, #x2, #o2, #b10)

* (plus1 "hello")
; Debugger entered on #<SIMPLE-TYPE-ERROR expected-type: NUMBER

The value of ARG is "Hello", which is not of type NUMBER.
 [Condition of type SIMPLE-TYPE-ERROR]
...

http://www.lispworks.com/documentation/HyperSpec/Body/m_check_.htm#check-type
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_p.htm#place
http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm#type-error

Compile-time type checking

You may provide type information for variables, function arguments etc via
proclaim, declaim (at the toplevel) and declare (inside functions and
macros).

However, similar to the :type slot introduced in CLOS section, the effects
of type declarations are undefined in Lisp standard and are implementation
specific. So there is no guarantee that the Lisp compiler will perform
compile-time type checking.

However, it is possible, and SBCL is an implementation that does thorough
type checking.

Let’s recall first that Lisp already warns about simple type warnings. The
following function wrongly wants to concatenate a string and a number.
When we compile it, we get a type warning.

The example is simple, but it already shows a capacity some other
languages don’t have, and it is actually useful during development ;) Now,
we’ll do better.

Declaring the type of variables

Use the macro declaim with a type declaration identifier (other identifiers
are "ftype, inline, notinline, optimize…).

Let’s declare that our global variable *name* is a string. You can type the
following in any order in the REPL:

(defconstant +foo+ 3)
(defun bar ()
 (concatenate 'string "+" +foo+))
; caught WARNING:
; Constant 3 conflicts with its asserted type SEQUENCE.
; See also:
; The SBCL Manual, Node "Handling of Types"

http://www.lispworks.com/documentation/HyperSpec/Body/f_procla.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/m_declai.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/s_declar.htm
clbr://internal.invalid/book/EPUB/text/clos.html
http://www.lispworks.com/documentation/lw71/CLHS/Body/m_declai.htm

Now if we try to set it with a bad type, we get a simple-type-error:

We can do the same with our custom types. Let’s quickly declare the type
list-of-strings:

Now let’s declare that our *all-names* variables is a list of strings:

Composing types

We can compose types. Following the previous example:

Declaring the input and output types of functions

We use again the declaim macro, with ftype (function …) instead of just
type:

(declaim (type (string) *name*))
(defparameter *name* "book")

(setf *name* :me)
Value of :ME in (THE STRING :ME) is :ME, not a STRING.
 [Condition of type SIMPLE-TYPE-ERROR]

(defun list-of-strings-p (list)
 "Return t if LIST is non nil and contains only strings."
 (and (consp list)
 (every #'stringp list)))

(deftype list-of-strings ()
 `(satisfies list-of-strings-p))

(declaim (type (list-of-strings) *all-names*))
;; and with a wrong value:
(defparameter *all-names* "")
;; we get an error, still at compile-time:
Cannot set SYMBOL-VALUE of *ALL-NAMES* to "", not of type
(SATISFIES LIST-OF-STRINGS-P).
 [Condition of type SIMPLE-TYPE-ERROR]

(declaim (type (or null list-of-strings) *all-names*))

With this we get nice type warnings at compile time.

If we change the function to erroneously return a string instead of a fixnum,
we get a warning:

If we use add inside another function, to a place that expects a string, we get
a warning:

If we use add inside another function, and that function declares its
argument types which appear to be incompatible with those of add, we get a
warning:

(declaim (ftype (function (fixnum) fixnum) add))
;; ^^input ^^output [optional]
(defun add (n)
 (+ n 1))

(defun add (n)
 (format nil "~a" (+ n 1)))
; caught WARNING:
; Derived type of ((GET-OUTPUT-STREAM-STRING STREAM)) is
; (VALUES SIMPLE-STRING &OPTIONAL),
; conflicting with the declared function return type
; (VALUES FIXNUM &REST T).

(defun bad-concat (n)
 (concatenate 'string (add n)))
; caught WARNING:
; Derived type of (ADD N) is
; (VALUES FIXNUM &REST T),
; conflicting with its asserted type
; SEQUENCE.

(declaim (ftype (function (string)) bad-arg))
(defun bad-arg (n)
 (add n))
; caught WARNING:
; Derived type of N is
; (VALUES STRING &OPTIONAL),
; conflicting with its asserted type
; FIXNUM.

This all happens indeed at compile time, either in the REPL, either with a
simple C-c C-c in Slime, or when we load a file.

Declaring &key parameters

Use &key (:argument type).

For example:

(declaim (ftype (function (string &key (:n integer))) foo)) (defun foo (bar
&key n) …)

Declaring &rest parameters

This is less evident, you might need a well-placed declare.

In the following, we declare a fruit type and we write a function that uses a
single fruit argument, so compiling placing-order gives us a type warning
as expected:

But in this version, we use &rest parameters, and we don’t have a type
warning anymore:

(deftype fruit () '(member :apple :orange :pear))

(declaim (ftype (function (fruit)) one-order))
(defun one-order (fruit)
 (format t "Ordering ~S~%" fruit))

(defun placing-order ()
 (one-order :bacon))

(declaim (ftype (function (&rest fruit)) place-order))
(defun place-order (&rest selections)
 (dolist (s selections)
 (format t "Ordering ~S~%" s)))

(defun placing-orders ()
 (place-order :orange :apple :bacon)) ;; => no type warning

The declaration is correct, but our compiler doesn’t check it. A well-placed
declare gives us the compile-time warning back:

=>

The value
 :BACON
is not of type
 (MEMBER :PEAR :ORANGE :APPLE)

For portable code, we would add run-time checks with an assert.

Declaring class slots types

A class slot accepts a :type slot option. It is however generally not used to
check the type of the initform. SBCL, starting with version 1.5.9 released
on november 2019, now gives those warnings, meaning that this:

throws a warning at compile time.

Note: see also sanity-clause, a data serialization/contract library to check
slots’ types during make-instance (which is not compile time).

Alternative type checking syntax: defstar, serapeum

The Serapeum library provides a shortcut that looks like this:

(defun place-order (&rest selections)
 (dolist (s selections)
 (declare (type fruit s)) ;; <= declare
 (format t "Ordering ~S~%" s)))

(defun placing-orders ()
 (place-order :orange :apple :bacon))

(defclass foo ()
 ((name :type number :initform "17")))

(-> mod-fixnum+ (fixnum fixnum) fixnum)
(defun mod-fixnum+ (x y) ...)

http://www.sbcl.org/all-news.html#1.5.9
https://github.com/fisxoj/sanity-clause
https://github.com/ruricolist/serapeum/blob/master/REFERENCE.md#types

The Defstar library provides a defun* macro that allows to add the type
declarations into the lambda list. It looks like this:

It also allows:

to declare the return type, either in the function definition or in its
body
to quickly declare variables that are ignored, with the _ placeholder
to add assertions for each arguments
to do the same with defmethod, defparameter, defvar, flet, labels,
let* and lambda.

Limitations

Complex types involving satisfies are not checked inside a function body
by default, only at its boundaries. Even if it does a lot, SBCL doesn’t do as
much as a statically typed language.

Consider this example, where we badly increment an integer with a string:

Compiling this function doesn’t throw a type warning.

However, if we had the problematic line at the function’s boundary we’d get
the warning:

(defun* sum ((a real) (b real))
 (+ a b))

(declaim (ftype (function () string) bad-adder))
(defun bad-adder ()
 (let ((res 10))
 (loop for name in '("alice")
 do (incf res name)) ;; <= bad
 (format nil "finally doing sth with ~a" res)))

(defun bad-adder ()
 (let ((res 10))
 (loop for name in '("alice")
 return (incf res name))))
; in: DEFUN BAD-ADDER

https://github.com/lisp-mirror/defstar

We could also use a the declaration in the loop body to get a compile-time
warning:

What can we conclude? This is yet another reason to decompose your code
into small functions.

See also

the article Static type checking in SBCL, by Martin Cracauer
the article Typed List, a Primer - let’s explore Lisp’s fine-grained type
hierarchy! with a shallow comparison to Haskell.
the Coalton library: an efficient, statically typed functional
programming language that supercharges Common Lisp. It is as an
embedded DSL in Lisp that resembles Haskell or Standard ML, but
lets you seamlessly interoperate with non-statically-typed Lisp code
(and vice versa).
exhaustiveness type checking at compile-time with Serapeum for
enum types and union types (ecase-of, etypecase-of).

1. The term object here has nothing to do with Object-Oriented or so. It
means “any Lisp datum”.↩

; (SB-INT:NAMED-LAMBDA BAD-ADDER
; NIL
; (BLOCK BAD-ADDER
; (LET ((RES 10))
; (LOOP FOR NAME IN *ALL-NAMES* RETURN (INCF RES NAME)
;
; caught WARNING:
; Derived type of ("a hairy form" NIL (SETQ RES (+ NAME RES)))
; (VALUES (OR NULL NUMBER) &OPTIONAL),
; conflicting with the declared function return type
; (VALUES STRING &REST T).

 do (incf res (the string name)))

https://medium.com/@MartinCracauer/static-type-checking-in-the-programmable-programming-language-lisp-79bb79eb068a
https://alhassy.github.io/TypedLisp
https://github.com/coalton-lang/coalton/
https://dev.to/vindarel/compile-time-exhaustiveness-checking-in-common-lisp-with-serapeum-5c5i
https://github.com/ruricolist/serapeum/blob/master/REFERENCE.md#ecase-of-type-x-body-body

TCP/UDP programming with
sockets
This is a short guide to TCP/IP and UDP/IP client/server programming in
Common Lisp using usockets.

TCP/IP

As usual, we will use quicklisp to load usocket.

(ql:quickload “usocket”)

Now we need to create a server. There are 2 primary functions that we need
to call. usocket:socket-listen and usocket:socket-accept.

usocket:socket-listen binds to a port and listens on it. It returns a socket
object. We need to wait with this object until we get a connection that we
accept. That’s where usocket:socket-accept comes in. It’s a blocking call
that returns only when a connection is made. This returns a new socket
object that is specific to that connection. We can then use that connection to
communicate with our client.

So, what were the problems I faced due to my mistakes?

Mistake 1 - My initial understanding was that socket-accept would return
a stream object. NO…. It returns a socket object. In hindsight, its correct
and my own mistake cost me time. So, if you want to write to the socket,
you need to actually get the corresponding stream from this new socket.
The socket object has a stream slot and we need to explicitly use that. And
how does one know that? (describe connection) is your friend!

Mistake 2 - You need to close both the new socket and the server socket.
Again this is pretty obvious but since my initial code was only closing the

https://github.com/usocket/usocket

connection, I kept running into a socket in use problem. Of course one more
option is to reuse the socket when we listen.

Once you get past these mistakes, it’s pretty easy to do the rest. Close the
connections and the server socket and boom you are done!

Now for the client. This part is easy. Just connect to the server port and you
should be able to read from the server. The only silly mistake I made here
was to use read and not read-line. So, I ended up seeing only a “Hello” from
the server. I went for a walk and came back to find the issue and fix it.

So, how do you run this? You need two REPLs, one for the server and one
for the client. Load this file in both REPLs. Create the server in the first
REPL.

(create-server 12321)

Now you are ready to run the client on the second REPL

(defun create-server (port)
 (let* ((socket (usocket:socket-listen "127.0.0.1" port))
 (connection (usocket:socket-accept socket :element-type
 'character)))
 (unwind-protect
 (progn
 (format (usocket:socket-stream connection)
 "Hello World~%")
 (force-output (usocket:socket-stream connection)))
 (progn
 (format t "Closing sockets~%")
 (usocket:socket-close connection)
 (usocket:socket-close socket)))))

(defun create-client (port)
 (usocket:with-client-socket (socket stream "127.0.0.1" port
 :element-type 'character)
 (unwind-protect
 (progn
 (usocket:wait-for-input socket)
 (format t "Input is: ~a~%" (read-line stream)))
 (usocket:socket-close socket))))

(create-client 12321)

Voilà! You should see “Hello World” on the second REPL.

UDP/IP

As a protocol, UDP is connection-less, and therefore there is no concept of
binding and accepting a connection. Instead we only do a socket-connect
but pass a specific set of parameters to make sure that we create an UDP
socket that’s waiting for data on a particular port.

So, what were the problems I faced due to my mistakes? Mistake 1 - Unlike
TCP, you don’t pass host and port to socket-connect. If you do that, then
you are indicating that you want to send a packet. Instead, you pass nil but
you set :local-host and :local-port to the address and port that you
want to receive data on. This part took some time to figure out, because the
documentation didn’t cover it. Instead reading a bit of code from
blackthorn-engine-3d helped a lot.

Also, since UDP is connectionless, anyone can send data to it at any time.
So, we need to know which host/port did we get data from so that we can
respond on it. So we bind multiple values to socket-receive and use those
values to send back data to our peer “client”.

(defun create-server (port buffer)
 (let* ((socket (usocket:socket-connect nil nil
 :protocol :datagram
 :element-type '(unsigned-byte 8)
 :local-host "127.0.0.1"
 :local-port port)))
 (unwind-protect
 (multiple-value-bind (buffer size client receive-port)
 (usocket:socket-receive socket buffer 8)
 (format t "~A~%" buffer)
 (usocket:socket-send socket (reverse buffer) size
 :port receive-port
 :host client))
 (usocket:socket-close socket))))

https://code.google.com/p/blackthorn-engine-3d/source/browse/src/examples/usocket/usocket.lisp

Now for the sender/receiver. This part is pretty easy. Create a socket, send
data on it and receive data back.

So, how do you run this? You need again two REPLs, one for the server and
one for the client. Load this file in both REPLs. Create the server in the first
REPL.

(create-server 12321 (make-array 8 :element-type ’(unsigned-byte 8)))

Now you are ready to run the client on the second REPL

(create-client 12321 (make-array 8 :element-type ’(unsigned-byte 8)))

Voilà! You should see a vector #(1 2 3 4 5 6 7 8) on the first REPL and
#(8 7 6 5 4 3 2 1) on the second one.

Credit

This guide originally comes from shortsightedsid

(defun create-client (port buffer)
 (let ((socket (usocket:socket-connect "127.0.0.1" port
 :protocol :datagram
 :element-type '(unsigned-byte 8))))
 (unwind-protect
 (progn
 (format t "Sending data~%")
 (replace buffer #(1 2 3 4 5 6 7 8))
 (format t "Receiving data~%")
 (usocket:socket-send socket buffer 8)
 (usocket:socket-receive socket buffer 8)
 (format t "~A~%" buffer))
 (usocket:socket-close socket))))

https://gist.github.com/shortsightedsid/71cf34282dfae0dd2528

Interfacing with your OS
The ANSI Common Lisp standard doesn’t mention this topic. (Keep in
mind that it was written at a time where Lisp Machines were at their peak.
On these boxes Lisp was your operating system!) So almost everything that
can be said here depends on your OS and your implementation. There are,
however, some widely used libraries, which either come with your
Common Lisp implementation, or are easily available through Quicklisp.
These include:

ASDF3, which is included with almost all Common Lisp
implementations, includes Utilities for Implementation- and OS-
Portability (UIOP).
osicat
unix-opts or the newer clingon are a command-line argument parsers,
similar to Python’s argparse.

Accessing Environment variables

UIOP comes with a function that’ll allow you to look at Unix/Linux
environment variables on a lot of different CL implementations:

Below is an example implementation, where we can see /feature flags/ used
to run code on specific implementations:

* (uiop:getenv "HOME")
 "/home/edi"

* (defun my-getenv (name &optional default)
 "Obtains the current value of the POSIX environment variable
 (declare (type (or string symbol) name))
 (let ((name (string name)))
 (or #+abcl (ext:getenv name)
 #+ccl (ccl:getenv name)
 #+clisp (ext:getenv name)
 #+cmu (unix:unix-getenv name) ; since CMUCL 20b

#+ecl (si:getenv name)

https://en.wikipedia.org/wiki/Lisp_machine
https://www.quicklisp.org/beta/
https://common-lisp.net/project/asdf/uiop.html
https://common-lisp.net/project/osicat/
http://quickdocs.org/unix-opts/
https://github.com/dnaeon/clingon

You should also note that some of these implementations also provide the
ability to set these variables. These include ECL (si:setenv) and
AllegroCL, LispWorks, and CLISP where you can use the functions from
above together with setf. This feature might be important if you want to
start subprocesses from your Lisp environment.

Also note that the Osicat library has the method (environment-variable
"name"), on POSIX-like systems including Windows. It is also fset-able.

Accessing the command line arguments

Basics

Accessing command line arguments is implementation-specific but it
appears most implementations have a way of getting at them. UIOP with
uiop:command-line-arguments or Roswell as well as external libraries
(see next section) make it portable.

SBCL stores the arguments list in the special variable sb-ext:*posix-
argv*

….

 #+ecl (si:getenv name)
 #+gcl (si:getenv name)
 #+mkcl (mkcl:getenv name)
 #+sbcl (sb-ext:posix-getenv name)
 default)))
MY-GETENV
* (my-getenv "HOME")
"/home/edi"
* (my-getenv "HOM")
NIL
* (my-getenv "HOM" "huh?")
"huh?"

$ sbcl my-command-line-arg

http://www.lispworks.com/documentation/HyperSpec/Body/m_setf_.htm
https://www.common-lisp.net/project/osicat/manual/osicat.html#Environment
https://github.com/roswell/roswell/wiki
http://www.sbcl.org/

More on using this to write standalone Lisp scripts can be found in the
SBCL Manual

LispWorks has system:*line-arguments-list*

Here’s a quick function to return the argument strings list across multiple
implementations:

Now it would be handy to access them in a portable way and to parse them
according to a schema definition.

Parsing command line arguments

We have a look at the Awesome CL list#scripting section and we’ll show
how to use clingon.

Please see our scripting recipe.

Running external programs

uiop has us covered, and is probably included in your Common Lisp
implementation.

Synchronously

* sb-ext:*posix-argv*

("sbcl" "my-command-line-arg")
*

* system:*line-arguments-list*
("/Users/cbrown/Projects/lisptty/tty-lispworks" "-init" "/Users/

(defun my-command-line ()
 (or
 #+SBCL *posix-argv*
 #+LISPWORKS system:*line-arguments-list*))

http://www.sbcl.org/manual/index.html#Command_002dline-arguments
http://www.lispworks.com/
https://github.com/CodyReichert/awesome-cl#scripting
https://github.com/dnaeon/clingon
https://lispcookbook.github.io/cl-cookbook/scripting.html#parsing-command-line-arguments

uiop:run-program either takes a string as argument, denoting the name of
the executable to run, or a list of strings, for the program and its arguments:

or

This will process the program output as specified and return the processing
results when the program and its output processing are complete.

Use :output t to print to standard output.

This function has the following optional arguments:

It will always call a shell (rather than directly executing the command when
possible) if force-shell is specified. Similarly, it will never call a shell if
force-shell is specified to be nil.

Signal a continuable subprocess-error if the process wasn’t successful
(exit-code 0), unless ignore-error-status is specified.

If output is a pathname, a string designating a pathname, or nil (the
default) designating the null device, the file at that path is used as output. If
it’s :interactive, output is inherited from the current process; beware that
this may be different from your *standard-output*, and under slime will

(uiop:run-program "firefox")

(uiop:run-program (list "firefox" "http:url"))

run-program (command &rest keys &key
 ignore-error-status
 (force-shell nil force-shell-suppliedp)
 input
 (if-input-does-not-exist :error)
 output
 (if-output-exists :supersede)
 error-output
 (if-error-output-exists :supersede)
 (element-type *default-stream-element-type*)
 (external-format *utf-8-external-format*)
 allow-other-keys)

https://common-lisp.net/project/asdf/uiop.html#UIOP_002fRUN_002dPROGRAM

be on your *inferior-lisp* buffer. If it’s t, output goes to your current
standard-output stream. Otherwise, output should be a value that is a
suitable first argument to slurp-input-stream (qv.), or a list of such a
value and keyword arguments. In this case, run-program will create a
temporary stream for the program output; the program output, in that
stream, will be processed by a call to slurp-input-stream, using output
as the first argument (or the first element of output, and the rest as
keywords). The primary value resulting from that call (or nil if no call was
needed) will be the first value returned by run-program. E.g., using
:output :string will have it return the entire output stream as a string.
And using :output '(:string :stripped t) will have it return the same
string stripped of any ending newline.

if-output-exists, which is only meaningful if output is a string or a
pathname, can take the values :error, :append, and :supersede (the
default). The meaning of these values and their effect on the case where
output does not exist, is analogous to the if-exists parameter to open
with :direction :output.

error-output is similar to output, except that the resulting value is
returned as the second value of run-program. t designates the *error-
output*. Also :output means redirecting the error output to the output
stream, in which case nil is returned.

if-error-output-exists is similar to if-output-exist, except that it
affects error-output rather than output.

input is similar to output, except that vomit-output-stream is used, no
value is returned, and T designates the *standard-input*.

if-input-does-not-exist, which is only meaningful if input is a string or
a pathname, can take the values :create and :error (the default). The
meaning of these values is analogous to the if-does-not-exist parameter
to open with :direction :input.

element-type and external-format are passed on to your Lisp
implementation, when applicable, for creation of the output stream.

One and only one of the stream slurping or vomiting may or may not
happen in parallel in parallel with the subprocess, depending on options and
implementation, and with priority being given to output processing. Other
streams are completely produced or consumed before or after the
subprocess is spawned, using temporary files.

run-program returns 3 values:

the result of the output slurping if any, or nil
the result of the error-output slurping if any, or nil
either 0 if the subprocess exited with success status, or an indication of
failure via the exit-code of the process

Asynchronously

With uiop:launch-program.

Its signature is the following:

Output (stdout) from the launched program is set using the output
keyword:

If output is a pathname, a string designating a pathname, or nil (the
default) designating the null device, the file at that path is used as
output.

launch-program (command &rest keys &key
 input
 (if-input-does-not-exist :error)
 output
 (if-output-exists :supersede)
 error-output
 (if-error-output-exists :supersede)
 (element-type *default-stream-element-type*)
 (external-format *utf-8-external-format*)
 directory
 #+allegro separate-streams
 &allow-other-keys)

https://common-lisp.net/project/asdf/uiop.html#UIOP_002fLAUNCH_002dPROGRAM

If it’s :interactive, output is inherited from the current process;
beware that this may be different from your *standard-output*, and
under Slime will be on your *inferior-lisp* buffer.
If it’s T, output goes to your current *standard-output* stream.
If it’s :stream, a new stream will be made available that can be
accessed via process-info-output and read from.
Otherwise, output should be a value that the underlying lisp
implementation knows how to handle.

if-output-exists, which is only meaningful if output is a string or a
pathname, can take the values :error, :append, and :supersede (the
default). The meaning of these values and their effect on the case where
output does not exist, is analogous to the if-exists parameter to open
with :DIRECTION :output.

error-output is similar to output. T designates the *error-output*,
:output means redirecting the error output to the output stream, and
:stream causes a stream to be made available via process-info-error-
output.

launch-program returns a process-info object, which look like the
following (source):

(defclass process-info ()
 (
 ;; The advantage of dealing with streams instead of PID is
 ;; availability of functions like `sys:pipe-kill-process`.
 (process :initform nil)
 (input-stream :initform nil)
 (output-stream :initform nil)
 (bidir-stream :initform nil)
 (error-output-stream :initform nil)
 ;; For backward-compatibility, to maintain the property (ze
 ;; exit-code) <-> success, an exit in response to a signal
 ;; encoded as 128+signum.
 (exit-code :initform nil)
 ;; If the platform allows it, distinguish exiting with a co
 ;; >128 from exiting in response to a signal by setting thi
 (signal-code :initform nil)))

https://gitlab.common-lisp.net/asdf/asdf/blob/master/uiop/launch-program.lisp#L205

See the docstrings.

Test if a subprocess is alive

uiop:process-alive-p tests if a process is still alive, given a process-
info object returned by launch-program:

Get the exit code

We can use uiop:wait-process. If the process is finished, it returns
immediately, and returns the exit code. If not, it waits for the process to
terminate.

An exit code to 0 means success (use zerop).

The exit code is also stored in the exit-code slot of our process-info
object. We see from the class definition above that it has no accessor, so
we’ll use slot-value. It has an initform to nil, so we don’t have to check
if the slot is bound. We can do:

* (defparameter *shell* (uiop:launch-program "bash"
 :input :stream :output :stream))

;; inferior shell process now running
* (uiop:process-alive-p *shell*)
T

;; Close input and output streams
* (uiop:close-streams *shell*)
* (uiop:process-alive-p *shell*)
NIL

(uiop:process-alive-p *process*)
NIL
(uiop:wait-process *process*)
0

(slot-value *my-process* 'uiop/launch-program::exit-code)
0

https://gitlab.common-lisp.net/asdf/asdf/blob/master/uiop/launch-program.lisp#L508

The trick is that we must run wait-process beforehand, otherwise the result
will be nil.

Since wait-process is blocking, we can do it on a new thread:

Note that run-program returns the exit code as the third value.

Input and output from subprocess

If the input keyword is set to :stream, then a stream is created and can be
written to in the same way as a file. The stream can be accessed using
uiop:process-info-input:

where write-line writes the string to the given stream, adding a newline at
the end. The force-output call attempts to flush the stream, but does not wait
for completion.

Reading from the output stream is similar, with uiop:process-info-
output returning the output stream:

(bt:make-thread
 (lambda ()
 (let ((exit-code (uiop:wait-process
 (uiop:launch-program (list "of" "commands
 (if (zerop exit-code)
 (print :success)
 (print :failure)))))
 :name "Waiting for <program>")

;; Start the inferior shell, with input and output streams
* (defparameter *shell* (uiop:launch-program "bash"
 :input :stream :output :stream))
;; Write a line to the shell
* (write-line "find . -name '*.md'"
 (uiop:process-info-input *shell*))
;; Flush stream
* (force-output (uiop:process-info-input *shell*))

* (read-line (uiop:process-info-output *shell*))

http://clhs.lisp.se/Body/f_wr_stg.htm
http://clhs.lisp.se/Body/f_finish.htm

In some cases the amount of data to be read is known, or there are
delimiters to determine when to stop reading. If this is not the case, then
calls to read-line can hang while waiting for data. To avoid this, listen can
be used to test if a character is available:

There is also read-char-no-hang which reads a single character, or returns
nil if no character is available. Note that due to issues like buffering, and
the timing of when the other process is executed, there is no guarantee that
all data sent will be received before listen or read-char-no-hang return
nil.

Capturing standard and error output

Capturing standard output, as seen above, is easily done by telling :output
to be :string, or using :output '(:string :stripped t) to strip any
ending newline.

You can ask the same to :error-output and, in addition, you can ask
uiop:run-program to not signal an error, thus to not enter the interactive
debugger, with :ignore-error-status t.

In that case, you can check the success or the failure of the program with
the returned exit-code. 0 is success.

Here’s everything together:

* (let ((stream (uiop:process-info-output *shell*)))
 (loop while (listen stream) do
 ;; Characters are immediately available
 (princ (read-line stream))
 (terpri)))

(uiop:run-program (list "git"
 "checkout"
 "me/does-not-exist")
 :output :string
 :error-output :string
 :ignore-error-status t)
;; =>
""

http://clhs.lisp.se/Body/f_rd_lin.htm
http://clhs.lisp.se/Body/f_listen.htm
http://clhs.lisp.se/Body/f_rd_c_1.htm

uiop:run-program returns 3 values:

the standard output (here, as a blank string)
the error output (here, as a string with our error message)
the exit code

We can bind them with multiple-value-bind:

Running visual commands (htop)

Use uiop:run-program and set both :input and :output to :interactive:

This will spawn htop in full screen, as it should.

It works for more commands (sudo, vim…), however not for all interactive
programs, such as less or fzf.

Piping

Here’s an example to do the equivalent of ls | sort. Note that “ls” uses
launch-program (async) and outputs to a stream, where “sort”, the last
command of the pipe, uses run-program and outputs to a string.

"error: pathspec 'me/does-not-exist did not match any file(s) kn
"
1

(multiple-value-bind (output error-output exit-code)
 (uiop:run-program (list …))
 (unless (zerop exit-code)
 (format t "error output is: ~a" error-output)))

(uiop:run-program "htop"
 :output :interactive
 :input :interactive)

(uiop:run-program "sort"
 :input

Get Lisp’s current Process ID (PID)

Implementations provide their own functions for this.

On SBCL:

It is possible portably with the osicat library:

Here again, we could find it by using the apropos function:

 (uiop:process-info-output
 (uiop:launch-program "ls"
 :output :stream))
 :output :string)

(sb-posix:getpid)

(osicat-posix:getpid)

CL-USER> (apropos "pid")
OSICAT-POSIX:GETPID (fbound)
OSICAT-POSIX::PID
[…]
SB-IMPL::PID
SB-IMPL::WAITPID (fbound)
SB-POSIX:GETPID (fbound)
SB-POSIX:GETPPID (fbound)
SB-POSIX:LOG-PID (bound)
SB-POSIX::PID
SB-POSIX::PID-T
SB-POSIX:WAITPID (fbound)
[…]

Foreign Function Interfaces
The ANSI Common Lisp standard doesn’t mention this topic. So almost
everything that can be said here depends on your OS and your
implementation.

Example: Calling ‘gethostname’ from CLISP

Note: You should read the relevant chapter from the CLISP implementation
notes before you proceed.

int gethostname(char *name, int len) follows a typical pattern of C
“out”-parameter convention - it expects a pointer to a buffer it’s going to
fill. So you must view this parameter as either :OUT or :IN-OUT.
Additionally, one must tell the function the size of the buffer. Here len is
just an :IN parameter. Sometimes this will be an :IN-OUT parameter,
returning the number of bytes actually filled in.

So name is actually a pointer to an array of up to len characters, regardless
of what the poor “char *” C prototype says, to be used like a C string (0-
termination). How many elements are in the array? Luckily, in our case, you
can find it out without calculating the sizeof() a C structure. It’s a
hostname that will be returned. The Solaris 2.x manpage says “Host names
are limited to MAXHOSTNAMELEN characters, currently 256.”

Also, in the present example, you can use allocation :ALLOCA, like you’d do
in C: stack-allocate a temporary. Why make things worse when using Lisp
than when using C?

This yields the following useful signature for your foreign function:

(ffi:def-c-call-out gethostname
 (:arguments (name (ffi:c-ptr (ffi:c-array-max ffi:char 256)
 :out :alloca)
 (len ffi:int))
 ;; (:return-type BOOLEAN) could have been used here

;; (Solaris says it's either 0 or 1)

http://clisp.sourceforge.net/impnotes.html#dffi

Possibly SUBSEQ and POSITION are superfluous, thanks to C-ARRAY-MAX as
opposed to C-ARRAY:

Example: Calling ‘gethostname’ from Allegro CL

This is how the same example above would be written in Allegro Common
Lisp version 6 and above. ACL doesn’t explicitly distinguish between
input and output arguments. The way to declare an argument as output
(i.e., modifiable by C) is to use an array, since arrays are passed by
reference and C therefore receives a pointer to a memory location (which is
what it expects). In this case things are made even easier by the fact that
gethostname() expects an array of char, and a SIMPLE-ARRAY of CHARACTER
represents essentially the same thing in Lisp. The foreign function
definition is therefore the following:

 ;; (Solaris says it's either 0 or -1).
 (:return-type ffi:int))

 (defun myhostname ()
 (multiple-value-bind (success name)
 ;; :OUT or :IN-OUT parameters are returned via multiple val
 (gethostname 256)
 (if (zerop success)
 (subseq name 0 (position #\null name))
 (error ... ; errno may be set
 ...))))
 (defvar hostname (myhostname))

(defun myhostname ()
 (multiple-value-bind (success name)
 ;; :out or :in-out parameters are returned via multiple val
 (gethostname 256)
 (if (zerop success) name
 (error ... ; errno may be set
 ...))))

(def-foreign-call (c-get-hostname "gethostname")
 ((name (* :char) (simple-array 'character (*)))

Let’s read this line by line: this form defines a Lisp function called C-GET-
HOSTNAME that calls the C function gethostname(). It takes two arguments:
the first one, called NAME, is a pointer to a char (*char in C), and a SIMPLE-
ARRAY of characters in Lisp; the second one is called LEN, and is an integer.
The function returns an integer value.

And now the Lisp side:

This function creates the NAME array, calls C-GET-HOSTNAME to fill it and then
checks the returned value. If the value is zero, then the call was successful,
and we return the contents of NAME up to the first 0 character (the string
terminator in C), otherwise we signal an error. Note that, unlike the
previous example, we allocate the string in Lisp, and we rely on the Lisp
garbage collector to get rid of it after the function terminates. Here is a
usage example:

Working with strings is, in general, easier than the previous example
showed. Let’s say you want to call getenv() from Lisp to access the value
of an environment variable. getenv() takes a string argument (the variable
name) and returns another string (the variable value). To be more precise,
the argument is a pointer to a sequence of characters that should have been
allocated by the caller, and the return value is a pointer to an already-
existing sequence of chars (in the environment). Here is the definition of C-
GETENV:

 (len :int integer))
 :returning :int)

(defun get-hostname ()
 (let* ((name (make-array 256 :element-type 'character))
 (result (c-get-hostname name 256)))
 (if (zerop result)
 (let ((pos (position #\null name)))
 (subseq name 0 pos))
 (error "gethostname() failed."))))

* (get-hostname)
 "terminus"

The argument in this case is still a pointer to char in C, but we can declare it
a STRING to Lisp. The return value is a pointer, so we declare it as integer.
Finally, the :STRINGS-CONVERT keyword argument specifies that ACL
should automatically translate the Lisp string passed as the first argument
into a C string. Here is how it’s used:

If you are surprised by the return value, just remember that C-GETENV
returns a pointer, and we must tell Lisp how to interpret the contents of the
memory location pointed to by it. Since in this case we know that it will
point to a C string, we can use the FF:NATIVE-TO-STRING function to
convert it to a Lisp string:

(The second and third values are the number of characters and bytes copied,
respectively). One caveat: if you ask for the value of a non-existent
variable, C-GETENV will return 0, and NATIVE-TO-STRING will fail. So a safer
example would be:

(def-foreign-call (c-getenv "getenv")
 ((var (* :char) string))
 :returning :int
 :strings-convert t)

* (c-getenv "SHELL")
 -1073742215

* (native-to-string (c-getenv "SHELL"))
 "/bin/tcsh"
 9
 9

* (let ((ptr (c-getenv "NOSUCHVAR")))
 (unless (zerop ptr)
 (native-to-string ptr)))
 NIL

Threads, concurrency, parallelism
Introduction

By threads, we mean separate execution strands within a single Lisp
process, sharing the same address space. Typically, execution is
automatically switched between these strands by the system (either by the
lisp kernel or by the operating system) so that tasks appear to be completed
in parallel (asynchronously). This page discusses the creation and
management of threads and some aspects of interactions between them. For
information about the interaction between lisp and other processes, see
Interfacing with your OS.

An instant pitfall for the unwary is that most implementations refer (in
nomenclature) to threads as processes - this is a historical feature of a
language which has been around for much longer than the term thread. Call
this maturity a sign of stable implementations, if you will.

The ANSI Common Lisp standard doesn’t mention this topic. We will
present here the portable bordeaux-threads library, an example
implementation via SBCL threads from the SBCL Manual, and the lparallel
library (GitHub).

Bordeaux-threads is a de-facto standard portable library, that exposes rather
low-level primitives. Lparallel builds on it and features:

a simple model of task submission with receiving queue
constructs for expressing fine-grained parallelism
asynchronous condition handling across thread boundaries
parallel versions of map, reduce, sort, remove, and many others
promises, futures, and delayed evaluation constructs
computation trees for parallelizing interconnected tasks
bounded and unbounded FIFO queues
channels
high and low priority tasks

https://github.com/sionescu/bordeaux-threads
http://www.sbcl.org/manual/#Threading
http://www.sbcl.org/manual/
https://lparallel.org/
https://github.com/sharplispers/lparallel

task killing by category
integrated timeouts

For more libraries on parallelism and concurrency, see the Awesome CL list
and Quickdocs such as quickdocks on thread and concurrency.

Why bother?

The first question to resolve is: why bother with threads? Sometimes your
answer will simply be that your application is so straightforward that you
need not concern yourself with threads at all. But in many other cases it’s
difficult to imagine how a sophisticated application can be written without
multi-threading. For example:

you might be writing a server which needs to be able to respond to
more than one user / connection at a time (for instance: a web server)
on the Sockets page);
you might want to perform some background activity, without halting
the main application while this is going on;
you might want your application to be notified when a certain time has
elapsed;
you might want to keep the application running and active while
waiting for some system resource to become available;
you might need to interface with some other system which requires
multithreading (for example, “windows” under Windows which
generally run in their own threads);
you might want to associate different contexts (e.g. different dynamic
bindings) with different parts of the application;
you might even have the simple need to do two things at once.

What is Concurrency? What is Parallelism?

Credit: The following was first written on z0ltan.wordpress.com by Timmy
Jose.

Concurrency is a way of running different, possibly related, tasks seemingly
simultaneously. What this means is that even on a single processor machine,

https://github.com/CodyReichert/awesome-cl#parallelism-and-concurrency
http://quickdocs.org/
https://quickdocs.org/-/search?q=thread
https://quickdocs.org/-/search?q=concurrency
https://z0ltan.wordpress.com/2016/09/02/basic-concurrency-and-parallelism-in-common-lisp-part-3-concurrency-using-bordeaux-and-sbcl-threads/

you can simulate simultaneity using threads (for instance) and context-
switching them.

In the case of system (native OS) threads, the scheduling and context
switching is ultimately determined by the OS. This is the case with Java
threads and Common Lisp threads.

In the case of “green” threads, that is to say threads that are completely
managed by the program, the scheduling can be completely controlled by
the program itself. Erlang is a great example of this approach.

So what is the difference between Concurrency and Parallelism?
Parallelism is usually defined in a very strict sense to mean independent
tasks being run in parallel, simultaneously, on different processors or on
different cores. In this narrow sense, you really cannot have parallelism on a
single-core, single-processor machine.

It rather helps to differentiate between these two related concepts on a more
abstract level – concurrency primarily deals with providing the illusion of
simultaneity to clients so that the system doesn’t appear locked when a long
running operation is underway. GUI systems are a wonderful example of
this kind of system. Concurrency is therefore concerned with providing
good user experience and not necessarily concerned with performance
benefits.

Java’s Swing toolkit and JavaScript are both single-threaded, and yet they
can give the appearance of simultaneity because of the context switching
behind the scenes. Of course, concurrency is implemented using multiple
threads/processes in most cases.

Parallelism, on the other hand, is mostly concerned with pure performance
gains. For instance, if we are given a task to find the squares of all the even
numbers in a given range, we could divide the range into chunks which are
then run in parallel on different cores or different processors, and then the
results can be collated together to form the final result. This is an example
of Map-Reduce in action.

So now that we have separated the abstract meaning of Concurrency from
that of Parallelism, we can talk a bit about the actual mechanism used to
implement them. This is where most of the confusion arise for a lot of
people. They tend to tie down abstract concepts with specific means of
implementing them. In essence, both abstract concepts may be implemented
using the same mechanisms! For instance, we may implement concurrent
features and parallel features using the same basic thread mechanism in
Java. It’s only the conceptual intertwining or independence of tasks at an
abstract level that makes the difference for us.

For instance, if we have a task where part of the work can be done on a
different thread (possibly on a different core/processor), but the thread
which spawns this thread is logically dependent on the results of the
spawned thread (and as such has to “join” on that thread), it is still
Concurrency!

So the bottomline is this – Concurrency and Parallelism are different
concepts, but their implementations may be done using the same
mechanisms — threads, processes, etc.

Bordeaux threads

The Bordeaux library provides a platform independent way to handle basic
threading on multiple Common Lisp implementations. The interesting bit is
that it itself does not really create any native threads — it relies entirely on
the underlying implementation to do so.

On the other hand, it does provide some useful extra features in its own
abstractions over the lower-level threads.

Also, you can see from the demo programs that a lot of the Bordeaux
functions seem quite similar to those used in SBCL. I don’t really think that
this is a coincidence.

You can refer to the documentation for more details (check the “Wrap-up”
section).

Installing Bordeaux Threads

First let’s load up the Bordeaux library using Quicklisp:

Checking for thread support in Common Lisp

Regardless of the Common Lisp implementation, there is a standard way to
check for thread support availability:

If there were no thread support, it would show “NIL” as the value of the
expression.

Depending on the specific library being used, we may also have different
ways of checking for concurrency support, which may be used instead of

CL-USER> (ql:quickload "bt-semaphore")
To load "bt-semaphore":
 Load 1 ASDF system:
 bt-semaphore
; Loading "bt-semaphore"

(:BT-SEMAPHORE)

CL-USER> (member :thread-support *FEATURES*)
(:THREAD-SUPPORT :SWANK :QUICKLISP :ASDF-PACKAGE-SYSTEM :ASDF3.1
:ASDF :OS-MACOSX :OS-UNIX :NON-BASE-CHARS-EXIST-P :ASDF-UNICODE
:64-BIT-REGISTERS :ALIEN-CALLBACKS :ANSI-CL :ASH-RIGHT-VOPS :BS
:C-STACK-IS-CONTROL-STACK :COMMON-LISP :COMPARE-AND-SWAP-VOPS
:COMPLEX-FLOAT-VOPS :CYCLE-COUNTER :DARWIN :DARWIN9-OR-BETTER :
:FP-AND-PC-STANDARD-SAVE :GENCGC :IEEE-FLOATING-POINT :INLINE-C
:INODE64 :INTEGER-EQL-VOP :LINKAGE-TABLE :LITTLE-ENDIAN
:MACH-EXCEPTION-HANDLER :MACH-O :MEMORY-BARRIER-VOPS :MULTIPLY-
:OS-PROVIDES-BLKSIZE-T :OS-PROVIDES-DLADDR :OS-PROVIDES-DLOPEN
:OS-PROVIDES-PUTWC :OS-PROVIDES-SUSECONDS-T :PACKAGE-LOCAL-NICK
:PRECISE-ARG-COUNT-ERROR :RAW-INSTANCE-INIT-VOPS :SB-DOC :SB-EV
:SB-PACKAGE-LOCKS :SB-SIMD-PACK :SB-SOURCE-LOCATIONS :SB-TEST :
:SB-UNICODE :SBCL :STACK-ALLOCATABLE-CLOSURES :STACK-ALLOCATABL
:STACK-ALLOCATABLE-LISTS :STACK-ALLOCATABLE-VECTORS
:STACK-GROWS-DOWNWARD-NOT-UPWARD :SYMBOL-INFO-VOPS :UD2-BREAKPO
:UNWIND-TO-FRAME-AND-CALL-VOP :X86-64)

the common check mentioned above.

For instance, in our case, we are interested in using the Bordeaux library. To
check whether there is support for threads using this library, we can see
whether the *supports-threads-p* global variable is set to NIL (no
support) or T (support available):

Okay, now that we’ve got that out of the way, let’s test out both the
platform-independent library (Bordeaux) as well as the platform-specific
support (SBCL in this case).

To do this, let us work our way through a number of simple examples:

Basics — list current thread, list all threads, get thread name
Update a global variable from a thread
Print a message onto the top-level using a thread
Print a message onto the top-level — fixed
Print a message onto the top-level — better
Modify a shared resource from multiple threads
Modify a shared resource from multiple threads — fixed using locks
Modify a shared resource from multiple threads — using atomic
operations
Joining on a thread, destroying a thread example

Basics — list current thread, list all threads, get thread name

CL-USER> bt:*supports-threads-p*
T

 ;;; Print the current thread, all the threads, and the curre
 (defun print-thread-info ()
 (let* ((curr-thread (bt:current-thread))
 (curr-thread-name (bt:thread-name curr-thread))
 (all-threads (bt:all-threads)))
 (format t "Current thread: ~a~%~%" curr-thread)
 (format t "Current thread name: ~a~%~%" curr-thread-name

 (format t "All threads:~% ~{~a~%~}~%" all-threads))
 nil)

And the output:

Update a global variable from a thread:

We create a new thread using bt:make-thread, which takes a lambda
abstraction as a parameter. Note that this lambda abstraction cannot take
any parameters.

Another point to note is that unlike some other languages (Java, for
instance), there is no separation from creating the thread object and
starting/running it. In this case, as soon as the thread is created, it is
executed.

 CL-USER> (print-thread-info)
 Current thread: #<THREAD "repl-thread" RUNNING {10043B8003}>

 Current thread name: repl-thread

 All threads:
 #<THREAD "repl-thread" RUNNING {10043B8003}>
 #<THREAD "auto-flush-thread" RUNNING {10043B7DA3}>
 #<THREAD "swank-indentation-cache-thread" waiting on: #<WAIT
 #<THREAD "reader-thread" RUNNING {1003A20063}>
 #<THREAD "control-thread" waiting on: #<WAITQUEUE {1003A19E
 #<THREAD "Swank Sentinel" waiting on: #<WAITQUEUE {10037900
 #<THREAD "main thread" RUNNING {1002991CE3}>

 NIL

 (defparameter *counter* 0)

 (defun test-update-global-variable ()
 (bt:make-thread
 (lambda ()
 (sleep 1)
 (incf *counter*)))
 counter)

The output:

As we can see, because the main thread returned immediately, the initial
value of *counter* is 0, and then around a second later, it gets updated to 1
by the anonymous thread.

Create a thread: print a message onto the top-level

And the output:

So what went wrong? The problem is variable binding. Now, the ’t’
parameter to the format function refers to the top-level, which is a Common
Lisp term for the main console stream, also referred to by the global
variable *standard-output*. So we could have expected the output to be
shown on the main console screen.

The same code would have run fine if we had not run it in a separate thread.
What happens is that each thread has its own stack where the variables are
rebound. In this case, even for *standard-output*, which being a global
variable, we would assume should be available to all threads, is rebound
inside each thread! This is similar to the concept of ThreadLocal storage in
Java.

 CL-USER> (test-update-global-variable)

 0
 CL-USER> *counter*
 1

 ;;; Print a message onto the top-level using a thread
 (defun print-message-top-level-wrong ()
 (bt:make-thread
 (lambda ()
 (format *standard-output* "Hello from thread!"))
 :name "hello")
 nil)

 CL-USER> (print-message-top-level-wrong)
 NIL

Print a message onto the top-level — fixed

So how do we fix the problem of the previous example? By binding the top-
level at the time of thread creation of course. Pure lexical scoping to the
rescue!

Which produces:

Phew! However, there is another way of producing the same result using a
very interesting reader macro as we’ll see next.

Print a message onto the top-level — read-time eval macro

Let’s take a look at the code first:

 ;;; Print a message onto the top-level using a thread — fixe
 (defun print-message-top-level-fixed ()
 (let ((top-level *standard-output*))
 (bt:make-thread
 (lambda ()
 (format top-level "Hello from thread!"))
 :name "hello"))
 nil)

 CL-USER> (print-message-top-level-fixed)
 Hello from thread!
 NIL

 ;;; Print a message onto the top-level using a thread - read

 (eval-when (:compile-toplevel)
 (defun print-message-top-level-reader-macro ()
 (bt:make-thread
 (lambda ()
 (format #.*standard-output* "Hello from thread!")))

 nil))

 (print-message-top-level-reader-macro)

And the output:

So it works, but what’s the deal with the eval-when and what is that strange
#. symbol before *standard-output*?

eval-when controls when evaluation of Lisp expressions takes place. We
can have three targets — :compile-toplevel, :load-toplevel, and
:execute.

The #. symbol is what is called a “Reader macro”. A reader (or read) macro
is called so because it has special meaning to the Common Lisp Reader,
which is the component that is responsible for reading in Common Lisp
expressions and making sense out of them. This specific reader macro
ensures that the binding of *standard-output* is done at read time.

Binding the value at read-time ensures that the original value of
standard-output is maintained when the thread is run, and the output is
shown on the correct top-level.

Now this is where the eval-when bit comes into play. By wrapping the
whole function definition inside the eval-when, and ensuring that
evaluation takes place during compile time, the correct value of *standard-
output* is bound. If we had skipped the eval-when, we would see the
following error:

 CL-USER> (print-message-top-level-reader-macro)
 Hello from thread!
 NIL

 error:
 don't know how to dump #<SWANK/GRAY::SLIME-OUTPUT-STREAM
 ==>
 #<SWANK/GRAY::SLIME-OUTPUT-STREAM {100439EEA3}>

 note: The first argument never returns a value.
 note:
 deleting unreachable code
 ==>
 "Hello from thread!"

And that makes sense because SBCL cannot make sense of what this output
stream returns since it is a stream and not really a defined value (which is
what the ‘format’ function expects). That is why we see the “unreachable
code” error.

Note that if the same code had been run on the REPL directly, there would
be no problem since the resolution of all the symbols would be done
correctly by the REPL thread.

Modify a shared resource from multiple threads

Suppose we have the following setup with a minimal bank-account class
(no error checks):

 Compilation failed.

 ;;; Modify a shared resource from multiple threads

 (defclass bank-account ()
 ((id :initarg :id
 :initform (error "id required")
 :accessor :id)
 (name :initarg :name
 :initform (error "name required")
 :accessor :name)
 (balance :initarg :balance
 :initform 0
 :accessor :balance)))

 (defgeneric deposit (account amount)
 (:documentation "Deposit money into the account"))

 (defgeneric withdraw (account amount)
 (:documentation "Withdraw amount from account"))

 (defmethod deposit ((account bank-account) (amount real))
 (incf (:balance account) amount))

And we have a simple client which apparently does not believe in any form
of synchronisation:

This is all we are doing – create a new bank account instance (balance 0),
and then create a 100 threads, each of which simply deposits an amount of
100 10000 times, and then withdraws the same amount the same number of
times. So the final result should be the same as that of the opening balance,
which is 0, right? Let’s check that and see.

On a sample run, we might get the following results:

Whoa! The reason for this discrepancy is that incf and decf are not atomic
operations — they consist of multiple sub-operations, and the order in
which they are executed is not in our control.

 (defmethod withdraw ((account bank-account) (amount real))
 (decf (:balance account) amount))

 (defparameter *rich*
 (make-instance 'bank-account
 :id 1
 :name "Rich"
 :balance 0))
 ; compiling (DEFPARAMETER *RICH* ...)

 (defun demo-race-condition ()
 (loop repeat 100
 do
 (bt:make-thread
 (lambda ()
 (loop repeat 10000 do (deposit *rich* 100))
 (loop repeat 10000 do (withdraw *rich* 100))))))

 CL-USER> (:balance *rich*)
 0
 CL-USER> (dotimes (i 5)
 (demo-race-condition))
 NIL
 CL-USER> (:balance *rich*)
 22844600

This is what is called a “race condition” — multiple threads contending for
the same shared resource with at least one modifying thread which, more
likely than not, reads the wrong value of the object while modifying it. How
do we fix it? One simple way it to use locks (mutex in this case, could be
semaphores for more complex situations).

Modify a shared resource from multiple threads — fixed using
locks

Let’s rest the balance for the account back to 0 first:

Now let’s modify the demo-race-condition function to access the shared
resource using locks (created using bt:make-lock and used as shown):

And let’s do a bigger sample run this time around:

 CL-USER> (setf (:balance *rich*) 0)
 0
 CL-USER> (:balance *rich*)
 0

 (defvar *lock* (bt:make-lock))
 ; compiling (DEFVAR *LOCK* …)

 (defun demo-race-condition-locks ()
 (loop repeat 100
 do
 (bt:make-thread

 (lambda ()
 (loop repeat 10000 do (bt:with-lock-held (*lock*)
 (deposit *rich* 100)))
 (loop repeat 10000 do (bt:with-lock-held (*lock*)
 (withdraw *rich* 100))))))
 ; compiling (DEFUN DEMO-RACE-CONDITION-LOCKS ...)

 CL-USER> (dotimes (i 100)
 (demo-race-condition-locks))
 NIL

Excellent! Now this is better. Of course, one has to remember that using a
mutex like this is bound to affect performance. There is a better way in
quite a few circumstances — using atomic operations when possible. We’ll
cover that next.

Modify a shared resource from multiple threads — using
atomic operations

Atomic operations are operations that are guaranteed by the system to all
occur inside a conceptual transaction, i.e., all the sub-operations of the main
operation all take place together without any interference from outside. The
operation succeeds completely or fails completely. There is no middle
ground, and there is no inconsistent state.

Another advantage is that performance is far superior to using locks to
protect access to the shared state. We will see this difference in the actual
demo run.

The Bordeaux library does not provide any real support for atomics, so we
will have to depend on the specific implementation support for that. In our
case, that is SBCL, and so we will have to defer this demo to the SBCL
section.

Joining on a thread, destroying a thread

To join on a thread, we use the bt:join-thread function, and for
destroying a thread (not a recommended operation), we can use the
bt:destroy-thread function.

A simple demo:

 CL-USER> (:balance *rich*)
 0

 (defmacro until (condition &body body)
 (let ((block-name (gensym)))
 `(block ,block-name
 (loop

(if ,condition

And the output on a run:

 (if ,condition
 (return-from ,block-name nil)
 (progn
 ,@body))))))

 (defun join-destroy-thread ()
 (let* ((s *standard-output*)
 (joiner-thread
 (bt:make-thread
 (lambda ()
 (loop for i from 1 to 10
 do
 (format s "~%[Joiner Thread] Working..."
 (sleep (* 0.01 (random 100)))))))
 (destroyer-thread
 (bt:make-thread
 (lambda ()
 (loop for i from 1 to 1000000
 do
 (format s "~%[Destroyer Thread] Working
 (sleep (* 0.01 (random 10000))))))))
 (format t "~%[Main Thread] Waiting on joiner thread...")
 (bt:join-thread joiner-thread)
 (format t "~%[Main Thread] Done waiting on joiner thread
 (if (bt:thread-alive-p destroyer-thread)
 (progn
 (format t "~%[Main Thread] Destroyer thread alive.
 (bt:destroy-thread destroyer-thread))
 (format t "~%[Main Thread] Destroyer thread is alrea
 (until (bt:thread-alive-p destroyer-thread)
 (format t "[Main Thread] Waiting for destroyer th
 (format t "~%[Main Thread] Destroyer thread dead")
 (format t "~%[Main Thread] Adios!~%")))

 CL-USER> (join-destroy-thread)

 [Joiner Thread] Working...
 [Destroyer Thread] Working...
 [Main Thread] Waiting on joiner thread...
 [Joiner Thread] Working...

The until macro simply loops around until the condition becomes true. The
rest of the code is pretty much self-explanatory — the main thread waits for
the joiner-thread to finish, but it immediately destroys the destroyer-thread.

Again, it is not recommended to use bt:destroy-thread. Any conceivable
situation which requires this function can probably be done better with
another approach.

Now let’s move onto some more comprehensive examples which tie
together all the concepts discussed thus far.

Timeouts

We can use bt:with-timeout.

Sometimes we want to run a background operation, but we want to ensure
that it doesn’t take a maximum time limit. We can use bt:with-timeout
(n) where n is a number of seconds. In case of a timeout, Bordeaux-threads
signals a bt:timeout error.

In our scenario below, we create a thread that launches a potentially long
operation, we join the thread with a timeout, and we handle any timeout
error. In our case, we destroy the running thread. This also kills its
underlying processes (were they run with uiop:run-program).

 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Main Thread] Done waiting on joiner thread
 [Main Thread] Destroyer thread alive... killing it
 [Main Thread] Destroyer thread dead
 [Main Thread] Adios!
 NIL

(defun maybe-costly-operation ()

Useful functions

Here is a summary of the functions, macros and global variables which
were used in the demo examples along with some extras. These should
cover most of the basic programming scenarios:

bt:*supports-thread-p* (to check for basic thread support)
bt:make-thread (create a new thread)
bt:current-thread (return the current thread object)
bt:all-threads (return a list of all running threads)
bt:thread-alive-p (checks if the thread is still alive)
bt:thread-name (return the name of the thread)
bt:join-thread (join on the supplied thread)
bt:interrupt-thread (interrupt the given thread)
bt:destroy-thread (attempt to abort the thread)
bt:make-lock (create a mutex)
bt:with-lock-held (use the supplied lock to protect critical code)
bt:with-timeout (to signal a timeout error)

SBCL threads

SBCL provides support for native threads via its sb-thread package. These
are very low-level functions, but we can build our own abstractions on top

 (print "working hard...")
 (sleep 10))

(let ((thread (bt:make-thread ;; <--- create a thread
 (lambda ()
 ;; maybe a long operation:
 (maybe-costly-operation))
 :name "maybe-costly-thread")))
 (handler-case
 (bt:with-timeout (timeout) ;; <-- with-timeout
 (bt:join-thread thread)) ;; <-- join the thread
 (bt:timeout () ;; <-- handle timeout.
 (bt:destroy-thread thread))))

http://www.sbcl.org/
http://www.sbcl.org/manual/#Threading

of these as shown in the demo examples.

You can refer to the documentation for more details (check the “Wrap-up”
section).

You can see from the examples below that there is a strong correspondence
between Bordeaux and SBCL Thread functions. In most cases, the only
difference is the change of package name from bt to sb-thread.

It is evident that the Bordeaux thread library was more or less based on the
SBCL implementation. As such, explanation will be provided only in those
cases where there is a major difference in syntax or semantics.

Basics — list current thread, list all threads, get thread name

The code:

And the output:

 ;;; Print the current thread, all the threads, and the curre

 (defun print-thread-info ()
 (let* ((curr-thread sb-thread:*current-thread*)
 (curr-thread-name (sb-thread:thread-name curr-threa
 (all-threads (sb-thread:list-all-threads)))
 (format t "Current thread: ~a~%~%" curr-thread)
 (format t "Current thread name: ~a~%~%" curr-thread-name
 (format t "All threads:~% ~{~a~%~}~%" all-threads))
 nil)

 CL-USER> (print-thread-info)
 Current thread: #<THREAD "repl-thread" RUNNING {10043B8003}>

 Current thread name: repl-thread

 All threads:
 #<THREAD "repl-thread" RUNNING {10043B8003}>
 #<THREAD "auto-flush-thread" RUNNING {10043B7DA3}>
 #<THREAD "swank-indentation-cache-thread" waiting on: #<WAIT

#<THREAD "reader-thread" RUNNING {1003A20063}>

Update a global variable from a thread

The code:

And the output:

Print a message onto the top-level using a thread

The code:

And the output:

 #<THREAD reader thread RUNNING {1003A20063}>
 #<THREAD "control-thread" waiting on: #<WAITQUEUE {1003A19E
 #<THREAD "Swank Sentinel" waiting on: #<WAITQUEUE {10037900
 #<THREAD "main thread" RUNNING {1002991CE3}>

 NIL

 ;;; Update a global variable from a thread

 (defparameter *counter* 0)

 (defun test-update-global-variable ()
 (sb-thread:make-thread
 (lambda ()
 (sleep 1)
 (incf *counter*)))
 counter)

 CL-USER> (test-update-global-variable)
 0

 ;;; Print a message onto the top-level using a thread

 (defun print-message-top-level-wrong ()
 (sb-thread:make-thread
 (lambda ()
 (format *standard-output* "Hello from thread!")))
 nil)

Print a message onto the top-level — fixed:

The code:

And the output:

Print a message onto the top-level — better

The code:

And the output:

 CL-USER> (print-message-top-level-wrong)
 NIL

 ;;; Print a message onto the top-level using a thread - fixe

 (defun print-message-top-level-fixed ()
 (let ((top-level *standard-output*))
 (sb-thread:make-thread
 (lambda ()
 (format top-level "Hello from thread!"))))
 nil)

 CL-USER> (print-message-top-level-fixed)
 Hello from thread!
 NIL

 ;;; Print a message onto the top-level using a thread - read

 (eval-when (:compile-toplevel)
 (defun print-message-top-level-reader-macro ()
 (sb-thread:make-thread
 (lambda ()
 (format #.*standard-output* "Hello from thread!")))
 nil))

 CL-USER> (print-message-top-level-reader-macro)
 Hello from thread!

Modify a shared resource from multiple threads

The code:

 NIL

 ;;; Modify a shared resource from multiple threads

 (defclass bank-account ()
 ((id :initarg :id
 :initform (error "id required")
 :accessor :id)
 (name :initarg :name
 :initform (error "name required")
 :accessor :name)
 (balance :initarg :balance
 :initform 0
 :accessor :balance)))

 (defgeneric deposit (account amount)
 (:documentation "Deposit money into the account"))

 (defgeneric withdraw (account amount)
 (:documentation "Withdraw amount from account"))

 (defmethod deposit ((account bank-account) (amount real))
 (incf (:balance account) amount))

 (defmethod withdraw ((account bank-account) (amount real))
 (decf (:balance account) amount))

 (defparameter *rich*
 (make-instance 'bank-account
 :id 1
 :name "Rich"
 :balance 0))

 (defun demo-race-condition ()
 (loop repeat 100
 do

And the output:

Modify a shared resource from multiple threads — fixed using
locks

The code:

The only difference here is that instead of make-lock as in Bordeaux, we
have make-mutex and that is used along with the macro with-mutex as
shown in the example.

And the output:

 (sb-thread:make-thread
 (lambda ()
 (loop repeat 10000 do (deposit *rich* 100))
 (loop repeat 10000 do (withdraw *rich* 100))))))

 CL-USER> (:balance *rich*)
 0
 CL-USER> (demo-race-condition)
 NIL
 CL-USER> (:balance *rich*)
 3987400

 (defvar *lock* (sb-thread:make-mutex))

 (defun demo-race-condition-locks ()
 (loop repeat 100
 do
 (sb-thread:make-thread
 (lambda ()
 (loop repeat 10000 do (sb-thread:with-mutex (*lock
 (deposit *rich* 100)))
 (loop repeat 10000 do (sb-thread:with-mutex (*lock
 (withdraw *rich* 100))))))

 CL-USER> (:balance *rich*)
 0
 CL-USER> (demo-race-condition-locks)

Modify a shared resource from multiple threads — using
atomic operations

First, the code:

And the output:

 NIL
 CL-USER> (:balance *rich*)
 0

 ;;; Modify a shared resource from multiple threads - atomics

 (defgeneric atomic-deposit (account amount)
 (:documentation "Atomic version of the deposit method"))

 (defgeneric atomic-withdraw (account amount)
 (:documentation "Atomic version of the withdraw method"))

 (defmethod atomic-deposit ((account bank-account) (amount re
 (sb-ext:atomic-incf (car (cons (:balance account) nil)) am

 (defmethod atomic-withdraw ((account bank-account) (amount r
 (sb-ext:atomic-decf (car (cons (:balance account) nil)) am

 (defun demo-race-condition-atomics ()
 (loop repeat 100
 do (sb-thread:make-thread
 (lambda ()
 (loop repeat 10000 do (atomic-deposit *rich* 100)
 (loop repeat 10000 do (atomic-withdraw *rich* 100

 CL-USER> (dotimes (i 5)
 (format t "~%Opening: ~d" (:balance *rich*))
 (demo-race-condition-atomics)
 (format t "~%Closing: ~d~%" (:balance *rich*)))

 Opening: 0
 Closing: 0

As you can see, SBCL’s atomic functions are a bit quirky. The two
functions used here: sb-ext:incf and sb-ext:atomic-decf have the
following signatures:

Macro: atomic-incf [sb-ext] place &optional diff

and

Macro: atomic-decf [sb-ext] place &optional diff

The interesting bit is that the “place” parameter must be any of the
following (as per the documentation):

a defstruct slot with declared type (unsigned-byte 64) or aref of a
(simple-array (unsigned-byte 64) (*)) The type sb-ext:word can be
used for these purposes.
car or cdr (respectively first or REST) of a cons.
a variable defined using defglobal with a proclaimed type of fixnum.

This is the reason for the bizarre construct used in the atomic-deposit and
atomic-decf methods.

One major incentive to use atomic operations as much as possible is
performance. Let’s do a quick run of the demo-race-condition-locks and

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0
 NIL

demo-race-condition-atomics functions over 1000 times and check the
difference in performance (if any):

With locks:

With atomics:

The results? The locks version took around 57s whereas the lockless
atomics version took just 2s! This is a massive difference indeed!

Joining on a thread, destroying a thread example

The code:

 CL-USER> (time
 (loop repeat 100
 do (demo-race-condition-locks)))
 Evaluation took:
 57.711 seconds of real time
 431.451639 seconds of total run time (408.014746 user, 23.
 747.61% CPU
 126,674,011,941 processor cycles
 3,329,504 bytes consed

 NIL

 CL-USER> (time
 (loop repeat 100
 do (demo-race-condition-atomics)))
 Evaluation took:
 2.495 seconds of real time
 8.175454 seconds of total run time (6.124259 user, 2.05119
 [Run times consist of 0.420 seconds GC time, and 7.756 se
 327.66% CPU
 5,477,039,706 processor cycles
 3,201,582,368 bytes consed

 NIL

;;; Joining on and destroying a thread

;;; Joining on and destroying a thread

(defmacro until (condition &body body)
 (let ((block-name (gensym)))
 `(block ,block-name
 (loop
 (if ,condition
 (return-from ,block-name nil)
 (progn
 ,@body))))))

(defun join-destroy-thread ()
 (let* ((s *standard-output*)
 (joiner-thread
 (sb-thread:make-thread
 (lambda ()
 (loop for i from 1 to 10
 do
 (format s "~%[Joiner Thread] Working...")
 (sleep (* 0.01 (random 100)))))))
 (destroyer-thread
 (sb-thread:make-thread
 (lambda ()
 (loop for i from 1 to 1000000
 do
 (format s "~%[Destroyer Thread] Working..."
 (sleep (* 0.01 (random 10000))))))))

 (format t "~%[Main Thread] Waiting on joiner thread...")
 (bt:join-thread joiner-thread)
 (format t "~%[Main Thread] Done waiting on joiner thread")
 (if (sb-thread:thread-alive-p destroyer-thread)
 (progn
 (format t "~%[Main Thread] Destroyer thread alive... k
 (sb-thread:terminate-thread destroyer-thread))
 (format t "~%[Main Thread] Destroyer thread is already d
 (until (sb-thread:thread-alive-p destroyer-thread)
 (format t "[Main Thread] Waiting for destroyer thread to

 (format t "~%[Main Thread] Destroyer thread dead")
 (format t "~%[Main Thread] Adios!~%")))

And the output:

Useful functions

Here is a summarised list of the functions, macros and global variables used
in the examples along with some extras:

(member :thread-support *features*) (check thread support)
sb-thread:make-thread (create a new thread)
sb-thread:*current-thread* (holds the current thread object)
sb-thread:list-all-threads (return a list of all running threads)
sb-thread:thread-alive-p (checks if the thread is still alive)
sb-thread:thread-name (return the name of the thread)
sb-thread:join-thread (join on the supplied thread)
sb-thread:interrupt-thread (interrupt the given thread)
sb-thread:destroy-thread (attempt to abort the thread)
sb-thread:make-mutex (create a mutex)
sb-thread:with-mutex (use supplied lock to protect critical code)

 CL-USER> (join-destroy-thread)

 [Joiner Thread] Working...
 [Destroyer Thread] Working...
 [Main Thread] Waiting on joiner thread...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Main Thread] Done waiting on joiner thread
 [Main Thread] Destroyer thread alive... killing it
 [Main Thread] Destroyer thread dead
 [Main Thread] Adios!
 NIL

Wrap-up

As you can see, concurrency support is rather primitive in Common Lisp,
but that’s primarily due to the glaring absence of this important feature in
the ANSI Common Lisp specification. That does not detract in the least
from the support provided by Common Lisp implementations, nor
wonderful libraries like the Bordeaux library.

You should follow up on your own by reading a lot more on this topic. I
share some of my own references here:

Common Lisp Recipes
Bordeaux API Reference
SBCL Manual on Threading
The Common Lisp Hyperspec

Next up, the final post in this mini-series: parallelism in Common Lisp
using the lparallel library.

Parallel programming with lparallel

It is important to note that lparallel also provides extensive support for
asynchronous programming, and is not a purely parallel programming
library. As stated before, parallelism is merely an abstract concept in which
tasks are conceptually independent of one another.

The lparallel library is built on top of the Bordeaux threading library.

As mentioned previously, parallelism and concurrency can be (and usually
are) implemented using the same means — threads, processes, etc. The
difference between lies in their conceptual differences.

Note that not all the examples shown in this post are necessarily parallel.
Asynchronous constructs such as Promises and Futures are, in particular,
more suited to concurrent programming than parallel programming.

http://weitz.de/cl-recipes/
https://trac.common-lisp.net/bordeaux-threads/wiki/ApiDocumentation
http://www.sbcl.org/manual/
http://www.sbcl.org/manual/#Threading
https://www.lispworks.com/documentation/HyperSpec/Front/

The modus operandi of using the lparallel library (for a basic use case) is as
follows:

Create an instance of what the library calls a kernel using
lparallel:make-kernel. The kernel is the component that schedules
and executes tasks.
Design the code in terms of futures, promises and other higher level
functional concepts. To this end, lparallel provides support for
channels, promises, futures, and cognates.
Perform operations using what the library calls cognates, which are
simply functions which have equivalents in the Common Lisp
language itself. For instance, the lparallel:pmap function is the
parallel equivalent of the Common Lisp map function.
Finally, close the kernel created in the first step using lparallel:end-
kernel.

Note that the onus of ensuring that the tasks being carried out are logically
parallelisable as well as taking care of all mutable state is on the developer.

Credit: this article first appeared on z0ltan.wordpress.com.

Installation

Let’s check if lparallel is available for download using Quicklisp:

Looks like it is. Let’s go ahead and install it:

CL-USER> (ql:system-apropos "lparallel")
#<SYSTEM lparallel / lparallel-20160825-git / quicklisp 2016-08-
#<SYSTEM lparallel-bench / lparallel-20160825-git / quicklisp 20
#<SYSTEM lparallel-test / lparallel-20160825-git / quicklisp 201
; No value

CL-USER> (ql:quickload "lparallel")
To load "lparallel":
 Load 2 ASDF systems:
 alexandria bordeaux-threads
 Install 1 Quicklisp release:
 lparallel

https://z0ltan.wordpress.com/2016/09/09/basic-concurrency-and-parallelism-in-common-lisp-part-4a-parallelism-using-lparallel-fundamentals/

And that’s all it took! Now let’s see how this library actually works.

Preamble - get the number of cores

First, let’s get hold of the number of threads that we are going to use for our
parallel examples. Ideally, we’d like to have a 1:1 match between the
number of worker threads and the number of available cores.

We can use the great Serapeum library to this end, which has a count-cpus
function, that works on all major platforms.

Install it:

and call it:

; Fetching #<URL "http://beta.quicklisp.org/archive/lparallel/20
; 76.71KB
==
78,551 bytes in 0.62 seconds (124.33KB/sec)
; Loading "lparallel"
[package lparallel.util]..........................
[package lparallel.thread-util]...................
[package lparallel.raw-queue].....................
[package lparallel.cons-queue]....................
[package lparallel.vector-queue]..................
[package lparallel.queue].........................
[package lparallel.counter].......................
[package lparallel.spin-queue]....................
[package lparallel.kernel]........................
[package lparallel.kernel-util]...................
[package lparallel.promise].......................
[package lparallel.ptree].........................
[package lparallel.slet]..........................
[package lparallel.defpun]........................
[package lparallel.cognate].......................
[package lparallel]
(:LPARALLEL)

CL-USER> (ql:quickload "serapeum")

and check that is correct.

Common Setup

In this example, we will go through the initial setup bit, and also show some
useful information once the setup is done.

Load the library:

Initialise the lparallel kernel:

Note that the *kernel* global variable can be rebound — this allows
multiple kernels to co-exist during the same run. Now, some useful
information about the kernel:

CL-USER> (serapeum:count-cpus)
8

CL-USER> (ql:quickload "lparallel")
To load "lparallel":
 Load 1 ASDF system:
 lparallel
; Loading "lparallel"

(:LPARALLEL)

CL-USER> (setf lparallel:*kernel*
 (lparallel:make-kernel 8 :name "custom-kernel"))
#<LPARALLEL.KERNEL:KERNEL :NAME "custom-kernel" :WORKER-COUNT 8

CL-USER> (defun show-kernel-info ()
 (let ((name (lparallel:kernel-name))
 (count (lparallel:kernel-worker-count))
 (context (lparallel:kernel-context))
 (bindings (lparallel:kernel-bindings)))
 (format t "Kernel name = ~a~%" name)
 (format t "Worker threads count = ~d~%" count)
 (format t "Kernel context = ~a~%" context)
 (format t "Kernel bindings = ~a~%" bindings)))

End the kernel (this is important since *kernel* does not get garbage
collected until we explicitly end it):

Let’s move on to some more examples of different aspects of the lparallel
library.

For these demos, we will be using the following initial setup from a coding
perspective:

WARNING: redefining COMMON-LISP-USER::SHOW-KERNEL-INFO in DEFUN
SHOW-KERNEL-INFO

CL-USER> (show-kernel-info)
Kernel name = custom-kernel
Worker threads count = 8
Kernel context = #<FUNCTION FUNCALL>
Kernel bindings = ((*STANDARD-OUTPUT* . #<SLIME-OUTPUT-STREAM {1
 (*ERROR-OUTPUT* . #<SLIME-OUTPUT-STREAM {1004
NIL

CL-USER> (lparallel:end-kernel :wait t)
(#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072
#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072

(require ‘lparallel)
(require ‘bt-semaphore)

(defpackage :lparallel-user
 (:use :cl :lparallel :lparallel.queue :bt-semaphore))

(in-package :lparallel-user)

So we will be using a kernel with 8 worker threads (one for each CPU core
on the machine).

And once we’re done will all the examples, the following code will be run
to close the kernel and free all used system resources:

Using channels and queues

First some definitions are in order.

A task is a job that is submitted to the kernel. It is simply a function object
along with its arguments.

A channel in lparallel is similar to the same concept in Go. A channel is
simply a means of communication with a worker thread. In our case, it is
one particular way of submitting tasks to the kernel.

A channel is created in lparallel using lparallel:make-channel. A task is
submitted using lparallel:submit-task, and the results received via
lparallel:receive-result.

For instance, we can calculate the square of a number as:

;;; initialise the kernel
(defun init ()
 (setf *kernel* (make-kernel 8 :name "channel-queue-kernel")))

(init)

;;; shut the kernel down
(defun shutdown ()
 (end-kernel :wait t))

(shutdown)

(defun calculate-square (n)
 (let* ((channel (lparallel:make-channel))
 (res nil))

And the output:

Now let’s try submitting multiple tasks to the same channel. In this simple
example, we are simply creating three tasks that square, triple, and
quadruple the supplied input respectively.

Note that in case of multiple tasks, the output will be in non-deterministic
order:

And the output:

 (lparallel:submit-task channel (lambda (x)
 (* x x))
 n)
 (setf res (lparallel:receive-result channel))
 (format t "Square of ~d = ~d~%" n res)))

LPARALLEL-USER> (calculate-square 100)
Square of 100 = 10000
NIL

(defun test-basic-channel-multiple-tasks ()
 (let ((channel (make-channel))
 (res '()))
 (submit-task channel (lambda (x)
 (* x x))
 10)
 (submit-task channel (lambda (y)
 (* y y y))
 10)
 (submit-task channel (lambda (z)
 (* z z z z))
 10)
 (dotimes (i 3 res)
 (push (receive-result channel) res))))

LPARALLEL-USER> (dotimes (i 3)
 (print (test-basic-channel-multipl

(100 1000 10000)
(100 1000 10000)
(10000 1000 100)

lparallel also provides support for creating a blocking queue in order to
enable message passing between worker threads. A queue is created using
lparallel.queue:make-queue.

Some useful functions for using queues are:

lparallel.queue:make-queue: create a FIFO blocking queue
lparallel.queue:push-queue: insert an element into the queue
lparallel.queue:pop-queue: pop an item from the queue
lparallel.queue:peek-queue: inspect value without popping it
lparallel.queue:queue-count: the number of entries in the queue
lparallel.queue:queue-full-p: check if the queue is full
lparallel.queue:queue-empty-p:check if the queue is empty
lparallel.queue:with-locked-queue: lock the queue during access

A basic demo showing basic queue properties:

Which produces:

NIL

 (defun test-queue-properties ()
 (let ((queue (make-queue :fixed-capacity 5)))
 (loop
 when (queue-full-p queue)
 do (return)
 do (push-queue (random 100) queue))
 (print (queue-full-p queue))
 (loop
 when (queue-empty-p queue)
 do (return)
 do (print (pop-queue queue)))
 (print (queue-empty-p queue)))
 nil)

 LPARALLEL-USER> (test-queue-properties)

 T
 17
 51

Note: lparallel.queue:make-queue is a generic interface which is actually
backed by different types of queues. For instance, in the previous example,
the actual type of the queue is lparallel.vector-queue since we specified
it to be of fixed size using the :fixed-capacity keyword argument.

The documentation doesn’t actually specify what keyword arguments we
can pass to lparallel.queue:make-queue, so let’s and find that out in a
different way:

So, as we can see, it supports the following keyword arguments: :fixed-
capacity, and initial-contents.

 55
 42
 82
 T
 NIL

 LPARALLEL-USER> (describe 'lparallel.queue:make-queue)
 LPARALLEL.QUEUE:MAKE-QUEUE
 [symbol]

 MAKE-QUEUE names a compiled function:
 Lambda-list: (&REST ARGS)
 Derived type: FUNCTION
 Documentation:
 Create a queue.

 The queue contents may be initialized with the keyword a
 `initial-contents'.

 By default there is no limit on the queue capacity. Pass
 `fixed-capacity' keyword argument limits the capacity to
 passed. `push-queue' will block for a full fixed-capacit
 Source file: /Users/z0ltan/quicklisp/dists/quicklisp/softw

 MAKE-QUEUE has a compiler-macro:
 Source file: /Users/z0ltan/quicklisp/dists/quicklisp/softw
 ; No value

Now, if we do specify :fixed-capacity, then the actual type of the queue
will be lparallel.vector-queue, and if we skip that keyword argument,
the queue will be of type lparallel.cons-queue (which is a queue of
unlimited size), as can be seen from the output of the following snippet:

Of course, you can always create instances of the specific queue types
yourself, but it is always better, when you can, to stick to the generic
interface and letting the library create the proper type of queue for you.

Now, let’s just see the queue in action!

Here we submit a single task that repeatedly scans the queue till it’s empty,
pops the available values, and pushes them into the res list.

 (defun check-queue-types ()
 (let ((queue-one (make-queue :fixed-capacity 5))
 (queue-two (make-queue)))
 (format t "queue-one is of type: ~a~%" (type-of queue-on
 (format t "queue-two is of type: ~a~%" (type-of queue-tw

 LPARALLEL-USER> (check-queue-types)

 queue-one is of type: VECTOR-QUEUE
 queue-two is of type: CONS-QUEUE
 NIL

 (defun test-basic-queue ()
 (let ((queue (make-queue))
 (channel (make-channel))
 (res '()))
 (submit-task channel (lambda ()
 (loop for entry = (pop-queue queue)
 when (queue-empty-p queue)
 do (return)
 do (push (* entry entry) res))))
 (dotimes (i 100)
 (push-queue i queue))
 (receive-result channel)
 (format t "~{~d ~}~%" res)))

And the output:

Killing tasks

A small note mentioning the lparallel:kill-task function would be
apropos at this juncture. This function is useful in those cases when tasks
are unresponsive. The lparallel documentation clearly states that this must
only be used as a last resort.

All tasks which are created are by default assigned a category of :default.
The dynamic property, *task-category* holds this value, and can be
dynamically bound to different values (as we shall see).

Sample run:

 LPARALLEL-USER> (test-basic-queue)
 9604 9409 9216 9025 8836 8649 8464 8281 8100 7921 7744 7569
 NIL

;;; kill default tasks
(defun test-kill-all-tasks ()
 (let ((channel (make-channel))
 (stream *query-io*))
 (dotimes (i 10)
 (submit-task
 channel
 (lambda (x)
 (sleep (random 10))
 (format stream "~d~%" (* x x))) (random 10)))
 (sleep (random 2))
 (kill-tasks :default)))

LPARALLEL-USER> (test-kill-all-tasks)
16
1
8
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

Since we had created 10 tasks, all the 8 kernel worker threads were
presumably busy with a task each. When we killed tasks of category
:default, all these threads were killed as well and had to be regenerated
(which is an expensive operation). This is part of the reason why
lparallel:kill-tasks must be avoided.

Now, in the example above, all running tasks were killed since all of them
belonged to the :default category. Suppose we wish to kill only specific
tasks, we can do that by binding *task-category* when we create those
tasks, and then specifying the category when we invoke lparallel:kill-
tasks.

For example, suppose we have two categories of tasks – tasks which square
their arguments, and tasks which cube theirs. Let’s assign them categories
’squaring-tasks and ’cubing-tasks respectively. Let’s then kill tasks of a
randomly chosen category ’squaring-tasks or ’cubing-tasks.

Here is the code:

WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

;;; kill tasks of a randomly chosen category
(defun test-kill-random-tasks ()
 (let ((channel (make-channel))
 (stream *query-io*))
 (let ((*task-category* 'squaring-tasks))
 (dotimes (i 5)
 (submit-task channel
 (lambda (x)
 (sleep (random 5))
 (format stream "~%[Squaring] ~d = ~d"
 x (* x x))) i)))
 (let ((*task-category* 'cubing-tasks))
 (dotimes (i 5)
 (submit-task channel
 (lambda (x)
 (sleep (random 5))

And here is a sample run:

 (format stream "~%[Cubing] ~d = ~d"
 x (* x x x))) i)))
 (sleep 1)
 (if (evenp (random 10))
 (progn
 (print "Killing squaring tasks")
 (kill-tasks 'squaring-tasks))
 (progn
 (print "Killing cubing tasks")
 (kill-tasks 'cubing-tasks)))))

LPARALLEL-USER> (test-kill-random-tasks)

[Cubing] 2 = 8
[Squaring] 4 = 16
[Cubing] 4
= [Cubing] 643 = 27
"Killing squaring tasks"
4
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

[Cubing] 1 = 1
[Cubing] 0 = 0

LPARALLEL-USER> (test-kill-random-tasks)

[Squaring] 1 = 1
[Squaring] 3 = 9
"Killing cubing tasks"
5
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

[Squaring] 2 = 4
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

Using promises and futures

Promises and Futures provide support for Asynchronous Programming.

In lparallel-speak, a lparallel:promise is a placeholder for a result which
is fulfilled by providing it with a value. The promise object itself is created
using lparallel:promise, and the promise is given a value using the
lparallel:fulfill macro.

To check whether the promise has been fulfilled yet or not, we can use the
lparallel:fulfilledp predicate function. Finally, the lparallel:force
function is used to extract the value out of the promise. Note that this
function blocks until the operation is complete.

Let’s solidify these concepts with a very simple example first:

Which generates the output:

Explanation: This simple example simply keeps looping forever until an
even number has been entered. The promise is fulfilled inside the loop

[Squaring] 0 = 0
[Squaring] 4 = 16

(defun test-promise ()
 (let ((p (promise)))
 (loop
 do (if (evenp (read))
 (progn
 (fulfill p 'even-received!)
 (return))))
 (force p)))

LPARALLEL-USER> (test-promise)
5
1
3
10
EVEN-RECEIVED!

using lparallel:fulfill, and the value is then returned from the function
by forcing it with lparallel:force.

Now, let’s take a bigger example. Assuming that we don’t want to have to
wait for the promise to be fulfilled, and instead have the current do some
useful work, we can delegate the promise fulfillment to external explicitly
as seen in the next example.

Consider we have a function that squares its argument. And, for the sake of
argument, it consumes a lot of time doing so. From our client code, we want
to invoke it, and wait till the squared value is available.

And the output:

(defun promise-with-threads ()
 (let ((p (promise))
 (stream *query-io*)
 (n (progn
 (princ "Enter a number: ")
 (read))))
 (format t "In main function...~%")
 (bt:make-thread
 (lambda ()
 (sleep (random 10))
 (format stream "Inside thread... fulfilling promise~%")
 (fulfill p (* n n))))
 (bt:make-thread
 (lambda ()
 (loop
 when (fulfilledp p)
 do (return)
 do (progn
 (format stream "~d~%" (random 100))
 (sleep (* 0.01 (random 100)))))))

 (format t "Inside main function, received value: ~d~%"
 (force p))))

LPARALLEL-USER> (promise-with-threads)
Enter a number: 19
In main function...

Explanation: There is nothing much in this example. We create a promise
object p, and we spawn off a thread that sleeps for some random time and
then fulfills the promise by giving it a value.

Meanwhile, in the main thread, we spawn off another thread that keeps
checking if the promise has been fulfilled or not. If not, it prints some
random number and continues checking. Once the promise has been
fulfilled, we can extract the value using lparallel:force in the main
thread as shown.

This shows that promises can be fulfilled by different threads while the
code that created the promise need not wait for the promise to be fulfilled.
This is especially important since, as mentioned before, lparallel:force
is a blocking call. We want to delay forcing the promise until the value is
actually available.

Another point to note when using promises is that once a promise has been
fulfilled, invoking force on the same object will always return the same
value. That is to say, a promise can be successfully fulfilled only once.

For instance:

Which produces:

44
59
90
34
30
76
Inside thread... fulfilling promise
Inside main function, received value: 361
NIL

(defun multiple-fulfilling ()
 (let ((p (promise)))
 (dotimes (i 10)
 (fulfill p (random 100))
 (format t "~d~%" (force p)))))

So how does a future differ from a promise?

A lparallel:future is simply a promise that is run in parallel, and as
such, it does not block the main thread like a default use of
lparallel:promise would. It is executed in its own thread (by the lparallel
library, of course).

Here is a simple example of a future:

And the output:

LPARALLEL-USER> (multiple-fulfilling)
15
15
15
15
15
15
15
15
15
15
NIL

(defun test-future ()
 (let ((f (future
 (sleep (random 5))
 (print "Hello from future!"))))
 (loop
 when (fulfilledp f)
 do (return)
 do (sleep (* 0.01 (random 100)))
 (format t "~d~%" (random 100)))
 (format t "~d~%" (force f))))

LPARALLEL-USER> (test-future)
5
19
91
11
Hello from future!
NIL

Explanation: This exactly is similar to the promise-with-threads example.
Observe two differences, however - first of all, the lparallel:future
macro has a body as well. This allows the future to fulfill itself! What this
means is that as soon as the body of the future is done executing,
lparallel:fulfilledp will always return true for the future object.

Secondly, the future itself is spawned off on a separate thread by the library,
so it does not interfere with the execution of the current thread very much
unlike promises as could be seen in the promise-with-threads example
(which needed an explicit thread for the fulfilling code in order to avoid
blocking the current thread).

The most interesting bit is that (even in terms of the actual theory
propounded by Dan Friedman and others), a Future is conceptually
something that fulfills a Promise. That is to say, a promise is a contract that
some value will be generated sometime in the future, and a future is
precisely that “something” that does that job.

What this means is that even when using the lparallel library, the basic use
of a future would be to fulfill a promise. This means that hacks like
promise-with-threads need not be made by the user.

Let’s take a small example to demonstrate this point (a pretty contrived
example, I must admit!).

Here’s the scenario: we want to read in a number and calculate its square.
So we offload this work to another function, and continue with our own
work. When the result is ready, we want it to be printed on the console
without any intervention from us.

Here’s how the code looks:

;;; Callback example using promises and futures
(defun callback-promise-future-demo ()
 (let* ((p (promise))
 (stream *query-io*)
 (n (progn
 (princ "Enter a number: ")
 (read)))

And the output:

Explanation: All right, so first off, we create a promise to hold the squared
value when it is generated. This is the p object. The input value is stored in
the local variable n.

Then we create a future object f. This future simply squares the input value
and fulfills the promise with this value. Finally, since we want to print the
output in its own time, we force an anonymous future which simply prints
the output string as shown.

Note that this is very similar to the situation in an environment like Node,
where we pass callback functions to other functions with the understanding
that the callback will be called when the invoked function is done with its
work.

Finally note that the following snippet is still fine (even if it uses the
blocking lparallel:force call because it’s on a separate thread):

To summarise, the general idiom of usage is: define objects which will
hold the results of asynchronous computations in promises, and use

 (f (future
 (sleep (random 10))
 (fulfill p (* n n))
 (force (future
 (format stream "Square of ~d = ~d~%"
 n (force p)))))))
 (loop
 when (fulfilledp f)
 do (return)
 do (sleep (* 0.01 (random 100))))))

LPARALLEL-USER> (callback-promise-future-demo)
Enter a number: 19
Square of 19 = 361
NIL

(force (future
(format stream "Square of ~d = ~d~%" n (force p))))

futures to fulfill those promises.

Using cognates - parallel equivalents of Common Lisp
counterparts

Cognates are arguably the raison d’etre of the lparallel library. These
constructs are what truly provide parallelism in the lparallel. Note, however,
that most (if not all) of these constructs are built on top of futures and
promises.

To put it in a nutshell, cognates are simply functions that are intended to be
the parallel equivalents of their Common Lisp counterparts. However, there
are a few extra lparallel cognates that have no Common Lisp equivalents.

At this juncture, it is important to know that cognates come in two basic
flavours:

Constructs for fine-grained parallelism: defpun, plet, plet-if, etc.
Explicit functions and macros for performing parallel operations -
pmap, preduce, psort, pdotimes, etc.

In the first case we don’t have much explicit control over the operations
themselves. We mostly rely on the fact that the library itself will optimise
and parallelise the forms to whatever extent it can. In this post, we will
focus on the second category of cognates.

Take, for instance, the cognate function lparallel:pmap is exactly the
same as the Common Lisp equivalent, map, but it runs in parallel. Let’s
demonstrate that through an example.

Suppose we had a list of random strings of length varying from 3 to 10, and
we wished to collect their lengths in a vector.

Let’s first set up the helper functions that will generate the random strings:

(defvar *chars*
 (remove-duplicates
 (sort
 (loop for c across "The quick brown fox jumps over the lazy

And here’s how the Common Lisp map version of the solution might look
like:

And let’s have a test run:

And here’s the lparallel:pmap equivalent:

which produces:

As you can see from the definitions of test-map and test-pmap, the syntax
of the lparallel:map and lparallel:pmap functions are exactly the same
(well, almost - lparallel:pmap has a few more optional arguments).

(p q j p y
 when (alpha-char-p c)
 collect (char-downcase c))
 #'char<)))

(defun get-random-strings (&optional (count 100000))

 "generate random strings between lengths 3 and 10"
 (loop repeat count
 collect
 (concatenate 'string (loop repeat (+ 3 (random 8))
 collect (nth (random 26) *chars*)))))

;;; map demo
(defun test-map ()
 (map 'vector #'length (get-random-strings 100)))

LPARALLEL-USER> (test-map)
#(7 5 10 8 7 5 3 4 4 10)

;;;pmap demo
(defun test-pmap ()
 (pmap 'vector #'length (get-random-strings 100)))

LPARALLEL-USER> (test-pmap)
#(8 7 6 7 6 4 5 6 5 7)
LPARALLEL-USER>

Some useful cognate functions and macros (all of them are functions except
when marked so explicitly. Note that there are quite a few cognates, and I
have chosen a few to try and represent every category through an example:

lparallel:pmap: parallel version of map.

Note that all the mapping functions (lparallel:pmap,
lparallel:pmapc,lparallel:pmapcar, etc.) take two special keyword
arguments:

:size, specifying the number of elements of the input sequence(s) to
process.
:parts which specifies the number of parallel parts to divide the
sequence(s) into.

Sample run:

lparallel:por: parallel version of or.

The behaviour is that it returns the first non-nil element amongst its
arguments. However, due to the parallel nature of this macro, that element
varies.

 ;;; pmap - function
 (defun test-pmap ()
 (let ((numbers (loop for i below 10
 collect i)))
 (pmap 'vector (lambda (x)
 (* x x))
 :parts (length numbers)
 numbers)))

 LPARALLEL-USER> (test-pmap)

 #(0 1 4 9 16 25 36 49 64 81)

 ;;; por - macro
 (defun test-por ()
 (let ((a 100)

Sample run:

In the case of the normal or operator, it would always have returned the first
non-nil element viz. 100.

lparallel:pdotimes: parallel version of dotimes.

Note that this macro also take an optional :parts argument.

Sample run:

 (b 200)
 (c nil)
 (d 300))
 (por a b c d)))

 LPARALLEL-USER> (dotimes (i 10)
 (print (test-por)))

 300
 300
 100
 100
 100
 300
 100
 100
 100
 100
 NIL

 ;;; pdotimes - macro
 (defun test-pdotimes ()
 (pdotimes (i 5)
 (declare (ignore i))
 (print (random 100))))

 LPARALLEL-USER> (test-pdotimes)

 39
 29

lparallel:pfuncall: parallel version of funcall.

Sample run:

lparallel:preduce: parallel version of reduce.

This very important function also takes two optional keyword arguments:
:parts (same meaning as explained), and :recurse. If :recurse is non-nil,
it recursively applies lparallel:preduce to its arguments, otherwise it
default to using reduce.

Sample run:

 81
 42
 56
 NIL

 ;;; pfuncall - macro
 (defun test-pfuncall ()
 (pfuncall #'* 1 2 3 4 5))

 LPARALLEL-USER> (test-pfuncall)

 120

 ;;; preduce - function
 (defun test-preduce ()
 (let ((numbers (loop for i from 1 to 100
 collect i)))
 (preduce #'+
 numbers
 :parts (length numbers)
 :recurse t)))

 LPARALLEL-USER> (test-preduce)

 5050

lparallel:premove-if-not: parallel version of remove-if-not.

This is essentially equivalent to “filter” in Functional Programming
parlance.

Sample run:

lparallel:pevery: parallel version of every.

Sample run:

In this example, we are performing two checks - firstly, whether all the
numbers in the range [1,100] are even, and secondly, whether all the
numbers in the same range are integers.

lparallel:count: parallel version of count.

 ;;; premove-if-not
 (defun test-premove-if-not ()
 (let ((numbers (loop for i from 1 to 100
 collect i)))
 (premove-if-not #'evenp numbers)))

 LPARALLEL-USER> (test-premove-if-not)

 (2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94

 ;;; pevery - function
 (defun test-pevery ()
 (let ((numbers (loop for i from 1 to 100
 collect i)))
 (list (pevery #'evenp numbers)
 (pevery #'integerp numbers))))

 LPARALLEL-USER> (test-pevery)

 (NIL T)

Sample run:

lparallel:psort: parallel version of sort.

Sample run:

 ;;; pcount - function
 (defun test-pcount ()
 (let ((chars "The quick brown fox jumps over the lazy dog"
 (pcount #\e chars)))

 LPARALLEL-USER> (test-pcount)

 3

 ;;; psort - function
 (defstruct person
 name
 age)

 (defun test-psort ()
 (let* ((names (list "Peter" "Sybil" "Basil" "Candy" "Olga"
 (people (loop for name in names
 collect (make-person :name name
 :age (+ (random 20)
 20)))))
 (print "Before sorting...")
 (print people)
 (fresh-line)
 (print "After sorting...")
 (psort
 people
 (lambda (x y)
 (< (person-age x)
 (person-age y)))
 :test #'=)))

 LPARALLEL-USER> (test-psort)

 "Before sorting..."

In this example, we first define a structure of type person for storing
information about people. Then we create a list of 7 people with randomly
generated ages (between 20 and 39). Finally, we sort them by age in non-
decreasing order.

Error handling

To see how lparallel handles error handling (hint: with lparallel:task-
handler-bind), please read lparallel-error-handling.

Monitoring and controlling threads with Slime

M-x slime-list-threads (you can also access it through the slime-selector,
shortcut t) will list running threads by their names, and their statuses.

The thread on the current line can be killed with k, or if there’s a lot of
threads to kill, several lines can be selected and k will kill all the threads in
the selected region.

g will update the thread list, but when you have a lot of threads starting and
stopping it may be too cumbersome to always press g, so there’s a variable
slime-threads-update-interval, when set to a number X the thread list
will be automatically updated each X seconds, a reasonable value would be
0.5.

Thanks to Slime tips.

References

 (#S(PERSON :NAME "Peter" :AGE 24) #S(PERSON :NAME "Sybil" :A
 #S(PERSON :NAME "Basil" :AGE 22) #S(PERSON :NAME "Candy" :A
 #S(PERSON :NAME "Olga" :AGE 33))

 "After sorting..."
 (#S(PERSON :NAME "Sybil" :AGE 20) #S(PERSON :NAME "Basil" :A
 #S(PERSON :NAME "Candy" :AGE 23) #S(PERSON :NAME "Peter" :A
 #S(PERSON :NAME "Olga" :AGE 33))

https://z0ltan.wordpress.com/2016/09/10/basic-concurrency-and-parallelism-in-common-lisp-part-4b-parallelism-using-lparallel-error-handling/
https://slime-tips.tumblr.com/

There are, of course, a lot more functions, objects, and idiomatic ways of
performing parallel computations using the lparallel library. This post
barely scratches the surface on those. However, the general flow of
operation is amply demonstrated here, and for further reading, you may find
the following resources useful:

The official homepage of the lparallel library, including documentation
The Common Lisp Hyperspec, and, of course
Your Common Lisp implementation’s manual. For SBCL, here is a
link to the official manual
Common Lisp recipes by the venerable Edi Weitz.
more concurrency and threading libraries on the Awesome-
cl#parallelism-and-concurrency list.

https://lparallel.org/
https://www.lispworks.com/documentation/HyperSpec/Front/
http://www.sbcl.org/manual/
http://weitz.de/cl-recipes/
https://github.com/CodyReichert/awesome-cl#parallelism-and-concurrency

Defining Systems
A system is a collection of Lisp files that together constitute an application
or a library, and that should therefore be managed as a whole. A system
definition describes which source files make up the system, what the
dependencies among them are, and the order they should be compiled and
loaded in.

ASDF

ASDF is the standard build system for Common Lisp. It is shipped in most
Common Lisp implementations. It includes UIOP, “the Utilities for
Implementation- and OS- Portability”. You can read its manual and the
tutorial and best practices.

Simple examples

Loading a system definition

When you start your Lisp, it knows about its internal modules and, by
default, it has no way to know that your shiny new project is located under
your ~/code/foo/bar/new-ideas/ directory. So, in order to load your
project in your image, you have one of three ways:

use ASDF or Quicklisp defaults
configure where ASDF or Quicklisp look for project definitions
load your project definition explicitely.

Please read our section on the getting started#how-to-load-an-existing-
project page.

Loading a system

https://gitlab.common-lisp.net/asdf/asdf
https://gitlab.common-lisp.net/asdf/asdf/blob/master/uiop/README.md
https://common-lisp.net/project/asdf/asdf.html
https://gitlab.common-lisp.net/asdf/asdf/blob/master/doc/best_practices.md
https://lispcookbook.github.io/cl-cookbook/getting-started.html#how-to-load-an-existing-project

Once your Lisp knows what your system is and where it lives, you can load
it.

The most trivial use of ASDF is by calling asdf:load-system to load your
library. Then you can use it. For instance, if it exports a function some-fun
in its package foobar, then you will be able to call it with (foobar:some-
fun ...) or with:

You can also use Quicklisp.

Quicklisp calls ASDF under the hood, with the advantage that it will
download and install any dependency if they are not already installed.

Also, you can use SLIME to load a system, using the M-x slime-load-
system Emacs command or the , load-system comma command in the
prompt. The interesting thing about this way of doing it is that SLIME
collects all the system warnings and errors in the process, and puts them in
the *slime-compilation* buffer, from which you can interactively inspect
them after the loading finishes.

Testing a system

To run the tests for a system, you may use:

The convention is that an error SHOULD be signalled if tests are
unsuccessful.

Designating a system

(in-package :foobar)
(some-fun ...)

(ql:quickload "foobar")
;; =>
;; installs all dependencies
;; and loads the system.

(asdf:test-system :foobar)

The proper way to designate a system in a program is with lower-case
strings, not symbols, as in:

How to write a trivial system definition

A trivial system would have a single Lisp file called foobar.lisp, located
at the project’s root. That file would depend on some existing libraries, say
alexandria for general purpose utilities, and trivia for pattern-matching.
To make this system buildable using ASDF, you create a system definition
file called foobar.asd, with the following contents:

Note how the type lisp of foobar.lisp is implicit in the name of the file
above. As for contents of that file, they would look like this:

Instead of using multiple complete packages, you might want to just import
parts of them:

(asdf:load-system "foobar")
(asdf:test-system "foobar")

(asdf:defsystem "foobar"
 :depends-on ("alexandria" "trivia")
 :components ((:file "foobar")))

(defpackage :foobar
 (:use :common-lisp :alexandria :trivia)
 (:export
 #:some-function
 #:another-function
 #:call-with-foobar
 #:with-foobar))

(in-package :foobar)

(defun some-function (...)
 ...)
...

(defpackage :foobar
 (:use #:common-lisp)

Using the system you defined

Assuming your system is installed under ~/common-lisp/,
~/quicklisp/local-projects/ or some other filesystem hierarchy already
configured for ASDF, you can load it with: (asdf:load-system
"foobar").

If your Lisp was already started when you created that file, you may have
to, either:

load the new .asd file: (asdf:load-asd "path/to/foobar.asd"), or
with C-c C-k in Slime to compile and load the whole file.

note: avoid using the built-in load for ASDF files, it may work
but asdf:load-asd is preferred.

(asdf:clear-configuration) to re-process the configuration.

How to write a trivial testing definition

Even the most trivial of systems needs some tests, if only because it will
have to be modified eventually, and you want to make sure those
modifications don’t break client code. Tests are also a good way to
document expected behavior.

The simplest way to write tests is to have a file foobar-tests.lisp and
modify the above foobar.asd as follows:

 (:import-from #:alexandria
 #:some-function
 #:another-function))
 (:import-from #:trivia
 #:some-function
 #:another-function))
...)

(asdf:defsystem "foobar"
 :depends-on ("alexandria" "trivia")
 :components ((:file "foobar"))
 :in-order-to ((test-op (test-op "foobar/tests"))))

The :in-order-to clause in the first system allows you to use (asdf:test-
system :foobar) which will chain into foobar/tests. The :perform
clause in the second system does the testing itself.

In the test system, fiveam is the name of a popular test library, and the
content of the perform method is how to invoke this library to run the test
suite :foobar. Obvious YMMV if you use a different library.

Create a project skeleton

cl-project can be used to generate a project skeleton. It will create a default
ASDF definition, generate a system for unit testing, etc.

Install with

(ql:quickload “cl-project”)

Create a project:

And you’re done.

(asdf:defsystem "foobar/tests"
 :depends-on ("foobar" "fiveam")
 :components ((:file "foobar-tests"))
 :perform (test-op (o c) (symbol-call :fiveam '#:run! :foobar

(cl-project:make-project #p"lib/cl-sample/"
:author "Eitaro Fukamachi"
:email "e.arrows@gmail.com"
:license "LLGPL"
:depends-on '(:clack :cl-annot))
;-> writing /Users/fukamachi/Programs/lib/cl-sample/.gitignore
; writing /Users/fukamachi/Programs/lib/cl-sample/README.markd
; writing /Users/fukamachi/Programs/lib/cl-sample/cl-sample-te
; writing /Users/fukamachi/Programs/lib/cl-sample/cl-sample.as
; writing /Users/fukamachi/Programs/lib/cl-sample/src/hogehoge
; writing /Users/fukamachi/Programs/lib/cl-sample/t/hogehoge.l
;=> T

https://github.com/fukamachi/cl-project

Debugging
You entered this new world of Lisp and now wonder: how can we debug what’s
going on? How is it more interactive than other platforms? What does the
interactive debugger bring, apart from stack traces?

Print debugging

Well of course we can use the famous technique of “print debugging”. Let’s just
recap a few print functions.

print works, it prints a readable representation of its argument, which means
what is printed can be read back in by the Lisp reader. It accepts only one
argument.

princ focuses on an aesthetic representation.

(format t "~a" …), with the aesthetic directive, prints a string (in t, the
standard output stream) and returns nil, whereas format nil … doesn’t print
anything and returns a string. With many format controls we can print several
variables at once.

print has this useful debugging feature that it prints and returns the result form it
was given as argument. You can intersperse print statements in the middle of
your algorithm, it won’t break it.

Logging

Logging is already a good evolution from print debugging ;)

log4cl is the popular, de-facto logging library although it isn’t the only one.
Download it:

and let’s have a dummy variable:

(+ 2 (print 40))

(ql:quickload "log4cl")

https://github.com/sharplispers/log4cl/

We can use log4cl with its log nickname, then it is as simple to use as:

We can interleave strings and expressions, with or without format control strings:

With its companion library log4slime, we can interactively change the log level:

globally
per package
per function
and by CLOS methods and CLOS hierarchy (before and after methods)

It is very handy, when we have a lot of output, to turn off the logging of functions
or packages we know to work, and thus narrowing our search to the right area.
We can even save this configuration and re-use it in another image, be it on
another machine.

We can do all this through commands, keyboard shortcuts and also through a
menu or mouse clicks.

(defvar *foo* '(:a :b :c))

(log:info *foo*)
;; <INFO> [13:36:49] cl-user () - *FOO*: (:A :B :C)

(log:info "foo is " *foo*)
;; <INFO> [13:37:22] cl-user () - foo is *FOO*: (:A :B :C)
(log:info "foo is ~{~a~}" *foo*)
;; <INFO> [13:39:05] cl-user () - foo is ABC

“changing the log level with log4slime”

We invite you to read log4cl’s README.

Using the powerful REPL

Part of the joy of Lisp is the excellent REPL. Its existence usually delays the need
to use other debugging tools, if it doesn’t annihilate them for the usual routine.

As soon as we define a function, we can try it in the REPL. In Slime, compile a
function with C-c C-c (the whole buffer with C-c C-k), switch to the REPL with
C-c C-z and try it. Eventually enter the package you are working on with (in-
package :your-package) or C-c ~ (slime-sync-package-and-default-
directory, which will also change the default working directory to the package
definition’s directory).

The feedback is immediate. There is no need to recompile everything, nor to
restart any process, nor to create a main function and define command line
arguments for use in the shell (which we can of course do later on when needed).

We usually need to create some data to test our function(s). This is a subsequent
art of the REPL existence and it may be a new discipline for newcomers. A trick
is to write the test data alongside your functions but below a #+nil feature test (or
safer, +(or): it is still possible that someone pushed NIL to the *features* list)
so that only you can manually compile them:

When you load this file, *test-data* won’t exist, but you can manually create it
with C-c C-c.

We can define tests functions like this.

Some do similarly inside #| … |# comments.

All that being said, keep in mind to write unit tests when time comes ;)

Inspect and describe

These two commands share the same goal, printing a description of an object,
inspect being the interactive one.

(inspect *foo*)

The object is a proper list of length 3.
0. 0: :A
1. 1: :B

2. 2: :C
> q

We can also, in editors that support it, right-click on any object in the REPL and
inspect them (or C-c I on the object to inspect in Slime). We are presented a
screen where we can dive deep inside the data structure and even change it.

Let’s have a quick look with a more interesting structure, an object:

We right-click on the #<FOO object and choose “inspect”. We are presented an
interactive pane (in Slime):

#+nil
(progn
 (defvar *test-data* nil)
 (setf *test-data* (make-instance 'foo …)))

(defclass foo ()
 ((a :accessor foo-a :initform '(:a :b :c))
 (b :accessor foo-b :initform :b)))

;; #<STANDARD-CLASS FOO>
(make-instance 'foo)
;; #<FOO {100F2B6183}>

“Slime’s inspector, a textual window with buttons”

When we click or press enter on the line of slot A, we inspect it further:

#<CONS {100F5E2A07}>
 --
A proper list:
0: :A
1: :B
2: :C

In LispWorks, we can use a graphical inspector:

“The LispWorks inspector window”

Trace

trace allows us to see when a function was called, what arguments it received, and
the value it returned.

To start tracing a function, just call trace with the function name (or several
function names):

To untrace all functions, just evaluate (untrace).

To get a list of currently traced functions, evaluate (trace) with no arguments.

In Slime we have the shortcut C-c M-t to trace or untrace a function.

If you don’t see recursive calls, that may be because of the compiler’s
optimizations. Try this before defining the function to be traced:

The output is printed to *trace-output* (see the CLHS).

In Slime, we also have an interactive trace dialog with M-x slime-trace-dialog
bound to C-c T.

Trace options

(defun factorial (n)
 (if (plusp n)
 (* n (factorial (1- n)))
 1))

(trace factorial)

(factorial 2)
 0: (FACTORIAL 3)
 1: (FACTORIAL 2)
 2: (FACTORIAL 1)
 3: (FACTORIAL 0)
 3: FACTORIAL returned 1
 2: FACTORIAL returned 1
 1: FACTORIAL returned 2
 0: FACTORIAL returned 6

6

(untrace factorial)

(declaim (optimize (debug 3))) ;; or C-u C-c C-c to compile with max

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

trace accepts options. For example, you can use :break t to invoke the
debugger at the start of the function, before it is called (more on break below):

We can define many things in one call to trace. For instance, options that appear
before the first function name to trace are global, they affect all traced functions
that we add afterwards. Here, :break t is set for every function that follows:
factorial, foo and bar:

On the contrary, if an option comes after a function name, it acts as a local option,
only for its preceding function. That’s how we first did. Below foo and bar come
after, they are not affected by :break:

But do you actually want to break before the function call or just after it? With
:break as with many options, you can choose. These are the options for :break:

:break form ;; before
:break-after form
:break-all form ;; before and after

form can be any form that evaluates to true.

Note that we explained the trace function of SBCL. Other implementations may
have the same feature with another syntax and other option names. For example,
in LispWorks it is “:break-on-exit” instead of “:break-after”, and we write (trace
(factorial :break t)).

Below are some other options but first, a trick with :break.

Trace options: break

The argument to an option can be any form. Here’s a trick, on SBCL, to get the
break window when we are about to call factorial with 0. (sb-debug:arg 0)
refers to n, the first argument.

(trace factorial :break t)
(factorial 2)

(trace :break t factorial foo bar)

(trace factorial :break t foo bar)

CL-USER> (trace factorial :break (equal 0 (sb-debug:arg 0)))
;; WARNING: FACTORIAL is already TRACE'd, untracing it first.

Running it again:

CL-USER> (factorial 3)
 0: (FACTORIAL 3)
 1: (FACTORIAL 2)
 2: (FACTORIAL 1)
 3: (FACTORIAL 0)

breaking before traced call to FACTORIAL:
 [Condition of type SIMPLE-CONDITION]

Restarts:
 0: [CONTINUE] Return from BREAK.
 1: [RETRY] Retry SLIME REPL evaluation request.
 2: [*ABORT] Return to SLIME's top level.
 3: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING
{1003551BC3}>)

Backtrace:
 0: (FACTORIAL 1)
 Locals:
 N = 1 <---------- before calling (factorial 0), n equals
1.

Trace options: trace on conditions, trace if called from another
function

:condition enables tracing only if the condition in form evaluates to true.

:condition form
:condition-after form
:condition-all form

If :condition is specified, then trace does nothing unless Form evaluates to
true at the time of the call. :condition-after is similar, but suppresses the
initial printout, and is tested when the function returns. :condition-all tries
both before and after.

:wherein can be super useful:

:wherein Names

If specified, Names is a function name or list of names. trace does nothing
unless a call to one of those functions encloses the call to this function (i.e. it

;; (FACTORIAL)

would appear in a backtrace.) Anonymous functions have string names like
“DEFUN FOO”.

:report Report-Type

If Report-Type is trace (the default) then information is reported by printing
immediately. If Report-Type is nil, then the only effect of the trace is to
execute other options (e.g. print or break). Otherwise, Report-Type is treated
as a function designator and, for each trace event, funcalled with 5
arguments: trace depth (a non-negative integer), a function name or a
function object, a keyword (:enter, :exit or :non-local-exit), a stack frame,
and a list of values (arguments or return values).

See also :print to enrich the trace output.

It is expected that implementations extend trace with non-standard options. And
we didn’t list all available options, so please refer to your implementation’s
documentation:

SBCL trace
CCL trace
LispWorks trace
Allegro trace

Tracing method invocation

In SBCL, we can use (trace foo :methods t) to trace the execution order of
method combination (before, after, around methods). For example:

(trace foo :methods t)

(foo 2.0d0)
 0: (FOO 2.0d0)
 1: ((SB-PCL::COMBINED-METHOD FOO) 2.0d0)
 2: ((METHOD FOO (FLOAT)) 2.0d0)
 3: ((METHOD FOO (T)) 2.0d0)
 3: (METHOD FOO (T)) returned 3
 2: (METHOD FOO (FLOAT)) returned 9
 2: ((METHOD FOO :AFTER (DOUBLE-FLOAT)) 2.0d0)
 2: (METHOD FOO :AFTER (DOUBLE-FLOAT)) returned DOUBLE
 1: (SB-PCL::COMBINED-METHOD FOO) returned 9

http://www.sbcl.org/manual/index.html#Function-Tracing
https://ccl.clozure.com/manual/chapter4.2.html
http://www.lispworks.com/documentation/lw80/lw/lw-tracer-ug-2.htm
https://franz.com/support/documentation/current/doc/debugging.htm#tracer-1

It is also possible in CCL.

See the CLOS section for a tad more information.

The interactive debugger

Whenever an exceptional situation happens (see error handling), or when you ask
for it (using step or break), the interactive debugger pops up.

It presents the error message, the available actions (restarts), and the backtrace. A
few remarks:

the restarts are programmable, we can create our own.
in Slime, press v on a stack trace frame to view the corresponding source file
location.
hit Enter (or t) on a frame to toggle more details,
use e to evaluate some code from within that frame,
hit r to restart a given frame (see below).
we can explore the functionality with the menu that should appear in our
editor.

Compile with maximum debugging information

Usually your compiler will optimize things out and this will reduce the amount of
information available to the debugger. For example sometimes we can’t see
intermediate variables of computations. We can change the optimization choices
with:

and recompile our code. You can achieve the same with a handy shortcut: C-u C-
c C-c: the form is compiled with maximum debug settings. You can on the
contrary use a negative prefix argument (M--) to compile for speed. And use a
numeric argument to set the setting to it (you should read the docstring of slime-
compile-defun).

Step

 0: FOO returned 9
9

(declaim (optimize (speed 0) (space 0) (debug 3)))

step is an interactive command with similar scope than trace. This:

gives an interactive pane with available actions (restarts) and the backtrace:

Evaluating call:
 (FACTORIAL 3)
With arguments:
 3
 [Condition of type SB-EXT:STEP-FORM-CONDITION]

Restarts:
 0: [STEP-CONTINUE] Resume normal execution <---------- stepping
actions
 1: [STEP-OUT] Resume stepping after returning from this function
 2: [STEP-NEXT] Step over call
 3: [STEP-INTO] Step into call
 4: [RETRY] Retry SLIME REPL evaluation request.
 5: [*ABORT] Return to SLIME's top level.
 --more--

Backtrace:
 0: (FACTORIAL 3) <----------- press Enter to fold/unfold.
 Locals:
 N = 3 <----------- want to check? Move the point
here and
 press "e" to evaluate code on
that frame.

 1: (SB-INT:SIMPLE-EVAL-IN-LEXENV (LET ((SB-IMPL::*STEP-OUT*
:MAYBE)) (UNWIND-PROTECT (SB-IMPL::WITH-STEPPING-ENABLED #))) #S(SB-
KERNEL:LEXENV :FUNS NIL :VARS NIL :BLOCKS NIL :TAGS NIL :TYPE-
RESTRICTIONS ..
 2: (SB-INT:SIMPLE-EVAL-IN-LEXENV (STEP (FACTORIAL 3)) #<NULL-
LEXENV>)
 3: (EVAL (STEP (FACTORIAL 3)))
 --more--

(again, be sure you compiled your function with maximum debug settings (see
above). Otherwise, your compiler might do optimizations under the hood and you
might not see useful information such as local variables, or you might not be able
to step at all.)

You have many options here. If you are using Emacs (or any other editor
actually), keep in mind that you have a “SLDB” menu that shows you the

;; note: we copied factorial over to a file, to have more debug infor
(step (factorial 3))

http://www.lispworks.com/documentation/HyperSpec/Body/m_step.htm

available actions, in addition to the step window.

follow the restarts to continue stepping: continue the execution, step out of
this function, step into the function call the point is on, step over to the next
function call, or abort everything. The shortcuts are:

c: continue
s: step
x: step next
o: step out

inspect the backtrace and the source code. You can go to the source file
with v, on each stackframe (each line of the backtrace). Press Enter or t
(“toggle details”) on the stackframe to see more information, such as the
function parameters for this call. Use n and p to navigate, use M-n and M-p to
navigate to the next or previous stackframe and to open the corresponding
source file at the same time. The point will be placed on the function being
called.

evaluate code from within the context of that stackframe. In Slime, use e
(“eval in frame” and d to pretty-pint the result) and type a Lisp form. It will
be executed in the context of the stackframe the point is on. Look, you can
even inspect variables and have Slime open another inspector window. If
you are on the first frame (0:), press i, then “n” to inspect the intermediate
variable.

resume execution from where you want. Use r to restart the frame the point
is on. For example, go change the source code (without quitting the
interactive debugger), re-compile it, re-run the frame to see if it works better.
You didn’t restart all the program execution, you just restarted your program
from a precise point. Use R to return from a stackframe, by giving its return
value.

NB: let’s think about it, this is awesome! We just restarted our program from any
point in time. If we work with long-running computations, we don’t need to
restart it from the start. We can change, re-compile our erroneous code and
resume execution from where it is needed to pass, no more.

Stepping is precious. However, if you find yourself inspecting the behaviour of a
function a lot, it may be a sign that you need to simplify it and divide it in smaller
pieces.

And again, LispWorks has a graphical stepper.

Resume a program execution from anywhere in the stack

In this video you will find a demo that shows the process explained above: how to
fix a buggy function and how to resume the program execution from anywhere in
the stack, without running everything from zero again. The video shows it with
Emacs and Slime, the Lem editor, both with SBCL.

Break

A call to break makes the program enter the debugger, from which we can inspect
the call stack, and do everything described above in the stepper.

Breakpoints in Slime

Look at the SLDB menu, it shows navigation keys and available actions. Of which:

e (sldb-eval-in-frame) prompts for an expression and evaluates it in the
selected frame. This is how we can explore our intermediate variables
d is similar with the addition of pretty printing the result

Once we are in a frame and detect a suspicious behavior, we can even re-compile
a function at runtime and resume the program execution from where it stopped
(using the “step-continue” restart or using r (“restart frame”) on a given
stackframe).

See also the Slime-star Emacs extension to set breakpoints without code
annotations.

Advise and watch

advise and watch are available in some implementations, like CCL (advise and
watch) and LispWorks. They do exist in SBCL but are not exported. advise
allows to modify a function without changing its source, or to do something
before or after its execution, similar to CLOS method combination (before, after,
around methods).

https://www.youtube.com/watch?v=jBBS4FeY7XM
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm
https://github.com/mmontone/slime-star
https://ccl.clozure.com/manual/chapter4.3.html#Advising
https://ccl.clozure.com/manual/chapter4.12.html#watched-objects

watch will signal a condition when a thread attempts to write to an object being
watched. It can be coupled with the display of the watched objects in a GUI. For a
certain class of bugs (someone is changing this value, but I don’t know who), this
can be extremely helpful.

Cross-referencing

Your Lisp can tell you all the places where a function is referenced or called,
where a global variable is set, where a macro is expanded, and so on. For
example, slime-who-calls (C-c C-w C-c or the Slime > Cross-Reference menu)
will show you all the places where a function is called.

See our Emacs page for a complete list of commands.

SLY stepper and SLY stickers

SLY has an improved stepper and a unique feature, stickers. You mark a piece of
code, you run your code, SLY captures the results for each sticker and lets you
examine the program execution interactively. It allows to see what sticker was
captured, or not, so we can see at a glance the code coverage of that function call.

They are a non-intrusive alternative to print and break.

Unit tests

Last but not least, automatic testing of functions in isolation might be what you’re
looking for! See the testing section and a list of test frameworks and libraries.

Remote debugging

You can have your software running on a machine over the network, connect to it
and debug it from home, from your development environment.

The steps involved are to start a Swank server on the remote machine (Swank is
the backend companion of Slime), create an ssh tunnel and connect to the Swank
server from our editor. Then we can browse and evaluate code on the running
instance transparently.

https://github.com/joaotavora/sly-stepper
https://joaotavora.github.io/sly/#Stickers
https://github.com/CodyReichert/awesome-cl#unit-testing

To test this, let’s define a function that prints forever.

If needed, import the dependencies first:

On the server, we can run this code with

sbcl –load demo.lisp

If you check with (bt:all-threads), you’ll see your Swank server running on
port 4006, as well as the other thread ready to do stuff:

(#<SB-THREAD:THREAD “do-stuff” RUNNING {10027CEDC3}> #<SB-
THREAD:THREAD “Swank Sentinel” waiting on: #<WAITQUEUE
{10027D0003}> {10027CE8B3}> #<SB-THREAD:THREAD “Swank 4006”
RUNNING {10027CEB63}> #<SB-THREAD:THREAD “main thread”
RUNNING {1007C40393}>)

(ql:quickload '("swank" "bordeaux-threads"))

;; a little common lisp swank demo
;; while this program is running, you can connect to it from
;; another terminal or machine
;; and change the definition of doprint to print something else out!

(require :swank)
(require :bordeaux-threads)

(defparameter *counter* 0)

(defun dostuff ()
 (format t "hello world ~a!~%" *counter*))

(defun runner ()
 (swank:create-server :port 4006)
 (format t "we are past go!~%")
 (bt:make-thread (lambda ()
 (loop repeat 5 do
 (sleep 5)
 (dostuff)
 (incf *counter*)))
 :name "do-stuff"))

(runner)

We do port forwarding on our development machine:

ssh -L4006:127.0.0.1:4006 username@example.com

this will securely forward port 4006 on the server at example.com to our local
computer’s port 4006 (Swank only accepts connections from localhost).

We connect to the running Swank with M-x slime-connect, choosing localhost
for the host and port 4006.

We can write new code:

and eval it as usual with C-c C-c or M-x slime-eval-region for instance. The
output should change.

That’s how Ron Garret debugged the Deep Space 1 spacecraft from the earth in
1999:

We were able to debug and fix a race condition that had not shown up during
ground testing. (Debugging a program running on a $100M piece of
hardware that is 100 million miles away is an interesting experience. Having
a read-eval-print loop running on the spacecraft proved invaluable in finding
and fixing the problem.

References

“How to understand and use Common Lisp”, chap. 30, David Lamkins
(book download from author’s site)
Malisper: debugging Lisp series
Two Wrongs: debugging Common Lisp in Slime
Slime documentation: connecting to a remote Lisp
cvberrycom: remotely modifying a running Lisp program using Swank
Ron Garret: Lisping at the JPL
the Remote Agent experiment: debugging code from 60 million miles away
(youtube) (“AMA” on reddit)

(defun dostuff ()
 (format t "goodbye world ~a!~%" *counter*))

(setf *counter* 0)

https://successful-lisp.blogspot.com/p/httpsdrive.html
https://malisper.me/debugging-lisp-part-1-recompilation/
https://two-wrongs.com/debugging-common-lisp-in-slime.html
https://common-lisp.net/project/slime/doc/html/Connecting-to-a-remote-lisp.html#Connecting-to-a-remote-lisp
http://cvberry.com/tech_writings/howtos/remotely_modifying_a_running_program_using_swank.html
http://www.flownet.com/gat/jpl-lisp.html#1994-1999%20-%20Remote%20Agent
https://www.youtube.com/watch?v=_gZK0tW8EhQ&feature=youtu.be&t=4175
https://www.reddit.com/r/lisp/comments/a7156w/lisp_and_the_remote_agent/

Performance Tuning and Tips
Many Common Lisp implementations translate the source code into
assembly language, so the performance is really good compared with some
other interpreted languages.

However, sometimes we just want the program to be faster. This chapter
introduces some techniques to squeeze the CPU power out.

Finding Bottlenecks

Acquiring Execution Time

The macro time is very useful for finding out bottlenecks. It takes a form,
evaluates it and prints timing information in *trace-output*, as shown
below:

By using the time macro it is fairly easy to find out which part of your
program takes too much time.

Please note that the timing information provided here is not guaranteed to be
reliable enough for marketing comparisons. It should only be used for tuning

* (defun collect (start end)
 "Collect numbers [start, end] as list."
 (loop for i from start to end
 collect i))

* (time (collect 1 10))

Evaluation took:
 0.000 seconds of real time
 0.000001 seconds of total run time (0.000001 user, 0.000000 sys
 100.00% CPU
 3,800 processor cycles
 0 bytes consed

http://www.lispworks.com/documentation/lw51/CLHS/Body/m_time.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/v_debug_.htm#STtrace-outputST

purpose, as demonstrated in this chapter.

Know your Lisp’s statistical profiler

Implementations ship their own profilers. SBCL has sb-profile, a “classic,
per-function-call” deterministic profiler and sb-sprof, a statistical profiler.
The latter works by taking samples of the program execution at regular
intervals, instead of instrumenting functions like sb-profile:profile does.

You might find sb-sprof more useful than the deterministic profiler
when profiling functions in the common-lisp-package, SBCL internals,
or code where the instrumenting overhead is excessive.

Use flamegraphs and other tracing profilers

cl-flamegraph is a wrapper around SBCL’s statistical profiler to generate
FlameGraph charts. Flamegraphs are a very visual way to search for hotspots
in your code:

See also tracer, a tracing profiler for SBCL. Its output is suitable for display
in Chrome’s or Chromium’s Tracing Viewer (chrome://tracing).

Checking Assembly Code

The function disassemble takes a function and prints the compiled code of
it to *standard-output*. For example:

* (defun plus (a b)
 (+ a b))
PLUS

* (disassemble 'plus)
; disassembly for PLUS

http://www.sbcl.org/manual/#Deterministic-Profiler
http://www.sbcl.org/manual/#Statistical-Profiler
https://github.com/40ants/cl-flamegraph
https://github.com/TeMPOraL/tracer
http://www.lispworks.com/documentation/lw60/CLHS/Body/f_disass.htm

The code above was evaluated in SBCL. In some other implementations
such as CLISP, disassembly might return something different:

It is because SBCL compiles the Lisp code into machine code, while CLISP
does not.

Using Declare Expression

; Size: 37 bytes. Origin: #x52B8063B
; 3B: 498B5D60 MOV RBX, [R13+96] ; no-arg-parsing entry poi
 ; thread.binding-stack-poi
; 3F: 48895DF8 MOV [RBP-8], RBX
; 43: 498BD0 MOV RDX, R8
; 46: 488BFE MOV RDI, RSI
; 49: FF14250102 CALL QWORD PTR [#x52100] ; GENERIC-+
; 50: 488B75E8 MOV RSI, [RBP-24]
; 54: 4C8B45F0 MOV R8, [RBP-16]
; 58: 488BE5 MOV RSP, RBP
; 5B: F8 CLC
; 5C: 5D POP RBP
; 5D: C3 RET
; 5E: CC0F BREAK 15 ; Invalid argument count trap

* (defun plus (a b)
 (+ a b))
PLUS

* (disassemble 'plus)
Disassembly of function PLUS
2 required arguments
0 optional arguments
No rest parameter
No keyword parameters
4 byte-code instructions:
0 (LOAD&PUSH 2)
1 (LOAD&PUSH 2)
2 (CALLSR 2 55) ; +
5 (SKIP&RET 3)
NIL

The declare expression can be used to provide hints for compilers to perform
various optimization. Please note that these hints are implementation-
dependent. Some implementations such as SBCL support this feature, and
you may refer to their own documentation for detailed information. Here
only some basic techniques mentioned in CLHS are introduced.

In general, declare expressions can occur only at the beginning of the bodies
of certain forms, or immediately after a documentation string if the context
allows. Also, the content of a declare expression is restricted to limited
forms. Here we introduce some of them that are related to performance
tuning.

Please keep in mind that these optimization skills introduced in this section
are strongly connected to the Lisp implementation selected. Always check
their documentation before using declare!

Speed and Safety

Lisp allows you to specify several quality properties for the compiler using
the declaration optimize. Each quality may be assigned a value from 0 to 3,
with 0 being “totally unimportant” and 3 being “extremely important”.

The most significant qualities might be safety and speed.

By default, Lisp considers code safety to be much more important than
speed. But you may adjust the weight for more aggressive optimization.

* (defun max-original (a b)
 (max a b))
MAX-ORIGINAL

* (disassemble 'max-original)
; disassembly for MAX-ORIGINAL
; Size: 144 bytes. Origin: #x52D450EF
; 7A7: 8D46F1 lea eax, [rsi-15] ; no-arg
; 7AA: A801 test al, 1
; 7AC: 750E jne L0
; 7AE: 3C0A cmp al, 10
; 7B0: 740A jeq L0

http://www.lispworks.com/documentation/lw71/CLHS/Body/s_declar.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/d_optimi.htm

; 7B2: A80F test al, 15
; 7B4: 7576 jne L5
; 7B6: 807EF11D cmp byte ptr [rsi-15], 29
; 7BA: 7770 jnbe L5
; 7BC: L0: 8D43F1 lea eax, [rbx-15]
; 7BF: A801 test al, 1
; 7C1: 750E jne L1
; 7C3: 3C0A cmp al, 10
; 7C5: 740A jeq L1
; 7C7: A80F test al, 15
; 7C9: 755A jne L4
; 7CB: 807BF11D cmp byte ptr [rbx-15], 29
; 7CF: 7754 jnbe L4
; 7D1: L1: 488BD3 mov rdx, rbx
; 7D4: 488BFE mov rdi, rsi
; 7D7: B9C1030020 mov ecx, 536871873 ; generic->
; 7DC: FFD1 call rcx
; 7DE: 488B75F0 mov rsi, [rbp-16]
; 7E2: 488B5DF8 mov rbx, [rbp-8]
; 7E6: 7E09 jle L3
; 7E8: 488BD3 mov rdx, rbx
; 7EB: L2: 488BE5 mov rsp, rbp
; 7EE: F8 clc
; 7EF: 5D pop rbp
; 7F0: C3 ret
; 7F1: L3: 4C8BCB mov r9, rbx
; 7F4: 4C894DE8 mov [rbp-24], r9
; 7F8: 4C8BC6 mov r8, rsi
; 7FB: 4C8945E0 mov [rbp-32], r8
; 7FF: 488BD3 mov rdx, rbx
; 802: 488BFE mov rdi, rsi
; 805: B929040020 mov ecx, 536871977 ; generic-=
; 80A: FFD1 call rcx
; 80C: 4C8B45E0 mov r8, [rbp-32]
; 810: 4C8B4DE8 mov r9, [rbp-24]
; 814: 488B75F0 mov rsi, [rbp-16]
; 818: 488B5DF8 mov rbx, [rbp-8]
; 81C: 498BD0 mov rdx, r8
; 81F: 490F44D1 cmoveq rdx, r9
; 823: EBC6 jmp L2
; 825: L4: CC0A break 10 ; error trap
; 827: 04 byte #X04
; 828: 13 byte #X13 ; OBJECT-NOT-REAL-ER

; 829: FE9B01 byte #XFE, #X9B, #X01 ; RBX
; 82C: L5: CC0A break 10 ; error trap
; 82E: 04 byte #X04
; 82F: 13 byte #X13 ; OBJECT-NOT-REAL-ER
; 830: FE1B03 byte #XFE, #X1B, #X03 ; RSI
; 833: CC0A break 10 ; error trap
; 835: 02 byte #X02
; 836: 19 byte #X19 ; INVALID-ARG-COUNT-
; 837: 9A byte #X9A ; RCX

* (defun max-with-speed-3 (a b)
 (declare (optimize (speed 3) (safety 0)))
 (max a b))
MAX-WITH-SPEED-3

* (disassemble 'max-with-speed-3)
; disassembly for MAX-WITH-SPEED-3
; Size: 92 bytes. Origin: #x52D452C3
; 3B: 48895DE0 mov [rbp-32], rbx ; n
; 3F: 488945E8 mov [rbp-24], rax
; 43: 488BD0 mov rdx, rax
; 46: 488BFB mov rdi, rbx
; 49: B9C1030020 mov ecx, 536871873 ; generic->
; 4E: FFD1 call rcx
; 50: 488B45E8 mov rax, [rbp-24]
; 54: 488B5DE0 mov rbx, [rbp-32]
; 58: 7E0C jle L1
; 5A: 4C8BC0 mov r8, rax
; 5D: L0: 498BD0 mov rdx, r8
; 60: 488BE5 mov rsp, rbp
; 63: F8 clc
; 64: 5D pop rbp
; 65: C3 ret
; 66: L1: 488945E8 mov [rbp-24], rax
; 6A: 488BF0 mov rsi, rax
; 6D: 488975F0 mov [rbp-16], rsi
; 71: 4C8BC3 mov r8, rbx
; 74: 4C8945F8 mov [rbp-8], r8
; 78: 488BD0 mov rdx, rax
; 7B: 488BFB mov rdi, rbx
; 7E: B929040020 mov ecx, 536871977 ; generic-=
; 83: FFD1 call rcx
; 85: 488B45E8 mov rax, [rbp-24]

As you can see, the generated assembly code is much shorter (92 bytes VS
144). The compiler was able to perform optimizations. Yet we can do better
by declaring types.

Type Hints

As mentioned in the Type System chapter, Lisp has a relatively powerful type
system. You may provide type hints so that the compiler may reduce the size
of the generated code.

; 89: 488B75F0 mov rsi, [rbp-16]
; 8D: 4C8B45F8 mov r8, [rbp-8]
; 91: 4C0F44C6 cmoveq r8, rsi
; 95: EBC6 jmp L0

* (defun max-with-type (a b)
 (declare (optimize (speed 3) (safety 0)))
 (declare (type integer a b))
 (max a b))
MAX-WITH-TYPE

* (disassemble 'max-with-type)
; disassembly for MAX-WITH-TYPE
; Size: 42 bytes. Origin: #x52D48A23
; 1B: 488BF7 mov rsi, rdi ; n
; 1E: 488975F0 mov [rbp-16], rsi
; 22: 488BD8 mov rbx, rax
; 25: 48895DF8 mov [rbp-8], rbx
; 29: 488BD0 mov rdx, rax
; 2C: B98C030020 mov ecx, 536871820 ; generic-<
; 31: FFD1 call rcx
; 33: 488B75F0 mov rsi, [rbp-16]
; 37: 488B5DF8 mov rbx, [rbp-8]
; 3B: 480F4CDE cmovl rbx, rsi
; 3F: 488BD3 mov rdx, rbx
; 42: 488BE5 mov rsp, rbp
; 45: F8 clc
; 46: 5D pop rbp
; 47: C3 ret

clbr://internal.invalid/book/EPUB/text/type.html

The size of generated assembly code shrunk to about 1/3 of the size. What
about speed?

You see, by specifying type hints, our code runs much faster!

But wait…What happens if we declare wrong types? The answer is: it
depends.

For example, SBCL treats type declarations in a special way. It performs
different levels of type checking according to the safety level. If safety level
is set to 0, no type checking will be performed. Thus a wrong type specifier
might cause a lot of damage.

More on Type Declaration with declaim

If you try to evaluate a declare form in the top level, you might get the
following error:

* (time (dotimes (i 10000) (max-original 100 200)))
Evaluation took:
 0.000 seconds of real time
 0.000107 seconds of total run time (0.000088 user, 0.000019 sys
 100.00% CPU
 361,088 processor cycles
 0 bytes consed

* (time (dotimes (i 10000) (max-with-type 100 200)))
Evaluation took:
 0.000 seconds of real time
 0.000044 seconds of total run time (0.000036 user, 0.000008 sys
 100.00% CPU
 146,960 processor cycles
 0 bytes consed

Execution of a form compiled with errors.
Form:
 (DECLARE (SPEED 3))
Compile-time error:
 There is no function named DECLARE. References to DECLARE in s
(like starts of blocks) are unevaluated expressions, but here the

http://sbcl.org/manual/index.html#Handling-of-Types

This is because type declarations have scopes. In the examples above, we
have seen type declarations applied to a function.

During development it is usually useful to raise the importance of safety in
order to find out potential problems as soon as possible. On the contrary,
speed might be more important after deployment. However, it might be too
verbose to specify declaration expression for each single function.

The macro declaim provides such possibility. It can be used as a top level
form in a file and the declarations will be made at compile-time.

Please note that declaim works in compile-time of a file. It is mostly used to
make some declares local to that file. And it is unspecified whether or not

being evaluated, which invokes undefined behaviour.
 [Condition of type SB-INT:COMPILED-PROGRAM-ERROR]

* (declaim (optimize (speed 0) (safety 3)))
NIL

* (defun max-original (a b)
 (max a b))
MAX-ORIGINAL

* (disassemble 'max-original)
; disassembly for MAX-ORIGINAL
; Size: 181 bytes. Origin: #x52D47D9C
...

* (declaim (optimize (speed 3) (safety 3)))
NIL

* (defun max-original (a b)
 (max a b))
MAX-ORIGINAL

* (disassemble 'max-original)
; disassembly for MAX-ORIGINAL
; Size: 142 bytes. Origin: #x52D4815D

http://www.lispworks.com/documentation/lw71/CLHS/Body/03_cd.htm
http://www.lispworks.com/documentation/lw71/CLHS/Body/m_declai.htm

the compile-time side-effects of a declaim persist after the file has been
compiled.

Declaring function types

Another useful declaration is a ftype declaration which establishes the
relationship between the function argument types and the return value type.
If the type of passed arguments matches the declared types, the return value
type is expected to match the declared one. Because of that, a function can
have more than one ftype declaration associated with it. A ftype
declaration restricts the type of the argument every time the function is
called. It has the following form:

If the function returns nil, its return type is null. This declaration does not
put any restriction on the types of arguments by itself. It only takes effect if
the provided arguments have the specified types – otherwise no error is
signaled and declaration has no effect. For example, the following
declamation states that if the argument to the function square is a fixnum,
the value of the function will also be a fixnum:

If we provide it with the argument which is not declared to be of type
fixnum, no optimization will take place:

Now let’s try to optimize the speed. The compiler will state that there is type
uncertainty:

(declaim (ftype (function (arg1 arg2 ...) return-value)
 function-name1))

(declaim (ftype (function (fixnum) fixnum) square))
(defun square (x) (* x x))

(defun do-some-arithmetic (x)
 (the fixnum (+ x (square x))))

(defun do-some-arithmetic (x)
 (declare (optimize (speed 3) (debug 0) (safety 0)))
 (the fixnum (+ x (square x))))

Now we can add a type declaration for x, so the compiler can assume that
the expression (square x) is a fixnum, and use the fixnum-specific +:

; compiling (DEFUN DO-SOME-ARITHMETIC ...)

; file: /tmp/slimeRzDh1R
in: DEFUN DO-SOME-ARITHMETIC
; (+ TEST-FRAMEWORK::X (TEST-FRAMEWORK::SQUARE TEST-FRAMEWORK
;
; note: forced to do GENERIC-+ (cost 10)
; unable to do inline fixnum arithmetic (cost 2) because:
; The first argument is a NUMBER, not a FIXNUM.
; unable to do inline (signed-byte 64) arithmetic (cost 5)
; The first argument is a NUMBER, not a (SIGNED-BYTE 64).
; etc.
;
; compilation unit finished
; printed 1 note

 (disassemble 'do-some-arithmetic)
; disassembly for DO-SOME-ARITHMETIC
; Size: 53 bytes. Origin: #x52CD1D1A
; 1A: 488945F8 MOV [RBP-8], RAX ; no-arg-parsing
; 1E: 488BD0 MOV RDX, RAX
; 21: 4883EC10 SUB RSP, 16
; 25: B902000000 MOV ECX, 2
; 2A: 48892C24 MOV [RSP], RBP
; 2E: 488BEC MOV RBP, RSP
; 31: E8C2737CFD CALL #x504990F8 ; #<FDEFN SQUARE>
; 36: 480F42E3 CMOVB RSP, RBX
; 3A: 488B45F8 MOV RAX, [RBP-8]
; 3E: 488BFA MOV RDI, RDX
; 41: 488BD0 MOV RDX, RAX
; 44: E807EE42FF CALL #x52100B50 ; GENERIC-+
; 49: 488BE5 MOV RSP, RBP
; 4C: F8 CLC
; 4D: 5D POP RBP
; 4E: C3 RET
NIL

Code Inline

The declaration inline replaces function calls with function body, if the
compiler supports it. It will save the cost of function calls but will potentially
increase the code size. The best situation to use inline might be those small
but frequently used functions. The following snippet shows how to
encourage and prohibit code inline.

(defun do-some-arithmetic (x)
 (declare (optimize (speed 3) (debug 0) (safety 0)))
 (declare (type fixnum x))
 (the fixnum (+ x (square x))))

 (disassemble 'do-some-arithmetic)

; disassembly for DO-SOME-ARITHMETIC
; Size: 48 bytes. Origin: #x52C084DA
; 4DA: 488945F8 MOV [RBP-8], RAX ; no-arg-parsing
; 4DE: 4883EC10 SUB RSP, 16
; 4E2: 488BD0 MOV RDX, RAX
; 4E5: B902000000 MOV ECX, 2
; 4EA: 48892C24 MOV [RSP], RBP
; 4EE: 488BEC MOV RBP, RSP
; 4F1: E8020C89FD CALL #x504990F8 ; #<FDEFN SQUARE
; 4F6: 480F42E3 CMOVB RSP, RBX
; 4FA: 488B45F8 MOV RAX, [RBP-8]
; 4FE: 4801D0 ADD RAX, RDX
; 501: 488BD0 MOV RDX, RAX
; 504: 488BE5 MOV RSP, RBP
; 507: F8 CLC
; 508: 5D POP RBP
; 509: C3 RET
NIL

;; The globally defined function DISPATCH should be open-coded,
;; if the implementation supports inlining, unless a NOTINLINE
;; declaration overrides this effect.
(declaim (inline dispatch))
(defun dispatch (x) (funcall (get (car x) 'dispatch) x))

http://www.lispworks.com/documentation/lw51/CLHS/Body/d_inline.htm

Please note that when the inlined functions change, all the callers must be re-
compiled.

Optimizing Generic Functions

Using Static Dispatch

Generic functions provide much convenience and flexibility during
development. However, the flexibility comes with cost: generic methods are
much slower than trivial functions. The performance cost becomes a burden
especially when the flexibility is not needed.

The package inlined-generic-function provides functions to convert
generic functions to static dispatch, moving the dispatch cost to compile-
time. You just need to define generic function as a inlined-generic-
function.

;; Here is an example where inlining would be encouraged.
;; Because function DISPATCH was defined as INLINE, the code
;; inlining will be encouraged by default.
(defun use-dispatch-inline-by-default ()
 (dispatch (read-command)))

;; Here is an example where inlining would be prohibited.
;; The NOTINLINE here only affects this function.
(defun use-dispatch-with-declare-notinline ()
 (declare (notinline dispatch))
 (dispatch (read-command)))

;; Here is an example where inlining would be prohibited.
;; The NOTINLINE here affects all following code.
(declaim (notinline dispatch))
(defun use-dispatch-with-declaim-noinline ()
 (dispatch (read-command)))

;; Inlining would be encouraged because you specified it.
;; The INLINE here only affects this function.
(defun use-dispatch-with-inline ()
 (declare (inline dispatch))
 (dispatch (read-command)))

https://github.com/guicho271828/inlined-generic-function

Caution

This package is declared as experimental thus is not recommended to be
used in a serious software production. Use it at your own risk!

* (defgeneric plus (a b)
 (:generic-function-class inlined-generic-function))
#<INLINED-GENERIC-FUNCTION HELLO::PLUS (2)>

* (defmethod plus ((a fixnum) (b fixnum))
 (+ a b))
#<INLINED-METHOD HELLO::PLUS (FIXNUM FIXNUM) {10056D7513}>

* (defun func-using-plus (a b)
 (plus a b))
FUNC-USING-PLUS

* (defun func-using-plus-inline (a b)
 (declare (inline plus))
 (plus a b))
FUNC-USING-PLUS-INLINE

* (time
 (dotimes (i 100000)
 (func-using-plus 100 200)))
Evaluation took:
 0.018 seconds of real time
 0.017819 seconds of total run time (0.017800 user, 0.000019 sys
 100.00% CPU
 3 lambdas converted
 71,132,440 processor cycles
 6,586,240 bytes consed

* (time
 (dotimes (i 100000)
 (func-using-plus-inline 100 200)))
Evaluation took:
 0.001 seconds of real time
 0.000326 seconds of total run time (0.000326 user, 0.000000 sys
 0.00% CPU
 1,301,040 processor cycles
 0 bytes consed

The inlining is not enabled by default because once inlined, changes made to
methods will not be reflected.

It can be enabled globally by adding :inline-generic-function flag in
features.

When this feature is present, all inlinable generic functions are inlined unless
it is declared notinline.

Block compilation

SBCL got block compilation on version 2.0.2, which was in CMUCL since
1991 but a little forgotten since.

You can enable block compilation with a one-liner:

But what is it?

Block compilation addresses a known aspect of dynamic languages: function
calls to global, top-level functions are expensive.

Much more expensive than in a statically compiled language. They’re
slow because of the late-bound nature of top-level defined functions,
allowing arbitrary redefinition while the program is running and forcing
runtime checks on whether the function is being called with the right
number or types of arguments. This type of call is known as a “full

* (push :inline-generic-function *features*)
(:INLINE-GENERIC-FUNCTION :SLYNK :CLOSER-MOP :CL-FAD :BORDEAUX-TH
:THREAD-SUPPORT :CL-PPCRE ALEXANDRIA.0.DEV::SEQUENCE-EMPTYP :QUIC
:QUICKLISP-SUPPORT-HTTPS :SB-BSD-SOCKETS-ADDRINFO :ASDF3.3 :ASDF3
:ASDF3 :ASDF2 :ASDF :OS-UNIX :NON-BASE-CHARS-EXIST-P :ASDF-UNICOD
:X86-64 :64-BIT :64-BIT-REGISTERS :ALIEN-CALLBACKS :ANSI-CL :AVX2
:C-STACK-IS-CONTROL-STACK :CALL-SYMBOL :COMMON-LISP :COMPACT-INST
:COMPARE-AND-SWAP-VOPS :CYCLE-COUNTER :ELF :FP-AND-PC-STANDARD-SA

(setq *block-compile-default* t)

http://www.lispworks.com/documentation/lw71/CLHS/Body/v_featur.htm
https://mstmetent.blogspot.com/2020/02/block-compilation-fresh-in-sbcl-202.html

call” in Python (the compiler used in CMUCL and SBCL, not to be
confused with the programming language), and their calling convention
permits the most runtime flexibility.

But local calls, the ones inside a top-level functions (for example lambdas,
labels and flets) are fast.

These calls are more ‘static’ in the sense that they are treated more like
function calls in static languages, being compiled “together” and at the
same time as the local functions they reference, allowing them to be
optimized at compile-time. For example, argument checking can be
done at compile time because the number of arguments of the callee is
known at compile time, unlike in the full call case where the function,
and hence the number of arguments it takes, can change dynamically at
runtime at any point. Additionally, the local call calling convention can
allow for passing unboxed values like floats around, as they are put into
unboxed registers never used in the full call convention, which must use
boxed argument and return value registers.

So enabling block compilation kind of turns your code into a giant labels
form.

One evident possible drawback, dependending on your application, is that
you can’t redefine functions at runtime anymore.

We can also enable block compilation with the :block-compile keyword to
compile-file:

(defun foo (x y)
 (print (bar x y))
 (bar x y))

(defun bar (x y)
 (+ x y))

(defun fact (n)
 (if (zerop n)
 1
 (* n (fact (1- n)))))

If you inspect the assembly,

you [will] see that FOO and BAR are now compiled into the same
component (with local calls), and both have valid external entry points.
This improves locality of code quite a bit and still allows calling both
FOO and BAR externally from the file (e.g. in the REPL). […]

But there is one more goody block compilation adds…

Notice we specified :entry-points nil above. That’s telling the
compiler to still create external entry points to every function in the file,
since we’d like to be able to call them normally from outside the code
component (i.e. the compiled compilation unit, here the entire file).

For more explanations, I refer you to the mentioned blog post, the current
de-facto documentation for SBCL, in addition to CMUCL’s documentation
(note that the form-by-form level granularity in CMUCL ((declaim
(start-block ...)) ... (declaim (end-block ..))) is missing in
SBCL, at the time of writing).

Finally, be aware that “block compiling and inlining currently does not
interact very well [in SBCL]”.

> (compile-file "foo.lisp" :block-compile t :entry-points nil)
> (load "foo.fasl")

> (sb-disassem:disassemble-code-component #'foo)

https://cmucl.org/docs/cmu-user/html/Block-Compilation.html

Scripting. Command line
arguments. Executables.
Using a program from a REPL is fine and well, but once it’s ready we’ll
surely want to call it from the terminal. We can run Lisp scripts for this.

Next, if we want to distribute our program easily, we’ll want to build an
executable.

Lisp implementations differ in their processes, but they all create self-
contained executables, for the architecture they are built on. The final user
doesn’t need to install a Lisp implementation, he can run the software right
away.

Start-up times are near to zero, specially with SBCL and CCL.

Binaries size are large-ish. They include the whole Lisp including its
libraries, the names of all symbols, information about argument lists to
functions, the compiler, the debugger, source code location information, and
more.

Note that we can similarly build self-contained executables for web apps.

Scripting with Common Lisp

Create a file named hello (you can drop the .lisp extension) and add this:

#!/usr/bin/env -S sbcl --script
(require :uiop)
(format t "hello ~a!~&" (uiop:getenv "USER"))

Make the script executable (chmod +x hello) and run it:

$./hello
hello me!

Nice! We can use this to a great extent already.

In addition, the script was quite fast to start, 0.03s on my system.

However, we will get longer startup times as soon as we add dependencies.
The solution is to build a binary. They start even faster, with all
dependencies compiled.

Quickloading dependencies from a script

Say you don’t bother with an .asd project definition yet, you just want to
write a quick script, but you need to load a quicklisp dependency. You’ll
need a bit more ceremony:

Accordingly, you could only use require, if the quicklisp dependency is
already installed:

Also note that when you put a ql:quickload in the middle of your code,
you can’t load the file anymore, you can’t C-c C-k from your editor. This is
because the reader will see the “quickload” without running it yet, then sees

#!/usr/bin/env -S sbcl --script

(require :uiop)

;; We want quicklisp, which is loaded from our initfile,
;; after a classical installation.
;; However the --script flag doesn't load our init file:
;; it implies --no-sysinit --no-userinit --disable-debugger --en
;; So, please load it:
(load "~/.sbclrc")

;; Load a quicklisp dependency silently.
(ql:quickload "str" :silent t)

(princ (str:concat "hello " (uiop:getenv "USER") "!"))

;; replace loading sbclrc and ql:quickload.
(require :str)

“str:concat”, a call to a package that doesn’t exist (it wasn’t loaded yet).
Common Lisp has you covered, with a form that executes code during the
read phase:

but ASDF project definitions are here for a reason. Find me another
language that makes you install dependencies in the middle of the
application code.

Building a self-contained executable

With SBCL - Images and Executables

How to build (self-contained) executables is, by default, implementation-
specific (see below for portable ways). With SBCL, as says its
documentation, it is a matter of calling save-lisp-and-die with the
:executable argument to T:

sb-ext is an SBCL extension to run external processes. See other SBCL
extensions (many of them are made implementation-portable in other
libraries).

:executable t tells to build an executable instead of an image. We could
build an image to save the state of our current Lisp image, to come back
working with it later. This is especially useful if we made a lot of work that
is computing intensive. In that case, we re-use the image with sbcl --core
name-of-image.

:toplevel gives the program’s entry point, here my-app:main-function.
Don’t forget to export the symbol, or use my-app::main-function (with
two colons).

;; you shouldn't need this. Use an .asd system definition!
(eval-when (:load-toplevel :compile-toplevel :execute)
 (ql:quickload "str" :silent t))

(sb-ext:save-lisp-and-die #P"path/name-of-executable"
 :toplevel #'my-app:main-function
 :executable t)

http://www.sbcl.org/manual/index.html#Function-sb_002dext_003asave_002dlisp_002dand_002ddie
http://www.sbcl.org/manual/index.html#Extensions

If you try to run this in Slime, you’ll get an error about threads running:

Cannot save core with multiple threads running.

We must run the command from a simple SBCL repl, from the terminal.

I suppose your project has Quicklisp dependencies. You must then:

ensure Quicklisp is installed and loaded at the Lisp startup (you
completed Quicklisp installation),
asdf:load-asd the project’s .asd (recommended instead of just load),
install the dependencies,
build the executable.

That gives:

From the command line, or from a Makefile, use --load and --eval:

build:
 sbcl --load my-app.asd \
 --eval '(ql:quickload :my-app)' \
 --eval "(sb-ext:save-lisp-and-die #p\"my-app\"
:toplevel #'my-app:main :executable t)"

With ASDF

Now that we’ve seen the basics, we need a portable method. Since its
version 3.1, ASDF allows to do that. It introduces the make command, that
reads parameters from the .asd. Add this to your .asd declaration:

:build-operation "program-op" ;; leave as is
:build-pathname "<here your final binary name>"
:entry-point "<my-package:main-function>"

and call asdf:make :my-package.

(asdf:load-asd "my-app.asd")
(ql:quickload "my-app")
(sb-ext:save-lisp-and-die #p"my-app-binary"
 :toplevel #'my-app:main
 :executable t)

https://common-lisp.net/project/asdf/asdf.html#Convenience-Functions

So, in a Makefile:

With Deploy - ship foreign libraries dependencies

All this is good, you can create binaries that work on your machine… but
maybe not on someone else’s or on your server. Your program probably
relies on C shared libraries that are defined somewhere on your filesystem.
For example, libssl might be located on

/usr/lib/x86_64-linux-gnu/libssl.so.1.1

but on your VPS, maybe somewhere else.

Deploy to the rescue.

It will create a bin/ directory with your binary and the required foreign
libraries. It will auto-discover the ones your program needs, but you can
also help it (or tell it to not do so much).

Its use is very close to the above recipe with asdf:make and the .asd
project configuration. Use this:

and build your binary with (asdf:make :my-app) like before.

Now, ship the bin/ directory to your users.

LISP ?= sbcl

build:
 $(LISP) --load my-app.asd \
 --eval '(ql:quickload :my-app)' \
 --eval '(asdf:make :my-app)' \
 --eval '(quit)'

:defsystem-depends-on (:deploy) ;; (ql:quickload "deploy") befo
:build-operation "deploy-op" ;; instead of "program-op"
:build-pathname "my-application-name" ;; doesn't change
:entry-point "my-package:my-start-function" ;; doesn't change

https://github.com/Shinmera/deploy

When you run the binary, you’ll see it uses the shipped libraries:

Success!

A note regarding libssl. It’s easier, on Linux at least, to rely on your OS’
current installation, so we’ll tell Deploy to not bother shipping it (nor
libcrypto):

The day you want to ship a foreign library that Deploy doesn’t find, you can
instruct it like this:

A last remark. Once you built your binary and you run it for the first time,
you might get a funny message from ASDF that tries to upgrade itself, finds
nothing into a ~/common-lisp/asdf/ repository, and quits. To tell it to not
upgrade itself, add this into your .asd:

$./my-app
==> Performing warm boot.
 -> Runtime directory is /home/debian/projects/my-app/bin/
 -> Resource directory is /home/debian/projects/my-app/bin/
==> Running boot hooks.
==> Reloading foreign libraries.
 -> Loading foreign library #<LIBRARY LIBRT>.
 -> Loading foreign library #<LIBRARY LIBMAGIC>.
==> Launching application.
[…]

#+linux (deploy:define-library cl+ssl::libssl :dont-deploy T)
#+linux (deploy:define-library cl+ssl::libcrypto :dont-deploy T)

(deploy:define-library cl+ssl::libcrypto
 ;; ^^^ CFFI system name.
 ;; Find it with a call to "apropos".
 :path "/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1")

;; Tell ASDF to not update itself.
(deploy:define-hook (:deploy asdf) (directory)
 (declare (ignorable directory))
 #+asdf (asdf:clear-source-registry)
 #+asdf (defun asdf:upgrade-asdf () nil))

You can also silence Deploy’s start-up messages by adding this in your
build script, before asdf:make is called:

(push :deploy-console features)

And there is more, so we refer you to Deploy’s documentation.

With Roswell or Buildapp

Roswell, an implementation manager, script launcher and much more, has
the ros build command, that should work for many implementations.

This is how we can make our application easily installable by others, with a
ros install my-app. See Roswell’s documentation.

Be aware that ros build adds core compression by default. That adds a
significant startup overhead of the order of 150ms (for a simple app, startup
time went from about 30ms to 180ms). You can disable it with ros build
<app.ros> --disable-compression. Of course, core compression reduces
your binary size significantly. See the table below, “Size and startup times
of executables per implementation”.

We’ll finish with a word on Buildapp, a battle-tested and still popular
“application for SBCL or CCL that configures and saves an executable
Common Lisp image”.

Example usage:

Many applications use it (for example, pgloader), it is available on Debian:
apt install buildapp, but you shouldn’t need it now with asdf:make or
Roswell.

buildapp --output myapp \
 --asdf-path . \
 --asdf-tree ~/quicklisp/dists \
 --load-system my-app \
 --entry my-app:main

https://roswell.github.io/
http://www.xach.com/lisp/buildapp/
https://github.com/dimitri/pgloader

For web apps

We can similarly build a self-contained executable for our web
appplication. It would thus contain a web server and would be able to run
on the command line:

$./my-web-app Hunchentoot server is started. Listening on localhost:9003.

Note that this runs the production webserver, not a development one, so we
can run the binary on our VPS right away and access the application from
the outside.

We have one thing to take care of, it is to find and put the thread of the
running web server on the foreground. In our main function, we can do
something like this:

We used the bordeaux-threads library ((ql:quickload "bordeaux-
threads"), alias bt) and uiop, which is part of ASDF so already loaded, in

(defun main ()
 (start-app :port 9003) ;; our start-app, for example clack:cla
 ;; let the webserver run.
 ;; warning: hardcoded "hunchentoot".
 ;; You can simply run (sleep most-positive-fixnum)
 (handler-case (bt:join-thread (find-if (lambda (th)
 (search "hunchentoot
 (bt:all-threads)))
 ;; Catch a user's C-c
 (#+sbcl sb-sys:interactive-interrupt
 #+ccl ccl:interrupt-signal-condition
 #+clisp system::simple-interrupt-condition
 #+ecl ext:interactive-interrupt
 #+allegro excl:interrupt-signal
 () (progn
 (format *error-output* "Aborting.~&")
 (clack:stop *server*)
 (uiop:quit)))
 (error (c) (format t "Woops, an unknown error occured:~&~a~&

order to exit in a portable way (uiop:quit, with an optional return code,
instead of sb-ext:quit).

Size and startup times of executables per implementation

SBCL isn’t the only Lisp implementation. ECL, Embeddable Common
Lisp, transpiles Lisp programs to C. That creates a smaller executable.

According to this reddit source, ECL produces indeed the smallest
executables of all, an order of magnitude smaller than SBCL, but with a
longer startup time.

CCL’s binaries seem to be as fast to start up as SBCL and nearly half the
size.

| program size | implementation | CPU | startup time |
|--------------+----------------+------+--------------|
28	/bin/true	15%	.0004
1005	ecl	115%	.5093
48151	sbcl	91%	.0064
27054	ccl	93%	.0060
10162	clisp	96%	.0170
4901	ecl.big	113%	.8223
70413	sbcl.big	93%	.0073
41713	ccl.big	95%	.0094
19948	clisp.big	97%	.0259

You’ll also want to investigate the proprietary Lisps’ tree shakers
capabilities.

Regarding compilation times, CCL is famous for being fast in that regards.
ECL is more involved and takes the longer to compile of these three
implementations.

Building a smaller binary with SBCL’s core compression

Building with SBCL’s core compression can dramatically reduce your
application binary’s size. In our case, it reduced it from 120MB to 23MB,
for a loss of a dozen milliseconds of start-up time, which was still under
50ms.

https://gitlab.com/embeddable-common-lisp/ecl/
https://www.reddit.com/r/lisp/comments/46k530/tackling_the_eternal_problem_of_lisp_image_size/

Note: SBCL 2.2.6 switched to compression with
zstd instead of zlib, which provides smaller binaries and
faster compression and decompression times. Un-official numbers
are: about 4x faster compression, 2x faster decompression, and
smaller binaries by 10%.

Your SBCL must be built with core compression, see the documentation:
Saving-a-Core-Image

Is it the case ?

Yes, it is the case with this SBCL installed from Debian.

With SBCL

In SBCL, we would give an argument to save-lisp-and-die, where
:compression

may be an integer from -7 to 22, corresponding to zstd compression
levels, or t (which is equivalent to the default compression level, 9).

For a simple “Hello, world” program:

Program size	Compression level
46MB	Without compression
22MB	-7
12MB	9
11MB	22

For a bigger project like StumpWM, an X window manager written in Lisp:

Program size	Compression level
58MB	Without compression
27MB	-7
15MB	9
13MB	22

With ASDF

(find :sb-core-compression *features*)
:SB-CORE-COMPRESSION

http://www.sbcl.org/manual/#Saving-a-Core-Image

However, we prefer to do this with ASDF (or rather, UIOP). Add this in
your .asd:

With Deploy

Also, the Deploy library can be used to build a fully standalone application.
It will use compression if available.

Deploy is specifically geared towards applications with foreign library
dependencies. It collects all the foreign shared libraries of dependencies,
such as libssl.so in the bin subdirectory.

And voilà !

Parsing command line arguments

SBCL stores the command line arguments into sb-ext:*posix-argv*.

But that variable name differs from implementations, so we want a way to
handle the differences for us.

We have (uiop:command-line-arguments), shipped in ASDF and included
in nearly all implementations. From anywhere in your code, you can simply
check if a given string is present in this list:

That’s good, but we also want to parse the arguments, have facilities to
check short and long options, build a help message automatically, etc.

We chose the Clingon library, because it may have the richest feature set:

#+sb-core-compression
(defmethod asdf:perform ((o asdf:image-op) (c asdf:system))
 (uiop:dump-image (asdf:output-file o c)
 :executable t
 :compression t))

(member "-h" (uiop:command-line-arguments) :test #'string-equal)

https://github.com/Shinmera/deploy/
https://github.com/dnaeon/clingon

it handles subcommands,
it supports various kinds of options (flags, integers, booleans, counters,
enums…),
it generates Bash and Zsh completion files as well as man pages,
it is extensible in many ways,
we can easily try it out on the REPL
etc

Let’s download it:

(ql:quickload “clingon”)

As often, work happens in two phases:

we first declare the options that our application accepts, their kind
(flag, string, integer…), their long and short names and the required
ones.
we ask Clingon to parse the command-line options and run our app.

Declaring options

We want to represent a command-line tool with this possible usage:

$ myscript [-h, –help] [-n, –name NAME]

Ultimately, we need to create a Clingon command (with clingon:make-
command) to represent our application. A command is composed of options
and of a handler function, to do the logic.

So first, let’s create options. Clingon already handles “–help” for us, but not
the short version. Here’s how we use clingon:make-option to create an
option:

(clingon:make-option
:flag ;; <--- option kind. A "flag" does not exp
:description "short help"
;; :long-name "help" ;; <--- long name, sans the "--" prefix, b
:short-name #\h ;; <--- short name, a character
;; :required t ;; <--- is this option always required? In
:key :help) ;; < the internal reference to use with

This is a flag: if “-h” is present on the command-line, the option’s value
will be truthy, otherwise it will be falsy. A flag does not expect an
argument, it’s here for itself.

Similar kind of options would be:

:boolean: that one expects an argument, which can be “true” or 1 to be
truthy. Anything else is considered falsy.
:counter: a counter option counts how many times the option is
provided on the command line. Typically, use it with -v / --verbose,
so the user could use -vvv to have extra verbosity. In that case, the
option value would be 3. When this option is not provided on the
command line, Clingon sets its value to 0.

We’ll create a second option (“–name” or “-n” with a parameter) and we put
everything in a litle function.

The second option we created is of kind :string. This option expects one
argument, which will be parsed as a string. There is also :integer, to parse

:key :help) ;; <--- the internal reference to use with

;; The naming with a "/" is just our convention.
(defun cli/options ()
 "Returns a list of options for our main command"
 (list
 (clingon:make-option
 :flag
 :description "short help."
 :short-name #\h
 :key :help)
 (clingon:make-option
 :string ;; <--- string type: expects one parame
 :description "Name to greet"
 :short-name #\n
 :long-name "name"
 :env-vars '("USER") ;; <-- takes this default value if t
 :initial-value "lisper" ;; <-- default value if nothing else
 :key :name)))

the argument as an integer.

There are more option kinds of Clingon, which you will find on its good
documentation: :choice, :enum, :list, :filepath, :switch and so on.

Top-level command

We have to tell Clingon about our top-level command. clingon:make-
command accepts some descriptive fields, and two important ones:

:options is a list of Clingon options, each created with
clingon:make-option
:handler is the function that will do the app’s logic.

And finally, we’ll use clingon:run in our main function (the entry point of
our binary) to parse the command-line arguments, and apply our
command’s logic. During development, we can also manually call
clingon:parse-command-line to try things out.

Here’s a minimal command. We’ll define our handler function afterwards:

At this point, we can already test things out on the REPL.

Testing options parsing on the REPL

Use clingon:parse-command-line: it wants a top-level command, and a
list of command-line arguments (strings):

(defun cli/command ()
 "A command to say hello to someone"
 (clingon:make-command
 :name "hello"
 :description "say hello"
 :version "0.1.0"
 :authors '("John Doe <john.doe@example.org")
 :license "BSD 2-Clause"
 :options (cli/options) ;; <-- our options
 :handler #'null)) ;; <-- to change. See below.

CL-USER> (clingon:parse-command-line (cli/command) '("-h" "-n" "

It works!

We can even inspect this command object, we would see its properties
(name, hooks, description, context…), its list of options, etc.

Let’s try again with an unknown option:

In that case, we are dropped into the interactive debugger, which says

Unknown option -x of kind SHORT
 [Condition of type CLINGON.CONDITIONS:UNKNOWN-OPTION]

and we are provided a few restarts:

Restarts:
 0: [DISCARD-OPTION] Discard the unknown option
 1: [TREAT-AS-ARGUMENT] Treat the unknown option as a free
argument
 2: [SUPPLY-NEW-VALUE] Supply a new value to be parsed
 3: [RETRY] Retry SLIME REPL evaluation request.
 4: [*ABORT] Return to SLIME's top level.

which are very practical. If we needed, we could create an :around method
for parse-command-line, handle Clingon’s conditions with handler-bind
and use its restarts, to do something different with unknown options. But we
don’t need that yet, if ever: we want our command-line parsing engine to
warn us on invalid options.

Last but not least, we can see how Clingon prints our CLI tool’s usage
information:

CL-USER> (clingon:print-usage (cli/command) t)
NAME:
 hello - say hello

USAGE:

CL USER> (clingon:parse command line (cli/command) (h n
#<CLINGON.COMMAND:COMMAND name=hello options=5 sub-commands=0>

CL-USER> (clingon:parse-command-line (cli/command) '("-x"))
;; => debugger: Unknown option -x of kind SHORT

 hello [options] [arguments ...]

OPTIONS:
 --help display usage information and exit
 --version display version and exit
 -h short help.
 -n, --name <VALUE> Name to greet [default: lisper] [env:
$USER]

AUTHORS:
 John Doe <john.doe@example.org

LICENSE:
 BSD 2-Clause

We can tweak the “USAGE” part with the :usage key parameter of the lop-
level command.

Handling options

When the parsing of command-line arguments succeeds, we need to do
something with them. We introduce two new Clingon functions:

clingon:getopt is used to get an option’s value by its :key
clingon:command-arguments gets use the free arguments remaining
on the command-line.

Here’s how to use them:

It is with them that we will write the handler of our top-level command:

CL-USER> (let ((command (clingon:parse-command-line (cli/command
 (format t "name is: ~a~&" (clingon:getopt command :na
 (format t "free args are: ~s~&" (clingon:command-argu
name is: you
free args are: ("last")
NIL

(defun cli/handler (cmd)
 "The handler function of our top-level command"
(let ((free args (clingon:command arguments cmd))

We must tell our top-level command to use this handler:

We now only have to write the main entry point of our binary and we’re
done.

By the way, clingon:getopt returns 3 values:

the option’s value
a boolean, indicating wether this option was provided on the
command-line
the command which provided the option for this value.

See also clingon:opt-is-set-p.

Main entry point

This can be any function, but to use Clingon, use its run function:

To use this main function as your binary entry point, see above how to build
a Common Lisp binary. A reminder: set it in your .asd system declaration:

 (let ((free-args (clingon:command-arguments cmd))
 (name (clingon:getopt cmd :name))) ;; <-- using the opt
 (format t "Hello, ~a!~%" name)
 (format t "You have provided ~a more free arguments~%"
 (length free-args))
 (format t "Bye!~%")))

;; from above:
(defun cli/command ()
 "A command to say hello to someone"
 (clingon:make-command
 ...
 :handler #'cli/handler)) ;; <-- changed.

(defun main ()
 "The main entrypoint of our CLI program"
 (clingon:run (cli/command)))

:entry-point "my-package::main"

And that’s about it. Congratulations, you can now properly parse command-
line arguments!

Go check Clingon’s documentation, because there is much more to it: sub-
commands, contexts, hooks, handling a C-c, developing new options such
as an email kind, Bash and Zsh completion…

Catching a C-c termination signal

By default, Clingon provides a handler for SIGINT signals. It makes the
application to immediately exit with the status code 130.

If your application needs some clean-up logic, you can use an unwind-
protect form. However, it might not be appropriate for all cases, so
Clingon advertises to use the with-user-abort helper library.

Below we show how to catch a C-c manually. Because by default, you
would get a Lisp stacktrace.

We built a simple binary, we ran it and pressed C-c. Let’s read the
stacktrace:

$./my-app
sleep…
^C
debugger invoked on a SB-SYS:INTERACTIVE-INTERRUPT in thread
<== condition name
#<THREAD "main thread" RUNNING {1003156A03}>:
 Interactive interrupt at #x7FFFF6C6C170.

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from
SBCL.

restarts (invokable by number or by possibly-abbreviated name):
 0: [CONTINUE] Return from SB-UNIX:SIGINT.
<== it was a SIGINT indeed
 1: [RETRY-REQUEST] Retry the same request.

The signaled condition is named after our implementation: sb-
sys:interactive-interrupt. We just have to surround our application
code with a handler-case:

https://github.com/compufox/with-user-abort

This code is only for SBCL though. We know about trivial-signal, but we
were not satisfied with our test yet. So we can use something like this:

here #+ includes the line at compile time depending on the implementation.
There’s also #-. What #+ does is to look for symbols in the *features* list.
We can also combine symbols with and, or and not.

Continuous delivery of executables

We can make a Continuous Integration system (Travis CI, Gitlab CI,…)
build binaries for us at every commit, or at every tag pushed or at
whichever other policy.

See Continuous Integration.

See also

SBCL-GOODIES - Allows to distribute SBCL binaries with foreign
libraries: libssl, libcrypto and libfixposix are statically baked in.
This removes the need of Deploy, when only these three foreign
libraries are used.

it was released on February, 2023.

(handler-case
 (run-my-app free-args)
 (sb-sys:interactive-interrupt ()
 (progn
 (format *error-output* "Abort.~&")
 (opts:exit))))

(handler-case
 (run-my-app free-args)
 (#+sbcl sb-sys:interactive-interrupt
 #+ccl ccl:interrupt-signal-condition
 #+clisp system::simple-interrupt-condition
 #+ecl ext:interactive-interrupt
 #+allegro excl:interrupt-signal
 ()
 (opts:exit)))

https://github.com/guicho271828/trivial-signal/
clbr://internal.invalid/book/EPUB/text/testing.html#continuous-integration
https://github.com/sionescu/sbcl-goodies

Credit

cl-torrents’ tutorial
lisp-journey/web-dev

https://vindarel.github.io/cl-torrents/tutorial.html
https://lisp-journey.gitlab.io/web-dev/

Testing the code
So you want to easily test the code you’re writing? The following recipe
covers how to write automated tests and see their code coverage. We also
give pointers to plug those in modern continuous integration services like
GitHub Actions, Gitlab CI, Travis CI or Coveralls.

We will be using a mature testing framework called FiveAM. It supports test
suites, random testing, test fixtures (to a certain extent) and, of course,
interactive development.

Previously on the Cookbook, the recipe was cooked with Prove. It used to be
a widely liked testing framework but, because of some shortcomings, its
repository was later archived. Its successor Rove is not stable enough and
lacks some features, so we didn’t pick it. There are also some other testing
frameworks to explore if you feel like it.

FiveAM has an API documentation. You may inspect it or simply read the
docstrings in code. Most of the time, they would provide sufficient
information that answers your questions… if you didn’t find them here. Let’s
get started.

Testing with FiveAM

FiveAM has 3 levels of abstraction: check, test and suite. As you may have
guessed:

1. A check is a single assertion that checks that its argument is truthy. The
most used check is is. For example, (is (= 2 (+ 1 1))).

2. A test is the smallest runnable unit. A test case may contain multiple
checks. Any check failure leads to the failure of the whole test.

3. A suite is a collection of tests. When a suite is run, all tests inside
would be performed. A suite allows paternity, which means that
running a suite will run all the tests defined in it and in its children
suites.

https://github.com/lispci/fiveam
https://github.com/fukamachi/prove
https://github.com/fukamachi/rove
https://github.com/CodyReichert/awesome-cl#unit-testing
https://common-lisp.net/project/fiveam/docs/index.html

A simple code sample containing the 3 basic blocks mentioned above can be
shown as follows:

It is totally up to the user to decide the hierarchy of tests and suites. Here we
mainly focus on the usage of FiveAM.

Suppose we have built a rather complex system and the following functions
are part of it:

We will write tests for that code. In particular, we must ensure:

that the content read in a file is the expected content,
that the condition is signaled if the file doesn’t exist.

Install and load

(def-suite* my-suite)

(test my-test
 (is (= 2 (+ 1 1))))

;; We have a custom "file doesn't exist" condition.
(define-condition file-not-existing-error (error)
 ((filename :type string :initarg :filename :reader filename)))

;; We have a function that tries to read a file and signals the a
;; if the file doesn't exist.
(defun read-file-as-string (filename &key (error-if-not-exists t)
 "Read file content as string. FILENAME specifies the path of fi

Keyword ERROR-IF-NOT-EXISTS specifies the operation to perform wh
is not found. T (by default) means an error will be signaled. Whe
the function will return NIL in that case."
 (cond
 ((uiop:file-exists-p filename)
 (uiop:read-file-string filename))
 (error-if-not-exists
 (error 'file-not-existing-error :filename filename))
 (t nil)))

FiveAM is in Quicklisp and can be loaded with the following command:

The package is named fiveam with a nickname 5am. For the sake of
simplicity, we will ignore the package prefix in the following code samples.

It is like we :used fiveam in our test package definition. You can also follow
along in the REPL with (use-package :fiveam).

Here is a package definition you can use:

Defining suites (def-suite, def-suite*)

Testing in FiveAM usually starts by defining a suite. A suite helps separating
tests to smaller collections that makes them more organized. It is highly
recommended to define a single root suite for the sake of ASDF integration.
We will talk about it later, now let’s focus on the testing itself.

The code below defines a suite named my-system. We will use it as the root
suite for the whole system.

Then let’s define another suite for testing the read-file-as-string
function.

(ql:quickload "fiveam")

(in-package :cl-user)
(defpackage my-fiveam-test
 (:use :cl
 :fiveam))
(in-package :my-fiveam-test)

(def-suite my-system
 :description "Test my system")

;; Define a suite and set it as the default for the following tes
(def-suite read-file-as-string
 :description "Test the read-file-as-string function."
 :in my-system)
(in-suite read-file-as-string)

Here a new suite named read-file-as-string has been defined. It is
declared to be a child suite of my-system as specified by the :in keyword.
The macro in-suite sets it as the default suite for the tests defined later.

Defining tests

Before diving into tests, here is a brief introduction of the available checks
you may use inside tests:

The is macro is likely the most used check. It simply checks if the
given expression returns a true value and generates a test-passed or
test-failure result accordingly.
The skip macro takes a reason and generates a test-skipped result.
The signals macro checks if the given condition was signaled during
execution.

There is also:

finishes: passes if the assertion body executes to normal completion.
In other words if body does signal, return-from or throw, then this test
fails.
pass: just make the test pass.
is-true: like is, but unlike it this check does not inspect the assertion
body to determine how to report the failure. Similarly, there is is-
false.

Please note that all the checks accept an optional reason, as string, that can
be formatted with format directives (see more below). When omitted,
FiveAM generates a report that explains the failure according to the
arguments passed to the function.

The test macro provides a simple way to define a test with a name.

Note that below, we expect two files to exist: /tmp/hello.txt should contain
“hello” and /tmp/empty.txt should be empty.

;; Alternatively, the following line is a combination of the 2 li
(def-suite* read-file-as-string :in my-system)

In the above code, three tests were defined with 5 checks in total. Some
checks were actually redundant for the sake of demonstration. You may put
all the checks in one big test, or in multiple scenarios. It is up to you.

The macro test is a convenience for def-test to define simple tests. You
may read its docstring for a more complete introduction, for example to read
about :depends-on.

Running tests

FiveAm provides multiple ways to run tests. The macro run! is a good start
point during development. It accepts a name of suite or test and run it, then
prints testing report in standard output. Let’s run the tests now!

;; Our first "base" case: we read a file that contains "hello".
(test read-file-as-string-normal-file
 (let ((result (read-file-as-string "/tmp/hello.txt")))
 ;; Tip: put the expected value as the first argument of = or
 ;; FiveAM generates a more readable report following this con
 (is (string= "hello" result))))

;; We read an empty file.
(test read-file-as-string-empty-file
 (let ((result (read-file-as-string "/tmp/empty.txt")))
 (is (not (null result)))
 ;; The reason can be used to provide formatted text.
 (is (= 0 (length result)))
 "Empty string expected but got ~a" result))

;; Now we test that reading a non-existing file signals our condi
(test read-file-as-string-non-existing-file
 (let ((result (read-file-as-string "/tmp/non-existing-file.txt"
 :error-if-not-exists nil)))
 (is (null result)
 "Reading a file should return NIL when :ERROR-IF-NOT-EXISTS
 ;; SIGNALS accepts the unquoted name of a condition and a body
 ;; Here it checks if FILE-NOT-EXISTING-ERROR is signaled.
 (signals file-not-existing-error
 (read-file-as-string "/tmp/non-existing-file.txt"
 :error-if-not-exists t)))

If we mess read-file-as-string-non-existing-file up by replacing
/tmp/non-existing-file.txt with /tmp/hello.txt, the test would fail
(sure!) as expected:

The behavior of the suite/test runner can be customized by the *on-
failure* variable, which controls what to do when a check failure happens.
It can be set to one of the following values:

:debug to drop to the debugger.
:backtrace to print a backtrace and continue.

(run! 'my-system)
; Running test suite MY-SYSTEM
; Running test READ-FILE-AS-STRING-EMPTY-FILE ..
; Running test READ-FILE-AS-STRING-NON-EXISTING-FILE ..
; Running test READ-FILE-AS-STRING-NORMAL-FILE .
; Did 5 checks.
; Pass: 5 (100%)
; Skip: 0 (0%)
; Fail: 0 (0%)
; => T, NIL, NIL

(run! 'read-file-as-string-non-existing-file)
; Running test READ-FILE-AS-STRING-NON-EXISTING-FILE ff
; Did 2 checks.
; Pass: 0 (0%)
; Skip: 0 (0%)
; Fail: 2 (100%)
; Failure Details:
; --------------------------------
; READ-FILE-AS-STRING-NON-EXISTING-FILE []:
; Should return NIL when :ERROR-IF-NOT-EXISTS is set to NIL
; --------------------------------
; --------------------------------
; READ-FILE-AS-STRING-NON-EXISTING-FILE []:
; Failed to signal a FILE-NOT-EXISTING-ERROR.
; --------------------------------
; => NIL
; (#<IT.BESE.FIVEAM::TEST-FAILURE {10064485F3}>
; #<IT.BESE.FIVEAM::TEST-FAILURE {1006438663}>)
; NIL

NIL (default) to simply continue and print the report.

There is also *on-error*.

Running tests as they are compiled

Under normal circumstances, a test is written and compiled (with the usual
C-c C-c in Slime) separately from the moment it is run. If you want to run
the test when it is defined (with C-c C-c), set this:

Custom and shorter tests explanations

We said earlier that a check accepts an optional custom reason that can be
formatted with format directives. Here’s a simple example.

We are testing a math function:

When we run! it, we see this somewhat lengthy but informative output (and
that’s very important):

Running test suite NIL
 Running test SIMPLE-MATHS f
 Did 1 check.
 Pass: 0 (0%)
 Skip: 0 (0%)
 Fail: 1 (100%)

 Failure Details:

 SIMPLE-MATHS []:

(+ 1 1)

 evaluated to

2

(setf fiveam:*run-test-when-defined* t)

(fiveam:test simple-maths
 (is (= 3 (+ 1 1))))

 which is not

=

 to

3

Now, we can give it a custom reason:

And we will see:

Running test suite NIL
 Running test SIMPLE-MATHS f
 Did 1 check.
 Pass: 0 (0%)
 Skip: 0 (0%)
 Fail: 1 (100%)

 Failure Details:

 SIMPLE-MATHS []:
 Maths should work, right? T. Another parameter is: :FOO

Fixtures

FiveAM also provides a feature called fixtures for setting up testing context.
The goal is to ensure that some functions are not called and always return the
same result. Think functions hitting the network: you want to isolate the
network call in a small function and write a fixture so that in your tests, this
function always returns the same, known result. (But if you do so, you might
also need an “end to end” test that tests with real data and all your code…)

However, FiveAM’s fixture system is nothing more than a macro, it is not
fully-featured compared to other libraries such as Mockingbird, and even

(fiveam:test simple-maths
 (is (= 3 (+ 1 1))
 "Maths should work, right? ~a. Another parameter is: ~S" t

https://github.com/Chream/mockingbird

FiveAM’s maintainer encourages to “just use a macro” instead.

Mockingbird (and maybe other libraries), in addition to the basic feature
descibed above, also allows to count the number of times a function was
called, with what arguments, and so on.

Random checking

The goal of random testing is to assist the developer in generating test cases,
and thus, to find cases that the developer would not have thought about.

We have a few data generators at our disposal, for example:

or again, gen-string, gen-list, gen-tree, gen-buffer, gen-character.

And we have a function to run 100 checks, taking each turn a new value
from the given generators: for-all:

When you run! 'randomtest this, I expect you will hit an error. You can’t
possibly always get a lower than b, can you?

For more, see FiveAM’s documentation.

See also cl-quickcheck and Check-it, inspired by Haskell’s QuickCheck test
framework.

(gen-float)
#<CLOSURE (LAMBDA () :IN GEN-FLOAT) {1005A906AB}>

(funcall (gen-float))
9.220082e37

(funcall (gen-integer :max 27 :min -16))
26

(test randomtest
 (for-all ((a (gen-integer :min 1 :max 10))
 (b (gen-integer :min 1 :max 10)))
 "Test random tests."
 (is (<= a b))))

https://common-lisp.net/project/fiveam/docs/Checks.html#Random_0020_0028QuickCheck-ish_0029_0020testing
https://github.com/mcandre/cl-quickcheck
https://github.com/DalekBaldwin/check-it
https://en.wikipedia.org/wiki/QuickCheck

ASDF integration

So it would be nice to provide a one-line trigger to test our my-system
system. Recall that we said it is better to provide a root suite? Here is the
reason:

The last line tells ASDF to load symbol :my-system from my-system/test
package and call fiveam:run!. It fact, it is equivalent to (run! 'my-system)
as mentioned above.

Running tests on the terminal

Until now, we ran our tests from our editor’s REPL. How can we run them
from a terminal window?

As always, the required steps are as follow:

start our Lisp
make sure Quicklisp is enabled (if we have external dependencies)
load our main system
load the test system
run the FiveAM tests.

You could put them in a new run-tests.lisp file:

(asdf:defsystem my-system
 ;; Parts omitted.
 :in-order-to ((test-op (test-op :my-system/test))))

(asdf:defsystem mitogrator/test
 ;; Parts omitted.
 :perform (test-op (op c)
 (symbol-call :fiveam :run!
 (find-symbol* :my-system :my-sys

(load "mysystem.lisp")
(load "mysystem-tests.lisp") ;; <-- where all the FiveAM tests ar
(in-package :mysystem-tests)

and you could invoke it like so, from a source file or from a Makefile:

Before going that route however, have a look at the CI-Utils tool that we
use in the Continuous Integration section below. It provides a run-fiveam
command that can do all that for you.

But let us highlight something you’ll have to take care of if you ran your
tests like this: the exit code. Indeed, (run!) prints a report, but it doesn’t say
to your Lisp wether the tests were successful or not, and wether to exit with
an exit code of 0 (for success) or more (for errors). So, if your testst were run
on a CI system, the CI status would be always green, even if tests failed. To
remedy that, replace run! by:

Check with echo $? on your shell that the exit code is correct.

Testing report customization

It is possible to generate our own testing report. The macro run! is nothing
more than a composition of explain! and run.

Instead of generating a testing report like its cousin run!, the function run
runs suite or test passed in and returns a list of test-result instance,
usually instances of test-failure or test-passed sub-classes.

(run!) ;; <-- run all the tests and print the report.

rlwrap sbcl --non-interactive --load mysystem.asd --eval '(ql:qui
;; we assume Quicklisp is installed and loaded. This can be done

(let ((result (run!)))
 (cond
 ((null result)
 (log:info "Tests failed!") ;; FiveAM printed the report alr
 (uiop:quit 1))
 (t
 (log:info "All pass.")
 (uiop:quit))))

A class text-explainer is defined as a basic class for testing report
generator. A generic function explain is defined to take a text-plainer
instance and a test-result instance (returned by run) and generate testing
report. The following 2 code snippets are equivalent:

By creating a new sub-class of text-explainer and a method explain for
it, it is possible to define a new test reporting system.

The following code just provides a proof-of-concept implementation. You
may need to read the source code of 5am::detailed-text-explainer to
fully understand it.

Interactively fixing unit tests

Common Lisp is interactive by nature (or so are most implementations), and
testing frameworks make use of it. It is possible to ask the framework to
open the debugger on a failing test, so that we can inspect the stack trace and

(run! 'read-file-as-string-non-existing-file)

(explain (make-instance '5am::detailed-text-explainer)
 (run 'read-file-as-string-non-existing-file))

(defclass my-explainer (5am::text-explainer)
 ())

(defmethod 5am:explain ((explainer my-explainer) results &optiona
 (loop for result in results
 do (case (type-of result)
 ('5am::test-passed
 (format stream "~%Test ~a passed" (5am::name (5am:
 ('5am::test-failure
 (format stream "~%Test ~a failed" (5am::name (5am:

(explain (make-instace 'my-explainer)
 (run 'read-file-as-string-non-existing-file))
; Test READ-FILE-AS-STRING-NON-EXISTING-FILE failed
; Test READ-FILE-AS-STRING-NON-EXISTING-FILE passed => NIL

go to the erroneous line instantly, fix it and re-run the test from where it left
off, by choosing the suggested restart.

With FiveAM, set fiveam:*on-failure* to :debug:

You will be dropped into the interactive debugger if an error occurs.

Use :backtrace to print a backtrace, continue to run the following tests and
print FiveAM’s report.

The default is nil: carry on the tests execution and print the report.

Note that in the debugger:

<enter> on a backtrace shows more of it
v on a backtrace goes to the corresponding line or function.
you can discover more options with the menu.

Code coverage

A code coverage tool produces a visual output that allows to see what parts
of our code were tested or not:

(setf fiveam:*on-failure* :debug)

Such capabilities are included into Lisp implementations. For example,
SBCL has the sb-cover module and the feature is also built-in in CCL or
LispWorks.

Generating an html test coverage output

Let’s do it with SBCL’s sb-cover.

http://www.sbcl.org/manual/index.html#sb_002dcover
https://ccl.clozure.com/docs/ccl.html#code-coverage
http://www.lispworks.com/documentation/lw71/LW/html/lw-68.htm
http://www.sbcl.org/manual/index.html#sb_002dcover

Coverage reports are only generated for code compiled using compile-file
with the value of the sb-cover:store-coverage-data optimization quality
set to 3.

Produce a coverage report, set the output directory:

Finally, turn off instrumentation:

You can open your browser at ../yourproject/t/coverage/cover-
index.html to see the report like the capture above or like this code
coverage of cl-ppcre.

Continuous Integration

Continuous Integration is important to run automatic tests after a commit or
before a pull request, to run code quality checks, to build and distribute your
software… well, to automate everything about software.

We want our programs to be portable across Lisp implementations, so we’ll
set up our CI pipeline to run our tests against several of them (it could be

;;; Load SB-COVER
(require :sb-cover)

;;; Turn on generation of code coverage instrumentation
;;; in the compiler
(declaim (optimize sb-cover:store-coverage-data))

;;; Load some code, ensuring that it's recompiled
;;; with the new optimization policy.
(asdf:oos 'asdf:load-op :cl-ppcre-test :force t)

;;; Run the test suite.
(fiveam:run! yoursystem-test)

(sb-cover:report "coverage/")

(declaim (optimize (sb-cover:store-coverage-data 0)))

https://www.snellman.net/sbcl/cover/cl-ppcre-report-3/cover-index.html

SBCL and CCL of course, but while we’re at it ABCL, ECL and possibly
more).

We have a choice of Continuous Integration services: Travis CI, Circle,
Gitlab CI, now also GitHub Actions, etc (many existed before GitHub
Actions, if you wonder). We’ll have a look at how to configure a CI pipeline
for Common Lisp, and we’ll focus a little more on Gitlab CI on the last part.

We’ll also quickly show how to publish coverage reports to the Coveralls
service. cl-coveralls helps to post our coverage to the service.

GitHub Actions, Circle CI, Travis… with CI-Utils

We’ll use CI-Utils, a set of utilities that comes with many examples. It also
explains more precisely what is a CI system and compares a dozen of
services.

It relies on Roswell to install the Lisp implementations and to run the tests.
They all are installed with a bash one-liner:

curl -L
https://raw.githubusercontent.com/roswell/roswell/release/scripts/install-for-
ci.sh | bash

(note that on the Gitlab CI example, we use a ready-to-use Docker image
that contains them all)

It also ships with a test runner for FiveAM, which eases some rough parts
(like returning the right error code to the terminal). We install ci-utils with
Roswell, and we get the run-fiveam executable.

Then we can run our tests:

run-fiveam -e t -l foo/test :foo-tests # foo is our project

Following is the complete .travis.yml file.

The first part should be self-explanatory:

Example configuration for Travis CI

https://coveralls.io/
https://github.com/fukamachi/cl-coveralls
https://neil-lindquist.github.io/CI-Utils/
https://github.com/roswell/roswell/

This is how we configure the implementations matrix, to run our tests on
several Lisp implementations. We also send the test coverage made with
SBCL to Coveralls.

Example configuration for Travis CI ###
language: generic

addons:
 homebrew:
 update: true
 packages:
 - roswell
 apt:
 packages:
 - libc6-i386 # needed for a couple implementations
 - default-jre # needed for abcl

Runs each lisp implementation on each of the listed OS
os:
 - linux
- osx # OSX has a long setup on travis, so it's likely easier
to just run select implementations on OSX.

env:
 global:
 - PATH=~/.roswell/bin:$PATH
 - ROSWELL_INSTALL_DIR=$HOME/.roswell
- COVERAGE_EXCLUDE=t # for rove
 jobs:
 # The implementation and whether coverage
 # is sent to coveralls are controlled
 # with these environmental variables
 - LISP=sbcl-bin COVERALLS=true
 - LISP=ccl-bin
 - LISP=abcl
 - LISP=ecl # warn: in our experience,
 # compilations times can be long on ECL.

Additional OS/Lisp combinations can be added
to those generated above
jobs:
 include:

Some jobs can be marked as allowed to fail:

We finally install Roswell, the implementations, and we run our tests.

Below with Gitlab CI, we’ll use a Docker image that already contains the
Lisp binaries and every Debian package required to build Quicklisp libraries.

 - os: osx
 env: LISP=sbcl-bin
 - os: osx
 env: LISP=ccl-bin

Note that this should only be used if there is no interest
for the library to work on that system
allow_failures:
- env: LISP=abcl
- env: LISP=ecl
- env: LISP=cmucl
- env: LISP=alisp
os: osx

 fast_finish: true

cache:
 directories:
 - $HOME/.roswell
 - $HOME/.config/common-lisp

install:
 - curl -L https://raw.githubusercontent.com/roswell/roswell/rel
 - ros install ci-utils #for run-fiveam
- ros install rove #for [run-] rove

 # If asdf 3.16 or higher is needed, uncomment the following lin
 #- mkdir -p ~/common-lisp
 #- if ["$LISP" == "ccl-bin"]; then git clone https://gitlab.c

script:
 - run-fiveam -e t -l foo/test :foo-tests
 #- rove foo.asd

Gitlab CI

Gitlab CI is part of Gitlab and is available on Gitlab.com, for public and
private repositories. Let’s see straight away a simple .gitlab-ci.yml:

variables:
 QUICKLISP_ADD_TO_INIT_FILE: "true"

image: clfoundation/sbcl:latest

before_script:
 - install-quicklisp
 - git clone https://github.com/foo/bar ~/quicklisp/local-
projects/

test:
 script:
 - make test

Gitlab CI is based on Docker. With image we tell it to use the latest tag of
the clfoundation/sbcl image. This includes the latest version of SBCL, many
OS packages useful for CI purposes, and a script to install Quicklisp. Gitlab
will load the image, clone our project and put us at the project root with
administrative rights to run the rest of the commands.

test is a “job” we define, script is a recognized keywords that takes a list
of commands to run.

Suppose we must install dependencies before running our tests:
before_script will run before each job. Here we install Quicklisp (adding it
to SBCL’s init file), and clone a library where Quicklisp can find it.

We can try locally ourselves. If we already installed Docker and started its
daemon (sudo service docker start), we can do:

docker run –rm -it -v /path/to/local/code:/usr/local/share/common-
lisp/source clfoundation/sbcl:latest bash

This will download the lisp image (±300MB compressed), mount some local
code in the image where indicated, and drop us in bash. Now we can try a
make test.

https://docs.gitlab.com/ce/ci/README.html
https://gitlab.com/
https://hub.docker.com/r/clfoundation/sbcl/
https://docs.docker.com/

Here is a more complete example that tests against several CL
implementations in parallel:

variables:
 IMAGE_TAG: latest
 QUICKLISP_ADD_TO_INIT_FILE: "true"
 QUICKLISP_DIST_VERSION: latest

image: clfoundation/$LISP:$IMAGE_TAG

stages:
 - test
 - build

before_script:
 - install-quicklisp
 - git clone https://github.com/foo/bar ~/quicklisp/local-projec

.test:
 stage: test
 script:
 - make test

abcl test:
 extends: .test
 variables:
 LISP: abcl

ccl test:
 extends: .test
 variables:
 LISP: ccl

ecl test:
 extends: .test
 variables:
 LISP: ecl

sbcl test:
 extends: .test
 variables:

Here we defined two stages (see environments), “test” and “build”, defined
to run one after another. A “build” stage will start only if the “test” one
succeeds.

“build” is asked to run only when a new tag is pushed, not at every commit.
When it succeeds, it will make the files listed in artifacts’s paths
available for download. We can download them from Gitlab’s Pipelines UI,
or with an url. This one will download the file “some-file-name” from the
latest “build” job:

https://gitlab.com/username/project-name/-/jobs/artifacts/master/raw/some-
file-name?job=build

When the pipelines pass, you will see:

 LISP: sbcl

build:
 stage: build
 variables:
 LISP: sbcl
 only:
 - tags
 script:
 - make build
 artifacts:
 paths:
 - some-file-name

https://docs.gitlab.com/ee/ci/environments/

You now have a ready to use Gitlab CI.

SourceHut

It’s very easy to set up SourceHut’s CI system for Common Lisp. Here is a
minimal .build.yml file that you can test via the build manifest tester:

image: archlinux
packages:
- sbcl
- quicklisp
sources:
- https://git.sr.ht/~fosskers/cl-transducers
tasks:
If our project isn't in the special `common-lisp` directory, qu
be able to find it for loading.

https://sr.ht/
https://builds.sr.ht/

Since the Docker image we’re given is nearly empty, we need to install sbcl
and quicklisp manually. Notice also that we’re running a run-tests.lisp
file to drive the tests. Here’s what it could look like:

Here, examples of the Parachute testing library are shown. As shown
elsewhere, in order for the CI job to fail when any test fails, we manually
check the test result status and return 1 when there’s a problem.

Emacs integration: running tests using Slite

Slite stands for SLIme TEst runner. It allows you to see the summary of test
failures, jump to test definitions, rerun tests with the debugger… all from
inside Emacs. We get a dashboard-like buffer with green and red badges,
from where we can act on tests. It makes the testing process even more
integrated and interactive.

It consists of an ASDF system and an Emacs package. It is a new project (it
appeared mid 2021) so, as of September 2021, neither can be installed via
Quicklisp or MELPA yet. Please refer to its repository for instructions.

References

- move: |
 mkdir common-lisp
 mv cl-transducers ~/common-lisp
- quicklisp: |
 sbcl --non-interactive --load /usr/share/quicklisp/quicklisp
- test: |
 cd common-lisp/cl-transducers
 sbcl --non-interactive --load ~/quicklisp/setup.lisp --load r

(ql:quickload :transducers/tests)
(in-package :transducers/tests)

(let ((status (parachute:status (parachute:test 'transducers/test
 (cond ((eq :PASSED status) (uiop:quit))
 (t (uiop:quit 1))))

https://shinmera.github.io/parachute/
https://github.com/tdrhq/slite
https://github.com/tdrhq/slite

Tutorial: Working with FiveAM, by Tomek “uint” Kurcz
Comparison of Common Lisp Testing Frameworks, by Sabra Crolleton.
the CL Foundation Docker images

See also

cl-cookieproject, a project skeleton with a FiveAM tests structure.

http://turtleware.eu/posts/Tutorial-Working-with-FiveAM.html
https://sabracrolleton.github.io/testing-framework
https://hub.docker.com/u/clfoundation
https://github.com/vindarel/cl-cookieproject

Database Access and Persistence
The Database section on the Awesome-cl list is a resource listing popular
libraries to work with different kind of databases. We can group them
roughly in four categories:

wrappers to one database engine (cl-sqlite, postmodern, cl-redis,…),
interfaces to several DB engines (clsql, sxql,…),
persistent object databases (bknr.datastore (see chap. 21 of “Common
Lisp Recipes”), ubiquitous,…),
Object Relational Mappers (Mito),

and other DB-related tools (pgloader).

We’ll begin with an overview of Mito. If you must work with an existing
DB, you might want to have a look at cl-dbi and clsql. If you don’t need a
SQL database and want automatic persistence of Lisp objects, you also
have a choice of libraries.

The Mito ORM and SxQL

Mito is in Quicklisp:

Overview

Mito is “an ORM for Common Lisp with migrations, relationships and
PostgreSQL support”.

it supports MySQL, PostgreSQL and SQLite3,
when defining a model, it adds an id (serial primary key), created_at
and updated_at fields by default like Ruby’s ActiveRecord or Django,
handles DB migrations for the supported backends,
permits DB schema versioning,

(ql:quickload "mito")

https://github.com/CodyReichert/awesome-cl#database
https://en.wikipedia.org/wiki/Object-relational_mapping
https://github.com/fukamachi/mito

is tested under SBCL and CCL.

As an ORM, it allows to write class definitions, to specify relationships, and
provides functions to query the database. For custom queries, it relies on
SxQL, an SQL generator that provides the same interface for several
backends.

Working with Mito generally involves these steps:

connecting to the DB
writing CLOS classes to define models
running migrations to create or alter tables
creating objects, saving same in the DB,

and iterating.

Connecting to a DB

Mito provides the function connect-toplevel to establish a connection to
RDBMs:

The driver type can be of :mysql, :sqlite3 and :postgres.

With sqlite you don’t need the username and password:

As usual, you need to create the MySQL or PostgreSQL database
beforehand. Refer to their documentation.

Connecting sets mito:*connection* to the new connection and returns it.

Disconnect with disconnect-toplevel.

(mito:connect-toplevel :mysql
 :database-name "myapp"
 :username "fukamachi"
 :password "c0mon-1isp")

(mito:connect-toplevel :sqlite3 :database-name "myapp")

https://github.com/fukamachi/sxql

You might make good use of a wrapper function:

Models

Defining models

In Mito, you can define a class which corresponds to a database table with
the deftable macro:

Alternatively, you can specify (:metaclass mito:dao-table-class) in a
regular class definition.

The deftable macro automatically adds some slots: a primary key named
id if there’s no primary key, and created_at and updated_at for recording
timestamps. Specifying (:auto-pk nil) and (:record-timestamps nil)
in the deftable form will disable these behaviours. A deftable class will
also come with initializers, named after the slot, and accessors, of form
<class-name>-<slot-name>, for each named slot. For example, for the
name slot in the above table definition, the initarg :name will be added to the
constuctor, and the accessor user-name will be created.

You can inspect the new class:

(defun connect ()
 "Connect to the DB."
 (mito:connect-toplevel :sqlite3 :database-name "myapp"))

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (or (:varchar 128) :null)))

(mito.class:table-column-slots (find-class 'user))
;=> (#<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS MITO.DAO.MIXIN::ID
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS COMMON-LISP-USER::
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS COMMON-LISP-USER::
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS MITO.DAO.MIXIN::CR
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS MITO.DAO.MIXIN::UP

The class inherits mito:dao-class implicitly.

This may be useful when you define methods which can be applied for all
table classes.

For more information on using the Common Lisp Object System, see the
clos page.

Creating the tables

After defining the models, you must create the tables:

So a helper function:

See Mito’s documentation for a couple more ways.

When you alter the model you’ll need to run a DB migration, see the next
section.

Fields

Fields types

Field types are:

(:varchar <integer>), text,

:serial, :bigserial, :integer, :bigint, :unsigned,

(find-class 'user)
;=> #<MITO.DAO.TABLE:DAO-TABLE-CLASS COMMON-LISP-USER::USER>

(c2mop:class-direct-superclasses *)
;=> (#<STANDARD-CLASS MITO.DAO.TABLE:DAO-CLASS>)

(mito:ensure-table-exists 'user)

(defun ensure-tables ()
 (mapcar #'mito:ensure-table-exists '(user foo bar)))

https://github.com/fukamachi/mito#generating-table-definitions

:timestamp, :timestamptz,

:bytea,

Optional fields

Use (or <real type> :null):

Field constraints

:unique-keys can be used like so:

We already saw :primary-key.

You can change the table name with :table-name.

Relationships

You can define a relationship by specifying a foreign class with :col-type:

 (email :col-type (or (:varchar 128) :null))

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (:varchar 128))
 (:unique-keys email))

(mito:deftable tweet ()
 ((status :col-type :text)
 ;; This slot refers to USER class
 (user :col-type user))

(table-definition (find-class 'tweet))
;=> (#<SXQL-STATEMENT: CREATE TABLE tweet (
; id BIGSERIAL NOT NULL PRIMARY KEY,
; status TEXT NOT NULL,
; user_id BIGINT NOT NULL,
; created_at TIMESTAMP,
; updated_at TIMESTAMP
;)>)

Now you can create or retrieve a TWEET by a USER object, not a USER-ID.

Mito doesn’t add foreign key constraints for referring tables.

One-to-one

A one-to-one relationship is simply represented with a simple foreign key
on a slot (as :col-type user in the tweet class). Besides, we can add a
unicity constraint, as with (:unique-keys email).

One-to-many, many-to-one

The tweet example above shows a one-to-many relationship between a user
and his tweets: a user can write many tweets, and a tweet belongs to only
one user.

The relationship is defined with a foreign key on the “many” side linking
back to the “one” side. Here the tweet class defines a user foreign key, so a
tweet can only have one user. You didn’t need to edit the user class.

A many-to-one relationship is actually the contrary of a one-to-many. You
have to put the foreign key on the appropriate side.

Many-to-many

A many-to-many relationship needs an intermediate table, which will be the
“many” side for the two tables it is the intermediary of.

And, thanks to the join table, we can store more information about the
relationship.

Let’s define a book class:

(defvar *user* (mito:create-dao 'user :name "Eitaro Fukamachi"))
(mito:create-dao 'tweet :user *user*)

(mito:find-dao 'tweet :user *user*)

A user can have many books, and a book (as the title, not the physical copy)
is likely to be in many people’s library. Here’s the intermediate class:

Each time we want to add a book to a user’s collection (say in a add-book
function), we create a new user-books object.

But someone may very well own many copies of one book. This is an
information we can store in the join table:

Inheritance and mixin

A subclass of DAO-CLASS is allowed to be inherited. This may be useful
when you need classes which have similar columns:

(mito:deftable book ()
 ((title :col-type (:varchar 128))
 (ean :col-type (or (:varchar 128) :null))))

(mito:deftable user-books ()
 ((user :col-type user)
 (book :col-type book)))

(mito:deftable user-books ()
 ((user :col-type user)
 (book :col-type book)
 ;; Set the quantity, 1 by default:
 (quantity :col-type :integer)))

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (:varchar 128)))
 (:unique-keys email))

(mito:deftable temporary-user (user)
 ((registered-at :col-type :timestamp)))

(mito:table-definition 'temporary-user)
;=> (#<SXQL-STATEMENT: CREATE TABLE temporary_user (
; id BIGSERIAL NOT NULL PRIMARY KEY,
; name VARCHAR(64) NOT NULL,

If you need a ‘template’ for tables which aren’t related to any database
tables, you can use DAO-TABLE-MIXIN in a defclass form. The has-email
class below will not create a table.

See more examples of use in mito-auth.

Troubleshooting

“Cannot CHANGE-CLASS objects into CLASS metaobjects.”

; email VARCHAR(128) NOT NULL,
; registered_at TIMESTAMP NOT NULL,
; created_at TIMESTAMP,
; updated_at TIMESTAMP,
; UNIQUE (email)
;)>)

(defclass has-email ()
 ((email :col-type (:varchar 128)
 :initarg :email
 :accessor object-email))
 (:metaclass mito:dao-table-mixin)
 (:unique-keys email))
;=> #<MITO.DAO.MIXIN:DAO-TABLE-MIXIN COMMON-LISP-USER::HAS-EMAIL

(mito:deftable user (has-email)
 ((name :col-type (:varchar 64))))
;=> #<MITO.DAO.TABLE:DAO-TABLE-CLASS COMMON-LISP-USER::USER>

(mito:table-definition 'user)
;=> (#<SXQL-STATEMENT: CREATE TABLE user (
; id BIGSERIAL NOT NULL PRIMARY KEY,
; name VARCHAR(64) NOT NULL,
; email VARCHAR(128) NOT NULL,
; created_at TIMESTAMP,
; updated_at TIMESTAMP,
; UNIQUE (email)
;)>)

https://github.com/fukamachi/mito-auth/

If you get the following error message:

Cannot CHANGE-CLASS objects into CLASS metaobjects.
 [Condition of type SB-PCL::METAOBJECT-INITIALIZATION-
VIOLATION]
See also:
 The Art of the Metaobject Protocol, CLASS [:initialization]

it is certainly because you first wrote a class definition and then added the
Mito metaclass and tried to evaluate the class definition again.

If this happens, you must remove the class definition from the current
package:

or, with the Slime inspector, click on the class and find the “remove”
button.

More info here.

Migrations

We can run database migrations manually, as shown below, or we can
automatically run migrations after a change to the model definitions. To
enable automatic migrations, set mito:*auto-migration-mode* to t.

The first step is to create the tables, if needed:

then alter the tables:

You can check the SQL generated code with migration-expressions
'class. For example, we create the user table:

(setf (find-class 'foo) nil)

(ensure-table-exists 'user)

(mito:migrate-table 'user)

(ensure-table-exists 'user)
;-> ;; CREATE TABLE IF NOT EXISTS "user" (

https://stackoverflow.com/questions/38811931/how-to-change-classs-metaclass

There are no changes from the previous user definition:

Now let’s add a unique email field:

The migration will run the following code:

so let’s apply it:

Queries

Creating objects

We can create user objects with the regular make-instance:

; "id" BIGSERIAL NOT NULL PRIMARY KEY,
; "name" VARCHAR(64) NOT NULL,
; "email" VARCHAR(128),
; "created_at" TIMESTAMP,
; "updated_at" TIMESTAMP
;) () [0 rows] | MITO.DAO:ENSURE-TABLE-EXISTS

(mito:migration-expressions 'user)
;=> NIL

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (:varchar 128)))
 (:unique-keys email))

(mito:migration-expressions 'user)
;=> (#<SXQL-STATEMENT: ALTER TABLE user ALTER COLUMN email TYPE
; #<SXQL-STATEMENT: CREATE UNIQUE INDEX unique_user_email ON

(mito:migrate-table 'user)
;-> ;; ALTER TABLE "user" ALTER COLUMN "email" TYPE character va
; ;; CREATE UNIQUE INDEX "unique_user_email" ON "user" ("email
;-> (#<SXQL-STATEMENT: ALTER TABLE user ALTER COLUMN email TYPE
; #<SXQL-STATEMENT: CREATE UNIQUE INDEX unique_user_email ON

(defvar me

To save it in DB, use insert-dao:

Do the two steps above at once:

You should not export the user class and create objects outside of its
package (it is good practice anyway to keep all database-related operations
in say a models package and file). You should instead use a helper function:

Updating fields

and save it:

Deleting

(defvar me
 (make-instance 'user :name "Eitaro Fukamachi" :email "e.arrows
;=> USER

(mito:insert-dao me)
;-> ;; INSERT INTO `user` (`name`, `email`, `created_at`, `updat
;=> #<USER {10053C4453}>

(mito:create-dao 'user :name "Eitaro Fukamachi" :email "e.arrows

(defun make-user (&key name)
 (make-instance 'user :name name))

(setf (slot-value me 'name) "nitro_idiot")
;=> "nitro_idiot"

(mito:save-dao me)

(mito:delete-dao me)
;-> ;; DELETE FROM `user` WHERE (`id` = ?) (1) [0 rows] | MITO.D

;; or:

(mito:delete-by-values 'user :id 1)
;-> ;; DELETE FROM `user` WHERE (`id` = ?) (1) [0 rows] | MITO.D

Get the primary key value

Count

Find one

So here’s a possibility of generic helpers to find an object by a given key:

Find all

Use the macro select-dao.

Get a list of all users:

(mito:object-id me)
;=> 1

(mito:count-dao 'user)
;=> 1

(mito:find-dao 'user :id 1)
;-> ;; SELECT * FROM `user` WHERE (`id` = ?) LIMIT 1 (1) [1 row]
;=> #<USER {10077C6073}>

(defgeneric find-user (key-name key-value)
 (:documentation "Retrieves an user from the data base by one o
keys."))

(defmethod find-user ((key-name (eql :id)) (key-value integer))
 (mito:find-dao 'user key-value))

(defmethod find-user ((key-name (eql :name)) (key-value string))
 (first (mito:select-dao 'user
 (sxql:where (:= :name key-value)))))

Find by relationship

As seen above:

Custom queries

It is with select-dao that you can write more precise queries by giving it
SxQL statements.

Example:

another:

You can compose your queries with regular Lisp code:

select-dao is a macro that expands to the right thing©.

Note: if you didn’t use SXQL, then write (sxql:where …) and
(sxql:order-by …).

(mito:select-dao 'user)
;(#<USER {10077C6073}>)
;#<SXQL-STATEMENT: SELECT * FROM user>

(mito:find-dao 'tweet :user *user*)

(select-dao 'tweet
 (where (:like :status "%Japan%")))

(select (:id :name :sex)
 (from (:as :person :p))
 (where (:and (:>= :age 18)
 (:< :age 65)))
 (order-by (:desc :age)))

(defun find-tweets (&key user)
 (select-dao 'tweet
 (when user
 (where (:= :user user)))
 (order-by :object-created)))

https://github.com/fukamachi/sxql

You can compose your queries further with the backquote syntax.

Imagine you receive a query string, maybe composed of space-separated
words, and you want to search for books that have either one of these words
in their title or in their author’s name. Searching for “bob adventure” would
return a book that has “adventure” in its title and “bob” in its author name,
or both in the title.

For the example sake, an author is a string, not a link to another table:

You want to add a clause that searches on both fields for each word.

By the way, we are still using a LIKE statement, but with a non-small dataset
you’ll want to use your database’s full text search engine.

Clauses

See the SxQL documentation.

(mito:deftable book ()
 ((title :col-type (:varchar 128))
 (author :col-type (:varchar 128))
 (ean :col-type (or (:varchar 128) :null))))

(defun find-books (&key query (order :desc))
 "Return a list of books.
If a query string is given, search on both the title
and the author fields."
 (mito:select-dao 'book
 (when (str:non-blank-string-p query)
 (sxql:where
 `(:and
 ,@(loop for word in (str:words query)
 :collect `(:or (:like :title
 ,(str:concat "%" word "%"))
 (:like :authors
 ,(str:concat "%" word "%")))
 (sxql:order-by `(,order :created-at))))

https://github.com/fukamachi/sxql#sql-clauses

Examples:

and joins, etc.

Operators

Triggers

Since insert-dao, update-dao and delete-dao are defined as generic
functions, you can define :before, :after or :around methods to those,
like regular method combination.

(select-dao 'foo
 (where (:and (:> :age 20) (:<= :age 65))))

(order-by :age (:desc :id))

(group-by :sex)

(having (:>= (:sum :hoge) 88))

(limit 0 10)

:not
:is-null, :not-null
:asc, :desc
:distinct
:=, :!=
:<, :>, :<= :>=
:a<, :a>
:as
:in, :not-in
:like
:and, :or
:+, :-, :* :/ :%
:raw

(defmethod mito:insert-dao :before ((object user))
 (format t "~&Adding ~S...~%" (user-name object)))

(mito:create-dao 'user :name "Eitaro Fukamachi" :email "e.arrows

clbr://internal.invalid/book/EPUB/text/clos.html#qualifiers-and-method-combination

Inflation/Deflation

Inflation/Deflation is a function to convert values between Mito and
RDBMS.

Eager loading

One of the pains in the neck to use ORMs is the “N+1 query” problem.

This example sends a query to retrieve a user like “SELECT * FROM user
WHERE id = ?” at each iteration.

(
;-> Adding "Eitaro Fukamachi"...
; ;; INSERT INTO "user" ("name", "email", "created_at", "updat
;=> #<USER {100835FB33}>

(mito:deftable user-report ()
 ((title :col-type (:varchar 100))
 (body :col-type :text
 :initform "")
 (reported-at :col-type :timestamp
 :initform (local-time:now)
 :inflate #'local-time:universal-to-timestamp
 :deflate #'local-time:timestamp-to-universal)))

;; BAD EXAMPLE

(use-package '(:mito :sxql))

(defvar *tweets-contain-japan*
 (select-dao 'tweet
 (where (:like :status "%Japan%"))))

;; Getting names of tweeted users.
(mapcar (lambda (tweet)
 (user-name (tweet-user tweet)))
 tweets-contain-japan)

To prevent this performance issue, add includes to the above query which
only sends a single WHERE IN query instead of N queries:

Schema versioning

$ ros install mito
$ mito
Usage: mito command [option...]

Commands:
 generate-migrations
 migrate

Options:
 -t, --type DRIVER-TYPE DBI driver type (one of
"mysql", "postgres" or "sqlite3")
 -d, --database DATABASE-NAME Database name to use
 -u, --username USERNAME Username for RDBMS
 -p, --password PASSWORD Password for RDBMS
 -s, --system SYSTEM ASDF system to load
(several -s's allowed)
 -D, --directory DIRECTORY Directory path to keep
migration SQL files (default:
"/Users/nitro_idiot/Programs/lib/mito/db/")
 --dry-run List SQL expressions to
migrate

;; GOOD EXAMPLE with eager loading

(use-package '(:mito :sxql))

(defvar *tweets-contain-japan*
 (select-dao 'tweet
 (includes 'user)
 (where (:like :status "%Japan%"))))
;-> ;; SELECT * FROM `tweet` WHERE (`status` LIKE ?) ("%Japan%")
;-> ;; SELECT * FROM `user` WHERE (`id` IN (?, ?, ?)) (1, 3, 12)
;=> (#<TWEET {1003513EC3}> #<TWEET {1007BABEF3}> #<TWEET {1007BB

;; No additional SQLs will be executed.
(tweet-user (first *))
;=> #<USER {100361E813}>

Introspection

Mito provides some functions for introspection.

We can access the information of columns with the functions in
(mito.class.column:...):

table-column-[class, name, info, not-null-p,...]
primary-key-p

and likewise for tables with (mito.class.table:...).

Given we get a list of slots of our class:

We can answer the following questions:

What is the type of this column ?

Is this column nullable ?

Testing

(ql:quickload "closer-mop")

(closer-mop:class-direct-slots (find-class 'user))
;; (#<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS NAME>
;; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS EMAIL>)

(defparameter user-slots *)

(mito.class.column:table-column-type (first user-slots))
;; (:VARCHAR 64)

(mito.class.column:table-column-not-null-p
 (first user-slots))
;; T
(mito.class.column:table-column-not-null-p
 (second user-slots))
;; NIL

We don’t want to test DB operations against the production one. We need to
create a temporary DB before each test.

The macro below creates a temporary DB with a random name, creates the
tables, runs the code and connects back to the original DB connection.

(defpackage my-test.utils
 (:use :cl)
 (:import-from :my.models
 :*db*
 :*db-name*
 :connect
 :ensure-tables-exist
 :migrate-all)
 (:export :with-empty-db))

(in-package my-test.utils)

(defun random-string (length)
 ;; thanks 40ants/hacrm.
 (let ((chars "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuv
 (coerce (loop repeat length
 collect (aref chars (random (length chars))))
 'string)))

(defmacro with-empty-db (&body body)
 "Run `body` with a new temporary DB."
 `(let* ((*random-state* (make-random-state t))
 (prefix (concatenate 'string
 (random-string 8)
 "/"))
 ;; Save our current DB connection.
 (connection mito:*connection*))
 (uiop:with-temporary-file (:pathname name :prefix prefix)
 ;; Bind our *db-name* to a new name, so as to create a ne
 (let* ((*db-name* name))
 ;; Always re-connect to our real DB even in case of
 ;; error in body.
 (unwind-protect
 (progn
 ;; our functions to connect to the DB, create the t
 ;; and run the migrations.

Use it like this:

See also

exploring an existing (PostgreSQL) database with postmodern

mito-attachment
mito-auth

can a role-based access right control library

 (connect)
 (ensure-tables-exist)
 (migrate-all)
 ,@body)

 (setf mito:*connection* connection))))))

(prove:subtest "Creation in a temporary DB."
 (with-empty-db
 (let ((user (make-user :name "Cookbook")))
 (save-user user)

 (prove:is (name user)
 "Cookbook"
 "Test username in a temp DB."))))
;; Creation in a temporary DB
;; CREATE TABLE "user" (
;; id BIGSERIAL NOT NULL PRIMARY KEY,
;; name VARCHAR(64) NOT NULL,
;; email VARCHAR(128) NOT NULL,
;; created_at TIMESTAMP,
;; updated_at TIMESTAMP,
;; UNIQUE (email)
;;) () [0 rows] | MITO.DB:EXECUTE-SQL
;; ✓ Test username in a temp DB.

https://sites.google.com/site/sabraonthehill/postmodern-examples/exploring-a-database
https://github.com/fukamachi/mito-attachment
https://github.com/fukamachi/mito-auth
https://github.com/fukamachi/can/

GUI toolkits
Lisp has a long and rich history and so does the development of Graphical
User Interfaces in Lisp. In fact, the first GUI builder was written in Lisp (and
sold to Apple. It is now Interface Builder).

Lisp is also famous and unrivalled for its interactive development
capabilities, a feature even more worth having to develop GUI applications.
Can you imagine compiling one function and seeing your GUI update
instantly? We can do this with many GUI frameworks today, even though the
details differ from one to another.

Finally, a key part in building software is how to build it and ship it to users.
Here also, we can build self-contained binaries, for the three main operating
systems, that users can run with a double click.

We aim here to give you the relevant information to help you choose the
right GUI framework and to put you on tracks. Don’t hesitate to contribute,
to send more examples and to furnish the upstream documentations.

Introduction

In this recipe, we’ll present the following GUI toolkits:

Tk with Ltk and nodgui
Qt4 with Qtools
IUP with lispnik/iup
Gtk3 with cl-cffi-gtk

if you want Gtk4 bindings, see cl-gtk4. They are new bindings,
released in September, 2022.

Nuklear with Bodge-Nuklear

In addition, you might want to have a look to:

https://github.com/LispCookbook/cl-cookbook/issues/
https://www.tcl.tk/
http://www.peter-herth.de/ltk/ltkdoc/
https://notabug.org/cage/nodgui
https://doc.qt.io/archives/qt-4.8/index.html
https://github.com/Shinmera/qtools
http://webserver2.tecgraf.puc-rio.br/iup/
https://github.com/lispnik/iup/
https://www.gtk.org/
https://github.com/Ferada/cl-cffi-gtk/
https://github.com/bohonghuang/cl-gtk4
https://github.com/Immediate-Mode-UI/Nuklear
https://github.com/borodust/bodge-nuklear

the CAPI toolkit (Common Application Programming Interface), which
is proprietary and made by LispWorks. It is a complete and cross-
platform toolkit (Windows, Gtk+, Cocoa), very praised by its users.
LispWorks also has iOS and Android runtimes. Example software built
with CAPI include ScoreCloud. It is possible to try it with the
LispWorks free demo.
Allegro CL’s IDE and Common Graphics windowing system
(proprietary): Allegro’s IDE is a general environment for developing
applications. It works in concert with a windowing system called
Common Graphics. The IDE is available for Allegro CL’s Microsoft
Windows, on Linux platforms, Free BSD and on the Mac.

NEW! 🎉 since Allegro CL 10.1 (released in March of 2022), the
IDE, and the Common Graphics GUI toolkit, runs in the browser.
It is called CG/JS.

CCL’s built-in Cocoa interface, used to build applications such as
Opusmodus.
Clozure CL’s built-in Objective-C bridge and CocoaInterface, a Cocoa
interface for CCL. Build Cocoa user interface windows dynamically
using Lisp code and bypass the typical Xcode processes.

the bridge is good at catching ObjC errors and turning them into
Lisp errors, so one can have an iterative REPL-based development
cycle for a macOS GUI application.

McCLIM and Garnet are toolkit in 100% Common Lisp. McClim even
has a prototype running in the browser with the Broadway protocol and
Garnet has an ongoing interface to Gtk.
Alloy, another very new toolkit in 100% Common Lisp, used for
example in the Kandria game.
eql, eql5, eql5-android, embedded Qt4 and Qt5 Lisp, embedded in
ECL, embeddable in Qt. Port of EQL5 to the Android platform.
this demo using Java Swing from ABCL
examples of using Gtk without C files with SBCL, as well as GTK-
server.
and, last but not least, Ceramic, to ship a cross-platform web app with
Electron.

as well as the other ones listed on awesome-cl#gui and Cliki.

http://www.lispworks.com/products/capi.html
http://www.lispworks.com/products/lw4mr.html
https://scorecloud.com/
https://franz.com/products/allegro-common-lisp/acl_ide.lhtml
https://franz.com/ftp/pri/acl/cgjs/doc.html
https://ccl.clozure.com/docs/ccl.html#the-objective-c-bridge
https://opusmodus.com/
https://ccl.clozure.com/docs/ccl.html#the-objective-c-bridge
https://github.com/plkrueger/CocoaInterface/
https://common-lisp.net/project/mcclim/
https://github.com/earl-ducaine/cl-garnet
https://techfak.de/~jmoringe/mcclim-broadway-7.ogv
https://github.com/Shirakumo/alloy
https://github.com/shinmera/kandria
https://gitlab.com/eql
https://github.com/defunkydrummer/abcl-jazz
https://github.com/mifpasoti/Gtk-Demos
http://ceramic.github.io/
https://github.com/CodyReichert/awesome-cl#Gui
https://www.cliki.net/GUI

Tk (Ltk and nodgui)

Tk (or Tcl/Tk, where Tcl is the programming language) has the infamous
reputation of having an outdated look. This is not (so) true anymore since its
version 8 of 1997 (!). It is probably better than you think.

This is a simple GUI with nodgui’s built-in theme (more on that below):

This is a treeview, with the same theme:

A toy mediaplayer, showing a tree list, checkboxes, buttons and labels, with
the Arc theme:

https://www.tcl.tk/

This is a demo with a Macos theme:

In addition to those, we can use many of the ttkthemes, the Forest theme,
and more. See this tcl/tk list.

https://ttkthemes.readthedocs.io/en/latest/themes.html
https://github.com/rdbende/Forest-ttk-theme
https://wiki.tcl-lang.org/page/List+of+ttk+Themes

But what is Tk good for? Tk doesn’t have a great choice of widgets, but it
has a useful canvas, and it has a couple of unique features: we can develop a
graphical interface fully interactively and we can run the GUI remotely
from the core app. It is also cross-platform.

So, Tk isn’t native and doesn’t have the most advanced features, but it is a
used and proven GUI toolkit (and programming language) still used in the
industry. It can be a great choice to quickly create simple GUIs, to leverage
its ease of deployment, or when stability is required.

There are two Lisp bindings: Ltk and nodgui. Nodgui (“No Drama GUI”) is
a fork of Ltk, with added widgets (such as an auto-completion list widget),
an asynchronous event loop and, what we really enjoy, the surprisingly nice-
looking “Yaru” theme that comes with the library. It is also very easy to
install and use any other theme of our choice, see below.

Tk is Written in: Tcl

Portability: cross-platform (Windows, macOS, Linux).

Widgets: this is not the fort of Tk. It has a small set of default widgets,
and misses important ones, for example a date picker. We can find some
in extensions (such as in Nodgui), but they don’t feel native, at all. The
calendar is brought by a Tk extension and looks better.

Interactive development: very much.

Graphical builder: no

Other features:
remote execution: the connection between Lisp and Tcl/Tk is
done via a stream. It is thus possible to run the Lisp program on
one computer, and to display the GUI on another one. The only
thing required on the client computer is tcl/tk installed and the
remote.tcl script. See Ltk-remote.

Bindings documentation: short but complete. Nodgui too.
Bindings stability: very stable
Bindings activity: low for Ltk (mostly maintenance), active for nodgui
(new features).

http://www.peter-herth.de/ltk/ltkdoc/
https://notabug.org/cage/nodgui
http://www.peter-herth.de/ltk/ltkdoc/node46.html

Licence: Tcl/Tk is BSD-style, Ltk is LGPL.
Example applications:

Fulci - a program to organise your movie collections.
Ltk small games - snake and tic-tac-toe.
cl-pkr - a cross-platform color picker.
cl-torrents - searching torrents on popular trackers. CLI, readline
and a simple Tk GUI.

More examples:
https://peterlane.netlify.app/ltk-examples/: LTk examples for the
tkdocs tutorial.
LTk Plotchart - A wrapper around the tklib/plotchart library to
work with LTk. This includes over 20 different chart types (xy-
plots, gantt charts, 3d-bar charts etc…).

List of widgets

(please don’t suppose the list is exhaustive)

Button Canvas Check-button Entry Frame Label Labelframe Listbox
Menu Menubutton Message
Paned-window
Radio-button Scale
Scrollbar Spinbox Text
Toplevel Widget Canvas

Ltk-megawidgets:
 progress
 history-entry
 menu-entry

nodgui adds:

treelist tooltip searchable-listbox date-picker calendar
autocomplete-listbox
password-entry progress-bar-star notify-window
dot-plot bar-chart equalizer-bar
swap-list

Qt4 (Qtools)

https://notabug.org/cage/fulci/
https://github.com/mijohnson99/ltk-small-games
https://github.com/VitoVan/cl-pkr
https://github.com/vindarel/cl-torrents
https://peterlane.netlify.app/ltk-examples/
https://tkdocs.com/tutorial/index.html
https://peterlane.netlify.app/ltk-plotchart/

Do we need to present Qt and Qt4? Qt is huge and contains everything and
the kitchen sink. Qt not only provides UI widgets, but numerous other layers
(networking, D-BUS…).

Qt is free for open-source software, however you’ll want to check the
conditions to ship proprietary ones.

The Qtools bindings target Qt4. The Qt5 Lisp bindings are
https://github.com/commonqt/commonqt5/ and not ready for prime time..

A companion library for Qtools, that you’ll want to check out once you
made your first Qtool application, is Qtools-ui, a collection of useful widgets
and pre-made components. It comes with short demonstrations videos.

Framework written in: C++
Framework Portability: multi-platform, Android, embedded systems,
WASM.

Bindings Portability: Qtools runs on x86 desktop platforms on
Windows, macOS and GNU/Linux.

Widgets choice: large.

Graphical builder: yes.

Other features: Web browser, a lot more.

Bindings documentation: lengthy explanations, a few examples. Prior
Qt knowledge is required.
Bindings stability: stable
Bindings activity: active
Qt Licence: both commercial and open source licences.
Example applications:

https://github.com/Shinmera/qtools/tree/master/examples
https://github.com/Shirakumo/lionchat
https://github.com/shinmera/halftone - a simple image viewer

Gtk+3 (cl-cffi-gtk)

https://doc.qt.io/archives/qt-4.8/index.html
https://github.com/Shinmera/qtools
clbr://internal.invalid/book/EPUB/text/in%20the%20works
https://github.com/Shinmera/qtools-ui
https://www.youtube.com/playlist?list=PLkDl6Irujx9Mh3BWdBmt4JtIrwYgihTWp

Gtk+3 is the primary library used to build GNOME applications. Its
(currently most advanced) lisp bindings is cl-cffi-gtk. While primarily
created for GNU/Linux, Gtk works fine under macOS and can now also be
used on Windows.

Framework written in: C

Portability: GNU/Linux and macOS, also Windows.

Widgets choice: large.

Graphical builder: yes: Glade.

Other features: web browser (WebKitGTK)

Bindings documentation: very good:
http://www.crategus.com/books/cl-gtk/gtk-tutorial.html
Bindings stability: stable
Bindings activity: low activity, active development.
Licence: LGPL
Example applications:

an Atmosphere Calculator, built with Glade.
more documentation and examples:

Learn Common Lisp by Example: GTK GUI with SBCL

IUP (lispnik/IUP)

IUP is a cross-platform GUI toolkit actively developed at the PUC university
of Rio de Janeiro, Brazil. It uses native controls: the Windows API for
Windows, Gtk3 for GNU/Linux. At the time of writing, it has a Cocoa port
in the works (as well as iOS, Android and WASM ones). A particularity of
IUP is its small API.

The Lisp bindings are lispnik/iup. They are nicely done in that they are
automatically generated from the C sources. They can follow new IUP
versions with a minimal work and the required steps are documented. All
this gives us good guarantee over the bus factor.

https://www.gtk.org/
https://www.gnome.org/
https://github.com/Ferada/cl-cffi-gtk/
https://github.com/ralph-schleicher/atmosphere-calculator
https://dev.to/goober99/learn-common-lisp-by-example-gtk-gui-with-sbcl-5e5c
http://webserver2.tecgraf.puc-rio.br/iup/
https://github.com/lispnik/iup/

IUP stands as a great solution in between Tk and Gtk or Qt.

Framework written in: C (official API also in Lua and LED)

Portability: Windows and Linux, work started for Cocoa, iOS,
Android, WASM.

Widgets choice: medium. Includes a web browser window
(WebkitGTK on Linux, IE’s WebBrowser on Windows).

Graphical builder: yes: IupVisualLED

Other features: OpenGL, Web browser (WebKitGTK on GNU/Linux),
plotting, Scintilla text editor

Bindings documentation: good examples and good readme, otherwise
low.
Bindings stability: alpha (but fully generated and working nicely).
Bindings activity: low but steady, and reactive to new IUP versions.

Licence: IUP and the bindings are MIT licenced.

List of widgets

Radio, Tabs, FlatTabs, ScrollBox, DetachBox,
Button, FlatButton, DropButton, Calendar, Canvas, Colorbar,
ColorBrowser, DatePick, Dial, Gauge, Label, FlatLabel,
FlatSeparator, Link, List, FlatList, ProgressBar, Spin, Text,
Toggle, Tree, Val,
listDialog, Alarm, Color, Message, Font, Scintilla, file-dialog…
Cells, Matrix, MatrixEx, MatrixList,
GLCanvas, Plot, MglPlot, OleControl, WebBrowser (WebKit/Gtk+)…
drag-and-drop
WebBrowser

http://webserver2.tecgraf.puc-rio.br/iup/en/iupvisualled.html

Nuklear (Bodge-Nuklear)

Nuklear is a small immediate-mode GUI toolkit:

Nuklear is a minimal-state, immediate-mode graphical user interface
toolkit written in ANSI C and licensed under public domain. It was
designed as a simple embeddable user interface for application and does
not have any dependencies, a default render backend or OS
window/input handling but instead provides a highly modular, library-
based approach, with simple input state for input and draw commands
describing primitive shapes as output. So instead of providing a layered

https://github.com/Immediate-Mode-UI/Nuklear
https://en.wikipedia.org/wiki/Immediate_mode_GUI
https://github.com/Immediate-Mode-UI/Nuklear

library that tries to abstract over a number of platform and render
backends, it focuses only on the actual UI.

its Lisp binding is Bodge-Nuklear, and its higher level companions bodge-ui
and bodge-ui-window.

Unlike traditional UI frameworks, Nuklear allows the developer to take over
the rendering loop or the input management. This might require more setup,
but it makes Nuklear particularly well suited for games, or for applications
where you want to create new controls.

Framework written in: ANSI C, single-header library.

Portability: where C runs. Nuklear doesn’t contain platform-specific
code. No direct OS or window handling is done in Nuklear. Instead all
input state has to be provided by platform specific code.

Widgets choice: small.

Graphical builder: no.

Other features: fully skinnable and customisable.

Bindings stability: stable
Bindings activity: active
Licence: MIT or Public Domain (unlicence).
Example applications:

Trivial-gamekit
Obvius - a resurrected image processing library.
Notalone - an autumn 2017 Lisp Game Jam entry.

List of widgets

Non-exhaustive list:

buttons, progressbar, image selector, (collapsable) tree, list,
grid, range, slider, color picker,
date-picker

https://github.com/borodust/bodge-nuklear
https://github.com/borodust/bodge-ui
https://github.com/borodust/bodge-ui-window
https://github.com/borodust/trivial-gamekit
https://github.com/thicksteadTHpp/Obvius/
https://github.com/borodust/notalone

Getting started

Tk

Ltk is quick and easy to grasp.

How to create widgets

All widgets are created with a regular make-instance and the widget name:

This makes Ltk explorable with the default symbol completion.

How to start the main loop

(ql:quickload "ltk")
(in-package :ltk-user)

(make-instance 'button)
(make-instance 'treeview)

As with most bindings, the GUI-related code must be started inside a macro
that handles the main loop, here with-ltk:

How to display widgets

After we created some widgets, we must place them on the layout. There are
a few Tk systems for that, but the most recent one and the one we should
start with is the grid. grid is a function that takes as arguments the widget,
its column, its row, and a few optional parameters.

As with any Lisp code in a regular environment, the functions’ signatures
are indicated by the editor. It makes Ltk explorable.

Here’s how to display a button:

That’s all there is to it.

Reacting to events

Many widgets have a :command argument that accept a lambda which is
executed when the widget’s event is started. In the case of a button, that will
be on a click:

Interactive development

(with-ltk ()
 (let ((frame (make-instance 'frame)))
 …))

(with-ltk ()
 (let ((button (make-instance 'button :text "hello")))
 (grid button 0 0)))

(make-instance 'button
 :text "Hello"
 :command (lambda ()
 (format t "clicked")))

When we start the Tk process in the background with (start-wish), we can
create widgets and place them on the grid interactively.

See the documentation.

Once we’re done, we can (exit-wish).

Nodgui

To try the Nodgui demo, do:

but hey, to load the demo with the better looking theme, do:

or

Nodgui UI themes

To use the “yaru” theme that comes with nodgui, we can simply do:

or

or

(ql:quickload "nodgui")
(nodgui.demo:demo)

(nodgui.demo:demo :theme "yaru")

(setf nodgui:*default-theme* "yaru")
(nodgui.demo:demo)

(with-nodgui ()
 (use-theme "yaru")
 …)

(with-nodgui (:theme "yaru")
 …)

(setf nodgui:*default-theme* "yaru")
(with-nodgui ()

http://www.peter-herth.de/ltk/ltkdoc/node8.html

It is also possible to install and load another tcl theme. For example, clone
the Forest ttk theme or the ttkthemes. Your project directory would look like
this:

yourgui.asd
yourgui.lisp
ttkthemes/

Inside ttkthemes/, you will find themes under the png/ directory (the other
ones are currently not supported):

/ttkthemes/ttkthemes/png/arc/arc.tcl

You need to load the .tcl file with nodgui, and tell it to use this theme:

and that’s it. Your application now uses a new and decently looking GUI
theme.

Qt4

We create our main widget that will contain the rest:

We create an input field and a button inside this main widget:

 …)

(with-nodgui ()
 (eval-tcl-file "/ttkthemes/ttkthemes/png/arc/arc.tcl")
 (use-theme "arc")
 … code here …)

(ql:quickload '(:qtools :qtcore :qtgui))

(defpackage #:qtools-test
 (:use #:cl+qt)
 (:export #:main))
(in-package :qtools-test)
(in-readtable :qtools)

(define-widget main-window (QWidget)
 ())

https://github.com/rdbende/Forest-ttk-theme
https://github.com/TkinterEP/ttkthemes/

We stack them horizontally:

and we show them:

That’s cool, but we don’t react to the click event yet.

Reacting to events

Reacting to events in Qt happens through signals and slots. Slots are
functions that receive or “connect to” signals, and signals are event carriers.

Widgets already send their own signals: for example, a button sends a
“pressed” event. So, most of the time, we only need to connect to them.

However, had we extra needs, we can create our own set of signals.

Built-in events

We want to connect our go-button to the pressed and return-pressed
events and display a message box.

(define-subwidget (main-window name) (q+:make-qlineedit main-wind
 (setf (q+:placeholder-text name) "Your name please."))

(define-subwidget (main-window go-button) (q+:make-qpushbutton "G

(define-subwidget (main-window layout) (q+:make-qhboxlayout main-
 (q+:add-widget layout name)
 (q+:add-widget layout go-button))

(with-main-window
 (window 'main-window))

we need to do this inside a define-slot function,
where we establish the connection to those events,
and where we create the message box. We grab the text of the name
input field with (q+:text name).

And voilà. Run it with

Custom events

We’ll implement the same functionality as above, but for demonstration
purposes we’ll create our own signal named name-set to throw when the
button is clicked.

We start by defining the signal, which happens inside the main-window, and
which is of type string:

We create a first slot to make our button react to the pressed and return-
pressed events. But instead of creating the message box here, as above, we
send the name-set signal, with the value of our input field..

So far, nobody reacts to name-set. We create a second slot that connects to
it, and displays our message. Here again, we precise the parameter type.

(define-slot (main-window go-button) ()
 (declare (connected go-button (pressed)))
 (declare (connected name (return-pressed)))
 (q+:qmessagebox-information main-window
 "Greetings" ;; title
 (format NIL "Good day to you, ~a!"

(with-main-window (window 'main-window))

(define-signal (main-window name-set) (string))

(define-slot (main-window go-button) ()
 (declare (connected go-button (pressed)))
 (declare (connected name (return-pressed)))
 (signal! main-window (name-set string) (q+:text name)))

and run it:

Building and deployment

It is possible to build a binary and bundle it together with all the necessary
shared libraries.

Please read https://github.com/Shinmera/qtools#deployment.

You might also like this Travis CI script to build a self-contained binary for
the three OSes.

Gtk3

The documentation is exceptionally good, including for beginners.

The library to quickload is cl-cffi-gtk. It is made of numerous ones, that
we have to :use for our package.

How to run the main loop

As with the other libraries, everything happens inside the main loop wrapper,
here with-main-loop.

(define-slot (main-window name-set) ((new-name string))
 (declare (connected main-window (name-set string)))
 (q+:qmessagebox-information main-window "Greetings"
 (format NIL "Good day to you, ~a!" new-name)))

(with-main-window (window 'main-window))

(ql:quickload "cl-cffi-gtk")

(defpackage :gtk-tutorial
 (:use :gtk :gdk :gdk-pixbuf :gobject
 :glib :gio :pango :cairo :common-lisp))

(in-package :gtk-tutorial)

https://github.com/Shinmera/qtools#deployment
https://github.com/phoe-trash/furcadia-post-splitter/blob/master/.travis.yml
http://www.crategus.com/books/cl-gtk/gtk-tutorial.html

How to create a window

(make-instance 'gtk-window :type :toplevel :title "hello" ...).

How to create a widget

All widgets have a corresponding class. We can create them with make-
instance 'widget-class, but we preferably use the constructors.

The constructors end with (or contain) “new”:

How to create a layout

then pack a widget onto the box:

and add the box to the window:

and display them all:

Reacting to events

Use g-signal-connect + the concerned widget + the event name (as a
string) + a lambda, that takes the widget as argument:

(gtk-label-new)
(gtk-button-new-with-label "Label")

(let ((box (make-instance 'gtk-box :orientation :horizontal
 :spacing 6))) ...)

(gtk-box-pack-start box mybutton-1)

(gtk-container-add window box)

(gtk-widget-show-all window)

(g-signal-connect window "destroy"
 (lambda (widget)
 (declare (ignore widget))
 (leave-gtk-main)))

Or again:

Full example

(g-signal-connect button "clicked"
 (lambda (widget)
 (declare (ignore widget))
 (format t "Button was pressed.~%")))

(defun hello-world ()
 ;; in the docs, this is example-upgraded-hello-world-2.
 (within-main-loop
 (let ((window (make-instance 'gtk-window
 :type :toplevel
 :title "Hello Buttons"
 :default-width 250
 :default-height 75
 :border-width 12))
 (box (make-instance 'gtk-box
 :orientation :horizontal
 :spacing 6)))
 (g-signal-connect window "destroy"
 (lambda (widget)
 (declare (ignore widget))
 (leave-gtk-main)))
 (let ((button (gtk-button-new-with-label "Button 1")))
 (g-signal-connect button "clicked"
 (lambda (widget)
 (declare (ignore widget))
 (format t "Button 1 was pressed.~%"))
 (gtk-box-pack-start box button))
 (let ((button (gtk-button-new-with-label "Button 2")))
 (g-signal-connect button "clicked"
 (lambda (widget)
 (declare (ignore widget))
 (format t "Button 2 was pressed.~%")))
 (gtk-box-pack-start box button))
 (gtk-container-add window box)
 (gtk-widget-show-all window))))

IUP

Please check the installation instructions upstream. You may need one
system dependency on GNU/Linux, and to modify an environment variable
on Windows.

Finally, do:

We are not going to :use IUP (it is a bad practice generally after all).

The following snippet creates a dialog frame to display a text label.

Important note for SBCL: we currently must trap division-by-zero errors
(see advancement on this issue). So, run snippets like so:

(ql:quickload "iup")

(defpackage :test-iup
 (:use :cl))
(in-package :test-iup)

(defun hello ()
 (iup:with-iup ()
 (let* ((label (iup:label
 :title
 (format nil "Hello, World!~%IUP ~A~%~A ~A"
 (iup:version)
 (lisp-implementation-type)
 (lisp-implementation-version))))
 (dialog (iup:dialog label :title "Hello, World!")))
 (iup:show dialog)
 (iup:main-loop))))
(hello)

https://github.com/lispnik/iup/issues/30

How to run the main loop

As with all the bindings seen so far, widgets are shown inside a with-iup
macro, and with a call to iup:main-loop.

How to create widgets

The constructor function is the name of the widget: iup:label, iup:dialog.

How to display a widget

Be sure to “show” it: (iup:show dialog).

You can group widgets on frames, and stack them vertically or horizontally
(with vbox or hbox, see the example below).

To allow a widget to be expanded on window resize, use :expand :yes (or
:horizontal and :vertical).

Use also the :alignement properties.

How to get and set a widget’s attributes

Use (iup:attribute widget attribute) to get the attribute’s value, and
use setf on it to set it.

Reacting to events

Most widgets take an :action parameter that takes a lambda function with
one parameter (the handle).

(defun run-gui-function ()
 #-sbcl (gui-function)
 #+sbcl
 (sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (gui-function)))

(iup:button :title "Test &1"
 :expand :yes

Below we create a label and put a button below it. We display a message
dialog when we click on the button.

Here’s a similar example to make a counter of clicks. We use a label and its
title to hold the count. The title is an integer.

 :tip "Callback inline at control creation"
 :action (lambda (handle)
 (iup:message "title" "button1's action call
 iup:+default+))

(defun click-button ()
 (iup:with-iup ()
 (let* ((label (iup:label :title
 (format nil "Hello, World!~%IUP ~A~%~A ~A"
 (iup:version)
 (lisp-implementation-type)
 (lisp-implementation-version))))
 (button (iup:button :title "Click me"
 :expand :yes
 :tip "yes, click me"
 :action
 (lambda (handle)
 (declare (ignorable handle))
 (iup:message "title"
 "button clicked")
 iup:+default+)))
 (vbox

 (iup:vbox (list label button)
 :gap "10"
 :margin "10x10"
 :alignment :acenter))
 (dialog (iup:dialog vbox :title "Hello, World!")))
 (iup:show dialog)
 (iup:main-loop))))

#+sbcl
(sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (click-button))

List widget example

Below we create three list widgets with simple and multiple selection, we set
their default value (the pre-selected row) and we place them horizontally
side by side.

(defun counter ()
 (iup:with-iup ()
 (let* ((counter (iup:label :title 0))
 (label (iup:label :title
 (format nil "The button was clicked ~a time(
 (iup:attribute counter :title))))
 (button (iup:button :title "Click me"
 :expand :yes
 :tip "yes, click me"
 :action (lambda (handle)
 (declare (ignorable hand
 (setf (iup:attribute cou
 (1+ (iup:attribute
 (setf (iup:attribute lab
 (format nil "The b
 (iup:attri
 iup:+default+)))
 (vbox
 (iup:vbox (list label button)
 :gap "10"
 :margin "10x10"
 :alignment :acenter))
 (dialog (iup:dialog vbox :title "Counter")))
 (iup:show dialog)
 (iup:main-loop))))

(defun run-counter ()
 #-sbcl
 (counter)
 #+sbcl
 (sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (counter)))

Nuklear

Disclaimer: as per the author’s words at the time of writing, bodge-ui is in
early stages of development and not ready for general use yet. There are

(defun list-test ()
 (iup:with-iup ()
 (let* ((list-1 (iup:list :tip "List 1" ;; tooltip
 ;; multiple selection
 :multiple :yes
 :expand :yes))
 (list-2 (iup:list :value 2 ;; default index of the
 :tip "List 2" :expand :yes))
 (list-3 (iup:list :value 9 :tip "List 3" :expand :yes
 (frame (iup:frame
 (iup:hbox
 (progn
 ;; populate the lists: display integers.
 (loop for i from 1 upto 10
 do (setf (iup:attribute list-1 i)
 (format nil "~A" i))
 do (setf (iup:attribute list-2 i)
 (format nil "~A" (+ i 10)))
 do (setf (iup:attribute list-3 i)
 (format nil "~A" (+ i 50))))
 ;; hbox wants a list of widgets.
 (list list-1 list-2 list-3)))
 :title "IUP List"))
 (dialog (iup:dialog frame :menu "menu" :title "List e

 (iup:map dialog)
 (iup:show dialog)
 (iup:main-loop))))

(defun run-list-test ()
 #-sbcl (hello)
 #+sbcl
 (sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (list-test)))

some quirks that need to be fixed, which might require some changes in the
API.

bodge-ui is not in Quicklisp but in its own Quicklisp distribution. Let’s
install it:

Uncomment and evaluate this line only if you want to enable the OpenGL 2
renderer:

Quickload bodge-ui-window:

We can run the built-in example:

Now let’s define a package to write a simple application.

(ql-dist:install-dist "http://bodge.borodust.org/dist/org.borodus

;; (cl:pushnew :bodge-gl2 cl:*features*)

(ql:quickload "bodge-ui-window")

(ql:quickload "bodge-ui-window/examples")
(bodge-ui-window.example.basic:run)

(cl:defpackage :bodge-ui-window-test
 (:use :cl :bodge-ui :bodge-host))
(in-package :bodge-ui-window-test)

(defpanel (main-panel
 (:title "Hello Bodge UI")
 (:origin 200 50)
 (:width 400) (:height 400)
 (:options :movable :resizable
 :minimizable :scrollable
 :closable))
 (label :text "Nested widgets:")
 (horizontal-layout
 (radio-group
 (radio :label "Option 1")
 (radio :label "Option 2" :activated t))
 (vertical-layout

and run it:

 (check-box :label "Check 1" :width 100)
 (check-box :label "Check 2"))
 (vertical-layout
 (label :text "Awesomely" :align :left)
 (label :text "Stacked" :align :centered)
 (label :text "Labels" :align :right)))
 (label :text "Expand by width:")
 (horizontal-layout
 (button :label "Dynamic")
 (button :label "Min-Width" :width 80)
 (button :label "Fixed-Width" :expandable nil :width 100))
 (label :text "Expand by width:")
 (horizontal-layout
 (button :label "1.0" :expand-ratio 1.0)
 (button :label "0.75" :expand-ratio 0.75)
 (button :label "0.5" :expand-ratio 0.5))
 (label :text "Rest:")
 (button :label "Top-level Button"))

(defparameter *window-width* 800)
(defparameter *window-height* 600)

(defclass main-window (bodge-ui-window:ui-window) ()
 (:default-initargs
 :title "Bodge UI Window Example"
 :width *window-width*
 :height *window-height*
 :panels '(main-panel)
 :floating t
 :opengl-version #+bodge-gl2 '(2 1)
 #+bodge-gl2 '(3 3)))

(defun run ()
 (bodge-host:open-window (make-instance 'main-window)))

(run)

To react to events, use the following signals:

:on-click
:on-hover
:on-leave
:on-change
:on-mouse-press
:on-mouse-release

They take as argument a function with one argument, the panel. But beware:
they will be called on each rendering cycle when the widget is on the given
state, so potentially a lot of times.

Interactive development

If you ran the example in the REPL, you couldn’t see what’s cool. Put the
code in a lisp file and run it, so than you get the window. Now you can
change the panel widgets and the layout, and your changes will be
immediately applied while the application is running!

Conclusion

Have fun, and don’t hesitate to share your experience and your apps.

Web development
For web development as for any other task, one can leverage Common
Lisp’s advantages: the unmatched REPL that even helps to interact with a
running web app, the exception handling system, performance, the ability to
build a self-contained executable, stability, good threads story, strong typing,
etc. We can, say, define a new route and try it right away, there is no need to
restart any running server. We can change and compile one function at a time
(the usual C-c C-c in Slime) and try it. The feedback is immediate. We can
choose the degree of interactivity: the web server can catch exceptions and
fire the interactive debugger, or print lisp backtraces on the browser, or
display a 404 error page and print logs on standard output. The ability to
build self-contained executables eases deployment tremendously (compared
to, for example, npm-based apps), in that we just copy the executable to a
server and run it.

And when we have deployed our app, we can still interact with it, allowing
for hot reload, that even works when new dependencies have to be installed.
If you are careful and don’t want to use full live reload, you might still enjoy
this capability to reload, for example, a user’s configuration file.

We’ll present here some established web frameworks and other common
libraries to help you getting started in developing a web application. We do
not aim to be exhaustive nor to replace the upstream documentation. Your
feedback and contributions are appreciated.

Overview

Hunchentoot and Clack are two projects that you’ll often hear about.

Hunchentoot is

a web server and at the same time a toolkit for building dynamic
websites. As a stand-alone web server, Hunchentoot is capable of
HTTP/1.1 chunking (both directions), persistent connections (keep-

https://edicl.github.io/hunchentoot
https://github.com/fukamachi/clack

alive), and SSL. It provides facilities like automatic session handling
(with and without cookies), logging, customizable error handling, and
easy access to GET and POST parameters sent by the client.

It is a software written by Edi Weitz (“Common Lisp Recipes”, cl-ppcre
and much more), it’s used and proven solid. One can achieve a lot with it,
but sometimes with more friction than with a traditional web framework. For
example, dispatching a route by the HTTP method is a bit convoluted, one
must write a function for the :uri parameter that does the check, when it is a
built-in keyword in other frameworks like Caveman.

Clack is

a web application environment for Common Lisp inspired by Python’s
WSGI and Ruby’s Rack.

Also written by a prolific lisper (E. Fukamachi), it actually uses
Hunchentoot by default as the server, but thanks to its pluggable architecture
one can use another web server, like the asynchronous Woo, built on the
libev event loop, maybe “the fastest web server written in any programming
language”.

We’ll cite also Wookie, an asynchronous HTTP server, and its companion
library cl-async, for general purpose, non-blocking programming in
Common Lisp, built on libuv, the backend library in Node.js.

Clack being more recent and less documented, and Hunchentoot a de-facto
standard, we’ll concentrate on the latter for this recipe. Your contributions
are of course welcome.

Web frameworks build upon web servers and can provide facilities for
common activities in web development, like a templating system, access to a
database, session management, or facilities to build a REST api.

Some web frameworks include:

Caveman, by E. Fukamachi. It provides, out of the box, database
management, a templating engine (Djula), a project skeleton generator,

https://edicl.github.io/
https://github.com/fukamachi/
https://github.com/fukamachi/woo
http://software.schmorp.de/pkg/libev.html
https://github.com/orthecreedence/wookie
https://github.com/orthecreedence/cl-async
https://github.com/fukamachi/caveman

a routing system à la Flask or Sinatra, deployment options (mod_lisp or
FastCGI), support for Roswell on the command line, etc.
Radiance, by Shinmera (Qtools, Portacle, lquery, …), is a web
application environment, more general than usual web frameworks. It
lets us write and tie websites and applications together, easing their
deployment as a whole. It has thorough documentation, a tutorial,
modules, pre-written applications such as an image board or a blogging
platform, and more. For example websites, see https://shinmera.com/,
reader.tymoon.eu and events.tymoon.eu.
Snooze, by João Távora (Sly, Emacs’ Yasnippet, Eglot, …), is “an URL
router designed around REST web services”. It is different because in
Snooze, routes are just functions and HTTP conditions are just Lisp
conditions.
cl-rest-server is a library for writing REST web APIs. It features
validation with schemas, annotations for logging, caching, permissions
or authentication, documentation via OpenAPI (Swagger), etc.
last but not least, Weblocks is a venerable Common Lisp web
framework that permits to write ajax-based dynamic web applications
without writing any JavaScript, nor writing some lisp that would
transpile to JavaScript. It is seeing an extensive rewrite and update
since 2017. We present it in more details below.

For a full list of libraries for the web, please see the awesome-cl list
#network-and-internet and Cliki. If you are looking for a featureful static site
generator, see Coleslaw.

Installation

Let’s install the libraries we’ll use:

To try Weblocks, please see its documentation. The Weblocks in Quicklisp is
not yet, as of writing, the one we are interested in.

We’ll start by serving local files and we’ll run more than one local server in
the running image.

(ql:quickload '("hunchentoot" "caveman2" "spinneret"
 "djula" "easy-routes"))

https://github.com/Shirakumo/radiance
https://github.com/Shinmera
https://shirakumo.github.io/radiance/
https://github.com/Shirakumo/radiance-tutorial
https://github.com/Shirakumo/radiance-contribs
https://github.com/Shirakumo?utf8=%E2%9C%93&q=radiance&type=&language=
https://github.com/Shirakumo/purplish
https://github.com/Shirakumo/reader
https://shinmera.com/
https://reader.tymoon.eu/
https://events.tymoon.eu/
https://github.com/joaotavora/snooze
https://github.com/mmontone/cl-rest-server
https://github.com/40ants/weblocks
https://github.com/CodyReichert/awesome-cl#network-and-internet
https://www.cliki.net/Web
https://github.com/coleslaw-org/coleslaw

Simple webserver

Serve local files

Hunchentoot

Create and start a webserver like this:

We create an instance of easy-acceptor on port 4242 and we start it. We
can now access http://127.0.0.1:4242/. You should get a welcome screen
with a link to the documentation and logs to the console.

By default, Hunchentoot serves the files from the www/ directory in its source
tree. Thus, if you go to the source of easy-acceptor (M-. in Slime), which is
probably ~/quicklisp/dists/quicklisp/software/hunchentoot-
v1.2.38/, you’ll find the www/ directory. It contains:

an errors/ directory, with the error templates 404.html and 500.html,
an img/ directory,
an index.html file.

To serve another directory, we give the option :document-root to easy-
acceptor. We can also set the slot with its accessor:

Let’s create our index.html first. Put this in a new www/index.html at the
current directory (of the lisp repl):

(defvar *acceptor* (make-instance 'hunchentoot:easy-acceptor
 :port 4242))
(hunchentoot:start *acceptor*)

(setf (hunchentoot:acceptor-document-root *acceptor*)
 #p"path/to/www")

<html>
 <head>
 <title>Hello!</title>
 </head>
 <body>

http://127.0.0.1:4242/

Let’s start a new acceptor on a new port:

go to http://127.0.0.1:4444/ and see the difference.

Note that we just created another acceptor on a different port on the same
lisp image. This is already pretty cool.

Access your server from the internet

Hunchentoot

With Hunchentoot we have nothing to do, we can see the server from the
internet right away.

If you evaluate this on your VPS:

(hunchentoot:start (make-instance ’hunchentoot:easy-acceptor :port 4242))

You can see it right away on your server’s IP.

Stop it with (hunchentoot:stop *).

Routing

Simple routes

 <h1>Hello local server!</h1>
 <p>
 We just served our own files.
 </p>
 </body>
</html>

(defvar *my-acceptor* (make-instance 'hunchentoot:easy-acceptor
 :port 4444
 :document-root #p"www/"))
(hunchentoot:start *my-acceptor*)

http://127.0.0.1:4444/

Hunchentoot

To bind an existing function to a route, we create a “prefix dispatch” that we
push onto the *dispatch-table* list:

To create a route with a regexp, we use create-regex-dispatcher, where
the url-as-regexp can be a string, an s-expression or a cl-ppcre scanner.

If you didn’t yet, create an acceptor and start the server:

and access it on http://localhost:4242/hello.html.

We can see logs on the REPL:

127.0.0.1 - [2018-10-27 23:50:09] "get / http/1.1" 200 393 "-"
"Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101
Firefox/58.0"
127.0.0.1 - [2018-10-27 23:50:10] "get /img/made-with-lisp-
logo.jpg http/1.1" 200 12583 "http://localhost:4242/"
"Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101
Firefox/58.0"
127.0.0.1 - [2018-10-27 23:50:10] "get /favicon.ico http/1.1"
200 1406 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:58.0)
Gecko/20100101 Firefox/58.0"
127.0.0.1 - [2018-10-27 23:50:19] "get /hello.html http/1.1" 200
20 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101
Firefox/58.0"

define-easy-handler allows to create a function and to bind it to an uri at
once.

Its form follows

(defun hello ()
 (format nil "Hello, it works!"))

(push
 (hunchentoot:create-prefix-dispatcher "/hello.html" #'hello)
 hunchentoot:*dispatch-table*)

(defvar *server* (make-instance 'hunchentoot:easy-acceptor :port
(hunchentoot:start *server*)

http://localhost:4242/hello.html
https://edicl.github.io/hunchentoot/#define-easy-handler

define-easy-handler (function-name :uri …) (lambda list parameters)

where <uri> can be a string or a function.

Example:

Visit it at p://localhost:4242/yo and add parameters on the url:
http://localhost:4242/yo?name=Alice.

Just a thought… we didn’t explicitly ask Hunchentoot to add this route to
our first acceptor of the port 4242. Let’s try another acceptor (see previous
section), on port 4444: http://localhost:4444/yo?name=Bob It works too ! In
fact, define-easy-handler accepts an acceptor-names parameter:

acceptor-names (which is evaluated) can be a list of symbols which
means that the handler will only be returned by DISPATCH-EASY-
HANDLERS in acceptors which have one of these names (see
ACCEPTOR-NAME). acceptor-names can also be the symbol T which
means that the handler will be returned by DISPATCH-EASY-
HANDLERS in every acceptor.

So, define-easy-handler has the following signature:

define-easy-handler (function-name &key uri acceptor-names default-
request-type) (lambda list parameters)

It also has a default-parameter-type which we’ll use in a minute to get url
parameters.

There are also keys to know for the lambda list. Please see the
documentation.

Easy-routes (Hunchentoot)

easy-routes is a route handling extension on top of Hunchentoot. It provides:

(hunchentoot:define-easy-handler (say-yo :uri "/yo") (name)
 (setf (hunchentoot:content-type*) "text/plain")
 (format nil "Hey~@[~A~]!" name))

http://localhost:4242/yo
http://localhost:4242/yo?name=Alice
http://localhost:4444/yo?name=Bob
https://github.com/mmontone/easy-routes

dispatch based on the HTTP method, such as GET or POST (which is
otherwise cumbersome to do in Hunchentoot)
arguments extraction from the url path
decorators (functions to run before the route body, typically used to
add a layer of authentication or changing the returned content type)
URL generation from route names and given URL parameters
visualization of routes
and more

To use it, don’t create a server with hunchentoot:easy-acceptor but with
easy-routes:easy-routes-acceptor:

Note: there is also routes-acceptor. The difference is that easy-routes-
acceptor iterates over Hunchentoot’s *dispatch-table* if no route is
found by easy-routes. That allows us, for example, to serve static content
the usual way with Hunchentoot.

Then define a route like this:

the route signature is made up of two parts:

(“/foo/:x” :method :get) (y &get z)

Here, :x captures the path parameter and binds it to the x variable into the
route body. y and &get z define URL parameters, and we can have &post
parameters to extract from the HTTP request body.

These parameters can take an :init-form and :parameter-type options as
in define-easy-handler.

Now, imagine that we are deeper in our web application logic, and we want
to redirect our user to the route “/foo/3”. Instead of hardcoding the URL, we
can generate the URL from its name. Use easy-routes:genurl like this:

(setf *server* (make-instance 'easy-routes:easy-routes-acceptor))

(easy-routes:defroute my-route-name ("/foo/:x" :method :get) (y &
 (format nil "x: ~a y: ~a z: ~a" x y z))

Decorators are functions that are executed before the route body. They
should call the next parameter function to continue executing the decoration
chain and the route body finally. Examples:

See easy-routes’ readme for more.

Caveman

Caveman provides two ways to define a route: the defroute macro and the
@route pythonic annotation:

(easy-routes:genurl my-route-name :id 3)
;; => /foo/3

(easy-routes:genurl my-route-name :id 3 :y "yay")
;; => /foo/3?y=yay

(defun @auth (next)
 (let ((*user* (hunchentoot:session-value 'user)))
 (if (not *user*)
 (hunchentoot:redirect "/login")
 (funcall next))))

(defun @html (next)
 (setf (hunchentoot:content-type*) "text/html")
 (funcall next))

(defun @json (next)
 (setf (hunchentoot:content-type*) "application/json")
 (funcall next))
(defun @db (next)
 (postmodern:with-connection *db-spec*
 (funcall next)))

(defroute "/welcome" (&key (|name| "Guest"))
 (format nil "Welcome, ~A" |name|))

@route GET "/welcome"
(lambda (&key (|name| "Guest"))
 (format nil "Welcome, ~A" |name|))

clbr://internal.invalid/book/EPUB/text/caveman

A route with an url parameter (note :name in the url):

It is also possible to define “wildcards” parameters. It works with the splat
key:

We must enable regexps with :regexp t:

Accessing GET and POST parameters

Hunchentoot

First of all, note that we can access query parameters anytime with

It acts on the default *request* object which is passed to all handlers.

There is also get-parameter and post-parameter.

Earlier we saw some key parameters to define-easy-handler. We now
introduce default-parameter-type.

We defined the following handler:

The variable name is a string by default. Let’s check it out:

(defroute "/hello/:name" (&key name)
 (format nil "Hello, ~A" name))

(defroute "/say/*/to/*" (&key splat)
 ; matches /say/hello/to/world
 (format nil "~A" splat))
;=> (hello world)

(defroute ("/hello/([\\w]+)" :regexp t) (&key captures)
 (format nil "Hello, ~A!" (first captures)))

(hunchentoot:parameter "my-param")

(hunchentoot:define-easy-handler (say-yo :uri "/yo") (name)
 (setf (hunchentoot:content-type*) "text/plain")
 (format nil "Hey~@[~A~]!" name))

Going to http://localhost:4242/yo?name=Alice returns

Hey Alice you are of type (SIMPLE-ARRAY CHARACTER (5))

To automatically bind it to another type, we use default-parameter-type.
It can be one of those simple types:

'string (default),
'integer,
'character (accepting strings of length 1 only, otherwise it is nil)
or 'boolean

or a compound list:

'(:list <type>)
'(:array <type>)
'(:hash-table <type>)

where <type> is a simple type.

Accessing a JSON request body

Hunchentoot

To read a request body, use hunchentoot:raw-post-data, to which you can
add :force-text t to always get a string (and not a vector of octets).

Then you can parse this string to JSON with the library of your choice (jzon,
shasht…).

(hunchentoot:define-easy-handler (say-yo :uri "/yo") (name)
 (setf (hunchentoot:content-type*) "text/plain")
 (format nil "Hey~@[~A~] you are of type ~a" name (type-of name

(easy-routes route-api-demo ("/api/:id/update" :method :post) ()
 (let ((json (ignore-errors
 (jzon:parse (hunchentoot:raw-post-data :force-tex
 (when json
 …)))

http://localhost:4242/yo?name=Alice
https://github.com/Zulu-Inuoe/jzon/
https://github.com/yitzchak/shasht

Error handling

In all frameworks, we can choose the level of interactivity. The web
framework can return a 404 page and print output on the repl, it can catch
errors and invoke the interactive lisp debugger, or it can show the lisp
backtrace on the html page.

Hunchentoot

The global variables to set to choose the error handling behaviour are:

catch-errors-p: set to nil if you want errors to be caught in the
interactive debugger (for development only, of course):

See also the generic function maybe-invoke-debugger if you want to fine-
tune this behaviour. You might want to specialize it on specific condition
classes (see below) for debugging purposes. The default method invokes the
debugger if *catch-errors-p* is nil.

show-lisp-errors-p: set to t if you want to see errors in HTML
output in the browser.
show-lisp-backtraces-p: set to nil if the errors shown in HTML
output (when *show-lisp-errors-p* is t) should not contain backtrace
information (defaults to t, shows the backtrace).

Hunchentoot defines condition classes. The superclass of all conditions is
hunchentoot-condition. The superclass of errors is hunchentoot-error
(itself a subclass of hunchentoot-condition).

See the documentation: https://edicl.github.io/hunchentoot/#conditions.

Clack

(setf hunchentoot:*catch-errors-p* nil)

http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm
https://edicl.github.io/hunchentoot/#conditions

Clack users might make a good use of plugins, like the clack-errors
middleware: https://github.com/CodyReichert/awesome-cl#clack-plugins.

Weblocks - solving the “JavaScript problem”©

Weblocks is a widgets-based and server-based framework with a built-in
ajax update mechanism. It allows to write dynamic web applications without
the need to write JavaScript or to write lisp code that would transpile to
JavaScript.

https://github.com/CodyReichert/awesome-cl#clack-plugins
https://github.com/40ants/weblocks

Weblocks is an old framework developed by Slava Akhmechet, Stephen
Compall and Leslie Polzer. After nine calm years, it is seeing a very active
update, refactoring and rewrite effort by Alexander Artemenko.

It was initially based on continuations (they were removed to date) and thus
a lispy cousin of Smalltalk’s Seaside. We can also relate it to Haskell’s
Haste, OCaml’s Eliom, Elixir’s Phoenix LiveView and others.

The Ultralisp website is an example Weblocks website in production known
in the CL community.

Weblock’s unit of work is the widget. They look like a class definition:

(defwidget task ()
 ((title
 :initarg :title
 :accessor title)
 (done
 :initarg :done
 :initform nil
 :accessor done)))

https://en.wikipedia.org/wiki/Seaside_(software)
http://ultralisp.org/

Then all we have to do is to define the render method for this widget:

It uses the Spinneret template engine by default, but we can bind any other
one of our choice.

To trigger an ajax event, we write lambdas in full Common Lisp:

The function make-js-action creates a simple javascript function that calls
the lisp one on the server, and automatically refreshes the HTML of the
widgets that need it. In our example, it re-renders one task only.

Is it appealing ? Carry on this quickstart guide here:
http://40ants.com/weblocks/quickstart.html.

Templates

Djula - HTML markup

Djula is a port of Python’s Django template engine to Common Lisp. It has
excellent documentation.

Caveman uses it by default, but otherwise it is not difficult to setup. We must
declare where our templates are with something like

(defmethod render ((task task))
 "Render a task."
 (with-html
 (:span (if (done task)
 (with-html
 (:s (title task)))
 (title task)))))

...
(with-html
 (:p (:input :type "checkbox"
 :checked (done task)
 :onclick (make-js-action
 (lambda (&key &allow-other-keys)
 (toggle task))))
...

http://40ants.com/weblocks/quickstart.html
https://github.com/mmontone/djula
https://mmontone.github.io/djula/djula/

and then we can declare and compile the ones we use, for example::

A Djula template looks like this (forgive the antislash in {\%, this is a Jekyll
limitation):

{\% extends "base.html" \%}
{\% block title %}Memberlist{\% endblock \%}
{\% block content \%}

 {\% for user in users \%}
 {{ user.username }}
 {\% endfor \%}

{\% endblock \%}

At last, to render the template, call djula:render-template* inside a route.

Note that for efficiency Djula compiles the templates before rendering them.

It is, along with its companion access library, one of the most downloaded
libraries of Quicklisp.

Djula filters

Filters allow to modify how a variable is displayed. Djula comes with a good
set of built-in filters and they are well documented. They are not to be
confused with tags.

They look like this: {{ name | lower }}, where lower is an existing filter,
which renders the text into lowercase.

(djula:add-template-directory (asdf:system-relative-pathname "web

(defparameter +base.html+ (djula:compile-template* "base.html"))
(defparameter +welcome.html+ (djula:compile-template* "welcome.ht

(easy-routes:defroute root ("/" :method :get) ()
 (djula:render-template* +welcome.html+ nil
 :users (get-users)

https://github.com/AccelerationNet/access/
https://mmontone.github.io/djula/doc/build/html/filters.html
https://mmontone.github.io/djula/doc/build/html/tags.html

Filters sometimes take arguments. For example: {{ value | add:2 }} calls
the add filter with arguments value and 2.

Moreover, it is very easy to define custom filters. All we have to do is to use
the def-filter macro, which takes the variable as first argument, and which
can take more optional arguments.

Its general form is:

and it is used like this: {{ value | myfilter-name }}.

Here’s how the add filter is defined:

Once you have written a custom filter, you can use it right away throughout
the application.

Filters are very handy to move non-trivial formatting or logic from the
templates to the backend.

Spinneret - lispy templates

Spinneret is a “lispy” HTML5 generator. It looks like this:

The author finds it is easier to compose the HTML in separate functions and
macros than with the more famous cl-who. But it has more features under it

(def-filter :myfilter-name (value arg) ;; arg is optional
 (body))

(def-filter :add (it n)
 (+ it (parse-integer n)))

(with-page (:title "Home page")
 (:header
 (:h1 "Home page"))
 (:section
 ("~A, here is *your* shopping list: " *user-name*)
 (:ol (dolist (item *shopping-list*)
 (:li (1+ (random 10)) item))))
 (:footer ("Last login: ~A" *last-login*)))

https://github.com/ruricolist/spinneret

sleeves:

it warns on invalid tags and attributes
it can automatically number headers, given their depth
it pretty prints html per default, with control over line breaks
it understands embedded markdown
it can tell where in the document a generator function is (see get-html-
tag)

Serve static assets

Hunchentoot

With Hunchentoot, use create-folder-dispatcher-and-handler prefix
directory.

For example:

Now our project’s static files located under
/path/to/myproject/src/static/ are served with the /static/ prefix:

Connecting to a database

Please see the databases section. The Mito ORM supports SQLite3,
PostgreSQL, MySQL, it has migrations and db schema versioning, etc.

In Caveman, a database connection is alive during the Lisp session and is
reused in each HTTP requests.

Checking a user is logged-in

(push (hunchentoot:create-folder-dispatcher-and-handler
 "/static/" (merge-pathnames
 "src/static" ; <-- starts without a /
 (asdf:system-source-directory :myproject)))
 hunchentoot:*dispatch-table*)

A framework will provide a way to work with sessions. We’ll create a little
macro to wrap our routes to check if the user is logged in.

In Caveman, *session* is a hash table that represents the session’s data.
Here are our login and logout functions:

We define a simple predicate:

and we define our with-logged-in macro:

If the user isn’t logged in, there will nothing in the session store, and we
render the login page. When all is well, we execute the macro’s body. We
use it like this:

(defun login (user)
 "Log the user into the session"
 (setf (gethash :user *session*) user))

(defun logout ()
 "Log the user out of the session."
 (setf (gethash :user *session*) nil))

(defun logged-in-p ()
 (gethash :user cm:*session*))

(defmacro with-logged-in (&body body)
 `(if (logged-in-p)
 (progn ,@body)
 (render #p"login.html"
 '(:message "Please log-in to access this page.")))

(defroute "/account/logout" ()
 "Show the log-out page, only if the user is logged in."
 (with-logged-in
 (logout)
 (render #p"logout.html")))

(defroute ("/account/review" :method :get) ()
 (with-logged-in
 (render #p"review.html"
 (list :review (get-review (gethash :user *session*)))

and so on.

Encrypting passwords

With cl-pass

cl-pass is a password hashing and verification library. It is as simple to use
as this:

You might also want to look at hermetic, a simple authentication system for
Clack-based applications.

Manually (with Ironclad)

In this recipe we do the encryption and verification ourselves. We use the de-
facto standard Ironclad cryptographic toolkit and the Babel charset
encoding/decoding library.

The following snippet creates the password hash that should be stored in
your database. Note that Ironclad expects a byte-vector, not a string.

pbkdf2 is defined in RFC2898. It uses a pseudorandom function to derive a
secure encryption key based on the password.

The following function checks if a user is active and verifies the entered
password. It returns the user-id if active and verified and nil in all other

(cl-pass:hash "test")
;; "PBKDF2$sha256:20000$5cf6ee792cdf05e1ba2b6325c41a5f10$19c7f2cc
(cl-pass:check-password "test" *)
;; t
(cl-pass:check-password "nope" **)
;; nil

(defun password-hash (password)
 (ironclad:pbkdf2-hash-password-to-combined-string
 (babel:string-to-octets password)))

https://github.com/eudoxia0/cl-pass
https://github.com/eudoxia0/hermetic
https://github.com/froydnj/ironclad
https://github.com/cl-babel/babel
https://tools.ietf.org/html/rfc2898

cases even if an error occurs. Adapt it to your application.

And the following is an example on how to set the password on the database.
Note that we use (password-hash password) to save the password. The rest
is specific to the web framework and to the DB library.

Credit: /u/arvid on /r/learnlisp.

Runnning and building

Running the application from source

To run our Lisp code from source, as a script, we can use the --load switch
from our implementation.

We must ensure:

to load the project’s .asd system declaration (if any)

(defun check-user-password (user password)
 (handler-case
 (let* ((data (my-get-user-data user))
 (hash (my-get-user-hash data))
 (active (my-get-user-active data)))
 (when (and active (ironclad:pbkdf2-check-password (babel
 hash))
 (my-get-user-id data)))
 (condition () nil)))

(defun set-password (user password)
 (with-connection (db)
 (execute
 (make-statement :update :web_user
 (set= :hash (password-hash password))
 (make-clause :where
 (make-op := (if (integerp user)
 :id_user
 :email)
 user))))))

https://www.reddit.com/r/learnlisp/comments/begcf9/can_someone_give_me_an_eli5_on_hiw_to_encrypt_and/

to install the required dependencies (this demands we have installed
Quicklisp previously)
and to run our application’s entry point.

We could use such commands:

In addition we have allowed the user to set the application’s port with an
environment variable.

We can run the file like so:

sbcl –load run.lisp

After loading the project, the web server is started in the background. We are
offered the usual Lisp REPL, from which we can interact with the running
application.

We can also connect to the running application from our preferred editor,
from home, and compile the changes in our editor to the running instance.
See the following section #connecting-to-a-remote-lisp-image.

Building a self-contained executable

;; run.lisp

(load "myproject.asd")

(ql:quickload "myproject")

(in-package :myproject)
(handler-case
 ;; The START function starts the web server.
 (myproject::start :port (ignore-errors
 (parse-integer
 (uiop:getenv "PROJECT_PORT"))))
 (error (c)
 (format *error-output* "~&An error occured: ~a~&" c)
 (uiop:quit 1)))

As for all Common Lisp applications, we can bundle our web app in one
single executable, including the assets. It makes deployment very easy: copy
it to your server and run it.

$./my-web-app
Hunchentoot server is started.
Listening on localhost:9003.

See this recipe on scripting#for-web-apps.

Continuous delivery with Travis CI or Gitlab CI

Please see the section on testing#continuous-integration.

Multi-platform delivery with Electron

Ceramic makes all the work for us.

It is as simple as this:

and we can ship this on Linux, Mac and Windows.

There is more:

;; Load Ceramic and our app
(ql:quickload '(:ceramic :our-app))

;; Ensure Ceramic is set up
(ceramic:setup)
(ceramic:interactive)

;; Start our app (here based on the Lucerne framework)
(lucerne:start our-app.views:app :port 8000)

;; Open a browser window to it
(defvar window (ceramic:make-window :url "http://localhost:8000/"

;; start Ceramic
(ceramic:show-window window)

clbr://internal.invalid/book/EPUB/text/scripting.html#for-web-apps
clbr://internal.invalid/book/EPUB/text/testing.html#continuous-integration
https://ceramic.github.io/

Ceramic applications are compiled down to native code, ensuring both
performance and enabling you to deliver closed-source, commercial
applications.

Thus, no need to minify our JS.

Deployment

Deploying manually

We can start our executable in a shell and send it to the background (C-z
bg), or run it inside a tmux session. These are not the best but hey, it works©.

Systemd: Daemonizing, restarting in case of crashes, handling
logs

This is actually a system-specific task. See how to do that on your system.

Most GNU/Linux distros now come with Systemd, so here’s a little example.

Deploying an app with Systemd is as simple as writing a configuration file:

$ sudo emacs -nw /etc/systemd/system/my-app.service
[Unit]
Description=your lisp app on systemd example

[Service]
WorkingDirectory=/path/to/your/project/directory/
ExecStart=/usr/bin/make run # or anything
Type=simple
Restart=on-failure

[Install]
WantedBy=network.target

Then we have a command to start it, only now:

sudo systemctl start my-app.service

and a command to install the service, to start the app after a boot or
reboot (that’s the “[Install]” part):

sudo systemctl enable my-app.service

Then we can check its status:

systemctl status my-app.service

and see our application’s logs (we can write to stdout or stderr, and Systemd
handles the logging):

journalctl -u my-app.service

(you can also use the -f option to see log updates in real time, and in that
case augment the number of lines with -n 50 or --lines).

Systemd handles crashes and restarts the application. That’s the
Restart=on-failure line.

Now keep in mind a couple things:

we want our app to crash so that it can be re-started automatically:
you’ll want the --disable-debugger flag with SBCL.
Systemd will, by default, run your app as root. If you rely on your Lisp
to read your startup file (~/.sbclrc), especially to setup Quicklisp, you
will need to use the --userinit flag, or to set the Systemd user with
User=xyz in the [service] section. And if you use a startup file, be
aware that the line (user-homedir-pathname) will not return the same
result depending on the user, so the snippet might not find Quicklisp’s
setup.lisp file.

See more:
https://www.freedesktop.org/software/systemd/man/systemd.service.html.

With Docker

There are several Docker images for Common Lisp. For example:

https://www.freedesktop.org/software/systemd/man/systemd.service.html

clfoundation/sbcl includes the latest version of SBCL, many OS
packages useful for CI purposes, and a script to install Quicklisp.
40ants/base-lisp-image is based on Ubuntu LTS and includes SBCL,
CCL, Quicklisp, Qlot and Roswell.
container-lisp/s2i-lisp is CentOs based and contains the source for
building a Quicklisp based Common Lisp application as a reproducible
docker image using OpenShift’s source-to-image.

With Guix

GNU Guix is a transactional package manager, that can be installed on top
of an existing OS, and a whole distro that supports declarative system
configuration. It allows to ship self-contained tarballs, which also contain
system dependencies. For an example, see the Nyxt browser.

Running behind Nginx

There is nothing CL-specific to run your Lisp web app behind Nginx. Here’s
an example to get you started.

We suppose you are running your Lisp app on a web server, with the IP
address 1.2.3.4, on the port 8001. Nothing special here. We want to access
our app with a real domain name (and eventuall benefit of other Nginx’s
advantages, such as rate limiting etc). We bought our domain name and we
created a DNS record of type A that links the domain name to the server’s IP
address.

We must configure our server with Nginx to tell it that all connections
coming from “your-domain-name.org”, on port 80, are to be sent to the Lisp
app running locally.

Create a new file: /etc/nginx/sites-enabled/my-lisp-app.conf and add
this proxy directive:

server {
 listen www.your-domain-name.org:80;
 server_name your-domain-name.org www.your-domain-name.org; #
 location / {

https://hub.docker.com/r/clfoundation/sbcl/
https://github.com/40ants/base-lisp-image
https://github.com/container-lisp/s2i-lisp
https://www.gnu.org/software/guix/
https://github.com/atlas-engineer/nyxt/

Note that on the proxy_pass directive: proxy_pass http://1.2.3.4:8001/;
we are using our server’s public IP address. Oten, your Lisp webserver such
as Hunchentoot directly listens on it. You might want, for security reasons,
to run the Lisp app on localhost.

Reload nginx (send the “reload” signal):

$ nginx -s reload

and that’s it: you can access your Lisp app from the outside through
http://www.your-domain-name.org.

Deploying on Heroku and other services

See heroku-buildpack-common-lisp and the Awesome CL#deploy section
for interface libraries for Kubernetes, OpenShift, AWS, etc.

Monitoring

See Prometheus.cl for a Grafana dashboard for SBCL and Hunchentoot
metrics (memory, threads, requests per second,…).

Connecting to a remote Lisp image

This this section: debugging#remote-debugging.

Hot reload

 proxy_pass http://1.2.3.4:8001/;
 }

 # Optional: serve static files with nginx, not the Lisp app.
 location /files/ {
 proxy_pass http://1.2.3.4:8001/files/;
 }
}

https://gitlab.com/duncan-bayne/heroku-buildpack-common-lisp
https://github.com/CodyReichert/awesome-cl#deployment
https://github.com/deadtrickster/prometheus.cl
clbr://internal.invalid/book/EPUB/text/debugging.html#remote-debugging

This is an example from Quickutil. It is actually an automated version of the
precedent section.

It has a Makefile target:

It has to be run on the server (a simple fabfile command can call this through
ssh). Beforehand, a fab update has run git pull on the server, so new code
is present but not running. It connects to the local swank server, loads the
new code, stops and starts the app in a row.

See also

Feather, a template for web application development, shows a
functioning Hello World app with an HTML page, a JSON API, a
passing test suite, a Postgres DB and DB migrations. Uses Qlot,
Buildapp, SystemD for deployment.
lisp-web-template-productlist, a simple project template with
Hunchentoot, Easy-Routes, Djula and Bulma CSS.
lisp-web-live-reload-example - a toy project to show how to interact
with a running web app.

Credits

https://lisp-journey.gitlab.io/web-dev/

hot_deploy:
 $(call $(LISP), \
 (ql:quickload :quickutil-server) (ql:quickload :swank-cli
 (swank-client:with-slime-connection (conn "localhost" $(S
 (swank-client:slime-eval (quote (handler-bind ((error
 (ql:quickload :quickutil-utilities) (ql:quickload
 (funcall (symbol-function (intern "STOP" :quickut
 (funcall (symbol-function (intern "START" :quicku
 $($(LISP)-quit))

https://github.com/stylewarning/quickutil/blob/master/quickutil-server/
https://hg.sr.ht/~wnortje/feather
https://github.com/vindarel/lisp-web-template-productlist
https://github.com/vindarel/lisp-web-live-reload-example/
https://lisp-journey.gitlab.io/web-dev/

Web Scraping
The set of tools to do web scraping in Common Lisp is pretty complete and
pleasant. In this short tutorial we’ll see how to make http requests, parse
html, extract content and do asynchronous requests.

Our simple task will be to extract the list of links on the CL Cookbook’s
index page and check if they are reachable.

We’ll use the following libraries:

Dexador - an HTTP client (that aims at replacing the venerable
Drakma),
Plump - a markup parser, that works on malformed HTML,
Lquery - a DOM manipulation library, to extract content from our
Plump result,
lparallel - a library for parallel programming (read more in the process
section).

Before starting let’s install those libraries with Quicklisp:

HTTP Requests

Easy things first. Install Dexador. Then we use the get function:

This returns a list of values: the whole page content, the return code (200),
the response headers, the uri and the stream.

"<!DOCTYPE html>
 <html lang=\"en\">
 <head>

(ql:quickload '("dexador" "plump" "lquery" "lparallel"))

(defvar *url* "https://lispcookbook.github.io/cl-cookbook/")
(defvar *request* (dex:get *url*))

https://github.com/fukamachi/dexador
https://shinmera.github.io/plump/
https://shinmera.github.io/lquery/
https://lparallel.org/pmap-family/
clbr://internal.invalid/book/EPUB/text/process.html

 <title>Home – the Common Lisp Cookbook</title>
 […]
 "
200
#<HASH-TABLE :TEST EQUAL :COUNT 19 {1008BF3043}>
#<QURI.URI.HTTP:URI-HTTPS https://lispcookbook.github.io/cl-
cookbook/>
#<CL+SSL::SSL-STREAM for #<FD-STREAM for "socket
192.168.0.23:34897, peer: 151.101.120.133:443" {100781C133}>>

Remember, in Slime we can inspect the objects with a right-click on them.

Parsing and extracting content with CSS selectors

We’ll use lquery to parse the html and extract the content.

https://shinmera.github.io/lquery/

We first need to parse the html into an internal data structure. Use
(lquery:$ (initialize <html>)):

lquery uses Plump internally.

Now we’ll extract the links with CSS selectors.

Note: to find out what should be the CSS selector of the element I’m
interested in, I right click on an element in the browser and I choose
“Inspect element”. This opens up the inspector of my browser’s web dev
tool and I can study the page structure.

So the links I want to extract are in a page with an id of value “content”,
and they are in regular list elements (li).

Let’s try something:

(defvar *parsed-content* (lquery:$ (initialize *request*)))
;; => #<PLUMP-DOM:ROOT {1009EE5FE3}>

(lquery:$ *parsed-content* "#content li")
;; => #(#<PLUMP-DOM:ELEMENT li {100B3263A3}> #<PLUMP-DOM:ELEMENT
;; #<PLUMP-DOM:ELEMENT li {100B326423}> #<PLUMP-DOM:ELEMENT li

https://shinmera.github.io/lquery/
https://shinmera.github.io/plump/

Wow it works ! We get here a vector of plump elements.

I’d like to easily check what those elements are. To see the entire html, we
can end our lquery line with (serialize):

And to see their textual content (the user-visible text inside the html), we
can use (text) instead:

All right, so we see we are manipulating what we want. Now to get their
href, a quick look at lquery’s doc and we’ll use (attr "some-name"):

;; #<PLUMP-DOM:ELEMENT li {100B3264A3}> #<PLUMP-DOM:ELEMENT li
;; #<PLUMP-DOM:ELEMENT li {100B326523}> #<PLUMP-DOM:ELEMENT li
;; #<PLUMP-DOM:ELEMENT li {100B3265A3}> #<PLUMP-DOM:ELEMENT li
;; #<PLUMP-DOM:ELEMENT li {100B326623}> #<PLUMP-DOM:ELEMENT li
;; […]

(lquery:$ *parsed-content* "#content li" (serialize))
#("License"
 "Getting started
 "Editor support"
 […]

(lquery:$ *parsed-content* "#content" (text))
#("License" "Editor support" "Strings" "Dates and Times" "Hash T
 "Pattern Matching / Regular Expressions" "Functions" "Loop" "I
 "Files and Directories" "Packages" "Macros and Backquote"
 "CLOS (the Common Lisp Object System)" "Sockets" "Interfacing
 "Foreign Function Interfaces" "Threads" "Defining Systems"
 […]
 "Pascal Costanza’s Highly Opinionated Guide to Lisp"
 "Loving Lisp - the Savy Programmer’s Secret Weapon by Mark Wat
 "FranzInc, a company selling Common Lisp and Graph Database so

(lquery:$ *parsed-content* "#content li a" (attr :href))
;; => #("license.html" "editor-support.html" "strings.html" "dat
;; "hashes.html" "pattern_matching.html" "functions.html" "loop
;; "files.html" "packages.html" "macros.html"
;; "/cl-cookbook/clos-tutorial/index.html" "os.html" "ffi.html"
;; "process.html" "systems.html" "win32.html" "testing.html" "m

Note: using (serialize) after attr leads to an error.

Nice, we now have the list (well, a vector) of links of the page. We’ll now
write an async program to check and validate they are reachable.

External resources:

CSS selectors

Async requests

In this example we’ll take the list of url from above and we’ll check if they
are reachable. We want to do this asynchronously, but to see the benefits
we’ll first do it synchronously !

We need a bit of filtering first to exclude the email addresses (maybe that
was doable in the CSS selector ?).

We put the vector of urls in a variable:

We remove the elements that start with “mailto:”: (a quick look at the
strings page will help)

;; […]
;; "http://www.nicklevine.org/declarative/lectures/"
;; "http://www.p-cos.net/lisp/guide.html" "https://leanpub.com/
;; "https://franz.com/")

(defvar *urls* (lquery:$ *parsed-content* "#content li a" (attr

(remove-if (lambda (it)
 (string= it "mailto:" :start1 0
 :end1 (length "mailto:")))
 urls)
;; => #("license.html" "editor-support.html" "strings.html" "dat
;; […]
;; "process.html" "systems.html" "win32.html" "testing.html" "m
;; "license.html" "http://lisp-lang.org/"
;; "https://github.com/CodyReichert/awesome-cl"

https://developer.mozilla.org/en-US/docs/Glossary/CSS_Selector

Actually before writing the remove-if (which works on any sequence,
including vectors) I tested with a (map 'vector …) to see that the results
where indeed nil or t.

As a side note, there is a handy starts-with function in cl-strings,
available in Quicklisp. So we could do:

it also has an option to ignore or respect the case.

While we’re at it, we’ll only consider links starting with “http”, in order not
to write too much stuff irrelevant to web scraping:

All right, we put this result in another variable:

and now to the real work. For every url, we want to request it and check
that its return code is 200. We have to ignore certain errors. Indeed, a
request can timeout, be redirected (we don’t want that) or return an error
code.

To be in real conditions we’ll add a link that times out in our list:

;; https://github.com/CodyReichert/awesome cl
;; "http://www.lispworks.com/documentation/HyperSpec/Front/inde
;; […]
;; "https://franz.com/")

(map 'vector (lambda (it)
 (cl-strings:starts-with it "mailto:"))
 urls)

(remove-if-not (lambda (it)
 (string= it "http" :start1 0 :end1 (length "htt
 *)

(defvar *filtered-urls* *)

(setf (aref *filtered-urls* 0) "http://lisp.org") ;; :/

https://github.com/diogoalexandrefranco/cl-strings/

We’ll take the simple approach to ignore errors and return nil in that case.
If all goes well, we return the return code, that should be 200.

As we saw at the beginning, dex:get returns many values, including the
return code. We’ll catch only this one with nth-value (instead of all of
them with multiple-value-bind) and we’ll use ignore-errors, that
returns nil in case of an error. We could also use handler-case and catch
specific error types (see examples in dexador’s documentation) or (better
yet ?) use handler-bind to catch any condition.

(ignore-errors has the caveat that when there’s an error, we can not return
the element it comes from. We’ll get to our ends though.)

we get:

#(NIL 200 200 200 200 200 200 200 200 200 200 NIL 200 200 200
200 200 200 200
 200 200 200 200)

it works, but it took a very long time. How much time precisely ? with
(time …):

Evaluation took:
 21.554 seconds of real time
 0.188000 seconds of total run time (0.172000 user, 0.016000
system)
 0.87% CPU
 55,912,081,589 processor cycles
 9,279,664 bytes consed

21 seconds ! Obviously this synchronous method isn’t efficient. We wait 10
seconds for links that time out. It’s time to write and measure an async
version.

After installing lparallel and looking at its documentation, we see that the
parallel map pmap seems to be what we want. And it’s only a one word

(map 'vector (lambda (it)
 (ignore-errors
 (nth-value 1 (dex:get it))))
 filtered-urls)

https://lparallel.org/
https://lparallel.org/pmap-family/

edit. Let’s try:

Bingo. It still takes more than 10 seconds because we wait 10 seconds for
one request that times out. But otherwise it proceeds all the http requests in
parallel and so it is much faster.

Shall we get the urls that aren’t reachable, remove them from our list and
measure the execution time in the sync and async cases ?

What we do is: instead of returning only the return code, we check it is
valid and we return the url:

we get a vector of urls with a couple of nils: indeed, I thought I would have
only one unreachable url but I discovered another one. Hopefully I have
pushed a fix before you try this tutorial.

But what are they ? We saw the status codes but not the urls :S We have a
vector with all the urls and another with the valid ones. We’ll simply treat
them as sets and compute their difference. This will show us the bad ones.
We must transform our vectors to lists for that.

(time (lparallel:pmap 'vector
 (lambda (it)
 (ignore-errors
 (let ((status (nth-value 1 (dex:get it)))) status)))
 filtered-urls)
;; Evaluation took:
;; 11.584 seconds of real time
;; 0.156000 seconds of total run time (0.136000 user, 0.020000
;; 1.35% CPU
;; 30,050,475,879 processor cycles
;; 7,241,616 bytes consed

;;
;;#(NIL 200 200 200 200 200 200 200 200 200 200 NIL 200 200 200
;; 200 200 200 200)

... (if (and status (= 200 status)) it) ...
(defvar *valid-urls* *)

(set-difference (coerce *filtered-urls* 'list)

Gotcha !

BTW it takes 8.280 seconds of real time to me to check the list of valid urls
synchronously, and 2.857 seconds async.

Have fun doing web scraping in CL !

More helpful libraries:

we could use VCR, a store and replay utility to set up repeatable tests
or to speed up a bit our experiments in the REPL.
cl-async, carrier and others network, parallelism and concurrency
libraries to see on the awesome-cl list, Cliki or Quickdocs.

(set d e e ce (coe ce te ed u s st)
 (coerce *valid-urls* 'list))
;; => ("http://lisp-lang.org/" "http://www.psg.com/~dlamkins/sl/

https://github.com/tsikov/vcr
https://github.com/orthecreedence/cl-async
https://github.com/orthecreedence/carrier
https://github.com/CodyReichert/awesome-cl
http://www.cliki.net/
https://quickdocs.org/-/search?q=web

WebSockets
The Common Lisp ecosystem boasts a few approaches to building
WebSocket servers. First, there is the excellent Hunchensocket that is
written as an extension to Hunchentoot, the classic web server for Common
Lisp. I have used both and I find them to be wonderful.

Today, however, you will be using the equally excellent websocket-driver to
build a WebSocket server with Clack. The Common Lisp web development
community has expressed a slight preference for the Clack ecosystem
because Clack provides a uniform interface to a variety of backends,
including Hunchentoot. That is, with Clack, you can pick and choose the
backend you prefer.

In what follows, you will build a simple chat server and connect to it from a
web browser. The tutorial is written so that you can enter the code into your
REPL as you go, but in case you miss something, the full code listing can
be found at the end.

As a first step, you should load the needed libraries via quicklisp:

The websocket-driver Concept

In websocket-driver, a WebSocket connection is an instance of the ws class,
which exposes an event-driven API. You register event handlers by passing
your WebSocket instance as the second argument to a method called on. For
example, calling (on :message my-websocket #'some-message-handler)
would invoke some-message-handler whenever a new message arrives.

The websocket-driver API provides handlers for the following events:

(ql:quickload '(clack websocket-driver alexandria))

https://github.com/joaotavora/hunchensocket
https://edicl.github.io/hunchentoot/
https://github.com/fukamachi/websocket-driver
https://github.com/fukamachi/clack

:open: When a connection is opened. Expects a handler with zero
arguments.
:message When a message arrives. Expects a handler with one
argument, the message received.
:close When a connection closes. Expects a handler with two
keyword args, a “code” and a “reason” for the dropped connection.
:error When some kind of protocol level error occurs. Expects a
handler with one argument, the error message.

For the purposes of your chat server, you will want to handle three cases:
when a new user arrives to the channel, when a user sends a message to the
channel, and when a user leaves.

Defining Handlers for Chat Server Logic

In this section you will define the functions that your event handlers will
eventually call. These are helper functions that manage the chat server
logic. You will define the WebSocket server in the next section.

First, when a user connects to the server, you need to give that user a
nickname so that other users know whose chats belong to whom. You will
also need a data structure to map individual WebSocket connections to
nicknames:

Next, when a user sends a chat to the room, the rest of the room should be
notified. The message that the server receives is prepended with the
nickname of the user who sent it.

;; make a hash table to map connections to nicknames
(defvar *connections* (make-hash-table))

;; and assign a random nickname to a user upon connection
(defun handle-new-connection (con)
 (setf (gethash con *connections*)
 (format nil "user-~a" (random 100000))))

Finally, when a user leaves the channel, by closing the browser tab or
navigating away, the room should be notified of that change, and the user’s
connection should be dropped from the *connections* table.

Defining A Server

Using Clack, a server is started by passing a function to clack:clackup.
You will define a function called chat-server that you will start by calling
(clack:clackup #'chat-server :port 12345).

A Clack server function accepts a single plist as its argument. That plist
contains environment information about a request and is provided by the
system. Your chat server will not make use of that environment, but if you
want to learn more you can check out Clack’s documentation.

When a browser connects to your server, a websocket will be instantiated
and handlers will be defined on it for each of the the events you want to
support. A WebSocket “handshake” will then be sent back to the browser,
indicating that the connection has been made. Here’s how it works:

(defun broadcast-to-room (connection message)
 (let ((message (format nil "~a: ~a"
 (gethash connection *connections*)
 message)))
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

(defun handle-close-connection (connection)
 (let ((message (format nil " ~a has left."
 (gethash connection *connections*))))
 (remhash connection *connections*)
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

(defun chat-server (env)
 (let ((ws (websocket-driver:make-server env)))

 (websocket-driver:on :open ws
 (lambda () (handle-new-connection ws)))

You may now start your server, running on port 12345:

A Quick HTML Chat Client

So now you need a way to talk to your server. Using Clack, define a simple
application that serves a web page to display and send chats. First the web
page:

 (a bda () (a d e e co ect o s)))

 (websocket-driver:on :message ws
 (lambda (msg)
 (broadcast-to-room ws msg)))

 (websocket-driver:on :close ws
 (lambda (&key code reason)
 (declare (ignore code reason))
 (handle-close-connection ws)))

 (lambda (responder)
 (declare (ignore responder))
 (websocket-driver:start-connection ws)))) ; send the hands

;; keep the handler around so that you can stop your server late

(defvar *chat-handler* (clack:clackup #'chat-server :port 12345)

(defvar *html*
 "<!doctype html>

<html lang=\"en\">
<head>
 <meta charset=\"utf-8\">
 <title>LISP-CHAT</title>
</head>

<body>
 <ul id=\"chat-echo-area\">

You might prefer to put the HTML into a file, as escaping quotes is kind of
annoying. Keeping the page data in a defvar was simpler for the purposes
of this tutorial.

 <div style=\"position:fixed; bottom:0;\">
 <input id=\"chat-input\" placeholder=\"say something\" >
 </div>
 <script>
 window.onload = function () {
 const inputField = document.getElementById(\"chat-input

 function receivedMessage(msg) {
 let li = document.createElement(\"li\");
 li.textContent = msg.data;
 document.getElementById(\"chat-echo-area\").appendC
 }

 const ws = new WebSocket(\"ws://localhost:12345/chat\")
 ws.addEventListener('message', receivedMessage);

 inputField.addEventListener(\"keyup\", (evt) => {
 if (evt.key === \"Enter\") {
 ws.send(evt.target.value);
 evt.target.value = \"\";
 }
 });
 };

 </script>
</body>
</html>
")

(defun client-server (env)
 (declare (ignore env))

 `(200 (:content-type "text/html")
 (,*html*)))

You can see that the client-server function just serves the HTML content.
Go ahead and start it, this time on port 8080:

Check it out!

Now open up two browser tabs and point them to http://localhost:8080
and you should see your chat app!

All The Code

(defvar *client-handler* (clack:clackup #'client-server :port 80

(ql:quickload '(clack websocket-driver alexandria))

(defvar *connections* (make-hash-table))

(defun handle-new-connection (con)
 (setf (gethash con *connections*)
 (format nil "user-~a" (random 100000))))

(defun broadcast-to-room (connection message)
 (let ((message (format nil "~a: ~a"

 (gethash connection *connections*)
 message)))
 (loop :for con :being :the :hash-key :of *connections* :do

(p g y
 (websocket-driver:send con message))))

(defun handle-close-connection (connection)
 (let ((message (format nil " ~a has left."
 (gethash connection *connections*))))
 (remhash connection *connections*)
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

(defun chat-server (env)
 (let ((ws (websocket-driver:make-server env)))
 (websocket-driver:on :open ws
 (lambda () (handle-new-connection ws)))

 (websocket-driver:on :message ws
 (lambda (msg)
 (broadcast-to-room ws msg)))

 (websocket-driver:on :close ws
 (lambda (&key code reason)
 (declare (ignore code reason))
 (handle-close-connection ws)))
 (lambda (responder)
 (declare (ignore responder))
 (websocket-driver:start-connection ws))))

(defvar *html*
 "<!doctype html>

<html lang=\"en\">
<head>
 <meta charset=\"utf-8\">
 <title>LISP-CHAT</title>
</head>

<body>
 <ul id=\"chat-echo-area\">

 <div style=\"position:fixed; bottom:0;\">
 <input id=\"chat-input\" placeholder=\"say something\" >
 </div>

 <script>
 window.onload = function () {
 const inputField = document.getElementById(\"chat-input

 function receivedMessage(msg) {
 let li = document.createElement(\"li\");
 li.textContent = msg.data;
 document.getElementById(\"chat-echo-area\").appendC
 }

 const ws = new WebSocket(\"ws://localhost:12345/\");
 ws.addEventListener('message', receivedMessage);

 inputField.addEventListener(\"keyup\", (evt) => {
 if (evt.key === \"Enter\") {
 ws.send(evt.target.value);
 evt.target.value = \"\";
 }
 });
 };

 </script>
</body>
</html>
")

(defun client-server (env)
 (declare (ignore env))
 `(200 (:content-type "text/html")
 (,*html*)))

(defvar *chat-handler* (clack:clackup #'chat-server :port 12345)
(defvar *client-handler* (clack:clackup #'client-server :port 80

APPENDIX: Contributors
Thank you to all contributors, as well as to the people reviewing pull
requests whose name won’t appear here.

The contributors on Github are:

vindarel
Paul Nathan
nhabedi 1
Fernando Borretti
bill_clementson
chuchana
Ben Dudson
YUE Daian
Pierre Neidhardt
Rommel MARTINEZ
digikar99
nicklevine
Dmitry Petrov
otjura
skeptomai
alx-a
jgart
thegoofist
Francis St-Amour
Johan Widén
emres
jdcal
Boutade
airfoyle
contrapunctus
mvilleneuve
Alex Ponomarev
Alexander Artemenko

Johan Sjölén
Mariano Montone
albertoriva
Blue
Daniel Keogh
David Pflug
David Sun
Jason Legler
Jiho Sung
Kilian M. Haemmerle
Matteo Landi
Nikolaos Chatzikonstantinou
Nisar Ahmad
Nisen
Vityok
ctoid
ozten
reflektoin
Ahmad Edrisy
Alberto Ferreira
Amol Dosanjh
Andrew
Andrew Hill
André Alexandre Gomes
Ankit Chandawala
August Feng
B1nj0y
Bibek Panthi
Bo Yao
Brandon Hale
Burhanuddin Baharuddin
Coin Okay
Colin Woodbury
Daniel Uber
Eric Timmons
Giorgos Makris
HiPhish

Inc0n
John Zhang
Justin
Kevin Layer
Kevin Secretan
LdBeth
Matthew Kennedy
Momozor
NCM
Noor
Paul Donnelly
Pavel Kulyov
Phi-Long Nguyen
R Primus
Ralf Doering
Salad Tea
Victor Anyakin
alaskasquirrel
blackeuler
contrapunctus-1
convert-repo
dangerdyke
grobe0ba
jthing
mavis
mwgkgk
paul-donnelly
various-and-sundry
Štěpán Němec

(this list is sorted by number of commits)

And the contributors on the original SourceForge version are:

Marco Antoniotti
Zach Beane
Pierpaolo Bernardi

mailto:xach@xach.com

Christopher Brown
Frederic Brunel
Jeff Caldwell
Bill Clementson
Martin Cracauer
Gerald Doussot
Paul Foley
Jörg-Cyril Höhle
Nick Levine
Austin King
Lieven Marchand
Drew McDermott
Kalman Reti
Alberto Riva
Rudi Schlatte
Emre Sevinç
Paul Tarvydas
Kenny Tilton
Reini Urban
Matthieu Villeneuve
Edi Weitz

Finally, the credit for finally giving birth to the project probably goes to Edi
Weitz who posted this message to comp.lang.lisp.

1. nhabedi is Edmund Weitz ;)↩

mailto:skeptomai@mac.com
mailto:brunel@mail.dotcom.fr
mailto:jdcal@yahoo.com
mailto:bill_clementson@yahoo.com
mailto:gdoussot@yahoo.com
mailto:mycroft@actrix.gen.nz
mailto:ndl@ravenbrook.com
mailto:shout@ozten.com
mailto:mal@wyrd.be
mailto:drew.mcdermott@yale.edu
mailto:reti@ai.mit.edu
mailto:alb@chip.org
mailto:rschlatte@ist.tu-graz.ac.at
mailto:emres@bilgi.edu.tr
mailto:rurban@x-ray.at
mailto:matthieu@matthieu-villeneuve.net
mailto:edi@agharta.de
http://groups.google.com/groups?selm=76be8851.0201222259.70ecbcb1%40posting.google.com
news:comp.lang.lisp

	Home
	Content
	Getting started
	Language basics
	Advanced topics
	Outside world
	Download in EPUB
	Translations

	Other CL Resources
	Further remarks
	License
	Getting started with Common Lisp
	Install an implementation
	With your package manager
	With the asdf-vm package manager
	With Roswell
	With Docker
	On Windows

	Start a REPL
	Libraries
	Some terminology
	Install Quicklisp
	Install libraries
	Advanced dependencies management

	Working with projects
	Creating a new project
	How to load an existing project

	More settings
	See also
	Credits

	Editor support
	Emacs
	Installing SLIME
	Using Emacs as an IDE

	Vim & Neovim
	Pulsar (ex Atom)
	VSCode
	Using VSCode with Alive

	JetBrains - NEW in Jan, 2023!
	Eclipse
	Lem
	Sublime Text
	LispWorks (proprietary)
	Geany (experimental)
	Notebooks
	REPLs
	Others

	Emacs
	Using Emacs as an IDE
	Why Use Emacs?
	Emacs Lisp vs Common Lisp
	Finding one’s way into Emacs’ built-in documentation
	Working with Lisp Code
	Lisp Documentation in Emacs - Learning About Lisp Symbols
	Miscellaneous
	Questions/Answers
	Appendix
	See also

	Using VSCode with Alive
	Prerequisites
	Recipes
	Optional Custom Configurations

	LispWorks review
	LispWorks features
	Free edition limitations
	Licencing model

	LispWorks IDE
	The editor
	Keybindings
	Searching keybindings by name
	Tweaking the IDE
	The listener
	The stepper. Breakpoints.
	The class browser
	The function call browser
	The Process Browser
	Saving images
	Misc

	Using LispWorks from Emacs and Slime
	See also

	Functions
	Named functions: defun
	Arguments
	Base case: required arguments
	Optional arguments: &optional
	Named parameters: &key
	Default values to key parameters
	Was a key parameter specified?
	Variable number of arguments: &rest
	Defining key arguments, and allowing more: &allow-other-keys

	Return values
	Multiple return values: values, multiple-value-bind and nth-value

	Anonymous functions: lambda
	Calling functions programmatically: funcall and apply
	Referencing functions by name: single quote ' or sharpsign-quote #'?

	Higher order functions: functions that return functions
	Closures
	setf functions
	Currying
	Concept
	With the Alexandria library

	Documentation

	Data structures
	Lists
	Building lists. Cons cells, lists.
	Circular lists
	car/cdr or first/rest (and second… to tenth)
	last, butlast, nbutlast (&optional n)
	reverse, nreverse
	append
	push (item, place)
	pop
	nthcdr (index, list)
	car/cdr and composites (cadr, caadr…) - accessing lists inside lists
	destructuring-bind (parameter*, list)
	Predicates: null, listp
	ldiff, tailp, list*, make-list, fill, revappend, nreconc, consp, atom
	member (elt, list)
	Replacing objects in a tree: subst, sublis

	Sequences
	Predicates: every, some,…
	Functions
	mapping (map, mapcar, remove-if[-not],…)
	Flatten a list (Alexandria)
	Creating lists with variables
	Comparing lists

	Set
	intersection of lists
	Remove the elements of list-b from list-a (set-difference)
	Join two lists with uniq elements (union)
	Remove elements that are in both lists (set-exclusive-or)
	Add an element to a set (adjoin)
	Check if this is a subset (subsetp)

	Fset - immutable data structure
	Arrays and vectors
	Create an array, one or many dimensions
	Access: aref (array i [j …])
	Sizes
	Vectors
	Transforming a vector to a list.

	Hash Table
	Creating a Hash Table
	Adding an Element to a Hash Table
	Getting a value from a Hash Table
	Testing for the Presence of a Key in a Hash Table
	Deleting from a Hash Table
	Deleting a Hash Table
	Traversing a Hash Table
	Counting the Entries in a Hash Table
	Printing a Hash Table readably
	Thread-safe Hash Tables
	Performance Issues: The Size of your Hash Table

	Alist
	Definition
	Construction
	Access
	Insert and remove entries
	Update entries

	Plist
	Structures
	Creation
	Slot access
	Setting
	Predicate
	Single inheritance
	Limitations

	Tree
	Sycamore - purely functional weight-balanced binary trees

	Controlling how much of data to print (*print-length*, *print-level*)
	Appendix A - generic and nested access of alists, plists, hash-tables and CLOS slots
	Appendix B - accessing nested data structures

	Strings
	Creating strings
	Accessing Substrings
	Accessing Individual Characters
	Remove or replace characters from a string
	Concatenating Strings
	Processing a String One Character at a Time
	Reversing a String by Word or Character
	Dealing with unicode strings
	Sorting unicode strings alphabetically
	Breaking strings into graphenes, sentences, lines and words

	Controlling Case
	With the format function

	Trimming Blanks from the Ends of a String
	Converting between Symbols and Strings
	Converting between Characters and Strings
	Finding an Element of a String
	Finding a Substring of a String
	Converting a String to a Number
	To an integer: parse-integer
	Extracting many integers from a string: ppcre:all-matches-as-strings
	To any number: read-from-string
	To a float: the parse-float library

	Converting a Number to a String
	Comparing Strings
	String formatting
	Structure of format
	Basic primitive: ~A or ~a (Aesthetics)
	Newlines: ~% and ~&
	Tabs
	Justifying text / add padding on the right
	Justifying decimals
	Iteration
	Formatting a format string (~v, ~?)
	Conditional Formatting

	Capturing what is is printed into a stream
	Cleaning up strings
	Removing accentuated letters
	Removing punctuation

	Appendix
	All format directives

	See also

	Numbers
	Introduction
	Integer types
	Rational types
	Floating point types
	Complex types

	Reading numbers from strings
	Converting numbers
	Convert float to rational
	Convert rational to integer

	Rounding floating-point and rational numbers
	Comparing numbers
	Operating on a series of numbers
	Working with Roman numerals
	Generating random numbers
	Bit-wise Operation

	Loop, iteration, mapping
	Introduction: loop, iterate, for, mapcar, series
	Recipes
	Looping forever, return
	Looping a fixed number of times
	Looping an infinite number of times, cycling over a circular list
	Iterate’s for loop
	Looping over a list
	Looping over a vector
	Looping over a hash-table
	Looping over two lists in parallel
	Nested loops
	Computing an intermediate value
	Loop with a counter
	Ascending, descending order, limits
	Steps
	Loop and conditionals
	Begin the loop with a clause (initially)
	Terminate the loop with a test (until, while)
	Loop, print and return a result
	Named loops and early exit
	Count
	Summation
	max, min
	Destructuring, aka pattern matching against the list or dotted pairs

	Iterate unique features lacking in loop
	No rigid order for clauses
	Accumulating clauses can be nested
	Finders: finding
	Control flow: next-iteration
	Generators
	Variable backtracking (previous) VS parallel binding
	More clauses
	Iterate is extensible

	Custom series scanners
	Shorter series expressions
	Loop gotchas
	Iterate gotchas
	Appendix: list of loop keywords
	Credit and references
	Loop
	Iterate
	Series
	Others

	Multidimensional arrays
	Creating
	Random numbers

	Accessing elements
	Row major indexing
	Infix syntax

	Element-wise operations
	Vectorising expressions
	Calling BLAS
	Reductions

	Linear algebra
	Matrix multiplication
	Matrix inverse
	Singular value decomposition

	Matlisp
	Creating tensors
	Element access
	Element-wise operations

	Dates and Times
	Built-in time functions
	Universal Time
	Internal Time

	The local-time library
	Create timestamps (encode-timestamp, universal-to-timestamp)
	Get today’s date (now, today)
	Add or substract times (timestamp+, timestamp-)
	Modify timestamps with any offset (adjust-timestamp)
	Compare timestamps (timestamp<, timestamp<, timestamp= …)
	Find the minimum or maximum timestamp
	Maximize or minimize a timestamp according to a time unit (timestamp-maximize-part, timestamp-minimize-part)
	Querying timestamp objects (get the day, the day of week, the days in month…)
	Formatting time strings (format, format-timestring, +iso-8601-format+)
	Defining format strings (format-timestring (:year “-” :month “-” :day))
	Parsing time strings
	Misc

	Pattern Matching
	Common destructuring patterns
	cons
	list, list*
	vector, vector*
	Class and structure pattern
	type, satisfies
	assoc, property, alist, plist
	Array, simple-array, row-major-array patterns

	Logic based patterns
	and, or
	not

	Guards
	Nesting patterns
	See more

	Regular Expressions
	PPCRE
	Looking for matching patterns: scan, create-scanner
	Extracting information
	Replacing text: regex-replace, regex-replace-all
	Syntactic sugar

	See more

	Input/Output
	Redirecting the Standard Output of your Program
	Faithful Output with Character Streams
	CLISP
	AllegroCL
	LispWorks
	Example

	Fast Bulk I/O

	Files and Directories
	Getting the components of a pathname
	Testing whether a file exists
	Expanding a file or a directory name with a tilde (~)
	Turning a pathname into a string with Windows’ directory separator
	Creating directories
	Deleting directories
	Merging files and directories
	Get the current working directory (CWD)
	Get the current directory relative to a Lisp project
	Setting the current working directory
	Opening a file
	Reading files
	Writing content to a file
	Getting file attributes (size, access time,…)
	Listing files and directories

	Error and exception handling
	Ignoring all errors, returning nil
	Catching any condition (handler-case)
	Catching a specific condition
	handler-case VS handler-bind
	Defining and making conditions
	Signaling (throwing) conditions: error, warn, signal
	Conditions hierarchy
	Custom error messages (:report)

	Inspecting the stacktrace
	Restarts, interactive choices in the debugger
	Using assert’s optional restart
	Defining restarts (restart-case)
	Changing a variable with restarts
	Calling restarts programmatically (handler-bind, invoke-restart)
	Using other restarts (find-restart)
	Hiding and showing restarts

	Handling conditions (handler-bind)
	Running some code, condition or not (“finally”) (unwind-protect)
	Conclusion
	Resources
	See also

	Packages
	Creating a package
	Accessing symbols from a package
	Exporting symbols
	Importing symbols from another package
	Importing all symbols
	About “use”-ing packages being a bad practice

	List all Symbols in a Package (do-external-symbols)
	Package nickname
	Nickname Provided by Packages
	Package locks

	See also

	Macros
	How Macros Work
	Quote
	Macroexpand
	Note: Slime tips
	Macros VS functions
	Evaluation context

	Backquote and comma
	Getting Macros Right
	Gensym

	What Macros are For
	See also

	Fundamentals of CLOS
	Classes and instances
	Diving in
	Defining classes (defclass)
	Creating objects (make-instance)
	Slots
	find-class, class-name, class-of
	Subclasses and inheritance
	Multiple inheritance
	Redefining and changing a class
	Pretty printing
	Classes of traditional lisp types
	Introspection
	See also

	Methods
	Diving in
	Generic functions (defgeneric, defmethod)
	Multimethods
	Controlling setters (setf-ing methods)
	Dispatch mechanism and next methods
	Method qualifiers (before, after, around)
	Other method combinations
	Debugging: tracing method combination
	Difference between defgeneric and defmethod: redefinition
	Removing a method

	MOP
	Metaclasses
	Controlling the initialization of instances (initialize-instance)
	Controlling the update of instances (update-instance-for-redefined-class)
	Controlling the update of instances to new classes (update-instance-for-different-class)

	Type System
	Values Have Types, Not Variables
	Type Hierarchy
	Checking Types
	Type Specifier
	Defining New Types
	Run-time type Checking
	Compile-time type checking
	Declaring the type of variables
	Composing types
	Declaring the input and output types of functions
	Declaring &key parameters
	Declaring &rest parameters
	Declaring class slots types
	Alternative type checking syntax: defstar, serapeum
	Limitations

	See also

	TCP/UDP programming with sockets
	TCP/IP
	UDP/IP
	Credit

	Interfacing with your OS
	Accessing Environment variables
	Accessing the command line arguments
	Basics
	Parsing command line arguments

	Running external programs
	Synchronously
	Asynchronously
	Input and output from subprocess
	Capturing standard and error output
	Running visual commands (htop)

	Piping
	Get Lisp’s current Process ID (PID)

	Foreign Function Interfaces
	Example: Calling ‘gethostname’ from CLISP
	Example: Calling ‘gethostname’ from Allegro CL

	Threads, concurrency, parallelism
	Introduction
	Why bother?
	What is Concurrency? What is Parallelism?

	Bordeaux threads
	Installing Bordeaux Threads
	Checking for thread support in Common Lisp
	Basics — list current thread, list all threads, get thread name
	Create a thread: print a message onto the top-level
	Print a message onto the top-level — fixed
	Print a message onto the top-level — read-time eval macro
	Modify a shared resource from multiple threads
	Modify a shared resource from multiple threads — fixed using locks
	Modify a shared resource from multiple threads — using atomic operations
	Joining on a thread, destroying a thread
	Timeouts
	Useful functions

	SBCL threads
	Basics — list current thread, list all threads, get thread name
	Update a global variable from a thread
	Print a message onto the top-level using a thread
	Print a message onto the top-level — better
	Modify a shared resource from multiple threads
	Modify a shared resource from multiple threads — fixed using locks
	Modify a shared resource from multiple threads — using atomic operations
	Joining on a thread, destroying a thread example
	Useful functions

	Wrap-up
	Parallel programming with lparallel
	Installation
	Preamble - get the number of cores
	Common Setup
	Using channels and queues
	Killing tasks
	Using promises and futures
	Using cognates - parallel equivalents of Common Lisp counterparts
	Error handling

	Monitoring and controlling threads with Slime
	References

	Defining Systems
	ASDF
	Simple examples
	Loading a system definition
	Loading a system
	Testing a system
	Designating a system
	How to write a trivial system definition
	How to write a trivial testing definition

	Create a project skeleton

	Debugging
	Print debugging
	Logging
	Using the powerful REPL
	Inspect and describe
	Trace
	Trace options
	Trace options: break
	Trace options: trace on conditions, trace if called from another function
	Tracing method invocation

	The interactive debugger
	Compile with maximum debugging information

	Step
	Resume a program execution from anywhere in the stack

	Break
	Breakpoints in Slime

	Advise and watch
	Cross-referencing
	SLY stepper and SLY stickers
	Unit tests
	Remote debugging
	References

	Performance Tuning and Tips
	Finding Bottlenecks
	Acquiring Execution Time
	Know your Lisp’s statistical profiler
	Use flamegraphs and other tracing profilers
	Checking Assembly Code

	Using Declare Expression
	Speed and Safety
	Type Hints
	More on Type Declaration with declaim
	Declaring function types
	Code Inline

	Optimizing Generic Functions
	Using Static Dispatch

	Block compilation

	Scripting. Command line arguments. Executables.
	Scripting with Common Lisp
	Quickloading dependencies from a script

	Building a self-contained executable
	With SBCL - Images and Executables
	With ASDF
	With Deploy - ship foreign libraries dependencies
	With Roswell or Buildapp
	For web apps
	Size and startup times of executables per implementation
	Building a smaller binary with SBCL’s core compression

	Parsing command line arguments
	Declaring options
	Top-level command
	Testing options parsing on the REPL
	Handling options
	Main entry point

	Catching a C-c termination signal
	Continuous delivery of executables
	See also
	Credit

	Testing the code
	Testing with FiveAM
	Install and load
	Defining suites (def-suite, def-suite*)
	Defining tests
	Running tests
	Custom and shorter tests explanations
	Fixtures
	Random checking
	ASDF integration
	Running tests on the terminal
	Testing report customization

	Interactively fixing unit tests
	Code coverage
	Generating an html test coverage output

	Continuous Integration
	GitHub Actions, Circle CI, Travis… with CI-Utils
	Gitlab CI
	SourceHut

	Emacs integration: running tests using Slite
	References
	See also

	Database Access and Persistence
	The Mito ORM and SxQL
	Overview
	Connecting to a DB
	Models
	Migrations
	Queries
	Triggers
	Inflation/Deflation
	Eager loading
	Schema versioning
	Introspection
	Testing

	See also

	GUI toolkits
	Introduction
	Tk (Ltk and nodgui)
	Qt4 (Qtools)
	Gtk+3 (cl-cffi-gtk)
	IUP (lispnik/IUP)
	Nuklear (Bodge-Nuklear)

	Getting started
	Tk
	Qt4
	Gtk3
	IUP
	Nuklear

	Conclusion

	Web development
	Overview
	Installation
	Simple webserver
	Serve local files

	Access your server from the internet
	Hunchentoot

	Routing
	Simple routes
	Accessing GET and POST parameters
	Accessing a JSON request body

	Error handling
	Hunchentoot
	Clack

	Weblocks - solving the “JavaScript problem”©
	Templates
	Djula - HTML markup
	Spinneret - lispy templates

	Serve static assets
	Hunchentoot

	Connecting to a database
	Checking a user is logged-in
	Encrypting passwords

	Runnning and building
	Running the application from source
	Building a self-contained executable
	Continuous delivery with Travis CI or Gitlab CI
	Multi-platform delivery with Electron

	Deployment
	Deploying manually
	Systemd: Daemonizing, restarting in case of crashes, handling logs
	With Docker
	With Guix
	Running behind Nginx
	Deploying on Heroku and other services

	Monitoring
	Connecting to a remote Lisp image
	Hot reload
	See also
	Credits

	Web Scraping
	HTTP Requests
	Parsing and extracting content with CSS selectors
	Async requests

	WebSockets
	The websocket-driver Concept
	Defining Handlers for Chat Server Logic
	Defining A Server
	A Quick HTML Chat Client
	Check it out!
	All The Code

	APPENDIX: Contributors

